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Introduction

With the current model defined in Eurocode 5, used to calculate the bearing capacity of timber

loaded in compression perpendicular to the grain, the traditional Norwegian building method

does not satisfy the requirements. It has not been registered major problems or faults with

these types of connections, and it is therefore a reason to believe that the current rules are not

satisfactory when it comes to this type of connections.

The current method used to calculate the capacity of the timber, does not in a satisfactory

way separate between configurations and geometrical differences. This leads to a model that

in some cases describes the behaviour and capacity in an accurate way, but other times gives

very conservative results. With the current regulations given in Eurocode 5, there are not many

parameters that can be changed to account for these effects, and this may be the reason why

the rules do not comply with what is found to be satisfying building methods here in Norway.

When a material is loaded in compression perpendicular to the grain, a natural way to de-

fine the capacity is to choose limitations of the deformation underneath the loading area. It is

not desirable to get deformations in the range where the system gets unstable, with askew and

damaged components. It is therefore necessary to define complying rules that prevent these

types of effects. With the current regulations, there are not clearly defined calculation methods

that separates Serviceability Limit State (SLS) and Ultimate Limit State (ULS). These are two

different concepts that should be treated separately, not mixed into one calculation model, the

way it is given in the Eurocode. What is defined as unfortunate deformations, varies from

person to person, and will depend on the location of the connection. A farm owner will most

likely allow a greater deformation in his barn, that he would do in his own house, and rules

and calculation methods should therefore be defined that take individual circumstances into

consideration.

The main purpose of this study, is to develop new models to calculate the compression ca-

pacity of sills loaded perpendicular to the grain. The study aims to further our understanding

of the different effects contributing to the total bearing strength, and to get an overview of the

material behaviour with this type of loading. Much study has been conducted in this field,

but a more accurate and suitable model that takes different system configurations into account,

should be derived. It is also a goal to develop separate calculation methods for Serviceability

Limit State and Ultimate Limit State.
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Abstract

This study will introduce two new models for calculating the compression capacity of wood

loaded perpendicular to the grain. In the first model (Model 1), the different mechanical phe-

nomena that are decisive for the total bearing capacity are modelled separately, by introducing

an additional parameter to the ordinary compressive strength based on a mathematical model

and equilibrium considerations. The second model (Model 2) is a purely empirical formula,

where different generated factors are multiplied with the pure compressive strength to account

for the capacity increase for various load situations and cross-sectional geometries. It is mainly

the amount/length of untouched timber on the side of the loading area, that is decisive for the

magnitude of the additional capacities, and in the last model this will be included by adding a

factor k1, which is found on the basis of energy considerations. In the first model, this is taken

into account by an additional part, fH,90. This factor is based on equilibrium considerations

of a rope system, where the increase in capacity is based on strain concentrations generated on

the side of the loading area.

Some disadvantages with the existing calculation model given in Eurocode 5 part 1-1, is that

the capacity changes heavily dependent on the choice of loading configuration. For smaller

loading lengths the compression capacity will become quite high, as a result of the definition of

the permitted distribution of the applied load in the wood. As the length increases, the formula

gives increasingly conservative results.

In the model based on energy (Model 2), the additional capacity from the load distribution

in the wood is taken directly into the energy calculations. This obviates the need to account

for an effective loading area in the capacity calculations, the way it is done with the current

regulations. The model based on strains (Model 1), uses the same definition of the increased

loading length as given in Eurocode 5, but the carrying capacity is regulated by additional pa-

rameters, which has conditions and factors implemented in the formula that takes the variation

in load lengths into account. This will make the new calculation models stabilize towards values

of the capacity that are somewhat lower for smaller loading lengths than the Eurocode 5 gives

(approximately 25 % less for a loading length equal to 50 mm).

As the loading length increases (loading length equal to 90 mm), the total contribution that

the current calculation model will get from the load being distributed over an effective area

will be less significant. This will make Model 2 stabilize towards capabilities that are identical

to the ones found with current regulations. Model 1 will take values that are 17% higher. By
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increasing the loading length further (loading length equal to 150 mm), Model 2 provides higher

capacities (approximately 16 %), while Model 1 will for smaller sill lengths get higher values,

but stabilize at a capacity slightly lower than that the ones found with Eurocode 5.

By looking at the durability and strength of the new calculation models through constructed

examples, the model based on energy (Model 2) provides more stable results than Model 1.

The additional factor that accounts for the increase in capacity for different load situations

and cross-sectional geometries in Model 1, is based on equilibrium in a rope system where the

various parameters in the model are found by looking at the generated strain field in the wood.

There are more uncertainties when it comes to the derivation of the parameters and validity of

modelling the additional capacity in this way, compared to energy assumptions in Model 2. The

empirical factors found through calculation of the total energy needed to get a certain deforma-

tion underneath the loading area in Model 2, are taken directly from the material behaviour,

which provides more reliable and accurate results.

From the tests conducted in this study, we see a tendency for the rules determine the com-

pressive strength to be quite conservative compared to what the material actually tolerates.

The current regulations permits a plastic deformation of 1% (0.01h) of the height of a reference

block with a fully loaded top surface. The curves describing the material behaviour found in

this paper shows that no distinct failure mechanisms or visible cracks are generated before the

deformation limit is tripled. Since the material behaviour quickly stabilizes when entering the

plastic domain, the value of the strength will not increase significantly with a new deformation

limit, but it will provide less conservative limits when boundaries in Serviceability Limit State

are defined. The compressive strength, fc,90, found in this thesis with the current regulations,

is 15% larger than the one given in the documentation of the wood (Appendix C). This might

be one reason why the current calculation model provides conservative values, and limits that

the Norwegian building methods do not satisfy. By also allowing the custom limits derived in

this thesis, the strength increases even further by 7%, which will provide a total increase of 22%

of the compressive strength.

In this paper a model has been derived, which provides the opportunity to calculate in Ser-

viceability Limit State. The model is based directly on the material behaviour of wood loaded

perpendicular to the grain, and relies on defined limits of maximum allowed deformation under-

neath the loading area. The model is based on a predefined function Voce Law, which is a known

function used extensively in the Material Mechanics to describe a ductile material behaviour,

and provides a link between applied load and the corresponding deformation. The limits for

the maximum allowable deformation is defined by conditions that do not violate the carrying

capacity in Ultimate Limit State, which means that the values calculated in serviceability limit

state will not provide a risk of system failure. The model gives an easy and convenient method

to control and determine the deformation in a connection, based on how much is desired by the

designer.
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Sammendrag

Det har blitt introdusert to nye beregningsmodeller for å regne trykkapasiteten til tre p̊a tvers

av fiberretningen i denne masteroppgaven. I den første modellen (Modell 1) blir de forskjellige

mekaniske fenomenene som er avgjørende for den totale bærekapasiteten modellert separat, ved

å introdusere et tilleggsledd til den ordinære trykkfastheten som baserer seg p̊a tøyningsfeltet

og likevektsbetraktninger. Den andre modellen (Modell 2) er en ren empirisk formel, hvor

det er generert faktorer som multipliseres med den rene trykkfastheten for å inkludere ka-

pasitetsøkningen for ulike lastsituasjoner og tverrsnittsgeometrier. I stor grad er det meng-

den/lengden utørt trevirke p̊a siden av lastomr̊adet som er avgjørende for størrelsesordenen til

tilleggskapasitetene, og i den siste modellen vil dette inkluderes i en faktor k1, som er funnet

p̊a bakgrunn av energibetraktninger. I den første modellen blir dette inkludert i et tilleggsledd

fH,90, som baserer seg p̊a likevektsbetraktninger av et tausystem, hvor økning i kapasitet finnes

fra ulike verdier p̊a tøyningskonsentrasjoner som genereres p̊a siden av lastomr̊adet.

En ulempe med den eksisterende beregningsmodellen slik som den st̊ar i Eurokode 5 del 1-

1, er at den for sm̊a lastlengder gir en veldig høy kapasitet som følge av definisjonen p̊a tillatt

spredning av den p̊aførte lasten, mens for større lastlengder kan gi noe konservative verdier.

Dette har ført til at de tradisjonelle byggemetodene her i Norge ikke lengre tilfredsstiller de

gjeldende kravene for slike forbindelser.

I modellen basert p̊a energi (Modell 2), blir den økte bærekapasiteten som kommer av last-

spredningen tatt direkte inn i energibetraktningene, noe som gjør at man unng̊ar å måtte regne

med et effektivt bærearealet slik som det gjøres i dagens reglement. I modellen basert p̊a tøyning

(Modell 1), benyttes den samme definisjonen p̊a den økte bærelengden som gitt i Eurokode 5,

men bæreevnen blir regulert av tilleggsleddet, som har betingelser og faktorer implementert i

formelen som tar hensyn til variasjon i lastlengden. Dette fører til at de nye beregningsmodel-

lene stabiliserer seg mot kapasiteter som er noe lavere for mindre lastlengder enn hva Eurokode

5 gjør (rundt 25% mindre for lastlengde lik 50 mm).

Etter hvert som lastlengden øker (lastlengde lik 90 mm), vil det totale bidraget som dagens

modell f̊ar fra lastutbredelsen gjøre seg mindre gjeldende, og Modell 2 vil f̊a kapasiteter som er

identiske med de funnet med dagens reglement, mens Modell 1 vil legge seg noe høyere. For

større lastlengder, vil Modell 2 gi en høyere kapasitet (rund 16%), mens Modell 1 stabiliserer

seg p̊a en verdi som er litt lavere enn den funnet med Eurokode 5.
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Ved å se p̊a holdbarheten og styrken til de nye beregningsmodellene gjennom konstruerte ek-

sempler, ser man at Modell 2 gir noe mer stabile resultater enn Modell 1. Tilleggsleddet som

tar hensyn til økningen i kapasitet for ulike lastsituasjoner og tverrsnittsgeometrier i Modell

1, er basert p̊a likevekt av et tausystem, hvor de ulike parameterne i modellen er funnet ved

å se p̊a det genererte tøyningsfeltet i treet. Det er mer usikkerhet n̊ar det kommer til utled-

ningen av parameterne, og gyldigheten ved å modellere tilleggskapasiteten p̊a denne m̊aten, i

forhold til energibetraktingene i Modell 2. De empiriske faktorene funnet gjennom utregning

av den totale energien som skal til for å f̊a en bestemt deformasjon under lastomr̊adet i Modell

2, er tatt direkte fra materialoppførselen, og gir dermed mer p̊alitelige og nøyaktigere resultater.

Fra tester gjennomført i denne masteroppgaven, kan man se tendenser til at reglementet som

bestemmer trykkfastheten til tre belastet p̊a tvers av fiberretningen, er noe konservativt i forhold

hva materialet egentlig t̊aler. Det tillates i dag en plastisk deformasjon p̊a 1% (0.01h) av høyden

p̊a en referansekloss med full belastet toppflate. Resultatene av materialoppførselen funnet i

denne avhandlingen, viser at ingen markante bruddmekanismer eller synlige sprekker gjør seg

gjeldende for en tredobling av denne deformasjonsgrensen. Siden materialoppførselen flater fort

ut i det plastiske domenet, vil ikke verdien p̊a fastheten øke betraktelig med et mindre kon-

servativt deformasjonskriterium, men det er med p̊a å gi mindre konservative grenser n̊ar det

skal regnes i bruksgrensetilstand. Trykkfastheten, fc,90, funnet i denne avhandlingen med det

n̊aværende reglementet, er 15% høyere enn den gitt i material-dokumentasjonen (Appendix C),

noe som kan være en av grunnene til at dagens beregningsmetode gir konservative kapasiteter,

og grenser som de tradisjonelle norske byggemetodene ikke tilfredsstiller. Ved å i tillegg tillate

de egendefinerte deformasjonsgrensene utledet i denne avhandlingen, vil fastheten kunne økes

med enda 7%, som vil gi en total økning av trykkfastheten p̊a 22%.

Det er utledet en kalkulasjonsmodell i denne avhandlingen, som gir mulighet for å regne i

bruksgrensetilstand. Modellen tar direkte utgangspunkt i materialoppførselen til tre belastet i

trykk p̊a tvers av fiberretningen, og belager seg p̊a tillatte grenser for maksimal deformasjon

direkte under belastningsomr̊adet. Modellen tar utgangspunkt i Voce Law, som er en kjent

funksjon brukt mye i Materialmekanikken for å beskrive en duktil materialoppførsel, og gir en

sammenheng mellom p̊aført last og tilhørende deformasjoner. Grensene satt til tillatt maksi-

mal deformasjon, er definert ut fra betingelser som ikke bryter med bærekapasiteten i brud-

dgrensetilstand, noe som gjør at verdiene beregnet i bruksgrensetilstand ikke gir fare for sys-

temsvikt. Modellen gir en lett og hensiktsmessig metode for å kunne regulere deformasjoner i

en forbindelse, ut i fra hvor mye som er ønsket av en konstruktør.
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Terminology

Tests

Naming of the specimens

Luj-i Test to find the effect of untouched timber on the side of the loading area. Where

j defines the length of untouched timber in millimetre, and i the test number (See

appendix A); j = 0; 30; 50; 70; 100; 150; 200; 250 [mm]

Rj-i Test to find the effect of the height on the capacity. Where j defined the height, and

i the test number (See appendix A); j = 30; 60; 90; 120; 150; 200 [mm]

Symbols (Lengths can be found in appendix A)

Lq Loading length in the longitudinal direction for the applied compression force perpen-

dicular to the grain

Lu Length/Amount of untouched timber on the side of the loading area

L Total length of the specimen

H Cross-sectional height

B Cross-sectional width

F Applied compression force perpendicular to the grain

Existing calculation models

Symbols

Fc,90,max,est Estimated compression capacity perpendicular to the grain (CEN-model)

0.1Fc,90,max,est Point value in the linear domain on the load-deformation curve, used to

define the fracture line (CEN-model)

0.4Fc,90,max,est Point value in the linear domain on the load-deformation curve, used to

define the fracture line (CEN-model)

Fc,90,max Compressive strength perpendicular to the grain [N / kN]

Fc,90 Applied compression load perpendicular to the grain

kc,90 Strength factor that takes the Hammock effect into account

A Loading area

Aef Effective loading area

vii



lef Effective loading length

b Cross-sectional width

∆li Increased loading length on the side of he loading area

l1 Distance between loads perpendicular to the grain

ai Length/Amount of untouched timber on the side of the loading area

σc,90 Compression stress perpendicular to the grain

fc,90 Compressive strength perpendicular to the grain [MPa / N/mm2]

New calculation models

Ultimate Limit State (ULS)

Model 1 (Based on strains)

fH,90 Additional bearing capacity coming from the Hammock effect

S Tension force generated from the strain concentrations on the side of the loading area

∆h Total deformation underneath the loading area

q Even distributed load perpendicular to the grain

Es,Θ Modulus of elasticity in an angle Θ

εH,i Strain concentrations on the side of the loading area

As Area on the side of the loading surface that experiences the tension load

ku Load location factor

C Defined parameter taking the loading length into account (Hammock Constant)

Model 2 (Based on energy)

Ej Total energy calculated for a specimen with untouched timber length j

fj(∆) Function generated to describe the load-deformation curve for specimen j

∆j,max Maximum allowed deformation underneath the loading area for specimen j

x0 Lower length limit for untouched timber

x2 Upper length limit for untouched timber

kl Lower limit for the strength factor

ku Upper limit for the strength factor

k1 Strength factor taking the amount of untouched timber into account

k2 Height factor taking the cross-sectional height into account

fc,90,j Compression strength perpendicular to the grain for a cross-section with height j

fc,90,ref Compressive strength perpendicular to the grain for the reference case with cross-

section height equal to 90 mm

href Reference height equal to 90 mm
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Serviceability Limit State (SLS)

F Load perpendicular to the grain [N]

C1/C2 Parameters in Voce Law used to describe the load-deformation curves

K/n Parameters in Power Law used to describe the load-deformation curves

B Parameter used to describe the linear domain of the load-deformation curve

∆ Total deformation underneath the loading area

∆j,max Total deformation limit underneath the loading area

∆j,el Elastic deformation limit underneath the loading area

∆el
j Elastic deformation for Lu ≤ x2

∆pl
j Plastic deformation for Lu > x2

Abbreviations

SLS Serviceability Limit State

ULS Ultimate Limit State

CEN European Committee for Standardization

ASTM American Society for Testing and Materials

LSM Least Square Method

Used codes and literary texts

Eurocode 5 part 1-1 (EC5-1-1)

(Norsk Standard NS-EN 1995-1-1:

2004+A1:2008+NA:2010)

Eurocode 5: Design of timber structures -

Part 1-1: General Common rules and rules

for buildings

Norsk Standard NS-EN 1194 Timber structures/Glue laminated timber -

Strength classes and determination of char-

acteristic values

Norsk Standard NS-EN 408:2010+A1:2012 Timber structures/Structural timber and

glued laminated timber - Determination of

some physical and mechanical properties

Practical design of timber structures to Eu-

rocode 5

Written by Hans Larsen and Vahik Enjily

When new capacity models are introduced, the yellow sticker will be shown.
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Chapter 1

Background

1.1 Purpose

This study aims to improve or/and replace the current model for calculating the compression

capacity perpendicular to the grain. A new calculation model should take into account differ-

ent system configurations, in respect to both load and geometry, and give the opportunity to

calculate in both Serviceability Limit State and Ultimate Limit State.

An important part of the thesis is also to get a deeper understanding of mechanical phenom-

ena that occurs during a load situation with compression perpendicular to the grain, and to

determine what factors are important for the total capacity.

1.2 Methods

To verify the different calculation methods and the parameters presented in this thesis, com-

pression tests were carries out in the laboratory at the Department of Structural Engineering.

The tests were in full scale, and restricted to continuously supported timber sills loaded in the

mid-span. To get accurate results in the determination of the parameters in the new models,

and to get a good description of the behaviour of wood loaded in compression, it was performed

advanced deformation analysis based on optical measuring techniques. This method provides

an opportunity to describe the deformations, strains and stresses in the x-, y- and z-direction

of the wood.

1.3 Limitations

The test set-up was restricted to continuously supported sills loaded with a compression force at

the mid-point. To get an acceptable foundation to determine the parameters in the new models,

a total number of 41 tests was conducted (Appendix A). Since this thesis has a weight of 30

units/student points, it was only conducted tests with this one set-up, due to the limitation in

time.
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1.4. STRUCTURE OF THE PAPER

There will also be some limitations with regards to the timber available for the compression

tests, both for wood type and geometry. The type available is Norwegian CE L40C, which

basically has the same properties as GL32c given in NS-EN 1194 [14]. The maximum available

cross-sectional height is 150 mm. The compression machine that will be used during the tests

is an INSTRON 5900 Series, which gives limitations to the specimens’ lengths as well as the

maximum compression force (100 kN).

The test specimens have been acclimatized in a climate room at the Department of Struc-

tural Engineering for the last 6 months, with constant temperature and relative humidity, with

values of 20◦C and 65%, respectively. The specimens tested during this thesis will therefore have

the same climate properties, and differences in strength because of temperature and moisture

content will not be tested.

1.4 Structure of the paper

At the beginning of the thesis, a summary of the existing calculation models will be presented,

to get an overview of the theory and background for the regulations given in Eurocode 5. In

the next chapters, the new models based on own assumptions and formulations will be derived,

both for Ultimate Limit State (USL) and Serviceability Limit State (SLS). The theory behind

the different parameters used to calculate the bearing capacity with the new models, will be de-

scribed during the paper, and verified through the compression test conducted in the laboratory.

Further, an explanation of the various tests used to find the new parameters will be presented,

together with the different test results. At the end of the paper, the new models will be dis-

cussed and compared with the existing regulations, and tested through various of generated

examples. The test of the models and the calculation procedures will be included in the main

paper, and serve as a contribution to the final conclusion.

All figures and illustrations in this thesis are the creation of the author, unless otherwise indi-

cated.
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Chapter 2

Theory

Because of its rich diversity and an easy access, timber has become a traditional building material

in Norway. Over 80% of Norwegian households are built with timber [1], and in a world that

is seeking towards cleaner construction materials, the demand for wood is likely to rise in the

future. Global warming is today a major concern, and more and more companies are looking

for environmentally friendly alternatives to replace their old construction methods, where steel

and concrete have been dominating for the last decades.

2.1 Strength properties

Wood is a complex building material, because of its unique structure. The structure is built up

from fibres and cells, which gives distinct properties in the different directions. Many factors

are crucial for the bearing capacity of wood. Density, moisture content, load orientation, fibre

orientation and the load period (creep), are all parameters that make up the total strength, and

must be taken into account when deriving the capacity.

Because of its unique material structure, it is possible to find different symmetry planes in

the wood, which gives it three main directions. This makes wood an orthogonal material.

The main directions have large differences in their strength properties, and are oriented in the

longitudinal- (L), radial- (R) and transverse (T) direction of the grain (Figure 2.1). The ratio

between the strength properties for the different directions can be as large as a factor of nine.

Mechanisms that are crucial for the bearing capacity are also varying with the orientation of

the load, and is something that must be taken into account when creating capacity models for

the different grain directions.
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2.1. STRENGTH PROPERTIES

Figure 2.1: Main directions: Radial- (R), tangential- (T) and longitudinal (L) direction

Because of how the growth behaviour changes with varying climate conditions, wood with dif-

ferent strength properties will be formed during the year. This leads to a classification system

that gives strength values dependent on which part of the log is being used. The class should

always be documented on the timber, giving the buyer information about the properties that are

expected of the wood. From various compression tests, different standards have been generated

that give strength values for the different classes, both for construction- and glue laminated

timber.

When timber is being loaded in compression, it will up to a certain limit behave linearly

elastic, with non-permanent deformations, and the coherence between load and deformation

can be described with Hooke’s Law. When this limit is exceeded, the material will start to

behave plastic, and permanent deformations will be generated. In this domain, the material

can withstand even more load without any danger of sudden failing mechanisms, but the plastic

non-reversible deformations will increase rapidly.

