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Abstract

Sloshing is a violent resonant free surface flow in a container. The main objective of this thesis
has been to study sloshing in rectangular and prismatic tanks. The tank may be excited by
a harmonic motion or it may move with a ship in waves. In the latter case, the coupled ship
motions and sloshing problem is investigated. A nonlinear analytically based sloshing model
is used in the sloshing calculations. Experiments ha ve been conductedand collected data are
utilized in the validation of the sloshing model and computations of interaction betw een sloshing
and ship dynamics. T ank roof impacts are studied. Energy in the impact jet is dissipated and
this leads to damping of the sloshing motion. An iterative procedure is applied to incorporate the
effect of energy dissipation in the calculations. Damping of the sloshing motion is an important
parameter around resonance for the coupled ship motion and sloshing system.

The sloshing model is based on a nonlinear modal theory analysis of tw o-dimensional nonlinear
sloshing of an incompressible fluid with irrotational flow in a rectangular tank. Infinite tank roof
height and no overturning waves are assumed. The free surface is expressed as a Fourier series

and the velocity potential is expanded in terms of the linear natural modes of the fluid motion.

The infinite-dimensional modal system is approximated and the result is a finite set of ordinary

differential equations in time for generalized coordinates (Fourier coefficients) of the free surface.

This theory is not valid for small water depth or when water impacts heavily on the tank roof.

The proposed method has a high computational efficiency, facilitates simulations of a coupled

vehicle-fluid system and has been extensively v alidated for forced motions.

Experiments with a smooth, rectangular tank excited by forced harmonic horizontal oscillations
ha ve been performed and the results are used to ulidate the analytical sloshing model. Tran-
sients and associated nonlinear modulation of the waves, beating, are importart due to the low
level of damping of the fluid motion. The measured parameters are the motion of the tank and
the free surface elevation at three positions. Pictures and video are used to study local flow
details and the dynamics of the flow. A t excitation periods in the viciniy of the first natural
period for the fluid motion in the tank, even small motion amplitudes lead to violent sloshing
and impacts betw een the rising water surface and the tank roof.

Impacts cause high pressures and forces. The effect of slamming in the tank is included by a
local analysis interacting with theonlinear sloshing model. A Wagner based method is used

URN:NBN:no-2322



il

to find the flo winduced by slamming. Hydroelastic effects are ignored. The hypothesis that
the kinetic and potential energy in the jet flow caused by the impact is dissipated when the jet
flo w hits the free surface, enables a rational calculation of the damping effect of impacts on the
sloshing flow. The Wagner approach requires a small angle betw een the impacting free surface
and the tank roof. A correction by a similarity solution, or alternatively, by a generalization of
Wagner’s theory valid for larger angles is applied when this is not the case. Since analytically
based methods are used, fluid impact load predictions are robust.

A coupled ship motion and sloshing system is studied both experimentally and theoretically.
Two-dimensional experiments on a box-shaped ship section excited by regular beam sea have
been conducted. The section con tainstw otanks and can only move in sway. Fluid motion
inside the tanks has a large effect on the sway motion response of the section. Simulations of
a corresponding system are performed by assuming a mainly linear external flow and applying
the nonlinear sloshing model. The linear external hydrodynamic loads due to body motion are
expressed in terms of a convolution integral representing the history of the fluid motion. A
detailed numerical study of how to accurately incorporate the convolution integral is presented.
A good agreement betw een experimental and numerical sw aymotion of the ship section is
reported. The calculated coupled motion is sensitiv eto the damping of the sloshing motion
in a certain frequency range where the coupled sloshing and ship motions cause resonant ship
motions. A quasi-linear frequency domain analysis is used to explain this by ntroducing the
sloshing loads as a frequency dependent spring.
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CHAPTER 1

Introduction

Sloshing is a violent resonant free surface flow with strong nonlinear behaviour in a partially
filled container. Sloshing in ship tanks is of prime interest in this study . Ideal fluid effects
dominate the global motion, so that the fluid can be considered incompressible and the flow
irrotational. How ever,this does not mean that dissipative non-potential flow is unimportant.
The fluid motion inside a tank has according to potential flow theory an infinite number of
natural periods. The main focus is on excitation with frequency content in the vicinity of the
highest natural period. The corresponding linear mode of motion for a rectangular tank is an
anti-symmetric standing wave with wave length twice the tank length. Lateral and angular tank
motions cause the largest fluid response in the frequency range of interest.

The tank shape, the level of filling and the characteristics of the tank motion, for example
amplitude and frequency conten t, male up the principal parameters that determine the nature
of the free surface flow. The relativ eimportance of the different parameters depends on the
characteristics of the flow, i.e. the response. There is a dramatic difference between sloshing
in a shallow liquid condition and higher filling level conditions. For small ratios betw een fluid
depth and tank length and an excitation frequency around resonance, a hydraulic jump or bore,
which travels back and forth in the tank, is formed. When the steep front of the bore hits the
tank wall, an impact occurs and a thin vertical jet shoots upw ards. This effect is referred to as
run-up along the wall. When the liquid depth is non-shallow, the free surface motion resembles
a standing wave.

Swirling or rotational flo wis a special feature of three-dimensional flo wand is caused by an
instability of the an ti-symmetric lateral sloshing mode. A motion of the tank normal to the
undisturbed free surface may excite symmetric modes, but since the highest sloshing period is
of prime interest, v ertical tank excitation is of secondary importance.
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2 CHAPTER 1. INTRODUCTION

Sloshing must be considered for almost any moving vehicle or structure containing a fluid with
a free surface. The design of both the con tainerand supporting structure will therefore be
influenced.

Resonant free surface flo wsin tanks in aircrafts, missiles and rocketshave been the focus of
much research. F or these wehicles, sloshing will have a strong influence on the dynamic stability.
Sloshing in separators on-board floating oil and gas production platforms will affect the efficiency
of gravity separators. Structures fixed onshore may be exposed to sloshing if an earthquake
occurs (Fischer and Rammerstorfer (1999)). Large scale sloshing in a lake with steep sides may
be the result of a landslide or earthquake. Under dam construction such circumstances should be
factors to investigate. Large scale sloshing may also occur in harbours. Bruun (1976) presents
modes of free oscillation with corresponding eigenperiods in semi-enclosed basins of different
geometrical shapes. Shallow w atersloshing in a container can be used to dampen out wind
induced motions of tall buildings. A tuned liquid damper, TLD, is a well known concept in the
civil engineering world (Fujino et al. (1992); Modi and Seto (1997)).

Ocean-going vessels experience wave induced motions, and this sloshing is likely to be excited.
Figure 1.1 from Faltinsen, Olsen, Abramson, and Bass (1974) illustrates a family of sway ac-
celeration spectra corresponding to several sea state conditions which may occur. The figure
also shows that differently sized tanks with different filling levels yield peak response amplitudes
within the range of sway periods to be expected. An increased tank size increases the highest
natural period of the fluid flow. As a consequence, higher sea states and larger ship motions
excite sloshing around resonance. Figure 1.2 gives the natural period of the first sloshing mode
for a rectangular tank (Olsen (1976)). In general the severity of sloshing is a function of the
configuration of internal structures obstructing the flow in the tank. Internal structures act as
dampers of the fluid motions.

Sloshing has always been an important design criterion for oil tankers, even if partial filling is
rare in actual operation. Environmental concerns have led to requirements about double hull
tank ers. Ship owners try to avoid internal structures in cargo tanks for cleaning reasons. The
resulting wide and smooth oil tanks increase the probability of sev ere sloshing.Sloshing is also of
concern for Floating Production Storage and Offloading (FPSO) units and shuttle tankers. The
severity of sloshing is connected to possible filling height restrictions for oil tankers, gas carriers,
shuttle tankers and FPSOs. Often, operators require no restrictions on filling heights to achiev e
loading flexibility. Since ballast exchange is required outside the port for a bulk carrier, there
are possibilities for sloshing damages. P articularly the hatch cover is vulnerable. Hansen (1976)
reports damages due to sloshing in bulk carriers, combination Oil-Bulk-Ore (OBO) carriers and
LNG carriers. These are characterized by large and smooth tanks. P artialfillings in LNG
carriers are a consequence of gas boil-off during operation.

A ship carrying liquid cargo in partially filled tanks in waves may experience violent sloshing.
The ship motions excite sloshing, which in return affects the ship motions. Ships equipped with
anti-rolling tanks (ARTSs) utilize this effect.

FPSOs sometimes have sev eral partially filled tanks during operation. The wave induced motions
and loads on these ships will then be influenced by the dynamic motion of the fluid in the tanks.
Since ship motions can strongly affect the w avedrift forces and moments, sloshing may also
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Figure 1.2: First mode natural sloshing peri-

Figure 1.1: Ship motion and transfer func- ods for a rectangular tank (Olsen (1976))

tion of sloshing response (lateral force) versus
period of oscillation (Faltinsen et al. (1974))

matter in a station-keeping analysis.

The hydrodynamic loading inside a tank can be classified either as impact loads or 'dynamic’,
non-impulsive, loads. In this context dynamic loads mean loads that have dominant time vari-
ations on the time scale of the sloshing period, while impact loads may last only from 1073 to
10~2 seconds. Sloshing loads are of significance for both fatigue and ultimate strength. Figure
1.3 lists different load categories. This figure is based on a discussion of loading types presented
by Olsen (1976), as a part of a seminar on sloshing held by Det Norske Veritas.

Local structural response due to fluid impact is an important response variable. Loads on possible
internal structures must be considered. Some internal structureslik e a horizontal stringer on
the wall or w eb-frameat the tank roof, may be in and out of the fluid so that impact loads
as w ellas dynamic loads may matter. Hydroelastic effects are sometimes of importance for
impact loads. T otal dynamic loads on the tank are of iterest in order to estimate tank support
reactions and possible global interaction with ship dynamics.

The importance of different physical parameters varies with the type of flow in the tank. As
previously mentioned, global fluid motion is dominated by potential flow effects, which have the
main influence on the magnitude of the integrated force. Viscosity is of minor importance since
the main effect is normally concentrated in thin boundary layers along the tank boundaries. The
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4 CHAPTER 1. INTRODUCTION

boundary layer is often laminar in model scale and turbulent in full scale. If internal structures
obstructing the flow are present, flow separation occurs, and rotational flow and turbulence will
matter. A turbulent wake behind an internal structural part may interact with another internal
structure. Breaking waves and overturning of the free surface due to run-up along the walls or
due to fluid impact on the tank roof may cause important dissipation and damping of the global
flo w. As a part of this study, a high level of sensitivity of the response of a coupled ship motion
and sloshing system to the damping of internal fluid flow is reported in a frequency range in the
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1.1. PROPERTIES OF LINEAR AND NONLINEAR ANALYTICAL SLOSHING MODELS 5

vicinit y of the natural period for the sway motion, which is a result of the sloshing dynamics.

Different physical effects occur during slamming. An air (or gas) cushion may be formed between
the fluid and body surface if the initial local impact angle is small. Compressibility influences
the airflo wwhich again influences the fluid flow. The air cushion generates air bubbles when
it collapses. The ullage pressure influences the presence and behaviour of air bubbles. Local
hydrodynamic effects can cause vibrations that trigger ventilation and cavitation. How eer,
when analyzing slamming, one must always have the structural reaction in mind. In a situation
where the structural response is caused by physical phenomena that occur on a small time scale
relativ e to the highest local structural natural period, a lydroelastic analysis is essential.

1.1 Properties of linear and nonlinear analytical sloshing
models

The classical linear sloshing solution provides the important linear eigenperiod of the free surface
motion inside the tank. Unfortunately, the linear solution predicts an infinite free surface motion
amplitude at resonance, and cannot be used to find accurate estimates for motion amplitudes
and forces in the vicinity of the first linear eigenperiod.

The second order solution presen tedin Paper 2 exhibits the same behaviour, since the linear
solution is an integral part. The response is the same order as the excitation. A solution based
on a different ordering scheme is needed to get reasonable results close to resonance.

Faltinsen (1974) preserts a nonlinear theory of 2-D steady-state sloshing in rectangular tanks,
based on the work of Moiseyev (1958). It is assumed that the excitation period is in the vicinity
of the highest (first) linear eigenperiod and that the first eigenmode dominates and is of order
O(e/?). Here € characterizes the amplitude of the forced horizontal and/or rotational motion of
the tank. The solution is found to O(e). The final solution resembles the solution of Duffing’s
equation, see Fig. 1.4. A is the amplitude of the primary sloshing mode and [ is the length of the
tank. T} is the first linear eigenperiod and T, is the period where the upper stable branch tends
to infinity. There may be either one, two or three real values for the amplitude of the primary
sloshing mode for a given period of excitation. If three solutions occur, only tw oare stable.
What solution the physical system selects depends on how the period is approached. If in Fig.
1.4 the excitation starts with a low period that is slowly increased, the response will follow the
stable upper branch. F or some wlue larger than the period corresponding to the turning point,
a jump occurs and the solution is found from the lower stable branch. The period whetss
jump occurs is dependent on the level of damping in the system, and it cannot be predicted by
a model with no damping included. When a large period is the starting point and the period
is slowly decreased, the solution follows the low er stable brand until the turning point where it
jumps to the upper stable branch.

The largest sloshing response does in general not occur for an excitation period equal to the first
linear eigenperiod.
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6 CHAPTER 1. INTRODUCTION
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and T, is the period where the upper stable branch tends to infinity

In the third order solution, a special situation arise for a certain filling level, h/l =~ 0.34. An
infinite response is predicted for a period equal to the first linear eigenperiod. A t this critical
filling level the system changes behaviour. When A/l < 0.34 a higher excitation amplitude leads
to a higher jump frequency and the response behaves like a so-called "hard-spring’. For a higher
filling the response changes to a ’soft-spring’.

As long as the primary mode dominates, the nonlinear analytical methods used throughout
this thesis work have similar properties as described above. The branches differ from diagrams
obtained by Faltinsen’s theory only in the large amplitude domain and far aw ay from the first
linear eigenperiod. The differences are due to the asymptotic restriction on the value of the
excitation period that is present in Faltinsen’s theory. A similar restriction does not apply for
the new nonlinear theory in Paper 3. In the multimodal approach, the critical depth is a function
of both the filling level and period of excitation.

Figure 1.5 shows the amplitude-frequency response for nonlinear sloshing due to sway excitation
when the sloshing model presen tedin Paper 3 is applied. The curve denoted 'O’ sho ws the
frequency of free nonlinear sloshing as a functiothefsloshing amplitude. The steady-state
amplitude of the sloshing mode is found from from the low er bran& P_ or the upper branch P,
for |12/ = 0.04.

F altinsen’s theory and the multimodal method of Paper 3 assumes that the primary sloshing
mode is dominant. When the depth becomes small with respect to the tank length, more and
more modes matter. This is always true for h/l < 0.24 and is caused by secondary resonance.
Nonlinearities associated with higher harmonic loading excite resonant motions for higher modes.
Since the differences betw eenthe linear natural periods decrease with filling level, this effect
becomes more pronounced with a decreasing depth.

The secondary parametric resonance that can occur for small depths implies that asymptotic
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1.1. PROPERTIES OF LINEAR AND NONLINEAR ANALYTICAL SLOSHING MODELS 7
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Figure 1.5: Amplitude-frequency response for nonlinear sloshing due to sway excitation. ||/l =
0.04. A is the amplitude of the primary sloshing mode and [ is the length of the tank

theories where one mode is assumed dominant are not applicable for shallow water sloshing.

When initial v aluelinear and nonlinear analytical methods are used to calculate the sloshing
response in a smooth tank that has a filling level 2/l >= 0.24 and is excited harmonically in the
horizontal direction, the waves sho w a strong modulation, or beating, if transiets are introduced
in the start-up of the simulation.

A rectangular smooth tank has an extremely low level of damping in the case of non-shallow
sloshing. The damping is mainly associated with dissipation of energy in the viscous boundary
layer along the tank wall. A different situation is seen for shallow water sloshing, h/l <z 0.2.
Local wave overturning and breaking, run-up and generation of spray give important contribu-
tions to dissipation. Experiments sho w that for small fluid depths steady-state oscillations may
be obtained in as few as 2-3 oscillations when the tank is excited by a regular oscillatory motion,
while for large depths more than 100 cycles may be necessary to reach this state.

Figure 1.6 shows the free surface elevation at one side of a rectangular tank that is harmonically
excited in sw aywith a period T = 1.117; where T; is the first linear eigenperiod. The ratio
betw eenthe filling height and tank length is A/l = 0.4 which means non-shallow fluid depth.
The dimensionless sway amplitude is ||/l = 0.02.

Two different sets of initial conditions are used. These are thought to be most representative for
the real initial conditions in the sloshing experiments that have been conducted as a part of this
w ork. The ’zero’ condition implies that the initial free surface is at rest at its mean position.
The ’impulse’ condition is based on impulse conservation and in this case the free surface is at
its mean position but has a given v ertical elocity. The transient beating behaviour is observed
for simulations where a linear and a nonlinear sloshing model with no damping is used. Figures
1.6(a) and 1.6(b) show that the envelope is the same regardless of initial conditions and model
used, and one may conclude that a change of the initial conditions has a small influence on the
response. How ever, a smooth start-up of the system lp for instance using a ramp function for the
excitation amplitude, decreases the energy conten ts of the system at the first linear eigenperiod,
and the beating effect is diminished. When steady-state sloshing results are sought for a smooth
tank, a careful start-up is necessary to avoid a long simulation time or the use of a high artificial
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8 CHAPTER 1. INTRODUCTION

damping.

Figure 1.6(c) shows results for simulations with the nonlinear sloshing model where ’zero’ initial
conditions are used. In one case a linear ramp function is used to increase the sway amplitude
from zero to its maximum value o ver ten oscillation periods.A much smaller beating effect is
the result.

Figure 1.6(d) presents the difference in free surface motion for a simulation without damping and
a steady-state motion that is the result of a long simulation where damping has been introduced.
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Figure 1.6: Freesurface elevation at the tank w allfor a rectangular tank excited by regular
horizontal motion. h/l = 0.4, Ty /T = 0.9 and ||/l = 0.02
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1.2. HISTORICAL DEVELOPMENTS 9

1.2 Historical Developments

Sloshing flows ha vebeen studied by a large number of researchers who have applied a wide
spectrum of different analytical, numerical and experimental approaches. Inherently sloshing is
difficult to predict theoretically because it is a highly nonlinear phenomenon with large fluid
motions, wave breaking, spray and mixing of e.g. oil and air.

A good introductory text on the topic of sloshing is the Ph.D. thesis of Solaas (1995). She
presen ts an extensie literature survey of analytical and numerical solutions to sloshing problems,
as well as detailed comments on available model tests.

In general analytical solutions to sloshing problems are based on a potential flo w assumption.
A velocity potential is used to represent the flow in tanks of simple geometrical shapes. Linear
analytical solutions exist for some tank configurations, and they supply the eigenfrequencies of
the fluid motion. How eer, a numerical method like illustrated by Solaas (1995) can be used to
predict linear eigenfrequencies and modes for any tank shape. When linear theory is used, fluid
response can only be predicted accurately for frequencies aw ay from resonance.

Moiseyev (1958) suggests a general nonlinear method based on potential flo w for determination of
free and forced oscillations of the liquid in generally shaped tanks. This has been the foundation

for several analytical studies of sloshing. The forced oscillation frequency is close to the low est
natural frequency for the fluid motion. A characteristic length of the tank is O(1) and the depth

of the fluid is either O(1) or infinite. The excitation is O(¢), and the response is O(e'/?). Here,

€ is a small parameter. The steady-state solution of the resulting nonlinear boundary-value

problem for the velocity potential is found as a power series in €'/3. The lowest mode is assumed

dominant. Moiseyev does not carry out the derivation in details for specific tank geometries.

Abramson (1966) presen tsa comprehensive review of the studies of sloshing up to 1966. In

this report, linear and nonlinear analytical solutions of sloshing in tanks of a variety of different

geometries undergoing harmonic oscillations are shown. Linear solutions are presented for three-

dimensional rectangular tanks, vertical cylindrical tanks of various compartmenting, horizontal

cylindrical tanks, spherical, toroidal and conical tanks. The nonlinear theory of Moiseyev (1958)

is included, as is the theory of Penney and Price (1952) for free oscillations in a tw o-dimensional
tank of infinite depth.

Faltinsen (1974) uses the work of Moiseyev and derives a nonlinear analytical theory for sloshing
in a tw o-dimensional rectangular rigid tank. The tank is forced to oscillate harmonically with
small amplitudes in sway or roll in the vicinity of the low est natural frequency for the fluid inside
the tank. The pow er series for the elocity potential is found correctly to O(e). € is the order of
the response and it is expressed as the ratio of the sway amplitude to the tank lenght or the roll
amplitude. The stability of the steady-state solution is studied, and theory and experiments are
sho wn to compare vell.

Solaas (1995), and Solaas and F altinsen (1997) presen ta semi-analytical approach based on
Moiseyev’s perturbation method. This method uses a boundary element numerical method to
determine the eigenfunctions and eigenvalues of the problem for tank shapes where these cannot
be found analytically.
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10 CHAPTER 1. INTRODUCTION

In Paper 3 in this thesis, Faltinsenet al. (2000) presen tan analytical approach to sloshing
in rectangular tanks of finite w aterdepth. The deriv ationsare based on the Bateman-Luke
variational principle and the use of the pressure in the Lagrangian of the Hamilton principle.
The result is a system of nonlinear ordinary differential equations in time for the generalized
coordinates of the free surface elevation. The procedure applies to any tank shape as long as the
tank walls are v ertical near the mean free surface. This method has been extensively validated for
forced motions. The paper gives additional references on analytically based nonlinear sloshing
methods.

Faltinsen and Timokha (2001) have generalized the method of F altinsenet al. (2000). An
adaptive procedure allows for different ordering of the modes describing the free surface. The
result is a method that works for low er filling heighs and higher excitation amplitudes. This
work is described in more detail in F altinsen and Rognebakke (2000), Paper 1. This method
giv es reliable results for a rectangular tank with a ratio between fluid depthnd  tank length
h/l >= 0.24. Faltinsen and Timokha (2002) have further dev elopedthe procedure to cover
h/l down to 0.1. This procedure shows that con tributionsfrom many modes matter. These
con tributions are assumed of the same(e!/4), which is also the order of the fluid depth. The
authors point out that dissipation is of higher importance for the smallest fluid depths.

An analytical solution to shallo wwater sloshing, h/l < 0.1, is given in V erhagenand van
Wijngaarden (1965). They study roll oscillations of a rectangular container. The shallow water
sloshing is characterized by travelling w aes and the formation of a hydraulic jump or bore.
They apply a theory developed for one-dimensional gas flow to the fluid oscillations and thereby
calculate the strength and the phase of the jump. The moment exerted on the container is also
calculated. They report a good agreement betw een theoretical wlues and experimental results
at the low est resonance frequency for these quarities when i/l = 0.075.

Some recent publications that cover n umerical methods relenn t for the analysis of sloshing, are
referred in the following. A brief introduction to the different methods is given.

The comparative study of the 13" ISSC (Moan and Berge (1997) with details in Cariou and
Casella (1999)) sho ws that different numerical techniques may gve quite different predictions
of the free surface elevation. This indicates the numerical difficulties in modelling sloshing. A
main drawback of computational fluid dynamics (CFD) for coupled sloshing and ship motions
analysis is the limited computational efficiency. The ISSC study does not consider the use of
computer resources. A time domain solution is necessary due to the importance of nonlinearities
for sloshing. Long time simulations are also required to obtain probability density functions of
response variables caused by sloshing.

The field equations governing the fluid flow may be the complete Navier-Stokes equations, the
Euler equation or the Laplace equation when potential flow is assumed. The basic idea in nu-
merical methods used to solve a partial differential equation is to discretize the given continuous
problem with infinite degrees of freedom to obtain a discrete problem or system of equations with
only a finite number of unknowns. These may be solved using a computer. A mesh, or a grid, is
used in the discretization of the flow domain. Either an Eulerian or Lagrangian description, or
a mixture of these, is used. In the Eulerian description, the grid is fixed relative to the reference
frame and the fluid moves through the grid, as opposed to the Lagrangian description where the
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1.2. HISTORICAL DEVELOPMENTS 11

coordinate system and the grid points move with the fluid. The type of grid is dependent on
the method used to create an equivalen t discrete form of the cortinuous field equations.

A finite difference method, FDM, uses a structured grid and flow variables are calculated for
fixed discrete points within this grid using an Eulerian approach. Algebraic difference quotients
replace the partial derivativ esof the governing equations. The result is a system of algebraic
equations for the unknown flow variables. Mitchell and Griffiths (1980) give a detailed description
of the finite difference method.

The finite volume method, FVM, subdivides the spatial domain into a finite number of discrete
con tiguous cottrol v olumes. Considering an arbitrarily chosen volume, the goal is to calculate the
values of the conserved v ariables areraged across the wlume. The disretization of the governing
equations is performed in tw o steps. First, an integration over each control v olume is performed
and secondly, the resulting cell boundary values are approximated. The advantage of the finite
volume method over finite difference method is that the finite vwlume method does not require
a structured mesh. Usually, a clear distinction betw een FDM and FVM is not made, and one
may find a method described as a finite difference method using a control v olume approad.

When studying free surface flows by FDM or FVM, some means of volume tracking method are
usually applied. Rider and Kothe (1998) describe basic features of volume traking methods.
Initially, fluid volumes are initialized in each computational cell from a specified interface geom-
etry. This task requires computing fluid volumes in each cell containing the interface, and exact
interface information is discarded in favor of discrete volume data, usually retained as volume
fractions. Mixed cells have a volume fraction betw een zero and one, and cells without iterfaces
ha e a volume fraction equal to zero or unity. Detailed interface information cannot be extracted
un til an irerface is reconstructed. The principal constraint is local v olume conserution. The
interfaces are tracked hy evolving fluid volumes forward in time with solutions of an advection
equation. At any time ithe solution, the exact interface location is not known, and a given
distribution of volume data does not guarantee a unique interface. Interface geometry is found
based on local volume data and a particular algorithm, and the interfaces are reconstructed.
The reconstructed interface is then used to compute the volume fluxes necessary to integrate
the v olume ewvlution equations.

An early approach to surface tracking was the Marker and Cell, MAC, method. This method
divides the fluid domain into cells. Initially , a system of markr particles are placed in the cells
con taining fluids. The particles are moved with the local flow. A cell without marker particles
is considered to contain no fluid, and a cell with particles adjacent to an empty cell is called a
surface cell.

A frequently used method of volume tracking in tw oand three dimensions is the V olumeof
Fluid, VOF, method. Hirt and Nichols (1981) give a thorough description of this method. VOF
has all the basic features of a volume tracking method as described previously. The discrete
volume data is a wlume fraction and hence the VOF method provides more information than
the MAC method and, in general, requires less storage. A clever reconstruction algorithm is the
key to a successful method, and the original VOF has seen a lot of improvements by different
authors over the years. Rider and Kothe (1998) present a new algorithm for the volume tracking
of interfaces, as well as a summary of the pros and cons of other approaches. Rudman (1997)
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also compares well known methods and proposes a new technique. He concludes that Youngs
(1982) has the superior V OF algorithm in comparison with, among others, Hirt and Nichols
(1981).

Sussman et al. (1998) present a level set approach for computing solutions to incompressible tw o-
phase flow. The interface betw een the t o fluids is considered to be sharp and is described as the
zero lev el set of a smooth function. A set of equations for the level set function must be solved in
addition to the equations governing the flow. The authors solve Navier-Stokes equations using a
staggered mesh and compute flows involving air bubbles and water drops. Sethian (1996) gives
a good introduction to the level set method. He explains that the core of level set methods is
the shift in how one views moving boundaries; rethinking the Lagrangian geometric perspective
and exchanging it for an Eulerian, initial value partial differential equation.

Solaas (1995) has studied sloshing by use of the commercial program FLOW-3D, developed by
Flow Science, Inc. The program implements a combination of the SOLA finite difference scheme
for solving Navier-Stokes equations and the VOF technique for tracking the free boundaries of
the fluid. She reports a sensitivity of the results to the choice of numerical parameters and that
lack of conservation of fluid mass can cause unphysical sloshing behaviour.

Armenio and La Rocca (1996) and Armenio (1997) study shallo wwater sloshing of water in
rectangular open tanks by numerical analysis and experimental validation. They employ the
Reynolds Averaged Navier Stokes Equations (RANSE). The RANSE is solved using a modi-
fied version of the MAC method, denoted SIMAC. The Navier-Stokes equations are solved in
primitive variables on a non-uniform staggered Cartesian grid by means of a finite difference
scheme.

V an Daalen et al. (1999) present numerical simulations of the water motion inside a free surface
anti-roll tank using a Navier-Stokes solv er based on the VOF method. Measured and calculated
roll moment amplitudes and phases were found to be in good agreement for various combinations
of motion and tank parameters. The studied filling heights represent shallow water conditions.

Kim (2001) has developed a Navier-Stokes solver based on the SOLA scheme with the assumption
of the free surface as a single-valued function. He presents a special treatment of impacts between
the free surface and the tank ceiling. A buffer zone is adopted where a mixed boundary condition
of rigid wall and free surface is imposed before an impact. The calculated impact pressures
depend on the size of the buffer zone, but a time-averaging technique is introduced and reduces
the dependency. Calculated impact pressures agree well with experimental data. Kim ensures
conservation of fluid mass by slightly moving the free surface for each time step. The global
motion is not affected.

