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Summary

The main focus of this thesis is turbulent flow between a rotating and a station-
ary disk. The extension of the disks is assumed to be large enough to prevent
the outer boundary conditions to influence the flow at the region of interest.
This flow is driven by the shear between the disks, but an imbalance between
centrifugal and pressure forces in the radial direction induces a radial cross-
flow. The result is a complex three-dimensional flow where the direction of the
mean flow varies with the axial position. Direct numerical simulations (DNS)
and large eddy simulations (LES) have been used to investigate the flow. The
simulations utilized a special set of quasi-periodic boundary conditions which
allowed the use of a computational domain which captured only a section of the
flow.

Locally, the disk flow is characterized by a rotational Reynolds number and
a local gap ratio. A DNS was performed at a rotational Reynolds number of
4-10° and a gap ratio of 0.02. Turbulence statistics were compared to results
from the turbulent plane Couette flow and from an experimental investigation
of an enclosed rotor-stator flow. The plane Couette flow is a two-dimensional
equivalence to the flow between the disks. Although the turbulence statistics
had many similarities in the two cases, there were differences caused by three-
dimensionality of the mean-flow in the disk case. In the disk flow the direction of
the Reynolds shear stress vector was not aligned with the mean-gradient vector,
and the ratio of the magnitude of the shear stress vector to the mean turbulent
kinetic energy was reduced compared to the Couette flow.

The flow between the disks is statistically stationary. It is therefore a suitable
case for studying effects of mean-flow three-dimensionality on the underlying
coherent structures in the boundary layers. Ensemble averages, probability-
density functions and a quadrant analysis of conditional averages in the re-
gions near the disks were performed in order to study the coherent quasi-
streamwise vortices. By comparing with corresponding conditional averages
from the near-wall region in the Poiseuille flow, the most dominant effect of the
three-dimensionality on the vortices was found to be a reduction of the strength
of sweeps that the vortices generate. The three-dimensionality also led to an
asymmetry between vortices of different sign of rotation.

LES was used to study the flow at higher rotational Reynolds numbers and
larger gap ratios. A mixed dynamic subgrid-scale model was used in the simu-
lations. For a given gap between the disks, the degree of three-dimensionality
of the mean-flow was reduced by increasing the Reynolds number. And as the
Reynolds number increased, both second order turbulence statistics and con-
ditional averages showed an increasing similarity with data in two-dimensional
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boundary layers.

The final part of the thesis deals with the turbulent plane Couette flow.
The development of a multigrid Poisson solver allowed non-conventional peri-
odic boundary conditions to be specified in the streamwise direction of the flow.
The motivation was to investigate the influence of boundary conditions on the
formation of large-scale quasi-stable roll-cells observed only in numerically gen-
erated Couette flow. The non-conventional boundary conditions did influence
these roll-cell, but the computational domain used was not large enough to allow
firm conclusions to be drawn regarding the existence of the roll cells.
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Introduction

This thesis consists of an introduction and seven appended papers. The papers
are self-contained with abstracts and references. The flow between a rotating
and a stationary disk is studied in five of the papers. Simulations of the plane
Couette flow are presented in the remaining two papers.

1 Motivation and objectives

The interest in rotor-stator flows is twofold. Firstly, these flows are found in
turbomachinery, and detailed knowledge of the flow conditions is needed in
improvement of their performance. Secondly, these flows are of fundamental
interest.

In real rotor-stator configurations the geometry may be very complex. De-
pending on the rotational speed, boundary layers are formed near solid bound-
aries. Due to an imbalance between pressure- and centrifugal forces the flow
near the rotor is directed outwards while near the stator it is directed towards
the axis of rotation.

Most practical rotor-stator flows are turbulent. The turbulent flow in these
systems needs to be examined more carefully in order to be better understood.
The boundary layers near the rotor and the stator are examples of so-called
three-dimensional boundary layers, i.e. the direction of the mean flow is not
constant throughout the boundary layers. This three-dimensionality may affect
the turbulence in the boundary layers resulting in e.g. lower drag than in or-
dinary two-dimensional boundary layers. Most turbulence models are validated
against two-dimensional flows and the performance of the models is often poor
when applied to three-dimensional boundary layers.

The objective of this thesis is to study the turbulent flow in a simplified rotor-
stator system. The configuration considered consists of two parallel “infinite”
disks where one is rotating with constant angular velocity and the other is
stationary. The flow is studied by direct numerical simulations and large eddy
simulations. Turbulence statistics useful for validations of turbulence models are
generated for different gap ratios and Reynolds numbers. Coherent structures in
the boundary layers are analyzed in detail in order to increase the understanding
of the generation of turbulence, both in rotor-stator flows as well as in three-
dimensional turbulent boundary layers in general.
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2 INTRODUCTION

laminar turbulent

Figure 1: Profiles of the radial velocity component in the gap between a rotating
and a stationary disk. The profiles illustrate the development from separated
to merged boundary layers with increasing r.

