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Abstract

Global hydroelastic effects due to wetdeck slamming on a catamaran at Froude numbers between
0.30 and 0.33 in regular head waves are studied theoretically and experimentally.

The wetdeck has a horizontal transverse cross-section. The important elastic properties of the
experimental model are theoretically accounted for by using small elastic beam elements con-
necting three rigid bodies. The hydrodynamic loads on the side hulls are based on the strip
theory by Salvesen et al. (1970) without hull interaction. The forward speed causes end terms
at the forward ends of the second and third body counted from forward perpendicular (FP). A
modal based method is used to include heave, pitch, two-node and three-node vertical bending
modes.

The three-body theoretical model without wetdeck slamming agrees well with experimental
eigenvalues, relative vertical motions at the bow, vertical shear forces and bending moments
at two transverse cuts. Mode shapes agree with Finite Element Method (FEM) results. Five
analytically based wetdeck slamming models are presented. The structure is locally rigid and
the flow due to slamming is two-dimensional in a longitudinal cross-sectional plane. It is shown
sufficient from a global response point of view, to use a Von Karman type of method and a
linear approximation of the relative impact velocity. The effect of high forward speed on the
slamming loads is investigated by modifying the dynamic free surface condition and including a
Kutta condition at the aft end of the wetted deck. The flow is mathematically equivalent to the
2D linear unsteady lifting problem of a thin foil in infinite fluid. An important difference is that
the wetted length is time dependent. The Kutta condition model may matter. Both the water
entry and exit phases during the slamming are important for global response. The theory gives
generally good agreement with experimental results for slamming loads and wetdeck slamming
induced global vertical shear forces and bending moments at the two transverse cuts. However,
there is one slamming case with unsatisfactory agreement. This is believed to be due to the
neglection of piston mode resonance of the fluid motion between the two side hulls. Both theory
and experiments show a strong influence of two-node bending on global loads. There is also
some influence of the three-node bending, but this is not satisfactorily predicted.

An error analysis in the experiments is made for the most severe slamming case. Since the
experiments were not done as a part of this thesis and each test condition was done only once,
random errors can not be identified. Systematic errors are discussed and error estimates of
experimentally predicted vertical shear forces and bending moments are made by extensively
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using the theoretical model. It is shown that the trim angle is the most important error source.
The changing incident wave amplitudes along the track of the model and the wave measurement
inaccuracies are equally the second most important error source for vertical bending moment
at the two transverse cuts investigated in the experiments. The error associated with roll, yaw
and sway is the second most important for vertical shear force at the two cuts. The estimated
combined relative errors in experimentally predicted vertical shear forces and bending moments
are between 0.17 and 0.29.

Error sources in the theory are also discussed. Since no benchmark theoretical model that prop-
erly includes all physical effects exists, we must to some extent rely on experimental results. The
discussion covers side hull hydrodynamics and hull interaction, slamming modelling, structural
modelling and effect of transient phase. It is shown that hydrodynamic hull interaction may
matter.

A future perspective is to develop a numerical method that can predict wetdeck slamming
induced global response of multihull vessels in any sea state and at any forward speed. This
involves long term statistical description of combined load effects due to both transient slamming
induced whipping and steady state linear and nonlinear wave loads.



Nomenclature

General Rules

• Symbols are generally defined where they appear in the text for the first time.

• Only the frequently used symbols are listed in this chapter.

• Matrices are represented by bold characters, e.g. A.

• Overdots signify differentiation with respect to time, e.g. η̈, η̇.

Subscripts

gen Matrices for the 6 degree-of-freedom three-body system
j, k = 1, · · · , 6 jth or kth degree of freedom for a rigid body
A,B,C,D Four consecutive ends of the beam connections from the bow towards the stern

Superscripts

i, j, k = 1, 2, 3 For ith or jth or kth body in the three-body system
0 Speed independent term
U Speed dependent term

Roman Letters

ajk Sectional added mass coefficients for the side hulls
a(t) Ship-fixed x-coordinate of upstream deck-water intersection
Ajk Added mass coefficients
An Fourier coefficients used in expressing VR as

∑∞
0 An cos(nθ) on the wetted length

A Added mass matrix
bjk Sectional damping coefficients for the side hulls
b(t) Ship-fixed x-coordinate of downstream deck-water intersection
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B(x) Breadth of the wetted deck
Bjk Damping coefficients
B Damping matrix
Bgen Damping matrix for the three-body system
c(t) Half length of the wetted deck area
CA Aft mean submerged cross-sectional curve of one of the three bodies representing

a side hull
CF Forward mean submerged cross-sectional curve of one of the three bodies

representing a side hull
d(x) Time independent wetdeck height above calm water
DT Time step
E Young’s modulus
f3(x) Sectional Froude-Krylov force on the side hulls in vertical direction
F3,buoy Sum of the vertical nonlinear Froude-Krylov and hydrostatic restoring forces over

the wetted area on the wetdeck
Fj jth mode excitation force or moment
F I
j Froude-Krylov force or moment in direction j

FD
j Diffraction force or moment in direction j

Fn Froude number
F3 Slamming induced vertical force
F5 Slamming induced pitch moment about the mid point of the wetted deck
F Excitation force vector
g Gravitational acceleration
h3(x) Sectional diffraction force on the side hulls in vertical direction
H Wave height of incident waves
i Complex unit, i =

√−1
I Area moment of inertia of cross section of a beam about its neutral axis
Jn Bessel functions of the first kind
k Wave number, k = 2π/λ, where λ is the wave length
kij Restoring coefficients due to the beam connections between rigid body segments
Kjk Hydrostatic restoring coefficients
K Hydrostatic restoring matrix
Kgen Restoring matrix for the three-body system
l(t) Ship-fixed x-coordinate of the mid point of wetted length of the deck
L Length of a connecting beam between two adjacent rigid body segments
LPP Length between fore and aft perpendiculars
M Structural mass
M(x) Bending moment in a connecting beam between two adjacent rigid body segments
M Structural mass matrix
Mgen Mass matrix containing both structural mass and added mass
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%n Unit surface normal vector, %n = (n1, n2, n3), positive direction towards the
fluid domain

(n4, n5, n6) (n4, n5, n6) = %r × %n, where %r = x%i+ y%j + z%k
O Center of gravity of the vessel
Oi Center of gravity of ith segment of the three-body model
OiX Distance from local Oi to the adjacent connecting beam end X
p Fluid pressure (atmospheric pressure excluded)
pinc Pressure due to incident regular waves
Q(x) Vertical shear force in the connecting beams
r 6 degrees of freedom of the three-body system
R Radius of curvature of the incident waves
t Time variable
T Incident wave period
Te Encounter wave period
TN Natural period
Td Time duration of wetdeck slamming
u Horizontal fluid velocity due to incident waves
U Ship forward speed
V1, V2 Velocity components when VR = V1 + V2X
V1, V2, V3, V4 Velocity components when VR is Fourier expanded
Vdeck Vertical velocity of the deck
VR Relative impact velocity normal to the deck during wetdeck slamming
w Vertical fluid velocity due to incident waves
(x, y, z) Coordinate system, fixed relative to the mean oscillating position of the ship.

See Fig. 2.3.
(xi, yi, zi) Local coordinate system for ith segment of the three-body model. See Fig. 2.4.
(X,Z) Local 2D coordinate system for the wetted part of the deck. See Fig. 3.1.

Greek Letters

α Phase difference between ship motions and incident waves
α Angle between the center plane of a monohull and the outer part of the wave

system generated by the monohull. See Fig. 7.1.
β Incident wave heading angle. β = 00 refers to head sea.
γ Vortex density
δ Phase difference
∆cj+1 A prescribed wetted length change during ∆tj+1

∆tj+1 Time step from time instant No.j to No.j + 1
∆Zj+1 Vertical distance that a free surface particle should travel vertically during ∆tj+1

ζ Free surface elevation
ζa Incident wave amplitude
ηB Vertical body motion
η̈i, η̇i and ηi Acceleration, velocity and displacement in degree of freedom i
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ηR Relative vertical displacement between wetdeck and water
θ Parametric coordinate for longitudinal position X on the wetted deck length,

defined by X = c(t) cos θ.
λ Wave length
λ Eigenvalue
ρ Mass density of the fluid
τ Local trim angle of the wetdeck relative to the mean free surface
φ Velocity potential due to wetdeck slamming
φadd Velocity potential with φadd = Ux+ φI + φsh
φD Diffraction potential
φi Eigenvector for the ith mode shape
φI Velocity potential of incident waves
φk Radiation velocity potential due to kth motion mode
φsh Velocity potential due to the ship hulls
φslm Velocity potential due to wetdeck slamming
Φ Total fluid velocity potential, Φ = φadd + φslm
ω0 Wave frequency (rad/s)
ωe Encounter frequency (rad/s)

Abbreviations

2D Two-dimensional
2modes The lowest 2 eigenmodes in the three-body system; including the two coupled

heave & pitch modes
3D Three-dimensional
3modes The lowest 3 eigenmodes in the three-body system; including the two coupled

heave & pitch modes and the two-node bending mode
4modes The lowest 4 eigenmodes in the three-body system; including the two coupled

heave & pitch modes, two-node and three-node bending modes
AP Aft perpendicular
COG Center of gravity
Cut1, Cut2 Transverse cuts of catamaran at respectively 1.48m and 2.68m from the bow

of the catamaran. See Fig. 2.1.
DNV Det Norske Veritas
FP Forward perpendicular
ISSC International ship and offshore structures conference
ITTC International towing tank conference
MRU ’Motion response unit’ measurement system
VBM Vertical bending moment
VERES VEssel RESponse; computer program by Marintek
VSF Vertical shear force
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Chapter 1

Introduction

1.1 General background and motivation

Wetdeck slamming causes important global and local structural response of multihull vessels.
Global longitudinal bending effects should be considered for vessels of lengths larger than 50m,
while local effects matter for all ship lengths. DNV rules for high speed and light craft express
the slamming loads in terms of the vertical accelerations at the center of gravity of the vessel
and also specify a minimum wetdeck height for wetdeck slamming to occur. Aarsnes and Hoff
(1998) and Faltinsen (1999) demonstrated by full scale experiments of the 30m long Ulstein
test catamaran that this minimum height was not sufficient to avoid slamming. Actually, local
slamming induced bending stress in longitudinal stiffeners corresponding to approximately half
the yield stress was recorded in a head sea condition with a significant wave height H1/3 = 1.5m.
The ship speed was 18 knots. The vessel was allowed to operate up to H1/3 = 3.5m.

The full scale measurements on the Ulstein test vessel demonstrated even for a small vessel the
clear effect of wetdeck slamming induced transient vertical accelerations with a period corre-
sponding to the global two-node bending. This phenomenon is called whipping. The maximum
measured vertical acceleration in the bow, in the condition causing local wetdeck slamming
induced maximum strains close to half the yield stress, was about 20m/s2. The whipping con-
tribution was about 5m/s2. This acceleration level is higher than operability limiting criteria
presented by NORDFORSK (1987) for merchant vessels of lengths less than 100m. This speci-
fies a Root-Mean-Square (RMS) value of 0.275g as a limit for vertical accelerations at FP. The
corresponding maximum amplitude would be less than four times the RMS value.

An important matter regarding wetdeck slamming is the operational aspects. A ship master
may change course or reduce speed when slamming represents a danger. This is likely to occur
for a passenger vessel, which is the most common type of catamarans. This may be the rea-
son why few accidents due to wetdeck slamming were reported. However, the oceanographic
research vessel USN Hayes of length 220ft (67.0m) experienced local deformations of the shell

1
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plating due to wetdeck slamming. This also caused shock loading on sensitive oceanographic
instruments and reduced the effective operating time by 50% (Hadler et al. (1974)). This was
the consequence of bad seakeeping behaviour causing large relative vertical motions between the
ship and the water. The ship design was altered by introducing foils between the side hulls in
the forward part of the ship. This reduced the relative vertical motions by 30%. The ship was
then found to be an efficient oceanographic research vessel according to Hadler et al. (1974).
Some other high speed catamarans also encountered damages due to wetdeck slamming, e.g.
Stena Discovery in 1997.

A future trend may be that larger and faster multihull vessels for cargo transportation are built.
Slamming may not be that strongly sensed by the ship master for larger vessels as for smaller
vessels. His or her concern may be less for cargo transportation than for passenger transporta-
tion. This implies that change of ship course and ship speed may not be so actively used to
avoid wetdeck slamming. However, hull surveillance systems may be introduced and combined
with control systems. This requires simplified and physically based mathematical models that
describe the slamming load effects. There are no appropriate simple criteria for operational
limits due to wetdeck slamming like Ochi’s (1964) criterion for bottom slamming on monohulls,
that can be used in computational operational studies.

Since wetdeck slamming may represent an important safety problem, there is a need to improve
present rules due to wetdeck slamming. This is not a simple task. Introducing too conservative
rules may have important negative economic consequences. This illustrates the need for design
by ’direct analysis’ using ’first principles’ to calculate loads and load effects. This means the
use of physically based and experimentally validated computer programs. DNV opened the
possibility to base design on such rules in early 1990s, but the complexity of the matter makes
the introduction of this approach slow. The work in this thesis provides a step towards this goal.

1.2 Slamming physics and previous studies

The occurrence and severity of wetdeck slamming depend on the relative vertical motions and
velocities between the ship and the water. Head sea conditions are considered to be the most
severe cases. If regular incident waves are assumed, the largest relative vertical motions and
velocities occur for frequencies of encounter in the vicinity of heave and pitch resonance frequen-
cies. This means for wave lengths that are the order of the ship length and longer. The incident
wave lengths causing resonance for head sea increase with ship speed. Since a linear irregular
sea is the sum of regular waves, information from regular waves can be used to evaluate which
sea states are most critical.

DNV rules state simply that wetdeck slamming is avoided when the wetdeck height above calm
water is larger than 5% of the ship length. The ship length is certainly an important parameter
for ship motions, but there are also other hull parameters that matter (Faltinsen (1990)). An
example is the beam-draft ratio of each hull. If this is chosen very small, like it can be done for
multihull vessels but not for monohulls due to metacentric height requirements, large vertical
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motions will occur in resonant conditions for a ship without damping devices at forward speed.
Foils are effective in damping heave and pitch for high speed ships. The associated damping can
be explained by the lift force on the foils caused by circulation and shed vorticity. If the relative
vertical velocity of the foil is small relative to the forward speed, the damping increases linearly
with ship speed. It means that decreased vertical motions can be obtained by increasing the
ship speed for a high speed vessel (Haugen et al. (1997)).

Figure 1.1 Position of slamming on the wetdeck of a catamaran in regular head sea waves as a function
of wavelength λ. The figure shows a longitudinal cross-section at the center-plane of the catamaran.
Fn = 0.5, ζa = ζslam =lowest incident wave amplitude when slamming occurs. L =length between
perpendiculars. Zhao and Faltinsen (1992)

It matters how the water hits the wetdeck. Figure 1.1 from Zhao and Faltinsen (1992) shows how
the impact position depends on the wave period in regular head sea waves for a given catamaran
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and Froude number. The water hits always in the forward part of the deck. This follows from
that the relative vertical motions of a ship are always largest in the forward part for a ship
at forward speed in head sea. Figure 1.1 shows that the longer the wave length is, the closer
to the bow the initial impact occurs. If the initial impact occurs in the bow ramp region, it
means that the relative vertical motion for impact has to increase with wave length. The figure
presents also the minimum wave amplitude ζa for slamming to occur for a given incident wave
length λ. Disregarding that the impact position is wave length dependent Fig. 1.1 shows that
the maximum relative vertical motion divided by ζa occurs when λ/L = 1.26 for the presented
cases. When the water does not initially hit at the end of the deck, the water surface has to be
initially tangential to the wetdeck surface at the impact position. Let us consider a wetdeck with
a plane horizontal cross-section, long-crested incident head waves and a forward speed which is
not small. The water surface at the initial impact position can then be approximated by the
incident waves and the flow due to slamming can be assumed two-dimensional in the longitudinal
cross-sectional plane of the vessel. By using Wagner’s (1932) theory, it can be shown that the
initial slamming force F3 is equal to

F3 = ρπV 2
RRB (1.1)

Here VR is the relative velocity normal to the deck surface at initial impact, R is the radius of
curvature of the incident waves at the impact position and B is the breadth of the wetdeck at
the impact position. R can for linear incident regular waves be expressed as 1/(k2ζa) at the wave
crest. Here k and ζa are respectively wave number and wave amplitude. If VR is proportional to
ζa, it implies that F3 is proportional to ζa.

If the water instead hits initially at the end of the deck, there will initially be a small angle
α between the free surface and the deck surface. This implies initially zero slamming force.
The increase in the slamming force with time would be sensitive to α in a similar way as water
entry forces on wedges are sensitive to the deadrise angle β for small β. If the wetdeck has
a wedge-shaped transverse cross-section, the slamming loads are for the same reason smaller
than for a plane horizontal cross-section. It is also beneficial with a bow ramp. This reduces
the probability of slamming. A mean trim angle has a similar effect. This can be significantly
increased at Froude numbers larger than 0.35 (Molland et al. (1995)). By increased trim is
meant that the bow rises. This is physically caused by the increased importance of the velocity
square term in Bernoulli’s equation for the pressure relative to the hydrostatic pressure. Another
way of saying this is that the increased trim is associated with the wave making of the ship in
calm water. Nonlinear unsteady wave-body interaction will also cause a mean trim angle. The
same physical effects cause also a mean sinkage.

1.2.1 Local slamming effects

There are two frequently referred methods in slamming studies, that is a Wagner (1932) and
a Von Karman (1929) type of method. A Wagner method means that the flow caused by the
impact is accounted for in finding the body-water intersection while a Von Karman method ne-
glects this effect. Normally the slamming period is divided into the water entry and exit phase.
This means respectively that the wetted surface increases and decreases. The Wagner method
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is physically correct and numerically feasible only in the water entry phase.

Slamming is a complicated physical process where compressibility of the water, air cushions, air
bubbles and hydroelasticity may influence. The practical relevance of these effects must be con-
sidered in the framework of structural dynamic response. The time scales for structural response
are associated with the natural periods of structural vibrations. A representative time scale of
local wetdeck slamming is 10−2s, while it is the order of 1s for global effects. Since the time
scales of compressibility of the water, air cushions and air bubbles are typically much smaller, we
may assume incompressible water and neglect interaction between water and air. Since signifi-
cant viscous effects do not have time to develop, the flow can be assumed irrotational. The fluid
accelerations associated with the initial impact is generally much larger than the gravitational
acceleration in the vicinity of the impacting body. If in addition the time durations of the water
entry and water exit phase are small relative to typical wave periods, we may neglect gravity
when evaluating slamming loads.

Verhagen (1967) and Haugen (1999) have for instance studied details of air cushions. Korobkin
(1996) gave a review of compressibility effects. Zhao and Faltinsen (1993) provided benchmark
numerical results by a Boundary Element Method and by Dobrovol’skaya’s (1969) similarity
solution for water entry of rigid wedges with constant velocity. Incompressible fluid and irro-
tational flow are assumed. Exact nonlinear free surface conditions without gravity are used.
Kv̊alsvold (1994), Faltinsen (1997) and Haugen (1999) studied theoretically the effect of hy-
droelasticity on local slamming induced stresses. Kv̊alsvold tried originally to use a Boundary
Element Method, but found that too large numerical errors were introduced. This led him to
follow a more analytically based method. The same is true in the studies by Faltinsen (1997)
and Haugen (1999). A Boundary Element Method was also used in a preliminary stage in this
work to calculate the slamming loads. Since also in this case numerical errors occurred, it was
decided to follow more analytically based methods.

Aarsnes (1994) reported experimental drop tests with horizontal or nearly horizontal elas-
tic plates. The scaling accounted for representative local structural dimensions of wetdecks.
Kv̊alsvold et al. (1995), Faltinsen (1997) and Haugen (1999) demonstrated generally good
agreement with the experiments by Aarsnes. An earlier theoretical local hydroelastic study
was presented by Meyerhoff (1965). A review article on slamming was presented by Faltinsen
(2000). It illustrates the many applications for ships, sloshing in tanks, offshore structures and
marine operations associated with lowering of objects through the free surface. Slamming loads
are also of concern for coastal structures.

The importance of hydroelasticity can be related to the duration of the loading. This was
exemplified by Faltinsen (1999) for local impact (See also Faltinsen (2000) for a review of local
hydroelastic slamming). He studied wedge-shaped cross-sections penetrating an initially calm
water surface (See Fig. 1.2). A hydroelastic theory based on orthotropic plate theory, strip theory
and Wagner type of flow model was used. One application was a wetdeck with non-horizontal
cross-section. A stiffened plate between two rigid transverse stiffeners or frames was examined.
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Figure 1.2 Water entry of a wedge-shaped elastic cross section between two rigid transverse frames
(Faltinsen (1999))

Figure 1.3 shows the important parameters in the problem. The horizontal axis is proportional
to the ratio between wetting time (loading time) and the highest natural period of a longitu-
dinal stiffener based on beam theory. The calculations are made with specific structural data
given by Faltinsen (1999) and show nearly no influence of the dimensionless impact velocity
VND. Figure 1.3 illustrates that hydroelasticity matters when tanβ <∼ 0.25V (ρL3/EI)0.5. If
realistic impact velocities and structural properties of wetdecks are considered, it means that
local hydroelastic effects on the local maximum strains due to impact should be considered when
β <∼ 5o.

Haugen (1999) demonstrated also this limiting angle by numerical and experimental drop tests
of elastic plates with different inclination angles and structural properties representative for wet-
decks. When local hydroelastic effects are dominant, i.e. β ∼ 0o, the slamming pressures may
be very high and concentrated in time and space. They are very sensitive to small changes in
environmental conditions and angular positions of the impacting body. These high pressures
are a bad measure of what is the resulting local maximum strains. The force impulse during
an initial stage is what matters. This causes an initial vibratory velocity of the structure with
a space-averaged velocity that completely counteracts the rigid body drop velocity. This initial
velocity leads to a free vibration of the local structure. It is during this free vibration phase that
maximum local strains occur.

Faltinsen (1999) compared his theory with fullscale measurements of local strains due to wet-
deck impact on the Ulstein test catamaran. Fair agreement between theory and experiments was
recorded, but the predicted strains were sensitive to the time varying relative impact velocity
caused by global ship motions and fluid motion.

Local hydroelasticity effects due to slamming can also be sensitive to how the horizontal ve-
locity of the flow at the water-body intersecting points is simulated (Ulstein (1995)). Ulstein
considered impact loads on the stern seal bag of a Surface Effect Ship (SES) at high forward
speed. Gravity is neglected. His concern is coupling with cobblestone oscillations. This is
high-frequency unpleasant vertical accelerations of a SES in small sea states associated with
resonance oscillations in the air cushion between the two side hulls of the SES. Ulstein (1995)
accounts for the flexibility of the bag. This is mainly due to membrane effects. The theoretical
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Figure 1.3 εm = Maximum strain in the middle of the second longitudinal stiffener from the keel,
β = deadrise angle, V = impacting constant rigid body velocity, L = length of a longitudinal stiffener,
EI = bending stiffness based on a beam model of a longitudinal stiffener and its effective flange, ρ =
mass density of water, za = distance from neutral axis of the equivalent beam to maximum strain,
VND = V (ρL3/EI)0.5. (Faltinsen (1999))

flow model separates from the lowest point of the bag in its static configuration. The impact
problem is equivalent to the 2D linear unsteady lifting problem of a thin foil in infinite fluid.
This implies that a Kutta condition is applied at the separation point on the bag. Physically
the Kutta condition means smooth detachment of the flow from the wetted surface. The other
previously mentioned methods imply spray at the intersection points. Further, the dynamic free
surface condition over a distance Ut aft of the separation point differs from the high frequency
free surface condition typically used in slamming models.

Ulstein’s slamming model is similar to one of the slamming models studied in this thesis. How-
ever, we account for the time dependence of the aft intersection point between the free surface
and the body surface. Further, we use a Von Karman method to find the body-water inter-
section points. Ulstein uses a Wagner method to find the upstream intersection point. This is
numerically more complicated and physically more correct than a Von Karman method during
the water entry phase. However, a Wagner type method can not be used during the water
exit phase. Ulstein (1995) assumes that the flow is then ventilating and sets the hydrodynamic
force equal to zero. This can not be done in the analysis of wetdeck slamming induced global
response, where the water exit phase plays an important role. It is also shown in this thesis that
the difference in global response is minor between using a Von Karman method and Wagner
method during the water entry phase. Ulstein (1995) has further simplified the impact problem
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for very high forward speed. The problem is then equivalent to the steady lifting problem of a
thin foil in infinite fluid. This approximation is not appropriate for the studies in this thesis.

1.2.2 Global effects

When global effects are considered, the local structure can be considered rigid. The reason is the
very different natural periods for local and global behaviour and that local vibrations have died
out on the time scale of the global natural periods. Kaplan (1987) analyzed slamming on the
bow ramp of a SES in hull borne condition. The SES is then similar to a catamaran. The vessel
was assumed locally and globally rigid and head sea was considered. A linear strip theory was
used for the hydrodynamic loads on the side hulls. Kaplan (1987) (1991) expressed the impact
loads as the sum of a buoyancy force due to nonlinear Froude-Krylov and hydrostatic restoring
loads and the vertical force term

F3 = −(
∂

∂t
+ U

∂

∂x
)(A33VR) (1.2)

Here t is the time variable, U is the forward speed and x is the longitudinal coordinate. In-
creasing x along the ship is towards the aft end of the ship. A33 is the high-frequency added
mass in heave for the wetted part of the deck and VR is the relative velocity normal to the deck
surface. An important part of F3 is the slamming term associated with the time rate of change
of A33. This term can be related to the time derivative of the wetted area. This slamming
term is proportional to V 2

R, i.e. like in Eq. (1.1). This term is always positive upwards and is
by Kaplan (1987) set equal to zero during the water exit phase. A dominant term during the
water exit phase is the added mass term −A33dVR/dt. This term is negative with an absolute
value of the same order as the maximum force during the water entry phase. The loads dur-
ing both the water entry and exit phase are important for the global response of the vessel.
Kaplan demonstrated small influence of slamming on motions while the effect on vertical accel-
erations and vertical shear forces and bending moments was important. Numerically predicted
shear forces and bending moments showed an overall good agreement with experiments, but the
numerical results were sensitive to the phasing between the ship motions and the incident waves.

Zhao and Faltinsen (1992) used an analytically based Wagner-type method to predict wetdeck
slamming loads during the water entry phase. The emphasis was on global effects and the cata-
maran was rigid. This method can not be used during the water exit phase and this phase was
neglected. Very large initial slamming induced vertical accelerations were predicted.

Økland (2002) studied numerically and experimentally the global effect of wetdeck slamming
on an elastic catamaran model at zero forward speed and head sea. Other wave headings were
only studied experimentally. The catamaran model consists of rigid body segments connected
by elastic beam elements. The same model is used in the experimental and numerical studies in
this thesis and will be described in later chapters. However, the mass distribution differs, and
we consider forward speed. A similar elastic model with softer spring connections was used by
Hermundstad (1996) in his springing studies. The springing was excited by linear high-frequency
hydrodynamic loads on the side hulls. Faltinsen et al. (1992) used the same hull geometry in
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their theoretical and experimental studies of linear global wave induced loads in regular oblique
sea at forward speed. The catamaran model was then rigid.

Økland (2002) solved the high frequency boundary value problem for slamming loads by a bound-
ary element method with the wetted surface determined by a Von Karman (1929) method. The
important elastic global effects in head sea are in terms of two-node and three-node longitudinal
bending. These modes are shown in Fig. 1.4 based on Økland’s FEM calculations for a similar
model as in this thesis.

(a) Two-node longitudinal bending (b) Three-node longitudinal bending

Figure 1.4 Calculated shapes of eigenmodes, by Økland (2002)

Both Hermundstad et al. (1999) and Økland (2002) used the Finite Element Method, while
we will incorporate the elastic properties in a three-body model developed specifically for com-
parisons with the model tests. Økland described the side hull forces by linear strip theory
without accounting for hull interactions. He demonstrated reasonable agreement between ex-
perimentally and numerically determined vertical shear forces and bending moments, as well as
slamming forces.

The wetdeck slamming studies by Kaplan, Økland and in this thesis use linear strip theory to de-
scribe the hydrodynamic loads on the side hulls. Zhao and Faltinsen (1992) used the high-speed
theory by Faltinsen and Zhao (1991) without hull interaction. Strip theory is considered as a
reliable and practical method for monohulls as long as the Froude number is less than 0.4 ∼ 0.5.
However, strip theory can give unreliable results for catamaran hulls if hull interaction is ac-
counted for (Hadler et al. (1974)).

The hull interaction is strongly frequency dependent and there are eigenmodes for the fluid
motion between the two hulls. For heave and pitch, a piston mode, as well as a sloshing mode
(standing waves) resonance may occur between the hulls. The most relevant mode is the piston
mode (Ronæss (2002)). The forward speed and three-dimensionality of the flow will in reality
cause less wave interaction than strip theory with hull interaction predicts. The forward speed
effect can be illustrated schematically by Fig. 1.5 from Ronæss (2002). Steady state harmonic
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oscillations with circular frequency ωe were assumed.

�

�

U

Figure 1.5 Wave pattern based on combining strip theory with forward speed effect. The strip theory
wave front propagates with the group velocity 0.5g/ω, where ω is the forced oscillation frequency of
the body. This in combination with the forward speed determines α. Ronæss (2002)

Figure 1.5 shows the general features of the important wave patterns generated by a single hull.
Ronæss (2002) represented the ship in the far-field by a longitudinal line distribution of 3D
forward speed dependent oscillating sources along the ship’s center plane. The source strengths
were determined by using the unified theory by Newman (1978). It was verified that Fig. 1.5 is
a reasonable approximation. The angle α between the outer part of the wave system and the
longitudinal center line of the ship can be expressed as

tanα =
0.5gt/ωe

Ut
=

g

2Uωe
(1.3)

This can be physically explained by first considering waves based on strip theory. These waves
have crests parallel to the center plane of the ship, as shown in Fig. 1.5. The group velocity i.e.
the velocity of the wave front is g/(2ωe) in deep water. Equation (1.3) follows now by accounting
for that the ship due its forward speed will run away from these waves. This means that the
wave front during a time t has moved a transverse distance g

2ωe
t while the ship has moved a

forward distance Ut. If a catamaran is considered, we can as a first approximation consider
wave systems generated by each hull as shown in Fig. 1.5. These waves generated by one hull
can then, dependent on α, be incident to the other hull and cause hull interaction. The most
important frequencies to consider are in the vicinity of heave and pitch resonance frequencies.
Equation (1.3) shows that, for a given ωe, the angle α and the importance of hull interaction
decrease with increasing speed.

Since the wetdeck slamming occurs at the forward part of the wetdeck for a catamaran at for-
ward speed in head sea, the hull generated waves do not influence the ambient waves in the
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impact area. However, there are local effects due to run-up at the side hulls. These local ef-
fects can for instance be explained by the 21

2
D high speed theory by Faltinsen and Zhao (1991)

even if the Froude number is less than 0.4 ∼ 0.5. What matters is a local Froude number
based on the length parameter equal to the distance from the bow. This must be higher than
0.4 ∼ 0.5, and the hull must be slender. This is relevant for the ship length studied in this thesis.

If the local Froude number is higher than approximately 1.0, 2D water entry theories without
gravity can be used to assess the run-up. Zhao et al. (1997) used this to study steady flow
around a planning boat. The numerical results for water entry of wedges by Zhao and Faltinsen
(1993) for large deadrise analysis is useful in our context. Even if the flow caused by the impact
of the run-up on the wetdeck is 3D, 2D impact of wedge-flow with small interior angles (Greco
(2001)) can be used to assess the relative importance for global wetdeck slamming induced re-
sponse. However, the effect is believed to be small and is not further pursued in this thesis.

Wetdeck slamming can also be important for offshore structures. Baarholm (2001) studied global
impact loads on a fixed horizontal wetdeck in incident regular waves and 2-D flow conditions.
A boundary element method that accounted for gravity and nonlinearities in the free surface
condition was used. This was combined with a Kutta condition at the aft intersection point
between the deck and the free surface both when the flow separated from the aft edge and during
the water exit phase. Experimental observations were the basis for applying the Kutta condition.
Baarholm (2001) demonstrated a good agreement between theoretical and experimental time
histories of vertical force. The water exit phase lasted much longer than a Von Karman method
would predict. There is an important difference between Baarholm’s case and the studies in this
thesis and the other previously mentioned wetdeck studies. The deck wetting in Baarholm’s case
lasted considerable longer so that gravity effects may matter and cause wave generation due to
the impact.

Figure 1.6 presents a schematic view based on video recordings of the free surface behaviour
in Baarholm’s experiments. The free surface hits initially at the front end of the deck caus-
ing uprise of the water at the front end of the deck. The water will subsequently turn rapidly
around the front edge with local high curvature of the free surface. This is probably ampli-
fied by a vortex created due to the cross flow past the sharp edge. This rapid cross-flow was
artificially handled in Baarholm’s numerical method. The whole deck is subsequently wetted
with the flow leaving the aft end tangentially to the deck surface. When the wetted area later
diminishes, there is smooth detachment from the aft body-water intersection point until the final
stages of the wetting. The free surface slope is then high at the intersection points (See Fig. 1.6).

Baarholm et al. (2001) studied numerically the global wetdeck slamming induced vertical
motions of a semi-submersible. 3D slamming load effects were accounted for by using a 3D-
correction to the high-frequency heave added mass proposed by Blagovenschensky (1962). This
has an important effect when a large part of the deck is wetted. 3D flow effects due to the
incident flow field caused by wave diffraction and scattering effects of the platform wave were
neglected, but ought to be studied in the future. Baarholm et al. (2001) demonstrated a signifi-
cant global vertical impact force on the deck by using realistic environment conditions. A large
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Wave direction

Undisturbed wave

Platform deck

(a) t = t0

Wetted length
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Jet

(c) t = t2

Spray

(d) t = t3

(e) t = t4 (f) t = t5

Figure 1.6 Sketches of free surface at different time instants of water impact on a horizontal deck.
Incident regular waves, 2D flow. Based on video recordings of model tests. Baarholm (2001)

influence on the heave motion was also found.

1.3 Objectives

The ultimate aim is to develop a numerical method that can predict wetdeck slamming induced
global response of multihull vessels in any sea state and at any forward speed. This involves
long term statistical description of combined load effects due to both transient slamming induced
whipping and steady state linear and nonlinear wave loads. Since this most likely requires very
long time simulations with different stochastic realizations of different short term sea states for
given operational areas, the combined hydrodynamic and structural model has to be simplified
by proper physical approximations and experimental validation. It would be impossible today
from a CPU point of view, to solve the 3D potential flow with exact nonlinear boundary con-
ditions. Another matter is that numerical solutions like this are still at the research stage with
several unsolved challenges (Jensen et al. (2000)). Using Navier Stokes equation to represent
the effect of viscosity is still in its infancy relative to a potential flow model.

The studies in this thesis are steps towards the final objectives. Regular incident head waves
on a catamaran at forward speed is analyzed theoretically. The wetdeck is assumed to have a
horizontal cross-section. The theoretical model is validated by comparisons with model tests.
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Since the elastic test model consisted of rigid body parts, a structural model was developed
specifically for the test model. A major challenge in this thesis is to properly approximate the
wetdeck slamming loads and calculate the globally induced response. Also an error analysis
is made of the experiments and a partly qualitative and partly quantitative discussion of the
accuracy of the theory is provided. Potential improvements are then pointed out.

1.4 Outline of the thesis

Chapter 1 is the introduction. It gives the background, describes earlier relevant research and
presents the objectives and contents of this thesis.

Chapter 2 presents the theoretical three-body model of the catamaran needed in comparisons
with model tests. Each of the three bodies is assumed to be rigid. Regular head sea waves and
forward speed are considered. The hydrodynamic loads on the side hulls are based on the linear
strip theory by Salvesen et al. (1970). Important modifications are needed in terms of forward
speed dependent end terms at the front ends of the second and third body from the bow. This
is derived by Stokes theorem. Hydrodynamic hull interaction is neglected. The global elasticity
of the catamaran is accounted for by small beam elements between the three rigid bodies. It is
shown how this introduces restoring terms in the equations of motions. The unknowns are the
local heave and pitch for the three rigid bodies.

Chapter 3 deals with the different 2D slamming models by considering different ways to deter-
mine wetted length, to approximate relative impact velocity, and to consider the forward speed
effect on the free surface condition and a Kutta condition at the aft end of the wetted part.
Detailed solution procedures are presented.

It is assumed that the wetdeck has a horizontal transverse cross-section and that the slamming
induced flow is 2D in a longitudinal cross-sectional plane. Gravity is neglected in the free surface
conditions and boundary conditions are transferred to a horizontal line. Since neither a Wagner
nor a Von Karman based impact model with high frequency dynamic free surface condition and
a general representation of the relative impact velocity in the boundary condition is known from
the open literature, a detailed analytical derivation is presented. The flow is represented by
a vortex distribution along the instantaneous wetted part of the wetdeck. The solution of the
resulting singular integral equation is based on Newman (1977). The Wagner based method can
only be used during the water entry phase. Even if Ulstein (1995) has applied a similar Kutta
condition model as in this thesis, there are important differences associated with the changing
wetted length and the water exit phase. Details of the solution procedure are therefore given
both in Chapter 3 and Appendix B. Gravity is considered for all models in terms of nonlinear
Froude-Krylov and hydrostatic loads. By Froude-Krylov loads are meant integrated pressure
loads due to the undisturbed incident waves.

Chapter 4 compares five slamming models based on different theories presented in Chapter 3,
by investigating the wetted length, impact loads, global motions and accelerations of a rigid
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catamaran. It concludes that a Wagner method does not influence the global response greatly
relative to using a Von Karman method. Various approximation of relative impact velocity over
the wetted area in the body boundary condition is investigated. It shows that linear expression
is sufficient. The importance of the Kutta condition is demonstrated. The water exit phase,
where the added mass force is dominant and causes negative loads, is shown to be important for
the global response. The negative impact loads in our studies do not cause ventilation. This will
typically be started by cavitation, i.e. that the total pressure is close to zero (vapor pressure)
somewhere along the wetted part of the deck.

In Chapter 5, the three-body model is used to investigate the global hydroelastic effect caused
by wetdeck slamming. A modal based method is introduced to avoid unphysical effects of the
two highest modes. One reason is that structural damping is neglected. Further, since the two
highest modes have relatively high natural frequencies, introduction of the modal based method
reduces the CPU time significantly. The modal based method used includes two coupled heave
and pitch modes, as well as vertical two-node and three-node vertical bending. It is verified that
the modal based method and direct solution of the equations of motions give consistent results.

Numerical verification and experimental validation are done systematically. The experiments
contained five cases with high incident wave amplitudes. Both theory and experiments agree
that wetdeck slamming does not occur in one of the cases. The agreement between theory and
experiments of the vertical shear force and bending moment as well as the slamming force on the
wetdeck between experiments and theory is reasonable for most severe slamming case and in one
moderate slamming case. Both theory and experiments demonstrate that the slamming force is
in general positive during the water entry phase and negative during the water exit phase. The
duration of the water exit phase is well predicted with Von Karman method which is contrary
to what a similar method will do in the previously discussed case of Baarholm (2001). A reason
may be that the water exit phase lasted longer relative to the wave period in Baarholm’s ex-
ample. Two-node bending is shown in general to be dominant in the response. The prediction
of three-node bending is unsatisfactory. The case with largest wave period does not show good
agreement between theory and experiments. A thorough investigation is made and the reason
is suggested to be piston mode resonance between the two hulls. One of the test cases show
relatively small slamming effect. The wave amplitude in the theoretical predictions has to be
increased 20% to cause slamming in this case.

In Chapter 6, experimental error sources are systematically and extensively investigated. Based
on an error analysis of the experiments, relative errors of the global load response are given for
the most severe slamming case. Since the experiments were not done as part of this thesis and
each test was only done once, random errors can not be estimated. It is shown that the trim angle
is the most important error source. The changing incident wave amplitudes along the track of
the model and the wave measurement inaccuracies are equally the second most important error
source for vertical bending moment at the two transverse cuts studied in the experiments. The
errors associated with roll, yaw and sway is the second most important for vertical shear force
at the two cuts. This roll, yaw and sway effect is partly due to an unintended mass distribution
causing a small mean roll angle. Table 1.1 lists the importance of the different error sources
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investigated. The error analysis combines estimated uncertainties for each error source with the
theoretical model to find errors in wetdeck slamming induced global vertical shear forces and
bending moments. The estimated relative errors vary between 0.17 and 0.29 depending on the
response variable.

Theoretical error sources are investigated in Chapter 7. The numerical related and physical
related error sources are investigated separately. The numerical error sources show negligible
influence on the final results. Among the physical errors, the most important theoretical error
source is believed to be neglection of hydrodynamic hull interaction. It is shown that neglection
of transverse bending in the theoretical model causes negligible errors in predicting longitudinal
global response. Table 1.2 lists the relative importance of the different physical error sources in
the theory investigated in Chapter 7.

Finally, conclusions and future perspectives are given in Chapter 8.

Part of this thesis work has been presented in Ge et al. (2002a), Ge et al. (2002b) as well as in
Faltinsen et al. (2002).

Table 1.1 Importance of error sources in the experiments of global wetdeck slamming on a catamaran
at forward speed in head sea; investigated in Chapter 6

Error sources in experiments Importance

Speed No
Changing wave amplitude along the track Yes
Seiching in the tank No
Inaccuracies in wave measurements Yes
Roll, yaw and sway Yes
Sinkage No
Trim Yes
Mass distribution Yes/No
Wetdeck geometry Yes
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Table 1.2 Importance of physical error sources in theoretical modelling of global wetdeck slamming
on a catamaran at forward speed in head sea; investigated in Chapter 7

Physical error sources in the theory Importance

Incident wave nonlinearities No
Hull interaction Yes
Nonlinear hydrodynamics on side hulls ??
3D slamming No
Kutta condition in slamming model No
Transverse bending No
Transient phase No

1.5 Major contributions of this thesis

• A theoretical three-body model for analyzing global wetdeck slamming induced elastic
response based on a tested catamaran has been developed;

• New wetdeck slamming models are presented. These include an analytical model where
the relative impact velocity is described by a Fourier series. Another model appropriate
for high speed and accounting for smooth detachment of the flow (Kutta condition) at the
aft end of the wetted deck is also developed;

• Error analysis of experiments on global wetdeck slamming induced vertical shear forces and
bending moments are performed. This has to our knowledge not been done systematically
before. However, since the experiments were done by others and each test condition was
only done once, we were not able to account for random errors.



Chapter 2

Theoretical Three-Body Model

2.1 Introduction

In order to study slamming effects on global response of catamarans, model tests in regular
head sea waves have been performed in the Ocean Basin at the Marine Technology Center in
Trondheim. The test model is geometrically the same as used by Økland and Moan (1998).
However, the structural mass distribution differs. The experimental results were obtained by
Aarsnes and Økland in 1996, but they did not publish the results for forward speed. The
objective was to study the global hydroelastic effects of wetdeck slamming on large catamarans.
So the tested model was cut into pieces connected by softer materials. In details, each side hull
was divided into three sections longitudinally, with an aluminum frame mounted in each section.
The hull sections are connected by steel springs and aluminum transducers longitudinally and
transversely, as illustrated in Fig. 2.1. The wetdeck in the tested catamaran consisted of four
sections, notated consecutively as Deck1, 2, 3, 4 from the bow towards the stern.