Finite element methods, FEM, use a different discretization process than a finite difference
method. The given differential equation is reformulated as an equivalent variational problem. A
giv en type of finite element discretization constructs a finite dimensional space. The solution of
the problem is assumed a priori to have a prescribed functional behaviour over the elements. This
function may, for instance, vary linearly betw een neiglboring nodal points on the elements. The
nodes are defined points on the element. The assumed solution is inserted into the differential
equations, and, since this solution does not completely satisfy the differential equations, the
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1.2. HISTORICAL DEVELOPMENTS 13

result is a residual. The final equation system for the unknowns is obtained by minimizing the
residual in a w eigh tedmanner by multiplying with a weighting function and integrating the
product over the computational domain. Boundary conditions are incorporated as known values
at the nodal points on the elements. The grid does not have to be structured, and an advantage
of finite element methods compared with finite difference methods is that complicated geometries
and general boundary conditions can be handled relatively easily . Johnson (1987) has written
an accessible book on FEM.

In contrast to FDM and FVM, it is customary in FEM to use a Lagrangian approach and let the
node points and elements move with the flow. This may be a challenge for large deformations
of the flow domain, since the elements can bedistorted causing loss of accuracy . An adaptive
regridding of the domain is a possible solution. Ramaswamy and Kaw ahara (1987) handle
large free surface motions by adopting an arbitrary Lagrangian-Eulerian kinematic description,
ALE, of the fluid domain. The nodal points can be placed independently of the fluid motion
by using one of three options for the moving vertices: (1) they can flow with the fluid for
Lagrangian computing, (2) they can remain fixed for Eulerian computing or (3) they can move
in an arbitrarily prescribed w ayto give a con timous rezoning capability. Ramaswamy and
Kaw ahara discuss stabiliy and present results from numerical computations of, among others,
a large amplitude sloshing case.

Okamoto and Kaw ahara (1990) presert a Lagrangian finite element method that solves Navier-
Stok es equations. They study a tw o-dimensional sloshing problem and compare calculated free
surface elevation with video snapshots from experiments for a rectangular tank excited in the
horizontal plane. They report a good agreement. The sloshing amplitude is small. Numerical
calculations but no experimental values are presented for a tank with a multi-sloped wall. No
con vergencestudy with respect to element size or time step is shown. This work is based on
Ramaswamy et al. (1986).

An interesting numerical technique is dev elopedfor the simulation of free surface flo ws and
interfaces by Mashayek and Ashgriz (1995). A finite element method is used to calculate field
variables and a V olumeof Fluid method is applied in the advection of the fluid interfaces.
Navier-Stokes equations govern the flow. Mashayek and Ashgriz find that this hybrid method
can handle large surface deformations with accurate treatment of the boundary conditions. They
apply this method on a collision of liquid drops and the study of instability and break-up of a
capillary jet.

Wu et al. (1998) simulate sloshing waves in tw o- and three-dimensional tanks ly using a finite
element method based on fully nonlinear wave potential theory. A comparison betw een calcu-
lated results and published tw o-dimensionaldata validates the computer code. A very good
agreement is found. An extensive set of results are presented for a rectangular tank undergoing
translatory motion in more than one direction.

Boundary element methods, BEM, are based on a potential flo w assumption, i.e. the effect of
viscosit y is neglected and the fluid is assumed incompressible and the flav irrotational. The flow
is governed by Laplace equation. Green’s second identity is applied. Singularities representing
the velocity potential are distributed over the boundary of the fluid domain. In a nonlinear
formulation, these singularities are infinite fluid sources and normal dipoles. The boundary
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conditions are used to set up integral equations for the unknown singularity densities. These
equations are solved numerically. In a nonlinear formulation, the elements must follow a moving
boundary. P ost-breaking flov is difficult to handle, and a careful treatment of the contact point,
where the free surface intersects the tank wall, is imperative.

Other methods include spectral methods and the Smoothed Particle Hydrodynamics method,
SPH. Ferran t and Le Buze (2001) use a pseudo-spectral method based on fully nonlinear poten-
tial theory to study sloshing. The velocity potential is expanded in series of the natural modes
of the tank geometry. The presented results agree w ell with finite elemen analysis results by
Wu et al. (1998) for a very shallow water case.

Landrini and Colagrossi at INSEAN, Italy, have used the SPH method described by Monaghan
(1992) to calculate sloshing flows. They also use a high-order boundary element method to
calculate the sloshing flow. The results compare w ell, and interestingly the SPH is able to
calculate also after the occurrence of w avebreaking, when the BEM simulations stop. SPH
can deal with large free surface deformation and even fragmentation. The SPH is a purely
Lagrangian method, and the flow is described by flowing fluid particles. However, the physical
properties of the computational particles are not related to a single point in space, but they are
smeared or smoothed out over a region of space. Therefore, the name smoothed particles. A t
the heart of SPH is an interpolation method which allows any physical quantity to be expressed
in terms of its value at a set of disordered points. A challenge with SPH is the treatment of the
boundaries.

A validation of a numerical or analytical approach to sloshing flows relies on the availability of ex-
perimental data. Abramson (1966) gives experimental data for tanks of various shapes;rectangular,
spherical and circular cylindrical tanks. These may be uncompartmented or with different com-
partmenting. Solaas (1995) has collected references to experimental works up to 1995.

Two experimental studies of sloshing were conducted as a part of this thesis work, and details
will be given in the following.

1.3 Outline of Present Work

The work reported in this thesis concerns violent resonant fluid motion in ship tanks. The focus
is on non-shallow sloshing in smooth rectangular or prismatic tanks. The w orkis limited to
the study of tw o-dimensional flavs. A nonlinear analytical sloshing model is selected for the
analysis. Impact loads and energy dissipation due to impacts are studied by a local analysis.
The sloshing model is implemented as a part of a linear time-domain seakeeping code to study
the coupling of sloshing and ship motions. Experiments are conducted both for an isolated tank
and a hull section with internal tanks moving in waves. Data collected from the experiments are
used in validation of the computational results.
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1.3.1 Experiments of sloshing in a rectangular tank

A series of experiments on t w o-dimensional sloshing in a smooth rectangular tank excited har-
monically in the horizontal (sway) direction has been conducted by the author at Det Norske

Veritas, in Hgvik, Norway, during spring and early summer 1998. The experiments gave valu-

able insight into the physics of sloshing, as well as providing measurements of the free surface

elevation for a wide frequency range around the first linear eigenperiod of the fluid motion for

a variety of water filling levels. Video and pictures of the sloshing motion were taken and have

pro ved to be a aluable source of information and a foundation for later discussions. Appendix

E presents a description of the experiments including tables where the different combinations

of parameters are shown. The emphasis is on the transient part of tle fb w. The duration of

the recordings were not sufficient for the free surface motion to reach steady-state conditions

for non-shallow fluid depths with a ratio between filling height and tank length A/l > 0.24.

A typical recording included 30 oscillations, but some longer runs were done and these show

transient behaviour after more than 100 cycles. A different situation is observed for h/l = 0.17

and h/l = 0.12, where steady-state oscillations in many cases were obtained after 2-3 oscillations

periods. This indicates very large damping for small fluid depth. T ank roof impacts drastically
reduce the time to reach steady-state for non-shallow fluid depth.

Figure 1.7 presents a number of pictures taken during the experiments. These are representativ e
of the different free surface flows studied. Table 1.1 shows the parameters, which apply to specific

pictures, and includes a short description of the flow. The parameter in column four, ’Effect’,

is a relativ e measure of the swy amplitude. This is explained in Appendix E. F or larger filling
levels, tank roof impacts occur when the top of what resenbles a standing wave hits the roof.

Fora shallow water case, bores are formed and may result in impacts at the lo ver corners of

the tank. As a consequence of this impact, a jet sometimes shoots upw ards and hits the roof.
For alo w filling heigh run-up is seen when the excitation period is aw ay from the first natural
period for the fluid in the tank. The angle betw een the free surface and the wall is small, and the

up vard velocity of the water at the intersection betw een the free surface and the wall is high.

1.3.2 Sloshing modelling

The sloshing experiments at DNV show ed olvious nonlinearities of the free surface flow as well
as modulation of the waves as a consequence of transiert and forced oscillations. This led to the
deriv ation of a second order initial wlue solution for sloshing in a smooth rectangular tank. The
solution was found for only one set of initial conditions. The agreement with the experiments was
better than for a linear solution, but there was an obvious need for a method including higher
order terms. The solution was derived for a constant excitation period and was not suited for a
later in tegration in a time domain sealeeping code. A general time domain solution is needed
to handle unsteady excitation. Work w asinitiated to dev elopa nonlinear boundary element
method.

Visiting scientist Alexander N. Timokha from Kiev, Ukraine, and Prof. Odd M. Faltinsen started
the development of a multi-dimensional modal method by the time the second order solution was
finished. The DNV experiments w ere used to wlidate this analytical approach, which proved to
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be an excellent basis for further studies of sloshing. The modal method is a time domain solution
that works with non-harmonic excitation. The work on a nonlinear BEM code was abandoned,
but the initial work has later proved useful when working with the external fluid flow problem.
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Figure 1.7: Snapshots of sloshing

T able 1.1: Case description for the presented pictures of sloshing

Figure | Filling level | P eriod| Effect Description
[cm] [s]
1.7(a) 50 0.91 0.8 | Near 3rd mode resonance, steep stand-
ing wave with spray at crests
1.7(b) 50 1.7 0.8 | Close to 1st mode resonance, moderate
tank roof impacts occur
1.7(c) 50 1.74 0.10 | 1st mode resonance, small excitation
and no impacts. Smooth surface
1.7(d) 60 1.7 1.32 | Close to 1st mode resonance, heavy im-

pacts, cavity formed at impact corner,
air-water mixture

1.7(e) 30 2.3 0.8 | Dominant traveling wave - bore forma-
tion, vertical jet at tank wall

1.7(f) 30 2.3 0.8 | Breaking bore causes spray

1.7(g) 20 2.1 0.8 | Traeling bore impacts at low er corner
and causes thin, fast vertical jet at the
tank wall

1.7(h) 20 2.5 0.8 | Traeling bore gives impacts at tank
wall

Faltinsen and Timokha (2001) presert a generalization of the multi-dimensional modal method.
Some of the shortcomings of that method are addressed by the new adaptive multimodal ap-
proach. The improved method was adopted in the subsequent sloshing analysis. V alidation
sho ws that this method is applicable for non-small vater depth; when the ratio betw een filling
height and tank length h/l > 0.24.

URN:NBN:no-2322



18 CHAPTER 1. INTRODUCTION

1.3.3 Sloshing and slamming

When sloshing occurs in a partially filled tank, impacts betw eenthe water and structure are
often a consequence. Impacts lead to high pressures and forces, and energy is dissipated in
the resulting jets. A local analysis w asused to model impact with the tank roof for both
rectangular and chamfered tanks. An equivalent slamming problem has been constructed, and a
generalization of Wagner’s slamming theory (Wagner (1932)) was used. The coupling with the
base flow calculated by the adaptive multimodal approach is obtained through the inclusion of
a damping term and a modification of the generalized coordinates defining the base flow.

1.3.4 Sloshing and ship motions

When a computationally efficient and robust sloshing model including the effect of impacts was
ready , the study of coupled sloshing and ship motions ws a natural next step. Sloshing in the
con textof marine engineering usually happens when a tank is excited by ship motions. The
sloshing induced forces will influence the ship motion.

The author performed a set of experiments at the w aveflume of the Department of Marine
Hydrodynamics, NTNU, during summer 2000. A rectangular hull section with tw osmooth,
rectangular internal tanks was allow edto move in sw ayonly along the flume on low friction
bearings. The section was excited by regular w avesfor different w avefrequencies, w aveam-
plitudes and levels of water in the tanks. Selected conditions were such that the internal fluid
motion did not cause tank roof impacts. Measurements include wave parameters and the sway
motion of the section. The sloshing motion inside the tanks was captured on video. Figure 1.8
sho ws the experimertal set-up.

Figure 1.8: Experimental set-up for a study of coupled sloshing and ship motions

A commercial linear time and frequency domain seakeeping program was first used to represent
the external flowin the study . A sloshing module was coded and included in the program.
However, as the w orkproceeded, it became clear that the external fluid flo ww ouldhave to
be solved by a tailor-made program. A low order boundary element method based on Green’s
second identity with straight line elements of constant Rankine singularity density was applied.
This method includes a convolution formmlation in the equation of motion to properly handle
non-harmonic/transient motions. Characteristics of the coupled system are the sw aymotion
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and the generalized coordinates defining the internal fluid flow. A time domain simulation is
used to evaluate the behaviour of the system.

1.4 Structure of the Thesis

The main part of this thesis consists of a collection of papers which the author has co-authored.
The organization of the thesis this w ayraises the need to address the fact that some of the
papers are written in a condensed form. This is most obvious for the three extended abstracts
presented at the International Workshop on Water Waves and Floating Bodies. It was therefore
necessary to include a preface to each paper. The purpose of this is to elaborate on some parts
of the presented material, sometimes by pointing to an appendix. The prefaces also serve to link
the different papers and help to create a better reading experience.

The first paper is a keynote lecture presented b y Prof. F altinsen in \énice, Italy, in September
2000. This paper is a natural starting point, since it contains an extensive description of the
nature of sloshing and the ph ysicaleffects that are relevant when studying sloshing in ship
tanks. Different means of modelling sloshing are presented, and the authors argue for the use of
an analytically-based approach.

The rest of the papers are presented in the same order as the work they report was done.

1.5 Major Findings

The present study is limited to tw o-dimensional flavs. The study covers experimental and the-
oretical investigations of sloshing, internal slamming in tanks and coupled ship motions and
sloshing. The author has contributed to all parts of the included papers except for the theory
described in Paper 3. The rest of this section presents a summary of the major findings reported
in the papers.

F eatures of sloshing in smooth, rectangular tanks. The nonlinearity of sloshing is clearly
observed in conducted model experiments. The experiments show modulation, or beating, of
the free surface motion for non-shallow fluid depth. The modulation is explained by a frequency
analysis. The transient start-up of the horizontal motion of the tank results in energy conten t
at both the frequency corresponding to the excitation frequency and the eigenfrequency of the
first anti-symmetric mode for the free surface. The level of damping in the tank is extremely low
when no tank roof impact occurs, and the beating does not subside during a typical recording
length of thirty excitation cycles. Impacts occur at the upper corners for high filling levels and
at the low er part of the vall for a small fluid depth situation. A steady-state free surface motion
is reac hed after a few excitation cycles when heavy or moderate impacts are observed. This
indicates the large dissipation of energy caused by impacts. For small fluid depths, breaking
bores and run-up cause jet formation and spray that contribute to dissipation, and the transient
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part of the flowusually dies out almost immediately. Pictures and video render possible a
detailed investigation of the impact flow. A large set of experimental data is collected.

Second order initial value solution of two-dimensional sloshing in rectangular tanks.
An analytical solution based on a potential flo w assumption is deried. The response is assumed
to be of O(e) where the small parameter e characterizes the order of magnitude of the forced
sway amplitude relative to the length of the tank. The solution is of second order in e. Initial
values for the potential and its time derivative are, respectively, ® = 0 and 0®/0t = 0 on the
mean free surface. The second order solution is able to capture some of the nonlinearities seen
in the experiments, but there are still unexplained differences.

Experimental validation of sloshing models. The analytical sloshing models by Faltinsen
et al. (2000), P aper3, and Faltinsen and Timokha (2001) ha vebeen extensively validated
for forced sw aymotions of rectangular and prismatic tanks. A very good agreement be ween
calculations and available experimental data is demonstrated for filling height /tank length ratios
h/l >=0.24.

Analysis of tank roof impacts. A method is developed to calculate impact pressures and
forces when the free surface inside a tank hits the roof. The nonlinear sloshing theories by
Faltinsen et al. (2000) and Faltinsen and Timokha (2001) are modified to include a local flow
model, which combines the theory of Wagner (1932) with an infinite set of image potentials. The
image system is of secondary importance. The slamming causes large loads on the vertical wall
adjacent to the impact area in the tank roof. The horizontal slamming induced force is larger
than the vertical slamming force acting on the tank roof. After the impact, the free surface is
modified to account for the uprise due to slamming. The free surface correction is found to have
a negligible effect.

Damping of sloshing due to tank roof impacts. When impacts occur in a smooth tank,
experiments sho w that the dissipatiwe effect of the impacts dominates relative to the energy loss
in the viscous boundary layers. A robust method for estimating the damping effect of impacts
on sloshing flow is developed based on the hypothesis that the kinetic and potential energy in
the jet flow caused by the impact is dissipated when the jet flow impacts on the free surface.
The energy loss is related to the mean total energy of the system, and an equivalent damping
ratio is found. This is used to calculate the ambient sloshing flow © make sure that the lost
energy is subtracted from the system. An iterativ escheme is applied in the calculations. In
simulations that are performed for a prismatic tank with chamfered roof, the estimated energy
loss from the Wagner’s analysis is corrected due to the large impact angle. A similarity solution,
or alternatively, a generalization of Wagner’s slamming theory valid for larger angles, is used to
find the correction factor. The severity of impacts is drastically reduced in a chamfered tank
relativ e to a rectangular tank. Violent sloshing with heavy impacts is possible to calculate when
the impact damping model is utilized. Comparisons between theory and experiments show a
satisfactory agreement.

Effect of sloshing on ship motions. Two-dimensional experiments on a box-shaped ship
section excited by regular beam sea have been conducted. The section contains t w o smooth tanks
and can only move in sway. Fluid motion inside the tanks has a large effect on the sway motion
response of the section. The resonance frequency for the coupled system is different fromthe
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eigenfrequencies of the dominant sloshing mode and the moored ship section without water in the

tanks. Simulations of a corresponding system are performed by assuming a mainly linear external

flow and applying the nonlinear sloshing model of Faltinsen and Timokha (2001). A good

agreement betw een experimerts and computations is reported. The calculated coupled motion is

sensitiv e to the damping of the sloshing motion in the frequency range where the coupled sloshing
and ship motions cause resonant ship motions. A quasi-linear frequency domain analysis is used

to explain the sensitivit yby introducing the sloshing loads as a frequency dependent spring.

The comparison betw een calculations and experimerts implies that the level of damping of the

sloshing flow is higher than predicted by Keulegan (1958) for dissipation in a laminar boundary

layer.
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Preface

This paper w asprepared for a keynote lecture that Prof. Odd M. Faltinsen held at the In-
ternational Conference on Ship and Shipping Research, NAV, Venice, Italy, September 2000.
The paper represents a summary of our work on sloshing in tw o-dimensional rectangularand
prismatic tanks.

The section on physical and mathematical modeling aims at providing a thorough discussion of
sloshing in the context of marine engineering. The nature of sloshing is violent resonant fluid
motion with strong nonlinearities. Sloshing often leads to fluid impacts on the structure, and
hydroelastic effects may matter. The impacts result in wave breaking and spray formation and,
as a consequence, energy is dissipated. The tanks may have a variety of geometrical shapes
and filling levels. Internal structuresin tanks experience dynamic loads and generally have a
damping effect on the free surface flow. A set of criteria for selecting a sloshing model is listed,
as are pros and cons of available mumerical tools.

An analytically-based sloshing model is used in the study. This choice is founded on the need for
a fast and robust method that facilitates coupling with ship dynamics. A basic method based
on an infinite tank roof assumption is modified by including an artificial damping accounting
for energy loss due to tank roof impacts. When steady-state motions are studied, an iterative
procedure is follow edwhen impacts occur. Appendix A contains a brief description of the
program that has been developed.

The basic method is the adaptive multimodal approach @v eloped by F altinsen and Timokha
(2001). This is a generalization of the multi-dimensional modal analysis presented in F altin-
sen, Rognebakke, Lukovsky ,and Timokha (2000), Paper 3. The difference between the tw o
approaches is outlined in the following paper.

URN:NBN:no-2322
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ABSTRACT

Physical aspects of sloshing in ship tanks are discussed. The importance of
hydroelasticity for small angles between impacting fluid and body surface is
stressed. Performance requirements for numerical methods are presented. CFD
methods are reviewed. The drawbacks are long simulation time, sensitivity to
numerical parameters and general inability to predict impact loads and resulting
structural response. An analytically based sloshing model is therefore
recommended. Its drawbacks are that the tank has to be smooth with vertical
sides at the free surface. Shallow fluid phenomena are excluded. The method
consists of a basic method that assumes infinite tank roof height and a second
part, which accounts for tank roof impact. The importance of tank roof impact
damping on sloshing is demonstrated. Extensive validation of free surface
elevation, total forces and moments for 2-D flow in rectangular and prismatic
tanks are reported. This includes realistic motion excitation and studies close to
critical depth 0.3374 times the tank breadth. Impact pressure predictions and
demonstrations of the influence of the tank fluid motions on the global ship
dynamics are presented.
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INTRODUCTION

A patrtially filled tank will experience violent fluid motion when the ship
motions contain energy in the vicinity of the highest natural period for the fluid
motion inside the tank. Impact between the fluid and the tank roof is then likely
to occur for larger filling ratios. The consequence is wave breaking, spray and
mixing of air (or gas) and fluid. Actually, extreme cases with air bubbles
everywhere in the fluid have been experimentally observed.

The resonant fluid motion has different main characteristics depending on
the fluid depth and the three-dimensionality of the flow. Swirling (rotational)
motion is a special feature of 3-D flow ([1],[2]). Our focus is on the highest
sloshing period, 2-D flow and finite fluid depth. It implies that typical shallow
water phenomena like travelling waves and hydraulic bores are excluded.
However, this can for instance be studied by the method of [3]. This was done
with satisfactory results for horizontal forces by Abramson et al. [2] for a 2-D
nearly rectangular tank with fluid depth 0.12 times the breadth.

Since sloshing is a typical resonance phenomenon, it is not necessarily the
most extreme ship motions or external wave loads that cause the most severe
sloshing. This implies that external wave induced loads can in many practical
cases be described by linear theory. However, nonlinearities must be accounted
for in the tank fluid motions. Since it is the highest sloshing period (natural
period) that is of prime interest, vertical tank excitation is of secondary
importance.

Generally speaking the larger the tank size is and the less internal structures
obstructing the flow in the tank are present, the more severe sloshing is. The
reasons are: a) Increased tank size tends to increase the highest natural
sloshing period and hence higher sea states and larger ship motions will excite
the severe sloshing. b) Internal structures dampen the fluid motions.

[4] reported damages due to sloshing in bulk carriers, combination Oil-Bulk-
Ore (OBO) carriers and LNG carriers. Large and smooth tanks characterized
these. Partial fillings in LNG carriers are a consequence of boil-off of gas during
operations. Sloshing has always been an important design criterion for oil
tankers even if partial filling is rare in actual operation. Since environmental
concerns have caused requirements about double hull tankers and ship owners
avoid internal structures in cargo tanks to facilitate cleaning, this has lead to
wide and smooth oil tanks that increase the probability of severe sloshing.
Sloshing is also of concern for Floating Production Storage and Offloading
(FPSO) units and shuttle tankers. However, this is for shuttle tankers only in a
limited time during loading. Obviously the severity of sloshing is connected to
possible filling height restrictions for oil tankers, gas carriers, shuttle tankers and
FPSOs. Since ballast exchange is required outside the port for a bulk carrier,
there are possibilities for slamming damages. Damage to the hatch cover is of
particular concern.

The hydrodynamic loads occurring inside a tank are often classified as
impact loads and “dynamic” loads. Impact loads are of course also dynamic
loads. But in this context dynamic loads mean loads that have dominant time
variations on the time scale of the sloshing period, while impact loads may only
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last 102 to 10 seconds. Both resulting fatigue and ultimate strength are of
concern.

Local structural response due to fluid impact (slamming) is an important
response variable. But loads on possible internal stringers, web-frames, cross-
ties, piping supports and equipment like LNG pump towers must also be
considered. Since some internal structures like a web-frame at the tank roof
may be out of the fluid at certain time intervals, impact as well as dynamic loads
may matter. Dynamic pressures on the tank wall and bottom as well as total
dynamic loads on the tank are also of interest. The latter is needed to estimate
tank support reactions and possible global interactions with the ship dynamics.
For instance, the horizontal but not the vertical support reaction is important for
spherical LNG tanks. The use of anti-rolling tanks exemplifies that global
interaction between the tank fluid motion and ship motion, i.e. rolling, can be
strong. If several tanks are partially filled like it may be on a FPSO, global ship
motions and wave bending moments may be strongly affected.

The following study will concentrate on numerical methods and validation,
but starts out stating performance requirements of numerical methods and
physical aspects of sloshing.

PHYSICAL AND MATHEMATICAL MODELING

A theoretical method has to be robust and time efficient. Long time
simulations are needed to obtain statistical estimates of the tank response. This
should ideally be coupled with the ship motions in a stochastic sea. Both impact
and non-impact loads should be evaluated. Impact loads may require
hydroelastic analysis. There is a variety of tank shapes. This includes
rectangular, prismatic, tapered and spherical tanks as well as horizontal
cylindrical tanks. The fluid may be oil, liquefied gas, water or heavy density
cargoes like molasses and caustic soda. The fluid dynamic properties of the two
last cargo types are not focused on in this context. Ideally one should be able to
predict two phase flow due to strong mixing of air (or gas) with the fluid.
However, this is not focused on. It is hard enough to predict one phase flow.

Internal structures obstructing the flow may be present. This causes flow
separation and implies that Navier-Stokes equations have to be solved. The
guestion of turbulence modeling arises, but may not be a dominant effect when
flow separation from sharp corners occurs. The argument is that dominant scale
effects due to difference between laminar and turbulent flow for separated flow
past a blunt body is due to differences in separation line position (or point for 2-
D flow). On the other hand the wake behind an internal structural part may
interact with another internal structure, the free surface and the tank
boundaries. A wake flow would in practice be turbulent. What turbulence model
to use is still a research issue. Numerical simulations of flow separation from
sharp corners require fine gridding in the vicinity of the corners. The main effect
of viscosity for a smooth tank with conventional fluid like oil is normally
concentrated in thin boundary layers along the tank boundaries. The boundary
layer flow may be laminar in model scale, but is turbulent in full scale. But
anyway the boundary layer flow has a small influence on tank response of
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practical interest. It implies that Euler equations can be used for a smooth tank.
Further compressibility of the fluid is of secondary importance. Anyway a
smooth tank would give the most violent response and provide a conservative
estimate if internal structures are present. It is also possible to provide
estimates of the effect of internal structures in combination with potential flow. It
assumes the cross-dimensions of the internal structures are small relative to
fluid depth and tank breadth. The internal structures are then handled as
appendages with Morison type calculations [5]. Equivalent damping of the fluid
motion has to be introduced in a similar way as described later in connection
with tank roof impact damping.

The previous discussion assumes a submerged internal structure. Some
internal structures may be part of the time in and out of the fluid. Fluid impact
becomes then part of the problem. The impact pressures can become very
high. [2] reported full scale measured pressures up to 24 bar in an OBO tank.
We will in the following text discuss fluid impact in a more general sense.
Different physical effects occur during slamming. When the local angle between
the fluid surface and the body surface is small before impact, an air (or gas)
cushion may be formed between the body and the fluid. Compressibility
influences the airflow. The airflow interacts with the fluid flow, which is
influenced by the compressibility of the fluid. When the air cushion collapses, air
bubbles are formed. Air bubbles may also be entrapped in the fluid from
previous impacts. The ullage pressure influences the presence and behaviour
of air bubbles. The large loads that can occur during impact when the angle
between the fluid surface and body surface is small can cause important local
dynamic hydroelastic effects. The vibrations can lead to subsequent cavitation
and ventilation. The previously mentioned physical effects have different time
scales. The important time scale from a structural point of view is when
maximum stresses occur. This scale is given by the highest wet natural period
(T,) for the local structure. Compressibility and the formation and collapse of an

air cushion are important initially and normally in a time scale smaller than the
time scale of when local maximum stresses occur. Hence, the effect on
maximum local stress is generally small. The theoretical and experimental
studies of wave impact on horizontal elastic plates of steel and aluminium
presented by [6], [7], [8], [9] and [10] are relevant in this context. Significant
dynamic hydroelastic effects were demonstrated. The physics can be explained
as follows. The plate experiences a large force impulse during a small time
relative to the highest natural period for the plate vibrations. (Structural inertia
phase). This causes the space-averaged relative velocity between the elastic
vibration velocity and the rigid body impact velocity V' to be zero at the end of
the initial phase. The plate then starts to vibrate as a free vibration with an initial
vibration velocity ' and zero deflection. Maximum strains occur during the free
vibration phase. The details of the pressure distribution during the first initial
phase are not important. Very large pressures that are sensitive to small
changes in the physical conditions, may occur in this phase. This can be seen
from the collection of measured maximum pressures during the tests. The
measured maximum strains showed a very small scatter for given impact
velocity and plate even if maximum pressure varied strongly. The largest
measured pressure was approximately 80 bar for /' equal to 6 m/s.
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Fluid impact against a horizontal tank roof during sloshing has similarities
with water impact of elastic plates. The tank roof impact will also cause
hydroelastic vibrations in the tank wall adjacent to the impact area. [11] studied
this by a hydroelastic beam theory. The effect of a chamfered tank roof was
also investigated. This problem is similar to water entry of a wedge before the
horizontal roof part is reached. The effect of hydroelasticity decreases with
increasing deadrise angle of the wedge. The tank roof impact causes also
damping of the fluid motions. This will be further discussed later in the text.

