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SUMMARY

This thesis describes the development of three decision support models for
long-term investment planning in restructured power systems. The model
concepts address the changing conditions for the electric power industry,
with the introduction of more competitive markets, higher uncertainty and
less centralised planning. Under these circumstances there is an emerging
need for new planning models, also for analyses of the power system in a
long-term perspective. The thesis focuses particularly on how dynamic and
stochastic modelling can contribute to the improvement of decision making
in a restructured power industry. We argue that the use of such modelling
approaches has become more important after the introduction of competitive
power markets, due to the participants increased exposure to price
fluctuations and economic risk. Our models can be applied by individua
participants in the power system to evaluate investment projects for new
power generation capacity. The models can also serve as a decision support
tool on aregulatory level, providing analyses of the long-term performance
of the power system under different regulations and market designs.

In Chapter 1, we give a brief introduction to the ongoing development
towards restructuring and liberalisation of the electrical power system. A
discussion of the operation and organisation of restructured power systems
is also provided. In Chapter 2, we look more specifically at different
modelling approaches for expansion planning in electrical power systems.
We aso discuss how the contributions in this thesis compare to previous
work in the field of decision support models for long-term planning in both
regulated and competitive power systems. In Chapter 3, we develop a power
market simulation model based on system dynamics. The advantages and
limitations of using descriptive system dynamics models for long-term
planning purposes in this context are also discussed. Chapter 4 is devoted to
anovel optimisation model which calculates the optimal investment strategy
for a profit maximising investor considering investments in new power
generation capacity. The model is based on real options theory, which is an
aternative to static discounted cash flow evaluations of investments projects



under uncertainty. In the model we represent load growth as a stochastic
variable. A stochastic dynamic programming algorithm is applied in order to
solve the investment problem. Prices and profits are calculated in a separate
model, whose parameters can be estimated based on historical data for load,
prices and installed capacity in the power system. In Chapter 5, we extend
the stochastic dynamic optimisation model from Chapter 4, so that the
investor now can choose between two different power generation
technologies to invest in. An alternative representation of the power market
is also implemented, which makes it possible to use either a profit or a
social welfare objective in the optimisation. With this model we can
compare the optimal investment decisions, and the dynamics of investments,
prices and reliability, which follow from centralised and decentralised
decision making.

The main scientific contributions in the thesis lie in the combined use of
economic theory for restructured power systems and theory for optimal
investments under uncertainty. With an explicit representation of the power
market, the dynamic investment models can identify profit maximising
investment strategies under different regulations and market designs. The
use of physical state variables in the models also facilitates analyses of the
long-term consequences for the power system, which result from the
optimal decentralised investment decisions. Decision support models for
expansion planning in the regulated power industry do not address the
aspect of competition and decentralised decision making. At the same time,
long-term uncertainties and their impact on optimal investment decisions are
rarely represented in planning models for the competitive industry. The
stochastic dynamic models in this thesis therefore provide a new framework
for long-term analysis of investments and prices in restructured power
systems.

Potential applications of the investment models are demonstrated in a
number of illustrative examples in the thesis. Through the analyses in these
examples we have gained increased insight into the complex dynamics of
prices, investments and security of supply in competitive power systems.
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Chapter 1 INTRODUCTION

“The more | see, the more | see thereisto see”
John Sebastian

The importance of a dependable electrical power system is ever increasing
in the modern world of today. Almost all aspects of society are dependent
on electrical power in one way or the other to function properly. At the same
time, the technical complexity of power delivery increases, as new
technologies are being introduced into power systems with growing demand
and increasing geographical scope. The technical and societal changes
nourish the ongoing debate about how the electrical power system should be
organised, in order to best meet the various demands it serves in the society.
Different structures for power system organisation are aso being
implemented in various parts of the world. This thesis will shed some light
into some of the long-term challenges regarding the continued reliance on
electrical power asa primary energy carrier.

In the introductory chapter we first discuss two fundamental drivers for
changesin the electrical power system. Then we provide a short overview of
the different participants involved in the operation of the electrical power
system, their interaction and how they are regulated. Furthermore, we
identify which aspects of this complex system that are addressed in this
thesis. Finaly, an outline of the thesis is provided along with the main
scientific contributions in our work.

1.1 Two Fundamental Driversfor Changesin the Power
System

Two fundamental trends in society are important drivers in the long-term

development of the electrical power system. The first trend is the demand

for cost efficiency, which has triggered a wave of deregulation and

liberalisation initiatives in various industries that used to be operated under

regulation (e.g. aviation, railway, telecommunication, gas, and electricity).
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The second trend is the increased public awareness of the environmental
consequences caused by the increasing use of energy in the world. This
aspect drives the search for new and cleaner technologies to generate
electricity. The two trends, economic efficiency and environmental
responsibility, contribute to change the conditions under which the
participants in the electrical power system operate. The objective behind
power system liberalisation is to increase the competition, and thereby also
the economic efficiency in the operation of the electrical power system. One
important consegquence of the liberalisation is that the traditional regul ated
utilities shift their focus from cost minimisation to profit maximisation in
the segments of their operation where competition is introduced. At the
same time, uncertainty plays a more prominent role, as stochastic factors are
immediately reflected in the power market’s spot prices. Thisisin contrast
to the regulated system, where uncertainties very rarely have an effect on
the regulated tariffs. Another general effect of the corresponding
restructuring of the power industry, which can aso add to the increased
uncertainty, is a higher degree of decentralised decision making in the
system. The increased environmental concern is mainly reflected in
regulations whose aim is to curb polluting emissions from power generation.
Tradable certificates for renewable power generation and limits, quotas, and
taxes on emissions from power plants are examples of such environmental
regulations. While the drive towards competitive markets in general induces
fewer regulations in the system, the drive towards less environmental impact
tends to introduce more regulations.

1.2 Operation and Organisation of Restructured Power
Systems'

The shift towards liberalised and competitive power markets has led to a
major change in how electrical power systems are being operated and
organised. Electrical power systems are large-scale, integrated, and complex
engineering systems which need a certain level of centralised coordination
to function. Besides, electric power has a set of specia features which
makes it different from most other commodities that are traded in
competitive markets. The list of special features includes instant and
continuous generation and consumption, nonstorability, high variability in
demand over day and season, and nontraceability (i.e. a unit of consumed

! The various expressions that are frequently being used to describe the change in how
electrical power systems are organised can be somewhat confusing. Deregulation is a term
that fits best to the ongoing reorganisation of power systems in the US, where the traditional
regulatory structure has been privately owned utilities under public regulation. In contrast,
the European tradition has been to have publicly owned utilities where the regulation has
followed more from the direct public ownership. The terms restructuring and liberalisation
are therefore more general expressions for the reorganisation of the power systems that
takes place in different parts of the world, and these terms are used throughout this thesis.

-2-
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electricity can not be traced back to the actual producer). At the same time
electricity is an essential good for society, and we know that blackouts with
huge detrimental effects can occur if the system is not maintained under
control. Furthermore, generation and transmission of electricity are highly
capital intensive businesses. Large up-front investments can easily deter
new participants from entering the market, and thereby prevent efficient
competition. It is therefore obvious that special attention is essential in the
process of liberalising and restructuring the electrical power system. There
is currently no real consensus among researchers and industry practitioners
about what is the ideal organisation of a liberalised market for electricity.
The optimal solution will necessarily depend on the physical character of
the power system in question, and different market designs are implemented
in various parts of the world. The purpose of this section is not to give an
extensive presentation of al the aspects of the different market designs.
However, we want to give an overview of the main participants that are
typically involved in the planning and operation of a restructured power
system, and how the participants interact and are regulated (Figure 1.1).
With such an overview it is easier to understand the scope and limitations of
the work presented in this thesis.

Generation Transmission Distribution Load

Trans.
provider

| |
| v

System .
Monopoly ~——-—> T/D Tariffs
T/D Regulator l

Ancillary services - - - - - - -

Bilateral contracts

I —

| T

. :

G '
Market

|

I

I

I

~
Power exchange
Competition r
|
v
G/S Regulator Wholesale prices ----- > Supply prices

e o e —_— e — e —— —_——
Figure 1.1 Illustration of the main participants involved in electric power delivery in a
restructured power system.
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Figure 1.1 shows a simplified picture of the interaction between the most
important participants in a fully liberalised power system, with competition
on the wholesale and supply levels. The organisation of the power system
can be split into two separate parts, which are operated under different
regulatory regimes. The transmission and distribution of electric power are
natural monopolies, and usually subject to strict public regulation. The cost
of operating the transmission and distribution system is therefore transferred
to the end users in terms of tariffs. On the other hand, generators and end-
users have open access to the grid and operate in a competitive market. The
wholesale price of electric power is settled through market mechanisms, and
transferred to end users through the supply prices. In order to facilitate such
an arrangement the traditional utilities must be unbundled, i.e. the
generation and supply parts are separated from transmission and
distribzution. The main participants in the system are briefly described
below”.

1.2.1 Transmission and Distribution

System operator

The system operator plays a very important role in the coordination and
operation of the power system, and is responsible for always keeping supply
equal to demand. Trading between generators and end users in the power
market provides equilibrium between expected supply and demand.
However, in order to keep the balance in real time under various
contingencies, the system operator needs to purchase so caled ancillary
services. Thisis further discussed in section 1.2.3. Congestion management
and transmission pricing are also the responsibilities of the system operator.

Transmission provider

The transmission provider owns and operates the high voltage transmission
grid in the power system. The system operator and the transmission provider
can be the same entity, like in the Nordic countries, where the system
operators own the main grids in the respective countries. However, the grid
can also be owned by separate companies and coordinated through an
independent system operator (1SO), as is frequently the case in the US. The
costs related to running the transmission grid (investments, operating costs,
transmission losses etc.) are recovered from the transmission tariff.

2 For a detailed description of power system operations for the regulated and competitive
power industry, see llic and Galiana [1] chapter 2. Wangensteen [2] gives a comprehensive
description of power system economics, with special attention to the restructured power
system in Scandinavia.
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Distribution company (DistCo)

The distribution companies are responsible for operating the lower voltage
grids, and ensure that end users have access to their local network. Thisis
also a monopoly service and total costs for investment and operation of the
distribution grid is reflected in the distribution tariff.

T/D Regulator

Transmission and distribution (T/D) are regulated as natural monopolies.
The T/D regulator controls that there is open accessto the T/D grid, and aso
regulates the tariffs and revenues for the transmission provider and the
distribution companies.

1.2.2 Generation and Supply

Generators

The generators are responsible for feeding sufficient electricity into the grid.
With open access to the network there is wholesale competition between
generators of various technologies and ownership. The generators bid their
power generation into the market, either through an organised power
exchange or viabilateral contracts.

End users

The end users usually participate in the power market through suppliers.
Competition on the supply level ensures that the end users can buy their
electricity from which supplier they want. Large scale customers with real
time metering can aso be able to participate directly in the wholesale
electricity markets, by submitting their bids to the power exchange or
directly to a generator.

Suppliers

Suppliers represent end users in the wholesale market for electricity. Their
bids into the market reflect the preferences of their customers. While the
distribution company takes care of the physical transfer of power to the end
users, the suppliers are responsible for the financial transactions between
end users and generators. The metering of the end users is sometimes also
the responsibility of the supplier. However, in the Norwegian system the
distribution companies are mandated to take care of the metering.

Market operator

The market operator is responsible for organising a public power exchange.
A range of different products will typically be traded at the power exchange,
from physical day ahead contracts to financial forward contracts with
delivery several years into the future. Bilateral contracts serve as
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supplements to the contracts traded at the power exchange. A description of
the products traded at the Nordic power exchange, Nord Pool, which is a
separate entity owned by the system operators in Norway and Sweden, is
provided in Appendix A3 In some other systems, for instance in the
Northeast US (PIM, New York, New England), the system and market
operator is the same entity.

G/S Regulator

Regulation is still needed, even if the supply and demand for electric power
is organised through a competitive market. An important responsibility for
the generation and supply (G/S) regulator is to define rules for how the
power market is operated. This could for instance be in terms of deciding
time resolution and curtailment policy in the close to real time physical
markets for electricity. Furthermore, the G/S regulator is aso responsible
for preventing that participants can dominate the market and exercise market
power. The regulation of G/S and T/D could be accomplished by the same
regulatory body. However, this is not necessarily the case. In Norway there
are two different entities involved in regulating the monopolistic and the
competitive part of the electric power system.

The list presented here of participants in the competitive part of the power
system is by now means exhaustive. Brokers and traders will for instance
play important roles in maintaining liquidity for the products traded in the
power market. Some of the participants in the power market also depend on
separate balance responsible entities to keep track of the difference between
scheduled and real time power consumption (or generation). The balance
responsible entity serves as an intermediary between the market participant
and the system operator.

1.2.3 Ancillary Services

The term “ancillary services’ is an expression for the set of system services
that the system operator relies on in order to maintain real-time balance and
security of supply in the power system. Different definitions exist for what
is included in the ancillary services, and the exact list of services will also
depend on the physical characteristics of the power system®. However, the
provision of operating reserves together with frequency and voltage control
through balancing of real and reactive power in the system are aways
important elements of these services. The ancillary services are placed

3 Appendix A also gives a brief history of the power system restructuring in Scandinavia, and
presents an empirical analysis of prices in Nord Pool’s spot and futures markets.

A hydro-dominated power system with a high fraction of generating units that can adjust
their output on very short notice will typically need a different set of ancillary services than a
thermal system with a majority of slowly responding generators.

-6-
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between monopoly and competition in Figure 1.1. Some of the ancillary
services, such as the instant balancing of real power in the system, can be
organised through a market mechanism. However, a problem when it comes
to introducing full competition in the provision of ancillary services is that
the system operator is usually the only participant in the power system that
can coordinate and determine the demand for these services in rea time.
While competition can be introduced on the supply side, it is difficult to
create a market for ancillary services with an active and decentralised
demand side. The cost of providing ancillary services therefore tends to be
reflected in the transmission and distribution tariffs, although some of the
costs could also be determined through competition.

1.2.4 The Balance between Competition and Regulation

Based on the description so far we see that the electrical power system is a
demanding system to control, not only from an engineering perspective, but
aso from and economic and regulatory point of view. There is a
fundamental trade-off between the use of competition and regulation in
order to provide cost efficiency and lower environmental impact, and at the
same time maintain the security of supply in the power system (Figure 1.2).

Regulation

- Centralised decisions
- Regulated tariffs
- Cost minimisation
- Full information
- Low uncertainty

Competition

- Decentralised decisions
- Competitive prices
- Profit maximisation
- Limited information

- High uncertainty

Cost efficiency
Low emissions

Security of supply

Figure 1.2 Illustration of the balancing trade-off between competition and regulation in the
electrical power system.

Figure 1.2 can serve to illustrate trade-offs between competition and
regulation in severa parts of the electrical power system. Some of the most
important trade-offs are:

- Establishing an appropriate line of separation between the monopolistic
and competitive parts in the operation of the power system (Figure 1.1).
Thisis particularly relevant for the organisation of ancillary services.
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- Design of market rules that ensure efficient economic short-term
operation of the electrical power system. Correct locational price signalsand
market power mitigation are important topics in this respect.

- Implementation of market rules and regulations that provide sufficient
incentives for investments in the power system. Such incentives are crucial
for the long-term security of supply.

- Design of incentives which ensure that environmental considerations are
taken into account in operation and expansion of the system. This is
necessary to lower the environmental impacts of power generation.

1.2.5 New Challengesfor the Participantsin the Power System

All the participants in the electrical power system will need to adapt to the
changing regulative environment in which the system is operated. As
illustrated in Figure 1.2, the participants that are making the shift from a
regulated to a competitive regime will need to change their focus from cost
minimisation to profit maximisation. This is the case for generators and
suppliers in the restructured power system. Appropriate procedures for risk
management now become more important as these participants are exposed
to competitive prices with increased volatility. Participants in transmission
and distribution will also be affected by increased uncertainty, since future
decisions concerning investments in the power system are less predictablein
a system with decentralised decision making. Long-term planning methods
should be updated accordingly. The main challenge for authorities and
regulators is to design a system with the correct balance between
competition and regulation. The ultimate goal is to end up with an electrical
power system where cost efficiency and low pollutions are achieved,
without compromising the security of supply.

It is obvious that the participants in the restructured electrical power
system need to adjust their planning methods in order to adapt to the
changing environment in which they are operating. This has been pointed
out by several authors (e.g. Hobbs [3] and Dyner and Larsen [4]). At the
same time there is also a need for developing mathematical models that can
provide better decision support under the new planning conditions.

1.3 Scope and Limitations of the Thesis

The discussion so far in this chapter illustrates the range of complexities
involved in the organisation and operation of liberalised and restructured
electrical power system. Naturally, this thesis only covers a limited part of
all the challenges that the various participants in the system are facing.
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The work presented in this thesis focuses on the competitive part of the
restructured power system, as illustrated by the lower box in Figure 1.1. Our
main attention is on investments in new power generation capacity, and on
the long-term balance between supply and demand in restructured power
systems. In a competitive power market the electricity prices are supposed
to provide signals for investments in new power generation capacity.
However, prices and investments depend on the rules and regulations that
govern the market. In this thesis we study the long-term effects of
environmental regulations (e.g. CO,-taxation), direct investment incentives
(e.g. capacity payments or subsidies) and market design (e.g. price caps).
We also analyse how limited competition and high barriers to entry for new
participants can possible influence investment levels, prices and system
reliability. However, a number of important aspects are also left out of the
analyses. For instance, we do not consider how the general rules for taxation
of power generation companies income influence profitability and
investment behaviour. Corporate issues related to restrictions on capital and
optimal equity/debt ratios are also left out of the analyses. We simply
assume that sufficient capital at a certain interest rate is always available
when favourable conditions for investment occur in the market. In addition,
inflation is dealt with by using real interest rates in the investment models.

The objective in this thesis is to use mathematical modelling as a tool to
increase the understanding of the complex dynamics of investments and
prices in liberalised power systems. We develop a set of decision support
models that generation companies can make use of in order to improve their
investment strategies in the new competitive power systems. We are
particularly concerned with the power generation companies increased
exposure to uncertainty, and how this affects their optima investment
strategies. The decison support models can be used to find optimal
strategies for investments in new power generation capacity, but they can
also simulate the development of supply and demand in the power system
over a multi-year period. Hence, the models can also serve as a decision
support tool for regulators that want to analyse the effect of various market
designs and regulations.

The mathematical models presented in this thesis builds upon a number of
simplifying assumptions. We are mainly concerned with modelling of the
economic interaction between electricity prices and investments in new
power generation plants. Decommissioning of existing plants is an
important aspect which is not taken explicitly into account in our analyses.
Less emphasisis aso given to the representation of all the physical relations
that determine the power flow between the different components in the
power system. Transmission and distribution constraints are for instance
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disregarded, although they can have a mgor impact on the prices at
constrained locations in the grid. The implementation of ancillary services
can also influence the profitability of investmentsin new power generation,
but this is not covered in extensive depth in the analysis presented here.
Furthermore, the operation of the power plants is ssmply modelled with the
assumption that units can be switched on and off according to their marginal
costs. Inter-temporal constraints are neglected. Most of the modelling efforts
are focused on the dynamics of supply and demand for electricity, and how
new investments depend on the resulting prices in the power market.
However, the model frameworks presented in this thesis are of a flexible
nature, and can easily be extended to take into account at least some of the
more technical aspects that are mentioned here.

1.4 Thesis Outline

After this brief introduction, we look more specifically at different
modelling approaches for expansion planning in electrical power systemsin
Chapter 2. We aso discuss how the contributions in this thesis compare to
previous work in the field of decision support models for long-term
planning in both regulated and liberalised power systems. In Chapter 3, we
develop a power market simulation model based on system dynamics. The
advantages of using system dynamics models for planning purposes in this
context are also discussed. Chapter 4 is devoted to a new stochastic dynamic
optimisation model which can calculate optimal timing of investments in
new power generation assets for a profit maximising investor in the power
market. The model is based on rea options theory, which is an aternative to
the use of static net present value evaluations of investment projects. The
real options theory is presented in the beginning of the chapter, with focus
on relevant applications to asset valuation in power markets. In Chapter 5,
we extend the stochastic dynamic optimisation model from Chapter 4, so
that the investor now can choose between two different power generation
technologies to invest in. An alternative representation of the power market
is aso implemented, which makes it possible to use either a profit or a
socia welfare objective in the optimisation. With this model we can
compare the investment dynamics which follows from centralised and
decentralised decision making. Illustrative examples are provided for all the
model concepts that are presented in the thesis. In the case studies in
Chapter 3 and Chapter 4 we use the proposed models to analyse expansion
projects which are currently relevant in the Norwegian power system.

In the appendices we have added four conference papers that have been
written during this doctoral project. These papers can be read independently
from the rest of the thesis. The first two appendices present material which
is not extensively covered in the main text, since the content is sightly on
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the side of the main topics in our work. Appendix A and Appendix B are
still referred to at relevant places in the text. The contents of Appendix C
and Appendix D are incorporated into Chapter 3 and Chapter 4 respectively.
The two papers give a compact presentation of the decision support models
that are presented with more detail in the main chapters.

1.5 Main Scientific Contributionsin the Thesis

The main scientific contributions in the thesis lie in the combined use of
economic theory for restructured power systems and theory for optimal
investments under uncertainty. With an explicit representation of the power
market, the dynamic investment models can identify profit maximising
investment strategies under different regulations and market designs. The
use of physical state variables also facilitates analyses of the long-term
consequences for the power system, which result from the optimal
decentralised investment decisions. Decision support models for expansion
planning in the regulated power industry do not address the aspect of
competition and decentralised decision making. At the same time, long-term
uncertainties and their impact on optimal investment decisions are rarely
represented in planning models for the competitive industry. The stochastic
dynamic models in this thesis therefore provide a new framework for long-
term analysis of investments and prices in restructured power systems.

The specific contributions of the three decision support models proposed
in the thesis can be briefly expressed as follows:

- Development of a descriptive system dynamics model for long-term
analysis of demand, prices, and investments in different power generation
technologies in a competitive power market.

- Formulation of the expansion planning problem under uncertainty for a
decentralised profit-maximising investor in the power market. Devel opment
of a mathematical model based on real options theory and stochastic
dynamic programming to solve the problem.

- Extension of the stochastic dynamic optimisation model to also calculate
optimal investments under a social welfare objective, and thereby
facilitating comparison of optima investments under centralised and
decentralised decision making.

Possible applications of the three models are illustrated in the case studies
provided in the thesis. A number of interesting results also arise from these
illustrative examples. These results are presented in detail throughout the
chapters and in the conclusion of the thesis.
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Chapter 2  Decision SupPoRrT
MODELS FOR POWER
GENERATION
EXPANSION PLANNING

In this chapter we discuss planning methods and decision support models
for expansion planning and long-term analysis of electrical power systems.
First, we describe a number of planning methods that were developed for
the regulated power industry. Particular attention is paid to multi-criteria
trade-off analysis and how this planning concept can be adjusted to better fit
the conditions in restructured power systems. We also discuss new and
dternative planning methods that can contribute to improve decision
making in competitive power markets. We then look more specifically at a
set of general attributes for decision support models, and explain how they
can address the changing planning conditions for the power industry. A list
of model propertiesis presented, and used to illustrate how the new decision
support models presented in this thesis compare to more traditional planning
models. The discussion of model properties is also useful in order to
understand how our model concepts can provide increased value to decision
makers in the restructured electrical power industry. A final comment is
made about the similarities between the problem of investing in new power
generation under uncertainty, and the hydropower production planning
problem.

2.1 The Power Generation Expansion Planning Problem

The genera power generation expansion planning problem has at |east three
important dimensions that must be evaluated during the project assessment
phase. Firstly, the project type must be considered, i.e. choice of technology
and capacity size for the new plant. Secondly, the timing of the investment
must be evaluated. Thirdly, the location of the new plant must also be
decided. A full project evaluation is a large and complex task, which
requires the use of various planning methods and decision support models.
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In this thesis we are mainly concerned with the first two of these
dimensions, while the question of optimal location in the electrical power
system is not treated in any depth. The focus in our research is on
developing mathematical models that are better capable of providing
decision support in competitive power markets. As discussed in Chapter 1
the restructuring of the electrical power system has drastically changed the
conditions under which the electrical power industry is operating, and this
must also be taken into account in the planning methods and decision
support models.

2.2 Long-Term Planning Methods under Regulation and
Competition

We have seen that the planning conditions for the regulated electric power
industry, with stable prices, centralised decision making and access to full
information resulted in low uncertainty for the participants in the system
Figure 1.2. Under these conditions, forecasting and optimisation are ideal
long-term planning methodologies, and these methods were also frequently
used in the regaled power industry, as pointed out by Dyner and Larsen [4].
Various planning techniques have been developed in order to optimise
electricity supply systems under traditional regulation. We briefly present
some common techniques below, with particular attention to the use of
multi-criteria methods. A description of a Scandinavian project which builds
upon theory for multi-criteria decision making is also included in Appendix
B. At the end of this section we discuss how the competitive industry can
respond to the new conditions by applying alternative planning methods.

2.2.1 Generation Expansion and | ntegrated Resour ce Planning

The traditional objective in power generation expansion planning was to
minimise the cost of accomplishing required expansions of generation
capacity. The focus was almost entirely on the supply-side of the power
system, while demand was simply assumed to follow a forecasted growth
rate. As a response to both increasing cost of electricity supply and also
environmental constraints the concept of integrated resource planning was
developed. While the objective of the traditional expansion planning was to
meet demand for electricity at least cost, the principal goa in integrated
resource planning is to meet the demand for energy services at least cost
(Swisher et a. [5]). Hence, integrated resource planning also considers
options on the demand side, such as energy efficiency programs and
demand-side management, in order to find the optimal configuration of the
power system. The concept of integrated resource planning was originally
developed for the regulated utilities in the US. However, the same
methodology can aso be applied on different geographical and
organisational levels. Integrated resource planning has been used for
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planning purposes from the local distribution level to national analyses of
regulatory policies for the energy sector.

2.2.2 Multi-Criteria Trade-Off Analysis

The provision of energy services has a fundamental impact not only on the
economy, but aso on the environment and on the society in general.
Conflicting objectives frequently arise in long-term infrastructure planning
within the energy sector, since many interest groups are affected by the
resource decisions. Planning methods that take into account severa of these
objectives are referred to as multi-criteria decision making methods. Multi-
criteria methods are frequently applied for different planning purposes in the
electrical power sector, for instance in combination with capacity expansion
or integrated resource planning. The objective for the multi-criteria methods
is to help decision makers evaluate the trade-offs between different system
criteria, such as total costs, emissons and reliability. A systematic
comparison of the various criteria makes it easier for the decision makers to
make well-informed and appropriate decisions. The least-cost solution is not
necessarily the optimal one, when other criteria are aso taken into
consideration.

Severa analytical methodologies have been developed in order to aid in
multi-criteria decision making®. The first step in the planning process is to
select which system criteria to include in the analysis. This is done by the
decision makers and possibly also other stakeholdersin the system. A power
system simulation model is then usually applied to estimate the outcomes of
the selected criteria for different technological configurations of the power
system. Note that the model does not find the optimal expansion plan itself,
but simulates the operation of the system for a set of technological options
that are specified by the people involved in the planning process. A set of
assumptions about the future (load growth, fuel prices etc.) also has to be
specified as input to the simulation model. Some of the multi-criteria
methods are aiming at quantifying the decision makers' value judgements,
and thereby finding an optimal system expansion plan. This can be done by
assigning weights to the different system criteria, adding the weighted
criteria up, and then compare the total result for the range of investment
aternatives. Various weighting and multi-objective optimisation techniques
have been developed for this purpose, as described by Hobbs and Meier [6].
An alternative approach is taken by Merrill and Schweppe [7], in their so
called trade-off/risk method for multi-criteria planning under uncertainty.
Their approach puts more emphasis on displaying tradeoffs and identifying

® A comprehensive description of multi-criteria decision support methods is given by Hobbs
and Meier in [6].
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plans which are robust for a range of assumptions about the future, instead
of finding one single plan which might only be optimal under a specific set
of assumptions. The methodology analyses trade-offs between the selected
criteria and identifies investment strategies that are strictly or significantly
dominant with regardsto all the criteria. Robust investment strategies can be
identified both with a deterministic and a stochastic representation of the
future. Hence, by using the trade-off/risk approach decision makers can find
strategies that are robust both in terms of selected system criteria and
relevant future uncertainties. The methodology has been applied for
integrated resource planning at the utility level several places, for instance at
the Bonneville Power Administration in the US (Burke et al. [8]).

The principles in the trade-off/risk method have also been applied to
electric power system planning on regiona and national levels. Connors [9]
uses the methodology for integrated resource planning in the New England
power system and focuses on the effects of increasing wind power capacity
and the extent of demand-side management programs. A similar multi-
criteria analysis is also accomplished for the Swiss power system (Schenler
and Gheorghe [10]). In the Swiss case study the trade-off approach is
combined with life cycle analysis to examine environmental impacts for the
entire life cycle of the power system. Another example of using an extended
version of the trade-off/risk framework is found in a planning project from
the Shandong province in China (Eliasson and Lee [11]). In al these
projects there are severa decision makers involved in the planning process
(utilities, regulators, end-user groups etc.). Thisisin contrast to projects on
the utility level, where the final decision is made by the utility itself. At the
same time the total number of other stakeholders also increases when the
geographical scope of the problem is extended. Therefore, when multi-
criteriatrade-off analysisis applied on regional and national levels, it serves
first of all as a tool for facilitating discussions between stakeholders and
decision makers, and for providing them with objective simulation results
for a range of investment strategies. Identification of robust investment
strategies is ill important, in order to avoid counterproductive decision
making. However, the search for an optimal strategy makes less sense in a
setting with multiple decision makers.

