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Sammendrag

Kakefiltrering er brukt til å adskille faste partiklene fra et strømmende fluid.
Partiklene avsettes p̊a overflaten av et porøst filtermedium mens fluidet passerer
gjennom filterporene pga. en trykkdifferanse over filteret. Under filtrasjonen
dekkes filtermediet med partikler og en filterkake dannes. Etter hvert overtar
kaken funksjonen for å tilbakeholde nye partikler fra filtermediet. Dannelsen av
en filterkake er forbundet med en reduksjon av filterets permeabilitet, som fører
til en mindre fluidvolumstrøm og/eller et økt trykktap.

Den klassiske filtrasjonsteorien forutsier en lineær økning av tykktapet over
tid p̊a homogene filtermedier n̊ar kakeoppbygningen foreg̊ar ved konstant vo-
lumstrøm. Publiserte simulasjoner av strømningen i inhomogene filtre, indike-
rer ikke lineære trykktapsøkninger ved kakeoppbygning. Litteraturen viser at
inhomogene filtermedier har hurtigere trykktapsøkning i begynnelsen av filtre-
ringen enn homogene filtermedier, og at for de inhomogene filtermedier vil trykk-
tapsøkningen flate ut i løpet av filtrasjonen. Sammenligner man filtrasjonen p̊a
inhomogene filtermedier med den klaskiske teorien viser det seg at inhomogene
filtre har en lavere integrert permeabilitet n̊ar den samme partikkelmassen er
avskilt i filterkaken.

Filterkaken må fjernes periodisk fra industrielle gassfilter, for å kunne opp-
rettholde semi-kontinuerlig drift. Hvis regenereringen ikke er fullstendig, men
filterkaken fjernes bare delvis, vil trykktapsprofilen ligne p̊a profilen til filtra-
sjon p̊a inhomogene filtermedier. Delvis rensning av filterkaken kan skyldes b̊ade
utilstrekkelige rensingstiltak og segmentert rensing av filteret. Den ufullstendige
regenereringen fører til en filterkakefordeling, s̊akalte kakegenerasjoner oppst̊ar,
og filterarealer som fortsatt bærer kake etter rensingen har en mindre permeabi-
litet enn kakefrie arealer. Dermed dannes det igjen en s̊akalt permeabilitetsforde-
ling (PF). Trykk og hastighets profilene til ufullstendig rensa filter blir modellert
med enkle strømningsmodeller (Darcys lov endimensjonal) i litteraturen.

I denne avhandlingen er det utviklet en filtermodell for inkompressible filter-
kaker, som beskriver sammenhenget mellom trykktapet og fluidvolumenstrømmen.
Modellen er basert p̊a Darcys lov i en dimensjon som strømningsmodell og den
kan beskrive inhomogene filtermedier gjennom en kontinuerlig PF. PF’en ved
begynnelsen av filtrasjonen kan innfatte b̊ade bidrag fra et inhomogent filterme-
dium og en gjenværende kakefordeling. Tidsintegrasjonen av modellen kan løses
analytisk.

Modellen har matematisk formen av en generalisert Stieltjes integraltrans-
formasjon og det kan bevises, at en trykktapsprofil for en konstant fluidvolu-
menstrøm tilsvarer akkurat en bestemt PF. En matematisk metode, PF-metode,
er utviklet. Metoden inverterer filtermodellen for å identifisere PF’en fra en målt
trykktapsprofil i et filter. Inversjonen kan bli utført ved hjelp av en global op-
timaliseringsalgoritme. Alternativt kan filtermodellen omskrives til et konvolu-
sjonsintegral. Derved blir PF-methoden et dekonvolusjonsproblem, som tillater
en vurdering av feilen som p̊avirker PF’en. Optimaliseringsløsningen er relativt
enkelt å omsette og har derfor praktiske fordeler ved å beregne en PF. Dekon-
volusjonen brukes for en vurdering av feilen i PF’en.
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PF-metode’en er anvendt p̊a eksperimentelle trykktapsforløp i gassfiltre med
tekstile filtermedier. PF’er er bestemt for trykktapsdata av filtermedier i testan-
legg, laboratorium-posefilteranlegg, pilotanlegg og industrielle anlegg. Selv for
filtrasjon p̊a tidligere ubrukte filtermedier finner man det en tydelig PF, dvs. de
undersøkte filtermediene er generelt inhomogene. Den kontinuerlige analysen av
filtermediene i kondisjoneringsfasen viser gradsvise endringer av den tilsvarende
PF’en. Sammenlignet med vanligvis dokumenterte parameter av en filtertest,
som f.eks. permeabiliteten for luft ved 200 Pa, gir en PF mer inng̊aende infor-
masjon om trykktapsøkningen.

Den utviklede modellen inneslutter fullstendig alle kjente kakegenerasjons-
modeller, hvis man ser bort fra kakekompresjonseffekter. Kakegenerasjonsmo-
dellene må som regel bestemme en eller flere parameter fra en sammenligning
av eksperimentelle og simulerte trykktapskurver. Alle de undersøke filterme-
dier i denne avhandlingen har en PF selv. Dette er ikke tatt hensyn til i de
kjente filtermodellene fra litteraturen og dermed foreg̊ar bestemmelsen av pa-
rameterne i disser modeller under brutte modellantagelser. Dessuten vises det
at feilen ved å bestemme en PF fra trykktapsprofiler er betydelig, slik at ikke
mer en det to yngste kakegenerasjoner kan identifiseres. De numeriske egen-
skapene er universelt overførbar fra PF-metoden p̊a kakegenerasjonsmodeller,
fordi den underliggende modellstrukturen er den sammen. Dermed er en para-
metertilpasning eller en verifikasjon av mekanisktiske antakelser basert p̊a en
trykktapssammenlikning en tvilsom framgangsmåte.

PF-metoden krever en klar trykktapsøkning for å kunne bestemme en PF.
Filterdriften i industrien foreg̊ar typisk semi-kontinuerlig, dvs. filteret renses pe-
riodisk og drives i sykluser. I målte trykktapsforløp kan syklusene neppe skjelnes
fra hverandre og følgelig er en klar trykktapsøkning ikke tilgjengelig fra målt
data. En rutine utvikles, som tar utgangspunktet i en antallfordeling av trykk-
tapsmålinger og genererer en karateristisk filtrasjonssyklus, som kan analyseres
ved hjelp av PF-methoden. PF’en bestemmes for et industrielt filter før og etter
en bytting av alle filterposer. Siden filteret renses i segmenter er en PF et resul-
tat av kombinasjonen av filtermediet med en gjenværende filterkake. Ikke desto
mindre PF’ene er tydelig forskjellige, ikke bare med tanke p̊a deres integral
verdi, men ogs̊a deres form.



Summary

Cake filtration is a unit operation to separate solids from fluids. The solid
particles are retained at the surface of a porous filter medium whereas the fluid
can pass though the pores. In the course of filtration, particles are not only
retained by the filter medium itself, but a filter cake builds up. Since the
flow is pressure driven, cake formation is accompanied by a reduction of the
permeability of the combination filter cake and filter medium. This results in a
reducing volume flow and/or an increasing pressure drop over the filter.

Classical filtration theory predicts a linear pressure drop increase for the
build up of a cake on a homogeneous filter medium for a constant fluid volume
flow. Flow simulation studies in literature show that an initially inhomogeneous
filter medium permeability with a correspondingly inhomogeneous flow field en-
tails a non-linear pressure drop increase. The pressure drop rise at the beginning
of filtration is steeper than for a homogeneous medium and the pressure drop
slope flattens in the course of filtration. For the same amount of solid deposited
in the filter cake, this shape of the pressure drop profile leads to lower integral
permeability values than one expects from the linear increase predicted by the
classical theory.

A similar pressure drop pattern is observed in industrial gas filters, when they
are regenerated partially. Filter regeneration is necessary to be able to operate
the filtration process without interruption and it is achieved by periodically
removing the filter cake from the filter medium. Partial regeneration occurs,
when the filter cake is not entirely removed from the filter cloth due to an
insufficient cleaning action and/or only partial exposure of the filter medium to
the cleaning action. In literature, models accounting for partial regeneration are
published, which are typically based upon a rather simple flow model (Darcy’s
law in one dimension). The result of partial regeneration is a distributed residual
filter cake, i.e., several cake generations are present. Filter areas carrying older
cake generations have a lower permeability than cake free areas. This situation
represents an inhomogeneous distribution of the filter permeability.

A novel filter model describing the pressure drop - volume flow relation has
been developed for incompressible filter cakes. The model is based on Darcy’s
law in one dimension to describe the fluid flow and can account for inhomogene-
ity of the filter with a continuous permeability distribution (PD). This initial
PD can comprise both contributions: the filter medium and a residual filter cake
distribution. The model can be solved analytically in the time domain.

The model has the form of a generalized Stieltjes integral transform and the
relation between a pressure drop vs. time is unambiguously linked to the PD. A
mathematical method, termed PD-method, is developed, which inverts the filter
model to determine the PD from pressure drop data of the filter. The inversion
is practically accomplished by either global optimization or the reformulation
into a convolution transformation. The latter is also used to assess the error in
the determination of a PD. The optimization approach to determine a PD is
comparatively simple to implement. The most practical approach is therefore an
optimization to determine the PD and the convolution formulation to estimate
the error associated with the determination of the PD.



x

The PD-method is applied to a series of experimental pressure drop data of
gas filters using fabric filter media. Pressure drop data from laboratory scale
filter test-rigs, laboratory scale bag filter plants, pilot scale filter plants and in-
dustrial scale filter plants are used to determine corresponding PDs. It is shown
that even virgin filter media examined in various laboratory scale facilities show
a significant PD, i.e., the filter media are generally inhomogeneous. Continuous
examination of a filter medium during its conditioning period shows a gradual
change in its PD. It is demonstrated that the PD can provide more exhaus-
tive information on the pressure drop performance of the filter medium, than
commonly reported parameters such as the integral air permeability at 200 Pa
pressure differential.

It is shown that cake generation models are fully covered by the model devel-
oped in this work, except for cake compression effects. These models determine
one or more parameters from a comparison between experimental and simulated
pressure drop curves. Every fabric filter medium investigated exhibits a PD it-
self. This is not accounted for by any known cake generation model, which all
assume a homogeneous filter medium. Hence such parameter estimations are
undertaken with violated model assumptions. In addition, the error in the deter-
mination of a PD from pressure drop data is significant (typically not more than
the two newest cake generations are discernible) and the numerical properties
are universal to both the literature cake generation models and the presented
model. Hence, it is debatable practice to determine model parameters or even
verify mechanistic assumptions from a comparison of simulated and measured
pressure drop data.

The PD-method requires an unobscured pressure drop increase to be able
to determine a PD. Industrially operating filters are typically operating semi-
continuously in cycles, i.e., the filters are cleaned intermittently. In the measured
pressure drop patterns the filtration cycles may hardly be discernible and hence
a pressure drop increase is not available directly from measured data. A routine
is developed based on the estimation of a pressure drop sample number distri-
bution from individual measurements, which establishes a characteristic filter
pressure drop cycle suitable as input for the PD-method. PDs are determined
for an industrial filter unit before and after the change of filter bags. Since
the filter is cleaned only partially the PD results as a combination of the filter
cloth with a residual filter cake. Nevertheless, the resulting PDs show a clear
difference, not only of the integral permeability, but also of the shape of the PD.



Zusammenfassung

Kuchenfiltration ist eine Möglichkeit zur Abtrennung einer festen von einer flui-
den Phase. Die festen Partikel werden an der Oberfläche eines porösen Filterme-
diums zurückgehalten, während das Fluid aufgrund eines aufgeprägten Druck-
gefälles hindurch tritt. Im Zuge der Filtration wird das Filtermedium zusehends
von Partikeln bedeckt, sodass die bereits angelagerten Partikel, der sogenannte
Filterkuchen, die Funktion der Partikelabscheidung übernehmen. Der Aufbau
des Filterkuchens geht mit einer Abnahme der Permeabilität des Filters einher,
was einen verringerten Fluidvolumenstrom und/oder einen erhöhten Druckver-
lust nach sich zieht.

In der klassischen Filtrationstheorie ist während des Kuchenaufbaus für
einen konstanten Fluidvolumenstrom ein linearer Druckverlustanstieg über die
Zeit zu erwarten. Dir Literatur berichtet von Strömungssimulationen auf ei-
nem inhomogenen Filtermedium, die einen nichtlinearen Druckverlustverlauf
zur Folge haben. Die Steigung des Druckverlustanstiegs zu Beginn er Filtration
ist höher als für ein homogenes Filtermedium und flacht im Laufe der Filtration
ab. Im Vergleich zu dem klassischen Fall der Filtration auf einem homogenen
Medium ergibt sich hier eine geringere integrale Permeabilität des Filters für
die gleiche abgeschiedene Feststoffmasse im Kuchen.

Der Filterkuchen muss von Gasfiltern im industriellen Einsatz periodisch ent-
fernt werden, um einen semikontinuierlichen Betrieb zu ermöglichen. Falls dabei
die Regenerierung nicht vollständig ist, sondern nur ein teilweises Abreinigen des
Kuchens aufgrund unzulänglicher Abreinigungsmaßnahmen und/oder bewusst
segmentierter Abreinigung erfolgt, so wird ein ähnlicher Druckverlustverlauf wie
auf inhomogenen Filtermedien beobachtet. In der einschlägigen Literatur findet
man Modelle, die unvollständige Abreinigung beschreiben und oftmals auf ei-
nem einfachen Strömungsmodell basieren (eindimensionales Darcy-Gesetz). Die
unvollständige Regenerierung führt zu einer Verteilung des Restfilterkuchens, so
genannte Kuchengenerationen entstehen, und jene Bereiche des Filters, die noch
Kuchen tragen, habe eine geringere Permeabilität als kuchenfreie Teile, wodurch
wiederum eine Permeabilitätsverteilung (PV) entsteht.

In dieser Arbeit wird ein Filtermodell für inkompressible Filterkuchen ent-
wickelt, das den Zusammenhang zwischen Druckverlust und Fluidvolumenstrom
beschreibt. Das Model zieht das Darcy-Gesetz zur Beschreibung der Fluid-
strömung in einer Dimension heran und kann Inhomogenität im Filtermedium
über eine kontinuierliche PV beschreiben. Die PV zu Beginn der Filtration
kann sowohl Beiträge eines inhomogenen Filtermediums als auch einer eventu-
ellen Restkuchenverteilung beinhalten. Für die Zeitintegration des Filtermodells
wird eine analytische Lösung beschrieben.

Das Modell hat mathematisch die Form der generalisierten Stieltjes Inte-
graltransformation und es kann gezeigt werden, dass ein Druckverlustprofil für
einen konstanten Fluidvolumenstrom eindeutig einer bestimmten PV entspricht.
Durch Invertierung des Filtermodels wird die so genannte PV-Methode erhalten,
die die PV aus dem gemessenen Druckverlustverlauf des Filters berechnet. In
der Praxis wird diese Invertierung von einem globalen Optimierungsalgorithmus
bewerkstelligt. Alternativ kann das Filtermodell in ein Faltungsintegral umge-



xii

schrieben werden, wodurch die PV-Methode als Entfaltungsproblem betrachtet
werden kann. Dieser Zugang erlaubt eine Fehlerabschätzung bei der Entfaltung
und somit bei der Bestimmung der PV. In der Praxis hat sich die Optimierungs-
variante aufgrund ihrer einfachen Umsetzung bewährt und die Entfaltung wird
bei Bedarf zur Fehlerabschätzung herangezogen.

Die PV-Methode wird auf experimentelle Druckverlustdaten von Gasfiltern
angewandt, die auf Filtertestständen, Laborschlauchfiltern, Pilotfilteranlagen
und industriellen Filteranlagen gewonnen werden. Es werden textile Filterme-
dien untersucht. Selbst zuvor unbestaubte Medien, die in verschieden Laboran-
lagen untersucht wurden, weisen eine deutliche PV auf, d.h. die untersuchten
Filtermedien sind im Allgemeinen inhomogen. Die fortlaufende Untersuchung
von Filtermedien während der Konditionierungsphase zeigt eine schrittweise
Änderung in der zugehörigen PV. Verglichen mit üblicherweise dokumentierten
Parametern ist eine PV bezüglich des Druckverlustverlaufs eines Filtermediums
aussagkräftiger.

Wenn man von Kuchenkompressionseffekten absieht, kann gezeigt werden,
dass das hier vorgestellte Modell früher entwickelte Kuchengenerationsmodelle
vollständig beinhaltet. Diese Modelle ziehen oftmals einen Vergleich zwischen si-
muliertem und experimentellem Druckverlustverlauf heran, um einen oder meh-
rere Modellparameter zu bestimmen. In keinem der mir bekannten Generatio-
nenmodelle wird ein eventuell inhomogenes Filtertuch berücksichtigt, obwohl
alle untersuchten Tücher eine solche Inhomogenität aufweisen und die Parame-
terbestimmung somit unter Verletzung der Modellannahmen erfolgt. Weiters
zeigt sich, dass bei der Bestimmung einer PV von Druckverlustdaten kaum
mehr als die zwei jüngsten Kuchengeneration identifizierbar sind, d.h. der Feh-
ler während der Entfaltung beachtlich ist; die numerischen Eigenschaften sind
aufgrund der gleichen Modellstruktur universell von der PV-Methode auf die
Kuchengenerationenmodelle übertragbar und somit sind die Parameterbestim-
mung oder gar die Verifikation von mechanistischen Annahmen über den Ver-
gleich mit Druckverlustdaten eine zweifelhafte Vorgehensweise.

Die PV-Methode benötigt einen klaren Druckverlustanstieg um eine PV be-
stimmen zu können. Industrieller Filterbetrieb erfolgt typischerweise semikon-
tinuierlich in Filterzyklen, d.h. der Filter wird periodisch abgereinigt. Diese
Filterzyklen sind in gemessenen Druckverlustprofilen oftmals kaum erkennbar
und folglich steht ein klarer Druckverlustanstieg aus gemessen Daten nicht di-
rekt zur Verfügung. Es wird eine Routine entwickelt, die ausgehend von der
Schätzung einer Anzahlverteilung der Druckverlustmesswerte einen charakte-
ristischen Filtrationszyklus, der für die Auswertung mittels der PV-Methode
geeignet ist, bestimmt. Für Druckverlustmessdaten eines semikontinuierlich ar-
beitenden Filters werden PVen vor und nach dem Austausch der gesamten Fil-
terschläuche bestimmt. Da der Filter im Betrieb nur teilweise abgereinigt wird,
sind die somit erhaltenen PVen ein Resultat der Kombination des Filtertuchs
und des Restfilterkuchens. Dennoch weisen die PVen deutliche Unterschiede in
sowohl der Lage als auch der Verteilungsform auf.
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Nomenclature

Latin symbols

A location on the filter, m2

A unitary pre-factor for the exponential change of variables, 1 · m−2

Atot total filter area, m2

B Wiener filter function
c̄sol mean solid concentration in the raw gas, kg · m−3

csol solid concentration in the raw gas, kg · m−3

Ek cumulative amplitude error in Φ′, m
Es cumulative amplitude error in Φ, m−2

f cleaning function - patchy cleaning
f frequency based on σ, −
fk cut-off frequency of the Wiener filter in the k-domain, m−1

fs cut-off frequency of the Wiener filter in the s-domain, m2

fσ cut-off frequency of the Wiener filter in the σ-domain
G transformed pressure drop function, m

1
2

h convolution kernel function
i PD discretization running variable
j index denoting filter segment
j measurements running variable
k running variable of nodes in the frequency domain
k total filter permeability, m
k0 initial filter permeability, m
kc filter cake permeability, m
L filter medium thickness, m
m PD number of nodes
N number of nodes
n number of measurements
n running variable of nodes in the σ-domain
P power spectral density, dB
p number of filter segments
pc prefactor of the pressure drop transformation, Pa · m
q∆p density of the sample pressure drop number distribution, Pa−1

q̂∆p corrected density q∆p, Pa−1

Q∆p cumulative sample pressure drop number distribution, −



xvi Nomenclature

qt density of sample time number distribution, s−1

s filter state, m−2

scyc filter state change per cycle, m−2

t time, s
tc prefactor of the time transformation, s · m
tcyc (mean) filtration cycle duration, s
u PD variable, abbreviation for k−2

0 , m−2

V̇ gas volume flow, m3 · s−1

v filtration velocity, m · s−1

X Fourier transform of function x in the frequency domain
x arbitrary function in the σ-domain
x local coordinate perpendicular to the filter area, m
z filter cake mass area load, kg · m−2

z50 parameter of the logarithmic normal distribution cake detachment
function, kg · m−2

Greek Symbols

α solid distribution coefficient for a two area model, −
αm mass related specific filter cake resistance, m · kg−1

β area distribution coefficient for a two area model, −
δ Dirac Delta function
∆p filter pressure drop, Pa
∆Φ permeability frequency distribution
∆phigh highest recorded pressure drop value, Pa
∆plow lowest recorded pressure drop value, Pa
∆p̃0 ordinate offset of ∆p asymptote, Pa
εk amplitude error in the density ϕ′, m
εs amplitude error in the density ϕ, m−2

εσ amplitude error in the transformed density ϕ̃, m
1
2

ηg dynamic gas viscosity, Pa · s
γ asymptotic pressure drop correction factor (solid distribution), −
κ intrinsic permeability, m2

κs initial pressure drop slope multiplier, −
µr rth moment of PD, mr

Φ cumulative PD function depending on u, −
ϕ′

cloth PD density ϕ′ of the filter cloth, m−1

Φ′ cumulative PD function depending on k0, −
ϕ′ PD density function depending on k0, m−1

ϕ̃ transformed ϕ-function, m
1
2

ϕ PD density function depending on u, m2

Ψ cumulative solid distribution function, −
ψ solid distribution density function, −
ρc filter cake density, kg · m−3

σ exponentially changed variable s, −



Nomenclature xvii

σLN parameter of the logarithmic normal distribution cake detachment
function

Θmax cumulative number distribution of the pressure drop maxima, −
Θmin cumulative number distribution of the pressure drop minima, −
ξ exponentially changed variable u, −
ξ mass flow correction factor for a solid distribution, −
ζ solid distribution parameter, −

Indices

cycle referenced to one filter cycle, i.e., from after cleaning to the next
pulse

noise noise model

Acronyms

DFT Discrete Fourier Transform
FFT Fast Fourier Transform
PD Permeability Distribution





Chapter 1

Introduction

1.1 Filtration principles

Filtration is a mechanical separation process used to separate a disperse phase
from a continuous fluid phase [1, p. 18-74]. The fluid passes through a porous
barrier, termed filter medium, which retains most of the disperse phase. This
work is restricted to the filtration of solid particles.