[12] studied the relative importance of hydroelasticity for an elastic hull with
wedge-shaped cross-sections penetrating an initially calm water surface. A
stiffened plating between two rigid transverse frames was examined. A
parameter that is proportional to the ratio between the wetting time of the rigid
wedge and the natural period of a longitudinal stiffener, was introduced to
quantify the relative importance of hydroelasticity. We can associate the wetting
time of the wedge with the duration of the loading. If we make an analogy to a
simple mechanical system consisting of a mass and spring, then we know that
the duration of the loading relative to the natural period characterizes dynamic
effects. The wetting time depends on the impact velocity 7 and deadrise angle
B. It means that the importance of hydroelasticity increases with increasing V
and decreasing . In practice we should be aware of hydroelastic effects when
pB<=5°.

The literature on sloshing contains many studies on slamming pressures.
There is a strong tendency to focus on the high slamming pressures that can
occur. Few seem to be aware of the importance of hydroelasticity. It is
misleading to use physical pressures as parameter for structural response when
the pressures become high and concentrated in time and space. What we are
saying is that the structure needs time to react. The previous discussion on fluid
impact has severe consequences for how sloshing should be numerically
modeled.

It has become popular to use CFD to model sloshing. The problem has to be
solved in the time domain due to the strong nonlinearities associated with the
free surface conditions. There is a broad variety of numerical methods. The load
committee of the 13" ISSC has provided a survey in 1997. Normally the
Reynolds Averaged Navier Stokes equations (RANSE) are solved, but also
Euler equations or potential flows for incompressible fluid are used. 2-D flow
studies are most common. The field equations are numerically solved by either
Finite Difference Methods (FDM), Finite Volume Methods (FVM) or Finite
Element Methods (FEM). The use of Boundary Element Methods (BEM) is
based on a velocity potential satisfying Laplace equation. Methods based on
field discretization can handle nonlinear free surface motion by height function
method, marker method, volume of fluid method or a level set technique.

More recently some meshless methods have been developed to deal with
large deformations and even fragmentation of the free surface. Among these,
Smoothed Particle Hydrodynamics (SPH) [13] is currently under testing for
sloshing problems by Landrini and Colagrossi at INSEAN, Italy. A good
agreement with BEM solutions up to breaking has been obtained. Long time
simulation for cases with large excitation amplitudes show the ability to follow
the post breaking behaviour.
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What are then the disadvantages and advantages of using CFD?
Advantages are that complex tank geometry, any fluid depth and general
excitation may in principle be considered. A CFD method may provide good
flow visualization, which is helpful in understanding the flow. Flow separation
around internal structures can be simulated by a RANSE-code. A disadvantage
is that the CFD methods are time consuming which makes statistical estimates
of tank response variables difficult. Some methods may not be robust enough.
For instance a Boundary Element Method based on mixed Eulerian-Lagrangian
method breaks down when an overturning wave hits the free surface. Numerical
problems may also arise with a BEM at the intersection between the free
surface and the tank boundary. [14] discussed numerical problems associated
with BEM and sloshing. If not sufficient care is shown, some of the methods
may numerically loose or generate fluid mass on a long time scale. Since the
highest natural period of the fluid motion is strongly dependent on fluid mass,
this can result in an unphysical numerical simulation. This was demonstrated by
Solaas [15] by using the commercial, multipurpose FLOW-3D code, developed
by Flow Science, Inc. The method uses a combination of the SOLA finite
difference scheme for solving Navier-Stokes equations and the Volume of Fluid
(VOF) technique for tracing the free boundaries of the fluid. Kim [16] has
presented a CFD method where conservation of fluid mass is satisfied. The
amount of fluid in the tank is corrected for each time step by slightly moving the
free surface. The correction is so small that the global motion is not affected.

It seems generally accepted that CFD codes have difficulties in predicting
impact loads. This was also the conclusion of the load committee of 13™ ISSC
in 1997. A reason is rapid changes in time and space occurring even for
relatively large local angles between the impacting free surface and the body
surface ([17]). Few codes include hydroelasticity during impact. However, if
doing so, the structural modeling requires also special care. [9] demonstrated
the numerical difficulties in modeling hydroelastic impact of a horizontal beam.
The complications are associated with the many structural modes that are
initially excited and the very rapid change of the wetted body surface. More
analytically based methods were therefore used to provide robust solutions.

There exist examples on satisfactory predictions of non-impact loading by
CFD (f. ex. [15] and [18]). However the load committee of the 13™ ISSC
presented a comparative study by 12 different CFD codes belonging to different
classification societies, a shipyard, research organizations and universities. The
agreement in predicted free surface elevations in non-extreme cases was not
convincing.

[15] illustrated the grid dependence and the sensitivity to parameters used in
numerical differentiation and iteration procedures in the FLOW-3D code. The
EPSADJ parameter gives an automatic adjustment of the convergence criterion
in the pressure iteration algorithm in order to fulfill the continuity equation. The
default value is 1.0, but a much smaller value had to be used for resonant fluid
motion to satisfy mass conservation. But even so the results were not perfect. A
case with EPSADJ=0.01 showed that the volume error was 4% after 30
oscillation periods. This illustrates also the problem of using a multipurpose
program. The different main applications have different main important physical
effects. The ALPHA parameter in FLOW-3D controls the weighting of the
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advective flux terms in Navier-Stokes equation. ALPHA can be between 0 and
1. The default value is 1.0, which means fully upstream differencing and a first
order approximation of the advective flux terms is used. ALPHA=0.0 means
central differencing, but this gave a numerically unstable solution. It is difficult
from a physical point of view to state that the default value ALPHA=1.0 should
be used for sloshing. [15] demonstrated that there could be a large sensitivity to
choice of parameters and grid size. Convergence studies by decreasing the grid
size were performed. This gives a qualitative but not quantitative guidance on
how to select grid size. The reasons are that convergence is dependent on the
ALPHA parameter and that in some cases the results did not converge by
decreasing grid size. There is of course also a limit to how small the grid size
can be before the demand on computer resources gets too large.

Instead of developing a CFD code we have decided to develop a more
analytically based method. The method is time efficient and seems easy to
combine with the ship motions and external linear wave induced loads. The
simulation time depends on the chosen approximate modal model and
excitation parameters. Consider for instance a typical calculation of 100 forced
motion oscillation periods presented later in the paper. This may take from 1 to
20 seconds on a Pentium-lll 500. The numbers are based on non-optimized
computer code. The fluid depth has to be finite. Our selected procedure applies
to any tank shape as long as the tank walls are vertical near the mean free
surface. Details have so far been developed for a rectangular 2-D tank and a
vertical circular tank. Since irrotational fluid motion is assumed, internal
structures causing flow separation can only be treated empirically by Morison
type calculations. The basic method assumes infinite tank roof height. The
effect of the tank roof impact is handled by generalizing Wagner’'s method [19].
Since analytically based methods are used, fluid impact load predictions are
robust. The effect of hydroelasticity can be incorporated. The method will be
described in more details in the next chapter.

ANALYTICALLY BASED SLOSHING MODEL

We describe first the basic method, which

assumes infinite tank roof height. Details will be

[ N shown for 2-D flow and a rectangular rigid tank.

= 1 The tank can have a general forced motion in
h

surge (or sway), heave and pitch (or roll), but
the main frequency component o of the forced
oscillation has to be in the vicinity of the lowest
l natural frequency o, for the tank fluid motion.

Figure 1: Coordinate system The fluid is incompressible and the flow is
and tank dimensions irrotational. The fluid depth and the breadth of

the tank are # and /. The coordinate system

(x,z) is fixed relative to the tank with origin in the mean free surface and the
center of the tank (See Fig. 1). The procedure is based on a Bateman-Luke
variational principle and use of the pressure in the Lagrangian of the Hamilton
principle. This results in a system of nonlinear ordinary differential equations in
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time. The unknowns are generalized coordinates S, of the free surface
elevation. The free surface elevation ¢ is written as

X /(x +0.5/)
{= ; B.(t) COSDELZ Q o

Since Eg. 1 assumes ¢ to be a single-valued function of x, it implies no

overturning waves and vertical tank sides in the free surface. Further Eq. 1 does
not permit travelling waves. The consequence is that shallow water conditions
cannot be simulated. The forced oscillation amplitude is assumed small and of
O(€) . There exist different possibilities for how to order g,, but it should reflect

that the fluid response is lower order than O(g). This reflects that a strong

amplification of the flow occurs due to a small excitation. However, in order to
develop an asymptotic theory, we must assume ¢ to be asymptotically small.

The original method presented by Faltinsen et al. [20] assumed B =0(e'"?),

i =1,3. Higher order terms than £ are neglected in the nonlinear equations. The

following system of nonlinear ordinary differential equations for the generalized
coordinates describing the free surface are derived for forced motions

(B.+028,)+ a8, + B.B.)+ d,\B.B87 + B2
+ d3B2ﬁ1 + Pl(va —-S,w- gyY)+ Q1‘>0z131 =0
(B, +02B,)+ d. BB, +do 37 + 09,8, = 0
(B, +02B,)+ doB3B, + d, BBE + do 3,8, + do 3., (2)
+ leBlzﬁl + P3(va - S,w- gyY)+ Q3‘>02ﬁ3 =0
B, +0%B, + (3, —S,00- ) + 0,9, B, =0, i24

Here dots mean time derivatives. v, and v, are projections of translational
velocity onto axes of Oxz, «(f) and (t) are the angular velocity and angle of
coordinate system Oxyz with respect to an earth fixed coordinate system. Both
. and « cannot be zero. g means acceleration of gravity. The calculation
formulas for the coefficients o,, P, S,, O,, i=z1and d,, j=1...10 are given in

Vo

Faltinsen et al. [20]. g, means the natural frequencies. The equation system is
solved numerically by a fourth order Runge-Kutta method.

Faltinsen & Timokha [21] found that the excitation amplitude had to be very
small and that the depth should not be close to the critical value #// =0.3374 in
order for Egs. 2 to be valid. This was explained to be due to secondary
resonance. An example of such mechanisms is as follows. Nonlinearities cause
oscillations with frequency 20, where o is the excitation frequency of the rigid
body motion. If the second natural frequency o, of the fluid is close to 20,

secondary resonance will occur. The generalized coordinate [, will be
amplified and can be of same order as S,. Nonlinear interactions can also
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cause resonant oscillations at the other natural frequencies. If the excitation
amplitude is increased, the fluid response becomes large in an increased
frequency domain around the first natural frequency. This increases the
possibility that large nonlinearly excited resonance oscillations at a higher
natural frequency can occur. Both the second and third mode associated with
respectively S, and [, can be the same order as S,. Since the amplification of

the fluid motion is relatively larger at the critical depth than at other fluid depths,
the upper bound of tank excitation amplitude where the theory of Faltinsen et al.
[20] is applicable for critical depth is relatively small. An adaptive procedure that
allows for different ordering of B is presented by Faltinsen & Timokha [21].

This worked for all excitation periods as long as #//>0.24. When h/1<0.24,
good agreement with experiments was documented in isolated cases for A4/l
down to 0.173.

When the water impacts on the tank roof, fluid damping is believed to occur.
The hypothesis is that the kinetic and potential energy in the jet flow caused by
the impact is dissipated when the jet flow later on impinges on the free surface.
The latter process resembles rainfall on water. We will illustrate the procedure
by the tank with chamfered tank roof shown in Fig. 3. The upper corner is one
half part of a wedge. When the water reaches this corner, the problem is similar
to water entry of a wedge. Rognebakke & Faltinsen [22] estimated the damping
of sloshing due to tank roof impact, by first evaluating the potential and kinetic
energy flux dE,, /dr and dE,, /dr into the jet caused by the impact. The

ambient flow was based on [20], but [21] can also be used. This theory gives a
time varying impact velocity and radius of curvature R of impacting surface. R
has to be large, i.e. run-up cannot be considered. The Wagner theory is
convenient to use because a time varying velocity, R and the change from the
wedge part to the horizontal part of the roof can be analytically accounted for.
The effect of the tank bottom and the opposite wall is negligible (Faltinsen &
Rognebakke [23]). Since the Wagner theory overpredicts dE,, /dr and

dE,,, /dr, a correction factor based on the similarity solution by Dobrovol'skaya
[24] was introduced. An alternative is to use the generalized Wagner theory
presented by Faltinsen [25]. The linear damping terms 2.{01.,[?, are included in
each of Egs. 2. The damping is found as an equivalent damping so that the
energy AE removed from the system during one full cycle is equal to the kinetic
and potential energy lost in the impact, i.e. £ =AE/(4nF). E is the total energy
in the system, which is found from £ = F.v,_ for forced surge motion. Here F, is
the horizontal hydrodynamic force. An iterative procedure is followed. A
simulation over one period is started with no damping. A first estimate of ¢ is
found. The simulation is repeated, which results in a new AE and thereafter a
new ¢. This is done for iteration i >1 as 0.5(AE, +AE,_,)/ E =47 . Typically, 5
iterations are sufficient for convergence. The procedure conserves fluid mass,
which is essential in sloshing problems. Further, when the basic method and the

tank roof impact model are combined, overturning waves are accounted for
through the impact model.
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Faltinsen et al. [20] presented an extensive validation by comparing with
experimental values of free surface elevation in a rectangular tank with 2-D
flow. The tank was forced to oscillate in the horizontal direction in the cross-
sectional plane with excitation frequency in the vicinity of the lowest natural
frequency. It was demonstrated that it takes a very long time for transient fluid
motion to die out when the fluid does not hit the tank roof in a smooth tank. This
implies that damping is very low and that viscosity does not matter. Modulated
(beating) waves occurred as a consequence of transient and forced oscillations.
Strong nonlinearities were evident.

Faltinsen & Timokha [21] presented also an extensive validation for
rectangular and prismatic tanks. Steady state values of horizontal force and roll
moment amplitudes as well as free surface elevation were studied. The

maximum forced surge harmonic oscillation amplitude |/71| was 0.1 times the

breadth and the maximum forced harmonic pitch oscillation amplitude was 0.1
rad. We will present one example and at the same time compare with FLOW-3D
calculated by [15] (Fig. 2).
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Figure 2: Steady-state maximum wave elevation near the wall vs. “forced period
(T)-first natural period (7}) ratio”. Rectangular tank with /// =0.35, |7,| = 0.05/

The fluid depth is 0.35 times the breadth, which is close to the critical depth.
The grid size used in the FLOW-3D calculations was Ax = Az =0.025m, where
Ax and Az are respectively the horizontal and vertical distance between
adjacent grid points. This means a total of 40x40 elements. The ALPHA and
EPSADJ parameters were respectively 0.5 and 1.0. Three different models
were used in the adaptive multimodal approach by Faltinsen & Timokha [21].
These correspond to different ordering of the generalized free-surface
coordinates B, (See Eq. 1). The first stage of the analysis by [21] is to locate
possible resonances for 7/7, between 0.45 and 1.65. The primary resonances
of the first and third mode occur at respectively 77/7, =1 and 7/7, =0.55. The

secondary resonance of the second mode is predicted at 7 /7, =1.28. The
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secondary resonance of the third mode is at 7/7, =1.55. The positions of
primary and secondary resonances are important for selection of model. The
models are indicated as Model I,Il and lll. It was controlled that the models
overlap with each other in a small frequency domain. Model | was used for
0.5<T/T, <0.65. The expected resonances are due to primary excitation of the
third and first mode. They have the same main frequency response o. No
secondary resonance is expected. This causes the relations g, = B8, = 0("?).
This means that the secondary modes have the main harmonic 2. Such
modes are S, = B, = O(¢*'®) . Other modes (up to 9th) are considered as driven

and having O(¢). Model Il was used for 0.6<7/7, £1.25. The system is of third
order in B, and B,. It contains all the necessary terms in Eqg. 2 as well as a
theory considering B, = 8, =0(¢"?). The modes B,, B,, B, and B, were

included as driven. If the response is not too large, the modal system gives the
same results as Egs. 2. When T/7, >1.28, the third mode response was

assumed to have the same order as B, and B, (Model Ill). The reason is the
influence of the secondary resonance of third mode at 7 /7, =1.55. Model llI
was used for 1.28<7/7, <1.65. The predicted values in Fig. 2 belong to

different branches of the steady-state periodic solution. The concept of
branches of the solutions was for instance extensively discussed by Faltinsen et
al. [20]. There exist in their solution an upper and lower branch. The lower
branch is divided into an upper and lower branch. The lower branch is divided
into a stable and unstable sub-branch with a turning point between them. A
jump in the solution will happen at an excitation period corresponding to the
turning point. The results in Fig. 2 have two jumps, one around 7'/7, =1.1 and

the other one around 7' /7, =1.3. Fig. 2 shows that the multimodal approach by

Faltinsen & Timokha [21] agrees well with the experiments. No tank roof
damping was included. Even if the steady-state free surface elevation did not hit
the tank roof, impact would occur during the transient phase. The FLOW-3D
calculations agree also well with the experiments. However, it should be noted
that the results would depend on grid size and the ALPHA and EPSADJ
parameters previously discussed.

Horizontal forced harmonic oscillations of the LNG tank in Fig. 3 will now be
studied. Two-dimensional fluid motions occur. The mean fluid depth % is 0.4/

where [ is the tank breadth. The forced oscillation amplitude |/71| is 0.01. Fig. 3

shows numerical and experimental predictions of steady-state maximum
horizontal force F as a function of the forced oscillation frequency o. The
lowest natural frequency o, is 4.36 rad/s. Various fluids with different viscosity

are used in the experiments. This has small influence on the non-dimensional
force. There are two theoretical curves based on Faltinsen & Timokha [21]. One
assumes infinite tank roof height and the other one accounts for tank roof
damping. The impact-induced horizontal force is not included in the latter case.
The effect of the two lower corners submerged in the fluid was neglected. The
error in doing so is small ([21]). The previous described Model Il and Il were
used for respectively 0.65<7/7, <1.3 and 1.3<7/7, <1.65. Results by FLOW-



URN:NBN:no-2322

3D published by [15] are also presented in Fig. 3. The grid size was
Ax =0.0276 m and Az =0.02782m corresponding to 50x37 elements. The effect
of the corners was accounted for. There are also shown two curves
corresponding to ALPHA=1.0 and 0.5. In both cases EPSADJ=0.01 which is
different from the value used in connection with Fig. 2. The presented results for
ALPHA=1.0 and 0.5 are clearly different. The results obtained with the default
value ALPHA=1.0 are furthest away from the experiments. The agreement
between FLOW-3D and the experiments is fair. The results based on Faltinsen
& Timokha [21] and accounting for tank roof impact are in good agreement with
experiments. The simulations with infinite tank roof height give jumps between
different solution branches at certain frequencies. These jumps disappear when
tank roof impact damping is introduced.
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Figure 3: Maximum horizontal force F' per unit length of LNG tank as a function
of forced oscillation frequency o . Forced surge amplitude |/71| =0.01 (left) and

7,/ = 0.2/ (right). Mean fluid depth /# =0.4/. /=tank breadth, p=mass density of
the fluid. Experiments by Abramson et al. [2]. Length dimensions in [mm]
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Fig. 3 shows also comparisons between theory and experiments for the
larger surge excitation amplitude |/71| =0.1. This represents a realistic design

excitation. Only the analytically based sloshing models are used. We note the
significant effect of tank roof damping when ¢ >=3.5rad/s. Accounting for tank

roof impact was not straightforward for |/71| =0.1 . Very violent motions occurred

initially for 3.4rad/s <o < 4.2rad/s. An artificial damping coefficient was therefore
introduced in the transient phase. When the free surface motion reached a less
violent state, our tank roof damping model was switched on. Fig. 3
demonstrates good agreement between theory and experiments. One may note
that the sloshing force for o >=4.0rad/s is larger when tank roof impact is
included in the calculations. Examining the force expression will illuminate this.
The horizontal hydrodynamic force for forced surge oscillations can according to
[20] and [21] be written as
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Vq

x +d2x(i'
dr dr? (3)

where m;, is the fluid mass and x. is the instantaneous horizontal position of

F.=-m,

the mass-centre of the fluid relative to the tank fixed coordinate system. x. is a
function of the generalized coordinates f,. Fig. 4 shows how the magnitude is
increased and the phasing shifts for the term depending on x., when impact

damping is accounted for. This leads to a larger total hydrodynamic force even
if the free surface elevation is smaller.
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Figure 4: Contributions to the total horizontal hydrodynamic force F per unit
length on the LNG tank shown in Fig. 3 for a forced sway frequency o = 4.6

rad/s. |7,| = 0.1

The analytically based method provides a robust procedure for impact loads.
However, this has to be validated for cases where impact pressures are
relevant for local structural response. Abramson et al. [2] presented
experimental slamming predictions for the LNG tank shown in Fig. 3. This
included statistical distributions. The pressure transducer location is indicated
as P, in Fig. 3. Viscosity seemed to be important when the forced surge

amplitude |;7,| was 0.01 times the tank breadth /, but not for |,|=0.1/. Fig. 5

shows computed and experimental pressures for |/71| =0.1. The computations

are for steady state fluid motions. The experimental values are 10%
exceedance limits for the pressure. The computed values would represent the
most frequently occurring in a long time simulation. What the 10% exceedance
level would be depends on the time series. We can very well realize the level of
pressure shown in Fig. 5 in the transient phase of our computations. But we
would need the complete time series in the experiments to make a quantitative
estimate of the 10% exceedance limit. The way that the data by Abramson et al.
[2] were presented, suggest that they meant that the process is stochastic.
However, in our opinion this particular type of impact on a chamfered tank roof



is deterministic during harmonic excitation of the tank. Another matter is impact
on a horizontal tank roof. In that case the impact pressure may very well have a
stochastic behaviour, but as previously discussed, maximum pressure is then
an irrelevant parameter for local structural response.
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Figure 5: Measured [2] and calculated impact pressures p at the location P, in
the LNG tank shown in Fig. 3. Presented as a function of forced oscillation
period 7. |7,/ = 0.1
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The analytically based sloshing model facilitates coupling between fluid
motion in the tank and wave induced ship motion. The predictions must be
validated. Experimental 2-D studies with a ship cross-section containing two
tanks have therefore been carried out at the wave flume of the Department of
Marine Hydrodynamics at the Norwegian University of Science and Technology.
The wave flume has an overall length of 13.5m and is 0.6m wide. It is equipped
with an electronically operated, computer controlled, single flap wavemaker,
calibrated for a water depth of 1.03m. The wavemaker has the ability to dampen
out waves reflected by the model at the same time as new waves are
generated. The rectangular ship section shown in Fig. 6 is free to move in sway.
The draught is 0.20m, and the section is excited by regular beam waves with
frequency «. The length of the ship model is 0.596m. The weight of the model
is adjusted to be equal to the buoyancy for both empty and half-filled tanks. The
amplitude ¢, of the incoming wave is lowered as the wave frequency

increases. The relationship between ¢, and « is shown in Fig. 6. The model

contains two identical tanks with an inner length /=0.376mm. The width of a
tank is 0.15m, and the height is 0.388m. The section is prevented from drifting
off by two springs with a total stiffness of 30.9 N/m.

Fig. 6 shows calculated and measured values for the sway amplitude |/72| of

the section. The calculations have presently not been performed with fluid
inside the tanks. The sway amplitude is normalized by the amplitude of the
incoming wave.
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Figure 7: Example of time history of the sway motion of the ship section shown
in Fig. 6 with fluid in the tanks. « =9.42rad/s and ¢, =0.015m
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Fig. 7 shows a typical time history of the measured sway motion of the ship
section. First there is a transient phase before the system reach a steady state.
A beating period of approx. 5 seconds is evident during the transient phase.
This is the eigenperiod for horizontal motion of the system consisting of the
springs and the ship model without fluid in the tanks. A shift in mean position of
the section occurs due to 2. order drift force. The steady state is ended when
waves are reflected from the wavemaker and beach at the end of the wave
flume and a second transient phase starts. The steady state motions show
almost no trace of higher order harmonics. This indicates that the higher order
part of the sloshing force is filtered out by the system. The experimental results
for rigid mass agree well with the computed values from the linear seakeeping
code VERES. In these computations, infinite water depth is assumed. This
explains the discrepancy for low frequencies. Calculated results from long
wavelength, finite water depth theory show better agreement when the
wavelength is long compared to the water depth and section length.

We observe a large effect of the fluid motions inside the tanks for «w >=7
rad/s. Excitation with « <=9rad/s results in a lower sway response for half-filled
tanks than for a rigid mass. The resulting force from the fluid motion in the tanks
acts then against the sway excitation force. When w= o, there is almost no

sway motion. For w >=9rad/s the sway motion is increased due to the fluid in
the tanks. This behaviour can be qualitatively explained by using a linear model
for the sloshing. We then find that the phase of the horizontal sloshing force
shifts 180° when the excitation frequency is changed from being slightly below
to slightly above the first natural frequency. This is well known from linear
dynamic systems.

CONCLUSIONS AND PERSPECTIVES

Sloshing represents violent fluid motion with strong nonlinearities during
resonant motion in the vicinity of the highest natural period. The physical
behaviour during impact is discussed. The importance of hydroelasticity for
small angles between impacting fluid and body surface is stressed. The very
high slamming pressures are then unimportant for the structural response.

CFD methods are reviewed. The drawbacks are long simulation time,
sensitivity to numerical parameters and general inability to predict strong
impact. An analytically based sloshing model is therefore recommended. Its
drawbacks are that the tank has to be smooth with vertical sides at the free
surface. Shallow fluid phenomena are excluded.

The importance of tank roof impact damping on sloshing is demonstrated.
Extensive validation of free surface elevation, total forces and moments for 2-D
flow in rectangular and prismatic tanks by the analytical method is reported.
This includes realistic motion excitation and studies close to critical depth
0.3374 times the tank breadth.

The analytical method provides a robust way to predict impact pressures.
However, this has to be validated for cases where impact pressures are
relevant for local structural response. The study shows that steady-state impact
pressures are clearly lower than would occur during a transient phase.
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Experimental studies where hydroelasticity matters during impact are
recommended.

The structure of the analytical method facilitates coupling with the ship
dynamics. Experimental 2-D studies with a ship cross-section containing two
tanks are presently performed. These show that the ship response can be
strongly influenced by the fluid motion in the tanks. The next step is to perform a
complete time domain solution of a ship by combining external linear wave
loads with the nonlinear analytically based sloshing model for head and beam
sea conditions.

The details of the analytically based method have to be developed for a ship
tank with 3-D flow. A 3-D rectangular tank would represent a direct
generalization of the 2-D method for a rectangular tank. Analysis can be used to
the same extent. However, a tapered tank would require numerical methods to
describe the linear eigenfunctions as a part of the solution procedure.
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Preface

This extended abstract was presented at the 14th International Workshop on Water Waves and
Floating Bodies in Port Huron, Michigan, USA. The motivation for this study was the findings

from sloshing experiments carried out at the laboratory facilities of Det Norske Veritas at Hovik,

Norway. A smooth rectangular tank was forced to move harmonically in sway. The purpose of
the experiments w as to get hands on experience with sloshing and to gain a better understanding
of the physical effects involved.

A distinct feature of the sloshing motion was modulated ("beating’) waves as a consequence of
interaction betw een transiert and forced oscillations of the free surface flow. A frequency analysis
sho w ed the presence of both the lw est natural frequency and the forced oscillation frequency
Figure 2.1 illustrates the frequency analysis. A steady-state solution would not capture this
behaviour. Nonlinear effects were clearly present in the experimental results.
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Figure 2.1: P ow espectrum of free surface elevation for rectangular tank forced to oscillate
harmonically in sway with frequency w. The first natural frequency of the fluid motion in the
tank is w,

F altinsen (1978) presents a linear initial value solution for tw o-dimensional sloshing ina har-
monically oscillating rectangular tank. The idea was to extend this to second order in a small
parameter € that ¢ haracterizes the order of magnitude of the forced svay amplitude relative to
the tank length. The response is assumed to be O(e). Since the derivations were based on the
linear solution, the same choice of a coordinate system fixed in space was applied. It may have
been easier to adopt a coordinate system moving with the tank, as suggested by Prof. B. Molin
at the w orkshop. This w ould resultin homogenedNsumann w  all conditions for the second
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order potential. Cointe, Molin, and Nays (1988) have developed an analytical solution for free
oscillations of transient waves in a rectangular tank to second order.

The derivations are lengthy and only the final expression for the second order potential would
fit in the four pages abstract. Appendix D presents the full derivation. The solution is found for
only one set of initial conditions. Although the agreement with the experiments is better than
for the linear solution, there is an obvious need for a method including higher order terms.

Alexander N. Timokha from Kiev, Ukraine, arrived at the Department of Marine Hydrodynamics
by the time this abstract was finished, and work was initiated to develop a more general nonlinear
solution.
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A SECOND ORDER INITIAL V ALUE SOLUTION OF
TWO-DIMENSIONAL SLOSHING IN RECTANGULAR TANKS

Olav F. Rognebakke and Odd M. F altinsen
Department of Marine Hydrodynamics
Norwegian University of Science and Tec hnology
N-7491 T rondheim Norway

Environmental concern has led to requirements about double bottoms and skin in new
tankers. It is desirable to save steel, and this has led to wide oil tanks that can be
smooth inside. The most violent fluid motions inside the tank occur in the vicinity of the
highest natural period of the fluid motion. When the tank is smooth, viscous effects are
not important and potential flo w theory can be used. Nonlinear free surface effects are
significant.