A multi-criteria planning project, which builds upon the same principles as
described for the regional and nationa projects above, is currently also
being started for the Scandinavian region. The framework of analysis and
initial assumptions for the project are further described in Appendix B. A
discussion of the anaytical approach and some preliminary simulation
results are also provided by Bhattacharyya [12]. A new challenge when it
comes to applying such a centralised planning method in this region is the
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high degree of liberalisation in the Scandinavian power system. As pointed
out in Chapter 1, competitive power markets are characterised by
decentralised decision making. Robust power system investment strategies
which are identified through the multi-criteria trade-off analysis can
therefore not be directly implemented, since the degree of centralised
planning is low. Still, with an extensive and iterative dialogue with decision
makers and other stakeholders, the discussions and information exchange
which arise from such a project can serve as vauable inputs aso to
decentralised decision makers. The results from the multi-criteria trade-off
analysis can also be a good source of information for the public in general.
Besides, there will always be an extent of centralised planning in the power
system, through the market rules and regulations in the power system.
Authorities and regulators can use the outcomes of the multi-criteria trade-
off project to create a system where the desirable results are achieved
through regulations, investment incentives and appropriate market design.
However, in order to facilitate such results the project must go beyond
identifying robust strategies, and also analyse how these strategies can be
accomplished in a competitive setting. The model concepts that are
presented in this thesis can serve as useful tools in terms of analysing the
investment dynamics in competitive power markets. Therefore, the use of
our models in an extended multi-criteria trade-off analysis can contribute to
make the project results more relevant in restructured power systems.

2.2.3 New Planning M ethods for the Competitive I ndustry

Most of the long-term planning methods that were developed for the
regulated electrical power industry were based on a centralised system
optimisation perspective. Prescriptive methods, like the ones described
above, were used to identify optimal expansion plans for the infrastructure
in the power system. Decentralised decision making in a perfect market
gives the same result as centralised system optimisation, according to
welfare economics. A centralised system optimisation perspective can
therefore still be used as the starting point for making a benchmark in long-
term analysis of restructured power systems. However, alternative planning
methods which focus more on how power markets can deviate from the
long-run equilibrium, and also on how the individual participants can
optimise their positions with respect to the rest of the system are needed.
Below we discuss some methodologies which can be used to include the
effects of decentralised and strategic decison making, and increased
uncertainty into long-term planning strategies.

The shift towards decentralised and profit maximising decision makers in

restructured power systems is likely to incur a higher degree of strategic
decision making. Hence, strategic analyses of the industry as a whole and
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also of important competitors become more important for the individual
participants in the power system. Such analyses can be based on purely
gualitative considerations. However, various mathematical modelling
techniques can also be applied in order to study the effects of strategic
decision making. System dynamics is a descriptive modelling methodology
where the focus is on behavioural simulation of systems at a high level of
aggregation. The flexible and descriptive approach and the dynamic nature
of system dynamics models make them well suited to analysis of strategic
decison making. In Chapter 3 we apply system dynamics to develop a
simulation model for long-term analysis of the power market. Multi-agent
modelling is another tool for analysing the interaction between individual
agents in a system. However, the multi-agent technique is designed for more
detailed analysis of systems at alower level of aggregation, where decisions
occur frequently and decision makers are constantly learning and adapting
their strategies. In the context of electricity markets multi-agent modelling is
well suited for short-term analysis of bidding strategies in the spot market
(Visudhipan [13]). Game theory is another approach which is frequently
used for analysis of power markets with a limited number of participants
(duopolies, monopolies), both in a short-term price and long-term
investment perspective (Ventosa et a. [14]). Multi-agent modelling and
game theory are not applied in the decision support models presented in this
thesis.

The increased uncertainty following the restructuring of power systems
can also be dealt with using both qualitative and quantitative methods. Some
long-term uncertainties, such as political market regulations and public
opinion, are difficult to quantify and describe by probability distributions.
The effect of these uncertainties can still be incorporated into scenario
planning techniques, where the purpose is not to identify optimal investment
strategies, but rather to gain increased insight into the range of outcomes
that the future might bring. On the other hand, quantifiable uncertainties can
be included formally into decision support models. An extensive literature
exists on optimisation of investments under uncertainty. The models in
Chapter 4 and Chapter 5 are inspired by the real options theory, where
uncertain factors are described by stochastic processes and taken explicitly
into account in the calculation of optimal investment strategies. Increased
uncertainty, combined with large-scale irreversible investment decisions,
makes the real options approach particularly relevant for investments in the
electrical power system.
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2.3 Classification of Decision Support Models

In this section we look more specifically at some important attributes of
decision support models for long-term planning in electrical power systems.
We discuss a number of dimensions aong which long-term planning models
can be classified. Our discussion of model attributes is not meant to cover
al aspects of expanson planning models. However, we focus on the
dimensions that are of particular concern in a competitive setting, and which
can be used to illustrate the contributions of the planning models proposed
in thisthesis. In the next two sections we use the model properties discussed
here to describe and classify existing models for long-term planning in
power systems, and compare them to the new decision support models
presented in thisthess.

2.3.1 Model Purpose and Algorithm

A decision support model for long-term planning can be either prescriptive
or descriptive. Prescriptive models are based on optimisation, and their
purpose is to identify optimal investment strategies. Most planning models
for the regulated industry are prescriptive. In contrast, a descriptive model
does not find optimal investment strategies directly. The purpose of
descriptive modelsis to increase decision maker’s knowledge, by simulating
the future development of the system under a set of different assumptions.
Better knowledge will, in turn, result in improved decison making. The
relevance of descriptive models has increased following the restructuring
and decentralisation of decison making in electrical power systems.
Geographical scope is another model attribute which depends on the
problems the model is designed to analyse. The geographical system
boundary can typicaly vary from a very local area to a multi-national
region. A range of other properties aso define the model’s system
boundaries. For instance, some models consider the electric power system
only, while others a so include the transportation and demand for alternative
energy carriers such as gas and district heating.

The objective function in prescriptive decision support models devel oped
for the regulated power industry is usually minimisation of total cost, or in
some cases maximisation of social welfare. In the competitive power
industry a more appropriate objective for individual participants is the
maximisation of their expected profits from investing in the system.
Descriptive models do not have an explicit mathematical objective function.
However, the simulated investment decisons must still be based on
assumptions about investors priorities and objectives. Another important
model attribute is the mathematical algorithms which are used to solve the
model. A planning model can use more than one solution algorithm. For
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instance, the representation of the short-term operation of the power system
and the power market is typically a separate part of the planning model,
which can be based on a different algorithm than the investment decisions.
Several optimisation methods from operations research (linear/non-linear
programming, dynamic programming etc.) are frequently used in expansion
planning models. The planning model’s solution algorithms depend on the
purpose of the model, and the range of other attributes that are included in it.
For instance, the extent to which different mathematical algorithms can
efficiently include representation of uncertainty varies substantially.

2.3.2 Representation of Investment Decisions

The representation of investment decisions in long-term planning models
plays a central role in this thesis. Regulated power system are characterised
by centralised decison making. Therefore, in traditional prescriptive
expansion planning models it is usually assumed that all decisions are made
by one centralised decision maker, which controls the entire system (Figure
2.1A). As aready pointed out, a centralised optimisation can also serve as a
benchmark for a perfectly competitive market. However, it is also possible
to explicitly model decentralised decison making, in order to describe the
conditions in competitive power markets with more realism. In this thesis
we use two different approaches to represent decentralised decision making
in planning models. In the first approach the interaction between a number
of decentralised participants with their own investment strategies is
modelled. The participants interact through the power market (Figure 2.1B).
The second approach is to take the perspective of an individual participant
who wants to optimise his position in the system. The other participants are
now represented as an aggregate decision maker, whose decisions could also
depend on feedback from the power market (Figure 2.1C).

Another important dimension in the modelling of investment decisions is
how the timing of new investments is taken into account. With a static
representation it is assumed that a new investment must be undertaken
immediately. Hence, the only concern is to decide whether or not to invest,
and then also which project to invest in if there are several alternatives. In
contrast, with a dynamic representation of investment decisions, the timing
of new projects is also taken into account. Modelling of uncertainties,
construction delays and investor foresight are aso important for the
investment decision. Long-term trends, such as changes in demand, fuel
prices etc., can be represented either as deterministic or stochastic variables.
The representation of investment timing, long-term uncertainties, and
construction delays can have a substantial impact on the optimal investment
decisions, as will be shown in this thesis. This is discussed in much more
detail when the real options theory is presented in Chapter 4.
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Figure 2.1 Representation of centralised and two types of decentralised decision making in
long-term expansion planning models. DM — decision maker.
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2.3.3 Representation of Supply, Demand and Electricity Mar ket

The level of detail in the representation of supply and demand in the power
system is rather limited in most long-term planning models. This is mainly
because the gain from adding details in a long-term analysis is usually low,
while the increase in computational burden can be substantial. The number
of power generation technologies that can be added to the power systemisa
supply-side attribute which can be very important for the mathematical
dimension of the expansion planning problem. Technology learning is
another aspect, which by time can substantially reduce investment costs for
emerging technologies. Technology learning can be included in expansion
planning models by using learning rates for the various technologies. On the
demand side, the time resolution decides how much of the short-term
demand fluctuations (seasonal, weekly, daily) that can be included in the
model. Another important dimension is whether or not price elasticity of
demand is represented. The introduction of competition and increased
exposure to prices in the power system makes it important to include how
the demand-side influences and responds to the fluctuating prices. This is
dependent on the market design. Explicit representation of the power market
is needed in a competitive market setting, in order to be able to analyse the
effects on prices and investments of various market designs. In a
competitive and decentralised setting the market plays a crucia role in
coordinating the actions between the various participants, as illustrated in
Figure 2.1. In amodel with centralised decision making there is no explicit
representation of the market, although an exogenous price can be included
in the input to the model to represent prices outside of the region which is
included in the model.

2.4 Expansion Planning Modelsin Norway

In this section we present four existing models that have been used for long-
term analysis and expansion planning in the Norwegian power and energy
systems. All the models have a bottom-up description of the power system.
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2.4.1 DYNKO

DYNKO is a centralised and prescriptive expansion planning model which
minimises the total cost of expanding the energy system within an area.
Operating costs for different system configurations (combined heat and
power, gas/oil/electricity boilers etc.) are cal culated with merit order models
for the production of district heating and electricity. The expansion planning
module uses dynamic programming (DP) to identify the least cost solution,
based on a deterministic forecast of future load. DY NKO was developed by
the Norwegian Research Institute of Electricity Supply (EFI) in Trondheim
for planning purposes at the regulated utility level in the late 1980s
(Johansen and Wangensteen [15]).

2.4.2 SDP Model

The SDP model for expansion planning proposed by Mo et a. [16] is an
extension of the DYNKO framework. The objective is still to minimise the
total cost of providing electricity and heating services within a local area.
However, load growth and oil price are now represented as stochastic
variables. Stochastic dynamic programming (SDP) is used to find the
optimal investment plan. The SDP agorithm takes into account the long-
term uncertainties and also the dynamic flexibility in investment timing.
Construction delays are explicitly represented in the model and will aso
affect the optimal investment strategy.

243 MARKAL

MARKAL isalarge-scale linear programming (LP) model which optimises
the supply of energy services in a region or country, also including the
transportation sector. The objective function is normally to minimise the
total cost of meeting the energy demand, although alternative objective
functions can also be used, such as minimisation of the total emissions from
the energy system or the total use of fossil fuels. Energy demand is
represented in the model with a deterministic projection of demand for
different sectors of society. Operations and expansions of the system are
jointly optimised with a huge linear programming algorithm. There is no
explicit representation of the electricity market in the model, but marginal
operating costs can be found from the dual variables of the restrictionsin the
LP agorithm. The model was originaly developed at Brookhaven National
Laboratory and is used for regional energy system studies in a range of
countries including Norway (Johnsen and Unander [17]).

2.4.4 Normod-T

Normod-T is a partial equilibrium model developed for analysis of the
Nordic electricity market. The model simulates electric load, generation and
prices in Norway, Sweden, Denmark and Finland, based on exogenous and
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deterministic demand forecasts. Normod-T is a multi-area model and
includes transmission constraints between the countries. Power system
dispatch and prices are found for each year by maximising the social welfare
in the system for the given transmission and capacity constraints. The short-
run price elagticity of demand is also taken into account in the model. New
generation capacity is added as soon as the simulated prices exceed the
long-run marginal cost of available technologies. Hence, new capacity
additions in the system are not part of a forma optimisation. Normod-T
therefore has a more descriptive nature than the other models presented
here. However, the decision rule for capacity additions makes sure that the
system is always kept close to the long-run economic equilibrium. Hence,
the smulated expansions are not allowed to deviate far from the social
welfare optimum. The model has been developed and used by Statistics
Norway (Johnsen [18]).

2.5 The Model Conceptsin thisThesis

In this thesis we propose three new decision support models for long-term
analysis and investment planning in restructured power markets. The
models are developed to address the impact of decentralised decision
making and increased uncertainty following the introduction of competition
in generation and supply of electricity. The effects of environmental
regulations, investment incentives and market design can also be analysed
with the planning models in this thesis. The three model concepts are briefly
described below. A summary of model properties for the existing and new
models are summarised at the end of this section in Table 2.1. The selection
of model propertiesis based on the discussion in section 2.3.

2.5.1 System Dynamics M odel (SysDyn)

In Chapter 3 we develop a descriptive simulation model based on system
dynamics for long-term analysis of a regional power market. The model
simulates investments in a set of power generation technologies, where each
technology is represented in the model as a separate decision maker with a
profit maximising objective (Figure 2.1B). The demand is aso represented
as a decision maker which responds to the prices in the electricity market.
Both short- and long-term price elasticity of demand is included in the
model. The market is described with linear supply and demand curves, and
linear programming is used to calculate the market price at the intersection
of the two curves for each simulated year. New investments in the different
generation technologies are based on profitability assessments of total costs
for the new technologies compare to deterministic projections of the
simulated prices. Individual construction delays and technology learning
rates for the various technologies are represented in the model and
contribute to the simulated investment dynamics.
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2.5.2 Real OptionsModel 1 (RealOpt1l)

In Chapter 4 we look at investments in new power generation capacity from
the perspective of an individual decision maker in the power system (Figure
2.1C). Real options theory is used to develop a prescriptive planning model,
which optimises the participant’ s timing of investmentsin a specified power
generation technology. The investment optimisation model is based on
stochastic dynamic programming, where load growth is represented as a
stochastic variable. The solution algorithm and description of uncertainty in
our model is similar to what is used in the SDP model described in [16].
However, the objective in the model is now to maximise the profits of an
individual participant, instead of minimising the total cost of the entire
system. Other participants in the system can be represented in the model, by
assuming that their investment decisions are also dependent on the pricesin
the power market. The electricity price is modelled as a probability
distribution which depends on the load level and the total installed capacity
in the system. The parameters in the price model can be estimated based on
historical data. A simulator is also implemented in order to analyse the long-
term investment pattern which follows from the model’s proposed
investment strategies.

2.5.3 Real OptionsModel 2 (RealOpt2)

The planning model in Chapter 5 is an extension of the model concept in
Chapter 4 for investments in power generation assets under uncertainty. The
model has been extended to include investments in two new generation
technologies, and can therefore calculate the optimal technology choice in
addition to the optimal timing of the investment. At the same time demand
is modelled with more detail, by introducing sub periods for base, medium
and peak demand. The representation of demand is based on the theory of
peak load pricing. An alternative market description is also included in the
model, where the electricity price is derived from the intersection of linear
supply and demand curves. With this representation of the market the model
can either optimise the investments of a decentralised profit maximising
participant (Figure 2.1C), or it can optimise the entire system from a
centralised social welfare perspective (Figure 2.1A). Hence, we can use the
model to compare investments, prices and reliability under centralised and
decentralised decision making.
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Table 2.1 Properties for existing planning models (DYNKO, SDP, MARKAL, Normod-T)

and the new models proposed in this thesis (SysDyn, Real Opt1, RealOpt2).
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2.6 A Similar Problem: Hydro Power Production Planning

In the end of this chapter we comment briefly on the similarities between
the problem of investing under uncertainty and the hydropower production
planning problem. The objective in hydropower production planning is to
optimise the allocation of limited hydro resources. Precipitation determines
the inflow of water to the reservoirs and is an important stochastic variable
along with the future electricity price. Just like there is a value in waiting for
more information about uncertain long-term trends in the investment
planning problem, there is also a value of waiting for more information
about future precipitation and prices in the hydropower problem. From a
mathematical point of view, installed generation capacity and demand level
are the main state variables in the investment problem, while the reservoir
level is the most important state variable in the hydropower production
planning problem. The time horizons are of course different, but the
problems’ structures, with sequential decision making and gradual unfolding
of new information, are the same. Therefore, the two problems lend
themselves to the same analytical approaches, since the common aim for
their decision support modelsisto capture the value of having a flexible and
dynamic strategy in an uncertain environment. It is not a coincidence that
stochastic dynamic programming, which are used in Chapter 4 and Chapter
5 in this thesis, are aso frequently applied for hydropower production
planning, both in Scandinavia and other parts of the world (Fosso et al.[19]).
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Chapter 3 A SYSTEM DYNAMICS
MODEL FOR LONG-
TERM ANALYSIS OF THE
POWER MARKET

In this chapter we present a new model concept for long-term analysis of
liberalised power markets. In the model we try to capture the main factors
influencing the long-term development of supply and demand in the power
system. In liberalised power markets, investment decisions are no longer
part of centralised planning and optimisation. Investors lack of perfect
foresight, together with permissions and construction delays, could possibly
result in periods of overcapacity or capacity deficits in the system. By using
a dynamic description of investments in new power generation capacity we
are able to include these effects into our model. The average spot price in
the power market is calculated from year to year, using a linear optimisation
algorithm based on marginal costs. The price for electricity, in turn,
influences investments in different technologies, both on the generation and
end-use sides of the electric power system. System dynamics, which is a
genera dynamic modelling technique with a wide range of applications, is
used to model these investment decisions. Companies in the electric power
industry and public authorities are potential users of the model, for learning
and decision support in scenario planning and policy design. A summary of
results from a case study of the restructured power market in Norway are
included to illustrate potential use of the model.

The dynamic investment model outlined in this chapter was presented at
the 14™ Power System Computation Conference, PSCC 2002, (Botterud et
al. [20]). The paper from the conference proceedings is included in
Appendix C.
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3.1 Introduction

This chapter presents a new model concept for long-term analysis of the
power market which is based on system dynamics. The model is a possible
tool for increasing the understanding of the dynamics of supply and demand
in restructured power markets. It is specifically suitable for scenario
planning, and we argue that both energy companies and public authorities
could make use of such dynamic models in their long-term strategic
planning. In the model we calculate the annual average electricity price
using a linear optimisation algorithm, while the description of investment
decisions is based on system dynamics. In the first part of the chapter we
briefly discuss investment dynamics in the power market, and how this is
incorporated into traditional and new power market models. The main part
of the chapter is devoted to a detailed presentation of our new model
concept. At the end we also briefly present results from a case study of the
Norwegian power market, to illustrate potential use of the model. Further
applications and extensions of the model concept are also discussed.

3.2 Investment Dynamicsin the Power Mar ket

3.2.1 Decentralised and Imperfect Decision Making

As pointed out in Chapter 1, one important consequence of power market
restructuring is that many decisions related to operation and planning of the
power system are now made at more decentralised levelsin the system. This
is indeed also the case for decisions regarding investments in new power
generation. The introduction of competition in the market has shifted the
investment focus for utilities and power generation companies from meeting
load to maximising profits. Under these circumstancesit is no longer certain
that installed generation capacity is always ahead of the development in
demand. Power plants have along lifetime and a substantial fraction of the
total costs are paid up front. At the same time there is high uncertainty
regarding the future electricity prices. Consequently, investors might be
reluctant to invest in new generation capacity in time to meet increasing
demand. Delays caused by the time it takes to obtain construction permits
and to construct new plants will also contribute to the likelihood for an
imbalance between load and generation capacity.

The demand side of the power market consists of a large number of
consumers. Small consumers, such as single households, do not necessarily
base their investment decisions on purely economic arguments. Their
behaviour is more likely to be described by bounded rationality®. The direct

® Bounded rationality is a term which is used in behavioural economics to describe real
decision making processes, where limitations of both knowledge and cognitive capacity
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link between electricity price and investments in new end-use technology is
therefore less clear than on the supply side of the market. It is ill
reasonable to assume that there is a level of price feedback aso to demand,
both in a short- and long-term perspective. The short-term price elasticity of
demand arises because parts of the electricity consumption can be
substituted by other energy carriers. There is usually also a potential for
short-term electricity savings in the system. In the long run investments can
be made in technologies that change the demand level and also the temporal
pattern of electricity use. Energy-intensive industries are for instance a
consumer group that will typically be very sensitive to changes in the
electricity price, and optimise their production facilities accordingly. At the
same time, construction delays are aso present on the demand side when it
comes to investments in new end-use technologies. All these factors
contribute to the dynamics of investments on the demand side of the power
market. However, the long-run development of electricity demand is also to
alarge extent determined by macro factors such as growth in population and
changes in economic activity within a region. Such factors are difficult to
include as endogenous variables in a power market simulation model.

In the model presented in this chapter we try to capture the most important
relationships that influence the dynamics of supply and demand in the
power system. We assume that the objective for participants on the supply
side of restructured power markets is to maximise the market value of the
company. Investments in new power generation plants will therefore be
triggered by expectations about future profits. The expected profitability on
new investments is in turn determined by the future price of electricity.
Thus, the expected electricity price is clearly the main feedback signal for
investments on the supply side of a competitive power market. Moreover,
we argue that the electricity price is aso important for the demand side of
the power market, athough the change in demand will aso be highly
dependent on other factors in the society. Interventions from regulating
authorities, in terms of taxation, subsidies and concession policy, can
contribute to change the dynamics of both supply and demand in the market.
By development and use of the dynamic model presented here, we are
aiming at improving the knowledge about the complex relationships that are
likely to determine the long-term devel opment of the power market.

3.2.2 Traditional and New Modelling Appr oaches

An overview of modelling approaches for generation expansion planning in
regulated and restructured power markets is given in Chapter 2. Most of the

prevents decision makers from making rational choices based on maximisation of their
expected utility.
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long-term planning models for the traditional power industry are based on
centralised system optimisation, where the objective is to minimise the total
cost of meeting load within a region. These models usualy have an
underlying assumption of perfect investor foresight. The effect of bounded
rationality and imperfect decision making that contribute to the investment
dynamics described above are rarely represented. The substantial delays
during permit approvals and under construction of new power plants are
usually also omitted in these models.

Alternative modelling approaches are therefore needed to study the long-
term consequences of decentralised decision making in restructured power
markets. However, so far most of the models that are being developed for
the new competitive environment seem to focus on shorter-term issues like
operation planning, trading, economic risk management and market power
in the spot market. One of the power market modelling approaches
developed for the restructured industry that also address the long-term
investment dynamics on the supply-side of the market is proposed by
Skantze and llic [21]. A mode of the spot market for electricity with
stochastic descriptions of supply and demand is here extended to also
include investments in new generation capacity. The rate of investmentsin
new capacity depends on the relation between the eectricity price and the
total unit cost of new capacity. This is similar to the approach taken in the
model presented here. However, the model in this chapter focuses more on
the relations between investments in different technologies and less on the
stochastic elements of supply and demand. Other recent approaches to
modelling of investments in liberalised power markets include game theory,
as described for instance by Chuang et a. [22] and Ventosa et a. [14].
These models are designed for analysis of capacity expansions in markets
which can not be considered as fully competitive, but more realistically
described as duopolies or oligopolies.

3.2.3 System Dynamics

In our model we use system dynamics as atool for analysing investments in
the power system. A short introduction to the field is therefore provided
below’. The theory of system dynamics was developed during the fifties and
sixties by Jay W. Forrester as a policy design tool for complex management
problems [23]. System dynamics draws upon control-, organisation-, and
decision theory, and can be used to model interactions within and between
social, economic and technological systems. Instead of analysing the details

" A comprehensive description of system dynamics is provided by Forrester [23] and
Sterman [24]. Forrester lays out the founding principles behind the theory of system
dynamics in [23], while Sterman gives an up to date description of the field, with examples of
applications in a range of different industries in [24].
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of individual elements in a system, the emphasis in system dynamics is on
the relationships between the elements that create dynamics in a system.
Conseguently, system dynamics models usually have an aggregate level of
detail, while the scope of the models can reach beyond what is usualy
included in traditional analytical methods. Systems thinking®, which has its
foundation in the field of system dynamics, has made an important
contribution to organisational theory and management. The focus in systems
thinking is also on understanding how the components of a system interact
with each others, but with less attention to the development of a
mathematical formulation of the problem that is being studied.

When developing a system dynamics model, a substantial amount of time
should be spent in the beginning to develop an understanding of the problem
that is being investigated. It is very important that the decision makers,
which are actualy going to utilise the results from the model, are involved
aready at the beginning of the analysis. The project group’s mental models
of the system must be spelled out, and the most important variables in the
relevant system identified. Causal loop diagrams, which are sketches of the
causal relationships between the different components of a system, can be
very useful as a tool of communication in this stage of the model
development. Such diagrams are used later in this chapter to illustrate the
main rel ationships on the supply and demand side of the power market. The
next step in the analysis is to formalise the causal relations into a
mathematical model. When sufficient testing is performed, the final model
can be used to evaluate different policies and decision strategies.

Mathematically, system dynamics is a set of differential equations. The
state variables in the system are referred to as stocks, while the control
variables are dependent on the decision strategies and the structure of
information feedback loops in the system. A system dynamics model is
usually solved numericaly, and can handle both delays and nonlinearities.
A number of specialised software tools have been developed specifically for
system dynamics models. The possibility of including optimisation and
uncertainty into the models is limited. Advanced decision strategies based
on optimisation can therefore be difficult to implement within the
framework of system dynamics. However, the purpose of developing a
system dynamics model is usually to gain better insight into a real world
system. As pointed out above, real decision makers are rarely entirely
rational about their decisions. Simulation models based on system dynamics
is therefore still a valuable tool for descriptive analyses, which in turn can
result in increased knowledge and thereby improved decision making.

& An important contribution in the field of systems thinking is given by Senge in [25].
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System dynamics has been used to analyse dynamic patterns in a range of
different industry sectors, including the electrical power industry. Bunn and
Dyner [26] argue that system dynamics can serve as an important tool for
analysis of the changing conditions in the energy industry. Results from a
simulation study of consumer choice of eectricity substitution by gas in
Colombia are presented. Market forces in the UK €eectricity industry are
also analysed by simulating investments in new power generation capacity.
It is shown that increased exchange of information between market
participants can have a stabilising effect on investments and the reserve
margin. Gary and Larsen aso [27] develop a system dynamics model for
investments in generation capacity in the UK electricity market. Different
investment strategies are simulated, and the interaction between the
electricity and gas markets is also included in the model. The results from
the study are compared to a situation where a constant long-term
equilibrium price is assumed for gas. Not surprisingly, the results from the
feedback simulation model deviates substantially from the equilibrium
prediction. Ford [28] [29] analyses cycles in power plant constructions in
the western US. Results from a system dynamics model shows that boom
and bust cycles are likely to occur due to investor’'s limited foresight and
delays in permitting and constructing new plants. However, a capacity
payment can contribute to dampen these construction cycles.

The model presented in this chapter isin many respects similar to the ones
mentioned above. However, our model focuses more on the competition
between different power generation technologies, and therefore on the
causal relationships that determine technology choice. Although most of our
attention is also given to modelling the investment dynamics on the supply
side of the market, we improve the representation of electricity demand by
introducing feedback from price to demand.

3.3 The Smulation M odel

3.3.1 General Characteristics

The model simulates the development of the power system within a region
for along period of time (20-50 years). We model the power market with a
supply and demand curve, and the electricity price is derived from the
intersection of the two curves. The time resolution in the model is one year,
using the simplifying assumption that investment decisions can only be
made at the beginning of each year. New investments in generation and
demand-side technologies result in a change in the supply and demand for
electricity. Consequently, we end up with a dynamic description of the
supply and demand curve, with electricity price as the main feedback
mechanism.
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The level of detail in the model is aggregated. Instead of going into details
on the different parts of the system, we try to focus on the relationships that
we see as most important for the long-term development of supply and
demand in the power system. The model is atool for generating scenarios to
analyse what is likely to happen under certain circumstances (e.g. about the
development of fuel prices, taxation, technologica improvements etc.).
Development and use of the model can contribute to learning and improved
decison making for participants in the power industry. To facilitate
communication of the model and its results to decision makers we have used
Powersim® to implement the dynamic description of the supply and demand
curves. The price calculation is carried out in Visua Basic with a
corresponding Excel spreadsheet interface.

3.3.2 List of Variables and Parametersin the Model

The list below shows the main variables and parameters in the model, which
are further referred to in the presentation of the model below. Generation,
demand and power exchange are represented with a number of capacity
groups, where each group has a fixed bid in the electricity market. This is
explained in more detail in the sections below.