2 Rotor-stator flows

The flow in simplified rotor-stator configurations can be divided into four dif-
ferent flow regimes. This was first recognized by Daily & Nece (1960) who
performed experimental work on enclosed disks with different gap widths and
rotation rates. They identified the following flow-regimes: Regime I character-
ized by merged laminar boundary layers, regime II having separated laminar
boundary layers (separated by a region of fluid with constant angular velocity),
regime III with merged turbulent boundary layers and regime IV with separated
turbulent boundary layers. The enclosed flow is characterized by the rotational
Reynolds number Rer = R*w/v and the gap ratio Gg = s/R, where R is the
radius of the disks, w the angular frequency of the rotating disk, v the kinematic
viscosity while s the axial distance between the disks.

Near the axis of rotation, Daily & Nece (1960) found that the flow was
laminar. If Reg was large enough, the flow would undergo transition to tur-
bulence further out from the axis of rotation. The situation is illustrated in
figure 1 where the boundary layer structure in the large gap between two disks
is shown. For sufficiently small gaps the boundary layers are merged in the
laminar region as well.

2.1 Laminar flow

For laminar flow over one rotating disk von Karman (1921) assumed that the
velocity (ur,ug,uy) of the fluid was such that u,/rw, ug/rw and u, were in-
dependent of r. The Navier-Stokes equation could thereby be reduced to a
set of ordinary differential equations (ODEs) depending only on the axial co-
ordinate. Bodewadt (1940) extended this analysis to allow the outer flow be in
solid-body rotation. Batchelor (1951) included a parallel coaxial disk and used
the von Karman similarity assumptions to develop a set of ODEs.
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Following the von Karman similarity principle, the velocity components are

expressed as
u, = rwf'(z), ug = rwg(x), u, = —2(vw) 2 f(z). (1)

Here the prime means differentiation with respect to the non-dimensional axial
coordinate z = z(w/v)'/2. The stationary Navier-Stokes equations now reduce
to the similarity equations

f"2ff" = -2gg, 2)
9" +2fg =2f'yg, 3)
with boundary conditions (only one disk rotating at « = 0)
F(0) = '0) = f(Rey/?) = ['(Rey/?) = g(Rey/?) =0, (4)
9(0) =1, ()

where Re, = s’w/v is the gap Reynolds number. Note that the stationary disk

is located at z = Rei/ ?. Batchelor (1951) argued that for large Res boundary
layers form near both disks and the fluid in the core rotates with a constant
angular velocity. Stewartson (1953), on the other hand, obtained low-Reynolds
number power-series solutions to the similarity equations and concluded that for
higher Reynolds numbers a boundary layer would exist only near the rotating
disk. In the core-region the fluid would not rotate.

These conflicting conclusions have triggered several investigations on ro-
tating disk flow. The early numerical solutions by Lance & Rogers (1962)
and Pearson (1965) indicated that the Batchelor type of solution was correct.
Later Mellor et al. (1968) showed that both the Batchelor type and the Stewart-
son type of solution exist at high Reynolds numbers. Important works on this
flow by Nguyen et al. (1975); Roberts & Shipman (1976); Holodniok et al. (1977,
1981); Szeto (1978) and Keller & Szeto (1980) revealed the complex structure
of similarity equations. Szeto (1978), e.g., showed that the solution is unique
when Re; is below 55 and that a myriad of different solutions emerge when Re;
increases. The temporal stability was also analyzed by Szeto (1978) revealing
that the Batchelor solution is stable while the Stewartson solution is unstable.
Work on the flow over one disk as well as the flow between two disks is reviewed
in an article by Zandbergen & Dijkstra (1987).

Holodniok et al. (1977, 1981) used finite-differences and Newton iterations
to solve the similarity equations. For higher Re, this method was found to be
unstable, and Holodniok et al. (1981) concluded that multiple shooting tech-
niques would give more stable solutions. To get an impression of the Batchelor
solutions to the similarity equations (2) and (3), the equations are here solved for
a range of Re,. Figure 2 shows the tangential and radial velocity components.
For Re; smaller than 1000, a single shooting technique is used, based on a fourth
order Runge-Kutta solver in the numerical computer program MATLAB. When
Re, is 1000 or larger, multiple shooting is necessary to make the solution stable.
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Figure 2: Solutions to the von Karman similarity equations for Reynolds num-
bers Res; = 10,50, 100,1000 and 5000. As Re, increases the thickness of the
boundary layers decreases.

For low Re, the tangential velocity profile approaches the streamwise profile of
the plane Couette flow. When the Reynolds number increases, the thickness
of the boundary layer decreases, and the tangential velocity is constant in the
core. The limiting value of uy is approximately 0.313 in the core for high Re;.

2.2 Stability and transition

For a given disk-separation, the flow will undergo transition to turbulence at
a critical local Reynolds number Re, = r?w/v. This is indicated in figure 1.
Experiments on confined rotor-stator flows have shown that circular and spiral
waves are involved in the instability process, see e.g. the recent papers by Schou-
veiler (1998); Gauthier et al. (1999) and Schouveiler et al. (1999) and references
therein. The first instabilities were axisymmetric circular waves moving inwards
near the stationary disk occurring at a (global) Reynolds number Rep of order
103, depending on the gap width. With increasing Reynolds number spiral wave
patterns were formed.