Experiments ha ve been carried out with forced harmonic swmy oscillations of a rectangular
smooth tank. The oscillation frequencies are close to the low est natural frequency of the
fluid motion inside the tank. The results show a clear beating effect that does not die
out. A frequency analysis shows the presence of both the low est natural frequency and
the forced oscillation frequency. This implies that a steady-state solution as presented b y
F altinsen [1] and Solaas and Faltinsen [2] cannot be used. Nonlinear effects are clearly
presen t in the experimenal results. A theoretical solution is derived to explain the ex-
perimental findings. The response is assumed to be O(e), where the small parameter e
characterizes the order of magnitude of the forced sway amplitude relative to the breadth
of the tank. A second-order solution in terms of € is deriv ed. This is not valid at reso-
nance. It then seems necessary to assume that the response is of low erorder than the
excitation. The steady-state solution in [1] and [2] assumes the response to be O(e!/3).
The fluid is assumed incompressible and the flow tw o-dimensional and irrotational so that
there exists a velocity potertial &7 satisfying the 2-D Laplace equation in the fluid do-
main. The rectangular tank is oscillating harmonically in sway. The coordinate system
is shown in Fig. 1. The tank position relative to equilibrium is 7 = € sin(wt). The first
order potential ®; satisfies the linearized free surfamendition and the body boundary
conditions on the side walls and the tank bottom. The transient is kept due to a very
small damping. The level of damping can be estimated by the use of formulas given in
Keulegan [3]. For the tank dimensions used in the experimerts it will be less than 0.3% of
the critical damping for a linear standing wave at the highest natural period. This means
the amplitude is halved after ~ 100 oscillation cycles. Since potential theory is used, the
damping is zero. The initial conditions ®; = 0 and d®,/0t = 0 on the mean free surface
are used. The first order potential is written as ®; = ¢; + ¢. where ¢, = Az cos(wt) is
associated with the forced oscillation. The expression for ¢, is

oo

¢1 =Y [A, cos(wyt) + C, cos(wt)] sin {Wx} cosh {W(z + h)} (1)

n=0
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where

5 2n+ )7 2n+ )7 wk, K,
— g TN T, = YR 4=,
wn g 2a an 2a ’ Cn (w% _ LL}Z) ’ n Cn w (2)
wA 2 2a ’
Kn == - —1 n s A =
cosh { (QH-;i)rh} a ((QTL + ].)71') ( ) €oW (3)

The second order potential ®, must satisfy the inhomogeneous free surface condition

PPy 0B 0 [(08,)" (09:)°
o " 9: T ot [\ oz 0z
10%, 0 [0*®, 0%,
—_— =0 4
gat8z<8t2+gaz on )
the wall condition 9% o
a—; = —¢p sin(wt)aTQ1 on r=x=a (5)
and the bottom condition % =0 on z = —h. Further the second order part of the free
surface elevation has to satisfy [, (adz = 0. Here
. 0%, 1.0%,, 001,
@=- (E)t ol M+ )+ C1828t> » ©)
A possible solution for the second order potential is
h
®, = Z P(t),, cos( )c h[ﬂ] + B(t)
7rA
= Taw —(Ap sin[(w + wo)t] + A sin[(w — wp)t] (7)
. e w(z + h)
2wt — —_—
+ Cpsin(2w ))cos(za)cosh[ 5u ]
where
P(t), = P}sin[(w + wo)t] + P2 sin[(w — wp)t] + P2 sin(2wt) + P2 sin(2wpt) (8)
B(t) = B'sin[(w + wp)t] + B*sin[(w — wo)t] + B> sin(2wt) 4+ B* sin(2wyt) (9)

Only the dominant term of the series solution for ®; is used in Eqs. 4 and 5 when finding
®,. By substituting

. — .  — . 2
Cl:{l i=1,2,3 Dl:{AO i=1,24 Hl:{wgz_ 1,2,4 (10)

0 i:=4 Cy 1=3 w® =3
wHwy =1 wwp 1=1 Cody i=1,2
AZ
g i=4 Wi i=4 5 =4
2
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the expressions for the coefficients P and B’ are found as

i mh
pi o~ AD cosh[mh] lh .
a cosh[*2%] [*74 tanh[*T*] — (F')?]
(=1)"(1+4n?) w(2aH'tanh[Z2] — 7g)
(1+2n)%(1 — 2n)? gm

(1)t o —(F)? + 52 tanh[g—h]
e 1N/a . 1N 2FZ a a 12
T -1+ + w (12)
LEFiT cosh’[Z8]  (3mg — 2aG* tanh(Z2) — 27g tanh®(Z2))
+ s — 2o - ol j=1...4
16ga? cosh[7}] —(F")? 4 2% tanh[T*]
where J"” =1 forn =1and J” =0 for n > 1. Further
; AD'w cosh[t . h ADi -h
BZ = — 7_2”‘ 2 Hzt h i _ = h e
2gma (F1)2 (2aH"® tan [2a] m9) o(F) cos [Qa]
A..DZ 7Th qm 7Th
+ 2aw o8 [2a]( 2a(F")? an [Qa]) (13)
E' h . h h
_ Wﬂ COshZ[;La] <7rg + 2aG" tanh(g—a) + 27g tanhQ(;a)) i=1,2,3
E' wh : h wh
B' = ———— h*[— 2aG* tanh(=—) + 27g tanh?(— 14
lﬁgaz(FZ)FCOS [Qa](ﬂg+ @t tan (ga)+ Tgtan. (Qa)) (14)

The B? coefficient con tains an additional term—A?/(4w?). The solution has been verified
by checking that ®, satisfies the boundary conditions. The presen tedsolution satisfies
&, = 0 for £ = 0 while (, is initially non-zero. A more general solution for ®, can be
obtained by adding solutions that satisfy the homogeneous free surface condition and
body boundary conditions.

Fig. 2 shows a cross-section of the tank used in the experiments. The tank was forced to
oscillate in the horizontal direction in the cross-sectional plane. The length of the tank
w as 0.20 m, and as long as no plunging vave breaking occurred, the flow was close to t w-
dimensional even for long time simulations. The excitation was sinusoidal in time after an
initial phase. This initial phase lasted for approximately tw o oscillation periods. The low
damping in the tank made it inconvenient to wait for the motion from the last simulation
to die out totally before a new run was started. Measurements of the free surface at the
positions shown in Fig. 2 were made, and pictures were tak en at registered time instats.
The sampled time series are 50 seconds long, but video recordings of longer simulations,
as long as 5 minutes, show ed that thepronounced beating was still present and steady
state oscillations with the forced oscillation period was not achieved. This shows that the
damping of the fluid motion is even lo w er than Keulegan foundOne reason may be scale
effects. Keulegan assumed laminar flow and used smaller models than us. The Reynolds
number associated with the boundary layerflow in our experiments suggests turbulent
flow.
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As a general comment to the experiments, w e note the olyious nonlinearity present in the

free surface elevation; the increase in crest height and decrease in wave trough relatiwe to

a sinusoidal standing wave. Figs. 3 and 4 show the measured and calculated free surface

elevation at wave probe FS3 (see Fig. 2) for h = 0.5m, forced oscillation period T' = 1.4s

and €y = 0.047m. Fig. 5 sho ws the position of the tank during the first 20 seconds of this
simulation. ¢ = 0 corresponds to the same time instant in Figs. 3 and 5. The excitation of

the tank started at ¢ = 7.5s. The first natural period for this situation is 7o = 1.75s. Fig.

3 sho ws that the free surface is initially in motion. This gives different initial conditions

for the simulation (Fig. 4) and the experiment. Also the excitation with an initial phase of

an increasing amplitude will lead to differences in the response. The comparison between

the measured and calculated free surface elevation at FS3 shown in Fig. 6 is done for a

time window after a few initial oscillations. The calculated values are shifted in time so

that the zero-crossings of the fast oscillating part and slowly varying envelope matc. The

2. order solution gives a better agreement for both the wave trough and wave crest than
the 1. order solution. The influence of initial conditions and non-harmonic excitation will

be investigated systematically We should note that the oscillation amplitude of the free

surface is clearly larger than the excitation amplitude.

The free surface profile found from the experiments is compared in Fig. 7 with the 1.

order and 2. order approximations and with calculations based on the combined numerical

and analytical steady-state solution of Solaas and Faltinsen [2]. Here h = 0.5m, T' = 2.0s

and ey = 0.051m. The time instant is just before the maximum free surface elevation is

reached at the righ t sidew all. We see a tendency to w avebreaking at the w avecrest.

Only the dominant term in the series solution of ®; is included in Eq. 6 when calculating

(2. This is consistent with keeping only this term when deriving ®,.

The second order solution agrees best with the experiments, but there are differences left

to explain. We note spilling w avebreaking in the experiments. According to P enney
and Price [4], a criterion for w avebreaking of a standing w aves a vertical do wiward

acceleration larger than 1 g. In the simulation corresponding to Fig. 8, we get a maximum

downw ard acceleration of 1.6¢g. Higher order harmonics left out in the theory are more

important for acceleration than for displacement.

When the forced oscillation period is close to the highest natural period of the fluid motion

inside the tank, the water hits the tank ceiling even for very small excitation amplitudes.

A more direct numerical method may then be needed. Since local damage due to water

impact on the tank ceiling is of concern and hydroelasticity matters in this context, the

chosen numerical method must include the effect of dynamic elastic vibrations of the

structure. Since long numerical simulations are needed to get proper statistical estimates

of the tank behavior in a seaw ayjt may be worthwhile to use an analytically based

method when the w aterdoes not hit the tank ceiling. It implies that the presen ted
analytical solution should be generalized to satisfy arbitrary initial conditions.
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Preface

The nonlinear sloshing models that are applied in the work presented in this thesis are results
of theoretical work of Odd M. Faltinsen and Alexander N. Timokha. The first approach that
they developed is published in the following paper. The experiments conducted at Det Norske
V eritas vere used to validate the theory.

Experimental studies of sway sinusoidally excited sloshing validate the modal system for different
fluid depths, excitation periods and small excitation amplitudes. Good agreement between
theory and experiments is documented.

This asymptotic model has limited applicability in simulating fluid sloshing when the maximum
free surface elevation is the order of the tank length [ or fluid depth h. This situation occurs when
the excitation amplitude is not very small, the depth is close to the critical value h/l = 0.3374
or in shallow water.

Some of the shortcomings of this method are addressed by the adaptive multimodal approach by
Faltinsen and Timokha (2001). P aper 1 giwes an explanation of the differences between the tw o
methods. The adaptive multimodal approach was immediately adopted in the computer code
developed by the author for sloshing calculations.
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The discrete infinite-dimensional modal system describing nonlinear sloshing of an
incompressible fluid with irrotational flow partially occupying a tank performing an
arbitrary three-dimensional motion is derived in general form. The tank has vertical
walls near the free surface and overturning waves are excluded. The derivation is based
on the Bateman—Luke variational principle. The free surface motion and velocity
potential are expanded in generalized Fourier series. The derived infinite-dimensional
modal system couples generalized time-dependent coordinates of free surface elevation
and the velocity potential. The procedure is not restricted by any order of smallness.
The general multidimensional structure of the equations is approximated to analyse
sloshing in a rectangular tank with finite water depth. The amplitude—frequency
response is consistent with the fifth-order steady-state solutions by Waterhouse (1994).
The theory is validated by new experimental results. It is shown that transients and
associated nonlinear beating are important. An initial variation of excitation periods
is more important than initial conditions. The theory is invalid when either the water
depth is small or water impacts heavily on the tank ceiling. Alternative expressions for
hydrodynamic loads are presented. The procedure facilitates simulations of a coupled
vehicle—fluid system.

1. Introduction

A main objective is to describe violent fluid motions (sloshing) in a partly filled
tank forced to oscillate in a frequency domain close to its lowest natural frequency.
The ratio between maximum free surface amplitude and characteristic tank motion
amplitude is then high and significant nonlinearities occur. This has practical interest
for sloshing in ship tanks. By considering sea states that a ship has to operate in,
it is realistic that wave-induced ship motions can cause resonant fluid oscillations.
This can lead to large local structural loads in the tank and has an important
effect on the global ship motions. It is desirable to develop numerical methods
that accurately describe the fluid loading and coupling between ship motions and
sloshing. A necessary requirement is that long time simulations can be performed
and the proper statistical distribution of response variables obtained for various sea
states.
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Several studies on different numerical approaches to sloshing have been reported
by Su Tsung-Chow (1992), Buechmann (1996), Tanizawa (1996), Chen et al. (1997),
Pawell (1997) and the Loads Committee of the 13th ISSC (Moan & Berge 1997). A
general drawback is the limited ability to perform long time simulations, especially
for coupled ‘liquid—structure’ interactions. It may also be difficult to find water impact
loads and local structural response. One reason is that water impact studies would
often require a very fine discretization in time and space. Hydroelasticity may also
have to be considered. We have instead focused on developing a semi-analytical
method based on modal modelling. The present method assumes a smooth tank.
This implies that potential theory can be used. The method also requires vertical
tank walls near the mean free surface in its equilibrium position. Overturning waves
cannot be described. It will be shown that a high degree of analysis can be performed.
The consequences are both a time efficient and robust method. Water impact is not
studied in detail, but the method can be combined with a local slamming analysis
(see Faltinsen & Rognebakke 1999) and applied to coupled ‘fluid—tank’ simulations.
An example is given illustrating the damping effect of forceful water impact on fluid
motion.

Modal modelling of nonlinear sloshing implies that the equation of the free surface
2(t):z = f(x,y,t) is expanded in generalized Fourier series by a set of natural modes.
The free surface elevation and the unknown velocity potential ¢ are expressed as

z=f(x,y,t) = Zﬁi(t)(surfacemode)i(x,y),
¢(x.y,z.t) = ¥ _Ri(t)(domainmode),(x, y,z).

The (x, y, z) coordinate system is fixed relative to the tank; x,y are coordinates in the
plane of the unperturbed water surface and t is the time variable. Generally speaking,
the surface and volume modes are arbitrary known functions. However, they are
typically chosen by the relation

(1.1)

(surfacemode);(x, y) = (domainmode);(x, y, z)|5,, (1.2)

where 2 is the unperturbed free surface. Since f(x, y, t) is single-valued, (1.1) does not
describe overturning waves. Moreover, (surfacemode),(x, y) must have a non-varying
domain of definition. This means the tank must have vertical walls near the free
surface in its equilibrium position.

The generalized coordinates f§; and R; are found by a coupled system of nonlinear
ordinary differential equations (modal system). The derivation of the modal system
from the original free boundary problem was first proposed by Narimanov (1957)
based on a perturbation technique. It has been further developed by Dodge, Kana &
Abramson (1965), Narimanov, Dokuchaev & Lukovsky (1977) and Lukovsky (1990).
These and other authors used a perturbation technique combined with variational
(Hamilton—Ostrogradsky) projective method and derived small-dimensional models
(1-3 degrees of freedom in a vertical circular cylinder) in the generalized coordinates
pi(t) or their averaged values (for resonantly excited waves). (See for instance Lukovsky
1976; Miles (1976, 19844, b).) Using an averaging technique means that f3; is written as

pi = Z(wl‘)}(f) sin (jot) + (B;);(7) cos (jat)),
=0

where o is the excitation frequency and t is slowly varying relative to ¢. The averaged
equations of a (f5;)/(t) have the form of a Duffing equation for a rectangular tank
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(see Shemer 1990 and Tsai, Yue & Yip 1990) or a system of four first-order ordinary
differential equations for a vertical circular cylindrical tank (see Miles (1984a,b)).
Funakoshi & Inoue (1991) used Miles’ model in their detailed simulations. The
averaging technique and small-dimensional modal modelling complement each
another in the analysis of the steady-state free surface response due to periodic tank
excitations. But these methods are questionable in modelling coupled fluid—structure
interaction with complicated non-periodic tank motions when transient effects matter.
These complex motions are simulated in engineering applications either numerically
or by phenomenological (usually pendulum) models (see Chapter 5 of Narimanov et
al. 1977 or Pilipchuk & Ibrahim 1997). An alternative is to use Narimanov’s original
technique with the modal representation in the form (1.1) and more general asymp-
totic assumptions of f§; and R, in order to reach reasonable dimensions of the modal
systems. The successful use of this approach is reported by Limarchenko & Yasinsky
(1997) and Lukovsky & Timokha (1995) for simplified models of spacecraft. A similar
method was used by Ikeda & Nakagawa (1997) for analysis of damping of vessel
motions due to sloshing. This suggests that multidimensional modal analysis can
simulate complicated nonlinear wave phenomena coupled with structural vibrations.

The general form of a discrete infinite-dimensional modal system is derived in the
first part of this paper by the Bateman—Luke (pressure-integral Lagrangian) varia-
tional principle. This idea was proposed independently by Miles (1976) and Lukovsky
(1976). They studied forced small-amplitude translatory motions of a vertical circular
cylindrical tank. The surfacemodes and domainmodes were obtained by linear theory
and related by (1.2). Our derivation of a discrete infinite-dimensional modal system
is not restricted to a particular type of body motion. The surface and domain modes
are not associated with natural modes and no asymptotic assumptions are introduced
in the first stage of the derivation. The infinite-dimensional modal system can be
reduced to a finite-dimensional form by assuming small-amplitude forced oscillations
and associate order of magnitudes of the different modes. This is done in the second
part of the paper to analyse nonlinear sloshing in a two-dimensional rectangular
smooth tank with finite water depth. Both forced translatory and rotational body
motions are considered. The lowest natural mode is assumed to dominate and the
three lowest modes interact nonlinearly with each other. Several modes having higher
order are considered by linear theory. The asymptotic theory constructed is a special
multidimensional analogue of the model by Tkeda & Nakagawa (1997) and the direct
generalization of the third-order hydrodynamic theory by Faltinsen (1974).

Experiments on nonlinear sloshing caused by primary mode resonant excitation
have been conducted. The asymptotic modal theory constructed explains the basic
observed phenomena including modulated (‘beating’) waves with a high accuracy
of amplitude and ‘beating period’ characteristics. The beating is a consequence of
transients that do not die out on a very long time scale. The reason is the very
small damping of the fluid motion inside a smooth tank with no internal structures
obstructing the flow and no heavy water impact on the tank ceiling. A consequence is
that steady-state response of the fluid motion can have a limited capability to describe
sloshing quantitatively. However the steady-state response is valuable to understand
important features of the flow like stability and how the response is influenced by
water depth, excitation frequency and amplitude. Since it represents a special case
of our theory, steady-state solutions are used in the verification process. Examples
of steady-state amplitude—frequency response for surge- and pitch-excited nonlinear
waves are presented. The results are consistent with the third- and fifth-order steady-
state solutions by Faltinsen (1974) and Waterhouse (1994) respectively.
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The use of a discrete modal system allows us to calculate various kinematic and
dynamic characteristics occurring due to interaction between the fluid and the tank.
We present examples of hydrodynamic force and moment on the tank. The structure
of the equations describing the fluid motion as a function of the rigid body motions
makes it possible to set up an equation system for the coupled tank and fluid motion.
An example could be analysis of a ship tank due to wave-induced ship motions.
Since the wave conditions that cause violent sloshing may not be extreme, we can use
linear time domain theory to describe external hydrodynamic loads acting on the ship.
By setting up the equations of motions for the global rigid ship motions together
with the equations describing sloshing, complex fluid—structure interaction can be
analysed. But the theory does not describe the effect of impact on the tank ceiling.
This can easily occur in practical applications and is an area of further research.
The asymptotic theory is not applicable to shallow water. This is due to secondary
parametric resonance and means that the primary mode is not dominating. The ratio
between water depth and breadth of the tank is 0.173 in the example where the finite
water depth theory does not work. This is not really shallow water in a hydrodynamic
context (see the nonlinear theory by Verhagen & Wijngaarden 1965). What we need
is a theory that can combine the present finite water depth theory with a nonlinear
shallow water theory.

2. Free boundary value problem

A mobile rigid tank partly filled by an inviscid incompressible fluid is considered.
The flow is irrotational. The fluid volume bounded by the free surface X(t) and
the wetted tank surface S(¢) is denoted Q(t). Let O'x'y'z’ be an absolute coordinate
system and Oxyz be a moving coordinate system fixed with respect to the rigid tank.
The origin of Oxyz is in the unperturbed free surface and moves with the velocity
vy relative to O’'x'y’z’. The tank has an angular velocity w relative to O’x’'y’z’. The
gravity field has the potential

U(X,yazat)=—g”’,, y’:y/0_|_y’ (21)

where ' is the radius-vector of a point of the body—fluid system with respect to O,
r; is the radius-vector of the point O with respect to O’, r is the radius-vector with
respect to O and ¢ is the gravity acceleration vector.

Since the flow is irrotational, the fluid velocity can be represented as v, = VO,
where v, is the fluid velocity vector at the point (x,y,z) in the moving coordinate
system and ®(x,y,z,t) is the velocity potential. The velocity potential and the free
surface X (t) can be found from the following nonlinear free boundary problem:

0D
A®P =0 in Q(1), Ezvo-v—l—w-[rxv] on S(1),
0P <
E=v0.v—|—w-[r><v]—I—‘V‘f| on X2(t), (2.2)
0P
E+%(V<D)2—V<D-(vo+w><r)+U=0 on X(t), dQ = const.
(1)

Here v is the outer normal to the boundary of Q(¢) and &(x, y, z,t) = 0 is the equation
of the free surface X(¢). The last integral condition in (2.2) implies fluid volume
conservation and is also the well-known solvability condition for the Neumann
boundary value problem.
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The free boundary problem (2.2) must be completed by initial or periodicity
conditions to get a unique solution. The first type of condition introduces the initial
position of the free surface X (ty) and the initial distribution of normal derivatives of
D, ie.

0P
f(to»ny’»Z):iO(xay,Z)» 67 =¢(x,y,z). (23)
v 12(t0)
Here &o(x,y,z) and ¢(x,y,z) are given functions. If the flow starts from rest with
sufficiently small tank oscillations, linear theory can be used to formulate the initial
conditions. One way of doing this is in terms of impulse conservation. This means

®=0 on2; and zero free surface elevation for t = t,. (2.4)

The last free surface boundary condition (dynamic boundary condition) of (2.2) is
obtained by using Lagrange—Cauchy integral for the pressure in the moving coordinate
system. It states that the pressure on the free surface is equal to a constant py. The
hydrodynamic pressure p in Q(t) can be obtained by

0P

— 4+ VD) — VP - (vg+toxr)+ U+

D — Do
7_0
ot

in Q(¢t). (2.5)

Here 0®/0t is calculated in the moving coordinate system, i.e. for a point rigidly
connected with the system Oxy:z.
There is a set of mechanical characteristics (expressed by integrals of ¢ and its
derivatives), which describes the interaction between the vessel and fluid. They are:
(a) the radius-vectors of the mass centre with respect to the points O’ and O (¥}
and ric) ¢ = ry +ric, where

p/ UdQ=—p/ g-r'dQ=—mg-ric;
0(t) 0(t)

(b) the resulting hydrodynamic forces F(t), and moments V() on the tank

F() = /S ommds, N = /S o= pmds. (2.6)

3. Derivation of the general modal system by the variational method

Let us consider the boundary value problem (2.2). The unknowns are & =
d(x,y,z,t) and &(x,y,z,t). We will use a Bateman—Luke variational principle and
introduce the pressure in the Lagrangian of the Hamilton principle. The idea of the
pressure integral as the Lagrangian in hydrodynamic problems was first proposed by
Hargneaves (1908). The canonical formulation of this principle is given by Bateman
(1944) and Luke (1967) (for gravity surface waves in infinite basins). We use the
formulation given by Lukovsky (1990).

PRESSURE-INTEGRAL LLAGRANGIAN VARIATIONAL PRINCIPLE. The boundary value
problem given by (2.2) can be described by examining the necessary conditions for
the extrema of the functional

5]
W:/ Ldt, (3.1)
t



URN:NBN:no-2322

206 O. M. Faltinsen, O. F. Rognebakke, 1. A. Lukovsky and A. N. Timokha
where the Lagrangian L is the pressure integral
0P
L =/ (p—po)dQ = —p/ { + %(V(D)z—Vdi-(vo—i—w X r)+ U] do; (3.2)
o) o L 0t

and the test functions satisfy

0P(x,y,2z,t1) =0, 0®P(x,y,2z,t,) =0; 0&(x,,2,t1) =0, 6&(x,y,z,t2) =0.

We consider a domain Q having vertical walls in a neighbourhood of the free
surface in the equilibrium position. The normal velocity component on the free surface
z = f(x,y,t) is given in the body-fixed system by —¢/|VE| = fi/(/1 + f + f}. The
velocity potential is expressed as

(3.3)

D(x,y,z,t) =vy r+ -2+ . (3.4)

The vector-function 2(x,y,z) = (2y,2,,2;) (Stokes—Zhukovsky potentials) is the
solution of the following Neumann boundary value problem:

AQ =0 in Q(t),

@ = yvy — zV @ =zV] — XV

oy Isgrze 2 oy sz ! 3 (3.5)
09;

—_ = XV — YV,

ov s+

where v, v,,v3 are the projections of the outer normal v onto the Oxyz-axes. The
function ¢ is a solution of the Neumann boundary value problem

_ I

o Jlefies

The Neumann boundary value problems for £ and ¢ have unique solutions since

0@ 067(/)

A = —_— =
¢ =0 v s > Oy

in Q(t),

dS=0

6Qi (?QD ft
ds =0, / —dS = / _—
/S(r)+2(t) v s OV =0 1+ (Vf)?

are always fulfilled (see Lukovsky & Timokha 1995). These solutions depend para-
metrically on time. By using (3.4) and the boundary value problems for £2 and ¢ it
follows that @ satisfies the Laplace equation and the Neumann boundary conditions
of (2.2). The dynamic condition (pressure balance) on X(t) gives the final equation
connecting f, €2 and ¢.

Let the function f(x, y,t) be expressed as

f(xa Y, t) = Zﬁi(t)fi(xay)a

i=1

(3.6)

where fi(x,y) is a complete (to within a constant) orthogonal system of functions
satisfying the condition of volume conservation |, 5, fi(x,y)dxdy = 0. Further,

cp(x,y,z, t) = ZRn(t) QD,,(X, y,Z),

n=1

(3.7)

where the complete system of functions ¢,(x, y,z) satisfies the Laplace equation in
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the whole tank domain Q and zero Neumann boundary condition on the wetted
body surface. Normally, only the wetted body surface below the mean free surface is
considered. Since the system {¢,(x,y,z)} is complete on any single-connected surface
in the tank domain, it is also a complete system on X,. The Stokes—Zhukovsky
potentials ©; are assumed to be known functions of ;. Hence, we must only find the
unknown functions f5;(t) and R,(t).

Such a family of harmonic functions ¢,(x,y,z) can be chosen as a set of solutions
of the following boundary spectral problems with spectral parameter A,:

0Py
ov

Py
ov

Ap, =0 1in Q, =0 onS§, = Ay, on X, / @, dS =0. (3.8)
2

This is the same as the linear eigenvalue problem for sloshing. The solutions can be
found analytically only for a limited class of tank shapes. Examples are a vertical
circular cylinder or a rectangular three-dimensional tank. However, a numerical
method can be used to find ¢, for a general tank shape. This was demonstrated by
Solaas & Faltinsen (1997), where Moiseev’s theory was applied to two-dimensional
sloshing. A different approach is to use a patching procedure and consider for instance
a tank consisting of a cylindrical part near the free surface. Then the solution in the
cylindrical part can be expressed as

Pn(X,3,2) = Y (b exp (—kz) + a exp (A42)) i (x, y) (3.9)
k

with unknown coefficients b, and a,,. Here 4, and ¢, are the solutions of the
following spectral problem:
Jx

Mogelx.y) + g =0 in %o, ZE=0 on X, / drdS =0, (3.10)
2

where 02, is the intersection line between X, and S. The solution in the non-
cylindrical part can be found by a numerical method. When the auxiliary problem
(3.10) is formulated in circular (ring-shaped) or rectangular cross-sections Xy, the
solutions ¢, of (3.10) are expressed by Bessel functions and/or sinusoidal functions.
Otherwise, a numerical procedure for (3.10) is required.

By substituting (3.4) into (3.2) the Lagrangian L takes the following form:

L=—p/ {i)o-r—}—a(w-Q)—}—;V(w-Q)-V(w-Q)—w-(rXV(w-Q))
o) ot

L2 —w-(r xv)— - (r X V) + V(o Q) V(p} do + L, (3.11)
where
_ do 2
L.=—p — +53(Vo)"+ U| dO. (3.12)
o L 0t

The two last integrand terms in square brackets of (3.11) cancel each other from
Green’s formula, i.e.
o(w-2)
ov

(V(w-Q)‘VQJ—(wxr)-V(p)sz/S() 2()< —(wxr)-v)wdSzO.
D+t

o(1)

We also introduce the quadratic symmetric inertia tensor J' with components Ji‘j
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defined by the equality
—p/ V(- 2) Vo 2)—o-(rxV(e-R2))d0
(1)
= —%wf]lll — %w%lez — %w%]% — wlwlelQ — w1w3J113 — w2w3J213.

These components J,-lj can be calculated by Green’s formula, i.e.