Filtration can be further classified according to the particle deposition mech-
anism [2]: The separation by the capturing of particles inside the porous filter
medium is termed depth filtration and the separation at the filter medium’s sur-
face is termed surface filtration. When particles deposit on to already deposited
particles the resulting particle agglomerate is termed filter cake and the corre-
sponding filtration mechanism is cake filtration. Cake filtration is preceded by
surface filtration. This work deals with cake filtration only.

As a consequence of the cake build up filtration is locally, i.e., on a certain fil-
ter medium part, an intrinsically discontinuous process, since the cake amount is
changing as filtration proceeds. This intrinsic discontinuous element in filtration
makes it an especially challenging unit operation to describe. However, intrinsic
discontinuous operation must not be confused with filtration equipment that
can operate continuously, e.g. rotary drum filters [1, p. 18-96] operate continu-
ously, but the filtration itself is still discontinuous with a cake building up on a
localized part of the filter media.

The driving force for filtration is a pressure difference applied to the fluid,
that drives the fluid through a possibly present filter cake and the filter medium.

1.2 Fluid mechanics

The flow in a filter can be divided into flow towards to the filter medium and
from the filter medium within, e.g. a filter housing. This fluid flow upstream of
the filter medium contains particles. The flow regime here is typically governed
by momentum, turbulence, and pressure. The pressure drop in this flow region
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is for cake filters typically small compared to the flow through the filter cake
and media. The fluid mechanics in the filter are an issue in the design process
of a filter plant but are not looked at in this work.

The fluid mechanics of the flow through a filter are characterized by laminar
flow in pores. The pores in the filter medium and in the filter cake are often
treated as a quasi continuous momentum sink. Since the flow velocities through
the filter are generally low the momentum in the flow is negligible and the flow
is exclusively pressure driven.

1.2.1 One-dimensional flow

The flow regime through the filter cake and filter medium is governed by Darcy’s
law, which is given one-dimensionally in its differential form per unit filter area
by equ. (1.1)1.

v = −κ
η

dp

dx
(1.1)

In this equation the superficial flow velocity, i.e., the fluid velocity perpen-
dicular to the filter area is denoted v. On the right hand side stands the pressure
gradient over the local coordinate x perpendicular to the filter area. The pro-
portionality factor is the intrinsic permeability κ, which is specific to the porous
medium [4]. The fluid viscosity is denoted η. In the context of filtration Darcy’s
law can be applied to both the filter medium and the filter cake with respective
permeability values.

Typically, i.e., because more detailed information is not available, the intrin-
sic permeability is assumed constant for the filter medium. When considering a
filter medium of a certain thickness L one obtains by integration of equ. (1.1)
via separation of variables:

v

L∫

0

dx = −κmedium

η

P2∫

P1

dp (1.2)

v =
κmedium

Lη
(P1 − P2) (1.3)

Typically the pressure drop (P1 − P2) is abbreviated ∆p and the filter medium
permeability k0 is introduced, which relates to the intrinsic permeability via:

k0 =
κmedium

L
(1.4)

This notation has the advantage that only one variable, i.e., the medium per-
meability k0, is needed to characterize the filter medium.

Analogously the filter cake can be treated. But not a single filter cake
permeability is defined, since the filter cake is growing over time. Traditionally

1In the original publication of Henry Darcy only an integral version of this equation is
stated [3].
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a specific filter cake resistance value αm is used [5], which relates to the intrinsic
cake permeabiltiy κc via:

αm =
1

κc · ρc
(1.5)

This defines the cake resistance based on cake mass with the cake density termed
ρc. This formulation is used in this work.

Analytical models exist to calculate the (intrinsic) permeability of a porous
medium, which are based again on homogenization of the intrinsically inhomo-
geneous structure to model a representative momentum sink. The best know
approach stems from Carman and Kozeny [6] and a number of extensions to
this concept are available [5, p.46]. However, the predictive capabilities of these
approaches are highly limited, mainly because the idealized conditions under-
lying these concepts are rarely satisfied. In practical applications one often has
to resort to the experimental determination of these parameters.

1.2.2 Higher dimensional flow phenomena

The application of the flow model concept outlined hitherto is straightforward,
because of its analyticity and one-dimensionality. Darcy’s law equ. (1.1) can be
given in the generalized form:

~v = −κ
η
∇p (1.6)

Thereby flow situations in more than one-dimension can be described. This
method is used by Dittler and Kasper [7] to simulate the flow field and filter cake
build up in two dimensions for patchily regenerated filters. Thereby, residual
filter cake is still present on the filter in discrete patches (see section 1.4), and
thus the assumption of strictly one-dimensional flow perpendicular to the filter
medium is not necessarily justified.

In a similar manner Dufrêche et al. [8] simulate the cake build up on a non-
uniform filter medium. They assume the filter medium to be a highly idealized
porous layer. The model geometry considered is an even sieve with regular
perforations. Fluid can only pass through the actual perforation. The stream
lines are correspondingly deflected upstream of the sieve and are concentrated
through the perforation. Cake build up simulations with a Lagrangian-type
particle tracking, neglecting any slip between the fluid and particles, yields a
preferential cake build up upon or close to the perforation, since particles follow
the streamlines. The deposited cake is treated as continuous porous solid with
fixed, isotropic flow resistance properties, i.e., a constant intrinsic permeability.
Its hydrodynamics can be described by Darcy’s law. Subsequently an altered
flow field is calculated with a filter cake present, and further cake build up
can be simulated. Thus an inhomogeneous filter cake around the perforation
evolves. An apparent permeability of the growing filter cake is calculated and
for thin cakes the apparent permeability of the inhomogeneous filter cake is
significantly lower than the corresponding permeability of a homogeneous cake
with the same mean thickness. The apparent permeability approaches the mean
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value as cake growth proceeds. This again implies that at a constant flow rate
and constant upstream solid concentration, i.e., time-linear mean cake growth,
the pressure drop is initially increasing faster, since the pressure drop and the
permeability are inversely proportional. Here the inhomogeneity of the filter
cake is not exclusively attributed to the pore structure of the medium, but also
to the upstream flow. The even model sieve with the combination perforation
- impermeable plate is, however, not directly applicable fabric filter media, and
[8] rightfully mention their main application in membrane filtration.

1.2.3 Internally inhomogeneous filter cake

The assumption of a constant intrinsic permeability as stated above is certainly
not always justified. Experimental findings show that the apparent intrinsic
permeability of the filter cake may increase when pressure is applied to the
filter cake. This phenomenon is termed cake compression or compaction and
it is attributed to a further consolidation of the porous filter cake under the
external influence of pressure, thereby reducing its permeability.

Experimentally this effect leads to an increasing pressure drop slope as cake
build up proceeds, since a higher pressure drop entails higher stresses on the
cake and therefore consolidation of the cake. The effects of cake compression are
most pronounced in the field of liquid filtration [2]. Schmidt ([9], [10]) studies
cake compression for dust filtration.

Another effect, that leads to an apparent similar effect is depth filtration,
which precedes cake build up. Particles reaching a clean filter surface may to
some extent penetrate inside the filter media and thereby do not participate in
the formation of a filter cake. Hence the filter cake forms more slowly than one
would expect given the solid mass reaching the filter and decrease in permeabil-
ity is not as pronounced [11].

1.3 Filter media

The filter medium and its hydrodynamic properties are partly discussed above.
The selection of filter media is a highly complex and empirical process and
an overview on this issue for cleanable textile filter media for gas cleaning is
given by e.g. [5, chapter 2]. Here only an introduction to some filter medium
characterization methods is given, which moreover is restricted to the main
type application discussed further in this work: The gas cleaning with cleanable
textile filter media.

The fiber material in state of the art filter media can be a polymer, e.g.
polyamides or polytetrafluoroethylene, or of mineral origin, such as glass wool.
Occasionally metal fibers are used. The actual choice of the fibers depends
on the challenges in filter operation, such as temperature and chemical attack.
The filter media is made from separate fibers that are processed into a cloth
like form as either woven or needle felt. The latter has frequently a supporting
scrim, which is actually woven and used as basis to produce the needle felt. Such
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a needle felt combins the mechanical strength and air permeability of a woven
material, and the good dust separation characteristics of a felt [5]. Generally
fabric filter media are inhomogeneous with respect to both, inner structure and
surface characteristics.

Characterization of filter media is important to determine the suitability of
a medium for a certain application. Moreover the results are used to compare
the performance of different filter media for a certain application in terms of
pressure drop and solid emissions. A series of industry standards are available
which standardize filter media testing procedures.

On the one hand there are methods available that aim towards characterizing
the filter media by objective parameters such as air permeability (EN ISO 9237
is reporting gas flow at 20 mm water gauge pressure difference) or mechanical
properties (area weight, thickness, strength in EN 29073) without actually doing
filtration tests.

On the other hand test standards exist that are designed to assess the perfor-
mance of the filter media for filtration as the VDI-guideline 3926 [12]. Thereby
an actual sample of the filter cloth is exposed to dust and the pressure drop
is recorded over time, eventually the filter is regenerated by a jet pulse. The
standards also give guidelines for evaluating the experiments concerning the
filtration cycle duration between jet pulses and the pressure drop level. In ad-
dition, the clean gas concentration after the filter medium can be measured,
which is important for meeting the environmental standards.

Some studies indicate that the filtration characteristics are influenced by the
structure of the filter medium. Chen et al. [13] present a detailed experimental
study of the pressure drop behavior of three cleanable needle felt filter media
when challenged with monodisperse dust. They find a rather fast pressure drop
increase after the filtration start, which reduces in the course of filtration. This
effect is observed on all filter media with three different particles sizes of 5,
10 and 20µm. The smallest particles, however, show initially a slightly lower
slope of the pressure drop increase, which indicates depth filtration. This is
feasible, since the smallest particles might be able to advance deeper into the
filter media than bigger particles which are retained closer to the surface. The
phenomenon of a fast pressure drop increase at the beginning of filtration is
ascribed to an initially inhomogeneous particle deposition filling up the pores
on the filter media’s surface, before a more homogeneous cake build up evolves.
For the case of the monodisperse dusts with 10 and 20µm this phenomenon
is discussed using the hypothesis of a two-stage cake build up within and on
top of the pores. They observed that stage one, i.e., pore filtering, is finished
with the same amount of particles mass irrespective of the particle size. Stage
two is homogeneous filter cake build up on the entire filter media area. The
experimental findings in [13] suggest an initially inhomogeneous cake build up
due to the pore structure, but no quantitative treatment of these findings is
given.
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1.4 Gas filtration in industry

In this section the main application referred to in this work is presented: Dust
removal from industrial gas streams in bag filters. This unit operation is de-
scribed in detail by Löffler et al. [5]; here only a brief overview of the most
commonly applied operation principle is given. Cylindrical filter bags are per-
vaded by the process gas, whereby the dust is retained on the filter bag’s surface.
The filter bags are pervaded by the gas from the outside and are mounted on
wire cages to prevent them from collapsing. Inside the filter bag the clean gas
moves towards the clean gas chamber where it is collected.

The filter bags are typically cleanable. The dust cake removal by e.g. reverse
jet pulses is described in detail by e.g. [14] and [15]. The movement of the
filter bag and the reverse flow against the filtration flow direction liberate the
filter cake from the bag. The torn-off filter cake settles and is collected in a
dust hopper at the bottom of the filter. A basic filtration plant is displayed in
the flowchart Figure 1.1. The induced draft fan is used to overcome the flow

PDC

FC

bag filter

jet pulse unit

clean gas

dust laden gas

fan

solid product

Figure 1.1: Basic flowchart of a bag filter plant with crucial control circuits and
measurements.

resistance of the filter. During filtration this resistance is increasing which either
leads to a decreased volume flow while the pressure drop over the filter remains
constant or the flow is kept constant while the pressure drop rises. Eventually
the filter is cleaned after a certain time interval and/or at a certain pressure
drop level. Löffler et al. [5] provide a basic overview about the possible cleaning
modes.

Filter cleaning is not necessarily complete, i.e., residual dust cake is left on
parts of the filter. Incomplete regneration can be intended by cleaning only a
part of a filter that is divided into compartment, which can be cleaned separately.
Insufficient regneration as described by [16] leaves parts of the filter cake, termed
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patches, unchanged on the filter medium, although these patches were exposed
to some cleaning action. Thereby a spatially distributed cake arises.

This incomplete regneration mechanism is the basis of several filter model-
ing studies that make use of mechanistic assumptions to describe the pressure
drop - flow relation in cleanable filters ([17], [18], [19], [20]). These models use
one-dimensional Darcy equations which are solved numerically to describe the
pressure drop vs. volume flow through the filter media and filter cake. The fil-
ter medium and cake are considered as a uniform flow resistances, respectively.
After cleaning cake patches cover some parts of the filter area, while other parts
are not carrying any cake. Hence, the permeabilty over the filter in the cake-
free areas is higher and filtration will take place preferentially in these areas.
Thereby the initially distributed cake will be evened out towards a homogeneous
cake coverage. Typically, experimental pressure drop data is used to fit model
parameters, which describe the cake regeneration efficiency. These models focus
on the filter cake regeneration, the subsequent distribution on filter cake, and
the implications on the pressure drop - volume flow relation of the filter. They,
however, do not consider any inhomogeneity in the filter medium itself.

1.5 Scope

Attempts at filter modelling take their starting point in Darcy’s law as the
governing equation of fluid mechanics. On the one hand studies employing a
one-dimensional approach were conducted for the simulation of industrial filter
operation assuming a discrete distribution of residual filter cake. On the other
hand simulations of the cake build up in two (or more) dimensions were carried
out to study the influence of the flow field on cake build up. In the latter studies
the inhomogeneity considered is caused by either a distributed residual cake [7]
or an inhomogeneous filter medium [8].

An experimental study [13] of fabric filter media’s structure suggests local
inhomogeneities, which must be attributed to the pore structure of the media.
The effect of any inhomogeneity of the filter at the beginning on the pressure
drop curve is similar, i.e., the initial decrease in the integral permeability is
relatively fast compared to the cake mass increase. This is found by both,
experimental and theoretical studies.

In this work a filter model describing the pressure drop - volume flow relation
is developed, which can account for inhomogeneity of the permeability in the fil-
ter medium. The inhomogeneity is described by a continuous distribution of the
initial permeability of the filter medium, which may also include contributions
of residual filter cake. It is shown that pressure drop - volume flow relations and
the distribution of filter permeability are unambiguously linked. It is demon-
strated that a permeability distribution can be quantitatively extracted from
filter pressure drop data for constant flow filtration.

A convolution transformation formulation of the filter model is developed
and used to estimate the error for the determination of a permeability distribu-
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tion. The developed method is applied to various experimental pressure drop
data from cleanable gas filters with fabric filter media.

The application of the developed filter model to the simulation of industrial
filter operation is discussed. A specialized routine is developed to be able to
apply the developed method to semi-continuously operating filter plants.

In a separate chapter a simulation study on the assumption of a solid concen-
tration distribution upstream the filter media is presented. Typically a constant
solid distribution is used as model assumption. This section shows the influence
of the violation of this seldom questioned assumption.



Chapter 2

Cake filter model

2.1 Model structure and assumptions

A cake filter model is developed for filter media with a distributed permeability.
Starting from an illustration of the cake filtration on an inhomogeneous filter
media, the required mathematical framework is derived. Hereafter homogeneous
refers to a property that is independent of the location on the filter, whereas
inhomogeneous can vary with filter location.

In Fig. 2.1 the plain filter media is displayed schematically. The filter me-
dia is illustrated by vertical lines depicting pores penetrating the filter media
vertically. The pore size varies and thereby symbolizes the local permeability
of the filter media, i.e., small pores (dense lines) have a higher flow resistance,
than the wider pores. The filter model assumes Darcy flow [3] through the filter
media and thus the relation of flow velocity and pressure drop is linear:

v(t = 0, A) = k0(A)
∆p(t)

ηg
(2.1)

Equ. (2.1) is the proportional relation between the pressure drop and the flow
velocity across the filter media. It is given at time t = 0, which henceforth
refers to the beginning of filtration. The proportionality factor is the ratio of
the permeability k0 of the filter media and the dynamic gas viscosity ηg. The
velocity profile in Fig. 2.1 illustrates the effect of the inhomogeneous perme-
ability of the filter media: At locations with a lower permeability also the flow
velocity is lower, and according to equ. (2.1) this is a directly proportional rela-
tion. The depicted flow velocity is taken directly after or even within the filter
cloth. Downstream of the filter viscosity effects will equalize the velocity profile
rapidly. The superficial flow, i.e., the flow velocities in or through filter media,
encountered in filtration is perpendicular to the filter medium.

It must be noted that, although one-dimensional cake build up is assumed,
flow is not restricted to be perfectly perpendicular to the filter medium, rather
than the cake build up is sufficiently well described one-dimensionally along the
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v

∆p

A

Figure 2.1: Scheme of a cross section of a filter medium with inhomogeneous
permeability and the corresponding flow field.

streamlines. Filtration takes place when the fluid upstream contains particles.
The particles are retained by the filter media. During cake filtration the particles
deposit onto the filter media and subsequently onto already deposited particles,
thereby forming a filter cake. In Fig. 2.2 the idealized cake formation is depicted.
A filter cake is formed on the filter media. Since the flow field for the filter
media is inhomogeneous due to a distributed permeability, also cake formation
is hereby affected. Cake forms faster in areas with an initially high flow velocity,
since more particles are deposited on these areas. This is reflected by the filter
cake thickness in Fig. 2.2, which is higher at areas with a higher permeability of
the filter medium and thus a higher initial flow velocity. However, the filter cake
itself represents a flow resistance, too. Under the assumption of an internally
homogeneous cake, i.e., a cake that has a constant specific flow resistance at
a Darcy scale (cf. [8]), the flow resistance is proportional to the filter cake
thickness. Mathematically this fact can be captured by equ. (2.2). Here the left
hand side (LHS) is the reciprocal value of the filter cake permeability, i.e., the
filter cake resistance. On the right hand side (RHS) stands the solid area load,
which under the assumption of an internally homogeneous cake corresponds to a
certain cake thickness. The proportionality factor is the specific cake resistance
αm.

1

kc(t, A)
= αm · z(t, A) (2.2)

When a filter cake is present, the fluid flow is determined by the combined
flow resistances of filter medium and filter cake. The flow resistances of filter
medium k−1(A) and filter cake k−1

c (t, A) are in series and thus add linearly:

1

k(t, A)
=

1

kc(t, A)
+

1

k0(A)
(2.3)
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v

∆p

filter cake (schematically)

Figure 2.2: Scheme of a cross section of a filter medium carrying filter cake.
The correspondingly altered flow field is also displayed.

When cake is present the fluid flow is determined by a linear relation similar to
equ. (2.1), but with the combined permeability k instead of just k0:

v(t, A) = k(t, A)
∆p(t)

ηg
(2.4)

The permeability depends on both, the location on the filter A, and the filtration
time t. The latter dependency is describing the evolution of the permeability
as cake build up proceeds. The mechanistic cake build up is described by solid
continuity. In cake filters almost the entire amount of dust, which is transported
to the filter, is retained on the filter and thereby forming a cake. Here it is
assumed that the upstream solid concentration is constant and thereby the
filter cake mass balance reads:

dz(t, A)

dt
= csol · v(t, A) (2.5)

From equ. (2.5) the direct proportionality between cake build up flow velocity
can be seen.

The filter cake depicted in Fig. 2.2 causes, as stated, additional flow resis-
tance. To overcome that increased resistance and keep the total volume flow
constant (constant flow filtration) the pressure drop augments. In classical fil-
tration theory a homogeneous filter medium and a homogeneous filter cake build
up give a linear pressure drop increase [5]. However, if the filter medium is in-
homogeneous but an internally homogeneous cake builds up the pressure drop
increases non-linearly and always concave. Of course, if the filter medium is
homogeneous but the cake builds up inhomogeneously the pressure drop may
also increase non-linearly. Such a case is e.g. described in chapter 7.
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2.2 Mathematical model development

In this section a mathematical pressure drop model is developed for a filter that
leads to a characteristic function of the permeability of the filter media. This
pressure drop model is solely based on the equations that comprise of the cake
filter model (chapter 2.1) and the respective assumptions.

The time derivative of equ. (2.2) is

d 1
kc(t,A)

dt
= αm · dz(t, A)

dt
(2.6)

and the time derivative of equ. (2.3) is:

d 1
k(t,A)

dt
=

d 1
kc(t,A)

dt
(2.7)

Expressing the solid area load term in equ. (2.6) by equ. (2.5) and subsequently
by using equ. (2.7) gives:

d 1
k(t,A)

dt
= αm · csol · v(t, A) (2.8)

Here the filtration velocity v(t, A) can be expressed by equ. (2.4) which reads:

d 1
k(t,A)

dt
=
αm · csol

ηg
· k(t, A) · ∆p(t) (2.9)

In this equation the permeability and the pressure drop are time dependent.
However, equ. (2.8) can be rearranged by separating variables. Thereby evalu-
ating the derivative on the LHS of equ. (2.9) gives:

− dk(t, A)

k3(t, A)
=
αm · csol

ηg
· ∆p(t) · dt (2.10)

Equ. (2.10) is a differential equation with separated variables k(t, A) and t,
respectively. Integrating from time zero to t on the RHS and the corresponding
permeabilities on the LHS gives:

1

k2(t, A)
− 1

k2
0(A)

= 2 · αm · csol

ηg
·

t∫

0

∆p(t) · dt (2.11)

Hereby, the relation k(t = 0, A) ≡ k0(A) is used, reflecting that at time t = 0
the permeability relates only to the filter medium’s permeability (cf. equ. (2.1)).
In equ. (2.11) the RHS is only time dependent, i.e., it does not show any de-
pendency of the filter area. That implies that the evolution of the permeability
with the distributed initial value k0(A) is related by only one scalar value which
shall be abbreviated s(t), hence termed filter state.

s(t) ≡ 2 · αm · csol

ηg
·

t∫

0

∆p(t) · dt (2.12)
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The physical meaning of equ. (2.11) is that the evolution of the permeability
at any location A on the filter is solely determined by the evolution of the
pressure drop over time. This is because the build up of the filter cake is the
reason for a changing permeability which in turn is merely determined by the
filtration velocity and thus the pressure difference over the filter.

Equs. (2.11) and (2.12) lead to an additive relation that describes the per-
meability by two contributors, the initial permeability k−2

0 (A) only depending
on the filter location and the filter state s(t) only depending on time. Thus a
separation of variables is accomplished in the integrated form, too.

k−2(t, A) − k−2
0 (A) = s(t) (2.13)

In other words the flow situation of the unloaded filter media (Fig. 2.1)
depends only upon the spatial domain. Based on that, the subsequent filter
cake build up is only determined by the scalar filter state s(t), which is only
time dependent.

