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Abstract 

The thesis deals with the deformation problem of segmental, cast-in-place concrete 
cantilever bridges. This type of bridge has shown some propensity to develop larger 
deflections than those were predicted in the design calculation. Excessive deflections may 
lead to deterioration of aesthetics, serviceability problems and eventually early 
reconstruction of the bridge. Also in the construction stages the deflections have to be 
properly compensated to achieve the smooth camber in the completed bridge deck. 

Deformation prediction in concrete cantilever bridges is not as reliable as it would be 
necessary due to several factors. The high degree of uncertainty in creep and shrinkage 
prediction in concrete constitutes the major difficulty. Other factors are the complex 
segmental construction procedure and the sensitivity of the deformations to variations in 
the construction schedule, the uncertainty in estimating the frictional loss of prestress and 
relaxation in the prestressing tendons and uncertainty in estimating model parameters such 
as temperature and relative humidity. 

The doctoral study was initiated with the objective to improve deformation prediction in 
segmentally cast concrete cantilever bridges and to establish guidelines for deformation 
analysis based on advanced numerical methods. 

A database on observed deformations in three modern long span concrete cantilever bridges 
in Norway has been established. Two of the bridges were partly constructed from 
lightweight aggregate concrete. The deformations have been monitored since the 
construction stages up to the present time. The measurements cover the construction stages 
and the service life of 14, 8 and 3 years, respectively for the three bridges. The measured 
deformations are deflections in the superstructure and in one of the bridges, also strain 
measurements in the piers and the superstructure. 

A sophisticated numerical model was created for deformation analysis. The numerical 
model realistically simulates the segmental construction procedure and the entire life span 
of the bridge. The effects of the segmental construction method, temporarily supports and 
constraints and changes in the structure system during construction are taken into account. 
The model considers the different concrete age from segment to segment, the sequential 
application of permanent loads and prestressing and the effect of temporary loads. The 
prestressing tendons are individually modelled with their true profile taking into account 
the variation of the effective prestressing force along the length of the tendon and with time. 
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The finite element model consists of beam elements which are based on an advanced beam 
element formulation. The beam model was verified against a robust two-and-a-half 
dimensional shell model concerning its general performance and some specific issues. The 
comparison confirmed the accuracy of the beam model. 

Existing experimental data on creep and shrinkage in lightweight aggregate concrete and 
high strength concrete were evaluated in comparison with theoretical models. The main 
focus was on the CEB-FIP Model Code 1990 and its subsequent extensions. The findings 
were considered in the numerical studies. 

Deformations of the three bridges were computed. The CEB-FIP Model Code 1990 material 
model was used for concrete for the most part. The elastic moduli were taken from test 
results where they were available. The creep coefficient and the shrinkage strain of the 
lightweight aggregate concrete were assumed equal to those of normal density concrete of 
the same strength. The agreement between the calculated and the measured deformations 
were satisfactory in view of the large uncertainty involved in theoretical prediction. While 
moderate differences were observed in most cases, no clear overall tendency toward under- 
or overestimation was found. In subsequent numerical studies, the sensitivity of the 
deformations to variations in various model parameters was investigated. The B3 model 
was compared to the CEB-FIP Model Code 1990 in the analysis of one of the bridges, where 
the latter model showed somewhat better agreement with the measurements. 

The last part of the work concerned a robust probabilistic analysis which was based on a 
Monte Carlo simulation. The objective of the probabilistic analysis was to estimate the 
statistical properties of the deformation responses. With the distribution function of a given 
deformation response being known, the confidence limit for the deformation can be 
determined. It is recommended to design the bridge for the long-time deflection which 
represents a certain confidence limit (e.g. the 95 % confidence limit) of the response rather 
than its mean. Such way the risk that the bridge will suffer intolerable deflection over its life 
span can be minimised. 
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Chapter 1                                                             

Introduction 

 
 
 
 

1.1 Background 
Concrete cantilever bridges built with the balanced cantilever method have become very 
popular due to the many advantages offered by the construction method and the structural 
form. Nowadays segmental, cast-in-place concrete cantilever bridges are routinely built in 
the 200 to 300 meter span range while the longest span of this type is 301 meter. 

Segmentally cast concrete cantilever bridges often exhibit larger deflections than it was 
predicted in the design calculation. The excessive deflection can lead to the deterioration of 
the aesthetic of the bridge and may reach the level where serviceability and traffic safety are 
compromised. The many cases where long-term deflections significantly exceeded the 
expected deflections have made design engineers and researches aware of the deformation 
problem in this type of structure. 

Deflections of the superstructure are large due to the slender and long free concrete span 
and the fact that the permanent loads are only partially compensated by the prestressing. 
The deformations are increasing with time over the entire life span of the bridge, although 
in a decreasing rate. The physical mechanisms which are responsible for the time dependent 
deformation increase in concrete are creep and shrinkage, where the former is stress 
dependent and the latter is stress independent. The creep and shrinkage characteristics are 
probably the most uncertain mechanical properties of the concrete. Despite the development 
of scientific knowledge on concrete creep and shrinkage which made enormous progress 
(e.g. Bazant 2001) from the seventies, the prediction models can be considered as not as 
reliable as it would be necessary (fib 2000a). 
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The uncertainty in creep and shrinkage prediction is even more pronounced with the 
introduction of high strength concrete and lightweight aggregate concrete. The notable 
increase in the potential span length of concrete cantilever bridges is largely attributable to 
the progress made in the research and application of these materials. On the other hand, 
little information exists on their long-term deformation characteristic and the theoretical 
models in their present state are controversial, particularly for lightweight aggregate 
concrete (Walraven 2000). 

Beyond the uncertainty raised by creep and shrinkage in the deformation prediction, several 
other factors contribute to the problem. Relaxation in the prestressing steel is also a time 
dependent mechanism which causes slight reduction in the effective prestressing force. 
Besides relaxation, the loss of prestress due to friction is particularly significant in segmental 
construction as the result of additional unintended change in the tendon profile at the 
segment boundaries (Collins and Mitchell 1991). The latter emphasises the importance of the 
quality of workmanship. 

The construction process is complex where deviation from the planned schedule may have 
significant influence on the structural responses. In the design phase it is hardly possible to 
foresee precisely the construction schedule and temporary effects on the bridge, let alone the 
changes made during the construction process. 

The development of sophisticated numerical models and advanced computational methods 
and the enormous increase in the computational power of personal computers have enabled 
to address the most complex engineering problems effectively. Nevertheless, numerical 
models are time consuming and reasonable simplifications need to be made. To recognise 
which parameters and features are important and which are those that can be neglected are 
not instantly evident. 

The recognition of the importance of the deformation problem in segmentally cast concrete 
cantilever bridges has generated interest for research on the subject since the nineties, e.g. 
(Kanstad 1993), (Favre et al. 1995), (Vitek 1997), (Vitek and Kristek 1999) and (Santos et al. 
2001). 

While it was often found that the observed deformations in the bridges are larger than they 
were predicted by the design calculation, no clear conclusions were reached about the 
reasons, beyond a series of assumptions and speculations. In fact, in most cases it is very 
difficult to pinpoint the exact reason due to the many uncertain factors which influence the 
deformation of the structure. Creep and shrinkage prediction models alone are marked with 
a considerably large statistical variation which is the inherent property of the existing 
prediction models. Acknowledging the inevitable statistical variation, one has to accept the 
fact that expected deflections will be exceeded in a number of cases. The statistical variation 
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therefore has to taken into consideration (Bazant and Baweja 1995) in order to minimise the 
risk of intolerable deformations. 

1.2 Objective and scope of the study 
The general objective of the study is to contribute to the improvement in deformation 
prediction in segmentally cast concrete cantilever bridges. My goal is to establish guidelines 
for the deformation analysis in this kind of structure and to recommend a methodology for 
numerical analysis. 

The particular objectives are  

 To evaluate existing creep and shrinkage models based on available experimental 
results on lightweight aggregate concrete and high strength concrete and if it is 
possible to utilise the findings in the models 

 To set up a reliable numerical model for deformation analyses of concrete cantilever 
bridges taking advantage of existing advanced numerical techniques while keeping 
the model suitable for large-scale practical applications. To examine the effect of 
some of the simplifications which need to be made in the model 

 To establish a database on observed deformations in modern long-span concrete 
cantilever bridges 

 To evaluate the observed and calculated deformations 

 To study the effect of the statistical uncertainty in creep and shrinkage prediction 
models on the deformations of the bridges. To investigate the effect of the variation 
in various model parameters. To study the influence of the model choice. 

1.3 Organisation of the thesis 
The doctoral thesis is organised in eleven chapters. 

Following the introductory chapter, in Chapter 2 the deformation problem of segmentally 
cast concrete bridges is defined. The chapter also provides a brief review on the longest span 
concrete cantilever bridges in the world. The three bridges, Norddalsfjord Bridge, Støvset 
Bridge and Stolma Bridge which are involved in the study are described. A short review on 
similar research works is given. 

Chapter 3 presents a review on material models for concrete, reinforcing steel and 
prestressing steel that are used for long-term deformation analysis. Different creep and 
shrinkage prediction models are reviewed with a main emphasis on the CEB-FIP Model 
Code 1990 which serves as the basic material model in this study. 



Introduction 

4 

In Chapter 4 experimental results on creep and shrinkage in lightweight aggregate concrete 
are discussed and evaluated in comparison with existing model formulations. The current 
approach to creep and shrinkage modelling is reviewed. The databank on experimental 
results consists of data from experimental programs which were carried out in the past 15 
years in Norway. 

Experimental results on creep and shrinkage in high strength concrete and high 
performance concrete are discussed and evaluated in Chapter 5. The experimental results 
which are utilised were carried out in 1987-90 in Norway and in 1991-96 in Sweden. 

The mathematical algorithm for modelling aging viscoelastic behaviour in numerical 
analysis is described in Chapter 6. The rate type formulation is based on the Kelvin and 
Maxwell chain models. 

Chapter 7 covers a series of issues concerning the numerical model and simulation used for 
the deformation analysis of segmental, cast-in-place concrete cantilever bridges. The 
geometrical model with the element formulation is described. The geometrical model for the 
conventional reinforcement and the prestressing tendons is presented together with the 
model for computing the effective prestressing force. The beam model is verified against a 
two-and-a-half dimensional shell model with the main focus being on the influence of shear 
deformation and the effect of non-uniform creep and shrinkage characteristics along the 
height of the box-girder. Finally the numerical simulation of the segmental construction 
process is described. 

In Chapter 8 the established database on the measured deformations in Norddalsfjord 
Bridge, Støvset Bridge and Stolma Bridge is introduced. The database contains deflection 
and strain measurements in Norddalsfjord Bridge and deflection measurements in Støvset 
Bridge and Stolma Bridge. The measurements cover the construction periods and the service 
life of the completed bridges up till 2001. 

In Chapter 9 various numerical studies on the investigated bridges are presented. The 
calculated deformations are evaluated in comparison with the observed deformations. The 
effect of the statistical uncertainty in creep and shrinkage prediction models are investigated 
in sensitivity studies. The effect of variation in various model parameters is also studied. 

Chapter 10 presents a robust probabilistic method for deformation modelling. The 
probabilistic model is based on a Monte Carlo simulation. The statistical variation of the 
structural responses of Støvset Bridge are estimated. 

Finally, in Chapter 11 the main conclusions of the study are presented along with 
recommendations for future work. 
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Chapter 2                                                             

Deformation Problem in Concrete Cantilever Bridges 

 
The chapter introduces the deformation problem of the segmentally cast 
concrete cantilever bridge which the doctoral study is aiming to 
investigate. Also description of the three bridges which are involved in the 
study is presented, followed by a short review on similar investigations by 
other researchers. 
 
 

2.1 Introduction 
The segmentally cast concrete cantilever bridge has gained its popularity due to its elegant 
and slender appearance, clear and efficient structural form and cost-efficient construction 
method. Free and slender concrete spans, however, are subjected to large deformations 
which are also time-dependent. Prediction of the deformations with the required accuracy is 
essential for the successful erection of the superstructure as well as for the uncompromised 
state of the bridge through its entire life span. 

Deformation prediction in concrete is marked with significant uncertainty, mainly due to 
the time-dependent deformation mechanisms known as creep and shrinkage. Even though 
the structural form of the cantilever bridge is simple and the structural system is 
transparent, the aforementioned material behaviour coupled with the staged construction 
process and complex loading history present a challenging task to the engineer. In the 
never-flagging endeavour of bridge engineering to build record breaking spans, the reliance 
on previous experiences with shorter spans can not remain unquestioned. With the 
introduction of high strength concrete and high strength lightweight aggregate concrete and 
with the increased geometrical dimensions, the “extrapolation of previous experiences” has 
to be taken with caution. 
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2.2 Long span concrete cantilever bridges 
The segmental, cast-in-place concrete cantilever bridge has proven to be an ideal solution to 
bridge the numerous straits and fjords along the Norwegian coast. This type of bridge has 
been well established in the span length range of 200-300 meter where it presents an 
cost-effective alternative to the cable-stayed bridge and the suspension bridge. For the time 
being, the longest span of this type is the 301 meter long main span of Stolma Bridge. 

The notable increase in the length of free concrete spans can be attributed to the 
advancement in concrete research, construction technology and the development of 
sophisticated design tools. 

High strength concrete and high strength lightweight aggregate concrete are the 
cornerstones in the realisation of long free concrete spans. The dominant portion of the total 
load in this type of bridge is the dead weight of the structural concrete itself. With the 
increased strength to weight ratio the amount of prestressing and necessary counterweight 
ballast can be reduced considerably. In inverse, the span length can be increased with the 
same amount of prestressing and counterweight. 

Year of completion
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Figure 2.1 The longest span concrete cantilever bridges in the world (e.g. Brueckenweb 
databank) 



Deformation Problem in Concrete Cantilever Bridges 

7 

 
Figure 2.2 Stolma Bridge, world record in free cantilevering 

Figure 2.1 shows the longest free concrete spans and the year of completion for spans of 
220 m and longer (also vide Table 2.1). The dashed line marks the progress in the world 
record for this type of bridge. The three bridges marked in the figure are involved in the 
present study. It is noteworthy that three of the five longest spans were built in Norway. 

Table 2.1 Concrete cantilever bridges with the longest spans (e.g. Brueckenweb databank) 

 Name Country Year of 
completion 

Length of main
span [m] 

1 Stolma Bridge Norway 1998 301 
2 Raftsundet Bridge Norway 1998 298 
3 Boca Tigris 2 China 1998 279 
4 Gateway Bridge Australia 1986 260 
5 Varodd Bridge Norway 1994 260 
6 Talübvergang Schottwien Austria 1989 250 
7 Ponte de São João Portugal 1991 250 
8 Skye Bridge UK 1995 250 
9 Confederation Bridge Canada 1997 250 
10 Huangshi Bridge China 1996 245 
11 Pont de Cheviré France 1991 242 
12 Koror-Babeldaob Bridge† Palau 1977 241 
13 Hamana Bridge Japan 1976 240 
14 Hikoshima Bridge Japan 1975 236 
15 Norddalsfjord Bridge Norway 1987 230.5 
…     
22 Støvset Bridge Norway 1993 220 
     † collapsed in 1996 
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2.3 Description of the studied bridges 
The three segmental, cast-in-place, prestressed concrete cantilever bridges involved in the 
study are Norddalsfjord Bridge in Sogn and Fjordane county, Støvset Bridge in Nordland 
county and Stolma Bridge in Hordaland county. 

All three bridges are consisting of three spans. The main spans are made continuous after 
the coupling and prestressed by continuity tendons. The main spans were constructed in 
free cantilevering while the side spans were constructed either in free cantilevering or on 
scaffolding. When Norddalsfjord Bridge was completed in May 1987, its 230.5 meter long 
central span was the longest free concrete span in Europe. Stolma Bridge is the current 
world record holder among concrete cantilever bridges with its 301 meter long main span. 

The concrete grade in the descriptions is given for the cube strength as required by the 
Norwegian Standard. The conversion between the characteristic cylinder and cube strength 
can be made according to the recommendation of the CEB-FIP Model Code 1990 as shown 
in Table 2.2. The grade in the table is given according to the cylinder strength. 

Table 2.2 Characteristic strength values [MPa] 

Concrete grade C20 C30 C40 C50 C60 C70 C80 

,ck cylinderf 1 20 30 40 50 60 70 80 

,ck cubef 2 25 37 50 60 70 80 90 

        1 cylinder 150/300 
2 cube 150/150/150 
 
For lightweight aggregate concrete the grade refers to the cube strength too but the 
Norwegian Standard requires to specify the characteristic cylinder strength in addition. 

2.3.1 Norddalsfjord Bridge 
Norddalsfjord Bridge is situated on the western coast of Norway, northward from the city of 
Bergen. It was completed in 1987. The bridge has a total length of 397 meter and consists of 
three spans, 98 meter, 230.5 meter and 68.5 meter. The height of the box-girder varies from 
3.0 m to 13.0 m. The thickness of the bottom slab varies from 730 mm at the piers to 220 mm 
at mid-span. The web thickness in the main span is 350 mm, 300 mm and 250 mm changing 
approximately in the thirds of the cantilevers. 

The main span consists of 47 segments. The main part of the A1-A2 side span was built in 
free cantilevering while the A3-A4 side span was built entirely on scaffolding. The 
counterweight structures are filled with rock and they are supported on moveable bearings 
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in A1 and A4. The superstructure is supported by twin wall piers built on monolithic 
foundations. The twin wall pier in A2 has adequate flexibility to cope with the horizontal 
deformations between the piers. In the construction stage, temporary walls were added 
between the twin walls in A2 in order to form a box section which had the sufficient 
torsional stiffness to withstand the dynamic wind load in the free cantilever state. Before the 
cantilevers were connected in the main span the superstructure was lowered by 200 mm in 
A1 in order to create a balanced load distribution in the twin pier walls in A2. 

 

397 meter
230.5 meter 68.5 meter98 meter

1 2 3 4

 
 

Figure 2.3 Norddalsfjord Bridge 

The designed concrete strength was grade C45 for the superstructure and the piers and C35 
for foundations. 

2.3.2 Støvset Bridge 
Støvset Bridge is situated on the northern coast of Norway, not far from the city of Bodø. It 
was completed in October 1993. The bridge has a total length of 420 meter and consists of 
three spans, 100 meter, 220 meter and 100 meter. The superstructure is a box-girder with 
variable height, 12.0 meter at the piers and 3.0 meter at mid-span and at the two ends of the 
side spans. The thickness of the bottom slab varies from 1000 mm at the piers to 250 mm at 
mid-span. The web thickness is 350 mm near the piers and 300 mm in-span. 

The entire span was constructed in balanced free cantilevers. The central span consists of 45 
segments while the two side spans consist of 20 segments each. 146 meter of the 220 meter 
long central span was made from lightweight aggregate concrete of grade LC55 and 
designed characteristic cylinder strength of 50 MPa. The rest part of the superstructure and 
the columns were made from normal weight concrete of grade C55. The concrete grade for 
the foundations was C45. The modulus of elasticity was measured in laboratory at the age of 
28 days and it was found to be 28300 MPa for C55 and 22000 MPa for LC55. The density was 
2420 kg/m3 for C55 and 1940 kg/m3 for LC55. The density of the lightweight aggregate 
concrete was also measured on drilled cores. The average initial density was determined as 
1924 kg/m3 while the oven-dry density was 1779 kg/m3 (Heimdal 1997). 



Deformation Problem in Concrete Cantilever Bridges 

10 

420 meter
220 meter 100 meter100 meter

LC55 C55C55

1 2 3 4

 
 

Figure 2.4 Støvset Bridge 
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Figure 2.5 A typical arrangement of the box-girder, Støvset Bridge 
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The thickness of the pier is 1900 mm in A2 and 1500 mm in A3. To provide stability during 
construction temporary columns were placed at both sides of the piers at a distance of 3.3 m 
from the pier axes and supported on the pier foundations. In addition auxiliary piers were 
placed 30 m from the pier axes on the land side. 

2.3.3 Stolma Bridge 
Stolma Bridge is situated on the western coast of Norway, not far from the city of Bergen. 
The bridge was completed in 1998. The bridge has a total length of 467 meter and consists of 
three spans, 94 meter, 301 meter and 72 meter. The superstructure is a box-girder with 
variable height, 15.0 meter at the piers and 3.5 meter at mid-span. The thickness of the 
bottom slab varies from 1030 mm at the piers to 270 mm at mid-span. The web thickness 
varies in steps from 450 mm at the piers and 250 mm at mid-span. 

 

467 meter
301 meter 72 meter94 meter

LC60 C65C65

1 2 3 4

 
 

Figure 2.6 Stolma Bridge 

The central span consists of 61 segments. The A1-A2 side was constructed partly in free 
cantilevering and partly in fixed formwork supported by temporary columns. The A3-A4 
side span was constructed entirely in fixed formwork on abutments. 186 meter of the central 
span was made from high strength lightweight aggregate concrete of grade LC60. The rest 
part of the superstructure and the columns were made from normal density concrete of 
grade C65. The concrete grade for the foundations was C45. The modulus of elasticity was 
measured in laboratory at the age of 28 days; 22100 MPa for LC60 and 29500 MPa for C65. 
The designed density of the lightweight aggregate concrete was 1950 kg/m3. The density 
was determined as 1931 kg/m3 after the removal of the formwork. 

Figure 2.7 shows the arrangement of the box-girder cross-section in Stolma Bridge. All 
corners of the cross-section were rounded due to durability considerations. The bridge is 
located on the seashore in a very aggressive environment (Rosseland and Thorsen 2000). 
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Figure 2.7 The box-girder of Stolma bridge 

2.4 The deformation problem 
Deformation prediction in segmentally cast concrete cantilever bridges is a serious concern. 
Deformations are significant and they are increasing virtually over the entire life span of the 
bridge. Inadequate consideration of deformations may compromise both the construction 
and the service life of bridges. The primary importance is to achieve the smooth camber in 
the bridge deck and to avoid sag at mid-span. The actual elevation of the deck remains of 
secondary importance as long as the deviation from the design elevation is relatively small 
and it does not compromise safety, functionality and aesthetic, in this order of importance 
(vide Figure 2.8). In this context, safety mainly concerns traffic safety, as excess deflection in 
this kind of structure normally does not influence the structural safety. 
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Figure 2.8 The trinity of bridge engineering 

Excessive deflection in the completed bridge span may result in sag around the mid-span as 
it is illustrated in Figure 2.9. It may develop over a longer period of time as the result of 
underestimation of long-term deformations. 

 

 
 

Figure 2.9 Excessive deflection in the competed bridge span 

Large deviation from the expected deflection in the construction stage may jeopardise the 
smooth connection of the free cantilevers (vide Figure 2.10). A small difference in the 
elevation of the tip of the cantilevers is tolerable because measures are available which allow 
the elimination of small differences. The deviation can be corrected by adjustment with extra 
prestressing tendons, adjustment in the counterweight ballast or imposed deformations at 
the abutments by means of jacking. As an additional measure, the cantilevers in the same 
span are intentionally not erected simultaneously but with the difference of a number of 
segments (usually 4 to 8 segments). If the observed deflection in the firstly completed 
cantilever deviates from the expected value, the correction can be made by readjusting the 
prescribed over-height for the remaining segments in the other cantilever. 

 

 
 

Figure 2.10 Vertical difference between the tip of the two cantilevers before the cantilevers 
are connected 

Long-time deformation prediction in concrete cantilever bridges can be rather inaccurate as 
a result of several factors. Most importantly, creep and shrinkage modelling carry significant 
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uncertainty. The real governing mechanisms behind these phenomena are not yet fully 
understood. Significant scatter is observed in experimental data, at least from the standpoint 
of the current understanding and approach to modelling. Besides, experimental information 
on new materials such as high strength concrete and high strength lightweight aggregate 
concrete is insufficient. 

Long-time prediction models for creep and shrinkage are developed and adjusted based on 
a wide range of experimental data with considerable heterogeneity in material properties 
and test conditions. Experiments are typically carried out on cylinders with diameter of 
50-200 mm. The tests usually cover a time span of 1-12 months but in fact many of them are 
shorter than 3 months. Experimental results over longer period of time are scarce. The 
majority of the experimental data in existing databanks concerns normal concrete of 
strength not higher than 50 MPa. Thus, when the models which are developed on the basis 
of these experimental results are applied to modern long span concrete bridges, the 
prediction relies to a great extent on a series of extrapolations with regard to loading and 
drying time, material properties and geometrical dimensions (vide Figure 2.11). 

Different long-time material models may exhibit large differences, thus the choice of the 
material model may considerably influence the prediction. It is still controversial whether 
concrete creep approaches a final asymptotic value. This discrepancy may result in 
considerable deviations between theoretical creep curves after a loading age of about 
100-1000 days. Such differences well reflect the uncertainty of extrapolation and the 
conjectural nature of long-time prediction. 

Significant progress has been made in the research on the creep and shrinkage properties of 
high strength concrete and lightweight aggregate concrete. The experimental evidence, 
however, is still very limited and existing information does not allow clear conclusions. In 
particular, the current formulations on the creep and shrinkage characteristics of LWAC can 
be seen as controversial (Walraven 2000). 

The element size represents an other factor of uncertainty as dimensions of the bridge 
elements are significantly larger than those of the specimens in experiments. Little 
information exists on drying in large concrete members after long time. It is presumed that 
the drying process in bulk concrete may be slower than it is estimated based on tendencies 
observed in smaller specimens. 

Experimental results on creep and shrinkage are marked with large scatter, at least from the 
perspective of existing approach in modelling. The creep compliance and the shrinkage 
strain given by the theoretical models are seen as the expected average value of the 
responses and the prediction is also characterised by the corresponding measure of 
variation. Consequently the structural response should be considered as a statistical variable 
rather than a deterministic value. The expected statistical variation has to be taken into 
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account in the structural design. The reported coefficient of variation is 20 % for the creep 
compliance and 35 % for the shrinkage strain for the CEB-FIP Model Code 1990 (CEB 1991). 
The same values are 23 % and 34 % for the B3 model (Bazant and Baweja 1995). 
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Figure 2.11 Prediction of the long-term deformation development in modern long span 
concrete bridges based on the extrapolation of observations in experiments 

Beyond the uncertainties associated with the creep and the shrinkage characteristics in 
concrete, which are undoubtedly the biggest obstacle to the improvement in the accuracy of 
deformation prediction, there are further uncertainties contributing to the deformation 
problem in concrete cantilever bridges: relaxation in the prestressing steel, estimation of the 
effective prestressing force and sensitivity of the deformations to variations in construction 
schedule and procedure. 
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2.5 A review on research works on the deformation problem 
The deformation problem in segmentally built concrete cantilever bridges has received 
considerable attention lately. Many bridges have been suffering from excessive deflections 
not only in Norway but in parts of the world as well. The numerous cases of impaired 
concrete cantilever bridges has led to the realisation that the problem needs to be studied. 
Moreover, the effective way to do so is if the theoretical investigation is based on 
measurements made on actual bridges and supported by relevant experimental data. 

Kanstad (1993) demonstrated the use of advanced numerical techniques for the deformation 
problem. He calculated the deflections in Mjøsund Bridge which has a main span length of 
185 m. Deflections in the early part of the construction were observed within ±10 % of the 
computed values when the MC90 creep and shrinkage model was used. 

An observational investigation was carried out on deformations in concrete cantilever 
bridges by the CEB Task Group 2.4 “Serviceability Models” (Vitek et al. 1997). The investigation 
was initiated as a consequence of numerous reported cases where excessive deflection in the 
bridge span had been observed. Data on observed deflections in 27 bridges were collected; 
26 bridges were from European countries and one bridge was from the US. The bridges 
were built between 1955 and 1993. The length of the main spans vary between 53 m and 
195 m. The bridges are typically segmental, cast-in-place bridges. About half of them were 
constructed with continuous spans and the other half were constructed with a hinge close to 
the midspan. 5 bridges were built with precast segments. Unfortunately no predicted 
deformations were reported together with the observations. It would have been useful to 
look into the tendency in the accuracy of the predictions. Nevertheless, it is interesting to see 
that some of the bridges exhibited very significant deformation gradients even after 8-10 
years. In fact there were two bridges where deformations were increasing at an almost 
constant rate from the completion of bridges up to the last reported measurements at the age 
of 16 and 20 years respectively. 

The variability in creep and shrinkage properties was studied by Santos et al. (2001) in four 
concrete bridges in Portugal (among them is the Ponte de São João, vide Table 2.1). In addition 
to the measurements made on the bridges, instrumented concrete specimens were placed 
inside and outside the box-girders, thus exposing them to the same environmental 
conditions as the bridges themselves. The specimens were made of the same concrete as the 
bridges. Creep and shrinkage measurements in the specimens resulted in coefficient of 
variation as 10-20 % for creep and 10-20 % for shrinkage inside the box-girder and 20-30 % 
for shrinkage outside the box-girder. 
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Chapter 3                                                            

Material Models for Time-dependent Analysis 

 
Material models for time-dependent analysis of prestressed concrete 
structures are discussed. Creep and shrinkage models in the CEB-FIP 
Model Code 1990 and its 1999 update are reviewed. The chapter adverts 
briefly to Eurocode 2, the Norwegian Standard and Bazant’s B3 model. 
Material models for prestressing steel and conventional steel are also 
reviewed. 
 
 

3.1 Introduction 
In the present study the creep and shrinkage models presented in the CEB-FIP Model Code 
1990 are used in the majority of the numerical analyses. The MC90 model will also be 
considered as a point of reference in several parametric and numerical studies when other 
models are involved. The CEB-FIP Model Code 1990 and its earlier version, the Model Code 
1978 have had a considerable impact on the national design codes in many European 
countries and also served as the basic reference material for Eurocode 2 (CEN 1999). The 
Model Code was updated in 1999 (fib 1999) and it reflects the recent progress made in the 
research and the application of high strength concrete and high performance concrete. The 
review further adverts to the national design code of Norway (NS3473 1998) and the B3 
model (Bazant and Baweja 1995). 

The fact that creep and shrinkage models may exhibit significant differences reflects the 
general uncertainty associated with the phenomena. The large inherent scatter in 
experimental data, the relatively short loading or drying duration of experiments and the 
lack of sufficient understanding of the governing mechanisms are the main factors behind 
the uncertainty. Although attempts have been made to bring the models in line with 



Material Models for Time-dependent Analysis 

18 

fundamental theoretical principles, the models are considered as largely empirical 
formulations which were developed based on the available experimental data. 

A comprehensive set of guidelines and recommendations for formulation of creep and 
shrinkage models was created by the RILEM Committee TC107 (Bazant et al. 1993). Naturally, 
Bazant’s B3 model which was developed along these guidelines satisfies those requirements 
whereas the CEB-FIP Model Code 1990, Eurocode 2 and several of the national codes in 
European countries have conflicts with some of the requirements. On the other hand the 
latter models have the advantage of simplicity at the expense of “sophistication” and they 
are more suitable for practical applications. 