0 QR 0Q
Ji = p/ (yl — zl> do = p/ Q —Lds, (3.13q)
o(t) 0z dy S(O+2(1) ov
082, 082, 082,
Ji :p/ (Z—x) dQ:p/ Q,—=ds, (3.13b)
2 o \ 0x 0z sos OV
Q Q Q
Jh = p/ (xa3 — ya3> do = p/ 93& ds, (3.13¢)
o) ay 0x so+sw OV
an 691 892 a~Q2
Jh=J) =p/ (z—x)dQ=p/ (y—z)dQ
12 21 0(1) 6x @Z 0(1) (32 8y
0Q 0Q
= p/ Q=2dS = p/ Q,—1ds, (3.13d)
so+sm 0V sw+zw 0V
o 0 0Q o
Sl / (xl_ 1)d _ / ( 3_23)01
3=J3=p oo \ 3y Vo 4@ =vr o V4 3y 0
o o
= p/ 0,=2dS = p/ Q,—-1ds, (3.13¢)
so+ze OV sz OV
0Q 0Q o o
Iy =J3 = / (xz— 2>d = / <Z3—X3>d
23 =P o) ay y Ox Q=p o ox a7 0
Q Q
= p/ 92% ds = p/ 93% ds. (3.13/)
S(O+2(1) v S(0)+2(1) v

The Lagrangian L (3.11) can be rewritten as
L = — [Do1ly + vo2ls 4 00315 + @116y + 02lay + 03130 + 01l + @210
4wl — %(culle]1 + w%lez + w§J313) — culcule‘2 — w1w3J113
—y3J35 — %ml(vé + 08y + v33) + (02003 — w3001
+ (w3001 — ®1003)12 + (w1v02 — wovo1)l3] + Loy, (3.14)
where

o
m1=p/ do, lkw=p/ 0, do, lkw=p/ % g0,
o(t) o(t) a(t)

ll=p/ xdgQ, l2=P/ ydo, 13=P/ zdQ.
(1) 0(1) (1)

The vectors I = {l;}, 1, = {lw}> 1o = {lkw:} depend only on Bi(t) and fi(t).

(3.15)
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It follows from (3.7) that
— —p/ |:Z an)n + % Z Z Ran(VqD”, Vq)l‘) + U:| dQ
on L4 — £

[ZA R,+1 Z ZAnkRan gilh — @b —gls —mg - Vo] (3.16)

n k
where

0
An = ,0/ On dQ, Ank = Akn = ,0/ (V(Pm V(Pk)dQ = ,0/ (/)nﬂ ds (317)
0(t) (1)

ssw OV
are functions of f;(t).

The Lagrangian L is originally a function of two independent variables f(x, y, z,t)
and &(x, y, z, t). The independent variables become the time-varying functions f3;(¢),i =
1 and R,(t),n = 1 after substituting (3.4), (3.6) and (3.7) into the Lagrangian. The
variations of the functional (3.1) by fi(t) and R,(t) for given vy(¢) and w(t) are

S — / {ZA 5R”+ZZAnkRk5R +Z(ZR b

allwt al2wl 613(01 6Ank

fonggt T ot + +1 ZZR Ri—2=
—JrCt) allw + @ 6l2w + ) al3(u + (U + Wrlor — 2D )all

15/31— 20ﬁi 36[31 01 — 81 2003 3002 op;
+(0o2 — g2 + w3091 — W1V, )—-l—(v — g3 + ®1vg — WV )613

02 — 82 3001 1003 ap: 03 — &3 1002 2001 o,

1 1 1 1
G o g = o G o = s G —onn o
allo)l 6l2wt al.’xwt) </ :|

+ — + — + : of;|dt = 0. 3.18

(“’1 ob o T ) G-18)

The following infinite system of nonlinear differential equations (modal system) cou-
pling modal functions R,(t) and f;(t) is obtained by integrating by parts in (3.18) and
using (3.3) for test functions:

d
aAn—;RkAnk =0, n=12,..., (3.19)
aAnk allw . 8l2w . 6130) 611(0[ 612(0[
41
zn: EZZ G RoRe gt +ngpt F gt Fonggt Fon
al3wt d allwr al2wl al3wt all
+ws g dt <w1 o, + aﬁi +o 6[3, ) +(001_g1+w2003_w3002)6[3,
+(Do2 — g2 + w3091 — W1V, ) ~+ (D03 — g3 + W10 — W7D )81 —lw 2 071y
02 — &2 3001 1003 513; 03 — &3 1V02 2001 a5 2 oh 2B
oJ1 ,0J3 oJ! oJ! oJi
—%w% 832,2 % w3 8/;,3 wla)za—ﬁ? —a)lw3a—l;i3— 8[;3 =0. (3.20)

The system of ordinary differential equations (3.19) can be considered as a linear
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system of algebraic equations Y A (f;)R. = (d/dt)A,(B:). By using a numerical or
asymptotic technique we can then find a solution of R, as a function of f;. After
substituting R, into (3.20) we get a system of second-order nonlinear differential
equations with respect to f;. The values 0l /0f; are given by

oy ) o, al,
i = Ai3Pis Ay i A2, ALy = i = Jit.
oo rras b=iote Sp=p [ vnids=in =y [ wrids =2
(3.21)

The constructed infinite-dimensional system of equations (3.19) (3.20) is applicable
to any type of rigid body motion. It is necessary that f(x,y,t) given by (3.6) is
single-valued. This means that plunging breakers cannot be described. There are no
other restrictions on the type of surface wave that can be studied.

4. Modal system for two-dimensional fluid flows
We assume two-dimensional fluid motion in the (x,z)-plane. Then

Vo = (UOXaO’ D()z): o = (O’w(t)a O)a r= (.X, O,Z), Q(xa O,Z) = (0> Q(X’ z, t)a 0) (41)
and Q is the solution of the following boundary value problem:
0Q

AQ =0 in Q(1), — = zV] — XV3. (4.2)
v S(O+2(1)
The velocity potential @(x,0, z, t) takes the form
D(x,0,2,1) = vo:x + v0:2 + (1) Q(x,2, 1) + > Ry(t) pul(x; 2), (4.3)

n=1

where @,(x, z) is a complete system of harmonic functions satisfying the zero Neumann
condition on the bottom and vertical walls and the Laplace equation in Q.

The general infinite-dimensional modal system of ordinary differential equations
(3.19), (3.20) has in two dimensions the following form:

thn — Ek:RkAnk =0, n=12,..., (4.4)
aAnk al2(u al2wt d al2wt
,Z t12.0 g RRe+ag oy ‘dr("’ aﬁ,-)
al aJ!
Hio — g1+ o) o ﬁ + (b0 — g3 —owo) 7 — 0752 = 0. (45)

5. Asymptotic modal system for a rectangular tank performing arbitrary
small-amplitude motions

We consider a mobile rectangular rigid tank filled partly by an inviscid incom-
pressible fluid. The mean water depth is h and [ is the tank breadth. The flow is
irrotational and two-dimensional (see figure 1). The origin of the coordinate system
is in the mean free surface at the centreplane of the tank. The equation z = f(x,t)
determines the perturbed free surface X (t). The fluid domain is

O(t) = {(x,2) : —h < z < f(x,1);—1/2 < x < 1/2}. (5.1)
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V4

Undisturbed
water plane

/7

x=1/2

/z;h

FiGure 1. Coordinate system.

Since f(x,t) is expressed by (3.6), the complete (to within a constant) orthogonal
system of functions {f;(x)} should satisfy the volume conservation condition

12
fi(x)dx =0.
—1/2

(5.2)

The modal system (4.4), (4.5) can be approximated to surface waves with one
primary dominating mode corresponding to the first natural mode. This implies that
the body motions are horizontal and/or rotational and quasi-periodic with average
frequency close to the first resonance frequency. It is also necessary that the water
depth is not shallow and the fluid does not hit the tank ceiling (see, also, physical
arguments presented in Faltinsen 1974 and the book by Mikishev 1978). The rigid
body motions are assumed small relative to the tank breadth and water depth.

The derivation of the finite-dimensional asymptotic analogue of the system (4.4)
and (4.5) requires an asymptotic relation between dominating mode amplitude and
excitation amplitude. It is assumed, as in the theory by Faltinsen (1974), that

O(B}) = O(H) = O(yy) = e. (5.3)

Here H is translatory (surge) motion magnitude and vy is angular (pitch) magnitude.
Further i, = O(e*?3), B3 = O(e). Higher-order terms than e will be neglected in the
nonlinear equations. The modes f;(x) in (3.6) as well as ¢;(x, z) in (3.7) can be chosen
as the solutions of the spectral problem

Ap;i=0 (—1/2<x<1/2,—h<z<0),

; B ;i _ doi _, _ (5.4)
ox x=—1/2,x=1/2 =0 0z |,_y =0 oz o (==0)
This means
A= nTitanh <I?h , fi(x)=cos 7ITi(x + l/2)> ,
(o) — o SOSRGE/D(E + B) (5.5)
il 2) = T S (/)
Equations (3.6) and (3.7) take the following form:
0 =S BOf0, olnz0 =3 Rofin WD) s q)
i=1 i=1

cosh ((in/1)h)

By accounting for the asymptotic relation (5.3) and keeping only terms up to € in
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the modal system (4.4) and (4.5) we get

d
aA,,—;RkAnFo, n=12..., (5.7)
0 aAn 1 aA"lnk alZw al2wr d alZwt
2 ARG 10D G Rk dgt ol g <a’ o )
+ (P01 — g1)4i1 + (P03 — g3)Bidiz = 0. (5.8)

Asymptotic expansions of integrals A;, Ay, bhw, L, have to be used in (5.7) and (5.8).
Here A;, Ak, o, lo: are defined by (3.17) and (3.15) as integrals over the instantaneous
fluid volume position. The integrals are divided into integrals over the mean position
of fluid volume Q, and over the remaining part Qs. Qs is described by f;. Further, the
integrand of the integrals over Qs can be expanded in Taylor series by f5;. Keeping
terms up to € gives

A= 2B+ BB Bafs) + Bl + 25163 + B8)

Ay = 2o (B + 261 ) + SEOBTfo) (59)
= %l(ﬁz + 3E3B1 2 + 3Eof}):
Ay = pl(Ey 4 8E Eofi} — (2Eo — E})f2),  Axn = pl(2E),
Ay = Ay = pl((4Eo + 2E  E>)fy + (—4Eo + 2E7)ps), (5.10)
A3 = pl(3E;), Ais = Az = 3lp(2Ey + E E3)(B2 + 2E47),
Axy = Az = 3lp(4Ey + 2E,E5)fy,
where
E, = 1<n>2, E, = r tanh <mh> , i=1 (5.11)
8\ I 21 l

Further, we express R, as

R = Z%ﬁl + Z%]ﬁ]ﬁl + Z%}kﬁ ﬁjﬁk + -

ijk

and substitute it in (5.7). Explicit values of y;,7;;, i are found by collecting similar
terms. The result is

51 Eoy Ey 4E0
R, = 2E1 zﬁ pr— EL Ba2p1 + i —% Bipi,
»  4Eg B Ey
Ry=— Ry = 5.12
c= s (b= o ) Re= L= b= (.12
3E, 2EoE, 4E; 2E(E, B
_ — Ri = 5 4;
+hipE ( E,E; E\E>E; + E\E; )’ 2iE,
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and
. ﬁl . Ey
R = 2E ﬁ1ﬂ2 ﬁ2ﬁ1 + B E2 E.E
1 4E 4E,
+7 (—2 - )ﬂ B +2— (—1 - )[31[31,
. . 4E
3 (ﬂz - J(ﬂlﬁl + ))
. ﬁ3 .. ..
R; = 6E. E E3/31ﬁ2 /32ﬁ1 A E3 to @ E'; Bifa + (Bi BT + 2B 1)
(3E 2EGEs 4E2 | 2EoEs , R,-=ﬁ, isa
2E3 E1E3 E1E2E3 E1E3 21Ei
(5.13)
By calculating 4;; we get
72 in 1\’ ;
Ail = p/ X COS <l(x + l/2)> dx=p (1> (=1 —=1),
_ T
2 (5.14)

12 .
Ay = p/ cos> (m(x + l/2)) dx = 2.
—1/2 l 2

L, and b, (see (3.15)) depend on Q(x, z,t) which is the solution of the boundary
value problem (4.2). Q(x, z,t) depends parametrically on f;(t) due to the free surface
2 (t). Since 0l /0f; and 0l,,, /0 p; are multiplied by terms of O(e) in (5.8), it is sufficient
to include only linear terms in f5; in the integrals I, and l,,,. The problem (4.2) in a
rectangular tank takes the following form:

AQ=0 in0@). B__x z=-n
0z
2 _ (b 1y oe_ 1 I .
ox <x 2 2>’ v T gy Vixgy G0
(5.15)

The solution can be found by a Zhukovsky-type substitution with additional terms
for fluctuations of the free surface. This gives

- sinh ((n/1)i(z + h/2)) < cosh ((n/1)i(z + h))

Q= -2 i]i B xilt)fi B . 5.16

xz =2} af cosh ((z/20ih) T > uOfi— (/D)ih) (5.16)

The coefficients a; are found from the condition y;(t) = 0, i > 1, if and only if,
i =0, i > 1. Substitution of (5.16) into (5.15) gives

N .
in 217 ;

;aifiT =X or a= W[(_I) —1].

The functions y;(t) follow from (5.15) after substitution of (5.16) and (5.17) and

performing the Taylor series technique for the free surface X(t) (with respect to f;).
The linear terms of [, and b, do not depend on y;(t). To show this we substitute

(5.17)
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(5.16) in the corresponding integrals

12
:—2p2a,tanh( )ﬂ,/ f? dx—I—pZ,g, tanh(?h) fidx,
—1/2
(5.18)
= ! in 72
bt =p Z #(t)— tanh (h) fidx. (5.19)
s 1T l —1/2

It follows from the volume conservation condition (5.2) that

bt =0, ——2pZﬁl(. ) [(— 1)’—1]tanh( lh>' (5.20)

The derivatives with respect to f; give

3 .
Ot _ alz‘":—zp L (1) —1]tanh ( Zh), i=1.  (521)
in 21

o0p; T 0P

Finally, by defining the angular position of the mobile coordinate system Oxyz with
respect to O’'x’y’z" as y(t) we obtain correct to O(e) that

g3 =—g, g = gy(t). (5.22)

The terms in (5.8) {901y, /0; +(—g3)fiA3i+(—g1)A1; caused by forced pitch excitation
can be rewritten as

2
—p <ll> (—1) — 1] (2’ tanh (21 ) (o) + gw(t)) +gp. (5.23)
I

When substituting above formula in (5.8), we get the following system of ordinary
differential equations describing modal oscillations of a fluid in a rectangular tank
performing arbitrary small-magnitude motions (keeping terms up to third order in
the nonlinear equations):

(B4 a1B1) + di(BiB2 + PiB2) + do(PiBT + BiB1) + dspap
+Pi(0ox — S100 — gw) + Q1001 =0,  (5.24a)

(B2 + 03B2) + daP1B1 + dspT + Qato- B2 = O, (5.24b)
(Bs + 03B3) + do1 B2 + da 1 BT + ds oy + doPi B + droi
+ P3(box — S50 — gy) + Q303 = 0. (5.24¢)
The linear equations describing higher modes are
Bi + 67 B; + Pi(iox — Sito — gy) + Qo pi = 0, i=4. (5.25)

Here vo, and vy, are projections of the translational velocity onto axes of Oxz, w(t) is
Y

the value of the angular velocity of coordinate system Oxyz with respect to O'x'y’z’.
The coefficients introduced are calculated by formulas

8Ey_41

2 . 2i—1 .

o; =2g1E;, Py = —m, Py =0, Q;=2iE,
21 in .

Si=—tanh | =h|, i>1, (5.26)
7l 21
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where o; is the natural frequency of mode i. Further,

dy = 22? L E, dy=2E (—1 + E41EE°2> Cdy = _2?2) L E,
d4=—4§—?+2E2, ds =E2—2E;?2_4§0’ d"’=3E3_6EElO’

d7 =9E) — 12E1(‘f4 —6F;E4 + 24E]f§2 + 3E2?3, (5.27)
ds = —6?2) 4 3E;, dy= _6?1) _ 6?2) _ 6?1)2 N 3,E;J;:l’

b = 1880~ 284 ;16E1E3 - Zii + 12E (gj - 2) .

The first two nonlinear equations of (5.24) couple f; with f, and do not depend
on f3. The third mode component is excited by rigid body motions and the first
and the second modes of sloshing. The second mode response becomes infinite if the
excitation has frequency content at the natural frequency for the second mode; and
similarly for the third and higher modes. The first mode will be finite if it is excited
at the natural frequency of the first mode. This is caused by nonlinear effects and will
become more evident in the next section on steady-state response.

6. Steady-state sloshing in a rectangular tank with a small-amplitude
surge/pitch sinusoidal excitation

The theory of steady-state solutions of the nonlinear sloshing problem in a rect-
angular tank was created by Faltinsen (1974) based on Moiseev’s (1958) method.
The constructed asymptotic discrete theory (5.24) makes it possible to generalize the
main relations of this theory. For surge-excited steady-state waves we express vy as
(—Hosin(0t),0,0), set w = yp = 0 and look for periodic solutions

it +2m/0) = Bi(t),  Pilt+2n/0) = Bi(1) (6.1)

of the discrete model (5.24).

To construct asymptotically the periodic solutions and to derive analytically the
amplitude—frequency response of nonlinear sloshing in a rectangular tank caused by
forced excitation we express the first approximation of the primary mode in the form

Pi1(t) = Acosat + o(A). (6.2)
The substitution of (6.2) into (5.24b) with periodicity condition (6.1) yields
Bi = Acosat + o(A), B2 = A*(ly + hy cos (20t)) + 0(A?), (6.3)
where di—d ds +d
=245 R 6.4
0 26_% 5 0 2(6‘% — 4)7 g pn 5 l B ( )

The amplitude A ~ €'/3 of the primary mode can be found by substituting (6.3)
into the first equation of (5.24) and collecting Fourier terms of lowest order. The
equation coupling primary mode amplitude, frequency, breadth and depth will be
non-dimensionalized by dividing all length variables by [. This gives

H}l(a-l,&zagl) = (6-12 - 1);1 + ml(a-Z’]Tl);lS - P]I:I = Oa (65)
my(2,h) = di(—lo(52) + 1ho(52)) — 3d> — 2d3ho(52), (6.6)
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where the overbar denotes non-dimensionalized value. The coefficient m; in equation
(6.5) depends on depth—breadth ratio and frequency of excitation (;,i = 1,2). The
last dependence has not been presented earlier for frequency—amplitude response
equations. Usually, the corresponding coefficient depends only on h/l. This means
that our asymptotic technique differs from Faltinsen—Moiseev’s procedure. In order
to compare both techniques we need to give the following remark.

Remark. For any asymptotic theory with one dominating mode the nonlinear equation
describing the dependence of amplitude—breadth ratio A and frequency of excitation

o has the same general form
Hh((ﬁ,az, ;1> _o,
o’ g

where oy is the natural frequency of the primary mode.

The function II can be expanded in a Taylor series. The approach by Moiseev
(1958) and Faltinsen (1974) gives the expansion near the point (G, 0,/01,0) (for fixed
h). Our approach has no asymptotic restriction on the value of frequency ¢ and,
therefore, includes only power series in A

Hh(maa25;1> =H<0176270> +61—7<O-150270>;1
g a g 0 0A\ o o
16217 g1 0) - 63H g1 0p - -
———,=,0)4° — [ —,—=,0)14° A3).
+28A2<0 o ) +(3A3<a o )6 +o(4)
Since the value 0,/0 is used to calculate only m; we in fact make a more precise
calculation of this coefficient.

Equation (6.5) gives infinite response for ¢; = 1 and m; = 0. It implies that the
third-order theory is not valid if
my <O-2,ljl> =0.
01

The root of the last equation gives h = h/l = 0.3374.... This is called the critical
depth and coincides with the known value (see Waterhouse 1994). The response
changes from being a ‘hard-spring’ to a ‘soft-spring’ at the critical depth. The detailed
asymptotic analysis of the response near critical depth was done by Waterhouse (1994)
by fifth-order theory based on Faltinsen—Moiseev’s technique. It was shown that the
branches in the amplitude—frequency plane coincide with a third-order theory only
for small amplitude. New turning points on the branches occur at a critical value of
the amplitude/frequency.

In our case m; = my(0,/0, h) which means that m; is a function of ¢ and h. If a
fixed o is close to the natural frequency oy, but ¢ # o the equation

m (?h) -0 (6.7)

gives a different value of the critical depth. This means that the critical depth is a
function of ¢. If a pair (o,h) satisfies (6.7), then A tends to infinity. This effect is
illustrated in figures 2 and 3.

Figure 2 shows the positive and negative solutions (branches P, P_) of the secular
algebraic equation (6.5) for different values of the water depth h and fixed amplitude
of excitation H. The choice of H corresponds to the experimental values reported
later in the paper. Branch O is the set of solutions of (6.5) for H = 0 (no vibration of
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FIGURE 2. Amplitude (A)-frequency (o) response for nonlinear sloshing due to surge excitation
(6/01 = T1/T). h is the mean water depth, [ is the tank breadth, H is the surge amplitude. i(2, h)
is defined by (6.9). H/I = 0.0173.

the tank). This can be interpreted as the amplitude—frequency dependence of free non-
linear (periodic) sloshing. The branches presented differ from diagrams obtained by
Faltinsen’s theory only for large values of |4|/] and far away from the main resonance
o1 = 1. The last difference is due to the change of m; when varying ¢. The results agree
with the fifth-order theory by Waterhouse (1994) for sufficiently small amplitudes.

Similar results are obtained for steady-state sloshing in a rectangular tank excited
by sinusoidal pitch motions. Let us assume the tank is pitching around the point
(0,0, —z¢) of the mobile coordinate system. We can correct to O(e) express that

p(t) = pocos(at), oy = zoip(t), o. = 0.
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FIGURE 3. Amplitude (A4)-frequency (o) response for nonlinear sloshing due to pitch excitation
(6/01 = T1/T). h is the mean water depth, [ is the tank breadth, v, is the pitch amplitude, (0, —z¢)
is the position of pitch axis. i(2, k) is defined by (6.9). (a,b) zo/l =0, h/l = 0.2, i(2,h) = 0.874; (c,d)
20/l = 0.15, h/l = 0.35, i(2,h) = 0.78; (e, f) zo/l = 0.3, b/l = 0.5, i(2, h) = 0.737.

The algebraic governing equation for the frequency—amplitude response takes the

following form:
- - = S

(67 — 1)A + my (52, h)A*> — Py <Zl0 — 71 + 152) =0. (6.8)

It differs from the equation of forced surge steady-state sloshing (6.5) only by the last

inhomogeneous term and agrees with the corresponding equation of Faltinsen (1974).

All the results are based on the assumption that O(B?) = O(f,). However, even

for periodic solutions we can find a critical value of ¢/0; for which the amplitude
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of the second mode tends to infinity. It can happen for small h, or for 3 — 4 (see
the asymptotic solution (6.3), (6.4)). In terms of ¢ the condition of the secondary
resonance takes the form

o tanh (2rh/1)

— " = j(2,h). 6.9
o1 ~\ Ztanh (mhj) ~ (>N (69)
The value i(2, h) characterizes the applicability of the theory constructed (see figures 2
and 3). The ratio T;/T = o/0; must be close to 1 and not close to i(2, h).

Similarly, we can introduce for the third mode

tanh (37h/1)

i1 =1\ 3tann (nh/1)’

(6.10)

However since i(3,h) < i(2, h), the secondary resonance is the most dangerous.

The trend of the distribution of i(2,h) shows for h small enough (but large for
shallow water theory) that i(2,h) — 1 as h — 0. This means that the secondary
parametric resonance can occur for small depths and implies that the asymptotic
theory presented is not applicable for shallow water.

The stability analysis for surge/pitch excited waves in a rectangular container was
done by Faltinsen (1974). We can give reliable new treatment of the stability by
introducing branches O and S in figures 2 and 3. The branch O is the relation for the
frequency and amplitude for nonlinear free sloshing, which can be found from the
equation

branch 0: (57 — 1) 4+ my(,h)4* = 0. (6.11)

The branch O is also the asymptotic curve for P_ and P, as A — oo.

The branch S is the set of all turning points of the branch P, (or P_ for different
depths) for various amplitudes H (surge excitation) or o (pitch excitation). The
turning points correspond to when (6.5) has only two solutions. The condition of two
roots of equation (6.5) can be found by differentiating (6.5) with respect to A. This gives

branch S: (7 — 1) + 3m;(5,, h)4A* = 0. (6.12)

The branch S does not depend on the value of the excitation amplitude and is only
a function of depth—breadth ratio.

Due to the theory of bifurcations the turning point divides the branch P, or P_ into
stable and unstable sub-branches. It was shown by Faltinsen (1974) that the upper
sub-branch of P, /P_ corresponds to unstable solutions and the lower sub-branch to
stable solutions. The branch P_/P, without a turning point corresponds to stable
solutions. When repeating the averaging asymptotic analysis given by Faltinsen for
our solutions, we arrive at the same result if 4 < 1.

When varying the values of the excitation amplitude, the sub-branch situated
between S and O will always correspond to unstable solutions.

7. Comparison between theory and experiments

A series of experiments on nonlinear sloshing in a smooth rectangular tank due
to horizontal (surge) excitation were conducted. Figure 4 shows the tank used in the
experiments. The tank has a front plate made of Plexiglas which is stiffened by two
vertical L-beams. The tank was placed on a wagon that could slide back and forth
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FIGURE 4. Picture of the tank.

0.05m

|

FS1
e
H=1.05m

\FS3 FSZ/

/=173 m

FIGURE 5. Tank dimensions and wave probe positions used in the experiments.

controlled by a hydraulic cylinder. The hydraulic system was strong enough to ensure
that the motion inside the tank had little or no effect on the tank motion.

The tank height, breadth and length were respectively 1.05, 1.73 and 0.2m. The
observed free surface elevation did not vary in the length direction. The amplitude of
surge excitation was between 0.02 and 0.08 m. The water depth was varied between
0.2 and 0.6 m. The tank was equipped with three wave probes, referred to as FSI,
FS2 and FS3 (see figure 5). Wave probes FS1 and FS2 consist of adhesive copper
tape directly placed on the tank wall. FS3 is made of steel wire and is standing
0.05m from the left wall. The tank position was measured by a position gauge. The
sampling frequency was 50 Hz and the time series were 50 s long. Video recordings and
visual observation of longer simulations, up to 5 minutes, showed that steady-state
oscillations with the forced oscillation period were not achieved. This implies that
the dissipation in the smooth tank is very small even relative to the small damping
predicted by Keulegan (1959). A reason may be that the boundary layer flow is
laminar in Keulegan’s experiments while it is likely to be turbulent in our case. Since
transients do not die out, a beating effect occurs. The most interesting stage for
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analysis is during the first 50 s. During this time the beating parameters are stabilized.
After this time the typical behaviour of the sloshing is repeated. Also, the preliminary
analysis has shown that for beating waves of small amplitude the modulated wave is
stabilized for even shorter time.

The free surface elevation had small amplitudes in the initial period after the tank
was excited. In some of the tests the water was in small-amplitude motion before
starting the excitation. Since the proper initial conditions are unknown two different
sets are used to investigate the influence of initial conditions. One set of initial
conditions is

Bi(0) = Bi(0) =0, i>1. (7.1)
The other is based on impulse conservation. If v,, = o H cosat, this gives
Bi(0) =0, pBi(0)=—cPH, ix1 (7.2)

The numerical time integrations were done by a fourth-order Runge—Kutta method
and 11 equations of (5.24) were used. The simulation time on a Pentium II-366
computer was ﬁ of the real time.

The examples of figures 6-9 show the effect of initial conditions on free surface
elevation for different forced excitation periods T, water depth h and excitation
amplitude H. So, for example in figure 6 the effect of initial conditions is not
important. However, for the case of figure 7 the condition of impulse conservation
leads to more reasonable description of free surface elevation. Figures 8 and 9 also
demonstrate good agreement between theory and experiments. The agreement is not
perfect in figure 8, but the difference between experimental and numerical simulation
decreases when initial conditions are based on impulse conservation. Better agreement
between theory and experiment can be achieved by realizing that the forced surge
oscillation is not harmonic and does not have a constant amplitude during the initial
period. This is illustrated in figure 8 where the excitation period T was not a constant
during the first 12s; it varied from 1.76 s to 1.875s. This is caused by transient rigid
body motions. We assume that these transient motions decay exponentially. This
effect was simulated by varying the period and the amplitude of forced excitation in
the initial phase. Figure 10 shows the effect of only varying the excitation period.
A better agreement with the experiment is then achieved. Separate numerical results
showed that the amplitude has less effect than variation of the frequency. The effect
of varying the frequency can be found qualitatively by examining the steady-state
response in figure 2.