Knots in the wood is a crucial factor for the bearing capacity, and it makes the strength

properties unpredictable. It breaks down the cell structure, and changes the directions of the

grain. This is a phenomenon that can increase the compression capacity, but because of its

randomness in the wood, it cannot be taken in to account when calculating the strength.

A more thorough description of the properties and structure of the wood can be found in

literature written by Hans Larsen and Vanhik Enjily [2] and Eidvin Skaug [3].
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Chapter 3

Existing calculation models

In this chapter, different approaches to define a fracture criterion will be presented, based on

both allowed plastic deformation and total deformation. An overview of the existing models used

to calculate the compression capacity for sills loaded perpendicular to the grain will be given,

including the theory behind the method given in Eurocode 5 part 1-1.

3.1 Compressive strength

In order to calculate the bearing capacity for timber loaded perpendicular to the grain, capacity

limits need to be defined. These limits do not necessarily result in a global fracture mechanism

in the loaded part, but can give skew systems, that may lead to other failure mechanisms further

up in the system

With the rules that apply today, the compressive strength is defined by a maximum allowed

plastic deformation of a timber block loaded with a uniform compression force over the entire

top surface. The maximum plastic deformation underneath the loaded area is set to a value

of 0.01 times the height of the specimen, which equals a total strain of 1%. This method is

called the CEN-model (European Committee for Standardization), and is one of several ways

to define a fracture criterion. ASTM D143 (American Society for Testing and Materials) is a

second model, that calculates the compressive strength by allowing certain amounts of total

deformation, consisting of both a plastic and an elastic part.

3.1.1 CEN-Model

This model was developed in the early 90s, and defines the compressive strength from a limit

to the plastic deformation under the loading area set to 0.01h. This gives a failure criterion

that follows the curve of material behaviour (Figure 3.1). The specimens used to determine the

strength, consists of a block with geometry 45x70x90 mm (bxhxl) for construction timber, and

45x70x180 (bxhxl) for glue-laminated timber. The entire top surface is uniformly loaded for

both cases.
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3.1. COMPRESSIVE STRENGTH

The compressive strength is calculated by an iteration process, where a maximum fraction value

Fc,90,max,est first needs to be estimated. From the load-deformation relation, found from the

compression test on the timber block, two points are defined on the curve, 0.1Fc,90,max,est and

0.4Fc,90,max,est. Through these two points, a straight line is drawn. This line is then shifted along

the x-axis (deformation axis), until the allowed plastic deformation of 0.01h is reached. The

intersection between the straight line, and the load-deformation curve, defines the compression

strength Fc,90,max. If Fc,90,max is within 5% of Fc,90,max,est, the estimated value can be used. If

not, a new estimated value Fc,90,max,es needs to be chosen, and the iteration process continues

until the value of the strength is within the tolerance of 5% (Figure 3.1).

Figure 3.1: CEN-Model [12] Figure 3.2: ASTM D143-Model [12]

3.1.2 ASTM D143-Model

The ASTM D143-model was used in the earlier calculation standards, and was presented in the

1920s. Unlike the CEN-model, which calculates the compressive strength from a timber block

with uniform loading over the entire surface, ASTM uses sills with a point load in the middle.

The geometry of the specimen is 51x51x150 mm (bxhxl), where the load is transferred to the

wood trough a steel plate with dimensions equal to 51x51 mm.

The ASTM D143-model defines its strength from a limit of the total deformation underneath

the loading area. This limit is often set to 1 mm (0.04’), which equals a total strain of 2%. The

compressive strength is defined by the intersection between the allowed total deformation and

the load-deformation curve found from the tests (Figure 3.2).
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3.2. COMPRESSION CAPACITY

3.2 Compression capacity

Over the years, various methods of calculating the compression capacity perpendicular to the

grain have been presented. Some of the methods have analytical backgrounds, while others use

a more empirical approach.

The compression capacity depends on various factors and mechanical phenomena. With this

type of loading, the bearing strength will depend on a pure compression capacity, defined from

the limits given by the fracture criterion (Chapter 3.1), but also additional effects will be mobi-

lized that increases the capacity. The magnitude of these additional effects, will vary with the

amount of untouched timber on the side of the loading areal (i.e. distance from the load surface

to the edge in the longitudinal direction)

By having untouched wood on the side of the loading, the applied force will be spread out

in the width of the cross-section, which gives a bearing area that is larger than the loading

surface. With the current regulations in the Eurocode 5, this spread is modelled linearly, which

gives a simple calculation method to find the effective compressive length. This is of course a

simplification, since the spread in reality becomes more complex.

Another effect, often refereed to as the Hammock effect, is generated when the fibres on the

side of the loading area are being tilted because of the applied compression force. When the

longitudinal fibres are tilted, concentrations of strains on the side of the loading surface will be

generated, which will will give an additional bearing mechanism, leading to an increased total

capacity of the system. The Hammock effect is taken into account in the existing models, by

multiplying a factor kc with the compressive strength found by the CEN-model.

A general expression often used to define the capacity of a section loaded in compression per-

pendicular to the grain, is shown in Equation 3.1, where the approaches in finding the various

parameters separates the different existing models.

Fc,90

Aef
≤ kc · fc,90 (3.1)

Fc,90 design load perpendicular to the grain

Aef effective area that carries the design load

kc,90 factor that takes the Hammock effect into account

fc,90 compressive strength
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3.2. COMPRESSION CAPACITY

3.2.1 Calculation model Madsen

Madsen [10] defined a calculation model based on an empirical approach in the following way:

Fc,90

lef · b
≤ kc · fc,90 (3.2)

The design load is taken by an area equal to the width, b, multiplied with an effective length

lef . The effective length is larger than the loading length, because of the contributions from the

untouched timber on the side. As early as 1983, Madsen performed simulations and compression

tests that supported the theory of a load distributed over the cross-section. He concluded from

his research that the maximal increase in the bearing length is restricted to a value of 1.5 times

the height. To decide a value for the compressive strength, fc,90, Madsen uses the ASTM-model

(Chapter 3.1).

For the case of a continuously supported timber sill, Madsen defined the effective length as

following:

Figure 3.3: Load distribution: Mid-load Figure 3.4: Load distribution: End-load

lef = l +
h

8
< 4l lef = l +

h

3
< 2.5l

A documentation on how Madsen defined the factor kc , that represents the additional bearing

capacity from the Hammock effect, could not be found.

Summary:

• Empirical approach

• lef based on the height

• kc unknown definition and background

• Uses the ASTM-model to define the compressive strength
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3.2. COMPRESSION CAPACITY

3.2.2 Calculation model Blass and Görlacher

Blass and Görlacher [10] presented in 2004 a calculation method based on the theory derived by

Madsen, and this is the model used in the current regulations in Eurocode 5. They concluded

that the height was irrelevant for the capacity, and found from empirical approaches a maximal

increase in bearing length equal to 30 mm, based on a scattering angle less than 45◦. As

a fracture criterion, Blass and Görlacher uses the CEN-model to determine the compressive

strength.

Fc,90

lef · b
≤ kc,90 · fc,90 (3.3)

Figure 3.5: Load distribution: Mid-load Figure 3.6: Load distribution: End-load

lef = l + 2 · 30mm lef = l + 30mm

The increase in bearing length is limited by the boundary conditions of the sill, and taken

from the following equations:

lef = l +
2∑

i=1

∆li ∆li = min{30mm; ai; l; li/2}

Blass and Görlacher separate between Serviceability- and Ultimate Limit State by changing

the additional factor kc,90, that is taking the Hammock effect into account. This factor varies

with the load configurations and type of wood, and is found by an empirical approach.

Ultimate (ULS) Serviceability (SLS)

Wood Constructional/Glue laminated Constructional Glue laminated

kc,90 1.0 1.25 1.5

Table 3.1: Strength factors to account for the Hammock effect

The reason for the factor being smaller for the constructional wood is related to the orientation

of the annual rings.
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3.2. COMPRESSION CAPACITY

Summary:

• Empirical approach based on research done by Madsen.

• Scattering angle less than 45◦

• Maximum increase of the bearing length equal to 30 mm

• kc,90 found empirical, and separates between Ultimate and Serviceability Limit State

• Uses the CEN-model to determine the compressive strength

3.2.3 Calculation model Riberholt

Riberholt defined a capacity model for continuously supported timber beams, by looking into

test results found by Thorvald Pedersen at the Technical University of Denmark (DTU). He

found the existing regulations, where an upper value for the plastic deformation was defined

to 0.01 times the height, to be very conservative. Based on this, Riberholt defined a fracture

criterion allowing a plastic deformation up to 0.1 times the height (i.e. 10 times larger than the

existing limit).

Riberholt defined his capacity model the same way as both Madsen and Blass and Görlacher:

Fc,90

lef · b
≤ kc,90 · fc,90 (3.4)

By assuming a scattering angle of the stress equal to 1:1/3 (≈ 20◦), Riberholt found an effective

length equal to:

Figure 3.7: Load distribution: Mid-load

lef = l +
2h

3

By an empirical approach, Riberholt defined an expression for the additional factor kc,90, that

both includes the loading and effective length.

kc,90 = 1.2 ≤ (2.38− l

250
·
√
lef
l

) ≤ 4.0 (3.5)
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3.2. COMPRESSION CAPACITY

Equation 3.5 is valid for a cross-section with height h ≤ 2b, and a loading length less than the

total length of the beam (l < L). By allowing a plastic deformation of 0.1h, the additional

factor kc,90 is put equal to 1.25.

Summary:

• Empirical approach

• Allows plastic deformations up to 0.1h (10 times higher than existing regulations)

• Scattering angle equal to 1:1/3 (≈ 20◦)

• kc,90 found empirical and valid for h ≤ 2b and l < L

• Uses the CEN-model to define the compressive strength

3.2.4 Calculation model van Der Put

Instead of looking into empirical approaches, van Der Put defined in 1988 a model based on

equilibrium, and with a linear plastic material behaviour. This approach gives an exact model,

since the boundary conditions is always satisfied, and the stresses always kept under the allowed

fracture limits.

Fc,90

l · b
≤ kc,90 · fc,90 (3.6)

van Der Put separates between cases with small versus large deformations, and defines different

scattering angles for the two cases. For deformations in the area around 3-4% of the height, the

angle is equal to 1:1 (= 45◦), while a load situation that results in a deformation equal to 10%,

the scattering angle is increased to 1:1.5 (≈ 56◦).

Figure 3.8: Load distribution: Mid-load

lef(56◦) = l + 2 · 1.5h = l + 3h
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3.2. COMPRESSION CAPACITY

The maximum increase of the bearing length on both sides of the loading area, is taken from

analytical approaches and found to be 1.5 times the height of the cross-section. This increase is

limited by the boundary conditions of the sill, equal to the rules defined by Blass and Görlacher.

Instead of spreading the applied load over an effective area, the additional contribution to the

bearing capacity is taken directly into the factor kc,90, and found by analytical consideration

equal to:

kc,90 = µ
Aef

A
= µ

lef · b
l · b

= µ
lef
l
≤ 5.0 (3.7)

The factor µ, is found empirical and has it origin in tests done by Korin in 1990 [7], and accounts

for the configuration of the compression block. The value is usually set equal to 1.0, which gives

a lower limit of the capacity.

By using a scattering angle equal to 1:1.5, van Der Put defines an expression for the effec-

tive length lef = l + 3h, which leads to a final equation for the kc,90 factor equal to:

kc,90 = µ
lef
l

=
l + 3h

l
(3.8)

The model derived by van Der Put gives more accurate result for the bearing capacity than

the current model in Eurocode 5. It has therefore been suggested to replace the existing model

during the next revision of the Eurocode. van Der Put’s model is found to be more desirable,

because of its ability to account for different systems, loading situations and cross-sectional

geometries.

Summary:

• Model based on equilibrium

• Assumes a linear plastic material behaviour

• Scattering angle based on applied load

1:1 (≈ 45◦) for small deformations (3-4%)

1:1.5 (≈ 56◦) for larger deformations (10%)

• lef included in the expression for kc,90

• kc,90 found analytically

• Uses the CEN-model to define the compressive strength
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3.2. COMPRESSION CAPACITY

3.2.5 Summary of the existing calculation models

Both Madsen, Blass og Görlacher and Riberholt defines calculation models based on empirical

approaches, while van Der Put uses analytical assumptions based on equilibrium. They all sup-

port the theory of a strain field that is spreading over an effective length in the cross-section,

which is limited by the amount of untouched timber on the side of the loading area. All the

different models assume a linear spread of the stresses, where the differences in the value of the

effective length, lef , lies in the definition of the scattering angle.

The current regulations defined in Eurocode 5 part 1-1, are taken from the model defined by

Blass og Görlacher, but it has been suggested to replace the existing rules with the analytical

approach defined by van Der Put at the next revision.
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3.3. THE EFFECT OF UNTOUCHED TIMBER

3.3 The effect of untouched timber

In 1939, Suenson performed compression tests on sills, where he varied the amount of untouched

timber on the sides of the loading area [10]. These tests showed how the bearing capacity in-

creases, as a result of the load being spread to nearby timber down the cross-section.

For Case a, which represents a cross-section with fully loaded top surface, it results in a uniform

compression of the timber, that provides large deformations for relatively small changes in load.

By increasing the amount of untouched timber, the stiffness and bearing capacity of the system

increases, and the system needs more load to get the same deformations (Figure 3.9).

Figure 3.9: Differences in strength with various amount of untouched timber [10]

From the experiments made by Suenson, the capacities for the cases with an increased amount

of untouched timber converges towards each other (Case c, d, e). This means that there will

be limits for when increasing lengths no longer will provide extra contribution to the bearing

capacity. The reason for this convergence, is a result of limitations in the total spread of the

stresses in the wood. When exceeding this length, the wood will no longer feel any impact from

the applied load.
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Chapter 4

New calculation models

This chapter presents two new models for calculating the total capacity in Ultimate Limit State

for continuously supported timber sills loaded perpendicular to the grain. The first model (Model

1), is based on describing the different mechanisms that contributes to the bearing capacity

separately, while the second model (Model 2) uses energy to define the strength. This chapter

will also present a model that gives the opportunity to calculate in Serviceability Limit State

4.1 Ultimate Limit State (ULS)

4.1.1 Earlier starting points

The existing calculation models are mainly based on empirical approaches, where the models

have been adjusted and fitted to match the behaviour of a sill loaded in compression. Some of

the models, including the current regulations, have been criticised for inaccurately representing

the real capacity and behaviour of different load configurations. In some cases the calculation

method provides good results for the capacity, but other times quite conservative values are

found.

The models are often based on a calculation method where the load is spread out in the cross-

section, and where the applied load is taken by an area larger than the actual loading surface.

This results in a bearing capacity that is increasing with the amount of untouched wood on the

side of the loading area, which stabilizes at a certain point when the limitations of the additional

parameters is reached.
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4.1. ULTIMATE LIMIT STATE (ULS)

4.1.2 Model 1: Based on strains

The current model in Eurocode 5 part 1-1, has the following design:

σc,90 ≤ kc,90 · fc,90 (4.1)

where

σc,90 =
Fc,90

lef · b
(4.2)

The pure compression capacity fc,90, is found by a compression test on a timber block with

a limit set to the plastic deformation (Chapter 3.1). This capacity is multiplied together with

a factor kc,90, that accounts for the increase in capacity coming from the Hammock effect. This

factor is in the current model found empirical, and takes the boundary conditions and the type

of wood into consideration.

In the current regulations in Eurocode 5, the design compression force Fc,90, is distributed

over an effective area larger than the loading surface. The distribution is linearly increasing,

and has a maximum value of 2 · 30mm = 60mm.

(For a deeper understanding and explanation of the current regulations, read Chapter 3.2.2)

With the new calculations method, it is desirable to model the various effects that makes

up the total bearing capacity separately, giving a formula that is more suited to represent dif-

ferent loading configurations and geometrical systems. The existing model uses an empirical

approach to quantify the additional capacity parameter, while the new model presented in the

next chapter, will use equilibrium considerations to represent the same effect.

Design of the calculation model:

The following design is suggested for the new capacity model:

σc,90 = fc,90 + fH,90 (4.3)

where

σc,90 =
Fc,90

Aef
=

Fc,90

lef · b
(4.4)
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4.1. ULTIMATE LIMIT STATE (ULS)

fc,90 compressive strength

fH,90 strength coming from additional load carrying effects

Fc,90 applied compressive load perpendicular to the grain

Aef effective loading area

lef effective loading length

b cross-sectional width

The main difference between the new and the existing model, is that the empirical factor kc,90,

has been replaced by an additional part. This part represents the same effect, but is derived

from the equilibrium of a mechanical system. It will consist of parameters that vary with the

chosen design, making the model adaptable to multiple load cases. Figure 4.1 and 4.2 shows

the different mechanisms that carries the applied load, fc,90 and fH,90, respectively.

Figure 4.1: Pure compression capacity Figure 4.2: The Hammock Effect

Compressive strength:

This model depends on a predefined maximum allowed total deformation, which provides a

starting point for deriving a fracture criterion. By looking at a fracture criterion defined on the

basis of deformation consisting of both an elastic and a plastic part, the ASTM D143-model is

used (Chapter 3.1). When this deformation is reached, the sill will by definition fail, and no

longer have the ability to carry more load.

The size of the allowed deformation is largely involved in the determination of the total ca-

pacity of the timber. The ASTM-model uses a deformation limit equal to 1.0 mm underneath

the loading area, which is found from compression tests on a timber sills with a point load in

the mid-span. The new calculation method aims to determine the fracture limit from a refer-

ence block with a fully loaded top surface, and then add strength as the amount of untouched

timber increases. This will lead to a fracture criterion that uses a combination of the ASTM-

and CEN-model. The predefined maximum allowed total deformation of the reference block,

will be determined by first using the CEN-model to calculate the compressive strength, then

use the coherent total deformation as a fracture limit, which will provide a constant allowed

deformation value (i.e. ASTM-model) (Figure 4.3).
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4.1. ULTIMATE LIMIT STATE (ULS)

Figure 4.3: Combination of the ASTM D143-model and CEN-model

Load distribution:

In the same way as the existing regulations, the applied load is distributed along the cross-

section, and carried by an effective area larger than the loading surface. This area is found by

using the current regulations given in Eurocode 5 part 1.1.

lef = l +
2∑

i=1

∆li (4.5)

∆li = min{30mm; ai; l; l1/2} (4.6)

Figure 4.4: Lengths given with Eurocode 5 notation
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4.1. ULTIMATE LIMIT STATE (ULS)

The Hammock Effect:

When a sill is experiencing a concentrated compression force, the longitudinal fibres in the di-

rection of the grain will start to tilt down on the side of the loading area, and create a Hammock

effect. This effect produces large concentrations of strains on the side of the loading surface.

Tests performed by Aldvis Hardeng [9] in 2011, clearly show these concentrations and how

they vary with the amount of untouched timber. With a small amount of untouched timber

(close to the reference block), these concentrations will not occur, and the capacity will only

depend on the pure compressive strength. As the amount increases, the concentrations are get-

ting larger, and at some point they will most likely stabilize and converge toward a limited value.

When the fibres are tilted on the side of the loading area, they will experience a tension force

that will contribute to the bearing of the applied load. The size of this tension force is associated

with the strain concentrations. This system can be modelled as a rope, with end-forces and an

evenly distributed load that represents the loading area. Based on equilibrium considerations

taken from the system shown in Figure 4.5, a formula for the end-load, S, can be derived [17].

Figure 4.5: Mechanical system: Rope forces

S =

√
(
q · L2

q

8 ·∆h
)2 + (

q · Lq

2
)2 (4.7)

From the mechanical system given in Figure 4.5, a value of the total deformation ∆h, in the

middle of the system needs to be defined, in order to say something about the magnitude of the

tensile forces. By defining a fracture criterion based on the ASTM-model, a fixed value of the

allowed deformation used in the formula can be defined.

By solving Equation 4.7 with respect to the evenly distributed load, q, an expression for the

additional capacity for the system can be derived. Equation 4.8 gives a value of the extra load

that can be put into the system, which is carried purely by the Hammock effect.

q =
2 · S

Lq ·
√

1
16 · (

Lq

∆h)2 + 1
(4.8)
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4.1. ULTIMATE LIMIT STATE (ULS)

The tensile force, S, is determined by looking at the strain concentrations generated on the side

of the loading area, and expressed in the following way:

S = Es,Θ · εH,j ·As (4.9)

Es,Θ module of elasticity for wood in an angle Θ

εH,j strain concentration on the side of the loading area

As area that is effected by the tension force S

The expression for the tensile force is then inserted into Equation 4.8, which gives:

q =
2 · Es,Θ · εH,j ·As

Lq ·
√

1
16 · (

Lq

∆h)2 + 1
(4.10)

Definition of the effective tension area As:

The effective area that is experiencing the tensile force at the end of the loading surface needs

to be defined. By looking at previous results from compression tests done by A. Hardeng [9],

the effective area is found to be limited to the upper part of the timber section. From diagrams

representing the strains in the y-direction over the entire specimen, the concentrations on the

side of the loading area are found to decrease from the top of the cross-section, and become

non-existing after a length of 10-20 mm. The tensile force will be uniform over the width of the

cross-section, resulting in the following expression for the effective tension area.

Figure 4.6: Effective tension height

As = b · hs (4.11)

The Hammock effect is uniform over the entire width of the sill, which leads to an additional

bearing capacity equal to

fH,90 =
q

b
(4.12)
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4.1. ULTIMATE LIMIT STATE (ULS)

By inserting Equation 4.10 into Equation 4.12, it gives the following expression:

fH,90 =
q

b
=

2 · Es,Θ · εH,j · b · hs

Lq · b ·
√

1
16 · (

Lq

∆h)2 + 1
=

2 · Es,Θ · εH,j · hs

Lq ·
√

1
16 · (

Lq

∆h)2 + 1
(4.13)

From Equation 4.13, b will disappear, and the Hammock effect becomes independent of the

cross-sections width.