3.2 Creep and shrinkage models 
In the present study, concrete is considered as an ageing linear viscoelastic material. This 
assumption is very important as the condition of linearity is the point of departure for the 
numerical models in this work. The assumption of linear viscoelasticity is valid under the 
conditions as follow (Bazant 1982): (1) the concrete stress does not exceed forty percent of 
the mean compressive strength, (2) the strains do not decrease significantly, (3) no large 
increase in stress magnitude takes place long after the initial loading and (4) the concrete is 
not subjected to significant drying. These conditions are satisfied for the most part 
concerning the deformations of cantilever bridges within the scope of this thesis, although 
some conflict with the last criteria exists. The assumption of linear viscoelasticity implies 
that the linear superposition principle is applicable. 

Two basic types of creep models can be distinguished: product models and summation 
models. The characteristic feature of the product model (also known as aging creep model) 
is that the formulation for the creep compliance contains the product of an ageing function 
which takes into account the effect of age at loading and a time development function which 
describes the development of creep with time under load. In the summation model creep is 
expressed as the sum of a term for reversible delayed elasticity and a term for irreversible 
flow. The models dealt with in this study are all product models. Even the B3 model is 
technically a product formulation, however, it separates the creep compliance into additive 
terms which are linked to different physical mechanisms. 

The other characteristic feature of the present creep and shrinkage models is that the model 
parameters are associated with the cross-section and they are considered uniform over the 
cross-section area. The type of model is called engineering model (or cross-section model). 
In reality the effect of drying in a given point of the concrete member depends on its 
position within the cross-section (i.e. its distance from the surface) and consequently several 
related properties are varying across the cross-section area. Taking into account this 
non-uniform distribution is largely impractical for a global structural analysis. Therefore 
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these properties are taken with their average value and they are considered representative 
for the entire cross-section. 

3.2.1 Modulus of elasticity 
The modulus of elasticity is an input parameter to the creep compliance. It is defined as the 
tangent modulus of elasticity at the origin of the stress-strain diagram and can be estimated 
from the mean compressive cylinder strength and the concrete age. The tangent modulus is 
approximately equal to the secant modulus of unloading which is usually measured in tests. 
Formulas according to some relevant design codes are shown in Table 3.1 and they are 
illustrated in Figure 3.1. If the mean strength is not known, it can be estimated from the 
characteristic strength as 

8cm ckf f= +  (3.1)

where 

cmf  is the mean concrete compressive strength at the age of 28 days [MPa], 

ckf  is the characteristic concrete compressive strength [MPa]. 
 

Table 3.1 Formulas for the modulus of elasticity at age of 28 days 

Design code Formula for cE  [MPa]  

CEB-FIP Model Code 1990 ( )1 39980c cmE f=  (3.2) 

Eurocode 2 ( )1 39500c cmE f=  (3.3) 

NS 3473 (Norwegian Standard) ( )0.39500c cmE f=  (3.4) 

ACI 318 ( )0.54733c cmE f=  (3.5) 

cmf  has to be given in MPa 
 
Besides the concrete strength, the elastic modulus depends also on the type of the aggregate, 
the curing conditions and the test method. The influence of these factors are largely 
responsible for the significant scatter which can be observed when experimental values of 
the modulus of elasticity are plotted against the concrete strength. To take into account the 
type of the aggregate other than quartizitic aggregates CEB-FIP Model Code 1990 applies a 
coefficient to the original formula. 

An important reason for the uncertainty is the lack of precise definition of what actually 
instantaneous is. The common argument (e.g. Bazant et al. 1993) reasons that since creep is 
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already significant after a very short load duration, the 1/E  response is inevitably an 
arbitrarily chosen point on the creep curve. On the other hand, it is also widely 
acknowledged that for a structural creep analysis it does not really matter what the 
instantaneous and creep deformations are as long as the sum of them gives the correct 
value. In other words the creep compliance, J  is of primary importance rather than the 
elastic modulus, E  and the creep coefficient, φ  on their own. Specifying the creep 
compliance eliminates the risk of combining non-corresponding values of the elastic 
modulus and the creep coefficient. 

In the practical field, however, it is often difficult to comply with this principle. Test result 
on the elastic modulus is usually available for major structures but it is very rare that at least 
a short-term creep test is carried out. The design engineer then may face the dilemma – as 
the author of this thesis did – whether to utilise the laboratory test result on the elastic 
modulus and combine it with the theoretical value of the creep coefficient and thus risk 
incompatibility problem or to ignore the single measured elastic modulus due to the absence 
of the corresponding creep coefficient, keeping the creep compliance coherent but not taking 
advantage of the test result on the elastic modulus. Applying the measured elastic modulus 
may improve the deformation prediction or may corrupt it. A short-term creep test is 
therefore a recommended option for major structures. Under precise and careful 
implementation a creep test with a load duration as short as two days can be adequate to 
adjust the theoretical creep compliance with appreciable accuracy (Bazant et al. 1993b). 
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Figure 3.1 Modulus of elasticity according to different formulas (vide Table 3.1) 
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The effect of ageing on the elastic modulus can be taken into account with the time 
development function 

( ) ( )c E cE t t Eβ= ⋅  (3.6)

where 

( )cE t  is the modulus of elasticity at the concrete age of t  days [MPa], 

( )E tβ  is the time development function for the elastic modulus (vide Eq.(3.7)). 
 
The time development function in the CEB-FIP Model Code 1990 is given as 

( ) ( )
0.50.528

exp 1E t s
t

β
        = −           

 (3.7)

where 

t  is the concrete age [day], 

s  is a coefficient which depends on the cement type, 0.20 for rapid hardening high 
strength cement, 0.25 for normal and rapid hardening cement and 0.38 for slowly 
hardening cement. 

 

3.2.2 CEB-FIP Model Code 1990 
The equations presented here were published in final draft of the CEB-FIP Model Code 1990 
(CEB 1991). The model is valid for normal density concrete with grade up to C80 and 
exposed to a mean relative humidity in the range of 40 to 100 percent. At the time when the 
code was prepared very limited information on concrete with a characteristic strength 
higher than 50 MPa were available and therefore the models should be used with caution in 
that strength range. 

3.2.2.1 Creep 

The relationship between the total stress-dependent strain and the stress is described with 
the compliance function which is written as 

( )
( )

( )1 ,
, o

o
c o c

t t
J t t

E t E
φ= +  (3.8)

where 

( ), ot tφ  is the creep coefficient, 

ot  is the age of concrete at loading [day], 
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cE  is the modulus of elasticity at the age of 28 days according to Eq. (3.2) [MPa], 

( )c oE t  is the modulus of elasticity at the age of loading, ot  according to Eq. (3.6) [MPa]. 
 
The creep coefficient is estimated from 

( ) ( ), o o c ot t t tφ φ β= ⋅ −  (3.9)

where 

oφ  is the notional creep coefficient, 

( )c ot tβ −  is the time function to describe the development of creep with time. 
 
The final value of the time function, ( )c ot tβ −  is one which the function is approaching 
asymptotically. That implies that the creep compliance is approaching a final value with 
time. The existence of such a final value for creep is still controversial. From a practical 
perspective, however, this has little significance. After a load duration of about 70 years the 
rate of creep becomes very low and it is unlikely that considerable increase in creep will 
occur afterwards. 

A convenient feature of this creep prediction model is that the input parameters are those 
which are easily accessible to the design engineer, even in the early phase of the design 
process; compressive strength, concrete age at loading, dimensions of the structural 
member, relative humidity of ambient environment and cement type (the latter in Eq. (3.7)). 

The notional creep coefficient is estimated from 

( ) ( )o RH cm of tφ φ β β= ⋅ ⋅  (3.10)

with 

( )1 3
1 /100

1
0.46 /100RH

RH
h

φ −= +  (3.11)

( )
( )0.5

5.3
/10cm

cm
f

f
β =  (3.12)

( ) 0.2
1

0.1o
o

t
t

β =
+

 (3.13)

where 

2 /ch A u=  

RH  is the relative humidity of the ambient environment [%], 

h  is the notional size of the structural member [mm], 
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cA  is the area of the cross-section of the structural member [mm2], 

u  is the perimeter of the cross-section in contact with the atmosphere [mm], 

cmf  is the mean compressive strength of concrete at the age of 28 days [MPa], 

ot  is the age of concrete at loading [day]. 
 
The time development function for the creep coefficient is written as 

( )
0.3

o
c o

H o

t tt t
t t

β
β
 − − =  + −  

 (3.14)

with 

( )18150 1 1.2 250 1500
100 100H
RH hβ

   = + + ≤    
 (3.15)

 
The influence of the relative humidity and the notional size on the notional creep coefficient 
is illustrated in Figure 3.2 according to Eq. (3.11). The typical range for the relative humidity 
and the notional size for the bridges which are concerned in the present study are 60-90 % 
and 350-750 mm, respectively1. 
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Figure 3.2 Influence of the notional size and the relative humidity on the notional creep 
coefficient 

 
1 These values are considered as the annual average relative humidity and the average notional size of 
the entire cross-section. 
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The CEB-FIP Model Code 1990 does not distinguish the basic creep component and the 
drying creep component per se. Nevertheless the second term in Eq. (3.11) can be interpreted 
as the drying creep term. If no moisture exchange with the atmosphere takes place that term 
is zero and therefore RHφ  equals to one. Consequently the value of RHφ  can be considered 
as the ratio of the total creep to the basic creep. 

Figure 3.3 illustrates the influence of the concrete strength on the notional creep coefficient 
according to Eq. (3.12). The source of much of the potential prediction error is lying within 
this term (CEB 1990). Creep does not depend on the concrete strength intrinsically, but 
rather on the composition of the concrete. It is known that creep is increasing with 
increasing water-cement ratio and increasing cement content. While higher concrete 
strength is usually associated with lower water-cement ratio and higher cement content, the 
influence of the water-cement ratio is more pronounced and therefore creep is decreasing 
with increasing concrete strength. The established relationship represents only the observed 
average tendency in the available experimental data which is marked with significant 
scatter. 
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Figure 3.3 Influence of the concrete strength on the creep coefficient 

Figure 3.4 illustrates the influence of the concrete age at loading on the notional creep 
coefficient. The hyperbolic function (vide Eq.(3.13)) gives a good estimation for the effect of 
age even for very high ages at loading provided that no significant moisture loss occurs in 
the concrete prior to loading (CEB 1990). This condition is true for bulk concrete members in 
humid environment. Whereas the model may overestimate creep in thin members exposed 
to dry environment if loading takes place long after drying begins. This deficiency could be 
eliminated only if total creep was separated into basic and drying creep components. 
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Figure 3.4 Influence of the concrete age at loading on the creep coefficient 

The development of creep with time is illustrated in Figure 3.5 according to Eq. (3.14). The 
development is delayed with the increasing size of the structural member and the increasing 
relative humidity while a limiting curve exists. 
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Figure 3.5 Time dependency function for creep 

3.2.2.2 Shrinkage 

The shrinkage strain (or swelling) is calculated as 

( ) ( ),cs s cso s st t t tε ε β= ⋅ −  (3.16)
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where 

csoε  is the notional shrinkage coefficient, 

sβ  is the time function to describe the development of shrinkage with time, 

st  is the age of concrete when drying begins [day]. 
 
The notional shrinkage coefficient can be estimated from 

( )cso s cm RHfε ε β= ⋅  (3.17)

with 

( ) ( ) 6160 10 9 /10 10s cm sc cmf fε β − = + − ⋅    (3.18)

and 

( )3
1.55 1 40% 99%

100
0.25 99%

RH

RH
for RH

for RH
β

 
 − ⋅ − ≤ < =  

+ ≥
 (3.19)

where 

cmf  is the mean compressive strength of concrete at the age of 28 days [MPa], 

RH  is the relative humidity of the ambient environment [%], 

scβ  is a coefficient which depends on the cement type, 4 for slowly hardening cement, 
5 for normal and rapid hardening cement and 8 for rapid hardening high strength 
cement. 

 
The development of shrinkage with time is given by 

( )
( )

0.5

2350 /100
s

s s
s

t tt t
h t t

β
 − − =  + − 

 (3.20)

where 

h  is the notional size of the structural member [mm]. 
 
The time dependency function is in agreement with the fundamental principle of the 
diffusion theory. The drying time required to reach a certain degree of average drying over 
the cross-section is increasing linearly with the square of the notional size. Also its value is 
approaching a final asymptotic value. 
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Figure 3.6 Notional shrinkage coefficient 

Figure 3.6 illustrates the influence of the concrete strength and the relative humidity on the 
notional shrinkage coefficient. Similar to creep, shrinkage does not dependent on the 
concrete strength per se, but rather on the water-cement ratio and cement content. But the 
indirect relationship through these parameters offers a convenient and practical way to 
estimate shrinkage from the concrete strength. 
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Figure 3.7 Time function for shrinkage development 

Figure 3.7 shows the time dependency function for shrinkage with the influence of the 
element size. The curves well illustrate that the final value of shrinkage is not reached even 
after long duration of drying (70 years) in thick sections. The assumption that a final value 
for shrinkage exists and it is independent of the member size is most certainly theoretically 
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correct. However, if the full development may take centuries in bulk members it is 
reasonable to assume, from a practical perspective, that the “final” value of shrinkage does 
depend on the element size. It also has to be noted that due to the little information which 
exists on shrinkage in large members after long duration of drying, the time dependency 
function according to Eq. (3.20) is uncertain for elements with notional size larger than 
500 mm (CEB 1991). 

3.2.2.3 Temperature effects 

The influence of mean temperature other than 20° C can be taken into account. With the 
decreasing temperature both the notional creep coefficient and the notional shrinkage 
coefficient are decreasing and their development with time are decelerated. Since the annual 
average temperature varies from 5° C to 10° C in the coastal areas of Norway, the 
temperature influence on creep and shrinkage should be considered. 

The formulas presented here are meant to take into account the effect of constant 
temperature differing from 20° C. 

The effect of temperature on the elastic modulus at the age of 28 days is estimated as 

( ) ( )1.06 0.003c cE T E T= − ⋅  (3.21)

where 

T  is the temperature [°C], 

cE  is the modulus of elasticity at the temperature of 20°C according to Eq. (3.2). 
 
The effect of elevated or reduced temperature on the aging parameters such as the elastic 
modulus, ( )cE t  and the aging coefficient for creep, ( )otβ  is taken into account by 
adjusting the concrete age according to the following formula 

( )1

4000
exp 13.65

273

n

T i
ii

t t
T t=

 = ∆ ⋅ − − + ∆  
∑  (3.22)

where 

Tt  is the temperature adjusted concrete age which replaces t  in Eq.  (3.6) and 
Eq. (3.13) [day], 

( )iT t∆  is the temperature during the time period it∆  [°C], 

it∆  is the number of days where temperature T  prevails. 
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When only constant temperature is considered, Eq. (3.22) can be written in a simpler form as 
follows 

4000exp 13.65
273Tt t

T
 = ⋅ − − + 

 (3.23)

The effect of temperature on the creep coefficient is taken into account by replacing RHφ  in 
Eq. (3.10) with 

( ) 1.2
, 1RH T T RH Tφ φ φ φ= + − ⋅  (3.24)

where 

( )[ ]exp 0.015 20T Tφ = −  (3.25)

and 

RHφ  is calculated according to Eq. (3.11). 
 
It can be seen in Eq.  (3.24) that the first term expresses the influence of temperature on basic 
creep while the second term does so on drying creep. Figure 3.8 illustrates the temperature 
influence on the notional creep coefficient. The creep coefficient at 5° C is about 20-22 % 
lower than at 20° C in the range of the relative humidity of 60-90 %. 
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Figure 3.8 Influence of temperature on the notional creep coefficient 
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The temperature influence on the time dependency function is taken into account by 
replacing Hβ  in Eq. (3.14) with 

( )[ ], exp 1500/ 273 5.12H T H Tβ β= ⋅ + −  (3.26)

where 

Hβ  is calculated according to Eq. (3.15). 
 
The effect of temperature on the notional shrinkage coefficient is taken into account by 
replacing RHβ  in Eq. (3.17) with 

( ) ( ),
8 201

103 40RH T RH
T

RH
β β − = ⋅ + ⋅ − 

 (3.27)

where 

RHβ  is calculated according to Eq. (3.19). 
 
According to the formula the notional shrinkage coefficient is reduced by 6 % at 
temperature 10° C and by 9 % at temperature 5° C on a relative humidity of 70 %. The 
reduction is 9 % and 13 % respectively on a relative humidity of 80 %. The reduction is 
stated in comparison to temperature 20° C. 

To consider the effect of temperature on the time development of shrinkage, the time 
development function given in Eq. (3.20) is replaced by 

( )
( ) ( )[ ]

0.5

2350 /100 exp 0.06 20
s

s s
s

t tt t
h T t t

β
 − − =  ⋅ − − + − 

 (3.28)

 

3.2.3 The 1999 update of the CEB-FIP Model Code 1990 
The models were published in the fib Bulletin «Structural Concrete» (fib 1999). The primary 
intention with the update was to improve the prediction models for high strength concrete 
and further extend the validity of the models to high performance concrete. 

The updated creep model was in fact first published in Eurocode 2 (CEN 1999). It is closely 
related to the model in the CEB-FIP Model Code 1990, but three strength dependent 
coefficients were introduced into the original model. In this thesis the model is referred to as 
MC90(99) model. 

The shrinkage model represents a major change. The total shrinkage is subdivided into the 
autogenous shrinkage component and the drying shrinkage component. 
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3.2.3.1 Creep 

The extended model is valid for both normal strength concrete and high performance 
concrete up to a concrete cylinder strength of 110 MPa. Three coefficients were introduced 
into the MC 90 model. The coefficients are functions of the mean concrete strength and they 
are written as 

0.7

1
35
cmf

α  =          
0.2

2
35
cmf

α  =          
0.5

3
35
cmf

α  =     (3.29a,b,c)

Coefficients 1α  and 2α  are meant to adjust the notional creep coefficient through the RHφ  
term. Coefficient 2α  can be considered as the adjusting factor for basic creep while the 
product of 1α  and 2α  is the adjusting factor for drying creep. Eq. (3.30) is replacing 
Eq. (3.11) in the MC90 model. 

( ) 1 21 3
1 /100

1
0.46 /100RH

RH
h

φ α α
 − = + ⋅ ⋅  

 (3.30)

Coefficient 3α  is meant to be the adjustment for the time dependency function. Eq. (3.31) 
replaces Eq. (3.15). 

( )18 3 3150 1 1.2 250 1500
100 100H
RH hβ α α

   = + + ≤    
 (3.31)
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Figure 3.9 Adjustment on the notional creep coefficient (through the RHφ  term) 

In Figure 3.9 the adjustment on the notional creep coefficient is illustrated. It is seen that the 
change is rather significant for concrete with very high strength. In the range which is 
relevant for the current investigation (i.e. RH = 60-90 %, h = 350-750 mm), the reduction is 
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11-18 % for concrete with a mean cylinder strength of 55 MPa and 15-23 % for concrete with 
a mean cylinder strength of 65 MPa as compared to MC90. 

The effect on the time dependency function is moderate. With increasing concrete strength, 
the development of creep with time slightly accelerates. 

3.2.3.2 Shrinkage 

In the MC90(99) model the total shrinkage is subdivided into the autogenous shrinkage 
component and the drying shrinkage component. With this approach it was possible to 
formulate a model which is valid for both normal strength concrete and high performance 
concrete up to a strength of 120 MPa. 

 
The total shrinkage strain is calculated as 

( ) ( ) ( ), ,cs s cas cds st t t t tε ε ε= +  (3.32)

with 

( ) ( ) ( )cas caso cm ast f tε ε β= ⋅  (3.33)

and 

( ) ( ) ( ) ( ),cds s cdso cm RH ds st t f RH t tε ε β β= ⋅ ⋅ −  (3.34)

where 

( ),cs st tε  is the total shrinkage strain at time t , 

( )cas tε  is the autogenous shrinkage strain at time t , 

( ),cds st tε  is the drying shrinkage strain at time t , 

( )caso cmfε  is the notional autogenous shrinkage coefficient (vide Eq. (3.35)), 

( )as tβ  is the time development function for autogenous shrinkage , (vide Eq. (3.36)), 

( )cdso cmfε  is the notional drying shrinkage coefficient (vide Eq. (3.37)), 

( )RH RHβ  is the coefficient taking into account the effect of relative humidify on drying 
shrinkage (vide Eq. (3.38)), 

( )ds st tβ −  is the time development function for drying shrinkage , (vide Eq. (3.39)), 

t  is the concrete age [day], 

st  is the age of concrete when drying begins [day], 

st t−  is the duration of drying [day]. 
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The formulations for estimating the autogenous shrinkage are written as 

( )
2.5

6/10
10

6 /10
cm

caso cm as
cm

ff
f

ε α − = − ⋅  + 
 (3.35)

( ) ( )0.51 exp 0.2as t tβ = − − ⋅  (3.36)

where 

cmf  is the mean compressive strength [MPa], 

asα  is a coefficient which depends on the cement type, 800 for slowly hardening 
cement, 700 for normal and rapidly hardening cement and 600 for rapidly 
hardening high strength cement. 

 
The formulations for estimating the drying shrinkage are written as 

( ) ( ) ( ) 6
1 2220 110 exp 10

10
cm

cdso cm ds ds
ffε α α − = + ⋅ ⋅ − ⋅ ⋅   

 (3.37)

( ) ( )3

1

1

1.55 1 99%
100

0.25 99%

s
RH

s

RH
for RH

RH
for RH

β
β

β

 
 − ⋅ − < ⋅ =  

+ ≥ ⋅
 (3.38)

( )
( )

0.5

2350 /100
s

ds s
s

t tt t
h t t

β
 − − =  + − 

 (3.39)

with 

0.1

1
35

s
cmf

β  =     (3.40)

where 

cmf  is the mean compressive strength [MPa], 

RH  is the relative humidity of the ambient environment [%], 

h  is the notional size of the member [mm], 

1dsα  is a coefficient which depends on the cement type, 3 for slowly hardening cement, 
4 for normal and rapidly hardening cement and 6 for rapidly hardening high 
strength cement, 

2dsα  is a coefficient which depends on the cement type, 0.13 for slowly hardening 
cement, 0.11 for normal and rapidly hardening cement and 0.12 for rapidly 
hardening high strength cement. 
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The 1sβ  coefficient in Eq. (3.38) is meant to take into account that in higher concrete grades 
swelling already occurs at lower relative humidity because of the preceding reduction of the 
internal relative humidity due to self-desiccation. 

3.2.4 Norwegian Standard (NS 3473) 
The creep and shrinkage prediction models are published in the Norwegian Standard 3473, 
section A.9.3.2 (NS 3473 1998). The models are similar to the models of the CEB-FIP Model 
Code 1990 having the same parameters; concrete strength, notional size of the structural 
member, relative humidity, concrete age at loading and duration of loading and duration of 
drying respectively. In the shrinkage model, however, neither the concrete composition nor 
the concrete strength is taken into account. The final shrinkage strain for a given relative 
humidity is defined as an average value. A validity range, however, is given with respect to 
the water content. The model applies to concrete with water content of 155 to 175 l/m³. The 
final shrinkage strain has to be reduced by 25 % below that range and has to be increased by 
25 % above that range. 

3.2.5 B3 model 
The complete description of the B3 creep and shrinkage model can be found in (Bazant and 
Baweja 1995). An important feature of the B3 creep model is that the compliance function is 
decomposed into the instantaneous response, the compliance function for basic creep and 
the additional compliance function for drying creep. 

The creep compliance is written as 

( ) ( ) ( )
1, , , ,o o o d o s
o

J t t C t t C t t t
E

= + +  (3.41)

where 

oE  is the so-called asymptotic modulus, 

( ),o oC t t  is the compliance function for basic creep, 

( ), ,d o sC t t t  is the compliance function for drying creep. 

The instantaneous response is defined with the so-called asymptotic modulus, oE  which is 
not the same as the conventional static modulus. The asymptotic modulus is an empirical 
parameter and considered age independent. Its value is higher than the real elastic modulus 
and it can be estimated roughly as 1.5oE E≅ . According to Bazant, it is more convenient 
to use the asymptotic modulus because concrete exhibits pronounced creep even after very 
short duration of loading. 

Unlike in the MC90 model, the creep compliance in the B3 creep model is not approaching a 
final value but it is increasing indefinitely with time. The compliance function for drying 
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creep possesses a final value because it is related to the moisture exchange between the 
concrete and the ambient environment and that process possesses an equilibrium state. 

The B3 model takes into account the influence of the material composition directly. Besides 
model parameters which are considered in previously reviewed models, the cement content, 
the water-cement ratio, the aggregate-cement ratio and the water content are taken into 
account. 

The B3 model is considered as a rather sophisticated model but somewhat cumbersome due 
to the parameters which are not necessarily available for the design engineer in the design 
phase. The model also requires an excessive amount of computational work, however, that 
can be easily computerised for both analytical or numerical purposes. In fact the description 
of the model includes a rate-type formulation for the compliance function for basic creep. 

3.2.6 Uncertainty in creep and shrinkage prediction 
An important but often overlooked property of creep and shrinkage prediction models is 
the expected error of the prediction. Creep and shrinkage are among the most uncertain 
mechanical properties of concrete. The theoretical models only predict the mean tendencies 
based on observations in available experimental data. In any particular prediction the effect 
of a certain parameter may be overestimated or may be underestimated. 

The creep compliance and the shrinkage strain should therefore be considered as statistical 
variables. Accordingly, the measure of dispersion is an important parameter in addition to 
the mean. The dispersion is characterised with the coefficient of variation for the prediction. 
The reported coefficient of variation for the CEB-FIP Model Code 1990 and the B3 creep and 
shrinkage models are shown in Table 3.2. It should be noted that smaller coefficient of 
variation does not necessarily mean that the model is more accurate than the other and vice 
versa as it depends also on the range of the experimental data upon which the model was 
developed and adjusted and hence the coefficient of variation was computed. 

Table 3.2 Coefficient of variation* [%] 

Model Creep 
compliance 

Shrinkage 
strain 

CEB-FIP Model Code 1990 20 35 

Bazant’s B3 model 23 34 
*(CEB 1991) and (Bazant and Baweja 1995) 
 
The values of the coefficient of variation in Table 3.2 concern the mean coefficient of 
variation calculated on the basis of all included experiments and over the entire duration of 
loading or drying. It characterises the average error in the prediction method. The numerical 
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procedure of the statistical evaluation is described in the CEB Bulletin «Evaluation of the Time 
Dependent Behaviour of Concrete» (CEB 1990). 
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Figure 3.10 Statistical variation in the creep compliance 

Figure 3.10 illustrates the statistical variation in the creep compliance with the estimated 
mean curve and the curves representing the estimated upper and lower percentile. If the 
curves represent the 2.5 % and 97.5 % percentile that means that the probability is 95 % that 
the observed value will fall between those curves (dashed lines). The stochastic aspects of 
deformation prediction and a probabilistic structural analysis are discussed in Chapter 10. 

3.2.7 Creep and shrinkage models in comparison 
The reviewed models are compared under a few characteristic sets of conditions in a 
parametric study. The comparison for creep is primarily relevant between the CEB-FIP 
Model Code 1990 and the B3 model. The MC90(99) and the Norwegian Standard are closely 
related to the formulations of MC90. 

The general observation is that the models can be found in reasonable agreement when the 
parameters are in the range which is typical for an experimental setup in a laboratory. It 
seems evident that the availability of sufficient experimental data within that range provides 
a more solid basis for adjusting the theoretical models and the degree of uncertainty is 
smaller. On the other hand, the difference among the models can be rather significant when 
they are applied under conditions where availability of experimental data is obviously 
limited and the prediction inevitably has an extrapolative nature. Such conditions are high 
concrete strength, drying in large members and long duration of loading. 
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The effect of high strength is illustrated on the top diagrams in Figure 3.11. The curves 
exhibit good agreement for normal strength concrete but the difference rises significantly for 
high strength concrete. 

The difference after long time is significant when drying in large member is concerned (vide 
middle diagram on right in Figure 3.11). The long-time difference is somewhat smaller when 
the humidity is higher and the structural member is smaller. 

The B3 model is generally in agreement with the other models up to 100-1000 days of 
loading. For longer duration of loading the difference is increasing considerably as creep is 
increasing indefinitely according to the B3 model while the other creep curves are 
approaching a final value. 

Figure 3.12 compares creep curves with different concrete ages at loading under conditions 
similar to those for the investigated bridges. It is seen that the variation in the concrete age 
at loading has a more pronounced influence on creep according to the B3 model. 

Predicted shrinkage curves are compared in Figure 3.13. Considerable difference is seen for 
high strength concrete between the MC90(99) model which takes into account autogenous 
shrinkage in a separate term and the other models which considers shrinkage as a 
mechanism primary driven by external drying. The difference increases as drying shrinkage 
becomes less significant in magnitude and its time development is decelerated (i.e. large 
member in humid environment). 
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Figure 3.11 Creep compliance given by different models (to = 28 day) 
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Figure 3.12 Creep compliance given by different models (h = 500 mm, fcm = 65 MPa) 
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Figure 3.13 Shrinkage development given by different models 
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The MC90(99) shrinkage model is demonstrated in Figure 3.14. The drying and the 
autogenous shrinkage components are shown separately for normal strength concrete and 
for high-performance concrete under conditions similar to the investigated bridges. It is 
interesting that the total shrinkage after 70 years for HPC is almost as large as for the NSC. 
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Figure 3.14 Autogenous shrinkage and drying shrinkage components in NSC and HPC as 
given by the MC90(99) model (large member in humid environment, h = 500 mm, 
RH = 80 %) 

3.3 Material model for reinforcing and prestressing steel 
The tensile stress-strain relationship can be approximated by a bilinear diagram for the 
reinforcing steel and by a multilinear diagram for the prestressing steel as illustrated in 
Figure 3.15. The hardening diagram for the prestressing steel is specified by the plastic 
strain values and the corresponding stress values at the given points. The reinforcing steel is 
assumed to follow a symmetrical stress-strain relationship in compression. 

The notations in the diagrams are 

ykf  is the characteristic yield stress for the reinforcing steel, 

sE  is the elastic modulus for the reinforcing steel, 200sE GPa= , 

ptkf  is the characteristic tensile strength for the prestressing steel, 

puε  is the total elongation at the maximum stress and may be taken as 35‰puε = , 

pE  is the elastic modulus for the prestressing steel, 195pE GPa= . 
 
The 0.9 ptkf  stress is defined as the corresponding stress at a plastic deformation of 2 ‰. 