Our theory assumes that the water does not hit the ceiling. The water touches the
ceiling in the case of figure 8, but this does not have an important effect on the
fluid motion. When comparing theoretical and experimental results for a case when
forceful impact occurs, it is evident that they do not agree. A possible reason is energy
dissipation due to the impact. The impact causes the ceiling to vibrate which represents
energy loss for the fluid motion. Since the tank ceiling is very stiff in the model tests,
this is unimportant in the comparative study with experiments. Furthermore, as the
water hits the ceiling a jet is formed and eventually the free surface overturns and
water hits the free surface. This also causes energy dissipation. An estimate of this
energy loss can be calculated by using a generalization of Wagner’s (1932) theory
(Faltinsen & Rognebakke 1999) and assuming that the kinetic and potential energy in
the jet is dissipated. An equivalent linear damping based on energy conservation can
then be included in the differential equations for the generalized coordinates for the
free surface. The damping coefficients a;f;, o»f» and o3 f; are introduced in (5.24a) to
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FiGURE 10. Calculated tank position and free surface elevation at wave probe FS3 for h = 0.5m.
Effect of varying excitation period exponentially from 1.77s to 1.875s.

(5.24c¢), respectively. Since the average forced excitation is close to the lowest natural
frequency, it is only o that matters. Figure 11 shows satisfactory agreement between
theory and experiments by including damping. The damping will vary from cycle
to cycle depending on the severity of the water impact. In the presented case we
calculated approximately 40% loss of energy in the tank for every cycle due to the
two impacts occurring.

The theory will break down for small water depth. Figure 12 presents experimental
data and numerical simulation for h/l = 0.173 and T;/T = 0.96. Since i, = 0.9,
the effect of secondary parametric resonance is important. We note that the wave
crest is well predicted, while the theoretical value for the trough is clearly lower
than in the experiments. In order to improve the theoretical predictions we have
to assume that at least the two lowest modes have the same order of magnitude.
This means a complete change of the equation system and higher modes have to
be introduced in the nonlinear equations. The introduction of the fourth mode in
the nonlinear equation system will affect the difference between trough and crest so
that the agreement with experiments may improve. The difference between theory
and experiments is more evident in figure 13 where T,/T = 1.17 and h/l = 0.173.
The reason is once again that the primary mode is not dominating. This contradicts
our theoretical assumptions. Figure 14 shows that the amplitude of the third mode is
higher than the second mode, which is higher than the first mode.
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FIGURE 11. Measured and calculated free surface elevation at wave probe FS3 for T = 1.715,
h=0.5m and H = 0.05m. Calculations account for wave impact on tank ceiling.

8. Calculations of hydrodynamic loads on the tank

How to calculate hydrodynamic loads will be illustrated for the surge-excited
rectangular tank. The general expression for the pressure is given by (2.5). By noting
that @ = vo,x + @ and by expressing v, as —Ho sin (at) it follows that

pP=po—p {%(f + %(Vgo)2 + gz — ¢*H cos (at)x — %H262 sin’ (at)] . (8.1)

Here we use

| —in _(in I\ cosh ((in/I)(z + h))
Vo = ; TR (_ s (z (x + 2)) cosh (/D) * >
in ) sinh ((iz/1)(z + h))
€08 (z <x+ 2>> cosh (i /1)) ) > (82

N . .
%—f = ;Ri(t) cos (17 <x + l)) cosh ({in/1)(z + h)) (8.3)

2 cosh ((in/Dh)

where R; and R; are calculated by (5.12) and (5.13) and N is a number of Fourier
terms (N = 3). When applying these formulas above the mean free surface, a Taylor
expansion about the mean free surface has to be used.

The force F on the tank due to the fluid can be calculated by direct pressure
integration or the compact formula derived by Lukovsky (1990)

F =mg—mlig+o xvo+o X (@ xXric)+od xrie+20 Xiic+iic] (8.4)

where ri¢ is radius-vector of the mass centre in mobile coordinate system Oxyz and
my is fluid mass. We note that F includes the static force component m;g in addition
to hydrodynamic forces.

The formula takes the form

F =mg —m(bo +#ic) (8.5)
in the absence of angular motions (w = 0).
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FIGURE 12. (a) Measured and (b) calculated tank position and free surface elevation at wave probe

FS3(h=03m, T =225s).
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FIGURE 15. The position of mass centre for the case in figure 6.

The calculation shows, that if ric = (xc(¢),0,z¢(t)), then
| & 1 o1&
_ i+1 _ 2
e =" §i=1 ﬁi(t)l.j(l +(=1)"™), Ze=—5 + ah él Bi (1), (8.6)

where the point (0, —h/2) corresponds to mass centre of unperturbed fluid.
By introducing the vector F = (F,,0, F,) we arrive at

I X1 l.
FX/Wl] = <H620050t+ %;ﬂl(t)ﬁ(l +(_1)+1)> 5

N
Fom = (s 3, S0 81
i1

Figure 15 shows the trajectory of the mass centre. Figure 16 presents the trajectory
of the end of the vector F/m.

The hydrodynamic moment /N on the tank can also be calculated by the special
formula derived by Lukovsky (1990) (moment axis coincides with Oy)

(8.7)

N=mpricx(g—oxvg—ig)—J' *o—J'0—0xJ' o)

where the inertia tensor J! is defined by (3.13) and [,,,1,,, by (3.15).
Forw =0 . )
N = mp ric X (g - i)O) - lw + lwt- (89)

The time-varying functions /,, [, depend on the solutions of the Neumann boundary
value problem (3.5) and can be expressed mathematically like the Stokes—Zhukovsky
potentials.

By using Green’s formula we get

N(1) = mi(xcg — zcio) (zvi — xv3) dS, (8.10)

— pi
dt Jsix
where NV = (0, N(¢),0).
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FIGURE 16. The trajectory of the vector of the calculated hydrodynamic force (F,/my, F./m;) on the
tank for the case in figure 6.

This is not as simple as the formula (8.7) for the force, but is useful in a verification
procedure by comparing with the direct pressure integration of the moment. This
should in both cases be derived correct to O(e).

9. Conclusions

I. Using the Bateman-Luke variational principle, we generalize the procedure
proposed by Miles (1976) and Lukovsky (1976) to derive a modal system describing
nonlinear sloshing of an incompressible perfect fluid with irrotational flow partly
occupying a tank performing an arbitrary three-dimensional motion. If the tank
has vertical walls near the mean free surface, this procedure leads to an infinite-
dimensional system of nonlinear differential equations coupling the generalized time-
dependent coordinates. No assumptions about the order of smallness are made. It
applies to any type of rigid body motion. The surface and domain modes do not need
to be natural modes. This means that the multidimensional modal discrete system
derived has the most general form of the modal equations and can be used for
modelling different ‘fluid—structure’ problems including the problems associated with
transient sloshing and coupled ‘ship—fluid cargo’ motions.

II. Two-dimensional sloshing in a rectangular smooth tank with finite water depth has
been studied theoretically. The tank is oscillating with arbitrary rigid body motions
of small magnitude with an average frequency close to the lowest natural frequency
of the fluid motion. A finite-dimensional asymptotic model with multiple degrees
of freedom is derived. This is based on the general discrete infinite-dimensional
modal model. The lowest mode is assumed dominant. Each mode has different
order of magnitude. The three lowest modes are interacting nonlinearly with each
other. An important feature relative to other established nonlinear theories is that
transient effects can be described. Since the theory is expressed in terms of a set of
nonlinear ordinary differential equations in time, it is considerably simpler than a
direct numerical solution of the fluid motion.
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Periodic solutions are studied analytically. The amplitude—frequency response is
consistent with the fifth-order steady-state solution by Waterhouse (1994).

It is shown that the theory is not valid when the water depth (h) becomes small
relative to the tank breadth (I). This is due to secondary parametric resonance. It
is then necessary to include nonlinearly interacting modes having the same order of
magnitude. This is demonstrated for a tank with h/l = 0.173.

III. We have conducted experimental studies of the free surface elevation for forced
surge oscillations of two-dimensional flow in a rectangular tank. It is demonstrated
experimentally that it takes a very long time for transient fluid motion to die out.
This did not occur during an observation period of 5 minutes, which corresponds to
the order of 150-200 oscillations in terms of the excitation period. The consequence
is that steady-state solutions of nonlinear sloshing in a smooth tank can have limited
applicability. Modulated (‘beating’) waves occurred as a consequence of transient and
forced oscillations. The amplitude/‘beating’ period was stabilized during the first 50s.

Since we could not exactly state what the initial conditions were in the experiments,
a sensitivity study was performed with different initial conditions in the theoretical
model. The results were not strongly dependent on this, but better agreement between
theory and experiments was in general obtained by using an initial condition based on
impulse conservation. For several experiments we observed fluctuations of the excita-
tion frequency in an initial period up to approximately 10s. This effect was important
to include in the theoretical model. There is good agreement with experimental free
surface elevation when h/l = 0.28.

IV. The theory was compared with experiments when forceful water impact on the
tank ceiling occurred. The theory assumes no tank ceiling. The experimental free
surface elevations showed a clear influence of the water impact. It was speculated
that this was due to energy dissipation and phenomenological linear damping terms
were introduced in the discrete modal system. Good agreement with the experiments
was demonstrated. This is an area of future research.

V. It is shown how hydrodynamic forces on the tank can be calculated in a simple
way. An alternative formula for the hydrodynamic moment is also presented. The
form of the expressions facilities simulations of a coupled ‘vehicle—fluid’ system.

This work is supported in part by NATO Research Fellowship (Research Council
of Norway) at Norwegian University of Science and Technology, Trondheim (fourth
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Preface

Sloshing may lead to slamming when a partially filled tank is excited with a period in vicinity
of the highest natural period for the fluid motion. When the water surface hits the roof at one
of the upper corners of the tank, large slamming forces with a short duration act on both the
tank roof and vertical wall adjacent to the impact position. The impacts will also contribute to
the dissipation of energy in the tank.

The base flow is calculated on the basis of the nonlinear sloshing theory by Faltinsen, Rognebakke,
Lukovsky, and Timokha (2000), (Paper 3). A generalization of the theory by Wagner (1932) is
used to find the slamming induced flow. The impacting surface is approximated by a parabola
with radius of curvature R. Wagner’s solution is corrected by accounting for the tank walls and
bottom. The velocity potential due to impact is expressed as the sum of the velocity potential
for infinite fluid and an infinite sum of image velocity potentials. When the impact phase is
over, the generalized coordinates of the base flov are modified in order for the free surface to fit
the new profile.

An interesting observ ationis that the horizontal slamming induced force is larger than the
vertical slamming force on the tank roof.

Energy is dissipated through the jet formed in the impact. The hypothesis is that the kinetic
and potential energy in the jet flow caused by the impact is dissipated when the jet flow impacts
on the free surface. Thus, fluid damping occurs. The flux of energy is estimated and related to
the total energy of the fluid in motion in the tank. A linear damping term is introduced in the
base flow formulation. The level of damping is set so that an equal amount of energy is removed
over one oscillation cycle as is lost in the jet. Appendix B shows the calculation of change in
energy due to a linear damping term. An iterative procedure is follow ed when impacts occur.

Theoretical results are compared with data from experiments conducted in cooperation with
Det Norske Veritas. The comparison is limited to the free surface elevation history, since force
and pressure measurements are not available. Good agreement between theory and experiments
is demonstrated.

URN:NBN:no-2322
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SLOSHING AND SLAMMING IN TANKS

Odd M. Faltinsen and Olav F. Rognebakke
Department of Marine Hydrodynamics
Norwegian University of Science and Technology
N-7491 Trondheim, Norway

ABSTRACT

Sloshing and slamming in a smooth rectangular tank forced to oscillate
horizontally and harmonically with a period close to the highest natural period
are analyzed by including water impact in the nonlinear sloshing theory by
Faltinsen et al. [4]. Finite water depth and two-dimensional potential flow is
assumed. Generalized coordinates for the free surface elevation are described
by a system of nonlinear ordinary differential equations in time. This leads to a
time efficient solution. Simple expressions for hydrodynamic loads are derived.
The water impact causes damping due to dissipation of the kinetic and potential
energy in the jet resulting from slamming. Predicted free surface elevations are
compared with model tests. There is a generally good agreement. The
slamming causes large loads on the vertical wall adjacent to the impact area in
the tank roof.

INTRODUCTION

A partially filled tank will experience violent fluid motion and slamming when
the ship motions contain energy in the vicinity of the highest natural period for
the fluid motion. The fluid motion is characterized by strong nonlinearities and
small damping and is coupled to the ship motions. The external wave induced
loads can in many practical cases be described by linear theory.

A theoretical method has to be robust and time efficient. Very long time
simulations are needed to obtain statistical estimates of the tank response.
Several attempts on direct numerical simulations of the fluid motions in a ship
tank have been reported. A difficulty is to achieve long time simulations. Some
methods may numerically loose fluid mass on a long time scale. Since the
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highest natural period of the fluid motion is strongly dependent on fluid mass,
this can result in unphysical numerical simulations. It is also difficult to
incorporate slamming in a direct numerical method. The rapid change in time
and space requires special treatment.

We have decided to develop a more analytically based approach. The
method is both time efficient and robust. It seems easy to combine with the ship
motions and external linear wave induced loads. The external and internal
problem must then be solved simultaneously by means of the equations of rigid
body ship motions. Harmonic forced sway oscillations of a rectangular smooth
two-dimensional tank is analyzed in this paper. The water depth is finite and the
wave system resembles standing waves. We first describe the theoretical
method when no tank roof is present. Since irrotational fluid motion is assumed,
internal structures causing flow separation can only be treated empirically by
drag formulations. The effect of the tank roof is handled by generalizing
Wagner's method [9]. The kinetic and potential energy in the jet caused by
water impact is assumed dissipated when the jet impacts on the water surface.
This energy loss is represented as a damping of the fluid motion. The study
shows that large slamming induced pressures also occur on the vertical wall
adjacent to the impact position on the tank roof. Numerical simulations for the
free surface elevation are compared with experimental results.

THEORY

Consider a rectangular smooth and rigid tank forced to oscillate
harmonically in sway. The fluid is incompressible and the flow is two-
dimensional and irrotational. The water depth h is finite. Shallow water
phenomena are not included. The forced oscillation frequency o is close to the
lowest natural frequency o7 of the fluid motion. The height and the breadth of
the tank is H and /. The coordinate system (x,z) is fixed relative to the tank with
origin in the mean free surface and in the center of the tank (See Fig. 1).

Tz AZ
-
H =Z - e ——— 2H
% -—>» X
2c
h
B I S 21 g

Figure 1: Tank dimensions, coordinate systems and problem configuration in
slamming analysis

Violent fluid motion will occur due to resonant motions and small damping.
When the fluid does not impact on the tank roof, the damping is very small and
mainly due to viscosity in the boundary layers (Keulegan [6]). Nonlinearities are
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significant and cause finite amplitudes at resonance. When the fluid motion
does not impact the tank roof, ref. [4] is applied. This is based on a Bateman-
Luke variational principle and use of the pressure in the Lagrangian of the
Hamilton principle. This results in a system of nonlinear ordinary differential
equations in time. The unknowns are generalized coordinates g, of the free
surface elevation. The procedure applies to any tank shape as long as the tank
walls are vertical near the mean free surface. The equation system for our
particular problem will be described. The free surface elevation { is written as

7= i B, (t)coslri(x +0.51) /1) 1)

The forced oscillation amplitude is assumed small and of O(g). Further
B :O(s’”), i =13, Higher order terms than € are neglected in the nonlinear

equations. Forced heave and roll can easily be included ([4]). The following
system of ordinary differential equations was derived for forced sway.

(8. +02B.)+d,\B.B, + B.B,)+ d,\B.BZ + B2B,)+ do B, B, + Py, =0

(8, + 028, )+ d BB, +do 32 =0 )

(ﬁS +U§ﬁ3)+dﬁﬁlﬁ2 +d7Blﬁ12 +d8B2ﬁl +d9B1B2 +d10B12ﬁ1 +P3‘}Ox = O
B +0B + Py, =0, i24

Here dots mean time derivatives, v,, is the forced sway velocity of the tank and

0? =2gE,, P, =-8E, l/(r(2i-1) i=1

E,=(m/1)?18, P, =0, E, =05mtanh(mwh/l)/l i=1 ®)
d,=2E | E,+E,  d,=2E,(-1+4E,/(E,E,)) d,=-2E,| E, +E,
d,=-4E,| E +2E, d . =E,-2E,E,lE}-4E,|E, d,=3E,-6E,/E,
2 E 4
d, =9E, —1pEobs —-6E,E, +24 £y, gboks dy =—6—2+3E, @)
1 1E2 El E2

dy, =-6E,| E, ~6E,| E, —6E,E, I(E,E,)+3E,E, | E,
d,, =18E, -12E,(2E, + E,E,) E, + 12E2 I(E,E, ) +12E,(E, | E, - E, | E,)

Egs. (2) are solved numerically by a fourth order Runge-Kutta method. Initial
conditions on B and S have to be specified. Ref. [4] used two sets of initial

conditions. One set is B,(0)=3(0)=0. The other set was based on impulse

conservation. The results were insensitive to these initial conditions after some
oscillation periods. However, since no damping is present, the effect of the
initial period is very important and does not die out. It means that fluid motions
oscillating with the natural period and the forced oscillation period interact
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linearly and nonlinearly and cause a beating effect. Steady state oscillations
were not obtained. This was experimentally confirmed.

When the water impacts on the tank roof at either x=-0.5/ or x=0.5/,
Wagner's [9] theory (see also ref. [3]) is generalized to find slamming induced
flow. The analysis assumes a small angle between undisturbed free surface
and tank roof. This may not be true at the end of an impact. The tank is
assumed rigid so possible hydroelastic effects are ignored. The inflow velocity
V(t) and the slope of the impacting surface can be found directly from Eq. (1).
The impacting surface is approximated by a parabola with radius of curvature R.
The wetted length c(t) follows from Wagner's integral equation. Wagner’'s
solution is corrected by accounting for the tank walls and bottom. ¢(¢)/ H and
c(t)/1 are assumed small. A local coordinate system (X,Z) is used (see Fig. 1).
If the water impacts at x=-0.5/, then X =x+0.5/ and Z=z-(H -h). The

wetted part of the tank roof is then from X=0 to X=c. The dynamic free surface
condition is ¢ =0 on Z=0. Here ¢ is the velocity potential caused by slamming.

The flow for either X >0,Z<0 or X <0,Z <0 is of interest. This can be found

by studying cross-flow past a flat plate of length 2c in a rectangular box of
breadth 2/ and height 2H (see Fig. 1). The velocity potential due to impact is
expressed as the sum of the velocity potential for infinite fluid and an infinite
sum of image velocity potentials

8., =0.5Vc?(Z - 2mH)(-1)" /[X 2nl)? (Z—2mH)2] ()

All possible combinations of negative and positive integers m and n except
simultaneously m=0, n=0 should be summed. The sum over m for m#0 is

g = 0 [o 51n[0.5(cosh(rz{( X — 2n1)1(2H)) - cos(rz I(2H))) | (6)
—0.5In[0.5(cosh(7(X - 2n1)/(2H)) + cos(rn(Z - 2H)1(2H))) | ]

When n=0, ¢, can be written as Eq. (6) minus —O.5Vc22/(X2+ZZ). It can be

shown that conservation of fluid mass is correct to O(c?).
When the impact phase is over, the free surface is fitted to Eq. (1), i.e. new

values " are introduced. When impact occurs at x =-0.5/, the free surface
elevation is written as

H=h when —0.5/ < x < 05/ +c,, @
¢ EZ,B cos{7a(x+05)/1)+17 \when 051+, <x <05l
Here n is found by a Wagner’s analysis for infinite fluid. This means
n=05(x + 0.51){(x +050) = (x+05/) -2, }/R -0.25¢2_ I R @®
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Due to the orthogonality of cos(ni(x+0.51)/l), explicit formulas for B are found.
Since V(t)=0 at c=Cmax, the slamming induced free surface n has zero vertical
velocity. This implies S’ =p. When the water impacts at x=0.5/, the

procedure is similar.
The hydrodynamic force on the tank can be calculated by conservation of
fluid momentum. It follows by Eq. 5.7 in Faltinsen [3] that

J'pnds pg J'znds (9)

Sp+Sp

where the normal vector 7 is positive out of the fluid. Sg and S are wetted body

surface and free surface respectively. M is the fluid momentum, p is
hydrodynamic pressure, p is mass density of fluid and g is acceleration of

gravity. By writing the fluid velocity as v, i + ¢ it follows by Eq. (9) and Gauss
theorem that the hydrodynamic force is

o -~ d S
F——zm,v(,x—m,gk—a‘[;l'pﬂ¢dr— imv,, —mgk — —,0 J'¢nds (10)

Sp+Sp

where Q is the fluid volume and m; is the fluid mass. Green’s second identity is
used to rewrite the surface integral. Auxilliary velocity potentials W, =x, W, =z

that satisfy oW, /dn=n, on Sg + Sg are introduced. Since d¢/on=0 on Sg, it
follows that

S _0¢
F=-=imy, - mgk——p 7 ——ds
170, / J. on (11)

where 7 =xi +zk . Since the integral of d¢/dn over S, is zero from mass

conservation, the result is independent of the origin of the position vector. The
following horizontal force correct to O(c?) has been derived

Fo=omio + o0 O+

O |
c@ 1 ml = 5 tanh(4)tanh(B)
g L

02H 0 0O2H

(12)

I+
Q.|Q
OO0
3

N
OEE

Here A=7(2n-1)//(4H) and B=rm(2n+1)//(4H). The plus and minus sign apply
when the water impacts close to x=-0.5/ and 0.5/, respectively. When no

impact occurs, Eq. (12) agrees with Lukovsky’s formula [7], [8]. The slamming
part of Eq. (12), i.e. the last term, has been controlled by direct pressure
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integration.  The  slamming induced  pressure is  written as

p:—piﬁﬁw+¢o+i(¢n+¢_n)a Here ¢, are given by Eq. (6) and the
ot ]

n=

subsequent text. ¢ is the slamming induced velocity potential in infinite fluid.
When impact occurs at x = -0.5/, this can be written as

9. =

Frle +z€y2 VZ x=-08, Z<0 13)

Sosveizlr ez v=o08, z<0

Similar formulas apply for impact at x =0.5/. The image potentials ¢ have a
secondary effect relative to ¢,_,. The impact pressure on the roof is given by

p=p— % X2 }/2 This is singular at [X|=c. Here X =x+05/ when the

water |mpacts at x = —0.51. Similar for impact close to x = 0.5/. The singularity at
|X |=c can be removed by matching with a local jet flow at the spray root

QX|=c) (Zhao & Faltinsen [10]). The maximum pressure is 0.50¢2. Since the

image potentials satisfy ¢ =0 at Z =0, they do not contribute to the slamming

induced pressure on the tank roof. The vertical slamming force on the tank roof
and bottom are respectively

. d T
FSR:_ V_ 2
A Q

F7 = d Core? ;Zsm EanhEle_Hzn)l%Zsin‘léanhELD 1;}]2’7)[%

dD

The vertical force due to the ambient sloshing motions follows from Eq. (11) as
F, = —m,g—O.SlZ(,B',2 +,6’,,,B,). Eq. 12 shows that the horizontal slamming

induced force is logarithmically singular when ¢ — 0 and hence larger than the
vertical slamming force on the tank roof. A reason is that the large slamming
pressures act on a finite length on the vertical wall adjacent to the impact
position while they act on a small wetted surface on the tank roof.

Compressibility will limit the pressure and the force in a very small initial
phase of the impact. Air cushion and bubbles may also be present and
influence the slamming pressure. But hydroelasticity may be far more important
to account for in a local structural analysis (Faltinsen [1], [2]).

The previous analysis neglects dissipative forces. When the water impacts
on the tank roof, fluid damping is believed to occur. The hypothesis is that the
kinetic and potential energy in the jet flow caused by the impact is dissipated
when the jet flow impacts on the free surface. This idea is used to introduce
damping. The kinetic and potential energy loss during impact can be estimated
as respectively (Faltinsen & Zhao [5])
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ﬂl-‘ . nrs V2
E.. =pTJ(:VZCCdt , Epp = pg(H—h)gI—‘cdt (15)

0 C

where ts is the duration of the impact. This energy loss can be related to the
total energy E in the system. This is found by noting that the time rate of energy
without any loss is dE/dr = F v, . Here Fy is given by Eq. (12). When studying

one oscillation period, the previous loss of kinetic and potential energy is
subtracted from E. The energy loss AE during one oscillation period is related to
a damping ratio & by AE/E =47 . The linear damping term 2&0.3 is
introduced in each of Egs. (2). An iterative procedure is followed. A simulation
over one period is started with no damping. A first estimate of ¢ is found. The
simulation is repeated. This results in a new AE and thereafter a new &. This is
done for iteration i>1 as 0.5(AE,. +AE,._1)/E:477¢'. Convergence is typically

achieved after 5 iterations.

RESULTS

A series of experiments has been conducted in cooperation with Det Norske
Veritas. The tank height was 1.02m, breadth 1.73m and length 0.2m. The tank
was forced to oscillate in the horizontal direction in the cross-sectional plane.
The observed free surface elevation did not vary in the length direction. Wave
probes were used to measure the free surface elevation at the two side walls
and in the middle of the tank and a position gauge was used to measure the
instantaneous position of the tank.

0.5 i T 0.6

—— Experiments —— Experiments
04F|--- Theory 1 0.5 ---  Theory

0.31

0.21

E E
~ooaf ~
ol
-0.1
-0.2 : ‘ ‘ :
10 15 0 5 10 15 20
t[s] t[s]

Figure 2: Free surface elevation { at the tank Figure 3: Free surface elevation { at the tank
wall. T=1.4s, h=0.5m and £;,=0.048m. wall. T=1.5s, h=0.6m and £;=0.032m.
hl1=0.289 and T/T,=0.798 hl1=0.347 and T/T,=0.899
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Figure 7: Horizontal force on the tank T=2.03s,
h=0.6m and £,=0.085m. ///=0.347
and T/T,=1.22

The following comparisons between theory and experiments are for A/l
close to the critical depth %#/1=0.337. The amplification of theoretical fluid
response at the highest resonance period is largest at the critical depth. Fig. 2
shows an example on the good agreement between theory and experiments
when no tank roof impact occurs. &, means forced sway amplitude. Since the

damping is zero in the theory and very small in reality, response at the natural
period T, does not die out and beating occurs. This is evident in Fig. 2 and was
observed as long as the experiments lasted, i.e. up to 5 minutes. The initial time
t=0 in Fig. 2 and subsequent figures corresponds to the start up of the
experiments. Fig. 3 shows an example with light roof impact. Good agreement
between theory and experiments is demonstrated. Maximum theoretical
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amplitude ¢ with no tank roof is 0.45m. Fig. 4 shows a case with heavier roof

impact. Here ¢, is 1.78m. There is good agreement for maximum values and

the initial phase. But the beating is not correctly predicted. Actually it has been
theoretically shown that the beating can be strongly sensitive to both frequency
and oscillation amplitude, i.e. nonlinearities matter. Fig. 4 shows that by sligthly
changing the oscillation period there is good predictions of the beating. Fig. 5
shows a case with very heavy roof impact. {_ is in this case 1.8m. Good

agreement is demonstrated. When predicting slamming loads we have to
evaluate the impact velocity, i.e. d{/dr. Fig. 5 suggests that this can be

satisfactorily estimated by theory. Fig. 6 shows another case with roof impact.
We note some difficulties in correctly predicting beating. Here ¢, is 0.67m.

Fig. 7 shows corresponding theoretical values for the horizontal hydrodynamic
force. The influence of impact is clearly evident. Actually the force is
logarithmically singular at time of impact. The slamming induced force in Fig. 7
is calculated from 0.002s after initial impact. We have also presented what the
horizontal force would be without tank roof. This demonstrates the damping
effect of roof impact. We can illustrate the damping in another way. In the first
oscillation period where impact occurs, the following values are calculated after
6 iterations:

Mean energy in the tank: 316.5 Nm/m
First impact: Potential energy loss 1.0 Nm/m
Kinetic energy loss 1.3 Nm/m
Second impact: Potential energy loss 36.9 Nm/m
Kinetic energy loss 58.2 Nm/m

This gives a damping coefficient ¢ = 0.0246 which means that 30% of the
mean energy in the tank is lost due to the two impacts.

CONCLUSIONS

Sloshing and slamming in a smooth rigid rectangular tank forced to oscillate
horizontally and harmonically with a period close to the highest natural period
are analyzed by including water impact in the nonlinear sloshing theory by
Faltinsen et al. [4]. Finite water depth and two-dimensional potential flow is
assumed. Nonlinear effects are significant. Generalized coordinates for the free
surface elevation are described by a system of nonlinear, ordinary differential
equations in time. Water impact is included by combining Wagner’s [9] method
with an infinite set of image potentials. The image system has a secondary
effect. The water impact causes damping due to dissipation of the kinetic and
potential energy in the jet resulting from slamming. An equivalent linear
damping based on energy conservation is introduced. This damping is
important. Viscous damping in a smooth tank is insignificant. The solution
procedure is time efficient and robust. Simple expressions for hydrodynamic
forces are derived based on conservation of fluid momentum. The formulas are
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verified by direct pressure integration. When the water does not impact the tank
roof, the formulas agree with Lukovsky [7], [8].

Predicted free surface elevations are compared with model tests. Steady-
state oscillations are not obtained even after very long simulations. This is due
to linear and nonlinear combinations of fluid flow oscillating with the natural
period and the forced oscillation period.

The importance of damping due to tank roof impact is demonstrated. There
is generally good agreement between theory and experiments. Cases with
unsatisfactory predictions of beating are demonstrated. This is due to high
sensitivity between beating and oscillation period and amplitude.

The slamming causes large loads on the vertical wall adjacent to the impact
area in the tank roof.
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Preface

This extended abstract was presented at the 15th International Workshop on Water Waves and
Floating Bodies in Ceasarea, Israel.