All the terms in the numerator are collected into one constant:

C = Lq ·
√

1

16
· ( Lq

∆h
)2 + 1 (4.14)

Which gives

fH,90 =
2 · Es,Θ · εH,j · hs

C
(4.15)

The value of the constant C, is only dependent on the length of the loading area, and can

either be determined by inserting values into Equation 4.14, or from Figure 4.7. Figure 4.7 is

generated by putting the maximum allowed deformation ∆h = 2.72 mm (This value will be

derived in Chapter 7).

Figure 4.7: The Hammock Constant

Equation 4.15 gives an additional bearing capacity with contributions from both sides of the

loading area (Figure 4.5). For cases with a load near the end of the sill, the contribution from one

side will disappear. To account for this, the equation should be divided by a factor of two, which

leads to a conservative approach when calculating the capacity for this type of configuration.

Whether this procedure gives an exact representation of the capacity for an end-load, will not

be tested in this master thesis, and should be verified by later studies.
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4.1. ULTIMATE LIMIT STATE (ULS)

The equation representing the Hammock effect, is divided into cases with untouched timber on

one and two sides.

By adding a load location factor, ku, a general expression that is valid for the two load cases is

found:

fH,90 =
ku · Es,Θ · εH,j · hs

C
(4.16)

ku =

1 untouched timber on one side

2 untouched timber on two sides

Figure 4.8: Untouched timber on two sides Figure 4.9: Untouched timber on one side

The value of the strain concentration, εH,j , varies with the amount of untouched timber, and

determined by the chosen system configuration. By adding a small amount of untouched timber,

the effect will not change drastically, and different domains with a fixed value for the parameter

will be generated (Table 4.1).

Case Lu [mm] εH,j [%] Effect

0 Lu ≤ z0 0 No

1 z0 < Lu < z2 ? Partly

2 Lu ≥ z2 ? Full

Table 4.1: Strain concentrations for the different domains with untouched timber

Figure 4.10: Boundary lengths for strain concentration values
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4.1. ULTIMATE LIMIT STATE (ULS)

By modelling the Hammock effect as a rope system with an evenly distributed load, as shown in

Figure 4.5, the value of the capacity will increase towards infinity when the loading length, Lq,

goes towards zero. To avoid this effect, a lower limit for the ratio between the loading length

and the total deformation will be created.

Lq

∆h
> 30 (4.17)

This will prevent the additional strength, coming from the Hammock effect, from converging

towards unrealistically high values for small loading lengths. The value of the limitation is de-

termined by looking at the results from the tests of the calculation model conducted in the thesis.

Special case

For a loading case where the amount of untouched timber is enough to get full effect on one

side, but only partly on the other, the smallest of the two values for the strain concentration will

be used (Table 4.1). This leads to a conservative approach, that will ensure that the capacity is

not being overestimated. The load location factor is kept equal to 2, since the system is getting

contributions from two sides.

Module of elasticity

Since the fibres that are experiencing the tensile force are tilted on the side of the loading area,

and defined by the strains in the y-direction, a most accurate size of the Module of Elasticity

will be closer to the transverse value, E90,mean, than the longitudinal, E0,mean. This parameter

will get the notation Es,Θ and receive a value that is twice the size of E0,mean, which equals

approximately 800 kN/mm2 for Norwegian CE L40C (Appendix C).

Summary:

• Uses equilibrium considerations to describe the additional compressive strengths from the

Hammock effect

• The fracture limits is based on a given total deformation found by using both the ASTM-

and CEN-model

• The effective length is calculated in the same way as the current regulations in Eurocode

5 part 1-1

• The height of the cross-section is not a factor in the calculation of the capacity

• The model is applicable for capacity control on continuously supported timber sills

Mark: By using the ASTM-model and a fixed value of the allowed deformation, the calcu-

lation model does not take the height of the cross-section into account, which results in equal

deformation limits for small and large heights.
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4.1. ULTIMATE LIMIT STATE (ULS)

4.1.3 Model 2: Based on energy

Because of the complex strength properties and structure of the wood, a model based on strains

can be difficult to define in an accurate way. Another approach to define a capacity model, is

to look at the total energy that is required to reach a certain deformation of the system. Ear-

lier research has shown how the bearing capacity depends on the amount of untouched timber

on the side of the loading area. This means that it requires more energy to obtain the same

deformation for longer sills than it does for shorter ones.

In order to calculate the bearing strength, boundaries for what is considered acceptable de-

formation must be defined. With the current regulations based on the CEN-model (Chapter

3.1), larger deformations are allowed for higher versus smaller cross-sections, as a result of a

capacity limit defined in terms of a plastic deformation of 1% of the height (0.01h). As a re-

sult of this calculation method, there is reason to believe that the stiffness will vary with the

chosen height of the section. A model should therefore have a design where a height factor is

introduced, that account for these effects.

The CEN-model is chosen to define the compressive strength of the system. This gives, as

mentioned earlier, the ability to create a model that takes the cross-section’s height into ac-

count. To find the capacity, a given plastic deformation underneath the loading area needs to

be defined.

Figure 4.11: CEN-Model

The capacity of the various systems, is determined by looking at the total energy required

to reach the given deformation limit. The total energy is calculated by looking at the area

underneath the graph of the load-deformation curve. This area will get larger as the amount

of untouched timber increases (Figure 4.12), because of a larger stiffness in the system (Gives

a ”higher” curve).

24



4.1. ULTIMATE LIMIT STATE (ULS)

It is often beneficial to scale the different systems against a reference case, so factors indepen-

dent of the chosen units are accumulated. The current rules in Eurocode 5 have been criticised,

since some of the lengths in the calculation model require a specific unit (lef has maximum load

distribution set to 2x30 mm). The different cases with various amount of untouched timber in

the new model, will be scaled against the energy required to get a certain deformation of the

reference block. This reference energy will get the notation E0.

As written previously, a small increase in the amount of untouched timber on the side of the

loading area, will not affect the system in any significant way. As a result of this, it will be

defined domains dependent on the amount of untouched timber that have certain values.

As the amount of untouched timber increases, a limit will be reached where an additional

length will not provide any more energy in the system. An upper limit must therefore also be

defined, and this case will get the notation E2.

Calculation of the energy:

Based on compression tests done with different amounts of untouched timber, plots showing the

coherence between the applied compression force and the deformation for the different cases will

be generated. By defining a value for the allowed plastic deformation, it will provide bound-

aries that limits the area underneath the graph, resulting in a restricted area that represents

the total energy of the system. To calculate the energy, functions that represent the various

load-deformation curves will be generated, which are then integrated with the boundary condi-

tions given by the maximum deformation ∆max,j (Figure 4.12). This will represent the overall

energy that must be put into the system to obtain the allowed deformation limit.

Figure 4.12: Total energy: Case E2 and E0
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4.1. ULTIMATE LIMIT STATE (ULS)

To calculate the total energy that is put into the systems for the different amount of untouched

timber, the following mathematical approach is used:

Ej =

∫ ∆max,j

0
fj(∆)d∆ (4.18)

fj(∆) generated function representing the load-deformation curve for specimen j

∆max,j deformation limit for specimen j

From the different compression tests, domains that will give certain values of the energy will

be generated. For untouched timber lengths smaller than x0, the total energy will be equal

to the lower limit found for the reference block, E0. With lengths larger than x2, the energy

will be equal to the upper limit E2. In the intermediate state between the two limits, a linear

relationship will be created.

Figure 4.13: Boundary lengths for amount of total energy

Design of the calculation model:

The new calculation model based on energy considerations will have the following design:

σc,90 ≤ k1 · k2 · fc,90 (4.19)

where

σc,90 =
Fc,90

A
=
Fc,90

Lq · b
(4.20)
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4.1. ULTIMATE LIMIT STATE (ULS)

fc,90 compressive strength

k1 strength factor

k2 height factor

Fc,90 applied compressive load perpendicular to the grain

A loading area

Lq loading length

b cross-sectional width

The load applied to the system, will only be taken by the area of the actual loading surface,

not an effective area as defined in the current regulations in Eurocode 5. Since the additional

bearing capacity, caused by the load being distributed to nearby timber, is taken directly into

account during the calculation of the total energy, there is no need to define an effective loading

length.

k1 is the factor that accounts for the extra capacity generated from having different amounts of

untouched timber on the side of the loading area, and is defined in the following way:

k1,j =
Ej

E0
(4.21)

Ej is the amount of energy that is needed to reach the given plastic deformation of the height,

for a sill with untouched timber length equal to j. The energy for the different cases is scaled

against the reference energy, E0, which leads to the definition of the strength factor k1, given

in Equation 4.21.

As a result of the limits defined previously in this chapter for the different amount of untouched

timed, the value of the strength factor k1, will have a valid value in the following domains:

k1 =


kl Lu ≤ x0

kl + ku−kl

x2−x0
(Lu − x0) x0 < Lu < x2

ku Lu ≥ x2

kl is a lower limit for the strength factor, and is applicable for a sill with an amount of untouched

timber less than x0. ku is the upper limit, and is applicable for lengths larger than x2. Between

these to limits, a linear relationship is generated

Since the CEN-model by definition allows a different limit for the plastic deformation depending

on the cross-section’s height, this should be included in the capacity calculations. To include

this in a model, it will be defined a reference value, that the other heights are scaled against.

Compression tests performed on a specimen with the reference height, href , will result in a

given fc,90,ref . By changing the height in the tests and allowing new limits to the deformations

(0.01h), it will be generated new values fc,90,j for the different cases.
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4.1. ULTIMATE LIMIT STATE (ULS)

Based on these assumptions, a factor k2 can be defined in the following way:

k2,j =
fc,90,j

fc,90,ref
(4.22)

Domain h [mm] k2

1 ≤ 30 ?

2 30-60 ?

Ref 90 1.0

3 90-120 ?

4 120-150 ?

5 ≥ 150 ?

Table 4.2: Height factor within the different domains

The domains in Table 4.2, are based on the tests conducted in this master thesis, where the

maximum height was limited to 150 mm.

Summary:

• Based on energy considerations

• Uses the CEN-model to find the compressive strength

• Uses generated functions that describe the real material behaviour

• Takes the height of the cross-section into account

• The model is applicable for capacity control on continuously supported timber sills
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4.2. SERVICEABILITY LIMIT STATE (SLS)

4.2 Serviceability Limit State (SLS)

4.2.1 Earlier starting point

In the current Eurocode 5 regulations, there are no specific requirements or models to calculate in

a Serviceability Limit State. The way the model is designed, Ultimate and Serviceability Limits

are mixed into the same calculation formula, and separated by changing or adding different

parameters. This leads to a definition of the two cases that can be messy and sometimes a bit

unclear.

4.2.2 Model for calculating in serviceability state

This study aims to create a model that provides the possibility of calculating in Serviceability

Limit State, so designers can determine the limits of the allowed deformations based on their

own needs and preferences. To be able to do this, a calculation method that gives a relationship

between an applied load and the associated deformations must be derived.

The Serviceability Limit State and the requirements to the allowed deformations, should be

limited to avoid failure mechanisms that are essential for the bearing capacity. Therefore it

should not be allowed deformations in serviceability that violates the acceptable limits found

in Ultimate Limit State

To define serviceability limits, restrictions will be made to the maximum allowed total de-

formations, ∆max, underneath the loading area. These limits will consist of a combination of a

permanent, ∆per, and non-permanent, ∆rev, part.

With the current regulations, the maximum allowed plastic deformation is restricted to 0.01

times the height (CEN-model). Allowing this deformation also allows for non-permanent defor-

mations (Figure 4.14). Combined, these two contributions form the foundation of the maximum

serviceability limit, which will automatically satisfy the requirements set forth as accepted de-

formation in Ultimate Limit State.

Figure 4.14: Total allowed deformation in Serviceability Limit State
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To describe how the timber deforms under a load perpendicular to the grain, the starting point

will be to look at the load-deformation curves generated from compression tests. This will

give a direct description of the material behaviour, and provide a correlation between the two

parameters. This study attempts to find a function for this correlation, which give the designer

an easy and precise way to calculate deformations.

A function that describes the correlation between load and deformation can be found through

a curve fitting with the help of Least Square Method (LSM). The function that is being used

must have properties that can represent the load-deformation curve in an accurate way. It must

also be able to describe both linear and non-linear behaviour.

The load-deformation curve shows a relationship at the beginning of the load cycles that can be

described with a linear function, but after a certain point the relationship becomes non-linear.

This is a result of the wood properties that under small loads behaves elastically, but which

enters a ductile region when the load reaches a certain level. When the material exceeds the

yield limit, the fibre structure changes and the forces in the cross-section will be redistributed.

In the ductile region, the material will undergo a hardening process, making the system able

to carry more load without getting failure mechanisms, but with rapidly increasing permanent

deformations.

Simplified Calculation Method:

A simplified way to describe the relationship between load and deformation, is to treat the ma-

terial behaviour as generally ductile. With this method it is assumed irreversible deformations

from the beginning of the load cycle, ignoring the initial elastic properties.

A way to generate a ductile relationship, is to use the Power Law or Voce Law, which are

known functions in Material Mechanics, often used to describe such material behaviours.

Power Law Voce Law

F = K ·∆n F = C1(1− e−C2∆)

In the functions, F is the applied load required to obtain a plastic deformation ∆. K, n, C1

and C2 are all constants describing the material behaviour, and are found by curve fitting with

Least Square Method.

Both of these functions describe the load-deformation curves in a representative way, and by

inverting the formula, an expression for the total deformation of the system can be found. The

expression will be dependent on the applied compressive load, and will give the designer the

ability to determine acceptable deformations. The desired total deformation can not exceed the

serviceability limits, because this will violate with the definition of the bearing capacity of the

system.
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Power Law Voce Law

∆ = ( F
K )

1
n ∆ = − 1

C2
ln(1− F

C1
)

From the definition of the limit state and total allowed deformations found by the CEN-model,

the capacity is dependent on the height of the cross-section. As a result of this definition, dif-

ferent deformation limits are allowed for different heights. To account for this effect, the height

factor k2, defined in Section 4.1.3, will be included in the serviceability calculations.

In this thesis, Voce Law will be used to describe the non-linear material behaviour of the

wood, on behalf of the Power Law.

Based on these assumptions, the following requirement in the Serviceability Limit State should

be satisfied:

∆ < ∆max · k2 (4.23)

As previously described, the load-deformation curves are largely dependent on the amount of

untouched timber on the side of the loading area. To take this into account in the serviceability

calculations, two separate limit states will be defined, both for the reference case and for systems

with amount of untouched timber larger than the upper limit x2. For the intermediate case,

the requirements will be equal to the reference case.

Lower case (Lu ≤ x2):

∆0 = − 1

C2,0
ln(1− F

C1,0
) < ∆0,max · k2 (4.24)

Upper case (Lu > x2):

∆2 = − 1

C2,2
ln(1− F

C1,2
) < ∆2,max · k2 (4.25)
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More Accurate Calculation Method:

A more accurate model to describe the material behaviour, that takes both the linear and non-

linear behaviour into account, is to divide the load-deformation curve into two domains. This

will give a linear function at the beginning of the loading cycle, and a non-linear function after

a certain limit.

The limits dividing the different domains for the linear and non-linear functions will be found

by looking at the material behaviour from the compression tests, and taken from the load-

deformation curves.

Based on the given assumptions, a model for the serviceability state can be expressed as fol-

lowing:

Elastic domain (0 ≤ ∆ ≤ ∆el):

∆el =
F

B

B is a constant describing the material behaviour in the elastic domain, which is found by curve

fitting, and F is the applied compression load.

Plastic domain (∆el < ∆ ≤ ∆max):

By using the defined Voce function, the following expression can be used to describe the non-

linear domain:

∆pl = − 1

C2
ln(1− F

C1
)

In this case, separate serviceability limits, ∆max, must be defined, because of the differences in

strength between systems with and without untouched timber. The height factor, k2, is also

included, and the calculation methods for the intermediate state between the reference case and

the upper limit will be put equal to the reference case. This will give the following design for

serviceability state for the different domains:

∆el < ∆el · k2 (4.26)

∆pl < ∆max · k2 (4.27)
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Lower case (Lu ≤ x2):

Elastic domain:

∆el
0 =

Fc,90

B0
< ∆0,el · k2 (4.28)

Plastic domain:

∆pl
0 = − 1

C2,0
ln(1− F

C1,0
) < ∆0,max · k2 (4.29)

Upper case (Lu > x2):

Elastic domain:

∆el
2 =

Fc,90

B2
< ∆2,el · k2 (4.30)

Plastic domain:

∆pl
2 = − 1

C2,2
ln(1− F

C1,2
) < ∆2,max · k2 (4.31)

Summary:

• Based on a predefined function to describe the material behaviour (Voce Law)

• Used the material behaviour directly

• Based on allowed deformation underneath the loading area

• Two different serviceability limits:

One applicable for amount of untouched timber less or equal to x2

The other for amount larger than x2

• Two different calculation methods:

Simplified Method: Ductile material behaviour in the whole deformation domain

More Accurate Method: Accounts for both an elastic and plastic material behaviour
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4.2.3 Different types of wood

The constants describing the load-deformation curves, found by the Least Square Method, will

vary with the type of wood. This is due to the changes in strength properties. Compression

tests should therefore be conducted to find the properties and material constants that describes

the load-deformations curves for every type of wood. The deformation limits will most likely

change between the different types, and these limits should also be determined and tabulated

together with the constants. Tables 4.3 and 4.4, show some of the standard types found on the

market for combined glue-laminated timber.

Lower case (Lu ≤ x2):

Lu < x2 GL24c GL26c GL28c GL30c GL32c GL34c

B

C1

C2

∆max

Table 4.3: Parameters and deformation limits for the Lower case

Upper case (Lu > x2):

Lu > x2 GL24c GL26c GL28c GL30c GL32c GL34c

B

C1

C2

∆max

Table 4.4: Parameters and deformation limits for the Upper case
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Chapter 5

Test description

To determine and verify the various parameters in the new calculation models derived in this

thesis, different tests will be conducted in the laboratory at the Department of Structural Engi-

neering. Compression tests will be performed with loads perpendicular to the grain on systems

with different sill lengths and cross-sectional heights. This will generate data that will be used

to describe the material behaviour of the wood, and provide a basis for the parameters imple-

mented in the models developed for both Serviceability Limit State (SLS) and Ultimate Limit

State (ULS).

5.1 Test set-up and software

The aim of these tests is to gain an increased understanding of the complex deformation patterns

in timber sills loaded perpendicular to the grain. There are several mechanical phenomena that

mobilizes during such loadings, and advanced measuring equipment is required to be able to

capture and distinguish between the various effects.

5.1.1 ARAMIS

ARAMIS is a software that is used to run and process data from tests based on image analysis.

The program provides an opportunity to describe deformation patterns in different directions,

and gives the ability to generate graphical representations of the results. ARAMIS uses high

resolution images taken of specimens during testing to describe the pattern based on correla-

tions between images taken at different stages of a load cycle.

Before the compression test is initiated, the surface of the specimens are covered with a white

color in the areas where data is to be retrieved. On top of the white surface, a random pattern of

black dots is sprayed on, which will serve as reference points for the deformation measurements

(Figure 5.1). During the loading cycle of the specimen, the black dots will change position

from their reference point, and by looking at the relative change, a deformation pattern in the

different directions can be defined. The relative changes are measured by continuously taking

pictures of the specimens during the deformation process. Each picture represents a time step

with a given load and an associated deformation, and by comparing the different time steps, a

deformation pattern and stress/strain field in the specimens can be found.

35



5.1. TEST SET-UP AND SOFTWARE

The cameras will take a predetermined amount of images in a specified time interval, and each

of these intervals are recorded as stages. The first stage is set equal to 0, and from this starting

point, changes in the strains, stresses, or deformations can be calculated. The duration of the

tests will vary within the different load configurations (See Section 5.1.2). This variation will

affect the number of photos taken during the tests, as well as change the time intervals. This is

done only to be able to take pictures throughout the whole deformation process for the different

configurations, and does not impact anything else. For the reference block a total number of

120 images is chosen, with a time interval equal to 5 seconds between each picture. This will

give an overall picture period of 10 minutes per specimen. For tests with different amounts of

untouched timber, the total number of images is increased to 150, with a rate of one picture

every 7 seconds. This results in a image period of 15 minutes per specimen.

When the different images taken during the load cycle are implemented in the analysis sec-

tion in ARAMIS, it may, in some cases, give areas on the analysis surface of the specimen, that

the program is not able to generate data from. ARAMIS has a built-in function in the software

that makes it possible to run a 3D-interpolation between the side-lying points, where data has

been collected. By doing this, a complete data set can be found for the entire surface.

Figure 5.1: Test system

5.1.2 Test system

The test system will consist of a continuously supported timber sill loaded perpendicular to

the grain. To get a realistic loading system as possible, the load will be transferred through a

block of wood between the machine and sill, representing the timber stud coming down in the

connection (Figure 5.1). The block will be loaded in the longitudinal direction of the wood,

and changed to after a given number of tests. Since the load coincides with the longitudinal

direction of the grain for the block, it will not produce disturbances in the measurements of the

total deformations of the sill, because of a significant higher stiffness in this direction. On the

top surface of the specimen the loading area is drawn, making it easy to place the loading block

in the correct position before initiating the compression tests. The duration of the compression

test is chosen so that the estimated fracture load will occur within 300 seconds (5 min). This

is a value recommended in NS-EN 408:2010+A1:2012 [16].

36



5.1. TEST SET-UP AND SOFTWARE

To be able to get as comparable result between the different tests as possible, the specimens was

carefully checked for irregularities such as knots and cracks, and the orientation of the annual

rings strictly underneath the load is kept constant.