Material Models for Time-dependent Analysis 

42 

strain

te
ns

ile
 s

tr
es

s

strain
te

ns
ile

 s
tr

es
s

Ep

fyk

Es

1

εpu

fptk
0.9 fptk
0.8 fptk

1

 
Figure 3.15 Idealised stress-strain diagram for reinforcing steel (left) and prestressing steel 
(right) 

The characteristic values of the material parameters are used in the absence of the mean 
values. 

Relaxation properties of the prestressing steel is taken into account according to the CEB-FIP 
Model Code 1990. The relaxation loss is specified at 1000 hours for initial stresses equal to 
0.6, 0.7 and 0.8 of the rupture stress. The loss of prestress is 4, 8 and 12 % respectively, for 
strands with normal relaxation characteristics, «Class 1» and 1, 2 and 5 % for strands with 
improved relaxation characteristics, «Class 2». 

To estimate relaxation at time other than 1000 hours, the following formula can be used 

( ) ( )1000 1000

kttρ ρ=  (3.42)

where 

t  is the time [hour], 

( )tρ  is the relaxation loss after time t  [%], 

1000ρ  is the relaxation after 1000 hours [%], 

k  can be determined from laboratory test as ( )1000 100logk ρ ρ≈ . 
 
In the absence of more exact information the value of k  can be taken as 0.12 for Class 1 
strands and 0.19 for Class 2 strands. 

It is important that when the actual initial stress level in the strand is determined the applied 
prestress is reduced by instantaneous prestress losses of other kind. 
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Computation of the effective prestress in the tendons is discussed together with the 
geometrical model for the prestressing tendons in Chapter 7. 
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Chapter 4                                                            

Lightweight Aggregate Concrete 

 
The creep and shrinkage properties of lightweight aggregate concrete are 
discussed in this chapter. The recent advancement in theoretical modelling 
is reviewed. Experimental results from NTNU and SINTEF are studied. 
The experimental data is evaluated in comparison with the current 
formulations of the extended CEB-FIP Model Code 1990. 
 
 

4.1 Introduction 
Lightweight aggregate concrete (LWAC) is a relatively new material. Considerable effort 
has been made for the past 15 years to gain knowledge on the creep and shrinkage 
characteristics of LWAC and to update existing design codes. Nevertheless still very few 
long-term creep and shrinkage tests have been carried out. Due to the little amount of 
experimental evidence, the concluding remarks and indications and correctness of existing 
prediction formulas are often controversial. Further tests are necessary before information 
will allow clear conclusions. 

Current extensions to design codes recommend multiplying the elastic modulus and the 
notional creep coefficient given for normal concrete of the same strength with factors which 
are functions of the oven-dry density of the lightweight aggregate. The shrinkage strain is 
estimated with the model given for normal concrete but the notional shrinkage coefficient is 
multiplied with a fixed value. On the other hand the same time-dependency functions are 
used for both creep and shrinkage as for normal concrete. It is now well recognised that the 
development of drying is significantly delayed in LWAC. 

Smeplass (2001) concluded that LWAC dries out very slowly due to the low permeability of 
high strength binders preferred in LWAC and the high moisture content. 



Lightweight Aggregate Concrete 

46 

Test results in the EuroLightCon program (Hynne 2000) suggest that lightweight aggregates 
with capacity of high water absorption are acting like internal water reservoirs in the 
concrete, also reducing the rate of drying in the early period. At later ages a reverse 
tendency is observed. 

With the different time-dependency of drying, not only the correctness of applying the same 
time-dependency function is questionable but the correctness of the recommended 
multiplying factors for the final values of creep and shrinkage as well. In the evaluation of 
experimental information, the final value of creep and the final value of shrinkage are 
estimated based on the extrapolation of short-term observed data applying the same 
time-dependency function as for normal concrete. In the Lettkon project, Maage and Olsen 
(2000) compared observed creep data resulted from 18 month long tests with extrapolated 
creep curves based on earlier three month long or shorter tests and concluded that 
estimating the final creep on the basis of short term test results has a tendency toward 
underestimating creep. 

Walraven (2000) presented a review on some of the theoretical arguments and experimental 
work on creep and shrinkage in LWAC in connection with a status report of the revision of 
EC-2. He concluded that the existing experimental data does not allow definite conclusion 
on creep. He suggested that the specific creep of LWAC should be considered the same as of 
NWC and the same formulas should be used. The final drying shrinkage in LWAC with a 
characteristic cylinder strength of 20 MPa or higher – as stated in EC-2 – should be taken as 
1.2 times the final drying shrinkage in NWC. On the other hand, autogenous shrinkage in 
LWAC with aggregate particles saturated with water does not increase with the increasing 
strength to the same extent as it is observed in NWC. The supply of water from the 
aggregate to the microstructure of the cement paste prevents a significant drop in the 
moisture content and thus reduces autogenous shrinkage. 

Hynne (2000) summarized test results from six experimental programs on creep and 
shrinkage of LWAC which were carried out at NTNU and SINTEF between 1987 and 1999. 
The experimental results are utilised in this chapter. The available data is rather limited and 
heterogeneous and considerable scatter is observed at least as far as the current modelling 
approach is concerned. The effect of delayed drying is apparent on shrinkage and creep in 
specimens exposed to drying. The experimental results are compared with the theoretical 
model of the extended version of the CEB-FIP Model Code 1990. 
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4.2 Prediction models for creep and shrinkage in LWAC 
The recommended extension to the CEB-FIP Model Code 1990 (fib 2000b) does not contain 
explicit formulations for creep and shrinkage due to the lack of sufficient experimental 
evidence. Only the observed tendencies on the available data are commented. 

The Eurocode 2 and the Norwegian Standard specify multiplying factors for the elastic 
modulus and the notional creep coefficient. The Eurocode 2 also contains recommendation 
for shrinkage. 

4.2.1 Modulus of elasticity 
The modulus of elasticity for LWAC can be assumed equal to the value of normal density 
concrete of same strength multiplied by a factor which is given as function of the oven-dry 
density of the LWAC. Table 4.1 shows the multiplying factor as given in the extension to the 
CEB-FIP Model Code 1990, Eurocode 2 and the Norwegian Standard. The multiplying 
factors apply to the respective formulas for the elastic modulus of normal concrete given in 
Chapter 3. 

4.2.2 Creep 
The creep coefficient for LWAC can be assumed equal to the value of normal density 
concrete of same strength multiplied by the factor which is given as function of the oven-dry 
density of the LWAC. The multiplying factors are shown in Table 4.1 for the CEB-FIP Model 
Code 1990, Eurocode 2 and the Norwegian Standard. Since the extension to the CEB-FIP 
Model Code 1990 does not provide formulation for the multiplying factor of the creep 
coefficient, the formula in the table is derived from the comment which states that the 
specific creep of LWAC is about 20 % higher than that of NWC, the strength being the same. 

Table 4.1 Multiplying factors for the elastic modulus, Eη and creep coefficient, φη  

Design code Eη  φη  

CEB-FIP MC 90 ( )2/2200ρ  ( )21.2 /2200ρ  

Eurocode 2 ( )2/2400ρ  

  

31800 /kg mρ >           ( )2/2400ρ  
31500 /kg mρ <     ( )21.3 /2400ρ  

linear interpolation for intermediate values 

NS 3473 (1998) ( )2/2200ρ  

  

31800 /kg mρ >           ( )2/2200ρ  
31500 /kg mρ <     ( )21.3 /2200ρ  

linear interpolation for intermediate values 
ρ  is the oven-dry density of concrete 
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4.2.3 Shrinkage 
The extension to the CEB-FIP Model Code 1990 states that the final shrinkage strain of 
LWAC is equal to that of NWC multiplied by a factor of 1.0 to 1.5. 

According to Eurocode 2, the final drying shrinkage for LWAC may be estimated as equal to 
the value of normal density concrete of same strength multiplied by 1.2 for strength classes 
LC20 and higher. For strength classes below LC20, the multiplying factor is 1.5. The 
formulation for autogenous shrinkage of NWC can be used only when no supply of water 
from the aggregate to the drying microstructure is possible. Otherwise the autogenous 
shrinkage is considerably less in LWAC. 

The Norwegian Standard does not contain information with respect to shrinkage of LWAC. 

4.3 Experimental results in comparison with theoretical models 
Experimental results are evaluated and compared to predicted values which were calculated 
according to the extended CEB-FIP Model Code 1990. The experiments used in this study 
were carried out in the past 15 years at SINTEF and NTNU. Description of the six 
experimental programs and the results are summarised in a EuroLightCon project report 
(Hynne 2000). Table 4.2 shows the basic properties of the concrete mixes and the use of the 
test results in the current study with respect to the modulus of elasticity, creep and 
shrinkage. 

The creep data from the A92123 test program is included in the study but treated separately 
from the other series. The stress to strength ratio at those tests are higher than 0.4. Above 
that load level the stress-strain relationship is non-linear, thus the theory of linear 
viscoelasticity can not be used. Although non-linear creep is not within the scope of this 
work, these results are believed to be relevant to a certain extent. 

Table 4.2 Experimental programs and their use in the current study 

Test program [ ]cmf MPa  3kg mρ        E C S 

A97836 29 - 44 1300 - 1390 sealed, unsealed  + + + 

A92029 46 - 56 1580 - 1700 unsealed  + + + 

A99746 51 - 66 1640 - 1800 sealed, unsealed  + + + 

A88011 60 - 63 1800 - 1830 sealed  + +  

A92123 67 - 79 1810 - 1850 unsealed  + *  

A93080 53 1760 sealed  +   
E – elastic modulus, C – creep, S - shrinkage 
* Not included in the overall statistical evaluation (see explanation in text above table). 
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The length of the tests vary from 3 months to 1 year. One test program (A99746) was 
specifically aiming to obtain creep data over a longer period of time. That program 
furnished results for a load duration of 1.5 year. 

4.3.1 Modulus of elasticity 
Calculated and measured elastic moduli are compared in Figure 4.1. In addition to the 
experiments referred in Table 4.2, the values from Støvset Bridge and Stolma Bridge are 
included in the diagram. They are in good agreement with the tendency observed in the 
experimental results. While the agreement between the measurement and the theoretical 
formula is good for lower values of the elastic modulus, the formula has a tendency toward 
overestimating the elastic modulus for LWAC with higher values. These are typically the 
types of concrete with higher density and higher strength. 
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Figure 4.1 Comparison between calculated and measured modulus of elasticity of LWAC 

The relationships are elaborated in Figure 4.2. It is seen that in a relatively narrow range of 
density (1780-1850 kg/m³) there are concrete specimens with a wide range of strength 
(53-79 MPa). The theoretical formula for the elastic modulus is a product of two terms, one 
considering the influence of the concrete strength and the other considering the influence of 
the density. According to the formulation the elastic modulus is increasing on the power of 
1/3 with the strength and quadratically with the density. The predicted values for the elastic 
moduli follow the variation in strength accordingly. But it is observed that the measured 
values are influenced by the variation of the strength to a lesser extent than predicted. 
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Figure 4.2 Measured and calculated elastic modulus and measured strength 

 

4.3.2 Creep 
Measured and calculated values of the creep compliance are compared in Figure 4.3 for each 
test program separately. The diagram shows the mean coefficient of variation for the 
prediction. It characterises the mean error of the prediction for the entire duration of 
loading. The mean coefficient of variation was computed according to the procedure 
described in (CEB 1990). The equations are presented in Appendix A. 

The theoretical prediction for the sealed specimens were calculated under the assumption 
that the insulation is perfect and no external drying takes place. 

Two tests series, A92029 and A99746 have a considerably large average coefficient of 
variation for the prediction, 51.6 % and 45.0 % respectively. In the former series, it is a result 
of systematic, large overestimation while the intrinsic scatter of the data points is relatively 
small. It should be noted that the average relative humidity for that series was about 40 % or 
slightly below. As the relative humidity of 40 % is the lower limit for the validity range of 
the theoretical model, the soundness of the prediction is questionable. Moreover the 
variation of the relative humidity during the tests was significant, it varied between 20 % 
and 67 %. The other two series, A97836 and A88011 have smaller average coefficient of 
variation, 17.7 % and 16.0 % respectively. For comparison, the reported coefficient of 
variation for the prediction method in the CEB-FIP Model Code 1990 is 20.4 % for normal 
density concrete (CEB 1990). 
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Figure 4.3 Comparison between estimated and measured values of the creep compliance 

Certain tendencies are apparent when the experimental data is separated into experiments 
on sealed and unsealed specimens. The relation of measured creep to the prediction is 
shown accordingly in Figure 4.4. Under laboratory conditions the unsealed specimens are 
exposed to a dry ambient environment. The prediction is observed overestimating creep 
particularly in the early period of loading and drying. However, a tendency is seen in some 
of the experiments that the measured creep compliance increases more rapidly after a longer 
period of time than the predicted creep compliance does. In other experiments (e.g. typical 
for the A92029 series) the observed creep rate become similar to the prediction after an 
initial period of slower than predicted creep development. In conclusion, even if creep is 
overestimated on average (vide statistic in Table 4.3) over the limited duration of loading of 
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the available data, the tendency shows that after a longer period of time creep may increase 
at a higher rate and the final value of creep may be equal to predicted value or may exceed 
that. The delayed creep development is most certainly due to the initially slower drying 
process in lightweight aggregate concrete as that is suggested by several researchers (vide 
subsection 4.1). 
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Figure 4.4 Comparison between estimated and measured values of the creep compliance in 
the unsealed specimens (above) and the sealed specimens (below) 
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The tendency is well illustrated in Figure 4.5 which shows the creep development for a 
long-term experiment with a load duration of 530 days. The unsealed and sealed specimens 
are made from the same concrete mix and subjected to the same load level. In the unsealed 
specimen the creep rate is lower than predicted in the early period of loading followed by a 
reverse tendency later. The creep rate in the sealed specimen is well estimated by the 
theoretical models. In fact the slightly higher observed creep rate may be the result of 
imperfect sealing. 
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Figure 4.5 Creep in unsealed and sealed specimens in comparison with theoretical curves 

Creep in the sealed specimens are somewhat underestimated by the MC90 model, although 
the creep rate on average does not deviate from the prediction (vide bottom diagram in 
Figure 4.4). 

The statistical evaluation of the prediction method in relation to the experimental data is 
summarised in Table 4.3. The average deviation is the average of the mean percentage 
deviation of the predicted creep curves from the measured curves. It is calculated over the 
entire duration of loading. Negative value indicates systematic underestimation while 
positive value indicates systematic overestimation. The computation formulas can be found 
in Appendix A. 

Table 4.3 Statistical evaluation of the prediction given by the MC90 model 

 overall unsealed sealed 

Coefficient of variation [%] 36.1 44.4 14.8 

Average deviation [%] 17.2 34.3 -10.6 
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Figure 4.6 Observed creep at high stress level as compared to prediction by linear model 

Experimental results from the A92123 test program are shown in comparison with the 
prediction model in Figure 4.6. The experiments are separated according to the load level. 
They were all carried out at a load level higher than 40 % percent of the mean cylinder 
strength, thus they are presumably influenced by non-linearity. The prediction was made by 
the linear creep model. That may explain the higher observed initial deformation. The creep 
development, however, is significantly slower than predicted. That is in accordance with the 
previous observations. The specimens were unsealed and exposed to a relative humidity of 
50 %. The load durations were relatively short, it varied between 40 and 70 days. The 
non-linear influence is appreciable when the three diagrams are compared. As the load level 
is increasing the ratio of the observed creep to predicted creep is somewhat increasing. 
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4.3.3 Shrinkage 
The influence of delayed drying which was observed on drying creep is more apparent on 
shrinkage. The tendency is characteristic for all test series shown in Figure 4.7. The 
theoretical predictions were made according to the MC 90 model given for normal weight 
concrete. The extension to MC 90 indicates that shrinkage of LWAC may exceed that of 
NWC by up to 50 %. The forth diagram shows all the experiments together and contains a 
second data set where the estimated notional shrinkage coefficient given by the MC90 
model is multiplied by 1.5. While the shrinkage strain is well overestimated on average over 
the duration of the experiments, the observed tendency suggests that the final shrinkage 
may be even higher than the increased prediction values. 
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Figure 4.7 Comparison between estimated and measured values of the shrinkage strain 
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4.4 Conclusions 
The elastic modulus was found overestimated by the extended MC 90 formula for high 
strength lightweight aggregate concrete. The observed difference is 12-18 % for concrete 
with mean cylinder strength of 53-67 MPa and oven-dry density of 1800 kg/m³ and 17-25 % 
for concrete with mean cylinder strength of 60-79 MPa and oven-dry density of 1850 kg/m³. 
The elastic modulus was seen less influenced by the higher strength than it is expressed by 
the theoretical formula. In lower strength classes the formula was reasonably accurate. 

Modelling creep and shrinkage development in lightweight aggregate concrete apparently 
requires a more sophisticated approach than simply adjusting the notional creep and 
shrinkage coefficient in the models that have been developed for normal density concrete. 
The drying process is seen considerably slower in the early period of drying which may be 
followed by a reverse tendency at later times. Consequently estimating the final value of 
creep and shrinkage by extrapolation based on short-term test data and with the 
time-dependency function of the normal density concrete may be false. Sufficient amount of 
long-term experimental information is necessary before clearer conclusions can be drawn. 
Experiments with a loading or drying duration of only a few months are inadequate and can 
be misleading. 

As far as the available experiential data is concerned, the observed tendency indicates that 
the final specific creep of LWAC may be higher than that of NWC by 20 % (c.f. fib 2000b) or 
even more. The final value of shrinkage of LWAC is also seen to be considerably higher than 
that of NWC. 
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Chapter 5                                                                 

Experimental Results on High Strength Concrete 

 
Experimental results on creep and shrinkage in high strength concrete and 
high performance concrete are discussed. The experiments were carried out 
at SINTEF in Norway in 1987-90 and at the Lund University in Sweden 
in 1991-96. The experimental data is evaluated in comparison with 
theoretical models.  
 
 

5.1 Introduction 
It is generally acknowledged that the creep coefficient, as well as the specific creep, is 
decreasing with the increasing concrete strength. Drying shrinkage is also decreasing with 
higher strength. These tendencies are reflected by traditional prediction models which have 
been developed primary for normal strength concrete (NSC). However, it is recognised that 
those models do not take into account the particular characteristics of high strength concrete 
(HSC) and high performance concrete (HPC). The progress made in recent years in 
experimental work and development of new theoretical models is significant. The existing 
experimental data on long-term creep and shrinkage in HSC and HPC, however, is still 
limited. 

Early experimental results on high strength concrete subjected to long-term sustained loads 
indicated that creep is considerably smaller in HSC than in NSC (Ngab et al. 1981 and Smadi 
et al. 1987), even to a larger extent than it was assumed based on tendencies observed in test 
results on concrete of lower strengths. Figure 5.1 shows the creep coefficient observed in 
low, medium and high strength concrete under identical conditions. It is seen that the 
influence of the strength on the creep coefficient is more pronounced than it is estimated by 
the CEB-FIP MC90 formula (vide Eq. 3.12). The European specification EC2 (ENV 1999) 
adopted the CEB-FIP MC90 creep model but it was adjusted in order to extend the validity 
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of the model to high performance concrete up to a strength of 110 MPa. The adjusted model 
was later included in the 1999 extension of the CEB-FIP Model Code 1990 (fib 1999). The 
model was reviewed in Chapter 3. 
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Figure 5.1 Strength dependency of the creep coefficient according to the experimental results 
from Smadi et al. (1987) and the CEB-FIP Model Code 1990 

Shrinkage is commonly associated with the moisture loss in the concrete due to external 
drying. The meaning of shrinkage, however, is more general and it refers to the volume 
change in the unloaded concrete at constant temperature irrespective of the mechanisms 
involved. Besides drying shrinkage there are other types of shrinkage. For ordinary concrete 
it is reasonable to assume that external drying is the primary and in fact the only driving 
force behind shrinkage because the other types of shrinkage are considerably smaller in 
magnitude. On the other hand, autogenous shrinkage becomes more significant with the 
increasing strength due to the decreasing water to binder ratio which accompanies the 
higher strength. In high performance concrete autogenous shrinkage is a very significant 
component of the total shrinkage. It is therefore believed that traditional shrinkage models 
which considers only the drying mechanism underestimate total shrinkage for concrete of 
higher strength. That can be particularly significant in bulk concrete where the drying 
process is very slow. Whereas autogenous shrinkage is not influenced by external drying, it 
is uniform across the element and its magnitude is the same irrespective of the element size. 

In the 1999 extension of the CEB-FIP Model Code 1990 (fib 1999) a new shrinkage model was 
presented where total shrinkage is subdivided into the drying shrinkage and the 
autogenous shrinkage component. With such an approach it was possible to formulate a 
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prediction model which can be used for both normal concrete and high performance 
concrete up to a strength of 120 MPa. The model was reviewed in Chapter 3. 

In Norway long-term creep and shrinkage tests were carried out on high strength concrete 
at SINTEF (Tomaszewicz 1988 and 1993). The experimental results are used in this chapter 
to evaluate the theoretical material models. Also the experimental results on long-term creep 
from Persson (1998) are utilised here. 

5.2 Experimental results from SINTEF 
The test programs were part of a joint research project with the objective to study the 
general behaviour of HSC. The tests which are utilised here were executed in two phases, 
the first phase in 1987-88 and the second phase in 1989-90. Both test programs concerned 
also high strength lightweight aggregate concrete. Those test results were discussed in 
Chapter 4. 

5.2.1 Description of the experiments 
The first phase involved five test series. The specimens were cylinders with diameter of 
100 mm and height of 300 mm. They were stored in water at a temperature of 20 °C until the 
start of loading. The specimens were unsealed. During the tests the temperature and the 
relative humidity was stable at 20 °C and 50 %, respectively. Further test parameters specific 
to the series are summarised in Table 5.1. 

Table 5.1 Test data, Phase 1 (Tomaszewicz 1988) 

Series no. fc,cyl100/300 

[MPa] 
concrete age at 
loading [day] 

load duration 
[day] 

load levels 
σ / fc 

1 48.3 127 49 0.48, 0.66, 0.78 

2 79.6 176 67 0.36, 0.51, 0.69 

3 76.8 48 28 0.49, 0.58, 0.75 

4 102.4 231 70 0.45, 0.73 

5 94.8 28 54 0.51 

5R* 99.4 34 48 0.69, 0.72 
* replacement for series no. 5 due to failure of the original specimens 
 
The second phase involved four test series. The specimens were cylinders with diameter of 
100 mm and height of 300 mm. They were stored in water at a temperature of 20 °C until the 
start of loading. The tests involved sealed and unsealed specimens. During the tests the 
temperature was 20 °C and the relative humidity was 50 %. Further test parameters specific 
to the series are summaries in Table 5.2. 
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Table 5.2 Test data, Phase 2 (Tomaszewicz 1993) 

Series no. fc,cyl100/300 

[MPa] 
concrete age at 
loading [day] 

load duration 
[day] 

load level 
σ / fc 

condition 

1 69.4 43 34 0.50 sealed, unsealed 

2 69.4 98 31 0.45 sealed, unsealed 

3 76.0 34 88 0.50 sealed 

4 77.5 38 65 0.46 sealed 
 
Phase 2 involved test series on elevated temperature at 50 °C, but these series are not 
included here because of their little relevance to this study. 

Load levels varied from 0.36 to as high as 0.78. Typically they were above 0.40-0.45 which 
value is considered the stress-strain proportionality limit for ordinary concrete with respect 
to both elastic and creep deformation. Deformation at such high load level is, in some 
degree, out of the scope of the current study. It is, however, believed that it is reasonable to 
consider these test results here as useful information can be derived. 

To take into account the nonlinearity of creep in the calculation, the creep coefficient was 
adjusted according to the formula recommended in the CEB-FIP Model Code 1990. 
Nonlinearity in the instantaneous deformation was not considered. The nonlinear notional 
creep coefficient is defined for load levels between 0.40 and 0.60 as 

( )[ ], exp 1.5 0.4o k o kσφ φ= ⋅ −  (5.1)

where 

,o kφ  is the nonlinear notional creep coefficient, 

oφ  is the linear notional creep coefficient, vide Eq. (3.10), 

kσ  is the load level (stress to strength ratio). 
 
While the above formula is used for the calculation, a few comments should be made 
concerning the effect of high load level on the instantaneous and the creep deformation. 
Based on experimental studies Ngab (1981) and Smadi (1987) indicated that the stress-creep 
proportionality limit in HSC is significantly higher than in NSC. They found the 
proportionality limit as 0.70 and 0.65, respectively. Evaluating the test results from Phase 1 
Tomaszewicz (1988) found that the MC90 formula (vide Eq. (5.1)) overestimates the 
nonlinear influence in high strength concrete. Better agreement was established with the test 
results when the formula was modified as 
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( ),
35

exp 0.4o k o
cm

k
f σφ φ  = ⋅ − 
  

 (5.2)

The above formula considers the influence of the concrete strength on the magnitude of the 
nonlinear effect on creep. 

Smadi (1987) found that also the stress-total strain proportionality limit is higher in high 
strength concrete than in ordinary concrete. 

5.2.2 Elastic modulus 
The measured elastic moduli are compared to the prediction formulae given in MC90 and 
the Norwegian Standard in Figure 5.2. In addition to the experimental results the elastic 
moduli measured on samples taken from Støvset Bridge and Stolma Bridge are shown. The 
measured values for the bridges show good consistency with the experimental values. 
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Figure 5.2 Measured elastic modulus in comparison with theoretical formulas 

The measured values are seen 25 % lower on average than they are estimated by the MC90 
formula. The large deviation is primary the result of the type of the aggregate. The 
aggregate which is typically used in Norway is softer than it is presumed by the MC90 
formula. 



Experimental Results on High Strength Concrete 

62 

5.2.3 Creep 
In Figure 5.3 and Figure 5.4 the measured responses are compared with the predicted values 
as given by the MC90 and the MC90(99) models. The diagrams show the instantaneous 
responses and the total responses at the end of the loading period. 
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Figure 5.3 Measured deformation responses are compared with the calculated values at time 
zero (above) and at the end of the loading period (below), test results from Phase 1 

The instantaneous deformation is underestimated by the theoretical formula as that was 
foreseen from the test results on the elastic modulus. While the measured elastic moduli 
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were found 25 % lower than predicted, the reciprocal of the instantaneous responses are 
28 % lower on average than predicted. The difference may be attributed to the non-linearity 
due to the high load levels. For the instantaneous deformation only one set of data points is 
seen because the prediction formula for the elastic modulus is the same in the 1999 version 
of the Model Code. 
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Figure 5.4 Measured deformation responses are compared with the calculated values at time 
zero (above) and at the end of the loading period (below), test results from Phase 2 
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The total stress dependent deformation at the end of the loading period is slightly 
overestimated on average by the MC90 model and slightly underestimated on average by 
the MC90(99) model. The mean coefficient of variation for the predictions are 22 % and 
16 %, respectively. 

In the calculation the creep coefficient was increased by an average of 30 percent according 
to Eq. (5.1) due to the high load level. 

5.2.4 Shrinkage 
The measured shrinkage strain in the unsealed specimens are shown in Figure 5.5 in 
comparison with the predictions given by the theoretical models. The scatter of the data 
points is large but the improvement in the prediction by the MC90(99) model is clearly 
visible. The mean coefficient of variation for the MC90 prediction is 43 % with a significant 
systematic underestimation. The mean coefficient of variation for the MC90(99) prediction is 
25 %, but the average tendency is good. 
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Figure 5.5 The measured shrinkage strain at the end of the drying period as compared to the 
predictions 

5.3 Experimental results from Persson 

The long-term creep tests were carried out by Persson (1998) at the Lund University in 
Sweden as part an extensive experimental and numerical study on deformations of high 
performance concrete. 
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5.3.1 Description of the experiments 
Eight concrete mixes were involved in the tests. Four tests were carried out on each concrete 
mix. A sealed and an unsealed specimens were tested with a concrete age at loading of 
2 days and also a sealed and an unsealed specimens were tested with a concrete age at 
loading of 28 days. The load level was 0.42. Identical test series were carried out with the 
same arrangements at the load level of 0.84 but those results are not discussed here. The 
specimens were cylinders with diameter of 55.5 mm and height of 200 mm. The tests were 
performed at temperature of 20 °C and relative humidity of 55 %. The load duration varied 
from 1070 days to 1690 days. Table 5.3 shows the concrete strength for the concrete mixes. 
The strength was tested on 100 mm cubes at the age of 28 days. 

Table 5.3 Concrete strength 

Mix no. fc,cube100 

[MPa] 
fc,cyl150/300 

[MPa] 

1 89 66 
2 105 77 
3 95 70 
4 101 74 
5 121 89 
6 126 93 
7 122 90 
8 129 95 

 
For the calculation the concrete strength determined on 100 mm cube had to be transformed 
into an equivalent 150/300 cylinder strength. The transformation was made according to 
Eq. (5.5) which relationship was established from Eq. (5.3) (Morabito et al. 2000) and Eq. (5.4) 
(ENV 206 1990). 

, 150 , 1000.916c cube c cubef f=  (5.3)

, 160/ 320 , 1500.805c cyl c cubef f=  (5.4)

Since the dimensions of the 160/320 cylinder do not differ much from the dimensions of the 
150/300 cylinder, equivalency between the strength of the two cylinders is assumed. 

, 150/ 300 , 1000.74c cyl c cubef f  (5.5)
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5.3.2 Experimental creep data in comparison with theoretical models 
The large number of test series enabled a sound statistical assessment of the test results. The 
experimental results are examined in comparison with three models. The models are the 
CEB-FIP Model Code 1990, the 1999 version of the Model Code and the creep model in the 
Norwegian Standard. A fourth calculation was made which followed the lines of the 
CEB-FIP Model Code 1990 but the elastic modulus was multiplied by 0.75. It is meant to 
consider a potentially lower elastic modulus as it was found in the Norwegian experiments 
(vide Figure 5.2). The type of the aggregate is different here, thus the multiplying factor of 
0.75 should not be seen as the probable factor concerning the influence of the aggregate 
stiffness on the elastic modulus but rather an assumed lower limit. The 25 % lower elastic 
modulus consequently results in a 33 % higher creep compliance. 

The creep in the sealed specimens were calculated under the assumption that the insulation 
is perfect and no moisture exchange takes place with the ambient environment. 

Figure 5.6 shows the measured values of the creep compliance in comparison with the 
predicted values. The corresponding statistical measures are shown in Table 5.4. A tendency 
toward underestimation is observed in case of the MC90 model. That is interesting in view 
of the fact that the MC90 model is believed to overestimate creep for concretes of higher 
strength. The underestimation by the MC90(99) model is consequently even larger in 
magnitude, however, the model furnished the smallest intrinsic scatter. 