In Paper 4, the damping effect of sloshing motion from impacts in a smooth rectangular tank was

discussed. In realit y, tanks are often hamfered. The impact angle betw een the rising free surface
and roof is thus increased relative to a flat roof, and the impact pressures and forces decrease.

The calculation of energy dissipated during the impact is based on the theory of Wagner (1932).

Appendix C. contains details of the derivation of energy loss in a chamfered tank.

Wagner’s analysis assumes a small angle between the undisturbed free surface and the tank
roof. For a chamfered roof, this assumption is invalidated. A correction factor based on the
similarity solution by Dobrovol'skag (1969) is introduced. Zhao and Faltinsen (1993) ughe

similarity solution and present numerical calculations for a triangular wedge entering through
an initially undisturbed free surface with a constant downward v elociy. These results are used
in the present study to correct the energy estimates for large impact angles. An alternative is
to use the generalized Wagner’s theory developed by Faltinsen (2001). Figures 4.1 and 4.2 show
the mass flux, Mj,,, and kinetic energy flux, dE};,/dt, through the jet calculated by means of
Wagner’s theory, the similarity solution and the generalized Wagner’s theory. V' is the constant
impact velocity,3 is the wedge deadrise angle and p is the density of the fluid. The curves based

dE../dt 2
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e e
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Figure 4.1: Kinetic energy flux through the
jetg &Y & Figure 4.2: Mass flux through the jet
on the similarity solution are not smooth. The values are estimated from printed plots in Zhao
and Faltinsen (1993). Since the similarity solution does not give the location of the spray root

explicitly, there is a certain ambiguity in finding the exact location.
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Introduction

Sloshing in a smooth tank leads to violent fluid motion for an excitation frequency close
to the low est natural frequency of the fluid motion. When the free surface hits the tank
roof, a w ater impact similar to slamming occurs, and energy is dissipated. A statistical
treatment of sloshing demands time efficient calculations. Thus, the analytic approach
proposed by Faltinsen et al. [1] is well suited for the task. How ever, the analytical model
does not account for the impact of the water on the roof. By estimating the kinetic
and potential energy loss in the jet generated during the impact and relating this to the
total energy in the fluid, an equivalen t damping term can be irtroduced in the analytical
model. A Wagner’s method [2] is applied. When the impact angle betw een the rising free
surface and the tank wall or roof is large, results from a similarity solution are utilized to
correct the estimated energy loss. Numerical simulations for the free surface elevations
without impact are compared with experimental results. Numerical force calculations and
experimental data for different fluids are presented for a LNG tank model.

Theory

Consider a rectangular smooth and rigid tank forced to oscillate harmonically in sw ay.
The fluid is incompressible and the flow is tw o-dimensional and irrotational. The height
and the breadth of the tank is H and . The coordinate system (z, z) is fixed relative to
the tank with origin in the mean free surface and in the center of the tank, Fig. 1.
Violent fluid motion will occur due to resonant motions and small damping. When
the fluid does not impact on the tank roof, the damping is very small and mainly due to
viscosit y in the boundary layers [3]. Nonlinearities are significant and cause finite ampli-
tudes at resonance. When fluid motion does not impact the tank roof, [1] is applied.

This is based on a Bateman-Luke variational principle and use of the pressure in the
Lagrangian of the Hamilton principle. This results in a system of nonlinear ordinary
differential equations in time. The unknowns are generalized coordinates (3; of the free
surface elevation. The procedure applies to any tank shape as long as the tank walls are
vertical near the mean free surface. The equation system for the rectangular tank excited
in sway follo ws.The free surface elevation ( is written as

¢ = 3 A8 cos )
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Figure 1: Coordinate system and tank dimensions.

The forced oscillation amplitude is assumed small and of O(e). Further3; = O(e3) , i =
1,3. Higher order terms than e are neglected in the nonlinear equations. The follow-
ing system of nonlinear ordinary differential equations for the generalized coordinates
describing the free surface are derived for forced motions

(B + 260151 + 02B1) + di(B1B2 + BiBa) + da(B152 + B3B1)
+dsBa By + Pi(i0, — S10 — g¥) + Q151 = 0,
(52 + 26025 + 0352) + d4f1B1 + dsﬁ'% + Q200:02 = 0,
(53 + 260355 + o303) + ds3132 + d751512 + dsfaB1 + dofi B
+d10 B + Ps(i0z — Sat — g) + Q0,85 = 0
Bi+ 2608, + 02B; + Pilto, — Sio — g¥) + Qito: 5 =0, i > 4. (1)

Here vg, and v, are projections of translational velocity onto axes of Oz z, w(t) is the v alue
of angular velocity of coordinate system Ozyz with respect to O'z'y’z'. The calculation
formulas for the coefficients oy, P;, S;, Q;, 1 > 1 and d;j, j = 1,..., 10 are given in [1].
The equation system is solved n umerically ly a fourth order Runge-Kutta method.

The linear damping term 2¢ O’iBi is included in each of eq. 1. The damping is found as
an equivalen t damping so that the energy remoed from the system during one full cycle

is equal to the energy lost in the impact, £ = i%

When the w ater impacts onthe tank roof, fluid damping is believ edto occur. The
hypothesis is that the kinetic and potertial energy in the jet flow caused by the impact
is dissipated. Fig. 2 shows the evolution of an impact in the upper left corner of a LNG
ship tank. The formation and overturning of the jet is evident.

Figure 2: Snapshots of upper left corner of LNG tank during impact
This energy loss is related to the total energy E in the system, which is found from

E = F,uvq, for forced sway. When studying one oscillation period, the previous loss of
kinetic and potential energy is subtracted from E. An iterative procedure is follow ed. A
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simulation over one period is started with no damping. A first estimate of ¢ is found.
The simulation is repeated, results in a new AE and thereafter a new £. This is done
for iteration ¢ > 1 as 0.5% = 4n¢. Typically, 5 iterations are sufficient for
convergence.

The impact model is based on a generalized Wagner’s approach [2]. The tank is
assumed rigid so possible hydroelastic effects are ignored. The inflow velocity V' (¢) and
the slope of the impacting surface can be found directly from Eq. . The impact velocity
is approximated by a linear function V' (t) = Vj + Vit. ¢t = 0 is the time of impact. The
impacting surface is approximated by a parabola with radius of curvature R. The wetted
length c(t) follows from Wagner’s integral equation. This solution can be corrected by
accounting for the tank walls and bottom. Details can be found in [5]. How ever, this effect
is not important and thus is not included here. The Wagner’s analysis assumes a small
angle betw een undisturbed free surface and tank roof. A similarity solution presented b y
Zhao and F altinsen [4] valid for large angles is applied to correct the energy estimates
when this is not the case. The energy estimates obtained from Wagner’s analysis are
multiplied by a reduction factor. Fig. 3 gives the definitions of symbols used in the
slamming analysis. c(t) is the horizontal distance from = = 0 to the spray root, J is the
thickness of the jet, u,. is the v elociy of the control surface following the spray root and
U, is the absolute fluid velocity at the spray root. Fig. 4 introduces symbols applied in
the similarity solution. s; is the length of the jet, 3 is the deadrise angle of the wedge, 3y
is the angle of the triangular jet and (7, and (g are the vertical distance to the jet root
and tip of the jet, respectively.

Vi) e
I %(t)dt ‘

J

Figure 3: Definitions for the slamming anal- Figure 4: Definitions used in the similarity
ysis solution
The similarity solution is derived for a constant impact velocity. However, the reduc-
tion factor found for the energy loss for a constant speed is also applied for the linearly
decreasing impact velocity.

The kinetic energy flux into the jet is calculated for both the similarity solution and
Wagner’s approach for a wedge and constant impact speed. The kinetic and potential
energy flux through the jet can generally be found as

dEkin P 2 dEpot

=zu —— =pg(H — h)M, 2
dt 2 a dt pg( ) ﬂux ( )

when a constant velocity across the jet is assumed and the potertial energy loss is esti-

mated as the potential energy the mass of the water has relative to the level of the mean

3
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free surface. uy is the relative velocity betw een the fluid elocity and the control surface
velocity, uf = u, — ue. My, is the flux of mass into the jet. Wagner’s solution gives [4]

2
2
de w = de 5= wV*2c e TVt 5= tan(B)V't 3)
dt 16(%)2 2tan (3) 4
¢

and the kinetic energy flux and mass flux

dEn, pVAmst de V2
dt 16tan?(8) = " TR )

w

The jet in the similarity solution is assumed to be triangular, giving

i &p—&L o _ 85
i T sn(B) ' Vi 77y fanlfo) (5)

The mass flux into the jet is then equal to

dri d[1Cs—Coo -]’ 2
M = — |—8. = — | = — - @

ST A [28]6] dt {2( sin (5) )" tan(Bo) Vitsin(p) tan(5o)V"t (©)

A constant flux velocit y in the similarity solution is found as uy = % By observing that

the z component of u. must be equal to % plus the constant downward velocity V', u,
can be estimated as

deg
e = —dt V.
° sin(3) + sin(f) @

Again, substituting in Eq. 2, the kinetic energy flux for the similarity solution is

2

der 2
dEpn|  pV*ttan Bo) | g s—Co| |¢B—CL
at |~ zsint(a) |LvI) T [ Vi } (®)

Fig. 5 shows the difference in kinetic energy and mass flux for Wagner’s approach and the
similarity solution. The numerical results are based on numbers presented in [4]. When
B — 0, the results by the similarity solution and Wagner agree.

Results and discussion

The free surface elevation is compared with experimental results for a heavy impact case
in Fig. 6. The tank is rectangular with [ = 1.73m, a filling height » = 0.5m and a total
height of H = 1.02m. The period and amplitude of the sway excitation are 7' = 1.71s
and ¢y = 0.05m, respectively. ¢y means forced sway amplitude. The figure suggests that a
satisfactory estimate of the impact velocity %§ can be calculated. This value is important
in the prediction of slamming loads. '

Fig. 7 shows the dimensions of the prismatic LNG tank model for which computational
and experimental results of horizontal forces are presented in Fig. 8. d is the width of the

4
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Figure 5: Kinetic energy and mass flux

tank. The chamfer angle is 45. This gives a reduction factor for the kinetic energy loss of
0.27 and a factor of 0.22 for the potential energy loss. Wagner’s approach over-predict the
energy loss for large angles. A good agreement is seen for results aw ay from resonance,
where the current approach predicts too large forces. Sources of error are discussed below.

The energy loss through the jet and evolution of the w ettedlength ¢(t) are shown
in Fig. 9. In this special case, approximately 1/4 of the total energy in the fluid is lost
during the tw o impacts of one cycle. The kinetic and potential energy loss are of the same
magnitude. The main part of the energy loss is generated during the initial phase of the
impact. Hence, the errors due to an assumption of a linearly decreasing impact velocity
and constant free surface curvature should not be large. A tt = 35.425 the impact moves
past the chamfered part of the roof.

There are several uncertainties and sources of error in the presen tedmethodics, of
which some ha vebeen discussed already. The accuracy of the nonlinear flow model is
of great importance. Missing nonlinear effects can for an excitation close to resonance
result in a large misprediction of the maximum free surface elevation, leading to an even
larger error in the estimation of the damping level. Local downward vertical accelerations
abo e 1g are calculated for some impact cases. According to Penney and Prif]  this
is a criterion for breaking of a standing wave. The only back-coupling from the impact
to the analytic model is through damping. When the duration and spatial extent of the
impact are large this simplification may no longer suffice.

F urther work will focus on the continued development of a nonlinear boundary element
method designed for calculating the impact jet flow. This approach will serve to validate
the current methodics, as well as provide an alternative damping estimat for heavy impact
situations. The wish to still use the nonlinear analytical method for the non-impact flow
is motivated by the dramatic difference in simulation time. The energy loss through the
jet is important. Thus, a state of the art volume of fluids program must have a very fine
discretization both in time and space in order to capture this.
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Preface

This extended abstract was presented at the 16th International Workshop on Water Waves and
Floating Bodies in Hiroshima, Japan.

Sloshing in the context of marine engineering usually happenstahlensaexcited by ship
motions. The sloshing induced forces will influence the ship motion. A coupled system of ship
dynamics and sloshing was next topic in line for study. The nonlinear sloshing method including
an impact model was an ideal starting point, since the structure of the method readily facilitates
coupling. A high computational efficiency is also a significant advantage.

Two-dimensional experiments w ere conducted for a ba-shaped hull section excited by regular
beam sea. The experiments are used to validate the calculation of a coupled system.

A commercial linear frequency- and time-domain ship motions program was used in the calcu-
lations, with the inclusion of a sloshing module programmed by the author. This module gives
as output the sloshing force, either based on a linear or nonlinear sloshing model, with the rigid
body tank motions as input. Iterativ e calculations in the frequency domain were used when lin-
ear sloshing was considered. In the case of nonlinear sloshing, the sloshing model did not work
properly with the time domain version of the commercial program. Instead, the hydrodynamic
coeflicients w ere calculated ly the program and used as input for an integration routine where
the equation of motion for the coupled system, Eq. (1) in the paper, was integrated in time. The
use of constant coefficients as opposed to a convolution formulation was deemed relevant since
steady-state motions w erestudied and the experiments show edalmost no trace of the higher
order sloshing force harmonics in the sway motion of the coupled system.

A strong sensitivity of the calculated sway response to the damping level of the internal sloshing
flow was disco vered for swy frequencies in the vicinity of the first linear eigenperiod for the fluid
motion in the tank. A quasi-linear approach was applied to explain this effect.

Figure 2 illustrates the relationship between the wave amplitude and wave frequency used in the
experiments. The values indicate the input to the wave-maker. Later investigation show ed that
the calibration transfer function in the control system of the wavemaker is not perfectly accurate

for low frequencies. This influences the normalization of the experimental results. How ever, the
discrepancy betw een input amplitude and the amplitude of the resulting vave is minimal in the
frequency range covered in Fig. 6.

The top left plot of Fig. 6 shows wrong results for the sw aymotions when a linear sloshing
model is applied. The results valid for t w o filled tanks sre used by mistake. Fig. 5 presents
the correct values.
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EFFECT OF SLOSHING ON SHIP MOTIONS

Olav F. Rognebakke and Odd M. F altinsen
Department of Marine Hydrodynamics
Norwegian University of Science and Tec hnology
N-7491 T rondheim Norway

When a ship carrying liquid cargo moves in waves, sloshing ma occur. The ship motions
excite sloshing which in return affects the ship motions. 2-D experiments on a box-shaped
ship section excited by regular beam sea have been conducted to study this coupling
effect. The section con tainstw otanks and can only move in sw ay. The external ship
motion problem may be solved by using a standard linear strip theory program, while the
sloshing must be described by a nonlinear method. The adaptive multimodal approach by
F altinsen and Timokha [1] has been used. This method has been extensively v alidated for
forced tank motions. The present study represents a first validation for coupled internal
and external flows.

The experiments w erecarried out in the w aveflume of the Department of Marine
Hydrodynamics at NTNU. The flume has an overall length of 13.5 m and is 0.6 m wide.
It is equipped with an electronically operated, computer controlled, single flap wavemaler,
calibrated for a water depth of 1.03 m. The side walls and the bottom of the flume are
made of glass.

Fig. 1 shows model parameters. The ship section with an overall length of 596 mm has
2 mm clearance from the flume walls. The breadth is 400 mm and the draft 200 mm. The
two identical tanks have breadth b of 376 mm, a length of 150 mm and a height of 288 or
388 mm depending on the position of the deck. The deck may be low ered when sloshing
induced water impact on the tank roof is desirable. No tank roof impact occurred in the
reported examples. Weigh ts are added to the model so that the total veigh t equals the
buoy ancy for the fixed draft and different amounts of water in the tanks. The section
slides along tw o rails where lav friction bearings are used. It is restrained from drifting
off by springs with a total stiffness of 30.9 N/m. The springs cause an eigenfrequency well
below the studied wave frequencies. The steepness of the waves was kept below a certain
threshold value to prevent breaking. Fig. 2 gives the c hosen relation betw een frequency
w and amplitude (, of the generated regular waves.

A typical time series for the sway motion of the section with water in one tank, is shown
in Fig. 3. A transient phase precedes a steady state for the system. A beating period of
~ 5 s is evident during the transient phase. This is the eigenperiod of the system consisting
of the springs and the ship model. A shift in mean position of the section occurs due to 2nd
order drift force. The steady state motions show almost no higher order harmonics. This
indicates that the higher order part of the sloshing force is filtered out by the system. The
steady state phase is short for long waves and consequertly the uncertainties in measured
sway amplitude increase. Forw aveperiods very close to the first natural period of the
fluid in the tanks an unstable situation may occur. The sway amplitude shifts and thus
tw o steady state responses tale place during one run. In the experimental data presented
later where one tank is filled with A~ = 0.184 m, this can be seen as tw overy different

1
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Figure 2: Relationship betw een wave amplitude and wave frequency

measured sway amplitudes for a wave frequencyw = 8.65 rad/s. This is associated with
jumps between different branches of the steady-state sloshing solution [2]. The steady
state ends when waves reflected from the wavemaker and the beach reach the model.

Measured and calculated sway amplitudes for empty tanks have been compared to
validate the accuracy of the measurements, (see Fig. 4). A standard linear seakeeping
program was used in the calculations. The experimental results for rigid mass agree well
with the computed values.

Fig. 4 illustrates the large effect of the fluid motion inside the tanks. When w is smaller
or sligh tly higher than the lav est linear eigenfrequencyo,, of the fluid motion in the tanks,
a sway response lower than for a rigid fluid mass is observed for half-filled tanks. The
force resulting from the fluid motion in the tanks acts against the sway excitation force
in this case. When w ~ o, the sway motion is almost zero. For w sligh tly abore o, the
sway motion increases due to the fluid in the tanks. This behaviour can be qualitatively

URN:NBN:no-2322



explained by using a linear model for the sloshing. The phase of the sloshing force shifts
180° when the excitation frequency moves from below to above the first natural frequency.

" l;‘m}; Transient, : Steady state : New transient - LCm]
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Figure 3: Example of time history of the sway motion of the ship section. w = 9.42 rad/s
and ¢, = 0.015m
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Figure 4: Sway amplitude for rigid mass and for tw o tanks filled withh = 0.184 m

The change with wave frequency of the phasing betw een the forces acting on the model
is visually apparent from Fig. 5. The right plot in this figure givesthe experimental
values for sway motion when one of the tanks is filled with A = 0.184 m. Snapshots
sho w the instartaneous position of the free surface both inside the tank and outside the
ship section, for three different wave frequencies. The phasing between the internal and
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external fluid motion permits to qualitatively understand why the internal fluid motion
can either amplify or reduce the ship motion. The phasing is evident from the relative
vertical motion of the free surfaces inside and outside the model.

_ Water surface

perimentg

Figure 5: Motion of fluid inside and outside the tank. A = 0.184 m. One tank is filled

An interesting phenomenon is observed for wave frequencies close to the resonance for
the fluid motion in the tanks. When the w avefront hits the model, a significant sway
motion is initiated. This in turn excites sloshing in the tanks, and thus a sloshing force
starts to counteract the excitation force from the waves. The sway motion decreases until
an equilibrium is reached. A t this stage the swy induced sloshing force almost balances
the excitation force from the w aves. However, since w = ¢, a very small sway motion
causes a violent sloshing response.

Fig. 6 shows experimental and computed values of the sway motion of the model for
different filling levels of one or tw o tanks. The first linear eigenfrequency ¢, is indicated
in the plots. Calculated values found by using an analytical linear and nonlinear sloshing
solution and a standard linear seak eeping program for the external flo ware presen ted
for all cases. The calculations based on the linear sloshing model follow the general
trend of the experiments. How ever, the swy amplitude is consistently o ver-predicted for
frequencies right above g,. The reason is that the linear sloshing force is either in phase
or exactly 180° out of phase with the position of the model. Actually, the phase transition
occurs over a certain range of frequencies. F urthermore, when a large percertage of the
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Figure 6: Comparisons betw een experimens and calculations

sloshing force acts in phase with the mass and added mass forces and works against
them, thincreased motion results in an increased sloshing force amplitude. When the
frequency is equal to o, in the linear sloshing model the resulting sloshing force is infinite
for finite sway motion. The combination of the linear sloshing force with the dynamics
of the model cause zero sw ayfor w = o, while in reality the sw aymotion will ha e a
minimum different from zero in the vicinity of o,.

The linear sloshing model fails in predicting the frequency of minimum sway motion
for the three cases when only one tank is filled, since the large amplitude sloshing at
resonance invalidates the assumption of a constant natural frequency for the internal
fluid motion. In [2] it is shown how the first natural frequency varies as a function of the
sloshing amplitude. When the filling height & is below the critical value h/b = 0.3374,
o, increases as the amplitude increases. This explains the discrepancy in minimum sway
by thelinear sloshing model for A = 0.094 m. For h = 0.29 m and 0.184 m, the water
level is abo ve the critical depth and consequetly the experiments show a minimum below
0n. When h = 0.184 m and tw o tanks are filled, the amplitude of the sloshing motion at
w =& 0, is rather small. Hence the linear sloshing model gives an acceptable result.

In the computational results where the nonlinear model is included, the equation of
motion Eq. (1) is solv ed in time and coupled with the nonlinear sloshing model.

(M + As) ily + Baota + Caany — Fexe(Ca) — Fatosn(12) =0 (1)
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Figure 7: Experimental and computed sway ) )
amplitudes for tw o tanks,h = 0.184 m. Ef- Figure 8: Mass terms - in phase with sway

fect of sloshing damping & acceleration 7,

In (1) M is structural mass excluding internal fluid mass, Ay and Bs, are the frequency
dependent added mass and damping due to the external linear flow, Cy, is the linear spring
coefficient, F. is the horizontal linear wave excitation force and Fy.g, is the horizontal
force caused by sloshing. The simulations are prolonged until steady state sway motion
is achieved. The external flow model needs justification. A proper linear external model
should be based on the methodology presented b y Cummins [3] whib implies that the
radiation force is a function of con volutionintegrals. This w ouldbe needed in order
to calculate the transient phase of the external flo wand sloshing induced higher order
harmonic motions. But several authors, e.g. Adegeest [4], report difficulties in applying
such a fornmlation in practice. Actually the influence of higher harmonics in the sloshing
force is negligible. This can be seen from spectral analysis of the sway motion time history.
In our case, since we focus on the steady-state motions, the present external force model
represents a satisfactory approximation.

By including a nonlinear sloshing model a better agreement betw een the calculations
and the experiments is obtained. For instance a much improved prediction of the minimum
sw ay motion is ahiev ed.

The computed sw ayamplitudes for tw otanks and A = 0.184 m w erefound to be
sensitiv eto the level of damping chosen for the sloshing motion. Fig. 7 shows how the
damping of the internal flow affects the results when a variation from 2% toof%  the
critical damping is considered. A description of how damping is included in the sloshing
model can be found in [2]. This damping may represent e.g. viscous effects or local
breaking and is not rationally predicted. The effect of external vortex shedding at the
sharp corners w asstudied and found to be small. Forw >= ¢, the sw ayamplitudes
increase with a decreasing damping, while around sloshing resonance the motion becomes
smaller. In order to explain this phenomenon, the balance betw een the different terms in
the equation of motion was studied. A quasi-linear approach was applied. The sum of the
terms in or 180° out of phase with the sway accelerations are presented in Fig. 8. The
contribution from the sloshing force is expressed as a frequency dependent restoring term
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Ch240sh- By making an analogy with a linear system the zero of this sum corresponds
to an eigenfrequency for the sway motion. The sum is close to zero just above or below
w = 9.5 rad/s for the tw o amplitudes of steady state svay motion presented. F urther, the
sloshing force is large and nearly 180° out of phase with the acceleration in the vicinity of
this frequency. Thus a small change in the phasing will lead to an important alteration of
the part of the sloshing force which can be considered as a damping term for the coupled
system. The damping terms are in this case all that balances the external force. For the
example presented in Fig. 7 a phase change of 5° for Fyoq at w = 9.4 rad/s leads to a
change of 10% in the sway motion. The phase is a function of the damping of the fluid
motion inside the tanks. This explains the observed theoretical behaviour. If hea vy tank
roof impact had occurred, the damping of the internal fluid motion would be dominated
by tank roof impact damping, [5]. Since the latter damping component can be rationally
calculated, the ambiguity in selecting & demonstrated in Fig. 7 would be unimportant.

F urther work will include the effect of tank roof impact. A natural next step is to
include the roll and heave motion in the 2-D model before starting on a 3-D analysis to
avoid that too mary physical effects are included simultaneously in a complicated dynamic
system.
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APPENDIX A

Program for sloshing calculations

A computer program has been developed for calculation of sloshing in rectangular or chamfered
tanks forced to move in sway. The core of the program is an implementation of the adaptive
multimodal approach of Faltinsen and Timokha (2001). Impact calculations are included, and an
iterativ e procedure is applied when impacts occur. The calculation of damping due to impacts
follo ws Rognebakle and Faltinsen (2000), (Paper 5).

Figure A.1 presents the program flow diagram. Note that only the main steps in the series of
computations are included. The concept of ’oscillation period’ is important. It is necessary to
monitor changes in energy throughout one such period to relate the fractional loss of energy to
the artificial linear damping term. A new oscillation period begins when the water surface rises
above the initial undisturbed water lev el at one side of the tank. A t the same instat, the water
surface should have a downw ard v elocity at the other all. This criterion seems to be robust,
and it also works when the free surface motion is different from a standing wave.

The time stepping loop starts with solving the nonlinear system of ordinary differential equations
for the 3; that represent the amplitudes of the free surface modes.

When a new oscillation period starts, the change in energy during last period is chec ked.If some
energy is lost due to impacts, a new damping coefficient is calculated. The curren titeration
number is compared with the maximum allow ed.If the maximum is reached, a counter is reset
and all the, hopefully, converged flow variables are saved. This eventis referred to as ’Save
state’. If the iteration is to be continued, the previously saved state is retrieved, the iteration
number increased and the calculation continues with the new damping coefficient.

In case of no lost energy, the iteration loop is skipped.

When the frearface hits the roof  at one side of the tank, the initial impact velocity V; and
the radius of curvature of the free surface R are calculated. After a while, the vertical velocity

147
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148 APPENDIX A. PROGRAM FOR SLOSHING CALCULATIONS

‘ Start main time loop ‘

‘ Calculate B; ‘ Set damping level ‘

it# < Yes
max iteration?

New oscillation

period? Retrieve state ‘

it# = it# + 1

Damping =0

‘ Save state ‘

Impact at
this exact time
instant?

Calculate V, and R

this exact time
instant?

STOP

Figure A.1: Program flow diagram

of the free surface is zero, and the impact is at an end. Now that the duration of the impact is
known, the negative acceleration V; and, finally, the energy lost during the impact are found.
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APPENDIX B

Energy change from linear damping
term

B.1 Linear damping of mass-spring system

Consider a one degree of freedom linear mass-spring system with mass M, damping coeflicient
B and stiffness C'. The system is excited by a harmonically oscillating force F. The period of
oscillation is 7. The displacement variable is z. The equation of motion for this system is

Mi+ Bi+Cz=F (B.1)

where dots denote time derivatives. The critical damping B, = 2M o, where ¢ = \/C /M. The
change of energy in the system is given as

%E(x, i) = Fi — B#? (B.2)

The removal of energy from the system during one period of oscillation due to damping is
T
AE = / Bi*dt (B.3)
0
The response can be written as r = z,e™!. This gives

1
AFE = EschUQB (B.4)

149
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150 APPENDIX B. ENERGY CHANGE FROM LINEAR DAMPING TERM

The total energy of the system is denoted E. When all the energy is in the form of kinetic
energy , the total energy is

1
E = §M:c502 (B.5)

The fraction of the total energy being removed during one period is

AFE _ z2To’B _TB

E  Ma202 M (B6)
The damping coefficient ¢ is introduced. £ = 1 for a critically damped system.
B =20M¢ (B.7)
This gives
AE

Assume that the period of excitation is close to the undamped eigenperiod of the system

2w

T B.9
” (B9)
The relation betw een the fraction of energy remoed and ¢ is found as
1 AE
=—— B.10
§= 1% (B.10)

B.2 Relation between ¢ and Keulegan’s 'modulus of de-
cay’

Keulegan (1958) introduces a 'modulus of decay’, a, for a standing wave of initial amplitudeag
oscillating with a period T as

—=e T (B.11)

where a is the amplitude of the w aveafter time . He reports that the relation betw eenthe
fractional change in energy of the standing wave and the modulus of decay over one period of
oscillation is

_AFE
~ 2Euean

« (B.12)

where AFE is the change of energy in the wave and Ey,e,, is the mean energy of the wave during

the oscillation period. Assume that the change in energy is small compared to the total energy
in the tank, so that Epen & E. A comparison between Eqgs. (B.12) and (B.10) gives

o
E=5 (B.13)
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APPENDIX C

Impact energy loss in chamfered tank

C.1 Problem description

When the free surface inside the tank hits the tank roof, a simplified method based on a gener-
alized Wagner’s slamming approach (Wagner (1932)) is used to calculate the loss of energy. The
rising surface is approximated by a parabola with radius of curvature R, and the impact velocity
is linearly decreasing and is expressed as V(t) = V + Vit where V; < 0. The time of impact is
t = 0. For a ¢ hamfered tank, the ertical distance, n,(x), from any point on our idealized, frozen
surface at ¢t = 0 to the chamfer part of the roof is given by the radius of curvature R and the
chamfer angle 5. Figure C.1 shows the direction of the z-axis.