Hitherto the filter is looked at a scale resolving the inhomogeneities on the
filter location A. However, to describe a filter by a pressure drop model the
entire filter must be considered. By integrating over all filter locations A, i.e.
the entire filter area Atot, in equ. (2.4) one obtains:

Atot∫

A=0

v(t, A)dA =
∆p(t)

ηg

Atot∫

A=0

k(t, A)dA (2.14)

The LHS represents the volume flow through the entire filter V̇ (t). Rear-
ranging equ. (2.14) and expressing the permeability by equ. (2.13) yields:

ηg · V̇ (t)

∆p(t)
=

Atot∫

A=0

[
k−2
0 (A) + s(t)

]− 1
2 dA (2.15)

Equ. (2.15) represents a direct relation between the time dependent pres-
sure drop ∆p(t) and volume flow V̇ (t) on the LHS and the initial permeability
function k0(A) on the RHS. For simplifying the representation of this relation
slightly and with respect to further mathematical treatment it is advisable to
introduce the abbreviation:

u ≡ k−2
0 (A) (2.16)

The filter location A is barely used to identify an area of the filter to its per-
meability value. The permeability is not resolved locally. Thus the relation
between area A and permeability, i.e., k0 or u, can be inverted, leading to an
area distribution function. This distribution function can be introduced in di-
mensionless form by:

Φ(u) ≡ A

Atot
(2.17)

Here Atot is the constant total filter area and Φ(u) is the cumulative permeability
area distribution function. Since u is unambiguously linked to k0 (equ. (2.16)),
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Φ(u) will be referred to as permeability distribution (PD). The limits of inte-
gration of equ. (2.15) are changed accordingly to account for the substitution
of the variable of integration by equ. (2.17):

ηg · V̇ (t)

Atot · ∆p(t)
=

∞∫

u=0

[u+ s(t)]
− 1

2 dΦ(u) (2.18)

The form of equ. (2.18) with a function as variable of integration is called
Riemann-Stieltjes integral. In this equation both, the LHS (namely ∆p and
V̇ ) and s appear depending on time t. It is shown below that the filter state
s is treated as a parameter and therefore the explicit time dependency will be
omitted:

ηg · V̇
Atot · ∆p

=

∞∫

u=0

(u+ s)−
1
2 dΦ(u) (2.19)

Equ. (2.19) is the mathematical representation of the cake filter model used
further on. The LHS only contains integral, measurable filter parameters, while
the RHS depends on the PD and the filter state s. The filter state is defined by
equ. (2.12).

For the application of the filter model two main cases for filter operation:� constant pressure� constant volume flow

are considered, and the respective formulations are derived in the sections below.

2.3 Constant pressure filtration

Filtration with a time-constant overall pressure difference leads to a simple
relation of filter state s and time t since equ. (2.12) can be integrated analytically
giving a direct proportionality:

s =
2 · αm · csol · ∆p

ηg
· t (2.20)

Thus equ. (2.19) made explicit for the volume flow V̇ reads:

V̇ =
Atot · ∆p

ηg

∞∫

u=0

(

u+
2 · αm · csol · ∆p

ηg
· t

)− 1
2

dΦ(u) (2.21)

2.4 Constant flow filtration

The case of a constant volume flow V̇ requires a slightly more extensive mathe-
matical treatment, since the filter state is not so readily obtained from integra-
tion of equ. (2.12). Instead a parametric model for the relation of pressure drop
∆p and time t is developed with filter state s being the parameter.
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Two abbreviations of constants are introduced for a simpler model represen-
tation:

pc ≡
V̇ · ηg
Atot

(2.22)

and

tc ≡ Atot

αm · csol · V̇
(2.23)

The pressure drop is obtained by rearranging equ. (2.19) and using the con-
stant pc defined:

1

∆p
=

1

pc
·

∞∫

u=0

(u+ s)
− 1

2 dΦ(u) (2.24)

Equ. (2.24) contains s which depends upon the pressure drop ∆p and time
t according to the definition by equ. (2.12). Equ. (2.12) shall be manipulated
mathematically to explicitly obtain time t as a function of filter state s and the
PD Φ(u).

Rewriting equ. (2.12) by using the abbreviations introduced by equs. (2.22)
and (2.23) gives:

s =
2

tc · pc

t∫

0

∆pdt (2.25)

Derivation with respect to time yields:

ds

dt
=

2

tc · pc
∆p (2.26)

Rearranging equ. (2.26) and expressing the pressure drop ∆p by equ. (2.24)
yields:

tc
2

∞∫

u=0

(u+ s)
− 1

2 dΦ(u) =
dt

ds
(2.27)

Integration of both sides via s from 0 to s yields:

tc
2

s∫

s=0

∞∫

u=0

(u+ s)
− 1

2 dΦ(u)ds =

s∫

s=0

dt

ds
ds (2.28)

Changing the order of integration on the LHS and evaluating the RHS gives:

tc
2

∞∫

u=0

s∫

s=0

(u+ s)
− 1

2 dsdΦ(u) = t (2.29)

Evaluating the definite inner integral on the LHS yields:

tc
2

∞∫

u=0

2
[

(u+ s)
1
2 − (u+ 0)

1
2

]

dΦ(u) = t (2.30)
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Thus another integral transformation similar to equ. (2.24) is obtained for the
time t:

t = tc

∞∫

u=0

[

(u+ s)
1
2 − u

1
2

]

dΦ(u) (2.31)

Equs. (2.24) and (2.31) together represent a parametric filter model for the
constant volume flow case with filter state s being the parameter.



Chapter 3

Properties of the constant

flow cake filter model

This chapter discusses selected properties of the filter model for constant flow
filtration presented in section 2.4. An overview over the relation of the filter
model is given. In addition characteristic values of a PD are reported. For rea-
sons of clarity the two integral transformations used in this section are repeated:

1

∆p
=

1

pc
·

∞∫

u=0

(u+ s)
− 1

2 dΦ(u) [2.24]

t = tc

∞∫

u=0

[

(u+ s)
1
2 − u

1
2

]

dΦ(u) [2.31]

3.1 Test data

In order to illustrate this cake filter model, an analytically generated PD is
used. This PD is generated by the cake generation model from Kavouras and
Krammer [20]. The connection between this model and the PD is discussed in
depth in section 6.2. For the time being it, however, suffices to simply generate
a PD by this very model.

The operation chosen to generate the PD uses a cycle time for cleaning
one row at a time of tcycle = 300 s and cleaning function parameters used are
ln(z50) = −0.15 and σLN = 1.11. All other filter parameters are taken unal-
tered from [20]. The quite large σLN parameter is chosen to obtain a significant
PD also in cakes of generation 2 and older. The resulting PD is displayed in

1The broadness parameter of the cleaning function is originally referred to as barely σ,
but in this work the cleaning function broadness is referred to as σLN to account for the
Logarithmic Normal distribution and to avoid confusion with the integral transformation
parameter introduced in section 5.2.
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Figure 3.1 as the cumulative distribution function Φ′ versus the permeability k.
This distribution depending upon the permeability is derived from the math-
ematically introduced distribution Φ(u) (see appendix A.1 for the conversion
between the two). Although Φ(u) is advantageous for mathematical manipula-
tion Φ′(k) is usually displayed.
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Figure 3.1: PD generated by the cake generation model used for theoretical
studies.

In Figure 3.2 the pressure drop curve is displayed resulting from this PD
for time t ranging from 0 to 700 s. This time range is used as input data
for deconvolution. Although the transient pressure drop evolution is displayed
beyond the actual cycle time tcycle, the cycle time is used for the PD generation.
The displayed ∆p curve over 700 s corresponds to continued filtration without
cleaning after a stable periodic operation was established.

From the pressure drop curve over time one can directly calculate the values
of filter state s over time via integration of equ. (2.25), left aside the knowledge
of a PD. In Fig. 3.2 the shaded area under the pressure drop curve is displayed
to illustrate the filter state s at a time t = tcycle, which is proportional to that
area according to equ. (2.25). Alternatively s can be obtained from a known
PD directly using equ. (2.31).
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Figure 3.2: Pressure drop curve generated by the cake generation model. The
solid line is the pressure drop during semi-continuous operation and the dashed
line is the extrapolation to 700 s. The shaded area corresponds to the filter state
s.
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3.2 Pressure drop characteristic of a PD

In Fig. 3.3 a pressure drop increase over time is displayed, which has the typical
curvature for a filtration on an inhomogeneous cloth. Together with the bold
pressure drop curve the asymptote for t→ ∞ is displayed as a dashed line. For
long filtration time, any initial PD is leveled out and the slope of the pressure
drop curve is equal to the slope of a homogeneous filter pc

tc
. The ordinate offset

is termed ∆p̃0 and can be seen as a hypothetical initial pressure drop of a
homogeneous filter that is having the asymptote as its pressure drop curve.
When the actual inhomogeneous filter is operated until the linear part of the
curve is nearly (i.e. asymptotically) reached, it will give the same performance
in terms of cycle time, pressure drop at cleaning as this homogeneous reference
filter.

Moreover the initial tangent at t = 0 to the ∆p-curve is shown. The ordinate
offset here is the initial pressure drop value of the filter ∆p0. For an inhomo-
geneous filter medium the slope of the initial tangent is always higher than the
asymptotic slope. This increase is captured by a factor κs.

These four characteristic values define the two linear functions and thereby
reflect the basic shape of the actual ∆p-curve, too. Below mathematical deriva-
tions are given to calculate the mentioned values directly from a the filter model.
It can be shown that only three moments of a PD relate to these characteristic
values.

3.2.1 Initial pressure drop

At the beginning of the filtration both time and filter state are zero. The initial
pressure drop is thus straightforwardly calculated from equ. (2.24):

1

∆p0
=

1

pc
·

∞∫

u=0

u−
1
2 dΦ(u) (3.1)

and thus

∆p0 = pc ·
1

∞∫

u=0

u−
1
2 dΦ(u)

(3.2)

In equ. (3.2) the value ∆p0 only depends upon the parameter pc and the PD.
By introducing the notation of moments

µr ≡
∞∫

0

u−
r
2 dΦ(u) (3.3)

one obtains:
∆p0 = pc · µ−1

1 (3.4)

The scaling of the exponent for the moment in equ. (3.3) is outlined in more
detail in appendix A.2.
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Figure 3.3: Schematic pressure drop increase together with its initial tangent
and asymptote
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The moment µ1 is the arithmetic mean of the permeability distribution
Φ′(k). The pressure drop at the beginning of filtration corresponds, of course,
to the mean permeability of the filter medium. As such the result is almost
trivial. However, for a stringent deduction of the characteristic values from the
model equations it is mentioned.

3.2.2 Slope of the pressure drop increase

The pressure drop increase can be calculated via a derivative of ∆p over time t.
Expressing this derivative via the chain rule one obtains

d∆p

dt
=

d∆p

ds
· ds

dt
(3.5)

Expanding the first factor and rewriting the second one gives:

d∆p

dt
= −

d( 1
∆p )
ds

(
1

∆p

)2 · 1
dt
ds

(3.6)

The pressure drop appearing in the first factor is expressed by equ. (2.24) and
the derivative via s is determined. The derivative in the second factor appeared
already in equ. (2.27) and the respective result can be used directly.

d∆p

dt
=

−pc

∞∫

0

− 1
2 (u+ s)

− 3
2 dΦ(u)

[
∞∫

0

(u+ s)−
1
2 dΦ(u)

]2 · 2

tc
∞∫

0

(u+ s)
− 1

2 dΦ(u)

(3.7)

Simplifying this result gives:

d∆p

dt
=

pc

tc
·

∞∫

0

(u+ s)−
3
2 dΦ(u)

[
∞∫

0

(u+ s)
− 1

2 dΦ(u)

]3 (3.8)

To obtain the asymptotic slope of the pressure drop curve, one needs to
calculate the limit of equ. (3.8) for filter state s approaching infinity:

lim
s→∞

d∆p

dt
=

pc

tc

s−
3
2

∞∫

0

dΦ(u)

[

s−
1
2

∞∫

0

dΦ(u)

]3 (3.9)

By using the property of a distribution
∞∫

0

dΦ(u) ≡ 1 this limit evaluates to:

lim
s→∞

d∆p

dt
=

pc

tc
(3.10)
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It must be emphasized that also this result refers to a trivial situation, because
it represents the pressure drop increase of a filter with an equalized permeability
profile. Thus the slope is identical to the slope of an homogeneous filter.

The slope of the initial tangent is obtained by evaluating equ. (3.8) at s = 0:

d∆p

dt

∣
∣
∣
∣
s=0

=
pc

tc
·

∞∫

0

u−
3
2 dΦ(u)

[
∞∫

0

u−
1
2 dΦ(u)

]3 (3.11)

Thus a multiplying factor depending on moments of the PD is the quotient
between equs. (3.9) and (3.11). This factor is a measure for the augmented
pressure drop increase at the beginning of filtration due to an inhomogeneous
PD.

κs =

∞∫

0

u−
3
2 dΦ(u)

[
∞∫

0

u−
1
2 dΦ(u)

]3 (3.12)

Using again the notation of moments introduced by equ. (3.3) one can rewrite
equ. (3.12) as:

κs =
µ3

µ3
1

(3.13)

3.2.3 Asymptote of the pressure drop curve

The slope of that asymptote is equal to the slope of a completely homogeneous
filter and given by equ. (3.9). A more interesting feature of this asymptote is
the ordinate offset ∆p̃0, i.e. the pressure drop value at which the asymptote
intersects the ordinate axis.

The asymptote of ∆p(t)-curve is given by equ. (3.14).

∆p =
pc

tc
· t+ ∆p̃0 (3.14)

The parameter ∆p̃0 can be calculated from equ. (3.15):

∆p̃0 = lim
t→∞

(

∆p− pc

tc
· t

)

(3.15)

Since a closed form expression for ∆p depending on time t is not available, the
limit variable is changed to a limit for s→ ∞. Here the pressure drop ∆p can be
expressed by equ. (2.24) while the time t is given by equ. (2.31). The resulting
limit reads:

∆p̃0

pc
= lim

s→∞







1
∞∫

0

(s+ u)−
1
2 dΦ(u)

− 1

tc

∞∫

0

[

(s+ u)
1
2 − u

1
2

]

dΦ(u)









24 CHAPTER 3. CONSTANT FLOW – MODEL PROPERTIES

For the consideration of the orders of magnitude in this limit calculation the
orders of magnitude of s and u should be considered.

∆p̃0

pc
= lim

s→∞







1
∞∫

0

(s+ u)−
1
2 dΦ(u)

−
∞∫

0

[

(s+ u)
1
2 − u

1
2

]

dΦ(u)







Filter state s is going towards infinity, whereas u remains limited, since the PD’s
contribution to the integral is only significant when the cumulative distribution
function Φ(u) is actually changing. Hence the comparison of orders of magnitude

s≫ u applies to the inner parentheses. Thus the first integral is reduced to s
1
2

while the second integral can be separated into contributions depending on s
and u, respectively:

∆p̃0

pc
= lim

s→∞




1

s−
1
2 · 1

− s
1
2 · 1 +

∞∫

0

u
1
2 dΦ(u)





The result is independent on s and reads:

∆p̃0

pc
=

∞∫

0

u
1
2 dΦ(u) (3.16)

Obviously, also this result can be expressed as a moment equ. (3.3):

∆p̃0

pc
= µ(−1) (3.17)

3.2.4 Relation time t - filter state s

In Fig. 3.4 the relation between filter state s and time t is displayed. The time
scale here ranges over an unrealistically wide range, that cannot be measured
practically. Interestingly the curve has two finite asymptotes in this double-
logarithmic plot.

Closer examination of the slopes on the straight sections reveals, that for
small values the slope is equal to one, whereas right of the transition it is equal
to two. The linear relation between t and s for small values, i.e. at the left hand
side of the bend, and a quadratic relation for big values. From the integral time
transformation equ. (2.31) the mathematical basis of these observations can be
derived. For small values of s as compared to u one can develop the integral
transform into a first order Taylor series for s around zero:

t(s ≪ u) ≈ t(s = 0) +
dt

ds

∣
∣
∣
∣
s=0

(s− 0) = tcs

∞∫

0

1

2
√
u

dΦ(u) (3.18)
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For big values of filter state s compared to u, i.e., s≫ u applies, one obtains
an analogous relation directly from equ. (2.31). As an additional simplification√
s≫ √

u can be applied.

t(s≫ u) ≈ tc

∞∫

0

√
sdΦ(u) = tc

√
s

∞∫

0

dΦ(u)

︸ ︷︷ ︸

=1

= tc
√
s (3.19)

In section 3.2.3 the simplification
√
s ≫ √

u cannot be applied, since there
the limit transition for s→ ∞ is used for an extrapolation back to filter state s
zero. The goal there was to calculated the asymptotic pressure drop offset. But
allowing

√
s≫ √

u would erroneously give an asymptote through the origin.
The relationships developed here can be used for extrapolation of filter state

s from measured points to practically not measurable ones at small and big
t values. The results of the analytical expressions equs. (3.18) and (3.19) are
displayed in Figure 3.4, too.
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Figure 3.4: Relation between time t and filter state s in a double logarithmic
diagram. The asymptotes of the curve are also displayed.

The asymptotical relations can, of course, be related to filter operation via
the definition of filter state s equ. (2.12). For small values of t the pressure
drop ∆p remains virtually constant, since it does not change measurably within
a short time, which leads directly to a linear relation after integration. For
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big t-values the pressure drop will increase linearly, thus yielding a quadratic
relation after integration, which for big t-values is, of course, dominated by the
quadratic term (neglecting the linear one).

It must be noted that the resulting equ. (3.18) is practically identical with
equ. (2.20) for constant pressure filtration. The difference of these equations is
only notation, since in the latter equation the parameters are not abbreviated
and the pressure drop is explicitly included, whereas in equ. (3.18) the integral
mean of the PD embodies the initial pressure drop value.



Chapter 4

The PD-method

In the chapters 2 and 3 a cake filter model is comprehensively developed and
some of its properties are detailed for the case of constant flow filtration. How-
ever, this model requires a PD as input.

In this chapter the model is used to determine a PD from operational filter
data. In general a pressure drop - volume flow relation must be available as
input. However, the method is explicated only for the determination of a PD
from filter pressure drop data and a constant volume flow. Moreover it is shown
that this relation between a pressure drop curve and a PD is unambiguous and
the uncertainty with the determination of the PD is assessed.

The PD-method represents the inversion of the filter model to obtain a PD
from a filter pressure drop curve. The model assumptions must, of course, be
fulfilled to properly carry out this inversion.

The completeness of the PD-method is based on 2 model properties:

i The relation between time t and filter state s is bijective for a certain
pressure drop profile.

ii The integral pressure drop transformation equ. (2.24) is invertible.

The property (i) is required, since the pressure drop relation is only available
as a function of filter state s, whereas the pressure drop is measured depending
on time t. A bijective assignment between t and s ensures that the pressure
drop curve can be unambiguously transformed into a corresponding function
depending upon filter state s. From equ. (2.12) one easily finds (i) verified,
since the integrand ∆p is always positive and thus the relation between t and
s is strictly monotonic. In addition the relation t − s relation is obviously
continuous for a continuous ∆p(t) and thus the t− s relation is bijective.

The inversion of equ. (2.24) is subsequently used to determine the actual
PD from the LHS via an inversion of the integral transformation. The type of
this integral transformation is known in mathematics and termed generalized
Stieltjes transform (not to be confused with the notation as Riemann-Stieltjes
integral). Hirschman and Widder [21, p. 78 f.] tackle that very transformation
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and outline a theory for its inversion based on uniqueness. The inversion formula
given is highly abstract and makes use of high order derivatives, that cannot be
accurately supplied by experimental data. However, the integral transformation
equ. (2.24) is uniquely invertible in theory1 thereby constituting property (ii).

Of course the combination of (i) and (ii) also establishes a bijective t − s
relation being derived from equ. (2.31). A certain pressure drop profile gives
both, a unique t−s relation and subsequently an unambiguous PD. In equ. (2.31)
a PD is used to calculate t from s, but explicitly no statement on the invertibility
of equ. (2.31) is made.

4.1 Optimization approaches

Practically optimization methods can be used to determine a PD from pressure
drop data. Such pressure drop data is typically availably as discrete measure-
ments over time. The measurement couples should be identified as ∆pj,exp and
tj with n measurement points. In a first step the time values tj is converted to
filter state sj via numerical integration of equ. (2.12), whereas the experimental
pressure drop is used in the integrand.

The PD is discretized into ui and Φi values. A discretization of the PD
on m = 30 nodes proves pratically suitable, when considering the trade off of
computational time versus achievable resolution (see section 5.3.6 for attainable
resolution). A simulated pressure drop value ∆pj for a certain filter state sj

is computed from equ. (2.24) again via numerical integration by the rectangle
rule.

pc

∆pj

=

m∑

i=1

(sj + ui)
− 1

2 ∆Φi (4.1)

Note that the equation was also multiplied by pc.

Alternatively to a single optimation run using a fixed discretization of the
PD, several optimation runs can be carried out in succession and the discretiza-
tion can be refined in between these steps. A simple rule for refining is to insert
additional nodes where the preliminary determined PD has the biggest gradient.
Such an adaptive grid method can be used when highly resolved pressure drop
data is available and rather detailed PDs can be determined. The implementa-
tion of such a refining step is typically easy to accomplish by modifying the code
using fixed a discretization. An example for the application of this extension to
the optimisation approach is given in section 6.4.5.

1This fact can also be illustrated by considering the discretized form of the integral transfor-
mation. The inversion towards the discretized PD leads to a system of linear equations. That
system is linearly independent and has no trivial solution. Hence the PD is unambiguously
determined.
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4.1.1 Permeability value variable

The easiest approach is to fix the discretization of the cumulative distribution
function Φ linearly between 0 and 1:

Φi =
i

m
i = 0 . . .m (4.2)

Consequently the differences ∆Φi are constant at 1
m+1 for all m nodes. An

initial guess for the PD is made. Commonly a non-distributed permeability is
taken as initial guess, i.e., a constant value for all ui’s.