Table 5.4 Statistical evaluation of the predictions1 

 
Mean coefficient of variation for the prediction[%] 

Average deviation* [%] 

 MC90 MC90(99) NS 3473 MC90(0.75E) 

Total creep 22.3 30.7 36.9 41.4 
(unsealed spec.) -6.4 -25.7 17.9 24.7 

     Basic creep 25.2 27.2 16.9 17.4 
(sealed spec.) -20.3 -22.4 -5.7 6.3 

     Overall 23.8 29.0 28.7 31.7 
 -13.4 -24.0 6.1 15.5 

*negative value indicates underestimation, positive value indicates overestimation 
 
1 The mean coefficient of variation for the prediction characterises the mean error over the entire 
duration of loading. It is the most relevant statistical measure for the prediction. The average deviation 
is the average of the percentage difference of the predicted value from the observed value in all data 
points. Consequently the average deviation is calculated here for the entire load duration. High 
negative value of this measure indicates systematic underestimation by the theoretical model and high 
positive value indicates systematic overestimation. The calculation formulas can be found in 
Appendix A. 
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Figure 5.6 Experimental values of the creep compliance in comparison with theoretical 
models (all data points from the 32 test series are included in the diagrams) (Persson 1998) 

The model in the Norwegian Standard and the MC90 model with the lowered elastic 
modulus (MC90(0.75E)) overestimated the observed creep values. The NS model has a low 
average deviation which indicates a good overall tendency, however, the mean error has the 
same magnitude as the other models. It is seen that the mean error for the unsealed 
specimens (total creep) and sealed specimens (basic creep) significantly differ in case of 
these two models while the respective values for the MC90 and MC90(99) models are 
similar in magnitude. 
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Figure 5.7 Experimental values of the creep compliance in comparison with theoretical 
models, sealed specimens (basic creep) with concrete strength between 66 and 77 MPa 
(Persson 1998) 

It is also observed that the accuracy of the prediction is significantly influenced by the 
concrete strength for the NS model and MC90(0.75E). The eight concrete mixes can be sorted 
into two classes. The cylinder strength of the first four mixes vary from 66 to 77 MPa and the 
cylinder strength of the other four mixes vary from 89 to 95 MPa (vide Table 5.3). 

The comparison between the experimental data and the predicted values are shown 
separately for the sealed and unsealed specimens and for the two concrete strength ranges 
(vide Figure 5.7, Figure 5.8, Figure 5.9 and Figure 5.10). Each diagram contains results from 
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eight experiments. The mean coefficient of variation for the predictions are shown 
accordingly in Table 5.5. 
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Figure 5.8 Experimental values of the creep compliance in comparison with theoretical 
models, unsealed specimens (total creep) with concrete strength between 66 and 77 MPa 
(Persson 1998) 

The inherent scatter is small for the sealed specimens in the lower strength range in case of 
all four models. It increases for the unsealed specimens and in the higher strength range. 

The models underestimate the creep deformation in the sealed specimens. The 
underestimation is particularly significant in the higher strength range. 

The prediction error is the smallest for the NS model with the exception of the unsealed 
specimens in the higher strength range. 
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Figure 5.9 Experimental values of the creep compliance in comparison with theoretical 
models, sealed specimens (basic creep) with concrete strength between 89 and 95 MPa 
(Persson 1998) 

Table 5.5 Mean coefficient of variation for the predictions 

fc,cyl [MPa]  MC90 MC90(99) NS 3473 MC90(0.75E) 

66 - 77 basic creep 27.1 29.3 15.2 8.4 
 total creep 21.7 35.5 21.2 25.3 

89 - 95 basic creep 23.1 24.9 18.5 23.1 
 total creep 22.8 25.0 47.7 52.7 

Overall  23.8 29.0 28.7 31.7 
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Figure 5.10 Experimental values of the creep compliance in comparison with theoretical 
models, unsealed specimens (total creep) with concrete strength between 89 and 95 MPa 
(Persson 1998) 

5.4 Conclusions 
Based on the results of the experimental programs carried out in Norway, the following 
conclusions can be made. 

The elastic modulus is seen 25 % lower than estimated by the MC90 formula. The same 
relationship was found in the concrete samples taken from Stolma Bridge and Støvset 
Bridge. The deviation is the result of the lower stiffness aggregate which is typically used in 
Norway. 
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The shrinkage strain is underestimated by the MC90 model in concretes of higher strength. 
The prediction is significantly improved in the MC90(99) model which takes into account 
the larger autogenous shrinkage component which accompanies the higher strength. 
Nevertheless the mean observed error of the prediction is significant. 

The predicted creep is seen in reasonable agreement with the experiments. However, it is 
difficult to draw conclusions due to the significant uncertainty about the nonlinear influence 
due to the high load levels. 

Concerning the creep experiments carried out by Persson, the observed long-term 
deformations were found higher than predicted by the MC90 model. Since the MC90(99) 
model gives smaller creep deformation in HSC and HPC, the error was found even larger 
for the MC90(99) model. 
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Chapter 6                                                   

Mathematical Modelling of Viscoelasticity 

 
The chapter reviews the mathematical modelling of the viscoelastic 
material behaviour of concrete. A rate-type solution algorithm suitable for 
robust numerical computations is described. The solution method is based 
on the Maxwell and Kelvin Chain models. Finally the procedure used to 
determine the chain parameters from creep and relaxation curves are 
presented. 
 
 

6.1 Introduction 
To calculate the strain response to a certain stress history or the stress response to a certain 
strain history one can use the classical Riemann integral equations if the stress or strain 
history is known a priori and they are expressed as continuous functions1. 

( ) ( ) ( )

0

,
t

t J t C dε τ σ τ τ= ∫  (6.1)

( ) ( ) ( )

0

,
t

t R t D dσ τ ε τ τ= ∫  (6.2)

The principle of superposition constitutes the fundamental basis for the integral equations. 
The principle is equivalent to the hypothesis of linearity in the stress-strain relation. The 
principle of superposition was first proposed by Boltzmann in 1876 and extended to aging 
materials by Volterra in 1913. A historical review on the superposition principle of strains 
was given by Bazant (1986). 

 
1 To admit discontinuous stress or strain history the Riemann integral must be replaced by Stieltjes 
integral. 
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For general structural computations, however, the stress or strain history is not known 
beforehand. Therefore a step-by-step solution algorithm must be implemented where the 
computation is discretised by finite time increments. The integral formulations then are 
replaced by finite sums. Such a formulation, however, has the inconvenient feature that the 
strain (or stress) increment at any new time step is calculated as a function of the entire 
previous stress (or strain) history. This makes the formulation impractical for large 
computations because the entire stress (or strain) history must be stored for each 
computational point and an excessively long sums of strain (or stress) values must be 
computed at each time step. That would require large storage capacity and long 
computational time to an unreasonable extent. 

A different formulation is preferable where the stress increment at a new time step can be 
calculated from the strain increment and a finite number of state variables, all of which are 
known at the beginning of the time step. The relaxation function has to be rewritten in a 
form which enables to formulate such an algorithm. If the viscoelastic behaviour is 
described by the creep function, a similar fashion has to be followed but the constitutive 
relation also has to be rewritten in a way that the stress increment is expressed as the 
function of the strain increment (de Borst and van den Boogaard 1994). This is necessary 
because the displacements are the basic variables in the finite element method. 

The relaxation and creep functions are rewritten as sums of real exponential functions (the 
equations will be explained later in the chapter): 

( ) ( )

0
,

tn

R t E e α

τ
λ

α
α

τ τ
−−

=
= ∑  (6.3)

( )
( )

0

1
, 1

tn

J t e
E

α

τ
λ

αα
τ

τ

−−

=

  = −    
∑  (6.4)

From a mathematical perspective Eq. (6.3) and Eq. (6.4) are the approximation of the 
relaxation and creep function with Dirichlet series. From a physical perspective they can be 
interpreted as the governing equations of the Maxwell and the Kelvin Chain models. 

6.2 Viscoelastic models 
Rheological models can be constructed by combining theoretical bodies with ideal 
rheological properties. To set up models for linear viscoelastic behaviour the ideal bodies 
are the Hookean solid body (i.e. perfect linear elasticity) and the Newtonian liquid body (i.e. 
perfect linear viscosity). The idealised deformations are represented by a spring and a 
dashpot respectively. 
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Rheological models consisting of springs and dashpots are not intended to capture the 
physical mechanisms of the viscoelastic behaviour of concrete on a microscopic level. This 
approach is largely empirical and it is simply to approximate the overall deformation 
pattern of concrete by assigning specific parts of overall deformation to given components 
of the model. They represent physical properties of continua and they can be interpreted 
from a macroscopic point of view only. 

6.2.1 Basic viscoelastic models 
There are two basic models, known as the Maxwell element and Kelvin element1. In the 
Maxwell element a spring and a dashpot are connected in series while in the Kelvin element 
a spring and a dashpot are connected in parallel. Neither of the two basic models on its own 
is capable of describing sufficiently every aspects of the viscoelastic behaviour of concrete. 
But they are the fundamental components of more complex models. An isolated spring or 
dashpot can be considered as a degenerate form of either the Maxwell or the Kelvin element. 
The two most important models are the Maxwell Chain model where finite number of 
Maxwell elements are connected in parallel and the Kelvin Chain model where finite 
number of Kelvin elements are connected in series. As the Maxwell and the Kelvin elements 
are the basic components of the chain models, their behaviour is examined first. 

E η

 

E

η  
(a) (b) 

Figure 6.1 (a) Maxwell element and (b) Kelvin element 

The spring and the dashpot are in series in the Maxwell element. Consequently the stress is 
the same in both bodies while the total strain is the sum of the strains in each. (It would be 
more precise to talk in terms of forces and displacements but the spring and the dashpot are 
imaginary bodies representing the same continuum, i.e. they coexist within the same 
geometrical dimensions.) 

spring dashpotσ σ σ= =  (6.5)

spring dashpotε ε ε= +  (6.6)

 

 
1 The models are named after Scottish scientists, J.C. Maxwell and W.T. Kelvin (later Lord Kelvin). 
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Hence the governing differential equation is written as 

1 1d d
dt E dt
ε σ σ

η
= +  (6.7)

where 

E  is the elastic modulus of the spring, 

η  is the viscosity of the dashpot. 
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Figure 6.2 Maxwell element in creep and relaxation 

Figure 6.2 shows the behaviour of the Maxwell element in creep and relaxation. Under 
constant stress (creep) the strain is increasing infinitely at a constant rate after the 
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instantaneous deformation. Therefore it essentially represents a liquid. If the stress were 
removed at time *t  the elastic strain would recover instantly while no recovery of the 
viscous strain would take place. The strain would remain constant at a value of 

( )*/o ot tσ η −  for non-ageing materials. Apparently the Maxwell element captures the main 
characteristics of creep rather poorly. As for relaxation the behaviour of the Maxwell 
element is more realistic. If the element is subjected to a constant strain the stress is 
decreasing exponentially being divided in its value by e  per unit value of the relaxation 
time ( /E η ). The relaxation is complete after infinitely long time. 

The spring and the dashpot are in parallel in the Kelvin element. Consequently the strain is 
the same in both bodies while the total stress is the sum of the stresses in each. 

spring dashpotε ε ε= =  (6.10)

spring dashpotσ σ σ= +  (6.11)

The governing differential equation is written as 

d
E

dt
εσ ε η= +  (6.12)

Figure 6.3 shows the behaviour of the Kelvin element in creep and relaxation. Under 
constant stress the strain is increasing with time exponentially without instantaneous 
deformation. The strain is approaching a final asymptotic value of /o Eσ . This is equal to 
the instantaneous deformation of the spring on its own. Initially the dashpot is carrying the 
entire load but with time that is transferred to the spring at a decreasing rate. After an 
infinitely long time the spring will carry the entire load. If the load were removed at time *t  
the strain would recover exponentially. The recovery would be complete after an infinitely 
long time. The recovery regime can be described with the following function: 

( )
( )

* o
E t t

K t e ηε
− −

=  (6.13)

where the value of ( )*K t  can be determined from the condition that the strain is equal at 
*t t=  from Eq. (6.13) and (6.15). For non-ageing materials that is 

( ) ( )*
* 1

o
E t toK t e

E
ησ −  = −     

 (6.14)

Thus, the Kelvin element can describe creep considerably well but on its own it does not 
represent the elastic deformation. On the other hand the Kelvin element is not capable of 
describing relaxation. If constant load is applied on a Kelvin element for a certain period of 
time the strain develops according to Eq. (6.15). If then the strain is fixed and the external 
load is removed at time ot , the stress instantaneously drops to oE ε  which is the stress in the 
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spring at that point of time and remains constant afterwards (vide diagrams on the right in 
Figure 6.3). 
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Figure 6.3 Kelvin element in creep and relaxation 

6.2.2 Maxwell and Kelvin Chain models 
Whereas neither a simple Maxwell element nor a Kelvin element is able to properly model 
all aspects of the viscoelastic behaviour, the more complex Maxwell and Kelvin Chain 
models can approximate the real deformation pattern with sufficient accuracy. The success 
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of the good approximation depends on the ability of certain components of the model to 
approximate certain parts of the overall deformation pattern. 

In the Maxwell Chain model finite number of Maxwell elements are connected in parallel 
(vide Figure 6.4). The first element ( 0α = ) is a spring with no dashpot and can be 
considered as a degenerated Maxwell element1. The strain is equal in each element while the 
total stress is the sum of the stresses in the individual elements. Utilising Eq. (6.9) the 
relaxation function can be written as 

( ) ( ) ( )

1
,

tn

oR t E E e α

τ
λ

α
α

τ τ τ
−−

=
= + ∑  (6.17)

where τ  is the age of the concrete at loading and αλ  is the relaxation time of the α th 
element which is defined as 

E
α

α
α

ηλ =  (6.18)

Ageing is introduced in Eq. (6.17). The stiffness of the springs, Eα  are age-dependent while 
the relaxation times, αλ  are constant values. It means that the development of the viscosity 
of the dashpot and the stiffness of the spring with age follow the same time function, so 
their proportion, /Eα αη  remains constant. 

In the Kelvin Chain model a finite number of Kelvin elements are connected in series (vide 
Figure 6.5). The first element ( 0α = ) is a spring with no dashpot and can be regarded as a 
degenerated Kelvin element2. The stress is equal in each element while the total strain is the 
sum of the strains in the individual elements. Utilising Eq. (6.15) the creep function can be 
written as 
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−−

=

  = + −    
∑  (6.19)

where αλ  is the retardation time of the α th element and can be calculated as Eq. (6.18). 

It is generally considered that the Maxwell Chain model is better suited for relaxation 
dominated problems while the Kelvin Chain model is better suited for creep dominated 
problems. That is because the former is based on the relaxation function while the latter is 
based on the creep function. Practically both models are equally capable of representing the 
viscoelastic behaviour of concrete. 

 
1 As an alternative approach it can be considered as a regular Maxwell element with a sufficiently long 
relaxation time, min. 1000 times longer than the longest load duration. 
2 Along the same analogy as for the Maxwell model, the single spring can alternatively be considered as 
a regular Kelvin element with the viscosity of the dashpot being equal to zero. 
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Figure 6.4 Maxwell Chain model 
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Figure 6.5 Kelvin Chain model 

6.3 Rate-type constitutive relations 
With the relaxation and creep functions now being written as sums of real exponential 
functions (vide Eq. (6.17) and Eq. (6.19)) rate-type constitutive equations can be formulated. 
The rate-type formulation has the advantage that there is no need to keep and evaluate 
information from all the previous time steps but the relationship between the stress and 
strain increment over a time step can be expressed with a finite number of state variables 
which are all known at the beginning of the time step. 

6.3.1 Formulation with the relaxation function 
The formulation with the relaxation function (Maxwell Chain model) is rather 
straightforward. If Eq. (6.17) is substituted into Eq. (6.2) for time t  and t t+ ∆  and it is 
assumed that nothing has happened until 0t = , the stresses are written as 
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where D  is a dimensionless matrix that relates the multiaxial deformation state to the 
one-dimensional relaxation function with the Poisson’s ratio (e.g. de Borst 1991). 

The stress increment is calculated by subtracting Eq. (6.20) from Eq. (6.21). The integrals 
from 0  to t t+ ∆  can be split into a part from 0  to t  and a part from t  to t t+ ∆ . It is 
assumed that the strain rate is constant from t  to t t+ ∆  and also the values of ( )Eα τ  are 
taken as constant values, ( )ˆE tα  from t  to t t+ ∆  with t̂  as a sampling point, usually 
halfway the time increment. With these simplifications the integral can be elaborated 
analytically which gives 
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where ( )tασ  is the partial stress in the α th element of the Maxwell Chain and it is a state 
variable. 
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The values of ( )tασ  are known at the beginning of the time step (for 0α =  that is not 
needed to calculate the stress increment). 

6.3.2 Formulation with the creep function 
If it is assumed that nothing has happened until 0t = , the stain increment from t  to 
t t+ ∆  is written as 
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∫
 (6.24)

where C  is a dimensionless matrix that relates the multiaxial stress state to the 
one-dimensional creep function with the Poisson’s ratio. 

In order to attain a constitutive relation which is suitable for implementation in a 
displacement based finite element method, Eq. (6.24) has to be rearranged such way that the 
stress increment is expressed as a function the strain increment and stress history (de Borst 
and van den Boogaard 1994). It is assumed that the strain rate is constant over the time 
increment. Also ( )Eα τ  is taken as a constant from t  to t t+ ∆  which equals to its value at 
time t̂  according to mid-point rule. With 1D C−=  then the stress increment is written as 
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( ) ( )ˆE t D tσ ε σ∆ = ∆ +  (6.25)

with 
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and 
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If Eq. (6.19) is substituted in Eq. (6.26) and (6.27) and again the mid-point rule is applied for 
( )Eα τ , the resulting integrals can be integrated analytically which yields 
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The value of ( )tαε  is known at the start of the time increment. Its value at the start of the 
next time increment is calculated as follows 
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With Eq. (6.28) and (6.29), the stress increment in Eq. (6.25) is expressed as function of the 
strain increment and a finite number of state variables all of which are known at the start of 
the time increment. 

6.4 Determination of the chain parameters 
The starting point to set up the material model for a time-dependent numerical analysis is 
the creep compliance which can be taken either from a theoretical model (e.g. CEB-FIP 
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Model Code 1990) or from experiments. In rarer instances the relaxation function is 
available. Parameters of the Kelvin Chain model is determined based on the creep curves 
while the parameters of the Maxwell Chain model is determined based on the relaxation 
curves. If the Maxwell Chain model is of interest but the creep compliance is available, the 
creep curves have to be transformed into relaxation curves (e.g. Bazant and Wu 1974). 

6.4.1 Curve fitting 
The stiffness of the degenerated element (i.e. single spring) can be determined directly for 
both chain models. In the Maxwell Chain model, ( )oE τ  is equal to the asymptotic final 
value of the relaxation curve while in the Kelvin Chain model, ( )oE τ  is equal to the value 
of the compliance function at time zero. Furthermore, in the Maxwell model, the sum of the 
elastic moduli, ( )

0
n Eαα

τ
=∑  is equal to the value of the relaxation function at time zero 

while in the Kelvin model, the sum of the reciprocal values of the elastic moduli, 

( )0
1n

Eα α τ=∑  is equal to the asymptotic final value of the creep compliance1. 

The elastic moduli for the other chain elements and the relaxation or retardation times then 
are obtained by a nonlinear least square method (DIANA 1999) minimising the sum of the 
quadratic differences between the theoretical curve, f  and the approximating curve f ′  at 
n  number of discrete sampling load durations. 

( )2
1

n

i i
i

f fδ
=

′= −∑  (6.32)

It is recommended to choose the sampling points distributed uniformly on the logarithmic 
time scale. 

6.4.2 Ageing chain 
For ageing materials like concrete, the viscoelastic behaviour can be represented by not a 
single creep curve but a series of creep curves in order to take into account the effect of 
ageing. Accordingly an ageing chain model is defined by many sets of chain parameters. 
The relaxation or retardation times remain fixed while the elastic moduli are determined at a 
number of sampling loading ages. The elastic moduli at intermediate loading ages (i.e. other 
than the sample loading ages) are then calculated by multi-linear interpolation. There are 
two methods to determine the elastic moduli of the chain model for different sampling 
loading ages. 

 
1 There are creep models which do not posses a final asymptotic value (e.g. Bazant’s B3 model). The 
Kelvin Chain model can still provide a good approximation for this kind of creep development pattern 
but strictly on the domain of fitting with respect to the load duration. In that case the sum of the 
reciprocal stiffnesses does not have a real physical meaning or significance. 
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The scaled fit method is normally suitable for creep curves only and therefore it is used for the 
Kelvin Chain model. The creep curve with a loading age of 28 days is used as a base curve 
and for that the elastic moduli are determined by curve fitting. For all the other sampling 
loading ages the elastic moduli are scaled based on the base curve. Creep models usually 
specify an ageing coefficient for the instantaneous response, ( )Eβ τ  and a different ageing 
coefficient for the time-dependent response, ( )φβ τ . 
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== +
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Accordingly the elastic moduli are scaled with ( )Eβ τ  for the single spring and with ( )φβ τ  
for all the other elements ( 1α ≥ ). 

( ) ( ) ( )28o E oE Eτ β τ τ= ⋅ =  (6.34)

( ) ( ) ( )28E Eα φ ατ β τ τ= ⋅ =  (6.35)

Since relaxation curves are normally not scalable the same way as creep curves, the scaled fit 
method is not applicable for the Maxwell model. Instead, each set of elastic moduli with 
different loading ages are determined by an independent curve fit. The relaxation times are 
determined at the first curve fit and then they remain fixed upon the subsequent fits. This 
method – the so-called multiple fits method - can also work with creep curves. 
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Chapter 7                                                            

Numerical Model and Simulation 

 
The finite element model and simulation used for the time-dependent 
deformation analysis of segmentally cast concrete cantilever bridges are 
described. Some critical aspects of the beam model are studied in order to 
verify its performance. The calculation procedure for the effective 
prestressing force is presented. The simulation of the segmental 
construction method for cantilever bridges is also discussed. 
 
 

7.1 Introduction 
Deformation analysis in segmentally built concrete cantilever bridges is a considerably 
complex problem irrespective of the difficulties with creep and shrinkage prediction. The 
general notion applies, videlicet it is relatively easy to give a safe limit with a considerable 
safety margin where the structure will not fail but the actual behaviour of the structure is only 
known by the structure itself. 

The finite element models which are used throughout this study are based on a 
two-dimensional beam model. Shear deformation and the additional element stiffness from 
the conventional reinforcement are taken into account. The prestressing tendons are 
modelled according to their actual layout and the variation of the effective prestressing force 
along the tendons axis and with time is considered. The segmental construction procedure is 
simulated with phased structural analysis. 

In this chapter the geometrical model and the time-dependent phased structural analysis is 
discussed. The material models and their mathematical formulation were discussed earlier. 

The finite element calculations are carried out with general purpose finite element program 
system DIANA (DIANA R7.2 1999). 
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7.2 Geometrical model 

7.2.1 Two dimensional beam model 
The numerical analyses are carried on two dimensional models consisting of beam elements. 
The symmetry in both geometry and loading across the vertical median in the cross-section 
is utilized. The subdivision of the model into beam elements corresponds to the subdivision 
of the superstructure into segments. Each element represents one segment. This is not only 
convenient for specifying the geometrical dimensions but it is essential for the simulation of 
the segmental construction process as well. 
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Figure 7.1 Subdivision of the superstructure into beam elements, Stolma Bridge 

7.2.1.1 Equivalent cross-section 

The box-girder cross-section is converted into an equivalent I-shape. The I-shape consists of 
three rectangle zones: the upper slab, the web and the lower slab. The conversion is made 
based on the condition that, for both the upper and the lower slabs separately, the position 
of the horizontal neutral axis, the respective central moment of inertia and the area of the 
cross-section remain the same as those of the original shape1. For a fixed neutral axis there 
are two free variables (height and width of the rectangle) and two conditions (area and 
moment of inertia), thus the dimensions can be determined exactly. The bottom edge of the 

 
1 Since the model is only two dimensional the moment of inertia over the vertical axis and the polar 
moment of inertia are not of interest. 
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resulted equivalent rectangle of the upper slab most certainly does not coincide with the 
upper edge of the web. Therefore a certain area from the upper slab above the web is 
counted into the area of the web. Since it is necessary to know this area in order to calculate 
the equivalent rectangle of the upper slab but it is not known beforehand, the calculation 
involves an iterative procedure. The procedure is the same for the lower slab but there a 
certain area from the web above the lower slab is counted into the area of the slab. The 
thickness of the web is simply the sum of that of the walls of the box-girder since they have 
regular rectangular form. 

The columns, column foundations and caissons are modelled with rectangular or box shape 
cross-sections. Where the actual cross-section has a unique form, the cross-section is 
converted into an equivalent rectangular or box shape under similar conditions described 
above. 

7.2.1.2 Element type 

The formulation of the beam element is based on the Mindlin theory and the type of the 
element is referred to as Mindlin beam (e.g. Cook 1989). The advantage of the Mindlin beam 
is that, unlike the classical beam element, it takes shear deformation into account. This 
implies that the Bernoulli hypothesis is abandoned. The plane initially normal to the 
midsurface remains plane but not necessary normal. Consequently the normal strain varies 
linearly over the depth while the transverse shear strain is forced to be constant. 

The elements are two-dimensional, 3-node beam elements based on an isoparametric 
formulation (e.g. Zienkiewicz 1971). The basic variables are the translations and rotation in 
the element plane. The local axes in the first node of the element serve to describe the 
direction of the displacement degrees of freedom in all nodes (vide Figure 7.2). In the 
Mindlin beam element the displacements and rotations are independent and are 
respectively interpolated from the nodal displacements and rotations. That is necessary 
since the beam axis normal does no longer coincide with the cross-section plane subjected to 
shear deformation. 
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Figure 7.2 Nodal displacements in the two dimensional quadratic beam element 



Numerical Model and Simulation 

88 

Although the element formulation allows to specify quadratic shape as it is illustrated in 
Figure 7.2 in general, the elements in the models are straight. In fact the use of higher order 
elements is not essential for the given problem per se. The element type was chosen for its 
other favourable properties. The curvature in the reference axis of the superstructure is 
small and the subdivision into elements is fine (vide Figure 7.1), thus assuming linearity 
between the element boundaries is sufficient. The coordinates of the middle element node 
are determined by linear interpolation between the element boundaries. 

7.2.1.3 Numerical integration 

The elements are numerically integrated along the beam axis and in the cross-section. Since 
it is a two-dimensional beam element, integration in the cross-section is only performed in 
the vertical direction. The Gauss quadrature (e.g. Zienkiewicz 1989) is used along the beam 
axis with two integration points. The Gauss quadrature is used also in the cross-section with 
two integration points for each quadrilateral zone of the I-section. The I-section consists of 
three quadrilateral zones and consequently that means six integration points in one 
cross-section and twelve integration points for one element (vide Figure 7.3). 
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integration point in cross-section
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Figure 7.3 Integration scheme for the beam element 

7.2.1.4 Reference axis 

Special attention has to be paid when the reference axis of the superstructure and the 
respective cross-section dimensions are determined. The reference axis has a certain 
inclination over the horizontal. Consequently the plane of the cross-section perpendicular to 
the model axis is not vertical. The cross-section dimensions for the actual structure, 
however, are given in the vertical plane. The reference axis is not known beforehand 
because it is calculated from the cross-section dimensions and its absolute elevation. 
Therefore the reference axis and the corresponding cross-section dimensions in the normal 
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plane are determined by an iterative procedure: (1) as a first approximation the reference 
axis is calculated from the cross-section dimensions given in the vertical plane, (2) the 
cross-section dimensions then can be determined in the plane perpendicular to the 
approximate reference axis, (3) with the new cross-section dimensions, the reference axis can 
be recalculated, (4) the second and third steps are then repeated until the difference in the 
vertical coordinate of the reference axis point between two consecutive iteration steps is 
negligibly small. At the end of the third step the new reference axis point will be out of the 
original vertical plane, so it needs to be projected back to that plane. Since the inclination of 
the reference axis is small, two iteration steps were found sufficient in all cases. 

7.2.2 Reinforcement and prestressing tendons 
Conventional reinforcement is taken into account in the model to consider the additional 
stiffness given to the structural elements. Reinforcement elements are embedded into the 
surrounding beam element, referred to as the mother element. They do not have degrees of 
freedom of their own. Their strains are coupled to the displacement field of the mother 
element. This implies perfect bond between the reinforcement and the mother element. A 
reinforcement element is described with the area of its cross-section and its position in the 
mother element. The position is specified by the eccentricities in the respective element 
nodes. One reinforcement bar is defined in the upper slab to account for the total amount of 
conventional reinforcement in the upper slab and one bar is defined in the lower slab to 
account for the total amount of conventional reinforcement in the lower slab. 

The reinforcement elements which represent the prestressing tendons are used to define the 
prestressing load. They remain unbonded to their mother elements until the tendons are 
grouted. While they are unbonded they remain undeformed and add no stiffness to the 
mother elements. The prestressing tendons are modelled by series of individual segments 
between the beam element boundaries. The position of each segment is described with the 
eccentricities in the respective beam element nodes. Since the beam element has three nodes 
it is possible to specify linear and quadratic shape particles. The latter is particularly useful 
to describe sudden angle change within the element. Each series of particles represents two 
tendons due to the utilised symmetry in the cross-section. The computation and modelling 
of the effective prestressing force is discussed in subsection 7.3. 

It has to be noted that although the bonded reinforcement elements are taken into account 
when the element stiffness is calculated, they are neglected when the element reference axis 
is calculated. 

7.2.3 Verification of the Mindlin beam model and shear deformation 
Shear deformation is expected to play a very minor role in the total deformation. Although 
the height of the superstructure near the piers is large, the length to height ratio of the 
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completed spans are well above what is considered a practical limit for the classical beam 
theory1. When the cantilever is considered with only the first few segments, as that occurs 
during construction, the classical beam theory could not be appropriate. The deformations, 
however, are very small in that stage due to the very high stiffness of the partial cantilever 
relative to its length. Nonetheless shear deformation is taken into account in the 
computation with the Mindlin beam elements in order to improve the accuracy. To estimate 
the contribution from the shear deformation to the total deformation the Mindlin beam 
model is compared with a model consisting of classical beam elements. 

A more sophisticated two-and-a-half dimensional model which consists of shell elements is 
included in the comparison to verify the beam model in regard to its general performance. 
Such a model would be unreasonably time consuming in a realistic full scale analysis due to 
its enormous pre-processing need and computational time requirement. 