General variables:
p(t) wholesale electricity price [NOK/MWHh]*
t discrete time [years]

Supply, M generation groups, i € [1,M]:

ai(t) annual power generation [TWhlyear]
ncap;(t) new capacity rate [MW]
acap(t) approved capacity rate [MW]
p () price forecast [NOK/MWh]
RCi(t) remaining energy reserves [TWhlyear]
GCi(t) annual generation capacity [TWhlyear]
EICi(t) unit energy investment cost [NOK/MWh]
VCi(t) variable generation cost [NOK/MWh]
MCi(t) marginal generation cost [NOK/MWh]
OCi(t) operation and maintenance cost [NOK/MWh]
FCi(t) fuel cost [NOK/MWh]
[1;(t) investment incentives [NOK/kW]
Ol;(t) operating incentives [NOK/MWh]

® Powersim is one of the software packages developed specifically for system dynamics
models. The graphical user interface facilitates communication of the model to decision
makers involved in planning projects. A comprehensive documentation of the software is
found in [30].

9 NOK is the Norwegian currency. Currency rate (October 2003): $ 1 = 7 NOK.

-33-



Chapter 3

CFi(RC)
PFi(t)

i I

Iri

a

I1C

ki

N

amax
adi

Cdi

ap;
ab;
w(u)

u

expected capacity factor of new capacity
profitability factor

internal rate of return on investment
investors' required rate of return
deviation in required rate of return
investment cost for initial capacity
technology improvement factor
expected lifetime for new plants
maximum permit applications per year
approval delay

construction delay

permit approval fraction, apie [0,1]
project abandonment fraction, abie [0,1]
adjustment factor for marginal value of
regulated hydropower, we [0.5,2.5]
stochastic relative inflow, u~N(1,0y)

Demand, N demand groups, j € [1,N]:

di(t)
MD; (1)
DGi(t)
DTOT(t)
fp(t)
tax(t)
dgr ef

£

dd

Peurt

Power exchange, O import and export groups, k € [1,0]:

imi(t)
exy(t)
IMPy(t)
EXPy(t)
EXCi(t)

annual load

marginal willingness to pay

max annual demand

max total annual demand

flexible fraction of DTOT(t), fp(t)e [0,1]
electricity end use tax

annual demand growth reference
long-term price elasticity of demand
demand adjustment delay

curtailment price

annual import

annual export

import price

export price

power exchange capacity

3.3.3 Supply Side Description

The power generation is divided into M generation groups, with each group
representing one specific technology. The main relationships included in our
modelling of investments in new generation capacity follow the same
structure for all the generation groups. The causal loop diagram in Figure
3.1 illustrates this structure.
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[(MW]
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[NOK/MWH]
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[TWhiyear]
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[NOK/MWH]

[TWhyear]
[TWhiyear]
[NOK/MWH]
[NOK/MWH]
[TWhyear]
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Figure 3.1 The main factors and relationships influencing investments in new power
generation capacity. The signs on the arrows indicate the signs of the feedbacks for the
relations between the variables. L1 and L2 represent feedback loops.

There are two feedback loops in Figure 3.1, and the expansion decision
can be considered as the control variable for both loops. The first feedback
loop (L1) states that when generation capacity is increased the electricity
priceislikely to fall. Thislowers expectations of future prices, which in turn
reduces the likelihood of future expansion decisions. L1 is therefore a
balancing loop that limits the investments in new generation. The second
feedback loop (L2) is caused by the connection between current installed
capacity and investment costs. The sign and magnitude of this relationship
varies for different generation technologies. For renewabl e technologies like
hydropower and wind power we assume that locations with the best energy
resources, or the highest expected capacity factor, are utilised first. The
investment cost is therefore a function of remaining reserves, which in turn
are directly linked to installed capacity. Hence, there is a positive link
between installed capacity and investment costs, so that L2 becomes a
balancing loop for these technologies. On the other hand, fossil-fuelled
power plants do not have the same clear link between generation capacity
and investment cost, since there is usualy no constraint on the amount of
fuel supplied to these plants. The capacity factor for thermal power plantsis
afunction of the dispatch of the power plant. The change in dispatch due to
new installed generation capacity is dependent on the overall power system
characteristics. We are treating the capacity factors for thermal technologies
as constants in the investment part of the model. As aresult, thereis no link
between installed capacity and investment cost for these technologies in the
model. However, by including more details in the modelling of the power
system operation, we could include the relation between installed capacity,
the expected capacity factor and thereby the unit investment cost for thermal
technologies.
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The two bars on the line between expansion decision and generation
capacity in Figure 3.1 represent a delay. An expansion project goes through
several stages before it eventually comes on line, asillustrated in Figure 3.2.
All these stages are represented as stocks (i.e. state variables) in the model.
The two main delays are concerned with obtaining a permit to build a new
plant and the time it takes to construct it. These two delays are included in
the model, and will therefore influence the ssmulated investment dynamics
in the system. Furthermore, we assume that the fractions of the permit
applications that are denied (ap;) and the construction permits abandoned
(aby) are constant. These parameters represent the regulating authorities
support and the investors' willingness to invest in the various technol ogies.

Applications Permits
denied abandoned
Available Constr. permit Consgtr. permits
resources applications approved
Decomissioned New capacity Capacity under
capacity online construction

Figure 3.2 The stagesin a power plant’slife cycle.

A technology group’s total cost is of course one of the main input factors
when investments in new generation plants are considered. We therefore
need a description of how investment and operating costs are likely to
change over time. The investment cost per energy unit (EIC;) in the model
depends on initial investment cost, technology learning, expected lifetime,
capacity factor and possibly also subsidies, as shown in (3-1).

ic e 11 (t)

BIG(RG =" " (Re (1))

(3-1)

The variable costs of a generation group (VC;) are the sum of fuel, and the
variable part of maintenance and operating costs. The authorities could
possibly also impose operational incentives such as subsidies for renewable
power generation or CO, taxation of generation from fossil fuels. All these
elements are exogenous inputs to the model, but can till change as a
function of time, as shown in (3-2).

VC, (t) = FC, (t) + OC, (t) - Ol (t) (3-2)
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We assume that investments in the new power generation capacity are
based on purely economic arguments. Power companies invest in the
available technologies if the expected profitability is high enough to cover
their required rate of return on capital. The expected profitability on a new
investment is dependent on total costs of the project and the expected future
price. We employ afirst order exponential smoothing process to forecast the
price a specific number of years into the future™. The time periods used in
the backward-looking trend calculation and the forward-looking price
extrapolation, can be defined individualy for each single technology. It is
for instance reasonable to assume that investors in wind power have shorter
time horizons for their price forecast than hydropower investors, due to the
shorter lifetime and construction time for wind power.

With values for investment cost, variable cost and expected future price
we can find the expected interna rate of return on investments in new power
generation capacity for the different technologies. This is simply done by
setting the expected net present value (NPV) of the project to zero, as shown
in (3-3). The expected price and variable costs are treated as constants
within each time period. Hence, we can derive a profitability factor as
shown in (3-4), which is used as an indicator for the quantity of new permit
applications and plant constructions. The profitability factor can be
expressed either in terms of expected price and cost figures, or as a function
of internal rate of return and lifetime. By using figures for the technology’s
lifetime and the investor’s required rate of return in the last part of (3-4), we
can therefore calculate the required profitability factor for investments in
different generation technologies to take place. The required profitability
factors are compared to the simulated ones, as given by the first part of
(3-4), and determine the rate of investment in the various technol ogies.

NPV, = —ni-CE-EICi(t)+CEih((tl);i\r/c;(t) =0 (3-3)
PF, (1) =" (It_z)lgv(f)‘ O — (3-4)
i 1+ir. )™
gll( +ir,)

Figure 3.3 shows how approval applications and new constructions are
modelled as a function of the simulated profitability factor. We assume that
a higher profitability factor for a technology i, corresponding to a higher
expected rate of return, results in an increase in the rate of applications for
construction permits for that technology. The rate of new constructions

™ This is a built-in value forecasting function in Powersim.
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started is also an increasing linear function of the profitability factor, but
with a less steep dope. There is an exogenously defined limit to the rate of
new permit applications equal to amax; in Figure 3.3. The corresponding
limit to the rate of new constructions is lower, and equals the fixed approval
fraction for the technology (ap;) times amax;. Furthermore, we assume that
investors require a higher rate of return to start the construction of new
plants than what is required to apply for permits. The required rate of return
(rri) and its deviation (&), as shown in Figure 3.3, should be set to resemble
the assumed behaviour of investors in the various power generation
technologies. The model allows the use of different rri’s and &’s for the
different groups of power generation technologies. Differentiated rate of
return requirements can be used in the case that the risk concerned with
investing in different technologies varies considerably’®. The installed
generation capacity, GC;, is updated for each time step. (3-5) shows how the
construction delay is taken into account in the model. The permit approval
delay is modelled in the same way. Construction and approva delays can
aso vary between the power generation technologies, resulting in different
patterns of investment dynamics for the different generation groups.

New capacity [MW]

A

acap;

amex

ncap,

ap;-amax; /

PF(rr-a,n)  PF(rr,n) PF(rr+4,n) Profitability factor, PF,

Figure 3.3 lllustration of the rate of applications for construction permits (acapi(t)) and
new constructions started (ncap(t)) as function of the profitability factor (PF;(t)).

GC. (t) = GC, (t —1) + ncap, (t —cd.,) (3-5

As explained above, the rates of permit applications and new power plant
constructions determined by a price extrapolation which isin turn dependent
on the simulated prices. Capacity under construction and the level of
permission already granted are not taken into account in the investment
strategies. Furthermore, the investment decisions are based on satic
assessments where future trends and uncertainties are not taken into account

2 A technology’s expected lifetime and the relative proportion of investment costs and
operating costs are two of the factors that are likely to influence investors’ perceived risk.
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other than through the price extrapolation. Investment decisions for the
different technologies are also uncoordinated, in the sense that the rate of
investment for one technology is independent of investment decisions for
other technologies. This is clearly a simplified representation of the
investment strategies that occur in real power markets. However, the
representation of investment decisions in the mode should still be
sufficiently detailed to gain useful insight in the long-term dynamics of
supply in a liberalised power market. After all, investors have limited
foresight about future events and can not be expected to aways act
according to rational expectations. The focus in this chapter is on modelling
of the main causal relationships for investments in the power system. In the
following chapters we pay more specific attention to how investors can
optimise their investments in power generation assets in restructured power
markets, where the level of uncertainty isincreased.

3.3.4 Demand Side Description

Our description of the demand curve is more aggregate than the supply
curve, and a substantial part of the demand in the model is described by
exogenous input parameters. We still try to capture the most important
connections between electricity price and demand, both in the short and long
run. Figure 3.4 illustrates how demand is treated in the model. The feedback
loop states that increasing demand results in higher end-user prices. This
will in turn give incentives for energy savings, and will contribute to lower
the total demand after a time delay (dd). L1 is therefore a balancing loop.
The dynamic description of total demand is based on a model proposed by
Sterman in [24]". We assume a constant long-term price elasticity of
demand (£). When the smulated end-user price deviates from the reference
price, the long-term price elasticity contributes to change the development
in total demand away from the underlying reference growth, dgres.

Reference  Reference Price
demand growth Long-term

(Jr\)\ (+) «—  Priceeasticity

Indicated demand
Taxes /(v_) \5\

End-user
*) Price (*) +) *) Total demand

T&D & Fixed demand 4—7
(+)

Flexible demand

Figure 3.4 The main causal relationships on the demand side.

13 See [24], pp.811-813, for a further description.
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We distinguish between fixed and flexible demand. Flexible demand is
defined as the demand that can respond quickly to price signals in the short
term without additional investments in the system. Hence, the flexible
demand represents the short-term price elasticity in the model. For instance,
switching from electricity to oil heating in dual fuelled heat systems
represents parts of this flexibility. On the other hand, the fixed part of
demand does not have any substitute in the short run. It still changes in the
long run, partly due to the underlying general load growth. Investments in
energy saving technology such as heat pumps and improved insulation
would also influence the total load development. This is represented in the
model by the long-term price elasticity of demand

Price
A

Peurt L

/
q J =
hd DTOT, DTOT,,; Load
Fixed demand Flexible demand

Figure 3.5 Representations of the demand curve at two different time steps.

Figure 3.5 shows how the fixed and flexible demand is represented in our
model in terms of a demand curve. The total demand, DTOT(t), is updated
for each time step, while the fixed and flexible demands follow as fractions
of the total demand. The proportion of flexible demand, fp(t), is an input
parameter, but can still change as a function of time to describe the expected
development of the flexibility on the demand side. Figure 3.5 illustrates a
shift in the demand curve, where the total demand as well as the variable
fraction increases. For the fixed demand we assume that there is a
curtailment price, peurt- The flexible demand is represented by a number of
linear price steps. Hence, the whole demand curve has a linear
representation, and can be described by a number (N) of demand groups
with corresponding prices (MD;) and capacities (DC;) for each group.

3.3.5 Exchange of Power with Outside Region

Import of power to the region is handled by adding a number (O) of
additional supply steps to the supply curve. Similarly, a number of export
steps are added to the demand function to represent electricity demand
outside of the region. The exchange capacity is determined by the capacity
of the transmission lines to surrounding regions, and is an exogenous
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variable that could be allowed to change with time. The capacity and price
of each import and export step should be defined to resemble the power
market conditions in the connected regions. The lowest import price must
aways be higher than the highest export price, to fit into the price
calculation as described bel ow.

3.3.6 Electricity Price Calculation

The average annual price, p(t), in the wholesale electric power market is
calculated for each simulated year. The price is determined by maximising
the short-term socio-economic surplus in the market, including imports and
exports, asillustrated in Figure 3.6.

1000

— — Supply
—— Demend

800

NN

400 Socio economic
surplus

Price (NOK/MWh)

200 g

0 20 40 60 80 100 120 140 160 180 200
Electric energy (TWhlyear)

Figure 3.6 The power market is described by the supply and demand curves for each
simulated time step.

The variable costs for the generation groups go directly into the price
calculation, where they are treated as marginal costs (i.e. MC; = VC)), for all
generation technologies except regulated hydropower. The regulated
hydropower is divided into five separate supply steps, where the marginal
value of the most expensive step equals a factor w times the lower import
price, as shown in (3-6). The marginal values of the other steps are fixed
fractions of the most expensive step. This is to take into account that
regulated hydropower is dispatchable, and therefore scheduled according to
the price of aternative generation. The alternative generation is usualy
therma power, and its marginal cost depends on how much of the system
load it has to serve. This is in turn dependent on the annua inflow to
hydropower reservoirs. The w value is therefore a function of the inflow,
u(t), which is drawn from a normal distribution for each time step. w is low
when inflow is high and vice versa. The representation of the marginal value
of hydropower is meant to resemble the so-called water value calculations
that are frequently used in hydropower production planning, as explained by
Fosso et al. in[19].
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MChydropower,max (t) = W(U(t)) - MP|0V\,eg(t) (3-6)

Strictly speaking, the shaded area in Figure 3.6 is not the true socio-
economic surplus, due to the use of alternative costs instead of real marginal
costs for regulated hydropower. The description still serves as a good
approximation of the bidding process in the power market, if we assume
perfect competition™. The linear description with constant marginal values
for each load and generation group is clearly a ssimplification of the real
world. Marginal costs of thermal power plants vary as a function of output
for both asingle plant aswell asfor agroup of plants. The correctness of the
market description can, however, be improved by increasing the number of
generation groups.

The annual power generation (g;), consumption (d;) and exchange (imy or
exy) are found directly by applying Visual Basic's built-in algorithm for
linear optimisation on the optimisation problem described in (3-7)-(3-12).
All the other variables in the equations are treated as constants in the
optimisations, which take place at each simulated time step. However, these
variables might also change between each time step, due to the dynamics of
the supply and demand curve in the system. The dectricity price, p(t),
occurs as the dual value, or shadow price, of the electricity balance in (3-8).
Other technology specific figures, like capacity factors and generation costs
are easly derived from the results of the optimisation. Macro economic
figures, such as consumer’s and producer’s surplus, also follow from the
solution of the optimisation problem.

MaX 3 g,.MD, -3 g -MC, + 3 (im,- IMR, - e, - EXR) (3-7)
j=1 i=1 k=1

subject to
M N [¢]
24 -2 9;+> (im —ex)=0 (3-8)
i=1 j=1 k=1
g, <GC, i=1.M (39
d,<DC,, j=1N (3-10)
im_ex, <EXC,, k=1.0 (3-11)
g.d;,im,ex 20 V i,j.k (3-12)

4 Modelling of imperfect competition and strategic bidding is more relevant for shorter time
horizons where peaking effects from daily and seasonal load variations are included. We
assume that these effects make a negligible impact on the average annual electricity price.
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The modd is, in its current form, an energy model, and does not address
problems concerning peak demand and short-term capacity deficits. It is
aso asingle area model, where transmission losses and reserve margins are
assumed to be included in the demand groups. Consequently, there is one
single electricity price for the overall region. Price differences within the
region due to transmission congestion are not taken into account in the
model. The aggregate annual price calculation is motivated from the fact
that it is the average electricity price over the year that is relevant for most
of the investments we consider, both on the supply and demand side in the
power system. However, a more detailed market description could easily be
implemented within the current framework, for analysis of effects that
requires a shorter time resolution, as for instance investments in peak power
plants.

3.4 lllustrative Example: Norwegian Case Study

To test the model we developed an input dataset for the Norwegian power
market based on information in [31] and [32]. The initial conditions in the
system describe year 2000, and the model is smulated for a period of 30
years. The most important assumptions for the supply and demand side are
shown in Table 3.1 and Table 3.2. On the supply side the initial generation
capacity consists amost entirely of hydropower. 4 different power
generation technol ogies can be added to the system (hydro-, wind-, gas- and
gas power with CO,-capturing). Investments in all of these technologies are
currently under consideration in the Norwegian power system. The demand
side is described by a few key variables. The system load is dightly above
average generation capacity in the initial year, and we assume a reference
relatively low growth in demand of 1 %. The price flexible part of demand
in assumed to be constant and equal to 14 % of total demand throughout the
simulation period.

We first run a business as usual scenario (reference), where we assume
that the authorities take a passive approach and leave it to the market to
decide on the timing and technology for new generation. In the second
scenario (green) we assume that the authorities take a more active approach
and intervene in the market with CO, taxation (125 NOK/ton from 2002).
They also show preferences for renewable power generation when giving
construction permits. This is represented in the model with higher permit
acceptance fractions for hydro and wind power than for gas power plants.
All the other assumptions are the same in the two scenarios. In both
scenarios we assume constant average inflow to the hydro reservoirs. Hence,
price fluctuations due to the variable precipitation are not taken into
account.
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Table 3.1 Input parameter values for new generation technologies in the case study of the
Norwegian power market. ‘Gas power with CO,-capturing. Values for the two scenarios

ref/green. 3CO, tax introduced in 2002 for gas power.

Hydro Wind Gas | Gascap' Unit

GCinit 118 0.5 0 0 TWhlyear
RCi 30 80 100 100 TWhlyear
oG 20 35 25 40 NOK/MWh
FCi 0 0 100 120 NOK/MWh
ol*? 0/0 0/0 0/-45 0/0 NOK/MWh
CF; CF,(RC) CF,(RC) 8000 8000 hours/year
ic; 5000 8000 6000 10000 NOK/kwW
I1; 0 0 0 0 NOK/kwW
N 40 20 30 30 years
ad; 3 2 3 3 years

cd: 3 1 2 3 years

ki 0.002 0.014 0.005 0.012

rr, 0.07 0.07 0.07 0.07

3 0.02 0.02 0.02 0.02

ap’” 0.5/0.7 0.5/0.7 0.5/0.3 0.5/0.3

ab; 0 0 0 0

Table 3.2 Input parameter values for the demand side in case study of the Norwegian
power market. The parameters are constant throughout the simulation period.

dd fp
2years | 0.14

tax
100 NOK/MWh

dgref
1% pa

Peurt £
800 NOK/MWh | -0.31

Figure 3.7 shows that the simulated price fluctuates throughout the 30
years in the reference scenario. Capacity expansions are triggered during the
periods with high price, but delays cause the expansions to lag behind the
price development. Most of the expansions are in large-scale gas power, as
shown in Figure 3.9, since the other technologies are not able to compete.
The cyclical pattern of prices and investments are similar to the ones
detected by Ford in [28] and [29]. However, in our model the load also
responds to the price and shows a similar fluctuating pattern, due to short-
and long-term price elasticity. The price elasticity of demand contribute to
lower the price peaks in the system.

In the green scenario the price increases immediately after the CO,-tax is
introduced in 2002 (Figure 3.8). The price also fluctuates here, but at a
higher price level and with less regularity than in the reference scenario. The
generation development is smoother because of a higher fraction of small-
scale renewable generation technologies. Figure 3.10 shows a substantial
shift from investments in gas power towards the renewable technologies.
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Wind power is given a major boost due to the reduced competitiveness of
the gas power technology. Investments in gas power with CO, capturing
also occur in the green scenario, although not until close to the end of the
simulation period. The demand shows a similar trend as in the reference
scenario, but with lower growth, especially right after the price increase
following the introduction of the CO,-tax. Note that the generation is always
lower than load in both scenarios. This is due to an assumption of excess
import capacity throughout the simulation period.

240

[TWhlyear] and [NOK/MWh]

— Price = Generation —— Load

100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Simulation year

Figure 3.7 Smulated electricity price, generation and load in the reference scenario, 2000-
2030.
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Figure 3.8 Smulated electricity price, generation and load in the green scenario, 2000-
2030.
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Figure 3.9 Smulated new generation capacity for the four different technologies in the
reference scenario, 2000-2030.
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Figure 3.10 Smulated new generation capacity for the four different technologies in the
green scenario, 2000-2030.

We only show alimited number of results here, as our main focusison the
presentation of the system dynamics model concept and the underlying
theory. However, by changing the input variables to the model it is possible
to study different topics, ranging from natural effects like stochastic inflow,
to effects from authority regulations like subsidies of certain generation
technologies and changes in end-use taxation. System consequences of
different investment strategies can also be examined, by modifying the
decision rules for investments in the various technologies in the model. The
simulation model can be a useful tool for scenario analysis of the long-term
development of the power market. The results from such scenarios can serve
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as input to investor's decisions regarding investments in new power
generation assets. Politicians and regulators, who want to enhance their
understanding of the investment dynamics in restructured power market, can
also use scenario results as input to their decisions regarding market design
and investment incentives. However, in order to achieve improved decision
making through such scenario analysisit is of high importance that decision
makers are also involved in defining the scope and assumptions for the
study, and also in the development of the simulation model itself. The full
value of using system dynamics as a tool for decision support is only
achieved by actively taking part in the aggregation of knowledge which
takes place through the different phases of the model development.

3.5 Extensions of the M odel

The simulation model presented in this chapter was developed in an early
stage of the doctoral project. Later on, the original model concept has been
extended in severa directions. Vogstad et al. [33] and Maribu [34]
introduces a finer time resolution in the model so that seasonal variations
can be taken into account. An aternative formulation for the price formation
in the spot market is also proposed. Furthermore, the geographical scope of
the input data set is extended to include Sweden, Finland and Denmark in
addition to Norway. However, the main feedback loops for capacity addition
and demand development are still the same as in the model presented above.
A range of scenarios for the long-term development of the power market in
Scandinavia are examined in these analyses, with focus on economic and
environmental consequences of different energy policy options. Vogstad et
al. [35] and Sungard Kristensen [36] also extend the scope of the model to
include the interaction between a restructured electricity market and a
possible market for tradable green certificates. The complexity of the
feedback loops and investment dynamics in the system are further increased
when green certificates are introduced as an incentive to increase
investments in renewable power generation technologies.

3.6 Chapter Summary and Concluding Remarks

In this chapter we have presented a simulation model for long-term analysis
of the power market. The model is based on the field of system dynamics. It
simulates the development of supply and demand in a competitive power
market, where the electricity price is the main feedback signal for new
investments in the system. In the model we have tried to include the main
causal relationships that give rise to the long-term investment dynamics in
the power system. Less attention is paid to detailed representation of short-
term operation of the system. The dynamic simulation model can serve as a
tool for learning and decision support for participants in the power market
who want to adapt quickly to the changing conditions caused by the recent
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trend towards liberalisation and competition. The strength of the modelling
approach liesin its ability to dynamically simulate feedback systems where
decisions are decentralised and not necessarily based on perfect foresight
and rational expectations. Scenarios which resemble real world decision
making can therefore be analysed.

The model is well suited for scenario planning. The results from the
Norwegian case study show that the model is able to capture at |east parts of
the long-term dynamics that is likely to occur on both the supply and
demand side of the power market. We see that cycles of power plant
constructions can easily occur in competitive power markets. This has also
been pointed out in previous studies. Not surprisingly, the results also show
that regulatory intervention in the market, e.g. in terms of taxation and
permitting policies, can substantially change the choice of new power
generation technologies. The changes in investment patterns also change the
price dynamicsin the system.

A system dynamics model is mainly atool for improving decision makers
gualitative understanding about a complex problem. Increased insight will,
in turn, result in better decision making. However, improved knowledge can
only to a limited extent be achieved by studying the results from the
simulation model. In order to obtain the best results from using system
dynamics for planning purposes, decision makers should be involved in al
the stages of the model development.

As we have seen, the investment decision rules that are applied in the
model in this chapter are of a static and rather simplistic nature. In the
following chapters we will focus on how decision makers can optimise
investments in a competitive power market, where they are faced with
increased levels of uncertainty. However, we still use the optimal
investment strategies to simulate the system over a period of time, in order
to gain insight in the long-term dynamics of investments and prices in the
power system.
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Chapter 4  optivAL INVESTMENTS
IN POWER GENERATION
UNDER UNCERTAINTY

In this chapter we develop a stochastic optimisation model for investments
in new power generation capacity under uncertainty. The model builds upon
real options theory, which has been developed over the last two decades in
order to improve how uncertainty can be taken into account in economic
evaluations of investment projects. The real options theory is outlined in the
beginning of the chapter, with focus on its relevance and applicability for
investment planning in a restructured power system. We also discuss the
main uncertain factors that will influence the future price of electricity, and
how these short- and long-term uncertainties influence optimal investment
decisions. The decision support model in this chapter caculates optimal
investment strategies for a decentralised investor in the power system. When
developing the model we first assume that the investor has an exclusive
permission to construct a new power plant. Under this assumption we
develop the mathematical framework of the optimisation model, which is
based on stochastic dynamic programming. More realistic assumptions are
added to the model, by also representing the investment decisions of other
participants in the system. In the illustrative examples we use the model to
identify at which load and price levels it is optimal to invest in a new gas
power plant in Norway. The analysis is repeated for different assumptions
about regulatory incentives for investments. We also study the resulting
effect on capacity and energy balances in the power system. Differencesin
the optimal investment decisions from using stochastic versus deterministic,
and dynamic versus static project evaluations are also illustrated.

The investment model in this chapter was first presented at the 12"
Intelligent Systems Applications to Power Systems Conference, |SAP2003
(Botterud et a. [37]). The paper from the conference proceedings is
included in Appendix D.
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4.1 Investment Theory and Real Options

4.1.1 Shortcomings of Discounted Cash Flow and the Static NPV Rule

According to traditional finance theory the net present value (NPV) is the
best indicator and decision-aid for companies evaluating a new investment
project. The static form of the NPV rule states that a project should be
undertaken as long as the sum of discounted cash flows from the project (i.e.
the NPV) is positive, while projects with a negative NPV should be rejected.
However, it has become apparent that the traditional static discounted cash
flow techniques have severe shortcomings (Dixit and Pindyck [38], Brennan
and Trigeorigis [39]). First of all, the static assessment only compares the
two alternatives of making an investment today or not to invest at all. In
most cases the decision maker has the choice of deferring an investment,
and then to invest later in the event of favourable investment conditions. In
addition, the result from applying the static NPV rule is heavily dependent
on the discount rate applied in the calculation. At the same time we know
that estimating an appropriate discount factor in many situations can be very
difficult. A new direction within investment theory has emerged in the
1980s and 1990s, which is trying to mitigate the shortcomings of the static
discounted cash flow techniques. The new approach, frequently referred to
as real options theory, is based on a dynamic analysis of investment
projects. In the real options theory a new invest project is regarded as an
option, and it is recognised that the value of such areal option comes from
three sources (Ross [40]). Firstly, the static NPV given that the project is
undertaken immediately. Secondly, the value of the embedded options built
into the project. These embedded option values arise because of uncertain
future changes in the value of the project itself. Thirdly, the option value
which is caused by possible future movements in capital costs (i.e. the
interest rate).

The valuation of an investment opportunity can change considerably if the
option values are taken into account in addition to the static NPV in project
evaluations. In order to do so a stochastic dynamic approach is needed. A
deterministic project assessment based on discounted cash flows can also
give results that are better than the static NPV rule, as long as the dynamic
aspect is included. Deterministic dynamic methods™ is frequently applied

A good theoretical overview of expansion planning methods for the power industry in
Norway is given by Faanes in [41]. Dynamic programming (DP) is here considered as the
best method to determine the optimal choice of timing, size and technology for new
investments in generation capacity. Deterministic DP models find an optimal investment plan
for the entire planning horizon and do not take the effect of uncertainty into account in the
optimisation. Stochastic DP models, on the other hand, find the optimal first stage
investment decision, while future decisions are dependent on how uncertainties unfold.
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within the electrica power industry, and can be used to find optimal
investment plans under certainty. The main advantage of the rea options
theory compared to these deterministic approachesisitsimproved capability
of dealing with risk, uncertainty, and flexibility in the timing of investment
projects. Dixit and Pindyck [38], Brennan and Trigeorgis[39] and Ross [40]
give comprehensive descriptions of the real options theory. An overview of
the main principlesis given in the sections below.