Deck1 Deck2 Deck3 Deck4

Aluminum frame steel spring Aluminum transducer
transverse spring and transducer transverse girder

Cut1 Cut2

Figure 2.1 Outline of the experimental hull arrangements (top view)

The basic geometrical data and body plan of the model catamaran are given in Appendix A.
The vertical shear forces (VSF) and bending moments (VBM) were measured at the transverse

17
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cuts denoted as Cut1 and Cut2. These cuts are respectively 1.48m and 2.68m from the bow.
Here the bow refers to the forward end of the Deck1. Cut1 and Cut2 do not necessarily coincide
with where maximum VSF and VBM occur. Figures 2.2 illustrate the calculated longitudinal
distribution of the linear transfer function of VSF and VBM by assuming a rigid vessel. The
body plan and mass distribution are the same as for the test model. Head sea conditions without
wetdeck slamming are considered. Results in Fig. 2.2 are for the case with wave period 1.8s and
the forward speed 1.9m/s. The strip theory by Salvesen et al. (1970) is applied. Since the mass
distribution was presented by very few points (See Appendix A), there are large variations in
vertical shear force in Fig. 2.2(a). This is not believed to be a problem when we are examining
VSF and VBM at Cut1 and Cut2, where the loads do not show large jumps like it does for VSF
between x = −0.34m to 0.14m.
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(a) VSF along ship length
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Figure 2.2 Longitudinal distribution of amplitudes of Vertical Shear Force (VSF) and Vertical Bending
Moment (VBM) divided by wave amplitude ζa along the catamaran length; x = 0 refers to the position
of LPP /2, x = −2.14m is the bow end. Rigid catamaran with forward speed U = 1.9m/s in regular
head waves with period T = 1.8s.

This catamaran model has also been the basis for the experimental and theoretical studies
by Økland (2002), and Hermundstad (1996) but with softer spring connections. Hermund-
stad (1996) investigated springing due to linear hydrodynamic side-hull forces at high forward
speed while Økland (2002) studied wetdeck slamming induced global response at zero forward
speed. A modal superposition method as presented by Bishop and Price (1979) was applied in
their studies, and the dry modes were found by using the Finite Element Method. Hermund-
stad (1996) modified the high-speed 21

2
D theory by Faltinsen and Zhao (1991) to find linear

hydrodynamic forces on the side hulls. Hydrodynamic interaction between the side hulls was
considered. Økland (2002) applied the commercial computer code VERES based on the strip
theory by Salvesen et al. (1970) to calculate the side hull forces. The slamming loads were found
by solving numerically the boundary value problem due to slamming. The ’high frequency’ dy-
namic free surface condition φ = 0 was used with the wetted length determined by the Von
Karman method. Here φ is the velocity potential due to wetdeck slamming. The flow due to
the wetdeck slamming was assumed two-dimensional in a longitudinal cross-sectional plane of
the vessel. A boundary element method based on representing the velocity potential by Green’s
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second identity was used. The pressure was found by −ρ∂φ/∂t. Here ρ means mass density of
the fluid.

In the present work a three-body model connected by quasi-static elastic beams is established to
account for the global flexibility and to investigate the global response due to wetdeck slamming.
The linear wave induced forces on the side hulls in the time domain are based on a frequency
domain solution. Hull interaction is neglected. The strip theory by Salvesen et al. (1970)
has been used separately for the three bodies. An important modification is needed when the
pressure term −ρU ∂φ

∂x
is integrated to find the heave force and pitch moment on each body. Here

U is the forward speed, φ is the velocity potential caused by the vessel and x is the longitudinal
coordinate with positive direction aftwards. In Salvesen et al. (1970) Stokes theorem is used
to integrate this pressure term. Part of the expressions are line integrals which in our case give
important contributions not only from the aft end cross-section of each ship segment but also
from the front cross-section of the mid and aft segments. The relevant details will be presented
in the coming sections.

2.2 Governing system equations

A rigid catamaran is first considered. To describe the motions, a right-handed global coordinate
system (x, y, z) is used. It is fixed with respect to the mean oscillatory position of the catamaran,
with positive x from bow to stern, positive z vertically upwards through the center of gravity
of the catamaran in its mean oscillatory position. The origin of the coordinate system is in
the plane of the undisturbed free surface. The translatory displacements in the x-, y- and z-
directions are defined as surge, sway and heave respectively, and denoted as η1, η2 and η3. The
angular displacements of the rotational motion about x-, y- and z-axis are roll, pitch and yaw
respectively, and denoted as η4, η5 and η6. The catamaran is assumed to be symmetric about
the x-z plane (See Fig. 2.3).

η1

η2η3

η4

η5

η6

O

U

ζ
β

x

y
z

Figure 2.3 Global coordinate and degree-of-freedom system of the catamaran

We focus now on the test catamaran as presented in Fig. 2.1 and on head sea cases. The
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flexibility in the test catamaran is mainly controlled by the connecting parts of the rigid hull
segments. The transverse connecting springs and beams are longer and therefore softer than
the longitudinal ones. Also for the longcrested head sea wave cases, the longitudinal bending
modes will be dominant relative to transverse bending and torsional modes (e.g. Faltinsen et al.
(1992)). So a three-body model of the test model was made as shown in Fig. 2.4.

x1

z1

x2

z2

x3

z3

η1
3, η

1
5 η2

3, η
2
5 η3

3, η
3
5

O1 O2 O3

A B C D

Figure 2.4 Degrees of freedom of segmented model (side view)

The catamaran is modelled as three rigid bodies (fore, mid & aft) with longitudinal connections
of quasi-static elastic beams, without accounting for the transverse flexibility between the two
side hulls. For each rigid ship segment, there are two degrees of freedom, namely heave and pitch.
So totally there are six degrees of freedom in this system, and each degree of motion is referred
to its local COG. The connecting equivalent beams are denoted as AB and CD respectively.

The general equation system that will be used to study the global effects of wetdeck slamming
in head sea regular waves is given by

Mgenr̈+Bgenṙ+Kgenr = Fgen(r, ṙ, r̈, t) (2.1)

Here r is the displacement matrix of this 6 degrees of freedom system, containing the heave
and pitch for each segment. Mgen and Bgen are the mass and damping matrices. Here mass
means both structural and added mass. Kgen is the restoring matrix, including the hydrostatic
restoring terms from the ship segments and also the coupling terms from the spring beams.
Fgen includes the forces due to wetdeck slamming and linear wave excitation loads on the side
hulls. Dot means time derivative. In the following sections we will discuss the components of the
matrices. Only the force and moment contributions from the linear wave loading are discussed
in this chapter. The detailed derivations of slamming loads will be described in Chapter 3.

2.3 Linear strip theory

We here consider the linear frequency domain solution of a catamaran operating in regular
incident waves in deep water of infinite horizontal extent. As illustrated in Fig. 2.4, each segment
contains contributions from the two side hulls, each of which can be dealt with as a monohull.
The basis for deriving the hydrodynamic loads on each rigid body is the strip theory by Salvesen
et al. (1970) for a rigid monohull. We will therefore first describe essential parts of that theory
from our perspective.
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2.3.1 Linear strip theory for a rigid monohull

The coordinate system is parallel to the (x, y, z) system in Fig. 2.3, with z going through the
mean position of the COG of this side hull. z = 0 is in the mean free surface. Following
the procedure in Faltinsen (1990), the frequency domain equation of rigid body motions for a
monohull in incident regular waves can be expressed as

(M+A)r̈+Bṙ+Kr = F (2.2)

HereM is the structural mass matrix. A, B and K are respectively hydrodynamic added mass,
damping and restoring matrices. F contains the wave excitation load components and dot means
time derivative. We can express r as r = [η1, η2, η3, η4, η5, η6]

T .

The structural mass matrix is then

M =



ρ∇ 0 0 0 ρ∇ZG
0

0 ρ∇ 0 −ρ∇ZG
0 0

0 0 ρ∇ 0 0 0
0 −ρ∇ZG

0 I44 0 −I46
ρ∇ZG

0 0 0 I55 0
0 0 0 −I64 0 I66

 (2.3)

Here zG is the z−coordinate of the center of gravity, ∇ is the displacement of the vessel, ρ is the
water density and Iij are the structural moment of inertia terms.

The added mass and damping forces, i.e. radiation forces, are steady-state hydrodynamic forces
caused by forced motions of the vessel when there are no incident waves. The forced motions
generate outgoing waves and dynamic pressure on the hull. When the pressure minus the
hydrostatic pressure is integrated over the mean wetted surface of the vessel, hydrodynamic
forces which can be decomposed into terms that are proportional to the acceleration and velocity
are obtained. The hydrodynamic added mass and damping loads due to harmonic mode ηk can
formally be expressed by

Gj = −Ajkη̈k −Bjkη̇k (2.4)

Generally speaking in a 6 degree-of-freedom system, (G1, G2, G3) and (G4, G5, G6) mean respec-
tively the force and moment components relative to the (x, y, z) coordinate system. Ajk and Bjk

are added mass and damping coefficients respectively. The subscript jk means induced parame-
ter in jth mode due to forced motion of kth mode. For normal slender hulls, it is appropriate to
assume that the variation of the flow in the cross-sectional plane is much larger than the varia-
tion of the flow in the longitudinal direction. This means two-dimensional Laplace equation in
the cross-sectional plane is assumed. However, the free surface condition at forward speed can
cause flow variations in the longitudinal direction that must be accounted for. An example on
this is the high-speed theory by Faltinsen and Zhao (1991). We will apply strip theory which
neglects the longitudinal flow variation when the velocity potential is found. 2D hydrodynamic
coefficients are then calculated for each strip by solving 2D boundary value problems. Following
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Salvesen et al. ’s (1970) strip theory, the added mass and damping coefficients for the whole ship
can be expressed as

Ajk =
ρ

ω2
e

�
{∫ ∫

S

(iωe + U
∂

∂x
)φknjds

}
= A

(0)
jk + UA

(1)
jk + U2A

(2)
jk (2.5)

Bjk = − ρ

ωe
	
{∫ ∫

S

(iωe + U
∂

∂x
)φknjds

}
= B

(0)
jk + UB

(1)
jk + U2B

(2)
jk (2.6)

Here the time dependence is expressed as eiωet. ωe is the circular frequency of oscillations, which
is the same as the circular frequency of encounter. U is the vessel’s forward speed. φk is the
velocity potential due to forced motion in mode k with unit velocity. (n1, n2, n3) are the compo-
nents of the normal vector %n to the body surface with positive direction into the fluid domain.
(n4, n5, n6) are the components of %r × %n where %r = x%i+ y%j + z%k. The integrations in Eqs. (2.5)
and (2.6) are over the mean wetted surface S. � and 	 means real and imaginary part, and i is
the complex unit.

The exciting forces are calculated by integrating the Froude-Krylov and diffraction forces over
the mean hull surface. The ship is restrained from oscillating. The Froude-Krylov forces are
found by integrating the pressure due to the undisturbed incident wave over the mean wetted
body surface. The diffraction potential is needed to satisfy zero flow through the body surface.
The exciting forces of jth mode can be expressed as

Fj = ρ

∫ ∫
S

(
iω0φI + iωeφD + U

∂φD
∂x

)
njds (2.7)

Here φI is the undisturbed wave potential and φD is the diffraction potential. φI can be expressed
as

φI =
gζa
ω0

ekz ei(ωet−kx cos β−ky sin β) (2.8)

where k is the wave number, β is the wave propagation direction with β = 0 corresponding to
head sea (See Fig. 2.3). The frequency of encounter ωe is related to the frequency of incident
wave ω0 by ωe = ω0 + kU cos β.

The hydrostatic restoring coefficients K are independent of frequency and forward speed. For a
vessel in the free surface symmetric about the x− z plane and considering the heave and pitch
only, the coefficients are (e.g. Faltinsen (1990))

K33 = ρg

∫
L

bdx = ρgAwp

K35 = K53 = −ρg
∫
L

bxdx

K55 = ρg∇(zB − zG) + ρg

∫
L

bx2dx = ρg∇GML (2.9)
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Here g is the gravitational acceleration, b is the sectional breadth, Awp is the water plane area, and
zB and zG are the z-coordinates of the center of buoyancy and gravity. GML is the longitudinal
metacentric height.

2.3.2 Modification of 2D strip theory

In Salvesen et al. (1970), Stokes theorem was applied to derive the hydrodynamic coefficients in
Eqs. (2.5) and (2.6). The Stokes theorem states that (e.g. Spiegel (1959))∫ ∫

S

(n×∇)× q dS =

∫
C

%dl × q (2.10)

where S is the surface situated in the fluid with the closed curve C as its boundary. n is positive
outwards normal to S. Further, q is any vector function with continuous first order partial
derivatives and %dl is the direction element of C. The closed curve C will consist of CF , CA and
paths along the mean water plane-body surface intersection between CA and CF . The direction
of C is called positive if an observer, walking on the boundary of S in this direction, with his
head pointing in the direction of the positive normal to S, has the surface on his left, as shown
in Fig. 2.5. We will apply Eq. (2.10) to the portion of the hull surface S aft of a cross-sectional
curve CF and forward of cross-sectional curve CA.

S

CF

CA

n

%dl

Figure 2.5 Illustration of line integration used in connection with Stokes theorem

Now by letting q = φU i (for the case j = 1, 2, 3) and q = φU i× r (for the case j = 4, 5, 6) and
applying vector relationships like Ogilvie and Tuck (1969) did, the following variant of Stokes
theorem can be derived for j = 2, . . . , 6:∫ ∫

S

njU
∂

∂x
φ ds = U

∫ ∫
S

mjφ ds+ U

∫
CA

njφ dl − U

∫
CF

njφ dl (2.11)

Here φ is a differentiable scalar function. mj is defined by the body boundary condition
∂φj/∂n = iωenj − Umj, meaning mj = 0 for j = 2, 3, 4 and m5 = n3 and m6 = −n2. The
line integral along the waterline has been ignored by assuming that the angle between the wa-
terline and the x-axis is small.
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With Eq. (2.11), the term in the brackets of Eq. (2.5) and (2.6) can then be expressed as:∫ ∫
S

(iωe + U
∂

∂x
)φknjds = iωe

∫ ∫
S

njφk ds+ U

∫ ∫
S

mjφk ds+ U

∫
CA

njφk dl

− U

∫
CF

njφk dl

(2.12)

This is a generalization of the formula by Salvesen et al. (1970) by also including a contribution
from CF . In their case CF corresponded to the bow of the ship. Since φk is zero by strip theory
at CF , there is no contribution from CF in their case. Salvesen et al. (1970) used the formula
both in deriving global load distribution along the vessel as well for the total hydrodynamic
loads on the vessel. In the latter case, a contribution from the integral over CA will only occur
if the ship has a transom stern and the flow separates from the stern. φk is then non-zero at
CA. We here keep both the CF and CA contributions because we will later study three rigid
bodies elastically linked together and with a negligible gap between them. If Eq. (2.12) is then
applied separately for the three rigid bodies, there will be contributions from CF for the second
and third body from the front, while not for the first body.

Stokes theorem can also be generalized from rigid modes to any mode of motion. For example,
Skjørdal (1978) applied it for a flexible beam. Hermundstad et al. (1999) developed an extension
of Stokes theorem to be applied in calculating the springing effects of high speed vessels. This
was used to compare with a method where the pressure term −ρU∂φ/∂x was obtained by direct
numerical differentiation.

2.3.3 Hydrodynamic coefficients for a rigid body part

For our three-body system, as illustrated in Fig. 2.4, only heave and pitch are considered. The
following text gives the details of the derivation of the modified hydrodynamic coefficients based
on the above strip theory.

In strip theory, the oscillatory velocity potential in the kth mode (φk) is divided into speed
dependent and speed independent parts as

φk = φ0
k −

U

iωe
φUk (2.13)

It follows from the body boundary conditions that φUk = 0 for k = 1, 2, 3, 4, φU5 = φ0
3 and

φU6 = −φ0
2. Further, Tjk (Eq. 2.14) are introduced to derive the added mass (Ajk) and damping

(Bjk) coefficients, as

Tjk = ρ

∫ ∫
S

(iωe + U
∂

∂x
)φknjds = ω2

eAjk − iωeBjk (2.14)

Physically Tjk means the hydrodynamic force or moment in the jth degree of freedom caused
by unit oscillatory displacement in the kth mode. Tjk can be expressed in terms of T 0

jk and tjk,
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which are defined as

T 0
jk = ρiωe

∫ ∫
S

φ0
knjds =

∫
L

tjkdξ (2.15)

tjk = ρiωe

∫
Cx

njφ
0
kdl (2.16)

Then together with Eq. (2.12) for heave and pitch, Tjk can be expressed as follows

T33 = T 0
33 +

U

iωe
tA33 −

U

iωe
tF33

T35 = T 0
35 −

U

iωe
T 0

33 +
U

iωe
tA35 +

U2

ω2
e

tA33 −
U

iωe
tF35 −

U2

ω2
e

tF33

T53 = T 0
53 +

U

iωe
T 0

33 +
U

iωe
tA53 −

U

iωe
tF53

T55 = T 0
55 +

U2

ω2
e

T 0
33 +

U

iωe
tA55 +

U2

ω2
e

tA53 −
U

iωe
tF55 −

U2

ω2
e

tF53 (2.17)

where tAjk and tFjk refer to the line integral evaluated at the aftmost and foremost sections,
respectively. The symmetry relationship T 0

jk = T 0
kj can be shown by using Green’s second identity

in combination with the radiation condition and that φk satisfies the free surface condition
−ω2

eφk + g ∂φk

∂z
on z = 0 and 2D Laplace equation. Further, by assuming ∂/∂x 
 ∂/∂y or ∂/∂z

in the neighborhood of the hull, we can for k, j = 3, 5 write

T 0
33 =

∫
L

t33dξ

T 0
35 = T 0

35 = −
∫
L

ξt33dξ

T 0
55 =

∫
L

ξ2t33dξ (2.18)

Here t33 can be expressed by the sectional two-dimensional added mass a33 and damping coeffi-
cient b33 as

t33 = ω2
ea33 − iωeb33 (2.19)

The added mass coefficients can now be expressed as Eq. (2.20) by using the previous expressions
and the definition given in Eq. (2.5).
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∫
L

ξa33dξ +
U

ω2
e

∫
L

b33dξ +
U

ω2
e

xAb
A
33 +

U2

ω2
e

aA33 −
U

ω2
e

xF b
F
33 −

U2

ω2
e

aF33

A53 = −
∫
L

ξa33dξ − U

ω2
e

∫
L

b33dξ +
U

ω2
e

xAb
A
33 −

U

ω2
e

xF b
F
33

A55 =

∫
L

ξ2a33dξ +
U2

ω2
e

∫
L

a33dξ − U

ω2
e

x2
Ab

A
33 −

U2

ω2
e

xAa
A
33 +

U

ω2
e

x2
F b

F
33 +

U2

ω2
e

xFa
F
33 (2.20)
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Similarly can be done for the damping coefficients, i.e.

B33 =

∫
L

b33dξ + UaA33 − UaF33

B35 = −
∫
L

ξb33dξ − U

∫
L

a33dξ − UxAa
A
33 +

U2

ω2
e

bA33 + UxFa
F
33 −

U2

ω2
e

bF33

B53 = −
∫
L

ξb33dξ + U

∫
L

a33dξ − UxAa
A
33 + UxFa

F
33

B55 =

∫
L

ξ2b33dξ +
U2

ω2
e

∫
L

b33dξ + Ux2
Aa

A
33 −

U2

ω2
e

xAb
A
33 − Ux2

Fa
F
33 +

U2

ω2
e

xF b
F
33 (2.21)

Here aA33 and aF33 mean the sectional added mass at the aft and start strip respectively. Similarly
bA33 and bF33 mean the sectional damping coefficient at the two ends. In our numerical model,
only aF33 and bF33 for the first segment are zero. Further, xA and xF mean the x-coordinate of
the aftmost and foremost section, respectively. The sectional added mass a33 and damping b33
coefficients can be found by solving a 2D boundary value problem (e.g. Salvesen et al. (1970)).
This has to be done numerically. The commercial computer VERES that is used in this thesis,
does that by a Boundary Element Method. The velocity potential is by Green’s second identity
expressed in terms of distribution of Rankine sources and dipoles over the mean wetted body
surface and the mean free surface. The free surface length has to be truncated and a radiation
condition requiring 2D outgoing waves is imposed.

2.3.4 Excitation forces and moments for a rigid body part

Equation (2.7) shows that the excitation forces and moments include the incident wave (Froude-
Krylov) part F I

j as

F I
j = ρ

∫ ∫
S

iω0φInjds (2.22)

and diffraction force part FD
j as

FD
j = ρ

∫ ∫
S

(
iωeφD + U

∂φD
∂x

)
njds (2.23)

By applying Stokes theorem in Eq. (2.11), FD
j can be expressed in a similar form as Eq. (2.12)

with contributions both from the foremost section and the aftmost section. This means

FD
j = ρ

∫ ∫
S

(iωenj + Umj)φDds+ ρU

∫
CA

njφDdl − ρU

∫
CF

njφDdl (2.24)

Further, by introducing the sectional Froude-Krylov force f3(x) and sectional diffraction force
h3(x) in vertical direction, the vertical excitation force and pitch excitation moment can be
written as

F3 = ρζa

∫
L

(f3 + h3)dξ + ρζa
U

iωe
hA3 − ρζa

U

iωe
hF3 (2.25)

F5 = −ρζa
∫
L

(
ξ(f3 + h3)− U

iωe
h3

)
dξ − ρζa

U

iωe
xAh

A
3 + ρζa

U

iωe
xFh

F
3 (2.26)
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Here hA3 and hF3 are the sectional diffraction force at the aftmost and foremost section, respec-
tively. Details of the calculation of the sectional forces can be found in Salvesen et al. (1970).

2.3.5 Coordinate transformations

When dealing with our three-body problem, we must in Eqs. (2.20), (2.21), (2.25) and (2.26)
use Xi relative to the local COG for each body. This means

Xi = xi − xcog,i (2.27)

where xcog,i is the x-coordinate of the local COG in the global system. xi and Xi are the lon-
gitudinal coordinates before and after transformation to segment i, respectively. It must be
noted that we keep the phasing of the incident waves given by Eq. (2.8) relative to the global
coordinate system.

For the whole catamaran, the longitudinal center of buoyancy (LCB) and longitudinal center of
gravity (LCG) overlap. However, this is not so for each segment. Further, the restoring terms for
each segment found from Eq. (2.9) is based on the local LCB, which should then be transferred
to local LCG system for the global response calculations. If XP is the X-coordinate of LCB in
LCG system, there are the following relationships for the restoring terms in the LCB system
(Cij) and in the LCG system (C ′

ij).

C ′
33 = C33

C ′
35 = C35 −XPC33

C ′
53 = C53 −XPC33

C ′
55 = C55 −XPC53 −XPC35 +X2

PC33 (2.28)

2.4 Restoring terms due to beam connections

The effective stiffness of the longitudinal steel transducer and aluminum spring are quite close.
They were therefore modified as one equivalent beam. Geometry and detailed analysis of this
connection are presented in Appendix A.6

To account for the forces from the connecting beams, we start from the static beam equation
EI ∂

4w
∂x4 = q with q = 0. Here EI is the bending stiffness, w is the vertical beam deformation

with positive direction upwards and q is the external load per unit length. The connecting beam
AB between Body1 and Body2 is used to illustrate the procedure (see Fig. 2.6).

In Figure 2.6, x is the local coordinate along the beam, with x = 0 at point A and x = L at
point B. The beam equation can be integrated and the solutions are

w(x) =
1

EI
(
1

6
a x3 +

1

2
b x2 + c x+ d)

∂w(x)

∂x
=

1

EI
(
1

2
a x2 + b x+ c) (2.29)
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A B

QA QB

MA
MB

QA′ QB′

MA′ MB′

A′ B′
Body1 Body2

x

Figure 2.6 Elastic beam connection between two adjacent rigid body segments (side view)

The boundary conditions of the beam require that the vertical and rotational displacements at
the ends of A and B should match those at the adjacent ends of Body1 and Body2. Hence,

w|A = η1
3 −O1Aη1

5

w|B = η2
3 +O2B η2

5

∂w

∂x

∣∣∣
A
= −η1

5

∂w

∂x

∣∣∣
B

= −η2
5 (2.30)

where ηi3 and ηi5 are heave of COG and pitch of Body i. Further, OiX denotes the distance from
the beam end X to the local COG of the adjacent body i. One should notice the different sign
definition between ∂w/∂x and η5. This means ∂w/∂x = −η5, as illustrated in Fig. 2.7.

Body1

η15 < 0

Body2

0 < η25

0 < ∂w
∂x

∂w
∂x < 0

x

w

P1 P2

Figure 2.7 Rotational sign illustration for beam and adjacent bodies

The coefficients in Eq. (2.29) can then be expressed in terms of the degrees of freedom of Body1
and Body2.

a
b
c
d

 =
EI

L3


12 −6(L+ 2O1A) −12 −(L+ 2O2B)
−6L 2(2L+ 3O1A)L 6L 2(L+ 3O2B)L
0 −L3 0 0
L3 −O1AL3 0 0




η1
3

η1
5

η2
3

η2
5

 (2.31)
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The longitudinal distribution of vertical shear force Q(x) and bending moment M(x) at the
right hand side of the beam cut can be expressed as

Q(x) = −EI ∂
3w

∂x3
= −a

M(x) = −EI ∂
2w

∂x2
= −ax− b (2.32)

The sign definition is given in Fig. 2.6.

By inserting x = 0 at A and x = L at B, we get forces and moments at the two ends of the
beam AB as follows

QA = QB =
6EI

L3

(−2η1
3 + 2η2

3 + (L+ 2O1A)η1
5 + (L+ 2O2B)η2

5

)
(2.33)

MA =
2EI

L2

(
3η1

3 − 3η2
3 − (2L+ 3O1A)η1

5 − (L+ 3O2B)η2
5

)
(2.34)

MB =
2EI

L2

(−3η1
3 + 3η2

3 + (L+ 3O1A)η1
5 + (2L+ 3O2B)η2

5

)
(2.35)

A similar formulation can be obtained for the second connecting beam of Body2 and Body3,
with ends named C and D, respectively.

The loads acting on the ship system due to the connecting beams can then be expressed as
shown in Eq. (2.36).



F 1
3

F 1
5

F 2
3

F 2
5

F 3
3

F 3
5

 =



QA

MA −QAO1A
QC −QB

MC −MB −QB O2B −QC O2C
−QD

−MD −QD O3D

 = kr (2.36)

Here, F j
i with i = 3, 5 represent heave force and pitch moment respectively, and j = 1, 2, 3 mean

Body1, Body2 and Body3. QX and MX are vertical shear forces and bending moments at point
X, as illustrated in Fig. 2.6. The vector r is [η1

3 η1
5 η2

3 η2
5 η3

3 η3
5]
T , and k is a symmetric matrix
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of 6× 6, with non-zero terms as in Eqs. (2.37), where γ = EI/L3.

k11 = −12 γ

k12 = 6(L+ 2O1A) γ

k13 = 12 γ

k14 = 6(L+ 2O2B) γ

k22 = −4(L2 + 3LO1A+ 4O1A
2
) γ

k23 = −6(L+ 2O1A) γ

k24 = −2(L2 + 3LO1A+ 3LO2B + 6O1AO2B) γ

k33 = −24 γ

k34 = 12(O2C −O2B) γ

k35 = 12 γ

k36 = 6(L+ 2O3D) γ

k44 = −4(2L2 + 3LO2B + 3LO2C + 3O2B
2
+ 3O2C

2
) γ

k45 = −6(L+ 2O2C) γ

k46 = −2(L2 + 3LO2C + 3LO3D + 6O2C O3D) γ

k55 = −12 γ

k56 = −6(L+ 2O3D) γ

k66 = −4(L2 + 3LO3D + 3O3D
2
) γ (2.37)

In establishing Eq. (2.36), care should be shown when determining the signs of the forces acting
on the ship segments from the spring-transducer connections. The signs were verified by checking
the deformation Eq. (2.29) and forces Eq. (2.32) along the beams by giving a unit displacement
at the beam ends.

2.5 The complete dynamic system

It should be noted that the structural damping is neglected in our system. Relevant discussions
will be presented in Chapter 5. By now introducing all the previously discussed terms, the total
matrices of the dynamic system in Eq. (2.1) can be expressed as

Mgen =



M1 + A1
33 A1

35 0 0 0 0
A1

53 I1
55 + A1

55 0 0 0 0
0 0 M2 + A2

33 A2
35 0 0

0 0 A2
53 I2

55 + A2
55 0 0

0 0 0 0 M3 + A3
33 A3

35

0 0 0 0 A3
53 I3

55 + A3
55

 (2.38)
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Bgen =



B1
33 B1

35 0 0 0 0
B1

53 B1
55 0 0 0 0

0 0 B2
33 B2

35 0 0
0 0 B2

53 B2
55 0 0

0 0 0 0 B3
33 B3

35

0 0 0 0 B3
53 B3

55

 (2.39)

Kgen =



K1
33 − k11 K1

35 − k12 −k13 −k14 0 0
K1

53 − k21 K1
55 − k21 −k23 −k24 0 0

−k31 −k32 K2
33 − k33 K2

35 − k34 −k35 −k36

−k41 −k42 K2
53 − k43 K2

55 − k44 −k45 −k46

0 0 −k53 −k54 K3
33 − k55 K3

35 − k55

0 0 −k63 −k64 K3
53 − k65 K3

55 − k66

 (2.40)

Here Ak
ij, B

k
ij and Kk

ij are the added mass, damping and hydrostatic restoring respectively, in
heave (i, j = 3) and pitch (i, j = 5) directions on Body number k, defined in earlier equations in
Section 2.3. kij are restoring terms due to beam connection as shown in Eq. (2.37). Fgen is the
sum of the wave excitation loads on the side hulls and the wetdeck slamming loads. Detailed
derivation of slamming forces will be presented in Chapter 3.

In the experiments there is a transient period for ship motions to reach steady-state conditions.
An artificial transient period is used in the numerical solution. This is done by expressing the
linear wave excitation loads on the side hulls as

F ′
exc(t) = Fexc(t) sin(

π

2nT
t) (2.41)

for 0 ≤ t < nT . Here T is the incident wave period. n is typically chosen as 4 in the numerical
solutions. This means that the transient period lasts for four incident wave periods. When
t ≥ nT , the excitation load Fexc(t) is the same as predicted by the linear strip theory previously
outlined. If this transient period is not introduced and the calculations start with Fexc(t), too
strong wetdeck slamming may occur initially and cause collapse of the numerical solution.

To improve the numerical stability of the dynamic response system when slamming happens,
all the terms in the slamming loads that can be explicitly expressed in terms of accelerations,
velocities and motions are moved to the left hand side of the dynamic system (See expressions
later in Chapter 3 and Appendix B.2).

Fourth order Runge-Kutta method is used in the time integration to find global response. The
constant averaged acceleration method, linear acceleration method and the second difference
method (See e.g. Langen and Sigbjörnsson (1979)) were also found satisfactory. Attempts to
use the Euler method were unsuccessful. The algorithm of the fourth order Runge Kutta method
can be described as follows by using the reference differential equation dy/dt = f(t, y) with given
initial conditions y(t0) = y0. So given a equidistant integration step h and values tn, yn at step
N , the value yn+1 at step N + 1 can be calculated by the following formula (e.g. Cheney and
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Kincaid (1999))

k1 = hf(tn, yn)

k2 = hf(tn +
1

2
h, yn +

1

2
k1)

k3 = hf(tn +
1

2
h, yn +

1

2
k2)

k4 = hf(tn + h, yn + k3)

tn+1 = tn + h

yn+1 = yn +
1

6
(k1 + 2k2 + 2k3 + k4) (2.42)

To apply this fourth order Runge-Kutta integration method, the second order differential equa-
tions of Eq. (2.1) should be rewritten into a set of first order differential equations. By introducing
a new set of variables X, which is defined as

X =

[
ṙ
r

]
(2.43)

we get the following dynamic system

M̃Ẋ = K̃X + F̃ (2.44)

Here K̃ and M̃ are square matrices in dimensions 12× 12 and F̃ is a vector in dimensions 12× 1.
They are defined as

K̃ =

[−Bgen −Kgen

1 0

]
M̃ =

[
Mgen 0
0 1

]
F̃ =

[
Fgen
0

]
(2.45)

Mgen, Bgen, Kgen and Fgen are defined by Eq. (2.1). Further, X is a column matrix with
X = [X1 · · ·Xk · · ·X12]

T , where X2i−1 with i = 1, 2, 3 are the heave velocities of body number
i and X2i with i = 1, 2, 3 are the pitch velocities of body i. Further, X2i+5 with i = 1, 2, 3 are
the heave motions of body number i and X2i+6 with i = 1, 2, 3 are the pitch motions of body
i. Then, the iteration procedure described by Eq. (2.42) can be applied to this 12 dimensional
system.

The numerical simulation procedure of combining the linear and slamming induced response is
illustrated in the flow chart in Appendix C.



Chapter 3

Slamming Theories

3.1 Introduction

Slamming loads on the wetdeck will be considered in this chapter. Our interest is in predict-
ing global slamming induced response. An important time scale is the natural period of two
node bending of the hull. Phenomena happening on a much shorter time scale will not matter
in this context. We can then neglect the effect of possible air cushions, the compressibility of
the air and the water as well as the local hydroelasticity. The flow can be considered irrotational.

The slamming can be divided into a water entry and exit phase, which means that the wetted
surface of the wetdeck increases and decreases, respectively. The water entry phase is character-
ized by positive upwards force, while the forces are mainly negative during the water exit phase.
The magnitude of the initial impact force depends on where the water initially hits. If the im-
pact occurs initially at the front end of the wetdeck, there is a finite angle between the wetdeck
and the free surface. If this is not the case and the initial impact occurs at wetdeck positions
with continuous slope, the free surface has to be initially tangential to the wetdeck surface. This
implies higher initial loads than if there is a finite angle between the wetdeck and the free surface.

The fluid accelerations in the vicinity of the impacting body are initially much larger than the
gravitational acceleration. The total slamming duration is assumed sufficiently small for gravity
waves not to be generated. This implies that the gravity is only included in the nonlinear
Froude-Krylov and hydrostatic restoring loads on the wetdeck.

3.2 High frequency boundary value problem

By assuming incompressible fluid and irrotational flow, a velocity potential that satisfies Laplace
equation can be applied. The velocity potential Φ is divided into two main parts, i.e.

Φ = φslm + φadd (3.1)

33
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Here φslm is the velocity potential due to wetdeck slamming. φadd contains the incident wave
potential φI , the disturbance due to the side hulls φsh and a uniform stream with velocity U
equal to the steady forward speed of the vessel as observed when moving with a coordinate
system propagating with U relative to an earth-fixed coordinate system. This means

φadd = Ux+ φI + φsh (3.2)

where x is a longitudinal coordinate that is positive aftwards (See Fig. 2.3).

3.2.1 Basic equations

Only head sea conditions are studied in this thesis. They are the most severe cases from a wetdeck
slamming point of view at forward speed. Regular incident waves are considered. When the
forward speed is not small, slamming will occur in the forward part of the wetdeck. φadd can then
be approximated by Ux and φI except for in the close vicinity of the side hulls. It is assumed
that the transverse cross-section of the wetdeck has a horizontal surface. By neglecting the local
run-up along the side hulls two-dimensional flow in the longitudinal cross-sectional plane of the
ship can be assumed in solving φslm. This means

∇2φslm =
∂2φslm
∂x2

+
∂2φslm
∂z2

= 0 (3.3)

Both free surface conditions and body boundary conditions are required in solving Eq. (3.3).

3.2.2 Free surface conditions

We here first discuss the dynamic free surface condition which states that the pressure is at-
mospheric on the free surface. The pressure p can be expressed by the Bernoulli’s equation
as

p+ ρgz + ρ
∂Φ

∂t
+
ρ

2
∇Φ · ∇Φ = C (3.4)

where C is a constant. Here z = 0 corresponds to the mean free surface, and z is a vertical
coordinate that is positive upwards. ρ is the mass density of the fluid and g is the acceleration
of gravity. By assuming the velocity potential at infinity is Ux, C can be written as 1

2
ρU2 + pa,

where pa is the atmospheric pressure. By using Eq. (3.1), neglecting φsh and denoting p as the
excess pressure relative to atmospheric pressure, we can write

p = −ρ∂φslm
∂t

− ρU
∂φslm
∂x

− ρ[
∂φI
∂x

∂φslm
∂x

+
∂φI
∂z

∂φslm
∂z

]− ρ

2
[(
∂φslm
∂x

)2 + (
∂φslm
∂z

)2]

+ pinc − ρgz

(3.5)

Here pinc is the pressure due to the incident regular waves, given as

pinc = −ρ∂φI
∂t

− ρU
∂φI
∂x

− ρ

2
[(
∂φI
∂x

)2 + (
∂φI
∂z

)2] (3.6)
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The two last terms in Eq. (3.5) are what give the nonlinear Froude-Krylov and hydrostatic
restoring loads on the wetdeck. They can be further approximated at the wetdeck and expressed
as −ρg(z − ζinc) for z ≤ ζinc where ζinc is the incident wave elevation (Faltinsen (1990)). This
means a pressure component that is hydrostatic relative to the incident wave elevation in the
vicinity of the free surface. This pressure term contributes but is not dominant.

The terms associated with φslm in Eq. (3.5) have different order of magnitudes. The first term
−ρ∂φslm/∂t which is associated with the fluid acceleration, has already implicitly from previous
discussions been assumed to be large. The order of magnitude of the second term relative to
the first term is UTd/L where L is a measure of the wetted length and Td is a measure of the
slamming duration. If U is very large, this term should be considered. The other terms involving
φslm in Eq. (3.5) are in general small relative to the first term. If the details of the jet flow at
the intersection between the free surface and the body surface are studied, the pressure term
−1

2
ρ|∇φslm|2 should be included (Wagner (1932)). Since this is not focused on in this thesis, the

quadratic velocity term associated with ∇φslm is neglected.

Basically, two alternatives will be considered in our further analysis. The pressure due to slam-
ming is approximated as −ρ∂φslm/∂t in the first case. This gives ∂φslm/∂t = 0 as a dynamic
free surface condition. Since φslm is initially zero on the free surface, it implies that φslm remains
zero on the free surface. This condition will by a Taylor expansion be transferred to a horizontal
line Z = 0 where also the body boundary condition is transferred (See Fig. 3.1). Keeping the
dominant term in the Taylor expansion implies that φslm is also zero on Z = 0, i.e.

φslm = 0 on Z = 0 and |x| > c(t) (3.7)

Another case is that the first two terms in Eq. (3.5) have the same order of magnitude. This
leads to a different dynamic free surface condition that has to be combined with a Kutta condi-
tion at the aft intersection point between the deck and the free surface. This will be dealt with
later in Section 3.6.

The kinematic free surface condition expresses that free surface particles stay on the free surface.
One approach is to use a Von Karman method. This means that the wetted surface follows simply
from geometrical intersection between the incident waves and the wetted surface. Another
approach is a Wagner method where the local uprise of the free surface due to the impact is
accounted for. This gives only meaningful results when the wetted surface increases, i.e. during
the water entry phase.

3.2.3 Body boundary condition

The body boundary condition expresses that there is no flow through the body surface. This
means that the flow velocity normal to the body surface is equal to the component of the body
velocity V normal to the body surface, i.e.

∂Φ

∂n
= V · n =⇒ ∂φslm

∂n
= V · n− ∂φadd

∂n
on the body surface (3.8)
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Here ∂
∂n

denotes differentiation along the normal direction to the body surface. A geometrical
consequence of the wetdeck is that the x-component n1 of the surface normal vector is much
smaller than the vertical component n3. If positive normal direction is into the fluid domain,
the vertical component n3 can be approximated by −1.

We will allow for the possibility that U is large and is a dominant longitudinal fluid velocity.
This means that even if n1 is small, the normal velocity due to U must be considered. This
can be expressed as U(η5 + τ), where τ accounts for the local time averaged inclination of the
wetdeck relative to the mean free surface. Positive τ and η5 correspond to bow-up. The angle
τ expresses then the local geometry as for instance due to the bow ramp. It includes also the
trim due to hydrostatic and steady forward speed dependent hydrodynamic forces on the vessel
in calm water. There is also a contribution due to time averaged nonlinear hydrodynamic loads
caused by unsteady wave-body interaction. η5 is the local time dependent angular motions of
the vessel about the y-axis (See Fig. 2.3). It will in practice for the analyzed three-body model
mean the pitch angle of the front body.

The vertical velocity of the body wbody can in the case of a rigid body in head sea be expressed
as dη3/dt−xdη5/dt where η3 is the heave of the COG of the whole vessel. When the three-body
model is considered, wbody is redefined in terms of the rigid body vertical velocity of the body
where impact occurs.

The body boundary condition can be transferred to the horizontal line Z = 0 (See Fig. 3.1).
Mathematically it is expressed as

∂φ

∂Z
= VR(x, t) on Z = 0 and a(t) < x < b(t) (3.9)

where from now on φ means φslm. VR(x, t) is the relative impact velocity which in the case of
impact on the front body of our three-body model can be expressed as

VR(x, t) =
∂η

(1)
3

∂t
− x(1)∂η

(1)
5

∂t
− U(η5 + τ)− w (3.10)

Here x(1) is a local longitudinal coordinate of the front body with x(1) = 0 corresponding to the
longitudinal position of the COG of the body. Further, η

(1)
3 and η

(1)
5 are the heave and pitch of

the same body. w is the vertical velocity due to the incident waves which is here described by
linear regular wave theory. It can be derived from Eq. (2.8) as

w = �
{
∂φI
∂z

∣∣∣
z=0

}
= ω0ζa cos(ωet− kx) (3.11)

Here ζa is the incident wave amplitude, ω0 is the circular frequency of the waves, k = ω2
0/g and

ωe = ω0+kU is the circular frequency of encounter. � means real part. This boundary condition
is consistent with linear theory. The slope of the incident waves is accounted for indirectly when
the wetted surface is found.
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3.2.4 Boundary value problem

Figure 3.1 illustrates the boundary value problem in the case of the dynamic free surface con-
dition φ = 0. Since this condition is the same free surface condition used for a high-frequency
oscillation problem, it is denoted as the high-frequency boundary value problem. We note
from Fig. 3.1 that 2c(t) is the wetted length of the deck, X and Z are local coordinates with
X = x− l(t). Further, b(t)− l(t) = l(t)− a(t) = c(t).

φ = 0 φ = 0

∇2φ = 0

∂φ
∂Z

= VR(x, t)

X

Z

−c(t) c(t)

a(t)
l(t)

b(t)

x

z

Figure 3.1 Two-dimensional high frequency boundary value problem for slamming. a(t), b(t) and l(t)
are ship fixed x-coordinates. X-Z is the local 2D coordinate system on the wetted part of the deck.

The boundary value problem described in Fig. 3.1 can be solved by using a vortex distribution
from X = −c to X = c. This requires additional conditions in order to get a unique solution.
This follows by dividing VR into one part which is symmetric about X = 0 and another part
which is antisymmetric about X = 0. The velocity potentials associated with the symmetric and
antisymmetric parts of VR are required to be respectively symmetric and antisymmetric about
X = 0. This leads to singular flow at X = ±c, which expresses indirectly that spray occurs
at X = ±c. A local flow analysis like Wagner (1932) did is needed to describe the details of
the jet flow associated with the spray. In Section 3.6 a different free surface condition will be
considered. Uniqueness will then be imposed by requiring a Kutta condition at X = c to get
smooth water detachment from the wetdeck. This implies that spray occurs at X = −c, but not
at X = c.

The following text describes different ways of determining a(t) and b(t), i.e. by a Von Karman
based method and a Wagner based method. VR will either be expressed in terms of a Fourier
series or by using a linear approximation between X = −c and X = c.

3.3 Von Karman based method

Here the wetted length during slamming is determined by finding the intersection points between
the wetdeck and the undisturbed wave profile, i.e. a Von Karman (1929) type method. Expressed
mathematically, slamming happens when relative vertical displacement

ηR = ηB(x, t)− ζ + d(x) (3.12)
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is less than zero. Here d(x) is the time independent wetdeck height above calm water. ηB(x, t)
is the vertical body motion, which is determined by the heave and pitch motion for a rigid body
as

ηB = η3 − xη5 (3.13)

Further, ζ is the wave elevation at t and x. This can consistently with linear theory be expressed
as

ζ = ζa sin(ωet− kx) (3.14)

Slamming will typically occur for our cases when the wave length is the order of the ship length.
Based on that the wetted part is relatively short compared with the incident wave length, the
impact velocity in Eq. (3.10) can be assumed to be spatially linear in the wetted area, i.e.

VR(X, t) = V1 + V2X (3.15)

Here X is the local coordinate as in Fig. 3.1. If for instance the ship moves as a rigid body, then

V1(x, t) = η̇3 − l(t)η̇5 − U(η5 + τ)− ω0ζa cos(ωet− kl(t))

V2(x, t) = −η̇5 − ω0ζak sin(ωet− kl(t)) (3.16)

An exact expression for VR will presented in Section 3.5. This is done by Fourier expanding VR
over the wetted length, as mentioned in Section 3.2.4.