The machine producing the compression force, is an INSTRON, with a maximum load equal to

100 kN. This machine is able to measure both the applied load and the associated deformations.

The compression machine will be given settings which provides a certain deformation of the

height per minute. For both the reference block and the specimens with untouched timber,

this speed will be set equal to 2 millimetres per minute (mm/min). For the reference blocks,

the tests will end when the specimens have reached a total deformation under the loading area

equal to 20 mm. This is more than enough to find the parameters needed in the various models

derived in this thesis. With the current regulations, only a deformation in the range of 0-5 mm

is needed to define the different parameters. The reason for running the tests to a deforma-

tion as high as 20 mm, is to see how the material behaves and which mechanical phenomena

that occur at this magnitude of deformation. With a loading speed equal to 2 mm/min, and

a maximum deformation set to 20 mm, it will result in a total test period equal to 10 min for

each specimen. This is the same time length as the image period implemented in ARAMIS. For

the specimens with untouched timber, it will be allowed a total deformation under the loading

area equal to 30 mm, because of a greater capacity, which will result in failure modes at larger

deformations. This will give a total test period equal to 15 mm for each specimen (the same

length as the image period implemented in ARAMIS).

Since the camera system that is photographing the specimens during the tests is attached

to a foot with certain height, the test set-up had to be modified, to be able to get the two

aligned. This was done by putting massive timber blocks underneath the specimens, with thick

metal plates in between (Figure 5.2). The direction of the fibres in the timber blocks was chosen

so the loading direction was parallel with the longitudinal direction (the strongest axis). This

was done to prevent disturbances in the deformation measurements of the test specimens. The

blocks were cut flat on the top, making the loading area uniform over the entire surface.

Figure 5.2: Test system with massive tim-

ber blocks and metal plates

Figure 5.3: Cameras and light sources used

for optical analysis
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5.1. TEST SET-UP AND SOFTWARE

To be able to capture accurate results from the image analysis, the surfaces of the specimens

are illuminated by different light sources. Two light sources directly mounted on the camera

system and one additional spotlight was used (Figure 5.3). This will provide a clear contrast

between the bright painted surface and the black dots (Figure 5.1). It is important for the test

results, that the specimens are neither overexposed nor too dark. To avoid reflections from the

metal plate located underneath the specimens, the plates were covered by a gray coloured tape.

5.1.3 Specimens

An overview of the geometries for the different test specimens are located in appendix A. The

two different test systems are shown in Figure 5.4 and 5.5.

Figure 5.4: Test system 1 Figure 5.5: Test system 2
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Chapter 6

Test results

6.1 Parameters

It is desired from the various compression tests conducted in this paper to describe and find

the different parameters included in the new calculation models derived in Chapter 4.

The following parameters will be determined from the compression tests:

k2 Factor regulating the capacity for different cross-section heights (Model 2)

k1 Factor accounting for the variation of total energy required to reach the fracture cri-

terion for different amount of untouched timber (Model 2)

hs The effective tension height for the Hammock effect (Model 1)

εH,j Strain concentrations on the side of the loading area for different amount of untouched

timber (Model 1)

6.2 Test 1: Reference block

During this test set-up, all the specimens had a constant cross-sectional geometry equal to

90x89 mm (LxB), with the entire top surface loaded in compression. Tests were conducted with

variations in the heights of the cross-sections, ranging from 30-150 mm. For each height, 4-5

tests were performed. The reason for conducting this specific test, is to determine the factor

k2, which scales the total bearing capacity for different cross-sectional heights.

Figure 6.1: Test system 1: Reference block
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6.2. TEST 1: REFERENCE BLOCK

6.2.1 Specimen R30

For cross-sections with small heights, the initial material behaviour is quite stiff compared to

higher sections. This is a result of the small magnitude of air and void in the wood structure

that needs to be pressed together. Figure 6.2 shows how the capacity is rapidly increasing when

the deformation reaches a certain size. As the specimen is pressed together, a more compact

cell structure is generated, resulting in a very stiff system (Figure 6.3). When the height of the

cross-section is quite small, it will not reach a point where critical failure mechanisms occurs,

and the specimens can in theory be loaded with an infinitely large compression force.

Figure 6.2: Load-deformation curves - Specimen R30-i

The test result shows a similar material behaviour for all the four different specimens. They all

have a linear elastic domain during the first 2 mm of deformation, reaches a yielding point at

35 kN, which then leads the material into a ductile domain and a plastic behaviour. When the

total deformation reaches 9 mm, all specimens experience a failure mechanism, which results in

a drop in bearing capacity. This mechanism is shown in Figure 6.4, and is a result of the cell

structure being ripped apart in the transition between annual rings. Farther into the loading

domain, a rapid increase of capacity is generated, as a result of the cell structure getting more

and more compact, and no more failure mechanisms will occur after this point.

Figure 6.3: Compact cell structure gener-

ated for specimen R30

Figure 6.4: Failure mechanisms for speci-

men R30-i
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6.2. TEST 1: REFERENCE BLOCK

The results from the compression tests, shows an almost identical load-deformation curve for all

specimens, and it is therefore reasonable to believe that a good and accurate material behaviour

has been found for this type of cross-section.

All tests conducted for the different cross-section heights, were stopped when a total defor-

mation of 20 mm was reached, except for this one. Because of limitations to the maximum load

of the test machine (100 kN), the tests had to be stopped after a deformation of only 18 mm.

6.2.2 Specimen R60

The tests performed on subjects with sectional height equal to 60 mm, resulted in an equal

material behaviour and load-deformation curves for all the different specimens. This indicates

good and uniform samples with few faults or irregularities. The initial stiffness is lower for this

test, compared to the specimens with a height of 30 mm, because of the increase of air and

voids in the timber cells that needs to be compressed.

When the specimens reaches a total deformation of 9-10 mm, the cells are starting to sepa-

rate in the transition between the annual rings (Figure 6.6), which results in a drop of the

bearing capacity.

Figure 6.5: Load-deformation curves - Specimen R60-i

Figure 6.6: Failure mechanism for R60-i
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6.2. TEST 1: REFERENCE BLOCK

6.2.3 Specimen R90, R120 og R150

When the test specimen reaches a certain height, the initial stiffness starts to approach each

other. This gives a linear region for the higher cross-sections, which are overlapping. By in-

creasing the load further into the plastic domain, it results in different failure mechanisms for

the higher cross-sections, leading to a spread of the total capacities and the material behaviours.

These failure mechanisms will occur in different places in the load-deformation cycle, resulting

in capacity drops that do not coincide with the various compression tests, like it did for the

lower cross-sections.

The failure mechanisms resulting in the capacity drops are the same as for the lower heights,

where the transition along the annual rings are ripped apart (Figure 6.8). Before the mecha-

nism is generated, the section is bulging out both at the front and back, creating a tension force

that is pulling the fibres apart. Another failure mechanism that occurred in most of the tests,

resulting in large capacity drops, was fracture transverse to the radial direction of the grain

(Figure 6.9). This is also a consequence of the generated tension force coming from the bulging

of the section. A commonality of all the failure mechanisms was the propagated fracture acting

in the same direction of the compression force, and along the height of the cross-section.

Figure 6.7: Load-deformation curves - Specimen R90-i

For the compression test on specimen R120-3, a clear drop in capacity was found at a deforma-

tion of 9 millimetres. This was a result of a large part of the front being ripped off from the rest

of the specimen (Figure 6.8). This resulted in the remaining cross-section having a significantly

smaller area to carry the load. As can be seen in Figure 6.10, the capacity rapidly decreased

after this fracture mechanism occurred.
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6.2. TEST 1: REFERENCE BLOCK

Figure 6.8: Failure mechanism along the

annual rings

Figure 6.9: Failure mechanism transverse

of the radial direction

Figure 6.10: Load deformation curves - Specimen R120-i

Figure 6.11: Load-deformation curves - Specimen R150-i
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6.3. TEST 2: SILL

6.3 Test 2: Sill

During these tests, the cross-sectional height and loading length were held constant, with values

equal to H = 200 mm and Lu = 90 mm. Compression tests were conducted with different

amounts of untouched timber on the side of the loading area, with lengths varying from 30 to

200 mm. The background for these tests is the desire to determine the parameters k2, εHi and

hs, included in the calculation models derived in Chapter 4.

Figure 6.12: Test system 2: Sill

6.3.1 Specimen Lu30

The geometry of the specimens in this test is very similar to the reference blocks R90, as a result

of a small amount of untouched timber. Yet there is already a clear difference in the bearing

capacity, because of the load being distributed over a larger surface. The initial stiffness has

increased, and it requires significantly greater loads to get the same deformations as found for

the reference case.

The compression test conducted on the first specimen, Lu30-1, was stopped after a total defor-

mation of 20 mm, the same magnitude as the reference block. According to the results from the

load-deformation curve, no distinct failure mechanisms had occurred during this deformation,

and it was therefore decided to increase this value to 30 mm. This was done to be able to

capture the behaviour and failure mechanisms for these type of sections.

All test specimens showed a very similar material behaviour in both the linear and non-linear

domain. After a deformation in the area of 7 mm, wood on the edge of specimen started to rise

up along the annual rings, which can be seen in Figure 6.13, as a drop in the load-deformation

curve. This resulted in a clear visual fracture mode, but only a small drop in the capacity of

the cross-section was registered (Figure 6.14).
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6.3. TEST 2: SILL

Figure 6.13: Load-deformation curves - Specimen Lu30-i

The differences between the fracture mechanisms for the reference block and the specimens with

untouched timber equal to 30 mm, was essentially the direction of the fracture propagation. For

the reference block, the propagation of the fracture was mainly in the direction of the applied

load, while in the transverse direction for R30 (Figure 6.14). The fractures were also generated

further down in the cross-section for the cases with no untouched timber.

Figure 6.14: Wood lifted up at the edges of the specimen
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6.3. TEST 2: SILL

6.3.2 Specimen Lu50

For the specimens with untouched timber equal to 50 mm on each side of the loading area,

a slightly bigger spread in capacity between the different tests was found. The linear domain

behaves the same for all tests, but a larger spread appears when entering the ductile domain.

In addition to the uplift of the wood at the ends, some cracks extending from the middle of the

loading area to the edges appeared. The time of occurrence of these cracks, varied between the

different tests, which resulted in variations in the load-deformation curves. This led to different

bearing capacities and fracture points for the specimens. By loading further into the plastic

domain, these effects became more prominent, and the amount of wood lifted up at the edges

increased (Figure 6.16).

Figure 6.15: Load-deformation curves - Specimen Lu50-i

For test specimen Lu50-5, a large drop in capacity was found at a deformation equal to 9 mm.

This was a result of a crack propagation along the height of the specimen, which occurred in

the same way as the failure mechanism described for the reference block.

Figure 6.16: Large amount of wood lifted up at the edges of the specimen
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6.3. TEST 2: SILL

6.3.3 Specimen Lu70 and Lu100

The results for these two lengths of untouched timber showed a small change in capacity for

deformations up to 30 mm. For all the specimens during these tests, cracks were generated

extending from the middle of the loading area to the edges, which lead the drop in capacity.

These cracks occurred somewhat later for Lu100 then Lu70. The load-deformation curves are

still increasing after a deformation of 30 mm for specimen Lu100, which means that a fatal

failure mechanism has not yet occurred. The curves for Lu70 are starting to stabilize, meaning

that the total bearing capacity is most likely found, and an further increase in load will probably

result in a fracture mode.

Figure 6.17: Load-deformation curves - Specimen Lu70-i

Figure 6.18: Load-deformation curves - Specimen Lu100-i
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6.3. TEST 2: SILL

6.3.4 Specimen Lu150 and Lu200

For the two longest specimens, the test set-up was not large enough to provide continuous sup-

port under the entire sill. The support plate had a length of 300 mm, which resulted in some

wood not being supported at the edges. This was the case for lengths of 45 mm and 85 mm

for Lu150 and Lu200, respectfully. The lack of edge support for some timber lengths was not

deemed to significantly influence the results.

For higher amount of untouched timber, a strictly increase of the capacity is found during

the entire loading domain. The fracture mechanisms are quite similar to those with smaller

lengths, but occur later in the deformation process. The amount of wood that is lifted up on

the edges was also significantly larger, and did not occur until a total deformation of 20 mm

was reached.

Figure 6.19: Load-deformation curves - Specimen Lu150-i

Figure 6.20: Load-deformation curves - Specimen Lu200-i
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6.3. TEST 2: SILL

Some of the specimens, such as Lu150-2 did not suffer from cracks or raised edges, which re-

sulted in a deformation pattern only directly underneath the loading area (Figure 6.22). In

this case, the loading block between the specimen and machine was pushed into the sill, and

side-lying fibres were cut off, resulting in only a local failure mode. This resulted in a much

smoother load-deformation curve without the sudden drops in capacity, generated from the var-

ious failure mechanisms. Though the deformation pattern is different for the specimen Lu150-2,

the load-deformation curve and the total capacity is the same as for the other tests. Based on

the deformation pattern, where the block is only pressed into the sill without any form of global

fracture mechanisms and cracks, there is a reason to believe that a critical length has been

reached, and that a further extension will not give a significant impact on the bearing capacity.

As a result of the limitations of the compression machine used in this thesis, it was not possible

to do tests on sills with untouched lengths longer than 200 mm on both side of the loading area.

Some of the specimens still had some global fracture modes such as the lifting of the wood at

the edges, and more tests should be conducted with increased lengths, to verify the upper limit.

Figure 6.21: Global fracture mechanism Figure 6.22: Local fracture mechanism
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6.4. MEAN VALUES

6.4 Mean values

From the tests with different cross-sectional heights and lengths, a mean value is calculated

for each case. This gives the best approximation of the overall material behaviour of the

specimen, and is used when the parameters in the new capacity models are determined. The

load-deformation curves between the different specimens starts to differ from each other in a

greater magnitude when entering the ductile domain and deformations larger than 10 mm. A

mean value calculated beyond this deformation will not describe the material behaviour in an

accurate way. Using information and data values from this domain to calculate parameters will

result in poor results, and therefore will not be done in this thesis. The new parameters will be

found in the domain bounded by the first 10 mm, where the average value describes the material

behaviour in a satisfactory manner, and where no failure mechanisms have yet occurred.

Figure 6.23: Load-deformation curves (Mean values) - Specimen Luj

Figure 6.24: Load-deformation curves (Mean values) - Specimen Rj
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6.5. THE EFFECT OF UNTOUCHED TIMBER

Specimens that differed considerably in strength and material behaviour from the rest, such as

R120-2 and R150-1, were neglected in the calculation of the mean values. The reason for the

large capacities of these to specimens, was knots located directly underneath the loading area.

6.5 The effect of untouched timber

The influence that the amount of untouched timber has on the capacity described in Section

3.3, agrees well with the results from the compression tests conducted in this thesis. Figure

6.25 shows the results from compression tests conducted by Suerson in 1939 [10], while Figure

6.26 shows the result generated in this thesis. For the case without untouched timber (refer-

ence block), a significantly smaller capacity is found compared to the other cases. When the

amount of untouched timber increases, it will result in a greater stiffness of the system, which

gives a steeper load-deformation curve. Similar to the results found in this thesis, the initial

stiffness does not change significantly for the cases with increased amount of untouched timber,

which gives load-deformation curves with equal behaviour in the linear domain. As the plastic

deformation of the specimens increases, the curves will start to spread, and the effect of having

larger amounts of untouched timber for the total bearing capacity is shown.

To transfer the forces and deformations into stresses and strains, the force is divided by the

loading area (B · Lq = 89mm · 90mm), and the deformation on the height of the specimens

(H=90 mm).

Figure 6.25: The effect of untouched timber

found by Suerson [10]

Figure 6.26: The effect of untouched timber

found in this thesis

6.6 Load distribution

Based on theory and calculation models derived by Madsen and van der Put, the generated

stresses from the applied load is distributed down in the cross-section with a certain angle. This

scattering angle is found by looking at the amount of wood that is affected by the stresses, in

both the longitudinal and transverse direction of the load. From numerical analyses conducted

by Madsen in 1983, it was concluded that the spread was limited to 1.5 times the cross-sectional

height. This was also later verified theoretically by Van Der Put, through his model based on

equilibrium considerations.
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6.6. LOAD DISTRIBUTION

In 2011, a series of compression tests were performed on wooden sills at the Pieter van Muss-

chenbroeck Faculty in the Netherlands, by Leijten, Jorissen and de Leijer [4]. The background

for the tests, was the desire to analyse the load distribution underneath the loading area, and to

verify the theory presented by Madsen and van Der Put. Both numerical analyses and optical

measurements were conducted.

Figure 6.27: Load distribution

The scattering angle is taken from the load distribution, and determined by looking at the

amount of wood in the height (he) and length (Le) that is affected by the applied load. By

quantifying these two parameters, the scattering angle can be found by simple trigonometry

considerations.

tan Θ =
le
he

(6.1)

From the tests it was concluded that the scattering angle had a value equal to 1.5, which is the

same value derived and found by Madsen and van Der Put. The numerical analysis also verified

these results.

Because of the large amount of data collected on the stress field in a timber sill generated

in this thesis, the scattering angle will be analysed and verified. By utilizing the results and

data found from the optical measurements in ARAMIS, it is possible to define the values of the

affected height (he) and length (le) of the specimens.

To find the height of the affected area, sections underneath the loading surface will be defined

(Figure 6.28). A deeper explanation of the various defined sections will be given in Chapter 7.

Figure 6.28: Section to find the height (he) of the load distribution
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6.6. LOAD DISTRIBUTION

By looking at the deformations in the y-direction along the defined sections, it can be concluded

that the effective height that is experiencing the applied load is limited to the upper 30 mm

of the cross-section (Figure 6.29). This matches the results of the tests conducted by Leijten,

Jorissen og de Leijer [4]. They found that the effective height is changing with the height of

the cross-section, with an upper limit equal to 140 mm for sections with heights larger than 350

mm. The smallest cross-section they used in their tests, had a height equal to 120 mm, which

gave an effective height he = 50 mm. In this thesis, tests were performed on cross-sections

with heights equal to 90 mm, which resulted in a value of the effective height that was a little

smaller.

Figure 6.29: Deformations in the y-direction underneath the loading area along the height of

the cross-section

To find the distribution of the stresses along the direction of the grain, le, horizontal sections

were made (Figure 6.30). This resulted in the deformations in the y-direction along the defined

sections given in Figure 6.31.

Figure 6.30: Sections to find the length (le) of the load distribution
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6.6. LOAD DISTRIBUTION

Figure 6.31: Deformations in the y-direction underneath and on the side of the loading area

Because of a predefined size of the analysis area, which had to be defined in advance of the

compression tests, the entire length of the specimens was not analysed. As shown in Figure 6.31,

the deformation area is limited to a length of 180 mm along the direction of the grain. This will

give a maximum of 45 mm on the side of the loading area with recorded deformation data. It

is still possible from Figure 6.31 to say something about the distribution of the load. By look-

ing at Figure 6.31, the deformation will most likely stabilize just outside the generated domain.

From these assumptions, the length of the affected area is found to be in the range of 40-50 mm.

By inserting the values of the effective lengths into Equation 6.1, the following scattering angle

is found:

tan Θ =
45

30
= 1.5 (6.2)

This is equivalent to the results found by Leijten, Jorissen og Leijer during their experiments,

and contributes to the verification of the theory and parameters used in the capacity models

derived by Madsen and van Der Put.
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Chapter 7

Determination of parameters

From data collected from the various compression test conducted in this thesis, the different

parameters derived in the new calculation models will be determined. The values will be found

by using the mean values calculated in the previous chapter, which gives the most accurate

description of the material behaviour.

With the current regulations in Eurocode 5, only a plastic deformation of 1% of the height

is allowed. By looking at the load-deformation curves generated from the different tests in this

thesis, this limit seems a little conservative. No distinct failure mechanisms will occur before

quadrupling this limit, and it is therefore a reason to believe that the cross-section has larger

bearing capacity than the current regulations allows for .

With this in mind, the parameters in the new calculation models will be determined from two

different cases. One relying on the current regulations with 1% allowed plastic deformation,

and one with custom limits defined from own assumptions based on the test results generated

in this thesis.

7.1 Current regulations

Some of the parameters in the new calculation models can be derived directly from the data

found by the compression machine (INSTRON), while others require more thorough methods

by means of optical analysis (ARAMIS).

7.1.1 Parameters determined by the compression machine (INSTRON)

Height factor k2:

To determine the height factor, k2, the results from the tests conducted on the reference blocks,

described in Section 6.2, will be analysed. Based on the mean values of the load-deformation

curves for the different cross-sectional heights, a capacity with the current regulations will be

calculated for each case.
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7.1. CURRENT REGULATIONS

The method for finding the compressive strength of a specimen loaded perpendicular to the

grain, is described in Section 3.1, and is done by using the CEN-model. This method relies on

a material behaviour that is linearly elastic in the starting domain, and after reaching a certain

load, passes over to a plastic non-linear behaviour. From the various tests conducted on the

different cross-sectional heights, the results show a small area in the initial part of the loading

domain, that is acting non-linear. In order to use the current computational model to find the

capacity, this area will be neglected, so that a linear material behaviour is generated from the

start. The size of the non-linear area that will be subtracted from the total deformation will vary

for the different heights. The value of the subtracted part is found by drawing a line between

the two points defined by the CEN-model, 0.1Fc,90,max,est and 0.4Fc,90,max,est, and making it

intersect as close as possible to the origin where the load and deformation equals zero.

Figure 7.1: Fracture line through the origin generated for specimen R90

Figure 7.1, shows the generated fracture line drawn for the load-deformation curve for spec-

imen R90, and by subtracting a deformation part equal to 0.3 mm, it results in a material

behaviour that is linearly elastic from the beginning of the loading domain. This procedure is

conducted for all the other load-deformation curves, with their representative subtracted values.