4.1.2 Real Options, Managerial Flexibility and Irrever sible Decisions

An investment project can have several embedded properties that can be
viewed as options. The most common options for investment projects are
listed by Trigeorgis [42]: the option to defer an investment, the time to build
option (for staged investments), the option to ater operating scale, the
option to abandon a project, the option to switch inputs or outputs from a
process and different forms of growth options (e.g. investmentsin R&D). In
some projects there are interacting effects between several of these options.
In addition to the options embedded in the project itself there is aways an
uncertainty in future cost of capital. Thiswill aso contribute to the value of
the option to invest in anew project. The total value of an investment option
before it is exercised, i.e. the value of a project before an investment
decision ismade, isillustrated in Figure 4.1 and can be expressed as.

(Total value of (Satic NPV) +
investment option) B (Value of options from managerial flexibility)

Net Present
Value
(NPV)

»

4

Value of options from
managerial flexibility
F(V) : Expected NPV of

investment option 7
7
7
7
,/ Static

v NPV | ~

VAl t >
,’ / v Net cash flow
4 from project, V

VAN
/ V-I: NPV of project

v
Figure 4.1 Illustration of the real options principle. The figure shows the expected NPV of
the investment option, F(V), and the NPV of the project itself, V-I, as functions of the net
cash flow from the project, V, which evolves as a stochastic process. | is the investment
cost, while V* is the threshold where immediate investment becomes optimal.
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According to the static NPV criterion, it is optimal to invest as soon as the
NPV of the project turns positive, i.e. when the net cash flow, V, exceeds the
investment cogt, I, in Figure 4.1. However, V is uncertain and can change in
the future. By investing immediately the investor is unable to take
advantage of favourable changes in V. The value of having the option to
invest, i.e. F(V) in Figure 4.1, is therefore higher than the NPV of investing
immediately, also after the project’'s NPV turns positive. Therefore,
according to the real options theory the optimal investment criterion does
not occur until the cash flow from the project reaches VV*. At this point the
value of investing immediately becomes more profitable than the expected
value of holding the option to invest and thereby be able to wait for more
information about the future to unfold.

When calculating the total value of an investment opportunity the total net
cash flow, V, can be represented directly as an exogenous stochastic
variable, as illustrated in Figure 4.1. In more detailed models the value of
the investment project is usually modelled as a function of one or more
underlying variables, e.g. product demand or priceif the project is afactory.
Note that both growth and uncertainty in the net cash flow can contribute to
the option value from managerial flexibility. A deterministic dynamic model
can capture the part of the option value, which is due to the growth in
underlying variables. However, a stochastic dynamic model is required to
also take into account the option value that arises from uncertainty.

In the example illustrated in Figure 4.1 the option value from active
management is positive, and therefore contribute to the postponement of the
investment decision. In certain cases the option value might also be
negative, resulting in earlier investments than what the static assessment
suggests. This is typically the case when an investment decision develops
future growth opportunities (growth options).

The part of the total project value that arises from the option value of
managerial flexibility is highly dependent on the irreversibility of the
investment decision. In some cases, as for instance investment in a new
office building or afleet of transportation vehicles, the investment can be at
least partially reversed by selling off the assets to other investors. In the case
of reversible investments the additional option value is low and the static
NPV criterion would still be appropriate. However, large-scale capital
investments are very often firm or industry specific and the investment
decision istherefore to alarge extent irreversible due to the projects’ limited
value for other investors. Irreversibility increases the option value of and
investment opportunity, and therefore also the importance of taking thisinto
account in the project appraisal. New power plants would usually fall into
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the irreversible category of investment opportunities, as the possibility of
selling a newly constructed power plant without substantial financial losses
is very low. Another important factor that influences the value of an
investment opportunity is the duration of the investment option. A power
generation company might receive approval from the authorities for
constructing a new plant, but the permit is usually valid only for a limited
number of years. In this situation, the option value of the investment
opportunity would be large in the beginning of the period, while it would
gradually decrease as the expiration of the permission approaches.

4.1.3 The Use of Dynamic Programming in Real Option Valuation

Dynamic programming (DP) is one of the optimisation techniques that is
appropriate for solving investment problems in accordance with the real
options theory. DP is a general optimisation technique with applications
within a range of different areas, including power system planning. The
central idea in DP is Bellman's principle of optimality which states that
[38]: “An optimal policy has the property that, whatever the initial action,
the remaining choices constitute an optimal policy with the respect to the
subproblem starting at the state that results from the initial actions’. A DP
optimisation problem is therefore often solved stepwise, starting either from
the beginning or the end of the period of consideration. The theory can also
be extended to infinite horizon problems and continuous time. A continuous
time version of the so called Bellman equation, as shown in (4-1), can be
used to solve an investment optimisation problem when the underlying
uncertainty is described by a continuous stochastic state variable. The
equation states that under an optima investment policy the sum of
immediate payoff from the project and the change in the value of the
investment option (the right-hand side of the equation), must equal the
required risk-adjusted return on the investment project (the left-hand side of
the equation).

p.F(x,t):muax{ir(x,u,t)+$E(dF )} (4-1)

where
F(x,t) value of the investment opportunity (option)
z(x,u,t)  immediate payoff from the investment
p risk-adjusted discount rate for the investment project
X,u,t state variable, control variable (investment decision), and time

The following simple example illustrates the use of the DP a gorithm for
an investment optimisation problem. A power generation company is
considering construction of a new hydropower plant. The owners of the
company have not taken the final investment decision yet, as they are not
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convinced about the profitability of the new plant. The value of the power
plant is highly dependent on the future price in the power market, and the
problem is to decide at what price level it is optimal to build the new plant.
For simplicity we only consider price uncertainty here, athough there are a
number of other uncertainties that also influence the profitability of the
power plant. We assume that the uncertain electricity price can be
represented by a state variable, P, which follows a stochastic process as
shown in (4-2)'°. We aso assume that the operating costs for the
hydropower plant can be neglected. The expected value, V(P), of the hydro
power plant after the investment decision is taken is therefore as shown in
(4-3), i.e. V(P) can be expressed as the price for electric power, P, times a
constant factor, k.

dP=¢-P-dt+0-P-dz (4-2)

V(P)=E{Cf -ic.].(e—pt ) P)dt}:cf 'iC']-(e_pt-P-e‘m Jat

. 4-3)
_pk, k=2 C(1-etraT)
p—o
where
a, o expected growth rate and variance rate for price, P
dz Stochastic Brownian motion process, i.e. dz ~ N(0,dt)
af,ic, T  capacity factor, installed capacity, and lifetime for the new
power plant

p risk-adjusted discount rate for the new power plant

We know that the price has to reach a certain level, P*, before it becomes
optimal to invest. At this price level the value of the investment option
equals the NPV of the project (i.e. V(P*)-1). Now consider the price interval
below P*. In this price interval we know that it is not optimal to invest.
Hence, there is no immediate payoff from the project and the general
Bellman equation in (4-1) can be restated as pFdt = E(dF). By using It0’'s
lemma’’ to expand dF, combined with (4-2) for the underlying stochastic
state variable, P, a differential equation for the optimal investment problem
is derived, as shown in (4-4). This is a second-order homogenous

18 This stochastic process is called geometric Brownian motion, and is frequently used within
finance theory to describe the behaviour of financial assets. The famous Black and Scholes
equations [43] for option pricing are for instance based on the assumption that the
underlying asset follows a geometric Brownian motion.

" Ito's lemma is often used in financial mathematics when the stochastic state variable is an
Ito process, i.e. a stochastic processes of the form dx=a( X,t )dt + b( x,t )dz. The lemma

states that the differential of a function, F(x,t), is g :ajdt+ oF dxs + O°F (dx)? (ref. [38]).
2

a - ax ¢
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differential equation and it is solved by standard techniques. The value of
the investment option, F(P), and the optimal price level, P*, is then
determined by specifying a set of boundary conditions'® and ruling out
infeasible solutions. The results are shown in (4-5) and (4-6).

1 d’F dF

EUZ.PZ.dPZ +a-P~$—p-F:O (4-4)
(kY (1Y, i

e {5 “9

pro Pl ﬂ:}/—a/0'2+\/(a/az—}/)2+2p/0'2 (4-6)
k(A-1) 2 2

Having devel oped the closed-form solutions in (4-5) and (4-6) we can now
investigate the optima investment for a set of assumptions (Table 4.1).
First, we assume that there is no expected growth in the price (a = 0). The
resulting values of the investment option for three different levels of
uncertainty are shown in Figure 4.2. When there is no uncertainty about
future price (¢ = 0) there is no option value in waiting. The value of holding
the investment option is therefore zero until the price reaches the level
where the NPV of the project becomes positive. In this case the optimal
investment price, P*, is the same as in the static NPV analysis. The figure
also shows that uncertainty in the price adds value to the investment option,
so that optimal investments are triggered at higher prices. When a growth
rate is added to the price process (a = 0.03), we see a similar picture (Figure
4.3). However, the optimal investment prices are higher, and now there is a
value in having the investment opportunity, even if there is no uncertainty.
Hence, both the underlying growth and uncertainty in the price give rise to
the value of the investment option.

Table 4.1 Input parameters for investment in a new hydropower plant.

Parameter | Description Value Unit
ic Installed capacity new plant 100 MW
af Capacity factor 4000 hours/year

I Inv. cost (@10000NOK/kW) 1000 MNOK
T Lifetime 30 years
p Risk adjusted discount rate 0.08 per year
a Expected price growth rate 0 or 0.03 per year
o Standard deviation in price 0,0.10r0.2 per year

'8 Three boundary conditions are used: F(0) = 0, F(P*) = V(P*) — I, and F'(P*) = V'(P*). See
[38], Chapter 5 and 6, for a more detailed description of similar investment problems.
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Figure 4.2 The value of the investment option, F(P), with no expected growth in price (o =
0), and three levels of price uncertainty (¢ = 0, 0 = 0.1 and o = 0.2). The net present value
of the project, V(P)-1, is also shown.
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Figure 4.3 The value of the investment option, F(P), with expected growth in price (a =
0.3) and three levels of price uncertainty (o = 0, o = 0.1 and ¢ = 0.2). The net present value
of the project, V(P)-1, is also shown.

The example presented above serves to illustrate how real options theory
can be applied to identify optimal investment thresholds as a function of the
underlying state variable(s). The central idea in real options anaysis is
illustrated, namely that the optimal investment criterion can deviate
considerably from what the static NPV analysis suggests. Our problem
formulation is very simplistic, as we have assumed that the value of the
hydropower plant is a function of one state variable only, the electricity
price. At the same time the price is modelled as a simple stochastic process.
Thisis of course a very aggregate representation of the electricity price, as
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the price in redlity is a function of more fundamental variables, such as
electricity demand, fuel prices, installed generation capacity and the rules
and regulations of the electricity market. The electricity market also
contains a high degree of seasondity, which should be taken into
consideration. Later in the chapter we will return to the problem and
develop a more fundamental model for optimal investments in power
generation assets, where a wider range of uncertainties can be taken into
account. Another problem with the DP approach presented above is that it
requires the specification of an explicit risk-adjusted discount rate, p, for the
investment project. As already mentioned, it can be difficult to derive an
appropriate discount rate for the project under consideration. An alternative
method has therefore evolved for valuation of real options, which better
takes into account the risk and return characteristics for the investment
project. This aternative method, called contingent claims analysis, is briefly
outlined in the following section.

4.1.4 Contingent Claims Analysis and Risk-Neutral Valuation

The use of contingent claims analysis (CCA) for evaluation of investment
projects is closely linked to financial option pricing, which was first
developed by Black and Scholes [43], and Merton [44] in the early 1970s.
The idea behind CCA is to create an artificial portfolio of assets that are
traded in the financial market, so that the portfolio exactly replicates the
uncertain net cash flow from the investment project. A riskless position can
then be obtained by holding the option to invest in the project and an
offsetting short position in the replicating portfolio. The return on the
riskless position must equal the risk-free interest rate, in order to avoid
arbitrage opportunities. By setting the return on the riskless portfolio equal
to the risk-free interest rate, and expanding the change in the value of the
investment option (dF) using Ito’s lemma, a differential equation can be
derived for the problem. The value of the replicating portfolio can be
assessed relative to the total financial market portfolio, for instance by using
the Capital Asset Pricing Model (CAPM) model™. Consequently, the
investment project is evaluated according to the total financial market's
pricing of risk, and the market value of the project is maximised. The value
of the investment opportunity can now be expressed without using a specific
risk-adjusted interest rate for the project. Instead, the risk-free interest rate
and the market’ s required rate of return for the replicating portfolio are used
to evaluate the investment option. For the investment example presented

® The Capital Asset Pricing Model (CAPM) is described by Brealey and Myers in [45]. The
CAPM provides an expression which relates the expected return on an asset, rx, to its
systematic risk, 8. CAPM states that: ry = r; + B*(rm - ), where r is the risk-free interest rate,
I'm is the return on the total financial market portfolio and B8 = oxm/om’ is a measure for the
asset’s systematic (non-diversifiable) risk.
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above, the differential equation resulting from CCA valuation is shown in
(4-7). We see that (4-7) bears close resemblance to (4-4). The only
differences are that the risk-free interest rate, r, is used in place of the risk-
adjusted discount rate, p, and the growth rate of the price process, «, is
replaced by the risk-free interest rate adjusted for dividend, r-o.
Furthermore, by comparing (4-4) and (4-7) we see that the investment
option could be evaluated by discounting with the risk-free interest rate and
letting the price follow a stochastic process with an alternative growth rate
(r-0), as shown in (4-8). This illustrates the principle of risk-neutral
valuation?®®, which gives the same result as the no-arbitrage arguments
behind CCA.

2
1o-Z-Pz-d—lz+(r—6)~P~d—F—r~F:0 (4-7)
2 dpP dpP
dP' =(r—8)-P-dt+o-P-dz (4-8)
where
r the risk-free interest rate
) dividend (or convenience yield) on the replicating portfolio

(i.e. 0 = rp- a, where r, is the expected return on the
replicating portfolio according to CAPM)

The use of CCA for valuation of real assets relies on the assumption that a
portfolio can be established in the financial markets, which exactly
replicates the uncertainty in the underlying stochastic processes. This is an
appropriate assumption if the state variable is the price of a commodity that
is traded in futures markets with high liquidity. However, unless one can
assume the existence of complete financial markets, there would sometimes
be situations where the underlying state variables have characteristics that
are not similar to any portfolio of traded financial assets. In this case the use
of CCA would not yield correct results. However, the DP algorithm with an
exogenous discount rate would still apply.

4.1.5 Limitations of the Continuous DP and CCA Approaches

If the investment problem is specified in an appropriate way, it is possible to
find closed-form solutions for the differential equation resulting from either
the dynamic programming or the contingent claims analysis approaches.
However, in order to find an analytical solution to the investment problem,
the state variables have to follow a specific group of stochastic processes.
Ito and Poisson processes are the only stochastic processes that are suitable

2 | the risk neutral valuation paradigm one uses risk-neutral stochastic processes to
describe the dynamics of the underlying state variables, and discounts all cash flows at a
risk-free rate. See Hull [46] for a description of risk neutral valuation and derivatives pricing.
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for solving the problem analytically, according to Dixit and Pindyck [38]. In
most applications from finance theory it is assumed that the underlying
stochastic variable(s) can be described either by geometric Brownian motion
or by a mean-reverting process (both belong to the group of 1to processes).
The number of state variables is also normally limited to one or two in real
options applications from finance theory, as analytical solutions rarely exist
for two or more state variables. To release the strong assumptions for
finding analytical solutions, it is sometimes better to formulate the
investment problem in discrete time and also discretise the state variables.
This allows for a more flexible, detailed and therefore more redlistic
problem formulation. With discrete representation of time it is also possible
to represent delays, for instance due to the construction time for a project.
The disadvantage is of course that it is not possible to derive closed-form
solutions that can be applied directly for decision support. One of the more
advanced models from finance theory with application in the energy
industry is proposed by Schwartz and Smith [47]. They develop a stochastic
model based on two underlying Ito processes to analyse short-term
variations and long-term dynamics in oil prices. Kalman filtering is applied
to estimate the parameters in the continuous time model from price data of
oil futures contracts. Potential use of the model is illustrated with an
example where they use rea options theory to evaluate two different oil
production projects. In order to find a solution to the real options problem
they have to formulate it using discrete time SDP. The two underlying state
variables are aso discretised. This serves to illustrate that only under very
strict assumptions can an analytical solution be derived when there is more
than one state variable in the model. In addition, the difficulty of estimating
model parameters also increases rapidly with the complexity of the model.

4.1.6 Real Options and Competitive Markets

In the above presentation of real options theory we assume that the company
has an exclusive opportunity to investment in a new project. In competitive
markets the option to invest is usually not limited to one firm only.
Consequently, there is always a risk concerned with postponing an
investment project, since it gives other investors the possibility to enter the
market. It is likely that the possibility of investments from other firms will
influence on the optimal investment criteria. The direct validity of the above
analysisistherefore limited to a monopoly situation.

So far we have not taken into account the effect on the future price and
project value from other participants investments, unless we can assume
that other participants actions are aready included in the underlying
stochastic processes. In the rea options literature there are proposals for
how this can be done. Dixit and Pindyck [38] start with an investment
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model similar to the one in the hydropower example above, and assume that
other participantsin the market will invest if the price rises sufficiently high.
Now there is no longer an option value in postponing the investment, since
this would result in competitors investing instead. In a fully competitive and
open market, with homogenous participants where everyone faces the same
uncertainties, there will be one single optima investment price for all
participants. Since there is no option value in postponing a project,
investments would be made as soon as the net value of the project exceeds
the investment cost. This optimal price puts an upper barrier on the price
distribution, so that the expected value of the project is lowered. This is
illustrated in Figure 4.4. With this ssmple investment model it turns out that
the optimal investment price under competition is the same as in the
monopoly case. However, now it is not the option value in the investment
that raises the optimal price level above the original static NPV criterion.
Instead it is the lowered expected value of the project itself, due to the
barrier in the price distribution created by the competitors, which give a
higher optimal investment price.

Net Present
Value
(NPV)

-
»

Price, P

Figure 4.4 The value of an investment option and the corresponding investment project as
function of price in monopoly (m) and perfect competition (c). The optimal investment
price, P*, isthe samein both cases. Source[38].

Smit and Ankum [48] include game-theoretic considerations into the
valuation of investment opportunities. The net operating cash flow from a
project is defined as the sum of the opportunity cost of capital and the
expected economic rent. Economic rents occur when a company has a
competitive advantage and are naturally permanent in a monopoly situation.
However, the rent will only exist temporarily in competitive markets
characterised by costless entry and exit of competitors. This is represented
with exponentialy declining economic rents. A duopoly situation is also
studied, where two firms are operating so that the behaviour of each
competitor directly influences the value of the project. In this situation an
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early investment can contribute to pre-empt the competitor. A two-step
binomial decision-tree is constructed to evaluate an investment option under
duopoly. The Nash equilibrium from game theory is applied to identify
investment strategies and corresponding project and option values at each
decision node under both symmetric and asymmetric market power. In this
situation the values depend on the strategy of the other firm, particularly if
an early investment pre-empts the competitor or results in a competitive
advantage. The degree of market power for the leading firm and the amount
of information shared between the firms influence on the optimal
investment. The level of cooperation between the firms is aso important
when the investment decision is modelled as a game.

Dixit and Pindyck [38] aso model a duopoly within their continuous time
framework. A dynamic game with two players is formulated, and the value
of an investment project and the corresponding optimal investment criterion
is derived for both. The result depends on whether the firm is a leader, i.e.
the firm which invests first, or afollower. The investment threshold is lower
for the leader, because the option value of waiting is limited due to the risk
of the other participant investing first instead. However, the option values
and investment thresholds naturally depend on whether the roles as |eader
and follower are preassigned or not.

4.1.7 Literature Survey: Real Optionsin Power System Planning

The restructuring of the electric power industry has increased the
uncertainty concerning the profits from investments in new power
generation. However, the electric utilities were also faced with many of the
same uncertainties under traditional regulation, although the focus was on
cost minimisation and not profit maximisation. Models for optimisation of
investments under uncertainty were therefore also applied within the
regulated industry. Hobbs [3] gives a good overview of optimisation
methods for electric utility resource planning under cost minimisation, i.e.
the selection of power generation and energy efficiency resources to meet
customer demands for electricity. According to Hobbs most utility planners
use deterministic methods, such as deterministic equivalents and scenario
analysis, to assess different expansion plans under uncertainty. More
advanced methods for stochastic optimisation under uncertainty are rarely
used, due to the complexity and aso the computational requirement
involved. Still, there are a few proposals for how to better deal with
uncertainty and flexibility for the regulated industry. Mo et a. [16] use
stochastic dynamic programming to identify optimal investment strategies
to meet future heat demand. Heat demand and oil price are represented as
stochastic variables using Markov chains. The effect of different
construction times for the candidate technologies is also represented in the
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model. The model minimises the expected sum of investment and operating
costs within a DP framework, and therefore takes into account flexibility
and timing in a sSimilar way as the real options theory. Gorenstin et al. [49]
aso applies stochastic optimisation over long-term uncertainties for
expansion planning. Load growth is represented as a binomia tree, and
decomposition techniques are used to couple the operation and investment
sub problems. A minimax regret criterion is used in the objective function,
as it is argued that the minimisation of expected cost is not adequate for
“low frequency” phenomena such asthe load level in expanding systems.

Gardner [50] looks at the value of flexibility for different technologies
under uncertain demand. He defines a technology’s flexibility benefit as the
difference between its value under certainty and uncertainty. A set of
features that are important for a technology’s flexibility benefit are
identified, such as lead time, life time and the ratio between investment and
operating costs. A decision tree, where the uncertain demand can follow
three different growth paths between each time period, is used to calculate
the flexibility benefit. A case study from Canada shows that capital-
intensive long lead-time technologies, such as nuclear generation, have a
smaller flexibility benefit than low capital cost, short lead-time
technologies. Gardner and Rogers [51] analyse the electric utility’s problem
of finding the optimal mix of technologies to meet uncertain demand in a
specific target year. The traditional approach is to use technology screening
curves combined with the load duration curve to select supply technologies
in merit order (i.e. according to increasing operating cost). These traditional
screening curves can be directly applied when the technologies are
described by operating and capital cost only. However, Gardner and Rogers
use a two-stage stochastic program to show that the lead time is also an
important technology parameter that could change the optimal selection of
technol ogies when future demand is uncertain. A numerical example shows
that some short lead time technologies screened out by standard screening
methods may enter the optimal solution when differences in lead time are
considered, while some long lead time technologies may leave. Teisberg
[52] uses option valuation directly to look at investment in a power plant for
aregulated utility. This approach does not take into consideration technical
constraints in the power system, but focuses on the effect of different
regulatory incentives. The value of the plant is modelled as a stochastic
process™ where the growth rate is adjusted for different regulative regimes
for cost alowance. The effect of construction time and sequential cost

% Teisherg uses a geometric Brownian motion similar to (4-8) to describe the value of the
project and applies contingent claims analysis to find the value of the investment option.
Different regulating regimes are represented by letting & be a function of the stochastic
variable.
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outlays are represented and analysed using a simplified binomia option
model, as the corresponding differential equation does not have a closed-
form solution in this case.

New models for evaluation of investments in generation facilities under
competitive regulation have naturally emerged over the last few years. Some
of these approaches are linked more directly to the options theory from
finance. Closed-form analytical solutions for the option value of generation
assets, assuming that electricity and fuel prices follow either a geometric
Brownian motion or a mean-reverting process are derived by Deng et al.
[53]. Futures contracts for electricity and fuel are used to establish a risk-
free portfolio based on the principles for risk-neutral valuation. The same
logic is used to obtain the value of locational spread options for valuation of
transmission assets. Dobbe et al. [54] also uses futures based replication for
real options analysis of new generation assets. Forward prices for gas and
electricity are used for the valuation of a new gas power plant in Norway,
under different regulatory regimes for CO, emissions. Oren [55] looks at
demand side management, and suggests that customers’ flexibility to curtail
load can be considered as areal option and evaluated accordingly. The value
of a“double-call” option? is derived based on the principles of the Black-
Scholes formulas, with the underlying assumption that the forward price of
electricity can be described as a geometric Brownian motion. A discrete
binomial lattice model for real option valuation of two inter-related
generation units is derived by Min and Wang [56], again assuming that the
value of the projects evolve over time according to geometric Brownian
motions. The model is used to evaluate capacity expansion and reduction.
Venetsanos et a. [57] compares the use of discounted cash flow and real
option evaluation of investments in wind power plants. The benefits of
modularity and short lead-time under load growth uncertainty are taken into
consideration by adjusting the expected investment cost, and the value of
the investment option is calculated using the standard Black-Scholes
formulas. The results show that the benefits from modularity and short lead-
time can be substantial for wind power projects, but the option valuation
still tend to encourage postponement of investment due to the value of
waiting for future uncertainties to unfold. Short-term operationa constraints
are added to the real option valuation of generation assets by Tseng and
Barz [58]. A combination of forward moving Monte Carlo ssimulation and
backward dynamic programming is used to find a more realistic short-term

2 A “double-call” option is defined as a call option with one strike price if executed before
delivery and another strike price if executed at delivery. It is shown that a forward contract
bundled with an appropriate double-call option provides a “perfect hedge” for customers that
can curtail load in response to high spot prices. The curtailment loss is assumed to be lower
if the decision is made with sufficient lead time.
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value of generation assets. Here it is assumed that electricity and fuel prices
follow lognormal mean-reverting processes corrected for hourly patters over
the week. It is shown that failure to consider physical unit commitment
constraints may significantly overvalue a power plant.

The literature survey shows that the stochastic planning models for the
regulated industry tried to include the main technical constraints in the
power system. However, the objective was to identify optimal strategies to
meet future load growth, usualy in terms of minimising cost, so that the
price dynamics in the electricity market was of less concern. The more
recent planning models recognise that it is the uncertain future price, and not
the load growth by it itself, that triggers new investments in the power
system. Still, in most of the models it is assumed that the electricity price, or
the value of a new investment, can be described by fairly simple stochastic
Ito processes. The advantage is of course that these processes usually can be
dealt with analytically. However, when it comes to representing the price
dynamics in the current and future power markets, which is a function of
both technical constraints and market regulations, the assumptions behind
these option pricing calculations are probably to simplistic. Our aim is till
to use the principles behind the dynamic real option valuation to analyse
investments under uncertainty in new generation assets. By developing a
model framework that is capable of including more fundamental modelling
of the price dynamics in the power market, we are better equipped for
analysing the long-term consequences of power market restructuring.

4.2 Uncertainties and Real Optionsin Restructured Power
Systems

After the introduction to real options theory we now look more directly into
the conditions in the restructured electric power sector. As we have seen,
future uncertainties give rise to the option value of an investment
opportunity. Therefore, we first give an overview of the most important
uncertainties that an investor in a new power generation facility is facing,
and how these uncertainties can be represented mathematically. A
differentiation is made between long- and short-term uncertainties. It is the
long-term uncertainties that are most important for real options valuation,
because they are correlated from year to year and therefore contribute to the
option value of an investment opportunity. However, the short-term
uncertainties can also play arole for the investment decision, particularly if
the investor is risk-averse and sensitive to fluctuations in income from year
to year. These uncertainties are also important when looking at the system
consequences, for instance in terms of price stability and system reliability,
following from optimal investment behaviour.
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4.2.1 Long-Term Uncertainties and the Value of an Investment Option

From the real options theory presented above we know that long-term
uncertainties give rise to the option value of an investment opportunity. The
most important fundamental uncertainties for investments in new power
generation facilities are listed below. These long-term uncertainties can
influence the profitability of a project, either directly as an uncertain cost
element or indirectly through the market price of electricity, or sometimesin
both ways.

- Future electricity demand is a major uncertainty that is very important
aso in the restructured power market, as demand naturally is a major price
driver in the system. Total demand over the year as well as peak demand is
changing with time and influence the price and profitability of new
investments. Hence, there could be a value in postponing an investment
decision to await more information. There are different underlying factors,
such as growth in population and economy, which in turn cause changes in
electricity demand. However, in a stochastic investment optimisation model
it would lead to far to model demand in great detail, due to computational
complexity.

- Changesin fuel prices can influence directly the operating costs of a new
investment if it is a thermal unit. It aso affects the operating costs of
existing units and therefore the price level in the electricity market.
Historical data show that the prices of petroleum products tend to return to
an equilibrium level in the long run [38]. The value of postponing an
investment to wait for lower fuel prices might therefore be limited if the
level of mean reversion is high.

- Climate is another factor that is uncertain in a long-term perspective.
Climate changes can result in higher or lower demand than expected, and it
can aso influence the availability of energy sources such as hydropower.
Although there are several forecasts available for long-term climate changes
the randomness is still high, so that there might be a value in waiting, for
instance to see if and how the inflow to a prospective hydro reservoir
changes.