The pressure drop value ∆pj for a certain filter state sj is computed from
equ. (4.1). The goal function for the optimization algorithm is the sum of square
errors between the measured pressure drop values and the simulated ones for
each measurement point. Generally the measurement points are not weighted.

m∑

j=1

(∆pj − ∆pj,exp)2
!
= min (4.3)

The changing variables during the optimization are the permeability values
at each of the m nodes. Note, that none of the nodes is distinguished from
others because of integration via the rectangle rule and equidistant spacing of
the Φi vector. Thus it depends largely on the optimization algorithm actually
used which node assumes a certain value. However, the optimization result is
eventually sorted to obtain a distribution function. The result is, of course,
not affected. Assuming that a global optimum exists and that the optimization
actually finds that optimum, the result is unambiguous.

The implementation of the problem described was attempted on various
platforms with different algorithms for nonlinear, unconstrained optimization
problems. Only absolute values of the optimization variables are used, thereby
avoiding unphysical negative permeability during the optimization run. This
is easily implemented in the calculation of equ. (4.1) itself. Alternatively, one
could add constraints to the optimization problem, which is, however, increasing
the size of the problem and hence the complexity. Additionally the optimization
variables are scaled. Permeability values are typically in the order of 10−8 −
10−10 m and were therefore scaled by a factor of 108, which greatly improved
the convergence of the optimization algorithms.

The determination of a PD via optimization is chosen because of its straight
forward implementation (only two numerical integrations required) and the sim-
plicity of the application of optimization methods.

4.1.2 Distribution function variable

An alternative way of discretizing a PD is by fixing the permeability discretiza-
tion ui and using the corresponding values of the distribution function Φi as
variables.
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Obviously equ. (4.1) makes up a system of n linear equations for the variables
∆Φi with the coefficient matrix:

Aj,i = (sj + ui)
− 1

2 i = 1 . . .m, j = 1 . . . n (4.4)

To obtain a non-parametric solutions of the system of equations at least as many
measurement points n as PD nodes m are required. This system is usually
overdetermined, since the number of available measurements n is larger than
the number of nodes of the discretization of the PD m. Hence the system has
in general no solution, however, similar to the optimization approach, the least
sum of square error solution is sought after.

The system is ill conditioned, although the coefficient matrix Aj,i is full in
rank2. The numerical properties of this linear system are not discussed in detail.
The error stemming from the inversion of the underying integral transform is
discussed in this thesis in section 5.3.6 with the help of a convolution transform
formulation of the problem.

Attempting the solution of the linear square system via the pseudoinverse
(ATA)−1AT fails on even generated data, i.e., data having a solution with zero
residual error. This must be attributed to the ill conditioning of the system.
However, QR decomposition, where A is decomposed into an orthogonal matrix
Q and a triangular matrix R, succeeds in solving the linear system to its least
square solution for all attempted cases using artifiially generated input data [22,
p. 112ff].

This way of determining a PD is numerically inexpensive, since it requires
only one numerical integration to obtain the filter state values sj . The solution
of the linear least square problem is extremely fast.

However, there are several shortcomings of this direct approach when applied
to experimental data, that is always affected by noise. Ideally the solution vector
∆Φi must add up to one, since the sum must not exceed one. If this value is
smaller than one, it just means that part of the filter has zero permeability,
which is physically meaningful. If, however this sum exceeds one the solution
is not physical. An even bigger problem is the possibility of negative solutions
which must not appear in a frequency distribution.

However, constraints can be added to the linear least square problem to ex-
clude unphysical solutions. For m variables ∆Φi m+1 constraints are required:

∆Φi ≥ 0 i = 1, . . . , m (4.5)

m∑

i=1

∆Φi ≤ 1 (4.6)

This turns the pure system of linear equations into an optimization problem.
Contrary to the effectively unconstrained non-linear optimization carried out in
section 4.1.1, this constrained problem can be tackled by specifically designed

2If the number of linearly independent rows in the coefficient matrix equals the total
number of rows the rank of the matrix is termed full.
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algorithms for linear least squares. The constrains are easily implemented and
the convergence is quite fast because of its linearity.

The only remaining shortcoming known to the author is that the discretiza-
tion for the permeability values is fixed. This entails the practical problem of
how to choose the discretization for this domain. The discretization of the cu-
mulative distribution is straightforward between zero and one, thereby coving
the entire possible range at a certain resolution. The fixed discretization of the
permeability values restricts these values to a certain range, although a wider
spread of values could be required to determine the optimal PD in a least squares
sense. In practice the method of adjusting the permeability values, rather than
the distribution values proved more flexible and on an equal number of nodes
generally better fits were obtained using the method proposed in section 4.1.1.
However, in terms of computational time the linear approach has an advantage.

4.2 Uncertainties in parameters

In addition to the properties of the cake filter model outlined in chapter 3
the influence of uncertainties in the combined model parameters pc and tc is
discussed here. The main focus when discussing variation in these parameters
is the impact on a PD determined by the PD-method for a certain pressure
drop curve. The property (ii), which is the invertibility of the pressure drop
transform, introduced at the beginning of this chapter, is a prerequisite for this
discussion.

The output of the PD-method obtained by two arbitrarily different sets of
parameters is discussed. The parameters pc and tc are regarded as the true and
hence correct parameters for a pressure drop curve corresponding to a certain
PD Φ. Meanwhile the parameters p̂c and t̂c are the actually used and erroneous
parameters with which a PD Φ̂ is obtained from the same pressure drop curve.

From equ. (2.25) it is clear that the filter state s will be altered when using
different parameters and is henceforth termed ŝ. However, since the pressure
drop curve remains the same, one can easily convert the filter states by equating
the integral for the two sets of parameters:

s · pc · tc = ŝ · p̂c · t̂c (4.7)

The pressure drop can be calculated from equ. (2.24) for both sets. Equating
the pressure drops gives:

1

pc
·

∞∫

u=0

(u+ s)
− 1

2 dΦ(u) =
1

p̂c
·

∞∫

û=0

(û+ ŝ)
− 1

2 dΦ̂(û) (4.8)
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The symbol of the integration variable is changed on the RHS to û to avoid
confusion. The filter state ŝ can be expressed via equ. (4.7) as a function of s.
The entire equ. (4.8) is multiplied by pc.

∞∫

u=0

(u+ s)
− 1

2 dΦ(u) =
pc

p̂c
·

∞∫

û=0

(

û+
pc · tc
p̂c · t̂c

· s
)− 1

2

dΦ̂(û) (4.9)

Subsequently û can be substituted by:

û ≡ pc · tc
p̂c · t̂c

· u

Of course the integral boundaries are changed correspondingly and after sim-
plification one obtains:

∞∫

u=0

(u+ s)
− 1

2 dΦ(u) =

∞∫

u=0

(u+ s)
− 1

2 d

[(
pc · t̂c
p̂c · tc

) 1
2

· Φ̂(
pc · tc
p̂c · t̂c

· u)

]

(4.10)

The integral kernels on both sides are obviously identical. Since the Stieltjes
transform is unambiguously invertible the functions in the differential must be
necessarily identical too. Hence one can write:

Φ(u) =

(
pc · t̂c
p̂c · tc

) 1
2

· Φ̂
(

pc · tc
p̂c · t̂c

· u
)

(4.11)

Consequently variation in the model parameters pc and tc lead to a scaling
and shifting of the resulting PD. Thus all information of the PD Φ is contained in
the determined Φ̂. Nevertheless, such a variation in the parameters can make the
determined PD appear physically impossible and thus impede its determination.

The effect of this shifting and scaling is illustrated by Figure 4.1. The original
PD Φ from Figure 3.1 is displayed together with the corresponding PDs for an
altered model parameter t̂c whereby its value was doubled and halved, respec-
tively. It must be noted that the resulting Φ̂ functions can be shifted vertically
without altering the result, since the function only appears in the differential.
Therefore the function for t̂c = 2 tc is shifted, so Φ′ eventually reaches one for
large permeability values. Since the cumulative distribution function spans less
than one, as a result from the scaling equ. (4.11), the function value eventually
levels out at a value higher than zero. That can be interpreted as a part of the
total filter area not being used for filtration. That area has simply permeability
zero, and is thus added at the left end of the distribution function. However,
the other case with t̂c = 0.5 tc uses more than the total available filter area,
since its cumulative distribution function exceeds one. To illustrate this, the
dotted curve is shifted to start at zero permeability with zero cumulative area,
and eventually exceeds one. This PD is physically not meaningful, although in
the present case it arose due to an incorrect parameter value.
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It is shown that altered parameter values only lead to a scaled and shifted
PD, which, however, can be converted to the original one without loss of in-
formation. Nevertheless, certain parameter combinations lead to an apparently
unphysical PD (cumulative area exceeding one), that cannot be identified by
the methods described above. For a fixed discretization between zero and one
on the distribution axis as used in section 4.1 the identification of such a PD is
simply impossible and it also contravenes with the constraint equ. (4.6) in sec-
tion 4.1.2. The latter could of course be waived in favor of detecting inconsistent
variable values.

Practically one can derive guidelines for determining the model parameters
tc and pc. Choosing a fairly large tc and/or rather small pc value ensures that
a consistent PD can principally be estimated. The focus is usually put on tc
since this parameters contains the specific cake resistance, which is practically
difficult to obtain. The remaining filter parameters are quite well known, with
the exemption of perhaps the gas volume flow V̇ . The drawback of intentionally
choosing the parameters as suggested, is a lower resolution of the PD with the
same discretization, since the PD is compressed over a smaller range on the
distribution axis. Additionally its comparability with PDs determined for other
sets of parameters is, of course, reduced, since the absolute scaling is missing.
Nevertheless the PD preserves its shape during the proposed transformation.



Chapter 5

Convolution transform

formulation

5.1 Motivation

The optimization approaches outlined in section 4.1 are relatively easy to imple-
ment. However, the only measure of quality of the obtained fit is the agreement
between the simulated and experimental pressure drop curve.

The achievable accuracy of a certain PD cannot be assessed independently
by an analysis of the employed optimization algorithm. Sensitivity analysis of a
single optimization variable on the optimal solution cannot account for a possible
interdependency of the optimization variables. Such a dependency is, however,
very likely to play an important role, since e.g. the integral value of a PD
is usually known very accurately in the form of a filter media resistance. Thus
changing only one value of a permeability node at a time is changing this integral
value. A simultaneous compensation of one or more other node values would be
required to keep ascertained information, i.e., the integral value, correct. Single
data sensitivity analysis cannot deal with such additional information, which
requires to change multiple variable values at a time to keep that ascertained
information unchanged. Thus it is not suitable to assess the possible variation
associated with a PD.

The scatter associated with the input data (pressure drop) affects the achiev-
able quality of a PD. The optimization method does not allow for a quantifica-
tion of the data quality’s impact on the quality of the output PD either.

The determination of a PD by means of an optimization algorithm is thus
intrinsically uncertain with respect to the accuracy of the output PD. Uncer-
tainty in solutions caused by imperfections of the data cannot be identified and
a measure of quality of the determined PD cannot be given.

The following sections outline the concept of using deconvolution for the
implementation of the PD-method. In contrast to the identification based on
a global optimization algorithm, that cannot guarantee more than a local opti-
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mum, this method is deterministic and the accuracy of unambiguous identifica-
tion of a PD can be ascertained. Also limitations of the PD-method concerning
the identifiability of a PD can be shown.

5.2 Mathematical deduction

In this section the filter model derived in section 2.4 is rewritten to form a con-
volution integral. In the following subsections the Riemann integral notation
will be used (cf. appendix A.3). The convolution transform notation is advanta-
geous for further treatment since convolution transforms are extensively studied
and error estimations methods are available.

The integral transform formulation of the PD-method consists in the equs. (2.24)
and (2.31) which are here repeated in the Riemann notation:

1

∆p(s)
=

1

pc

∞∫

0

(u+ s)−
1
2 ϕ(u)du (5.1)

t(s) = tc ·
∞∫

0

[

(u+ s)
1
2 − u

1
2

]

ϕ(u)du (5.2)

The pressure drop transform equ. (5.1) has, as noted previously, the form of
a generalized Stieltjes transform. Following the exponential change of variables
suggested by [21] one obtains the pressure drop transform as a convolution
transform.

With the exponential change of variables

eσ ≡ s (5.3)

and
eξ ≡ u (5.4)

equ. (5.1) can be rewritten as:

pc

∆p(eσ)
=

∞∫

−∞

(
eξ + eσ

)− 1
2 ϕ(eξ)eξdξ (5.5)

In addition the equation is multiplied by pc. Note that the integration bounds
were transformed accordingly. Using the identity equ. (5.6)

eξ + eσ ≡ e
ξ+σ
2

(

e
ξ−σ

2 + e−
ξ−σ

2

)

(5.6)

one obtains:

pc

∆p(eσ)
=

∞∫

0

(

e
ξ−σ

2 + e−
ξ−σ

2

)− 1
2

e−
σ
4 e

3
4

ξϕ(eξ)dξ (5.7)
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Recalling the definition of the hyperbolic secans sech(x) ≡ 2
ex+e−x and using

this function in equ.(5.7) gives:

pc

∆p(eσ)
e

σ
4 =

∞∫

0

1√
2
sech

1
2

(
ξ − σ

2

)

e
3
4
ξϕ(eξ)dξ (5.8)

By introducing the functions:

h(x) ≡ 1√
2
sech

1
2

(x

2

)

(5.9)

G(σ) ≡ pc

∆p(eσ)
e

σ
4 (5.10)

ϕ̃(ξ) ≡ ϕ(eξ)e
3
4
ξ (5.11)

one can rewrite equ. (5.8) as:

G(σ) =

∞∫

−∞

h(ξ − σ)ϕ̃(ξ)dξ (5.12)

Equ. (5.12) has the form of a convolution transform, with ϕ̃(ξ) being the
permeability distribution density, that underwent an exponential change of vari-
ables. The term h(ξ − σ) represents the convolution kernel. The function G(σ)
is pressure drop related and also underwent an exponential change of variables.

When the Fourier transformation F [·](f), with f denoting the frequency, is
applied to equ. (5.12) and the convolution theorem is used, one obtains:

F [G](f) = F [h](f) · F [ϕ̃](f) (5.13)

The convolution theorem states, that the convolution of two functions in the
original variable domain can be expressed by the simple product of their Fourier
transforms in the frequency domain. The usage of the Fourier transform is
suitable for both, convolution and deconvolution, which are accomplished by
pointwise multiplication and division of the Fourier-coefficients, respectively.
The functions are discretized further on for computational purposes. When
referring to the Fourier transform, the discrete Fourier transform (DFT)

F [x(σn)](fk) = X(fk) =

N−1∑

n=0

x(σn) exp (−2πiσnfk) k = 0, 1, 2, . . . , N − 1

(5.14)
with its inverse transform

F−1[X(fk)](σn) = x(σn) =
1

N

N−1∑

k=0

X(fk) exp (2πiσnfk) n = 0, 1, 2, . . . , N−1

(5.15)
is addressed. The notation for the DFT is taken from signal processing, but the
time is replaced with σ for the application at the PD-method.
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5.3 Implementation and application

In this section the convolution notation of the filter model is used to demon-
strate its ability for convolution, i.e., the calculation of a pressure drop profile
from a PD, as well as deconvolution, i.e., the PD-method. Deconvolution from
simulated and experimental data is shown together with error considerations.

5.3.1 Variable domains and discretization

To obtain the formulation of the filter model as a convolution integral the com-
monly used variable time t changes twice: The first change of t into filter state s
is model inherent by the transformation equs. (2.31) or (2.12), respectively. The
second exponential change of variables from s to σ (equ. (5.3)) is required to
obtain a convolution transform formulation. The distribution variable u is ac-
cording to the filter model (likely the major benefit from this formulation) also
defined in the same domain as the filter state s, hence termed s-domain. Subse-
quently ξ, which stems from u, is defined for the same domain as σ, henceforth
called σ-domain, too. The Fourier transform applied on the functions of the
σ-domain yields an output depending on the frequency f in the frequency do-
main. The frequency f is not in the conventional sense a time based frequency,
but naturally a σ-based frequency and only indirectly time based1.

Here the Fast-Fourier-Transform FFT is used to compute the DFT. The
use of the fast Fourier transformation (FFT) for computing a DFT is compu-
tationally favorable over the more expensive direct computation of the series
equs. (5.14) and (5.15), respectively. But certain criteria must be considered,
that are imposed by the features of the FFT. Most notably the FFT requires
the input data to be available on equally spaced nodes on its input-domain.
In addition a number of nodes being a power of 2 is speeding up computation
significantly. Since the FFT inherently treats any input as period the input
data must be padded with a sufficient number of zeros, so that the end of an
input dataset is not reflected into its beginning. A more concise description of
the FFT is given by e.g. [23, sec. 13].

Here the input data for the FFT is in the convolution case the transformed
PD ϕ̃ which is calculated by equ. (5.11) on an equally spaced σ-domain. This
implies a logarithmic spacing of the nodes in the s-domain. Here the σ-domain
is divided into N = 215 = 32768 nodes on a range σ ∈ [−103, 103]. This
corresponds to a logarithmic spacing of s and u, respectively, in the interval
[10−45, 1045]m−2. Notably, the initial point s = 0 is singular in the σ-domain.
This range is found to be sufficient in both the required zero padding and
accuracy of computation.

1Concerning the use of units one must note that in the exponential change of variables
equs. (5.3) and (5.4) the unit of s-domain, i.e., m−2 in the SI system, cannot be consistently
passed on to the exponential σ-domain. A comprehensive exchange of variables should read:
s = A · exp σ and u = A · exp ξ with A being a prefactor containing the unit. For the sake of
simplicity this factor shall be unity and will not be mentioned further on.
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When applying the FFT to a function defined in the σ-domain with an equal
spacing ∆σ the sampling frequency is 1

∆σ
. The maximum resolvable frequency

from such a sample is according to the sampling theorem the Nyquist frequency:

fc =
1

2 ∆σ
(5.16)

The FFT will give the discrete frequency values fk whereby k = 0 corresponds
to frequency f0 = 0 and positive frequencies 0 < f < fc are corresponding
to 1 ≤ k ≤ N

2 − 1. The negative frequencies are appended thereafter with

−fc < f < 0 corresponding to N
2 + 1 ≤ k ≤ N − 1. The Nyquist frequency

f = fc and f = −fc corresponds to N
2 because of symmetry. An exhaustive

explanation is given by [23, sec. 12.1].

fk =
k

N ∆σ
k = 0, 1, 2, . . . , N − 1 (5.17)

5.3.2 Convolution situation in the σ-domain

The cumulative distribution Φ(u) is analytically generated and can be obtained
with high accuracy only limited by machine precision (cf. Figure 3.1). The
required density ϕ(u) is generated by taking the derivative of the stepped func-
tion Φ(u) and thus is analytically represented by a sum of appropriately scaled
Dirac-Delta-functions. This information can also be represented by a series of fi-
nite peaks resulting from numerical differentiation on any discretized s-domain.
The peaks’ heights, however, depend on the chosen discretization of u in the
s-domain and the discrete representation is naturally accompanied by a loss of
information, because of discretization. The calculation of the actual values of ϕ̃
can be done pointwise by equ. (5.11) in the σ-domain.

The ∆p-values can be calculated analytically for a given input PD from
equ. (5.1) in the s-domain. Subsequently the value of the G-function is obtained
by equ. (5.10) for the σ-domain.

The situation for the convolution in the σ-domain is displayed in Figure 5.1.
The kernel function h is centered on zero, whereas the G-curve is centered on the
ϕ̃ peaks. The σ-range corresponding to the actual ∆p-curve in Figure 3.2, i.e.,
time t ranging from 1 to 700 s, is indicated with a solid G-curve. One can see
that the G-curve can practically be measured in only a limited σ-range. Here a
calculated time-range from 1 to 700 s is shown. Although calculation would be
possible for any time range the deconvolution method should be developed for
experimental data, also the computed input is limited to a practically measur-
able range.

Following [24] a qualitative analysis of the convolution situation, displayed
in Figure 5.1, shows that the kernel function h changes slowly in the σ-domain
in comparison with the analytical ϕ̃. Thus during the convolution of h with
ϕ̃ fast changes with respect to σ in ϕ̃ are simply smoothed out by the broad
kernel. This makes the convolution quite stable against fast changes. However,
since the fast nuances in ϕ̃ are smoothed out quickly, information about them
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Figure 5.1: Convolution situation for the test data (Figures 3.1 & 3.2). The or-
dinate values are differently scaled for each curve, so the curves can be displayed
in one chart.
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is lost in the convoluted curve. In the more practical problem of deconvolution,
that is tackled in section 5.3.5, fast changes of ϕ̃ are thus unidentifiable.

5.3.3 Convolution situation in the frequency domain

In a quantitative discussion on the different scales involving functions that are
changing quickly compared to others, it is advantageous to actually look at the
Fourier transformed functions in question, i.e., their power spectral densities.
The power spectral density P at frequency f of a function h can be estimated
by equ. (5.18) [23, sec. 13.4]. Here the asterix denotes the complex conjugate.

Ph(f) = |F [h](f)|2 = F [h](f) · F [h]∗(f) (5.18)

The power spectral density describes how the power in a function is dis-
tributed over the frequency range. The definition of a power spectral density
is not necessarily bound to power in the physical sense. By that concept the
total variation in a function can be decomposed to the contributions at certain
frequencies. The power spectral density values for a certain frequency are the
contributions to the total signal’s variance at that frequency.

In Figure 5.2 the power spectral densities of the functions in equ. (5.13)
are displayed for positive frequencies f up to the Nyquist frequency fc. All
functions displayed are calculated analytically and thus they do not contain any
noise except one stemming from machine precision limitations. Both the kernel
h and G show a significant decrease of their power spectra at higher frequencies,
i.e., high frequencies are not essential for describing these functions. This is in
accordance with the observation in section 5.3.2, that the kernel as well as G are
changing slowly over σ. However, the spectra of ϕ̃ is high on the full frequency
range, which is due to the peaked structure of ϕ̃. The absolute values of the
different spectra arise due to the absolute magnitude of the underlying functions
and are not scaled in this plot.

When looking at the spectra of the kernel and G again, one observes a
significant decrease in power of several decades until the spectra flatten with only
some fluctuations. At the respective frequencies the power in these functions is
almost negligible (double logarithmic chart), but the scatter and the flattening
are resolved clearly. Since all the displayed curves stem from simulations, the
noise arises from machine precision limitations only. For the G curve more
computational operations were necessary resulting in a higher noise level than
the explicit kernel function.