In experiments by Itoh et al. (1992), Itoh (1995) and Cheah et al. (1994),
the flow was turbulent except in a region near the axis of rotation. Near the
stationary disk the flow was turbulent at almost all radial positions, while near
the rotating disk the transition to turbulence took place typically between Re, =
1.6 - 10 and Re, = 3.6 - 105. From these experiments it is also seen that the
radial position of the transition depends on both the local rotational Reynolds
number and the local gap ratio.
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2.3 Turbulent flow

Relatively few experimental investigations of turbulent rotor-stator flow have
been reported in the literature. The first reported experiment on turbulent
rotor-stator flow was by Daily & Nece (1960). They measured the tangential
and radial mean velocities, mean pressure distribution as well as the frictional
torque on the rotating disk. The Reynolds number Rep varied between 10® and
107 and the gap ratio G was 0.0127, 0.0355, 0.0637, 0.115 and 0.217. Later Itoh
et al. (1992); Itoh (1995) and Cheah et al. (1994) reported measurements on
mean velocities as well as second order statistics in enclosed geometries with
the outer shroud being stationary. Kilic et al. (1996) measured mean velocities
of the flow at Rer = 1.25-10% and G = 0.12.

Theoretically, the flow between a rotating and a stationary disk has been
treated by Owen & Rogers (1989). By assuming that there is an inviscid rotating
core rotating with a constant angular velocity Sw, the two boundary layers could
be treated separately. In their analysis they used 1/7-power-profiles for the
velocity in the boundary layers, giving § = 0.431. In the experiment by Daily
& Nece (1960), 8 varied from 0.412 to 0.460 for different gap ratios. Itoh et al.
(1992) found that § was between 0.40 and 0.42.

A larger number of numerical studies of this flow using turbulence modeling
have been performed. Cooper & Reshotko (1975) used an effective-viscosity
turbulence model and a switching factor to enforce a fully turbulent flow at
Re, = 3-10°. Morse (1991) forced the transition to occur by increasing the
turbulence energy production term in his modified version of the low Reynolds
number k—e turbulence model by Launder & Sharma (1974). The mean velocity
components in these two calculations were in reasonable good agreement with
experiments. More recently Elena & Schiestel (1995) treated the flow with three
different models, namely a low Reynolds number &k — e model, an algebraic stress
model linked to the k—e model near the wall, and a full Reynolds stress transport
closure. Comparing with the experiments by Itoh et al. (1992), the level of the
angular frequency in the core region was not correctly estimated by neither of
the models, and the predicted flow near the rotating disk was almost laminar.
Near the stationary disk the algebraic stress model and the Reynolds stress
model predicted a turbulent flow, but the level of the turbulence was poorly
predicted. Using a refined Reynolds stress model, Randriamampianina et al.
(1997) predicted a turbulent flow near the rotor, in accordance with experiments.
However, the level of the turbulence was low near the rotor.

There are several reasons for the difficulties in the performance of the tur-
bulence models. Since the transition from laminar to turbulent flow first takes
place in the boundary layer near the stationary disk, laminar and turbulent
flow coexist for a radial region. The radial position of the transition point also
has to be predicted. The effect of rotation of the flow influences the turbulence
directly through centrifugal and Coriolis effects. But the effect is also more sub-
tle like the influence from the induced mean-flow three-dimensionality on the
turbulence. One aim of performing simulations of the flow between a rotating
and a stationary disk is to shed light on some of these effects.
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3 Three-dimensional turbulent boundary layers

A boundary layer is three-dimensional when the direction of the mean flow
varies with the distance from the wall. There are basically two kinds of three-
dimensional turbulent boundary layers (3DTBLs). Firstly, there are “non-
stationary” or “spatially evolving” 3DTBLs. Secondly, there are “stationary”
3DTBLs. In flows of the first kind, mean velocities and turbulence statistics vary
rapidly with time or with spatial position. Typically an initially two-dimensional
flow experiences a sudden (either in time or in space) perturbation leading to
a three-dimensional flow. An example is the flow meeting the spanwise pres-
sure gradient from a swept wing. These flows are studied by e.g. Bradshaw &
Pontikos (1985); Moin et al. (1990); Le et al. (1999) and Coleman et al. (2000).
Flows of the second kind are stationary in time, but may vary slowly with the
spatial position. These flows are typically subjected to continuous body-forces
acting in the spanwise direction, such as centrifugal or Coriolis forces. Examples
are the turbulent Ekman layer and the flow over a rotating disk. Stationary
3DTBLs have previously been studied by e.g. Spalart (1989); Coleman et al.
(1990); Littell & Eaton (1994) and Wu & Squires (2000).