 

 
 

Figure 7.4 Two-and-a-half dimensional shell model2 

The comparison was carried out for the selfweight only on models of a continuous single 
span based on a simplified geometry of Støvset Bridge. The underlying structural models 
are identical in all three finite element models. The support condition was taken as perfectly 
rigid. The investigation was made in the linear elastic state to avoid introducing effects of 

 
1 The height of the superstructure at the piers is 13.0 meter in Norddalsfjord Bridge, 12.0 meter in 
Støvset Bridge and 15.0 meter in Stolma Bridge. The corresponding length to height ratio with respect to 
the cantilever (i.e. half of the span) is 8.9, 9.2 and 10.0 respectively. 
2 A small gap can be seen between the web and the two flanges in the finite element mesh. The 
respective series of nodes are tied together by linear dependencies between the degrees of freedom. 



Numerical Model and Simulation  

91 

non-linear behaviour. Only one half of the span is modelled utilising the symmetry. Due to 
the symmetry also in the cross-section, only one half of the box-girder is modelled in the 
2½D shell model (vide Figure 7.4). 
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Figure 7.5 Deflection in the continuous span according to the three models 
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Figure 7.6 Deflection for a short cantilever 

Figure 7.5 shows the deflection for the three models. The contribution from the shear 
deformation, indeed, was found small. Another analysis was carried out where only the first 
seven segments are considered in the free cantilever state. It concerns the first 32 meters of 
the span and the corresponding length to height ratio at the piers is 2.67. The shear 
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deformation is appreciable (vide Figure 7.6), although the deformations in general are very 
small. Good agreement was found between the Mindlin beam model and the two-and-a-half 
dimensional shell model, however, a small deviation was observed. 

7.2.4 Effect of non-uniform creep and shrinkage over the cross-section 
The development of creep and shrinkage are significantly affected by the dimensions of the 
structural member through drying. To characterise the average size of the cross-section of an 
arbitrary shape the parameter notional size is used. In the beam model the notional size is 
associated with the entire box-girder as an average value for the cross-section. Therefore 
creep and shrinkage properties are considered identical in any point of a given cross-section. 
The different thickness of individual parts of the box-girder, however, results in different 
creep and shrinkage properties within the box-girder. The non-uniform creep and shrinkage 
development has influence on the global deformation of the superstructure. The magnitude 
of this influence is determined in this section. 

The investigation is carried out on the same two-and-a-half dimensional shell model which 
was described in the previous section (vide Figure 7.4). In first case the same notional size is 
assigned to all elements within the same cross-section which is characteristic for the 
box-girder as an average. In general these values are used for the beam model. In the second 
case the notional size is determined separately for the upper slab, the web and the lower 
slab. 

The comparative analysis is carried out on a single phase analysis on the continuous span 
(i.e. the entire span is activated in a single step) with an initial concrete age of 28 days and on 
a realistic phased analysis which includes the simulation of the construction process as well. 

The thickness of the lower slab is considerably larger than the thickness of the upper slab 
apart from a certain length around the middle section. Consequently the creep and 
shrinkage development in the lower slab is slower than in the upper slab. According to the 
CEB-FIP MC90 creep model the notional size has influence on both the notional creep 
coefficient (i.e. the final value of creep) and on the creep time dependency function. Whereas 
shrinkage is influenced by the notional size through its time dependency function only and 
the theoretical final shrinkage strain is the same irrespective of the geometrical dimensions. 
Since the cross-sections are in the state of combined axial compression and bending, it is 
expected that faster creep and shrinkage development in the upper slab and the slower 
development in the lower slab result in a relative upward bending as compared to the 
situation where the creep and shrinkage properties are uniform over the cross-section. In 
other words the non-uniform creep and shrinkage properties result in somewhat smaller 
deflection than the uniform properties. 
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Figure 7.7 Notional size for the entire box-girder and for the individual parts separately 
(shown for one half of the main span of Støvset Bridge) 

The notional size for the box-girder or for individual parts of the box-girder is calculated 
based on the recommendation of the Norwegian Standard (NS 3473), i.e. taking into account 
the inner perimeter of the box-girder with a multiplier of 0.5 (vide Eq. (7.1)). This is meant to 
consider that the inner surface is not in direct contact with the ambient environment and 
less affected by drying. This approach is taken in the absence of more accurate information. 

2
0.5outer inner

A
h

u u
⋅=

+ ⋅
 (7.1)

where 

A  is the area of the member, 

outeru  is the outer perimeter of the member, 

inneru  is the inner perimeter of the member. 
 
The notional size for the entire box-girder and for its individual parts separately are shown 
in Figure 7.7. The values are calculated based on the actual geometry of the main span of 
Støvset Bridge. The notional size at the pier is 1100 mm for the lower slab and 450 mm for 
upper slab whereas 580 mm for the entire box-girder as an average. For these values the 
creep functions are shown in Figure 7.8 for the concrete age of 28 days at loading under the 
conditions that the relative humidity is 70 % and temperature is 10 °C. Figure 7.9 shows the 
shrinkage development under the same conditions. 
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Figure 7.8 Creep compliance with different notional sizes 
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Figure 7.9 Shrinkage strain with different notional sizes 

The difference in the shrinkage strain is considerable. Although theoretically the shrinkage 
strain is approaching the same final value irrespective of the notional size, the time 
dependency is significantly influenced by the geometrical dimension. The drying time 
which it takes to reach a certain level of average shrinkage across the thickness of the slab is 
quadratically increasing with the increasing notional size. In bulk concrete the drying 
process is slow and even after 70 years significant difference is seen in Figure 7.9 between 
the shrinkage strain in the lower and upper slab. In fact actual shrinkage in bulk concrete 
may be smaller. The prediction formula is rather uncertain for large concrete members as 
little information exists in that regard (CEB 1991). 
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The difference between the creep compliance and the shrinkage strain in the lower slab and 
those on the upper slab are shown in Figure 7.10. The difference in the creep compliance is 
increasing until about 1000 days and then decreasing while approaching a certain final 
value. The difference in the shrinkage strain is increasing until about 10000 days and then 
decreasing wile approaching zero. 
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Figure 7.10 Difference in the creep compliance and the shrinkage strain between the lower 
slab and the upper slab of the box-girder 

One has to keep in mind that the differences in the creep and shrinkage curves between the 
lower and the upper slabs shown in Figure 7.8, Figure 7.9 and Figure 7.10 concern the 
largest difference at the pier only, thus they are not characteristic for the entire span. The 
magnitude of the differences are deceasing as the thickness of lower slab is gradually 
decreasing (vide Figure 7.7). 

The computed deflections obtained by the single phase analysis are shown in Figure 7.11. 
The instantaneous deflection curve is evidently identical for the model with the uniform 
creep and shrinkage properties and the model with the non-uniform creep and shrinkage 
properties. As it was expected the non-uniform properties resulted in slightly smaller 
deflection after long time (70 years). The difference at mid-span is 21 mm, that is about 2.5 % 
of the total deflection. The difference was found not higher than 4 % at any point of the 
span. 
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Figure 7.11 Instantaneous and long-time deflection obtained by the single phase analysis 
(above) and the long-time difference after 70 years as a result of the non-uniform creep and 
shrinkage properties within the cross-section (below) 

The single phase analysis was carried out to estimate the magnitude of the difference 
between the two modelling approaches on a simpler and more apparent model. The second 
comparative analysis is carried out with a realistic phased analysis which includes the 
simulation of the segmentwise construction process as well. The concept of the phased 
structural analysis is discussed later in subsection 7.4. 
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The computed deflection curves are shown in Figure 7.12 in three stages: (1) prior to the 
casting of the last segment and connection of the cantilevers, (2) after the bridge is fully 
completed (i.e. non structural parts of the bridge are also in place and (3) after 70 years of 
service. 
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Figure 7.12 Deflections obtained by the uniform and non-uniform cross-section properties 

The differences between the models are highlighted in Figure 7.13. The long-time deflection 
after 70 years is 18 mm smaller at mid-span with the non-uniform properties which is about 
4.6 % of the total deflection. The same figures are 13 mm and 1.8 % for the maximum 
deflection at the profile of 92 m. The difference prior to the connection of the cantilevers is 
negligible. 

In conclusion it can be said that the global deformations in the construction period is 
practically not affected by the non-uniform creep and shrinkage development within the 
box-girder. The long-time deflection is overestimated to a small extent by the assumed 
uniformity which exists in the beam model, but the difference is small. It is not the 
magnitude which could raise concern about the validity of the model which assumes 
uniformity. 

It should be mentioned that it is still possible to take into account the non-uniformity of 
creep and shrinkage properties with certain beam elements as well. Since the elements are 
numerically integrated over their cross-section with a separate integration for each zone, 
different material properties can be defined to each zone within the same cross-section. The 
current study does not concern this type of beam element. 
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Figure 7.13 The excess vertical deformation due to the non-uniformity of the creep and 
shrinkage properties within the box-girder as compared to the model which assumes 
uniformity 

7.3 Modelling the effective prestressing force 
The prestressing force in the tendon varies along the tendon axis and with time. In 
post-tensioned systems the initial prestressing force applied at the anchor is reduced by 
prestress losses resulted from friction, anchor slip, steel relaxation and shortening of the 
concrete element due to elastic, creep and shrinkage deformation. 
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Estimating the prestress losses along the tendon axis and its variation with time is one of the 
significant uncertainties in the analysis. The total deflection is basically the sum of two large 
opposite distributions (i.e. selfweight and prestressing). A small deviation in either of them 
may result in a large deviation in their sum. Those physical mechanisms and properties 
which are responsible for the prestress losses are associated with a certain degree of 
uncertainty. The variation in deformations due to variation in the effective prestressing force 
is discussed in Chapter 9. 

Distinction should be made in post-tensioned systems between bonded and unbonded 
tendons. In bonded post-tensioned construction the ducts are grouted after stressing the 
tendons. The bonded tendons become integral part of the structure. Unbonded tendons are, 
on the other hand, tied to the structure only at the anchors. Between the anchorage points 
the tendon may move relative to the surrounding structural element. Also in bonded 
post-tensioned systems the tendon is acting as an unbonded tendon until the grouting takes 
place. In segmental bridge construction all the tendons are typically grouted in one phase 
only after the entire span is completed and all the tendons are in place. 

The same terms, bonded and unbonded tendon have to be introduced from the finite element 
model point of view. It has to be emphasised that the behaviour described with the term 
unbonded is somewhat different from the real physical behaviour described in the previous 
paragraph, nevertheless it is closely related. The bonded reinforcement element is perfectly 
embedded into its mother element. It adds additional stiffness to the mother element and its 
deformations are derived from the displacement field of the mother element. The unbonded 
reinforcement element is not tied to its mother element in any way. The reinforcement 
element remains undeformed and adds no stiffness to the mother element. Since the 
unbonded reinforcement element remains undeformed the prestress remains the same as 
specified initially irrespective of the deformations of the mother element. 

Reinforcement elements which are initially specified as unbonded in the model can be 
changed to bonded in a later phase of the analysis. The respective attributes then change 
accordingly. 

7.3.1 Friction and anchor slip 
When the tendon is stressed at the anchor point a certain amount of the applied force is 
dissipated due to friction forces acting between the tendon and the duct. Frictional losses 
can be distinguished as curvature and the wobble frictional losses. The curvature frictional 
loss results from the intentional angel change in the tendon profile. The wobble frictional 
loss is the result of the unintentional variation of the tendon axis from its intended profile. 
The force in the tendon at any given point along its axis can be estimated by the Coulomb 
friction model (i.e. Collins and Mitchell 1991). 
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( ) ( )Kx
oP x P e µα− += ⋅  (7.2)

where 

( )P x  is the tendon force at a distance of x  from the anchor along the tendon axis, 

oP  is the applied prestressing force at the anchor, 

µ  is the Coulomb friction coefficient, 

α  is the total intended, cumulative angle change over the length of x  [rad], 

K  is the wobble friction coefficient [1/m]. 
 
The values of µ  and K  vary appreciably depending on the construction method and the 
materials. The value of K  also depends on the quality of workmanship. If more accurate 
values are not available (e.g. from previous experience) the CEB-FIP Model Code 1990 (CEB 
1991) recommends the use of 0.20 for µ  and 0.001-0.002 per meter for K  for strands in 
metal sheathing1. The ACI recommendation (ACI 1988) is 0.15-0.25 for µ  and 0.0016-0.0066 
per meter for K  for strands in flexible metal sheathing. The value of the wobble friction 
coefficient can be higher in segmentally constructed structures due to the additional wobble 
effect at the location of the segment interfaces. A study of a variety of tendons in eight 
segmentally constructed bridges resulted in a mean µ  of 0.36 and a mean K  of 0.003 per 
meter (Collins and Mitchell 1991). 

In the current numerical models the Coulomb friction coefficient is considered with a value 
of 0.20 and the wobble friction coefficient is considered with a value of 0.002 per meter. 
These numbers are based on the recommendation of the bridge designers. 

When the prestressing force is transferred to the anchorage device in post-tensioned system, 
an inward movement of the tendon occurs as the anchor wedge seats itself and the 
anchorage device deforms under stress. Only a certain length of the tendon is affected by 
this so-called anchor slip as frictional force now work against this movement. The stress loss 
due to the anchor slip decreases with the increasing distance from the anchor and vanishes 
after that certain length. The value of the anchor slip, s  depends on the type of the 
anchorage. The typical value varies around 2-4 mm. In the current models it is taken with a 
value of 3 mm. 

The calculation method which is used here assumes that the tendon forces before and after 
the stress loss from the anchor slip are symmetrical over the horizontal line which goes 
through the point ( )sP l , beyond which the force is not affected by the anchor slip (vide 
Figure 7.14). The length which is affected by the anchor slip is denoted by sl  and ( )sP l  is 
the force in the tendon at that distance from the anchor. 

 
1 In fact in the CEB-FIP Model Code 1990, K is expressed as 0.005-0.01µ per meter. 
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Figure 7.14 Influence of the anchor slip on the effective prestressing force 

The anchor slip, s  is equal to the total shortening of the tendon over the length of sl  as 
expressed by Eq. (7.3). 

( ) ( )( )
0

1 sl

p p
s P x P x dx

E A
′= −∫  (7.3)

which then is written due to the assumed symmetry as 

( ) ( )( )
0

1
2

sl

s
p p

s P x P l dx
E A

= −∫  (7.4)

The unknown length of sl  can be determined by a trial and error method. After it is 
determined the effective prestressing force can be calculated over the sl  length as 

( ) ( ) ( )2 sP x P l P x′ = −  (7.5)

Beyond the length of sl  anchor slip has no influence, thus Eq. (7.2) is used. 

Eq. (7.3) assumes that the force reduction in the tendon is linearly proportional to the anchor 
slip. This is reasonable because anchor slip is technically a deloading process. 

In certain cases anchor slip affects the force in the tendon along its entire length. This may 
happen if the tendon is short, the cumulative angle change is small and/or the friction is 
low. For the bridges involved in this study calculation indicated that the tendons for the first 
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two or three segments were affected this way. If sl  obtained by Eq. (7.4) is longer than the 
actual length of the tendon, Eq. (7.6) replaces Eq. (7.4). 

( ) ( )( ) *

0

1
2

L

p p
s P x P L dx L P

E A

  = − + ⋅    
∫  (7.6)

where L  is the length of the tendon. 

The unknown parameter now is *P  (vide Figure 7.15) which can be easily determined from 
Eq. (7.6). Then the effective prestressing force can be calculated as follows 

( ) ( ) ( ) *2P x P L P x P′ = − −  (7.7)
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Figure 7.15 Calculation of the effective prestressing force when the entire length of the 
tendon is affected by the anchor slip 

It is common practise to apply the initial prestressing force at both anchors in very long 
tendons in order to minimise the frictional losses in the tendon. The effective prestressing 
force can be obtained by calculating the prestressing force for both ends independently 
according to Eq. (7.2)-(7.5) and taking the higher value of the two curves in each point as it is 
illustrated in Figure 7.16. 
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Figure 7.16 Calculation of the effective prestressing force when the tendon is stressed at both 
anchors 

7.3.2 Relaxation 
The material model for steel relaxation was discussed in Chapter 3. The prestress losses 
resulted from relaxation are taken into account in the numerical models by reducing the 
applied prestressing force in discrete time steps through the construction period. The further 
relaxation which occurs after the structure is completed is considered with one value and it 
equals to the relaxation after 10 years as obtained by the relaxation model. This “manual” 
approach is necessitated by the fact that no visco-elastic or rather visco-elasto-plastic 
material model is available for reinforcement elements in the given finite element program 
system. The reason that relaxation for the completed structure is considered with one 
constant value and not taken gradually in time steps like in the construction period is that 
the prestressing force in the reinforcement elements can no longer be redefined after the 
reinforcement elements are bonded. A bonded reinforcement element becomes integral part 
of the structure and their stresses and strains are derived from the displacement field of the 
mother element. 

According to the relaxation model in the CEB-FIP Model Code 1990, the estimated 
relaxation after 10 years is 4.7 % if the relaxation after 1000 hours is taken as 2 % (for strands 
with improved relaxation characteristics at an initial stress level of 0.7). The estimated 
relaxation after 1 year and 30 years are then –1.7 % and +1.1 % respectively as compared to 
relaxation after 10 years. 
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7.3.3 Shortening of the concrete member 
The concrete element which embeds the prestressing tendon is subjected to shortening due 
to elastic, creep and shrinkage deformations. Depending on the structure, the type of the 
prestressing system, the construction method and the restraint conditions, the deformations 
of the embedding element influence the force in the tendon. 

If the tendons were all tensioned simultaneously in post-tensioned construction there would 
be no losses of prestress due to elastic shortening. For a segmentally cast concrete cantilever 
bridge that is not the case. Not only the tendons are tensioned sequentially within one 
segment but as the cantilever is being erected segment-by-segment the tendons are installed 
accordingly. The prestress from the subsequent tendons results in elastic deformation in the 
already existing segments and hence further prestress reduction in the already existing 
tendons. 

The concrete elements are further shortened by creep and shrinkage which triggers further 
reduction in the prestressing force. 

When the reinforcement elements which represent the prestressing tendons are bonded to 
their respective mother element, the strains and stresses in the reinforcement element are 
calculated from the displacement field of the embedding element. It implies that the stress 
reduction is automatically takes place as the concrete element deforms. 

On the other hand the tendons remain unbonded through the construction stages and 
accordingly they are set in the model as unbonded. From the model point of view that also 
implies that the tendon remains undeformed and the initial prestressing force is not affected 
by either the deformations of the mother element or the deformations of the global 
structure. In reality, even if the tendons are unbonded they are tied to the structure at the 
anchorage points and to some extent along their axis by frictional forces. The prestress losses 
from the shortening of the concrete segments which occur while the tendons are unbonded 
are taken into account manually by reducing the applied initial force in discrete time steps. 
These time steps naturally correspond with the construction of the segments. 

7.4 Modelling the segmental construction 
The construction history has a determinative influence on the deformations. Therefore it is 
important to simulate the segmentwise construction procedure according to its actual 
chronology. The numerical method which is used through this study can be described as a 
time-dependent phased structural analysis. 

Phased analysis is a series of quasi independent calculation phases. Each phase in the series 
is a complete nonlinear time-dependent finite element analysis. The connection between the 
sequential phases are established by transferring the values of the variables. The obtained 
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results in one phase are transferred to the subsequent phase as initial values. The 
incremental results of each phase following from the incremental effective loads are 
superimposed on the results of the previous phase. Between the calculation phases the 
structural system can be changed; elements can be added or removed and boundary 
conditions and constraints can be modified. New loads can be added or existing ones can be 
removed. Whenever a new node is activated for the first time its displacements are zero. 

The entire simulation of the bridge is divided into calculation phases according to the 
segmental cantilevering chronology. One calculation phase normally simulates one 
construction cycle, i.e. the construction of one segment (or one segment per cantilever if 
those are constructed simultaneously). This gives a typical of 30-40 analysis phases for a full 
simulation. 

In the first analysis phase the model is initialised only with the elements representing the 
foundations, the columns and the first pair of segments. The elements are activated with 
their respective concrete age. In each subsequent phase the new elements which represent 
the new segments are activated. Also the corresponding reinforcement and prestressing 
tendons are activated. A typical calculation phase covers a time period of one week as the 
cantilevering is progressing in one week long cycles. In the last phase the entire bridge 
model is active and the phase spans the service life of the bridge. The time period is 
subdivided into time increments which are uniform on the logarithmic time scale. 
Eventually the entire construction process and the service life of the bridge with a consistent 
time scale is built up from individual calculation phases. For the contraction period the 
simulation is virtually the projection of the construction stages into calculation phases. 

Each calculation phase involves a basically identical series of events as those occur in reality 
in one construction cycle. At the starting point of the phase the new element which was 
“built” in the previous phase is now active and so are the corresponding prestressing 
tendons with the prestress applied. After a time step of one day the load system which 
represents the travelling formwork is moved forward to its subsequent position. That is the 
time when the position of the formwork is actually set according to the prescribed 
over-height curve. After a time step of six days the calculation phase is terminated and the 
new element with the corresponding tendons appears in the model at the beginning of the 
next phase. 

If the actual construction is halted for any reason (e.g. holidays), additional time steps are 
inserted into the phase. Elements which represent the temporarily columns or other 
temporarily structural elements are activated and deactivated according to their presence in 
the actual structure. Boundary conditions are modified accordingly. 

Due to the nature of the segmentwise construction procedure the deformation diagrams 
have discontinuities at the segment borders (vide Figure 7.17). When a new segment is built 
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it has zero deformation at time zero and before loading irrespective of the deformations of 
the already existing neighbouring segment(s). This corresponds to the situation in reality 
that the formwork for the subsequently cast segment is set at the prescribed elevation when 
the existing part of the cantilever has already undergone deformations. The deformation 
diagrams for segmentally built spans can be interpreted properly as diagrams showing the 
deformation of individual segments rather than the deformation of the span as a whole. 
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Figure 7.17 Long-time deflection (above) and horizontal displacement (below) of the 
superstructure 
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The long-time deflection curve determines the precamber curve (or over-height curve) for 
the construction. The precamber curve is the long-time deflection curve with opposite sign. 
It shows the necessary over-height for each segment over its design elevation where the 
formwork has to be positioned. 

It was indicated that the weight of the travelling formwork is taken into account in the 
simulation. The realistic modelling of the formwork operation is important because it has a 
significant influence on the total deformations. The formwork typically weights around 
500-900 kN which may be more than the weight of the segments themselves in the middle 
section of the span. Since the formwork is already on the cantilever, a new segment is 
affected by the weight of the formwork only as it is moving forward, i.e. the arm of force 
with respect to the pier is increasing. On the other hand that segment is fully affected by the 
removal of the formwork when the span is completed. That is why the influence of the 
weight of the formwork on the deflections has a net result which seems more of a deloading 
than a loading (c.f. positive deflection values in the main span shown in Figure 7.18). The 
deflection curve from the formwork is not symmetrical since the cantilevering  procedure 
for the span is not symmetrical. In fact the difference in the total long-time deflection 
between the two cantilevers of the main span (vide Figure 7.17) is the result of that. 
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Figure 7.18 Long-time deflection of the superstructure from the weight of the travelling 
formwork 
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Chapter 8                                                                   

Long-term Monitoring of Deformations 

 
The database on the observed deformations in Norddalsfjord Bridge, 
Støvset Bridge and Stolma bridge is the core component of the study. The 
chapter reviews the methods of deformation monitoring and the content of 
the database.  
 
 

8.1 Introduction 
Long-term monitoring of deformations in concrete cantilever bridges is important in order 
to gain information on deformation development in these structures. The benefits are 
multifold. The measurements are used to verify the design calculation and to assess the state 
of the structure during its service life. The gained information can also be used to improve 
the theoretical models and the design procedure for future bridges. While various 
experiments can provide useful background and support information, monitoring the actual 
bridges is the only way to obtain direct knowledge on deformation development in these 
structures. Long-term deformation monitoring should be a standard procedure for any 
substantial concrete bridge as the status and value of the structure justifies the relative low 
extra cost and effort. 

A database on observed deformations in the three investigated bridges was established 
within the current study. The substantial part of the data for Norddalsfjord Bridge and 
Støvset Bridge was available at the beginning of the study and that was completed with 
measurements during the study period up to the end of 2001. That means that the available 
data now covers 14 years and 8 years of the service life of Norddalsfjord Bridge and Støvset 
Bridge respectively. Stolma Bridge is relatively young, the measurement covers 3 years from 
the completion of the bridge. 
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Long-term deformation monitoring was implemented through strain and deflection 
measurements. The established database contains deflection measurements for Støvset 
Bridge and Stolma Bridge and deflection and strain measurements for Norddalsfjord Bridge. 
Deformation control during the construction period of the bridges were carried out by 
deflection measurements. 

8.2 Methods of monitoring 

8.2.1 Deformation control in the construction period 
Strict control of deflections during the construction is crucial for the cantilevering method. 
In each construction stage the elevation of the entire existing span is measured by levelling 
including the forward tip of the travelling formwork. The measurement takes place after the 
prestressing force is applied in the tendons of the new segment and the formwork is moved 
to its subsequent position. That is the point when the travelling formwork is adjusted on the 
elevation prescribed by the precamber. The precamber is the designed elevation of the span 
plus the necessary over-height. The latter is determined from the expected long-term 
deflection. 

The measured elevation of each existing segment in each construction stage is recorded in a 
pyramid-like diagram. The pyramid form is resulted as the data is recorded in rows and the 
length of the rows are gradually increasing at both ends as the length of the balanced 
cantilevers are increasing segment by segment. The diagram includes the theoretical 
expected value, the observed value and the difference between the two values. 

In some cases the measurements are carried out also after the new segment is cast but before 
the prestressing tendons are installed and the formwork is moved. These additional 
measurements provide extra control. 

Deflection measurements in the construction period are always carried out irrespective of 
further intentions of long-term monitoring. 

8.2.2 Long-term monitoring of the deflection by levelling 
The simplest and most reliable way to monitor the deflection of the superstructure is 
measuring the elevation of the deck by means of levelling on a regular basis. Such 
measurements do not require special instrumentation. The measurements can be easily 
integrated into the framework of the bridge inspection plan. 

Deflection is a characteristic of the global structural behaviour of the bridge. It is the direct 
measure of the state of the bridge concerning deformations. On the other hand it is hardly 
possible to pinpoint the exact reason for an observed deviation from the expected theoretical 
deflection based on the deflection measurements alone. 
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It is favourable that the long-term deflection measurements are carried out as continuation 
of the measurements made during construction. The database on the measurements made 
during construction and the database on the long-term measurements should be coupled 
and managed as a coherent database. The author has experienced in case of all three 
investigated bridges that no connections were originally established between the reference 
points used for levelling in the construction stages and the reference points used for 
long-term measurements on the completed structure. In the absence of this information the 
two databases can not be coupled which renders the long-term measurements less valuable. 
The reference points in the construction stages are normally the upper point of deck slab in 
the centreline of the box-girder at the segment boundaries. When the bridge is completed 
those points are covered by the asphalt layer. The long-term measurements are taken either 
on the concrete parapet or on bolts. The exact difference between the corresponding points 
are often not known. For future bridges attention should be paid to document the elevation 
difference between the reference points. 

8.2.3 Strain measurements 
Strain measurements are carried out with strain gauges which are normally welded to the 
reinforcing steel. The strain gauge is essentially a vibrating wire load cell. The sensor 
element is a stainless steel tube with a central steel wire clamped to the tube at both ends. 
The strain in the reinforcing steel is picked up by the wire in the steel tube. The exciter 
makes the wire oscillate and the pickup element measures and records the resonant 
frequency. The strain is the function of the resonant frequency measured in the wire. 

Strain is a measure of local behaviour concerning deformations. The advantage of strain 
measurements over deflection measurements is that the strain in a given point of the 
structure is not effected by local structural effects occurring elsewhere in the structure as 
mush as deflection. Consequently the observed data is the less disturbed which provides a 
more solid basis for evaluation with respect to creep and shrinkage. 

On the other hand strain gauges are often found unreliable for long-term monitoring. The 
gauges may exceed their measurement range, may cease to operate due to technical 
malfunctions or may furnish incorrect readings. Since strain is a local measure the strain 
measurement may be affected by local material inhomogeneity and consequently the 
measured value may not be representative. Therefore strain measurements have to be 
evaluated with great caution and reservation. 

8.3 Long-term deformations in the investigated bridges 
In this subsection mainly the available long-term measurements are reviewed. The 
measurements carried out in the construction phases are documented for all three bridges 
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which database is more or less complete. These measurements are presented and evaluated 
in comparison with the theoretical calculations in Chapter 9 in addition to the long-term 
measurements. 

8.3.1 Norddalsfjord Bridge 
Norddalsfjord Bridge was instrumented with strain gauges in the piers and in the 
superstructure. The primary objective with the instrumentation was to monitor the 
deformations during the construction phases in order to control the safety of the bridge and 
to verify the design calculations (Fergestad and Naess 1987). The majority of the strain 
gauges have remained operational and have continued to furnish reasonable readings. 
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Figure 8.1 Position of the strain gauges 

The twin wall piers were instrumented with four gauges in each wall. One gauge was 
placed in each quarter of the wall, 1.5 meter above the upper plane of the foundation. The 
average strain in the pier walls shown in Figure 8.2 are the average of the four 
measurements (or the average of the measurements by those gauges which have remained 
operational). 
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Figure 8.2 Average observed strain in the twin wall piers, Norddalsfjord Bridge 
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The measurements are shown from the moment the strain gauges were mounted and the 
pier section was cast. It means that the first 18 months covers the construction period for the 
pier walls in A2.1 and A2.2 while the same period is 15 months for the pier walls in A3.1 
and A3.2. 

It is seen that the average strain in the twin walls in A2 are almost the same while the strain 
in the twin walls in A3 are somewhat different. The reason is most likely that the 
superstructure around A2 was constructed more or less in a balanced double cantilever. 
Whereas the superstructure around A3 is rather asymmetric and the wall next to the side 
span ballast (in A3.2) was more loaded during construction than the wall next to the main 
span. 
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Figure 8.3 Observed strain in the superstructure, Norddalsfjord Bridge 
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The superstructure in the main span was instrumented in three sections with two strain 
gauges in each, one gauge in the upper slab and one gauge in the lower slab. The sections 
are situated at 26.0 meter from A2, at mid-span and at 26.0 meter from A3 (vide Figure 8.1). 
Figure 8.3 shows the measured strains in the superstructure. The measurements are shown 
from the moment the strain gauges were mounted and the respective segments were cast. 
No reasonable explanation was found why the strain in the lower slab near A3 has been 
seen decreasing, it is assumed that the gauge has been malfunctioning. 