5.3.4 Convolution implementation

The convolution of a PD to a pressure drop curve is the typical filter simula-
tion task. The PD is input and as such available. After calculating ϕ̃ and h
at appropriate σ-points, as outlined above, the FFT is applied on both, the
corresponding FFT coefficients are multiplied and the inverse FFT is applied to
the result. The obtained G function is transformed into a ∆p-function. Results



42 CHAPTER 5. CONVOLUTION TRANSFORM FORMULATION

10
−2

10
−1

10
0

10
1

−300

−250

−200

−150

−100

−50

0

50

100

frequency f, −

po
w

er
 s

pe
ct

ra
l d

en
si

ty
 

P
, d

B

 

 

P
h

P
G

Pϕ̃

Figure 5.2: Power spectral densities of the functions involved in convolution.

of convolution are omitted here, since they would just lead to the starting point
already displayed in Fig. 3.2.

Convolution of a PD is mainly used here to check the suitability of the
chosen σ-domain for eventual deconvolution. However, the explicit calculation
of equ. (5.1) for an equally good resolved ϕ-function as in the convolution version
has a time complexity O[m2], with m again being the number of nodes in the
PD discretization. From the convolution result the time t can be calculated
from an integration of equ. (2.26) which is only linearly complex, i.e., O[n] with
n again being the number of measurements.

The convolution requires only the number of operations for an (actually 3)
FFTs and the explicit evaluation of the integral transform equ. (5.1) is omitted.
Thus the governing time complexity is – depending on the actually used FFT
algorithm – around O[N ln(N)], which is, for the same accuracy, lower than
O[n2] as found above. Nevertheless, the number of nodes required to sufficiently
represent a PD is much less. In section 4.1 m = 30 nodes are used. Thus the
CPU time saving remains small. In practice an acceleration factor of up to 10
is observed when using the FFT-convolution on the σ-domain with N = 215

nodes, instead of the conventional numerical integration on m = 30 and n = 215

to obtain the same accuracy. Of course, a reduction of the number of nodes n to
a reasonable value, leads to reduced CPU-time for the conventional integration.
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Eventually the use of the FFT-convolution might be unattractive in terms of
time complexity and especially coding effort.

5.3.5 Deconvolution implementation

Deconvolution is reduced to a pointwise division in the frequency domain, which
is the major benefit from using Fourier transformations:

ϕ̃(f) = F−1

[F [G](f)

F [h](f)

]

(5.19)

Unfortunately deconvolution usually cannot be applied directly because the con-
voluted function G is, in practice severely, affected by noise. Even the computed
functions in Figure 5.2 show at some point a significant noise level.

In the division in equ. (5.19) at a certain frequency f an only slight uncer-
tainty in the numerator, i.e., the Fourier transform F [G](f), can be amplified
enormously by a comparably small value in the denominator, i.e., the Fourier
transform of the kernel F [h](f). The power spectrum of the kernel reaches low
levels at frequencies that are far lower than the Nyquist frequency (see also Fig-
ure 5.2). Even the kernel is affected by numerical noise. Thus a small error of
G will be amplified enormously when reaching higher frequencies. Also in the
case of calculated data used here, deconvolution fails to give any useful results
when directly applied to the data displayed in Figure 3.2.

However, this problem can be tackled by appropriately filtering the data
in the frequency domain. Following the approach outlined in detail in [23,
sec. 13.3] one can design a second order optimal filter, a so called Wiener filter.
A filter function B(f) is chosen in a way to minimize the square error difference
between the (unknown) true function and the deconvoluted one. The filter is
incorporated in equ. (5.19), which leads to:

ϕ̃(f) = F−1

[
B(f) · F [G](f)

F [h](f)

]

(5.20)

The determination of the filter function requires a model for the power spectrum
of noise affecting G which is denoted as Pnoise. From minimization (cf. [23])
one obtains a second order optimal filter:

B(f) =
PG(f) − Pnoise(f)

PG(f)
(5.21)

The filter is thus the power spectral density of the estimated true input over the
power spectral density of the actual input. When, e.g. the power spectrum of
the noise has the same magnitude as the actual input signal, the filter function
becomes zero, i.e., the input and noise cannot be discriminated.

The noise model can often be determined directly from the spectral density of
the signal in Figure 5.2. Presumably the noise in PG begins when the spectrum
levels out and becomes linear in the double logarithmic chart. Thus a power law
noise model is chosen. Figure 5.3 shows the new situation with the noise model
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and the resulting filter. At the point where the filter is not displayed any longer
it is set to zero, i.e., it cannot be displayed on the decibel axis. Once the filter
becomes zero at a certain frequency, because of the noise exceeding the actual
signal, it is kept zero for all higher frequencies, even though the power spectral
density of the signal may exceed the noise model because of fluctuations.
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Figure 5.3: Power spectral densities with noise model for G and the Wiener
filter B.

The ϕ̃-curve calculated by equ. (5.20) contains some noise on the entire σ-
range, even when high frequencies are eliminated. During the transformation
to ϕ and further to ϕ′ this noise is amplified for small σ values. Thus a total
cut-off in the σ-domain is used, that sets the ϕ̃ function to zero outside a certain
range from the function centroid. In section 5.3.6 this cut-off is discussed more
thoroughly.

The result of the deconvolution with the described filter is displayed in Fig-
ure 5.4. Compared to the stepped function of the analytical PD and the one
obtained by optimization the deconvoluted curve is smoother, which is a result
from filtering high frequencies. The Wiener filter imposes a fairly sharp cutoff
and only frequencies in the signal lower than that cutoff can be resolved.
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5.3.6 Error estimation in deconvolution

The error in the ϕ and ϕ′ curves can be traced back to the actual deconvolution.
The Wiener filter results, as stated, from a least squares minimization of the
unknown true function to the approximated result. For the error estimation
both the resolved frequencies and the magnitude of the error are taken into
consideration.

It is assumed that the error affecting the ϕ̃-function occurs irrespective of
the actual σ. The error εσ is affecting the ϕ̃-function according to equ. (5.22)
on the full σ-range.

ϕ̃(ξ) = ϕ̃true(ξ) ± εσ (5.22)

Transforming the ϕ̃-function to ϕ requires a switch from the σ to the s-domain
following equ. (5.11). Consequently, also the error εσ must be transformed,
giving εs affecting ϕ:

εs(u) = εσ u
− 3

4 (5.23)

Further the error in ϕ′ in the k-domain (cf. appendix A.1) gives an error εk :

εk(k) = εσ 2k−
3
2 (5.24)

Because of these transformations the originally constant error εσ affects the
resulting distributions depending on the actual value of s and k, respectively.
One can see that the error is amplified for small k-values (see Figure 5.6).
Practically this unwanted amplification was countered by just setting ϕ̃ to zero
on a part of the σ-domain, i.e., truncating the function to a certain range around
the function centroid.

The actual value of the error in εσ is not known from the deconvolution
and/or noise model directly. In Figure 5.5 the deconvoluted function ϕ̃ is dis-
played. The bold curve around the function centroid is the remaining region
after truncation. In the remaining function range one can see oscillations which
stem from the ground noise level of the deconvoluted function. From the oscila-
tions seen in the figure the error magnitude is determined to εσ = 3 · 10−7m

1
2

The error εσ is quite small around the function centroid compared to the
function values there. Trivially both εs and εk become infinite for any εσ-value
for small values of u and k, respectively. A visual comparison of the deconvoluted
function ϕ′ and the error εk accociated with it, is given in Figure 5.6. In the
most relevant part of the PD, i.e. where the density ϕ̃ in Figure 5.5 exceeds
the error level, ranging from around k = 10−10 to 10−9 m in the k-domain the
error is, of course, small. The strongly growing error which eventually exceeds
the actual function for smaller k-values can be clearly seen, too.

However, the resulting PD is mostly represented as a cumulative distribution.
Thus the cumulative error should also be looked at. The integral errors over
the entire s- and k-domain are infinite, which is problematic. This can be seen
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by calculating the cumulative distributions Φ and Φ′ from their densities which
leads to the improper integrals:

∞∫

0

εs(u)du = εσ

∞∫

0

u−
3
4 du = ∞

∞∫

0

εk(k)dk = 2εσ

∞∫

0

k−
3
2 dk = ∞

However, the integrals giving the integral errors Es(u) =
u∫

0

εsdu and Ek(u) =

∞∫

k

εkdk converge to finite values:

Es(u) = εσ

u∫

0

u−
3
4 du = 4εσu

1
4 (5.25)

Ek(k) = 2εσ

∞∫

k

k−
3
2 du = 4εσk

− 1
2 (5.26)

The resulting cumulative PD is displayed in Figure 5.7 together with the integral
error. Note that this error estimation is particularly pessimistic due to the
integration of original fluctuations in both plus and minus directions without
allowing for a compensating effect. This compensating effect can be seen in the
comparison between Figures 5.6 and 5.7 when concentrating on small k-values:
In Figure 5.6 the fluctuation are occasionally even exceeding the error, whereas
in the cumulative function Figure 5.7 the fluctuations are compensated for, but
the error without compensation becomes large.

However, the branches of the cumulative distributions Φ and Φ′ for high
u and small k values are unknown, since any small, but non-zero error will
become infinite on these branches. Nevertheless, the error in the cumulative
distributions for small u and high k-values, respectively, are finite. Note that
the cumulative error for u approaching equ. (5.25) is finite, although the corre-
sponding density error is infinite equ. (5.23).

In other words, the PD for permeabilities towards zero is intrinsically uncer-
tain, but in the relevant range of k the error is moderate.

In a next step the frequency resolution is looked at. The cutoff frequency
f = fσ for the σ-domain can be defined at e.g. a filter value B(fσ) = 0.5, which
is used hereafter. This cutoff frequency is constant for the entire σ-domain. For
the data presented in Figure 5.3 one finds fσ = 0.78. However, converting the
frequency via a first order Taylor approximation into the s-domain gives:

fs(u) = fσ

1

eσ
=
fσ

u
(5.27)
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and further into the k-domain:

fk(k) = fs

1

0.5s−1.5
= fσ

1

0.5s−0.5
=

2fσ

k
(5.28)

One must note that because of symmetry reasons (positive-negative frequency)
the minus of the Taylor approximation in equ. (5.28) is omitted. This equation
means that for small permeabilities k the ϕ′ distribution can be resolved at
higher frequencies than for higher permeabilities. However, the error in mag-
nitude according to equs. (5.24) and cumulatively (5.26) is increasing when k
decreases.

Oscillations with the actual cut-off frequency fσ can be observed in the off-
centroid regions in Figure 5.5. These are, of course, also reflected in Figures 5.6
and 5.7 with the correspondingly adjusted frequency fk. On the logarithmically
scaled k-axis oscillations appear of course at a constant frequency.

5.3.7 Experimental pressure drop data

So far the pressure drop data itself used for deconvolution is not affected by a
measurement error. Although it is demonstrated that even the small numerical
noise can have devastating effects on deconvolution if not treated with a filter,
the experimental noise practically encountered is orders of magnitude higher.

In addition the data is practically only available for a limited time range, as
indicated already in Figure 5.1. There the bold continuous line for G indicates
the range where actually measured pressure drop values are available. To make
things even worse the data is discretely sampled usually with a constant sample
time. The basic FFT, however, only accepts input data at equal spacing, not in
the time but σ-domain.

In order to be able to apply the FFT to experimental data some additional
processing steps are required. It is assumed that the experimental data starts
at time t = 1 s, since this overcomes the problem of singularity for s = 0 →
σ = −∞. Subsequently the pressure drop ∆p for s-values corresponding to
t < 1 s is taken constant, similarly to the explanation in section 3.2.4. Since the
pressure drop does not change measurably within the first second of filtration,
this extrapolation does not add any additional error which would exceed the
measurement noise.

For large times and consequently large s-values the pressure drop will in-
crease linearly. That is also the assumption for the extrapolation to large s-
values, i.e., the tangent on the measured data (here the last 100 s) is used to
determine a linear pressure drop increased. This extrapolation, however, adds
additional information and must in every single case be questioned concerning
its applicability.

In the time range, where actually measured pressure drop data is available,
the values of G are obtained on equidistant nodes in the σ-domain by inter-
polation. Because of the already significant noise in the pressure drop signal,
interpolation does not add significant error itself. Practically the interpolation
is found to be even advantageous, since it smoothes out the frequency effects
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of the exponential sample intervals in the σ-domain, thus simplifying filtering
data in the frequency domain.

The calculation scheme suggested here is applied on data presented by [25].
The convolution situation in the σ-domain is depicted together with the de-
convolution result in Figure 5.8. The corresponding power spectra are shown
in Figure 5.9. The spectrum of the kernel is, of course, not altered from Fig-
ure 5.2, but in the spectrum of the G-function the noise level is clearly much
higher. Thus the noise model is giving generally higher values. Also the Wiener
filter B is shown in Figure 5.9 and here the transition from 1 to 0 is not as sharp
as in Figure 5.2, thus a continuous decrease in the value can be seen.

The amplitude error is found from a plot similar to Figure 5.6 to be εσ =
2 · 10−6 m

1
2 .
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Figure 5.8: Deconvolution situation for experimental data in the σ-domain.

In Figure 5.10 the result of deconvolution is displayed. The deconvoluted
PD shows hardly any jump when compared to the distribution obtained by
optimization. This arises from the relatively low cut-off frequency fσ = 0.26
for the given problem, i.e., higher frequencies than that cannot be resolved.
However, the PD obtained by deconvolution is equally suitable for describing a
pressure drop increase ramp which is displayed in Figure 5.11. The deconvoluted
PD, however, exhibits significant oscillations and a significant integral error
for small k-values which reaches even in the negative range being physically
meaningless.
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Figure 5.11: Pressure drop increase from experimental run day 1 presented
by [25]. The simulated pressure drop curves from the optimized PD and the
deconvoluted one are displayed. A slight deviation of the deconvoluted PD
must be attributed to the linear extrapolation of the pressure drop curve, when
calculating the G function for big s-values.
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5.4 Discussion and conclusions

In the preceding sections the convolution integral version of the PD-method is
introduced and applied. A PD can be obtained from pressure drop data by
deconvolution using FFT. The deconvolution method is orders of magnitude
faster than finding a PD by global optimization and allows for error estimation
of the result. The error estimation is given as amplitude oscillations and a
cut-off frequency.

The probably biggest disadvantage of the PD-method via deconvolution is,
that it requires more assumptions on the raw data than the optimization, be-
cause of extra- and interpolation. In addition the filter design requires additional
information, i.e., a noise model. The implementation effort is bigger and the
subsequent possibility for implementation errors is higher in the deconvolution
version. A PD from convolution is, in principal, more flexible than one obtained
by optimization, since an optimizer allows only for a very limited number of
nodes for the PD. However, the deconvolution does not give perfectly consistent
distribution results, since oscillations in the results can lead to negative density
functions.

The deconvolution is attempted on simulated data from a PD determined
by optimizations (results are not displayed in detail here). In this case the de-
convolution version can give a measure on the certainty of the PD determined
by optimization. The pressure drop increase can be copied within very narrow
limits by deconvolution and error bounds on the deconvoluted PD can be ob-
tained. The PD from optimization is for the attempted case clearly within the
error bounds. Thus the simplicity of optimization and the error estimation ca-
pabilities of deconvolution can be combined. Such an improvement can possibly
be achieved by determining an estimate for a PD from deconvolution which is
eventually refined by optimization.

The deconvolution version of the PD-method is applied and its suitability to
obtain a PD is shown. More assumptions are necessary to be able to apply the
deconvolution version compared to finding the PD by optimization. The latter
is significantly simpler in application, but computationally more expensive. The
most practical form of the PD-method may make use of optimization because
of its simplicity and robustness, and eventually when an error estimation is
required a deconvolution might be performed.



Chapter 6

Application

This chapter shows exemplarily applications of the PD-method. It is divided
into two main sections: The determination of a PD of the filter medium itself
and a PD due to industrial filter operation with incomplete filter cleaning.

6.1 Inhomogeneous filter media

The characterization of filter media by the PD-method requires pressure drop
data of the filtration on the initially clean filter medium, henceforth termed ramp
test, as input. Such data can be acquired in e.g. filter test stands, laboratory
filter plants or even pilot and production scale plants. According to the findings
from chapter 4 the obtained pressure drop profile can be transformed into a
corresponding PD.

To determine the PD of the filter medium itself it must be ensured that the
filter medium is clean at the beginning of filtration. Any filter cake present
could add to the PD of the filter medium and will thus corrupt the PD of the
filter medium.

To extract most information from such a PD it is desirable to know most
operating parameters and, of course, the filter model presumptions must be
fulfilled.

The extent to which the requirements of cleanliness and ascertained operat-
ing parameters are accomplishable depends largely on the filtration facility that
is used to determine the pressure drop curve.

Kavouras and Krammer [20] are using a pilot scale filter and assume that
the filter is carrying no cake any longer, when the pressure drop at a certain
gas flow remains at a constant level despite continuous filter cleaning. However,
it cannot be verified externally that the filter medium does not carry any cake
at this stage. Saleem [26] has the possibility to actually verify the existence or
lack of cake patches by stereo optical cake thickness measurements.

For practical reasons the clean filter state, used further on, willl be defined
in accordance with the definition used by [20]. The clean filter state is thus
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reached when further filter cleaning does not have any further influence on the
pressure drop level. This is also the most practical definition, since it reflects
the state of cleanliness achievable by the chosen filter cleaning method.

The way of obtaining the pressure drop increase that is required to deter-
mined the PD depends on the actual facility used. In laboratory plants it is
generally possible to start gas flow and dust feed in sequence. The subsequent
pressure drop increase is used as input for the PD-method. The experimental
procedure may have to differ and is discussed in the respective section.

6.1.1 Filter media test stands

Usually it is easier to assure defined condition in a laboratory scale and also
instrumentation is most comprehensive there. Existing filter test rigs do not
require any modification of the setup or instrumentation and thus even existing
data from past experiments can be used for evaluation with the PD-method.

A typical example of a commonly used test stand is the VDI 3926 [12] stand
which comes in two modifications Type 1 and Type 2. The filter medium sample
to be examined is a square with a total filtration area Atot = 144 cm2. Thus
the isolated effect of cake filtration on that sample is simulated. Any possible
influence of the filter medium’s installation as e.g. a bag in a baghouse with a
possibly uneven dust distribution and/or dust settling, i.e., some dust is settling
directly and not even reaching the filter medium, is eliminated.

In Figure 6.1 the pressure drop data recorded in a VDI 3429 Type 1 test
stand is displayed together with its corresponding simulated pressure drop curve
from the filter model. The pressure drop increase during filter testing of a clean
cloth sample is depicted. The filter medium used is a polyimide needle felt
on a polyester supporting scrim. The test dust used is the alumina monohy-
drate powder Pural SB. The agreement between the simulated and experimental
pressure drop curve is excellent. That is not especially surprising, since the un-
derlying PD is determined via simple optimization with a fixed distribution
discretization (cf. section 4.1.1) from the experimental pressure drop data.

The parameter pc is calculated from the design of the filter test rig and the
measured volume flow V̇ = 2.77 m3 · h−1 which is constant within 0.5% during
the test run. The gas viscosity is taken from air as ηg = 18 · 10−6Pa · s.

The calculation of the tc parameter requires the dust concentration csol =
5 g · m−3 in addition, but is not as straightforward because of the unknown
specific cake resistance αm. Since the pressure drop ramp test is not continued
beyond the time range displayed in Figure 6.1, this value cannot be directly
extracted from the final asymptote of the pressure drop curve. Therefore the
PD-method is executed with a roughly overestimated tc value. In Figure 6.2
the corresponding PD is displayed as solid line with dot-markers.

A small part of the filter area (< 10 %) is found to have a high permeability.
The remaining filter area is exhibiting a significantly lower, but rather homoge-
neous permeability. This part can be seen as nearly vertical line in Figure 6.2.
The area exhibiting an even lower permeability than the homogeneous area is
discussed below with respect to the model parameters chosen.
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Figure 6.1: Experimental pressure drop curve of a filter medium test on a VDI
3429 Type 1 test stand.
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Figure 6.2: PD distributions determined for different parameters tc.

Since the parameter tc is estimated from the data it must be considered
uncertain. According to the considerations in section 4.2 this will result in a
scaled PD. The information contained in this scaled PD is equivalent to the PD
that would be obtained with the correct, but unknown, parameter. To inves-
tigate the sensitivity of the parameter tc on the obtained PD, two alternative
PDs, which are determined for correspondingly lower t̂c-values, are displayed in
Figure 6.2.

The quality of the fit in terms of pressure drop agreement is almost the same
for all the displayed curves. The original PD with tc finds part of the filter area
at very low permeability towards zero. One should recall that a large value for
the parameter tc corresponds to a low specific cake resistance. All the other
parmeters appearing in the definition of tc equ. (2.23) are measured or known
from design specifications of the test stand. Thus a PD is found that does not
use a part of the filter area for filtration at all which is expressed by a rather
low permeability in the lower left corner of Figure 6.3.

Using the parameter t̂c = 0.5tc instead of tc corresponds a doubling of the
actual specific cake resistance given that the other parameters remain the same.
In order to mirror the experimental pressure drop curve equally well, a larger
fraction of the filter area must be used. In fact this PD uses the full filter area
for the parameter t̂c with a non-zero permeability.
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The model parameters are different for the curves in Figure 6.2. To ensure
comparability of the PDs determined for t̂c-values these are transformed to the
value of the parameter tc according to the transformation outlined in section 4.2.
In Figure 6.3 the distribution functions with t̂c = 0.5 tc is rescaled to the param-
eter tc and are thereby comparable to the curve determined with the tc-value.
According to equ. (4.11) the scaling factor for the cumulative distribution axis

is
√

t̂c
tc

=
√

0.5 ≈ 0.71. Thus at least 30 % of the filter area must have zero

permeability, which is reflected in the corresponding PD in Figure 6.3, which
intersects the ordinate axis at this value. Nevertheless, the remaining 70 % are
used. Good agreement between the original PD and the PD for t̂c = 0.5tc is
observed for these higher permeability values. At low permeability values the
PD is anyway highly uncertain according to the findings in section 5.3.6.

When decreasing the parameter t̂c even further to t̂c = 0.4tc the PD makes
use of the entire filter area too (see Figure 6.2), i.e., there are no parts of the
filter area with zero permeablity. In Figure 6.3 this means, of course, a non-zero
PD for

√
0.4 ≈ 63% of the filter area. However, one observes a shift of the

large step in the distribution around k = 10−9 m towards bigger permeability
values. This might indicate that the parameter t̂c chosen is too low, since the
permeability shifts towards higher values to compensate for a higher specific
cake resistance. However, the quality of the obtained fit does not worsen, which
must be mainly attributed to a relatively better resolution of the PD at high
permeability values. Since the PD for relatively lower t̂c values is scaled to cover
only a part of the distribution axis Φ′, the resolution on this part is higher for
the same number of nodes.