The turbulent flow between a rotating and a stationary disk belongs to sta-
tionary 3DTBLs. In this thesis the study of effects of the three-dimensionality
on the underlying turbulence structures is an important issue. In non-stationary
boundary layers other effects than the three-dimensionality may strongly influ-
ence the turbulence. In the flow over a swept wing, e.g., the adverse pressure gra-
dient may modify the turbulence more strongly than the three-dimensionality (Cole-
man et al., 2000). By studying stationary 3DTBLs, differences in turbulence
structures as compared to those found in 2DTBLs are therefore more likely to
be associated by the three-dimensionality alone. In the introduction of paper
I an overview of the turbulence structures observed in 2D and 3D turbulent
boundary layers are given.

4 Numerical simulations

The flows considered in this thesis are studied by means of direct numerical
simulation (DNS) and large eddy simulation (LES). In a DNS the Navier-Stokes
equations are solved numerically in space and time capturing all essential time-
and length-scales. In a LES the large energy-containing eddies are computed,
while the small scales are subjected to modeling.

The first DNSs were of isotropic turbulence in the early seventies (Orszag
& Patterson, 1972). Simulations of wall-bounded turbulence were first reported
by Moser & Moin (1987) who considered a curved channel flow, and by Kim
et al. (1987) who studied the plane channel. Later the turbulent flat plate
boundary layer was computed by Spalart (1988). Keeping the geometry simple,
the simulated flows have increased in physical complexity to include e.g. three-
dimensionality (Moin et al., 1990), rotation (Kristoffersen & Andersson, 1993),
body-forces (Coleman et al., 1990), compressibility (Coleman et al., 1995) and
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interaction of turbulence with shock waves (Lee et al., 1997). The flow over
a backward facing step (Le et al., 1997) and flat plate boundary layer sepa-
ration (Na & Moin, 1998) are examples of simulated flows with an increasing
geometric complexity. For a recent review article on DNS, see Moin & Mahesh
(1998).

In LES of turbulence, the smallest scales are not explicitly solved and have to
be modeled. Large and small scales are separated by spatially filtering of the flow
variables. By applying the filter to the incompressible Navier-Stokes equations,
the so-called subgrid-scale (SGS) stresses 7;; = W;u; —u;u; are introduced. Here,
an overbar denotes filtering of the variables. These quantities are not resolved
by the computational grid (thereby the name subgrid-scale), and a SGS model
has to be applied in order to close the filtered Navier-Stokes equations. Most
of the LES closures are based on the Smagorinsky model (Smagorinsky, 1963)
which relates the deviatoric part of the SGS stress tensor 7;; to the resolved
strain-rate tensor S;;:

Tij — %Tkk = —2VTSij- (6)
vr is the eddy viscosity and S;; = (0u;/0z; + 0u;/Ox;)/2. Smagorinsky (1963)
expressed the eddy-viscosity as

vy = C2A%|S), (7

where |S| = (25;5;)'/?, C is the Smagorinsky coefficient and A is a length-
scale associated with the filter. The Smagorinsky coefficient has to be tuned to
a specific flow. In addition damping functions are used to improve performance
near walls. In the dynamic model by Germano et al. (1991), the eddy viscosity is
evaluated without any adjustable constants, and the correct near-wall behavior
is captured without any ad hoc assumptions. The dynamic approach involves
filtering of the flow-field using a filter which is wider than the grid cells. In
the mixed Dynamic model by Vreman et al. (1994) a similarity model is used
together with the Smagorinsky model to express the SGS stresses. Many aspects
of SGS models used in LES are discussed in the recent review by Meneveau &
Katz (2000). Other reviews are given by Rogallo & Moin (1984) and Lesieur &
Métais (1996).

The major constraint on direct and large eddy simulations of turbulent flow
is limitations on computer resources. In a turbulent flow, the ratio of the largest
to the smallest scales is of order Re/* (see e.g. Tennekes & Lumley, 1972). In a
DNS, where all essential length scales have to be resolved by the computational
grid, the necessary number of points in the three-dimensional grid is therefore
of order Re/*. In a simulation the number of time-steps needed is of order
Re*/3. The cost of a DNS of the Navier-Stokes equations is therefore at least
proportional to Re3.

Even for low and moderate Reynolds numbers it is not possible to perform
a DNS of an entire experimental configuration. In simulations, both DNSs and
LESs, only a part of the flow is therefore considered. Boundary conditions at
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open boundaries in the flow must therefore be specified. In flows having statis-
tical homogeneous directions, periodic boundary conditions are imposed. For
complex flow and spatially developing flows this is not possible and inflow and
outflow conditions are required. The fully developed turbulent boundary layer
is slowly evolving in the streamwise direction. Spalart (1988) used a coordinate
transformation to be able to do a DNS of this flow. Recently, Lund et al. (1998)
presented a simplified version of this approach. Slowly spatial developing flows
were treated without involving any coordinate transformation. More complex
flows, such as the flow over a backwards-facing step (Le et al., 1997), have been
simulated by essentially allowing random disturbances to develop into realistic
turbulence in a rather long region before the region of interest. Another way of
generating the inflow conditions has been to feed the inflow boundary with in-
stantaneous velocity components obtained from a separate simulation (see e.g.
Na & Moin, 1998; Aksevoll & Moin, 1996). The exit boundary condition in
these simulations are based on convective conditions assuming that the turbu-
lence structures smoothly leaves the computational domain. Still, the problem
of generating realistic boundary conditions is a major constraint to simulating
complex flows.