The boundary value problem can, as already said in Section 3.2.4, be solved by using a vortex
distribution along the wetted length and by requiring that the velocity potentials associated with
V1 and V2 are respectively symmetric and anti-symmetric with respect to the Z-axis. Following
the solution procedure of the lifting problem described in Newman (1977), we can determine the
vortex density. This is related to the horizontal fluid velocity at the body surface. The velocity
potential φ on the body surface follows by integrating the horizontal velocity and using that φ
is zero on the free surface. This gives

φ(X, t) = V1

√
c2 −X2 +

1

2
V2X

√
c2 −X2

on Z = 0 and |X| < c(t) (3.17)

This formula has also been presented by e.g. Zhao and Faltinsen (1992) and Baarholm (2001).
Section 3.5 applies a general representation of VR, and will show that Eq. (3.17) is a special case.

The dynamic pressure p on the wetdeck associated with the slamming can be approximated as

p = −ρ∂φ
∂t

= −ρ(V1 +
1

2
V2X)

1√
c2 −X2

(c
∂c

∂t
−X

∂X

∂t
)

− ρ(
∂V1

∂t
+

1

2

∂V2

∂t
X)

√
c2 −X2

− 1

2
ρV2

∂X

∂t

√
c2 −X2 (3.18)
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Here ∂X
∂t

= ∂
∂t
(x − l) = − ∂l

∂t
. Further, by integrating Eq. (3.18) along the wetted part, we find

the following instantaneous vertical impact force F3 and pitch moment F5 about X = 0:

F3 = B

∫ c

−c
(−pn3)dX = B

∫ c

−c
pdX

= −ρπc∂c
∂t
V1B − ρ

π

2
c2
∂V1

∂t
B (3.19)

= − ∂

∂t

(1
2
ρπc2V1

)
B (3.20)

F5 = B

∫ c

−c
(−pn5)dX = B

∫ c

−c
−p(−xn3)dX

= B

∫ c

−c
−p(X + l)dX

=
∂

∂t

(1
2
ρπc2V1l

)
B +

∂

∂t

( 1

16
ρπc4V2

)
B (3.21)

Here B is the width of the wetted part and ρ is the mass density of the water. Further, n3 = −1,
as described earlier. The first and second term in F3 given by Eq. (3.19) will be referred to as
the slamming and added mass term, respectively. The slamming term is set equal to zero during
the water exit phase, as suggested by Kaplan (1987).

A buoyancy force can be found by integrating the pressure term that is hydrostatic relative to
the instantaneous incident wave elevation, as discussed earlier in Section 3.2.2. The integration
of the last two terms in Eq. (3.5) will give the nonlinear Froude-Krylov force and hydrostatic
restoring force respectively on the wetdeck when slamming happens. The vertical force can be
expressed as

F3,buoy = ρg

∫ b(t)

a(t)

(ζ − ηB)dx ·B (3.22)

Here a(t) and b(t) are the x-coordinate of the two ends of the wetted part (See Fig. 3.1). ζ(x, t)
and ηB are respectively the undisturbed wave elevation and the vertical wetdeck position at
(x, t), and are given by Eq. (3.14) and Eq. (3.13). It follows that

F3,buoy =

∫ b(t)

a(t)

(
ζa sin(ωet− kx)− (ηa + ηb − ηa

b(t)− a(t)
(x− a(t)

)
dx
)
·B

=
ζa
k

[
cos(ωe − kx)

]b(t)
a(t)

·B − (ηa + ηb) c(t) ·B (3.23)

Here ηa and ηb denote the vertical wetdeck positions at respectively x = a and b.

The corresponding pitch moment about local COG of the foremost segment, where wetdeck
slamming happens, is then simply expressed as

F5,buoy = −X ′
oF3,buoy (3.24)

where X ′
o means the X ′ value of the midpoint of the wetted length in the local COG system

of the foremost segment. These expressions for F3,buoy and F5,buoy are also used in combination
with the following methods.
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3.4 Wagner based method

Wagner (1932) made an important progress in the analysis of slamming by accounting for the
uprise of the water when determining the wetted length. We will generalize his approach to our
case. VR will be approximated by Eq. (3.15). Here we follow the same time stepping procedure
as Zhao et al. (1996), i.e. the time steps are decided based on prescribed change in wetted
length. The vertical velocity on the free surface due to φ is needed as part of this procedure.
This can be expressed as

∂φ

∂Z
=

−V1 |X|√
X2 − c2

+ V1 + V2X

− 1

2
sign(X)V2(

√
X2 − c2 +

X2

√
X2 − c2

)

on Z = 0 and |X| > c(t) (3.25)

Equation (3.25) has also been presented by e.g. Zhao and Faltinsen (1992) and Baarholm (2001).
It will be shown in Section 3.5, where the exact expression of VR is used, that Eq. (3.25) follows.

A Wagner based method can only be used during the water entry phase. This is connected
with the dynamic free surface condition φ = 0, which assumes the fluid acceleration is dominant
relative to gravitational acceleration. This is only a good approximation in an initial stage.
Instead a Von Karman method is used during the water exit phase. The formal expressions
of F3 and F5 are the same as in Eqs. (3.20) and (3.21). Since the Von Karman method uses
the dynamic free surface condition φ = 0, one can also object against that method during the
water exit phase. However, the Von Karman method will not lead to numerical difficulties in
determining the intersection points as the Wagner method would do during the water exit phase.
In Section 3.6 a different dynamic free surface condition appropriate for high speed is considered.

Briefly, in the Wagner based method, the time stepping is determined by a prescribed change
in the wetted length ∆cj+1 at time step j and the vertical distance ∆Zj+1 that a free surface
particle should travel vertically during the time step ∆tj+1 to hit the deck. The latter is given
by (See Fig. 3.3 for illustration)

∆Zj+1 =

∫
∆tj+1

(w +
∂φ

∂Z
− Vdeck)dt (3.26)

Here Vdeck is the vertical velocity of the wetdeck at this moment. ∂φ/∂Z and w are defined
in Eq. (3.25) and (3.11), respectively. More details of this procedure will be described in the
following text.

3.4.1 Local solution near intersection point

Equation (3.25) shows that ∂φ/∂Z is singular at |X| = c. This can cause numerical problems in
the time integration. To avoid this we will first approximate ∂φ/∂Z at the two ends. This will
enable us to analytically approximate the time integration in the vicinity of the two wetted deck
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ends. A standard time integration procedure can be used outside these local areas. The nature
of this local flow at the ends can be approximated by focusing only on the details at one end.
The rest of the body appears in the small scale around the end as a semi-infinite body. Since
the body has a vertical velocity and the free surface condition is φ = 0, we can also say that
this local flow would be the same as if we consider a double body in infinite fluid. By double
body is meant the original body and the image body about the free surface. This is illustrated
in Fig. 3.2 for a general case with interior angle α. The local corner flow will now be analyzed.

x2

z2

r2

θ2

I
α

2α

Body surface

Intersection point

Figure 3.2 Local solution near the intersection point between body and free surface

In Figure 3.2, x2 runs in the direction of the free surface profile from the intersection point I.
α is the angle between the body and the free surface at I. For convenience a polar coordinate
system r2, θ2 is introduced. We start with the general solution of the complex velocity potential
W in the complex form (e.g. Art. 63 in Lamb (1932))

W = iAZn = φloc + iψloc (3.27)

where A is a constant, Z is the complex variable with Z = x2 + iz2 = r2e
iθ2 . Equation (3.27)

gives

Velocity potential: φloc = −Arn2 sin(nθ2) (3.28)

Stream function: ψloc = Arn2 cos(nθ2) (3.29)

By choosing n as π
2(π−α)

, one gets irrotational motion in which the boundary is composed of two
rigid walls with an interior angle 2α between the walls, i.e. one gets the required solution for
flow around the corner with angle 2α. This means

φloc = −Ar
π

2(π−α)

2 sin
( π

2(π − α)
θ2

)
(3.30)

Here it is easily seen that φloc = 0 for θ2 = 0. This is consistent with the global free surface
condition φglobal = 0. Further, with θ2 = −π + α, we then have the velocity potential

φloc = Ar
π

2(π−α)

2 on the body surface. (3.31)
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From Eq. (3.30), velocities in r2 and θ2 directions can be derived as

ur2 =
∂φloc
∂r2

= −Ar
π

2(π−α)
−1

2 sin
( π

2(π − α)
θ2

) π

2(π − α)
(3.32)

uθ2 =
1

r2

∂φloc
∂θ2

= −Ar
π

2(π−α)
−1

2 cos
( π

2(π − α)
θ2

) π

2(π − α)
(3.33)

The horizontal and vertical velocities can be found on the free surface by setting θ2 = 0, i.e.

ux2 = ur2

∣∣∣
θ2=0

= 0 zero flow along x2 axis, (3.34)

wloc = uz2 = uθ2

∣∣∣
θ2=0

= −A π

2(π − α)
r

π
2(π−α)

−1

2 (3.35)

A is an unknown in Eq. (3.35). Further, α is zero in our case and A can be found by matching
the local and global velocity potential, i.e.

φ(X, t)
∣∣∣
X=±c

(Eq. 3.17) = φloc

∣∣∣
α=0

(Eq. 3.31) (3.36)

This leads to A = (V1 ± 1
2
V2c)

√
2c at X = ±c(t) respectively.

The following local solutions of vertical velocities on the free surface at the two ends are then
obtained by Eq. (3.35).

wloc =

 −(V1 + 1
2
V2c)
√

c
2(X−c) X > c(t) and X → c(t),

−(V1 − 1
2
V2c)
√

c
2(−c−X)

X < −c(t) and X → −c(t) (3.37)

Here, the singularity of wloc at X = ±c can be dealt with in the numerical time integration
procedure by using the analytical local solution, as illustrated in the following section.

3.4.2 Time stepping procedure to find c(t)

By using Eq. (3.26) the corresponding vertical distance of free surface particles from time step
j to j + 1 near the intersection point can be expressed as

∆Zj+1 =

∫ tj+1

tj

(
wloc + w − Vdeck

)
dc
dt

dc

= −
(
dt

dc

)
m,j+1

Am,j+1

√
cj+1 − cj

+

(
dt

dc

)
m,j+1

(w − Vdeck)m,j+1 (cj+1 − cj) (3.38)

Here subscript m means time averaged value. Since cj+1−cj and ∆Zj+1 are known, (dt/dc)m,j+1

can be determined from Eq. (3.38). This determines ∆tj+1 as

∆tj+1 =

(
dt

dc

)
m,j+1

(cj+1 − cj) (3.39)
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The flow at the two ends of the wetted part, i.e. at x = a(t) and b(t), are not the same. Further,
the position X = 0 in the global coordinate system is changing with time due to the wetdeck
motion and the incident wave. So for a prescribed cj+1 − cj, the predicted ∆tj+1 at X = c and
X = −c will be different. Then some iteration steps are needed to match the right and left ends
of the wetted length by requiring that the time duration in each time step for both ends should
be the same. Numerically this relationship can be expressed as

∆tL,j+1 = ∆tR,j+1 =⇒
(
dt

dc

)
m,j+1,L

(aj+1 − aj) =

(
dt

dc

)
m,j+1,R

(bj+1 − bj) (3.40)

The indices L and R mean respectively the left and right hand side. Either side end can be
used as the iteration base. Let us say we use the right hand side change as a base with setting
the prescribed wetted length change as cj+1 − cj = bj+1 − bj. Equation (3.40) gives then the
intermediate aj+1,int and consequently an updated cj+1,int. Then iterations are carried out until
the difference of cj+1,int,N from Nth iteration and cj+1,int,N−1 from (N − 1)th iteration is within
required tolerance. Figure 3.3 briefly illustrates this stepping procedure, which is also presented
in Zhao et al. (1996). But their iteration scheme is not the same. They first estimated the new
leftside intersecting point aj+1 from its rate of the change with time in the previous time step.
Additionally, the body had constant drop velocity in their studies.

aj+1 aj bj bj+1

∆zj+1

ζj ζj

ζj+1
ζj+1

∆tj+1 = ( dt
dc
)m,j+1(cj+1 − cj); ∆tR,j+1 = ∆tL,j+1

Pj

Pj+1

Figure 3.3 Time stepping of Wagner based method

When time step ∆tj+1 is found, the free surface particles move with their local velocities, and
the new free surface position ζj+1 can be found. Since the slamming induced velocity potential
φ yields zero horizontal velocity, the particles move horizontally with the horizontal velocity of
the incident wave. If only the linear wave part is considered, the horizontal wave velocity can
be expressed as

u = �
{
∂φI
∂x

∣∣∣
z=0

}
= ω0ζa sin(ωet− kx) (3.41)

The vertical velocity includes w from the wave particles as defined in Eq. (3.11) and the velocity
∂φ/∂Z due to local pile-up effect as defined in Eq. (3.25). Here it is assumed that the vertical
velocity is much higher than the horizontal velocity at the intersecting area. The reason is that
vertical slamming induced velocity is singular at the intersecting points (See Eq. (3.25)) while
the horizontal one is not.
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The Wagner based solution procedure has been verified by comparing with the analytical solution
presented in Zhao and Faltinsen (1992), for an incident wave crest hitting a horizontal fixed deck.
Since the procedure requires that ∆Zj+1 in Eq. (3.38) is positive, i.e. that the wetted surface
increases, the method works only during the water entry phase.

3.5 Exact representation of relative impact velocity VR

3.5.1 Fourier expansion of VR

In the earlier theories, VR was assumed to be spatially linear in the wetted area. The exact
expressions of VR will now be accounted for. This is done by first expressing VR(x, t) as a
Fourier series, i.e.

VR =
∞∑
n=0

Ancos(nθ) (3.42)

where θ is defined by

X = c(t) cos θ (3.43)

Here θ = 0 and π correspond to respectively X = c and −c. The derivation is still based on the
high-frequency boundary value problem model illustrated in Fig. 3.1. The details will be shown
for a ship with rigid body motions.

VR in Eq. (3.10) can be rewritten as

VR(X, t) = V1(t) + V2(t)X + V3(t) cos(kX) + V4(t) sin(kX) (3.44)

with

V1 = η̇3 − l(t)η̇5 − U(η5 + τ)

V2 = −η̇5

V3 = −ω0ζa cos(ωet− kl(t))

V4 = −ω0ζa sin(ωet− kl(t)) (3.45)

Here it is noticed that V1 and V2 are not the same as V1 and V2 when VR is expressed as
VR = V1 + V2X (See Eqs. (3.16)).

The Fourier coefficients in Eq. (3.42) can be formally expressed as

A0 =
1

π

∫ π

0

VR dθ

An =
2

π

∫ π

0

VR cosnθ dθ (3.46)
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By using (See pp.402 in Gradshteyn and Ryzhik (1994))∫ π

0

cos(kc cos θ) cosnθ dθ = π cos
nπ

2
Jn(kc)∫ π

0

sin(kc cos θ) cosnθ dθ = π sin
nπ

2
Jn(kc) (3.47)

where Jn are Bessel functions of the first kind, and by noting that∫ π

0

cos θ cosnθ dθ =

{
0 when n �= 1,
π
2

when n = 1.∫ π

0

cosnθ dθ =

{
π when n = 0,
0 when n �= 0.

(3.48)

the Fourier coefficients of Eq. (3.42) can now be expressed as

A0 = V1 + V3J0(kc)

A1 = V2c+ 2V4J1(kc)

A2n = 2(−1)nV3J2n(kc), n = 1, 2, . . .

A2n+1 = 2(−1)nV4J2n+1(kc), n = 1, 2, . . . (3.49)

3.5.2 Derivation of the velocity potential

The solutions of the boundary value problem is found by using a vortex distribution fromX = −c
to X = c at Z = 0. This is a similar solution technique as used for the steady linear lifting
problem for a thin air foil in infinite fluid (Newman (1977)). We start with the following
relationship between velocity components, vortex density γ and velocity potential φ on Z = 0−

u(x) =
1

2
γ(x) =

∂φ

∂x
(3.50)

v(x) = − 1

2π
−
∫ c

−c

γ(ξ)dξ

ξ − x
(3.51)

Here u and v are respectively the horizontal and vertical velocity components. −∫ means principal
value integration.

Similar assumptions can be made as done for the linear representation of VR. This means
that antisymmetric and symmetric velocity potential part can be implicitly associated with the
antisymmetric and symmetric part of VR respectively. This gives singularities at both leading
and trailing edge, i.e. singularities at θ = 0 and θ = π. This differs from the steady lifting
problem in Newman (1977) where the Kutta condition at the trailing edge is introduced to get
an unique solution. We start out by writing

γ = B0 cot θ +
∞∑
n=1

Bn sinnθ (3.52)



46 CHAPTER 3. SLAMMING THEORIES

It will be shown in the following text that Bn can be related to An. Equation (3.52) is singular
at X = ±c, i.e. θ = 0 and π. The following derivations will show that it is necessary to add a
term in Eq. (3.52). When Newman (1977) represents γ for the steady lifting problem, he uses
the term B0 cot(θ/2) instead of B0 cot θ in Eq. (3.52) in order to be consistent with the Kutta
condition in his problem.

The relationship in Eq. (3.43) leads to ξ = c cos θ1 and dξ = −c sin θ1dθ1 with ξ = ±c referring
to θ = 0, π respectively. Then the vertical velocity in Eq. (3.51) can be expressed as

v = − 1

2π
−
∫ π

0

γ(θ1) sin θ1 dθ1

cos θ1 − cos θ
(3.53)

The Glauert integrals will be used and are defined as (See e.g. pp.186 of Newman (1977))

Gn(χ) = −
∫ π

0

cosnθ dθ

cos θ − cosχ
(3.54)

The first three terms are

G0 = 0, G1 = π, G2 = 2π cosχ (3.55)

Gn can more generally be expressed as

Gn = π
sinnχ

sinχ
(3.56)

Using that

2 sinnθ1 sin θ1 = cos(n− 1)θ1 − cos(n+ 1)θ1 (3.57)

−2 cosnθ1 sin θ1 = sin(n− 1)θ1 − sin(n+ 1)θ1 (3.58)

(3.59)

gives

−
∫ π

0

sinnθ1 sin θ1 dθ1

cos θ1 − cos θ
=

1

2
(Gn−1(θ)−Gn+1(θ))

=
π

2

[
sin(n− 1)θ − sin(n+ 1)θ

sin θ

]
= −π cosnθ (3.60)

Further, using that cot θ = cos θ/ sin θ gives

−
∫ π

0

cos θ1

sin θ1

sin θ1 dθ1

cos θ1 − cos θ
= G1(θ) = π (3.61)

Then it follows from Eq. (3.53) that

v = −1

2
B0 +

1

2

∞∑
n=1

Bn cosnθ (3.62)
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Since v must be equal to VR given by Eq. (3.42), it gives A0 = −B0/2 and An = Bn/2. This
leads to that Eq. (3.52) can be written as

γ = −2A0 cot θ + 2
∞∑
n=1

An sinnθ (3.63)

By using the relationship between φ and γ in Eq. (3.50), φ can be found by integrating γ/2
along x. This gives by using that φ = 0 at x = −c that

φ =

∫ x

−c

∂φ

∂x
dξ

=

∫ θ

π

(
−A0 cot θ1 +

∞∑
n=1

An sinnθ1

)
(−c sin θ1) dθ1

= cA0 sin θ − 1

2
cA1

(
θ − π − sin 2θ

2

)
− 1

2

∞∑
n=2

cAn

(sin(n− 1)θ

n− 1
− sin(n+ 1)θ

n+ 1

)
(3.64)

The free surface condition φ = 0 should be satisfied at both the two ends of the wetted deck, i.e.
at θ = 0 and π. However, Eq. (3.64) gives cπA1/2 at θ = 0. It means that another term should
be introduced into Eq. (3.64) to account for this. Since 1/

√
c− x2 is a homogenous solution

of γ(x) from Eq. (3.51), adding a term which is a constant times 1/ sin θ to Eq. (3.63) will not
destroy the above derivation. The vorticity γ can therefore be expressed as

γ = −2A0 cot θ + 2
∞∑
n=1

An sin θ +
2K

sin θ
(3.65)

where K is a constant. Following the same procedure as used in deriving Eq. (3.64) yields the
velocity potential φ as

φ = cA0 sin θ − 1

2
cA1

(
θ − π − sin 2θ

2

)
− cK(θ − π)

− 1

2

∞∑
n=2

cAn

(sin(n− 1)θ

n− 1
− sin(n+ 1)θ

n+ 1

)
on Z = 0 and |X| ≤ c(t) (3.66)

K can now be determined by requiring φ = 0 at θ = 0. This gives K = −A1/2. Substituting K
into Equation (3.66) gives

φ =cA0 sin θ +
1

4
cA1 sin 2θ

− 1

2

∞∑
n=2

cAn

(sin(n− 1)θ

n− 1
− sin(n+ 1)θ

n+ 1

)
on Z = 0 and |X| ≤ c(t) (3.67)
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where An are defined in Equation (3.49).

It can be shown that Eq. (3.67) is consistent with Eq. (3.17) which assumes VR = V1 + V2X.
This means from Eq. (3.49) that A0 = V1, A1 = V2c and An = 0 for n > 1. By using Eq. (3.43),
it follows that c(t) sin θ =

√
c2 −X2 and c2 sin 2θ = 2X

√
c2 −X2. This leads to Eq. (3.17).

3.5.3 Slamming induced loads on the wetdeck

The slamming induced dynamic pressure can be approximated by

p = −ρ∂φ
∂t

(3.68)

to be consistent with the dynamic surface condition in this boundary value problem, as discussed
in Section 3.2.2.

It should be noted that besides c and An, θ is also a time dependent parameter. This means
that

∂θ

∂t
=

1

c sin θ

(∂c
∂t

cos θ − ∂l

∂t

)
(3.69)

Further, by integrating Eq. (3.68) along the wetted length, the following vertical impact force
F3 and pitch moment F5 about X = 0 are obtained.

F3 = B

∫ c

−c
−ρ∂φ

∂t
dX = −ρc

∫ π

0

∂φ

∂t
sin θdθ B

= − ∂

∂t

(1
2
ρπc2
(
A0 − A2

2

))
B

(3.70)

F5 = B

∫ c

−c
−pn5dX = −B

∫ c

−c
(l +X)pdX

= −lF3 −B

∫ c

−c
X
(
−ρ∂φ

∂t

)
dX

= −lF3 + ρc2
∫ π

0

∂φ

∂t
sin θ cos θdθ B

=
∂

∂t

(
l
1

2
ρπc2
(
A0 − A2

2

))
B +

∂

∂t

( 1

16
ρπc3(A1 − A3)

)
B

(3.71)

This gives by using the relationship between An and Vn in Eq. (3.49) that

F3 = − ∂

∂t

{
1

2
ρπc2
[
V1 + V3

(
J0(kc) + J2(kc)

)]}
B (3.72)

F5 =
∂

∂t

{
l
1

2
ρπc2
[
V1 + V3

(
J0(kc) + J2(kc)

)]}
B

+
∂

∂t

{
1

16
ρπc3
[
V2c+ 2V4

(
J1(kc) + J3(kc)

)]}
B

(3.73)

It is easy to show in a similar way as was done for the velocity potential that Eqs. (3.70) and
(3.71) are consistent with Eqs. (3.20) and (3.21) which assumes VR = V1 + V2X.
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3.5.4 Wagner based method

When the wetted length 2c(t) is predicted by a Wagner based method, the vertical velocity due
to φ on the mean free surface Z = 0 outside of the wetted length is needed. This expression
is derived by starting with the following expression for the complex velocity given by Newman
(1977).

u− iv = − 1

π

1

(1− z2)
1
2

∫ 1

−1

V+(ξ)(1− ξ2)
1
2

ξ − z
dξ (3.74)

Here z represents the complex variable and length dimensions are non-dimensionalized by half
of the wetted length.

We introduce length dimensions and note that care has to be taken in defining the branches of√
c2 − z2. This has to be done consistently with how Newman (1977) derived Eq. (3.74). If the

complex variable is defined as X + iZ, this implies for instance that

√
c2 − z2 =

{ −i√X2 − c2 when X > c(t), Z = 0

+i
√
X2 − c2 when X < −c(t), Z = 0

(3.75)

It now follows that the vertical velocity ∂φ
∂Z

= v on the free surface Z = 0 can be expressed as

∂φ

∂Z
=

1

π

Sign(X)√
X2 − c2

∫ c

−c

VR
√
c2 − ξ2

ξ −X
dξ (3.76)

Here Sign(X) is 1 when X > c(t) and −1 for X < −c(t). Using the general Fourier expansion
of VR in Eq. (3.42) and that ξ = c cos θ gives

∂φ

∂Z
=

1

2π

c Sign(X)√
X2 − c2

∫ π

0

∑∞
n=0 An cosnθ(1− cos 2θ)

cos θ −X/c
dθ (3.77)

This will be rewritten by using the following formula (Eq.3.613.1 on page 366 in Gradshteyn
and Ryzhik (1994))∫ π

0

cosnθdθ

1 + a cos θ
=

π√
1− a2

(√
1− a2 − 1

a

)n
for a2 < 1 (3.78)

Substituting a = −c/X which satisfies a2 < 1 when |X| > c gives

−X

c

∫ π

0

cosnθdθ

cos θ − X
c

=
π√

1− c2

X2

(√
1− ( c

X
)2 − 1

− c
X

)n

(3.79)

i.e.

In =

∫ π

0

cosnθdθ

cos θ − X
c

=
−cπ Sign(X)√

X2 − c2

(√
X2 − c2 − |X|
−c Sign(X)

)n
(3.80)

We study now

Hn =

∫ π

0

cosnθ(1− cos 2θ)

cos θ − X
c

dθ n = 0, 1, 2, . . . (3.81)
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This is needed in evaluating Eq. (3.77). We start with n = 0, i.e.

H0 = I0 − I2 = −2π Sign(X)

c

(|X| −
√
X2 − c2

)
(3.82)

Further,

H1 =
1

2
(I1 − I3) =

1

2
H0

(√
X2 − c2 − |X|
−c Sign(X)

)
(3.83)

Further, for k ≥ 2

Hk =

∫ π

0

cos kθ − 1
2

(
cos(k + 2)θ + cos(k − 2)θ

)
cos θ − X

c

dθ

= Ik − 1

2
(Ik+2 + Ik−2) = · · · · · ·

= 2π Sign(X)

√
X2 − c2

c

(√
X2 − c2 − |X|
−c Sign(X)

)k
for k ≥ 2

(3.84)

Equation (3.77) can then be analytically expressed as

∂φ

∂Z
=

1

2π

c Sign(X)√
X2 − c2

(
A0H0 + A1H1 +

∞∑
k=2

AkHk

)
= −A0

|X| − √
X2 − c2√

X2 − c2

− A1

(|X| − √
X2 − c2

)2
2c
√
X2 − c2

Sign(X)

+
∞∑
k=2

Ak

(√
X2 − c2 − |X|
−c Sign(X)

)k
on Z = 0 and |X| > c(t)

(3.85)

Here An can be found from Eq. (3.49).

It follows for large |X| that

|X| −
√
X2 − c2 = |X|(1−√1− c2/X2

) ∼ |X|1
2

c2

X2
=

1

2

c2

|X| (3.86)

This means that the velocity goes to zero when |X| → ∞. Further, the term associated with
An for odd number n is antisymmetric about X = 0 , and the term associated with An for even
number n is symmetric about X = 0.

Equation (3.85) can be controlled by checking with similar expressions derived by Kv̊alsvold
(1994) where An = 0 for odd number n. Consistent results are obtained by neglecting the odd
terms in our Eq. (3.85). It is noted that the expression Eq. (3.85) for ∂φ/∂Z is consistent with
our previous expression for VR = V1 +V2X. This means from Eq. (3.49) that A0 = V1, A1 = V2c
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and An = 0 for n > 1. Then only the first two terms in Eq. (3.85) are left. Further, expand-
ing (|X| − √

X2 − c2)2 in the second term and combining the second term with the first term
lead to Eq. (3.25). The odd term with A1 is therefore controlled. Since the other odd terms
are of the same nature as A2k with k > 1, we believe that Eq. (3.85) has been properly controlled.

In Eq. (3.85) it is only the A0 and A1 terms that have a square root singularity at |X| = c. An
asymptotic expression of the vertical velocity near X = ±c is needed in the time integration
of the free surface. This will enable us to properly account for the singularities in the time
integration procedure. We concentrate first on X = c and derive, based on Eq. (3.85), the
following asymptotic expression ∂φ/∂Z for small |X − c| outside the body on Z = 0

lim
X>→c(t)

∂φ

∂Z
� −A0

c√
2c
√
X − c

− A1
c2

2c
√
2c
√
X − c

+
∞∑
n=2

An

= −(A0 +
1

2
A1

) √
c√

2(X − c)
+

∞∑
n=2

An (3.87)

Then with a prescribed wetted length change ∆cj+1, the vertical distance due to the local pile
up of water at the right hand side of the wetted length is described by∫ tj+1

tj

∂φ

∂Z
dt =

∫ tj+1

tj

∂φ

∂Z
dc

dt

dc

=
(dt
dc

)
m,j+1

{
−
((
A0 +

1

2
A1

)√
2c
)
m,j+1

√
∆cj+1 +

∞∑
n=2

(
An

)
m,j+1

∆cj+1

}
(3.88)

Here subscript m, j + 1 means the time averaged value from tj to tj+1. Similar formulations at
the left end of the wetted length can be derived. The time stepping procedure in Section 3.4.2
can then be followed.

3.6 Kutta condition model

Kutta condition is adopted from foil theory and is then a consequence of visual information of
the flow. That shows a smooth detachment of the flow from the trailing edge of a lifting foil. If
we apply this same concept to our slamming problem, it means that there is smooth detachment
of water from the aft intersection point between the deck and the water. Baarholm (2001)
introduced this model for wetdeck slamming on a stationary platform based on experimental
observations. Figure 3.4 shows the flow details at the ends of the wetted deck for cases with
and without Kutta condition. The upper figure shows that the local spray happens at both
ends without applying Kutta condition. The lower one has a smooth detachment at the trailing
edge by applying a Kutta condition, while spray is generated at the ’leading edge’ X = −c(t).
Numerically it means that horizontal fluid velocity at the ’trailing edge’ X = c(t) is finite and
continuous. ’Leading edge’ and ’trailing edge’ refer to nomenclature used in foil theory.
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a(t)

a(t)

b(t)

b(t)

spray

spray spray

Smooth detachment
(Kutta condition)

U

⇐= No Kutta condition

Figure 3.4 Flow details at the ends of the wetted deck

When the Kutta condition is applied in our case, it is assumed that U is much larger than
the incident wave velocity and the fluid velocity caused by the impact. So a different dynamic
free surface condition will be applied, leading to a new boundary value problem. This model is
appropriate for wetdeck slamming on a high speed catamaran. Kv̊alsvold (1994) and Haugen
(1999) did also consider wetdeck slamming on a high speed catamaran, but did not include a
Kutta condition model. Faltinsen (1997) analyzed local slamming induced strains on a horizontal
elastic plate of finite length that had a large forward speed relative to the drop velocity. An
initial structural phase and a subsequent free vibration phase were considered. The problem
during the free vibration phase was equivalent to steady state harmonic oscillations of an elastic
thin lifting foil in infinite fluid. A Kutta condition was then needed at the ’trailing’ edge. Here
we approximate VR by Eq. (3.15) as a spatially linear distribution on the wetted surface and
uses a Von Karman method to determine the wetted length. The following text gives details of
this Kutta condition method.

3.6.1 Boundary value problem

Different from Eq. (3.7), the more general dynamic free surface condition ∂φ
∂t

+ U ∂φ
∂x

= 0 is now
used, in combination with a Kutta condition at X = c. Since the initial condition is φ = 0 on
the free surface, this implies that φ remains zero on the upstream side (X < −c). However, for a
free surface particle on the downstream side, it may have previously been at the wetted surface.
This implies that there is a region c < X < c+Ut where ∂φ

∂t
+U ∂φ

∂x
= 0 must be used (see Fig. 3.5).

The length Ut of this region follows by first considering a fluid particle on the free surface at the
aft end at initial time t = 0 of slamming. Since the fluid particle velocity can be approximated
as a horizontal velocity U , it follows that the fluid particle has travelled a horizontal distance
Ut during time t. Fluid particles that start at t = t0 at other free surface positions downstream
of the aft end have an initial value φ = 0. Since ∂φ

∂t
+ U ∂φ

∂x
= 0, the φ-values for these fluid

particles remain zero. The order of magnitude of the ratio between the two terms in this free
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surface condition is UTd/L where Td is the time duration of the impact, and L is the maximum
wetted length. It means implicitly that previous slamming models presented in details in this
chapter assume UTd/L to be small.

φ = 0
∂φ
∂t + U ∂φ∂x = 0

X

Z

−c(t) c(t)

U

φ = 0

Ut

Figure 3.5 Boundary value problem accounting for Kutta condition at the aft intersection point
(X = c(t)) between the deck and the free surface

The boundary value problem can be made equivalent to an unsteady linear lifting problem for
a thin foil in an infinite fluid (See Appendix B). This means a vortex distribution with density
γ(X, t) along −c < X < c+Ut is used, i.e. the vortex contribution from the ’wake’ should also
be accounted for. The word ’wake’ has a physical meaning for the lifting problem but not in our
case. The solution procedure in Newman (1977) for the unsteady lifting problem for a thin foil
is followed. However, an accelerated local coordinate system is used here, while this is not done
by Newman (1977). It means that X = 0 is changing with time. Further, the wetted length
2c(t), as well as the trailing edge position, are time dependent parameters. This influences the
solution procedure and the results. Ulstein (1995) analyzed a similar impact problem, but he
assumed that the aft body-water intersection was time independent and used a Wagner based
method to find the forward body-water intersection. The water exit phase was neglected. We
use a Von Karman based method which enables us to analyze both the water entry and exit phase.

Compared with Eq. (3.51), the vertical velocity component on the lower side the vortex sheet
also includes the contribution from the ’wake’, i.e.

v(x, t) =− 1

2π
−
∫ ∞

−c

γ(ξ, t)

ξ − x
dξ

=− 1

2π
−
∫ c+Ut

−c

γ(ξ, t)

ξ − x
dξ

(3.89)

By using the equivalence between our problem and the unsteady lifting problem it follows that
γ(x, t) = γ(x − Ut) in the wake. Further, by accounting for the body boundary condition,
applying Hilbert transforms and interchanging integrations, the solution of γ can be expressed
as

γ(X, t) =
2

π

1

(c2 −X2)
1
2

{
−
∫ c

−c

(c− ξ)
1
2

ξ −X
VR(ξ, t)dξ

− 1

2

∫ ∞

c

(ξ2 − c2)
1
2

ξ −X
γ(ξ − Ut)dξ

}
(3.90)
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This gives by inserting the linear expression of VR(ξ, t) = V1 + V2ξ into Eq. (3.90) in our X −Z
coordinate system that

γ(X, t) =
1

(c2 −X2)
1
2

{
[−2V1X + V2(c

2 − 2X2)]

− 1

π

∫ ∞

c

(ξ2 − c2)
1
2

ξ −X
γ(ξ − Ut)dξ

}
(3.91)

This follows by relating the first integral in Eq. (3.90) to Hilbert transforms as defined in New-
man (1977).

Now by the relationship shown in Eq. (3.50), we integrate along the wetted length and find the
velocity potential as

φ(X, t) =

∫ X

−c

1

2
γ(X1, t)dX1 = φ1 + φ2

= V1

√
c2 −X2 +

1

2
V2X

√
c2 −X2

− 1

2π

∫ c+Ut

c

γ(ξ − Ut)

[
π − 2 arctan

(√ξ + c

ξ − c
tan

θ

2

)]
dξ

for − c < X < c, Z = 0 (3.92)

Here θ = arccos( X
c(t)

). The first two terms in Eq. (3.92) are referred to as φ1, and is the solution

when the Kutta condition is not applied (See Eq. (3.17)).

It should be noted that the spatial derivative term−ρU ∂φ
∂x

must also be included when integrating

pressure to get dynamic forces, i.e. p = −∂φ
∂t

− ρU ∂φ
∂x

. This results in the following vertical force
F3 and pitch moment F5 about X = 0.

F3 = −ρπc∂c
∂t
V1B − 1

2
ρπc2

∂V1

∂t
B

− 1

2
ρc
∂c

∂t
B

∫ c+Ut

c

γ(ξ − Ut)√
ξ2 − c2

dξ

+
1

2
ρUB

∫ c+Ut

c

ξ√
ξ2 − c2

γ(ξ − Ut)dξ (3.93)

F5 = −lF3

+
∂

∂t
(l
1

2
ρπc2V1)B +

∂

∂t
(
1

16
ρπc4V2)B

+
1

4
ρc
∂c

∂t
B

∫ c+Ut

c

ξ√
ξ2 − c2

γ(ξ − Ut)dξ

− 1

4
ρUc2B

∫ c+Ut

c

γ(ξ − Ut)√
ξ2 − c2

dξ

− 1

2
ρπUc2V1B (3.94)
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Here V1 and V2 are defined in Eq. (3.16). In Eq. (3.94), F3 is expressed as in Eq. (3.93) and l(t) is
the mid x-position of the wetted length defined as before. The first two terms in Eq. (3.93) and
the first three terms in Eq. (3.94) are exactly the same as Eqs. (3.19) and (3.21) in Section 3.3
when the Kutta condition at the aft end of the wetted surface is not considered. Detailed deriva-
tions of the above equations are given in Appendix B.

The two integrals extending over the wake in Eqs. (3.93) and (3.94), are evaluated numerically
as: ∫ c+Ut

c

γ(ξ − Ut)√
ξ2 − c2

dξ =
N∑
i=1

γi

∫
∆ξ

dξ√
ξ2 − c2

=
N∑
i=1

γi

[
ln(ξ +

√
ξ2 − c2)

]ξ
i+1

2

ξ
i− 1

2

(3.95)

∫ c+Ut

c

ξ√
ξ2 − c2

γ(ξ − Ut)dξ =
N∑
i=1

γi

∫
∆ξ

ξdξ√
ξ2 − c2

=
N∑
i=1

γi

[√
ξ2 − c2

]ξ
i+1

2

ξ
i− 1

2

(3.96)

Here the domain from ξ = c to ξ = c+Ut is divided into N segments with length ∆ξ = U∆t, as
illustrated in Fig. 3.6. γi is the space averaged vortex density between ξi− 1

2
and ξi+ 1

2
. It should

be noted that the trailing edge is changing with time, and that the ξ coordinate is based on the
local X − Z coordinate system.

X

Z

−c(t) c(t)

Ut

U∆t

γi−1 γi γi+1

ξi− 1
2

ξi+ 1
2

U

Element i− 1, i and i+ 1
⇓

Figure 3.6 Numerical approximation of vortex distribution in the ’wake’

In order to determine γ(ξ−Ut) in the previous equations, a Kutta condition has to be imposed
at X = c. The Kutta condition implies that the fluid velocity must be finite at X = c. We note
that the denominator in Eq. (3.91) expressing γ is zero for X = c. In order to get a finite answer
for γ at X = c, it is necessary that the terms in the brackets in Eq. (3.91) are zero at X = c.
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This gives the solution of γ at the trailing edge at time t in Eq. (3.97) by solving

−π(2V1 + V2c)c =

∫ ∞

c

√
ξ + c

ξ − c
γ(ξ − Ut)d ξ

=
N∑
i=1

γi

[√
ξ2 − c2 + c ln(ξ +

√
ξ2 − c2)

]ξ
i+1

2

ξ
i− 1

2

(3.97)

Here the newest generated vorticity γ1 is the unknown. Other values γ2 to γN are found in
earlier time steps.

Application of the Kutta condition implies that U is much larger than the moving speed of
the trailing edge. However, due to the initial quite large speed of the wetted area, the ’wake’
vorticity created by earlier steps may be ’eaten up’ in the following steps in an initial phase . By
’eaten up’ is simply meant that a part of the free surface has become a part of the wetted surface
in the new time step. This problem will be discussed in later chapters dealing with numerical
results.

3.6.2 Verification

Extensive studies have been done previously for lifting surface problems where a Kutta condition
is needed in a potential flow solution. Our numerical procedure was verified by comparing with
classical analytical unsteady lifting solutions. One such case is the ’Wagner Function Problem’.
It describes the transient lift problem due to a sudden change of vertical velocity for a flat
plate. This means a foil accelerating instantaneously from rest at t = 0 to a constant velocity
U with a constant angle of attack α. Figure 3.7 shows the numerical results, which is in perfect
agreement with results presented in Newman (1977). The lift force is non-dimensionalized by
the asymptotic lifting force Ft=∞ = πρU2Lα for t → ∞. Here L is chord length of the foil.
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Figure 3.7 Transient two-dimensional linear lift force F on a flat plate of length L due to a sudden
change in vertical velocity. Our theoretically predicted curves are consistent with results presented in
Newman (1977).
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3.7 Implementation of slamming models in global response

model

Different theoretical slamming models, as well as their main derivative procedures, have been
presented in this chapter. In the following Chapter 4, numerical calculations will be carried out
accordingly to investigate the different factors in the slamming modelling, by comparing the
calculated wetted length, slamming induced forces and global responses.

To improve the numerical stability in the global response, parts of the slamming induced vertical
force and moment are expressed in terms proportional to accelerations, velocities and motions of
the catamaran. The corresponding coefficients are moved to the left hand side of the equations
motions. Details are given in Appendix B.
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Chapter 4

Slamming Induced Response of a Rigid
Catamaran

4.1 Introduction

The wetdeck of the test model was composed of four plates, notated in consecutive order as
Deck1 to Deck4 from the bow (Fig. 2.1). Each deck was connected to the longitudinal aluminum
frame by two transverse girders. Also each plate was stiffened by longitudinal stiffeners to min-
imize local flexibility. Deck2-4 are horizontal at a vertical distance of 0.34m from the base line
of the hull. Deck1 has a small ramp angle at the bow with maximum height 0.39m relative to
the base line. A more detailed description is given in Appendix A.

Chapter 3 introduced several slamming models. In this chapter, global response results based on
the different slamming models are presented and discussed. For simplicity, the global flexibility
is neglected in the calculations in this chapter, i.e. the catamaran is assumed to be a rigid body.
Only heave and pitch responses are considered. The bow ramp angle of the wetdeck is neglected
in the case studies in this chapter, i.e. a flat wetdeck is applied here. In Chapter 5, global
hydroelastic response due to wetdeck slamming will be studied by accounting for the bow ramp
angle.

As described in Chapter 3, there are four important factors influencing the slamming modelling:
the determination of wetted length 2c(t), the approximation of the relative impact velocity VR
in the body boundary condition, the Kutta condition at the aft end of the wetted surface and
the free surface condition. In the following sections, different effects will be investigated for the
case of head sea regular incident waves with wave amplitude ζa = 0.05m, wave period T = 1.8s
and ship forward speed U = 1.9m/s. Five slamming models are defined for later presentation of
results in Table 4.1. A fourth order Runge-Kutta method is used with time step 0.0001s in the
time integration. A build-up system from initial conditions to steady state conditions is used as
described in Chapter 2. The steady state results are presented and discussed in the following
sections.

59
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Table 4.1 Definition of Model1 to Model5; ’FSC’ means dynamic free surface condition between
X = c and c + Ut; the dynamic free surface condition at other X-values is φ = 0. Here φ is velocity
potential due to slamming. ’Kutta’ means Kutta condition at aft end X = c.

Items Model1 Model2 Model3 Model4 Model5
2c(t) Von Karman Wagner Von Karman Von Karman Wagner
VR V1 + V2X V1 + V2X

∑
An cos(nθ) V1 + V2X

∑
An cos(nθ)

FSC (c : c+ Ut) φ = 0 φ = 0 φ = 0 ∂φ
∂t

+ U ∂φ
∂X

= 0 φ = 0
Kutta at X = c No No No Yes No

4.2 Local rise-up effect

Chapter 3 described two different ways to calculate the wetted length. The Von Karman method
is based on the undisturbed water-deck intersection points, while the Wagner type of method
accounts for the vertical velocity from the local run-up of water due to the slamming induced
flow during the water entry phase. Comparisons of wetted length, impact force, vertical motions,
and vertical accelerations at the center of gravity of the whole catamaran are shown in Figs. 4.1
to 4.2. A spatially linear distribution of relative velocity in the wetted area (see Eq. (3.15)) is
applied.
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Figure 4.1 Comparison between Von Karman (Model1) and Wagner (Model2) based method for
wetdeck slamming on a rigid catamaran (See Table 4.1); T = 1.8s, ζa = 0.05m, U = 1.9m/s, head sea.