When the material behaviour is linear from the initial loading phase, a compressive strength

for the different cross-sectional heights can be calculated by using the CEN-model. Since the

method of calculating the strength is equal for all the different cases, only one complete example

for one cross-sectional height will be showed.
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7.1. CURRENT REGULATIONS

Example

Example of compressive strength calculation - Specimen R90:

The first step is to define an estimated fracture load Fc,90,max,est, then compute the values

0.1Fc,90,max,est and 0.4Fc,90,max,est. In this example it was chosen F,c,90,max,est = 25500N , which

gave the values 0.1Fc,90,max,est = 2550N and 0.4Fc,90,max,est = 10200N . For these two load

values, the related deformations can be found from the load-deformation curve. From the data

points used to draw the curve, there is no exact value equal to 2550 N and 10200 N, so a linear

regression will be performed.

The force 0.1Fc,90,max,est = 2550N has the following deformation values

Force [N] Deformation [mm]

2544.91877 0.18268

2577.25151 0.18599

By using linear regression, it gives a value of the deformation equal to

0.18268 +
0.18599− 0.8268

2577.25151− 2544.91877
· (2577.25151− 2550) = 0.185476mm

The force 0.4Fc,90,max,est = 10200N has the following deformation values

Force [N] Deformation [mm]

10181.0671 0.73264

10232.9648 0.73599

By using linear regression, the second value of the deformation equals

0.732645 +
0.73599− 0.73264

10232.9648− 10181.0671
· (10232.9648− 10200) = 0.73477mm

Based on the values of the force and the coherent deformation, it is possible to define points on

the load-deformation curve. Through these two points a straight line will be drawn. This line

is then shifted to the right along the deformation axis, with a value equal to a defined allowed

plastic deformation. With the current regulations, this value equals 0.1 times the height of the

cross-section, which for this case results in an offset of 0.1h = 0.1 · 90mm = 0.9mm. At the

point where this line intersects with the load-deformation curve, the value of the compression

capacity can be read out.
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7.1. CURRENT REGULATIONS

Figure 7.2: Method for finding the compressive strength (CEN-model)- Specimen R90

If the value of the found strength is within 5% of the estimated starting value, it can be used

to define the compressive strength of the system. In this case the line intersects the curve in a

point Fc,90,max = 25347.1021N , which gives a deviation equal to:

Fc,90,est − Fc,90,max

Fc,90,est
=

25500− 25347.1021

25500
= 0.6%

The value is within the defined tolerance of 5%.

The calculation method to find the strength of the remaining cross-section heights is done in

the same way as described in the example. The cases are only separated by amount of plastic

deformation allowed of the height, i.e. how much the calculated fracture line is shifted along

the deformation axis.

Figure 7.3: Compressive strength - Speci-

men R30

Figure 7.4: Compressive strength - Speci-

men R60
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7.1. CURRENT REGULATIONS

Figure 7.5: Compressive strength - Speci-

men R120

Figure 7.6: Compressive strength - Speci-

men R150

Using the calculation method described in the example it results in values of the compressive

strength for the different cross-sections equal to:

h [mm] Fc,90[N ] fc,90[N/mm2]

30 35000 4.37

60 26500 3.31

90 (ref) 25500 3.18

120 26000 3.25

150 24500 3.06

Table 7.1: Compressive strength for the different cross-section heights

Where

fc,90 =
Fc,90

b · lq
(7.1)

b = 89mm and lq = 90mm

The height factor, k2, is calculated by scaling the different strengths against a reference strength

found from the cross-section with height 90 mm.

k2 =
fc,90,j

fc,90,ref
(7.2)

Since the strengths increases with decreasing cross-section heights, the capacities found for the

height equal to 30 mm, will be valid for a domain less than 30 mm, the one found for 60 mm

valid for 30-60 mm etc. This will lead to conservative values of the strength in the different

height domains, making sure that the capacity is not being overestimated.
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7.1. CURRENT REGULATIONS

The values of the height factors are given in Table 7.2, with their valid height domain:

Domain Height [mm] k2

1 ≤ 30 1.37

2 30-60 1.04

Ref 90 1.00

3 90-120 1.02

4 120-150 0.96

5 ≥ 150 1.00

Table 7.2: Height factor in the different domains

Based on the results presented in Table 7.2, a distinct difference in strength can be found

between small and larger heights. This is a result of the compact structure that the smaller

cross-sections gets, which leads to a stiff system with small deformations. When the height

of the sections increases, more void needs to be compressed, which lowers the stiffness of the

system, and the factors converge towards the same value. This is similar the results found

by Blass and Görlacher, where they concluded that the height did not have any effect on the

compressive strength of the system. The capacities of the larger cross-sections converge towards

the same value, as a result of the initial stiffness being nearly identical. Current regulations for

the deformation with a plastic limitation of 0.1h, leads to a small movement into the ductile

domain, where variations in the material behaviour are larger.

For smaller cross-sections, the height factor will take a value that is larger than 1.0, and provide

a significant contribution to the bearing strength. For heights in this domain, it will be quite

conservative to use a value equal to 1.0, so the height factor should therefore be included in the

capacity calculations.

A cross-section with a height of less than 30 mm is not often used in the construction in-

dustry. The height factor will for the most cases be equal to 1.0, and provide no additional

contribution to the total capacity. However, it is beneficial to know that an increased carrying

capacity can be used when dealing with smaller cross-sections.

Strength factor k1:

The strength factor, k1, is found by looking at the total energy required to achieve a certain

deformation underneath the loading area. The amount of energy will vary with the lengths

of untouched timber, and will be determined by looking at the mean values of the different

load-deformation curves derived in Section 6.4.

In addition to this, it is desirable to have a material behaviour that is linear elastic from the

beginning of the load domain, which leads to the small initial non-linear region being neglected.

This behaviour is consistent for all the tests with various amount of untouched timber, con-

ducted in this thesis. Since the strength factor, k2, is a scalar, found by weighing the different
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values against a reference case, the neglecting of the initial region will not affect the final values

(since it is conducted for each case, including the reference case).

To be able to calculate the total energy that is required to get a plastic deformation of 0.01

times the height, functions representing the load-deformation curves for the different specimens

will be created. These functions will be generated by the use of Least Square Method (LSM),

which is a method that minimises the difference between real data points and constructed data

points generated by a defined function.

Least Square Method (LSM)

Is a method that calculates different parameters included in a defined function f(xi, β), that

in the best possible way matches a set of real data points. In the defined function, β is a con-

stant, while xi are the real measured values found from tests. The goal is to find a value of the

parameter β, that in the best way represents all the real measured values xi. This is done by

minimising the difference, S, between the real values, and the values generated from the defined

function f(xi, β).

Mathematically, this is written as following:

S =
n∑

i=1

r2
i (7.3)

Where

ri = xi − f(xi, β) (7.4)

To get a good fit between the defined function and the load-deformation curves, it is important

to select a function that is able to describe the material behaviour, and that follows the curves in

a satisfactory way. The chosen function, is a function that is often used in the field of Material

Mechanics: Voce Law. This function has the ability to both describe a linear and a non-linear

material behaviour, which makes it suitable for wood loaded in compression.

F = C1 · (1− e−C2·∆) (7.5)

In the function, F is the applied compressive load perpendicular to the grain, while ∆ is the

coherent deformation underneath the loading area. C1 and C2 are factors that are found by

curve fitting with Least Square Method.

By using the mean values of the load-deformations curves for case Luj, functions with as-

sociated constants C1 and C2, will be generated for each case.
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With the Least Square Method, the following curves describing the real load-deformation curves

are found:

Figure 7.7: Generated function describing

the material behaviour - Specimen Lu30

Figure 7.8: Generated function describing

the material behaviour - Specimen Lu50

Figure 7.9: Generated function describing

the material behaviour - Specimen Lu70

Figure 7.10: Generated function describing

the material behaviour - Specimen Lu100

Figure 7.11: Generated function describing

the material behaviour - Specimen Lu150

Figure 7.12: Generated function describing

the material behaviour - Specimen Lu200

The figures generated above, shows how the chosen function (Voce Law) is able to describe the

material behaviour of the wood in a satisfactory way (the functions align almost perfectly with

the load-deformation curves). The lengths of the generated functions, is determined by how

much is needed to cover the desired analysis area, and will vary between the different cases.
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When the different load-deformation curves are expressed with functions, it is possible to calcu-

late the total energy by integrating the area underneath the graph. Based on the definition of

the fracture limits given by the CEN-model, the area will be bounded by the generated function

and the allowed total deformation ∆max. Since the load-deformation curves are dependent on

the amount of untouched timber, it will generate deformation limits that are unique for each

specimen. These limits will get the notation ∆max,j .

Figure 7.13 shows how the deformation limits are defined for the reference block R90. By

drawing a straight line from the compression capacity calculated by the CEN-model down to

the deformation axis (x-axis), it will result in a deformation limit ∆max = 2.72 mm. This is

conducted for all the load-deformation curves, which gives the restricted areas that represents

the total energy needed to reach the fracture limit, shown in Figure 7.14-7.19 for each specimen

(green area). The different deformation limits, ∆max,j , are summarized in Table 7.3.

Figure 7.13: Deformation limit - Specimen R90

Luj ∆max,j [mm]

0 2.72

30 3.05

50 3.55

70 3.00

100 3.69

150 3.08

200 3.53

Table 7.3: Deformation limits - Specimen Luj

63



7.1. CURRENT REGULATIONS

The total energy required to get the allowed plastic deformation, is calculated for the different

cases by using Equation 7.6.

Ej =

∫ ∆max,j

0
fj(∆)d∆ (7.6)

where

fj(∆) = C1 · (1− e−C2·∆) (7.7)

fi(∆) generated function for specimen Luj, found by curve fitting

∆max,j deformation limit for specimen Luj

Figure 7.14: Total energy - Specimen Lu30 Figure 7.15: Total energy - Specimen Lu50

Figure 7.16: Total energy - Specimen Lu70 Figure 7.17: Total energy -Specimen Lu100

Figure 7.18: Total energy -Specimen Lu150 Figure 7.19: Total energy -Specimen Lu200
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The procedure for calculating the energy is the same for all cases; a full calculation will therefore

only be showed for one of the specimens.

Example

Calculating the total energy - Specimen Lu150:

The function found by curve fitting for the specimen with the amount of untouched timber

equal to 150 mm, is the following:

f(∆) = 52791 · (1− e−0.58∆)

The maximum allowed deformation, which limits the energy area, is taken from Table 7.3, and

equals ∆max = 3.08 mm.

The following values are inserted into Equation 7.6, which gives a total energy equal to:

Ej =

∫ 3.08

0
52791 · (1− e−0.58·∆)d∆ = 86830.0J

The same procedure for calculating the total energy is carried out for all the different specimens,

with parameters equal to:

Luj C1 C2

30 51180 0.51

50 61818 0.39

70 56477 0.44

100 67047 0.35

150 52791 0.58

200 73882 0.32

Table 7.4: Parameters describing the material behaviour found by LSM

Inserted into Equation 7.6 and 7.7, the total energy is found for all the different specimens:

Luj Ej [J]

30 43096.3

50 100644.0

70 75362.8

100 106070.0

150 86830.3

200 104534.0

Table 7.5: Total energy - Specimen Luj
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The factor scaling the total capacity to fit the different configurations with various amount of

untouched timber, k1, defined in Section 4.1.3, is found by dividing the total energy for the

different cases, with the reference case R90 (Lu0).

Figure 7.20: Generated function describing

the material behaviour - Specimen R90

Figure 7.21: Total energy - Specimen R90

(Lu0)

R90 = Luj C1 C2

0 30105 0.64

Table 7.6: Parameters describing the material behaviour found by LSM

By inserting the values from Table 7.6 into Equation 7.6 and 7.7, it gives a total energy E0 =

43096.3 J. By scaling the other calculated values with this reference value, it results in a strength

factor k1 for the different cases equal to:

k1,j =
Ej

E0
(7.8)

Luj k1

0 1.00

30 1.79

50 2.34

70 1.75

100 2.46

150 2.01

200 2.43

Table 7.7: Strength factors - Specimen Luj
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By looking at the results in Table 7.7, the strength factor increases significantly from the ref-

erence case to the case with untouched timber. This is consistent with the theory described

earlier in the thesis, where the capacity increases as a result of additional effects being mobilized

by having untouched timber on the side of the loading area. The load will be spread out and

distributed over an effective surface, and carried by a larger area than the loading area. As the

amount of untouched wood increases, the fibres on the side of the loading area will be tilted, and

additional carrying effects such as the Hammock effect will also contribute to the total bearing

capacity.

The expected result of the strength factor, k1, is a steady increase value with increasing amount

of untouched timber. This behaviour occurs because of a higher resistance against the fracture

mechanisms, where wood is being lifted up at the edge, and the effects where the applied load is

distributed over a larger area. Table 7.7 shows tendencies of this increase, but not in a strictly

consistent way.

The reason for this is most probably the amount of tests conducted for the different specimens.

With mean values calculated for each length with 3-5 test samples, it gives a data foundation

that is poor, which provides an inaccurate representation of the material behaviour. Since the

total energy is calculated directly from the load-deformation curves, some of the resulting val-

ues for the strength factor will be inaccurate. To get more consistent values, the amount of

test samples need to be increased for each cross-section. Because of the size of this thesis and

the limited time available, the number of tests for each configuration ranges from 3-5 samples.

The values derived in this paper are only meant to give an overview of the magnitude of the

different factors, and more tests need to be conducted to get accurate results. The few tests

used for determining the parameters, revealed quite similar material behaviour for many of the

specimens, which indicates that the factors might be in the right domain for some of the cases.

When the amount of untouched timber reaches lengths in the range of 150-200 mm, the fracture

mechanisms are limited to an area underneath the loading surface, and mechanisms where wood

is lifted up at the edges are absent. This indicates that the limit length, where an increase in

the amount of untouched timber would not give an extra contribution to the total capacity, is

near. It is therefore reasonable to believe that the strength factor k1, will converge against a

value that is a little higher than the one found for Lu200, since some global failure mechanisms

still occurred at this point.
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7.1.2 Parameters determined by optical analysis (ARAMIS)

Effective tension height hs:

The effective tension height is a parameter that is included in calculation Model 1, derived in

Chapter 4. It has previously been shown [9] how concentrations of strains are generated on the

side of the loading area when a timber sill is loaded perpendicular to the grain. This is a result

of the Hammock effect, and it will create an area in the upper part of the cross-section, which

experiences tension forces, that will contribute to the carrying of the load. This force will be

uniform over the width of the section, and to be able to find the effective tension area As, the

affected height from the top of the cross-section needs to be defined.

Since the strain concentration depends on the deformation underneath the loading area, limits

need to be defined for the allowed deformation. As previously described in Section 4.1.2, the

compression strength will be determined based on a combination of the ASTM- and CEN-model.

To find the value of the allowed total deformation, the results from the test conducted on

the reference block R90 will be used (the reference height). Using the CEN-model with the cur-

rent regulations to decide the compressive strength, resulted in a value of the total deformation

equal to 2.72 mm (Figure 7.22)

Figure 7.22: Allowed total deformation underneath the loading area - Specimen R90

To determine the effective tension height, it will be looked into the data generated from the

image analysis in ARAMIS. To obtain as accurate results as possible, all the specimens will be

analysed using this method. This will generate large amounts of data describing the deformation

pattern in sills loaded perpendicular to the grain, and ensure that all the mechanical phenomena

in the wood are captured. Before starting to analyse the material behaviour generated from

the optical measurements, a restricted area of the specimen from which data will be collected

needs to be defined (Figure 7.23).
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Figure 7.23: Defined analysis area

An easy way to extract data in a desired area in ARAMIS, is to define different sections (Figure

7.24 and 7.25). A section consists of a line with multiple points, and from these points it is

possible to capture data for both strains, stresses and deformations in various directions (Figure

7.26 and 7.27). As the specimen deforms, the points on the sections changes positions from its

original location, and by looking at the relative change, strains, deformations and stresses can

be calculated. It is possible to define sections in both horizontal and vertical directions, chosen

by the user depending on the type of data it is desired to extract from the analysis. Number

and distance between the defined sections, is also defined by the user, and is selected so that the

entire analysis area is covered. For most of the analyses conducted in this thesis, a total num-

ber of nine sections were made, with center distance equal to 2.3 mm. Because of symmetry, it

is only necessary to look at one half of the specimen for some of the tests, as shown in Figure 7.24.

Figure 7.24: Vertical sections
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Figure 7.25: Horizontal sections

Figure 7.26: Points on vertical section-

lines

Figure 7.27: Points on horizontal section-

lines

Before the compression tests were conducted, time intervals for the images taken during the

deformation process were defined in ARAMIS. Each interval was saved as a stage, where the

unloaded specimen had a stage number equal to 0. To read out the correct values of the strain

concentrations and the effective tension height, the stage with the permitted total deformation

had to be analysed. The first step in finding the different parameters, was to search for the

stage that contained a deformation of 2.72 mm underneath the loading area (which is the defined

fracture limit). This was done by creating vertical sections underneath the load area (Figure

7.28).

Figure 7.28: Vertical section created underneath the loading area

For each stage, graphs were generated showing the amount of deformation underneath the load-

ing area (in the y-direction), for every point on the defined section lines. By examining when

the top points of the sections (the points directly underneath the load) reaches the deformation

limit, the correct stage can be defined.
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At which stage number the deformation limit was reached varied for the different specimens,

and is summarized in Appendix B.

Figure 7.29: Deformation underneath the loading area (y-direction)

The horizontal axis (x-axis) in Figure 7.29, is describing the length of the defined sections,

where the top of the cross-section equals length 0. It is chosen to define sections extending over

the entire height of the cross-section (0-90 mm), which is not necessary since the desired data

is generated only from the top points of the sections. Seen from Figure 7.29, the value of the

total deformation directly underneath the loading equals the defined limit. For this case, which

is taken from the analysis of specimen Lu30, the correct stage number equals 21.

Another way to find the correct stage number, is to create horizontal sections just underneath

the top of the specimen (Figure 7.30). This will provide a different representation of the defor-

mation in the y-direction, but the results will be the same. From Figure 7.31, the deformation

in the middle of the section equals the defined limit at a stage equal to 21, which is the same

number as previously found. In this case, the x-axis also represents the length of the created

sections, but in the horizontal direction.

Figure 7.30: Horizontal sections created in the top area of the specimen
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Figure 7.31: Deformation in the y-direction on the top area of the specimen

When the correct stage is determined for the specimens, the strain field generated in these spe-

cific stages can be analysed. Based on the strains generated in the y-direction in the different

stages, a value of the effective tension height can be defined. This value is found by creating

sections covering the surface on the side of the loading area for each specimen. By looking at

the behaviour of the strains from the top of the cross-section, it is possible to define an effective

height that is affected by the generated tension force on the side of the loading area. This

method is conducted on all the different specimens. Figure 7.32 and 7.33 shows the results

taken from two analyses, namely Lu200 and Lu50. The graphs indicate that an area restricted

to the upper 15-20 mm of the cross-section is affected by the tension force. This results was

consistent for most of the specimens.

To be on the conservative side, the effective tension height, hs will be given a

value equal to 15 mm.

Figure 7.32: Strains in the y-direction on the side of the loading area - Specimen Lu200
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Figure 7.33: Strains in the y-direction on the side of the loading area - Specimen Lu50

For the specimens with an amount of untouched timber that is less than 50 mm, no strain

concentrations were found on the side of the loading. Figure 7.35, which is taken from the

analysis of specimen Lu30, showed no significant effects from the generated tension force. As

a result of this behaviour, it is possible to determine the quantities of untouched timber that

needs to be available in order to generate strain concentration, and to be able to account for

additional capacity coming from the Hammock effect. This will be derived in the next section,

where the values of the concentrations and the critical strain domains will be determined.

Figure 7.34: Vertical section created on the side of the loading area

Figure 7.35: Strains in the y-direction on the side of the loading area - Specimen Lu30
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Strain concentrations εH,j:

From previous research [9], it has been shown how strain concentrations are generated on the

side of the loading when a sufficient amount of untouched timber is available. The new model

based on strains (Model 1) defined in Chapter 4, is dependent on the values of these concen-

trations for the calculation of the total capacity. To find the values, all the specimens with

untouched timber will be analysed in ARAMIS, providing a large amount of data to quantify

an accurate parameter.

The procedure in finding the different parameters, is the same as used to define the effec-

tive tension height, where sections in the desired area of analysis is created.

To determine the values of the strain concentrations for different amounts of untouched timber,

εH,j , which is used to calculate the additional carrying from the Hammock effect, the values

must be quantified in the specific stage where the limit of the allowed deformation is reached.

The permitted total deformation, was derived in the section about the effective height, and the

value was determined to equal 2.72 mm (Figure 7.22).

By analysing the strains in the y-direction on the side of the loading area in the given stage, it

is possible to determine a value for the generated concentrations for each specimen.

A simple way to describe how the strains in y-direction varies over the length of the speci-

mens, is to create a horizontal section extending over the entire top surface. This will provide

plots with given strain values both underneath and on the side of the loading area. Figure 7.36

shows how a section is created for specimen Lu200.

Figure 7.36: Horizontal section for specimen Lu200
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By creating a plot consisting of the strains in the y-direction along the sections, it is possible

to see if concentrations on the side of the loading area are generated or not. Figure 7.37 shows

the strains in the y-direction on the created section given in Figure 7.36.

Figure 7.37: Strains in y-directions along the top surface of the specimen - Specimen Lu200

From the results represented in Figure 7.37, distinct concentrations on the side of the loading

area are found. The magnitude of the concentration is in the range of 8%, a value that was

consistent for the specimens with untouched timber larger then 150 mm. This corresponds

to the results found by Aldvis Hardeng [8], where a value of 6% was found for an amount of

untouched timber equal to 157.5 mm

Distinct strain concentrations were also found for specimen Lu50, which has an amount of

untouched timber equal to 50 mm on both sides of the loading area. The magnitude of these

concentration were smaller, and in the range of 3%.