Reversing the train of thoughts leading to the error estimation from sec-
tion 5.3.6 one finds that the pressure drop is, of course, most influenced by
deviations of the PD at high permeability values. Thus apparently a small ad-
vantage in the resolution of these can compensate for a shortcoming in capturing
of small permeability values.

The filter test stands are designed to provide best intercomparability between
results determined at different test stands. Thus comparable/reproducible re-
sults between different experimental runs and different test stands are expected.
However, for the determination of a PD this also entails the greatest shortcom-
ing: The test dust is standardized and differs thereby naturally from the dust
to be encountered by the filter medium in the application. The PD, however, is
depending on the actual dust and extrapolation from the test dust to the actual
dust is not a priori possible.

6.1.2 Laboratory scale filter plants

The next step is to investigate laboratory scale filter plants that resemble indus-
trial scale plants in the basic construction and operation. They are, however,
smaller and commonly only designed for investigation of various filtration fea-
tures. Also here operational parameters are usually well defined and known
and also the instrumentation of such plants is good. One advantage of such
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plants is the regeneration mode which closely resembles the regeneration in in-
dustrial plants. Also the operation of laboratory filter plants with the same
dust as industrial plants is advantageous, since it overcomes the problems of
dust depending PDs.

During this work mainly data gathered by the plants presented by [26] and
[25] are used. The former plant is designed for optical cake thickness measure-
ments and henceforth identified as plant #1. The latter plant is used to study
reactive gas cleaning and is hereafter termed plant #2. Both filter plants consist
of a dust supply unit that disperses a certain mass flow of dust in air which is
sucked through the filter plant. The gas volume flow after the filter is recorded
and controlled to a certain set value via a frequency controlled fan. Experi-
ments were conducted with both plants having installed three filter bags which
are pervaded by the dust laden gas from the outside to the inside. In order to
support filter bags they are mounted on wire cages. Dust particles are retained
at the filter bag’s outer surface. Due to the dust which is accumulating on the
filter bags forming a filter cake the overall permeability of the filter decreases.
As the fan keeps the gas volume flow approximately constant the pressure differ-
ence over the filter rises. The filter is regenerated either after a certain pressure
difference over the filter is reached or after a certain time interval for filtration
has elapsed. Filter regeneration is carried out by a reverse air jet pulse. Each
filter bag can be regenerated separately. The layout of both plants is according
to the basic scheme (see Figure 1.1). The plants, however, differ in the actual
specification and scale. Table 6.1 gives an overview of these specifications.

Plant Atot ṁc ηg αm V̇
# m2 kg · s−1 Pa s m · kg−1 m3 · h−1

1 2.04 8.4 10−4 1.8 10−5 6.67 109 240
2 0.53 1.5 10−5 2.0 10−5 - 40

Table 6.1: Specifications of laboratory scale filter plants

Only the online measurements of pressure drop over the filter and gas volume
flow are used in this work. The measuring locations are shown in the flowchart
(see Figure 1.1) indicated by PDC for pressure difference and FC for flow. The
dust concentration is calculated according to:

csol =
ṁc

V̇
(6.1)

The total dust mass ṁc conveyed to the filter is set by the dust dosing equip-
ment.

Figure 6.4 shows the start up of filter plant #1 as ramp test. The filter
medium is thoroughly cleaned at the beginning of this experimental run and
thus does not carry any filter cake. The vertical dashed line indicates the point
in time when the dust dosing equipment is activated. Subsequently one observes
an increase in pressure difference.

During the pre-experimental phase of this plant special emphasis was put on
the quality of data recording of transient pressure drop and volume flow data. In
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addition the gas flow control loop which consists of an orifice flow measurement
and a frequency controlled fan was optimized to achieve fast transient perfor-
mance, thereby minimizing the effect of sudden pressure drop changes on the
gas volume flow as encountered during filter cleaning. However, the controlled
gas volume flow changes slightly due the response time of the control loop. To
account for a not perfectly constant gas volume flow the measured pressure drop
is corrected to a single set volume flow according to equ. (6.2).

∆p = ∆pexp
V̇

V̇exp

(6.2)

For the application of the PD-method this correction enables the direct use of
the constant volume flow model section 2.4. However, from equ. (2.19) it is clear
that only a fraction of the pressure drop and volume flow is relevant. Equ. (6.2)
is merely contracting this fraction into the single variable ∆p for the ease of
further treatment.
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Figure 6.4: Experimental pressure drop profile in the experimental plant #1.
The pressure drop is corrected for the flow variation according to equ. (6.2).

The pressure drop curve has a positive curvature for the short period of 15-
20 seconds after dust dosing started. During this period the dust concentration
in the filter housing is increasing until it reaches a constant value. The filter
plant is equipped with an optical measurement system, i.e., a glass window
is installed in the filter housing and the increase of dust concentration can
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be observed qualitatively. Also the average gas residence time in the filter
housing is in the observed range of time. The filter housing contains a raw gas
volume of approximately 0.8 m3 which leads to an average residence time of
12 s at the operation point displayed. Assuming infinite backmixing in the filter
housing, which is justified given the turbulence observed in the filter housing,
80 % of the final dust concentration is reached after approximately 19 s. More
interestingly the curvature of the pressure drop curve changes when a constant
dust concentration in the housing is reached. A pronounced concave curved
pressure drop profile can be observed.

Finally the transient pressure drop increases linearly, which can be explained
by a practically equalized permeability profile over the filter. This entails ho-
mogenous flow and an isotropic cake builds up homogeneously. The slope of
the transient pressure drop asymptote can directly be used to obtain the spe-
cific cake resistance αm by combining equs. (2.4) and (2.8) for an equalized
permeability, i.e., no dependency on filter location A has to be considered:

αm =
1

ηg csol

(
Atot

V̇

)2

lim
t→∞

d∆p

dt
(6.3)

For practical use one cannot employ the limit but should restrict time t to
sufficiently large numbers, i.e., where the pressure increase is linear within the
error of measurement.

The PD corresponding to the pressure drop ramp from Figure 6.4 is displayed
in Figure 6.5. The integral mean value can be displayed in addition. Note that
in this figure the abscissa is linearly scaled and thus the area on the left hand
side of the PD and the mean value curves are equal.

The basic shape of the PD found resembles the PD found in the filter test
rig in section 6.1.1 with a significant step in the PD, whereas a small part of
the area exhibits a high permeability.

In filtration plant #2 filter cloth condition experiments with reactive dust are
carried out. Details to this test series can be found in [25]. The basic features
are similar to the filtration plant #1 presented already. The different plant
specifications are given in Table 6.1. The specific cake resistance value is not
reported there, because several different values are determined corresponding to
each filter start-up.

The aim of the experiments is to study the conditioning of filter media at
an elevated temperature of 140 °C over time. The sample dust used is CaO and
Ca(OH)2 respectively, which is suspended in a simulated flue gas atmosphere
containing H2O and CO2. These compounds are especially reactive towards
CaO forming reaction products such as Ca(OH)2 and CaCO3. Since the reac-
tion products have a significantly higher molar volume than CaO a mechanical
expansion of the reacting particles is expected. In the flue gas atmosphere
most residence time is provided whilst the particles are deposited on the filter
medium, i.e., in the filter cake. During the conditioning period some particles
might even penetrate inside the filter medium and react there. A mechanical
growth of the particles there can lead to pore blocking, rendering normal fil-
tration impossible. In order to minimize the possible particle penetration with
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Figure 6.5: PD determined for a ramp test in the filtration plant #1

CaO particles a pre-conditioning is carried out with Ca(OH)2 which is intended
to fill easily penetrable voids in the filter medium and thereby preventing CaO
to penetrate into these voids in the subsequent conditioning period.

For the experimental simulation of the possibly slow hydration and carbon-
ation reaction 120h filtration experiments are conducted with an initially virgin
cloth. Once every day filtration is stopped, the filter is thoroughly cleaned with
the pulse jet system to determine the cloth permeability. Subsequently ramp
tests on the clean filter cloth are performed. In Figure 6.6 the PDs determined
from these ramp tests are displayed for a conditioning test with CaO dust on a
certain cloth.

The PD of the filter cloth changes dramatically in the course of the condi-
tioning period. On the first experimental day a step in the PD at about 50 %
of the filter is observed with again a high and low permeability level. In the
course of cloth conditioning this step shifts upwards and a relatively smaller
area with a high permeability remains. The actual permeability values on these
steps interestingly remain similar.

From this data the characteristics proposed in section 3.2 can be calculated
and are shown in Figure 6.7. According to the expectations the initial pressure
drop value ∆p0 is increasing over the conditioning period reflecting the decreas-
ing integral resistance of the filter cloth. Eventually the initial pressure drop is
approaching a constant level.
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Figure 6.6: PD determined for a ramp test in the filtration plant #2

The asymptotic pressure drop offset on the ordinate ∆p̃0 is always above
∆p0. The broad PD on the first experimental day is reflected in a fairly large
difference between ∆p0 and ∆p̃0. This span is thereafter reducing slightly.

The initial pressure drop slope augmentation κs is significantly increasing
during the experimental period. This is a result of the increasingly skewed PDs
as the condition period proceeds1. Practically that means that the pressure
drop initially increases very fast, with a factor up to 13 from linear. Thus the
pressure drop curve is approaching the asymptote quickly. In this situation the
filtration behavior resembles more a homogeneous cloth with the initial pressure
drop ∆p̃0. The actual initial pressure drop value ∆p0 is not really significant
for the filter performance.

6.1.3 Pilot and industrial scale plants

The pressure drop data from bigger filtration plants is in principle similar to the
data gathered in laboratory scale. However, there the filtration unit is part of
a process which imposes external influence on the filter operation. Operational
parameters such as gas volume flow, dust concentration, dust properties et cetera
are determined by the process operation and can hardly be set directly.

1Note that the skewness of a distribution is described by its third order moment.
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Figure 6.7: The characteristic values of the PDs versus the experimental period:
initial pressure drop, asymptotic ordinate intersection and pressure drop slope
multiplier.
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Also in laboratory scale tests feed back of periodic filter cleaning on the
gas volume flow is observed. This intrinsically semi-continuous filter operation
can feed back into the otherwise continuous plant operation. In turn back
coupling on the filter operation, as described by [27] for a pilot scale plant,
can be observed. E.g. a changing dust mass flow violates the assumption of
the PD-method. Thus special care must be taken when using pressure drop
data from industrial plants. Additionally, industrial plants are often equipped
with limited instrumentation, which makes it even difficult to recognize such a
violation. Nevertheless, when detailed information about the changes in dust
mass flow are available a corresponding correction, i.e., an appropriate time
scaling, may be applied and the PD-method can eventually be applied.

The study presented by [28] makes use of the PD-method to characterize the
filtration behavior while changing dust properties including the dust mass flow.
Measurements are made in an industrial scale bag filter plant which is cleaning
the off-gas of a cement plant. The bag filter is retrofitted after an electrostatic
precipitator (ESP) and enhancing the dust collection efficiency to meet emission
standards. During ordinary plant operation most dust is removed by the ESP
and only a rather small dust concentration is reaching the bag filter.

The experimental parameter is the impact of the ESP on bag filter operation.
The plant is operated with the ESP in operation and with the ESP switched
off. In Figure 6.8 the recorded measurement signals of volume flow and pressure
drop are shown for the experiment with the ESP in operation. Compared to the
laboratory data presented in the earlier section the data quality is clearly worse,
with much noise in the pressure drop signal. Initially the normal operation of the
filter is shown. At about 7000 s the filter is extensively cleaned until no further
reduction of the pressure drop can be observed. Since dust is continuously
reaching the bags, some cake will always be present on the bags as cleaning
the entire filter once, i.e. pulsing every row once, takes about 90 seconds.
However, according to the definition above the filter is considered sufficiently
clean thereafter. Then the pressure drop is allowed to build up without further
filter cleaning. This ramp is used to determine a PD.

In this plant the information on the amount of dust reaching the filter bags
is not available and thus the dust concentration is unknown for both ESP in
operation and ESP switched off. This is overcome by determining the entire
parameter tc from the linear part of the pressure drop ramps directly, instead
of just determining αm as described in section 6.1.2. Of course two different tc
values for the operation with and without ESP must be determined. To extract
more interpretable information from these values the definition equ. (2.23) can
be used to calculate the product αm · csol, since the volume flow V̇ and the filter
area Atot are known.

Figure 6.9 shows two PDs determined for the pressure drop ramp discussed
above and a corresponding ramp where the ESP is not in operation. This result
clearly shows the dependency of the PD on the dust properties. The filter setup
and plant operation remain unaltered during these tests. Only the amount
of dust and probably also its properties, such as the particle size distribution,
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Figure 6.8: Pressure drop and volume flow measurements in an industrial bag
filter plant with an upstream ESP in operation.
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change when the ESP is switched off. In turn the filtration behavior on the
same cloth is altered.

Generally the PD with the ESP in operation is spread over a wider range
of permeability values, i.e., a broader distribution is found. After the ESP only
the fines reach the bag filter, and fine particles pose the greater challenge to
the bag filter, than a coarser fraction [29]. The parameter tc, which differs by
almost a factor 100 between the two runs, accounts for the possible change of
the specific cake resistance and the absolute difference in dust mass.
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Figure 6.9: PDs determined for the filter operation with and without the ESP
in operation.

In Figure 6.10 a comparsion is displayed between the calculated pressure
drop cuves generated by the two PDs from Figure 6.9 using the tc-value deter-
mined the operation with the ESP on. The initial pressure drop rise caused by
the more pronounced PD with the ESP in operation is clearly visible. After
that initial increase the pressure drop curves converge towards a the same slope
of the final asymptote, since tc is the same for both curves.

6.2 PDs from filter operation

In section 6.1 the determination of a PD of the clean filter medium itself is
addressed. However, a filter can exhibit an inhomogeneous PD also because of
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an uneven residual cake distribution. Residual cake refers to filter cake present
on the filter cloth at the beginning of filtration. Such cake originates from
incomplete filter cleaning.

Kavouras and Krammer [20] give an extensive literature overview on rea-
sons and applications for such incomplete cleaning. Two reasons are reported
leading to a residual filter cake. On the one hand the filter cake might not be re-
moved entirely from a filter medium that is exposed to regenerative action. E.g.
Humphries and Madden [30] and Seville et al. [16] describe this phenomenon
termed patchy cleaning. It refers to filter cake that is partially completely re-
moved from the filter medium, but patches stay unchanged on the filter medium
despite a cleaning action. Duo et al. [17], Ju et al. [18], and Dittler et al. [31]
focus mainly on patchy cleaning of the filter medium for their pressure drop
simulations. Also Kavouras and Krammer [20] consider patchy cleaning for the
simulation of filter pressure drop.

On the other hand only a part of the filter area is exposed to a cleaning action
at one time in industrial filters. Typically one filter compartment or one filter
bag row is cleaned at once, whereas the remaining filter area is unaffected. This
easily conceivable mechanism also leads to an uneven distribution of filter cake
over the filter area. Kavouras and Krammer [20] discriminate between patchy
cleaning and sequenced filter cleaning as reasons for incomplete cleaning for filter
simulation. Duo et al. [17] only mention the possibility for an inhomogeneous
cake distribution due to sequenced filter cleaning.

However, the effect on filtration when residual dust cake is present can be
described in the same framework as an inhomogeneous filter medium. Filter
areas carrying residual cake patches have a lower permeability than clean filter
area or area carrying a thinner residual cake. The filter medium and the residual
cake as entity have a distributed permeabilty, which is corresponding to the
cake distribution. The filter model and PD-method can therefore be directly
applied to this type of problem too. The models presented by Duo et al. [17]
and Kavouras and Krammer [20] are shown to be embraced by the filter model
presented in section 2. Under certain provisions concerning cake compressibility
also the model of Ju et al. [18] is captured. This equivalence of the models
is based on the same approach with a 1-dimensional flow description and the
correspondingly identical governing equations. In line with the literature models
the PD stems only from a residual cake distribution. The filter cloth is, as in
the literature, homogeneous itself and is thus not contributing to the PD.

6.2.1 Patchy cleaning

In this section patchy cleaning is looked at separately, i.e., without any influence
from segmented filter cleaning. During semi-continuous filter operation several
cake generations are present on the filter cloth. In Figure 6.11 such patchy
cleaning is depicted for data from the model by Kavouras and Krammer[20].
On the ordinate axis the cumulative area distribution is shown. In the left most
part the fractional area distribution of the cake area load is displayed. The
situation immediately after cleaning is depicted. Generation 1 in the uppermost
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part of the figure represents the clean filter cloth, i.e., the part of cloth from
which cake was successfully removed. The generation 2 area depicted below is
carrying the residual cake which was not removed at cleaning. The cake area
load corresponds to the filtration on the clean filter cloth for one filtration cycle.
The area carrying generation 2 is smaller than the cleaned area generation 1,
because a part the filter cake from generation 1 is removed at cleaning, and
thereby becomes generation 1 again in a new cycle. Generation 3 stems from
the part of generation 2 where cake is not removed at cleaning. During one
filtration cycle additional cake builds up onto the already present generation
2 cake, thereby forming generation 3. Kavouras and Krammer[20] outline this
mechanism in detail.

By considering the filter cleaning mechanism one finds that the cake building
up on the generation 1 spot will reach the cake thickness of generation 2 during
one filtration cycle. Upon filter cleaning, part of this cake will be removed,
whereas the rest stays on the cloth unchanged, thereby forming generation 2.
In other words the thickness of cake generation 1 before cleaning equals the
cake thickness of generation 2 after cleaning. This applies correspondingly to
all generations.

According to the notation of the filter model from chapter 2 the cake thick-
ness in terms of cake area load is corresponding to a certain permeability k
according to equs. (2.2) and (2.3). The filter cloth permeability is constant.
Hence the cake area load can be converted into the permeability which is dis-
played in the center of Figure 6.11. Please note that further on in this chap-
ter the nomenclature refers to k as the overall permeability of cake and cloth,
whereas k0 denotes the initial permeability. This is necessary to be consistent
with the nomenclature for the filter model presented in chapter 2. In the case of
patchy cleaning the initial permeability comprises of contributions of both, filter
cloth and filter cake. For a consistent nomenclature the initial filter cake must
be included in the initial permeability k0. However, as in the chapters before
this index 0 is omitted, since PDs are only displayed for the initial permeability.

Periodic filter operation at period one implies that the pressure drop curve
between two subsequent cleaning actions is identical for all cycles. This, how-
ever, corresponds to a certain change in filter state s defined by equ. (2.12) which
is only depending upon the pressure drop. For periodic filtration a filter state
scyc shall be defined as the filter state change during one cycle, i.e., evaluation
of equ. (2.12) for one cycle. This filter state change applies of course to all filter
generations. In the rightmost chart in Figure 6.11 the abbreviation k−2 = u
is depicted. The steps between the separate generations have the same height,
which results from equ. (2.13) governing the permeability evolution. The height
of the steps is scyc which is shown in the figure for the generations 2-4.

Hence by knowing the area distribution of the cake patches and scyc the dis-
tribution of cake on the various generations is analytically known. The perme-
ability at the beginning of filtration for each generation can be easily calculated
according to

ki =
[
k−2
0 + scyc · (i− 1)

]− 1
2 (6.4)
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The constant cloth permeability is denoted k0 and i is the index for the cake
generation. Generation 1 is without cake. Thus it trivially has the permeability
k0.

The filter state change scyc can be determined from the filter operation
mode. This only requires a line search of the respective filter state scyc. E.g. for
constant flow filtration with a maxium pressure drop control the corresponding
scyc value can be determined from equ. (2.24). Filtration at constant cycle time
requires a line search in equ. (2.31). The corresponding equations for constant
pressure filtration are equs. (2.21) and (2.20), respectively.

For the filter model the filter area Atot is divided into areas Ai carrying a
cake generation i. The density PD function can thus be written as

ϕ′(k) =
1

Atot

∑

i

Aiδ (k − ki) (6.5)

whereas δ denotes the Dirac delta function. The cumulative distribution can be
obtained by integrating equ. (6.5).

For the determination of the generation area distribution different approaches
have been in used. Kavouras and Krammer [32] use a parametric distribution
of filter cake to account for the inhomogeneously deposited filter cake. The
main aim of that work is to simulate the bag filter as a gas-solid reactor, and
therefore the history of the solid dust is of interest. In later work they, however,
replace that parametric cake distribution by a mechanistic cleaning implemen-
tation outlined below. The direct parametric implementation straightforwardly
gives the Ai values.

Duo et al. [17] model patchy cleaning as the complete removal of the filter
cake from the a constant area fraction of the filter medium. This fraction is
independent of the cake load.

However, studies such as DeRavin et al. [33] suggest a dependency of the
actually cleaned area fraction upon the filter cake area load, arguing that the
dislocation forces acting on the cake when the filter is cleaned depend on the
cake mass. Ju et al. [18] and Kavouras and Krammer [20] incorporate such a
relation for filter simulation. They assume that the fraction of cake removed is
a function of the actual cake area load for each generation.

For such a cake area load dependent cleaning function f(k), which is denoting
the fraction of removed cake, one can recursively describe the area evolution as:

Ai+1 = (1 − f(ki+1))Ai i = 1, 2, . . . (6.6)

The first cake generation is present on the accumulated cleaned area originating
from all cake generations:

A1 =
∑

j

f(ki+1)Ai (6.7)

Note that the cleaning fraction depends on the initial thickness of the generation
i+ 1 , which is the thickness before cleaning of the generation i. The cleaning
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function is written here to depend on the overall permeability k, which directly
corresponds to the cake area load. For the model used by Duo et al.[17] the
relation is even simpler, since the cleaning function f is constant and does not
depend on the cake thickness.

6.2.2 Segmented filter cleaning

During segmented filter cleaning the filter is divided into several sections, that
are cleaned in sequence. This leads also to different areas of the filter carrying
cakes of different thicknesses. For the isolated discussion of segmented filter
cleaning the cloth is again assumed to be homogeneous and patchy cleaning is
not considered either.

During periodic operation the pressure drop profile is identical between two
subsequent cleaning actions. This is of course only true when it is always the
same filter area which is cleaned, which implies that usually the segments are of
equal size in terms of filter area and that any cleaning action the same number
of segments is being pulsed.

For a filter divided into p equal segments it takes p cycles before a certain
segment is cleaned again. Using the above definition of the filter state change
per cycle scyc, the total filter state change on a segment between two cleaning
actions on that very segment is p · scyc. The permeabilities after cleaning on the
various filter sections can be calculated as:

kj =
[
k−2
0 + scyc · (j − 1)

]− 1
2 j = 1 . . . p (6.8)

Thus the PD for segmented filter cleaning in periodic operations with the
definition of the permeability kj according to equ. (6.8):

ϕ′(k) =
1

p

∑

j

δ (k − kj) (6.9)

The main advantage of the proposed analytic filter model compared to the
literature models cited, is the analytic time integration. Hence the need to
numerically integrate coupled differential equations [20] or a single differential
equation [17] is replaced by a simple line search procedure. In addition the PD
caused by patchy cleaning and/or segmented cleaning during periodic operation
is obtained analytically. This PD corresponds directly to the cake generations
mentioned in literature.