In the above two figures only the time interval of impact is shown. We see that the Wagner
based method will influence the wetted length and then the forces on the wetted deck. Since
the initial slamming occurs at the front end of the wetdeck and there is a finite angle initially
between the free surface and the wetdeck, dc/dt is finite and the force is zero initially.

The Wagner method is basically more correct than the Von Karman method for the water entry
phase. However, the Wagner method can not be applied during the water exit phase, as discussed
in Section 3.4. The Von Karman method is therefore used in the water exit phase. The jump
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Figure 4.2 Comparison between Von Karman (Model1) and Wagner (Model2) based method for
wetdeck slamming on a rigid catamaran (See Table 4.1); T = 1.8s, ζa = 0.05m, U = 1.9m/s, head sea.

occurring in the predicted wetted length by the Wagner approach (see Fig. 4.1(a)) corresponds
to when a switch from the Wagner to the Von Karman method occurs. This switch causes a
small jump in the predicted vertical impact force (Fig. 4.1(b)), while the jump is not notice-
able in the results for heave motion and acceleration at COG (Fig. 4.2). The Wagner method
influences the acceleration peaks, while the influence on global motions (Fig. 4.2(a)) is negligible.

Figure 4.3(a) and Fig. 4.3(b) illustrate the contributions from the linear incident wave loads
and the slamming loads to the vertical motion and acceleration at COG of the rigid catamaran.
Model1 is applied in this calculation. In the figures, ’◦’ and ’K’ represent the initial and ending
times of the slamming. Figure 4.3(a) shows that slamming clearly influences the vertical motion
response and the maximum values are changed from 0.0424m to 0.0603m, an increase of 42.05%.
This is case dependent and when global hydroelasticity is accounted for, the slamming induced
motion is not so dominant (See Chapter 5). We consider the first slamming occurrence in Fig. 4.3,
i.e. from t = 8.9453s to 9.3564s. When t = 8.9625s the total acceleration response reaches a
peak as shown in Fig. 4.3(b). The slamming induced part contributes then 45.15%. In the
analysis accounting for global hydroelasticity effect presented in Chapter 5, large contributions
from slamming induced acceleration are also shown.

Two-dimensional experimental and numerical studies by Baarholm (2001) for a fixed horizontal
wetdeck showed the importance of accounting for the pile up effect during the water entry phase.
Comparisons were made between the Von Karman and Wagner methods for a fixed horizontal
wetdeck model with dimensions L∗B = 0.63m∗0.56m (Baarholm (2001)), where L is the length
of the deck in the wave propagation direction of regular waves. The height of the deck above
mean free surface was 0.04m. Figures 4.4 show our calculations of the pile up effect on the
wetted length and impacting forces as a function of time. Here a linear approximation of VR is
applied and the nonlinear Froude-Krylov force is included. Once more the Wagner method is
only used during the water entry phase. Since the whole wetdeck becomes wetted, there is no
jump in the wetted length like the one in Fig. 4.1(a). The third line denoted ’Wagner+Stokes’
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Figure 4.3 Slamming influence on the global motion and acceleration by Model1 (See Table 4.1). ’Lin’
and ’Slm’ represent the response from the linear wave excitation loads and slamming loads respectively,
’Tot’ is the total response; ’◦ and ’%’ correspond to the starting and ending time of slamming. T = 1.8s,
ζa = 0.05m, U = 1.9m/s, head sea.

in Fig. 4.4 also accounts for second order incident wave effects. The results agree well with
Baarholm’s (2001) calculations based on using similar methods as ours. Additionally, the water
entry phase agrees well with Baarholm’s experiments. But this is not so for the water exit phase.
In the water exit phase, the duration is 51.2% longer in the experiments and the minimum value
in the experiment is 77.8% of what we predict. However, for the catamaran case studied here
the Wagner based method has much less effect. Further, the duration of the slamming is well
predicted by our method in the flexible catamaran cases to be considered (See Chapter 5). This
may be due to that the platform deck is totally wetted and that the wetting lasts longer in
Baarholm’s case.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Time (s)

W
et

te
d 

le
ng

th
 (

m
)

VonKarman
Wagner
Wagner+Stokes

(a) wetted length

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
−120

−90

−60

−30

0

30

60

Time (s)

V
er

tic
al

 fo
rc

es
 (

N
)

VonKarman
Wagner
Wagner+Stokes

(b) vertical impacting force

Figure 4.4 Water impact on a fixed rigid wetdeck with incident wave height H = 0.12m, wave period
T = 1.25s and air gap η = 0.04m when no waves are present.
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Figure 4.4 shows that the second order incident wave effects matter, but it is not dominant.
The incident wave slope kζa based on linear approximation of ζa is 0.107 in this case while it
is at most 0.089 in our catamaran cases with wetdeck slamming. The ratio between maximum
wave elevation based on second order wave theory and linear wave theory is (1 + 0.5kζa) (e.g.
Faltinsen (1990)). This is an indication that the second order incident wave effects are not
dominant in the catamaran cases. It does also matter that the catamaran is free to move while
the platform deck is restrained from oscillating. The catamaran motions play an important role
in determining the wetted area when slamming occurs.

The agreement with experiments was improved in Baarholm’s studies by incorporating a Kutta
condition at the aft end of the wetted deck during water exit phase as well as nonlinear free
surface conditions with gravity effects. Generally speaking, the longer the time duration of the
wetting is relative to the wave period, the more important gravity becomes. This is associated
with generated free surface waves during the impact. In the catamaran cases the wetting time is
relatively smaller compared to the wave period in Baarholm’s case and gravity will matter less.
So it is more appropriate to neglect gravity in the free surface condition in our catamaran cases.

4.3 Effect of exact representation of VR

The analysis in this section will examine if the linear approximation of VR in the body boundary
condition is satisfactory by comparing with Model3 where the exact expression of VR is used.
VR(x, t) is expanded into a Fourier series as shown in Eq. (3.44) in Chapter 3. The boundary
value problem is solved as presented in Fig. 3.1. Figures 4.5 to 4.6 are for the case when 2c(t)
is determined by the Von Karman method.
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Figure 4.5 Comparison between linear (Model1) and exact representation of relative impact velocity
VR (Model3) for wetdeck slamming on a rigid catamaran (See Table 4.1); T = 1.8s, ζa = 0.05m,
U = 1.9m/s, head sea.

Figures 4.5 and 4.6 show that the Fourier expansion method does not influence the wetted length
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and the force greatly, at least for this case. So the influence on the global responses is also quite
small. The reason is that the incident wave length λ is large relative to 2c. This means that the
incident wave terms sin(kX) and cos(kX), where k = 2π/λ, can be approximated as respectively
kX and 1 over the wetted area.
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Figure 4.6 Comparison between linear (Model1) and exact representation of relative impact velocity
VR (Model3) for wetdeck slamming on a rigid catamaran (See Table 4.1); T = 1.8s, ζa = 0.05m,
U = 1.9m/s, head sea.

Calculations and comparisons based on the Wagner method for c(t) (see Section 3.5.4) were
also done. This is illustrated in Figs. 4.7 and 4.8. Similar tendencies and results were found
as in Figs. 4.5 and 4.6 for the Von Karman based case. The exact representation of VR has a
small influence on the wetted length, the wetdeck force and the vertical accelerations. However,
the effect of using the Fourier expansion will depend on parameters like the deck height, wave
amplitude and wave length. Obviously the longer the wetted length is relative to the incident
wave length, the more appropriate it is to use the Fourier expansion method.

4.4 Kutta condition

Figures 4.9 to 4.10 present comparisons between cases with and without applying the Kutta
condition at the aft end of the wetted length (X = c(t)). The formulas for the Kutta condition
are presented in Section 3.6. The wetted length 2c(t) is in both cases based on the Von Karman
method. The figures show that the Kutta condition has a larger influence than previously found
by using a Wagner method instead of a Von Karman method or by not using Eq. (3.15) to
approximate VR in the body boundary condition. Figure 4.9 demonstrates that steady state
slamming does not start at the same time in Model1 and Model4. This is a consequence of the
transient phase of the numerical simulations.

Figure 4.11 illustrates the relative importance of the different force terms in Eq. (3.93) and
compares it with corresponding terms in the case without a Kutta condition. The two first
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Figure 4.7 Comparison between linear (Model2) and exact representation of relative impact velocity
VR (Model5) for wetdeck slamming on a rigid catamaran (See Table 4.1); T = 1.8s, ζa = 0.05m,
U = 1.9m/s, head sea.
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(a) Global response of η3 at COG
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Figure 4.8 Comparison between linear (Model2) and exact representation of relative impact velocity
VR (Model5) for wetdeck slamming on a rigid catamaran (See Table 4.1); T = 1.8s, ζa = 0.05m,
U = 1.9m/s, head sea.

terms are previously called slamming and added mass terms, and are in Fig. 4.11 denoted as
F31 and F32 respectively. The last terms in Eq. (3.93) are denoted F3γ . Figure 4.11 shows
that the slamming force term has a lower maximum value when the Kutta condition model is
applied. The added mass terms are always negative and the no-Kutta-condition case gives a
lower minimum than if Kutta condition is considered. The figures show clearly that the Kutta
condition influences the force in the water exit phase. Studies by Baarholm (2001) (See also
Baarholm and Faltinsen (2001)) for slamming loads on a horizontal fixed deck showed that
the application of Kutta condition improves significantly the results in the water exit phase.
However, their numerical model with Kutta condition is different from ours and is based on a
boundary element method with exact nonlinear free surface conditions including the effect of
gravity.
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Figure 4.9 Comparison between without Kutta condition (Model1) and with Kutta condition at
X = c (Model4) for wetdeck slamming on a rigid catamaran (See Table 4.1); T = 1.8s, ζa = 0.05m,
U = 1.9m/s, head sea.
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Figure 4.10 Comparison between without Kutta condition (Model1) and with Kutta condition at
X = c (Model4) for wetdeck slamming on a rigid catamaran (See Table 4.1); T = 1.8s, ζa = 0.05m,
U = 1.9m/s, head sea.

An implicit assumption in applying Kutta condition in Model4 is that the forward speed U is
much larger than the horizontal fluid velocity. However, both da/dt and db/dt, the time rate of
change of left and right ends of the wetted deck respectively, are in the initial impact phase much
larger than U . This implies that a vortex sheet aft of the trailing edge can not be generated
initially. By vortex sheet we are referring to the mathematical representation of the solution.
It does not refer to physical vorticity. The consequence is that the Kutta condition can not be
applied then. This occurs for this case during the first 0.0004 seconds. The application of the
Kutta condition starts therefore after this small initial time. However, this is believed to have
minor influence on the subsequent results.
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Figure 4.11 Comparison between slamming models without Kutta condition (Model1) and with Kutta
condition at X = c (Model4) for wetdeck slamming on a rigid catamaran (See Table 4.1); T = 1.8s,
ζa = 0.05m, U = 1.9m/s, head sea. Influence on the slamming force term F31, the added mass term
F32 and the additional force term F3γ when Kutta condition model is applied.

4.5 Discussion

Our five slamming models differ from the force and response model presented in Zhao and
Faltinsen (1992). They used a Wagner based method and considered only the water entry
phase. Further, they neglected the added mass term in the impact loads. There is an addi-
tional important difference in their case studies and ours. This is associated with that different
ships and Froude numbers are used. Zhao and Faltinsen (1992) used the high-speed theory by
Faltinsen and Zhao (1991) appropriate for Froude numbers larger than 0.4 ∼ 0.5. Since our
Froude number is around 0.30, this high-speed theory is not applicable for cases here. In the
case studied in this chapter the initial impact occurs at the front end of the deck. There is then
finite angle between the free surface and the deck surface. This means that dc

dt
is finite. In Zhao

and Faltinsen’s case the initial impact does not occur at the deck end and the water free surface
and the deck surface are initially tangential. When the impact occurs like this, dc

dt
is infinite

initially. Since c is initially zero, the resulting vertical initial impact force is finite as illustrated
by Eq. (1.1). The consequence is very large initial vertical accelerations of the ship. Even if
there are also some peak values of acceleration initially in our numerical predictions, their values
are far less than predicted by Zhao and Faltinsen (1992).

Figure 4.12 shows the influence on the response by including or not including the added mass
term in the impact loads. Only the time history response of the vertical acceleration η̈3 at the
bow is shown. Linear response without accounting for slamming is also shown in the plot. The
large influence of including the added mass term is demonstrated in the figure.

Figure 4.12, as well as the global responses presented in earlier sections, show two peaks in
the time history of the acceleration, when the added mass term F32 is accounted for. The first
peak occurring at the initial time of slammings is clearly the largest one. The following is
another example to illustrate how the second peak is produced when the added mass term is
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Figure 4.12 Wetdeck slamming induced vertical acceleration η̈3 at the bow for case T = 1.8s,
ζa = 0.05m, U = 1.9m/s; by Model1 (See Table 4.1). F3: both slamming force term and added mass
term included; F31: only slamming force term included; ’Linear’: No wetdeck slamming included.

included. The studied case is for the same catamaran as before in head sea regular waves with
U = 1.8m/s. The incident wave period is 1.9s and wave amplitude is 0.05m. Linear expression
of VR in Eq. (3.15) and Von Karman method for 2c(t) are applied. Impact force components
are shown in Fig. 4.13(a). The force history in Fig. 4.13(a) is used as input to an artificial
dynamic system. This represents the uncoupled heave motions of the same catamaran. Another
difference from the case in Fig. 4.12 is that linear wave induced motion response is not included.
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Figure 4.13 Components of vertical impact loads for case T = 1.8s, ζa = 0.05m, U = 1.9m/s
by Model1 (See Table 4.1), and the corresponding uncoupled vertical motion response on the same
rigid catamaran. F31: only slamming force term included, F32: only added mass term included, F3 =
F31 + F32: total response; ’◦’ and ’%’ are the ending time of loading due to respectively F31 and F3.

Figures 4.13(b) to 4.14 are the corresponding time histories of vertical motion, velocity and
acceleration. In the figure the impact loads start at t = 10.0442s. The sign ’◦’ represents the
ending time t = 10.4697s of the slamming force term. Further, the sign ’K’ means the ending



4.5. DISCUSSION 69

10 10.3 10.6 10.9 11.2 11.5
−0.15

−0.1

−0.05

0

0.05

0.1

0.15

time (s)

V
er

tic
al

 v
el

oc
ity

 (
m

/s
)

F
3

F
31

(a) Uncoupled η̇3 response due to loading in Fig. 4.13(a);
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Figure 4.14 Uncoupled vertical velocity and acceleration for the rigid catamaran with T = 1.8s,
ζa = 0.05m, U = 1.9m/s by the impact loading in Fig. 4.13(a). F31: only slamming force term
included, F3: total response; ’◦’ and ’%’ are the ending time of loading due to respectively F31 and F3.

time t = 10.1919s of the total impact loading. So there is first a loading part and then after the
loading there is a free vibration with initial conditions given by the velocity and motion after
the loading time. The same catamaran is used to find the mass, damping and restoring terms
in the dynamic system. Figures 4.13(b) to 4.14 show that the added mass term gives important
contributions to the time history of the motions, velocities and accelerations. When the added
mass term F32 is accounted for, the second peak in the response occurs. This is similar as in
Fig. 4.12. This example illustrates also the importance of the water exit phase.

The previous examples have shown that the linear expression of VR and Von Karman method for
2c(t) are good approximations for slamming induced response calculations. So such assumptions
will be applied in the following chapters for hydroelastic analysis. The two-node bending will
then dominate. Since the ratio between slamming duration and natural period for two-node
bending is less than the ratio between slamming duration and heave and pitch natural periods,
one should be careful in generalizing. In order to see what the influence of the time history of
slamming loads is on global loads for the elastic model, we will examine the sensitivity by using
the Kutta condition model in Section 7.2.3.

As mentioned in Chapter 2, to avoid that slamming happens right at the beginning of the time
domain simulation, the linear wave excitation force is artificially built up during typically four
wave periods to reach the steady state value. Examples in Chapter 7 will show that this kind of
build up of the excitation loads will not influence the time domain properties of the steady state
results. However, the transient phase causes different slamming starting moment when different
slamming models are used. This means a time shift of the impact start moments as shown in
figures in this chapter.
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Chapter 5

Hydroelastic Response, Verification and
Validation

5.1 Introduction

Based on the discussions in Chapters 2 and 3, further details of the three-body model, as well
as the connecting beam modelling will be presented. A modal based method will be introduced
to facilitate the solution of the equations of motions. Experimental validation and numerical
verification will be made for this three-body dynamic system. Global hydroelastic responses
with slamming will be analyzed numerically and experimentally. All the response cases will
refer to steady state conditions in regular head sea waves. An artificial build-up phase of the
wave excitation loads as described in Chapter 2 is used to reach steady state conditions in
the numerical calculations. A transient phase is clearly seen in the experimental time records.
However, what is judged as experimental steady state conditions does not show a perfectly
periodic response. One reason is the change of the incident wave amplitude along the track of
the model.

5.2 Structural data

5.2.1 Main data for the three rigid body parts

The catamaran is segmented into three rigid body parts and divided at 1.48m and 2.68m from
the bow end. These two cuts are denoted as respectively Cut1 and Cut2 in Fig. 2.1. Based
on the mass distribution of the catamaran (See Table A.2 in Appendix A), Table 5.1 lists the
length (Lseg), mass, positions of the longitudinal centers of gravity and buoyancy, and pitch
radius of gyration R55 about the local COG for each segment. Here ’Xcog’ is the distance
from the local center of gravity Oi (illustrated in Fig. 2.4) of the ship segment to the bow of
the catamaran. Similarly ’Xcob’ is the distance from the local center of buoyancy to the bow.

71
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R55(1) is based on using the individual masses as listed in Table A.2 and assuming that the
masses are concentrated at points corresponding to the coordinates shown in Table A.2. R55(2)
accounts for a finite distribution of the mass, i.e. the local pitch radius of gyration of each mass
element is accounted for. Values listed under ’Bouy.’ multiplied with acceleration of gravity
give the buoyancy force for each segment. Due to the large difference between buoyancy force
and weight for each body, there is a large static vertical shear force at the connecting positions
between the bodies. The static vertical shear forces and bending moments at zero forward speed
are not included in the numerical and experimental results.

Table 5.1 Main data for ship segments

Component Lseg Mass Buoy. Xcog Xcob R55(1) R55(2)
Unit m kg kg m m m m
Fore(Body1) 1.48 57.83 35.80 0.869 1.090 0.275 0.477
Mid(Body2) 1.20 56.65 101.58 2.060 2.120 0.211 0.418
Aft(Body3) 1.42 131.52 108.62 3.348 3.316 0.393 0.475

5.2.2 Equivalent beam connections

The longitudinal connection between rigid body parts is composed of a steel spring and an
aluminum transducer (See Fig. 2.1 and Fig. A.7). The lengths of the longitudinal spring and
transducer are respectively 0.1m and 0.08m. The total length is 0.21m by accounting for the
connecting length of 0.03m between the transducer and spring. The effective stiffness of the
longitudinal steel transducer and the aluminum spring are quite close. They were therefore
modelled as one equivalent beam, with a bending stiffness of (EI)eq = 6.541 · 103 Nm2 and
length of Leq = 0.21m in the three-body model. The detailed analysis is presented in Ap-
pendix A.6. The calculations in the following Section 5.3 will show that this approximation is
reasonable and gives good results for mode shapes and eigenvalues.

The distances from the local center of gravity Oi of each body to the beam ends are also needed
in the calculations (illustrated in Fig. 2.4). They are as follows O1A = 0.431m, O2B = 0.550m,
O2C = 0.490m and O3D = 0.588m.

5.3 Model validation without slamming

5.3.1 Eigenvalues and eigenvectors

It is important to control that the beam model represents the real longitudinal bending stiffness
of the catamaran model. Experimental decay tests in calm water at zero ship speed with the
same mass distributions as ours were analyzed in Økland (2002). Decay tests in air were also
done but the results were less reliable (Økland (2002)). The test results of the wet and dry decay
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tests will be compared with the numerical predictions by our three-body model.

The eigenvalue problem is obtained by first setting the excitation forces Fgen in Eq. (2.1) equal
to zero. Here we make use of the first order differential equation system Eq. (2.44) introduced in
Chapter 2. Equation (2.44) is a transformation of the second order differential equation system
Eq. (2.1). This leads to the following eigenvalue problem

M̃Ẋ = K̃X (5.1)

where K̃ and M̃ are square matrices with dimensions 12× 12 and defined in Eq. (2.45). Further,
X is a column matrix with X = [X1 · · ·Xi · · ·X12]

T , where X2i−1 with i = 1, 2, 3 are the heave
velocities of body number i and X2i with i = 1, 2, 3 are the pitch velocities of body number i.
Further, X2i+5 with i = 1, 2, 3 are the heave motions of body number i and X2i+6 with i = 1, 2, 3
are the pitch motions of body number i. The eigenvalue problem is now formulated by assuming
X has the time dependence eλt. This means that the eigenvalues λ are the solutions of

K̃X = λM̃X (5.2)

The eigenvalues λ are in general complex and the corresponding modes will also be complex.
The system has 12 different eigenvalues where 6 of the values are complex conjugates of the
other 6 values. The eigenvalues can be expressed as

λ = ωR + iωI (5.3)

where ωI corresponds to the so-called damped frequency. This can be taken as an approximation
of the natural frequency when the damping ratio is much less than 1.0. The damping ratio can
then be approximated as ωR/ωI (See e.g. Bergan et al. (1986)).

So our system gives 6 sets of eigenvalues, damping ratios as well as the corresponding eigen-
vectors which have complex amplitudes. The two lowest modes represent coupled rigid body
heave and pitch motions. The third mode is a two-node bending mode of the hull and the fourth
mode is a three-node bending mode of the hull. The two highest modes correspond to shear
displacements at the connecting beams, but these are not physical modes for a real catamaran.

Dry decay tests were done by lifting up the model from the ground by six relatively soft springs.
Økland (2002) predicted experimentally the natural frequency for dry two-node bending as
36.53rad/s with damping ratio 0.35%. The natural frequency was 88.50rad/s for three-node
bending with damping ratio 0.45%. However, Økland (2002) showed that data from dry decay
tests are less reliable than those from wet decay tests. To calculate the dry natural frequencies
of the three-body system, the static restoring forces are included in the dynamic system to avoid
unphysical solutions and numerical problems. The static restoring terms provide spring effects
for the rigid body motions. The soft spring system used in the experiments have a similar but
not equal effect. Our three-body model predicts the natural period for two-node and three-node
bending mode in rad/s as 34.03 and 74.65 respectively. However, structural damping ratios are
not predicted by our three-body model.
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Comparisons have also been made with the experimental results from the wet decay tests. An
important consideration is that the hydrodynamic coefficients used in the eigenvalue calculations
are frequency dependent. Since the natural periods of the heave and pitch of the test model is
close to 1.0s, the added mass and damping coefficients are in this case calculated for the period
1.0s. This implies an error in the calculations of the higher natural frequencies. The ship speed
U is zero. Table 5.2 then shows the experimental and numerical results for natural frequencies
and damping ratios. The agreement is generally good. The two modes which are coupled rigid
body heave and pitch motions are denoted as ’Heave & pitch’ and ’Pitch & heave’ respectively.
There were no experimental results reported for the two highest modes.

Table 5.2 Theoretical and experimental values of natural frequencies and damping ratios. Exper-
imental values are from wet decay tests in calm water and theoretical values are calculated from
hydrodynamic coefficients for the catamaran with T = 1.0s and U = 0.

Natural frequencies (rad/s) Damping ratio
Mode Exp. Num. Exp. Num.
Heave & pitch 6.41 6.35 5.8 % 12.2 %
Pitch & heave 7.14 7.34 7.0 % 12.9 %
Two-node bending 27.56 29.84 2.0 % 2.1 %
Three-node bending – 67.41 – 1.1 %

Table 5.2 shows that the agreement between experimental and theoretical results for wet two-
node bending is good even if the structural damping has been neglected. It should be noted
that for the two-node bending mode the structural damping ratio obtained from the dry decay
tests is much smaller than the damping ratio in the wet decay tests. The agreement between
experimental and theoretical damping ratios of heave and pitch coupled modes are less satis-
factory. This damping is in our theory due to wave radiation. An important error source is
the neglection of hull interaction, which influences the wave generation by the ship. We could
in principle have included hull interaction in a strip theory but it is well known that this will
amplify the hull interaction and that 3D effects matter. Further, our main concern is forward
speed cases where the wave interaction is less pronounced. The wave interaction can for a high
speed operating condition be negligible in resonant motion conditions (See Fig. 1.5 and corre-
sponding discussion). This will be further discussed in the error analysis in Chapter 7 as well as
in a comparative study with the experimental test case 1115 towards the end of this chapter.

One reason to the differences in experimentally and numerically predicted natural frequencies for
two-node bending is the error caused by using a period of 1.0s in the calculations of hydrodynamic
coefficients. Figure 5.1 shows the calculated added mass in heave when the catamaran is totally
rigid. The kinks in the figure may be due to inaccuracies in the numerical solutions or the
irregular frequencies (Hoff (2002)). The predicted value at frequency 45rad/s is used as the
high-frequency asymptotic value. Figure 5.1 can be applied to give an indication of errors
introduced when calculating the higher natural periods. Let us use the formula for natural
period of a system with a single degree of freedom as a rough basis for doing that and then
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Figure 5.1 Calculated added mass A33 in heave at different circular frequencies of body oscillations
for the rigid catamaran with U = 0.0m/s. No hull interaction. Strip theory.

multiply the calculated natural frequencies with the following ratio

α =

√
M + A33 (T = 1.0s)

M + A33 (T = TN)
(5.4)

Here M is the structural mass of the catamaran and TN means the natural period of either two-
node or three-node bending. Strictly speaking it would have been better to include the effect of
the mode shapes and operate with generalized mass and added mass for each mode. Here is just
a qualitative estimation to see the influence of the frequency dependency. The high frequency
asymptotic added mass value is estimated as 170.0kg, and the added mass for T = 1.0s and
U = 0.0m/s is 105.0kg. Accounting for M = 246kg gives α = 0.92. This leads to estimated
natural frequencies of 27.45rad/s and 62.02rad/s for respectively the two-node and three-node
bending modes. This gives actually very good agreement for the two-node bending. Økland
(2002) did not present experimental natural frequency for three-node bending from the wet de-
cay tests, but this was done by Økland et al. (1998). The value 63.20rad/s agrees reasonably
with our estimate. Since our system is highly coupled, we have no better way to do this with a
frequency domain model for hydrodynamic loads. A time domain model for the hydrodynamic
loads is needed to more rationally deal with transient effects involving different natural frequen-
cies (e.g. Ogilvie (1964)).

From the corresponding eigenvectors, we get the mode shapes. Eigenvectors show larger sensi-
tivity relative to eigenvalues. This is due to the high stiffness terms from the connecting beams
(See Eq. (2.37)). However, the relative small variation that this causes, will not destroy the
model verification. Figure 5.2 are modes of the two-node and three-node longitudinal bending
when the period 1.8s and a forward speed of 1.9m/s are used in the added mass and damping
calculations. The mode shapes have similar patterns as the FEM results by Økland (2002),
though they can not be completely the same due to differences in mass distribution. These
complex eigenmodes are a consequence of the damping of the dynamic system, as well as the
asymmetry of the added mass matrix due to forward speed effects. If these mode shapes are
used to solve a free vibration problem, we would express the physical relative vertical motion of
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the body as �(
∑

Aiψi(x)e
λit). Here λi and ψi(x) mean respectively ith eigenvalue and mode.

Ai are complex constants to be determined by the initial conditions.

0 1 2 3 4.2
−0.025

−0.015

0

0.015

0.027

x (m)

Re.
Im.

(a) Two-node longitudinal bending

0 1 2 3 4.2
−0.01

−0.005

0

0.005

0.011

x (m)

Re.
Im.

(b) Three-node longitudinal bending

Figure 5.2 Calculated eigenmodes for two-node and three-node bending. X-axis is the longitudi-
nal distance from the bow and ’Re.’ and ’Im.’ are the real and imaginary parts of the eigenmodes
respectively. U = 1.9m/s, T = 1.8s

5.3.2 Linear global response comparisons

When the stiffness of the connecting beams increases, the wave induced response should converge
towards the corresponding values for a rigid catamaran. This implies that the local vertical
motion as a function of the longitudinal coordinate of the ship should approach straight lines.
This is illustrated in Fig. 5.3. Head sea, a wave period of 1.8s and both zero speed and forward
speed 1.9m/s were used in the calculations. The results agree well with the corresponding results
based on the commercial computer program VERES (1999), which assumes a rigid catamaran
and also uses the strip theory by Salvesen et al. (1970) without hull interaction in this case.
Since VERES does not account for the pitch radius of gyration of mass points, the R55(1) data
in Table 5.1 is used.

The following Fig. 5.4 shows a detail of the convergence study where the real and imaginary
part of the complex pitch amplitude of the mid body of the three-body model is presented as a
function of the inverse of the factor n. This means for a given n that a bending stiffness equal
to n times the original bending stiffness has been used.

When the flexibility of the model is considered, satisfactory predictions of linear transfer func-
tions or response amplitude operator (RAO) of relative vertical motion at the bow as well as
vertical shear force (VSF) and vertical bending moment (VBM) at the connections between the
ship segments have been obtained for head sea cases without wetdeck slamming. These are
presented in the following figures.
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Figure 5.3 Comparisons of vertical motions predicted by VERES (1999) for the rigid catamaran and
by the three-body model when (EI)eq → ∞. The stiffness is 1048576 times original (EI)eq. X-axis is
the longitudinal distance from the bow and ’Re.’ and ’Im.’ are the real and imaginary parts of the
vertical motions divided by incident wave amplitude. No wetdeck slamming accounted for. Solid and
dotted lines are overlapping.
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Figure 5.4 Convergence of real and imaginary parts of complex pitch amplitude of flexible body to
rigid body results. Head sea, T = 1.8s and U = 0m/s. X-axis is 1/n, where n means that a bending
stiffness of n times the original bending stiffness (EI)eq is used; ’Re.’ and ’Im.’ are the real and
imaginary parts of the pitch amplitude in radians divided by incident wave amplitude in meters. No
wetdeck slamming accounted for.

Figure 5.5 shows generally a good agreement of amplitudes of relative vertical motion at the
bow when slamming does not occur. Data in the plot is non-dimensionalized by incident wave
amplitude ζa, i.e. presented as Response Operator Amplitude (RAO).

Figures 5.6 to 5.7 present VSF and VBM comparisons at the two cuts for U = 1.9m/s in head
sea. No wetdeck slamming occurs here. The experimental values are obtained by adding the
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Figure 5.5 Comparison between experimental and numerical amplitudes of relative vertical motion
at 0.045m from the bow; Results divided by incident wave amplitude. Head sea; U = 1.9m/s in
the calculations, U is close to 1.9m/s in the experiments (See Appendix A). No wetdeck slamming
accounted for.

measured values for each side hull. The values for the two side hulls are not exactly the same,
indicating that the free-running model was in a sea condition slightly different from head sea.
The close results with VERES (1999) show that the influence of the flexibility on VSF and
VBM is not large. However, this would not be the case with wetdeck slamming. There are
some deviations with the experiments at some periods, especially noticeable for VBM at Cut1.
A comprehensive discussion of experimental and theoretical error sources is given in Chapters
6 and 7. One relevant theoretical error source is hull interaction. Important experimental error
sources are non-constant incident wave amplitude along the track of the model, trim angle and
unintended mean roll angle. One should note that VERES does not account for the pitch radius
of gyration of mass points. In order to be consistent with the VERES calculations, the R55(1)
data in Table 5.1 is also used in ’3body’ results presented in Figs. 5.6 and 5.7. It will later
be shown that accounting for the local pitch radius of gyration for each body as well as the
experimental uncertainties improves the agreement between theory and experiments. However,
the disagreement can not be completely explained.

The eigenvalue analysis showed that the system was dynamically unstable for wave periods
T = 2.0s, 2.1s, 2.2s, and 2.3s when U = 1.9m/s. For instance for T = 2.3s and U = 1.9m/s,
the calculated complex eigenvalues λ (Eq. (5.3)) in rad/s are −24.48± i 828.46, 19.11± i 830.07,
−0.51± i63.76, −1.32± i 30.81, −0.52± i 7.05 and −2.07± i 5.81. We see that the second set
of the eigenvalues has a positive real part. This means that the response can not be damped
out, leading to instability of the whole system. However, the positive real eigenvalue corre-
sponds to the highest natural frequency and the ratio between the real and imaginary part of
the eigenvalue is only 0.023. Positive real eigenvalues are also for the other cases related to one
of the two highest eigenmodes. Later discussions will reveal that the two highest modes will in
reality be strongly structurally damped. This means a dynamically stable system. There are no
experimental data for the conditions where the eigenvalue analysis showed instability.
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Figure 5.6 Comparisons between experimental and numerical amplitudes of vertical shear force
(VSF) and vertical bending moment (VBM) at Cut1 as function of incident wave period. Head sea;
U = 1.9m/s in the calculations, U is close to 1.9m/s in the experiments (See Appendix A). No wetdeck
slamming accounted for. Local pitch radius of gyration of mass elements excluded in calculations.
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Figure 5.7 Comparisons between experimental and numerical amplitudes of vertical shear force
(VSF) and vertical bending moment (VBM) at Cut2 as function of incident wave periods. Head sea;
U = 1.9m/s in the calculations, U is close to 1.9m/s in the experiments (See Appendix A). No wetdeck
slamming accounted for. Local pitch radius of gyration of mass elements excluded in calculations.

The findings of positive real eigenvalues lead to a detailed examination of the hydrodynamic
coefficients for the three rigid bodies. We worried about numerical errors and found that the
heave (A33) and pitch (A55) added mass of the front body could be negative due to forward speed
effects. This effect increases with increasing Froude number. For instance with U = 1.9m/s,
A33 = 1.031kg and A55 = −1.274kgm2 for period of oscillations T = 1.4s, and A33 = −2.394kg
and A55 = −3.232kgm2 for T = 1.8s. However, we then related these results to Gerritsma
and Beukelman’s (1964) experimental results for the longitudinal distribution of heave added
mass and damping for a monohull at Froude numbers up to 0.3. Gerritsma and Beukelman’s
experimental results showed that the longitudinal distribution of added mass in heave could
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have negative values in the bow region due to forward speed effects. Even if the ship hull used
by Gerritsma and Beukelman (1964) differs in form from ours, their results could be used in a
qualitative way to control our prediction of negative added mass values for the front body.

5.4 Dynamic response model with slamming

When wetdeck slamming occurs, the catamaran is excited by both steady state linear wave
loading and transient slamming loads. The responses from those two load sources are linearly
superimposed. The steady state response has a direct coupling effect to the wetdeck slamming
induced response in terms of relative vertical motions and velocities that affect the slamming
loads. The wetdeck slamming induced response depends on the added mass, damping and
restoring coefficients associated with the side hulls.

5.4.1 Direct method

The six degree-of-freedom system of Eq. (2.1) defined in Chapter 2 can be directly solved by
accounting for the linear wave loading and slamming loading and obtain steady state results
as long as the system is dynamically stable (See corresponding discussions in Section 5.3.2).
Since the results show that the two highest modes in the system for our test model correspond
to very high natural frequencies ωn, a small time step is needed to obtain numerical stability.
These natural frequencies are for instance 849.85rad/s and 689.91rad/s when U = 1.9m/s and
T = 1.8s. However, the two highest modes are in reality strongly structurally damped. If this
damping effect is not included, unrealistic large response due to the two highest modes occurs.
In order to suppress this effect, the equation system of Eq. (2.1) was rewritten by a modal
representation based on ’Rayleigh-Ritz-Condensation’ method (e.g. Langen and Sigbjörnsson
(1979)).

5.4.2 Modal based method

Generally speaking we can express the displacement vector r (dimension n) for the structure in
terms of a reduced number of displacement parameters q (of dimension p) in the form of

r = Hq p ≤ n (5.5)

where the matrix H has dimensions n × p with columns constituting displacement patterns
and q are corresponding weight factors, namely generalized coordinates. When the structure is
subjected to a virtual displacement δr, and by use of the general dynamic equation Eq. (2.1),
the virtual work is

δrTF = δrTMr̈+ δrTBṙ+ δrTKr (5.6)

Here the subscript gen is neglected from Eq. (2.1) to simplify the expressions.
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Expressed by the generalized degrees-of-freedom q, the virtual displacement δr becomes

δr = Hδq (5.7)

Substituting Eqs. (5.5) and (5.7) into Eq. (5.6) gives

δqTHTF = δqT (HTMHq̈+HTBHq̇+HTKHq) (5.8)

This expression must be valid for an arbitrary displacement vector δq, i.e.

M̄q̈+ B̄q̇+ K̄q = F̄ (5.9)

where M̄, B̄, K̄ and F̄ are generalized mass, damping, restoring and force matrices, with

M̄ = HTMH

B̄ = HTBH

K̄ = HTKH

F̄ = HTF (5.10)

In our system r has dimension 6, referring to heave and pitch of each segment. q is the gen-
eralized coordinates, whose dimension is dependent on the selected number of modes. H can
conventionally be established by a number of eigenmodes φi. Mathematically it can be expressed
by

H = [φ1 φ2 · · · φq] (5.11)

where φi means the ith eigenvector with dimension 6, which is expressed by the heave and pitch
displacement of each rigid body, i.e.

φi =
[
u1
i θ

1
i u

2
i θ

2
i u

3
i θ

3
i

]T
(5.12)

Here u and θ mean the heave and pitch motions respectively. Subscript i refers to the ith eigen-
mode and superscript 1, 2, 3 refer to Body1, 2, 3 respectively. The eigenvalues and eigenvectors
of the system are found from Eq. (2.1) by setting Fgen equal to zero, as described in Section 5.3.1.
Noticing that for U �= 0 cases, the eigenvectors are in complex forms, we here use instead the
eigenmode results for U = 0 and zero damping to get real values. Then at each time step, q is
calculated from Eq. (5.9) and r is then found from Eq. (5.5) for instantaneous slamming force
calculations.

By this method, we can easily choose any number of modes we want. The modes are normally
uncoupled in a normal mode method. This is not true in our case. In this Modal based method,
the off-diagonal terms can be kept. Using this Modal based method and neglecting the two
highest modes reduces the computing time significantly relative to the Direct method.
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5.4.3 Comparisons between Direct method and Modal based method

In this section, we will compare the Direct method and Modal based method, showing that the
Modal based method is efficient and accurate.

As discussed in Section 5.3.1, we get complex modeshapes in eigenvalue calculations for forward
speed cases even with zero damping. This is the consequence of that the forward speed causes the
elements mjk in the matrixMgen to differ from mkj when j �= k. For simplicity, the modes used
in global response in the Modal based method are found by setting damping coefficients equal
to zero and solving the linear equation system for the side hulls without excitation at zero speed.

The Direct method and the Modal based method will be compared for a case with wave period
T = 1.8s, forward speed U = 1.9m/s and incident wave amplitude ζa = 0.05m. No bow ramp
is included. The natural frequencies of this system in rad/s are 6.13, 7.14, 30.95, 68.52, 689.91
and 849.85. The natural frequencies for the corresponding undamped system with U = 0m/s
in rad/s are 5.70, 6.50, 28.01, 63.09, 555.53 and 778.69. Figure 5.8 shows the undamped dry
modes of two-node and three-node longitudinal bending.
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Figure 5.8 Flexible, undamped modes of catamaran model at zero forward speed; x-axis is the
longitudinal distance from the bow.

The time history of vertical acceleration at the COG of Body2 by Direct method and Modal
based method with the lowest four modes are shown in Figs. 5.9(a) and 5.10(a) respectively.
Figure 5.9(b) presents spectral analysis of the time series in Fig. 5.9(a). Further, Fig. 5.10(b)
shows the spectral analysis of the results in Fig. 5.10(a). The time domain from 8.556s to 15s is
used for both cases in the Fast Fourier Transform (FFT) analysis. This corresponds to 6 wave
encounter periods. We see that the Direct method gives large contributions from the highest two
modes. In the experiments the time records have a sampling frequency of 100Hz for global force
response and a sampling frequency of 1000Hz for slamming force. The experimental results for
slamming force do not show the energy from these two highest modes. It means that they are
highly structurally damped in reality.
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Figure 5.9 Vertical acceleration η̈3 at COG of Body2 by Direct method, T = 1.8s, ζa = 0.05m,
U = 1.9m/s, Head sea. In (b), numbers associated with the spectral peak values are the exact numbers
for the corresponding frequencies.
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Figure 5.10 Vertical acceleration η̈3 at COG of Body2 by Modal based method; four lowest modes
are included. T = 1.8s, ζa = 0.05m, U = 1.9m/s, Head sea. In (b), numbers associated with the
spectral peak values are the exact numbers for the corresponding frequencies.

Figure 5.11 shows that the spectral analysis of the time domain solution based on the Modal
based method (Fig. 5.10(a)) gives nearly the same spectral distribution as shown in Fig. 5.9(b)
for frequencies less than 15Hz. After filtering out the spectral density for frequencies larger
than 10Hz and performing an Inverse Fast Fourier Transform (IFFT), the two methods give
practically the same time domain results (See Fig. 5.12).

The above analysis showed that the Modal based method can predict the same results as the
Direct method but with less computer time. Further, the Modal based method is an efficient
way to get rid of unphysical effects caused by higher modes. The following analysis will therefore
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of Body2. Comparison of Direct method and
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be based on the numerical results from the Modal based method. If the lowest four modes are
used in the Modal based method for the previously studied cases, a time step DT = 0.001s can
be used in the Modal based method instead of DT = 0.0001s in the Direct method. This will
reduce the CPU time to 1/5 of what is required by the Direct method.

5.5 Global hydroelastic effects

To investigate how important the global hydroelasticity is when wetdeck slamming occurs and
how much contributions come from the different modes, a case with head sea, wave period
T = 1.8s, U = 1.8m/s and ζa = 0.041m is studied. The bow ramp angle 3.720 of the wetdeck is
accounted for in both the body boundary condition and in finding the deck-water intersection.
The trim angle of the vessel is set equal to zero. The vertical shear forces and bending moments
are calculated at the beam connecting positions at 1.48m and 2.68m from the bow, referred to
as Cut1 and Cut2, respectively.

The notation ’noslam’ in Figs. 5.13 to 5.16 means that slamming is not included. Furthermore,
’imodes’ implies that slamming is accounted for and that the lowest i modes are included.
Figure 5.13 shows that the occurrence of slamming will have a small but noticeable influence
on the motion response, while the number of modes has negligible influence on the motions.
However, the influence of number of modes on velocity and acceleration is large, as shown in
Fig. 5.14. The relative importance of slamming on motions and accelerations can be explained
as follows.

Both the figures for global motion response (Fig. 5.14) and the figures for global force response
(Figs. 5.15 and 5.16) show that a dominant effect is due to two-node bending. The vertical
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Figure 5.13 Influence of slamming and number of modes on numerically predicted vertical motion
(η3); case 1114: Head sea, U = 1.8m/s, T = 1.8s, ζa = 0.041m. ’3modes’ and ’4modes’ curves are
almost overlapping.
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Figure 5.14 Influence of slamming and number of modes on numerically predicted vertical velocity
(η̇3) and acceleration at COG of Body2 (η̈3); case 1114: Head sea, U = 1.8m/s, T = 1.8s, ζa = 0.041m.

motion due to this mode can in the free vibration phase after the slamming loads be expressed as
Aψ(x) cos(ωnt+ε), where ψ is the mode shape, ωn is the corresponding natural frequency and A is
an amplitude which is assumed time independent due to negligible damping. The corresponding
vertical accelerations can be expressed as −ω2

nAψ(x) cos(ωnt + ε). Since ωn is high, there is
relatively speaking a larger influence on accelerations than on motions. We can see this by
relating this to the vertical accelerations without accounting for impact. This amplitude can for
a linear system in steady state conditions be expressed as ω2

eAL, where AL is the corresponding
motion amplitude. We then get the following ratio α between two-node and linear acceleration
amplitudes

α =
ω2
n

ω2
e

A2

AL

(5.13)
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Figure 5.15 Influence of slamming and number of modes on numerically predicted vertical shear force
(VSF) and vertical bending moment (VBM) at Cut1; case 1114: Head sea, U = 1.8m/s, T = 1.8s,
ζa = 0.041m. In (a), ’noslam’ and ’2modes’ are almost overlapping.
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Figure 5.16 Influence of slamming and number of modes on numerically predicted vertical shear force
(VSF) and vertical bending moment (VBM) at Cut2; case 1114: Head sea, U = 1.8m/s, T = 1.8s,
ζa = 0.041m. In (b), ’noslam’ and ’2modes’ are almost overlapping.