- Investment costs are also to an extent uncertain. This is particularly the
case for emerging technologies such as solar panels, wind mills and other
renewabl e technol ogies where cost reductions are likely, but still uncertain.
The uncertainty about future currency rates might also make an impact on
the actual investment cost, and in such Stuations it should be taken into
account in the project appraisal.
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- Uncertain changes in capital costs, due to future variations in the interest
rates, can also contribute to the value of a rea option to invest in a new
generation plant.

For the investor there are also other long-term uncertainties, which are not
really stochastic elements, but rather results of the decisions taken by other
participants in the power system. These decisions aso contribute to the
value of the investment opportunity, and for the investor they can
sometimes appear as random. Therefore, in certain situations it would make
sense to model them as stochastic variables. Such exogenous decisions
could be:

- Transmission constraints influence the electricity price. The prices in
deficit areas tend to be higher than in surplus areas, if locational pricing is
used. However, this can change if new transmission lines are built. Even if
transmission and distribution is still under regulation, long-term plans for
investments in new gridlines are rarely present. If investors in new
generation are exposed to risks concerning future network constraints and
their impact on the price of eectricity at the location of the new plant, an
option value of postponing investment decisionswill arise.

- In a newly liberalised electricity system the market design and system
regulations are likely to change several times before a stable long-term
solution settles. The profitability of an investment in a specific technology
can be highly dependent on the prevailing market design. For instance, the
mechanisms that are being used for the provision of short-term ancillary
services and long-term system adequacy will affect generator income. Direct
economic incentives, in terms of taxes and subsidies, are also important
factors that can be crucia for the viability of different technological
aternatives. When there is substantial uncertainty about some of these
factors it makes sense to postpone investment decisions until more certain
information about future regulationsis available.

- The system’s capacity balance and electricity price is dependent on the
change in system load and on the investor's own investment decisions.
However, investments in new generation from other participants in the
market also contribute to improve the capacity balance and lower the price.
These investments could be considered as random variables and thereby
treated in a similar way as other long-term uncertainties. In a competitive
industry it is probably a better approach to assume that these investments
are linked to the price level in the system, and that investments from others
are being made if sufficiently high prices are reached. The last approach is
taken in the modd presented later in this chapter. Decisions to retire
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capacity are partly given by the vintage of the existing plants in the system,
but also by the market conditions. The random element is even lower for
plant decommissions, and they could be treated either as exogenous
deterministic inputs or in asimilar way as capacity additions.

Thelist of long-term uncertainties could have been made longer. Although
the qualitative interpretation of the real options theory applies to most of
these uncertainties, it is only possible to take a limited number of them into
account in a mathematical model. A decision maker that wants to quantify
the value of a real option would therefore have to select the uncertainties
that are considered as most important, and then use a stochastic description
of them in the optimisation model. The effect of the remaining uncertainties
will have to be assessed through qualitative judgements or scenario analysis.

In this thesis we propose using a discrete investment model, in order to
accommodate more details in the problem formulation than what would be
possible with a continuous model. If more than one stochastic variable is
added to the problem, the correlations between the variables have to be
taken into account. In a discrete model this can be done by defining states
that are combinations of the underlying stochastic variables and assign
appropriate state transition probabilities. However, a consequence is that the
size of the state space grows exponentially, so that the computation time
increases very quickly with the number of stochastic state variables. The fast
growing size of the problem is therefore the main analytical challenge with a
discrete model.

In the process of selecting appropriate stochastic variables for the problem
one must also consider how to best describe the underlying uncertainty in
mathematical terms. From the standard real options models we know that
the fairly simple Ito processes are the ones which are best suited for finding
analytical solutions. When applying stochastic dynamic programming in
discrete time the stochastic variables must have Markov properties.
However, this is still more flexible than the typical Brownian and mean-
reverting continuous time stochastic processes, whose stochastic behaviour
is strictly described by the normal distribution. Figure 4.5 shows a binomial
tree for stochastic changesin load. There are no constraints on the transition
probabilities, other than the Markov property, i.e. the probabilities at each
time step are independent of earlier state transitions®. Hence, no assumption
of normality is required. Another advantage of using a discrete time

% This assumption could also be relaxed by extending the state space, so that it includes
the states for more than one step ahead in time. This is equivalent to adding additional
stochastic variables to the model, and the computational burden therefore increases
accordingly (i.e. exponentially).
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optimisation is that the transition probabilities do not need to be defined
exogenously. They can be functions of other states in the system, such as
capacity balance or electricity price. When modelling electric load one
could for instance include price elasticity of demand by adjusting the
transition probabilities for load according to the el ectricity price. In this way
the stochastic process can be an endogenous part of the optimisation
problem.

For the uncertainties that result from decisions made by other participants
in the power system, the possible outcomes (or states) are sometimes very
limited. In such situations the required state space expansion is much
smaller, and the increase in computational burden is therefore less severe.
Figure 4.6 shows how an economic incentive, in terms of an uncertain CO,-
tax, could be represented in a discrete model.

load, I, 4
MW]

| | | | -
I I I I '

0 1 2 3 time, k [year]
Figure 4.5 Illustration of discrete binomial representation of load level, I,. p,, and pg, are
transition probabilities.

(:O2 tax A
[NOK/ton]
p=1
Cax T e
ptax
0 -+ —eo—o - —e
p=1 p=1 1_ptaxp=1
| | | | | | | -
I I .. I I .. I >
0 1 2 Kk, k1 k+2 T time, k [year]

Figure 4.6 Illustration of how an uncertain introduction of a future CO,-tax could be
represented as a stochastic variable with two possible outcomes (0 and Ciay). Prax IS the
probability that a CO,-tax isintroduced after time step k;.
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4.2.2 Short-Term Uncertainties

In this thes's we define short-term uncertainties as stochastic elements that
are not correlated from year to year. Hence, the short-term uncertainties can
affect the profits for a power plant from season to season and year to year.
However, since investments in generation capacity have a long life-time
(20-40 years), the positive and negative effects from short-term uncertainties
on profits should level out in the long run. Consequently, there is no value
in waiting for more information about these uncertainties. The most
important short-term uncertainties for the generation expansion problemin a
system with a high amount of renewable resources are factors like
precipitation and wind. Incidental outages in the system are aso important
in the short-run, as well as deviations in load which again could be caused
by unexpected temperature conditions.

Although the short-term uncertainties do not contribute to the option value
of an investment opportunity, it can still be advantageous to represent the
most important of them in an expansion model. The reason is that the
operating profits for a power plant, and therefore the expected value of an
investment project, will depend on the distribution of short-term
uncertainties. With the presence of a futures market the investor can hedge
his investment against price fluctuations caused by the short-term
uncertainties, by selling the power in the futures market instead of the spot
market. If there is no risk premium in the futures market the investor would
then earn the expected spot price. Another reason for including the short-
term uncertainties in the model is that it gives us the opportunity to study
system consequences of optimal investments in the system. From a
reliability point of view the system will be at its most critical state under
certain realisations of the short-term uncertainties.

4.3 A Stochastic Dynamic Model for Optimal Investments

In this section we describe a stochastic dynamic optimisation model for
optimal investments in new generation assets in a deregulated power
market. The main purpose of the model is to analyse the optimal investment
timing for an investor who has the license to construct a new power plant.
Although the model only considers one technology at a time, we can
compare different technological alternatives by changing the input data for
the new technology. In addition to analyse optimal timing and technology
choice, we also want to use the model to study the effect on the power
system if investors behave according to the model’s results.
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The optimisation model builds on genera stochastic dynamic
programming theory and could be applied to power systems with various
physical characteristics. Still, the market description and representation of
short-term uncertainties have been chosen in order to fit the conditions in
Scandinavia, where hydropower makes up a large share of the existing
capacity. As discussed in Chapter 2 stochastic dynamic programming has
also been used for generation planning within the regulated industry (Mo et
al. [16]). However, the investor’s objective is now to maximise the sum of
expected profits over the planning horizon, and the profits are a function of
the prices in the electricity market. Therefore, we need to pay particular
attention to how the prices are represented. We include the influence of both
short- and long-term uncertainties on the electricity price. The inclusion of
the price dynamics adds a new level of complexity compared to the cost
minimisation problem for the regulated industry. Another important issue,
which can substantially influence the investment decisions, is the investor’'s
risk preference. These topics are further discussed in this section as the
model concept is presented.

4.3.1 Main Assumptionsin the M odel

The model builds on a set of smplifying assumptions. The most important
assumptions are listed below.

- The investor is assumed to have a permit to construct a new plant which
does not expire. It is the value of this permit (which can be regarded as an
investment opportunity) that we want to calculate and compare to the value
of owning the project itself.

- The investor’s objective is to maximise the expected profits from new
investments. Income is earned by selling power into the spot market for
electricity. Additional income could also come from investment incentives,
such as subsidies or capacity payments.

- The investor’'s risk preference is represented by using a risk-adjusted
discount rate.

- The investor does not take into account the possible negative price effect
on existing generation assets when new investments are considered. Hence,
the investor acts as a new entrant to the market and does not exercise any
market power, neither in investment decisions nor in operating strategy.

- Two different assumptions about the market conditions can be

represented in the model: 1) the investor has an exclusive right to invest in
the system (monopoly situation, but the investor still acts as a new entrant).
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2) investments from competitors are triggered when the electricity price
exceeds a certain threshold.

- Load is the only long-term stochastic variable represented in the model.
The effect of other long-term uncertainties will therefore only be considered
in guantitative terms. Furthermore, we assume that there is a constant
relation between peak load and average |oad over the year.

- Investment costs are adjusted according to the length of the planning
period. Furthermore, it is assumed that the investment cost is spread out
evenly over the construction period, so that the cash flow can be represented
by one single outlay half way into the construction period.

- New technologies are assumed to have the ability to switch off their
production whenever the spot price is below the variable operating cost.
Hence, unit commitment constraints are disregarded.

- Investment decisions can be made once a year, i.e. the time resolution of
the optimisation model is one year.

- No decommissioning of existing capacity within the planning horizon.

The assumptions in the model are further discussed in the outline of the
model below.

4.3.2 Mathematical Description of the I nvestment Problem

The overal problem for an investor considering investing in a new
generation plant can be stated as a stochastic dynamic optimisation problem
over a planning horizon of T years, as shown in (4-9)-(4-13). The investor’s
objective is to maximise the sum of discounted profits over the planning
horizon. We use a one year time resolution and assume that investments can
only take place at the beginning of each year. Furthermore, we adjust the
investment costs according to the length of the planning period, so that the
termination payoff, gr in (4-12), is ssimply the expected profit in the last
period under the condition that no new investment is made. In the basic
formulation we assume that the investor has an exclusive right to invest in
new power generation. How to represent the effect of other participant’s
investment decisionsis discussed in section 4.3.7.
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where
Jo(%15) max. expected tota profits over [MNOK]
planning period at initial states
g (%l U, @) expected net profit function, time step k [MNOK/
year]
0, (% .l;.@,) termination payoff, i.e. expected net [MNOK/
profit in period T year]
X, investor's total new installed capacity [MW]
(state variable)
[ average load level (state variable) [MW]
U, new capacity (decision/control variable) [MW]
o, short-term uncertainties
@, stochastic change in load level
r risk adjusted discount rate
It construction lead time

discretefeasible setsfor x, I, U, ws, o

XU a0

The investor’'s new installed capacity (Xc) and average load over the year
(Iy) are the two state variables in this dynamic optimisation problem. In the
state transition for new installed capacity we take into account that thereisa
construction delay (4-10). This is done by adding construction states for
installed capacity (Figure 4.7). However, in order to avoid too much
increase in the state space we assume that new investment decisions can not
be taken in these construction states. Hence, the investor can never have
more than one new plant under construction at the same time.

> S S

0 X1 X2 New capacity
X, [MW]
Figure 4.7 Representation of construction delay in the investment model. The black circles
are decision states, while the white circles are construction states. All state transitions take
oneyear. X1 and X2 are discrete feasible levels of new installed capacity.
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The initial values of the state variables are specified by the model user and
should be set equal to the current conditions in the system, if the aim is to
assess an investment project for the near future. The model will indicate
whether or not it is optimal to undertake an investment today. However,
since one of the state variables is stochastic, the model can not calculate
optimal timing for future investments, as the optimal investment strategy
depends on the realisation of the stochagtic variable. Still, by varying the
initial values of the state variables one can identify state variable threshold
levels, for which it becomes optimal to investment. This isillustrated when
we present results from case studies in section 4.4.

The short- and long-term uncertainties differ in respect to how they
influence the optimal investment decision, as outlined above. Load growth
is the only long-term uncertainty that isincluded in the formulation in (4-9)-
(4-13). The load growth is modelled as a binomial Markov tree (see Figure
4.5). One could easily extend the model to aso include other long-term
uncertainties. Change in fuel prices is another important uncertainty that
could be treated in a similar way as the load growth by adding an additional
state variable. However, as mentioned above one should consider mean
reverting probabilities to better represent the stochastic character of the fuel
prices. The other category of long-term uncertainties may be reveded at a
certain time in the future, and can be modelled with only two outcomes, as
shown in Figure 4.6. Regulatory risks, such as the possible introduction of a
CO,-tax or a capacity payment, are examples of such risks. Other decisions
taken outside the modedl boundary, such as a possible decision to increase
transmission capacity to surrounding areas, would also fal into this
category. The increase in the discrete state space by adding this category of
uncertainties is much lower since there are maximum two possible states in
each time step. All the long-term uncertainties have to be represented as
Markov treesin order to apply the SDP formulation.

The short-term uncertainties are represented with one aggregate variable
in the model. If the investors are sensitive to short-term fluctuations in
income, the short-term risk might influence the investment strategy, as
different technologies are exposed to different levels of short-term risks.
However, the market design has an important impact on the effect of short-
term uncertainties. Futures or forward markets makes it possible to fix the
electricity price ahead of delivery, and can therefore reduce the short-term
risk exposure considerably. In our model we maximise the sum of expected
net profits over the planning horizon. The short-term uncertainties (ws) only
have an effect on the net expected profit within the periods (g«), while the
long-term uncertainties (w) influence the state transitions. The short- and
long-term uncertainties are assumed to be uncorrel ated.
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Since the long-term uncertainty in load is represented as a discrete Markov
tree, and the annual expected profits are additive we can solve the
investment problem using stochastic dynamic programming. We use a
backward SDP algorithm with discrete time and states, as described by
Bertsekas in [59], to find a solution to the problem. (4-14) shows the
Bellman equation for the investment problem.

‘]k(xk’lk):mgx{gk(xk’lk’uk’ws) +
k (4-14)
(1+r )71'5[‘]“1( f (X U@ ))]}

The net expected profit function in time step k (gi) is shown in (4-15). It
consists of the discounted sum of profits from energy sales in the electricity
market and income from a possible capacity payment (/Zenergyx and
Icapacityk), Minus the cost of investment (Cinvk). The income from energy
sales depends on the short-term stochastic variable ws, so we therefore have
to take the expectation over ws. The other two components are treated in a
deterministic way for each combination of state variables.

gk(xk 7Ik ’uk ’a)s): QI)EI:Henefgy,k(Xk ’Ik ’a)s ):I +
Hcapacity,k( X ’Ik )_Cinv,k(uk )

(4-15)

A further description of the three parts in the net profit function in (4-15)
is given in the sections below.

4.3.3 Profitsfrom Energy Salesin the Electricity Spot Mar ket

A good representation of the price for electricity is important in order to
achieve reasonable results in the market based model. There are severa
price models available that simulates the electricity spot price, including
bottom-up production cost based models®, bid-based stochastic models™
and many others. In theory, any of these models could be used to represent
the price in each combination of states in our optimisation model. However,
computational efficiency is very important since we have to calculate the
price for all combinations of states. Therefore, we use an aggregate and

2 The EMPS model was originally developed as a hydropower production planning model
for the regulated Scandinavian power system. It is still the most used model for price
forecasting in the restructured Scandinavian power market. The EMPS model is described
by Haugstad and Rismark in [60].

% skantze and llic [21] develops a bid-based stochastic model for the electricity spot price,
where load and supply are modelled as stochastic processes.
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simplified description of the electricity spot market. The model still captures
some of the main causal relations in the spot market for electricity, such as:

- The relation between available generation capacity and load level on the
one hand compared to the electricity price and its volatility on the other.

- The relation between short term uncertainties, such as availability of
hydropower, and electricity price.

We assume that the average electricity price over the year, Py, IS a
function of the load factor LF, i.e. the fraction of average load to average
power generation over the year. However, in systems with high amounts of
renewable resources, the average power generation will vary extensively
from year to year. The availability of thermal resources can aso vary, due to
maintenance and unplanned outages. Thus, we represent the initial average
power generation in the system with a discrete probability distribution,
described by the short-term uncertainty, ws. Consequently, we also end up
with a discrete probability distribution for the load factor, LF(X,lk,ws), and
for the average price over the year, Pay(LF). The relationship between ws,
LF and P, is illustrated in Figure 4.8. We also assume that there is a
functiona relationship between the average price and the volatility in the
spot price. The volatility is usually higher in years with high prices, since
the system is operating closer to its capacity constraints. Hence, the standard
deviation in spot price, o5(Pay), is an increasing function of average price.
The functions P4 (LF) and o¢(Pay), as well as the probability distribution for
ws are to a high degree dependent on the existing conditions in the system,
such asthe total initial installed capacity (X init). The parameters describing
the functions can be estimated from historical data or by simulations with
more detailed price models where new investments can also be included.

Average
price
(P,

av,i)
’Dav,s(w.\-‘s)
Pav,Z(w.v,Z)

Pov @, )

av,min

LF (e LF(w. ) LF ) Load factor

Ho ) Ao, ) LFyw, ) (LF (o, )
Figure 4.8 lllustration of the average price over the year, P,,, as a function of load factor,
LF. LF isa function of the state variables x, and I, (which are assumed constant here), and
of the short-term uncertainty, ws. ws1, ws; and wg3 represent high, medium and low
availability of initial installed power generation.
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By combining the estimates of average prices and volatilities in the spot
market for one combination of state variables, we end up with a number of
different spot price distributions over the year. The lognormal distribution is
chosen to represent the spot price distribution over the year, due to its non-
negativity and its asymmetric shape that can partialy capture the
occurrences of high peak-load prices in years when the load factor is high.
The spot price, Ps;j, is modelled as shown in (4-16), where i refers to the
discrete value of the short-term stochastic variable ws;.

Ps,i ( Xy 'Ik ) ~log N( Pav,i ( X vlk )'O-s,i ( Pav,i ) (4'16)

Figure 4.9 shows an illustration of probability distributions for the spot
price for one combination of state variables. If an investment in a new
generation plant is made, the load factors in Figure 4.8 would shift towards
the left, so that the average prices over the year would decrease accordingly.
Consequently, the spot price distributions in Figure 4.9 would also shift
towards lower prices.
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Figure 4.9 Probability distribution functions for spot price with three different realisations
of the short-term stochastic variable ws,

Having developed the formulas for the electricity spot price, it is
straightforward to calculate the profit from energy sales in the spot market.
We assume that the new technology has the flexibility to easily stop the
generation when the spot price is below operating costs. Short-term unit
commitment constraints are ignored. (4-17) expresses the resulting profit
formula for one realisation of the short-term uncertainty, ws; , while (4-18)
shows the expected profit over all realisations at time step k.
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W

where
af expected availability of the new technol ogy
VC variable costs for the new technol ogy [NOK/MWh]

fe (P) continuous probability distribution for Ps;
Po, (@) discrete probability distribution for ws
n number of possible realisations of ws

Ws

The probability distributions for the spot price, and therefore also the
expected profits from energy sales, are completely determined by the state
variables (X« and li), the short term uncertainty ws and initial parameters.
Hence, the profits can be calculated for all combinations of states prior to
the stochastic dynamic programming algorithm.

4.3.4 Profitsfrom Capacity Payment

The introduction of a capacity payment is one possible regulatory market
intervention that could be used as a means of encouraging earlier
investments in new power generation capacity. By including a capacity
payment in the model we can study the resulting effect on the optimal
investment strategy. We represent a capacity payment by assuming that a
regulatory body, e.g. the system operator, determines a capacity payment
(CP) which is afunction of the expected peak load (Iax) Within the year and
the maximum available capacity (Xmax) in the system. This is illustrated in
Figure 4.10. The capacity price is only being paid in years when the
capacity factor, i.e. the ratio of available capacity to peak load, is below a
certain threshold (CFjimit). We assume that the payment is settled once a
year, and that it increases as the capacity factor decreases, so that an
incentive to invest in more capacity is given when the capacity balance is
low. Note that the capacity payment for a new plant is not known when an
investment decision is made, since the load growth is stochastic. The annual
profits from the capacity payment are therefore uncertain, just like the
profits from energy sales in the electricity spot market. Thisisin contrast to
a direct investment subsidy, which would be known at the time of the
investment decision. The mathematical description of the capacity payment
and the corresponding profits to the owner of new generation capacity is
shown in (4-19) and (4-20).
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Capacity
payment A
(CP)
¢,-c,CF
CP(CF=1)
1 CFlimit Capacity factor (CF)

Figure 4.10 Illustration of how a capacity payment is represented in the investment
optimisation model.

CP(x 1 )= ¢, —¢,-CF(x.l) ,CF<CF, 4-19
(Xk,k)_ 0 ’CFZCFIimit ( ) )
Hcapacity,k(xk 7Ik )=af X 'CP(Xk 7Ik ) (4'20)
where
CP( %l ) annual capacity payment [NOK/MW]
CF(x I, )= nglxk)) system capacity factor
max \ "k
Xoae (% ) = Xia inie +8F <X, MaX available capacity [MW]
e (1 )= (it #16) - G v peak load in the system [MW]
C1, C constants defining a linear
relationship between CP and CF
Ci max constant ratio between max and

average system load

4.3.5 Investment Cost

The representation of the investment cost is closely linked to the objective
function in (4-9) and the corresponding termination payoff in (4-12). The
cost of investment is adjusted according to the proportion of the new plant’s
lifetime that is within the remaining part of the planning horizon. The
discount rate is used for the adjustment, as shown in the last part of (4-21).
The resulting adjusted investment cost corresponds to representing the
investment cost with a fixed annuity for all time steps in the planning
period. Note that we also adjust the investment cost according to the new
technology’s construction time (It), by assuming that the total investment
payment is made half way into the construction period. This is why the
adjusted investment cost is discounted with It/2 in the first part of (4-21).
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Tk -

1) 2 (1+41)
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> (1+r)
j=1
where
Cos adjusted investment cost at time step k [NOK]
CFly unit investment cost at time step k [NOK/MW]
It construction time for the new plant [years]
nt lifetime for the new plant [years]

4.3.6 The Investor’'s Risk Preference and Appropriate Discount Rates

The optimal investment strategy depends on the investor’s risk preference.
From the theoretical outline above we know that in real options theory the
estimation of the correct interest rate can be bypassed by making the
stochastic processes in the model risk-neutral, and then use the risk-free
interest rate for discounting instead. As we have a fundamental model of
price with underlying long-term uncertainty in load growth, we can not
assume that a replicating portfolio can be established from the existing
market of financial assets. The use of risk-neutral valuation in our model is
therefore difficult to justify. However, we could assume that there exists a
liquid long-term futures market without any risk premium. The expected
output from a new plant throughout its entire lifetime could then be sold in
the long-term market as soon as an investment decision is made. Hence, it
would be possible to obtain a risk-free position by deciding to construct a
new plant and at the same time fix the price for future power generation in
the futures market®®. In this situation it would make sense to discount the
project with the risk-free interest rate. However, long-term markets with
high liquidity rarely exist in liberalised electricity markets. It is therefore
likely that investors would have to pay arisk premium?’ if the output is sold
in contracts with very long maturity. The mgority of investors would
probably choose to sell most of the power generation in shorter-term
markets, and therefore expose themselves to fluctuations in the future spot
price for eectricity. We therefore find it more appropriate to use a constant
risk-adjusted discount rate in the dynamic investment model.

% |n a standard futures market this statement only applies as long as there is no uncertainty
about the future generation from the plant. For investments in thermal base load techn-
ologies this is a reasonable assumption. However, for renewable technologies with high
variability in generation one would also need to hedge variations in output (volume risk).

" A discussion of the risk premium in futures markets for electricity is provided in Appendix
A. An empirical analysis of Nord Pool's futures market is also presented. The analysis
shows that on average there has been a negative risk premium in the long-term market, i.e.
futures prices have on average been above the realised spot prices in the period of delivery.
However, Nord Pool's futures market only has a time horizon of up to 3-4 years into the
future, so it is not possible to hedge investments in new generation assets there.
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With a constant discount rate we implicitly assume that investor's
assessment of the project’ s risk level is independent of future realisations of
the state variables. Thiswould not be the case unless we can assume that the
investor is risk neutral. A possible better approach would be to incorporate
risk preferences in terms of maximising the investor's expected utility
instead of the expected profits, and then use the risk-free interest rate for
discounting. By representing the investor’s utility function explicitly we
would obtain a more consistent evaluation of the variability in future
profits®®. However, a problem arises when we want to determine the shape
of theinvestor’s utility function, as most decision makers would have a very
hard time expressing their risk preferences in terms of a utility function.
Degspite this problem we consider an explicit representation of the investor’'s
utility function as a possible future extension of the model concept
presented here.

4.3.7 Representation of Other Investorsin the System

So far we have assumed that there is only one investor in the system and
that the prices in the electricity market are functions of the long-term
uncertainties and the investor’s investment decisions only. This represents a
monopoly situation. However, in a competitive electricity market the prices
will aso be influenced by actions from other companies in the same market.
The electricity prices are likely to decrease, also when other participants
invest in new power plants. This will affect the profitability of new
investments in two ways. Firstly, the option value of postponing the
investment decision will be reduced, as postponing the decision could result
in other participants entering the market prior to the investor. Secondly, the
upside of the future profit distribution will be lowered, since investments
from other participants also contribute to bringing the prices down. The two
effects change the optimal investment decision in opposite directions.
Which effect is stronger depends on the characteristics of the price model
and also on the entry price level for other investors.

The effects from other investors on the optimal investment decision can be
represented by assuming that investments from others are triggered as soon
as the average spot price exceeds an exogenously defined entry level. This
representation is shown in (4-22)-(4-24). The investments from other
participants add to the total amount of new installed capacity in the system,
and thereby reduce both the prices in the spot market and the capacity
payment. Notice that we assume that there is no construction delays for the

% An example of a discrete stochastic dynamic optimisation model that uses utility instead of
profits in the objective function is described by Mo et al. in [61]. This is an integrated risk
management tool for hydropower producers, and is used for combined optimisation of
production planning and contract hedging in long-term futures markets.
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investments from others, and that they are not modelled as separate state
variables. With this representation of other investments the entry price level
in reality becomes an upper limit on the average price in the system. The
entry price level for other investors should be based on expectations about
the required price for other participants to invest in the market. In a fully
competitive market where all participants have access to the same
technologies, the entry price should be the same for al investors.

\/ 'Es(xklk )2 Ps,entry

V(%o )=1 2 4-22

‘ Xk ‘ 0 ’Ps(xk,lk)<Ps,entry ( )

X" = X Ui T Vin (4'23)

P=3 P (0, )P (%0l ) (4-24)

where
X updated level of new installed capacity after [MW]
investment from others

Veap new installed capacity of other participants [MW]
P average spot price [NOK/MWh]
Psentry entry price level for other investors [NOK/MWh]

The representation of other investors that is outlined above is of course a
very simple one. However, it still captures important effects on the value of
the investment option and of the project itself. It is similar to the approach
taken by Dixit and Pindyck [38] to model a fully competitive market (see
Figure 4.4). In order to model a market with several decison makers with
separate objective functions one would have to develop an agent-based
model, where different investors are represented with separate state
variables for installed capacity. However, most applications of agent based
modelling in electricity markets so far have been concerned with modelling
repetitive bidding strategies in the spot market (see e.g. Visudhipan [13]). A
challenge arises when applying agent-based techniques to the investment
problem, since the frequency of such large-scale investment decisions is
very low. It will therefore be difficult to specify adaptive investment
strategies, and also to use historical data to calibrate and test the model.
Game theory is another possible tool for developing investment strategies
with multiple investors in the system. The stochastic dynamic investment
model presented here is limited to include the effect of how a simple and
aggregate representation of other investors affects the investment decision
for one single decision maker. However, the application of game theory in
combination with the stochastic dynamic optimisation framework presented
here is an interesting area for future research.
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4.4 |llustrative Examples

Potential applications of the investment model are illustrated in this section,
where we use the model to analyse a gas power investment project that is
similar to projects currently under consideration in the Norwegian power
system. The first part of the analysis is concerned with identifying optimal
investment criteria for an investor with permission to construct a new gas
power plant. We also analyse how certain investment incentives can change
the optimal criteria. Then we look into potential consequences for the power
system if the market participants make their investment decisions according
to the model’ s recommendations. We a so use the model to examine to what
extent an investor benefits from using stochastic dynamic optimisation, as
opposed to other modelling approaches for investment planning.

The optimisation model alows us to analyse the investment problem aong
some of the different analytical dimensions discussed in section 2.3. In the
analyss we focus on the two dimensions illustrated in Figure 4.11.
Although the model is primarily developed for full stochastic dynamic
analysis, it can aso be used to analyse the problem from a static and
deterministic perspective. The model finds both the static and dynamic
solution in the same optimisation run, since it aways calculates the
expected value of investing immediately (i.e. static view) and compares it to
the expected value of postponing the investment (i.e. dynamic view). Load
growth is represented as a long-term uncertainty in the model. The effect of
using deterministic compared to stochastic representations can be analysed
by running the model with different input values for standard deviation in
load growth. Note that short-term uncertainties are treated identically, i.e. on
an expected value basis, in al the four combinations in Figure 4.11.