Ju et al. [18] use a constant pressure model and also determine the area
distribution for periodic filtration analytically. They do, however, not give an
analytic expression for the time integration and hence the cake thickness distri-
bution.
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6.3 Combined effects: filter medium – filter op-

eration

An inhomogeneous cloth, patchy cleaning, and segmented filter cleaning might
occur all together. E.g. Kavouras and Krammer [20] use a model mirroring
both effects, patchy cleaning and segmented cleaning. The PD corresponding
to their model for periodic operation when one segment is pulsed at once is
given by:

ϕ′(k) =
1

Atot

∑

j

∑

i

Aj,i · δ
[

k −
(
k−2
0 + [(j − 1) + (i− 1) · p] · scyc

)− 1
2

]

(6.10)

For segmented cleaning the PD of the filter cloth replaces the constant cloth
permeability on cleaned area. This PD of the filter medium as tackled in sec-
tion 6.1 should be denoted ϕ′

cloth(k). When cake builds up on an inhomogeneous
cloth, the cake build up for every segment is uneven. Therefore the entire PD
of the filter cloth must be shifted for each segment, instead of just the integral
cloth permeability as in equ. (6.8). These combined effects are captured by
equ. (6.11).

ϕ′(k) =
1

p

∑

i

ϕ′
cloth

[(
k−2 − (i− 1) · scyc

)− 1
2

]

(6.11)

The combined consideration of patchy cleaning and a PD on the filter cloth
leads to a possible interdependency of the separate effects. Patchy cleaning is re-
ported to depend on cake thickness. During cake build up on an inhomogeneous
cloth, cake builds up unevenly as shown earlier. Hence, the cleaning effective-
ness might depend upon the cloth PD. The cleaned fraction per cleaning action
can thus vary depending on the filter cloth. In addition the cleaned cloth area
has a different PD than the entire filter. This can, of course, be mirrored by the
present filter model. However, an actual cleaning model is required to describe
the evolving PD. Under the assumption that patchy cleaning does not depend
on filter cake thickness the closed form PD evolving during periodic operation
is analogue to equ. (6.11).

6.4 Pressure drop data from semi-continuously

operating filters

Hitherto, only pressure drop profiles, that clearly show a negative curvature,
have been used to apply the PD-method, i.e., either ramp tests or clearly re-
solveable filter cycles were required to determine a PD. However, in industrial
plants it is frequently impossible to carry out ramp tests, since a plant startup
requires the simultaneous startup of all unit operation and defined conditions for
the filter startup cannot be provided. In addition, the semi-continuous operation
does not clearly resolve the filtration and cleaning cycles. Frequently cleaning
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pulses are carried out in quite short succession to keep the pressure drop level
within narrow limits. From a process control point of view, small filter pressure
drop variations are certainly favorable, because they generally prevent negative
feedback from excessively fluctuating plants as described in [27].

6.4.1 Raw pressure drop data - data quality

Figure 6.12 the pressure drop pattern of a cement plant filter is displayed over
slightly more than an hour. This industrial filter consists of 8 filter sections
that are cleaned in sequence. Each section consists of 5 bag rows and the
total filter area of the plant is Atot ≈ 700 m2. A pressure drop measurement is
installed across the entire filter and across one specific filter section. The filter is
operated within a narrow pressure drop band between the start to the end of a
filtration cycle. In Figure 6.13 only the first 15 minutes of the filter operation are
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Figure 6.12: Pressure drop across a filter section for the semi-continuous opera-
tion in a cement plant filter. The minima and maxima of separated filter cycles
are highlighted by circles and squares, respectively.

displayed. Both, the pressure drop signal across the filter segment and across
the entire filter including inlet and outlet are displayed. The pressure drop
across the filter is higher, but is closely resembling the pattern of the pressure
drop across the section. In this figure the cleaning cycles can be distinguished
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from each other. Typically only one to two segments of the filter are cleaned at
the end of a filtration cycle.
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Figure 6.13: Enlargement of beginning of Figure 6.12. In addition the pressure
drop measurement across the entire filter is displayed.

The resolution of the measurement setup is fairly coarse at 0.5 mmWG. The
latter is illustrated in the histogram Figure 6.14. The pressure drop axis is
divided into small bins of equal size and the number of actual pressure drop
measurements in each bin is counted. It is found that in the measured pressure
drop range spanning from 77.86 mmWG to 104.88 mmWG only 61 actually dif-
ferent values are recoded, which must be attributed to a coarse digital resolution
of the measurement signal. The recorded values do not show a smooth distri-
bution over the non-empty bins either, but approximately every second bin is
populated with only about one third measurements than neighboring bins. The
reason for this apparent artifact is not known, but it can be speculated that the
coarse digital resolution is not even, i.e., the actual bin widths are possibly not
equal.

6.4.2 Idealized number distribution of pressure drop sam-

ples

The resulting pressure drop increases during one cycle as depicted in Figure 6.13
cannot be used directly to apply the PD-method, since the fluctuations are
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Figure 6.14: Histogram of the pressure drop measurement points for one day.

significant, partly due to the coarse resolution. Moreover only a very limited
number of points, i.e., 10-30 per cycle, are recorded. However, the distribution
of the pressure drop points is looked at closer to extract further information
from the pressure drop profile.

To illustrate this concept an idealized periodic filter operation as depicted in
Figure 6.15 is considered initially. The depicted filtration cycles repeat them-
selves identically in terms of pressure drop. Typically one measured points on
this pressure drop pattern. Under the assumptions that� the filter regeneration does not consume a significant amount of time com-

pared to the filtration time, i.e., is negligible in the pressure drop plot, and� that the actual pressure drop measurements are taken at a constant sample
rate

the cumulative number distribution of the discrete pressure drop measurements,
which can stretch over many cycles, is an estimator for the underlying pressure
drop increase during each cycle.

To illustrate this statement, the number density distribution of the measure-
ment time t must be considered, which is termed qt(t). Since the sample time is
equal the density function of time distribution of the measurements qt(t) must
be constant, i.e., all sample times are equally likely. This density can then be
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Figure 6.15: Schematic periodic filter operation.

converted into the pressure drop density function q∆p(∆p) by considering the
mapping of the time axis via the pressure drop curve ∆p(t). Any time interval
[t, t + dt] is mapped on the pressure drop axis onto [∆p,∆p + d(∆p)] which is
described by:

q∆pd(∆p) = qtdt (6.12)

Integrating via the pressure drop ∆p gives:

∆p∫

∆plow

q∆pd(∆p) = qtt(∆p) (6.13)

The function t(∆p) is the inverse function to the pressure drop relation ∆p(t).
The integration limit ∆plow is the lowest measured pressure drop value and is
chosen, because the inverse function, of course, does not exist for lower pressure
drop values. The LHS of equ. (6.13) is the cumulative distribution function
Q∆p:

Q∆p(∆p) =

∆p∫

∆plow

q∆pd(∆p) (6.14)

This distribution can be estimated from the pressure drop values of the separate
measurements using e.g. a kernel density estimator for q∆p. The time compo-
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nent of the measurements is not used and thus any pressure drop measurement
irrespective of the cycle might be used, i.e., the benefit of the method is, of
course, that many pressure drop cycles can be used as input to determine Q∆p.
However, the time scaling of pressure drop function t(∆p) cannot be determined
from this method. I.e., the proportionally constant qt which is scaling the time
axis cannot be determined inherently from the scheme outlined above. For the
example given in Figure 6.15 the scaling would be qt ≡ 1 to scale the pressure
drop increase on exactly one cycle time. Practically the scaling with an actual
(mean) cycle time tcyc is useful.

From Figure 6.15 it is clear that the inverse function t(∆p) does not exist
unambiguously for the entire time axis, but just for one cycle and the singular-
ity at the filter regeneration is not considered. Since the cleaning duration is
required to be insignificant, it is assumed that he pressure drop measurements
during cleaning do not significantly affect the estimated distribution.

6.4.3 Varying cycle times and acyclic pressure drop pat-

terns

In section 6.4.2 it is assumed that the pressure drop cycles repeat themselves
identically in terms of pressure drop. Unfortunately, this is not always a justified
assumption, as only a glance at e.g. Figure 6.13 reveals. The actual duration
of a pressure drop cycle is varying and not constant and also the lower and
upper pressure drop values fluctuate. Such behavior might arise from influence
of other unit operation in the plant, variations of filter operating parameters,
errors in the pressure drop measurement and consequently inaccuracies in filter
control.

To be able to account for such variations a correction is introduced for the
pressure drop span of a single filter cycle. It is assumed that all recorded filter
cycles have in principal the same underlying pressure drop increase, but only
different parts of that increase are actually recorded. Which part of a certain
filter cycle is recorded, is determined from the minimum and the maximum
pressure drop value of a specific cycle.

The situation for varying the minimum pressure drop value is shown schemat-
ically in Figure 6.16. The underlying pressure drop curve is shown as dashed
curve from time −1 to 0. The actually available pressure drop consists of 4 num-
bered cycles of respective parts of the underlying pressure drop curve, which are
starting from different lower pressure drop values. The cycle durations vary cor-
respondingly. Directly applying the density estimation scheme outlined in the
section above fails, because the different starting points of the cycles will influ-
ence the distribution of the pressure drop measurements. E.g., in Figure 6.16 all
four cycles are available to be recorded at pressure drop levels above 87 mmWG,
but only three cycles are available between 85 mmWG and 87 mmWG. To give
pressure drop values in this range the same weight as above 87 mmWG the
pressure drop density distribution q∆p in this range must be weighted by 4

3 .
From 84 mmWG to 85 mmWG only one of four cycles is available which must
be weighted with a factor 4. Such weighting is, of course, at the expense of
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accuracy, and practically only the pressure drop range that is recorded in many
cycles can be used further. An analogue discussion applies to varying maximal
pressure drop levels.
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Figure 6.16: Schematic pressure drop cycles with varying minimum values.

In a more general notation the actual parts which are recorded of each filtra-
tion cycle can be accounted for by another distribution function: The number
distribution of the minima and maxima. These distributions can be estimated
from the minimum and maximum pressure drop values determined above. The
cumulative number distribution of the minima is termed Θmin. Dividing the
density q∆p by the cumulative number distribution of the minima yields the
correction described above for the simple example. For the maxima the situa-
tion is analogue, but here the density for pressure drop levels above a certain
value must be amplified. This correction can be summarized as:

q̂∆p =
1

Θmin
· 1

1 − Θmax
· q∆p (6.15)

Practically additional information on the minima and maxima of the recorded
pressure drop cycles is required. In Figure 6.13 these values are marked by cir-
cles and squares, respectively. The actual division of the pressure drop data into
cycles is done by a simple pattern recognition routing, which, naturally, is not
perfectly able to determine each filtration cycle correctly. This must be consid-
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ered as error. External information on filter cleaning, e.g. from the cleaning
system, is not available for the presented dataset, but could also be used.

The situation for the recorded pressure drop data (see Figure 6.12) is de-
picted in Figure 6.17. The density estimate obtained from raw pressure drop
data is shown as bold dashed curve and corresponds directly to the histogram
Figure 6.14. The uneven distribution between neighboring columns in the his-
togram is reflected by oscillations observed in the kernel density estimate q∆p.
The cumulative distributions of the minima is depicted as thin dotted curve.
Unfortunately, the oscillations in the density estimate q∆p are amplified where
the correction requires a stronger weighting, i.e., towards the tails of this dis-
tribution. This is, of course, to be expected, since relatively fewer pressure
drop cycles were recorded, which actually cover that limited range and thus less
input information is available. The actual estimate of the underlying pressure
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Figure 6.17: Estimated density number distribution (bold, dashed) and cor-
rected density (bold, solid). Cumulative pressure drop minima/maxima distri-
butions.

drop increase is the cumulative distribution Q∆p. By scaling the corresponding
density to q̂∆p the scaling of the density is lost, and the integral over the cor-
rected density is bigger than one. This, however, only affects the scaling of the
cumulative distribution which is proportional to the time and time information
is anyway not conveyed in this distribution form. It must be reintroduced as
discussed in section 6.4.4.



86 CHAPTER 6. APPLICATION

6.4.4 Rescaling to a characteristic cycle

The density displayed in Figure 6.17 represents the corrected shape of the un-
derlying pressure drop curve. However, the density does not contain any infor-
mation on the time scaling. Of course, the non-zero part of the density spans
the entire pressure drop band where measurements are available.

A characteristic reference filter pressure drop cycle is defined. The pressure
drop of this reference cycle is spanning from the mean pressure drop minimum
∆pmin to the mean pressure drop maximum ∆pmax. The duration of this refer-
ence cycle is the mean cycle time. The mean minima and maxima are calculated
from their respective number distributions according to: )

∆pmin =

∞∫

0

∆p d (Θmin(∆p)) (6.16)

∆pmax =

∞∫

0

∆p d (Θmax(∆p)) (6.17)

The parts of the corrected density q̂∆p lying outside the interval [∆pmin, ∆pmax]
are disregarded for the determination of the characteristic filter cycle. Thereby,
the large error inherent to the tails of q̂∆p does not affect the resulting pressure
drop distribution.

Since the PD-method is applicable to any part of a pressure drop curve this
truncation of the characteristic cycle does not impede the application of the
PD-method. Although the error will, of course, become bigger.

In Figure 6.18 two characteristic filter cycles determined by the outlined
routine are shown. The solid curve corresponds to the data underlying the
Figures 6.12 to 6.17. The characteristic part of the cycle is depicted as bold
line and the truncated tails are thin lines. Towards the end of the cycle a
turning point in the pressure drop is observed. Probably this turning point
must be attributed to an insufficient correction of the pressure drop maxima.
The distribution Θmax is quite wide and a perfect correction is apparently not
achieved.

In addition to the data discussed in this section another characteristic cycle
is displayed as a dashed curve. This characteristic cycle is determined from data,
which is recorded on the same filter plant after the filter bags were replaced with
new ones. The same routine is applied as outlined above on recordings of semi-
continuous pressure drop data for 24 h. Preceding the evaluated period, the
new filter bags were in operation for about 30 h. The cloth during the evaluated
period is hence not directly comparable to virgin filter media.

The maximum pressure drop level of the two characteristic cycles are about
the same. Since the filter is cleaned upon reaching a certain pressure drop level
this must be expected. However, the cycle time with new filter bags is signifi-
cantly longer and the operating pressure drop span is also increasing. Thereby
a more clearly defined cycle structure in the raw data is present and the error
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Figure 6.18: Characteristic pressure drop profiles.
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towards the tails of the pressure drop distribution is decreasing, since relatively
fewer points are close to the beginning or the end of a single cycle (when com-
pared with the total available pressure drop measurements). In Figure 6.18
this fact is articulated by the truncated tails, which continue the characteristic
curve. In addition, these truncated tails are relatively short because the distri-
butions of minima an maxima, Θmin and Θmax, are narrower. The latter must
be attributed to a more regular pressure drop pattern.

6.4.5 Application of the PD-method

On the pressure drop data displayed in Figure 6.18 the PD-method can be
applied directly. It is, of course, not possible to carry out a dedicated ramp
test for these characteristic cycles to determine an accurate specific filter cake
resistance value. Instead the slope of the final asymptote is estimated from
the available curves in Figure 6.18. In Figure 6.19 the corresponding PDs are
shown.
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Figure 6.19: PDs determined from characteristic pressure drop cycles

At first the filter parameters affecting the model parameters pc and tc are
ignored and a PD Φ̂ is estimated with p̂c = 1 and the fraction p̂c

t̂c
equal to the

estimated slope the final asymptote. This facilitates the data processing for the
estimation, since varying operating points of the filter can be disregarded. In
addition, the permeability is scaled by a factor of about 107, which enhances
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the numerical performance. (Results displayed in Figure 6.19 do not include
this factor and thus Φ′ is plotted versus k0.)

The characteristic pressure drop profiles are typically very well defined with
a large number of underlying pressure drop measurements. Because of this aver-
aging over a large number of cycles also statistical variations from measurement
errors are largely compensated for. In other words, the characteristic pressure
drop curves present a very nuanced pressure drop profile, that is hardly obtain-
able from a single pressure drop increase. During the estimation of PDs via
optimization it turned out that an even better fit could be obtained when more
than 30 nodes are used for the discretization of the PD. Therefore the PDs in
Figure 6.19 are estimated using a simple adaptive mesh routine. Initially, a PD
is estimated on a fixed discretization using 30 nodes as in section 4.1.1. This
optimization step is terminated, when no significant further improvement of the
resulting PD is possible. The gradient of this intermediate result is calculated
and the node at where the gradient is a maximum is replaced by 5 evenly dis-
tributed, new nodes, which get the same permeability value assigned as the
original node. Thereby the calculated pressure drop curve remains unaltered
from the original result. Then another run of the same optimization routine is
conducted with the refined PD. This run starts at the same target value where
the first run ended, but because of the finer discretization, further tuning of
the PD is possible and typically a better fit is obtained. Here, 10 successive
optimization runs with refining steps in between are carried out.

The thereby obtained PDs are transformed according to the relations out-
lined in section 4.2 to actual parameters pc and tc by considering the constant
slope of the asymptote:

pc

tc
=

p̂c

t̂c
(6.18)

From equ. (4.11) it can be seen that condition equ. (6.18) leaves the distribution
axis unaltered and only a scaling on the permeability axes occurs.

The PDs in Figure 6.19 characterizes the filter in semi-continuous operation.
Thus the combined effects of the filter cloth and the sequenced cleaning are
included in the PDs. Since the PDs are determined for a characteristic filter
cycle, the initial permeability k0 represents the filter condition after cleaning at
the start of the filtration cycle. The clear step at Φ′ ≈ 0.9 for the new filter cloth
(dashed line) is caused by the newly cleaned filter fraction. The filter fraction
carrying residual cake is hardly discernible on the rest of the filter area. The
old filter cloth shows a continuously decreasing permeability distribution with
a much less dominant step at high permeabilities. The old cloth even exhibits a
higher permeability than the new one for a fairly large area fraction. This can
be explained by the higher cleaning frequency which is in effect for the old cloth.
The cycle time for the old cloth is about half the cycle time for the new cloth (see
Figure 6.18). In order to keep the old filter cloth operating below the maximum
pressure drop level, where cleaning is initiated, it is cleaned more often. Thereby
a continuous filter cake distribution evolves, which is reflected by the continuous
decrease in permeability in Figure 6.19. On the new cloth, however, cleaning of
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only one segment suffices to reduce the pressure drop further than for the old
cloth. The high permeability on this cleaned segment of new cloth reduces the
pressure drop to a significantly lower ∆pmin value for the new cloth, than for
the old one (Figure 6.18). The remaining, i.e., not recently cleaned, filter area
carries a substantial amount of filter cake, since the longer cycle times between
cleaning steps entail a higher cake mass. Thereby the PD for the remaining
filter area is not pronounced.

Due to the setup of the filter with 8 sections which are cleaned separately, one
expects a distribution of cake generations as outlined in section 6.2.2. However,
it is not possible to resolve the expected filter cake distribution from pressure
drop data. If such a filter cake distribution exists, it does not significantly
contribute to the shape of the pressure drop profile and therefore cannot be
identified by the PD-method.

Figure 6.19 shows a clear distinction between the two PDs. Similarly to
the results shown in Figure 6.6 the newer filter media is found to have a more
pronounced step in the PD. The older filter bags exhibit a relatively high per-
meability only on a very small part of the filter area (< 2 %). However, extreme
caution must be applied when quantitatively comparing these curves, since in
the characteristic cycles the influence of the industrial cleaning of separate filter
segments, as described above, is lumped into the PD.



Chapter 7

Solid distribution

7.1 Introduction

Filter operation is affected by inhomogeneities with respect to the filter medium
and/or the filter cake, which is discussed in the preceding chapters. At the be-
ginning of filtration inhomogeneities that can be attributed to the filter medium
and/or a residual filter cake, can be tackled with the PD-method. The model
on which the PD-method is based on, however, assumes a clear mechanistical
cake build up with an even solid loading, i.e., the dust concentration in the fluid
is a non-distributed constant and irrespective of time. Nevertheless, an uneven
solid distribution might arise due to an uneven dust concentration in the filter
housing. In this chapter a modified version of the filter model is presented that
can account for an uneven distribution of the solid in the fluid.

7.2 Solid distribution model

The filter models basic equs. (2.1) to (2.4) are used unaltered. To account for the
uneven solid distribution the mechanistical cake build up equ. (2.5) is modified
to:

dz(t, A)

dt
= csol(t, A) v(t, A) (7.1)

The only formal difference between the original equation is the allowance for a
varying solid concentration on both time t and filter location A. A combination
of equs. (2.2) and (7.1) gives:

d
(

1
kc(t,A)

)

dt
= αm csol(t, A) v(t, A) (7.2)

The time dependency is introduced to satisfy solid mass flow continuity. As
a model assumption the solid mass flow and the total volume flow to the filter
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should remain constant. In the case of a constant solid concentration the gas
volume flow continuity automatically satisfies the solid continuity. However,
the distribution of the solid concentration over the filter leads to an accordingly
changing filtration velocity, and do thereby not satisfy the solid continuity per
se. The solid concentration is therefore be split into a separable term:

csol(t, A) = c̄sol ζ(A) ξ(t) (7.3)

Here the term ζ(A) is the actual solid distribution over the filter location and
ξ(t) is the correction factor that must be determined to ensue a constant solid
flow onto the filter.

The combination of equs. (7.2), (2.4), and (7.3) yields analogous to equ. (2.10):

− dk(t, A)

k3(t,A)
=
αm c̄sol

ηg
ζ(A)ξ(t)∆p(t)dt (7.4)

The integration of the separated equ. (7.4) gives:

k−2(t, A) − k−2
0 (A) =

2αm c̄sol

ηg
ζ(A)

t∫

0

ξ(t)∆p(t)dt (7.5)

The slightly adjusted abbreviation for filter state s is introduced again as:

s =
2αm c̄sol

ηg

t∫

0

ξ(t)∆p(t)dt (7.6)

Integration of equ. (2.4) over the filter area employing equs. (7.5) and (7.6) gives
corresponding to equ. (2.15):

ηg · V̇ (t)

∆p(t)
=

Atot∫

A=0

(k−2
0 (A) + s(t)ζ(A))−

1
2 dA (7.7)

In the following the cloth resistance k0, and according to definition (2.16)
the corresponding u, are regarded as constant. A combined dependency of the
filter area of both, the solid concentration and the cloth resistance leads to a
2-dimensional distribution.