Here A2 means Aψ(x) at the same x-value as AL is evaluated. Since ω2
n/ω

2
e is very large, i.e.

30.922/5.732 = 29.12 for this studied case, it demonstrates that two-node bending is relatively
much more important for accelerations than for motions. If velocities are studied, then it is the
ratio ωnA2/(ωeAL) that is relevant. The ratio ωn/ωe is 5.40 for this studied case.

Plots in Fig. 5.15 show that the contribution from the different modes differ for vertical shear
force (VSF) and vertical bending moment (VBM) at Cut1. When slamming is accounted for,
VSF at Cut1 is dominated by two-node bending. The figure shows nearly no difference between
the results with ’noslam’ and ’2modes’. This means small influence by slamming effects if only
rigid body modes are considered. Further, there is a small contribution from three-node bending
mode. However, VBM at Cut1 with slamming shows that rigid modes have a small influence,
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two-node bending is dominant and three-node bending has a larger effect than VSF at Cut1.
The results in Fig. 5.16 show that VSF at Cut1 and VBM at Cut2 share similar features of be-
haviour. The same is true for VSF at Cut2 and VBM at Cut1 except that two-node bending and
three-node bending are equally important for VSF at Cut2. Generally speaking the three-node
bending mode causes higher maximum and lower minimum values.

Ge et al. (2002a) showed calculations for the same vessel but where a flat wetdeck was used
in finding the wetted length and a mean trim angle 0.850 of the vessel was considered. The
wave conditions and the forward speed were the same as here. Similar tendencies and conclu-
sions like here were found, but the exact relative contribution from each mode were not the same.

Since the response behavior depends on several factors like the flexibility properties of the ship
and the time duration of slamming loads, the results in this section should not be generalized
without further investigations.

5.6 Comparisons of numerical and experimental results

with wetdeck slamming

Model tests were done by Økland and Aarsnes in the Ocean Basin at the Marine Technology
Center in Trondheim in 1996. Regular incident waves were considered and the catamaran was
self-propelled. An autopilot system with rudders on the two hulls was used to keep the heading.
Global motions and loads were recorded. In the experiments, there are five cases with high wave
amplitude as listed in Table A.5.

Table 5.3 presents general information about these five cases. Both the theoretical calculations
and experimental results show that no slamming occurs for the short wave length case, i.e. case
1110. Cases 1114 and 1111 are slamming cases, in which the former is the most severe. For
these two cases, theoretical predictions agree reasonably well with experimental records. For
case 1112, the theoretical model predicts no slamming while experimental results show small
slamming response with beating effects. For case 1115, both theory and experiments predicted
slamming, but the theoretical results are much smaller.

Further, Table 5.4 presents maximum and minimum experimental values of vertical shear force
and bending moments at Cut1 and Cut2 for the four cases where wetdeck slamming occurs.
This is based on the time windows listed in Table A.7.

The relative vertical motions determine if wetdeck slamming happens, the time duration of the
slamming and the time dependent wetted length. It matters where the water initially hits. The
particular example presented in Fig. 1.1 shows that the longer the wave length is, the closer the
initial impact is from the front end of the wetdeck. The wetdeck geometry plays a role in this
context. If the wetdeck has a bow ramp and the tendency is that the water will hit at the front
end of the wetdeck, a larger relative motion amplitude is needed for impact relative to a flat deck.
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Table 5.3 Experimental high wave amplitude cases; ’Wave amplitude’ refers to the mean recorded
amplitude in the experiments at a fixed point in the middle of the tank.

Test case 1110 1111 1112 1114 1115
Speed (m/s) 1.90 1.84 1.86 1.80 2.00
Period (s) 1.3 1.5 1.8 1.8 2.0
Wave amplitude (m) 0.0475 0.0524 0.0259 0.0410 0.0483
Wave encounter period (s) 0.671 0.840 1.083 1.097 1.219
Exp. slamming No Moderate Small Most severe Moderate
Num. slamming No Moderate No Most severe Small

Table 5.4 Maximum and minimum values of experimental global loads for wetdeck slamming cases,
based on the time windows listed in Table A.7. VSF: vertical shear force; VBM: vertical bending
moment.

Case VSF at Cut1 (N) VBM at Cut1 (Nm) VSF at Cut2 (N) VBM at Cut2 (Nm)
1114 170/-260 280/-320 220/-190 250/-370
1111 170/-160 150/-150 110/-100 210/-190
1115 110/-160 150/-220 130/-60 170/-220
1112 60/-80 70/-90 60/-35 90/-90

Figure 5.17 shows numerically predicted time dependent wetted length 2c(t), as well as x-
coordinates a(t) and b(t) corresponding to the front and aft intersection points between the
free surface and the wetdeck. Cases 1111, 1114 and 1115 are presented. The initial impact
occurs at the front end of the deck in the two longest wave length cases, i.e. for cases 1114 and
1115, while this is not so for case 1111. The impact duration and maximum wetted length are
clearly largest for case 1114. This is consistent with the RAO of relative vertical motions at the
bow presented in Fig. 5.5 and the wave amplitudes listed in Table 5.3.

Using only Fig. 5.5 and Table 5.3 suggests that the impact duration should be clearly larger
for case 1115 than for case 1111. However, these two impact cases last nearly the same time in
the numerical calculations. Further, case 1111 has clearly larger maximum wetted length than
case 1115. A reason is that the water initially hits at the front end of the wetdeck in case 1115,
while it initially hits at the junction between Deck1 and Deck2 in case 1111 (Deck1 and Deck2
are described in connection with Fig. 2.1 and Appendix A.3). This requires a higher relative
vertical motion for case 1115 than for case 1111. The wetted area is in case 1111 nearly equally
divided between Deck1 and Deck2. It is always within Deck1 in case 1115 while it is mainly
within Deck1 in case 1114. The wetted area in case 1114 contains a small part of Deck2 from
time t = 11.7342s to 11.7833s.

Both the relative vertical impact velocity and acceleration are important parameters for the
magnitude of the slamming loads. Figure. 5.18(a) and Fig. 5.18(b) present the time history of
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Figure 5.17 Calculated wetted length 2c(t) and x-coordinates a(t) and b(t) of intersection points
between free surface and wetdeck for cases 1111, 1114 and 1115.

the relative impact velocity and acceleration for cases 1111, 1114 and 1115. We note that the
maximum relative impact acceleration is nearly 2g for case 1114.
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Figure 5.18 Calculated relative impact velocity and acceleration at the midpoint of the wetted length
for cases 1111, 1114 and 1115.

The relative impact velocity VR is clearly smallest for case 1115. This is partly associated with
the fact that case 1115 has the largest wave length which means the smallest wave frequency
and frequency of encounter. How this influences VR can be seen from re-expressing the relative
impact velocity given by Eq. (3.10) as

VR = ωeζRa cos(ωet+ αR) + (ωe − ω0)ζa cos(ωet+ α)− U(η5 + τ) (5.14)

Here ζRa and αR are respectively amplitude and phase of relative vertical motion at the impact
position. The second term contains the phasing α of the incident wave at the impact position.
The factor (ωe − ω0) can be expressed as Uω2

0/g for head sea. If the impact is not too severe,
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cos(ωet + αR) should be close to zero at impact. The reasons are that relative vertical motions
should be as large as possible and that velocity is 90 degrees out of phase with motion. We see
that both the magnitude of the first and second term in Eq. (5.14) is increasing with frequency.
The third term contains the pitch angle η5. Figure 5.19 shows the pitch response for the forward
ship segment. By referring to Fig. 5.19(a) we can see that the pitch angles at the initial impact
time for cases 1111, 1114 are 1115 are respectively −0.0323, −0.0552 and −0.0605 in unit of
radians. Further, considering the bow ramp angle 3.720 = 0.065rad and noting that the trim
angle of the vessel is zero, the third term is relatively small, especially for case 1115. The relative
impact acceleration is also clearly smallest for case 1115. This can be explained in a similar way
as was done for the relative impact velocity.
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(a) Pitch response η5 due to both wetdeck slamming and
linear wave loads
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Figure 5.19 Calculated pitch response η5 of the forward segment of the three-body model for cases
1111, 1114 and 1115. In (a), triangles, circles and squares represent the initial impact moments for
cases 1111, 1114 and 1115, respectively.

The following Figs. 5.20(a) to 5.20(c) show the time history of the impact loads, as well as
the wetted length 2c(t) and the x-coordinates a(t) and b(t) of the intersection points between
the free surface and the wetdeck. If Deck2 is wetted, an approximation is made in the body
boundary condition on Deck2 by using the same local trim angle as for Deck1. The impact
force starts in all three cases with zero. This is for cases 1114 and 1115 associated with that
the water initially hits at the front end of the wetdeck and there is initially an angle between
the free surface and wetdeck. This was earlier explained in Sections 1.2 and 4.5. The water hits
initially at the junction between Deck1 and Deck2 in case 1111. Since there is an angle 3.720

between Deck1 and Deck2, the initial impact is similar as the water entry of a wedge. This
means initially zero force. If the water had neither initially impacted at the junction between
Deck1 and Deck2 nor at the front end of the wetdeck, the initial theoretical impact force would
be a large finite value according to 2D theory. However, 3D effects occur in the initial phase of
the impact. This is for instance due to local run-up at the side hulls. The three-dimensionality
causes initially zero impact force (See also discussions in Section 1.2 and Section 4.5, as well as
the example connected with Fig. 6.24).

There are three spikes in Fig. 5.20(a) occurring in the time history of impact loads for case
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Figure 5.20 Calculated impact force F3, wetted length 2c(t), and wetted end x-coordinates a(t) and
b(t) for cases 1114, 1111 and 1115. The circles ◦ in the impact force indicate spikes in case 1114 and
discontinuity in case 1111.

1114. However, they are numerical errors. The first two are quite small and can not be shown
in Fig. 5.20(a). They occur respectively when the wetted area starts and finishes to include a
small part of Deck2. The large spike corresponds to when the forward deck-water intersection
point starts moving from the front end of the wetdeck in the stern direction. The impact force
in case 1111 is discontinuous at time t = 11.6576s. This corresponds to the time instant when
the forward deck-water intersection point passes the junction between Deck1 and Deck2 during
the water exit phase. The spikes in case 1114 and discontinuity in case 1111 have no noticeable
influence on the wetdeck slamming induced global loads.

The slamming induced global response of the different modes depends on the duration of the
loads relative to the natural period of the mode (e.g. Clough and Penzien (1993)). The ratios
between slamming duration Td and natural periods TN for heave, pitch, two-node and three-node
bending are for cases 1111, 1114 presented in Table 5.5.

For long-duration loadings, i.e. Td/TN >∼ 1, the dynamic magnification factor relative to static
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Table 5.5 Ratios between slamming duration Td and natural periods TN for heave, pitch, two-node
and three-node bending. Td = 0.1305s, 0.2236s and 0.137s respectively for cases 1111, 1114 and 1115;
based on calculated data.

Td/TN [–]
Case heave & pitch pitch & heave two-node bending three-node bending
1111 0.126 0.149 0.628 1.421
1114 0.218 0.253 1.100 2.435
1115 0.142 0.156 0.679 1.466

response depends according to Clough and Penzien (1993) strongly on the rate of increase of the
load to its maximum value. This means by using the information in Table 5.5 that the initial
impact phase matters in particular for three-node bending response for case 1114. This may be
influenced by 3D flow effects for instance due to local run-up at the side hulls. It also turned out
that the experimental results to be reported later contained influence of unwanted roll motions.
This was due to non-head sea conditions caused by an unintended asymmetry of the structural
mass distribution about the center plane of the vessel. The auto-pilot system used to keep the
heading of the vessel will also contribute to rolling. The roll angle implies that the water does
not simultaneously impact along the transverse cross-section of the wetdeck. This causes 3D
flow effects.

For short-duration loads, i.e. Td/TN <∼ 1/4, the maximum response depends mainly on the
force impulse. This is the case for heave and pitch response.

The typical impact load behaviour for all cases is a positive force during most of the water
entry phase and a negative force during most of the exit phase. Since the absolute value of the
minimum force and maximum force are of similar magnitude and the durations of the water exit
and entry phase are of the same order, the contributions to the force impulse from the water
entry and exit phase are strongly counteractive. Actually if the total impact load were expressed
as d(A33VR)/dt, then the force impulse would be zero for the total impact. Since we include
nonlinear Froude-Krylov and hydrostatic restoring loads on the wetdeck and the slamming term
VRdA33/dt is neglected during the water exit phase, the total force impulse will be non-zero. It
will in the presented examples be evident that generally speaking the two-node bending mode
response is the most important mode for global loads due to wetdeck slamming. Table 5.5 shows
that two-node bending for cases 1111 and 1115 is neither a short-duration nor a long-duration
load case.

The following text presents detailed comparisons between experimental and theoretical global
wetdeck slamming induced loads. The trim angle of the vessel is set equal to zero in all the
numerical calculations.
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5.6.1 Case 1114

This is the most severe wetdeck slamming case in the experiments. Figures 5.21 to 5.24 show
comparisons between experimentally and numerically predicted vertical shear force (VSF) and
vertical bending moment (VBM) at Cut1 and Cut2. The case is numbered as No.1114 with
head sea, incident wave period T = 1.8s, incident wave amplitude ζa = 0.041m and forward
speed U = 1.8m/s. The wetdeck bow ramp angle 3.720 is included in finding the water-deck
intersection and in the body boundary condition. The nonlinear Froude-Krylov and hydrostatic
restoring forces on the wetdeck are included with maximum value around 1/10 of the maximum
of total impact force. Only the results in steady state conditions are compared. Since the
transient phase of the experiments is not clear, numerical results are time shifted to match the
phase of experimental data. The experimental loads at the two cuts are the sum of the values
from starboard and port side.
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Figure 5.21 Theoretical and experimental predictions of vertical shear force (VSF) and vertical
bending moment (VBM) at Cut1 for case 1114 with U = 1.8m/s, T = 1.8s and ζa = 0.041m. Four
lowest modes are included in numerical results.

Generally speaking Figs. 5.21 to 5.22 show similar experimental and theoretical behaviour. How-
ever, the theoretical peak values are clearly larger than the experimental ones and numerical
results of VSF at Cut2 show quite larger three-node bending contribution than the experimental
results. Figures 5.23 to 5.24 are the comparisons when only accounting for the lowest three
modes, i.e. accounting for the two-node bending but not the three-node bending mode. We
note that the two-node bending mode is dominating in the experimental results. The three-
node bending mode is much more damped in reality than in the theoretical model. Numerical
simulations have also been done for the studied cases by adding structural damping for the three-
node mode. However, there is not quantitative improvement by comparing with experimental
results. So in later discussions the effect from the two-node bending mode will be focused on.

Figures 5.23 to 5.24 demonstrate a generally good agreement. However, there are some clear
differences between theory and experiments. For instance this occurs for VBM at Cut1 and VSF
at Cut2 around t = 19.7s and 20.75s where theoretical and experimental results are out of phase.
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Figure 5.22 Theoretical and experimental predictions of vertical shear force (VSF) and vertical
bending moment (VBM) at Cut2 for case 1114 with U = 1.8m/s, T = 1.8s and ζa = 0.041m. Four
lowest modes are included in numerical results.
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Figure 5.23 Theoretical and experimental predictions of vertical shear force (VSF) and vertical
bending moment (VBM) at Cut1 for case 1114 with U = 1.8m/s, T = 1.8s and ζa = 0.041m. Three
lowest modes included in numerical results.

If we study similar results with three-node bending included, we note that three-node bending
has some influence on this behaviour. Some of the phase difference is also due to differences
in the theoretical and experimental natural periods for two-node bending. This was earlier dis-
cussed in connection with the zero forward speed case presented in Table 5.2. An error source is
that the encounter wave frequency is used to calculate the added mass associated with two-node
bending. Similar estimates can be made as in Section 5.3.1 by using Eq. (5.4). The added mass
in heave for T = 1.8s and U = 1.8m/s is 95.6kg. It is noted here that the added mass in heave
for cases with low oscillation frequency are dependent on the forward speed, while the high fre-
quency asymptotic value is speed independent. So Fig. 5.1 still applies in this respect and gives
the high frequency asymptotic added mass value as 170kg. Accounting for M = 246kg gives
α = 0.906. This means that the natural period for two-node bending will be 1.103 times the
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Figure 5.24 Theoretical and experimental predictions of vertical shear force (VSF) and vertical
bending moment (VBM) at Cut2 for case 1114 with U = 1.8m/s, T = 1.8s and ζa = 0.041m. Three
lowest modes included in numerical results.

numerically predicted value. By referring to Fig. 5.23(a), we see that results in the time domain
t = 20.0s to 20.8s covers four periods of 2node bending oscillation. The time durations for four
exact periods are 0.62s and 0.72s respectively for theoretical and experimental results. Using
the α-ratio improves the agreement. However, one should note that no coupling effects between
modes are considered in this estimation, and that the oscillation periods of two-node bending
in the experiments are not exactly the same from period to period due to wetdeck slamming.
Since the maximum load is the most important, the small difference in the natural frequency is
secondary.

Error sources both in experiments and theory will be discussed in Chapters 6 and 7. An error
estimate of the experiments will be made. It shows that the most important error sources are
trim angle, the changing incident wave amplitude along the track of the model, wave measure-
ment inaccuracies as well as the asymmetric mass distribution about the center plane of the
catamaran. One should also remember that Figs. 5.6 and 5.7 have shown that even for no slam-
ming cases there are discrepancies between experimental and theoretical results for global load
response. Figures 5.6 and 5.7 can be used as a reference even if the calculated values are based
on a forward speed of 1.9m/s. The figures show that for T = 1.8s, except for the vertical shear
force at Cut1, that the relative differences between the experimentally and theoretically pre-
dicted values are not small. Considering the incident wave amplitude 0.041m, it means that the
deviation of vertical shear force at Cut2 is around 20N , and the deviations of vertical bending
moment at both the two cuts are about 30Nm. However, these values are not so large compared
with the contribution from the two-node bending.

As illustrated in Fig. 2.1, the wetdeck consists of four sections. They are notated as Deck1 to
Deck4 from the bow to the stern. Slamming loads on the front deck, i.e. Deck1, will be studied
theoretically and experimentally. There are four pin transducers for that deck. The positions
and numbering of the transducers are illustrated in Appendix A.5. Adding the recordings from
these four pin transducers should give the sum of the slamming force and the structural inertia
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force of Deck1. However, it was detected that the force sign from Pin transducer s5887 should be
changed. When slamming occurred, the theoretical model predicted slamming mainly within the
surface area of Deck1. In order to compare with the experimental results theoretical structural
inertia loads of Deck1 were added to the theoretical slamming loads. Details of the geometry of
Deck1 are described in Appendix A.3. The mass of Deck1 is 9.1kg and the longitudinal center
of the gravity of the deck is 0.34m from the front end of the deck.

Figure 5.25 presents the comparisons between the experimental and numerical slamming force
with structural inertia force included. The lowest three modes are accounted for in the numerical
results, i.e. three-node bending is excluded. In order to match the experimental slamming force
peaks in Fig. 5.25, theoretical results in Fig. 5.25 are time shifted 0.07s to the left compared with
the numerical global responses presented in Figs. 5.23 and 5.24. This illustrates uncertainties
associated with the phasing of the impact relative to the ship motions as well as the physical
description of the initial slamming phase. The numerically predicted start and end times of
slamming are represented by circles (◦) and triangles (K) in Fig. 5.25. The first two impacts
have in sequence the starting and ending instants at t = 19.7103s, 19.9339s, 20.8079s and
21.0315s.
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Figure 5.25 Theoretical and experimental predictions of slamming force on Deck1 for case 1114;
structural inertia force of Deck1 included. Theoretical results are 0.07s shifted left compared with
results in Figs. 5.23 and 5.24. The three lowest modes are included. The circles (◦) and triangles (%)
represent the calculated initial and ending time instants of wetdeck slamming.

The theoretical slamming loads in Fig. 5.25, as well the results in Fig. 5.20(a), show the impact
loading on the whole deck. It should be noted that the structural inertia force is included in
Fig. 5.25 while not in Fig. 5.20(a). Previous discussions have mentioned that the wetted area
includes Deck2 during a relatively short time period. The added mass term is then dominating.
A correction can then be made by correcting the added mass term in the slamming loads. This
is done in a simplified way by assuming the pressure loading is proportional to

√
c2 −X2. Here

X = 0 corresponds to the midpoint of the wetted length and 2c(t) is the wetted length. One
should note that X refers to a time-dependent coordinate system moving with the longitudinal
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time varying velocity of the midpoint of the wetted length. This load distribution is exact
according to our model if the relative impact velocity is spatially constant over the wetted
length and only the added mass term is present. The total predicted slamming load on the
wetdeck when slamming occurs on Deck2 is then multiplied with

α =

∫ d
−c

√
c2 −X2dX∫ c

−c
√
c2 −X2dX

(5.15)

Here d is the X-coordinate of the aft end of Deck1. The minimum value of α is 0.9991, which
occurs when d = 0.3825m and 0.3875m. This shows that the correctional effect is very small.
When the wetted area includes the aft end of Deck1, it is possible that the flow will separate
from Deck1. This is due to the different surface angles of Deck1 and Deck2 as seen from the
data in Appendix A.3 or Fig. 6.20. This would require a Kutta condition model with fixed sepa-
ration point. However, this has not been further pursued, but will have a minor effect in this case.

The force record in Fig. 5.25 between an end and subsequent start of an impact illustrates the
non-dominant contribution of the structural inertia force. The time record of the structural
inertia force during the time period without slamming shows main contributions from wave
frequency and two-node bending induced vertical accelerations. The amplitudes of these accel-
eration components are well theoretically predicted. However, there is a natural period difference
of two-node bending between experiments and theory in Fig. 5.25. This is as earlier discussed
due to use of a frequency domain model where added mass is calculated at the wave encounter
frequency (See discussion associated with Table 5.2 and Eq. (5.4)).

Figure 5.25 shows reasonable agreement for maximum slamming force and the duration of the
impact. The characteristic behaviour that the impact loads are mainly positive during the water
entry phase and negative during the water exit phase, is shown both in theory and experiments.
The experimental minimum force value is about 75% of the theoretical minimum value in the
time period presented in Fig. 5.25. These experiments show some influence of three-node bending
during the impact phase but this is not present in the structural inertia force after the impact.
However, theoretically predicted results do not show better agreement with experiments when
three-node bending is included. The maximum slamming force changes clearly from one impact
to the next impact. This initial peak value may be influenced by a small dynamic roll angle with
non-zero mean value which was present during the experiments. The mean value was due to an
unintended asymmetry in the mass distribution about the center plane of the catamaran. Except
for this difference in slamming peak, the time history of the slamming force has similarities for
different impacts. It appears from the resulting experimental global loads presented in Figs. 5.23
and 5.24, that the variations in peak value of the slamming force have a minor influence on the
global loads. This is associated with the small changes in force impulse due to the variations in
peak values.

Figures 5.26(a) to 5.26(b) show the different theoretical contributions to the vertical motion and
acceleration at the bow for case 1114. In the figure, the circles and triangles correspond to the
initial and ending time instants of wetdeck slamming. For this specific case, by investigating the
first slamming in the figure, we can see that slamming starts at t = 10.4979s and the slamming
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induced response contributes 7.2% to the vertical motion. The acceleration is changed from
5.40m/s2 to 2.45m/s2 due to the slamming induced contribution of −2.95m/s2. When the
acceleration peak occurs at t = 10.5062s, the slamming induced response contributes respectively
6.8% and 70.5% to the vertical motion and acceleration. The minimum value of motion response
was changed 9.0% from the linear response during the impact period.
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Figure 5.26 Theoretical predictions of vertical motion (η3) and acceleration (η̈3) at the bow of the
catamaran; case 1114 with U = 1.8m/s, T = 1.8s and ζa = 0.041m, head sea. Three lowest modes
included in numerical results. The circles (◦) and triangles (%) represent the calculated initial and
ending moment of wetdeck slamming; ’lin’ and ’slm’ represent the response from linear wave frequency
effects and slamming loads respectively, and ’tot’ is the total response.

5.6.2 Case 1111

The following presentation shows another comparison between experimental and theoretical
predictions of VSF and VBM when wetdeck slamming occurs. The conditions are head sea,
T = 1.5s, U = 1.84m/s and ζa = 0.0524m, and is referred to as case 1111. The trim angle of
the vessel is set equal to zero and the bow ramp angle is 3.720 in the calculations. Like in case
1114, the experimental loads at the two cuts are the sum of the values from starboard and port
side. Further, only the steady state results are compared.

Figures 5.27 and 5.28 show the numerical predictions of global loads when considering either
the lowest three or lowest four modes. Including four modes increases the peak values of the
high vibratory response, but the three-node bending mode does not contribute as much as in
case 1114. The experimental results show also some presence of the three-node bending mode.
However, we do not achieve quantitative agreement of the three-node bending behavior. The
experimental data show less contribution from three-node bending compared with numerical
results, i.e. three-node bending mode is much more damped in reality than in our numerical
model. It implies that the high-frequency oscillations are associated with the two-node bending
mode of the hull.
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Figure 5.27 Theoretical predictions of vertical shear force (VSF) and vertical bending moment (VBM)
at Cut1 for case 1111 with head sea, U = 1.84m/s, T = 1.5s and ζa = 0.0524m. ’4modes’: three-node
bending mode included; ’3modes’: three-node bending mode not included.
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Figure 5.28 Theoretical predictions of vertical shear force (VSF) and vertical bending moment (VBM)
at Cut2 for case 1111 with head sea, U = 1.84m/s, T = 1.5s and ζa = 0.0524m. ’4modes’: three-node
bending mode included; ’3modes’: three-node bending mode not included.

Figures 5.29 and 5.30 show a reasonable agreement between theory and experiments. There
is a relatively large influence from wetdeck slamming induced rigid body modes, which is as
discussed in connection with Table 5.5 governed by the slamming force impulse. The previous
case 1114 showed relatively less influence of wetdeck slamming induced rigid body modes. The
theoretical and experimental error sources are similar as for case 1114. This will be further
elaborated in Chapters 6 and 7. Further, even for cases without wetdeck slamming, theoretical
and experimental predictions have some differences. Using Figs. 5.6 and 5.7 as a reference again,
we see that for case T = 1.5s the agreement is good except for vertical shear force at Cut2. It
means in the latter case a deviation of around 35N . Since there are relatively less contributions
from the slamming part in this case, this deviation means more for the final results.
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Figure 5.29 Theoretical and experimental predictions of vertical shear force (VSF) and vertical
bending moment (VBM) at Cut1 for case 1111 with head sea, U = 1.84m/s, T = 1.5s and ζa = 0.0524m
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Figure 5.30 Theoretical and experimental predictions of vertical shear force (VSF) and vertical
bending moment (VBM) at Cut2 for case 1111 with head sea, U = 1.84m/s, T = 1.5s and ζa = 0.0524m

Figure 5.31 shows the experimental and theoretical comparison of impact force on the deck. As
discussed earlier the numerically predicted slamming covers Deck1 and Deck2 almost equally.
The experimental results presented here are therefore the sum of the values from Deck1 and
Deck2. However, the major impact force occurs on Deck1 in the experiments. There are high
frequency vibrations in the experimental results, which are not predicted in our numerical model.
This high frequency part is mainly from the force record on Deck2, which may be related to the
local vibration of the deck or the instruments. The masses of Deck1 and Deck2 are respectively
9.1kg and 3.2kg. The longitudinal centers of gravity of Deck1 and Deck2 are respectively 0.34m
and 0.35m from the front end of Deck1 and Deck2.

Figures 5.32(a) to 5.32(b) show the components of the motion and acceleration at the bow. In
the figures the circles and triangles represent respectively the initial and ending time instants
of calculated wetdeck slamming. They are in sequence the time instants of 10.6912s, 10.8218s,
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Figure 5.31 Theoretical and experimental predictions of slamming force on Deck1 for case 1111;
structural inertia force on Deck1 and Deck2 included. Theoretical results are 0.07s shifted left compared
with results in Figs. 5.29 and 5.30. The three lowest modes are included.

11.5313s and 11.6618s. When slamming happens at t = 10.6912s, the slamming induced re-
sponse contributes 3.9% to the vertical motion. The acceleration is changed from 5.33m/s2 to
3.64m/s2 due to the slamming induced contribution of −1.69m/s2. When the acceleration peak
occurs at t = 10.6954s, the slamming induced response contributes 4.6% and 59.6% respectively
to the vertical motion and acceleration. The minimum value of motion response was changed
9.8% from the linear response during the impact period.
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Figure 5.32 Theoretical predictions of vertical motion (η3) and acceleration (η̈3) at the bow of the
catamaran; case 1111: U = 1.84m/s, T = 1.5s and ζa = 0.0524m, head sea. Three lowest modes
included in numerical results. The circles (◦) and triangles (%) represent the calculated initial and
ending time instants of wetdeck slamming; ’lin’ and ’slm’ represent the response from linear wave
frequency effects and slamming loads respectively, and ’tot’ is the total response.
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5.6.3 Case 1115

The conditions for case 1115 are head sea, U = 2.00m/s, T = 2.0s and ζa = 0.0483m. Both
theory and experiments predict slamming. However, amplitudes of the numerically predicted
slamming induced response are much smaller than the experimental values. Figures 5.33 and
5.34 present the experimental results for the global loads at the two transverse cuts. The values
are obtained by adding the values from starboard and port side. The maximum numerical values
by including two-node bending mode are only 87.6N and 59.09Nm for respectively vertical shear
force at Cut1 and vertical bending moment at Cut1, 32.85N and 112.02Nm for vertical shear
force at Cut2 and vertical bending moment at Cut2. The main reason is that the amplitude of
two node bending is clearly under-predicted. The amplitude due to rigid body heave and pitch
are well predicted (See Figs. 5.6 and 5.7).
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Figure 5.33 Experimental values of vertical shear force (VSF) and vertical bending moment (VBM)
at Cut1 for case 1115 with head sea, U = 2.00m/s, T = 2.0s and ζa = 0.0483m
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Figure 5.34 Experimental values of vertical shear force (VSF) and vertical bending moment (VBM)
at Cut2 for case 1115 with head sea, U = 2.00m/s, T = 2.0s and ζa = 0.0483m
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Figure 5.35 presents experimental slamming loads on Deck1. The structural inertia loads of
Deck1 is included. By comparing this results with the theoretical slamming load in Fig. 5.20(c),
we note that theory clearly underpredicts the slamming loads.
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Figure 5.35 Experimental predictions of slamming force on Deck1 for case 1115 with head sea,
U = 2.00m/s, T = 2.0s and ζa = 0.0483m; structural inertia force of Deck1 included.

One may wonder why this case shows clearly worse agreement between theory and experiments
than cases 1111 and 1114. The previous detailed discussion of relative vertical motion, relative
impact velocity and acceleration, as well as slamming loads gave plausible arguments why the
theoretical slamming loads could be clearly smaller in case 1115 than in cases 1111 and 1114.
This means also smaller wetdeck slamming induced global loads for this case. This is contrary to
the experimental results which show that case 1115 is equally severe as case 1111. It is relevant
in this context to question the sensitivity to parameters influencing slamming like incident wave
amplitude, the sinkage and trim angle of the vessel. The discussion in Chapter 6 shows that
these parameters are important experimental error sources. However, it is difficult based on the
discussion in Chapter 6 to state that this will explain the relatively large differences between
theory and experiments for this case.

Another error source is a small amplitude rolling in the experiments due to an unintended exper-
imental asymmetry of the mass distribution about the center plane of the vessel that caused an
incident wave direction slightly different from head sea. The rolling may also have been excited
by the autopilot system. Økland (2002) predicted the natural period of roll is 1.16s based on
wet decay tests. However, the energy analysis of roll data does not clearly show energy peak at
such a period. Instead it has important energy consistent both at the frequency of encounter
and energy in adjacent frequency area, as well as energy peaks at around 0.33Hz and 0.65Hz.
This is probably caused by the autopilot system (Martinussen (2002)). The energy analysis for
the roll data for other cases share similar properties as said here. Since the maximum roll angle
is only 0.80, roll will have a small effect on the relative vertical motion, relative impact velocity
and acceleration. This means that the impact loads are only slightly influenced by roll.
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One possible explanation of the difference between theory and experiments is the linear wave
induced motion predictions based on strip theory and neglection of hydrodynamic hull interac-
tion. Strip theory is a high frequency theory (Ogilvie and Tuck (1969)) and this case has lower
frequency than cases 1111 and 1114. Moreover, hull interaction may matter. There are two
important effects associated with hull interaction. One is the influence of waves generated from
one side hull to the other one. Another is the piston resonance mode of the water between the
two side hulls. The following text gives arguments that hull interaction matters most for case
1115 among the cases discussed previously.

The angle α between the outer part of the wave system generated by one independent hull and
the center plane of the hull increases with decreasing frequency and forward speed (See discus-
sions in Section 1.2 in connection with Fig. 1.5 and Section 7.2.2 in connection with Fig. 7.1).
The calculations show that 65.56% of the length between perpendiculars of each hull from AP
is affected by wave interaction for case 1115. The corresponding percentages for cases 1111 and
1114 are respectively 50.15% and 65.56% (See Section 7.2.2). This estimate shows that hull
interaction due to the generated waves by side hulls are similarly important for the three cases.

Another effect is the piston mode of the water between the two hulls. Wave interaction is of
special concern if natural modes for the fluid motion between the hulls are excited. The most
relevant mode for heave and pitch motions is the piston mode. This means resonant fluid motion
where the fluid particles between the two hulls move nearly vertically. Seen from a distance from
the hull, it appears similar like a piston moving up and down between the two hulls. This is
the same natural mode causing large amplitude fluid motions in a moonpool (Faltinsen (1990)).
Ronæss (2002) showed that the calculated and experimental added mass and damping coefficients
for heave and pitch of a catamaran were greatly affected in the vicinity of the natural period
for the piston mode. Unified theory with hull interaction was the basis for the calculations. A
simple formula by Molin (1999) for 2D flow conditions was used in the calculations of the natural
period Tpiston for the piston mode. Molin’s expression is

Tpiston = 2π

√
h+ d

π
(3

2
+ ln Bs

2d
)

g
(5.16)

where Bs, d and h are defined in Fig. 5.36.

The hull shape shown in Fig. 5.36 was assumed in deriving Eq. (5.16). If midship values are
used for the catamaran, it means that h = 0.2225m, Bs = 1.02m and d = 0.468m. This gives
Tpiston = 1.36s. This is obviously an approximation both due to the difference in cross-sectional
form from Fig. 5.36 and that the cross-sections change along the length of the ship. However,
a similar approximation was made by Ronæss (2002) and it gave satisfactory results. The pe-
riod of encounter for cases 1111, 1114 and 1115 are respectively 0.840s, 1.097s and 1.219s. It
demonstrates that case 1115 will be most affected by the piston mode.

Ronæss (2002) examined the piston mode effect for a catamaran at Fn = 0.15 and head sea.
The damping coefficients in heave and pitch around piston mode resonance were about twice
as large as values predicted without hull interaction. The influence on coupled damping coef-
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Figure 5.36 Notation used in Molin’s (1999) formula (Eq. (5.16)) for natural period of piston mode
resonance between the two hulls

ficients between heave and pitch was even larger. There was also a significant effect on added
mass coefficients. For instance added mass in heave got close to zero and pitch added mass
became negative. Ronæss’ calculations were validated with good results by comparisons with
experimental results by Kashiwagi (1993). If strip theory with hull interaction was applied, it
would give clearly different results at piston mode resonance. Ohkusu’s (1996) results are rel-
evant in this context. Ohkusu (1996) presented both experimental and theoretical results for
two-dimensional added mass and damping in heave for a cross-section of a catamaran. Each
hull had a semi-circular cross section. Some of his results can be interpreted to be due to piston
mode resonance. Ohkusu found both a large amplification of the damping and zero damping
for frequencies near piston mode resonance. However, Ronæss did not predict small damping.
Further, the added mass in heave in Ohkusu’s results became negative with a minimum value
close to minus three times the hull displacement. Ohkusu (1969) has presented results for differ-
ent distances between the center planes of the two hulls. These results are similar as described
in Ohkusu (1996). It is therefore hard to see that strip theory can quantitatively agree with
Kashiwagi’s (1993) experimental results for a catamaran at forward speed.

This piston mode resonance period corresponded to the wave length-ship length ratio λ/L = 2.2
in Ronæss’ case. Here L means the length between the perpendiculars of the ship. Since the
vertical motions for such long wave lengths are dominated by the influence of Froude-Krylov
forces and hydrostatic forces, there was not a large effect of the piston mode on predicted heave
and pitch. However, since our case 1115 corresponds to the lower λ/L = 1.65 and ωe are closer
to the resonant heave and pitch conditions, the effect of piston mode resonance can not be ne-
glected a priori.

Even if we have argued that hull interaction matters in particular for case 1115, the previous
comparison between theoretical and experimental values of relative vertical motion amplitude
(See Fig. 5.5) does not show worse agreement for case 1115 than for cases 1111 and 1114. Actually
the agreement is quite good. However, we have then left out possible experimental error sources.
The relative motion measurement uses a similar technique as the wave measurements. The
forward speed may cause additional inaccuracies (Greco (2001)), but according to Stansberg
(2002) the inaccuracy is not larger than 1mm. The measured incident wave amplitude for the
relative motion, measurement at T = 2.0s presented in Fig. 5.5 is 0.0145m. This implies that the
agreement between experimental and numerical predictions of relative vertical motion amplitude
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can still be considered satisfactory. However, both amplitudes and phases of motions matter in
predicting impact, but there is no experimental documentation of phases. An important effect
of changes in motions and phases can be that the water does not initially hit at the front end
of the wetdeck. This will cause longer slamming duration and will also change relative impact
velocities and accelerations. Further, experimental and theoretical studies by for instance unified
theory is therefore needed to fully explain case 1115. The unified theory has then to be modified
to include the elastic properties of the catamaran.

5.6.4 Case 1112

The numerical model predicted no slamming in case 1112. The conditions are head sea, U =
1.86m/s, T = 1.8s and ζa = 0.0259m. The experiments recorded slamming for this case.
However, the experimentally recorded global loads as shown in Figs. 5.37 to 5.38 are not large
and have large beating effect. The experimental results are the sum of the values from starboard
and port side.
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Figure 5.37 Experimental values of vertical shear force (VSF) and vertical bending moment (VBM)
at Cut1 for case 1112 with head sea, U = 1.86m/s, T = 1.8s and ζa = 0.0259m

Since the experimental values are small, they may be sensitive to small changes in for instance
incident wave amplitude. The numerical model was therefore used to study the sensitivity to
incident wave amplitude. It was found that the lowest incident wave amplitude for impact
to occur in the theoretical model is 0.032m. This means a value about 20% larger than the
experimental incident wave amplitude. It is possible that the small amplitude rolling present
in the experiments can cause the beating effect in the experiments. The maximum roll angle
was 0.60. Since the distance from the center plane of the catamaran to the inside of one side
hull is 0.243m, the maximum roll induced vertical motion is 0.0025m. This corresponds to 9.8%
of incident wave amplitude. Roll will also contribute to relative impact velocity and acceleration.

The discrepancy between experimental and theoretical results can be due to other sources. In
Chapters 6 and 7 the error sources in the experiments and in the theoretical model will be
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Figure 5.38 Experimental values of vertical shear force (VSF) and vertical bending moment (VBM)
at Cut2 for case 1112 with head sea, U = 1.86m/s, T = 1.8s and ζa = 0.0259m

systematically investigated by using case 1114 as the base. Case 1112 has the same wave period
as in case 1114 while case 1112 has a lower wave amplitude. The forward speed is nearly the
same in the two cases. The discussion of the error sources for case 1114 is therefore relevant for
case 1112.

5.7 Summary

The theoretical model has been verified and validated. Since it is necessary to account for large
structural damping associated with the two highest modes of the three-body model, a modal
based method is introduced and shown to give consistent results with solving the equations of
motions directly. Since the added mass and damping coefficients for the side hulls are frequency
dependent and chosen equal to the wave encounter frequency or close to the natural frequencies
of heave and pitch in free decay tests, errors occur in natural frequencies for elastic modes.
However, this has a secondary effect on maximum wetdeck slamming induced global loads. The
theoretical model agrees reasonably well with experimental free decay tests and model tests in
regular head sea waves without wetdeck slamming.

There are five cases with relatively large incident waves. The theory and the experiments agree
that wetdeck slamming does not occur in one of these cases. The most severe slamming case
show reasonable agreement between theory and experiments both for global loads and slamming
force. There are two moderate slamming cases. One of the cases agrees well. The disagreement
for the second case is thoroughly investigated. The most plausible reason is found to be hull
interaction in the vicinity of a piston mode resonance between the two hulls. However, this needs
further investigations where a theoretical method that properly accounts for hull interaction is
used. In the fifth high amplitude wave case, minor wetdeck slamming with beating occurs in the
experiments. The beating may be caused by roll. The wave amplitude has to be increased with
about 20% in the theoretical model to predict slamming. The wetdeck slamming cases show
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that two-node longitudinal bending gives in general the most important contribution to vertical
shear forces and bending moments at the two transverse cuts studied in the experiments.



Chapter 6

Error Analysis in the Experiments

6.1 Introduction

6.1.1 Overview

Error sources in the experiments and theoretical model will be identified respectively in Chap-
ter 6 and Chapter 7, and the resulting uncertainties in predicted wetdeck slamming induced
response will be discussed. However, it should be noted that there can be other error sources
besides items discussed in these two chapters. The focus in the error analysis is on case 1114
(See Table A.7 in Appendix A), i.e. a case with the specified (intended) test wave amplitude
ζa = 0.05m, wave period T = 1.8s and head sea. The measured wave amplitude was 0.041m.
This is the most severe slamming case in the experiments.

The report of the panel on validation procedures of the 19th ITTC (International Towing Tank
Conference) (Aláez et al. (1990)) gives a broad description of validation procedures. Examples
are given for resistance and maneuvering tests, speed and power trials, strip theory and three-
dimensional diffraction/radiation program. It is still not state of the art with error analysis in
the marine hydrodynamics field. This is true even in research. An important reason is that it is
a difficult task. However, this should not prevent that attempts are made to judge the reliability
of experimental and theoretical results.

The experimental errors can be divided into random (repeatability) errors and systematic (bias)
errors. Since the experiments were not repeated, we can not assess explicitly random errors. The
focus is therefore on systematic errors. Further, it is difficult for us to evaluate errors associated
with instrumentation, data acquisition and data analysis. However, there is a long experience
with processing of the experimental data and most of the instrumentation. The systematic
experimental error sources to our knowledge will be investigated and the relative errors will to
a large extent be predicted by using our computer code.

109
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6.1.2 Measurement systems in the experiments

Model tests were done in the Ocean Basin at the Marine Technology Center in Trondheim in
1996 by Aarsnes and Økland. Økland and Moan (1998), Økland et al. (1998) and Økland (2002)
reported results for zero forward speed. However, the experimental results were never properly
reported for our cases with forward speed. This caused problems in trying to interpret the re-
sults long time after they were done. Both Økland and Aarsnes have been helpful in that respect.

The tested cases for forward speed are listed in Table A.7 in Appendix A. Regular incident
waves were considered and the catamaran model was self propelled. An autopilot system was
used to keep the heading. The experiments were planned so that the ship model should en-
counter regular incident head waves with constant amplitude along the track of the model. It
is shown later that this is not exactly so. Both cases with and without slamming were tested.
Standard equipment and procedures were to a large extent employed. However, using an elastic
model was for instance not standard.