In order to simulate the flow between a rotating and a stationary disk with-
out an outer shroud, flow conditions at an open boundary in the flow have to be
specified. In this work, a first suggestion of how to treat the boundary condi-
tions and how to construct the computational domain, was to use a rectangular
grid and a computer code using Cartesian coordinates to solve the governing
equations. By centering the computational domain at the axis of the rotating
disk, periodicity could be imposed between grid-points being located directly
opposite of the axis of rotation. This is indicated by the points P, and P, in
figure 3. An advantage of a Cartesian over a cylindrical grid is that the singu-
larity at » = 0 and the decreasing size of the grid cells near r = 0 is avoided.
The computer code ECCLES (see next section) was modified to incorporate this
periodicity.

Since we are interested in the turbulent part of the flow, this computational
domain includes the laminar region near the axis of rotation as well as the
transitional and turbulent regions. As a result, an estimate of the necessary
number of grid-points shows that a simulation is not possible with available
computer resources. In the turbulent regime for small-clearance flow, Daily &
Nece (1960) found the empirical correlation for the moment coefficient:

2 fOR r2redr

T = V0 Gr'% Rep'*. ®)

Cn

Here 7y is the tangential component of the shear stress at the rotor. From the
definition of C,, it is seen that

0Cy, 4wy 5
OR  pw?R3 ROm ©)
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P,

Py

Figure 3: Sketch of the computational domain for the flow between disks using
Cartesian coordinates. The axis of rotation is indicated by the filled circle.
Periodicity is assumed between r and —r.

and from the correlation in equation (8)

_ 16 OReY*

9C, oGy,
=5 _o.o4< 7

) = —0.04/3 G5"/° Rej'/*.
(10)

Cooper & Reshotko (1975) assumed that the local radius r may be substituted

for R in the empirical relation in equation (8). Using this assumption, equations

(8) through (10) may be combined to give the local shear stress coefficient

% =0.0149 G, /% Re; /. (11)
pwer

G, = s/ris the local gap ratio. The local Reynolds number based on the tangen-
tial component of the shear stress and the gap spacing may now be estimated:

_urs  Tp(r) stw /12 1 7/8
Re, = —— = PR 0.122 GLY/12 Re™/8, (12)

Now, suppose we wanted to use the Cartesian grid sketched in figure 3 to simu-
late a flow which has completed the transition to turbulence at a smaller radius
than L where 2L is the length of the sides of the computational domain. As-
suming that the rotational Reynolds number Re, at 7 = L is 4 - 10° and the
gap ratio s/L = 0.02, the corresponding Re, at r = L from equation (12) is
270. In wall units the extension of the computational domain then becomes
(2L)* = 2Re,L/s = 2.7-10%. If 100 grid points are used in the axial direction,
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and a grid spacing of 10 wall units is allowed in the two directions parallel to
the disks, the total number of grid points is 2700 x 2700 x 100 ~ 7 - 10%. This
number is approximately 2 orders of magnitude larger than what is feasible with
the memory available on CRAY J90, which is the computer used in this thesis.

Therefore the Cartesian approach had to be abandoned. However the bound-
ary treatment outlined above could be used as an alternative to conventional
periodic boundary conditions used in channel flow and plane Couette flow simu-
lations. As described in section 5, several simulations of turbulent plane Couette
flow have revealed a pattern of large scale structures which is not observed ex-
perimentally. In order to study the influence of the boundary conditions on
these structures, the simulations in papers VI and VII are based on different
versions of the boundary treatment illustrated in figure 3.

To achieve the resolution requirements in DNS of turbulent flows, a method
originally developed by Wu & Squires (2000) was used in the disk simulations
in the present thesis. Wu & Squires (2000) studied the turbulent flow in the
boundary layer over one rotating disk. Their main idea was to use cylindrical
coordinates and locate the computational domain in the turbulent part of the
flow. Here, the computational domain consists of an angular section limited
by two radial planes r; and 72, see figure 2 in paper I. In the axial direction
the domain is limited by the two disks. At the disks no-slip conditions are
imposed and periodic conditions are used in the tangential direction. Between
the radial planes r; and ro quasi-periodic conditions are specified. This approach
is carefully explained in paper 1.

This approach allowed us to study the flow at two different gap distances,
one small and one large. For each gap, the computational domain is placed
at different radial positions, thus simulating the flow at different rotational
Reynolds numbers. Table 4 shows the computational domain parameters for
the different simulations.