Figure 7.38: Strains in the y-direction along the top surface of the specimen - Specimen Lu50

75



7.1. CURRENT REGULATIONS

For the specimens with untouched timber equal to 30 mm, the tests showed a strain field with

no distinct concentrations on the side of the loading area. This also corresponds with previous

results found from tests conducted by Alvdvis Hardeng [8], that shows how these effects is

absent when the amount of untouched timber approaches the reference block. Hardeng found

that 67.5 mm was not enough to generate strain concentrations. This length is a little higher

than the one found by the image analysis in this thesis, where concentrations are generated for

lengths down to z0 = 50 mm.

From the results found in the sections above, it is possible to define domains with certain

values for the strain concentrations that are valid for different amounts of untouched timber. It

will also be given conservative values for the strain concentrations in the different domains, to

ensure that the capacity is not being overestimated. This leads to a value of the concentration

for partial effect that is valid for lengths of untouched timber between 50-150 mm. The lengths

needed to account for full effect, will be amounts larger than z2 = 150 mm. The different values

and critical lengths are summarized in Table 7.8

Case Lu [mm] εH,j [%] Effect

1 Lu ≤ 50 0 No

2 50 < Lu < 150 3.0 Partial

3 Lu ≥ 150 8.0 Full

Table 7.8: Strain concentration for different amounts of untouched timber
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7.2 Custom regulations

The various compression tests conducted in this thesis shows that a fracture capacity limited

to 1% plastic deformation could be seen as quite conservative. No distinct failure mechanisms

or visual cracks occurred before the total deformation reached a value in the range of 8-9 mm

underneath the loading area. Based on these results, a new failure limit will be defined equal

to 3% (0.03h) plastic deformation of the cross-section height (3 times larger than the current

regulations).

By allowing larger deformations, the parameters used to calculate the total capacity must be

checked. Because of this, new parameters must be found, generated from a plastic deformation

equal to 3%. The methods used to determine the values are equal to those showed for the

current regulation with 1%.

7.2.1 Parameters determined by the compression machine (INSTRON)

Height factor k2:

By allowing a plastic deformation equal to 3%, the following capacities were found by the

CEN-model:

h [mm] Fc,90[N ] fc,90[N/mm2]

30 36000 4.49

60 28000 3.50

90 (ref) 27500 3.43

120 27500 3.43

150 27000 3.37

Table 7.9: Compression capacity for different cross-section heights

Where

fc,90 =
Fc,90

b · lq
(7.9)

b = 89 mm and Lq = 90 mm.

By looking at the different capacities summarized in Table 7.10, the values do not increase

proportionally with the increase in allowed deformation. This is a result of load-deformation

curves that stabilize quickly after reaching the yielding point.
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The compressive strength found with the current and custom regulations are summarized and

compared in Table 7.10.

h [mm] Fc,90[N ] (3%) Fc,90[N ] (1%) Increase [%]

30 36000 35000 3 %

60 28000 26500 5 %

90 (ref) 27500 25500 7 %

120 27500 26000 5 %

150 27000 24500 9 %

Table 7.10: Comparison of the compression capacity for different fracture limits

The results show a slightly higher load with the custom regulations, which will lead to larger

allowed compressive strength in the capacity calculations. The same domains created with the

current regulations will be defined for this case as well.

To find the height factor, k2, the different capacities found with the new fracture limit is scaled

against the reference capacity found for the cross-section with height equal to 90 mm

Domain Height [mm] k2

1 ≤ 30 1.31

2 30-60 1.02

Ref 90 1.00

3 90-120 1.00

4 120-150 0.98

5 ≥ 150 1.00

Table 7.11: Height factor for the different domains

From the results given in Table 7.11, it shows how the capacity is independent of the chosen

cross-section height (in all cases except for the smallest height), and this does not change with

a less conservatively defined fracture limit. The values for the height factors are mainly the

same as the ones previously found with the current regulations, where the factor is significant

for cross-sections with small heights, but stabilizes quickly towards a value equal to 1.0 when

the height increases. By allowing a deformation equal to 3% of the height, it will not provide

different values for the height factors, since this is a factor scaled against a reference case with

the same increase in capacity, but it will give a larger value of the compressive strength fc,90.

Based on the result found from both the current and custom fracture limits, the

height factor k2, will receive a value equal to 1.0 for cross-sectional heights larger

than 30 mm, and 1.3 underneath this limit. These values are valid independently

of the chosen fracture limit.

78



7.2. CUSTOM REGULATIONS

Strength factor k1:

This factor is determined in the same way as previously shown, but by allowing a plastic

deformation equal to 3% of the height, this will provide new boundaries for the area underneath

the load-deformation curve. By using the CEN-model with the new fracture limit, it will give

the following values for the maximum allowed deformation, ∆max,j , for the different specimens:

Luj ∆max,j [mm]

0 4.46

30 5.02

50 5.58

70 5.15

100 5.70

150 5.05

200 5.60

Table 7.12: Deformation limits - Specimen Luj

Figure 7.39 shows how the maximum deformation is found for specimen R90 with the new

limits. By allowing a plastic deformation of the height equal to 3%, it leads to a deformation

value 0.03 · h = 0.03 · 90mm = 2.7mm. By conducting this procedure for all the specimens

with different amounts of untouched timber, it gives the restricted areas underneath the load-

deformation curves shown in Figure 7.40-7.45.

Figure 7.39: Allowed total deformation under the loading area - Specimen R90
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Figure 7.40: Total energy - Specimen Lu30 Figure 7.41: Total energy - Specimen Lu50

Figure 7.42: Total energy - Specimen Lu70 Figure 7.43: Total energy -Specimen Lu100

Figure 7.44: Total energy -Specimen Lu150 Figure 7.45: Total energy -Specimen Lu200

The parameters used in Voce Law to describe the different load-deformation curves, are sum-

marized in Table 7.13 (even though it is the same load-deformation curves that are used during

the calculation of the areas with the custom limit, the parameters in the Voce Law changes,

because of a larger analysis domain). The new values are determined in the same way by curve

fitting with Least Square Method.
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Luj C1 C2

30 50123 0.52

50 60744 0.39

70 54330 0.46

100 65973 0.34

150 53865 0.55

200 70661 0.33

Table 7.13: Parameters describing the material behaviour found by LSM

By inserting the parameters and limits given in Table 7.12 and 7.13 into Equation 7.10 and

7.11, the values of the total energy for the different specimens with a custom limit of 3% plastic

deformation are found.

Ej =

∫ ∆max,j

0
fj(∆)d∆ (7.10)

where

fj(∆) = C1 · (1− e−C2·∆) (7.11)

Luj Ej [J]

30 162312.0

50 200871.0

70 172743.0

100 209948.0

150 180173.0

200 215313.0

Table 7.14: Total energy - Specimen Luj

To determine the strength factor, k1, the total energy calculated in Table 7.14 for the different

specimens, are scaled against the value found for the reference case R90. With the new limit,

the total energy of the reference block received a value E0 = 92758.5 J. This value is calculated

from the area generated in Figure 7.46, with the parameters given in Table 7.15

R90 = Luj C1 C2

0 28414 0.72

Table 7.15: Parameters to describe the material behaviour found by LSM
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Figure 7.46: Total energy - Specimen R90

The strength factor, k1, that includes the additional capacity generated from various amounts of

untouched timber, is found for the different cases by dividing the total energy with the reference

energy E0. This results in the values given in Table 7.16.

k1,j =
Ej

E0
(7.12)

Luj k1

0 1.00

30 1.75

50 2.17

70 1.86

100 2.26

150 1.94

200 2.32

Table 7.16: Strength factor - Specimen Luj

A clear increase in capacity can be found for the cases with untouched timber versus the

reference case. By only adding 30 mm of wood on the side of the loading area, the bearing

capacity increases by 75%. The values show a tendency to increase with increased untouched

timber. Because of the small amount of tests conducted for the different specimens, there will be

some uncertainties in the measurements, which creates values that are not completely consistent

with this theory. By increasing the amount of tests, the strength factor will most likely give

more consistent values.
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The values of the strength factor k1, found from the two different fracture limits, remains quite

stable. This is a good property, because it allows the values to be used if different fracture

limits are used. The values found by the custom deformation limit, use a larger area of the

load-deformation curves, including a larger amount of the linear and non-linear area. This

makes it more suitable for capturing an accurate relationship between the different system con-

figurations. The parameters found by the current regulations become more uncertain, because

of a more inaccurate material behaviour in the start of the loading domain. In this domain the

specimens behave almost identically (the same initial stiffness), because of the lack of secure

data coming from few measurements.

The values of the strength factor found with the two different fracture limits are summarized

and compared in Table 7.17.

Current limit Custom limit

Luj k1 (1%) k1 (3%) Difference

0 1.00 1.00 0.0 %

30 1.79 1.75 2.0 %

50 2.34 2.17 7.3 %

70 1.75 1.86 6.5 %

100 2.46 2.26 8.0 %

150 2.01 1.94 3.6 %

200 2.43 2.32 4.3 %

Table 7.17: Comparison of the strength factor for different fracture limits

By increasing the amount of untouched timber beyond Lu200, the value of the strength factor,

k1, will most likely stabilize and converge towards a value in the range of 2.5. For the largest

specimens Lu200, it was only generated local fracture mechanisms underneath the loading area

for some of the tests, which implies that increasing the amount of untouched timber, will not

result in an increased contribution to the total capacity. Based on these assumptions, it is

possible to define limits for the strength factor, which applies to both a lower and upper case.

The lower limit for the strength factor k1, will receive a value equal to 1.0, which

represents the reference case without untouched timber on the side of the load.

The upper limit will be equal to 2.5, based on the assumption made in the previous

section, where the value found for Lu200 will be increased a certain amount to

account for the additional capacity of an increased sill length. The two limits will

be valid for cases where the amount of untouched timber is smaller than 30 mm

and larger than 250 mm, respectfully. This gives the values of the two parameters

x0 and x2, derived in Section 4.1.3. No tests have been conducted with untouched

timber lengths smaller than 30 mm, and to be on the conservative side of the ca-

pacity, the strength factor will be set equal to the reference case.
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For intermediate values in between the two limits, a linear representation will be used. The

starting point (kl) will be the strength factor found for specimen Lu30, which is equal to a

value in the range of 1.75. The upper value (ku), will be 2.5, which is the highest value of

the strength factor found by increasing the value derived for Lu200 by a small amount. By

changing the length of untouched timber (Lu), values of the additional strength factor k1 are

found, depending on which domain the lengths are valid in. Equation 7.13, is independent of

the inserted units, which gives values that do not change whether the desired unit is in meters

or millimetres.

k1 = kl +
ku − kl

x2 − x0
(Lu − x0) (7.13)

k1 =


1.0 Lu ≤ x0

1.75 + 0.75
x2−x0

(Lu − x0) x0 < Lu < x2

2.5 Lu ≥ x2

Figure 7.47, shows the result of modelling the strength factor as a linear function with the given

boundaries. By conducting more compression tests, the curves generated from the different

values of the strength factor for both fracture limits will most probably stabilize and align with

the linear function. The functions show a steady increase, but fluctuating as a result of the

inaccurate values generated from the small number of tests conducted.

Figure 7.47: Strength factor k1 for x0 < Lu < x2
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7.2.2 Parameters determined by optical analysis (ARAMIS)

Effective tension height hs:

As the result of a less conservative fracture limit, larger deformations of the sill will be allowed

than with the current regulations. The effective tension height will be determined in the same

way as previously shown, but with a larger allowed deformation underneath the loading area.

By using the CEN-model with a fracture limit equal to 3% plastic deformation, it will result in

a total allowed deformation equal to 4.62 mm (Figure 7.48).

Figure 7.48: Allowed total deformation - Specimen R90

To find a value of the effective tension height, hs, which represents the height that is effected by

the generated tension force on the side of the loading area, the correct stages need to be defined.

The correct stages for the different specimens will be the ones that have a total deformation

equal to 4.62 mm underneath the loading area. By using the same method as described earlier,

where sections are created, the different stages can be found.

Figure 7.49: Vertical sections to determine the correct stage
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Figure 7.50: Stage with the correct total deformation

Figure 7.49 and 7.50, are taken from the deformation analyses conducted on specimen Lu200,

and by comparing the stage number with the one previously found with the current limits, this

value has increased from 21 to 31. This is a result of the custom fracture limit being reached

later in the deformation process.

When the stages have been defined for the different specimens, sections will be created on

the side of the loading area, in order to determine the strains in the y-direction downwards in

the cross-sections.

By looking at the results from the analysis, the part of the cross-section height

that is experiencing significant strains in the y-direction is found to be in the top

20 mm for both cases. This value is a little higher than the one found with the

current fracture limits. This is a result of a greater amount of wood being mobi-

lized to carry the generated tension force, because of a larger deformation in the

loading area. Based on these results, the effective tension height, hs, will receive a

value equal to 20 mm with the custom fracture limit.

Strain concentrations εH,j:

The strain concentrations are also dependent on the amount of deformation underneath the

loading area. The custom limits allows a total deformation that is 4.62mm−2.72mm
4.62mm ≈ 40% larger

than the current regulations, and the effects of this on the concentrations should be analysed.

By using the same stages previously found in the determination of the effective tension height

with the custom limits, it is possible to determine the values of the strain concentrations and

the associated critical domains. This is done in the same way as described is Section 7.1.
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Horizontal sections are created along the upper part of the analysis area, which

provides the opportunity to determine the strain variations in the y-direction along

the top of the specimen. This method is carried out for all of the specimens. By

analysing the variations, it becomes apparent that the strain concentrations do not

seem to change significantly with the custom limit. Based on these results, the

values defined with the current regulations will also be applicable for the custom

limits.

7.3 Serviceability parameters

Based on the previously derived formula for calculating in serviceability state, different param-

eters and limits need to de defined. The calculation model is based directly on the material

behaviour in compression, by using the coherence between applied load and associated defor-

mations.

Simplified calculation method:

To describe the coherence between the applied load and deformations, functions that represent

the material behaviour will be generated. Voce Law has shown qualities that allows it to accu-

rately describes the behaviour of wood loaded in compression.

Since the material behaviour is quite different for specimens with and without untouched timber

on the side of the loading area, two separate formulas for the two cases will be created. The first

will be valid for sills with untouched timber less than 250 mm, which is the critical limit where

an increase of sill length no longer provides the system an increase in carrying capacity. The

second formula will apply for sills above this limit. The first case will be based on the material

behaviour of the reference block, which will provide conservative values. The second case will

be based on the specimens with untouched timber equal to 200 mm (Lu200). The behaviour

found for the second case, will also be on the conservative side, since the upper limit is valid

for lengths larger than 250 mm, which has a higher strength.

For the two cases, the functions describing the material behaviour, are found by curve fitting

with LSM, which gives the following results (Figure 7.51 and 7.52):

Figure 7.51: Function describing the mate-

rial behaviour - Specimen R90

Figure 7.52: Function describing the mate-

rial behaviour - Specimen R200
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By using the functions generated to describe the coherence between load and deformation for

the two cases, an expression for the total deformation dependent on the applied load can be

found. This leads to the following serviceability models for the two cases:

Lower case (Lu ≤ 250mm):

∆0 = − 1

C2,0
ln(1− Fc,90

C1,0
) < ∆0,max (7.14)

Upper case (Lu > 250mm):

∆2 = − 1

C2,2
ln(1− Fc,90

C1,2
) < ∆2,max (7.15)

It needs to be defined limits, ∆max, for the maximum allowed deformations underneath the

loading area. These serviceability limits should be in equilibrium with the fracture limits de-

fined in ultimate state, so that the allowed deformations do not violate the bearing capacity of

the system. These deformation limits are found by looking at the capacity calculations with

the CEN-model. The CEN-model calculates the compression capacity by allowing a given plas-

tic deformation of the height. By allowing a certain plastic deformation, it also allows large

amounts of elastic reversible deformations in the system. A serviceability limit for the total

allowed deformation, will be derived by looking at a combination of these two contributions.

This will provide limits that do not violate the Ultimate Limit State regulations.

The limits defining the allowed total deformations, ∆max, are strictly dependent on the chosen

fraction criterion. By using the current regulations with 1% plastic deformation of the height,

it will lead to the values given in Figure 7.53 and 7.54, and by allowing a custom deformation

of 3%, it results in the values given in Figure 7.55 and 7.56.

Figure 7.53: Allowed total deformation in

Serviceability Limit State (1%) - Case Lu <

250 mm

Figure 7.54: Allowed total deformation in

Serviceability Limit State (1%) - Case Lu >

250 mm
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Figure 7.55: Allowed total deformation in

Serviceability Limit State (3%) - Case Lu <

250 mm

Figure 7.56: Allowed total deformation in

Serviceability Limit State (3%) - Case Lu >

250 mm

Current (1%) Custom (3%)

∆0,max [mm] 2.72 3.55

∆2,max [mm] 4.62 5.60

Table 7.18: Allowed total deformations in SLS

According to the results of the compression tests, no fracture mechanisms are occurring prior

to a total deformation in the range of 8-9 mm. When this deformation value is reached, timber

starts to rise on both edges of the specimen, resulting in visual fracture mechanisms. Figure

7.57, shows how a specimen looks after a deformation underneath the loading area in the range

of 10 mm. When deformation limits are defined in serviceability states, they are chosen to

prevent visible and unfortunate deformations in the construction material, which may lead to

difficulties in the usage of the system or related parts. The material will not fail when reaching

these limits, but cracks and malfunctions can be generated. The limits found by using the

current regulations, are far below the range where these mechanisms occurs, which leads to

quite conservative results. By using the custom deformation limits, a larger total deformation

is allowed, and the values are getting closer to the critical limit of 8-9 mm.

Figure 7.57: Failure mechanisms after 10 mm deformation underneath the loading area
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The parameters in the serviceability state model given in Equation 7.16, are taken directly

from the material behaviour of the specimens tested in this thesis, which consists of a certain

wood type (Norwegian CE L40C≈GL32c). Since the compression properties varies between the

different types, separate material parameters, adapted to each case, must be generated. This

needs must be done for both all constructional timber types and glue-laminated types. All the

parameters are collected in a table, which provides the designer the opportunity to choose the

desired type of timber with the associated strength values. In this thesis, only the values for

timber type GL32c are derived, and these can be found in Table 7.19 and 7.20.

When calculating in serviceability state, the desired values are chosen from either Table 7.19

or 7.20, depending on the amount of untouched timber. These values are inserted into Equa-

tion 7.16. From this equation, the designer can determine the total deformation of the sill, by

inserting a value of the desired compression load, Fc,90.

The equation (Equation 7.16) used in the Serviceability Limit State calculations, has certain

restrictions. The value of the applied load perpendicular to the grain Fc,90, can not be larger

than the value of C1 for the different wood types. This will give undefined deformation values,

as a result of the term inside the logarithmic part of the equation (ln(x)) becoming negative.

∆ = − 1

C2
ln(1− Fc,90

C1
) < ∆max (7.16)

Lower case (Lu ≤ 250mm):

Lu < 250mm GL24c GL26c GL28c GL30c GL32c GL34c

C1 28813

C2 0.71

∆max [mm] (Current) 2.72

∆max [mm] (Custom) 3.55

Table 7.19: Parameters used in the Serviceability Limit State calculation for Lu ≤ 250 mm

Upper case (Lu > 250mm):

Lu > 250mm GL24c GL26c GL28c GL30c GL32c GL34c

C1 72330

C2 0.32

∆max [mm] (Current) 4.62

∆max [mm] (Custom) 5.60

Table 7.20: Parameters used in the Serviceability Limit State calculation for Lu > 250 mm
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Comments:

In Chapter 4, in the section about the derivation of the new Serviceability Limit State model,

it was proposed to use two different calculation models, one called Simplified Calculation Model

and the other More Accurate Calculation Model. The second model was derived to be able to

capture the elastic behaviour of the material when conducting the serviceability calculations.

By looking at the derived functions describing the material behaviour in Figure 7.51 and 7.52,

by using Voce Law, they are able to represent the entire deformation domain. Based on these

results, it was concluded that a separate model for the two cases was unnecessary. The cal-

culation model and parameters found during the derivation of the Simplified Method will be

adequate for both cases, and the More Accurate Calculation Model will not be used.

The height factor, k2, was also introduced in Chapter 4, as one of the parameter in the Ser-

viceability Limit State calculations. It was supposed to account for the change in capacity for

the different section heights. This was introduced because it was believed that the strength

would change significantly between the various heights, providing an effect that needed to be

accounted for when defining the deformation limits. As found during the analysis of the results,

the height did not affect the total capacity, and the height factor was therefore omitted from

the calculation model.

The parameters derived in Table 7.19 and 7.20, used to describe the material behaviour, are

taken directly from the load-deformation curves. It has been shown how the height of the cross-

section does not affect the material behaviour in any significant way, but no tests have been

conducted with variations in the loading length (Lq). This may be a factor that changes the

behaviour and coherence between the load and deformations. As the result of limitations in time

given in this thesis, this will not be tested and verified. The formula used for the Serviceability

State Limit calculations will therefore only be dependent of the amount of untouched timer and

the type of wood, and variations in width, height and loading length will not affect the final

results.
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Chapter 8

Test of calculation models

To verify the validity of the new models derived in this thesis, they will be tested through various

examples, and compared with the current calculation model. Examples will be constructed that

covers some of the different load situations encountered in today’s building methods. The models

will mainly be tested against variation in load length as well as the amount of untouched timber

on the side of the loading area, which are the parameters that contribute the most in changing

the capacity.

8.1 Ultimate Limit State (ULS)

Three examples with different loading lengths will be created. Within the examples, the calcu-

lation models are also tested against variations in untouched timber lengths. Parameters such

as height and width, will not have an impact on the results within the different calculation

models, and are therefore kept constant. At the end of each example, it will be presented a

summary, where the carrying capacity for each calculation model is compared. The three dif-

ferent examples will be calculated with both the current and the custom made regulations for

the fracture limit.