Three different systems were used for motion measurements, i.e. MRU (Motion Response Unit)
system, Optical system and Three-Accelerometer System. The measurement positions are illus-
trated in Fig. A.5 in Appendix A. All the three measurement systems were installed on the mid
segment of the catamaran.

The MRU system was installed on the inside hull on the starboard side. It uses a gyro system
for rotational displacements and accelerometers combined with time integration to find transla-
tory displacements. All the translatory displacements are referring to the point where the MRU
system is installed.

The Optical instruments measured displacements in three orthogonal directions at three points,
from which the translatory and rotational displacements at the LPP/2 position of the center
plane of the catamaran was predicted.

The Three-Accelerometer system uses accelerometers at three points as illustrated in Fig. A.5
in Appendix A. Translatory displacements at the points are found by integrating twice the time
history of the accelerations. By assuming a rigid body and using that the displacement at any
point P can be expressed as %ηo + %ω × %r, where %ηo is translatory displacement of a given point
O, %ω is the rotational vector of the body, and %r is the position vector between points O and P ,
we can by measurements at three different points find rotational displacements of the rigid body.

All these three different systems should in principle give data that overlap each other in the time
domain. However, different computers were used to log the data. Since the three systems have
different starting time and the relations between these starting times were not recorded, phases
of corresponding curves differ. There are some particular drawbacks for two of the systems. The
Three-Accelerometer system predicted unreliable angular rotations. A reason may be due to the
double integration of acceleration and that the accuracy in predicted translatory displacements
at the three points is not sufficient to further derive angular rotations. It should also be noted
that there is considerable less experience with the Three-Accelerometer system than with the
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other two measurement systems. The Optical system will be influenced by objects that block
the infrared light going between a transmitter and the diodes on the model. The consequence is
spikes occurring in some records. The sampling frequency for the Optical system was only 9Hz.
The final results were then linearly interpolated into data corresponding to 100Hz sampling
frequency. This causes discontinuities in the derivative of the time record. There are also some
uncertainties in the base reference value of vertical displacement.
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Figure 6.1 Pitch time record for case 1108 with intended wave amplitude ζa = 0.015m and wave
period T = 2.0s; Measured wave amplitude is 0.0145m. No wetdeck slamming. Pitch angle unit is
degree.

For instance Fig. 6.1 is part of the recorded results for pitch angle for case 1108. This shows
the drawbacks for the different systems mentioned above. Obviously the record from the Three-
Accelerometer system is not reliable. Records from the Optical and MRU system predict opposite
values of mean pitch angle. The values are respectively −0.940 and 0.600. The corresponding
first harmonic values are 1.3010 and 1.3570, respectively, which means 4.1% relative deviation
based on the MRU data. The uncertainties in the mean values lead to important experimental
uncertainties in global load predictions. This will be further presented and discussed later. Both
the Optical and MRU system data will be investigated and discussed when data from both of
these two systems are available.

Since the catamaran model is flexible, we can only approximately estimate the experimental
motions at the other parts of the model by assuming one rigid body. However, the errors will
be small if no wetdeck slamming occurs. This was earlier documented in Figs. 5.6 and 5.7.
If severe wetdeck slamming occurs, the two-node bending gives a significant influence on the
vertical accelerations. This is illustrated in Figs. 5.26(b) and 5.32(b). However, the contribu-
tion from the flexibility on the wetdeck slamming induced motions is less pronounced. The
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computer calculations for the cases reported in this thesis indicate a relative error up to 10%
in predicting the vertical motions at FP by assuming a rigid body (See Figs. 5.26(a) and 5.32(a)).

Global response forces are measured at the connecting transducers of the different segments in
each hull. The slamming forces on the wetdeck were also recorded by pin transducers on the
deck. Section A.5 gives the detailed positions and the numbering system of the transducers in
the experiments.

6.1.3 Experimental error sources

In the following error analysis, wetdeck slamming induced global loads will be focused on. We
will study case 1114, which had the most severe slamming induced responses in the experiments.
What we will do is to assess the uncertainties in the experiments and examine the consequences
of those for vertical shear force (VSF) and vertical bending moment (VBM) at two transverse
cuts of the catamaran model. This will to a large extent be done by using our computer code.
This procedure can of course also be applied to other test cases. The error sources that will be
concentrated on, are related to

• forward speed

• ambient waves: wave frequency effect, seiching, measurement inaccuracy

• Roll, yaw and sway

• sinkage

• trim

• mass distribution

• model geometry

Here steady state conditions are considered. The error analysis provides an insight into the
sensitivity of the global wetdeck slamming induced loads to the above-mentioned various pa-
rameters.

6.2 Forward speed

6.2.1 Speed loss in the experiments

The intended forward speed was 3.0m/s. However, the experimental data showed that there was
a significantly smaller speed in the experiments. This happened both for the cases with the low
incident expected wave amplitude of ζa = 0.015m without wetdeck impact and cases with the
higher incident expected wave amplitude of ζa = 0.05m. We have here used the words ’expected
wave amplitude’ to emphasize that this was the intended wave amplitude. It will later be clear
that the measured wave amplitude differs. Some of the higher amplitude cases had wetdeck
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slamming, which have been presented and discussed in Chapter 5.

There are two ways to investigate the forward speed in the experiments. One way is by examining
the surge motion record from the Optical system. Another way is by spectral analysis of the
time domain series of the global responses. Figure 6.2 shows the surge record based on the
Optical system for case 1107 with incident wave period T = 1.8s and intended wave height
H = 0.03m. A steady forward speed means that the time derivative of surge is constant when
the wave induced oscillatory surge motions are filtered out. Based on the experimental log, the
good time window in this case is approximately from t = 14.0s to t = 26.0s. A least square
method was used in this time range to estimate the time derivative of surge. This gave a forward
speed of U = 1.90m/s in this case.
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Figure 6.2 Surge data for case 1107 by Optical measurement system; Incident head sea regular waves
with T = 1.8s and measured ζa = 0.0142m

Table A.5 in Appendix A presents the estimated forward speed based on the surge motion record
for the other examined cases. We have also used spectral analysis to estimate in an indirect way
the forward speed. Figure 6.3(a) presents the time domain record of the vertical shear force at
the longitudinal transducer-5891, i.e. the front connection of the starboard side of the catamaran
(See Fig. A.4). The corresponding spectrum based on analyzing the time record from t = 14.0s
to t = 25.81s when the forward speed is steady is presented in Fig. 6.3(b). No impact occurred
in this case. This means that the steady-state dynamic response was approximately linearly
dependent on incident wave amplitude and oscillating with the frequency of encounter.

Figure 6.3(b) gives an encounter frequency of 0.9306Hz. There is the relationship fe = f0 +
2πU/g ∗ f 2

0 cos β between incident wave frequency f0 and encounter wave frequency fe. Here
U is the forward speed and g is the gravitational acceleration, and β is the angle between the
incident wave and ship heading with β = 0 expected here. This gives with f0 = 1/T = 0.5556Hz
an estimated velocity of U ′ = 1.90m/s. It matches the estimated data from the surge curve.
Actually the model had a small unintended mean yaw angle of 0.40 in this case. However, this
has a negligible influence on our estimate.

Table A.5 in Appendix A shows that the forward speed in the experiments for different cases are
within a range from 1.8m/s to 2.0m/s. In cases 1111, 1112, 1114 and 1115, the forward speed
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Figure 6.3 Measured vertical shear force (VSF) at Longitudinal transducer-5891 (at Cut1), for
case 1107 with wave period of 1.8s and measured wave amplitude 0.0142m in head sea. No wetdeck
slamming.

is respectively 1.84m/s, 1.86m/s, 1.80m/s and 2.00m/s. These are the cases when wetdeck
slamming happens.

One point that needs to be noticed, is that the predicted peak frequency value of the spectrum
depends on the length of the analyzed time record. Theoretically the energy analysis based on
Fast Fourier Transformation (FFT) should give fixed energy distribution when the time record
is long enough. However, in our case, the number of oscillations with steady-state conditions
are not sufficiently high for a reliable FFT analysis. This means that different lengths of the
time record will give different peak frequencies. For instance if the time record from 14s to
26s Fig. 6.3(a) is used, this gives fe = 0.9151Hz. The result shown in Fig. 6.3(b) is based on
using the time record from 14s to 25.81s. This covers approximately 11 periods in Fig. 6.3(a).
Though the difference is not so large, it leads to some uncertainty. Marintek has a standard
procedure which automatically analyzes the time record from the measurements. This includes
the first harmonic frequency of the time record. It has been controlled that forward speeds
predicted based on fe from Marintek’s analysis in the different cases are almost the same as the
ones predicted by the surge curves. These different ways of analyzing what the forward speed
is, gives a maximum variation of ±0.01m/s.

6.2.2 Speed influence on slamming induced response

Forward speed is an important parameter for slamming. In practice, reducing forward speed
can often be an effective way to avoid severe slamming. As indicated above, the speed in
the experiments is determined with a small uncertainty. To illustrate the sensitivity between
wetdeck slamming induced global loads and forward speed, we have used our computer code for
U = 1.8m/s and 1.9m/s. Figures 6.4 and 6.5 show the speed influence on VSF and VBM at
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the two cuts. Table 6.1 shows that the peak values differ by approximately 30% based on the
U = 1.8m/s case.
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Figure 6.4 Speed influence on vertical shear force (VSF) and vertical bending moment (VBM) at
Cut1 for case 1114, T = 1.8s, ζa = 0.041m, head sea; Calculated values.
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Figure 6.5 Speed influence on vertical shear force (VSF) and vertical bending moment (VBM) at
Cut2 for case 1114, T = 1.8s, ζa = 0.041m, head sea; Calculated values.

Table 6.1 Speed influence on maximum values of global loads for case 1114; U = 1.8m/s is the basis
of the ratio calculations.

Speed(m/s) VSF Cut1(N) VBM Cut1(Nm) VSF Cut2(N) VBM Cut2(Nm)
U=1.8 237.2 280.7 127.1 383.2
U=1.9 314.4 371.3 164.3 498.2
Increase Ratio [-] 32.5 % 32.3 % 29.3 % 30.0 %
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These data will be used as a basis to quantify the uncertainty in the global loads due to uncer-
tainty in the forward speed. We assume the uncertainty in the forward speed is at most 0.01m/s.
This means a relative error in the experimental measured global loads of approximately 3.0% as
illustrated in Table 6.1.

Table 6.2 Relative errors in global loads due to error in speed; Case 1114 with wetdeck slamming

VSF Cut1(N) VBM Cut1(Nm) VSF Cut2(N) VBM Cut2(Nm)
Relative Error 0.033 0.032 0.029 0.030

6.3 Ambient waves

Figure 6.6 gives the geometrical dimensions of the Ocean Basin that was used during the tests.
The tank has both a longcrested wave maker and a wave maker that can create short-crested
waves. There are beaches on the opposite sides of both the longcrested and short-crested wave
makers. The longcrested wave maker which is situated along one of the two short sides of the
tank, was used in the experiments that we are now analyzing. The ship model had a straight
course in the longitudinal direction of the tank. Figures 6.6(a) and 6.6(b) give the sketch of the
Ocean Basin used in the experiments from both the top view and the longitudinal side view.
The tank has dimensions of L×B×D = 80m×50m×10m. The tank bottom is adjustable but
the water depth of 10m was used in these tests. This means that the studied incident waves are
not influenced by the water depth. The beach length Lbeach is 16m. The catamaran (illustrated
as point P0 in the figures) was running along a mid track of the basin. Further, the starting
point was around L0 = 20m from the beach end.

The instantaneous position of the catamaran model for case 1107 as a function of time is pre-
sented in Fig. 6.2. It starts at rest 21.889m from the end of the beach and achieves a constant
speed at t = 11.0s, when it is 31.313m from the beach end. The constant speed range where
the measurements are analyzed, ends at t = 26s when the model is LE = 20.119m from the
longcrested wave maker. The distance B/2, from the long side with the short-crested wave
maker is 25m.

Regular waves were generated by the longcrested wave maker. Waves were measured 34.6m from
the longcrested wave maker and 25m from the shortcrested wave maker without the catamaran
model present. It is expected based on Marintek’s experience that the incident wave amplitudes
will not be uniform in space. However, since only one wave gauge was used, we can not quantify
this effect directly. Further, there is no published documentation on how this varies for different
specified wave conditions. For regular waves we can divide the spatial variation to be either a
wave frequency effect or due to low frequency seiching, i.e. sloshing, in the tank. Since the ship
will react very differently to seiching and wave frequency effects, we have to consider them as
two separate error sources.
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Figure 6.6 Top and side view of the Ocean Basin used in the experiments. P0 and PE refer respectively
to the starting and ending positions of the tested catamaran.

6.3.1 Wave frequency effects

Carl T. Stansberg, who is responsible for the wave generation systems at Marintek, says that
the wave amplitude can vary as much as 10% along the track of the vessel due to wave frequency
effects. Possible physical reasons are

1. Local effects at the wave maker. This occurs typically in a 5m distance from the wave
maker and is therefore not important in our case.

2. Dissipation of the waves. Since the wave length is not very small relative to the track
length of our model, this is believed to be unimportant.

3. Diffraction effects of the tank. If the tank was shaped exactly rectangular and the longcrested
wave maker covered the whole tank breadth, there would not be such an effect. However,
this is not the case. For instance diffraction may occur due to the parabolic beach opposite
to the shortcrested wave maker, i.e. along one of the longitudinal side walls.

4. Reflection from the wave beach. The wave beach opposite to the longcrested wave maker
will reflect some waves during the tests. This depends on the wave period. The reflection
ought to be less than 5% according to Stansberg (2002), but exact information is not
available.

5. Ship generated waves will be reflected from the tank walls. Due to the forward speed and
the frequency of encounter in the examined cases, these reflected waves will not be incident
to the ship model. This can be seen by using the studies by Ronæss and Faltinsen (2000).

6. Nonlinear effects may cause instabilities and modulation of the waves. However, the ex-
amined incident wave slopes are small, which means that the nonlinear effects should not
be a major concern.
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7. Waves present in the basin from earlier tests. Since we did not do the tests and such in-
formation is not documented, we can not outrule this possibility. However, using standard
practice with waiting sufficient time between each test should minimize this effect.

Since we can not quantify the error sources mentioned above, we have to use Stansberg’s (2002)
estimate based on other tests for the upper bounds in variation in the wave frequency amplitude
along the track of our ship model. We concentrate on case 1114 where significant wetdeck
slamming occurred, and case 1107 without slamming. The tested wave period for cases 1107
and 1114 were both T = 1.8s with expected wave amplitude of 0.015m and 0.05m respectively.
Figures 6.7 and 6.8 show the time record at center of the basin for cases 1107 and 1114, when
test model was not present.
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Figure 6.7 Time record of measured incident
waves in case 1107
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Figure 6.8 Time record of measured incident
waves in case 1114

The records show different time scales. One is associated with the wave period and the others
are due to longer periods. The reason to the long period oscillations is believed to be seiching.
However, from the spectral analysis, we can not figure out the typical low frequency oscillations
and the corresponding wave height.

We will use our computer code to see what the consequence on global loads due to errors in
the incident wave amplitude is. Figure 6.9 and Table 6.3 show that changing the incident
wave amplitude ζa from 0.041m to 0.039m decreases the peak values of VSF and VBM with
approximately 10%.

Table 6.3 The influence of incident wave amplitude on global loads for case 1114

Wave Amplitude VSF Cut1(N) VBM Cut1(Nm) VSF Cut2(N) VBM Cut2(Nm)
0.041m 237.2 280.7 127.1 383.2
0.039m 211.1 223.7 104.9 339.3
Increase Ratio [-] -11.0 % -20.3% -17.4 % -11.5 %
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Figure 6.9 The influence of incident wave amplitude on vertical shear force (VSF) and vertical bending
moment (VBM) at Cut1 and Cut2; Case1114 with T = 1.8s, U = 1.8m/s, head sea; Calculated values.

Based on Stansberg’s (2002) experience, the spatial variation along the basin is about 10% from
10m from the wave maker over a distance of 50m. By examining the time domain when we
compare between theory and experiments in Figs. 5.23 to 5.24, relating that to a position in the
tank relative to the wave probe and assuming that the spatial variation of incident wave is linear,
it is found that the variation in incident wave amplitude within the time domain that we do
comparisons would be less then ±2.5%. Assuming an uncertainty in the incident wave amplitude
of ±2.5% of mean value, gives an uncertainty in the wave amplitude of ±0.041∗2.5% = ±0.001m.
This means that the resulting experimental global loads have a maximum relative error of about
10% as shown in Table 6.4.

Table 6.4 Relative errors in global loads due to error in incident wave amplitude; Case 1114 with
wetdeck slamming

VSF Cut1(N) VBM Cut1(Nm) VSF Cut2(N) VBM Cut2(Nm)
Relative Error 0.055 0.102 0.087 0.057
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6.3.2 Seiching in the model basin

There is theoretically an infinite number of sloshing modes with different natural periods in the
tank. It is the lowest modes with the highest natural periods that are normally dominant. Our
concern is natural modes causing free surface variations along the track of the vessel, that is in
the longitudinal direction of the tank. We will approximate the modes by assuming a rectangular
tank and 2D flow. The natural period of the lowest mode with a rectangular cross-section is

TN ≈ 2L√
gD

. (6.1)

where L is the tank length and D is the tank depth (Faltinsen (1990)). This is based on linear
shallow water theory, i.e. L � D. The free surface elevation associated with this lowest mode
can be expressed as

ζ = A sin(
π

L
X) cos(

2π

TN
t+ ξ1) (6.2)

where A and ξ1 are unknown constants. Further, X = 0 is in the middle of the tank and
X = ±L/2 corresponds to the tank ends.

Due to the presence of the beach the longitudinal cross-section of the Ocean Basin is not rect-
angular. It can be shown (Morand and Ohayon (1995)) that the natural period will be between
the natural period for a rectangular tank with L = 80m and a rectangular tank with L = 64m.
The difference between the length of these tanks is the length of the wave beach. Using L equal
to 80m and 64m gives respectively TN equal to 16.2s and 12.9s. We can in principle by spectral
analysis of the time record of the waves find the energy in the vicinity of the seiching frequency
and then determine the seiching amplitude at the wave measurement position X. By using
Eq. (6.2) we can then determine A by considering both L = 80m and L = 64m. This gives then
an indication of A during the tests. We will later return to this matter.

We will now study the vessel’s response due to seiching and assume that there is only one mode
present like expressed by Eq. (6.2). Since the wave length associated with this mode is much
longer than the ship length, the ship behaves like a cork. This means that the seiching induced
heave is equal to the wave elevation given by Eq. (6.2) at the position of COG of the ship. The
seiching induced pitch is equal to the free surface slope which can be expressed as

dζ

dX
=

π

L
A cos(

π

L
X) cos(

2π

TN
t+ ξ1) (6.3)

Both ζ and dζ/dX must be evaluated at the instantaneous longitudinal position of the vessel’s
COG. However, it is unnecessary to account for the effect of the incident regular waves in this
context. This means that the time dependence of the seiching induced pitch can be expressed
as

η5S =
π

L
A cos(

π

L
U(t− t0)) cos(

2π

TN
t+ ξ1) (6.4)

where we must require that the ship is at X = 0 at t = t0. This determines the time t0. By
simple trigonometric rules, Equation (6.4) can also be expressed as

η5S = 0.5
π

L
A{cos(( 2π

TN
+
π

L
U)t+ ξ1 − π

L
Ut0) + cos((

2π

TN
− π

L
U)t+ ξ1 +

π

L
Ut0)} (6.5)
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This gives that the seiching induced pitch oscillates with the frequencies 1/TN ± U/2L, which
means 0.062± 0.012 Hz when L = 80m and 0.077± 0.015 Hz when L = 64m, for U = 1.9m/s.

This slowly varying trim angle will influence the wetdeck slamming induced global loads. One
effect is that slamming loads are influenced through the body boundary conditions on the wet-
deck (See Eq. (3.9)). Another effect is that the trim angle influences directly the hydrodynamic
loads on the side hulls. This can be explained by using Fig. 6.3(a) that presents VSF of Cut2
at starboard side when no wetdeck slamming occurs. The spectral analysis of the time record
from 14s to 25.81s presented in Fig. 6.3(b) shows energy peaks at the wave frequency and at a
small frequency.

This low frequency effect is associated with both the seiching induced pitch and the spatially
changing incident wave amplitude. We concentrate now on seiching. This can be explained by
considering the mean VSF in Fig. 6.3(a) over one slowly varying oscillation period. This gives
a slowly varying time record of VSF that can be explained by a quasi-steady analysis. When
t is small, the mean value of VSF in Fig. 6.3(a) is close to zero. The reason is simply that
the recordings do not include the shear forces due to differences in weight and buoyancy. As t
increases the ship speed increases and the ship speed influences the steady hydrodynamic loads
on the side hulls. We see this if we express the steady pressure by Bernoulli’s equation as

p = pa − ρgz +
ρ

2
(U2 − U2

loc) (6.6)

Here pa is atmospheric pressure, which does not contribute to the global loads. z is a vertical
coordinate with z positive upwards and z = 0 in the mean free surface. This means that the
second term is the hydrostatic pressure causing buoyancy forces on the hull at zero forward
speed. Uloc is the local fluid velocity if we use a reference frame moving with the ship’s forward
speed U . Uloc will for instance be influenced by the steady wave making due to the ship. The
trim angle will directly influence the magnitude of Uloc. The consequence is that the trim angle
influences the global loads. When the trim angle is small, we may decompose the global loads
into one term independent of trim angle and one term proportional to the trim angle. If we
look at the time record in Fig. 6.3(a) for t > 11s, constant speed U has been obtained and the
slowly varying VSF can as a possibility be related to the seiching induced pitch angle. How-
ever, there are also other contributions to the slowly varying VSF. This is associated with the
mean wave induced loads on the side hulls. Since the incident waves vary along the track of the
vessel, we get a slowly varying effect like previously described by the steady hydrodynamic loads.

The spectral analysis of the wave record in Figs. 6.7 and 6.8 gives one peak frequency of incident
wave frequency f0 = 0.556Hz as well as a small energy area for frequencies less than 0.1Hz.
However, the energy analysis of different wave records can not predict the seiching period as
expected. One reason is that the time record is not sufficiently long for a seiching analysis.
Further, the wave measurement point is close to a standing wave node, so we can not get re-
liable data from the measurements to estimate seiching period and amplitude. If we base our
estimate on Marintek’s experience from other tests where many more wave probes were used,
we should according to Stansberg (2002) not have a seiching amplitude larger than 2mm. By
using Eq. (6.3) with L = 64m, this gives a pitch angle of 0.00560 due to seiching.
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Since it is not only seiching induced pitch that causes an error in trim, we will in Section 6.5.2
on trim further discuss the error in wetdeck slamming induced global loads due to trim by com-
bining other effects. However, due to this very low estimate of seiching induced pitch angle,
there is negligible influence on the global induced load response.

The seiching induced heave causes negligible errors in wetdeck slamming induced global loads.
Since the heave is equal to the local seiching amplitude, the relative distance to the wetdeck
does not change and hence the slamming loads are not effected. Further, the submerged volume
of the vessel is not changed due to this effect. This means hydrodynamic loads on the side hulls
are not effected.

6.3.3 Wave measurement inaccuracies

The measurement accuracy by the wave probes is not exactly known. The free surface tension
at the wave probe causes meniscus effects and is an error source in the measurements. If the
ambient velocity at the wave probe is high, the local water elevation due to the probe may matter.
Ventilation may occur due to suction on the downstream side of the probe as an extreme case of
high velocity. These error sources were discussed by Greco (2001) and related to the diameter
of the wave probe. The meniscus effect is most relevant in our case. Stansberg (2002) suggests
that the measurement accuracy could be ±0.001m. We should consider this as an error source
that is independent of the wave frequency effects. The analysis presented in Fig. 6.9 can serve
as basis for estimating the corresponding error. This gives Table 6.5.

Table 6.5 Relative errors in global loads due to error in wave measurements; Case 1114 with wetdeck
slamming

VSF Cut1(N) VBM Cut1(Nm) VSF Cut2(N) VBM Cut2(Nm)
Relative Error 0.055 0.102 0.087 0.057

6.4 Roll, yaw and sway

Head sea was intended but a small deviation from head sea occurred in the experiments, causing
small amplitude roll, yaw and sway. In addition there was a constant small roll angle due to
an unintended asymmetric mass distribution about the center plane. An autopilot system was
used to keep the heading of the vessel. This may also cause rolling. These effects can not be
simulated by our numerical model.

The different experimental cases gave different mean yaw angles. Furthermore, the MRU and
the Optical measurement systems predicted different mean values for the same case. However,
the mean heading relative to head sea was not large and less than 10. Experimental data showed
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that the ship also had an unintended mean roll angle of less than 10, which means that the deck
plate will not be wetted at the same moment transversely as assumed in the 2D analysis. This
kind of 3D effect influences in particular the initial impact force. The 3D effect is particular
large if the initial impact occurs at flat part of the deck away from the front end of the wetdeck.
The initial 2D slamming force is then finite while the initial 3D slamming force is always zero.
Since the numerically predicted slamming occurs initially at the front end of the wetdeck, the
initial 2D slamming load is zero in case 1114 (See Fig. 5.20(a)).

The consequence of the roll, yaw and sway is that the measured VSF and VBM on the two hulls
were not identical. Figure 6.10 illustrates the difference of measured VSF and VBM data at
Cut1 and Cut2 between the starboard and port hulls for case 1114.
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Figure 6.10 Experimental vertical shear force (VSF) and vertical bending moment (VBM) for case
1114 at starboard (S.) and port (P.) side hulls of the vessel

Further, Figs. 6.11 to 6.12 show the local maximum and minimum values of the time record
for case 1114. We note that the difference between measured VSF and VBM at starboard and
port side hull at the two cuts is largest for VSF at Cut2. From the maximum and minimum
values in these figures, relative error between the starboard and port side can be estimated.
For example for the maximum peaks of vertical shear forces at Cut1, there are 10 pairs of data
shown in Fig. 6.11(a). The two values in each pair are respectively from starboard and port side.
Standard deviation and mean values can be calculated by this pair of data. Further, the ratio
between the standard and mean value gives the relative error between two side hulls. The mean
value of the ratios from the 10 pairs data is then taken as the representative relative deviation of
the maximum peak of vertical shear forces at Cut1. Similar estimation is done for the minimum
values in Fig. 6.11(a). The same procedure can be applied for other load data in Figs. 6.11(b)
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to 6.12. This gives Table 6.6.

15 18 21 24 26
−150

0

100

time(s)

V
S

F
 a

t C
ut

1 
(N

)

Starboard
Port

(a) VSF at Cut1

15 18 21 24 26
−200

0

150

time(s)

V
B

M
 a

t C
ut

1 
(N

m
)

Starboard
Port

(b) VBM at Cut1

Figure 6.11 Local maximum and minimum values of vertical shear force (VSF) and vertical bending
moment (VBM) at longitudinal transducers at Cut1 at starboard and port side hulls, case 1114
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Figure 6.12 Local maximum and minimum values of vertical shear force (VSF) and vertical bending
moment (VBM) at longitudinal transducers at Cut2 at starboard and port side hulls, case 1114

It is seen that the largest starboard and port side deviation occurs at VSF at Cut2. Here
the absolute maximum values of the vertical shear forces and vertical bending moments are of
concern. It means that minimum VSF at Cut1, minimum VBM at Cut1, maximum VSF at
Cut2 and minimum VBM at Cut2 will be listed to represent the relative error. Table 6.7 then
presents the resulting relative error of the global forces at Cut1 and Cut2 due to the asymmetry
of measured values on starboard and port sides.
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Table 6.6 Relative deviation of peak values of vertical shear force (VSF) and vertical bending mo-
ment (VBM) in Figs. 6.11(a) to 6.12(b). ’Max.’ and ’Min.’ refer to maximum and minimum of the
corresponding load data.

VSF Max. at Cut1 Min. at Cut1 Max. at Cut2 Min. at Cut2
Relative deviation [–] 0.078 -0.091 0.123 -0.317

VBM Max. at Cut1 Min. at Cut1 Max. at Cut2 Min. at Cut2
Relative deviation [–] 0.030 -0.076 0.013 -0.055

Table 6.7 Relative errors in global loads due to roll, yaw and sway. Case 1114 with wetdeck slamming

VSF Cut1(N) VBM Cut1(Nm) VSF Cut2(N) VBM Cut2(Nm)
Relative Error 0.091 0.076 0.123 0.055

6.5 Sinkage and trim angle

The steady trim angle and sinkage of the vessel would effect the slamming occurrence. The
experimental trim angle is −0.0740 at zero forward speed and calm water. The negative value
means bow down. However, the trim angle will change with forward speed for a ship moving
in calm water. Further, the presence of incident waves interacting with the ship causes a mean
second order trim moment. This means a contribution to the trim angle that is proportional
to the incident wave amplitude square. The physical explanation is similar as for mean wave
drift forces (Faltinsen (1990)). Our numerical method can not estimate this effect and we must
rely on experimental recordings. However, the recordings based on the MRU and the Optical
measurement system as well as the measurements of the relative vertical motions by a wave
probe at the bow did not show consistent results.

The cases that we studied here have Froude number (Fn) between 0.30 and 0.33. Molland et al.
(1995) presented experimental mean sinkage and trim angles for different types of catamaran
hulls at different Froude numbers. However, there were no incident waves during the experiments.
The model shapes presented in their paper do not completely match ours, but the general
tendency of the influence of mean sinkage and trim angles on Fn is clear. The results show that
the mean trim angle starts to have a large influence from forward speed when Fn is larger than
0.35. The value was less than 0.25 degree when Fn < 0.35 for all the tested vessels. The mean
sinkage value depends on Fn but it is not larger than 5% of the ship draft when Fn ≤ 0.35. It
corresponds to that the mean sinkage is less than 0.05× 0.22 = 0.01m in our case. The analysis
in Section 6.5.1 will show the mean heave value is only −0.002m based on the experimental
results. The mean sinkage due to seiching has been discussed in Section 6.3, and is believed to
have negligible effects on slamming induced global loads.
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6.5.1 Sinkage effect

The influence of sinkage on global loads can partly be seen from the previous studies of the wave
elevation influence in Section 6.3. The reason is that both wave elevation and sinkage will affect
the relative vertical motion at the slamming position in a similar way. This means that there is
a similar influence on the wetted length of the wetdeck. However, the waves contribute directly
to the relative impact velocity, while the sinkage does not. We therefore has to investigate
separately the influence of wetdeck height.

10 10.5 11 11.5 12 12.5 13
−250

−200

−100

0

100

220

time(s)

V
S

F
 a

t C
ut

1 
(N

)

D=0.34m
D=0.35m

(a) VSF at Cut1

10 10.5 11 11.5 12 12.5 13
−250

−200

−100

0

100

200

300

time(s)

V
B

M
 a

t C
ut

1 
(N

m
)

D=0.34m
D=0.35m

(b) VBM at Cut1

Figure 6.13 The influence of wetdeck height measured from base line on vertical shear force (VSF)
and vertical bending moment (VBM) at Cut1 for case 1114, deck height D is at COG and is measured
relative to base line; Calculated values.

Table 6.8 The influence of wetdeck height on global loads for case 1114

Deck Height VSF Cut1(N) VBM Cut1(Nm) VSF Cut2(N) VBM Cut2(Nm)
0.34m 237.2 280.7 127.1 383.2
0.35m 214.8 229.0 108.9 345.0
Increase Ratio [-] -9.4 % -18.4% -14.3 % -10.0 %

Figure 6.13 and Table 6.8 show that when deck height is changed from 0.34m to 0.35m referring
to the base line and COG, peak values of VSF and VBM will be decreased at most by 18%. It is
noted that we have not changed the draft accordingly in the calculations of hydrodynamic loads
on the side hulls. Since vertical loads are considered, the draft has a minor influence relative
to length and breadth. In the experiments, the different measurement systems for motions gave
inconsistent results for mean values of motions. The vertical reference value for the optical
system can not be trusted. In order to make estimates, we have relied on the MRU system.
In case 1107, the MRU system gave −0.00069m sinkage at the point where the MRU system
was installed. Sinkage is defined as positive downwards. It is noted that the MRU system is
installed 2.08m from the stern, and that the global COG in our system is 1.632m from the stern.
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This means that the MRU position has the x-coordinate −0.448m in our global COG system.
Further, the MRU system gives the mean trim angle 0.6300 with positive value corresponding to
bow up. Based on the relationship between heave and pitch η3 − xη5 in our coordinate system,
a mean heave value of −0.002m is found. Based on this value and the previous deck height
analysis, we can estimate the error in global loads due to mean sinkage is around 3.0%, as shown
in Table 6.9. However, we here have in the estimate of sinkage assumed that the trim has no
uncertainty. This is not correct as will be clear in the next section on trim.

Table 6.9 Relative errors in global loads due to error in sinkage; Case 1114 with wetdeck slamming

VSF Cut1(N) VBM Cut1(Nm) VSF Cut2(N) VBM Cut2(Nm)
Relative Error 0.019 0.037 0.029 0.020

6.5.2 Trim effect

Figures 6.14 to 6.15 and Table 6.10 show that the inclusion of a small mean trim angle of 0.30

for case 1114 can greatly decrease the peak values. The increase of mean trim angle by 0.30 will
decrease the peak values of vertical shear force and bending moment at two cuts approximately
20%. Further, the maximum double amplitude values will be influenced at the similar rates.
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Figure 6.14 The influence of trim on vertical shear force (VSF) and vertical bending moment (VBM)
at Cut1 for case 1114. Calculated values.

The MRU and Optical system predicted for case 1107 mean trim angles of 0.6300 and −0.8540

respectively. This causes uncertainty in estimating the mean trim angle. The error due to slowly
varying seiching induced angle was discussed in Section 6.3 and gave negligible amplitude. This
is therefore unnecessary to consider in this context. Since the measurements for our case indicate
uncertainties, the experimental results presented Molland et al. (1995) are used as a basis for
the estimate. Molland et al. (1995) shows that the change in mean trim angles due to forward
speed are not larger than 0.250 in all the experiments done for Fn < 0.35. The mean trim angle
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Figure 6.15 The influence of trim on vertical shear force (VSF) and vertical bending moment (VBM)
at Cut2 for case 1114. Calculated values.

Table 6.10 Trim influence for case 1114. ’Max.’ means the maximum value in the global response
and ’Range’ means the value between maximum and minimum. Calculated values.

Trim (deg.) VSF Cut1(N) VBM Cut1(Nm) VSF Cut2(N) VBM Cut2(Nm)
0.00 (Max.) 237.2 280.7 127.1 383.2
0.30 (Max.) 200.8 204.0 98.3 320.1
Increase Ratio [-] -15.3 % -27.3 % -22.6 % -16.5 %
0.00 (Range) 446.0 513.4 205.5 749.2
0.30 (Range) 381.2 396.2 164.1 570.9
Increase Ratio [-] -14.5 % -22.8 % -20.2 % -23.8 %

at zero speed is in our case −0.0740. If 0.250 is taken as the mean trim angle, the relative error
for the slamming induced global loads is at most 0.23, as in Table 6.11.

Table 6.11 Relative errors in global loads due to error in trim; Case 1114 with wetdeck slamming

VSF Cut1(N) VBM Cut1(Nm) VSF Cut2(N) VBM Cut2(Nm)
Relative Error 0.128 0.228 0.189 0.137

6.6 Mass distribution

Since the mass distribution of the catamaran was reported in terms of rather few mass points
together with an estimated local pitch radius of gyration (See Appendix A.4), there is an un-
certainty related to the experimental mass distribution. Figures 6.16 to 6.17 show the effect on
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global loads by setting the local pitch radius of gyration of mass points equal to zero when no
wetdeck slamming occurs. This indicates that the effect of errors in mass distribution is not
dominant except for VSF at Cut2.
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Figure 6.16 Influence of local pitch radius of mass distribution on linear transfer function of vertical
shear force (VSF) and vertical bending moment (VBM) at Cut1 with U = 1.9m/s; No wetdeck slamming
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Figure 6.17 Influence of local pitch radius of mass distribution on linear transfer function of vertical
shear force (VSF) and vertical bending moment (VBM) at Cut2 with U = 1.9m/s; No wetdeck slamming

Figures 6.18 to 6.19 and Table 6.12 show the mass distribution effect on the global VSF and
VBM effect when wetdeck slamming happens for case 1114. It shows that the deviation can
be around 25%. We note from the figures that the different mass distribution will change the
eigenfrequencies of higher modes.

In reality the effect of error in mass distribution is far as extreme as shown in Figs. 6.18 to 6.19
and Table 6.12. However, we have no possibility to control this in more detail. Therefore this
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Figure 6.18 The influence of mass distribution on vertical shear force (VSF) and vertical bending
moment (VBM) at Cut1 for case 1114. Calculated values.
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Figure 6.19 The influence of mass distribution on vertical shear force (VSF) and vertical bending
moment (VBM) at Cut2 for case 1114. Calculated values.

Table 6.12 The influence of mass distribution on maximum values of global loads for case 1114

R55loc VSF Cut1(N) VBM Cut1(Nm) VSF Cut2(N) VBM Cut2(Nm)
�= 0 237.2 280.7 127.1 383.2
= 0 214.9 214.5 88.6 343.9
Increase Ratio [-] -9.4 % -23.6 % -30.3 % -10.3 %

source of uncertainty will not be included in the following combined error estimation.

We should also recall that we already have reported on a consequence of the error in the mass
distribution. This was associated with that mass distribution was not completely symmetric with
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respect to the center plane of the catamaran and caused an unintended small mean roll angle.
This contributed to that the ship heading was slightly different from head sea. The consequence
of this was also oscillatory roll, yaw and sway motions. This effect has been investigated in
Section 6.4.

6.7 Model geometry

Uncertainties occur due to manufacturing accuracy of the model. However, this is hard to
quantify. It can also occur due to wrong information. For instance we had for a long time been
informed to have a body plan that gives the bow ramp angle 6.350. Then it turned out that it
was 3.720 (See Fig. 6.20). We will illustrate the sensitivity of global wetdeck induced loads to
the bow ramp angle.
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Figure 6.20 Longitudinal cross-section of wetdeck surface illustrating bow ramp angles 3.720 and
6.350. x = 0 refers to the longitudinal COG of the catamaran.

Figures 6.21 to 6.22 compare the results for a bow ramp angle of 3.720, of 6.350 and flat wetdeck
case. Table 6.13 shows that the relative deviation can be around 50% between the two finite
angle cases. Figures 6.21 to 6.22 and Table 6.13 present also the data for theoretical results
when the wetdeck is flat. Then the relative deviation of global forces for the flat deck and the
3.720 bow ramp case is around 15%.

Figure 6.23 shows the time history of the vertical impact load in the two bow ramp cases. It
should be noted that the water hits initially at the front deck end for the 3.720 bow ramp case
while it hits initially at a distance from the front deck end and in a flat part of Deck1 for the 6.350

bow ramp case. This gives larger initial impact force for the 6.350 bow ramp case as discussed
in Section 1.2. This is also shown in Fig. 6.23. The peak value for case 6.350 reaches 12000N .
However, the 3.720 bow ramp case give much larger global loads than the 6.350 bow ramp case.
The force magnitude except for the initial phase is generally much larger for the 3.720 bow ramp
case. Furthermore, the slamming load lasts much longer for the 3.720 bow ramp case. This is
a simple consequence of that the higher bow ramp angle cause a larger vertical distance to the
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Figure 6.21 Influence of bow ramp angle on vertical shear force (VSF) and vertical bending moment
(VBM) at Cut1 for case 1114; Calculated values
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Figure 6.22 Influence of bow ramp angle on vertical shear force (VSF) and vertical bending moment
(VBM) at Cut2 for case 1114; Calculated values.

Table 6.13 Influence of bow ramp angle on maximum values of global loads for case 1114; the ’increase
ratio’ is calculated by comparing bow ramp angles 6.350 and 3.720 cases, and the ’flat’ and 3.720 cases;
3.720 is the base case in both calculations.

Wetdeck VSF Cut1(N) VBM Cut1(Nm) VSF Cut2(N) VBM Cut2(Nm)
Bow ramp 3.720 237.2 280.7 127.1 383.2

Bow ramp 6.350 170.1 142.8 66.1 238.7
Increase Ratio [-] -28.3 % -49.1 % -48.0 % -37.7 %

Flat 231.7 242.8 110.5 329.5
Increase Ratio [-] -2.1 % -13.5 % -13.0 % -14.0 %
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mean free surface. This explains the higher global loads for the 3.720 bow ramp case and shows
the sensitivity of slamming.
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Figure 6.23 Vertical impact force comparison
for bow ramp angles 3.720 and 6.350, case 1114;
Calculated values.
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Figure 6.24 Vertical impact force during ini-
tial slamming phase; Bow ramp angle 6.350, case
1114; Calculated values.

The above analysis shows the influence of the angle between water and ramp to the global
response. Further studies are needed to find out the sensitivity to the other geometric shapes
of the wetdeck in the bow area. This example also illustrates consequences of possible human
errors in the experimental results. We certainly hope that we have got the information about the
bow ramp angle right, but there could be other undetected errors like wrong distance between
the base line and the wetdeck.

6.8 Summary

Assuming that all the error sources discussed above are stochastically independent, we can
combine the effect of the elementary error sources by ∆ =

√∑
i∆

2
i . Here ∆i is the relative

error associated with error source number i and ∆ is the combined relative error. This gives the
results presented in Table 6.14.

It is seen from Table 6.14 that the largest contribution is from the trim angle. The errors
due to the spatially changing incident waves and in the wave measurement are equally the
second most important for VBM. The errors associated with roll, yaw and sway is the second
most important for VSF. We can now relate the error estimates to the comparisons between
experiments and theory presented in Figs. 5.23 to 5.24 for case 1114. The agreement will be
improved if experimental relative error is accounted for, as shown in the following Figs. 6.25 and
6.26.

Figures 6.25 and 6.26 show that numerical values are almost located within the experimental
band. However, the values at the Cut2 have still visible differences. Obviously there are also
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Table 6.14 Relative error in global loads due to individual error sources as well as combined experi-
mental relative error due to these error sources; case 1114

Error source VSF Cut1(N) VBM Cut1(Nm) VSF Cut2(N) VBM Cut2(Nm)
speed 0.033 0.032 0.029 0.030
Wave amplitude 0.055 0.102 0.087 0.057
Seiching ∼ 0.0 ∼ 0.0 ∼ 0.0 ∼ 0.0
Wave measurement 0.055 0.102 0.087 0.057
Roll, yaw and sway 0.091 0.076 0.123 0.055
Sinkage 0.019 0.037 0.029 0.020
Trim 0.128 0.228 0.189 0.137

COMBINED 0.179 0.285 0.260 0.172
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Figure 6.25 Comparisons between Experimental and Numerical values of vertical shear force (VSF)
and vertical bending moment (VBM) at Cut1 for case 1114; Experimental data band based on the
relative error in Table 6.14, ’E.’ means that the experimental data are obtained by adding the values
of the starboard and port sides.

theoretical error sources, which will be discussed in the following chapter. It will be shown that
hull interaction can be an important theoretical error source. The nonlinear forces on the side
hull may also contribute to the deviation. It is noted here that due to the difficulty in making
reasonable error estimates associated with mass distribution and model geometry, they are not
included in Table 6.14. Furthermore, no random errors are accounted for in Table 6.14. Since the
experiments were not repeated, this is impossible to do. This means that only systematic errors
are considered. However, there may be other systematic errors associated with instrumentation,
data acquisition and data analysis. Since we did not do the experiments, and there is a long
experience with the equipment and data procedure, we chose in this context not to consider
these error sources.
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Figure 6.26 Comparisons between Experimental and Numerical values of vertical shear force (VSF)
and vertical bending moment (VBM) at Cut2 for case 1114; Experimental data band based on the
relative error in Table 6.14, ’E.’ means that the experimental data are obtained by adding the values
of the starboard and port sides.
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Chapter 7

Error Analysis in the Theory

7.1 Introduction

Theoretical errors can be classified as physical, human and numerical errors (See Faltinsen and
Svensen (1990), The report of the 19th ITTC panel on validation (Aláez et al. (1990))). Moan et
al. (1991) in the report of the committee IV.1 on design philosophy of the 11th ISSC illustrated
how the analysis procedure can be divided into different stages: physical reality, conceptual
model, continuous mathematical model, discrete numerical model, computer code, and results
presentation by available input data. Each step involves some specific error sources and needs
validation or verification.