5 Plane Couette flow

Two papers in this thesis describe simulations of the turbulent plane Couette
flow. The plane Couette flow, which is one of the canonical flow configurations,
is the flow between two parallel, infinite planes that move relative to each other
with a constant velocity. Figure 4 shows a sketch of the flow. The plane Couette
flow is the simplest shear-driven flow. The profile of the tangential velocity
component in rotor-stator flows having small gap ratios resembles the profile
in turbulent plane Couette flow. In fact, as discussed in paper III, in the limit
s/r — 0 the rotor-stator flow will locally approach the plane Couette flow.
The main motivation for studying the plane Couette flow here, is that the
non-conventional periodic boundary conditions described above, and a accom-
panying multigrid Poisson solver allowed us to investigate the influence of the
streamwise boundary conditions on very-large-scale structures found in numer-
ically generated Couette flow. In several direct numerical simulations of the
Couette flow one has observed a periodic array of large-scale vortices, see Lee &
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Re,« Gr ReT Ng NT Nz Le L,«
4-10° 0.02 266-214 192 192 128 7 3.5
DNS (rmAO)T | Art | AzT Ly | Lf
10 b) 0.42-4 | 1862 | 931

Re, G, Re, Ny N, N, Ly L,
4-10° 0.02 268-214 96 48 48 14 3.5
LES (rmAO)T | Art | Azt Ly | L
39 20 0.55-9 | 3754 | 938

Re, G, Re, Ny N, N, Ly L,
1-10% | 0.0126 | 381-349 96 64 64 10 3.5
LES (rmAO)T | Art | Azt Ly | L
40 21 | 0.54-10 | 3810 | 1334

Re, G, Re, Ny N, N, Ly L,

1.6-108 0.01 460-426 96 64 64 8 3
LES (rm AT | Art | AzT Ly | Lf
38 22 | 0.58-12 | 3680 | 1380

Re,« Gr ReT Ng NT Nz Le L,«
6.4-10° 0.1 2050-1534 128 128 128 3 1.5
LES (rmAO)T | Art | AzT Ly | Lf
48 24 0.5-25 | 6150 | 3075

Re,« Gr ReT Ng NT Nz Le L,«

1.6-10°% | 0.0632 | 2856-2564 128 128 192 2 1

LES (rmAO)T | Art | AzT Ly | Lf
45 22 | 0.58-26 | 5712 | 2856

Table 1: Computational domain parameters for the disk simulations reported
in this thesis. In the definitions of Reynolds numbers and gap ratios the radial
position in the middle of the computational domains is used, i.e. r, = (r; +
r2)/2. The Reynolds number Re; is based on the tangential friction velocity, i.e.
Re, = ug,s/v where ug, = (vOUy/dz)'/?. The two numbers of Re, correspond
to the friction at the rotating disk (highest values) and at the stationary disk
(lowest values). The friction velocity at the rotating disk is used when expressing
lengths in wall-units.

2h
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Figure 4: Sketch of the turbulent plane Couette flow.
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Kim (1991); Kristoffersen et al. (1993); Bech et al. (1995); Bech & Andersson
(1994) and Papavassiliou & Hanratty (1997). Bech & Andersson (1994) observed
that the size of the computational domain influenced the development of the
large-scale vortices. Especially when the spanwise length of the computational
domain allowed pairs of counter-rotating vortices to be contained in the domain,
strong vortices have been observed in simulations. In contrast, persistent pairs
of counter-rotating vortices have not been observed experimentally in the plane
Couette flow.

Ideally, when periodic boundary conditions are used in direct numerical sim-
ulations, two-point correlations of the flow variables should be zero at separa-
tions corresponding to half the length of the computational boxes. In simu-
lations of the plane Couette flow, this requirement has been very difficult to
fulfill due to the presence of the large-scale structures. Even in the extremely
large computational domain used by Komminaho et al. (1996), the correlations
did not drop to zero. In paper VI it is hypothesized that persistent large-scale
vortices are a numerical artifact and that use of periodic boundary conditions
may amplify their formation. To test this hypothesis simulations are performed
where ordinary periodicity in the streamwise direction is replaced by two sets
of boundary conditions using an alternative non-conventional periodicity. Since
the study of the plane Couette flow is not the main aim of this project, a modest
computer cost is required. Therefore the number of grid-points is low. The size
of the computational domain is correspondingly rather small and equals the one
used in the simulation in Kristoffersen et al. (1993).

6 Numerical approach

The computer codes used in this thesis are modified versions of the research
code ECCLES (Explicit Channel Code for Large Eddy Simulation) developed
by Gavrilakis et al. (1986). ECCLES uses second-order finite-difference approxi-
mations in space. The velocity field is advanced in time using an explicit Adams-
Bashforth scheme together with the projection method to obtain continuity of
the velocity field. The specific steps for the solution of the time-dependent
incompressible Navier-Stokes equations are:
1. At time-step n a tentative velocity field u} is calculated from

wi—u? 3 1 oy Op"Tt
iU _Spn_ 2 (grot . 1
At 2777 2 g ox; (13)

Here, H? is defined as the sum of the nonlinear, subgrid and viscous terms at
time step n.
2. The pressure p" is found by solving the Poisson-equation

opn 2 0y
8:L'j6xj T 3At a:L'j
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3. Finally, the velocity field for the next time-step n + 1 is found using a
corrected u: correction

U?H =u; — iAt D
(3

(15)

ECCLES is a code designed for simulating plane channel flows, and Cartesian
coordinates are therefore used. To facilitate simulations of the rotor-stator flow,
a code in cylindrical coordinates is needed. The computational domain used in
the present rotor-stator simulations does not include the origin » = 0. ECCLES
could therefore be transformed to cylindrical coordinates in a straight forward
manner. Finite difference schemes intending to include the region at » = 0
need a special treatment to account for the singularity there, see e.g. Verzicco
& Orlandi (1996).