Investment

decision
c d
Dynamic

(Det/Dyn) (Stoch/Dyn)

a b
Static
(Det/Stat) (Stoch/Stat)
» Long-term
uncertainties
Deterministic Stochastic

Figure 4.11 Two important analytical dimensions in investment planning. Solutions for all
four combinations can be extracted from the stochastic dynamic model. Theindices (a, b, c,
d) will be referred to as decision rules when results from the model are presented.
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The first parts of this section focus on the investor’s optimal investment
criteria. A number of results can be derived based on the optimal first period
decision. However, in order to better assess the long-term dynamics of
prices and investments, we develop a simulator which simulates investments
in the system for a number of years. The simulator is also used to estimate
the investor's improved decision making from using stochastic dynamic
optimisation. Monte Carlo simulations, where investment decisions are
based on the different decision rulesin Figure 4.11 are used for this purpose.

4.4.1 General Input Data

We use the model to look at a gas power project which is relevant in the
Norwegian power system. Therefore, we have estimated parameters in the
model based on historical data for Norway. Table 4.2 and Table 4.3 show
key figures for load and generation of electricity in Norway in the period
after restructuring. Table 4.4 shows corresponding input parameters to the
model, which are used in all the 4 scenarios presented bel ow.

Table 4.2 Historical data for load in the Norwegian system. Source: Satistics Norway and
Nord Pool.

Average annual system load, 90-02 13210 MW | 115.7 TWhlyear
Max annual system load (in 2001) 14330 MW | 125.5 TWh/year
Min annua system load (in 1990) 12090 MW | 105.9 TWhlyear
Annual load growth, 90-02 142 MW | 1.25 TWhlyear
Annual std. dev. in load growth, 90-02 297 MW | 2.60 TWhlyear
Average ratio btw. max and average load, 95-02 1.55
Max ratio btw. max and average load (2000) 1.64
Min ratio btw. max and average load (2001) 1.49

Table 4.3 Historical data for generation in the Norwegian system. Source: Satistics
Norway and Nordel.

Average generation, 1990-2002 13680 MW | 119.8 TWh/year
Max generation (2001) 16300 MW | 142.8 TWh/year
Min generation (1996) 11950 MW | 104.7 TWh/year
Max avail able capacity (2002) 23500 MW

Table 4.4 Initial input parameters for the investment model.

Parameter Name in model Vaue
Averageinitial generation Xeot init 13500 MW
Max initial generation Xrnax init 23500 MW
Load growth lgrowth 140 MW
St. dev. in load growth lsa | Oor 300 MW
Max ratio btw. max and average load Cl.max 1.6
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The parameters in the spot price model were estimated with regression
analysis based on historical load and price data for 1993-2002. Exponential
functions were used to express the functional relationships between average
spot price and load factor, P, (LF), and between standard deviation in spot
price and average spot price, os(Pay). The resulting curves are shown in
Figure 4.12 and Figure 4.13. Not surprisingly, the figures show that both of
these relationships are increasing. The price tends to be higher when the
capacity factor is high, and the standard deviation of price also increases
with higher average prices. Note that we used load and generation data for
Norway only, while the system price is the unconstrained price for the entire
Nord Pool power exchange area. This is partly because the Nord Pool area
has been enlarged several timesin the period of analysis (1993-2002)%, and
Norway is the only country that has been part of the power exchange area
throughout the period. Also, Norway has more than 60 % of the hydropower
generation and amost 70 % of the reservoir capacity in the current Nord
Pool area. Therefore, the system price will still be very dependent on the
availability of hydropower, and implicitly the load factor, in Norway™.
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Figure 4.12 Estimated and real data for relationship between load factor in Norway, LF
(i.e. load/ generation), and Nord Pool’s average system price, 1993-2002. Equation for
estimated curve: P,,(LF) = 80.8:(20.3)"LF. Lower limit: P,y mn = 70 NOK/MWh.

2 A short description of the historical development of Nord Pool, including data for prices,
loads and generation is given in Appendix A.

* There has been extensive exchange of power between the Scandinavian countries, both
prior to and during the stepwise restructuring of the power markets. The system price has
therefore been influenced by the energy balance in all four countries throughout the
reference period (1993-2002). An alternative to using the Norwegian system load in the
calibration of the spot price model would be to use the total load in the current Nord Pool
area instead. However, this has not been prioritized in this thesis, and is left for future work.
Another interesting extension would be to use monthly or even weekly instead of annual
data, in order to also capture seasonal variations in price and load.
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Figure 4.13 Estimated and real data for relationship between standard deviation in Nord
Pool’s system price and average system price, 1993-2002. Equation for estimated curve:
05(Pay) =26.6-(1.004)"P,.

The availability of hydropower is the most important short-term
uncertainty in the Norwegian power system, and is the only one we take into
account in the analysis. We use historical data for inflow from the period
1961-1990 to estimate the probability distribution for relative availability of
hydropower generation in the system (RHG;). The inflow data is used as
input to the EMPS model®!, which simulates total hydropower generation in
Norway for al the 30 inflow scenarios. The results are aggregated into 5
discrete hydropower availability levels, and the resulting probability
distribution is shown in Table 4.5. With this representation of short-term
uncertainties, ws, the load factor for different realisations of ws; can be
expressed as in (4-25). The load factor will in turn affect the spot price
distributions, as described in section 4.1.3.

I
LE(x .| @, )= k -
O5cho) af - X+ RHG - X _ins (429)

Table 4.5 Discrete probability distribution for relative availability of hydro generation
(RHG)) in the initial Norwegian system. The values are based on simulations with the
EMPS model, using inflow data for 1961-1990.

Redisation, i 1 2 3 4 5
p, (0,=a,) 0.1 0.2 0.4 0.2 0.1
RHG, 1174 | 1.063| 0986 | 0939 | 0.878

%! The EMPS model is described by Haugstad and Rismark in [60].
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Although the investment project that is analysed below is similar to
projects that are currently under consideration in the Norwegian power
system, it is important to emphasise that the purpose of presenting these
resultsis to illustrate potential use of the model. A more comprehensive job
on input data and model calibration would be required to use the model for
decision making in the real world. Investments and decommissioning of
current capacity in other parts of the Nord Pool system, which would aso
affect the system price, are for instance not considered here. Transmission
constraints at the specific site for a new plant are also disregarded in the
analysis. However, many of these aspects could easily be incorporated into
the model, by using more comprehensive input data and extending the scope
and detail of the spot price model.

4.4.2 Gas Power in Norway

We use the model to analyse an investment in a new large-scale gas power
plant. It is assumed that the investor has obtained permission from the
regulators to build the plant, and wants to optimise the timing of his
investment decision. Technica specifications for the new gas power plant
are presented in Table 4.6. Furthermore, a planning horizon of 10 years (T =
10 years) is used in the calculations, and we assume that the investor can
only construct one plant within this time period, so that the state space for
the investor’'s new capacity consists of two states (0 and 800MW). Four
different scenarios are considered as described below.

Table 4.6 Technical specification for the new combined cycle gas power plant (CCGT).

Parameter Symbol in Vaue Unit
model

Installed capacity Uy 800 MW
Investment costs CFl, k=1..T 6000 | NOK/MW
O&M and fud costs VC 110 | NOK/MWh
Average availability af 0.9

Construction time It 3 years
Lifetime nt 30 years
Risk-adjusted discount rate r 8 % pa

Scenario 1: Base Scenario

In the base scenario we assume that the new gas power plant’s profit is
earned entirely from sales in the spot market for electricity. The effect of
other investors entering the market is disregarded. In order to identify
optimal investment thresholds we run the investment model repeatedly,
increasing the initial load with a small interval between each run, and
storing the expected profit from investing and waiting. Results are shown in
Figure 4.14 and Figure 4.15.
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Figure 4.14 Profit over planning horizon from investing now and waiting in base scenario.
I.* and |.* are average load levels for which immediate investment becomes optimal under
deterministic static (a) and deterministic dynamic (c) optimisation. lg, = 0.
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Figure 4.15 Expected profit over planning horizon from investing now and waiting in base
scenario. I,* and Ig* are average load levels for which immediate investment becomes
optimal under stochastic static (b) and stochastic dynamic (d) optimisation. |s,~=300.

The results for the base scenario with deterministic (Issy = 0) and stochastic
optimisation (lsyy = 300) are shown in Figure 4.14 and Figure 4.15
respectively. The dotted line in Figure 4.14 shows the investor’s profit from
investing in the new gas power plant immediately. If we use a static
assessment of the project we know that the investor should invest as soon as
the NPV is positive, i.e. when the average load level over the year reaches
a*. However, by not investing the investor keeps the opportunity to invest
open, and the value of this option is equal to the line labelled “wait” in
Figure 4.14. If we apply a dynamic assessment of the gas power plant we
therefore conclude that in order to achieve maximum profit the investor
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should not invest until the average load level reaches Ic*. This is when the
profit from investing immediately exceeds the profit from postponing the
investment. We see that even in the deterministic case there is a significant
difference in the optimal investment criterion depending on whether a static
or dynamic assessment is applied. The reason is that there is an underlying
load growth in the system, which gives rise to an option value of waiting for
higher future prices and thereby increased profits for the power plant. It is
not optimal to invest until the profit gain from waiting for higher future
loads and prices is exceeded by the loss from not having the gas power plant
available as soon as possible. Thisiswhat happensat |*.

In the stochastic case we must compare the expected profit from investing
and waiting. Figure 4.15 shows that the static investment criterion (Ip*) is
lower, while the dynamic criterion (I5*) is higher than in the deterministic
analysis. The reason for the lower static criterion is that there is a convex
relationship between load and profits, so that expected profits from the
project is increased when uncertainty is added in load growth, although the
growth rate is the same. The increased dynamic criterion is due to the
uncertainty, which adds on to the option value of postponing the investment.
The expected profit from waiting and investing can also be expressed as
functions of the average initia price. The corresponding average prices for
which investment is optimal in the stochastic case are shown in Figure 4.16.
Average prices refer to a situation where the short-term uncertainty is
represented by its mean value. In this anaysis, where short-term
uncertainties are based on inflow statistics, the average price refers to a year
with average inflow to the hydro reservoirsin Norway.

1500

1000

Expected profit [MNOK]

P*
Vs
-500 I I Il t I 1 1 1
150 160 170 180 190 200 210 220 230 240
Average initial price [NOK/MWh]

Figure 4.16 Expected profit over planning horizon from investing now and waiting in base
scenario. g, and g are average price levels for which immediate investment becomes

optimal under stochastic static (b) and stochastic dynamic (d) optimisation. |5,=300.
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Key figures for the base scenario are summarised in table Table 4.7. Note
that with the input assumptions used in this anaysis, the total unit cost for
the new gas power plant, using annualised investment costs and taking into
account the construction delay, adds up to 180 NOK/MWh. Not
surprisingly, since there is load growth in the planning horizon, the static
optimal investment prices are below the unit cost. However, the dynamic
criteria are considerably above the unit cost, and this is due to the option
value of postponing the investment decision.

Table 4.7 Average load, price and expected profits at investment threshold under different
analytical project appraisals (a— det/stat, b — stoch/stat, ¢ — det/dyn ,d — stoch/dyn).

a b C d
Average load 14080 | 14000 | 14470 | 14560 [MW]
Average price 176 173 192 196 | [NOK/MWh]
Expected profits 0 0 407 590 [MNOK]

From Table 4.7 we see that there is a distinct difference between the
results for static and dynamic analyses (avs. ¢ and b vs. d). However, the
change in results when going from a deterministic to a stochastic analysis (a
vs. b and ¢ vs. d) seems to be less significant. In order to look further into
how the uncertainty influences the results we run the model for different
levels of standard deviation in load growth. The result is shown in Figure
4.17. As can be seen from the graph the investment threshold increases with
higher uncertainty, but the effect seemsto level off as the standard deviation
increases. From the graph we also see that the expected profit from
investing in the project rises with increasing standard deviation.

Expected profit [MNOK]
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13800 14nnn
3
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Figure 4.17 Expected profit from investing now and waiting as function of average load
and standard deviation in load growth.
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Scenario 2: Other Investors

In scenario 2 we introduce the effect of other investor’s decisions into the
analysis using the aggregate model representation outlined in section 4.3.7.
We now concentrate on the stochastic analysis (i.e. decisionruleb and d in
Figure 4.11), with a standard deviation in load growth of 300 MW/year.
First, we assume that investments from others are triggered when the
average price exceeds 210 NOK/MWh, and that the unit size of these
investments is 200 MW (i.e. Psentry = 210 NOK/MWh and Vcap = 200 MW in
(4-22)). Apparently, our investor then has a competitive advantage since we
know from scenario 1 that it is optimal for him to invest at a lower price
level (Table 4.7). Still, the possible entry of other investors affects the future
expected profits of investing in the new gas power plant, and possibly aso
the investment criteria for our investor. Expected profit from investing and
waiting when other investors are represented in the model is shown in
Figure 4.18.

By comparing Figure 4.18 and Figure 4.15 we see that as average initial
load grows, the expected profit from the gas power project is increasing
much less than in the basis scenario. This is because the investments from
others effectively cap the average price in the market at 210 NOK/MWh.
The static investment criterion (Ip*) is increased due to the lower expected
value of the gas power plant. The lower expected profit from the project also
contribute to increase the dynamic criterion (I4*). However, at the same time
the option value is now lower due to the possible entry of other investors.
The lower option value has an opposite effect on the investment criterion, so
that in total the optimal investment threshold is close to the one in the base
scenario (I¢* (scenario 1) = 14570 MW, I4* (scenario 2) = 14600 MW).

To further investigate how the representation of other investors influence
the decision, we have plotted the optimal investment threshold, I4*, and the
investor's expected profit, as function of the entry price level for other
investors (Figure 4.19). We see that the investment criterion is only affected
for rather low entry prices, as |¢* first starts to increase when Psenyry reaches
below 220 NOK/MWh. In contrast, the expected profit is significantly
decreased, also for higher entry prices. The lower expected profit is due to
the increased competition, which is represented in the lower entry price for
others investors. The expected profit in Figure 4.19 approaches zero for low
entry prices for others. This is in accordance with the discussion in section
4.1.6, where we showed that according to the real options theory there
should be no expected surplus profit at the optimal investment threshold in a
fully competitive market (Figure 4.4).
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Figure 4.18 Expected profit over planning horizon from investing now and waiting in
scenario 2. I,* and l4* are average initial load levels for which immediate investment
becomes optimal under stochastic static (b) and stochastic dynamic (d) optimisation.
lsv=300. Pgeniry = 210 NOK/MWh.
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Figure 4.19 Investor’s optimal investment threshold, I4*, and corresponding expected profit
as function of other investor’s entry price level, Psentry. Psentry € [185,300] . 1s3,=300.

Scenario 3: Capacity Payment

We now extend the analysis from scenario 2 to also include the effect of
introducing a capacity payment as an incentive for earlier investments in
new power generation. The capacity payment is modelled as explained in
section 4.3.4, with a constant relationship between average and maximal
load in the system (¢ max = 1.6). First, in scenario 3a, we assume that thereis
a capacity payment in years when the capacity factor, i.e. the fraction of
available capacity to peak load, is below 1.05 (CFjn; = 1.05). The
magnitude of the capacity payment is a linear function of the capacity
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factor, as shown in Figure 4.10. In order to analyse how the capacity
payment influence the optimal investment threshold, we run the model for
different levels of capacity payment. Figure 4.20 shows that the optimal
investment threshold is lowered as the capacity payment is increased. This
is what we would expect, as the total profit for the investor now is higher
due to the additional capacity payment. However, it turns out that the
investor’s expected profit at the optimal investment threshold also increases.
The reason behind this observation is less intuitive, but it is due to the
change in the expected payoff for the new plant. The expected profit
function from investing immediately becomes steeper when the capacity
payment is added. At the same time the capacity payment is an uncertain
income. Together, these two factors increase the option value of postponing
the investment. Hence, the required profit for investing also increases.

Expected prafit [MMOK]

13600 13300 14000

12200 14400 00 4 gF

Average Thitial loan [ R e

Figure 4.20 Expected profit from investing and waiting as function of average load and
different levels of capacity payment in scenario 3a. CP(CF=1) is the capacity payment
when the capacity factor is equal to 1. CFinir = 1.05. 154,=300. Psenry = 210 NOK/MWh.

The effect of the capacity payment is also dependent on the capacity factor
limit (CFjimit), a which the payment is introduced. So far we have set CFjnt
to 1.05, which gives a rather steep capacity payment function and in turn, a
steeper total profit function for the new plant. In scenario 3b we do the same
analysis with CFjinit equal to 1.15 instead. In practice, this means that there
is a higher incentive to invest, since there is a capacity payment also when
the system is further away from a critical capacity balance. This is reflected
in the results (Figure 4.21), which shows that the investment threshold is
reduced quicker than in scenario 3a. At the same time the increase in
expected profit is aso lower as the level of the capacity payment is
increased. This is because the capacity payment function is now less steep,
so that the option value of postponing the investment is aso reduced
compared to scenario 3a.
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Figure 4.21 Expected profit from investing and waiting as function of average load and
different levels of capacity payment in scenario 3b. CP(CF=1) is the capacity payment
when the capacity factor is equal to 1. CFinir = 1.15. 154,=300. Psenry = 210 NOK/MWh.

Scenario 4: Investment Subsidy

A direct investment subsidy is an alternative incentive, which would also
trigger earlier investments in new generation facilities. A subsidy isacertain
payment to the investor, and it would increase the expected profitability
from the new plant independent of the load in the system. In the model we
represent an investment subsidy, simply by reducing the investment cost of

the new plant. The effect of subsidising the gas power plant with 20 % of
the investment cost is shown in Figure 4.22.
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Figure 4.22 Expected profit over planning horizon from investing now and waiting, without
(scenario 2) and with (scenario 4) 20% investment subsidy. |4* ,qe> and |4* ,senq are average
initial load levels for which immediate investment becomes optimal. |,=300. Psenry = 210
NOK/MWh.
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From Figure 4.22 we see that effect of the investment subsidy on the
expected profit from investing in the project immediately is a parallel shift
upwards, compared to the situation without a subsidy (scenario 2). The
expected profit from waiting and thereby keeping the option to invest open
aso shifts upwards. However, the shift in the option value is not parallel,
and for low load levels there is only a small increase. Consequently, the
resulting optimal investment criterion is reduced with almost 500 MW,
while the increase in expected profit at the investment threshold is only
modestly increased.

Centralised investment incentives should only be introduced if there are
externalities present in the power market. According to economic theory, an
externality arisesif the actions of one economic agent affect the interests of
another agent other than by affecting prices. One externality in the power
market could for instance be that the market does not price reliability
properly, so that the market prices alone do not provide adequate investment
incentives. The result could be that an externality cost is imposed on the
end-users, in terms of low reliability and too high frequency of outages™. In
general, the use of specific investment incentives can only be justified if the
cost of the incentivesis lower than the cost of the externality. Therefore, itis
important to design an incentive scheme that achieves the desired result with
aslow extra cost as possible.

We have looked at the effect of capacity payments and direct investment
subsidies on the optimal investment criterion. The investor’s extra profit
from these investment incentives must be covered by some other part in the
system. It is likely that the extra cost is transferred to the end-users through
a system of tariffs or taxation. We can now use the stochastic dynamic
analysis to compare the extra cost of using these two alternatives to trigger
investments at a specific load level. Assume that the optimal investment
level for the system (I4* opiimar) 1S @t an average load of 14130 MW. This is
the same level as the optimal investment criterion in scenario 4, with 20 %
investment subsidies (I4* scena). The same effect on the investment threshold
can be achieved by choosing appropriate parameters for the capacity
payment in scenarios 3a and 3b. Table 4.8 summarises the cost of the
investment incentive and the expected profit for the investor with the
different incentives, also including the situation with no incentive (scenario
2). The expected profit from sales in the spot market is calculated from
scenario 2, and is dightly negative (-5 MNOK) at the desired optimal
investment level. However, when the additional income from a capacity

¥ Common problems in restructured electricity markets, which could result in long-term
imbalance between supply and demand, and thereby possible externality costs, are further
discussed in Chapter 5.
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payment or an investment subsidy is taken into account, it becomes optimal
to invest in the new plant. As we can see from Table 4.8 and Figure 4.23,
the required incentive to trigger investment is higher with a capacity
payment (scenario 3a and 3b) than with a direct investment subsidy
(scenario 4). The reason for this is that the capacity payment is uncertain,
and also increasing as function of the load, and therefore gives rise to a
higher option value of waiting than the constant investment subsidy. Thisis
also why scenario 3a, with the steepest capacity payment function, gives the
highest expected incentive cost.

Although the analysis presented here is by no means sufficient to make a
decision about whether to use capacity payments or investment subsidies in
the case of an externality that requires investment incentives, it still shows
some interesting consequences for the system’s cost. A more comprehensive
assessment of the two incentives would have to include more details in the
analysis of demand side effects. A capacity payment would for instance give
an incentive to end-users to reduce their peak load, since the payment is a
function of installed capacity and peak load in the system, whereas the
constant investment subsidy does no have the same feedback to the end-
user®. Another advantage for the capacity payment, when it comes to the
implementation of the incentives, is that it is spread out through the new
plant’s lifetime. The investment subsidy, on the other hand, requires a huge
capital outlay up front, and can therefore be more difficult to get public
accept for. These are some of the factors that would have to be considered in
an extended analysis of the different alternatives for investment incentives.

Table 4.8 Investment threshold, cost of investment incentive and investor’s expected profit
over planning horizon with no incentive (scenario 2), capacity payment (scenario 3a and
3b) and investment subsidy (scenario 4). Scenario 3a: CFj, =1.05, CP(CF=1) = 386000.
Scenario 3b: CFini =1.15, CP(CF=1) = 188000. Scenario 4: CFl, = 4800 NOK/MW.

Scen- | Investment threshold Cost of incentive Expected profit
aio | Average | Average | Investment | Expected | Inspot Total
load spot price | subsidy cap. market
[NOK/ paymen
[MW] MWh] [MNOK] | [MNOK] | [MNOK] | [MNOK]

2 14600 198 0 0 315 315
3a 14130 178 0 947 -5 942
3b 14130 178 0 523 -5 518
4 14130 178 396 0 -5 391

¥ An investment subsidy could also be a function of the capacity balance in the system, in
the same way as the proposed capacity payment. The same feedback to the end-users
would then be achieved, but an option value of postponing the investment would also arise,
since the future level of the investment subsidy would now be uncertain. This alternative is
not explored further here.
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Figure 4.23 Expected profit over planning horizon from investing now and waiting, in
scenario 3a, 3b and 4. All scenarios give the same desired investment criterion lg* opimer.
Scenario 3a: CFipiy =1.05, CP(CF=1) = 386000. Scenario 3b: CFjiy =1.15, CP(CF=1) =
188000. Scenario 4: CFly = 4800 NOK/MW. Iy, = 300. Pserry = 210 NOK/MWh.

Inthe end it isinteresting to note that the cost analysis presented here with
the stochastic dynamic investment model, could not be carried out with a
static model. With a static assessment all the investment decision would be
triggered at a zero NPV. Consequently, the expected cost of the incentive
would always be equal to the expected loss in a scenario with no incentive,
whether a capacity payment or an investment subsidy is being introduced.
Hence, a static analysis would not be able to differentiate the cost of the
alternatives, since it does not take into account the difference in the value of
postponing the investment in the two incentive scenarios.

4.4.3 System Consequences of Optimal | nvestments

An advantage of modelling physical state variables (such as installed
capacity and load) as opposed to non-physical variables (such as the price
directly) is that the consequences on the physical system can be analysed in
greater detail. After having identified optimal investment criteria, we can
now analyse the reliability of the system under various operating conditions.
We assume that the investors in the system make their investment decisions
according to the recommendations from the model, and that gas power isthe
most competitive technology that will be chosen ahead of other, more
expensive, technologies. For the gas power plant, the investment decision
has to be taken 3 years before the new plant is available online. The most
critical situation for the energy and capacity balance in the system isin the
last year before new capacity is added, i.e. two years after the investment
decision is made. Table 4.9 shows the state of the system at this point in
time if the growth in average load follows the expected trend, i.e. 140
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MW/year. We see that without an investment incentive the capacity balance
is negative before the new plant is available. The energy balances are also
negative, not only with low inflow, but aso in a normal inflow scenario.
This means that we usually will have to rely on considerable amounts of
import in order to meet the energy demand over the year, and also to meet
the peak load in the system. In the scenarios with investment incentives we
see improved supply reliability, and the capacity balance is now positive.
The energy deficits are also reduced, although still negative with normal
precipitation. Table 4.9 also shows that the investment incentive reduces the
average price over the year in the low inflow situation with 36 NOK/MWh.

Table 4.9 Capacity balance, energy balances and average electricity price over the year in
Norway 2 years after investment decision is taken. Normal and low inflow refers to average

and the lowest (@, 5 ) realisations of inflow in short-term uncertainties.

Scenario Capacity | Energy balance | Energy balance | Average price
bdance | (normal inflow) | (low inflow) (low inflow)
[MW] [TWh] [TWh] [NOK/MWh]
No incentive -308 -12.1 -26.5 318
(scenario 1, 2)
Inv. incentive +444 -8.0 -22.4 282
(scenario 3, 4)

We can also use the results from the model to analyse the long-term price
and investment dynamics in the system, resulting from optimal investment
behaviour. A simulator is therefore implemented, which uses the
optimisation model to simulate optimal investments over time, by updating
initial model parameters (i.e. load and installed capacity) for each simulated
time step, as shown in Figure 4.24. We can now simulate investments in the
system under different investment rules and market designs, and for various
realisations of the uncertain load growth (w; ).

Here, we look at the development of prices and investments when the
average load grows according to its mean value (i.e. wix = lgomn = 140
MW/year). We use an initial average load of 14100 MW, which is equal to
the real average load in 2000. Investments in new gas power plants in the
Norwegian system are simulated over a time period of 30 years, while
investments in other technologies are disregarded. A constant planning
horizon of 10 years is used in the optimisations. We assume that there are
aways participants in the power market that are willing to invest as soon as
the conditions are favourable for new entrants. Figure 4.25 shows simul ated
investments in new capacity for scenario 2 and 4, when the stochastic
dynamic decision rule (d) is applied. It is apparent that the investment
subsidy in scenario 4 contributes to trigger earlier investments in the system.
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Figure 4.24 Flow chart for simulator which uses the investment model to simulate optimal
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realisation of the load growth (w, ) for each time step k.
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Figure 4.25 Additions of new gas power capacity in the Norwegian power system in
scenario 2 (no investment incentive) and 4 (investment subsidy). Investment decisions are
based on stochastic dynamic optimisation. l,000 = 14100MW, lgoun = 140 MWiyear.

The difference in investment timing is aso reflected in the prices (Figure
4.26), with lower prices in scenario 4 due to earlier investments. An
interesting observation in scenario 2, without investment incentives, is that
the average price is always above the total unit cost for the new gas power
plant, even right after a new plant becomes available. The total unit cost can
be considered as the long-run marginal cost (LRMC) of system expansion,
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and with a static analysis investments would be made so that prices are kept
near or below LRMC*. However, we see that when investment decisions
are based on sochastic dynamic optimisation, the investor’'s optimal
investment policy is to delay investments so that the average price level
exceeds LRMC. This is the case even if we have assumed in the model that
no market power is exercised. In scenario 4, when an investment subsidy is
introduced, we see that the price level is brought down and fluctuates
around LRMC. In both scenarios we see that the difference between prices
in low and high inflow situations is reduced by time. This is due to the
increasing proportion of gas power in the system, for which the generation
over the year is not dependent on the short-term uncertainties in the model.
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Figure 4.26 Smulated prices in the Norwegian power systemin scenario 2 and 4, and total

unit cost for new gas power. High, normal and low inflow refers to high, average and low

realisations of inflow in short-term uncertainties (ws).

34 A more comprehensive discussion of the long-run marginal cost in power generation
expansion planning is provided in the next chapter.
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Table 4.10 summarises the simulated investment schedule for scenario 2
under all four possible decision rules, and compares them to the result for
rule d in scenario 4. We see that with static decisions for scenario 2 (i.e. 2a
and 2b), the simulated investment schedule is very close to scenario 4. This
means that with a static investment analysis the conclusion might be that
there is no need for an investment incentive to keep the average prices close
to LRMC. However, with decision rules based on dynamic optimisation, the
investments are delayed considerably, both under deterministic (2c) and
stochastic (2d) optimisation. When comparing decision rule 2c and 2d, we
see that when uncertainties are taken into account, all investments are
delayed one year if the load growth is constant at 140 MW/year. However,
aso in these ssimulations it turns out that the difference between static and
dynamic investment optimisation is more significant than the difference in
results between deterministic and stochastic optimisation. This is of course
due to the relatively small differences in investment criteria that we have
aready seen between deterministic and stochastic dynamic optimisation.

Table 4.10 Smulated capacity additions for different investment decision rules (a, b, c, d)
in scenario 2 and for stochastic dynamic optimisation (rule d) in scenario 4. Investment
decisions are made 3 years prior to the capacity addition, due to construction delay.