Herein, physical errors are associated with that we have made a conceptual model of physical
reality and represented this by a continuous model based on some assumptions or simplifications
of the physical effects. The model needs then to be validated. That means for instance compar-
isons with model tests with properly controlled experimental errors. Benchmark numerical codes
can also be used as part of the validation process. Since no analytical solutions exist of the total
continuous mathematical model, the model has to be discretized and numerical errors would
obviously arise. Convergence studies and comparisons with analytical solutions for specific cases
and/or with benchmark numerical results based on the same continuous mathematical model
are means to verify that the discretized mathematical model is consistent with the continuous
mathematical model.

Human errors can be involved at different stages of the process. Human errors in implementing
a numerical method are due to programming errors, use of wrong input data or interpretation
errors of results. Presence of no programming errors can never be guaranteed, but will obviously
be decreased by increasing number of verification and validation tests. Since the main program
is self made except for the part that calculates hydrodynamic coefficients on the side hulls, the
danger of wrong input data and interpretation errors is minimized. Another way of detecting
human errors is by comparative studies by independent users and computer programs based on

137
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the same theory. This has for instance been done by ITTC, ISSC and Nielsen and Herfjord
(1992) for wave induced motion and loads on ships and marine structures. Since the total theo-
retical model for global wetdeck slamming induced response is new and developed as a part of
this thesis, this is obviously impossible in our case. So we focus on the physical and numerical
errors. It should be noted that systematic verification and validation of our theoretical model
have been done in Chapter 5 for both with slamming and without slamming cases. Verification
studies for the slamming model were presented in Chapters 3 and 4. The error source investi-
gations in this chapter will make the numerically and physically theoretical error analysis more
complete. However, many effects can only be qualitatively discussed.

The tested cases 1111, 1112,1114, 1115 with wetdeck slamming (See Table A.7) will be discussed
for physical error effects. The most severe slamming case, i.e. case 1114 with T = 1.8s,
U = 1.8m/s and ζa = 0.041 in head sea, is still used in the quantitative error analysis.

7.2 Physical errors

In this section, the physical errors associated with

• incident waves

• side hull hydrodynamics: linear hydrodynamic effects, nonlinear side hull forces

• slamming modelling: 3D slamming, Kutta condition, other slamming model errors

• structural modelling: transverse bending

• transient phase

will be discussed.

7.2.1 Incident waves

Linear incident waves are assumed in calculating the global loads. Second order wave theory was
used in calculating the impact forces on a fixed horizontal platform deck in Fig. 4.4. This showed
that second order wave effects have a small influence on the impact loads for the incident wave
conditions that we consider for the catamaran cases. The consequence is also a small influence
on the global response. This indicates that the linear wave assumption for the cases studied, is
appropriate.

7.2.2 Side hull hydrodynamics

Important theoretical error sources are associated with the hydrodynamic loads on the side
hulls, when using a linear frequency domain strip theory solution where the frequency corre-
sponds to the frequency of encounter and no hydrodynamic interaction between the side hulls
are considered. The error sources are related both to linear and nonlinear hydrodynamic loads.
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Linear Hydrodynamic effects

There are two main subjects to be considered. One is associated with using a frequency domain
solution instead of a time domain solution. The other subject is related to the errors in the
frequency domain solution.

Since the impact on the wetdeck causes transient hydrodynamic loads on the side hulls, a time
domain solution should ideally have been used instead of a frequency domain solution for the
linear hydrodynamic loads on the side hulls. A time domain solution for hydrodynamic effects
means that the hydrodynamic loads due to body motion can not be expressed explicitly in terms
of added mass and damping terms. Instead convolution integrals are used (Ogilvie (1964)). It is
straightforward theoretically to transform a linear frequency domain solution to a time domain
solution (Ogilvie (1964)), but the numerical implementation is troublesome. It needs very accu-
rate estimates of either added mass or damping coefficients for all frequencies. The numerical
inaccuracies using a time domain solution as outlined by Ogilvie (1964) have for instance been
pointed out by Adegeest (1995) and Rognebakke and Faltinsen (2002).

Only the encounter frequency is considered in this thesis when calculating added mass and damp-
ing coefficients. However, the frequencies associated with transient wetdeck slamming induced
global two-node and three-node bending differ clearly from the frequency of encounter. It has in
Chapter 5 been pointed out that this causes some differences between experimental and theoret-
ical natural frequencies for two-node and three-node bending. But this effect has small influence
on maximum wetdeck slamming induced global loads. The error sources due to the presence of
many frequencies will therefore not be pursued further. Instead the following discussions on the
error sources of the linear side hull hydrodynamics will be based on a frequency domain solution.

The strip theory assumes implicitly small or moderate Froude number. It does not account for
all the wave systems generated by the ship hull. It neglects the interaction between the local
steady and unsteady flow. It is basically a high-frequency theory derived for monohulls (Ogilvie
and Tuck (1969)). The high-frequency assumption implies that the resulting waves have a wave
length of the order of cross-sectional length dimension. When we apply the strip theory to the
catamaran, hydrodynamic interaction between the side hulls is neglected. The error caused by
this will be further discussed in the following text.

The 21
2
D high speed theory by Faltinsen and Zhao (1991) has a better theoretical basis than the

strip theory, when Froude number is larger than 0.4 ∼ 0.5. It accounts for the divergent wave
systems and neglect the transverse wave systems. Froude number in cases 1111, 1114, 1115 with
the length 3.78m between perpendiculars are 0.302, 0.296 and 0.328 respectively. However, if
only Body1 is considered, then the Froude number is respectively 0.483, 0.472 and 0.525 based
on using the length 1.48m of the forward segment as a characteristic length. Since there is no
rational way to combine the 21

2
D theory and the strip theory, strip theory is applied here.

The strip theory predicts only wave system which has wave crests parallel to the ship’s longitu-
dinal axis and extending over the ship length. This is inconsistent with the theoretical far-field
wave picture. If interaction between the ship hulls is considered by strip theory, it will cause
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unrealistic wave interaction between the two hulls at certain frequencies. This can cause large
errors in motion and load predictions (Hadler et al. (1974)), and is the reason why hydrodynamic
hull interaction is neglected in this study.

If the unified theory by Newman (1977) was applied to a catamaran by assuming that the
two hulls are hydrodynamically in each others far-field, a more realistic hull interaction can
be predicted (Ronæss and Faltinsen (2000)). The unified theory assumes implicitly small and
moderate Froude number (Ronæss (2002)) and neglects the interaction between unsteady and
local steady flow. The results of wave predictions by a single hull presented by Ronæss and
Faltinsen (2000) can be used to qualitatively judge the importance of wave interactions between
the two hulls. The interior angle α between the outer part of the wave system and the ship’s
longitudinal axis can be expressed as

tanα =
g

2ωeU
(7.1)

This implies that the waves caused by one of the hulls will be incident to the other hull at a dis-
tance of 65.56% of the length between perpendiculars from AP for case 1114. The corresponding
numbers for cases 1111, 1112, 1115 are respectively 50.15%, 63.95% and 65.56%. These values
show that the length along the ship side hulls of wave interaction is similar for the cases studied.

xO

y

α

?% of LPP

FP APLPP

Figure 7.1 Illustration of hull interaction due to wave generation; α is the angle between center line
of one hull and the outer part of the wave system generated by one hull without the presence of the
other hull.

Wave interaction is of special concern if natural modes for the fluid motion between the hulls are
excited. The most relevant mode for heave and pitch motions is the piston mode similar to what
happens in a moonpool. This was extensively discussed in Section 5.6.3, where it was found to
be of concern for case 1115. This discussion shows that hull interaction should be examined.

We will also illustrate by the model tests that hull interaction must be present. Figure 7.2
shows calculated and experimental relative vertical motion amplitudes at the midpoint of the
catamaran, i.e. 1.96m from AP along the mid longitudinal section. No wetdeck slamming
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occurs. The calculations assume that the wave elevation is the incident wave elevation. This
is a good approximation at the bow as shown by Fig. 5.5. However, this is not the case at the
midpoint. If we use the simple wave angle formula in Eq. (7.1), it shows also that there will
be waves caused by the hull at the midpoint of the catamaran. Further, since the formula as
described above implies that waves generated by one hull affect the other one, it shows that hull
interaction must be considered.
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Figure 7.2 Experimentally and theoretically predicted transfer function (RAO) of relative vertical mo-
tions at 1.96m from AP. Cases without wetdeck impact. U = 1.9m/s in the calculations; Experimental
forward speed slightly different (See Table A.7 in Appendix A). Head sea.

An alternative theoretical way to calculate the hydrodynamic loads on the side hulls would for
instance be to use a 3D Boundary Element Method with Rankine singularities and account for
the proper free surface conditions. This would be a more numerically oriented method than
the unified theory. It will require significantly longer simulation time and computer storage.
This may imply practical limitations if time domain solution is needed to obtain statistical de-
sign values. Care must be shown in minimizing numerical errors for instance due to the panel
size, implementation of a far-field condition and numerical differentiation in the free surface
conditions. Since potential flow is then assumed, viscous effects must be included by empirical
formula. However, since the considered hull has no sharp corner at transverse cross-sections
along the ship, no significant vortex shedding in transverse cross-sectional planes of the ship is
expected. This minimizes viscous effects. Using a model based on Navier-Stokes equation to
rationally include viscous effects is still in its infancy relative to a potential flow method.

We should ideally have estimated the errors associated with all the above-mentioned error sources
and analyzed the consequence for the response variables of interest. This may have been possi-
ble if a benchmark numerical method was available. We are aware of numerical methods which
are theoretically more sophisticated than ours (See for instance the state-of-the-art review by
Jensen et al. (2000)). However, if a more sophisticated code was applied, we had to prop-
erly control numerical errors when applying this method. Further, this method may also have
physical errors. For instance not all methods account properly for the interaction between local
steady and unsteady flow. Bertram (1995) has discussed the importance of this effect. Flow
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separation from a transom stern is another difficulty occurring typically for Froude numbers
larger than 0.3. Another matter which is relevant but does not strictly speaking belong in a
section on linear effects, is the ability to handle nonlinear effects. This is needed in order to
have a consistent rational method to predict wetdeck slamming induced global loads. However,
this is still associated with difficulties for instance in how to handle breaking waves, body-water
intersection and flow separation. Therefore rational linear methods are extended to nonlinear
flow simulations by for instance including nonlinear Froude-Krylov and restoring loads and to
find body-water intersection by a Von Karman type method.

Instead we will first use the linear strip theory in the frequency domain, i.e. for cases with no
slamming, and compare with experiments. Some of this has already been presented in Chapter
5. For instance Fig. 5.5 shows reasonable agreement of the amplitude of relative motion at the
bow. Since phases also play an important role in slamming predictions, phases should ideally
also be compared. However, the recordings of different response variables were not synchronized
relative to the incident wave measurements. An attempt was then made to estimate phases
by using measured relative vertical motions at the bow, in combination with heave and pitch
records. This was done by systematically varying the phasing between the recordings and by
assuming the wave at the bow was unaffected by the ship and equal to regular waves with a
given amplitude. However, the procedure was not completely satisfactory. One possible reason
is that the incident wave amplitude was varying along the track of the vessel. This variation
may cause a 10% change in wave amplitude as discussed in Section 6.3. In the following the
detailed procedure for case 1114 is described.

As mentioned earlier, cases 1114 and 1107 had the same incident wave period T = 1.8s but the
expected (or intended) wave amplitudes were respectively 0.05m and 0.015m. There is severe
wetdeck slamming in case 1114 while no slamming happens in case 1107. The phases will be
estimated from the data from case 1107 in order to minimize nonlinear effects . Since our linear
theory is also part of the model for wetdeck slamming induced response, we will then later use
the experience from case 1107 to see the consequences for wetdeck slamming induced global
loads in case 1114.

It has been shown implicitly in Figs. 5.6 and 5.7 that the pitch motion at the mid segment could
represent the pitch in the forward segment well for cases without slamming. So in this investi-
gation a rigid catamaran is assumed to find phases by matching the numerical and experimental
undisturbed incident waves at the bow point.

The velocity potential ΦI of the incident waves is in our numerical model expressed as

ΦI =
gζa
ω0

ekzei(ωet−kx) (7.2)

where ζa is the incident wave amplitude. x and z are defined by the global coordinate system in
Fig. 2.3. ω0 and ωe are respectively circular frequencies of waves and encounter. k is the wave
number and i is the complex unit. By using the linear dynamic free surface condition, we can
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express the incident wave elevation ζ as

ζ = −1

g
(
∂ΦI

∂t
+ U

∂ΦI

∂x
) on z = 0

= −iζaei(ωet−kx) = ζae
i(ωet−kx−π

2
)

= ζae
i(ωet+αζ) with αζ = −kx− π

2
(7.3)

The relative vertical motion at the bow can be expressed as the relative displacement between
the vertical deck motion and the incident waves at the bow. Then the incident wave elevation
at the bow can be written as

ζaNe
i(ωet+αζN ) =η3aNe

i(ωet+α3N ) − xNη5aNe
i(ωet+α5N )

− ηraNe
i(ωet+αrN ) (7.4)

Here the subscript N refers to the ’Numerical’ system. xN is the x-coordinate of the bow point
in the global COG system, corresponding to xN = −2.433m. ηraN and αrN are the amplitude
and phase of relative displacement at the bow point. Similarly ηiaN and αiN are amplitude and
phase respectively, for heave (i = 3) and pitch (i = 5). Further, αζN = −kxN − π

2
as defined in

Eq. (7.3). Here all the phases are relative to eiωet.

There is a similar relationship as in Eq. (7.4) for the experimental system. Experimental data by
the MRU system are used in our estimates. Heave and relative vertical displacement are in the
experiments positive downwards into the water, i.e. opposite to our numerical system. However,
the numerical and experimental systems have the same definition of positive pitch. This means
positive pitch corresponds to bow up. The incident waves at the bow can then be expressed as

ζaEe
i(ωet+αζE) =− η3aEe

i(ωet+α3E) − x′Eη5aEe
i(ωet+α5E)

− (−ηraEei(ωet+αrE))
(7.5)

where subscript E refers to experimental data. The symbols have otherwise the same physical
definition as in Eq. (7.4). ζaEe

i(ωet+αζE) is unknown and will be calculated by the right hand side
of Eq. (7.5) with αζE = αζN . The measured bow point is here referred to the MRU measurement
position with x′ positive pointing towards the stern. This gives x′E = −1.985m.

Figure 7.3 presents the experimental time records of heave and pitch from the MRU system
for case 1107. It covers a steady-state time window with 9 encounter periods from t = 15.74s
to 25.74s. Based on the data in Fig. 7.3, the vertical deck motion at the bow can be found
from η3E + x′Eη5E as shown in Fig. 7.4. Both the calculated and measured relative vertical
displacement curves at the bow in Fig. 7.4 follow the experimental direction definition, i.e.
positive downwards. We can see that the two curves in Fig. 7.4 are almost 1800 out of phase.
Since the MRU and the wave-probe measurements at the bow were not synchronized, these two
curves should be phase shifted. It means that both curves in Fig. 7.4 should be phase shifted,
such that a reasonable incident wave is obtained. Here η3E + x′Eη5E curve was for instance time
shifted to the right with δt = 0.34s. Then the incident wave at the bow is found as in Fig. 7.5,
by subtracting the shifted curve of ’η3E + x′Eη5E’ from the curve ’Rel.Disp.Exp.’. This means
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Figure 7.3 Time record of heave and pitch measured by the MRU system for case 1107.

that there is a phase shift of αs = −ωeδt = −1.98rad with ωe = 0.93rad in this case 1107. A
mean value of 0.0265m was deducted to get Fig. 7.5.
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Figure 7.5 Estimated incident waves at the
bow based on experimental data for case 1107

The incident wave at the bow given by Eq. (7.5) should then be expressed as

ζaEe
i(ωet+αζE) =η3aEe

i(ωet+α3E+π+αs) − x′Eη5aEe
i(ωet+α5E+αs)

− ηraEe
i(ωet+αrE+π)

(7.6)

Before we can match Eq. (7.6) with Eq. (7.4), one should notice that x′E refers to the MRU
measurement point while xN is relative to the global COG. So a coordinate transformation is
needed. This leads to a phase difference for heave. This is expressed as in Eq. (7.7), with positive
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direction downwards.

η3E COG = η3aEe
i(ωet+α3E) + (x′E − xN)η5aEe

i(ωet+α5E)

= η3aE COGe
i(ωet+α3E COG) (7.7)

This will give a new curve, in which phase (α3E COG) relative to the incident waves at the bow
can be expressed as

α3E COG − αζE = α3E COG − α3E︸ ︷︷ ︸
δ33 COG

+α3E − αζE︸ ︷︷ ︸
δζ3 mru

(7.8)

Here δ33 COG is calculated from the two heave curves at the MRU measurement point and COG
of catamaran. Further, δζ3 mru is calculated from the heave curve in Fig. 7.3 and the estimated
incident wave at the bow in Fig. 7.5.

Then Eq. (7.6) can be expressed by referring to the global COG system, as

ζaEe
i(ωet+αζE) =η3aE COGe

i(ωet+

α′
3E︷ ︸︸ ︷

α3E COG + π + αs) − xNη5aEe
i(ωet+

α′
5E︷ ︸︸ ︷

α5E + αs)

− ηraEe
i(ωet+αrE+π)

(7.9)

Further, the phase difference can be expressed as

δ12 = α2 − α1 = −ωe(t2 − t1) (7.10)

for two sinusoidal curves defined as

y1 =cos(ωet+ α1) = cos(ωe(t+ t1))

y2 =cos(ωet+ α2) = cos(ωe(t+ t2)) (7.11)

Based on the relationship in Eqs. (7.11) and (7.10), and by comparing the curves in Figs. (7.3)
to (7.5), we can get the phase differences as follows

δζ3 mru = α3E − αζE = 3.420 rad

δζ5 mru = α5E − αζE = 0.845 rad

δζr mru = αrE − αζE = 1.665 rad

δ33 COG = α3E COG − α3E = −0.551 rad (7.12)

By using Eqs. (7.10), (7.8) and (7.12), we can now find the phase difference between motions
relative to incident waves at the bow based on experimental data, i.e.

δ3ζ E = α′
3E − αζE

= α3E COG + π + αs − αζE

= δ33 COG + δζ3 mru + π + αs (7.13)

δ5ζ E = α′
5E − αζE

= α5E + αs − αζE

= δζ5 mru + αs (7.14)
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The phases of the motions relative to the incident waves at the same point should numerically
and experimentally be the same, i.e.

αiN − αζN︸ ︷︷ ︸
δiζ N

= α′
iE − αζE︸ ︷︷ ︸
δiζ E

(7.15)

with i = 3, 5 for heave and pitch, respectively.

Together with Eq. (7.13) and using that αζN = αζE = −kxN − π
2
, we get

α3N = δ3ζ E − (
π

2
+ kxN) (7.16)

α5N = δ5ζ E − (
π

2
+ kxN) (7.17)

Finally the experimentally based phase as well as the RAO values are derived as presented in
Table 7.1. The table also gives the corresponding theoretical data based on the rigid catamaran
for the no slamming case. It shows that the difference between theory and experiments is much
larger for phases than for the RAO values.

Table 7.1 Predictions of phases and amplitudes based on experimental data for heave and pitch for
case 1107. ’Deg.’ refers to the unit of degree.

heave pitch
Mode RAO (m/m) Phase (Deg.) RAO (Deg./m) Phase (Deg.)
Num. 0.85 8.0 1.29 48.0
Exp. 0.65 -46.1 1.35 18.0

The experimentally based data in Table 7.1 are used instead of those from the strip theory based
predictions in the numerical calculations of wetdeck slamming induced global loads. This means
that they are used in the contribution from linear theory to relative vertical motions, relative
impact velocity and acceleration. The following Figs. 7.6 and 7.7 show that the relative vertical
motions by strip theory based and the experiment based estimation give phase differences in
global response. However, the maximum values are not greatly influenced. The oscillations
following the initial oscillation after impact show large differences in amplitude. The estimated
data is somehow not so reliable, but it demonstrates that the phases matter. The reason why
the experimentally obtained phases are not under full control, is that the incident regular waves
with constant amplitude is assumed. The results in Fig. 7.5 do not show this. It has already
been mentioned that the incident wave amplitudes may in reality have a 10% variation along
the track of the vessel.

We will use the results as an indicator of physical errors associated with our model for linear
hydrodynamic loads on the side hulls. The maximum values will be concentrated on. By taking
the experimentally based values as the ’truth’, the relative errors are as presented in Table 7.2.



7.2. PHYSICAL ERRORS 147

10 10.5 11 11.5 12 12.5 13
−250

−200

−100

0

100

200

260

time (s)

V
S

F
 a

t C
ut

1 
(N

)

Num.
ExpBased

(a) VSF at Cut1

10 10.5 11 11.5 12 12.5 13
−250

−200

−100

0

100

200

300

time (s)

V
B

M
 a

t C
ut

1 
(N

m
)

Num
ExpBased

(b) VBM at Cut1

Figure 7.6 Comparison of numerical results with experimentally based (Exp.Based) motions and
without experimentally based corrections; Vertical Shear Force (VSF) and Vertical Bending Moment
(VBM) at Cut1 for case 1114.
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Figure 7.7 Comparison of numerical results with experimentally based (Exp.Based) motions and
without experimentally based corrections; Vertical Shear Force (VSF) and Vertical Bending Moment
(VBM) at Cut2 for case 1114.

Table 7.2 Relative theoretical errors in describing maximum values of wetdeck slamming induced
global loads due to physical errors in describing linear hydrodynamic loads on the side hulls; case 1114.
VSF: vertical shear force; VBM: vertical bending moment.

Exp.Based VSF Cut1(N) VBM Cut1(Nm) VSF Cut2(N) VBM Cut2(Nm)
No 237.1639 280.7300 127.0879 383.2460
Yes 253.2223 288.8660 114.3323 425.0285
Relative error 0.0634 0.0282 0.1116 0.0983
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Nonlinear side hull forces

Nonlinear side hull forces will matter for cases with or without wetdeck slamming. This is tradi-
tionally done by including nonlinear hydrostatic restoring and Froude-Krylov forces and adding
water entry forces by a Von Karman approach (e.g. Wu and Moan (1996)). A comparative
study presented by Jensen et al. (2000) for the S175 monohull ship showed that this in combi-
nation with strip theory could explain the nonlinear trends in the experiments. However, this
nonlinear effect was small relative to linear side hull effects. Further, since the studied side hulls
do not have large flare, we should not expect dominant contribution to the global loads from
the nonlinear hydrodynamic loads on the side hulls.

However, including nonlinear side hull forces will affect relative vertical motions and impact
velocities. This alters the slamming loads and therefore the global loads. We can therefore not
conclude based on the S175 hull investigations. Since the different nonlinear terms may cause
cancelling effects (Sagli et al. (1997)), care should be shown when using different methods to
calculate the nonlinear forces. Wu et al. (1996) investigated the nonlinear side hull effects on
the global hydroelastic response for a catamaran. Their catamaran had similar body geometry
as ours. The connecting parts are much more soft and therefore more elastic than ours. No
wetdeck slamming was accounted for. They showed that including the nonlinear side hull terms
could improve the agreement between the theoretical and experimental results. However, in
wetdeck slamming cases studied here, connections are much more rigid. This may mean that
global hydroelastic effect due to including the nonlinear side hull effects could be less influential.
Further, as shown in experimental and theoretical results in Chapter 5, the force response when
wetdeck slamming occurs is dominated by the wetdeck slamming induced part, rather than the
response part from wave excitation forces on the side hulls. Further studies are needed to get a
complete assessment.

7.2.3 Slamming

3D slamming

Ge et al. (2002a) studied theoretically initial 3D wetdeck slamming effects associated with roll.
It requires that the water initially hit at a flat part of the deck away from the front end. A
semi-elliptic approximation of the wetted surface was made. The semi-axis of the ellipse was
determined by finding the geometrical intersection between the incident wave and the deck. The
impact loading F3 was expressed in terms of the time derivative of infinite frequency heave added
mass A33 times relative impact velocity based on Scolan and Korobkin’s (2001) formula. A33

is given analytically in terms of the complete Elliptic function which depends in a simple way
on the semiaxis of the semi-elliptic approximation of the wetted surface. The formulas are as
follows

F3 =
d

dt
(A33V ) with A33 =

2π

3

ρa2b

E(e)
(7.18)

Here e =
√

1− (a/b)2 with b > a, and E(e) is the complete elliptic function. a and b are the
semi-axis of the elliptic approximation of the wetted area. In this qualitative estimate, V is
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approximated as the relative impact velocity at the initial instant of slamming.

Ge et al. (2002a) showed that using this approach in an initial phase until the whole cross-section
of the deck was wetted gave small differences in global loads relative to using a 2D slamming
model. However, this was a case study and the conclusions should not be generalized without
further investigations. Since the water in case 1114 hits initially at the front end of the wetdeck
in the numerical model, this 3D slamming model can not be applied. Further, in the theoretical
error analysis, we should assume head sea with no effect of roll, yaw and sway.

Since a catamaran at high-forward speed is considered and the wave impact occurs in forward
part of the deck, the free surface elevation can to a large extent be approximated by the incident
waves. Further, the horizontal cross-section of the deck has a flat surface. The slamming induced
flow can therefore be approximated by 2D flow in longitudinal cross-sectional planes.

However, there is in reality local run-up at the side-hulls. This causes 3D slamming effects. A
measure of the thickness of the run-up can be seen from the theoretical water entry analysis
by Zhao and Faltinsen (1993). The studies are for water entry of wedges with constant impact
velocity. The deadrise angle varied between 40 and 810. The forward speed causes the local
run-up to initially hit aft of what a strip theory predicts. This may be explained by a 21

2
D

nonlinear theory by considering earth-fixed transverse cross planes and let the ship move with
forward speed through the cross-sectional planes. One can then conceptually understand that
any flow disturbance created in a ship-fixed cross-sectional plane will move downstream with
the forward speed. A strip theory does not account for this. A further analysis is needed to
quantify the local run-up effect on the wetdeck slamming.

Kutta condition

In Chapter 4, calculations for the rigid catamaran case showed that Kutta condition at the
aft intersection point between deck and free surface changes the force history and corresponding
global responses, especially during the water exit phase. However, in the cases studied in Chapter
5 with the flexible model, the influence from Kutta condition is negligible. One reason for this
difference may be the shorter time duration here (about 0.28s) relative to the rigid catamaran
case presented in Chapter 4 (around 0.4s). Figure 7.8 shows that applying Kutta condition has
a small influence on the time history of the vertical impact force on the wetdeck. This is based
on case 1114 with 3.720 bow ramp angle. Higher modes than the two-node bending mode are
neglected. We should note that the impact occurs initially at the bow end of the wetdeck. This
means initially zero slamming force. The visible spike in the numerical results corresponds to
when forward end of the wetted length leaves the bow end during the water exit phase . It
must be a numerical error and has no influence on global wetdeck slamming induced loads, as
discussed in Section 5.6.

Other slamming model errors

The slamming model comparisons for a rigid body in Chapter 4 have shown that the additional
effects of using Wagner method during the water entry phase and Fourier expansion of relative
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Figure 7.8 The influence on the vertical impact force by using the slamming model with Kutta
condition; case 1114

velocity of VR have a negligible influence on global response for our studied rigid body cases.
The above analysis indicates that the global hydroelastic response is not strongly sensitive to
the theoretical slamming model as long as 2D flow conditions are assumed.

The wetdeck slamming model assumes two-dimensional flow in longitudinal cross-sectional planes.
This is based on that the wetdeck has a horizontal cross-sectional shape and that wetdeck im-
pact due to local run up at the side hulls have minor global effect. However, wetdecks may have
wedge shaped cross-sections. This implies that a three-dimensional slamming model should be
considered. The studies by Scolan and Korobkin (2001) and Chezhian (2002) are useful in this
context. They both use a Wagner type method to find body-water intersection. This has to
be modified to a Von Karman method to describe the water exit phase. Scolan and Korobkin’s
method is most appropriate for small angles β between undisturbed free surface and body sur-
face. Corresponding two-dimensional studies by Faltinsen (2002) show that it is more correct to
satisfy the exact body boundary condition like Chezhian does for β >∼ 10o. 3D flow will also
matter for our wetdeck shape in oblique sea.

7.2.4 Structural modelling

Transverse bending

Ideally transverse bending modes should be included in the theoretical model for head sea condi-
tions. The transverse bending mode can be important in oblique sea or beam sea cases. However,
in head sea or close to head sea cases, the transverse bending moment has much less influence
than the longitudinal ones (e.g. Faltinsen et al. (1992)). In this section it is shown that the
transverse bending has a small effect on the longitudinal response of concern herein.

The experimental results from transverse transducers 5888, 5889 and 5890 (See Fig. A.4) can
be used to investigate transverse bending, pitch connecting moment and vertical shear force in
a longitudinal cut of the wetdeck. By adding the results from these transducers, we find the
vertical shear force and transverse bending moment in a longitudinal cut of the deck at the center
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plane of the catamaran. The transducers are not exactly at the center plane (See Table A.3),
but the small differences in positions from the center plane are believed to cause negligible errors.

Figures 7.9 to 7.12 show the results for cases 1107 and 1114. The two cases have the same wave
period T = 1.8s. The forward speed is 1.9m/s and 1.8m/s respectively for cases 1107 and 1114.
However, the incident wave amplitude is sufficiently small in case 1107 for no wetdeck slamming
to occur like it does in case 1114.

14 16 18 20 22 24 26
−10

−5

0

5

10

15

20

time (s)

V
S

F
 a

t l
on

gi
tu

di
na

l c
ut

 (
N

)

(a) VSF at the longitudinal center plane cut

0 1 2 4 6 8 10 12 14
0

3

6

9

12

15
×1000

S
pe

ct
ru

m
 (

N
2 s)

frequency (Hz)

0.33841

0.93063

(b) FFT analysis of time record from t = 14s to 25.81s
in Fig. 7.9(a)

Figure 7.9 Time record and energy analysis of measured vertical shear force (VSF) at the longitudinal
center plane cut of the catamaran; Case 1107. In (b), numbers associated with the spectral peak values
are the exact numbers for the corresponding frequencies.

Figures 7.9 to 7.12 present both the time history and spectral analysis of vertical shear force and
transverse bending moment in the longitudinal center plane cut of the catamaran. In order to
explain the results, it is useful to refer to the theoretical formulas presented by Faltinsen et al.
(1992) for a rigid catamaran. Hydrodynamic hull interaction was neglected. Linear steady state
conditions, i.e. without wetdeck slamming, were considered. The formulas are as follows for
vertical shear force V cp

3 and transverse bending moment V cp
4 in the longitudinal center plane cut.

By using the notations of the hydrodynamic coefficients in this thesis, they are

V cp
3 = 0.5

{
(MyA + A33yB)η̈4 +B33yB η̇4 +K33yBη4 + F3i sin(kyB sin β)eiωet

}
(7.19)

V cp
4 = 0.5

{
FL

4 i sin(kyB sin β)eiωet +M(yA − yB)η̈3 − 2
[∫

A

xydM
]
η̈5

}
(7.20)

F3 and FL
4 relate respectively to the total vertical wave excitation load on the catamaran and

the wave excitation roll moment on a side hull. yA is the y-coordinate in the global coordinate
system of the center of the gravity of one half part (y > 0) of the catamaran obtained by inter-
secting along the center plane of the catamaran. yB means the y-coordinate of the center plane
of the side hull with positive y-value. − ∫

A
xydM is the coupled structural inertia moment in
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Figure 7.10 Time record and energy analysis of measured transverse bending moment (TBM) at the
longitudinal center plane cut of the catamaran; Case 1107. In (b), numbers associated with the spectral
peak values are the exact numbers for the corresponding frequencies.
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Figure 7.11 Time record and energy analysis of measured vertical shear force (VSF) at the longitudinal
center plane cut of the catamaran; Case 1114. In (b), numbers associated with the spectral peak value
are the exact numbers for the corresponding frequency.

roll-pitch of the above-mentioned half part of the catamaran.

If head sea is considered, V cp
3 is zero, and V cp

4 is non-zero and depends on the heave and pitch
accelerations of the vessel. Head sea was intended in the experiments but the unintended asym-
metry of mass distribution about the center plane of the catamaran contributed small amplitude
roll, yaw and sway. Figure 7.13 shows the steady state time history and spectral analysis of roll
during case 1107. There are two dominant frequencies. One is associated with the frequency of
encounter fe = 0.931Hz and the other one is 0.338Hz. There is also some visible energy contri-
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Figure 7.12 Time record and energy analysis of measured transverse bending moment (TBM) at the
longitudinal center plane cut of the catamaran; Case 1114. In (b), numbers associated with the spectral
peak value are the exact numbers for the corresponding frequency.

bution around the natural period of roll mode, which is 0.862Hz according to Økland (2002).
The reason for the relatively large energy around 0.338Hz is likely to be due to the autopilot
system (Martinussen (2002)).
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Figure 7.13 Time record and energy analysis of measured roll of the catamaran; MRU measurement
system; Case 1107. In (b), numbers associated with the spectral peak values are the exact numbers for
the corresponding frequencies.

The spectral analysis of the vertical shear force for case 1107 presented in Fig. 7.9(b) shows clearly
the presence of the dominant frequencies in the roll data. This is consistent with Eq. (7.19).
The natural frequency for transverse bending according to Økland (2002) is 5.88Hz from wet
decay tests. There are no noticeable effect of the transverse bending mode. The transverse
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bending moment for case 1107 presented in Fig. 7.10(b) show dominant energy content at the
frequency of encounter. This is as explained by Eq. (7.20) strongly influenced by the heave and
pitch acceleration of the catamaran. The values of both vertical shear forces and transverse
moments for case 1107 are small. When wetdeck slamming occurs, i.e. case 1114, the values of
vertical shear forces and transverse bending moments in a longitudinal cut of the catamaran are
clearly increased, but they are still small relative to vertical shear forces and bending moments
at the transverse cuts. Table 7.3 gives for both cases 1107 and 1114 the range of the VSF and
TBM of the longitudinal cut at the center plane, as well as the VSF and VBM values at the two
transverse cuts.

Table 7.3 Vertical shear force (VSF) and transverse bending moment (TBM) at the longitudinal
center plane cut of the catamaran, and VSF and vertical bending moment (VBM) at the transverse
cuts (Cut1 and Cut2); time domain from 14s to 26s; cases 1107 and 1114. The values at the longitudinal
cut are found by adding results from the transverse transducer-5888, 5889 and 5890 (See Fig. A.4 for
location). The values at Cut1 and Cut2 are the summation of the data from starboard and port side.
Both maximum and minimum values are presented.

Case 1107 Case 1114
VSF at longitudinal cut (N) 20/-8 70/-50
TBM at longitudinal cut (Nm) 6/-11 25/-35
VSF at Cut1 (N) 8/-38 170/-260
VBM at Cut1 (Nm) -5/-35 280/-320
VSF at Cut2 (N) 36/7 220/-190
VBM at Cut2 (Nm) 16/-17 250/-370

The spectral analysis for vertical shear forces and transverse bending moments at the longi-
tudinal cut for case 1114 show the presence of energy at many frequencies. However, there
are no dominant energy at the natural frequencies for instance for bending and pitch connect-
ing/torsional modes which according to Økland (2002) are the same.

The experimental results of global wetdeck slamming induced global loads at Cut1 and Cut2
in case 1114 can be used to quantify the relative theoretical errors in neglecting the transverse
bending mode in our theoretical model. This is done by a spectral analysis of the time records
during steady state conditions and by noting that the natural frequencies for transverse bending
and pitch connecting/torsional modes have the same value 5.88Hz according to Økland (2002).
The energy between 5.71Hz and 6.04Hz have been calculated for each global load components.
A relative theoretical error is then estimated by taking the square root of this energy part and
dividing by the square root of the total energy. The results are presented in Table 7.4 showing
a maximum relative error of 2.8%.
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Table 7.4 Relative theoretical errors in describing wetdeck slamming induced global loads at transverse
cuts (Cut1 and Cut2) due to physical errors in neglecting dynamic hydroelastic effects due to the
transverse bending mode; Case 1114. VSF: vertical shear force; VBM: vertical bending moment.

VSF Cut1(N) VBM Cut1(Nm) VSF Cut2(N) VBM Cut2(Nm)
Relative error 0.0099 0.0042 0.0151 0.0279

7.2.5 Effect of transient phase

In the experiments there is a transient phase for ship motions to reach steady state conditions.
This is artificially done in the numerical method as described by Eq. (2.41) and the accompanying
text. In most calculations a period of four wave periods is used to build up the full wave excitation
loads. The steady state numerical results must be independent of this artificial transient phase.
Figure 7.14 shows for case 1114 the effect of using either four or three wave periods to build
up the wave excitation load. Figs. 7.14(a) and 7.14(b) show respectively the transient and
steady state phase for wetdeck slamming induced vertical shear force at Cut1. The difference in
response is negligible during the steady state phase. Vertical bending moment at Cut1, as well
as the global loads at Cut2 show the same property. A longer transient phase with five wave
period has also been studied. Results show that there is no effect on the global response.
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Figure 7.14 The influence on the vertical shear force (VSF) at Cut1 due to different time durations
(4 and 3 wave periods) of the build up phase of the calculated wave excitation loads; Case 1114.

7.3 Numerical errors

Numerical errors associated with the strip theory for the linear hydrodynamic loads on the side
hulls will be first discussed. A convergence study of the time integration of the equations of
motions of wetdeck slamming induced response will also be presented.
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7.3.1 Strip theory

Numerical error sources when using strip theory are associated with for instance the number of
strips and number of offset points. Resulting errors have been studied by convergence analysis
by Faltinsen and Svensen (1990). In our calculations 40 strips along the ship are used and there
are 40 offset points on each cross section of one hull to describe the mean submerged hull surface.
Both Marintek’s (Hoff (2001)) experience and Faltinsen and Svensen showed that this will cause
negligible errors in predicted strip theory response.

7.3.2 Time integration of equations of motions

It has been controlled that the fourth order Runge-Kutta method for time integration of the
equations of motions gives converged results by decreasing the time step DT . We will exemplify
this by showing the results obtained when the Kutta condition model is used to find the impact
loads on the wetdeck for case 1114.

The solution procedure for the slamming loads with Kutta condition involves to a large extent
analytical expressions, which are not believed to cause numerical errors. However, the influence
of the vorticity distribution aft of the trailing edge (or aft deck-water intersection point), is
numerically approximated. Equations (3.95) and (3.96) in Chapter 3 show that the vorticity
distribution is assumed constant over each element aft of the trailing edge. The element length
is determined by the travelling length of the vorticity during each time step. This means that
the element size is dependent on the time step DT . By decreasing the time step, we can check
the convergence. Maximum absolute load values at the two cuts are used in this analysis.
Figures 7.15 to 7.16 show either minimum or maximum values of vertical shear force (VSF) and
vertical bending moment (VBM) at Cut1 and Cut2 by using different time steps. The smallest
DT used in the numerical calculations is 0.1 · 10−3 second.

0 0.2 0.5 0.8 1 1.2 1.5 2
−236.1

−235.8

−235.5

−235.2

−234.9

DT (s) × 10−3

Min. VSF at Cut1 (N)

(a) Minimum VSF at Cut1

0 0.2 0.5 0.8 1 1.2 1.5 2
272.4

273.5

274.6

275.7

276.8

DT (s) × 10−3

Max. VBM at Cut1 (Nm)

(b) Maximum VBM at Cut1

Figure 7.15 Convergence study by using slamming model with Kutta condition; Minimum vertical
shear force (VSF) and maximum vertical bending moment (VBM) at Cut1 versus different time step
values DT ; case 1114.
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Figure 7.16 Convergence study by using slamming model with Kutta condition; Minimum vertical
shear force (VSF) and minimum vertical bending moment (VBM) at Cut2 versus different time step
values DT ; case 1114.

Based on the calculated values for different DT values, we have extrapolated to DT = 0. This
is then considered as the converged value. Table 7.5 gives the converged value and the value at
DT = 0.001s for VSF and VBM at Cut1 and Cut2. DT = 0.001s is the time step used in most
of our numerical calculations. It shows that the relative error by using DT = 0.001s is O(10−3),
which means that our data based on a time step of 0.001s are reliable. For this specific case, the
CPU time used for simulating 15 seconds when DT = 0.0001s can be six times the time used
when DT = 0.001s.

Table 7.5 Relative theoretical errors in describing wetdeck slamming induced global loads due to
numerical errors in the time integration. Based on converged maximum or minimum global load values
(DT = 0) (See Figs. 7.15(a)-7.16(b)) and the values calculated at DT = 0.001s. Slamming model with
Kutta condition is used for the slamming loads, case 1114. VSF: vertical shear force; VBM: vertical
bending moment.

DT(s) VSF Cut1(N) VBM Cut1(Nm) VSF Cut2(N) VBM Cut2(Nm)
0.001 -235.5001 274.7909 -124.5815 -379.2930
0.000 -236.0600 276.7600 -125.5600 -377.6500
Relative Error [-] 0.0024 0.0071 0.0078 0.0044

Numerical errors occur initially when the water hits within a flat area. The free surface has then
to be initially tangential to the wetdeck surface. This means that the time rate of change of the
wetted length is initially infinite. This would require a special time integration procedure which
utilizes an analytical solution of the initial impact phase. This is not done and we follow our
normal time integration procedure. This implies large errors in the initial impact loads. However,
the error in wetdeck slamming induced global loads are small. The initial slamming occurs at
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the front end of the wetdeck for cases 1111, 1112, 1114 and 1115 where experimental wetdeck
slamming results are available. So there is not such an error source for the cases presented here.

7.4 Summary

Case 1114 in the model tests are focused on in the theoretical error analysis. Theoretical errors
are divided into physical and numerical errors. It is shown by convergence studies that numerical
errors associated with time integration and strip theory discretization cause a relative error in
wetdeck slamming induced global response of O(10−3) if our standard numerical approximations
are made.

It is difficult to do a physical error analysis of our theoretical model. This could for instance
partly be done by using a benchmark numerical method that includes properly the 3D flow
effects and flow nonlinearities. Even if more sophisticated numerical methods exist for the linear
flow problem associated with the side hulls, they would in practical use require a proper numer-
ical error analysis. This has not been done. There exists no rational numerical method that
can completely deal with the nonlinear flow problem. Instead model tests results were analyzed
to indicate that hull interaction ought to be considered. It is also suggested that nonlinear side
hull forces and 3D initial slamming effects due to run-up at the side hulls ought to be studied.
Relative theoretical errors in the wetdeck slamming induced global loads due to physical errors
in linear hydrodynamic loads on the side hulls (See Table 7.2) and due to neglection of transverse
bending modes (See Table 7.4) are estimated.

It is noted that these error estimates are smaller than the corresponding experimental error
estimates presented in Table 6.14, and can not completely explain the differences between theory
and experiments. Also the experimental error sources for instance due to mass distribution and
bow ramp geometry are neglected due to the difficulty in assessing these errors in an objective
manner. Even if this will increase the experimental error estimates, it is felt that more effort
should be in the future done in improving the theory.



Chapter 8

Conclusions and Future Perspectives

8.1 Conclusions

Global hydroelastic effects due to wetdeck slamming on a high-speed catamaran in regular head
waves are studied theoretically and experimentally. The Froude numbers are between 0.30 and
0.33. The wetdeck has a bow ramp with a horizontal transverse cross-section. The important
elastic properties of the test model are theoretically accounted for by using small elastic beam
elements connecting three rigid bodies.

The hydrodynamic loads on the side hulls are based on the linear frequency domain strip theory
by Salvesen et al. (1970). No hull interaction is considered. By formulating forces on each hull
separately, an important modification of the strip theory is needed due to the forward speed
effect on the second and third body counted from FP. This implies end terms at the forward
ends of these two bodies. Stokes theorem is used to derive those terms. The details of the
restoring terms due to the beam elements between the three rigid bodies are presented.