Since the scheme outlined above is explicit, only the Poisson equation is
solved. ECCLES was developed to simulate flow between parallel plates and
homogeneous streamwise and spanwise directions allowed periodic boundary
conditions to be used. The Poisson equation may then be solved directly using
fast Fourier transformations in the homogeneous directions and a tridiagonal
solver in the wall-normal direction. Neither the non-standard boundary condi-
tions used in simulating the plane Couette flow nor the boundary conditions in
the radial direction in the rotor-stator flows, allow Fourier transformations to
be used in two directions. Therefore, a new fast Poisson solver is implemented
in the code.

6.1 A multigrid Poisson solver

We require that the Poisson solver has to fulfill the following requirements: (i) It
must be fast since equation 14 has to be solved on every time-step in a DNS. (ii)
Storage requirements must be kept low. (iii) The solver has to be vectorizable.
(iv) Tt must handle a stretched grid in the wall-normal direction and grid cells
with a very small wall-normal length compared to the other two directions.

Classical iterative methods like Gauss-Seidel and SOR suffer, especially in
three dimensions, from slow convergence rates. To increase the efficiency of
iterative schemes used to solve boundary value problems on spatial domains,
multigrid methods have been developed during the last decades. In the following
only a rough outline of the methods is given. For a more detailed description,
the references listed below may be consulted.

The main idea of the multigrid method is to take advantage of the smoothing
capability of some of the classical solvers. These solvers damp high frequency
oscillations after just a few relaxations. When transferring this smooth approxi-
mation to a coarser grid, the approximation will appear more high-frequent. On
the coarser grid we continue to iterate to get a new approximation. The coarse
grid approximation may then be transfered back to the fine grid and used to
adjust the fine-level-solution, thus completing a 2-level multigrid V-cycle. Gen-
erally a M-level V-cycle is used where we zoom down to the coarsest possible
grid.
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Several textbooks and articles describing multigrid methods exist. Impor-
tant references are books by Hackbush (1985) and Wesseling (1992), as well as
the article by Brandt (1977). In the implementation of the multigrid algorithm,
the tutorial by Briggs (1987) has been very useful, together with the report
by Kristoffersen (1994).

Multigrid algorithms using different smoothers were tested on the Poisson

equation
2
afjng = cos (%az) cos (%y) cos <2l—jz> , (16)

where the size of the computational domain was I, x I, X [,. Periodic boundary
conditions were used in the z and y directions, while the normal derivative is
zero at the z-facing boundaries. The analytical solutions of this problem is

p(z,y,2) = — L cos (2—7T:L') cos (2—7ry> cos <2—Wz> (17)
PO T g e AL L L)

Repeated V-cycles were used in the multigrid algorithm. To compare different
solution methods a work unit (WU) is defined as the cost of performing one
iteration on the finest grid. In the two test-cases presented here, two smoothers
have been tested in the multigrid algorithm. These are the classical Gauss-
Seidel iteration scheme and the so-called Line-Zebra Gauss-Seidel scheme. The
Gauss-Seidel scheme is organized in a chess-board pattern. This way points
within the grid are decoupled allowing for vectorization and parallelization. An
ordinary Line Gauss-Seidel iteration scheme consists in solving the discretized
scheme along coordinate lines in the domain. For the Poisson equation using
second-order differences, a three-diagonal matrix has to be inverted for every
line. A complete iteration consists in solving along every line in a given direction.
A Line-Zebra Gauss-Seidel scheme solve for every second line in a chess-board
pattern in order to be able to vectorize the scheme.

In the development of the multigrid solver, various tests were performed to
study the performance of different schemes and smoothers. The two test-cases
reported here are included in this introduction in order to give an impression of
the performance of the multigrid scheme. The tests shown are for a rectangular
grid. When implemented in cylindrical coordinates the behavior of the different
smoothers did not change significantly. For comparisons with schemes which are
not using the multigrid algorithm, the performance of ordinary Gauss-Seidel and
SOR iterations are shown. The over-relaxation parameter in the SOR iterations
is tuned to give the fastest convergence in the different cases.

Test-case 1

The domain size and number of grid cells are [, x [y x I, = 1x 1 x 1 and
Ny X Ny x N, = 64 x 64 x 64. The grid-spacing is equal in all directions. The
initial field consist of random numbers between +1/ ((%—:)2 + (%—y’f)2 + (%)2) The
convergence history for the errors is given in figure 5. The errors are based on
solution of the discretized equations. Multigrid solutions using the Gauss-Seidel
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and the Line-Zebra Gauss-Seidel smoothers are labeled “GSp;¢” and “LZp a7,

respectively. This figure clearly shows the superiority of multigrid solvers as
compared to ordinary single-grid solvers.