Plant Scenario 2 Scenario 4
no. a b c d d
1 2003 2004 2006 2007 2004
2 2009 2009 2012 2013 2009
3 2015 2015 2017 2018 2015
4 2020 2020 2023 2024 2020
5 2026 2026 2028 2029 2025

In the end, we also look at the simulated energy balance for scenario 2 and
4 (Figure 4.27). Not surprisingly, the energy balance is less negative in
scenario 4, with investment subsidies. However, in both scenarios the
Norwegian system needs to rely on imports in order to meet the tota
demand in years with average inflow. This result is due to the parametersin
the spot price model, which are based on historic price and load data from a
period with an energy surplus in the neighbouring countries (1993-2002).
Conseguently, since the parameters in the price model are constant
throughout the simulation period, it will not be profitable to invest until
parts of the import capacity is utilised. However, if the energy surplus in
neighbouring countries is reduced, the prices would increase quicker in
Norway and therefore also trigger earlier investments. This is a likely
development in the future, but is not included in the results presented here.
Still, the effect of changing import availability could easily be added into
the investment analysis, for instance by letting the parameters in the price
model be dependent on the time.
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Figure 4.27 Smulated energy balance for the Norwegian systemin scenario 2 and 4.

The analysis of system consequences that is provided here is of course
very smplified, as we confine the study to the Norwegian power system and
only look at investments in one large-scale technology. Furthermore, we
have only simulated the assumed average realisation of the underlying load
growth in the system. In reality, there are several decision makers, both
inside and outside Norway, investing in various technologies, and thereby
influencing the system’s development. At the same time the rea load
growth is stochastic. Investment patterns will therefore be less regular than
the graphs show. till, it is likely that several investors, particularly in
smaller scale technologies, decide to invest at more or less the same time,
when the conditions are advantageous. Cyclical patterns, although less
regular, are therefore still likely to occur. This is aso supported by the
results from the multi-technology deterministic system dynamics model
presented in Chapter 3. The effect of uncertainty on the simulated
investment decisionsis further discussed in section 4.4.4.

4.4.4 The Investor’s Value of Using a Stochastic Dynamic M odel

So far we have used the model to look at how the inclusion of uncertainty in
the optimisation problem contributes to change the optima investment
criterion, and thereby the development of the system in a long-term
perspective for a given load growth. As we have seen, the model also
calculates the investor’s expected profit at the beginning of the planning
horizon, which is the objective function in the optimisation problem. In a
real Situation a prudent investor would reconsider investment alternatives
regularly, and aways use al available updated information in these
assessments. However, the model only takes the value of the feedback from
updated information into account when a stochastic dynamic decision rule
(d) is applied. For the static and deterministic dynamic decision rules (a, b,
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¢) the model only calculates the expected profit from an investment strategy
which is fixed for the entire planning horizon. The value of the feedback
from new information to future decisions is therefore not taken into account
in the model’ s profit estimates with these decision rules.

The value of using a stochastic solution method for dynamic optimisation
problemsis discussed by Mo in [62]. It is stated that the difference between
the optimal value of the objective function for a deterministic (DP) and a
stochastic (SDP) model applied to the same problem, is an upper limit for
the true value of using stochastic dynamic optimisation, when information
feedback is included. It is straightforward to use this result to calculate an
upper bound to the value of using the SDP instead of the DP methodol ogy
(i.e. decision rule d instead of c). For instance, in the gas power base
scenario the difference in the calculated value of the objective function for
an initial load of 14100 MW is. Jtot,opt,d(linit:14100) - Jtot,opt,c(linit:l4100) =
267 - 130 = 137 MNOK. This would then be an upper bound for the value
of using SDP instead of DP optimisation when the average initia load is
14100MW. However, this comparison does not take into account that future
investment decision can be based on updated information, also when the
deterministic decision rule is applied.

A more accurate comparison of the value of using the different decision
rules, when the information feedback is included, can be carried out by
running Monte Carlo simulations with the smulator in Figure 4.24. In order
to do that we draw the stochastic load growth (w;x) from a normal
distribution, and run the simulator repeatedly with different realisations of
w k. The simulator can then be used to run Monte Carlo simulations in
order to test how well the different decision rules perform, when the
realisation of the stochastic variable is taken into account in the investment
optimisations for each consecutive time step.

The time horizon (T) in the investment optimisation problem is now set
equal to the remaining length of the simulation period (N-k+1) in each time
step. Thisisin contrast to the constant T that was used in the simulations in
section 4.4.3. Consequently, only uncertainties within the simulation period
are now taken into account in the optimisation. Simulated investment
decisions are therefore not affected by uncertainty in possible profit after the
end of the simulation period. At the same time the simulated investment cost
is also adjusted according to the remaining length of the simulation period,
in the same way as explained in section 4.3.5. By adjusting the investment
cost and time horizon we can perform consistent testing of the various
decision strategies, without having to take into account the value of the
investment option and the power plant itself at the end of the simulation
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period. However, this also means that the difference between the stochastic
and deterministic investment criterion diminishes throughout the simulation
period, as less uncertainty is considered in the investment decisions as the
end of the simulation period comes closer. The simulated decisions do
therefore not fully replicate real-world decisions, as investors will usually
consider uncertainties throughout the lifetime of the investment. However,
the simulations still give an indication of the value of using the stochastic
dynamic investment strategy compared to the deterministic and static ones.

Here we use the simulator to analyse investment decisions and profits in
the gas power base scenario (scenario 1) only, where the effect of other
investors are disregarded. We ssimulate a period of 10 years, and the investor
is only allowed to invest once in this period. Hence, the simulator uses the
investment model to find the optimal timing of the investment under the
different decision rules, when the information feedback is also taken into
account. The long-term uncertainty, wy, is drawn from anormal distribution
with mean and standard deviation of 140 MW and 300MW respectively.
These values are also used as input to the stochastic dynamic investment
optimisation. In the results presented below the number of Monte Carlo
simulations is 5000, and the same set of random realisations of load growth
are used for the different investment decision rules.

First, we assume that the average load at the beginning of the simulation is
14100 MW. This is the same as we used in the analysis of system
consequences in section 4.4.3, and also equal to the Norwegian load in
2000. At thisinitial load level both static first period decisions (aand b) turn
out to be immediate investment, while the dynamic assessments (c and d)
would suggest to postpone the investment (this can be seen from the
investment criteria in Table 4.7). The distribution of simulated capacity
additions for the different decision rules are shown in Figure 4.28. With the
static assessments (a and b) we see that the investor would always invest in
the first time period (k=1), so that the capacity is added to the system three
years later (k=4), after the construction delay. For the dynamic decision
rules (c and d) the decisions are made at different time steps, depending on
the realisation of load growth. We see that with the stochastic decision rule
(d) the investments tend to be postponed more than for deterministic
decisions (c). This is due to the higher option value of waiting. The
difference is most significant for decisions taken in the second time period.
For the remaining periods the number of simulated investments is at the
same level or higher for decision rule d, so that there is only a small
difference in the number of scenarios where investments are not made at all.
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Figure 4.28 Frequency distribution for capacity additions in the Monte Carlo simulations
for different investment decision rules (a and b, ¢, d). Investment decisions are taken three
years prior to capacity additions, because of investment delay. |y = 14100 MW.

The corresponding distributions of simulated total profit over the
simulation period are shown in Figure 4.29. With the static decision rules
we see that negative and positive profits are rather evenly distributed. This
is because there is no flexibility in the investment strategy, so that the
investor is equally exposed to positive and negative shifts in the underlying
load growth. With decision rule ¢ and d the investor postpones the
investment decision and is therefore able to avoid investing in many of the
scenarios where load and price grow less than expected. This is why the
profit distributions are much more biased towards positive profitsin c and d.
The more flexible investment strategy also explains the high frequency of
zero profit in ¢ and d, which is due to the high number of simulations where
no investment at all is undertaken.

From Figure 4.29 we also see that the difference in profit distributions
between ¢ and d appears to be very small. This is due to the limited
difference in investment criteria between SDP and DP optimisation. The
resulting variations in simulated investments are further reduced since the
investment opportunity is reassessed for each simulated time step based on
the smulated realisation of load growth. The summary of results in Table
4.11 shows that the average simulated result for decision rule c is actually
dlightly higher than for d. However, the difference between ¢ and d seem to
be insignificant in this scenario. When looking at the static decision rules,
Table 4.11 confirms that the average profit is much lower, while the
standard deviation is higher for rule aand b. Another interesting observation
is that the expected total profit from the first period investment optimisation
is close to the ssimulated result for the SDP used in rule d, while the DP
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optimisation in rule ¢ gives a far too low estimate of the expected profit.
This is because the calculated total profit with DP does not take into account
the flexibility in adjusting the investment plan according to the realisation of

future uncertainties.
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Figure 4.29 Freguency distribution for total profit in Monte Carlo simulations for different
investment decision rules (aand b, ¢, d). li,it = 14100 MW.

Table 4.11 Summary statistics for total profits in Monte Carlo simulations with investment
decisionrules a, b, c and d. Expected total profit from first period investment optimisation
is also shown for ¢ and d. All numbersin MNOK. |y = 14100MW.

aandb c d
Average total profit (MC simulations) 100.3 270.3 269.6
St.dev. intotd profit (MC simulations) 663.1 447.6 429.4
First period expected profit, Joopt - 129.6 266.7

We now repeat the analysis above for a different average load level in the
first time period, using linit = 14500 MW. With this initial load rule c and d
give different first period decisions. The first period DP strategy in ¢ is how
to invest immediately, while the SDP assessment in d still finds it optimal to
postpone the investment decision. From Figure 4.30 we see that the
investment strategies for decision rules a, b and ¢ are now the same, with
immediate investment in all simulations. For decision rule d the investments
are distributed throughout the ssimulation period, and there are still some
realisations of the load growth for which no investment is undertaken.
However, with an initia load level of 14500MW the majority of the
investment decisions are made in the second time step for rule d, with
corresponding capacity additionsin time step 5.
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Figure 4.30 Frequency distribution for capacity additions in the Monte Carlo simulations
for different investment decision rules (a and b, c, d). Investment decisions are taken three
years prior to capacity addition, due to investment delay. |;n;; = 14500 MW.

The distributions of simulated total profits are now the same for decision
rules a, b and c, since they result in identical investment schemes. From
Figure 4.31 we see that the more flexible investment strategy for rule d is
still able to avoid some of the outcomes with negative profit that result from
the inflexible strategies (a, b and c), although the difference is now less
significant than for the lower initial load level in Figure 4.29.
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Figure 4.31 Frequency distribution for total profit in Monte Carlo simulations for different
investment decision rules (a and b, ¢, d). li,; = 14500 MW.
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Table 4.12 shows that the average simulated profit for rule d is now higher
than for the other decision rules. Hence, in this situation, where the initial
investment optimisations give different decisions for rule c and d in the first
time step, SDP seems to also outperform DP as a tool for investment
decision support. However, the difference in the average simulated total
profit is still rather small. Table 4.12 aso shows that the SDP rule in d gives
the smallest standard deviation. Most investors would look at this as an
advantage, since it implies a lower risk. However, the reduced standard
deviation should not be used as an indicator for the SDP model’s
performance, since the objective function in the model formulation does not
take the standard deviation explicitly into account. In the end, we see again
that the expected first period total profit for the DP optimisation is lower
than the smulated average for decision rule c. At the same time, the first
period expected profit for SDP is till close to the average from the Monte
Carlo smulations.

Table 4.12 Summary statistics for total profits in Monte Carlo simulations with investment
decision rules a, b, ¢ and d. Expected total profit from first period investment optimisation
is also shown for ¢ and d. All numbersin MNOK. ;i = 14500MW.

aandb c d
Average total profit (MC simulations) 526.7 526.7 538.3
St.dev. intota profit (MC simulations) 7434 743.4 612.5
First period expected profit, Joopt - 441.0 542.4

The results of the Monte Carlo simulations presented here build up under
the conclusions from the analyses of the initial investment criteria. There is
a substantial change in simulated investments, which causes a large increase
in the investor's average profit, when going from a static to a dynamic
project appraisal. However, the increase in average profit when going from
a deterministic dynamic to a stochastic dynamic evaluation is less
significant. It is somewhat surprising that the SDP investment rule only
seems to outperform the DP rule for one of the two initial load levelsin the
stochastic simulations. One possible explanation to this observation is the
simulation procedure itself, which does not fully represent the influence of
uncertainty on investment decisi ons throughout the entire simulation period.
Another reason could be the approximations in the investment optimisation
model, particularly the discrete binomia representation of load growth in
the model. A more comprehensive analysis of the value of using stochastic
optimisation could be carried out by running Monte Carlo simulations also
for other scenarios. A different simulator, which uses an extended planning
horizon and at the same time takes into account the value of the investor’'s
position at the end of the smulation period, could also give more insight.
However, further investigation of thistopic is left for future work.
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4.4.5 Investmentsin Other Technologies

In this chapter we have used the model to analyse new investments in only
one technology, a combined cycle gas power plant. However, the model can
of course also be applied to assess investments in other technologies. The
main adjustment required is simply to change the model parameters that are
describing the technology in question (see Table 4.6 for the list of
parameters for the CCGT project). The specific version of the investment
model that is presented here is probably best suited for investment analysis
of base load technologies. However, by adding more details to the price
model it would be possible to apply the same methodology also for medium
and peak load technologies. The framework can aso be adjusted to
technologies which rely on energy resources with more variation in
availability, which is typically the case for many renewable resources. For
such technologies it is more important to take into account the correlation
between the short-term uncertainties in the existing system and the
availability of the technology itself. Again, this can be done by adjusting the
price model and the way it is used in the calculation of profits.

We do not go further into these issues here. The theoretical representation
of long-term uncertainties and its influence on the optimal investment
strategy applies to al investment problems in new generation assets. Most
of the qualitative results that we have seen in the gas power example are
therefore likely to be valid also for investments in other technologies,
although technology specific variations will occur.

4.4.6 Computational |ssues

The stochastic dynamic investment optimisation model presented in this
chapter is implemented in Matlab. The dimension of the state space in the
optimisation problem depends on the length of the planning period and the
number of capacity states. The computation time isin turn dependent on the
size of the state space. Besides, the inclusion of other investors into the
model also increases the computation time. In the illustrative examples the
computation time for calculating the expected income of waiting and
investing for one load level is below 1 second in al the scenarios in section
4.4.2 on a 1.2 GHz/256 MB RAM computer. However, running the Monte
Carlo simulations in section 4.4.4 took severa hours.

4.5 Chapter Summary and Concluding Remarks

In this chapter we have introduced a new stochastic dynamic model for
optimisation of investments in power generation assets under uncertainty.
The model builds upon rea options theory, which is specifically developed
to better take into account how uncertainty and dynamics affect optimal
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investment decisions. Our model framework gives a better opportunity for
analysing system consequences than the traditional real option models, since
physical factors are directly represented as state variables in the model. The
inclusion of physical state variables also makes it possible to capture more
of the specific price dynamics in the power market, which is different from
what is observed in most other commodity markets. The model optimises
the investment strategy for an individual profit maximising investor, and can
also take into account how the strategy is influenced by the actions of other
participants in the market. In total, the model framework and the underlying
theory offers a new tool, which is capable of analysing optimal strategies for
investment in power generation assets under uncertainty. The work can
contribute to increase the understanding of the long-term performance of
competitive power markets under different regulations and market designs.

We argue in this chapter that different growth trends and long-term
uncertainties in the power system add to the value of an investment
opportunity, and thereby influence the optima timing of an investment
decision. The stochastic dynamic optimisation model takes into account the
expected growth and uncertainty in system load. Results from the model
show that both factors contribute to postpone the optimal investment
decision compared to project appraisals based on static and deterministic
analyses. However, the change in optima investment criterion is more
significant when going from a static to a dynamic analysis, than the
difference in criteria between deterministic and stochastic analysis. For the
investor it is therefore very important to take the dynamic aspect of load
growth into account when assessing investments in new power generation.
Adding the uncertainty in load growth into the investment optimisation also
contributes to increase the investor’'s expected profit, but to a less extent.
These results are confirmed by Monte Carlo simulations, where an
investor’s total profit is simulated under different investment strategies. The
representation of other investors in the model gives a lower expected profit
on new investments. However, the results from the case study show that the
optimal investment criteria are only to a very limited extent changed as
competition from others are taken into account.

The model results aso illustrate that the optimal investment criteria which
follow from stochastic dynamic optimisation do not necessarily result in a
long-term price level equal to LRMC, which would be the conclusion from
a static assessment. In the case study of gas power in Norway the price in
the long run fluctuates above the LRMC in years with average precipitation
to the hydro stations. Various investment incentives can contribute to trigger
earlier investments if the prices in the power market do not give adequate
investment signals. Our analysis indicates that a fixed investment subsidy
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would achieve the desired result at a lower cost than a capacity payment.
Thisis because the direct subsidy does not give rise to any additional option
value of postponing the investment decision. However, a more detailed
analysis of how the incentives influence the demand side in the power
system would be needed in a comprehensive study of investment incentives.

In the end it is important to emphasise that the stochastic dynamic
investment optimisation model presented in this chapter contains a general
framework that could be extended in several directions. The model can
therefore serve as a starting point for more comprehensive analyses of
investments in the power system. A more detailed description of power
system operations could for instance be implemented. Several long-term
uncertainties could also be taken into account, by increasing the number of
stochastic state variables. In the next chapter we extend the model
framework to include investments in two technologies. At the same time we
aso introduce an alternative description of the electricity market, which is
more similar to the market representation in Chapter 3.
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Chapter 5  optivAL INVESTMENTS
UNDER CENTRALISED
AND DECENTRALISED
DECISION MAKING

In this chapter we look at optimal investment policies under centralised and
decentralised planning. We use the same model framework for optimal
investments under uncertainty as developed in the previous chapter.
However, we now describe the power market in terms of a supply and
demand curve, in order to quantify socio-economic figures such as social
welfare, total system costs, consumer and producer surpluses under different
planning regimes and market structures. We also introduce two technologies
with different cost characteristics into the optimisation model. A market
simulator is also here developed and can now be used for simulations of not
only investments and price, but also total social welfare in different
scenarios. The simulator bears resemblance to the system dynamics model
in Chapter 3, and a similar market description is used in the investment
optimisation. However, investment decisions are now based on the
stochastic dynamic optimisation model instead of the static net present value
assessment, so that long-term uncertainties and the flexibility of investment
timing can be taken into account. An outline of theories for pricing of
electricity and investments in new generation capacity, for the regulated and
liberalised power industry, is given before the model is presented.

5.1 Optimal Investments and the Price of Electricity

Optimal investments in new power generation are closely related to the
price paid by the end users for electricity. An extensive literature exists on
pricing policies and optimal investments in new power generation for
regulated utilities. Parts of this theory are aso relevant for the restructured
industry, although some of the underlying assumptions are obviously
changed. A brief outline of the main theoretical directions for pricing under
regulation is first presented. In the light of this theory we look into some of
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the challenges facing a restructured power system, where market prices are
supposed to give the correct investment incentives. The discussionis limited
to the price of eectricity generation, as transmission and distribution are
still regulated monopolies in most systems. The theory presented in this
section serves as a background for the modelling and analyses of investment
under uncertainty that follow later in this chapter.

5.1.1 Pricing and Investments under Regulation

In a regulated system the price for electricity is controlled by a regulating
authority, either directly through a specified price or indirectly through a
limit on the profits for the utility (e.g. rate of return regulation). In both
cases atariff will have to be determined in order to charge the customers for
their use of electricity. The objective under regulation is usually to obtain a
system where the sum of benefits to all participants in the system is
optimised. For modelling purposes this can be done by maximising the
socia welfare function in the system.

A possible approach is to base the regulated tariffs on the marginal costs
in the system. According to standard economic theory the tariffs should be
set equal to the system’s short-run marginal costs (SRMC) to ensure short-
term economic equilibrium. In a system which is optimally dimensioned the
long-run marginal cost (LRMC) of expanding the system would equal the
SRMC of operating the existing system. Investments should be made in
time to avoid that SRMC exceeds LRMC so that long-term economic
equilibrium is maintained [2]. Prior to restructuring of the Norwegian power
system in 1990, the parliament determined the price that Statkraft, the large
state owned power generation company, charged for its power generation.
This price penetrated the wholesale market for electricity and was kept close
to LRMC for the Norwegian system (Figure 5.1). By keeping the price close
to the LRMC the regulator ensured sufficient investmentsin new capacity.
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Figure 5.1 Wholesale prices in Norway before restructuring. The spot market could only be
used after contract obligations were met, and had a relatively low turnover. Source: [2].
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The advantage of an annual uniform tariff based on marginal costsis that
it is easy to implement in terms of metering and billing. However, it does
not take into account that demand varies over the day, week and season.
With a uniform price over the year these demand fluctuations are not in any
way dampened by the price. The theory of peak-load pricing® was
developed to specificaly deal with the non-storability and periodic and
stochastic demand fluctuations for electric power. By using time-of-use
tariffs the price elasticity of demand contributes to dampen demand
fluctuations and thereby lower the need for investments in peaking capacity.
The use of dynamic pricing therefore has advantageous effects for both
consumers and the supplier of electricity. Boiteux was the first to propose
peak-load pricing of electricity [65]. He uses a simple deterministic two-
period model with one generation technology to derive optimal pricing
formulas during the off-peak and peak |oad period. The results show that the
operating cost should be charged in the off-peak period, while the price in
the peak load period should include the sum of operating and capital costs.
In this way the utility recovers its capital cost expenditure during peak load
hours, while capacity is at its limit.

The theory of peak-load pricing has been extended in several directions.
Crew and Kleindorfer expand the basic deterministic model of Boiteux to
include several technologies [66]. The objective is to maximise the social
welfare in the system, given that demand is met in each time period and
generation is below capacity limits. The effect of introducing a variety of
technologies with different operating and investment costs is in genera to
lower peak period prices and increase off-peak period prices. In turn, this
means that the demand fluctuations are less dampened with a diverse mix of
technologies. The prices within each period are still set equal to the long-run
incremental cost of meeting an additional unit of demand, so that capital
costs are recovered. Criteria for optimal mix of technologies are also
derived. The basic rule states that capacity should be installed and operated
in order of increasing operating costs (i.e. merit order), but both capital and
operating costs determines whether or not a technology is part of the
optimal mix of technologies. In traditional power system expansion
planning the same rule is used to plot so called screening curves for
available generation technologies. The system’s load duration curve can
then be utilised to determine optimal installed capacities of the different
technologies™®.

% crew and Kleindorfer give a comprehensive survey of the general theory of peak load
pricing in [63], while a more verbal discussion with emphasis on the electrical power system
is presented by Doorman in [64].

% The use of technology screening curves to determine the optimal mix of generation
technologies in the power system is explained by Wangensteen [2] and Stoft [67].
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A stochastic model for the peak-load pricing problem is also developed in
[66]. When demand, and possibly also supply, is uncertain, one might end
up in situations with demand unexpectedly exceeding available supply. In
this situation parts of the system load has to be rationed. Therefore, the cost
of rationing has to be taken into account in the objective function. Ideally,
rationing should take place according to increasing willingness to pay for
electricity, so that the loss in consumer surplus is minimised. However, this
requires that the system operator can actually curtail load according to
customer’s willingness to pay, which is a very strong assumption in most
power systems. Firstly, there is usually substantial uncertainty concerning
what customers are actually willing to pay for electricity. Thisisillustrated
by the inherent difficulties in estimating the value of lost load. Secondly,
even if information about different customer’'s value of lost load were
available, the system operator would still have a technological problem in
shedding load according to a pre-specified schedule based on increasing
willingness to pay. Random rationing would therefore be less costly for the
system operator, athough the loss in consumer surplus is obvioudy
higher®”. The results from the stochastic peak-load pricing model shows that
socia welfare optimisation under uncertainty entails marginal cost pricing
rules smilar to those obtaining for deterministic peak-load pricing.
However, determining and quantifying the appropriate marginal costs under
uncertainty requires that rationing and excess demand conditions must be
considered explicitly. Note that the uncertainties represented in these models
are what we referred to as short-term uncertainties in the previous chapter. It
means that they do not affect the investment plan other than in terms of
changing the expected values within each time step.

The implementation of peak-load pricing requires that the customers are
billed according to their actual temporal load profile. Despite more complex
metering and billing procedures dynamic time of use rates have been
implemented in parts of Europe, e.g. in Germany, France and England. In
general, the price periods could be based on seasonal, weekly, daily, or even
more frequent load variations. Real-time pricing, or spot pricing of
electricity, was first introduced by Schweppe et al. [68]. With spot pricing
the price is set as close to real time as possible. A mgor advantage with
real-time pricing is that uncertainties concerning load and supply
interruptions are minimised, so that the flexibility in supply and demand is
exploited to its limits. With sufficient price elasticity of demand the need for
rationing schemes disappears under real-time pricing. The spot price is
determined by a centralised entity, and the price can aso take into account
other factors than the costs of electricity generation. These other factors

3" Doorman [64] gives a comprehensive discussion of customers’ willingness to pay for
electricity and the quality of supply.
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could be maintenance, quality of supply and possibly aso revenue
reconciliation for the utility. The proposed spot prices are also capable of
reflecting the cost associated with transmission losses and network
constraints, and can therefore help facilitate the unbundling of generation
and transmission in a restructured setting. At the same time, Caramanis [69]
argues that correct investment incentives from a socia welfare point of view
are given to both suppliers and consumers under spot pricing of electricity,
also when the parties act as independent profit maximising firms. The
requirement is that social and private interest rates are the same. The spot
pricing theory therefore has had a substantial impact on the trend towards
liberalisation and restructuring of power markets, although the main aim of
the theory originally was to improve the pricing efficiency within the
regulated el ectric power industry.

5.1.2 Pricesand I nvestmentsin a Restructured M ar ket

In arestructured power market with decentralised decision making the price
of electricity is determined by the bids from the suppliers and consumersin
the system. If we disregard inter-temporal constraints and assume perfect
competition, a rational supplier would bid the marginal cost of generation
into the market while consumers would bid their marginal willingness to
pay. The spot price is settled at the intersection of the aggregate supply and
demand curves. In most situations the price would equal the marginal cost
of the last generation unit needed to meet demand. However, in situations
with high demand and scarcity of supply the price would be given by the
consumer’s marginal willingness to pay. The two situations are illustrated in
Figure 5.2, and thisis just the traditional picture of market based trade of a
commodity. The electricity market will be in short-term equilibrium as long
as the time resolution of the market is high, and the market clearing is
carried out close to real time®. According to traditional economic theory the
long-term equilibrium is ensured by investors who are willing to invest as
soon as they anticipate prices that are high enough to cover the total costs of
their investments. The total discounted unit costs of the most competitive
new generation technologies available should therefore represent an upper
limit for the average prices in different load segments. The desired effect of
restructuring is therefore to obtain both short- and long-term equilibrium in
the system based on market mechanisms, which again ensures that social
welfare optimum is established through efficient market incentives. The
spot price is obviously more fluctuating than the tariffs in a traditional
regulated setting, but this has positive welfare effects. Besides, a complete

% |n Scandinavia the spot market has an hourly time resolution, and the market is cleared
on a daily basis. Some uncertainties therefore arise between market clearing and physical
delivery. These uncertainties are taken care of by market based and automated feedback
mechanisms closer to real time.
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market design would also have long-term markets where risk-averse
participants can lock in the price for future ddiveries and thereby reduce
their exposure to price variability.

Price, P A
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-
-

Q, Q, Quantity, Q
Figure 5.2 Illustration of market clearing during base (1) and peak (2) demand periods,
based on aggregate bid curves for supply and demand in the spot market.

Some of the special characteristics of the power system can, however,
distort the long-term equilibrium of the power market. Vazquez et al. [70]
discuss three difficultiesin real power markets that can contribute to prevent
optimal investments in new generation. The first is related to the limited
price elasticity of demand in current systems. If there is limited or no short-
term price flexibility on the demand side one can end up in situations where
the market fails to define a price (i.e. the supply and demand curves in
Figure 5.2 do not intersect). In such situations the regulator would have to
define a price that caps the market. However, unless the price cap is set
equal to the real value of energy not served, thiswill give wrong investment
signals. There is a tendency that regulators define price caps that are too
low, and this will clearly reduce profit expectations and discourage new
investments. Even in markets with no defined price cap there is alwag/s the
risk of regulatory intervention if the prices rise to very high levels®. The
second problem arises due to risk averson among investors. The risk
involved in investing in new power generation is particularly high for peak
load plants. Unless there are liquid long-term markets where the investor
can efficiently hedge these risks, it is likely that potential capacity
expansions are postponed or cancelled. The third difficulty that is mentioned

¥ The Scandinavian spot market for electricity does not have a clearly defined price cap,
although there is an upper technical limit on the bid prices that are allowed to be submitted
to the market. This limit has been adjusted according to the market situation and does not
represent a regulatory price cap. Still, the political debate in Norway following the high prices
during the winter of 2002/2003 illustrates the risk of regulatory intervention and price control
if electricity prices remain high over an extended period of time. This risk of regulatory
intervention can be conceived by some participants as a price cap in the long run.
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is caused by potential exercise of market power by large producers in the
system. Under-investment in order to increase prices may result, unless the
barriers to entry are low for new investorsin the market.