The three-body model without wetdeck slamming is validated by comparing with experimental
eigenvalues for coupled heave and pitch rigid-body types of modes as well as for two-node and
three-node vertical bending. Mode shapes are verified by comparing with FEM results by Økland
(2002). It is also documented by comparing with model tests that the model gives satisfactory
predictions of relative vertical motion amplitude at the bow as well as amplitudes of vertical
shear forces and bending moments when no wetdeck slamming occurs.

Five wetdeck slamming load models are presented. They all assume that the structure is locally
rigid and that the flow due to slamming is two-dimensional in a longitudinal cross-sectional
plane. Both a Wagner and a Von Karman type of approach are used to find the wetted length.
However, the Wagner based method can not be used to describe the water exit phase, i.e. when
the wetted length decreases. The relative impact velocity is either represented exactly or ap-
proximated by a linear function over the wetted length. The exact method uses a Fourier series

159
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representation of the relative impact velocity. A high-frequency dynamic free surface condition
is used. Detailed derivations are given by representing the flow as a vortex distribution over
the wetted length and solving the corresponding boundary value problem analytically. Since the
wave length of the incident waves is long relative to the wetted length in the studied cases, it is
shown that the linear approximation of the relative impact velocity is sufficient.

The effect of high forward speed on the slamming loads is investigated by modifying the dynamic
free surface condition and including a Kutta condition at the aft end of the wetted deck. The
Kutta condition implies smooth detachment of the flow. However, spray will occur at the front
end of the wetted length. This flow can be made mathematically equivalent to the linear un-
steady lifting problem of a thin foil in infinite fluid. An important difference is that the wetted
length and hence the aft end in our problem is time dependent. This influences the slamming
loads. It is shown in one case with a rigid catamaran that this Kutta condition model mat-
ters in describing the global wetdeck slamming induced response. However, in the cases where
experiments and theory for the elastic model are compared, the effect is not significant. It is
in general shown that the water exit phase is important in describing global wetdeck slamming
induced response.

The model for wetdeck slamming induced global elastic response includes 6 modes. The two
highest modes are unrealistic for the catamaran model considered. A reason is that the very high
structural damping associated with these two modes is not accounted for. In order to eliminate
these high modes, the modal based method outlined by e.g. Langen and Sigbjörnsson (1979)
is used. The method is verified to give consistent results with solving the original equations of
motions directly in the time domain.

Comparisons are made with experimental results for wetdeck slamming induced vertical shear
forces and bending moments at the cuts between the three rigid bodies, that the catamaran is
composed of. There are five cases with high incident wave amplitude. The theory and the exper-
iments agree that wetdeck slamming does not occur in one of these cases. There is a reasonable
agreement between theory and experiment in the most severe slamming case and in one case with
moderate slamming. However, the agreement is unsatisfactory for another moderate slamming
case. The theoretical predictions are too low. This is thoroughly investigated by comparing
details like theoretical predictions of relative vertical motions, impact positions, wetted length,
relative impact velocity and accelerations as well as slamming loads for the different slamming
cases. Since the case which does not agree with experiments correspond to the longest wave
length, i.e. smallest wave frequency and frequency of encounter and the water initially hit at
the front end of the deck, it is found plausible that both the slamming duration and the relative
impact velocity and acceleration should be smaller than in other cases even if the relative vertical
motion is comparable with the other moderate slamming case. This causes both smaller slam-
ming loads and global wetdeck slamming induced loads. A plausible explanation of the failure
of the theory is believed to be a piston mode resonance of the fluid motion between the hulls.
Even if hull interaction had been included in the strip theory, the piston mode resonance effect
can not be adequately described. The fifth case shows small slamming effects with beating, i.e.
that the response is slowly varying relative to the frequency of encounter. The wave amplitude
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has to be increased by 20% in the theoretical calculations relative to the experimental incident
wave amplitude, in order to predict slamming. It is also found that the unintended roll motions
in the experiments matter for the relative vertical motions and can be the source of beating effect.

Both theory and experiments show a strong influence of two-node bending. There are also some
influence of three-node bending, which is not so satisfactorily predicted. Since the three-node
bending has a lower natural period than the two-node bending, it is believed that more details
in the time history of the slamming loads matter. An example could be the initial uprise of the
slamming loads, which in the experiments are likely to be influenced by 3D flow effects due to roll
and run-up along the side hulls. Since a linear frequency domain solution with the frequency of
encounter is used to calculate the added mass coefficients of the side hull, there are errors in the
predictions of the natural frequencies for two-node and three-node bending. However, this has
a secondary effect on the predictions of wetdeck slamming induced global loads. The agreement
between theoretical and experimental slamming loads is reasonable for cases where experiments
and theory show a reasonable agreement in global force response. Both the time duration and
maximum and minimum values of slamming load are satisfactorily predicted. Both theory and
experiments document that the force is in general positive during the water entry phase and
negative during the water exit phase. The absolute values of the maximum and minimum of the
slamming load are of the same order of magnitude.

An estimate of experimental errors is made. Since the experiments were not done as part of
this thesis, we are limited in the experimental error analysis. Further, random errors can not be
identified due to that each experiment was done once. Systematic errors in experiments due to

• Forward speed

• Changing incident wave amplitudes along the track of the model

• Wave measurements

• Seiching (sloshing) in the model basin

• Roll, sway and yaw

• Sinkage

• Trim

• Mass distribution

• Model geometry

are discussed and error estimates of experimentally predicted vertical shear forces and bending
moments are made for the most severe slamming case. This is done by first estimating errors
associated with each item mentioned above and then the theoretical model is to a large extent
used to find the corresponding errors in global responses. It is shown that the trim angle is
the most important error source. The changing incident wave amplitudes along the track of
the model and the wave measurement inaccuracies are equally the second most important error
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source for vertical bending moment at the two transverse cuts studied in the experiments. The
errors associated with roll, yaw and sway is the second most important for vertical shear force
at the two cuts. This roll, yaw and yaw effect is partly due to an unintended mass distribution
causing a small mean roll angle. However, the autopilot system may also matter. The other
error sources are negligible. The estimated combined relative errors in experimentally predicted
vertical shear forces and bending moments are between 0.17 and 0.29. Accounting for this error
further improves the agreement between theory and experiments.

The errors in the theoretical model is investigated partly quantitatively and partly qualitatively.
Since there is not a benchmark theoretical model that properly includes all physical effects, we
have to some extent rely on experimental results. The discussion is divided into

• incident wave nonlinearities,

• side hull hydrodynamics,

• slamming modelling,

• structural modelling,

• transient phase.

It is suggested that hydrodynamic hull interaction matters. This would require that a 3D
hydrodynamic model that properly accounts for the forward speed on the hull generated waves,
is used instead of a strip theory. Since the slamming induced global response is a transient
phenomena, a time domain solution for the hydrodynamic side hull loads may matter. It is
demonstrated by experimental results that the neglection of dynamic transverse bending in the
theoretical model is appropriate for head sea cases.

8.2 Future perspectives

The model for the hydrodynamic loads on the side hulls should be improved. It is felt that in
particular linear hydrodynamic interaction between the side hulls is important and should be
given priority. This could for Froude numbers lower than 0.4 be done by generalizing the unified
theory by Newman (1978) and accounting for the global flexibility of the ship hulls. The studies
by Ronæss (2002) on hydrodynamic interaction between rigid hulls are useful in this context.
She assumes that the two hulls are hydrodynamically in each others far-field. That means that
the disturbance on one hull from the other hull is in terms of longitudinal line distributions of
sources and transverse dipoles along the center plane of the hull. The global dry modes of the
hull can be calculated by standard FEM computer programs and coupled with the hydrodynamic
calculations. When the Froude number is larger than 0.4, the high speed theory by Faltinsen
and Zhao (1991) can be used in a similar way as Hermundstad (1996) did for a flexible hull. He
also considered hull interaction.

The next step is to include nonlinear hydrodynamic loads on the side hulls. It can be done in
a similar way as is standard for nonlinear strip theory calculations (Jensen et al. (2000)). This
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means that nonlinear Froude-Krylov and hydrostatic restoring loads have to be incorporated
together with water entry loads based on a Von Karman approach. Wu et al. (1996) shows that
for no slamming cases including the nonlinear hydrodynamic loads on side hulls can improve the
agreement between the theoretical and experimental results. The theoretical and experimental
results in this thesis have shown that when wetdeck slamming occurs, the global response is
dominated by the wetdeck slamming induced part rather than the response part from wave exci-
tation forces on side hulls. This implies that further studies are needed to state the importance
of nonlinear hydrodynamic loads on the side hulls for wetdeck slamming cases.

Our studies have concentrated on regular incident waves. However, design conditions are based
on irregular waves. The theoretical model needs to be generalized to this case. This may in-
crease the importance of using a time domain model for the linear hydrodynamic loads on the
side hulls. A frequency domain model has been used in this study.

The wetdeck slamming model assumes two-dimensional flow in longitudinal cross-sectional planes.
This is based on that the wetdeck has a horizontal cross-sectional shape and that wetdeck im-
pact due to local run up at the side hulls have minor global effect. However, wetdecks may have
wedge shaped cross-sections. This implies that a three-dimensional slamming model should be
considered. 3D flow will also matter for our wetdeck shape in oblique sea.

A final objective is to develop a numerical method that can predict wetdeck slamming induced
global response of multihull vessels in any sea state and at any forward speed. This involves
long term statistical description of combined load effects due to both transient slamming induced
whipping and steady state linear and nonlinear wave loads.
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Appendix A

Model test information

Some model test information will be given in this Appendix A. The items that are needed in
this thesis are presented here and in the main text. More details of the experimental setting can
be found in Økland (2002).

A.1 Main particulars of the model

Table A.1 Main particulars of the catamaran model

Overall length LOA 4.10m
Length between perpendiculars LPP 3.78m
Beam of the catamaran amidships at waterline BWL 1.02m
Beam of one hull amidships at waterline bWL 0.267m
Displacement ∇ 246.0kg
Draft at AP DAP 0.220m
Draft at FP DFP 0.225m
Wetdeck height above calm water at COG d(x) 0.115m
Vertical COG from base line V CG 0.335m
Longitudinal COG from bow LCG 2.468m
Roll radius of gyration about COG R44 0.372m
Pitch radius of gyration about COG R55 1.128m
Yaw radius of gyration about COG R66 1.179m
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A.2 Body plan

Figure A.1 Body plan of the catamaran model

A.3 Deck geometry

The wetdeck consists of four decks, notated as Deck1, Deck2, Deck3 and Deck4 from bow to
stern, as shown in Fig. 2.1. Deck2,3,4 are flat plates 0.34m above the base line. Deck1 is flat with
forward end 0.39m above the base line and aft end 0.34m above the base line. The geometrical
dimensions of the different plates are shown in Fig. A.2.
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Figure A.2 Geometry of wetdeck parts, Deck1 to Deck4 are the four wetdeck plates from the bow to
stern (Fig. 2.1). The length unit is mm.
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A.4 Mass distribution of the catamaran model

Table A.2 presents the mass distribution of the catamaran. Some key terms in the table are
explained in the following text. Figure A.3 shows the longitudinal distribution of the mass points
listed in Table A.2.

Name Comments

LCG longitudinal distance of center of gravity from the bow of the catamaran
TCG y coordinate of center of gravity with y = 0 at the center plane of the catamaran
VCG vertical distance of center of gravity from the base line of the catamaran
SB Starboard side of the catamaran
PB Port side of the catamaran
fore Forward section of the segmented model
mid Mid section of the segmented model
aft Aft section of the segmented model
TR+SPR Connecting transducer and spring between segments
PR propeller
Suspension Suspension for wetdeck plates
r44, r55, r66 Except for the bottom line: Local radius of gyration in respectively roll,

pitch and yaw for each mass element.
Bottom line: Total radii of gyration with respect to COG of the catamaran
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Figure A.3 Mass distribution in the longitudinal direction based on data in Table A.2 with x = 0 at
the bow.
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Table A.2 Mass distribution of the catamaran. The coordinate axes here are parallel with the
coordinate system in Fig. 2.3. x = 0 refers to the bow of the catamaran.

Component Mass LCG TCG VCG r44 r55 r66

Unit Kg m m m m m m

Hull SB fore 20.000 0.950 0.330 0.250 0.100 0.450 0.550
Hull SB mid 17.000 2.080 0.330 0.250 0.100 0.350 0.450
Hull SB aft 25.000 3.300 0.330 0.250 0.100 0.400 0.500
Hull PS fore 20.000 0.950 -0.330 0.250 0.100 0.450 0.550
Hull PS mid 17.000 2.080 -0.330 0.250 0.100 0.350 0.450
Hull PS aft 25.000 3.300 -0.330 0.250 0.100 0.400 0.500
TR+SPR, SB aft 3.200 2.680 0.335 0.310 0.000 0.000 0.100
TR+SPR, SB fore 3.200 1.480 0.335 0.310 0.000 0.000 0.100
TR+SPR, PS aft 3.200 2.680 -0.335 0.310 0.000 0.000 0.100
TR+SPR, PS fore 3.200 1.480 -0.335 0.310 0.000 0.000 0.100
TR+SPR, deck fore 2.300 0.770 0.000 0.440 0.000 0.000 0.000
TR+SPR, deck mid 2.300 2.080 0.000 0.440 0.000 0.000 0.000
TR+SPR, deck aft 2.300 3.390 0.000 0.440 0.000 0.000 0.000
deck plate fore 9.100 0.340 0.000 0.350 0.100 0.230 0.200
deck plate fore second 3.200 1.120 0.000 0.350 0.100 0.270 0.200
deck plate center 4.800 2.080 0.000 0.350 0.100 0.300 0.300
deck plate aft 5.400 3.390 0.000 0.350 0.100 0.400 0.400
Suspension mid 3.000 2.080 0.000 0.420 0.200 0.400 0.400
Suspension aft 3.000 3.390 0.000 0.420 0.200 0.400 0.400
Motor SB 18.000 3.030 0.450 0.650 0.100 0.000 0.000
Motor PS 18.000 3.030 0.865 0.650 0.100 0.000 0.000
PR+shaft SB 2.000 3.900 0.350 0.000 0.000 0.000 0.000
PR+shaft PS 2.000 3.900 -0.350 0.000 0.000 0.000 0.000
RudderContr.SB 1.200 3.800 0.350 0.400 0.000 0.000 0.000
RudderContr.PS 1.200 3.800 -0.350 0.400 0.000 0.000 0.000
RudderMachine, SB 2.200 4.000 0.350 0.400 0.000 0.000 0.000
RudderMachine, PS 2.200 4.000 -0.350 0.400 0.000 0.000 0.000
MRU 3.800 2.020 -0.210 0.310 0.000 0.000 0.000
Rudder/plastic, SB 0.100 2.100 0.350 0.400 0.000 1.200 1.200
Rudder/plastic, PS 0.100 2.100 -0.350 0.400 0.000 1.200 1.200
Pulsetrigger 3.000 3.400 0.350 0.400 0.000 0.000 0.000
Cables etc. 2.000 2.100 -0.150 0.400 0.300 1.000 1.000
Ballast, SB 9.000 3.980 0.370 0.250 0.000 0.000 0.000
Ballast, PS 9.000 3.980 -0.370 0.250 0.000 0.000 0.000

Entire Model 246.000 2.468 0.000 0.335 0.372 1.128 1.179
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A.5 Locations of measurement equipment

The following figures present the positions of measurement equipment. Figure A.4 shows the
longitudinal and transverse transducers where global structural loads were measured. Figure A.5
gives the positions of the three different measurement systems for motions and accelerations used
in the experiments. Table A.3 gives the positions for the measurement equipment mentioned in
Figs. A.4 and A.5. Figure A.6 illustrates the positions of the pin transducers used for slamming
force measurement.

LT-5891 LT-5892

LT-5893 LT-5894

TT-5888 TT-5889 TT-5890

Figure A.4 Location of 5 degree-of-freedom transducers for measurements of global structural loads;
LT – Longitudinal Transducer; TT – Transverse Transducer

MRU

D1 D2

D3

A-6270
A-6224

A-6272

Bar2 Bar1

Infrared light source Accelerometer

Metal bar for measurement of surface level

Figure A.5 Locations of measurements of relative vertical motions (Bar1 and Bar2) and the three
different measurement systems for body motions and accelerations: MRU, Optical (D1,D2,D3) and
Three-Accelerometer system (A-6224,A-6270,A-6272).
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Figure A.6 Locations of pin transducers for measurement of slamming forces.
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Table A.3 Positions of instrumentation of the model. x-coordinate is from the bow to stern with
x = 0 at the bow. y is positive at the starboard side and z is from the base line of the catamaran.
’dof’: degrees of freedom; ’tr.’: transducer; ’Acc.’: acceleration.

No Component Code x [mm] y [mm] z [mm] Figure

1 5 dof force tr. TT-5888 770 A.4, A.7
2 5 dof force tr. TT-5889 2080 A.4, A.7
3 5 dof force tr. TT-5890 3390 A.4, A.7
4 5 dof force tr. LT-5891 1480 330 A.4, A.7
5 5 dof force tr. LT-5892 2680 330 A.4, A.7
6 5 dof force tr. LT-5893 1480 -330 A.4, A.7
7 5 dof force tr. LT-5894 2680 -330 A.4, A.7
8 Acc. (x,y,z) A-6224 1930 320 375 A.5
9 Acc. (z) A-6270 1635 315 377 A.5
10 Acc. (z) A-6272 1930 -320 377 A.5
11 MRU MRU 2020 210 305 A.5
12 Optical 1 D1 1760 435 770 A.5
13 Optical 2 D2 2570 470 770 A.5
14 Optical 3 D3 2570 -480 770 A.5
15 Relative motion Bar1 2165 0 surface A.5
16 Relative motion Bar2 35 0 surface A.5
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A.6 Force transducers and elastic steel springs

Two adjacent rigid ship segments are connected longitudinally by five degree of freedom alu-
minum force transducers and steel springs, as shown in the Fig. 2.1. The same arrangement is
used for transverse transducers at the center plane of the catamaran. Figure A.7 and Table A.4
present the detailed geometry and dimensions.

dtr
hspr

bspr

ltr lsp

Figure A.7 Five degree freedom force transducer in aluminum connected with steel spring. Subscripts
tr and spr refer to respectively transducer and spring.

Table A.4 Dimensions of longitudinal and transverse springs and force transducers illustrated in
Fig. A.4. The names of the items are defined in Fig. A.7.

Type dtr [mm] ltr [mm] hspr [mm] bspr [mm] lspr [mm]

Longitudinal 35.0 80.0 18.2 31.0 100.0
Transversal 35.0 80.0 9.0 23.5 180.0

As shown in Table A.4, the spring has a rectangular cross-section with width b = 0.031m and
height h = 0.0182m. The area moment of inertia of the cross-section about its neutral axis is
I = bh3/12 = 1.5574 ∗ 10−8m4. By using that the modulus of elasticity E = 2.1 ∗ 1011N/m2 for
steel and accounting for two hulls, we get (EI)eq = 2EI = 6.541∗103Nm2. The transducer has a
diameter d = 0.035m. This gives I = πd4/64 = 7.3662 ∗ 10−8m4. With E = 6.85 ∗ 1010N/m2 for
aluminum, we find that 2EI = 1.009 ∗ 104Nm3. Since there are two holes in the transducer, we
approximately estimated that the effective stiffness of the transducer is only about 60% ∼ 70%
of the value obtained without the holes. This finally leads to an equivalent beam between every
two rigid bodies in our three-body model, with a stiffness (EI)eq = 6.541 · 103Nm2 and length
Leq = 0.21m.
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A.7 List of tested forward speed cases in head sea

Table A.5 Regular wave tests with self propelled catamaran in head sea

Test No. T(s) H(m) Time Window U ′(m/s) H’(m) Wetdeck slamming

1101 1.2s 0.03m 18-28s 1.92 0.03164 No
1102 1.0s 0.03m 18-28s 1.92 0.02874 No
1103 1.3s 0.03m 15-27s 1.89 0.02974 No
1104 1.4s 0.03m 14-27s 1.95 0.03560 No
1105 1.5s 0.03m 17-25s 1.97 0.03328 No
1106 1.6s 0.03m 15-26s 1.99 0.03066 No
1107 1.8s 0.03m 14-26s 1.90 0.02840 No
1108 2.0s 0.03m 13-25s 1.90 0.02910 No
1109 2.5s 0.03m 13-21.5s 1.88 0.03070 No
1110 1.3s 0.10m 13-21s 1.90 0.09506 No
1111 1.5s 0.10m 19-27s 1.84 0.10470 Yes (most severe)
1112 1.8s 0.06m 16-28s 1.86 0.05172 Yes (small)
1114 1.8s 0.10m 15-26s 1.80 0.08214 Yes (moderate)
1115 2.0s 0.10m 15-26s 2.00 0.09660 Yes (moderate)

In the table, T means the incident wave period and H is the intended or specified incident wave
height. The measured wave heights are different and presented in columnH ′. U ′ is the calculated
forward speed of the catamaran based on the optical surge measurements during the steady-state
conditions. The time window shown in the table is the time period with steady-state response.



Appendix B

Slamming model details

B.1 Slamming model with Kutta condition

B.1.1 General solution of vortex distribution

This part will give detailed derivations of the vortex solution (Eq. (3.90)) for the Kutta condition
slamming model.

We will first show that the boundary value problem for the slamming model with Kutta con-
dition is equivalent to the 2D unsteady lifting problem of a thin foil in an infinite fluid. Kutta
condition implies that the fluid velocity is finite at the trailing edge in the lifting problem and at
the aft deck-free surface intersection point in the slamming problem. The mathematical equiva-
lence between these two different physical problems was also shown by Ulstein (1995). However
due to the completeness of the derivation of the solution and to be consistent with our notation
and coordinate system, it is of advantage to show this equivalence here.

We then start with the 2D unsteady linearized lifting problem of a thin foil in an infinite fluid.
Length dimensions will be made nondimensional with respect to c where 2c is the chord length
of the foil. A Cartesian coordinate system (x, z) is introduced. There is an ambient fluid velocity
of magnitude U along positive x-axis. The body boundary condition is transferred to the cut
−1 ≤ x ≤ 1 on z = 0. This is consistent with linear thin foil theory . An unsteady wake is
mathematically located between x = 1 and x = 1 + Ut on z = 0. This is shown by Newman
(1977) and follows by that the free vorticity in the wake is by linear theory convected with the
velocity U . We will also later in the text show this. A vortex distribution with density γ(x, t)
along −1 ≤ x ≤ 1 + Ut on z = 0 is used to represent the flow. The velocity potential caused
by the presence of the foil is called φ. There is a zero pressure jump across the wake. This can
mathematically be expressed as

∂φ+

∂t
+ U

∂φ+

∂x
=
∂φ−

∂t
+ U

∂φ−

∂x
on 1 < x < 1 + Ut, z = 0 (B.1)
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Here the superscripts + and − refer to respectively the upper and lower side of the wake. Since
φ+ −φ− is directly related to circulation, there has to be a jump in the velocity potential across
the wake. It follows by the vortex distribution (See Newman (1977)) that

∂φ+

∂x
= −∂φ−

∂x
on 1 < x < 1 + Ut, z = 0 (B.2)

The vortex distribution implies that there is no horizontal velocity induced by φ along z = 0
outside −1 < x < 1+Ut. This means that the velocity potential is constant along z = 0 outside
−1 < x < 1 + Ut. This constant can be freely set as zero. By integrating Eq. (B.2) from
x = 1 + Ut, z = 0 to x, we get

φ+ = −φ− on 1 < x < 1 + Ut, z = 0 (B.3)

This gives by using Eq. (B.1) that

∂φ+

∂t
+ U

∂φ+

∂x
= 0 on 1 < x < 1 + Ut, z = 0 (B.4)

If we now make the analogy to our slamming problem and define the wetted part of the deck to be
between −1 < x < 1 and consider the fluid domain z < 0, Eq. (B.4) is then our dynamic free sur-
face condition. In addition both the unsteady lifting problem and the slamming problem require
a Kutta condition at x = 1. We can then directly use the solution of the unsteady lifting problem
as presented by Newman (1977). Since we use a different coordinate system and Newman (1977)
did not give all details in the derivation, we will elaborate more on the derivation of this solution.

By using the relationship

∂φ±
∂x

= ∓1

2
γ(x, t) on −1 < x < 1 + Ut, z = 0 (B.5)

Eq. (B.1) can be written as

∂γ

∂t
+ U

∂γ

∂x
= 0 (B.6)

The solution of this differential equation is simply

γ(x, t) = γ(x− Ut) in the wake (B.7)

It means what already has been mentioned that the vorticity in the wake is convected with the
velocity U and that the wake is between 1 < x < 1 + Ut on z = 0.

The body boundary condition on the wetted length (Newman (1977)) leads to

v(x, 0, t) ≡ v0(x, t), −1 < x < 1 (B.8)

where v0(x, t) means the relative velocity component normal to the wetdeck.
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We can start the derivation from Eq. (3.89). The integrals in Eq. (3.89) can be divided into two
parts: one over the wetdeck and the other over the ’wake’. However the ’wake’ in the slamming
problem is not a physical wake, but a consequence of the dynamic free surface condition. This
gives

v0(x, t) +
1

2π

∫ ∞

1

γ(ξ − Ut)

ξ − x
dξ = − 1

2π
−
∫ 1

−1

γ(ξ, t)

ξ − x
dξ

where −1 < x < 1 (B.9)

This is a singular integral equation for the vortex strength. It is identical to Eq. (3.51) except
that the integral on the left hand side of Eq. (B.9) is unknown. This can later be decided by
applying Kutta condition.

The general solution of Eq. (3.51) is given as (Eqs. (73-77) on pp.184 Newman (1977))

γ(x, t) =
2

π

1

(1− x2)
1
2

{
−
∫ 1

−1

v+(ξ, t)(1− ξ2)
1
2

ξ − x
dξ +

Γ

2

}
(B.10)

Here Γ(t) =
∫ 1

−1
γ(x, t)dx.

Substituting Eq. (B.9) gives

γ(x, t) =
2

π

1

(1− x2)
1
2

{
−
∫ 1

−1

(
v0(ξ, t) +

1

2π

∫ ∞

1

γ(ξ′ − Ut)

ξ′ − ξ
dξ′
)(1− ξ2)

1
2

ξ − x
dξ +

Γ

2

}
(B.11)

The double integral in Eq. (B.11) can be reduced by interchanging the order of integration, using
partial fractions and Hilbert transforms. The following gives the details.

We first introduce the so-called Hilbert transforms Hn(x), defined as

Hn(x) = −
∫ 1

−1

ξn dξ

(ξ − x)(1− ξ2)
1
2

(B.12)

Since (1− ξ2)−1/2 is a homogeneous solution of the integral equation expressed in Eq. (3.51), we
get

H0(x) = −
∫ 1

−1

dξ

(ξ − x)(1− ξ2)
1
2

= 0 (B.13)

For n ≥ 1, a recursion formula gives

Hn(x) = In−1 + xHn−1(x) (B.14)

where

In =

∫ 1

−1

xn

(1− x2)
1
2

=

{
π 1·3·5·...·(n−1)

2·4·6·...·(n)
, n even,

0, otherwise.
(B.15)
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This implies for instance that H1(x) = π, H2(x) = πx and H3(x) = π/2 + πx2. So far only
−1 < x < 1 is considered. However in Eq. (B.11) the integration variable ξ′ is outside of the
wetted part of the deck. So it is necessary to evaluate the resulting Hilbert transforms for values
of x outside of ±1. The generalization can be easily done by replacing x by a complex variable
z′ = x + iz in Eq. (B.12). The recursion formula Eq. (B.14) remains valid in this case, so it is
necessary only to consider the generalization of Eq. (B.13) for complex z′. It takes the form

H0(z
′) =

∫ 1

−1

dξ

(ξ − z′)(1− ξ2)
1
2

= 0 (B.16)

This gives consistent with Newman’s definition of branches (See Section 3.5.4, Eq. (3.75))

H0 = ∓π(x2 − 1)−
1
2 ,

x > 1,
x < −1.

(B.17)

Here the case of x > 1 is of interest. We get for x > 1 that

H1(x) = I0 + xH0(x) = π − πx(x2 − 1)−
1
2

H2(x) = I1 + xH1(x) = πx− πx2(x2 − 1)−
1
2 (B.18)

The following partial fraction relationship will be used

1

(ξ − x)(ξ′ − ξ)
=
( 1

ξ − x
+

1

ξ′ − ξ

) 1

ξ′ − x
(B.19)

Now we are ready to simplify the second integral in the brackets of Eq. (B.11). It follows that

−
∫ 1

−1

(1− ξ2)
1
2

ξ − x
dξ · 1

2π

∫ ∞

1

γ(ξ′ − Ut)

ξ′ − ξ
dξ′

=
1

2π

∫ ∞

1

dξ′ −
∫ 1

−1

dξ
(1− ξ2)

1
2γ(ξ′ − Ut)

(ξ − x)(ξ′ − ξ)

=
1

2π

∫ ∞

1

dξ′
γ(ξ′ − Ut)

ξ′ − x
−
∫ 1

−1

dξ

[
(1− ξ2)

1
2

ξ − x︸ ︷︷ ︸
part1

+
(1− ξ2)

1
2

ξ′ − ξ︸ ︷︷ ︸
part2

]
(B.20)

By using Hilbert transforms, the ’part1’ integration gives

−
∫ 1

−1

(1− ξ2)
1
2

ξ − x
dξ where −1 ≤ x ≤ 1

= −
∫ 1

−1

1− ξ2

(ξ − x)(1− ξ2)
1
2

dξ

= H0(x)−H2(x) = −πx (B.21)
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Further the ’part2’ integration in Eq. (B.20) gives by using Eqs. (B.18) that

−
∫ 1

−1

(1− ξ2)
1
2

ξ′ − ξ
dξ = −−

∫ 1

−1

(1− ξ2)
1
2

ξ − ξ′
dξ

= −(H0(ξ
′)−H2(ξ

′)
)

= ξ′π − π(ξ′2 − 1)
1
2 for ξ′ > 1 (B.22)

By adding the results due to ’part1’ and ’part2’, Eq. (B.20) can be expressed as

−
∫ 1

−1

(1− ξ2)
1
2

ξ − x
dξ · 1

2π

∫ ∞

1

γ(ξ′ − Ut)

ξ′ − ξ
dξ′

=
1

2π

∫ ∞

1

γ(ξ′ − Ut)

ξ′ − x

[
π(ξ′ − x)︸ ︷︷ ︸

parta

−π(ξ′2 − 1)
1
2︸ ︷︷ ︸

partb

]
dξ′ (B.23)

With the relationship given in Eqs. (B.7) and that the total circulation about the foil plus its
wake by Kelvin’s theorem is equal to zero, i.e. Γ(t) +

∫∞
1
γ(x, t)dx = 0, integration related with

’parta’ in Eq. (B.23) gives

1

2

∫ ∞

1

γ(ξ′ − Ut) dξ′ =
1

2

∫ ∞

1

γ(ξ′, t) dξ′ = −Γ(t)

2
(B.24)

This will cancel the Γ/2 term in the largest brackets in Eq. (B.11).

So only ’partb’ in Eq. (B.23) contributes to the final result of the γ-expression given by Eq. (B.11).
This means

γ(x, t) =
2

π

1

(1− x2)
1
2

{
−
∫ 1

−1

(1− ξ2)
1
2

ξ − x
v0(ξ, t)dξ − 1

2

∫ ∞

1

(ξ2 − 1)
1
2

ξ − x
γ(ξ − Ut)dξ

}
(B.25)

Dimensionalizing Eq. (B.25) in the X-Z coordinate system leads to Eq. (3.90).

B.1.2 Solution of vortex distribution with linear approximation of
relative impact velocity

When v0(ξ, t) is expressed as

v0(ξ, t) = V1 + V2ξ (B.26)

the first integration in Eq. (B.25) can be simplified as

−
∫ 1

−1

(1− ξ2)
1
2

ξ − x
v0(ξ, t)dξ = −

∫ 1

−1

(1− ξ2)(V1 + V2ξ)

(ξ − x)(1− ξ2)
1
2

dξ

= V1H0(ξ) + V2H1(ξ)− V1H2(ξ)− V2H3(ξ)

= −V1πx+ V2(
π

2
− πx2) (B.27)
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by using real Hilbert transforms.

The final expression of γ(x, t) is then

γ(x, t) =
2

(1− x2)
1
2

[
−V1x+ V2(

1

2
− x2)

]
− 1

π(1− x2)
1
2

∫ ∞

1

(ξ2 − 1)
1
2

ξ − x
γ(ξ − Ut)dξ (B.28)

Dimensionalizing Eq. (B.28) in X-Z coordinate system leads to Eq. (3.91).

B.1.3 Derivation of velocity potential

The velocity potential on the wetted part of the deck will be derived in the following text. By
using that ∂φ(x, t)/∂x = γ(x, t)/2, that φ = 0 at X = −c and integrating the vorticity expressed
by Eq. (3.91) along the wetted part gives the velocity potential as

φ(X1 , t) =

∫ X1

−c

[
1

2(c2 −X2)
1
2

{
[−2V1X + V2(c

2 − 2X2)]︸ ︷︷ ︸
− 1

π

∫ ∞

c

(ξ2 − c2)
1
2

ξ −X
γ(ξ − Ut) dξ︸ ︷︷ ︸

}]
dX (B.29)

= φ1 + φ2

Here the integrated results associated with the first and second horizontal braces are denoted
as φ1 and φ2. It is easily shown that φ1 is exactly the same velocity potential as in Eq. (3.17)
when Kutta condition is not applied. Further φ2 can be expressed as

φ2(X1 , t) = − 1

2π

∫ X1

−c

{
1

(c2 −X2)
1
2

∫ ∞

c

(ξ2 − c2)
1
2

ξ −X
γ(ξ − Ut) dξ

}
dX (B.30)

= − 1

2π

∫ ∞

c

(ξ2 − c2)
1
2γ(ξ − Ut)

{∫ X1

−c

1

(c2 −X2)
1
2 (ξ −X)

dX

}
dξ (B.31)

Equation (B.31) follows from Eq. (B.30) by interchanging integration order. The integration
in the brackets in Eq. (B.31) can then be evaluated first. Here ξ > c and −c < X1 , X < c.
Together with X = c cos θ and X1 = c cos θ1, we have∫ X1

−c

dX

(c2 −X2)
1
2 (ξ −X)

=

∫ π

θ1

dθ

ξ − c cos θ
(B.32)

=

[
2√

(ξ − c)(ξ + c)
arctan

(ξ + c) tan θ
2√

(ξ − c)(ξ + c)

]π
θ1

=
1√

ξ2 − c2

(
π − 2 arctan

(√ξ + c

ξ − c
tan

θ1

2

))
(B.33)

Further by substituting Eq. (B.33) in Eq. (B.31), combining the results of φ1 and taking into
account that γ(X1 , t) is zero when c+Ut < X1 < ∞, we get the final expression of the velocity
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potential as Eq. (3.92). For easy reference in the following derivations, it is also presented here
as

φ(X1 , t) = V1

√
c2 −X2

1 +
1

2
V2X1

√
c2 −X2

1︸ ︷︷ ︸
φ1

− 1

2π

∫ c+Ut

c

γ(ξ − Ut)

[
π − 2 arctan

(√ξ + c

ξ − c
tan

θ1

2

)]
dξ︸ ︷︷ ︸

φ2

for − c < X1 < c, Z = 0 (B.34)

with θ1 = arccos( X1

c(t)
).

B.1.4 Derivation of vertical force and pitch moment

Consistent with the development of the Kutta condition model, the pressure should also include
the spatial derivative term, i.e. p = −∂φ

∂t
− ρU ∂φ

∂x
. The vertical impact force F3 can then be

expressed as

F3 = B

∫ c

−c
(−pn3)dX1 = B

∫ c

−c
pdX1

= B

∫ c

−c
(−ρ∂φ1

∂t
)dX1︸ ︷︷ ︸

F3 part1

+B

∫ c

−c
(−ρ∂φ2

∂t
)dX1︸ ︷︷ ︸

F3 part2

+B

∫ c

−c
(−ρU ∂φ

∂X1

)dX1︸ ︷︷ ︸
F3 part3

(B.35)

Here φ1, φ2 and φ are defined in Eq. (B.34). It can easily be shown that the ’F3 part1’ is the
same as the vertical impact force when Kutta condition is not applied (Eq. (3.20)), i.e.

F3 part1 = B

∫ c

−c
(−ρ∂φ1

∂t
) dX1 = − ∂

∂t

(1
2
ρπc2V1

)
B (B.36)

The ’F3 part3’ can be simplified by expressing the tangential velocity on the wetted deck in
terms of γ and by using Kelvin’s theorem to express the circulation Γ(t). This means

F3 part3 = B

∫ c

−c
(−ρU ∂φ

∂X1

) dX1 = B

∫ c

−c

(
−ρU γ(X1, t)

2

)
dX1

= −1

2
ρU Γ(t)B =

1

2
ρU B

∫ c+Ut

c

γ(ξ − Ut) dξ (B.37)

The ’F3 part2’ in Eq. (B.35) requires a more lengthy derivation. By noting that γ, ξ, c and
θ1 are all time dependent parameters, it follows that ∂φ2/∂t can be expressed in terms of the
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following three parts, i.e.

∂φ2(X1 , t)

∂t
= − 1

2π

∫ c+Ut

c

∂γ(ξ − Ut)

∂t

[
π − 2 arctan

(√ξ + c

ξ − c
tan

θ1

2

)]
dξ

− 1

2π

∫ c+Ut

c

γ(ξ − Ut)

(
∂

∂t

[
π − 2 arctan

(√ξ + c

ξ − c
tan

θ1

2

)])
dξ

− 1

2π

(
f(γ, c, U, θ1, ξ, t)

∣∣∣
ξ=c

dc

dt
− f(γ, c, U, θ1, ξ, t)

∣∣∣
ξ=c+Ut

d(c+ Ut)

dt

)
(B.38)

= Parta + Partb + Partc

In ’Partc’ in Eq. (B.38), the integrand γ(ξ − Ut)
[
π − 2 arctan

(√
ξ+c
ξ−c tan

θ1
2

)]
in the integral

expression for φ2 is notated as f(γ, c, U, θ1, ξ, t). ’Partc’ is the consequence of the time deriva-
tive of an integral where the lower and upper integration limits are time variables (e.g. Spiegel
(1962)). Due to that the big square-bracket in f(γ, c, U, θ1, ξ, t) is zero at ξ = c and γ(ξ − Ut)
is zero at ξ = c+ Ut, ’Partc’ does not contribute.

Further in the integral in ’Partb’, both c and θ1 must be differentiated with respect time t, i.e.
∂
∂t

= ∂c
∂t

∂
∂c

+ ∂θ1
∂t

∂
∂θ1

with ∂θ1
∂t

= ∂c
∂t

cos θ1
c sin θ1

. This gives finally

Partb =
1

2π

∂c

∂t

1

c sin θ1

∫ c+Ut

c

c+ ξ cos θ1√
ξ2 − c2

γ(ξ − Ut) dξ (B.39)

The time derivative of γ in ’Parta’ can be related to the spatial derivative ∂γ/∂ξ by using
Eq. (B.6). Then by doing a partial integration and accounting for that the integral vanishes at
ξ = c and c+ Ut, ’Parta’ can finally be simplified as

Parta = − U

2π
c sin θ1

∫ c+Ut

c

1

(ξ − c cos θ1)
√
ξ2 − c2

γ(ξ − Ut) dξ (B.40)

Based on above derivations, Eq. (B.38) can be expressed as

∂φ2(X1 , t)

∂t
=

1

2π

∂c

∂t

1

c sin θ1

∫ c+Ut

c

c+ ξ cos θ1√
ξ2 − c2

γ(ξ − Ut) dξ

− U

2π
c sin θ1

∫ c+Ut

c

1

(ξ − c cos θ1)
√
ξ2 − c2

γ(ξ − Ut) dξ (B.41)

The ’F3 part2’ in Eq. (B.35) can then be found by integrating Eq. (B.41) with respect to X.
By interchanging integration order, introducing X1 = c cos θ1 and noting that∫ π

0

(sin θ1)
2

ξ − c cos θ1

=
π

c

[
ξ −
√
ξ2 − c2

]
for ξ > c (B.42)
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it follows that

F3 part2 = −ρc

2

∂c

∂t
B

∫ c+Ut

c

γ(ξ − Ut)√
ξ2 − c2

dξ

+
ρU

2
B

∫ c+Ut

c

( ξ√
ξ2 − c2

− 1
)
γ(ξ − Ut) dξ (B.43)

Summing up ’F3 part1’ in Eq. (B.36), ’F3 part2’ in Eq. (B.43) and ’F3 part3’ in Eq. (B.37)
gives the final result of vertical impact force on the wetted part as Eq. (3.93), i.e.

F3 = −ρπc∂c
∂t
V1B − 1

2
ρπc2

∂V1

∂t
B

− 1

2
ρc
∂c

∂t
B

∫ c+Ut

c

γ(ξ − Ut)√
ξ2 − c2

dξ

+
1

2
ρUB

∫ c+Ut

c

ξ√
ξ2 − c2

γ(ξ − Ut)dξ (B.44)

The pitch moment F5 about X = 0 can be expressed as F5 = −B ∫ c−c(l + X)p dX. By using
interchanging order of integration, applying real and complex Hilbert transforms, integrating
term by term and noting that

∫ π

0

(sin θ1)
2 cos θ1

ξ − c cos θ1

=
π

2c3

(
ξ −
√
ξ2 − c2

)2

for ξ > c (B.45)

we can in a similar way as in deriving F3 derive the expression for F5 given by Eq. (3.94).

B.2 Numerical implementation of impact loads in the

equations of motions

The terms that are explicitly proportional to accelerations η̈3
1, η̈5

1, velocities η̇3
1, η̇5

1 and motions
η1

3, η
1
5 in the vertical slamming force F3 and pitch moment F5 for the different slamming models

(See Chapter 3) are moved to the left hand side of the equations of motions and included in the
mass, damping and restoring coefficients of the dynamic system (Eq. 2.1). Here the superscript
1 refers to the forward segment of our three-body model, because the wetdeck slamming only
happens in the forward ship segment in cases studied in this thesis. Since these terms are
different from previously defined coefficients, they are denoted as a′ij, b

′
ij and k′ij. The non-zero
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terms are as follows

a′33 =
1

2
ρπc2 B

a′35 = a′53 = −l · a′33
a′55 = (l2 +

c2

8
) · a′33 (B.46)

b′33 = ρπc
∂c

∂t
B

b′35 = −(U +
∂l

∂t
) · a′33 − l · b′33

b′53 = −∂l

∂t
· a′33 − l · b′33

b′55 = l (U + 2
∂l

∂t
) · a′33 + (l2 +

c2

4
) · b′33 (B.47)

k′35 = −U · b′33
k′55 = −U · b′53 (B.48)

Here l is the mid x-coordinate of the wetted length, as defined in Chapter 3. The coefficients
presented above are applicable for all the slamming models in Chapter 3. When dealing with
the slamming model with Fourier expansion of VR, time derivatives of expressions with Bessel
functions Jn of the first kind are needed. It is then used that

J ′
0(z) = −J1(z)

J ′
n(z) =

1

2

[
Jn−1(z)− Jn+1(z)

]
for n ≥ 1 (B.49)

This procedure improves the numerical stability in the time integration of the equations of
motions.



Appendix C

Flow chart in numerical model

Figure C.1 illustrates briefly the flow chart of the numerical model. The blocks surrounded by
the dashed lines are used when the Modal based method (See Section 5.4.2) is applied in solving
the dynamic equations. The blocks with the dashed-dotted lines are activated when the Kutta
conditions are accounted for. It should be noted that wetted length can be decided either by
Von Karman method or Wagner based method (See Chapter 3). When Wagner based method
is applied, the time steps are determined by prescribed change of the wetted length (Section 3.4).

In the figure, some abbreviations are used for easy expression. In details ’Hydro.’ represents
hydrodynamic and hydrostatic; ’seg.’ for segment; ’sys.’ for system; ’dyn.’ for ’dynamic’; ’Rel.’
for ’Relative vertical’; ’cond.’ for condition and ’Coord.’ for coordinate. Further ’FK’ means
Froude Krylov, ’HS’ for ’hydrostatic’, ’VSF’ for vertical shear force and ’VBM’ for ’vertical
bending moment’.
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Slam loads 

Start
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Figure C.1 Flow chart of the numerical model