72

() = tan(B)z + o (C.1)
When a heavy impact occurs, the wetted length may exceed the horizontal length of the chamfer,
Cmax, and the last part of the impact may be considered as a flat roof impact. In Fig. C.1 the
idealized situation is shown for a tw ophase impact. The curved lines drawn out for three
different time steps represent the frozen free surface, and additional lines give an impression of
ho w the uprise of water may look. The jet is not shown. The impact is in the first phase when
t =t; and ¢(t) < Chhax, while for ¢ = ¢, the second phase has just started. These two phases will
be treated in the following.

Figure C.2 gives the definitions of symbols used in the slamming analysis. ¢(t) is the horizontal
distance from z = 0 to the spra yroot, § is the thickness of the jet, u. is the velocity of the
con trol surfacefollowing thepra y root and u, is the fluid velocity in the jet direction at the
spray root. Define u; as the difference in velocity between the fluid and the con trolsurface,

151
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152 APPENDIX C. IMPA CT ENERGY LOSS IN CHAMFERED TANK

G /\s
- > //
| i \

Figure C.1: Heavy impact on chamfered roof

uf = ug — . The kinetic and potential energy flux through the jet can generally be found as
dE'kin P 9 dE'POt
=zu
dt 2 dt
Here H is the total height of the tank and h is the water filling level. My, = duy is the flux of
mass into the jet. Wagner’s solution (see Zhao and Faltinsen (1993)) gives

= pg(H — h) My, (C.2)

2
2
u, =296 %:%75:ﬂ%ﬁ (C.3)
dt dt 16(57)?

The flux of energy in the jet is known if the rate of change of the wetted length is found.

C.2 Finding the wetted length
The procedure for solving Wagner’s integral equation and finding the wetted length is described
in Faltinsen (1990).

Wagner’s impact analysis is based on the assumption of irrotational and incompressible fluid so
that potential theory is valid.

The classical impact problem with the dynamic free surface condition ¢ = 0 on z = 0 and the
body boundary condition 9¢/9z = =V (¢) on z = 0 is illustrated in Fig. C.3. The resulting
velocity potential on the body is

¢ ==V(t)\/2(t) — a2, |z| > c(t) (C.4)
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C.2. FINDING THE WETTED LENGTH 153

Figure C.3: Boundary value problem for simplified analysis of impact between a tw o-dimensional
body and water

while the vertical v elociy at the free surface is
op _ V(t)x

5.~ J—am WAt #=0 fal> ) (C.5)

The free surface elevation, 7, relative to the bottom of the impacting body can be written as

t
V(t)x
0 Va?— ()
The vertical distance traveled b y a particle on the initially calm free surface has to be equal to
the v ertical coordinateof a point on the impacting body, 7,(z), relative to the bottom of the
body. We then get an integral equation where both c and ¢ are unknowns

J(z) = T_anld) g, C.7
where
ple) = V()5 (C8)
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154 APPENDIX C. IMPA CT ENERGY LOSS IN CHAMFERED TANK

The unknown function p(c) relating ¢ and ¢ is substituted in the integral equation, and the
integration limits are changed. The idea is now to approximate p(c) by a polynomial in ¢

p(e) = Ag + A (C.9)

where Ay and A; are constants to be determined. The right hand side of Eq. (C.7) can be
integrated to give

m(z) = Aogli + Ay (C.10)

np(x) is known for a given impact problem, and thus the coefficients Ay and A; can be found.
Eq. (C.8) is then used to find c(t)

Integration gives
A 2 t
Agc + 120 - / V(t)dt (C.12)
0

Assuming a linearly changing impact velocity, V' (t) = Vi + Vit, the expression for the wetted
length becomes

A N VAL +2A, Vot + A V2

_ A 1
c 1, A, (C.13)
The expression for de/dt is also useful
de VE) + Vlt
— = C.14
dt A() + Alc ( )

C.3 Phase 1: Impact on c hamfer

Until the spray root has reached the top of the chamfer, n,(z) is found from Eq. (C.1) and Eq.
(C.10)

2

- 4T 2
n(x) = tan(B)z + SR A02x + A (C.15)

This gives Ag = 2tan )/ and A; = 1/(2R). By combining Eqgs. (C.2), (C.3), (C.13) and
(C.14) the flux of kinetic and potential energy through the jet are found to be

2tan(B) 4tan?(B) Vot Vit2
dEp.hase 1 _ = + \/ = 4 ot At
s — p(Vy + Vi) 'R -t
n 2
2\/—“‘”;2(") + Mty

(C.16)
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C.4. PHASE 2: IMPACT ON FLAT ROOF 155

2 * R 2R

dE%‘fs“ _ pg(H—h)Z(Vlet)R (_2ta71:(6)+\/4taﬂz(5) Vot Vl_t?) (C.17)

4tan2(6) Vot V1t2
\/ ~ = TRTIR

The loss of kinetic and potential energy during phase 1 of the impact is found as

tend dEp.hase 1
AEPRe ! = / —kin___q¢ (C.18)
o dt
tend dEphase 1
AERRS ! = / %dt (C.19)
0
where toq = —Vp/Vi if V(t) < 0, and teng = tmax if ¢ = Chax. These integrals are solved

numerically

C.4 Phase 2: Impact on flat roof

When the spray root at @ = ¢(t) has moved past the chamfer, the vertical distance () is
approximated by

2
2R
This gives Ay = 0 and A; = 1/(2R). Again, use that ¢t = tya, when ¢ = Cpa,. The wetted
length is now given by

m(T) =55 = AogI + Az® (C.20)

¢ = V2R [2Vo(t — tmax) + Vi(t — tmax)?] + C2ay (C.21)
while the rate of change of the wetted length is
At /2R (2Vo(t — timax) + Vi(t — tmax)?) + C2
The thickness of the jet is
5 TRREVO( ~ tu) + Vit~ fun)’] + 2.’ 93
- 32R? (C.23)
This gives for the flux of energy
phase 2 3
dE‘kin — p(% + Vlt) TR (024)

dt 2

dEphase 2 H—
Pd; _ py( ’?g}g/“ + Vi) (2R [2Vo(t = tmax) + Vi(t = tmax)’] + Crax) (C.25)
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156 APPENDIX C. IMPA CT ENERGY LOSS IN CHAMFERED TANK

AEPM? and AEElgfse ? can be found by analytical integration. This is straightforward although

the resulting expressions are large.

—Vo/V1 dEp.hase 2
spger = [ o
tmax dt
—Vo/V1 dEphase 2
ARRhse? _ / ot g, (C.27)
tmax dt
The total energy loss is
- phase 1 phase 2
AFBy, = AEPRSe ! | AP (C.28)
AE — AEphase 1 AEphase 2 C
pot pot + pot ( 29)
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APPENDIX D

2. order initial value solution

A tw o dimensional rectangular tank is excited in sway. A second order initial value solution of
the resulting sloshing motion is derived. The response is assumed to be of the same order as the
excitation. The tank geometry and the coordinate system is shown in Fig. D.1. The coordinate
system is fixed in space. The tank motion relative to equilibrium is 7 = €y sin(wt).

Figure D.1: T ank geometry and coordinate system

D.1 First order solution

The boundary value problem that is solved is illustrated in Fig. D.2. The initial conditions
®; =0 and 9P,/9t = 0 on the mean free surface are used. Faltinsen (1978) preseits a solution
to this problem. The total first order potential is given as

157
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158 APPENDIX D. 2. ORDER INITIAL VALUE SOLUTION

aalf.’zl + g% = egzw? cos(wt)

z

UZ(ﬁl =0
0¢
8051 =0 /

91 _ 901 _
BJJ_O \ 01‘_0

Figure D.2: First order boundary value problem

Q=01+ ¢
where
¢ = Acos(wt)z , A= ew

¢, 1s found as a series solution. The total first order potential is

o - (20 o (2) () o

n=0
2n+ 7

h
-+ cos < %

(2410 o costint) + Cocoste]

where the coefficients are expressed as follows

2

wk, K

On_ ) An:_Cn__n
w

S w?—w?
The eigenfrequencies of the system are found from

2 1 2 1
w? = 97( n+lm tanh 7( nt )Wh
2a 2a

Only the first term in the series solution for the ¢, part of the first order sloshing potential is
used in the derivation of the second order potential.

¢1 = [Ag cos(wnt) + Cp cos(wt)] sin(%) cosh(W(ZT?:h))

URN:NBN:no-2322



D.2. SECOND ORDER SOLUTION

159

The constants are given b y the folloving expressions

wA  8a wKy

0= o - )
cosh(ZL) 72 wp? — w?

The square of the low est eigenfrequency of the system is

5 gm wh
= — 1 h —_—
Wo 90 tan ( 0 )

D.2 Second order solution

Co=—3—25, 4g=—-Cp— =2

The second order boundary value problem is illustrated in Fig. D.3. The right hand sides of the

%% P
Tzz + g@_;z = fus(P1)

z

]

2 = @)\ B2 = fu( @),

Figure D.3: Second order boundary value problem

free surface condition and wall conditions are respectively

fo— O [0 (001)F] 10910 (00,
T AT ER g ot 0z \aez 7Y

and
fw = —¢6 sin(wt)% .
The total second order potential is expressed as
Py =95+ ¢2

ot
0z

The separation of the potential in tw o parts is cowvenient when treating the boundary conditions.

The boundary condition ensuring zero flow through the bottom gives

0w _, o
0z | _ 4 ' 0z

z=

=0

z=—h
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160 APPENDIX D. 2. ORDER INITIAL VALUE SOLUTION

while the boundary conditions on the walls are

905 = —¢ Sln(wt)az(z51 0%
o |,_,, 0 912 © O

+a r==a

The combined dynamic and kinematic free surface condition is separated into a homogeneous
part

¢y | 0}
oz " Var T 0 ,z=0

and an inhomogeneous part

¢y Opy O | [(0®\° [(08:,\’| 10%, 0 (0°®, 0%,

o2 9. T Tm (a_> +<E) WW&((W +QE>
_ 0| (9 ﬂ 5 o 0%, 2
= % l( 82:) Ee cos(wt) + A® cos”(wt) + P

8(251 . 8 82¢1 2 ¢1 _
( 5t — Azw s1n(wt)> 5 ( 542 Azw® cos(wt) + g—— E ,2=0

:HS

¢ is found by first writing out the right hand side HS. The following ordering of the resulting
equation is used

HS = HSI. cos(2 )+ HS2 - 1;3111(2 ) + HS3 - cos (22)

HS4 - sin?(==) + HS5
+ sin (Qa)+

The following relationships are used in HS

T 1+1 (71'27)
=3 2cos "

) L1
Sm(2a)_2 ZCOS(a

~
Q
o
[}

o

—

g
|

The parts of HS3 and HS4 proportional to cos(™*) are combined and denoted HS6, while terms
of HS3 and HS4 independent of z constitute HS7

1
HS6 = 7 (HS3 — HS4)

1
HS7 = (HS3 + HS4)

The total right hand side of the inhomogeneous free surface condition is then

HS = HSI- cos(2 ) +HS2- :z:sm(2 )+ HS6 - cos( ) (HS5 + HST)
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D.2. SECOND ORDER SOLUTION 161

where
HS1 = 8gmaA(Ag(wo+ w)sin[(wy + w)t] + Ag(wp — w) sin[(wp — w)t]
+ 2Cowsin (20t)) cosh(;—h)
a

wh
HS2 = 274 h(—
S mAw cos (2a)(
9 wh .
- Ap(2awg tanh(z—) — 7g) sin[(wp + w)t]
a
+  Ap(2aw? tanh(;r—h) — 7g) sin[(wy — w)t]
a

- Co(2aw? tanh(;r—h) — mg) sin[2wt] )
a

HS5 = A%sin(2wt)
HS6 = 16ga*(

- Alwom cosh2(72r—s)(29 tanh?( 2h) + 2wja tanh( ZL) — 3mg) sin(2wpt)

+ Ciwm cosh2(2] ) (297 tanh2( mh ) + 2w?a tanh( h) — 3mg) sin(2wt)

+ CoAp(w — wp)m cosh (2] )(3mg + 2awow tanh( Z) —2myg tanh2(72r—s)) sinf(w — wp)t]
+ CoAo(w + wo)m cosh2(2—Z)(37rg — 2awow tanh(z—Z) —2mg tanhz(;r—s)) sin[(w + wo)t] )

HS7 = 16ga*(

—  A2wor cosh?( 2] )(2g7 tanh?( h) + 2w0atanh( mh ) + 7g) sin(2wot)
+ Ciwm cosh2(2—h)(297r tanh2( ] ) + 2w?a tanh( h) + 7g) sin(2wt)
a
+ CpAp(w — wp)m cosh (Q—h)(wg — 2awow tanh( 2h) + 27g tanh?( h)) sin [(w — wp)t]
a 2a

+ CoAo(w + wo)m coshQ(;Th)(ﬂg + 2awow tanh( h) + 2mg tanh?( h)) sinf(w + wp)t] )
a 2a

The following Fourier-series expansions are utilized

o0

mr, 8a (1 (=1)"(1+4n) nue
TsinG) =5 (5 * ; 1+ 2n)%(1 — 2n)? COS(T)>
L (S B (=)™ nwx
cos(3) = 7 (5 t L @D COS(T)>

The part of HS oc zsin(57) is now studied. Assume the following form of ¢3, where superscript
2 refers to HS2,

5= 3 A cos("0) cosnf Ty
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A(t)2 = A2 sinf(w + wp )t] + A% sin[(w — wo)t] + A2 sin(2wt)

This is inserted into the free surface condition and compared to the right hand side HS2 where
the series expressmn for xsin(3%) is used. The terms with time dependency sin[(w + wp)t] are
denoted ¢3L.

0%¢3' 9¢3' _ 21 nm 2
<8t2 +9W>20 = ZA cos[— " ]cosh[—]{ (w+ wp)

n=0

b I h[%h]}sm[(wwo)t]

= HSZl
AAyw wh wh

- W2 (2002 tanh[22] = 70g ) -
= cos [Qa] < awg tan [Za] ﬂg)

8a [1 =~ (=1)™(1+4n) nrr, \ .
e <§ * nz;: (1+2n)2(1 - 2n)? COS(T)> sin{(e + wo)1]

Superscript 1 in HS2' indicates the time dependency sin[(w + wp)t]. in a similar way as A2,

AAgw cosh[Zh wh
Al — 0 201 (942 tanhl—1 —
0 gra (w+w )2( (g tan [20,] ﬂ'g)
42— AAgw cosh[ZE]  (—1)"(1 + 4n?) (2aw tanh[Zt] — 7g) b0

gma cosh[*ZA] (1 + 2n)%(1 — 2n)2 [%24 tanh[2Z2] — (w 4 wp)?]
_ Adow cosh[h]
22 _ 0% = l2al —
A = om0 =)’ ——20 (2aw; tanh[ ] 7q)

AAgw cosh[ZE]  (—1)"(1 + 4n?) (2aw tanh[Zt] — 7g)

A2 — >0
" gma cosh[*ZA] (1 + 2n)%(1 — 2n)2 [222 tanh[222] — (w — wp)?] "
AC, mh
A7 =~ com T u tan{T0] — )
g ACw cosh[ZE]  (—1)*(1 +4n?) (2aw®tanh[Z:] — 7g) -
" gma cosh[™Zt] (14 2n)(1 — 2n)? [2Z2 tanh[27R] — 402]

The part of HS o cos(32) is next in line. Assume the following form of ¢; where superscript 1
refers to HS1,

6y =3 A1)} cos("™%) cosnTEH)

a a

]

A(t)}L = A}f sinf(w + wo)t] + A}LZ sin[(w — wo)t] + A,lf’ sin(2wt)
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The terms with the time dependency sin[(w + wp)t] are denoted ¢!,

B2pL1 Aol B > u nrT nmwh 2
<at2 9. ) = D A cos[ = cosh[ZE{—(w 4 w)

n=0
+ I anbh Y sinf(w + wo)f]
a a
= HS1'
Adgr h
= —, (w+ wp) cosh[%] :

41 & —1)ntt nmw .
. <§ + Zl m COS(T)> sin[(w + wo)t]

This procedure is repeated for the other time dependencies, resulting in the following coeflicients

AAy mh

All - __ 0 h A
0 a(w + wo) cos [Qa]
24A (—1)m+t cosh[Z2] 1
Al = 0w+ o =0
v T T WO B T BT 1) cosh] (o o) P tanhE] "
AA wh
A2 — 0 ogh[——
0 a(w — wyp) o8 [Za]
24A (—1)n*! cosh[Zh] 1
A2 — 0/ o -
" a (10 =) (2n — 1)(2n 4 1) cosh[2Z2] —(w — wp)? + X tanh[2L2] "
A h
AP = _AG cosh[ﬂ—]
2wa 2a
AL 4ACO\,U (—1)n+t cosh[g—a’;] 1 o
a  (2n—1)(2n + 1) cosh[2Z~] —4w? + P22 tanh[21h]

The part of HS o cos(Z*) is now studied. Assume the following form of #S where superscript 6
refers to HS6,

w(z+h)

®5 = A(t)° cos(%)cosh[ ]

A(t)® = A% sin[(w + wo)t] + A% sin [ — wo)t] + A% sin(2wt) + A% sin(2wot)

Start out with terms with the time dependency sin[(w + wp)t] denoted ¢St.

0265 98! A% cosl ™ cosh ™ 2

+ I anb[ ™) sin [ + wo)1]
a a
= HS6*

= 169a*CoAp(w + wo)m coshZ[;T—h] .
a

(3mg — 2awow tanh(;r—Z) —2myg tanhz(g—s)) sin[(w + wo)t]
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This procedure is repeated for the other time dependencies, and the following coefficients result.
cosh[”Z—T]
(3mg — 2awow tanh(%) — 279 tanhz(’zr—s))

—(w + wo)? + & tanh[]

A% = 169a’CoAg(w + wo)T

h?[zh
A% = 169a’CoAp(w — wo)ﬂL[zz] .
cosh[%2]
(3mg — 2awow tanh(ZL) — 27g tanh®(Z2))
—(w — wp)? + £ tanh[ 2]
A% = IGgaZCzwﬂ7COSh2[% .
™" cosh[h]

(3mg — 2aw? tanh(ZL) — 27g tanh*(Z2))
—4w? + < tanh[ ]
cosh?[Zh
A% = 169a2Agw07r7[ 2,“] :
cosh[%a‘]
(3mg — 2aw} tanh(ZL) — 27g tanh*(Z2))
—4w? + £ tanh[Z]

The only part left of HS at this stage in the deriv ations,is independent of z. Assume the
follo wing form of ¢ where superscript 7 refers to HS7 and HS5.

¢5 = A(t)
This part of the second order potential is independent of z and z.
A(t)" = A™ sin[(w + wo)t] + A™ sin [(W — wo)t] + A™ sin(2wt) + A™ sin(2wot)
First the terms with the time dependency sin[(w + wp)t] denoted ¢7L.

82411
Bt; —(w + wp)? A" sin[(w + wp )]
= HST7!
5 o, Th
= 169a°CoAg(w + wp)m cosh (%) .

h h
(rg + 2awow tanh(;r—a) + 27y tanh2(g—a)) sinf(w + wp)t]

This procedure is repeated for the other time dependencies, giving the following coefficients

AT _%W coshz[;—};](ﬂg + 2awow tanh(g—};) +2mg taﬂhZ(;T_Z))
A2 — _%w cosh2[72T—Z](7rg — 2aww tanh(;—}al) + 27g tanhZ(;T_Z))
AT — _4A—; — 16g9a*Clwr coshz[g—Z](ﬂg + 2aw® tallh(;r—s) + 27g tanhz(;—s))
AT = 169 A2wen coshzg—gum + 2aw; tanh@—Z) 27y tm“%”

URN:NBN:no-2322



D.2. SECOND ORDER SOLUTION 165

The first term in the expression for A™ comes from HS5. The total expression for ¢, is now in
place.

T o find the remaining part of ®, ¢3, the boundary conditions on the walls are basis.

* 2
_8(;52 = —A sin(u)t)a 1
O r=+a O r=+a
A . . . mh
= j:F (Ag sinf(w + wo)t] + Ag sinf[(w — wp)t] + Co sin(2wt)) cosh(z—)
a a

This gives for ¢}

w(z + h)
2a

o5 = A (Ag sin[(w + wp)t] + Ag sin[(w — wp)t] + Co sin(2wt)) COS(;T_Z) cosh( )

T
4a
This potential does not satisfy the combined free surface condition, and another potential must
be added so that the total in sum satisfies this condition. The additional potential ¢, must
satisfy

9,

or =0,

r=%a

Poy,  Opy, (05 O _
e 9@“(8152 +gaz> 2 =0

The right hand side of this last equation is written out and the Fourier series expansion of cos(5?)
is utilized. The following form is assumed for ¢,

= I
¢y = ; B(t), cos(%) cosh[@]

B(t), = B,ll sinf(w + wo)t] + Bi sin(w — wo)t] + Bf’l sin(2wt)

The equation originating from the free surface condition is

(204 g%8) Ao Tl
z=0

ot? g 0z 4a 2a 2a
{[~Ao(w + wo)?sin [ + wo )] — Ag(w — wo)? sin[(w — wy)t]
—4Cyw? sin(2wt)]

+ tanh(;r—Z)g—z [Ag sin|[(w + wo)t] + Ag sin[(w — wp)t] + Cosin(2wt)]}
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The terms with the time dependency sin[(w + wp)t] are denoted ¢

(

26}

ot?

8522 >Z= = ZBl cos ] cos h[—]{ (w + wo)®

+@ tan h[”T]} sin[(w + wo)1]
_ AAOﬂ' wh ,  gm wh
= cosh( 5 V(—(w+ wo)® + o tanh[za])

41 & (=1)» nra,\ .
~ <§ + ; D) COS(T)> sin [(w + wo)t

This procedure is repeated for the other time dependencies, and the coefficients are found to be

AA, wh g mh
5 coshlg )1 = T tanhlg)
m (—1)n+t cosh[ZE]  —(w + wp)? + 22 tanh[Z2] .
n
®(2n —1)(2n + 1) cosh[2] —(w + wp)? + "w tanh[2r2]
AAy wh g wh
—¢o osh[ a]( - 7@} ™ tanh[%])
m (=1t cosh[Z8]  —(w — wp)? + 52 tanh[Z2] -
n
"2n—1)(2n+1) cosh[2Z2] —(w — wp)? + "¢ tanh[222]
AC, wh wh
20 cosn 211 T a2
(—1)’”rl cosh[Z8]  —4w? 4 Z¢ tanh[Z2]
AC, >0
"2n—1)2n+1) cosh["”h] —4w? + "”9 tanh[2Z2] "

The total second order potential is
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APPENDIX E

Sloshing experiments DNV

This appendix is meant to show the availabilit y of experimenal data after the series of experi-
ments conducted at Det Norske Veritas at Hovik during the spring of 1998.

A rectangular tank with dimensions given in Fig. E.1 was forced to oscillate harmonically in
the horizontal direction in the cross-sectional plane, referred to as sway. The width of the tank
is 0.2m.

4»‘ 4(lUSm

H=1.05m

2a=1.73m

Figure E.1: Rectangular tank

The collected data consists of the horizontal motion of the tank and the free surface elevation
at three positions, denoted FS1, FS2 and FS3. These are indicated in Fig. E.1. The sampling
frequency was 50Hz. The sloshing motion was captured on video, and at specific time instances
pictures were taken. The instantaneous free surface elevation shown in the pictures can be
related to the time history for the sw aymotion and w aveprobe measurements. Figure E.2
sho ws an example of the time history for the sway motion of the tank and free surface elevation

167
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168 APPENDIX E. SLOSHING EXPERIMENTS DNV

at the right tank wall. The moment the camera was triggered is also indicated in the plot. The
camera shutter is opened and a picture taken after a dela yof 0.226s. The tank is filled with
50cm of water and the sway period is 1.54s.

Camera triggered

Figure E.2: T ypical measuremert of free surface elevation at the right tank wall |,—,, the sway
motion 7, and instances for triggering the camera. z = 0 in the middle of the tank.

The w aveprobes used in the tank are a combination of a cylindrical sensor, FS3, of 3mm
diameter and sensors, FS1 and FS2, made by tw o parallel 5mm wide strips of metal tape. They
are capacitive sensors and give as output the instantaneous elevation of the free surface. The
sensors made from tape are fixed to the tank wall, while FS3 stands vertically 5cm from the left
w all. The surface tension effects matter close to the probes. For the circular probe, an error
in the free surfacelev ation measurements within ~ 1mm is expected. Adherence of water to
the wall and metal tape was not found to be a problem for the other probes. The calibration of
the probes was performed by gradually emptying and filling the tank while collecting data. The
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calibration factor was found to be stable, but a slow drift of the zero value was disco vered.This
is not a problem since the series of measurements always start with a calm free surface so that
the zero level is known. The availabilit y of pictures and video gies the opportunity to control
the free surface measurements.

E.1 Set of parameters studied

T ables E.1 presen tthe set of parameters for which runs with data sampling w eremade. A
measure of the effect used as input to the sw aymotion mechanism is included. The sway
amplitude in cen timetersis roughly 6.4 times this number, but the relation is not perfectly
linear and the factor also varies sligh tly with filling lewel. The most used effect of 0.8 results
in a sway amplitude of &~ 5.1cm. The exact time history of the sway motion is as mentioned a
part of the sampled data for each run. Video was taken at a different time and thus separate
tables, E.2, are presented where the combination of filling level, sway amplitude and sway period
captured on video is given.
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T able E.1: Run parameters for sloshing experiments

20 cm filling
i Period [s] | Effect | # Pics
50 cm filling 19 03 5
P eriod [s]| Effect | # Pics 2'0 0.8 1
0~91 0.8 4 2.1 0.8 5
1o 0.4 4 2.2 0.8 2
1.0 08 o 2.3 0.8 6
11 08 2 2.4 0.8 1
1.25 0.4 3 2.5 0.8 11
1.25 1.0 6 2.7 0.8 5
14 08 2 3.0 0.8 3
1.43 0.2 2
e o i 30 cm filling
‘ ’ Period [s] | Effect | # Pics
1.5 0.8 2
1.5 0.8 3
1.54 0.4 3
1.6 0.8 2
1.6 0.8 2
1.7 0.8 6
1.667 0.1 4
1.8 0.8 6
1.667 0.2 7
1.9 0.8 6
1.667 0.3 9
2.0 0.8 )
1.667 0.4 7
2.1 0.8 5
1.7 0.8 2
2.2 0.8 6
1.74 0.1 7
2.3 0.8 4
1.74 0.8 3 9.4 08 1
1.82 0.1 6 . .
1.82 0.2 2 .
1.89 0.2 4 ' 60 cm filling '
1.89 0.4 4 Period [s] | Effect | # Pics
1.9 0.8 1 1.1 1.32 2
2.0 0.4-0.7 7 1.2 1.32 4
2.0 0.7 3 1.3 1.32 2
2.0 0.9 9 1.4 1.32 3
2.0 0.5 4 1.5 1.32 4
29 0.8 9 1.6 1.32 8
2.22 0.4 2 1.7 1.32 8
2.22 0.8 3 L9 132 2
25 1.0 5 2.0 1.32 3
2.1 1.32 5
2.3 1.32 3
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T able E.2: Run parameters for sloshing experiments - only video taken
50 cm filling

P eriod[s] | Effect | Video [m:s]
10 cm filling 1.0 05 1:30
P eriod[s] | Effect | Video [m:s] 1.0 1.0 1:30
3.5 0.8 1:45 1.0 1.5 1:30
1.666 0.3 1.0
20 cm filling 1.666 0.4 5:0
P eriod[s] | Effect | Video [m:s] 1.75 0.05 1:30
1.33 08 1:08 1.82 0.05 2:0
1.8 0.8 1:33 1.82 0.1 2:0
2.0 0.8 1:20 1.82 0.15 2:0
2.1 0.8 1:22 2.0 0.4 3:00
2.2 0.8 1:22 2.0 0.6 3:00
2.3 0.8 1:10 2.0 0.8 3:00
2.4 0.8 1:30 2.22 0.8 2:00
2.5 0.8 1:29 2.22 1.2 2:00
2.7 0.8 1:20 2.5 1.0 0:30
3.0 0.8 1:11 2.5 1.4 1:0

30 cm filling 60 cm filling

P eriod[s| | Effect | Video [m:s] P eriod[s] | Effect | Video [m:s]
1.1 0.8 1:30 1.0 1.32 2:0
1.17 0.8 1:00 1.1 1.32 2:0
1.6 0.8 1:15 1.2 1.32 2:0
1.7 0.8 1:15 1.3 1.32 2:0
1.8 0.8 1:06 1.4 1.32 2:0
1.9 0.2 2:00 1.5 1.32 2:0
1.9 0.8 3:09 1.6 1.32 2:0
2.0 0.8 3:08 1.8 1.32 1:0
2.1 0.8 3:08 2.0 1.32 2:0
2.2 0.8 3:13 2.1 1.32 2:0
2.3 0.8 1:07 2.3 1.32 1:0
2.5 0.8 1:19 1.6 0.50 2:0
1.9 0.50 2:0
2.1 0.50 2:0
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