0 r
GS
SOR
—~ —5r
_«
2
VO
=
o
—10}
LZ, GS,
1% 50 100 150 200
wu

Figure 5: Convergence histories of the errors as function of work unit (WU) for
case 1.

LZ, G(Stretched grid)

1% 20 40 60 80
wu

Figure 6: Convergence histories of the errors as function of work unit (WU) for
case 2.

Test-case 2

In this case the domain size is I, x I, x I, = 47 x 27 x 1. Otherwise case 2 is
equal to case 1. The domain size is now more similar to those used in DNS of
channel flows. The convergence history is given in figure 6. For this domain size
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the Gauss-Seidel smoother completely fails in the multigrid algorithm due to the
high aspect-ratio of the grid cells. Therefore the ordinary Gauss-Seidel iterations
can not be used as smoother here. The Line-Zebra smoother is further tested on
a grid which is strongly stretched in the z-direction. This stretching is similar to
the grid-refinement in simulations of wall-bounded flows. Figure 6 shows that
this stretching does not influence the convergence history for the Line-Zebra
Gauss-Seidel smoother. For this reason this smoother is implemented in the
multigrid solver.



Summary of papers

Five of the following seven papers are related to the flow between a rotating
and a stationary disk (papers I-V). Paper VI and VII relates to the turbulent
plane Couette flow.

Paper I

Paper 11

Paper 111

Turbulent flow between a rotating and a stationary disk
A direct numerical simulation is performed of the turbulent flow in
the narrow gap in a simplified rotor-stator configuration consisting
of “infinite” disks. The effect of mean-flow three-dimensionality
leads to a misalignment between the Reynolds shear stress vec-
tor and the mean velocity gradient vector. In addition there is
a reduction in production of Reynolds shear stress. Conditional
averages of the near-wall coherent vortices show that vortices of
different sign of rotation generate different amount of turbulence
shear stress. This is also an effect of the three-dimensionality of
the mean flow.

J. Fluid Mech., 2001, 426, 297-326

Near-wall structures in turbulent rotor-stator flow
Ensemble averages, probability-density functions and a quadrant
analysis of the velocity field in the near-wall regions of the flow
presented in paper I, show that the strength of sweeps associated
with the coherent vortical structures in the near-wall region was
reduced.

In Advances in Turbulence VIII, 2000, CIMNE, Barcelona, 675-678.
Turbulence statistics in an open rotor-stator configuration
Turbulence statistics, including complete budget data for the six
independent components of the Reynolds stress tensor, have been
compiled from the direct numerical simulation in paper I. The di-
rect impact of the rotation term in the transport equations is low,
but the effect of rotation is still evident in the development of the
Reynolds stress tensor.

Submitted for publication
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Paper IV

Paper V

Paper VI

Paper VII

SUMMARY OF PAPERS

Large eddy simulations of the turbulent flow between a
rotating and a stationary disk

A dynamic and a mixed dynamic subgrid-scale model are used
in large eddy simulations. The simulations are compared to the
simulation presented in paper I. The mixed dynamic model gave
better overall predictions than the dynamic model.

To appear in proceedings from the Second International Symposium
on Turbulence and Shear Flow Phenomena, 2001, Stockholm.
Effects of Reynolds number and gap ratio on open rotor-
stator flow

Simulations are performed of a narrow- and a large-gap rotor-
stator flow. The flow is studied at different radial positions of both
gap-widths. As the radial position increases, the degree of mean-
flow three-dimensionality decreases. This is reflected in the turbu-
lence statistics and in modifications of near-wall coherent structures
caused by the three-dimensionality.

To be submitted for publication in 2001

Roll Cells in Turbulent Plane Couette Flow: Reality or
Artifact?

A special set of boundary conditions is used in a direct numerical
simulation of the turbulent plane Couette flow. The aim is to break
the inflow—outflow coupling associated with periodic boundary con-
ditions and to study the effect of the boundary conditions on the
very-large-scale structures observed in numerically generated Cou-
ette flows. To facilitate the simulation, a multigrid Poisson solver
is developed.

In 16th International Conference in Numerical Methods in Fluid
Dynamics, 1998, Archachon, ed. C.H. Bruneau, pp. 117-122,
Springer

Influence of boundary conditions on the large-scale struc-
tures in turbulent plane Couette flow

In addition to the boundary conditions used in Paper VI, a simi-
lar non-conventional boundary treatment is applied in simulations
of the Couette flow. The effect of the boundary conditions is to
shorten the streamwise length-scale of the structures as well as to
reduce the tendency for roll cells to develop. However, firm conclu-
sions regarding the existence of the vortices could not be drawn,
mainly due to the small extension of the computational domain
used.

In First International Symposium on Turbulence and Shear Flow
Phenomena, 1999, Santa Barbara, California, eds. S. Banerjee and
J.K. Eaton, pp. 15-20, Begell House
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