However the deflection in the completed bridge was not regularly monitored through its life 
span, two measurements took place in 2001 in addition to the two measurements which 
were done soon after the bridge was completed in 1987. The results of the levelling are 
shown in Figure 8.4 with the first measurement being the reference. The elevation of the 
bridge deck over the design elevation is shown in Figure 8.5 together with precamber curve. 
The precamber curve has a high value over the abutment in A1 (vide Figure 8.1) because the 
superstructure was jacked down in A1 prior to the continuity in the main span was 
established. It is seen that the elevation of the deck after 14 years is still well above the 
design elevation. However, the precamber was set significantly higher than it would follow 
from the expected long-term deflection. 
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Figure 8.4 Deflection of the superstructure, Norddalsfjord Bridge 



Long-term Monitoring of Deformations  

115 

Profile [m]

3850 3900 3950 4000 4050 4100 4150 4200

H
ei

gh
t 

ov
er

 d
es

ig
ne

d 
ca

m
be

r 
[m

m
]

0

100

200

300

400

500

600

700

Precamber
06/05/1987a

05/06/1987
16/10/2001

 
Figure 8.5 Height of the bridge deck over the design camber, Norddalsfjord Bridge 
(mid-span at 4025.25 m); a prior to the asphalt layer was placed 

8.3.2 Støvset Bridge 
The deflection in the superstructure of Støvset Bridge has been monitored on a regular basis. 
The first measurement on the completed bridge took place five months after the bridge was 
completed. Now one measurement is carried out in each year. The relative deflections are 
shown in Figure 8.6 where the first measurement is used as the reference. 
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Figure 8.6 Deflection of the superstructure, Støvset Bridge 
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The development of the relative deflection at mid-span (at profile 815.5 m) is shown in 
Figure 8.7. 
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Figure 8.7 Deflection at mid-span, Støvset Bridge 
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Figure 8.8 Elevation of the middle section of the central span, Støvset Bridge (mid-span at 
815.5 m); a after the cantilevers are connected and the formwork is removed, b after the 
continuity tendons are prestressed 
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The elevation of the bridge deck around the middle section of the central span is shown in 
Figure 8.8. It is seen that the bridge deck now, eight years after the bridge was completed, is 
below the design elevation. The first measurement on the completed structure, just five 
month after the completion, indicated that the deck, apart from a short section around the 
mid-span, reached its design elevation. A partial explanation is suggested by the two 
measurements carried out in the last phase of the construction. It is seen in the diagram that 
the prestressing by the continuity tendons did not uplift the superstructure around the 
mid-span as it was expected. The design calculation figured the uplift at mid-span being 
equal to 125 mm whereas the observed uplift was only 11 mm. It can partially be explained 
with lower effective prestressing force in the continuity tendons as result of excess frictional 
prestress loss in the rugged and angular joint of the cantilevers. Besides it has to be 
mentioned that the author’s calculation figured only a 51 mm uplift in contrast to 125 mm. 

8.3.3 Stolma Bridge 
Stolma Bridge has been monitored by levelling. So far four measurements took place on the 
completed bridge in addition to the measurements carried out during the construction 
phases. The first measurement took place right after the completion of the bridge. The 
results of the measurements are shown in Figure 8.9 with the first measurement being the 
reference. 
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Figure 8.9 Deflection of the superstructure, Stolma Bridge 

Figure 8.10 shows the over-height of the bridge deck on the design camber. The theoretical 
precamber shown in the diagram was slightly corrected during the erection of the 
cantilevers because the observed deflections in the last few segments were somewhat 
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smaller than predicted. The small deviation from the expected deflection did not constitute a 
significant problem. The right cantilever of the main span was built with an eight segment 
lag behind the left cantilever which offered enough room for correction. Eventually the two 
cantilevers met within a height difference of 10 mm which was rather satisfactory 
(Rosseland and Thorsen 2000). Small deviation from the intended elevation is not much of a 
problem in a high camber as the primary importance is to achieve a smooth curvature. 

The relative deflection at mid-span in the first three years was 92 mm and the over-height is 
now 290 mm. 
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Figure 8.10 Height of the bridge deck over the design elevation, Stolma Bridge (mid-span at 
1524.5 m); a after the cantilevers are connected, b after the formwork is removed and the 
continuity tendons are prestressed 
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Chapter 9                                                            

Numerical Studies 

 
The three investigated bridges are analysed and the calculated results are 
presented. The calculation is compared with the measurements. A 
sensitivity study is carried out to determine the influence of variation in 
creep, shrinkage and prestressing on the deflections. Further sensitivity 
investigations are made concerning the environmental parameters and the 
long-term deformation characteristics of LWAC. 
 
 

9.1 Introduction 
The calculated deformation responses of the three investigated bridges are presented in this 
chapter. The results are evaluated in comparison with the measured deformations. The 
numerical analyses were carried out with finite element program system DIANA Release 7.2 
(DIANA 1999). The numerical model and simulation used for the analysis of the bridges 
were discussed earlier in the thesis. The mathematical algorithm of the rate-type constitutive 
model for aging viscoelasticity was described in Chapter 6 while the finite element model 
and the numerical simulation was described in Chapter 7. The bridges were introduced in 
Chapter 2. 

In the first part of the chapter, the measured deformations are compared with the theoretical 
values calculated with the creep and shrinkage models of the CEB-FIP Model Code 1990 
(CEB 1991). The viscoelastic model in the numerical analyses is the Kelvin chain model. For 
Støvset Bridge and Stolma Bridge, the elastic modulus of both the normal density concrete 
and the lightweight aggregate concrete were taken from laboratory tests. For Norddalsfjord 
Bridge, test result was not available. The elastic modulus was estimated as 75 % of the value 
given by the MC90 formula, in accordance with the observed tendency in high strength 
concrete in Norway (vide subsection 5.2.2). The creep coefficient and the shrinkage strain of 
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the lightweight aggregate concrete was assumed the same as those of normal density 
concrete of the same strength. 

The calculated responses in this part of the thesis are considered as deterministic values 
while it is acknowledged that predictions based on theoretical models are marked with 
considerable statistical uncertainty. To study the effect of the variation in the model 
parameters, various sensitivity analyses were carried out. The effect of variation in creep, 
shrinkage and the effective prestressing force on the deflection was determined in all three 
bridges. Then, the influence of potential estimation error in the average relative humidity 
and temperature was considered in the analysis of Støvset Bridge. 

It was concluded in Chapter 4 that the particular characteristics of creep and shrinkage in 
lightweight aggregate concrete is not well understood yet and the existing theoretical 
formulations are considered controversial. The influence of potential prediction error in that 
regard was studied for Støvset Bridge. 

Finally, the CEB-FIP Model Code 1990 and the Bazant’s B3 model are compared for Støvset 
Bridge. The latter model normally produces considerably higher long-term creep (vide 
Figure 3.12). 

9.2 Norddalsfjord Bridge 
Norddalsfjord Bridge is rather special in the sense that there is a large vertical drop in the 
elevation of the deck between the two ends of the bridge (vide Figure 2.3). Under such 
precondition in the geometry, the camber in deck is very small which allows little tolerance 
for excess deflection. 

The calculated deflection of the superstructure is shown in Figure 9.1 in three characteristic 
points of time: (1) prior to the last segment is cast at mid-span and the cantilevers are 
connected, (2) after the bridge is entirely completed and ready for opening for traffic and (3) 
after 70 years of service. Deformations after 70 years can be considered as the final value of 
the deformations, at least for models like the CEB-FIP Model Code 1990 where a theoretical 
final, asymptotic value of creep exists. Either way, the deformation gradient is very small 
after that period of time and the 70 years of age is a reasonable reference time. This is the 
most important curve of the three because it is necessary for determining the precamber of 
the superstructure, i.e. the required over-height for each individual segment in the 
construction phase. The precamber is determined as the final deflection curve taken with 
opposite sign and usually further raised by a reasonable additional over-height. The latter 
provides a safety margin in case the calculation underestimates the long-term deflection. 

The 200 mm deflection at the abutment in A1 comes from jacking down the superstructure 
in order to stabilise the twin wall pier in A2 before continuity of the span was established. 
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Figure 9.1 Deflection of the superstructure, Norddalsfjord Bridge (piers are at 3910.0 m and 
4140.5 m) 

Profile [m]

3850 3900 3950 4000 4050 4100 4150 4200

D
is

pl
ac

em
en

t 
[m

m
]

-50

-25

0

25

50

75

100

125

150

before connection

after completion

after 70 years

 
Figure 9.2 Horizontal displacement of the superstructure, Norddalsfjord Bridge (the values 
apply for the reference line of the superstructure), (piers are at 3910.0 m and 4140.5 m) 

The horizontal displacement of the superstructure is shown in Figure 9.2 in the reference 
line of the box-girder. Virtually the entire horizontal movement is handled by the left pier in 
A2 since the right pier in A3 has no flexibility due to its small height. Therefore the 
movement in A2 is significant, the long-term static displacement alone is 86 mm. The 
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advantage of the twin wall pier design is its capacity to cope with large horizontal 
movements. When joining the cantilevers at mid-span by simple articulation was 
abandoned long time age due to its many disadvantages in structural performance, the 
possibility of expansion joint went as well. The piers had to be made flexible enough to 
overcome the problem. 

The calculated development of strains are compared with the measurements in Figure 9.4 
and Figure 9.5. The position of the strain gauges are shown in Figure 9.3 (also vide 
subsection 8.3.1). 
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Figure 9.3 Position of the strain gauges in Norddalsfjord Bridge 

The starting point of the diagrams correspond to the moment when the strain gauges were 
mounted and the corresponding sections were cast. In the calculation the annual average 
relative humidity and temperature were set equal to 75 % and 10° C, respectively. The 
comparison for the pier walls shows that the long-term strain was overestimated. In fact 
very little long-term strain is seen in the measurements. 
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Figure 9.4 Calculated and measured strain in the twin wall piers, Norddalsfjord Bridge 
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The calculation shows reasonably good agreement with the measurements in the 
superstructure near the piers, particularly for S-A2 (vide Figure 9.3). The strain gauge in the 
lower slab in S-A3 is most certainly malfunctioning. The calculated strains at mid-span 
(S-MS) show good agreement with the measurements as far as the short-time responses are 
concerned. The observed long-time strain, however, is somewhat higher in the prestressed 
lower slab than it was calculated. The strain development at mid-span is very sensitive to 
variations in the construction schedule and the quality of the joint. 
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Figure 9.5 Calculated and measured strain in the superstructure, Norddalsfjord Bridge 

The deflection at mid-span is shown in Figure 9.6. Unfortunately no long-term 
measurements were made until 2001, thus the development of the deflection can not be 
seen. The two measurements made in 2001 indicate very good agreement. The measurement 
made just prior to the asphalting is used as the reference, i.e. the starting point of the 
diagram. 
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Figure 9.6 Deflection at mid-span, Norddalsfjord Bridge (the starting point of the diagram is 
measurement made before the asphalt layer is laid) 

The measured and calculated deflections in the construction phase are shown for two 
segments in Figure 9.8. The position of the segments are illustrated in Figure 9.7 with their 
front profile where the measurements were taken. 
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Figure 9.7 Position of the profile 3993.0 m and 4057.5 m, Norddalsfjord Bridge 

The deflection is shown from the stage when the respective segment was cast and 
prestressed and the formwork was moved to its next position. The measurements are also 
made in the same stage of the subsequent construction cycles. The axis is given according to 
the progress made in the cantilevering, instead of the time. The deflection is seen somewhat 
overestimated for P3993.0. The last data point corresponds to the stage prior to the 
formwork is removed and the superstructure is jacked down in A1. For P4057.5, the last 
data point shows the deflection when the formwork is moved into the position of the last 
segment and it is adjusted vertically. 
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Figure 9.8 Deflection during construction at profile 3993.0 m (top diagram) and 4057.5 m 
(bottom diagram), Norddalsfjord Bridge (the diagrams start when the segment to profile 
3993.0 m and 4057.5 m, respectively, was cast and prestressed and the formwork is moved 
to its subsequent position) 
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9.3 Støvset Bridge 
The calculated deflection and the horizontal displacement of the superstructure are shown 
in Figure 9.9 and in Figure 9.10, respectively. 
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Figure 9.9 Deflection of the superstructure, Støvset Bridge (piers are at 705.5 m and 925.5 m) 
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Figure 9.10 Horizontal displacement of the superstructure, Støvset Bridge (the values apply 
for the reference line of the superstructure), (piers are at 705.5 m and 925.5 m) 
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The deflection diagram indicates that the rotation at the piers are significant after 70 years 
which explains the relatively large deflections. The deflections are considerable larger than 
in the slightly longer span of Norddalsfjord Bridge (vide Figure 9.1) and almost as large as in 
the much longer span of Stolma Bridge (vide Figure 9.14). The horizontal displacement 
diagram suggests the explanation. It is seen that there are sudden changes in the gradient of 
the long-time curve at the piers (unlike in Norddalsfjord Bridge, vide Figure 9.2 and Stolma 
Bridge, vide Figure 9.15) which implies that the specific displacement is considerably smaller 
in the central span than in the side spans. It means that the pier walls are too rigid and they 
are acting as constraints on the central span. Internal tensile force is being built up in the 
main span as the result of long-term creep and shrinkage effects. Eventually, this tensile 
force is acting on the pier-heads and bending the piers toward the main span. 

In the calculation the annual average relative humidity and temperature were set equal to 
70 % and 10° C, respectively. The measured and calculated deflection at mid-span are 
compared in Figure 9.11. The reference point of the diagram is the moment when the 
superstructure is completed, the formwork is removed and the continuity tendons are 
prestressed. The small positive deflection at the beginning of the calculated diagram is 
coming from the partial recovery of creep deformation caused by the weight of the 
formwork. The agreement between calculation and measurement can be considered as 
reasonably good, however, moderately underestimated. The average deformation gradient 
within the first five years is seen higher than it was estimated. 
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Figure 9.11 Deflection at mid-span, Støvset Bridge (the diagram starts when the span is 
completed and the continuity tendons are prestressed) 
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The deflection of the segment 3-17 at profile 838.5 m during in construction phases is shown 
in Figure 9.13. Figure 9.12 shows the position of the segment. 
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Figure 9.12 Position of the front profile of segment 3-17 (P838.5 m), Støvset Bridge 

The diagram starts when the segment 3-17 was cast and prestressed and the formwork was 
moved to its next position. The calculated values are in close agreement with the 
measurements until the cantilevers are connected. The comparison is not too relevant in that 
stage since the elevation of the cantilever was adjusted prior to the connection. The last two 
data points, however, illustrate that the prestressing by the continuity tendons failed to raise 
the mid-span in contrast to what was expected (vide subsection 8.3.2). 
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Figure 9.13 Deflection during construction at profile 838.5 m, Støvset Bridge 

9.4 Stolma Bridge 
The calculated deflection of the superstructure is shown in Figure 9.14. A few segments 
around mid-span are seen at a higher elevation after the bridge is completed than prior to  
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the last segment is cast. The reason is that the uplift resulted from the removal of the 
formwork and the prestressing by the continuity tendons are larger than the opposite effect 
from the weight of the last segment and the additional non-structural bridge parts. 
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Figure 9.14 Deflection of the superstructure, Stolma Bridge (piers are at 1374 m and 1675 m) 
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Figure 9.15 Horizontal displacement of the superstructure, Stolma Bridge (the values apply 
for the reference line of the superstructure), (piers are at 1374 m and 1675 m) 

The calculated horizontal displacement of the superstructure is shown in Figure 9.15. 
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The calculated and observed deflection at mid-span are compared in Figure 9.16. The 
diagram starts when the formwork is removed from the competed superstructure and the 
lower slab is prestressed. The long-term measurements indicate smaller deflection than it 
was predicted by the theoretical model. In the calculation the annual average relative 
humidity and temperature were set equal to 80 % and 8° C, respectively. 
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Figure 9.16 Deflection at mid-span, Stolma Bridge (the diagram starts when the span is 
completed and the continuity tendons are prestressed) 

Figure 9.18 compares the measured and the calculated deflection in the construction phase 
for segment 3-25 at profile 1547 m (vide Figure 9.17). 

 

301 meter 72 meter94 meter

Segment 3-25
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Figure 9.17 Position of the front profile of segment 3-25 (P1547 m), Stolma Bridge 

Unlike previous diagrams concerning the construction stages, the diagram in Figure 9.18 
starts when the formwork is set in its position for casting the 3-25 segment, i.e. the values 
include the deflection from its own selfweight and prestressing. The calculation is virtually 
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in perfect agreement with the measurements after the 3-25 segment and the following two 
segments are completed while the observed deflection is smaller in the subsequent stages. 
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Figure 9.18 Deflection during construction at profile 1547 m, Stolma Bridge 

9.5 Sensitivity of the deflections to variations in material models 

Sensitivity of the deflections to variations in the creep coefficient, the shrinkage strain and 
the effective prestressing force were investigated. Two parameters were introduced into the 
DIANA code in order to manipulate the predefined creep and shrinkage models, a 
multiplier for the creep coefficient, cϑ  and a multiplier for the shrinkage strain, sϑ  (vide 
Eq. (9.1)). 

( )
( )

( )
( ) ( )

φε σ ε = + ⋅ + ⋅  ∫
280

1 ,
t

o
c o s s

c o c

t t
t d t t

E t E
ϑ ϑ  (9.1)

Three analyses were carried out for each bridge in addition to the original analysis: (1) the 
creep coefficient was increased by 30 percent, 1.30cϑ = , (2) the shrinkage strain was 
increased by 30 percent, 1.30sϑ =  and (3) the effective prestressing force was reduced by 
3 percent. The latter is meant to consider variation in the effective prestressing force due to 
various uncertainties such as that in steel relaxation, friction coefficient between the strand 
and the sheathing, wobble effect and anchor slip. 

The variation in the deflection responses are summarised in Table 9.1. The maximum 
deflection prior to the cantilevers are joint, the maximum deflection after 70 years and the 
mid-span deflection after 70 years are shown in the table. The variation in the creep and the 



Numerical Studies 

132 

shrinkage characteristics produces fairly consistent variations in the corresponding 
responses percentage-wise in the three bridges. 

Table 9.1 Variation in the deflection responses 

 original + 30 % 
creep coefficient 

+ 30 % 
shrinkage 

- 3 % 
eff. prestress 

 mm mm % mm % mm % 
        
Norddalsfjord Bridge        

max. prior to connection -268 -281 (4.6) -268 (0.0) -276 (2.6) 
max. after 70 years -433 -479 (10.7) -443 (2.4) -459 (6.0) 
mid-span after 70 years -141 -171 (21.4) -153 (8.5) -160 (13.5) 

        
Støvset Bridge        

max. prior to connection -346 -366 (5.7) -346 (0.0) -353 (2.2) 
max. after 70 years -725 -809 (11.7) -753 (4.0) -743 (2.5) 
mid-span after 70 years -373 -437 (17.4) -404 (8.3) -384 (3.1) 

        
Stolma Bridge        

max. prior to connection -495 -522 (5.5) -495 (0.0) -504 (1.8) 
max. after 70 years -758 -848 (11.9) -778 (2.6) -778 (2.7) 
mid-span after 70 years -286 -352 (23.0) -309 (7.8) -299 (4.4) 

        
The number in the brackets is the percentage increment as compared to the original value. 
 
The 30 % higher creep coefficient gives an 11-12 % larger maximum long-time deflection 
and a 5-6 % higher maximum deflection prior to the cantilevers are connected. The 30 % 
higher shrinkage strain produces a 2-4 % higher maximum long-time deflection. The 
shrinkage has virtually no effect on the deflections until the cantilevers are connected, 
because the cantilevers can move unrestrained in the horizontal direction. 

9.6 Estimation error for the relative humidity and the temperature 
The relative humidity and the temperature of the ambient environment are parameters of 
the material models (vide subsection 3.2.2). The final value of creep and shrinkage are 
smaller at higher relative humidity and reduced temperature. Also their development with 
time is decelerated at higher relative humidity and reduced temperature. Furthermore, the 
maturity of the concrete is reduced while the elastic modulus at given age is higher at 
reduced temperature. 

In the calculations the relative humidity and the temperature are taken into account with 
their expected annual average values. These values are assumed uniform and representative 
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over the entire life span of the bridges. The expected annual average value of the relative 
humidity and the temperature can normally be estimated based on meteorological records 
of nearby weather observation posts. Depending on the availability of the information and 
local conditions, the estimated values may slightly differ from the actual values. The effect 
of potential error in the parameter estimation for the relative humidity and the temperature 
was determined for Støvset Bridge. 

Along the Norwegian coast, excluding the far northern part, the annual average relative 
humidity varies around 70-80 % and the annual average temperature is between 5° C and 
10° C. The average relative humidity is higher on the western coast (Stolma Bridge and 
Norddalsfjord Bridge) and lower on the northern coast (Støvset Bridge). 

In the present analysis, the expected range of the variation is determined for the deflections. 
Figure 9.19 shows the deflection of the main span calculated with two sets of parameter 
values. The maximum long-time deflection is 9 % smaller at the relative humidity of 80 % 
and the temperature of 5° C as compared to the original calculation with the relative 
humidity taken as 70 % and the temperature taken as 10° C. The deflection in the 
construction phase is little affected. The development of the mid-span deflection is shown in 
Figure 9.20. 
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Figure 9.19 Deflection in the central span under different average environmental conditions, 
Støvset Bridge 1 

 
1 The deflection diagram represents the same deflection as previous zigzag-like diagrams but only that 
value at the segment boundaries is considered which belongs to the segment built first. This is for the 
simpler illustration and easier comparison between curves. 
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Figure 9.20 Deflection at mid-span under different environmental conditions, Støvset Bridge 

9.7 Uncertainty in the long-term characteristics of LWAC 
In previous calculations, the creep coefficient and the shrinkage strain of the lightweight 
aggregate concrete was assumed the same as those of normal density concrete of the same 
strength. Although extension to the CEB-FIP Model Code 1990 concerning LWAC (fib 2000b) 
was published recently which comments on the creep and shrinkage characteristics of 
LWAC but the existing theoretical formulations seem questionable (vide Chapter 4). 

In the present approach of modelling, the creep compliance of normal weight concrete is 
supplemented with two reduction factors. The reduction factors are assigned to the elastic 
modulus and the creep coefficient (vide Eq. (9.2)). They are functions of the oven-dry density 
of the lightweight aggregate concrete. The formulations were presented in Table 4.1. 

( )
( )

( )

28

,1
, o

o
E c o E c

t t
J t t

E t E
φη φ

η η
⋅

= +
⋅ ⋅

 (9.2)

In previous calculations, the elastic modulus of LWAC was taken from test results, thus the 

Eη  modifying factor was intrinsically considered while, on the other hand, the creep 
coefficient was estimated as for NWC of the same strength. The resulted creep deformation 
was approximately 50 % higher than that of NWC (vide Eq. (9.3)). 

( )2
1 1

1.52
/2200Eη ρ

= =      where   31784 /kg mρ =   (Støvset Bridge) (9.3)
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In the first analysis of the present investigation, it was determined what effect it makes on 
the deflections if the creep deformation is considered according the LWAC extension of the 
CEB-FIP Model Code 1990. It suggests that the creep deformation of LWAC is 20 % higher 
than that of NWC, the strength being the same. 

1.2
E

φη
η

=                (vide Eq. (9.2)) (9.4)

For Støvset Bridge, it implies that the creep coefficient is approximately 80 % of that of 
normal weight concrete. 

( )21.2 1.2 /2200 0.8Eφη η ρ= =      where   31784 /kg mρ =  (9.5)

In the second analysis, the reduced creep coefficient was combined with a 50 % higher 
shrinkage strain. The LWAC extension of the CEB-FIP Model Code 1990 states the final 
shrinkage strain of LWAC is higher than that of NWC by up to 50 %. 
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Figure 9.21 Deflection in the central span with different creep and shrinkage characteristics 
of LWAC, Støvset Bridge (the third curve can hardly be seen because it is in close agreement 
with the first curve after 70 years) 
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The deflection of the central span is shown in Figure 9.21. The reduced creep coefficient 
furnished 4 % lower maximum long-time deflection. The reduced creep coefficient together 
with the increased shrinkage strain resulted in an almost identical long-time deflection as 
the original calculation (for that reason the curve in the diagram can hardly be seen). The 
deflection in the construction phase prior to the cantilevers are joint is little affected by the 
reduced creep coefficient. Since shrinkage does not induce deflection in the free cantilevers, 
the higher shrinkage strain has no effect on the deflections in the construction stages. The 
development of the mid-span deflection is shown in Figure 9.22 in the three cases. 
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Figure 9.22 Deflection at mid-span with different creep and shrinkage characteristics of 
LWAC, Støvset Bridge 

9.8 Calculated deflection, MC90 versus B3 model 
Different creep and shrinkage models were compared in subsection 3.2.7. The predicted 
creep and shrinkage curves showed significant differences in many cases. Deviation from 
the CEB-FIP Model Code 1990 was particularly large for the creep compliance given by 
Bazant’s B3 model. The objective of the present investigation was to determine the 
magnitude of the difference in the actual deformation responses of a segmentally built 
cantilever bridge and eventually to see the consequences of the model choice, as far as these 
two widely recognised but characteristically different models are concerned. 

Støvset Bridge was used again in the comparative study. The numerical model with the 
MC90 material models was the same as in previous analyses. The creep compliance was 
approximated with the Kelvin Chain model. The B3 model, on the other hand, was 



Numerical Studies  

137 

approximated with the Maxwell Chain model. The chain parameters in the latter case were 
determined by the RELAX program (Jonasson and Westman 1999). Since the Maxwell Chain 
is based on the relaxation function, the creep functions had to be converted into relaxation 
functions. The RELAX program uses an algorithm for that purpose which was proposed by 
Bazant and Ashgari (1974). 

The temperature was set equal to 20° C in both analyses because no formulation for 
temperature other than 20° C was given for the drying creep component and shrinkage in 
the B3 model (Bazant and Baweja 1995). 
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Figure 9.23 Calculated deflection in the central span in four stages as given by the CEB-FIP 
Model Code 1990 and the B3 model 

The calculated deflection in the central span is shown in Figure 9.23 in four stages. The 
development of the deflection is shown at mid-span in Figure 9.24. The short-time 
deformation is significantly smaller with the B3 model. However, the deformation gradient 
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after a short period of time is higher. While the deflection according to the MC90 model is 
approaching a final value, the B3 curve has an almost constant gradient on the logarithmic 
scale after about 1000 days. Eventually the deflection after 70 years is significantly larger 
with the B3 model. The smaller calculated short-time deformation given by the B3 model is 
in agreement with what was observed in Figure 3.12. The initial response was considerably 
lower than estimated by other models when the concrete age at loading was higher than 
28 days. 

The measurements are seen in better agreement with the MC90 model. The estimated 
deflection is slightly higher than in previous analyses with the MC90 model because of the 
higher temperature taken in the calculation. 

Time [day]

100 1000 10000

D
ef

le
ct

io
n 

[m
m

]

-700

-600

-500

-400

-300

-200

-100

CEB-FIP MC90

B3 model

Measurement

 
Figure 9.24 Development of the deflection at mid-span as given by the CEB-FIP Model Code 
1990 and the B3 model in comparison with the measurements 

9.9 Concluding remarks 

Various calculated deformation responses were compared with the measurements in three 
bridges. While moderate differences were observed in most cases, no clear overall tendency 
toward under- or overestimation was found. The predicted long-term deflection in 
Norddalsfjord Bridge was in good agreement with the measured values while the long-term 
deflection was slightly underestimated in Støvset Bridge and overestimated in Stolma 
Bridge. 

The three bridges are the same type of structure built with the same construction method 
and exposed to similar environmental conditions. The numerical model for all three bridges 
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were set up along the lines of the very same principles using the same material models. It is 
difficult to pinpoint the precise reason for the prediction error in any particular case. In the 
light of the general uncertainty associated with long-term creep and shrinkage prediction in 
concrete it has to be acknowledged that prediction errors can not be eliminated entirely. 
While numerical methods reached the level of sophistication where the most complex 
problems can be addressed effectively, the statistical uncertainty in the long-term material 
models are significant and the room for improvement is very limited in that regard (CEB 
1990). In the next chapter the statistical variation in the material models and various model 
parameters are taken into account in a probabilistic model in order to estimate the statistical 
properties of the deformations. 

In a sensitivity study, the effect of variation in the creep coefficient, shrinkage strain and the 
effective prestressing force was studied. The resulted relative variation in the deflections 
was very similar in the three bridges as far as the variation in creep and shrinkage is 
concerned. The effect of variation in the prestressing force evidently depends on in what 
degree the permanent loads are compensated by the prestressing. 

The sensitivity of the deflections of Støvset Bridge to variations in the creep and shrinkage 
characteristics of lightweight aggregate concrete was studied. Using the same creep 
coefficient for LWAC as for NWC results in an approximately 50 % higher creep 
deformation as compared to NWC1. Whereas the extension to MC90 (fib 2000b) suggests to 
reduce the creep coefficient so the resulted creep deformation is only 20 % higher. On the 
other hand, the experimental results in Chapter 4 indicated that long-term creep in LWAC 
might be higher by more than 20 %. Nevertheless the variation in the deflections was found 
small between these two values. 

The CEB-FIP Model Code 1990 and the B3 model were compared in the analysis of Støvset 
Bridge. The prediction by the MC90 model showed somewhat better agreement with the 
long-term measurements. 

 
 
 
 
 
 
 
 
 
 
 
 

 
1 The 50 % applies for Støvset Bridge. The number is different for concretes with different density. 
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Chapter 10                                                            

Probabilistic Deformation Modelling 

 
The stochastic aspects of deformation prediction are studied. Statistical 
variation in the creep and shrinkage models and the model parameters are 
considered. A Monte Carlo simulation is carried out to estimate the 
statistical properties of structural responses of Støvset Bridge. Practical 
aspects of the Monte Carlo simulation are discussed. 
 
 

10.1 Introduction 
Creep and shrinkage are the most uncertain mechanical properties of concrete. The 
stochastic aspects of these physical phenomena therefore should be taken into account in 
structural analysis and design. Structural responses were treated as deterministic values so 
far in the study, although it was acknowledged that the prediction models are marked with 
a certain degree of statistical variation. Deformations should rather be considered as 
statistical variables and the deformations calculated by theoretical models have to be seen as 
expectation values. Material and environmental parameters were also taken into account 
with their expected mean value but in reality they are also subjected to statistical variation 
and prediction errors. 

Deformation problem is generally a Service Limit State issue and as such it usually needs to 
be considered with the expectation value of the parameters on both the action and the 
structural resistance sides. This approach is sufficient for structures which are not sensitive 
to deformations, like short-span concrete bridges, reinforced concrete beams, frames and 
slabs of ordinary structures. Slender and long span concrete girder bridges built with the 
cast-in-place segmental construction method in free cantilevers are creep and shrinkage 
sensitive structures. Even if the safety against collapse is not threatened (e.g. as in long-time 
creep buckling of thin concrete shells) excessive deformations may compromise the 
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service-life and state of the bridge or compromise the smooth connection of the cantilevers 
in the construction phase. It is therefore important to consider the stochastic aspects of 
long-term deformation prediction in the analysis of deformation sensitive structures. The 
structure should be designed for response values representing a certain confidence limit 
rather than the expectation value in order to minimise the risk of intolerable deformations 
(Bazant and Baweja 1995). 