The value of the compressive strength used in the examples, will be the one derived in this

thesis, and not the value given in the documentation paper of the timber (Appendix C). The

characteristic compressive strength is defined as the values calculated for the reference case R90,

which equals fc,90,k = 3.18 MPa with the current regulations, and fc,90,k = 3.43 MPa with the

custom. By comparing the calculated value found with the current regulations in this paper

with the one given in the documentation in Appendix C (which is equal to 2.7 MPa), it gives

a 15% higher compressive strength.

The chosen value of the strength, fc,90, will not affect the final result, since this parameter

will be the same in both the new and current calculation model, and the results consists of a

comparison of the two. The chosen strength parameter will change the values of the final ca-

pacities, but not the difference in capacity between the calculation models, which is the desired

finding. All the examples will consist of a sill loaded perpendicular to the grain with a load in

the mid-span, with equal amounts of untouched timber on both sides of the loading area. The
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length, l1 (Figure 8.1), is supposed to be between two different loads on the sill, taken from the

current regulations. This length will be given a value equal to the distance from the applied

load and edge of the sill, a, which is the same as the length defining the amount of untouched

timber Lu.

Figure 8.1: Sill loaded perpendicular to the grain (EC5-1-1 length definitions)

8.1.1 Current regulations (1% plastic deformation)

Example 1:

In this example the loading length, l (Lq), is kept constant equal to 90 mm, while the amount

of untouched timber, a (Lu), varies. The different lengths are taken from Figure 8.1.

Case h [mm] b [mm] l=Lq [mm] a=Lu [mm] l1 [mm]

1 90 89 90 0 0

2 90 89 90 20 20

3 90 89 90 35 35

4 90 89 90 50 50

5 90 89 90 90 90

6 90 89 90 120 120

7 90 89 90 150 150

8 90 89 90 200 200

9 90 89 90 500 500

10 90 89 90 1000 1000

Table 8.1: Geometry and loading configurations - Case 1-10 (Example 1)

The method for calculating the compression capacity is the same for all cases 1-10, and therefore

only one complete calculation for one of the cases (Case 5) will be shown. The only thing that

separates the calculations, are the parameters taken from table 8.1. The example will first be

calculated with the current regulations given in Eurocode 5 part 1-1, and subsequently with the

two new capacity models derived in this thesis.

94



8.1. ULTIMATE LIMIT STATE (ULS)

Example

Compression capacity perpendicular to the grain with Eurocode 5 part 1-1:

(The text given in italic is taken directly from EC5-1-1 [13])

The following expression should be satisfied:

σc,90,d ≤ kc,90 · fc,90,d (8.1)

where

σc,90,d =
Fc,90,d

Aef
(8.2)

The effective contact surface perpendicular to the grain, Aef , is determined by looking at an ef-

fective loading length in the direction of the grain, where the actual loading length, l, is increased

on each side with a value up to 30 mm, but not more than a1, l or l1/2 (Figure 8.1).

The requirement l1/2 will not be taken into account, since this length is less than a, for smaller

lengths of untouched timber. The load will be distributed in the same length at both sides of

the loading area, and is therefore regulated by the distances to the edges. This leads to the

following expression:

Aef = b · [l +

2∑
i=1

∆li] (8.3)

∆li = min{30mm; ai; l} (8.4)

The values in Table 8.1, which belongs to Case 5, are inserted into Equation 8.4, and results in

a increased length at both sides of the loading area equal to:

∆li = min{30; 90; 90} = 30mm

This leads to the effective loading area:

Aef = 89 · [90 + 2 · 30] = 13350mm2

The value of kc,90 shall be put equal to 1.0, unless the conditions in the following section are

applicable. In those circumstances, the highest value of kc,90 can be used, but the value should

never exceed kc,90 = 1.75

For construction parts that rests on a continuous support, and where l1 ≥ 2h (Figure 8.1),

the following values of kc,90 is assumed:

kc,90 = 1.5 for glue-laminated timber

In Case 5, there is not enough untouched timber on the side of the loading area to satisfy

the requirement l1 ≥ 2h (90mm ≤ 2 · 90 = 180mm), and the factor kc,90 should therefore be

equal to 1.0.
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The design compressive strength fc,90,d, is found from the following formula:

fc,90,d = kmod
fc,90,k

γM
(8.5)

Where γM is a partial factor for the material properties, and kmod, a strength factor that takes

the effects of load duration and moisture content into account. The two parameters have the

following values:

γM = 1.15 (EC5-1-1: NA.2.4.1)

kmod = 0.8 (EC5-1-1: Table 3.1)

fc,90,d = 0.8 · 3.28

1.15
= 2.21MPa

By inserting the derived values into Equation 8.1 and 8.2, the maximum load,Fc,90, that can be

applied on the timber sill is calculated:

Fc,90,d ≤ kc,90 · fc,90,d ·Aef = 1.0 · 2.21 · 13350 = 29532N = 29.5kN

By conducting the same calculation procedure as shown for Case 5, for all the cases 1-10, it leads

to the following values of the different parameters that is inserted into the capacity formula:

Case ∆li[mm] Aef [mm2] kc,90

1 0 8010 1.0

2 20 11570 1.0

3 30 13350 1.0

4 30 13350 1.0

5 30 13350 1.0

6 30 13350 1.0

7 30 13350 1.0

8 30 13350 1.5

9 30 13350 1.5

10 30 13350 1.5

Table 8.2: Parameters to calculate the compression capacity for Case 1-10

The strength factor kc,90, does not take a value larger than 1.0, after Case 7. This is a result

of the condition l1 ≥ 2h, not being satisfied for the shorter sill lengths, since the amount of

untouched timber is too small. For a cross-sectional height equal to 90 mm, it requires l1 > 180

mm, which is only satisfied for Case 8-10. When this condition is satisfied, the regulations in

EC5-1-1, gives the possibility to increase kc,90 to a value equal to 1.5.
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The effective loading area, Aef , will vary for the shortest sills, but as the length increases, it

will converge towards a constant value. This because of the additional loading lengths, ∆li,

being limited to a maximum value equal to 30 mm on both sides (Equation 8.4).

By inserting the values found in Table 8.2, into Equation 8.1 and 8.2, the design load, Fc,90,

can be calculated for the different cases.

Tilfelle Fc,90[N ] Fc,90[kN ]

1 17720 17.7

2 25595 25.6

3 29533 29.5

4 29533 29.5

5 29533 29.5

6 29533 29.5

7 29533 29.5

8 44299 44.3

9 44299 44.3

10 44299 44.3

Table 8.3: Design load perpendicular to the grain for Case 1-10

Table 8.3, shows how the design load converges toward an upper value equal to 44.3 kN, for the

example with loading length equal to 90 mm. The capacity will not increase with longer sills,

since the effective area has reached its limit, and the strength factor is constant equal to 1.5

when the condition l1 ≥ 2h is satisfied.

Example

Compression capacity perpendicular to the grain with new calculation models

(Model 2)

The following expression should be satisfied:

σc,90,d ≤ k1 · k2 · fc,90,d (8.6)

where

σc,90,d =
Fc,90,d

A
(8.7)

For a system with height h = 90 mm, it will result in a value of the height factor k2 equal to

1.0. As derived in Section 7.2.1.

The value of the factor that accounts for the variations in strength between systems with

different amounts of untouched timber, k1, is determined by the conditions given on the next

page. The lengths x0 and x2 measure 30 mm and 250 mm, respectfully (see Section 7.2.1).
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k1 =


1.0 Lu ≤ x0

1.75 + 0.75
x2−x0

(Lu − x0) x0 < Lu < x2

2.5 Lu ≥ x2

In Case 5, the amount of untouched timber, a = Lu, equals 90 mm on both sides of the loading

area. This gives a value of the strength parameter k1 equal to:

k1 = 1.75 +
0.75

250− 30
(90− 30) = 1.95

A is the area where the applied load acts on the sill, and is equal to the width b, multiplied by

the loading length l (lq).

A = 90 · 89 = 8010mm2

The design compression strength, fc,90,d, is found in the same way as defined in Eurocode 5

part 1-1:

fc,90,d = kmod
fc,90,k

γM
= 0.8 · 3.28

1.15
= 2.21MPa

By inserting the derived parameters into Equation 8.6 and 8.7, the maximum load Fc,90, can be

calculated:

Fc,90,d ≤ k1 · k2 · fc,90,d ·A = 1.95 · 1.0 · 8010 = 34633.59N = 34.6kN

The procedure used to calculate the bearing capacity of the timber sill with the new model

(Model 2), is done for all the cases 1-10, with the values given in Table 8.4

Case A[mm2] kc,90

1 8010 1.0

2 8010 1.0

3 8010 1.77

4 8010 1.82

5 8010 1.95

6 8010 2.06

7 8010 2.16

8 8010 2.33

9 8010 2.50

10 8010 2.50

Table 8.4: Parameters to calculate the compression capacity for Case 1-10
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Since the design load is only being distributed over the actual loading area, A, this parameter

will stay the same in all cases (Table 8.4). The strength factor, kc,90, will vary with the amount

of untouched timber, a (Lu), and take a different value for the different cases. For Case 1 and

2, the strength factor will be equal to 1.0, as a result of the distance to the edges being less

than the lower limit x0 = 30 mm. For the longer sills, such as Case 9 and 10, the upper limit

x2 = 250 mm will be reached, and the factor stabilizes towards the upper value of 2.5.

By inserting the different parameters found in Table 8.4 into Equation 8.6 and 8.7, it gives

the following values of the maximum load perpendicular to the grain for Case 1-10:

Case Fc,90[N ] Fc,90[kN ]

1 17720 17.7

2 17720 17.7

3 31311 31.3

4 32217 32.2

5 34634 34.6

6 36446 36.4

7 38258 38.3

8 41278 41.3

9 44299 44.3

10 44299 44.3

Table 8.5: Design load perpendicular to the grain for Case 1-10

The capacity will get significantly larger with increasing sill length (Table 8.5). This is a result

of the strength factor growing in value when the amount of untouched timber increases. As the

sill reaches a certain length, the capacity will converge towards a value equal to 44.3 kN, since

the upper limit of the additional strength factor is reached.

Example

Compression capacity perpendicular to the grain with new calculation model

(Model 1)

The following expression should be satisfied:

σc,90,d ≤ fc,90,d + fH,90,d (8.8)

where

σc,90,d =
Fc,90,d

Aef
(8.9)
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The expression for the Hammock effect is equal to:

fH,90,k =
ku · Es,Θ · εH,j · hs

C
(8.10)

The effective loading area, Aef , is calculated in the same way as the current method given in

Eurocode 5 part 1-1, where the increase in bearing length on both side of the loading area

equals:

∆li = min{30; 90; 90} = 30mm

This results in an effective loading area:

Aef = 89 · [90 + 2 · 30] = 13350mm2

The requirement that needs to be satisfied to be able to include the extra bearing capacity

coming from the Hammock effect, fH,90,d, is that the ratio between the loading length, l (Lq),

and the allowed deformation underneath the loading area, ∆h, is larger than 30 (Section 4.1.2).

With the current regulations, the maximum allowed deformation equals 2.72 mm, which gives

a ratio equal to:

l

∆h
=

90

2.72
= 33.1 > 30

Since the ratio is larger than 30, the additional capacity coming from the hammock effect can

be included in the calculation of the total capacity.

The load location factor, ku, is taken from the two cases underneath:

lu =

1 untouched timber on one side

2 untouched timber on two sides

Since the load is acting in the mid-point of the sill, it consists of a system with untouched timber

on both sides of the loading area, which gives a load location factor ku = 2.

The value of the strain concentration that is generated on the side of the loading area, εH,j , is

determined by looking at the amount of untouched timber, and taken from Table 8.6.

Case a (Lu) [mm] εH,j [%] Effect

0 a ≤ 50 0 No

1 50 < a < 150 3 Partly

2 a ≥ 150 8 Full

Table 8.6: Strain concentrations for the different domains with untouched timber

Case 5, has an amount if untouched timber, a (Lu), equal to 90 mm, which leads to Case 1 in

Table 8.6, and a strain concentration value equal to εH,1 = 3%.

The modulus of elasticity, Es,Θ, and the effective tension height, hs, is derived and determined

in Section 4.1.2 and 7.1.2, and equal to 800 N/mm2 and 15 mm, respectfully.
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The factor taking the loading length into account, C, is determined by using Equation 8.11 or

directly from graph 8.2.

C = Lq ·
√

1

16
· ( Lq

∆h
)2 + 1 (8.11)

Figure 8.2: The Hammock Constant

For a loading length, l (Lq), equal to 90 mm, and a deformation limit ∆h=2.72 mm, it leads to

the following value of the Hammock constant :

C = 90 ·
√

1

16
· ( 90

2.72
)2 + 1 = 750mm

By inserting the derived values into Equation 8.10, it leads to the following value of the char-

acteristic additional capacity coming from the Hammock effect :

fH,90,k =
2 · 800 · 0.03 · 15

750
= 0.96MPa

The design values of the two capacities, fc,90,k and fH,90,k, are found by including the factor

that accounts for the load duration and moisture content: γM and kmod, respectfully.

fc,90,d = kmod ·
fc,90,k

γM
= 0.8 · 3.18

1.15
= 2.21MPa

fH,90,d = kmod ·
fH,90,k

γM
= 0.8 · 0.96

1.15
= 0.67MPa

By using Equation 8.8 and 8.9, the maximum load, Fc,90, is calculated.

Fc,90 < (fc,90,d + fH,90,d) ·Aef = (2.21 + 0.67) · 13350 = 38449N = 38.5kN
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The calculation process shown for Case 5, is conducted for all the cases 1-10, which leads to the

following values for the different parameters included in the capacity calculations:

Case ∆li [mm] Aef [mm2] C [mm] εH,j [%]

1 0 8010 750 0

2 20 11570 750 0

3 30 13350 750 0

4 30 13350 750 3

5 30 13350 750 3

6 30 13350 750 3

7 30 13350 750 8

8 30 13350 750 8

9 30 13350 750 8

10 30 13350 750 8

Table 8.7: Parameters to calculate the compression capacity for Case 1-10

The Hammock constant, C, used in the capacity calculations to account for the Hammock effect,

gets a constant value equal to 750 mm, for all cases, since the loading length is constant (equal

to 90 mm). The values of the strain concentrations are determined based on the amount of

untouched timber, and will vary dependent on the case. For Case 1-3, the lower limit equal to

50 mm will not be satisfied, which leads to a value of the strain concentration equal to 0%. For

Case 4-6, there will be enough untouched timber to get a partly effect, which results in a value

equal to 3.0%. For the remaining cases, a full effect of the strain concentration can be used, as

a result of the distance from the load to the edges being larger than the upper limit equal to

150 mm.
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By inserting the calculated values found in Table 8.7 into the capacity Equation 8.8 and 8.9,

and including the load duration and moisture content factors, it leads to the following design

values of the total bearing capacities for the two parts:

Case fc,90,d [N] fH,90,d [kN]

1 2.21 0.0

2 2.21 0.0

3 2.21 0.0

4 2.21 0.67

5 2.21 0.67

6 2.21 0.67

7 2.21 1.78

8 2.21 1.78

9 2.21 1.78

10 2.21 1.78

Table 8.8: Design values of the compression capacity for Case 1-10

When the system has a small amount of untouched timber, the bearing capacity mainly depends

on the pure compressive strength, fc,90,d. The size of this value is the same for all the cases,

since it is determined by the choice of timber quality. As the length of the sill increases, the

additional capacity coming from the Hammock effect is mobilized, which gives a larger total

bearing capacity. By using Equation 8.8 and 8.9, the value of the maximum compression load

perpendicular to the grain can be calculated for the different cases.

Case Fc,90,d [N] Fc,90,d [kN]

1 17720 17.7

2 25595 25.6

3 29533 29.5

4 38449 38.4

5 38449 38.4

6 38449 38.4

7 53310 53.3

8 53310 53.3

9 53310 53.3

10 53310 53.3

Table 8.9: Design load perpendicular to the grain for 1-10

The design load will converge against a value equal to 53.3 kN, since the strain concentration

will not increase for cases with untouched timber larger than 150 mm, and the effective loading

area has also stabilized at a certain value.
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Comparison of the calculation models:

From Example 1 with loading length equal to 90 mm, the results show some variation in the

total capacity for the different calculation models. By comparing the results found using the

current regulations in EC5-1-1, with the calculation model based on energy (Model 2), the new

model allows a greater compressive load where the amount of untouched timber is restricted,

with the exception of Case 2. Case 2 gets a smaller capacity, because of the conservative ap-

proach where all cross-sections with untouched timber less than 30 mm are calculated with

a value of the strength factor equal to 1.0. Up to this limit, the section is assumed to have

the same strength properties as the reference block with a fully loaded top surface. For the

longer sills, where the capacity is no longer restricted by the amount of untouched timber, the

maximum design load will converge towards the exact same value for the two models (44.3 kN).

This shows how the generated strength factor, k1, is able to account for the distribution of the

applied load, and a calculation method where an effective area is used, is unnecessary. This

effect was taken directly into account when calculating of the total energy of the various systems.

Comparing the results from the calculation model based on strains (Model 1) with the cur-

rent regulation in EC5-1-1, shows the same capacities for the first three cases. This is the

result of a capacity that only relies on the pure compressive strength for both methods when

the amount of untouched timber is below a certain limit. As the additional effects starts to

mobilize, the total capacity found with the new model based on strains, will be a little higher

than the ones found using the regulations given in EC5-1-1. It will get an overall design load

that is 23% higher, with the exception of Case 7. In this case, the value is 45% higher with the

new calculation model. This is a result of the factor including the Hammock effect not taking

a value larger then 1.0 with the current regulations, before the amount of untouched timber is

larger then 180 mm. The limit that allows a full effect of the strain concentrations with the

new regulations is 150 mm.

EC5-1-1 Model 2 Model 1

Case Fc,90 [kN] Fc,90 [kN] Fc,90 [kN]

1 17.7 17.7 17.7

2 25.6 17.7 25.6

3 29.5 31.3 29.5

4 29.5 32.2 38.4

5 29.5 34.6 38.4

6 29.5 36.4 38.4

7 29.5 38.3 53.3

8 44.3 41.3 53.3

9 44.3 44.3 53.3

10 44.3 44.3 53.3

Table 8.10: Design load perpendicular to the grain for the different capacity models
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Figure 8.3: Design load perpendicular to the grain for the different calculation models

Example 2:

In this example the loading length, l (Lq), will be kept constant equal to 150 mm, while the

amount of untouched timber, a (Lu) will vary. The different lengths can be found in Figure 8.1

Case h [mm] b [mm] l=Lq [mm] a=Lu [mm] l1 [mm]

1 90 89 150 0 0

2 90 89 150 20 20

3 90 89 150 35 35

4 90 89 150 50 50

5 90 89 150 90 90

6 90 89 150 120 120

7 90 89 150 150 150

8 90 89 150 200 200

9 90 89 150 500 500

10 90 89 150 1000 1000

Table 8.11: Geometry and loading configurations - Case 1-10 (Example 2)

The calculation procedures are the same as shown in Example 1, where only the values in the

capacity formulas change. Only the final results will be presented in this example, and the

parameters used in the calculation of the capacities can be found in Table 8.11. This example

has a loading length equal to 150 mm, and to be able include the additional capacity coming

from the Hammock effect, the condition for the ratio between the loading length and the total

deformation needs to be satisfied.

l

∆h
=

150

2.72
= 55.1 > 30
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8.1. ULTIMATE LIMIT STATE (ULS)

The condition is satisfied, and the Hammock effect can be included in the capacity calculations.

A loading length equal to 150 mm, gives the following value of the Hammock constant:

C = 150 ·
√

1

16
· ( 150

2.72
)2 + 1 = 2073mm

Comparison of the calculation models:

By using the current and the new capacity models to calculate the maximum compressive load

for Case 1-10, it leads to the following results:

EC5-1-1 Model 2 Model 1

Case Fc,90 [kN] Fc,90 [kN] Fc,90 [kN]

1 29.5 29.5 29.5

2 37.4 29.5 37.4

3 41.3 52.2 41.3

4 41.3 53.7 45.9

5 41.3 57.7 45.9

6 41.3 60.7 45.9

7 41.3 63.8 53.4

8 62.0 68.8 53.4

9 62.0 73.8 53.4

10 62.0 73.8 53.4

Table 8.12: Design load perpendicular to the grain for the different capacity models

By comparing the results generated from the new calculation model based on energy (Model 2)

with the model given in Eurocode 5 part 1.1, it gives a higher capacity for all cases except Case

1 and 2. Case 1 will get the same values since it relies only on the pure compressive strength,

while Case 2 will get a smaller capacity as a result of the conservative approach of defining a

limit length for the additional capacity equal to 30 mm of untouched timber. The design load

will converge towards a value with the current regulation equal to 62 kN, while the new model

based on energy (Model 2) will get a value equal to 73.8 kN. This will give an increases capacity

equal to 20% for the longest sills.