The dimensionless filter area A can again be replaced by a normalized dis-
tribution function:

Ψ(ζ) ≡ A

Atot
(7.8)

and the integral transform equ. (7.9) can be rewritten in the same fashion as
equ. (2.19):

ηg · V̇
Atot∆p

=

∞∫

0

(u+ s ζ)−
1
2 dΨ(ζ) (7.9)
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The solid distribution model is only used for constant flow filtration and thus
the governing equations for constant pressure are not outlined here. For constant
flow filtration the abbreviations pc and tc, defined in sec. 2.4 by equs. (2.22)
and (2.23), respectively, are used. The pressure drop transformation reads to:

pc

∆p
=

∞∫

0

(u+ s ζ)−
1
2 dΨ(ζ) (7.10)

The closing condition originates from the analogous calculations explained in
section 2.4 and it has the corresponding form:

t = tc

∞∫

0

[

(u + s ζ)
1
2 − u

1
2

]

dΨ(ζ) (7.11)

Note that the closing condition does not explicitly depend on the time variant
correction factor ξ introduced in equ. (7.3). However, this correction factor can
be calculated from the definition of s equ. (7.6) in comparison with equ. (7.11)
via derivation:

ξ =

∞∫

0

(u+ s ζ)−
1
2 dΨ(ζ)

∞∫

0

(u+ s ζ)−
1
2 ζdΨ(ζ)

(7.12)

7.3 Properties of the solid distribution model

Characteristic values of a solid concentration distribution can be determined,
which correspond to the explanations in sec. 3.2. The initial pressure drop value
without filter cake ∆p0 is obtained by:

∆p0 =
pc

k0
= pc

√
u (7.13)

The slope of the pressure drop curve for the modified model can be calulated
according to equ. (3.6). This differential can be evaluated using the expressions
for the solid distribution model equs. (7.10) and (7.11):

d∆p

dt
=

pc

tc

∞∫

0

(u+ sζ)
− 3

2 ζdΨ(ζ)

[
∞∫

0

(u+ sζ)
− 1

2 dΨ(ζ)

]2 ∞∫

0

(u+ sζ)
− 1

2 ζdΨ(ζ)

(7.14)

For s = 0 the evaluation of equ. (7.14) yields pc

tc
, i.e., the starting tangent of a

homogeneous filter.
The asymptote of the pressure drop curve can be obtained similarly to sec-

tion 3.2.3. However, in the present case neither the slope nor the ordinate offset
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of the asymptote are known. The slope is obtained by evaluating equ. (7.14) for
t→ ∞, i.e., s→ ∞:

lim
s→∞

d∆p

dt
=

pc

tc

1
∞∫

0

ζ−
1
2 dΨ(ζ)

∞∫

0

ζ
1
2 dΨ(ζ)

(7.15)

The factor describing the deviation from the homogenous filter only depends on
moments of the solid distribution Ψ and is abbreviated as:

γ ≡ 1
∞∫

0

ζ−
1
2 dΨ(ζ)

∞∫

0

ζ
1
2 dΨ(ζ)

(7.16)

With this asymptotic slope the ordinate offset is calculated according to:

∆p̃0 = lim
t→∞

(

∆p− pc

tc
γ · t

)

(7.17)

Surprisingly the evaluation of equ. (7.17), which is analogue to the computation
in section 3.2.3, shows that ∆p̃0 is related to the initial pressure drop value ∆p0

via the same factor γ, applying to the slope:

∆p̃0 = γ∆p0 (7.18)

and thus the analytical equation of the asymptote reads:

∆p = γ

(
pc

tc
t+

pc

k0

)

(7.19)

The initial tangent of the pressure drop curve for a solid distribution on
the filter coincides with the linear pressure drop increase on a homogeneously
challenged filter. The final asymptote is derived from that initial tangent by a
single scaling factor γ, which in turn is depending only on moments of the solid
distribution.

7.4 Results of a two area model

To illustrate the effect of a solid distribution a two area model is used. The
model is easy to be implemented and can be regarded as an extreme case of a
distribution. Moreover experimental pressure drop data under a proven solid
distribution is lacking, and thus one can only resort to analytic models for the
discussion.

A two area model can be very simply obtained with the following density
function ψ = dΨ/dζ consisting of two Dirac Delta functions:

ψ(ζ) = βδ(ζ − 1) + (1 − β)δ(ζ − α) (7.20)
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Here δ denotes the Dirac Delta function, β the area ratio (β = 0.5 means equally
large areas), and α is the solid excess in comparison to 1. I.e. on the area
fraction (1−β) of the filter the solid concentration is α times the concentration
on the area fraction β. For the parameters the range is for the area distribution
naturally β ∈ [0, 1] and for the solid distribution parameter it may be confined
to α ∈ [0, 1] without loss of generality. This is explained by the definition of the
solid distribution in equ. (7.3), where a correction factor ξ is foreseen to keep
the solid mass flow constant at a time. When one requires an α̃-value being
larger than one, then an equivalent model exists with parameters α = α̃−1 and
also an inverted area distribution β = 1 − β̃. However, the correction factor ξ
will be different to ensure the same mass flow, and thus the s values will differ
as well. This two area function represents an extreme case of inhomogeneity for
all functions ψ(ζ) that are zero for ζ 6∈ [α, 1].

The pressure drop curve can be given parametrically dependent on s. A
closed form expression ∆p(t) is not obtained as straight forwardly.

∆p(s) =
pc

β√
u+s

+ 1−β√
u+sα

(7.21)

t(s) = tc
[
β
√
u+ s+ (1 − β)

√
u+ sα−

√
u
]

(7.22)

The asymptotical factor γ can also be given analytically:

γ =
1

(

β + (1 − β) 1√
α

)

(β + (1 − β)
√
α)

(7.23)

For the asymptotical factor it can be shown that for a constant α equ. (7.23)
becomes a minimum for β = 1

2 , i.e., the extreme case in terms of inhomogeneity
for a two area filter is the case of equally large areas. The location of the
minimum is irrespective from α itself. For this extreme case the γ value depends
only on α:

γmin =
4
√
α

(1 +
√
α)2

(7.24)

In Figure 7.1 the pressure drop increases for a two area model distribution
with α = 0.2 and β = 0.5 is shown. The asymptotical pressure drop increase is
clearly diverging from the homogeneous filter. The inhomogeneous solid distri-
bution leads to a relatively slower simulated pressure drop increase. Interestingly
the pressure drop curve appears to be linear, although the solid distribution is
highly inhomogeneous.

The initial phase of filtration is of special interest and in Figure 7.2 this part
is enlarged. One can see that the simulated pressure drop increase has the same
initial level as the perfectly homogeneous curve. Additionally the initial tan-
gent also coincides with the homogeneous filter. However, immediately after the
start of filtration the homogeneous filter continues its linear pressure drop in-
crease, whereas the simulated inhomogeneous filter exhibits a lower slope of the
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Figure 7.1: Simulated pressure drop curve of the two area solid concentration
distribution model. In addition the pressure drop increase of a perfectly homo-
geneous filter is shown.
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pressure drop curve and starts to approach its asymptote from above. Thereby
the simulated pressure drop curve is changing its curvature from negative to
positive. Most remarkable, however, are the slight differences between the sim-
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Figure 7.2: Magnification of Figure 7.1. In addition the asymptote of the sim-
ulated pressure drop curve is shown.

ulated pressure drop curve and the homogeneous one. The only discrimination
from experimental data that could possibly be found is the difference of the
asymptotical slope. However, the specific cake resistance value is frequently
determined from exactly this slope, and thus a possible distribution of the solid
cannot be detected unless independent measurements of the solid distribution
were available. A determination from the curvature of the pressure drop curve
seems impossible because of the only slight variations, which could not easily
be resolved in experiments. But the simulated inhomogeneous distribution is
very significant, given that half of the filter area receives a 5-fold dust load-
ing. Slighter variations would be even more difficult to resolve from pressure
drop data. In Figure 7.3 the minimal γ-value is displayed to illustrate this
aspect. One can see, that a 10% change of the asymptote’s slope requires an
α ≈ 0.25 − 0.3. Such strong inhomogeneous distributions are hardly to be
expected in real filters.
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Figure 7.3: γ-values as a function of the solid distribution coefficient α for
certain parameters β including γmin for β = 0.5.



Chapter 8

Conclusions and outlook

In this work an analytical filter model is developed based upon governing equa-
tions commonly used for filter modeling. The focus of this model lies in the
simulation of cake filtration on inhomogeneous filters with respect to the filter
medium and cake distribution for incompressible cakes. It is shown that this
filter model fully includes previous model concepts targeting towards the de-
scription of industrial filter operation. Because of its analyticity it is possible
to make clear statements on invertibility of the model, which is used to develop
and justify the PD-method. This method can be used to determine the PD
of a filter from commonly available pressure drop data. An error estimation is
outlined for the PD-method.

8.1 Filter media characterization

The PD-method is applied to filter media characterization. PD of filter media
are determined from various filter equipments. It is shown that even apparently
clean filter media can exhibit a PD, which has not been explicitly reported in the
literature. Depending on the PD the filtration behavior of the filter medium is
assessed in the industrial filter application. With the same integral filter media
permeability and the same dust cake properties a filter medium exhibiting a less
pronounced PD is performing superior over a filter medium with a strong PD
in terms of operating pressure drop level and/or cycle time.

The PD-method can be easily applied to filter media testing experiments.
The effects affecting the filtration dynamics of a filter media sample are captured
more completely by a PD, than by today’s reporting standards. The expected
filtration performance of a certain cloth is closely related to these dynamics.

The analytic filter model is a prerequisite to determine a PD of filter media.
Since for optimization routines frequent function calls are required, it would
not have been practically possible to determine a PD when the model is carried
out as numerical integration, since the long execution times of the numerical
integration impede the pratical application.
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It is shown that for a certain pressure drop curve variations of the model
parameters lead only to a scaling of the PD. All the scaled PDs contain basically
the same information. Thus parameter variations or error in parameters do not
affect the PD-method’s determination of a PD, making the PD-method rather
robust against uncertain parameters. In fact this makes the applicability of the
PD-method widely independent from the actual availability of parameters, when
absolute values are not mandatorily required. This feature opens up possibilities
for intercomparison of PDs in applications with intrinsically high uncertainties
in parameters as encountered in most practical applications. However, certain
parameter variations can lead to unphysical PDs. In turn errors in parameters
might not be detected by the PD-method.

Characteristics of a pressure drop increase describing the initial tangent and
final asymptote are identified and analytically derived from moments of a PD.
They are readily available from a full PD. These characteristics or moments of
a PD are a compact and easily comparable form of reporting the key dynamics
conveyed by a full PD.

The pressure drop of a filter in operation is increased by a PD. While a
homogeneous filter would give a linear pressure drop increase, which can be
predicted using classical theory, a filter exhibiting a PD is operating along a
curved pressure drop profile. For long filtration durations the actual filter pres-
sure drop is approximated well by the final asymptote. In addition this is the
prediction of filter operation with more caution, since the asymptote always give
higher pressure drop values, than the actual pressure drop. For filter design it
is advantageous to use the final asymptote rather than the ideal homogeneous
behavior from classical theory. Thereby one takes into account the increased
pressure drop due to a PD, but at the same time one can resort oneself to the
simplicity of a linear pressure drop increase. This is accomplished by using the
asymptotic pressure drop ordinate offset, rather than the initial pressure drop.
Otherwise the classical theory can remain unaltered.

The PD of one cloth-dust combination may change over time due to long-
term filtration effects, i.e., so called filter ageing. Thus the filtration character-
istics of such a combination can change significantly during the life time of the
filter medium. This must also be expected during a life cycle of an industrial
filter bag, although to date no long term filtration monitoring with the PD-
method is available. In industrial plants filter bags are frequently not changed
all together, but only a few bags at a time. Thus a possible change of filtration
performance of some bags over time cannot be retraced individually by the PD-
method during plant operation. An assembly of bags used parallel for filtration
always appear as an entity to the PD-method and the PD of some bags cannot
be isolated.

8.2 Industrial filter operation

It is shown that the filter model presented also includes the generation models
used in literature. Except for the model of Ju et al.[18], where the part with
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compressible cake is not captured by the proposed filter model, all models found
in literature are fully represented by the proposed model.

The presented model can of course be used to simulate a filter dynamically,
which is enhanced by the analytic time integration. Thus the need for numeri-
cally solving differential equations is omitted, and the simulations speed up by
orders of magnitude. The strength of this model, which distinguishes it from
the dynamic models, is the fact that for periodic filtration the PD from filter op-
eration can be given analytically, without simulating the full transient pressure
drop curves of the filter.

With the PD-method any PD should be identifiable unambiguously. How-
ever, error consideration shows that it is not possible to identify a PD for more
than about two cake generations, not even considering segmented cleaning. The
numerical problem becomes highly ill defined. This argumentation is equally
valid for the parameter estimations for cake generation models reported in the
literature. Since the basic model structure is the same for all models includ-
ing the PD-methods, the inverse problem posed by parameter identification is
equally ill defined for the models in literature. However, due to the parametric
approach in literature the number of possible PDs is limited. Under the as-
sumption that the chosen mechanistic model is valid, a parameter identification
might be possible. However, agreement between the model and the actual data
must not be interpreted as verification of the mechanistic approach. Other PDs
that are not captured by the mechanistic models are probably equally or better
suitable to describe experimental data. The problems of identifying filter op-
eration worsen, when a PD of the filter medium itself is superimposed to the
PD stemming from filter operation. Admittedly this problem is not tackled in
the literature. The error estimation in this work suggests error bounds, that
let a separable identification of superimposed PDs appear impossible. Even the
direct problem of only identifying a PD is already difficult to handle.

8.3 Solid distribution

The filter model is adapted to cover the case of inhomogeneous solid distribu-
tion in the filter. Characteristic values of the pressure drop curve can be derived
analogous to the PD-method. The analytically obtained pressure drop asymp-
tote is related to the pressure drop for a homogeneous solid distribution by only
one scaling factor.

Model simulations with this adapted model are carried out for a highly in-
homogeneous solid distribution on two model areas. The pressure drop increase
is not significantly distinguished from a linear increase, although its slope is
significantly different from the homogeneous filter. The inhomogeneous solid
distribution is barely reflected in the curvature of the pressure drop curve, even
in this sample case where its quite significant. Consequently, the mere presence
of a solid distribution on a filter can hardly be detected from pressure drop data
even if solid distribution is pronounced.
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However, the determination of filtration parameters is affected if a solid dis-
tribution is present. Typically the cake resistance parameter is extracted from
the slope of the pressure drop asymptote. However, this slope is altered for
filtration with a solid distribution present, although the underlying model pa-
rameters remain unaltered. This might also add to the difficulties of reproducing
parameters, especially the cake resistance, in laboratory experiments. However,
the fluctuation of the cake resistance parameter actually observed may often be
larger than the change explainable by a moderate solid distribution.

A combination of a PD of the filter media and a solid concentration distribu-
tion is feasible. The corresponding model, however, becomes complex. Since the
separate identification problems of a PD and a solid distribution are difficult,
one will hardly be able to identify parameters from pressure drop data for the
combined model. In addition a cross correlation of the PD and the solid dis-
tribution is possible, i.e., the two distributions might not be independent from
each other. However, a combined and dependent PD and solid distribution
may obscure the otherwise clear effects of the PD, which in turn is erroneously
identified or rendered unidentifiable.

8.4 Further work and potential

Independent determination of a PD: Speaking of a PD determined from
pressure drop data, of course the question arises of independently determining a
corresponding distribution directly from an analysis of the filter medium. A pos-
sibility for accomplishing such an independent measurement is a highly resolved
velocity profile measurement as schematically depicted in Figure 2.1. Assuming
that the permeability of a filter medium is a result of viscous flow through pores
of the medium an average pore diameter of about 40µm is obtained for a typical
commercial bag filter medium, assuming a negligible porosity effect accelerating
the flow through the filter medium.

However, this pathway appears unfeasible, since CFD simulations clearly
show that the maximum gas velocity of a single pore of this diameter is reduced
to about only a third after only 300µm after the pore. Since this is approxi-
mately the surface roughness of the textile filter medium, high resolution mea-
surement so close to the surface are not possible. Especially the identification
of small local differences in the gas velocities are not feasible.

Experimental methods considered were particle imaging velocimetry and
Laser Doppler anemometry. Both methods require tracer-particles in the fluid
and therefore only an upstream measurement could be performed. However,
since the filter medium will retain the particles the flow will be altered in the
course of the measurement.

Another possible approach is based on an integral measurement of the flow
through the filter medium locally resolved. A possible way to accomplish such a
measurement is via the reaction of a reactive layer on the filter medium with a
gas. The filter medium must be coated with a thin layer of a reactive substance
and then at a certain pressure drop gas containing a reactive compound is
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conveyed through the filter medium. The reaction between the layer and the
gas should preferentially be fast, so reaction kinetics need not to be accounted
for. Then the conversion of the solid layer with the gas must be evaluated
locally resolved by e.g. electron microscopy with diffractive scanning for the
reaction product. The distribution of the reaction product corresponds to the
flow distribution and thereby the PD.

A suitable pair of reactive compounds must be found. The combination
potassium iodate and sulfur dioxide, as used in gas detection tubes, was con-
sidered. It must be possible to coat the filter medium with a thin layer of the
solid reagent. This is typically a challenging task, because the small pore and
fiber structure prevent the fibers from wetting.

Evaluation of filter medium tests: The evaluation routines of filter medium
tests in standardized equipment (VDI-3926, [12]) include the monitoring of the
filtration cycle duration, the weight increase of the filter sample, the develop-
ment of the pressure drop after cleaning and the clean gas concentration. In
addition, the guideline states that: It is also possible to derive quality char-
acteristics of the filter media from [...] the course of the pressure drop loss
curves. Certainly, trained filter test operators are able to deduct information
from the shape of the pressure drop curves intuitively. The PD-method can
quantitatively derive information from such curves, which is supposedly most
relevant for industrial application of the filter (when compared to the hitherto
practiced data evaluation routine). The generally poor predictability of a filter
medium’s performance in its industrial application must to some extent be at-
tributed to the neglecting of any inhomogeneity of the filter media. Especially,
the laboratory scale testing of filter media with the very dust used eventually
in the industrial application is encouraged in combination with an evaluation
incorporating the PD-method.

Continuous filter plant monitoring: In section 6.3 a routine is proposed
that can be incorporated into filter process control systems. In addition to
the commonly available information on pressure drop and occasionally cleaning
frequency, a characteristic pressure drop profile can be used for monitoring the
condition of the filter cloth, possibly together with an evaluation by the PD
method. Gradual and/or discontinuous changes of the filter medium could be
detected and measures, e.g. the replacement of filter bags, can be taken on a
factual basis of the operation performance instead of just operational time or
the impression of the plant operator.





Bibliography

[1] R. H. Perry, D. W. Green, and J. O. Maloney, editors. Perry’s chemical
engineers handbook. Mc-Graw-Hill, Singapore, 7 edition, 1997.

[2] C. Tien. Introduction to cake filtration - Analyses, experiments and appli-
cations. Elsevier, Amsterdam, 2006.

[3] H. Darcy. Les fontaines publiques de la ville de Dijon. Exposition et affili-
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Appendix A

Mathematical handling of

PDs

A.1 Conversion between PDs depending on k

and u

For an application of the convolution notation it is helpful to write the dis-
tribution as a function of u in the s-domain instead of the plain permeability
k in the k-domain. However, interpretation might usefully be done using the
permeability k itself. The distributions with k as the variable is denoted by a
prime, e.g. ϕ′(k) is the PD density depending on the permeability k.

For the cumulative distribution the conversion is trivial since the type of
the distributed property (filter area) is not changed. Since the assignment
equ. (2.16) u ≡ k−2 is changing the ordering of the independent variable, i.e.,
when k is ordered ascending, u is descending and vice versa, the cumulative
distribution functions are complementary to each other:

Φ′(k) = 1 − Φ(u) = 1 − Φ(k−2) (A.1)

For the distribution density the conversion is obtained from equ. (A.1) by
differentiation.

dΦ′(k)

dk
=

d (1 − Φ(u))

dk

ϕ′(k) = −dΦ(u)

du
· du

dk

ϕ′(k) = −ϕ(u) · (−2)k−3

ϕ′(k) = 2k−3ϕ(u)

ϕ′(k) = 2k−3ϕ(k−2) (A.2)
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A.2 Moments of a PD

Moments of the PD are defined directly only for the distribution depending on
the permeability Φ′(k).

µr =

∞∫

0

krdΦ′(k) (A.3)

By expressing the cumulative distribution Φ′(k) by Φ(u) according to equ. (A.1)
and replacing k by u as defined in equ. (2.16) one obtains equ. (3.3) already
introduced in chapter 3:

µr ≡
∞∫

0

u−
r
2 dΦ(u) [3.3]

because of:

∞∫

k=0

krdΦ′(k) =

∞∫

k=0

(

u−
1
2

)r

d
(
1 − Φ(k−2)

)
=

0∫

u=∞

u−
r
2 (−1)dΦ(u) =

∞∫

u=0

u−
r
2 dΦ(u)

A.3 Riemann-Stieljes integral

In chapter 2 the PD is introduced with the cumulative distribution function
Φ(u). This function is used in integtals similar to equ. (2.19) as a so called
Riemann-Stieljes integral of the general form in this work:

∞∫

0

g(u)dΦ(u) (A.4)

This type of integral type is easily converted to a Riemann integral. The deriva-
tion of the cumulative PD gives the density function of the PD:

ϕ(u) =
dΦ(u)

du
(A.5)

With this additional definiton equ. (A.4) can be converted to a Riemann integral:

∞∫

0

g(u)ϕ(u)du (A.6)

The latter integral exists given certain conditions listed by Kestelman [34, chap-
ter XI] are fulfilled. Most importantly g(u) must be continuous (which is fulfilled
for all integral kernels used in this work) and ϕ(u) must be integrable in the
Riemann sense over the full range (cf. [34, theorem 322]).

Formally the required Riemann integrability of ϕ(u) function is not satisfied
when Dirac-Delta functions are used and a rigorous treatment hereto would
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call for a more advanced mathematical theory. However, practically the use
of peaked ϕ(u) functions is unproblematic and this formal inconsistence may
be forgiven as it. Dirac-Delta functions may be approximated by very narrow
continuous functions and thereby turn into integrable functions.
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