In this chapter the following issues are addressed: (1) characterise the level of uncertainty in 
the prediction of deformations in concrete cantilever bridges, (2) define design criteria for 
concrete cantilever bridges concerning deformations, (3) identify the critical statistical 
variables and estimate their statistical properties, (4) introduce method for probabilistic 
deformation analysis and (5) determine the expected variation of the deformations and 
estimate the confidence interval of given probability. The probabilistic analysis was 
implemented in a Monte Carlo simulation using an advanced sampling method known as 
the Latin hypercube sampling. The method is demonstrated in the statistical analysis of 
Støvset Bridge. 

10.2 Statistical properties and definitions 
Statistical measures and definitions are reviewed for later reference. The measures are used 
to estimate population properties from random samples (e.g. Kottegoda and Rosso 1997). 
Special considerations which are specific to the Latin hypercube sampling are discussed 
later in subsection 10.4. 

10.2.1 Arithmetic mean 
The arithmetic mean is a measure of central tendency for roughly symmetric distributions 
(e.g. normal distribution). It is denoted by M  when computed in a sample. 

x
M x

n
= = ∑  (10.1)

where n  is the sample size. 

The sample mean, M  is not the theoretical true mean. The true mean is the property of the 
population and it is denoted by µ . In many cases of practical interest the true mean is not 
known. One purpose of a statistical analysis is to estimate the true mean. The sample mean 
is the estimator of the theoretical true mean. 

10.2.2 Standard deviation, variance and coefficient of variation 
The standard deviation is the measure of the dispersion representing the degree of 
variability in a phenomenon and also indicating the precision of the data. Similarly to the 
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arithmetic mean, the standard deviation in most practical cases is calculated in a sample and 
can be considered as the estimator of the theoretical true standard deviation, σ . The sample 
standard deviation is denoted by S  and can be calculated from the following formula: 

( )22

2

n x x
S

n
−

= ∑ ∑  (10.2)

Statistic S  is a biased estimate of the standard deviation, however. It consistently over or 
underestimates the standard deviation in the long run. The most commonly used formula 
for computing standard deviation in a sample is 
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n x x

S
n n

−
=

−
∑ ∑  (10.3)

Statistic Ŝ  is referred to as the unbiased estimate of the standard deviation. From this point 
forward in this subsection the sample standard deviation will be denoted by S  irrespective 
of being a biased or unbiased estimate. 

Variance is an equivalent statistical measure to standard deviation. The standard deviation 
is the square root of the variance. Variance is reflecting more of its signification as being the 
second central moment of the statistical variable. From the practical perspective standard 
deviation is a more useful measure of spread because it has the same unit as the mean. 

The standard deviation is a measure of absolute variation. It measures the actual amount of 
variation and depends on the scale of the data. It is favourable to use a measure of relative 
variation (e.g. to compare the variation in several sets of data). The relative variation can be 
measured by the coefficient of variation denoted by V . It gives the standard deviation in 
percentage of the mean. 

100
S

V
M

= ⋅  (10.4)

10.2.3 Standard error of the mean and the standard deviation 
The standard error of a statistic is the standard deviation of the sampling distribution of that 
statistic. Standard errors reflect how much sampling fluctuation a statistic will show. They 
depend on the size of the sample. Larger sample size yields smaller standard error. 

The standard error of the mean is the standard deviation of the sampling distribution of the 
mean. It measures the reliability of the sample mean as the estimate of the theoretical true 
mean. The standard error of the mean can be estimated from the standard deviation of the 
original distribution and the sample size on which the mean is computed. 
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M
S

S
n

=  (10.5)

The standard error of the standard deviation can also be estimated from the standard 
deviation of the original distribution and the sample size. 

0.71
S

S
S

n
=  (10.6)

10.2.4 Confidence limit 
The confidence limits are the bounding values of the confidence interval, which interval 
contains the statistical variable with a certain probability. In many cases of practical interest 
in the engineering field the 95 % confidence interval is applied. It means that the probability 
is 95 % that the statistical variable will fall within the confidence interval. When the 
confidence interval is bounded by a lower and an upper limit value (i.e. lower and upper 
percentile) it is referred to as a two-sided confidence interval. In many cases, however, the 
nature of the problem requires only a lower or an upper limit and consequently it is referred 
to as a one-sided confidence interval (e.g. the characteristic value of the concrete strength is 
the confidence limit of a lower-bounded one-sided confidence interval). 

Confidence limits denoted by C  can be defined by the number of standard deviations they 
are above or below the mean value. The number of standard deviations depends on the 
required degree of confidence and the type of the distribution. 

Throughout the study it is assumed that model parameters (i.e. the input of the numerical 
analysis) are following roughly normal distribution. As for the structural responses (i.e. the 
outcome of the numerical analysis) the situation is less straightforward. One may assume 
normal distribution also for the responses (Bazant and Baweja 1995) and assume that the 
theoretical true standard deviation has been obtained by the stochastic analysis (i.e. the 
standard deviation is known and not estimated). The confidence limits then can be obtained 
by the so-called z -values. For the two-sided 95 % confidence interval those are 

0.95 1.960C M S= ±  (10.7)

and for the one-sided 95 % confidence interval (lower or upper respectively) 

0.95 1.645C M S= −  

0.95 1.645C M S= +  (10.8a,b)

Even if it is assumed that a statistical variable follows normal distribution, it has to be taken 
into account that the sample standard deviation may deviate from the theoretical true 
standard deviation with a certain error. It is certainly important in case of small samples. It 
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may be desirable to abandon normal distribution and use t -distribution instead. By 
definition, whenever the standard deviation is estimated based on a sample taken from a 
normal population, the t -distribution should be used instead of the normal distribution. 
The t -distribution furnishes somewhat broader confidence interval to account for the 
potential error in the estimated sample standard deviation. The so-called t -values would 
replace the z -values in Eq. (10.7) and Eq. (10.8a,b). The t -values - unlike the z -values - are 
functions of the sample size as well. When the sample size is increasing the t -values are 
approaching the respective z -values. From a practical point of view the standard normal 
distribution provides a good approximation to the t -distribution for a sample size of 30 or 
more. This number and the t -values are valid for random samples. 

When a proper sampling method is used the potential error in the statistical estimator can 
be reduced. The normal distribution may not need to be abandoned even if the sample size 
is smaller than 30. Evidently an important concern with a robust stochastic structural 
analysis is to keep the number of computer runs as small as possible due to the enormous 
amount of computational work. Latin hypercube sampling (McKay et al. 1979) which 
method will be used for the Monte Carlo simulation furnishes significantly more accurate 
estimators than simple random sampling with the number of computer runs being the same. 
In other words, the same accuracy can be reached with less number of computer runs. In the 
present investigation the calculated standard deviation will be treated as the true value 
(Bazant and Baweja 1995). 

The 95 % confidence limits for the sample mean can be obtained when Eq. (10.5) is 
substituted to Eq. (10.7). 

0.95
1.960 S

C M
n
⋅= ±  (10.9)

10.2.5 Pearson Product Moment Correlation 
The correlation between two variables reflects the degree to which the variables are related. 
The most common measure of correlation is the Pearson Product Moment Correlation 
(Pearson's correlation for short). Pearson's correlation reflects the degree of linear 
relationship between two variables. It is a dimensionless index that ranges from -1 to +1 
inclusive. A correlation of +1 means perfect positive linear relationship between two 
variables, -1 means perfect negative linear relationship and 0 means that there is no linear 
relationship. However the latter does not mean that there is no relationship at all (e.g. 
non-linear relationship). When computed in a sample it is denoted by r . A commonly used 
formulation to calculate Pearson's correlation is shown below where x  and y  are two 
variables. 
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 (10.10)

The correlation is often characterised by the square of the correlation coefficient. It is 
refereed to as the r-squared value and denoted by 2r . It gives the proportion of the variation 
in y  attributable to the variation in x . 

10.3 Design criteria concerning deformations in concrete bridges 
The purpose of the probabilistic deformation analysis is to enable a structural design where 
the risk that intolerable deformations will occur can be minimised. 

Two types of situations have to be distinguished. In most cases the issue is to set a 
maximum limit value for a certain deflection or displacement. In that case the procedure is 
rather straightforward. The structure can be designed to the deformation response which 
represents the confidence limit of a one-sided confidence interval of given probability. For 
example, to design the structure for the deformation response representing the confidence 
limit of the 95 % one-sided confidence interval means that if 20 identical bridges were built 
and subjected to identical conditions only one would suffer intolerable deflections 
statistically. Whereas the design for the mean response means that 10 bridges out of the 20 
would exhibit intolerable deflections. The left diagram in Figure 10.1 illustrates a one-sided 
confidence interval and the confidence limits. 

Two-sided confidence interval

R (structural response)

One-sided confidence interval

R (structural response)

z ⋅ SR z ⋅ SRz ⋅ SR

R
_

R
_

 
Figure 10.1 One-sided and two-sided confidence interval 

There are problems, however, where a deviation in either way from the expected theoretical 
mean value may have negative effect on the structure or the construction process. In those 
cases it is necessary to consider both a lower and an upper limit for a certain deformation 
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response. The structure can be designed to the expectation value of the deformation 
response but an interval should be considered within that the variation of that deformation 
response is still tolerable. The right diagram in Figure 10.1 illustrates a two-sided confidence 
interval where the unfavourable range is cut off on both the lower and upper tails. A typical 
example of such situation is the construction process. The two cantilevers have to meet in 
the middle and there is a very small room for a vertical deviation between the tip of the two 
cantilevers. With the probabilistic analysis it is possible to estimate the expected range of the 
deviation of given probability and consider the necessary measures (i.e. possibility for 
additional prestressing, extra counterweight ballast, vertical jacking at the abutments). 

Since both types of the situations exist within the same structure the design can not be 
broken down into individual problems considered and treated separately. It has to be a 
progressive refinement of the design. 

10.4 Monte Carlo simulation for probabilistic deformation analysis 

10.4.1 Introduction 
Simulation techniques which involve random variables are referred to as Monte Carlo 
simulations1 (or Monte Carlo methods). Monte Carlo simulations are used in various 
disciplines of engineering, science and economics. The term simulation can generally be 
defined as replicating real world systems or phenomena based on numerical or physical 
models. To analyse engineering systems with numerical simulation has become increasingly 
popular with the enormous increase in computational power of digital computers. 

Monte Carlo simulation involves applying random sets of system parameter values. The 
response of the system for a given set of system parameter values is then obtained by the 
numerical model. The process is deterministic for a given set of input values. After repeating 
the simulation with several sets of randomly generated system parameter values, the 
statistical properties of the response values and their sensitivity to variations in the system 
parameters can be assessed. A fundamental issue in the simulation is to identify the critical 
system parameters and to determine their statistical properties. An other important part of 
the analysis is the sampling method which is used to randomly generate the sets of values 
for the system variables. 

Mathematicians consider Monte Carlo methods as the very last resort to find solution to a 
problem because of the undesirable random aspects involved. Engineering, on the other 
hand, is more application-oriented and favours Monte Carlo methods because of its 

 
1 The term Monte Carlo was allegedly first used by Hungarian-born American mathematician John von 
Neumann who pioneered the development of Monte Carlo methods in connection with his work at Los 
Alamos during World War II (Hammersley and Handscomb 1964). 



Probabilistic Deformation Modelling 

148 

robustness and capability to address the most complex engineering problems (Hammersley 
and Handscomb 1964). In fact Monte Carlo methods have no alternative for the analysis of 
engineering systems where the system parameters are statistical variables and the system 
behaviour can not be described – for either theoretical or practical reasons – in an analytical 
form. 

In this study a Monte Carlo simulation is carried out with the objective to estimate the 
statistical properties of various structural responses in Støvset Bridge. Eventually the 
confidence limit of the responses is determined. The Monte Carlo simulation consists of 
three main parts: (1) sampling the system parameters, (2) performing a series of 
deterministic structural analyses and (3) statistical assessment of the response values. (1) 
and (3) are implemented in a spreadsheet application. The deterministic structural analyses 
are carried out with DIANA using the same deterministic model which was used in 
previous numerical studies. 

10.4.2 System parameters and their statistical properties 
The success of the Monte Carlo simulation significantly depends on the identification of the 
critical model parameters which need to be considered as statistical variables and the 
determination of their statistical properties. The latter can be based on either existing 
information or assumption. In the present study six model parameters are considered as 
statistical variables and accordingly six uncertainty factors, 1 2 6, ,...,Ψ Ψ Ψ  are introduced into 
the numerical model. The first two uncertainty factors are meant to consider the potential 
prediction error in the creep and shrinkage models while other three uncertainty factors are 
assigned to model parameters such as concrete strength, relative humidity and temperature 
(Bazant and Baweja 1995) to take into account the statistical variation and estimation error. 
The sixth uncertainty factor is assigned to the effective prestressing force. The uncertainty 
factors are assumed to follow normal distribution with the mean value of one. 

10.4.2.1 Creep coefficient 

The highest degree of uncertainty undoubtedly lies in the prediction of the creep 
compliance. The coefficient of variation associated with the model is the inherent property 
of the prediction model as well as the prediction itself. Creep prediction models usually 
report the coefficient of variation for the creep compliance which is 20 % for the CEB-FIP 
Model Code 1990 (CEB 1991). 

Specifying the coefficient of variation for the creep compliance function is in agreement with 
the widely acknowledged principle that creep models should specify the creep compliance 
function rather than the creep coefficient alone. It seems therefore an obvious step to assign 
the uncertainty factor to the creep function. Two concerns, however, arise which explains 
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why the modulus of elasticity and the creep coefficient are treated separately in the current 
simulation as far as the statistical analysis is concerned. 

To obtain the value of the modulus of elasticity for the numerical analysis is more 
deterministic than to obtain the creep function. In most cases of practical interest, like in the 
present analysis, the value of the modulus of elasticity is available from laboratory test, thus 
it represents a significantly smaller uncertainty. The statistical variation in the elastic 
modulus therefore is taken into account only to the extent as it varies as the result of the 
statistical variation in the compressive strength (vide subsection 10.4.2.3). 

On the other hand, in most practical cases the total stress-dependent deformation is 
important and the separation into instantaneous and creep components remains an 
academic question. However, the situation is somewhat different for segmentally cast 
bridges. A segment which is built in a later stage does not “feel” the instantaneous 
deformation in the already existing part of the cantilever which takes place before the 
segment is built but it does “feel” that part of their creep deformation which occurs after the 
segment is built. Obviously, later a segment is built, more pronounced this effect is (e.g. in 
case of Støvset Bridge, the long-time deflection in the mid-segment is more than five times 
the deflection which occurs when the bridge is completed but the estimated average creep 
coefficient is only around 1.3). In short, segments towards the mid-span are influenced by 
creep to a larger extent. Along with the first argument this implies that they are also more 
sensitive in relative terms. 

The uncertainty factor is assigned to the creep coefficient as follows 

( )
( )

( )φ= + Ψ1
28

1 ,
, o

o
c o c

t t
J t t

E t E
 (10.11)

Since the coefficient of variation is reported for the compliance function and not for the 
creep coefficient it needs to be converted. The conversion is made under the condition that 
the obtained coefficient of variation for the creep coefficient will furnish approximately 
identical variation in the long-time values of the creep compliance1 (vide Figure 10.2). 

( ) ( ) ( )1
1

V V V J
φφ

φ
+Ψ = =  (10.12)

 
1 This is only a rough estimate. It neglects the part of the variation in the creep compliance which is 
attributable to the variation in the elastic modulus. This has to be taken in the absence of more accurate 
reported information. 
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Figure 10.2 Confidence intervals for the creep compliance 

If the coefficient of variation of 20 % for the creep compliance and the estimated average 
value of the creep coefficient of 1.33 are substituted to Eq. (10.12), the estimate for the 
coefficient of variation for the creep coefficient is obtained as 

( )1 35%V Ψ =  (10.13)

In the absence of more accurate information the coefficient of variation for creep in 
lightweight aggregate concrete is assumed to be the same as in normal weight concrete. 

10.4.2.2 Shrinkage 

The reported coefficient of variation of the shrinkage model in the CEB-FIP Model Code 
1990 is 

( )2 35%V Ψ =  (10.14)

10.4.2.3 Concrete strength 

The concrete strength is influencing both the creep coefficient and the modulus of elasticity. 
Bazant and Baweja (1995) suggests to consider the statistical variation of the concrete 
strength with a coefficient of variation of 15 %. In high strength concrete the relative 
variation can be expected to be lower. Measurements on concrete samples in connection 
with the investigated bridges gave an estimate of 7 %. It is also likely that the effect of the 
statistical variation is somewhat levelled off on the overall basis in a large-scale structure. If 
no test data is available prior to the analysis a higher value is reasonable though to take into 
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account a potential estimation error of the mean. The coefficient of variation of the concrete 
strength in the current analysis is taken as 

( )3 10%V Ψ =    for   3cm cmf f⇒ Ψ ⋅  (10.15)

The dependency of the modulus of elasticity on the concrete strength is considered with the 
formula derived from Eq. (3.2): 

( )
1
3

28 28
cm

c cm c
cm

f
E f E

f
 =   

 (10.16)

where 28cE  and cmf  are the mean values of the measured modulus of elasticity and the 
corresponding concrete strength. 

10.4.2.4 Relative humidity of the ambient environment and temperature 

Relative humidity and temperature are parameters which are varying not only randomly 
but they also follow a relatively well-definable fluctuation pattern on seasonal and daily 
basis. It is practically impossible to follow this kind of fluctuation in a large-scale analysis. It 
is sufficient to consider the relative humidity and the temperature with their annual average 
and assign the uncertainty factors to these values. The coefficients of variation are estimated 
as 

( )4 15%V Ψ =    for   4RH RH⇒ Ψ ⋅  (10.17)

( )5 15%V Ψ =    for   5T T⇒ Ψ ⋅  (10.18)

Under the assumption of normal distribution with a mean of 70 % and coefficient of 
variation of 15 %, the upper tail of the probability density function of the relative humidity 
falls above 100 %. Naturally this is inadmissible. Abandoning the normal distribution 
would, however, complicate the analysis. Since only 0.2 % of the area under the probability 
density function falls above 100 %, it is reasonable to simply cut off the upper tail above 
100 %. The remedy to this problem is discussed in more detail in the discussion of the 
sampling method (vide subsection 10.4.3). 

10.4.2.5 Effective prestressing force 

The total deflection is basically the sum of two large but opposite deflections resulted from 
the selfweight and the prestressing. Even a small variation in the effective prestressing force 
may result in a considerable variation in the total deformation. All the uncertain properties 
involved in the prediction of the effective prestressing force (curvature friction, wobble 
friction, anchor slip and relaxation) are taken into account with one uncertainty factor which 
is directly assigned to the effective prestressing force. Assuming that the effective 



Probabilistic Deformation Modelling 

152 

prestressing force can be estimated within ±5 % with a probability of 0.95, the coefficient of 
variation is estimated as (c.f. 0.95 1.645 0.03 0.05p = ⇒ ⋅ ≈ ) 

( )6 3%V Ψ =    for   6eff effP P⇒ Ψ ⋅  (10.19)

10.4.3 Latin hypercube sampling 
Latin hypercube sampling was suggested by McKay et al. (1979). It is a refinement of 
stratified sampling. The idea of Latin hypercube sampling is to partition the domain of each 
statistical variable iθ  into N  intervals ( )1,2,...,k

i k Nθ∆ =  of equal probability 1/N . The 
number of intervals N  is chosen to be the same as the number of samples being taken (i.e. 
number of computer runs). From each interval the parameter value is sampled once and 
only once. 

If the number of intervals, N  is large the parameter value needs not to be sampled 
randomly within the interval but may be taken at the centroid of the intervals (vide Figure 
10.3). The sampled value k

iθ  for a randomly selected k  value is obtained by solving the 
following equation: 

( ) ( )1/2k
i iF k Nθ = −  (10.20)

where ( )i iF θ  is the cumulative distribution function of iθ . 
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Figure 10.3 Partitioning the range of the statistical variable into twelve intervals 
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The advantage of Latin hypercube sampling over earlier sampling methods is that the 
number of computer runs can be reduced considerably to achieve the same level of 
accuracy, particularly when the number of the statistical variables, n  is large. 

McKay et al. (1979) and later Stein (1987) proved that Latin hypercube sampling is superior 
to simple random sampling and stratified sampling with respect to the precision of the 
estimators provided that the response is a monotonic function of the parameters, 1 2, ,..., nθ θ θ . 
This condition is normally true for the effects of creep and shrinkage and the effects 
responsible for the stress losses in the prestressing tendon. In both works the theoretical 
conclusions were verified by numerical experiments. McKay et al. (1979) compared Latin 
hypercube sampling with simple random sampling and stratified sampling1 while Stein 
(1987) compared Latin hypercube sampling with simple random sampling2. In both cases 
Latin hypercube sampling clearly demonstrated superiority. 

In the structural engineering field Bazant and Liu (1985) used Latin hypercube sampling to 
study creep and shrinkage effects in simple concrete beams and frames. They compared 
Latin hypercube sampling with two-point estimates of probability moments and concluded 
that the number of analysis runs needed to reach the same accuracy as with two-point 
estimates is about twice the number of the system parameters, i.e. 2n . For the method of 
two-point estimates of probability moments the number of computer runs is fixed as 2n . As 
the number of system parameters is increasing the reduction in the necessary number of 
computer runs becomes significant. 

While it is normally sufficient to choose the number of computer runs to be equal to the 
number of random variables, N n= , the improvement on accuracy can be appreciable 
(Bazant and Liu 1985) if the number of computer runs is twice the number of the random 
variables, 2N n= . 

In the current investigation the number of computer runs were chosen to be 12N =  for the 
6n =  random variables. For each random variable iθ  a randomly generated permutation 

of the integers 1,2,...,N  was assigned, 1 2, ,..., N
i i ir r r  (vide Table 10.1). The integer j

ir  indicates 
that the value of the random variable iθ  is sampled at the centroid of the interval j

ik r=  for 
the j th computer run (e.g. for the second computer run, the random variable 1θ  which is 
assigned to the creep coefficient is sampled from the 6th interval, 2θ  which is assigned to 
the shrinkage strain is sampled from the 12th interval and so on). 

Random permutations of integers were obtained by generating N  number of uniformly 
distributed random numbers for each random variable iθ  and obtaining j

ir  as the rank of 
the random number within the array. Random number generators may be found in various 
computer applications and subroutine libraries. 
 
1 simulation of reactor safety 
2 simulation of the performance of a printer actuator 
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Table 10.1 Randomly generated permutations of the integers 1,2,...,12  

Run 1θ  2θ  3θ  4θ  5θ  6θ  

       1 8 8 2 7 10 10 
2 6 12 5 2 4 3 
3 11 10 6 8 3 7 
4 10 3 3 1 7 11 
5 1 2 10 3 12 8 
6 5 11 11 6 1 6 
7 4 1 9 9 11 1 
8 3 9 1 12 2 2 
9 12 6 7 10 6 5 

10 9 7 8 5 8 4 
11 2 4 4 4 9 12 
12 7 5 12 11 5 9 

       
 
Table 10.2 shows the parameter values at the centroid of the intervals while Table 10.3 
shows the sets of system variable values for each computer run. 

Table 10.2 Parameter values at the centroid of the intervals 

k  ( )k
iF θ   1θ  2θ  3θ  4θ  5θ  6θ  

   1Ψ  2Ψ  3 cmfΨ  4 RHΨ  5TΨ  6Ψ  

   - - MPa % °C - 
  µ  1.000 1.000 53 70 10.0 1.000 
  V [%] 35 35 10 15 15 3 
         1 0.042  0.394 0.394 44 52 7.4 0.948 

2 0.125  0.597 0.597 47 58 8.3 0.965 
3 0.208  0.716 0.716 49 61 8.8 0.976 
4 0.292  0.808 0.808 50 64 9.2 0.984 
5 0.375  0.888 0.888 51 67 9.5 0.990 
6 0.458  0.963 0.963 52 69 9.8 0.997 
7 0.542  1.037 1.037 54 71 10.2 1.003 
8 0.625  1.112 1.112 55 73 10.5 1.010 
9 0.708  1.192 1.192 56 76 10.8 1.016 
10 0.792  1.284 1.284 57 79 11.2 1.024 
11 0.875  1.403 1.403 59 82 11.7 1.035 
12 0.958  1.606 1.606 62 88 12.6 1.052 
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Table 10.3 Randomly generated sets of input parameters for the computer runs 

Run   1θ  2θ  3θ  4θ  5θ  6θ  

   1Ψ  2Ψ  3 cmfΨ  4 RHΨ  5TΨ  6Ψ  

   - - MPa % °C - 
         1   1.112 1.112 47 71 11.2 1.024 

2   0.963 1.606 51 58 9.2 0.976 
3   1.403 1.284 52 73 8.8 1.003 
4   1.284 0.716 49 52 10.2 1.035 
5   0.394 0.597 57 61 12.6 1.010 
6   0.888 1.403 59 69 7.4 0.997 
7   0.808 0.394 56 76 11.7 0.948 
8   0.716 1.192 44 88 8.3 0.965 
9   1.606 0.963 54 79 9.8 0.990 
10   1.192 1.037 55 67 10.5 0.984 
11   0.597 0.808 50 64 10.8 1.052 
12   1.037 0.888 62 82 9.5 1.016 

         
 
It has been already mentioned that assuming normal distribution for certain statistical 
variables may yield physically inadmissible sampled value (e.g. relative humidity can not 
have a higher value than 100 %). To avoid abandoning normal distribution and thus 
complicating the analysis unnecessarily, one can apply the following remedy. In that 
particular case the upper tail of the distribution function was simply cut off (i.e. ignored), 
because not only the sampled value at the centroid of the upper marginal interval fell below 
RH = 100 % but the area under the probability density function over RH = 100 % was only 
0.2 %, hence negligible. If the area under the probability density function outside the 
physically admissible range is significant and particularly when the centroid of the marginal 
intervals would fall outside, one may cut off the tails of the distribution function outside the 
physically admissible range and scale up the probability density function to restore the 
unity of the area under the function. 

10.4.4 Estimating the mean and the variance 
The 12N =  number of computer runs furnish twelve values for structural response R . The 
statistical properties of the response then can be estimated as 

1

1 N

j
j

M R R
N =

= = ∑  (10.21)

( )22

1

1 N

j
j

S R R
N =

= −∑  (10.22)

where 1,2,...,j N=  is the number of the computer runs. 
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The variance, 2S  is not unbiased. The unbiased estimate can not be obtained by replacing 
1/N  with ( )1/ 1N −  in Eq. (10.22) like for simple random sampling (vide Eq. (10.3)). In fact 
the bias in the Latin hypercube plan is not known. However the unbiased estimate is 
between those two values (McKay et al. 1979). 

( ) ( ) ( )2 22

1 1

1 1ˆ
1

N N

j j
j j

R R E S R R
N N= =

− ≤ ≤ −
−∑ ∑  (10.23)

The bias in the Latin hypercube plan, however, is considered small which was confirmed by 
numerical examples by McKay et al. (1979). From a practical perspective the bias is 
negligible if the number of computer runs is not too small. 

Three types of the structural responses of the superstructure were investigated: deflections, 
horizontal displacements and moments. Table 10.4, Table 10.5 and Table 10.6 summarise the 
statistical properties of those responses. The results of each individual computer run can be 
seen in Appendix C. 

In the tables notation *M  is used to indicate the value of the structural response obtained by 
the earlier deterministic analysis. In the light of the probabilistic analysis that value can be 
regarded as the response to the mean value of the system variables as expressed by 
Eq (10.24). In a deterministic structural analysis those parameters may not be considered 
statistical variables but parameter estimation does involve stochastic considerations. The 
response values obtained by the deterministic analysis are included in the tables for 
reference. 

( )*
1 2 3, , ,..., nM R θ θ θ θ=  (10.24)

The results indicate that *M  is quasi equal to the mean value, M  as expressed by 
Eq (10.25). In case of Latin hypercube sampling, the two measures would be equal by 
definition if the function of R  was a linear combination of the random variables 

1 2 3, , ,..., nθ θ θ θ . The expectation value of the right side of the equation, ( )E R  would be equal 
to the left side even if R  included products of any two or more variables but only if the 
variables were mutually independent. 

( ) ( )1 2 3 1 2 3, , ,..., , , ,...,n nR Rθ θ θ θ θ θ θ θ≅  (10.25)

All the six statistical variables in the current study are assumed mutually independent. The 
relationships, however, which govern the system behaviour contains non-linear functions. 
Nevertheless the close agreement between *M  and M  indicates that the deformations 
depend quasi linearly on the variables, at least as far as the two dominating variables 1θ  and 

2θ  (creep coefficient and shrinkage) are concerned. 
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Table 10.4 Statistical properties of the deflections 

 *M  M  S  V  
 mm mm mm % 

Maximum     
before connection -346 -345 27 8 
bridge completed -447 -446 39 9 
after 70 years -725 -722 124 17 

     Mid-span     
before connection / A2 side 15 14 5 33 
before connection / A3 side -160 -160 9 6 
after bridge completed -71 -71 7 10 
after 70 years -373 -371 101 27 

     The maximum deflection was found at profile 228.0 meter. 
The values of the mid-span deflection before the cantilevers are connected concern 
the tip of the completed cantilevers prior to the closing segment is cast. 

Table 10.5 Statistical properties of the horizontal displacement at the piers 

 *M  M  S  V  
 mm mm mm % 

Pier A2     
before connection 8 8 1 14 
bridge completed 12 12 3 22 
after 70 years 31 30 8 26 

     Pier A3     
before connection -8 -8 1 11 
bridge completed -17 -17 2 14 
after 70 years -35 -35 8 22 

     Displacement is calculated at the centreline of the superstructure. 
 