The new model based on strains (Model 1), will lead to a bearing capacity that is closer to

the values found with the current regulations in EC5-1-1. With an amount of untouched timber

in the range of 50-150 mm, a small increase in capacity is generated. For the longest sill lengths,

the design load will converge towards a value that is 14% smaller.
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Figure 8.4: Design load perpendicular to the grain for the different calculation models

Example 3:

In this example the loading length, l (Lq), is kept constant equal to 50 mm, while the amount

of untouched timber, a (Lu), will vary between the different cases. The different lengths can be

found in Figure 8.1

Case h [mm] b [mm] l=Lq [mm] a=Lu [mm] l1 [mm]

1 90 89 50 0 0

2 90 89 50 20 20

3 90 89 50 35 35

4 90 89 50 50 50

5 90 89 50 90 90

6 90 89 50 120 120

7 90 89 50 150 150

8 90 89 50 200 200

9 90 89 50 500 500

10 90 89 50 1000 1000

Table 8.13: Geometry and loading configuration - Case 1-10 (Example 3)

Also in this example, only the final results of the capacities for the different cases will be

presented. The lengths used to calculate the different parameters are taken from Table 8.13.
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Comparison of the calculation models:

For smaller loading lengths, the calculation method given in EC5-1-1 will result in a larger total

capacity for most of the cases in comparison with the model based on energy (Model 2). This is

a result of the large contribution that the effective area, Aef , gives for smaller section. The cur-

rent regulations allow the applied load to be distributed over a loading length that is increased

as much as 30 mm on each side. The additional length that the load is distributed over, (2 ·∆li)
is 2/3 of the original loading length for this example, and it will provide a significantly larger

effect on the total capacity, than the strength factor will give in the new calculation model. The

design load will converge towards a value that is 24% higher with the current regulations than

with the model based on energy.

When comparing the results found from the model based on strains (Model 1) with the ones

found with the model presented in EC5-1-1, it will give equal design loads for Case 1-7. This

is because the capacities are only dependent on the pure compression strength for both models

at these sill lengths, and the same definition is used for the effective area.

With a loading length equal to 50 mm, the condition based on the ratio between the load-

ing length and the total deformation will not be satisfied.

l

∆h
=

50

2.72
= 18.4 < 30

This will give a capacity that only relies on the pure compressive strength for the cases with the

new calculation model based on strains (Model 1). Contributions from additional effects such

as the Hammock effect can not be included in the capacity calculations, since the condition

is violated. This will lead to a capacity that is 33% smaller for longest sills with the new

calculation model based on strains compared to the current regulations.

EC5-1-1 Model 2 Model 1

Case Fc,90 [kN] Fc,90 [kN] Fc,90 [kN]

1 9.8 9.8 9.8

2 17.7 9.8 17.7

3 21.7 17.4 21.7

4 21.7 17.9 21.7

5 21.7 19.2 21.7

6 21.7 20.2 21.7

7 21.7 21.3 21.7

8 32.5 22.9 21.7

9 32.5 24.6 21.7

10 32.5 24.6 21.7

Table 8.14: Design load perpendicular to the grain for the different calculation models
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Figure 8.5: Design load perpendicular to the grain for the different calculation models

8.1.2 Custom regulations (3% plastic deformation)

The methods used to calculate the compression capacity for the different models will not change

with a custom defined fracture criterion. The main difference is that the value of the compres-

sion strength, fc,90, and the allowed total deformation underneath the loading area will receive

different values. As defined in Section 7.2 the custom limits gives a characteristic compressive

strength, fc,90,k, equal to 3.43 MPa, and an allowed deformation of 4.62 mm.

The same examples (Example 1, 2 and 3) generated to calculate the capacity with the cur-

rent regulation will be used in this section as well. Since the method of calculating the design

loads, Fc,90, is identical as previously shown, only the final values of the different examples will

be presented. In cases where the calculations methods change, this will be commented on.
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Example 1

This example had a loading length, l (Lq), equal to 90 mm, and the following design load is

calculated with the custom regulations:

EC5-1-1 Model 2 Model 1

Case Fc,90 [kN] Fc,90 [kN] Fc,90 [kN]

1 19.1 19.1 19.1

2 27.6 19.1 27.6

3 31.9 33.8 31.9

4 31.9 34.8 31.9

5 31.9 37.4 31.9

6 31.9 39.3 31.9

7 31.9 41.3 31.9

8 47.8 44.5 31.9

9 47.8 47.8 31.9

10 47.8 47.8 31.9

Table 8.15: Design load perpendicular to the grain for the different calculation models

Figure 8.6: Design load perpendicular to the grain for the different calculation models

By looking at the comparison between the design values calculated with EC5-1-1 and the model

based on energy (Model 2), the ratio between the two will not change. The only factor that

changes with the custom regulations for the two models, is the value of the compressive strength,

and this change is equal for both cases. The values of the design load perpendicular to the grain

calculated for the two models, is 7.3% higher then the ones given in Table 8.10, as a result of

the increased value of compressive strength, fc,90.
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The main change that comes from using the custom fracture limit, is the design values found with

the calculation method based on strains (Model 1). Since the allowed deformation underneath

the loading area has changed to 4.62 mm, it will generate a violation of the condition of the

ratio between the loading length and deformation for this example.

l

∆h
=

90

4.62
= 19.4 < 30

This leads to a total capacity where the load is carried only by the pure compressive strength

of the cases. This will lead to values of the bearing capacity that are lower with the custom

limits (3%), than with the current regulations (1%) for the model based on strains (Model 1).

Example 2

This example has a loading length, l (Lq) equal to 150 mm, and the calculation of the capacity

leads to the following design loads for the different cases:

EC5-1-1 Model 2 Model 1

Case Fc,90 [kN] Fc,90 [kN] Fc,90 [kN]

1 31.9 31.9 31.9

2 40.3 31.9 40.3

3 44.6 56.3 44.6

4 44.6 57.9 54.8

5 44.6 62.3 54.8

6 44.6 65.5 54.8

7 44.6 68.8 71.7

8 66.9 74.2 71.7

9 66.9 79.6 71.7

10 66.9 79.6 71.7

Table 8.16: Design load perpendicular to the grain for the different calculation models

Figure 8.7: Design load perpendicular to the grain for the different calculation models
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As described in Example 1 with the custom fracture limit, the ratio between the values found

with EC5-1-1 and the model based on energy (Model 2) will not change. The main aspect that

changes in this example, is the value of the design load calculated with the model based on

strains (Model 1). With a loading length equal to 150 mm, the condition based on the ratio

between the loading length and deformation will be satisfied.

l

∆h
=

150

4.62
= 32.47 > 30

Since the condition given above is satisfied, the additional bearing capacity coming from the

Hammock effect can be included. By allowing a total deformation underneath the loading area

equal to 4.62 mm, it will change the value of the Hammock constant, C, that is included in the

capacity model based on strains (Model 1).

C = 90 ·
√

1

16
· ( 90

4.62
)2 + 1 = 1227mm

By allowing a larger deformation, the factor C will take a smaller value, and the contribution

from the Hammock effect will increase (see Equation 8.11). This will lead to a higher total ca-

pacity with the new calculation model based on strains compared to the model given in EC5-1-1.

Allowing larger deformations underneath the loading area it requires larger loading lengths

to be able to include the additional capacity coming from the Hammock effect. This leads to an

extra safety of the calculation of the bearing strength, if the custom limits should be allowed

to be used instead of the current regulations. However, when the loading length has reached

a certain size, and the ratio condition is satisfied, the capacity will be significantly larger with

the custom regulations than with the current ones. This because the contribution from the

additional capacity coming from the Hammock effect will increase with a less conservative de-

formation limit (will give a smaller value of the Hammock constant, which will result in a larger

contribution from the additional term fH,90).
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Example 3

This example has a loading length, l (Lq) equal to 50 mm, and the calculated design values

equals:

EC5-1-1 Model 2 Model 1

Case Fc,90 [kN] Fc,90 [kN] Fc,90 [kN]

1 10.6 10.6 10.6

2 19.1 10.6 19.1

3 23.4 18.8 23.4

4 23.4 19.3 23.4

5 23.4 20.8 23.4

6 23.4 21.8 23.4

7 23.4 22.9 23.4

8 35.0 24.7 23.4

9 35.0 26.5 23.4

10 35.0 26.5 23.4

Table 8.17: Design load perpendicular to the grain for the different calculation models

Figure 8.8: Design load perpendicular to the grain for the different calculation models

With a loading length equal to 50 mm, the ratio condition between the loading length and

deformation will not be satisfied, and the additional capacity from the Hammock effect can

not be included. This will lead to a total capacity that is only dependent on the compressive

strength fc,90,d, and values that are smaller for the new calculation model based on strains,

compared with what the model in EC5-1-1 gives. The ratio between the model based on energy

and the current model in the Eurocode, will stay the same.
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8.2 Serviceability Limit State (SLS)

The new model for calculating in Serviceability Limit State will also be tested through con-

structed examples. This will provide an overview of the validity and usage of the model. The

formula used in the calculations, is not dependent on the cross-section height, width or loading

length, and the results change only by altering the amount of untouched timber, Lu and applied

load Fc,90. The three examples will have the following values:

Example a (Lu) [mm] Fc,90 [kN]

1 100 10

2 200 26

3 500 60

Table 8.18: Geometry and applied load for the constructed examples

Example 1

This example will have an amount of untouched timber equal to 100 mm, which means that the

lower case needs to be used in the serviceability calculations. By inserting the correct values

from Table 7.19, into Equation 7.19, it results in the following deformation:

∆ = − 1

0.71
ln(1− 10000

28813
) = 0.57mm < ∆max

By applying a load perpendicular to the grain with magnitude 10 kN, it will produce defor-

mations that is lower than the defined limit, ∆max, found with both the current- and custom

regulations, with values respectfully ∆max = 2.72mm and ∆max = 3.55mm (Table 7.19). Which

means that the system can withstand the applied load of 10 kN, without violating the service-

ability limits.

Example 2

In this example, the lower case given in Table 7.19 needs to be used, since Lu is less than 250

mm. By applying a compressive load perpendicular Fc,90 = 25kN , it results in a deformation

underneath the loading area equal to:

∆ = − 1

0.71
ln(1− 26000

28813
) = 3.10mm < ∆max

The deformation exceeds the limit that is defined with the current regulation, which is equal

to 2.72 mm. By using the custom regulations, the deformation will be within the serviceability

limit, and a load perpendicular to the grain equal to 28 kN can be applied to the system.
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Example 3

For the last example the amount of untouched timber will be equal to 500 mm, which is above

the critical limit of 250 mm. This means that the upper case in Table 7.20 can be used in the

Serviceability Limit State calculations.

By applying a load equal to 60 kN, it gives the following deformation:

∆ = − 1

0.32
ln(1− 60000

72330
) = 5.53mm < ∆max

For the upper case the deformation limit equals ∆max = 4.62mm with the current regulations,

and 5.60 mm for the custom. This means that an applied load with magnitude 60 kN, violates

the current regulations, but is within the given limit defined by the custom regulations.
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Chapter 9

Discussion

Various parameters have been derived in this thesis, which have been used to calculate the com-

pression capacity of timber sills loaded perpendicular to the grain. The values of the parameters

used in the capacity calculations, are only meant to give an overview of the different sizes, and

more research needs to be conducted to be able to ensure that the correct values have been

found. Some of the strength factors have been determined by looking at the load-deformation

curves from the different tests directly. Since only a few number of tests were conducted for each

type of specimen, a certain degree of inaccuracy in the results must be expected. Increasing the

amount of tests will result in more accurate parameters that represent the material behaviour

better.

No test has been conducted with varying loading lengths or cross-sectional widths during this

thesis. These two parameters can introduce other failure effects that have not been taken into

account in the calculation models derived in this thesis. When the loading length is decreased

to a very small area, it may lead to a failure where the load is cutting rapidly through the

sill, which can lead to a significantly smaller capacity of the system. There may also be some

problems stemming from the choice of cross-sectional width. When the width is decreasing, it

can result in an instability, wherein the capacity is limited by failure mechanisms out of the

plane, instead of just the deformations underneath the loading area.

Tests where the load is acting on the edges of the sill, have not been performed during this

thesis. In the calculation model based on strains (Model 1), it has been introduced a load loca-

tion factor that accounts for this configuration, but whether the right values and assumptions

have been made should be verified through tests. In the new calculation model based on energy

(Model 2), no factor accounting for this situation has been introduced. By assuming a value

of the strength factor equal to 1 (Reference case), it will give quite conservative results of the

capacity, and a new factor should therefore be derived for this type of configuration.

The different values of the factors derived from the image analysis in ARAMIS, also have some

uncertainties. These are factors that make a significant contribution to the additional capacity

coming from the Hammock effect, and are therefore important to determine accurately. To be

able to get as accurate values of the tension height and strain concentrations as possible, all the
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specimens were analysed. Many of the specimens showed a consistent result with equal values,

and based on these results the parameters were determined. There are also uncertainties related

to the chosen value of the Module of Elasticity. This parameter needs to be examined closer,

so as to ensure that the correct value is used. A value twice the size of the value perpendicular

to the grain was chosen in this paper.

The models derived in this thesis are mainly based on empirical assumptions, where factors

have been multiplied with the pure compression strength, to represent the additional bearing

capacity from variation in heights, sill lengths and loading lengths. For the capacity model

based on strains (Model 1), a mechanical system based on equilibrium is introduced to describe

the additional strength coming from the Hammock effect. By modelling this effect as a rope

system, it will result in a large variation of the additional contribution, when factors such as

the loading length is changed. This was taken into account by introducing a ratio condition.

This prevented the capacity coming from the Hammock effect to converge towards unrealistic

values.

The various factors derived in this thesis, were found by conducting compression tests on wood

where the annual rings were arranged in a certain direction. From previous tests conducted, it

shows how the strength varies with the annual direction [10]. Since the factors accounting for

the additional capacities, coming from changes in load and specimens configurations, are scaled

parameters, it will most probably lead to the same values as derived in this thesis. When it

comes to the definition of the pure compressive strength, this might be a parameter that will

change with the orientation of the annual rings, since the load-deformation curves changes. No

explanations has been found as to how the Eurocode copes with effects such as these, and from

which annual orientation the strength has been determined.
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Chapter 10

Conclusion

Two new models have been introduced to calculate the compression capacity of wood perpen-

dicular to the grain in this thesis. The two models have their origins in different approaches,

which leads to some differences in the capacity calculations. The problem with the current

regulations in the Eurocode, was the inability to describe the change in bearing capacity in an

accurate way for different geometries and load configurations. With the current regulations, the

capacity gets quite large compared to the new models when the loading length is small, since

rules allow an increase of bearing length up to 30 mm on both sides of the loading area. For

small loading lengths, this may result in an increase in the bearing length that is larger than the

actual loading length. The model based on strains, uses this same definition of the bearing area,

but the total capacity is regulated by the contribution from the additional factor fH,90. Since

the model based on energy (Model 2) does not include a larger bearing length in the capacity

formula, it will give results that are not affected by effects like these. The increase in capacity

coming from the distribution of the applied load was included directly in the strength factor, k1,

which is based on the total energy needed to get a certain deformation underneath the loading

area. For both of the new calculation models, this will result in bearing capacities that are

lower than the ones calculated with the Eurocode regulations for smaller loading lengths.

The results from the tests conducted to find the effects of different cross-sectional heights on

the total bearing capacity, showed that the height did not contribute to the overall strength in

any significant way for systems with height larger than 30 mm. This is in agreement with the

conclusions drawn by Blass and Görlacher.

For larger loading lengths, the model based on energy (Model 2) will give a capacity that

is higher than the ones calculated with the current regulations. With the current calculation

model in Eurocode 5, the traditional building method here in Norway does not fulfil the re-

quirements, which is odd since no major faults or problems have been recorded in these types

of connections. It is therefore reasonable to believe that the new calculation model gives a more

correct description of the bearing capacity of a timber sill loaded perpendicular to the grain,

than the current model. One of the goals of this thesis, was also to derive a calculation method

that in a better way included the different geometry and load configuration of sills. This is

taken more into account by the new calculation model, which can be seen in the results from
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the generated examples. The model based on energy provides a stable increase in the capacity

for various amount of untouched timber, while the current model increases erratically when the

additional factors are included.

This thesis suggests changing the fracture criterion by allowing a deformation that is three

times larger than the current regulations. By allowing a tripling of the deformation limit, it

resultes in an increase of the compression strength, fc,90, equal to 7%. The reason for this

small increase, is that wood loaded perpendicular to the grain has a material behaviour (load-

deformation curve) that stabilizes quickly when entering the plastic domain. Indications have

also been found that the compressive strength given in the documentation of the wood used

in this thesis is quite conservative. The value calculated in this paper is 15% larger, and by

allowing the custom limits as well, it will give a compressive strength that is 22% higher then

what is used today. This may be one of the problems with the current calculation method,

which leads to regulations that the Norwegian building methods are not currently satisfying.

The benefit of using the new failure criterion, is that it allows a greater deformation underneath

the loading area. From the analysis of the material behaviour generated from the compression

test, it was shown how the material can withstand deformation up to 8-9 mm without any

failure mechanisms occurring. The current regulations allow a deformation in the range of 2-3

mm, which is quite conservative, taken the material behaviour into account. The same result

was also found by Riberholt [10], and he suggested that the limits should be increased by a

factor of 10. This is a little higher than the value found in this thesis (a factor of 3 was found in

this thesis, which could be used and still be within the deformation limits where the first failure

mechanisms occurred). By allowing a deformation three times larger, it will give more tolerance

when calculating in Serviceability Limit State, but the contribution to the bearing capacity in

Ultimate Limit State will be less significant. The factors taking the system configurations into

account, derived in the new calculation models, were not affected in any significant way by the

change in deformation limit.

The model derived for Serviceability Limit State calculations has its limitations, but it pro-

vides the opportunity for a designer to chose a desired deformation and load in a connection,

and check if it is within the valid limits. In today’s regulations, there are no distinct formulas

to use in serviceability state calculations, and this state is only accounted for by changing some

parameters in the Ultimate Limit State equation. The calculation model derived in this thesis

in serviceability state will provide results that are not violating the bearing capacity of the

timber, and the calculated deformations will always be on the safe side of the fracture limit.
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10.1. FURTHER WORK

10.1 Further work

In order to determine more accurate values for the different parameters in the new calculation

models, a larger number of compression tests should be conducted. Tests should also be per-

formed where the load is acting on the edges, to verify if the assumptions made in this thesis

are correct for this type of configuration.

Different wood types should be tested, so as to see if the suspicion regarding the compres-

sive strength given in the current regulations being too conservative is true, which was found

to be the case for Norwegian CE G40C (GL32c) in this thesis.

It should also be verified if the new capacity models derived in this thesis are applicable for

other systems than continuously supported timber sills, such as systems with compressive forces

acting on both sides.

Large amounts of data describing the behaviour of a timber sill loaded perpendicular to the

grain have been generated during this thesis, which can be used in further research. This data

is stored at the Department of Structural Engineering (KT) at the Norwegian University of

Science and Technology (NTNU).
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Chapter 11
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11.1. APPENDIX A - TEST SET-UP

11.1 Appendix A - Test set-up

Based on the new capacity models derived in this thesis, several parameters needed to be de-

termined. At the Department of Construction Engineering at NTNU, it has during this thesis

been conducted compression tests of timber sills in full-scale. The cross-section geometry of the

specimens, has been chosen based on earlier research, and from own assumptions to be able to

determine the various parameters need in the new capacity models

Large amounts of data on the behaviour of timber sills loaded in compression perpendicular to

the grain was generated during this thesis. This data consists of strains, stresses and defor-

mations patterns in x-,y-,z-direction during different load steps, and found by using ARAMIS,

which is an analysing tool that uses images to describe the material behaviour. Data describing

the material behaviour was generated both underneath and on the side of the loading area.

The notations of the axes used in the analysis of the specimens is chosen so the x-axes fol-

lows the longitudinal direction for the wood, y-axes the traverse and z-axes the direction of the

width of the specimens. The duration of the tests is chosen so that the fracture limit is reached

within 300 seconds (5 min), a value recommended in NS-EN 408:2010+A1:2012 [16].

Material:

Wood type: GL32c (Norwegian CE L40C)

Temperature: 20◦C

Relative humidity: 65%

Equipment:

Compression machine: INSTRON 5900 Series (100 kN)

Image analysis: ARAMIS - Optical 3D Deformation Analysis

Spray paint: White: CRC Crick 130, Black: Hard Hat Rust-Oleum 750◦C

Execution:

Reference block

Duration:10 min

Total deformation: 20 mm

Deformation speed: 2 mm/min

Images recorded: 120

Image intervals: 1 image each 5 seconds

Sill

Duration: 15 min

Total deformation: 30 mm

Deformation speed: 2 mm/min

Images recorded: 150

Image intervals: 1 image each 7 seconds
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11.1. APPENDIX A - TEST SET-UP

Specimens:

(All lengths in the following tables are given in millimetre [mm])

Specimen H Lq Lu L B Amount

R30-i 30 0 90 90 89 4

R60-i 60 0 90 90 89 4

R90-i 90 0 90 90 89 5

R120-i 120 0 90 90 89 4

R150-i 150 0 90 90 89 4

Total amount of tests: 21

Specimen H Lq Lu L B Amount

Lu30-i 90 90 30 150 89 3

Lu50-i 90 90 50 190 89 5

Lu70-i 90 90 70 230 89 3

Lu100-i 90 90 100 290 89 3

Lu150-i 90 90 150 390 89 3

Lu200-i 90 90 200 490 89 3

Total amount of tests: 20
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11.2. APPENDIX B - STAGES (ARAMIS)

11.2 Appendix B - Stages (ARAMIS)

To be able to find the correct values of the different parameters used in the new capacity

model based on strains (Model 1), it was defined stages where the allowed total deformation

underneath the loading area was generated for the different specimens. The stages used for the

different specimens are summarized in the table underneath.

Current regulations Custom regulations

Lu Stage Stage

30-1 25 40

30-2 21 33

30-3 17 27

50-1 22 34

50-2 19 31

50-3 22 44

50-4 16 28

50-5 22 34

70-1 18 32

70-2 22 34

70-3 16 29

100-1 24 50

100-2 21 48

100-3 25 36

150-1 23 35

150-2 21 32

150-3 no result no result

200-1 24 36

200-2 21 33

200-3 21 32
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11.3. APPENDIX C - NORWEGIAN CE L40C

11.3 Appendix C - Norwegian CE L40C

The type of timber used in this thesis is Norwegian CE L40C, which has approximately the

same strength properties as GL32c given in NS-EN 1194 [14].
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