In addition to the deformations, the flexure moments were investigated and it was found 
that their statistical variation is negligible. However, it was expected that the moments are 
influenced very little by the statistical variation of creep and shrinkage because the 
deterministic analysis already indicated that the long-term redistribution of moments is 
insignificant. 
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Table 10.6 Statistical properties of the flexural moments 

 *M  M  S  V  
 MNm MNm MNm % 

Pier A2 / left side     
before connection 856 855 2 0 
bridge completed 970 969 2 0 
after 70 years 992 991 8 1 

     Pier A2 / right side     
before connection 862 861 2 0 
bridge completed 988 988 1 0 
after 70 years 1002 1001 4 0 

     Pier A3 / left side     
before connection 911 910 2 0 
bridge completed 1018 1018 1 0 
after 70 years 1019 1019 5 0 

     Pier A3 / right side     
before connection 903 901 2 0 
bridge completed 999 999 2 0 
after 70 years 1011 1010 9 1 

     Mid-span     
bridge completed -55 -54 1 2 
after 70 years -62 -62 2 3 

      

10.4.5 Estimating the confidence limits 
The assumption that the responses follow roughly normal distribution can be verified by 
normal probability plots. To develop a probability plot, the data is ranked in ascending 
order. The plotting positions for N  samples can be obtained by the Hazen plotting position 
equation (Kottegoda and Rosso 1997): 

( )
0.5

100
i

p i
N
−= ⋅  (10.26)

where i  is the rank of the sample within the array. 

Figure 10.4 , Figure 10.5 and Figure 10.6 show the normal probability plots for deflection 
and horizontal displacement values. 

The fact that the response values fall roughly on a straight line in the normal probability plot 
indicates that the probability distribution of the response is approximately normal. Large 
deviations from the straight line would indicate that normal distribution is not a good 
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approximation. The ordinate of the straight regression line at 50 % is the mean while the 
slope of the regression line is the standard deviation1. 
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Figure 10.4 Normal probability plots of the maximum deflection (Profile 228.0 m); (a) before 
the cantilevers are connected, (b) after the bridge is completed and (c) after 70 years 

The diagrams verify the assumption that the probability distribution of the responses are 
approximately normal. 

 
1 The latter becomes visible if the percentile values on the axis are substituted by the respective z-values. 
Then the axis has a linear scale. 
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Figure 10.5 Normal probability plots of the deflection at mid-span; (a) before the cantilevers 
are connected, tip of the left cantilever (A2 side), (b) before the cantilevers are connected, tip 
of the right cantilever (A3 side), (c) after the bridge is completed and (d) after 70 years 
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Figure 10.6 Normal probability plots of the horizontal displacement at the columns, left and 
right column respectively; (a,b) before the cantilevers are connected, (c,d) after the bridge is 
completed and (e,f) after 70 years 
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When the mean and the standard deviation of the responses are determined, the confidence 
limits can be calculated with the z -values. For the two-sided 95 % confidence interval that is 

0.95 1.960C M S= ±  (10.27)

and for the one-sided 95 % confidence interval 

0.95 1.645C M S= −  (10.28)

or 

0.95 1.645C M S= +  (10.29)

In the latter case, the nature of the problem decides whether Eq. (10.28) or Eq. (10.29) 
applies. 

Even if the standard deviation is estimated and the sample size is relatively small, the 
z -values are used and not the t -values according to the t -distribution (vide subsection 
10.2.4). It is allowed by the significantly more accurate statistical estimators obtained by the 
Latin hypercube sampling (McKay et al. 1979) and (Bazant and Liu 1985). 

Figure 10.7 shows the mean and the confidence limit for the one-sided confidence interval 
for the mid-span deflection. In addition to the 95 % confidence limit, the 90 % and the 99 % 
confidence limits are also illustrated (the respective z -values are 1.282 and 2.326). Figure 
10.8 shows the confidence limits for the long-time deflection curve of the central span. 
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Figure 10.7 Confidence limits for the deflection at mid-span 
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Figure 10.8 One-sided confidence interval of the deflection of the main span after 70 years 

10.5 Simplified method 
A simplified method is recommended based on the observation that the uncertainty factor 
for the creep coefficient is the dominant uncertainty factor for the deformation prediction in 
the concrete bridges. Naturally the variation in the other model variables do influence the 
deformations but their effect is much smaller and overwhelmed by the variation in the creep 
coefficient. Figure 10.9 shows strong linear correlation between the maximum long-time 
deflection and the value of the uncertainty factor for the creep coefficient. 
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Figure 10.9 Correlation between the uncertainty factors for creep and shrinkage and the 
maximum long-time deflection 
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The same r-squared value for the other four variables are less than 0.150 which indicates 
very weak correlation. 

In the simplified method, only one deterministic analysis has to be carried out where the 
uncertainty factor for the creep coefficient is taken with a value representing its 95 percentile 
while all the other variables are taken with their expected value. 

The uncertainty factor for the creep coefficient is determined as 

( )1 11 1 1.645 0.35 1.576z VΨ = + ⋅ Ψ = + ⋅ =  (10.30)

Figure 10.10 compares the 95 % confidence limit obtained by the Monte Carlo simulation 
and the simplified calculation. The diagram shows the long-time deflection in the central 
span of Støvset Bridge after 70 years.. 
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Figure 10.10 95 % confidence limit for the long-time deflection in Støvset Bridge estimated 
by the Monte Carlo method and the simplified calculation 

10.6 Conclusions 
The high degree of uncertainty in long-time deformation prediction in concrete bridges 
necessitates to take into account the statistical variation of the deformation responses. The 
inherent statistical uncertainty in the creep and shrinkage prediction models represent the 
major factor of uncertainty. 

In the structural design as well as in the construction process the expected deviation from 
the expected theoretical mean has to be taken into consideration. The structural design 
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should be such which can tolerate potentially larger deflections than it was expected in the 
design calculation. Also the available measures in the construction process should be able to 
cope with potential deviation during the erection of the cantilevers with particular emphasis 
on the connection of the cantilevers at mid-span. 

It is recognised that, while a slightly over-elevated bridge deck normally does not create any 
problem, if the bride deck falls below its ideal camber it soon becomes visible. The 
precamber which is determined from the expected long-term deflection needs to be 
heightened by an excess over-height. The excess over-height can be determined from the 
estimated maximum variation from the mean deflection of given probability. The chosen 
value of the probability is a matter of design policy, i.e. it can be determined in accordance 
with the acceptable level of risk of intolerable deflections. The probability of 95 % can be 
considered as a reasonable value. 

The probabilistic analysis can be implemented in a Monte Carlo simulation. The method is 
robust, however, rather time-consuming. It can be justified in the design of record span 
bridges. For a rough estimation of the effect of the statistical variation a simplified approach 
was recommended. 

Deformations of Støvset Bridge was analysed with a Monte Carlo simulation. The coefficient 
of variation was estimated as 17 % for the maximum long-time deflection and 27 % for the 
mid-span deflection. The corresponding excess deflection values which represent the 95 % 
confidence limit are 28 % and 45 % larger than the expected values, respectively. 

The statistical variation of the moments in the superstructure was found negligible. The 
reason is that the long-term moment redistribution in the main span is insignificant and 
consequently the variation in the creep and shrinkage characteristics does not influence the 
moments either. 
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Chapter 11                                                             

Conclusions 

 
 
 
 

11.1 Summary and conclusions 
The thesis deals with deformation prediction in segmentally cast concrete cantilever bridges. 
This type of bridge has shown some propensity to develop larger deflections than they were 
predicted in the design calculation. Excessive deflections may lead to deterioration in 
aesthetic value, serviceability problems and eventually early reconstruction of the bridge. 
The main objective of the study was defined as to contribute to the improvement in 
deformation prediction in segmentally cast concrete cantilever bridges and to establish 
guidelines and methodology for numerical modelling. 

A database on observed deformations in three modern long-span concrete cantilever bridges 
in Norway has been established. The bridges are Norddalsfjord Bridge in Sogn and Fjordane 
county, Støvset Bridge in Nordland county and Stolma Bridge in Hordaland county. The 
availability of such information in general is valuable for the monitored bridge as well as for 
the construction of future bridges. The measurements are necessary in order to verify the 
design assumptions and assess the state of the bridge over its life span. The obtained 
information can also be used to evaluate existing analysis methods and models and 
eventually to improve the design procedure. While monitoring is implemented in a few 
selected bridges, long-term deformation monitoring should be a standard requirement for 
every major concrete bridge. The stochastic nature of the long-term deformation 
characteristics of concrete is well known. Consequently the assessment of observations 
needs to be done on a statistical basis. It is only possible if observations from a large number 
of bridges are available. 
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A sophisticated numerical model has been created for deformation analysis. The numerical 
model realistically simulates the segmental construction process as well as the entire life 
span of the bridge. The effects of the segmentwise construction method, temporarily 
supports and constraints and changes in the structure system during construction are taken 
into account. The model also considers the different concrete age from segment to segment, 
the sequential application of the permanent loads and prestressing and the effect of 
temporary loads. The prestressing tendons are individually modelled with their true profile 
taking into account the variation of the effective prestressing force along the length of the 
tendon and with time. The finite element model consists of beam elements which are based 
on an advanced beam element formulation. The beam model has relatively moderate 
requirements for computational work which makes it suitable for large-scale practical 
applications. The model has been verified against a more robust two-and-a-half dimensional 
shell model which has confirmed the accuracy of the beam model. In particular, the effect of 
non-uniform creep and shrinkage characteristics across the height of the box-girder has been 
studied and found to be very small. 

Special attention has to be paid to the constitutive model for concrete. While the methods of 
numerical structural analysis reached a high level of robustness and sophistication, 
theoretical modelling of creep and shrinkage is not as reliable as it would be necessary. It is 
evident that the latter constitutes the major obstacle to further improvement in deformation 
prediction in concrete bridges. The knowledge of concrete creep and shrinkage has been 
progressed significantly. The uncertainty in creep and shrinkage prediction, however, is still 
considerable. The large scatter and heterogeneity of existing experimental data does not 
allow much room for improvement. 

Constitutive modelling was not among the objectives of this study per se. However, 
experimental results on lightweight aggregate concrete and high strength concrete have 
been evaluated in connection with existing theoretical models and the findings have been 
utilised. Creep and shrinkage characteristics of lightweight aggregate concrete were of 
particular interest due to the scarce experimental information and the current controversial 
theoretical formulations. 

The current creep model in the extended CEB-FIP Model Code 1990 for lightweight 
aggregate concrete, like some of the other models, is adopting the model developed for 
normal density concrete and supplementing it with a reduction factor for the elastic 
modulus and another reduction factor for the creep coefficient. The two factors are functions 
of the oven-dry density of the lightweight aggregate concrete only. The experimental results, 
however, indicate that the drying process is considerably slower in lightweight aggregate 
concrete in the initial period of drying, thus the time dependency of drying creep is different 
than in normal density concrete. The notional creep coefficient is usually estimated by the 
extrapolation of short-time test data using the same time-dependency function as for normal 
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density concrete. Since the time dependency function is different, the procedure is 
questionable and so is the correctness of the reduction factor for the creep coefficient. The 
available experimental data suggest that long-time creep may be underestimated with the 
current reduction factor for the creep coefficient. The same tendency is observed in 
shrinkage experiments. Long-term tests indicated that shrinkage may be higher by more 
than 50 % as compared to normal density concrete which is considered by the present 
recommendation as the upper limit for shrinkage in lightweight aggregate concrete. The 
elastic modulus of lightweight aggregate concrete was found to be more dominantly 
determined by the density of the concrete and less influenced by the strength than it is 
assumed by the theoretical formula. 

Experimental results indicated that the elastic modulus of the type of high strength concrete 
which is typically used for bridges in Norway is about 75 % of the value given by the 
CEB-FIP Model Code 1990. This has been confirmed by tests on samples which were taken 
from bridges. The reason for the smaller elastic modulus is probably the lower stiffness of 
the aggregate. The long-term experimental data on creep and the predictions by the CEB-FIP 
Model Code 1990 showed reasonable agreement. 

Deformations of the three monitored concrete cantilever bridges have been computed. The 
basic material model was the CEB-FIP Model Code 1990. For Støvset Bridge and Stolma 
Bridge the elastic modulus for both the lightweight aggregate concrete and the normal 
density concrete were taken from test results. The creep coefficient and the shrinkage strain 
of the lightweight aggregate concrete were assumed equal to those of normal density 
concrete of same strength. The creep coefficient with the measured lower elastic modulus 
gives approximately 50 % higher creep deformation than normal density concrete. The 
calculated deformations have been compared with the observations. In view of the large 
uncertainty in deformation prediction in concrete it can be concluded that the agreement 
was satisfactory. While moderate differences were observed in most cases, no clear overall 
tendency toward under- or overestimation was found. The predicted long-time deflection in 
Norddalsfjord Bridge was in very good agreement with the measured values while the 
long-time deflection was slightly underestimated in Støvset Bridge and overestimated in 
Stolma Bridge. The sensitivity of the deflections to variations in creep, shrinkage and the 
effective prestressing force has been studied. The relative variation in the deflection 
responses was very similar in all three bridges as far as the variation in creep and shrinkage 
is concerned. 

The sensitivity of the deflections in Støvset Bridge to variations in the creep and shrinkage 
characteristics of the lightweight aggregate concrete has been determined. In two alternative 
analyses the influence of the reduction factor for the creep coefficient and the effect of 
potentially higher shrinkage strain have been studied. The influence has been found to be 
very small not only during the construction period but for the long-time deflection as well. 
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The CEB-FIP Model Code 1990 model has been compared with Bazant’s B3 model in the 
analysis of Støvset Bridge. The calculated deformation by the B3 model was found to be 
smaller in the initial period but significantly higher after 70 years. The available 
measurement which covers the first eight years of the service life of the bridge shows 
somewhat better agreement with the CEB-FIP Model Code 1990 prediction. 

Finally, a robust probabilistic method has been presented where the stochastic aspects of 
creep and shrinkage prediction and the uncertainty in various model parameters have been 
considered. The objective of the probabilistic analysis is to estimate the statistical properties 
of the structural responses. If the statistical variation of the deflection is known, then its 
statistical distribution can be estimated. It is recommended to design the bridge for a 
deflection which represents a certain confidence limit of the long-time deflection rather than 
its mean value. Designing for a confidence limit (e.g. the 95 % confidence limit) minimises 
the risk that intolerable deflection will occur during the service life of the bridge. The 
probabilistic deformation analysis was based on a Monte Carlo simulation. The employed 
sampling method was the Latin Hypercube sampling which is well suited for applications 
in which it is important to keep the necessary number of computer runs small. An 
alternative, more simple approach has been presented for the estimation of the confidence 
limit for the deflection. Based on the fact that the statistical variation in the creep model is 
the dominant uncertainty factor in the analysis, the creep coefficient can be taken with its 
confidence limit and employed in a deterministic analysis. 

11.2 Suggestions for further research 
This study has involved three bridges. The long-term monitoring of deformation 
development in these bridges should be continued. Taking into consideration the stochastic 
nature of long-time deformation prediction in concrete structures, it is recommended to 
monitor more bridges and collect the measurements in a databank. Observations made in a 
sufficiently large number of bridges would allow to assess the data statistically. The 
statistical assessment of the observations in connection with the theoretical predictions 
would furnish valuable information on the general tendencies in the prediction errors which 
would allow to further refine the theoretical models. 

Deformation measurements should be accompanied by monitoring the prestressing force in 
a number of tendons. Depending on what portion of the permanent load is compensated by 
prestressing, small variation in the effective prestressing force may result in large variation 
in the deflection. The knowledge of the actual force in the tendons would also help to better 
evaluate the effects of creep and shrinkage because a significant factor of uncertainty could 
be eliminated. 
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More long-term creep and shrinkage experiments on lightweight aggregate concrete are 
necessary before prediction models can be improved. The existing approach should be 
replaced with a model which considers the particular characteristics of the lightweight 
aggregate concrete also in the time dependency function. 
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Appendix A 

Formulations for the statistical evaluation of creep and shrinkage test data 

 
The mean coefficient of variation for the prediction characterises the mean error over the entire 
duration of loading in a series of creep experiments. It is calculated according to the 
following equations (CEB 1990). 

The mean coefficient of variation is calculated as 
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where 

ijJ  is the observed j th value of the creep compliance in the i th experiment, 

ijJ∆  is the difference between the observed and predicted j th value in the i th 
experiment, 

n  is the number of data points in the i th experiment, 

N  is the number of experiments. 
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When only one value is considered in each experiment (e.g. the value of the creep 
compliance at the end of loading period, the mean coefficient of variation for the prediction 
is calculated as 

2
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∆ = ⋅   ∑  

The average deviation characterises the average tendency in the prediction. It indicates 
systematic over- or underestimation. Here, unlike in the (CEB 1990), every data point in the 
experiments are considered and consequently the average deviation is characteristic for the 
entire load duration. 

The average deviation is calculated as 
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where 

ijcal J  is the predicted j th value of the creep compliance in the i th experiment, 

ijobsJ  is the observed j th value of the creep compliance in the i th experiment. 
 
High negative value of the measure indicates systematic underestimation by the theoretical 
model and high positive value indicates systematic overestimation. 

The same formulations are used for the statistical evaluation of shrinkage test results. The 
shrinkage strain replaces the creep compliance in the corresponding equations. 
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Appendix B 

Levelling data for Norddalsfjord Bridge 

 
Profile [m]  Elevation of the deck [m]  

 07/05/1987 05/06/1987 27/03/2001 16/10/2001 

5.3 35.027 35.027 35.027 35.027 

11.4 34.748 34.749 34.746 34.745 

17.5 34.448 34.450 34.448 34.449 

27.8 33.916 33.917 33.919 33.917 

37.9 33.366 33.367 33.373 33.371 

47.9 32.806 32.810 32.816 32.816 

57.9 32.314 32.323 32.330 32.328 

67.9 31.835 31.842 31.848 31.846 

77.1 31.412 31.416 31.420 31.420 

85.1 31.052 31.055 31.054 31.055 

92.0 30.738 30.735 30.736 30.738 

101.3 30.297 30.292 30.286 30.290 

110.1 29.886 29.880 29.869 29.872 

117.1 29.569 29.561 29.543 29.547 

125.1 29.193 29.180 29.155 29.160 

129.4 28.997 28.977 28.953 28.960 

134.2 28.773 28.750 28.727 28.733 

138.7 28.569 28.542 28.512 28.519 

144.1 28.322 28.292 28.254 28.262 

148.7 28.097 28.074 28.021 28.030 

154.2 27.850 27.813 27.764 27.773 

158.9 27.635 27.592 27.540 27.550 

164.2 27.393 27.347 27.286 27.296 

169.1 27.166 27.112 27.047 27.062 

cont.     
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174.2 26.924 26.871 26.798 26.809 

184.1 26.458 26.391 26.313 26.326 

194.1 25.966 25.894 25.808 25.822 

204.3 25.439 25.362 25.273 25.287 

214.3 24.894 24.813 24.728 24.741 

224.0 24.315 24.234 24.153 24.165 

234.0 23.729 23.651 23.577 23.588 

244.0 23.109 23.040 22.975 22.986 

254.0 22.448 22.389 22.338 22.347 

264.0 21.778 21.726 21.691 21.699 

274.0 21.108 21.064 21.038 21.046 

284.0 20.441 20.405 20.386 20.393 

294.0 19.763 19.730 19.722 19.728 

303.7 19.125 19.094 19.093 19.098 

312.2 18.573 18.550 18.549 18.554 

319.7 18.070 18.054 18.051 18.062 

328.3 17.492 17.480 17.481 17.485 

337.3 16.916 16.904 16.903 16.909 

345.3 16.395 16.386 16.382 16.385 

357.3 15.624 15.609 15.609 15.613 

364.4 15.247 15.236 15.228 15.231 

 
The position of the profile is given in the local coordinate system of the deck with the 
starting point being at the abutment in axis 1. The global coordinate of axis 1 is P3812.0 m. 
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Levelling data for Støvset Bridge 

 
Profile [m]  Elevation of the deck [m]   

 22/02/94 07/07/94 15/08/95 04/06/96 02/10/96 cont. 
1.5 14.556 14.559 14.559 14.558 14.558  
11.5 15.196 15.202 15.206 15.205 15.206  
21.5 15.922 15.933 15.938 15.939 15.939  
31.5 16.742 16.750 16.756 16.758 16.758  
41.5 17.555 17.562 17.572 17.574 17.573  
51.5 18.347 18.354 18.363 18.366 18.366  
61.5 19.139 19.147 19.155 19.158 19.156  
71.5 19.941 19.951 19.956 19.957 19.957  
81.5 20.732 20.741 20.745 20.743 20.746  
91.5 21.527 21.534 21.538 21.534 21.537  

101.5 22.294 22.297 22.297 22.293 22.297  
111.5 23.087 23.085 23.083 23.076 23.082  
121.5 23.825 23.820 23.812 23.805 23.810  
131.5 24.493 24.481 24.471 24.461 24.467  
141.5 25.098 25.078 25.066 25.052 25.060  
151.5 25.635 25.608 25.592 25.574 25.583  
161.5 26.073 26.042 26.019 26.004 26.014  
171.5 26.428 26.382 26.356 26.334 26.343  
181.5 26.702 26.649 26.619 26.595 26.604  
191.5 26.903 26.844 26.814 26.787 26.797  
201.5 27.085 27.023 26.989 26.952 26.974  
211.5 27.167 27.104 27.073 27.035 27.050  
221.5 26.980 26.920 26.884 26.858 26.872  
231.5 26.805 26.750 26.717 26.691 26.704  
241.5 26.620 26.570 26.541 26.517 26.530  
251.5 26.329 26.288 26.262 26.241 26.254  
261.5 25.956 25.921 25.902 25.885 25.896  
271.5 25.507 25.481 25.466 25.452 25.463  
281.5 24.957 24.940 24.929 24.917 24.929  
291.5 24.324 24.313 24.305 24.296 24.306  
301.5 23.649 23.643 23.638 23.633 23.640  
311.5 22.870 22.871 22.867 22.864 22.870  
321.5 22.070 22.075 22.075 22.072 22.080  
331.5 21.303 21.312 21.313 21.313 21.320  
341.5 20.534 20.545 20.550 20.550 20.556  
351.5 19.730 19.741 19.748 19.748 19.754  
361.5 18.940 18.958 18.963 18.966 18.964  
371.5 18.154 18.169 18.175 18.179 18.175  
381.5 17.336 17.357 17.363 17.369 17.365  
391.5 16.529 16.547 16.553 16.560 16.555  
401.5 15.695 15.710 15.715 15.720 15.715  
411.5 14.879 14.891 14.891 14.896 14.893  



Appendix B 

184 

Profile [m]  Elevation of the deck [m]  

 25/06/97 16/06/98 23/06/99 21/06/00 13/06/01 
1.5 14.564 14.560 14.561 14.564 14.563 
11.5 15.213 15.211 15.212 15.215 15.210 
21.5 15.950 15.947 15.949 15.953 15.948 
31.5 16.768 16.767 16.769 16.771 16.767 
41.5 17.582 17.584 17.584 17.587 17.581 
51.5 18.374 18.367 18.377 18.379 18.380 
61.5 19.167 19.169 19.169 19.170 19.171 
71.5 19.967 19.967 19.968 19.971 19.966 
81.5 20.754 20.754 20.753 20.758 20.750 
91.5 21.544 21.543 21.542 21.547 21.538 

101.5 22.301 22.299 22.298 22.305 22.291 
111.5 23.083 23.077 23.077 23.083 23.069 
121.5 23.809 23.801 23.801 23.806 23.798 
131.5 24.462 24.450 24.452 24.454 24.440 
141.5 25.049 25.034 25.035 25.037 25.023 
151.5 25.567 25.548 25.551 25.55 25.535 
161.5 25.994 25.972 25.974 25.973 25.947 
171.5 26.319 26.294 26.297 26.294 26.274 
181.5 26.576 26.548 26.551 26.547 26.525 
191.5 26.766 26.736 26.738 26.734 26.712 
201.5 26.939 26.911 26.911 26.906 26.884 
211.5 27.014 26.983 26.985 26.981 26.966 
221.5 26.837 26.808 26.811 26.805 26.791 
231.5 26.672 26.643 26.647 26.643 26.625 
241.5 26.501 26.474 26.481 26.476 26.458 
251.5 26.229 26.205 26.211 26.206 26.189 
261.5 25.877 25.856 25.861 25.859 25.845 
271.5 25.446 25.429 25.435 25.433 25.420 
281.5 24.915 24.902 24.906 24.906 24.896 
291.5 24.296 24.285 24.291 24.291 24.280 
301.5 23.636 23.626 23.631 23.633 23.624 
311.5 22.869 22.862 22.865 22.869 22.862 
321.5 22.079 22.074 22.077 22.081 22.076 
331.5 21.321 21.318 21.319 21.323 21.319 
341.5 20.558 20.556 20.559 20.562 20.560 
351.5 19.758 19.757 19.761 19.764 19.760 
361.5 18.976 18.976 18.979 18.984 18.984 
371.5 18.189 18.189 18.192 18.197 18.193 
381.5 17.377 17.375 17.381 17.386 17.380 
391.5 16.566 16.565 16.569 16.573 16.568 
401.5 15.725 15.722 15.726 15.731 15.725 
411.5 14.901 14.898 14.899 14.903 14.899 

 
The position of the profile is given in the local coordinate system of the deck with the 
starting point being at the abutment in axis 1. The global coordinate of axis 1 is P605.5 m. 
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Levelling data for Stolma Bridge 

 
Profile [m]  Elevation of the deck [m]  

 11/11/1998 16/09/1999 10/01/2001 27/11/2001 

0.077 37.475 37.469 37.473 37.476 

36.979 38.391 38.388 38.383 38.376 

64.838 39.168 39.172 39.163 39.168 

93.982 39.894 39.905 39.903 39.898 

113.961 40.361 40.369 40.363 40.360 

133.988 40.882 40.888 40.873 40.880 

153.966 41.502 41.500 41.473 41.476 

174.023 42.036 42.029 41.993 41.985 

193.976 42.493 42.470 42.433 42.410 

213.971 42.728 42.699 42.663 42.641 

234.018 42.760 42.724 42.683 42.665 

255.578 42.563 42.528 42.483 42.473 

276.024 42.095 42.069 42.033 42.019 

295.763 41.386 41.368 41.333 41.321 

315.725 40.445 40.435 40.403 40.409 

335.627 39.319 39.323 39.303 39.305 

355.548 38.098 38.114 38.093 38.108 

374.880 36.870 36.881 36.873 36.878 

395.072 35.584 35.602 35.583 35.595 

419.012 34.140 34.142 34.133 34.134 

443.040 32.620 32.631 32.613 32.623 

466.984 31.151 31.156 31.153 31.152 

 
The position of the profile is given in the local coordinate system of the deck with the 
starting point being at the abutment in axis 1. The global coordinate of axis 1 is P1280.0 m. 
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Appendix C 

Analysis results of the individual computer runs in the Monte Carlo simulation 

 
 
Deflection 
 
Analysis run Deflection [mm] 

 A B C D E F G 

1 -363 -473 -805 15 -168 -74 -435 

2 -362 -476 -871 8 -166 -83 -512 

3 -371 -482 -849 12 -167 -74 -473 

4 -383 -500 -879 13 -173 -76 -487 

5 -296 -375 -511 21 -144 -61 -208 

6 -326 -420 -686 16 -153 -68 -356 

7 -333 -429 -605 11 -156 -72 -263 

8 -349 -445 -637 16 -165 -73 -281 

9 -373 -485 -829 8 -168 -76 -450 

10 -361 -473 -797 10 -163 -78 -431 

11 -315 -401 -604 24 -152 -62 -282 

12 -313 -397 -597 19 -147 -59 -275 

Mean -345 -446 -722 14 -160 -71 -371 

Std. dev. 27 39 124 5 9 7 101 

 
 
A – maximum deflection before the cantilevers are connected 
B – maximum deflection after the bridge is completed 
C – maximum deflection after 70 years 
D – mid-span deflection before the cantilevers are connected / A2 side (tip of the cantilever) 
E – mid-span deflection before the cantilevers are connected / A3 side (tip of the cantilever) 
F – mid-span deflection after the bridge is completed 
G – mid-span deflection after 70 years 
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Horizontal displacement 
 
Analysis run Displacement [mm] 

 A B C D E F 

1 7 13 36 -8 -18 -40 

2 9 13 44 -9 -18 -48 

3 8 15 37 -9 -19 -42 

4 7 15 37 -8 -20 -42 

5 6 7 20 -7 -12 -24 

6 7 11 33 -8 -16 -37 

7 9 10 18 -9 -15 -23 

8 8 9 21 -9 -15 -27 

9 9 15 31 -9 -19 -36 

10 8 13 33 -9 -18 -37 

11 5 9 27 -6 -14 -31 

12 6 9 23 -7 -14 -27 

Mean 8 12 30 -8 -17 -35 

Std. dev. 1 3 8 1 2 8 

 
 
A – at the pier in A2, before the cantilevers are connected 
B – at the pier in A2, after the bridge is completed 
C – at the pier in A2, after 70 years 
E – at the pier in A3, before the cantilevers are connected 
F – at the pier in A3, after the bridge is completed 
G – at the pier in A3, after 70 years 
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Flexural moment 
 
Analysis run Flexural moment [MNm] 

 A B C D E F G H I J K L M N 

1 856 971 996 862 989 1003 911 1017 1019 903 999 1013 -55 -63 

2 856 969 1004 863 989 1009 912 1018 1024 902 997 1021 -54 -65 

3 856 971 992 862 989 1002 911 1018 1016 903 999 1008 -55 -63 

4 857 973 992 863 990 1002 912 1017 1015 904 999 1007 -56 -63 

5 856 968 991 863 987 1000 912 1020 1025 903 1001 1017 -54 -59 

6 857 970 1000 864 988 1005 913 1019 1024 904 1000 1020 -55 -63 

7 852 966 974 859 987 993 908 1018 1013 899 996 995 -52 -58 

8 851 966 982 858 987 996 907 1019 1017 897 998 1003 -52 -59 

9 852 969 983 859 989 998 908 1016 1011 899 997 998 -55 -62 

10 853 968 989 860 988 1001 909 1017 1016 900 996 1006 -54 -62 

11 857 971 1001 862 987 1005 911 1019 1026 904 1002 1023 -56 -62 

12 854 969 989 860 987 1000 909 1019 1018 900 1000 1009 -55 -61 

Mean 855 969 991 861 988 1001 910 1018 1019 901 999 1010 -54 -62 

Std. dev. 2 2 8 2 1 4 2 1 5 2 2 9 1 2 

 
 
A – on the left side of the pier in A2, before the cantilevers are connected 
B – on the left side of the pier in A2, after the bridge is completed 
C – on the left side of the pier in A2, after 70 years 
D – on the right side of the pier in A2, before the cantilevers are connected 
E – on the right side of the pier in A2, after the bridge is completed 
F – on the right side of the pier in A2, after 70 years 
G – on the left side of the pier in A3, before the cantilevers are connected 
H – on the left side of the pier in A3, after the bridge is completed 
I – on the left side of the pier in A3, after 70 years 
J – on the right side of the pier in A3, before the cantilevers are connected 
K – on the right side of the pier in A3, after the bridge is completed 
L – on the right side of the pier in A3, after 70 years 
M – at mid-span, after the bridge is completed 
N – at mid-span, after 70 years 
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