Also from the consumer’s point of view there are problems that can distort
the long-term functioning of the power market. Stoft [67] refers to two
demand-side flaws in deregulated power markets. The first flaw is the lack
of metering and real-time billing. This results in the limited short-term price
elasticity of demand that has already been mentioned. The large majority of
customers in restructured power systems today are still being billed based
on some sort of average price measure. Hence, there is an absence of rea-
time feedback from price to demand, so that customers can not adjust their
load according to short-term price fluctuations. The second flaw is the lack
of real-time control of power flow to specific customers. This prevents the
physical enforcement of bilateral contracts, and therefore in practice the
system operator becomes the default supplier in real time. Under these
conditions the incentive for customers to sign long-term contracts to protect
themselves against higher prices and service interruptions are therefore low.
As a consequence, efficient long-term markets for sharing of investment
risks, particularly in peaking capacity, are absent in most restructured power
markets™.

Three types of regulatory approaches have been employed or proposed to
deal with the problem of adequate investments in the power system*: 1) In
the “energy only” model it is left to the market forces to secure optimal
investments. This solution is based on the assumption that consumers after a
learning period will increase their price flexibility and also efficiently
participate in long-term markets. The restructuring of the power markets in
Scandinavia, California and Australia are based on this model. 2) In a
“capacity obligation” model an obligation is imposed on the buyers, forcing
them to buy their peak capacity in a long-term capacity market, so that a
prescribed level of generation capacity is ensured. This solution has been
implemented in the north east of the US (PIM, NY PP, NEPOOL). A similar
system was aso implemented in the Norwegian power system prior to
restructuring®. 3) In a “capacity payment” model, a regulatory mechanism
for a payment to generators, in addition to income from the energy market,
is established. This capacity payment encourages investments by increasing

40 See Doorman [64] for a comprehensive discussion on peaking capacity in restructured
power systems.

“ The pros and cons of the three market models are elaborated by Vazquez et al. in [70]
and by the organisation for Nordic system operators, NORDEL, in [71].

2 Pparticipants taking part in the coordinating inter-regional exchange scheme, called
“Samkjgringen”, were obliged to maintain a neutral capacity and energy balance through
long-term contracts.
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and stabilising the volatile income of generators. Spain, Argentina,
Colombia and Chile have included a capacity payment in their market
designs.

With the investment model that is presented later in this chapter we can
analyse market designs based on the “energy only” and “capacity payment”
market designs. The capacity obligation model is of less interest from a
capacity and reliability point of view, since the minimum level of installed
capacity is predetermined by the regulator.

5.1.3 Long-Term Uncertainties, Flexibility and I nvestment Dynamics

The theoretical considerations behind most of the results presented above,
both for the regulated and competitive industry, are usually of a static
nature. Thisis reflected in the mathematical models that are used to support
the results. The investment problems are typically solved as static
optimisation problems, where optimal investments are determined for the
system in a “snapshot” of time. In this way Lagrangian techniques can
typically be applied to find optimal prices and investments from the shadow
prices of the system’s energy and capacity constraints. Short-term
uncertainties due to unexpected load variations and generator outages are
sometimes added to the static models. This is for instance the case in the
peak-load pricing problem formulated by Crew and Kleindorfer [63], and
aso in the model for spot-pricing of electricity proposed by Scwheppe et al.
[68]. However, the gradual development of long-term trends and
uncertainties are not represented, so that the dynamic option values inherited
in flexible investment strategies are not taken into account.

In the theory for time of use rates and peak load pricing there are rare
occasions of dynamic formulations of the investment problem under social
welfare maximisation. A dynamic one-technology model is solved by Crew
and Kleindorfer [66] (chapter 7). The results show that whatever the level of
installed capacity, the price should be set to maximise instantaneous welfare
returns subject to the given capital restriction, i.e. price should equal SRMC.
At optimum, capital stock is adjusted so that SRMC equals LRMC. The
static and dynamic cases are the same in optimum, except that in the static
case the time path of adjustment of installed capacity is not considered.
Kaya and Asano [72] extend this model to a situation with multiple
generation technologies. The same pricing rule is still valid in this situation,
and the pricing policy in steady-state is equal to the static case. The static
technology screening rule, with capacity installed and operated in order of
increasing operating costs, also applies in the dynamic setting, according to
[72]. The dynamic models referred to here are both deterministic, so that the
impact of long-term uncertainties on optimal investment decisions is not

-118-



Optimal Investments under Centralised and Decentralised Decision Making

included. Another factor that can play an important role in real world
investment decision, namely the effect of different technology lead times, is
also omitted.

The main principles behind real options theory was outlined in the
previous chapter. Although most of the literature on real options is devoted
to investment decisions of individual firms, the theory is also extended to
look at competitive industry equilibrium and optimal investments from a
social welfare point of view. Dixit and Pindyck [38] formulate a dynamic
model for a competitive industry. Optimal exit and entry thresholds are
determined using a version of the standard continuous time real options
framework. Not surprisingly, it turns out that the optimal thresholds under
uncertainty differ substantially from the static NPV criteria. Depending on
the level of uncertainty, the optima price threshold for entry of new
investors can be much higher than in a static analysis. An aggregate industry
model is also formulated, where the objective is to maximise total social
welfare. It is shown that social optimum coincides with the competitive
equilibrium, also in the dynamic framework. Hence, also under centralised
planning with a social welfare criterion there is an option value in having a
flexible investment strategy. Dixit and Pindyck therefore claim that policy
intervention is only justifiable if there is some kind of market failure in the
system. A common problem in this respect is the failure of markets to
efficiently share risks. From the discussion above we see that this can be a
severe problem in restructured power markets. However, it is aso shown in
[38] that policy interventions to reduce risk, for instance in terms of a price
cap, can in fact increase pricesin the long run.

Dixit and Pindyck’s models of industry equilibrium and socially optimal
investments are based on the standard real options framework with one
stochastic state variable, which could represent either price directly or a shift
in demand. Although there are many advantages in applying a continuous
time model which can be solve analytically, there are also limitations, as
discussed in section 4.1.5. The models do for instance not take into account
the time variability of demand that is studied in the literature on peak load
pricing. The impact of different technology lead times and the lumpiness of
investments are also disregarded. These factors are usually important in
electrical power systems, where demand is time-variant by nature and
investments often are large scale with long lead times.

The dynamic investment model presented in this chapter combines
elements from the traditional peak load pricing models with real options
theory for investments under uncertainty. Our objective is to analyse
optima investments in new power generation assets under different
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assumptions about market design and power system structure. With a
simplistic representation of the power market we can look at optimal
investments for a decentralised profit maximising investor as well as from a
centralised social welfare point of view.

5.2 A Simple Economic Model of the Power Market

In this version of the investment optimisation model we use a simplistic
representation of the power market, based on marginal production cost and
consumer’s willingness to pay. A smple power market description gives us
the possibility to study macro economic effects of investments in a long-
term perspective. The model is based on a set of simplifying assumptions
that are important to keep in mind from the beginning. The most important
assumptions in the model are therefore listed below:

- The time step in the investment optimisation model is one year, but each
year is split into base, medium and peak demand sub periods. Demands
within sub periods are interdependent and grow proportionally.

- Demand is split into a fixed and a price responsive part, and is
represented with linear demand curves within each demand sub period. The
demand curves are bid into the spot market and represent customers
willingness to pay for electricity.

- Growth in demand is the only long-term uncertainty represented in the
model. Deviations in load due to temperature etc. can be represented as
short-term uncertainties.

- End-users are hilled according to dynamic prices. They therefore face
different pricesin the different demand sub period.

- Two technology groups are represented in the supply side of model, i.e.
base and peak load plants. Decommissioning of existing plants is not taken
into account.

- The inter-temporal dynamics of storage (for instance storage in hydro
dams) are not represented in the model. Other inter-temporal constraints,
such as start-up/shut-down costs and ramp rates, are also omitted.

- The capacity variables in the model represent available capacity.

Availability factors are therefore not represented explicitly for the supply
technologies in the model.
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- There is no revenue reconciliation for old units, so that existing plants
compete in the spot market on equal basis with new investments.

- There is no exercise of market power in the spot market for electricity.
Suppliers bid their marginal costs in the market, and aggregate bids are
represented with piecewise linear curves.

- Operating reserves (OR) during peak demand are provided by existing
plants with low efficiencies and high operating costs. The OR requirement
is kept as a constant capacity, and the plants that provide OR during peak
demand are not represented in the spot market supply curves.

- A redl discount rateis used in the model, and we can therefore assume no
inflation in the planning period.

- The electrical power system is modelled as an isolated one-area system,
i.e. exchange with neighbouring areas is not considered. In addition,
transmission constraints and losses within the area are not explicitly
represented in the model.

More details about the assumptions and the mathematical formulation of
the model are presented in the sections below.

5.2.1 Representation of Electricity Demand

The representation of electricity demand in the model isillustrated in Figure
5.3. By using three demand sub-periods (i.e. base demand (1), medium
demand (2) and peak demand (3)) we can capture parts of the temporal
variations in electricity demand. The demand within each sub period is
modelled with a fixed and a price flexible part. The fraction of price flexible
demand is not only dependent on the characteristics of the load itself and the
service that it provides, but also on how much of the load that is exposed to
real-time prices and how actively the end-users take part in the electricity
markets. With a one year time resolution it is likely that there is some
feedback from sub-period prices to sub-period demands, although the effect
might be delayed if there is no real-time billing in the system. Still, in a
recently restructured electricity market it will take time before end-users
adapt to the new situation and act rationally in the markets according to their
willingness to pay for electricity. The proportion of price flexible load in
current power markets can therefore be very limited.

In the model we assume that if the electricity price reaches a sufficiently

high level (Prexmax), the regulator will intervene in the market with load
shedding. The use of load shedding could be needed because of limited
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price elasticity of demand, which can result in a failure of the market to
clear in peak demand situations. It could also reflect a regulatory policy
where there is a limit on the bid prices alowed from the demand side of the
market. During load shedding the electricity price is set equal to a load
shedding price, Pcayp, Which caps the price in the spot market. Pep is
assumed to penetrate the entire spot market. The price levels for Pyexmax @nd
Pcap could be part of the market design and therefore predetermined values
transparent for the market participants. However, they could also reflect
investors expectations about the regulator’s behaviour in situations with
very tight capacity margins. The effect on optimal investment criteria would
be similar. The importance of these parameters is dependent on the amount
of price responsive demand in the power system. With a sufficiently high
price elasticity of demand the regulator will never need to use load shedding
in order to balance supply and demand in the system.
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Figure 5.3 Representation of fixed and flexible parts of base, medium and peak demand in
the investment optimisation model.

In Figure 5.3 we have assumed that Pcsp is equal to the value of lost load
(VOLL)™® for the customers affected by the load shedding. As pointed out in
section 5.1.1 it can be very difficult for the system operator to shed load
according to customer’s willingness to pay. Consequently, we assume that
there is a high degree of randomness in the selection of customers for load
shedding. VOLL therefore represents the average value of lost load for the
fixed part of the demand, and this is considerably higher than the maximum
margina willingness to pay for the price flexible part of the demand
(Prexmax)- A load shedding price equal to VOLL would give correct price
signals into the market when load shedding is required under this rationing
scheme. However, Pcgp is not necessarily set equal to VOLL, either because

3 Note that we assume that VOLL is the same in all sub periods in the model. This is clearly
a simplification, as the implications for end-users of interruptions in the power supply can be
highly dependent on the time of the day and also the time of the year that it occurs. We also
assume that Pcap and Priexmax are constant and the same in all the sub periods.
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VOLL is not known or because the regulator wants to protect the end-users
from very high prices with a lower price cap. Later in this chapter we will
present results for different assumptions about Py, and look at the
consequences for optimal investment criteria, prices and system reliability.

The sub-period demands are assumed to be inter-dependent, with a
constant proportional relation between the maximum loads (Lmax) in the
three segments. This is expressed in (5-1). At the same time, the price
flexible parts (Lfe) are constant fractions of the maximum loads, as shown
in (5-2). Consequently, the price elastic demand curves for al three load
segments can be described by one state variable only (i.e. ly) in addition to a
set of parameters for prices (Pcap, Prieqmax) and 10ads (CLmax, CLfiex). Growth
in I is the only long-term uncertainty that is included into the model. | is
represented as a stochastic state variable with a mathematical description
similar to the representation of average load in Chapter 4.

Ll,max,k CLl,ITBX
Lk =| Lomaxk | = Clmax "k =| Clomex | Ik (5-1)
L L3,rmx,k i CL3 mex
Ll,fla(,k
Lieck =| La.fiek | = Cottex " Limaxk (52
L L3,f|a(,k i
where
L e vector of maximum sub period loads, time step k [MW]
CL o vector of maximum |load constants
[ state variable for demand, time step k [MW]
Ltk vector of flexible sub period loads, time step k [MW]
CL fex flexible load constant

It is also possible to represent short-term uncertainties in demand in the
model. The short-term uncertainties (ws) could for instance be caused by
temperature variations, and are taken into account using a discrete
probability distribution. Short-term uncertainties in demand are treated on
an expected value basis in the investment optimisation, similar to the
representation in Chapter 4. The exact representation which is used for ws in
the illustrative examplesis further described in section 5.3.1.

5.2.2 Representation of Electricity Supply

The representation of electricity supply in the model is illustrated in Figure
5.4. We assume that the initial load is served by existing base and peak load
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plants®. Both groups are assumed to have linearly increasing marginal cost
curves. Theincreasing marginal cost curves reflect that the groups consist of
plants based on various technologies and vintages, and therefore have
different efficiencies and operating costs. It is possible to invest in two new
technologies in the model: new base load and new peak load plants. The
new plants are assumed to have lower operating costs than the existing
technology groups, due to technology improvements. The installed capacity
of the new technologies, Xinew @Nd Xznew, are represented as discrete state
variables in the model. The new technologies are described by parameters
for installed capacity, investment cost, marginal operating cost, life time and
also construction time. Figure 5.4 shows a supply curve with al four
technology groups represented. No uncertainties are included in the supply
side of the model, and we assume constant availability for al the technology
groups. In addition, the deterministic supply curve is also constant for all
demand sub-periods. Changes in the supply curve only occur when new
investments are made.

Marginal A
cost, MC i

-

Installed
1,new X, oid Xpnew  Xooq OR  capacity, X

Figure 5.4 Representation of old (X; g @nd X;q) @and new (Xgney and Xonew) generation
technologies in an aggregate supply curve for one combination of state variables. OR is the
operating reserve requirement.

X

We assume that operating reserves during peak hours (OR in Figure 5.4)
are provided by the technologies with highest marginal cost in the system,
i.e. from the group of old peaking plants. The OR requirement is assumed to
be determined by the regulator, and this part of the supply curve is always
withheld from the spot market for electricity. However, it still affects the
spot prices in peak demand situations, since it determines how much of the
old capacity that is available in the spot market. Stoft [73] discusses how the
relationship between the OR requirement and a price cap in the OR market

“* In this chapter we use the notation peak load technologies to describe all plants that are
not pure base load plants. Hence, the group of plants referred to as peak load plants include
both medium and peak load technologies.
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determine the equilibrium level of installed capacity in the power system. It
is assumed that the price cap is paid when the OR requirement is violated.
At the same time, there must be a relationship between prices in spot and
reserve markets, so that arbitrage opportunities do not occur between the
two markets. Hence, if the regulator determines a price cap for operating
reserves it will also indirectly affect prices in the spot market. In fact, the
price cap in the OR market will effectively cap the price in the spot market
too, due to the arbitrage argument. It is argued in [73] that optimal installed
capacity can be achieved with any of a continuum of different policy options
ranging from extremely high price caps and low OR requirements, to very
low price caps and high OR requirements. The first alternative would give
high price spikes with low frequency while the second aternative would
result in low price spikes with higher frequency. In both situations a new
peaking unit would exactly recover its fixed costs during peak load hours,
and a static equilibrium for installed capacity is achieved. However, the
outline in [73] does not take into account how uncertainty and price
dynamics can affect installed capacity over time.

Finding an optimal OR requirement is a complex problem which is beyond
the scope of the analysis presented in this chapter. In the model we simply
assume that the regulator determines the OR requirement according to short-
term system operation and reliability considerations. Furthermore, the
regulator pays a price for OR which reflects the expected profits foregone
for margina generators by providing OR instead of selling the
corresponding energy into the spot market*. Hence, the OR price is not
directly determined by the regulator, but is a function of the prices in the
spot market. We still assume that the regulator determines a price cap
directly in the spot market (Pcap), asillustrated in Figure 5.3. The interaction
between the spot and reserve markets rules out arbitrage opportunities.

One of the problems we want to analyse with the model is how the level of
the price cap in the spot market affects the expected profitability of new
investments, and thereby the optimal investment criteria. The level of Pey is
determined by the regulator and will aso affect the OR payment. Marginal
generators should be indifferent between participating in the spot or reserve
markets, but new generators have low margina costs and are therefore
better off if they sell their generation in the spot market. Under these
assumptionsit is therefore sufficient to represent the spot price in the model
to find optima investment criteria for new technologies. The resulting

% In Norway the system operator buys OR in long-term contracts through an auction
mechanism. Generators and end-users can bid production capacity and load reduction into
the reserve market and thereby gain a premium for providing OR. The resulting OR capacity
must be withheld from the spot market.
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investment behaviour determines how often the OR requirement is violated.
In order to obtain a consistent representation of supply and demand in the
model, we assume that the VOLL in the demand description reflects the true
cost for end-users when the specified OR requirement can not be met. This
is of course a simplistic description, as the system operator in many
situations would be willing to reduce OR before load shedding is
introduced, and the cost of lower reliability due to reduced OR might be
lower than VOLL. However, the simple description of supply and demand is
still sufficient to gain useful insight into the dynamics of investments, prices
and reliability under uncertainty in along-term perspective.

5.2.3 Representation of the Spot Mar ket for Electricity

The representation of the spot market for electricity is illustrated in Figure
5.5. The prices in the spot market are found at the intersection between
supply and demand curves in each of the sub-periods for al combinations of
states (i.e. load level, Iy, and installed capacity of new technologies, Xi newk
and Xonewk). Note that the operating reserves are now omitted from the
supply curve. Prices, loads, operating costs and macroeconomic figures such
as social welfare, consumer and producers surplus are calculated for base,
medium and peak demand based on the supply and demand curves. With
this market description it is possible to maximise social welfare over the
planning horizon, instead of maximising the profits for an investor in the
market. The optimisation is carried out in the same way as in the investment
optimisation model from the previous chapter. However, with the current
market description we now have the possibility of using two different
objectives in the optimisation. At the same time we have extended the state
space to include two new technologies, as opposed to the model in Chapter
4 which only includes one new technology.

Price, P 4

Demand,
Supplyy,p.3

-

Q, Q, Q;  Quantity, Q
Figure 5.5 lllustration of short-term market equilibrium during base (1), medium (2) and
peak (3) demand.
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5.2.4 The Optimal Investment Problem

The same mathematical framework as developed in Chapter 4 is applied to
find optimal investment strategies for new power generation plants with the
new market description. The general investment optimisation problem for
two technologies can be described as a stochastic dynamic optimisation
problem, using the same structure as in (4-9)-(4-13). The problem now has
three state variables and two control variables, as shown in (5-3)-(5-7).

Jo(Xo,lp )= max E{E[(l"'r)_k SO (Xl Uy )] +

Up,lhra @ | (50

(5-3)
A+r) T g, (% |y ,@,) }
X = X T Ugyg (5-4)
e =i + A (5'5)
gT(XT’ITfa)s):gT(XT’IT’wsluT=0) (5_6)
X €Q e ueQ @,eQ, 0eQ, (5-7)
where
Jo(%0.l5) objective function, i.e. max expected [MNOK]
payoff over the planning horizon T
g, (%l U ,@,) payoff for time step k [MNOK]
O; (%; 17, @,) termination payoff in period T [MNOK]
E available installed capacity for techn. [MW]
Xy = le ' 1 and 2 (state variables), time step k
T demand (state variable), time step k [MW]
fu ] capacity additions of technology 1 and [MW]
W=, 2 (control variables), time step k
o ) ) stoch. change in demand, time step k (MW]
o, short-term uncertainties in demand
r risk adjusted discount rate
R construction lead time for technology [years]
=1 1and?2
Q0 0 discrete feasible setsfor x, I, u, @ and ws

The discrete state space is expanded by the three state variables and time.
The state variable for demand, |y, is represented as a stochastic variable with
a binomia distribution, as shown in Figure 5.6. This is the only long-term
uncertainty in the model, and the mathematical representation is exactly the
same as for average load in Chapter 4 (Figure 4.5). For the generation states
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we have to take into account the construction time, asindicated in (5-4). To
limit the size of the state space we assume that only one construction plan
can be undertaken at the same time. This means that if an investment
decision is made, the investor will have to wait until the construction is
finalised, before the next investment decision can be made. The
representation of capacity states is shown in Figure 5.7, and is again similar
to the model in Chapter 4 (Figure 4.7), except that we now have a two-
dimensional state space for new capacity.

Demand, /, 4

MW]

-
-

0 1 2 3 Time [year]
Figure 5.6 Illustration of the state space for demand (I,) as function of time. |, is initial
demand (k=0). py, and pqn, are transition probabilities.

Technology 2
X [MW]

2,new
400 1 94
200 +C 4
0 {C -4
6 460 860 Tecﬁnology 1

X1,new [MW]

Figure 5.7 Illustration of decision states (black dots) and construction states (circles) for
new generation capacity. Transfer between two states has a delay of one year. In this
example technology 1 and 2 consist of 400MW and 200 MW plants, with construction times
of 3yearsand 1 year respectively.

The optimisation problem is solved using backwards stochastic dynamic
programming. The corresponding Bellman equation is given in (5-8). We
use the same representation of termination payoff and investment cost as in
Chapter 4. The termination payoff is set equal to the payoff in the last
period, assuming no new investment (equation (5-6)), while the investment
cost is adjusted according to the length of the planning period and the
technology’ s construction time. Thisis explained in section 4.3.5.
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Jk(xk,lk)=urzzgxk{ . (Xl u,0,) +
' (5-8)
(1""’)71'5[‘]“1( f(x U@, )] }

We can now look at optimal investments from a centralised planner’s
point of view, and compare it to the optimal investment strategy for a
decentralised profit maximising investor. The only difference in the
mathematical formulation is in the definition of the payoff function, g«. We
assume that the centralised planner wants to maximise the expected social
welfare in the system, while the investor wants to maximise expected profits
from investing in new plants. The payoff function for the two planning
regimes, referred to as sw-social welfare and z-profits, are shown in (5-9)
and (5-10). Note that we take the expectation over ws in the calculation of
short-run social welfare and profit in the first parts of (5-9) and (5-10).
Under profit maximisation we aso add the income from a possible capacity
payment in the payoff function. The capacity payment in the model must be
a function of the state variables for installed capacity and demand, and can
for instance be represented as in section 4.3.4. The investment cost is
deterministic and treated identically for the two planning regimes in (5-9)
and (5-10).

Sd % :
gk,sw( Xk’uk’lk 'wS):iZ-llméo.E{q'[o[ fD‘,Ik(qi ’ws)_ fS,Xk(qi ):| dqi}_lck Uy (5'9)

gk,/r( X|< .Uk llk ,C()S ) :gjz:;?déo ’ X] new,k E{max[( R,k(ws )_ MCJ new )'0:|} (5_10)

+ CI:{<(Xk’|k )(Xlnszvk T ek )—|Ck - Uy

where
fo, (G,@;) inverse demand curve, sub period i, time
‘ step k

fsx (G) aggregate supply curve, time step k

Pik(ws) price, sub period i, time step k [NOK/MWh]
Qik load, sub period i, time step k [MW]
Id; load duration, sub period i [hours]
MG, new marginal operating cost for new techn.j  [NOK/MWh]
CP(Xk, ) capacity payment for time step k [NOK/MW]

_ ic, ., investment costs for new technologies 1 [NOK/MW]
G = and 2, time step k

2,new
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A simple algorithm based on merit order loading is implemented to find
price and load for each combination of states, where the market is described
as illustrated in Figure 5.5. The payoff functions for social welfare and
profit maximisation are also calculated in the same algorithm. The values
are stored in a set of arrays, before running the SDP loop.

5.2.5 Optimal Investments under Social Welfare and Profit
M aximisation

From the theoretical discussion in the beginning of this chapter we know
that investment decisions under centralised social welfare maximisation and
decentralised profit maximisation in a perfectly competitive market should
be the same. Figure 5.8 shows how the objective functions are changed
under profit and social welfare maximisation when an investment is made,
assuming no capacity payment. While the investor’s profit objective only
takes into account the increase in producer surplus (area 1), the increase in
consumer surplus (area 2) is aso included under socia welfare
maximisation. With a marginal investment in new capacity the effect on
price would be negligible and only the producer surplus would increase. In
this situation we would expect that the profit and social welfare objectives
give exactly the same result. However, when investments are lumpy, so that
there is feedback from a new investment to price, we see from Figure 5.8
that the increase in socia welfare can be considerably larger than the
investor profits. At the same time, the investment cost is the same under
both objectives. Therefore, the lumpiness of investments can contribute to
give alower investment threshold under the socia welfare criterion. One of
the factors that affect the importance of this relation is the price e asticity of
demand. The magnitude of the price feedback, and thereby the difference in
the changes of the two objectives, decreases as price elasticity increases.

Price, P

Pcap =
VOLL

«— 7
Uppew Q QF Quantity, Q

Figure 5.8 lllustration of investor profit (area 1) and social welfare gain (area 1 + 2) in
sub period i, from investment in new peak capacity (Ure). Qi, Q*, P and P* are
quantities and prices with and without Us ey
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Market externalities, such as the failure of the price in the spot market to
reflect the value of reliability, can also cause deviations between investment
criteria under social welfare and profit maximisation. The consequence of
using a price cap in the spot market (Pcp) Which is lower than VOLL can be
analysed with the model. Another important issue in the emerging electricity
markets today concerns market power, and how it is likely to affect the
participants' dispositions in the market. This model is not designed to
analyse the impact of market power on the bidding strategies and thereby
short-term changes in electricity spot prices. However, we can look at how
the optimal investment strategy changes when an investor owns a part of the
initial capacity in the system. If the investor has an exclusive right to invest
in the system, the ownership of existing power generation assets can have a
strong effect on the optimal investment criterion.

In the end, it is worth noting that while externalities and market power can
be attributed to market imperfections, the effect of lumpy investments
would also be present in a market without price distortions. Hence, a
deviation between investment strategies under social welfare and profit
maximisation is not necessarily an indication of price manipulation and
market failure. We return to al these effects in the illustrative examples
later in this chapter.

5.2.6 Risk, Uncertainty and Discount Rate

The risk preference and appropriate discount rate for an investor that is
considering investments in new power generation assets is discussed in
section 4.3.6. We argue that risk neutral valuation, which is frequently
applied in rea options models, is inappropriate in our stochastic dynamic
investment model. The reason is that movements in the underlying
stochastic variable, demand growth, can not be completely replicated by
assets traded in financial markets. At the same time, the liquidity in long-
term markets for electricity is usually low, making it difficult to hedge the
price for future power generation in long-term markets, without paying a
considerable risk premium. We therefore argue that the use of a risk-
adjusted discount rate is more appropriate in the model. The same
arguments about the appropriate discount rate can be used when the profit
maximisation objective is used in this version of the investment model.

A centralised planner, whose dispositions are based on a socia welfare
criterion, is aso likely to consider risk as an important factor when
investment projects are assessed. In most circumstances centralised planners
have limited resources and can only invest in a small selection of the wide
range of investment projects available. Therefore, low risk projects would
probably be preferred to projects involving more risk, if the expected gain in
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social welfare is the same. We do not aim at assessing the level of risk-
averseness among centralised and decentralised planners in the power
system in this thesis. However, it is likely that the level of risk can play a
role for investment decisions under both planning regimes. Consequently,
we argue that the use of arisk adjusted discount rate is most appropriate in
our stochastic dynamic investment model, also when maximisation of social
welfare is the objective in the optimisation.

The discount rate can of course be specified to any number in the
investment optimisation model, regardless of which one of the two objective
functions that is actually being used. However, in the illustrative examples
that follow later in this section we find it convenient to use the same
discount rate under profit and social welfare maximisation. The discussion
above can serve as an argument for using the same factor for discounting. At
the same time, the use of identical discount rates makes it easier to focus on
the other factors that can give rise to differences between optimal
investment criteria under profit and social welfare maximisation.

5.2.7 Market Smulator

A simulator is also developed for this version of the investment optimisation
model. The ssimulator is similar to the one in Figure 4.24. It starts from an
initial state of demand and generation capacity. The investment optimisation
model is run, and the resulting investment strategy is used by the simulator
to update the investment model’s input parameters before a new
optimisation for the next time step is carried out. Investor profit, social
welfare gain and other results are calculated for each simulated time step.
The market smulator can be used to study the investment dynamics in the
electricity market over alonger term perspective. In this respect it also bears
resemblance to the system dynamics model presented in Chapter 3. The
main difference is that the investment decisions are now based on stochastic
dynamic optimisation as opposed to the traditional static net present value
evaluation underlying investment decisions in the system dynamics model.
Moreover, we can now run the ssmulator under both socia welfare and
profit maximisation, and thereby compare the results for scenarios with
centralised and decentralised decision making.

5.2.8 A Comparison of the Model to the Theory of Peak-Load Pricing

The simple linear market description that we now use in the investment
model is in several respects similar to the market descriptions in the
traditional peak-load pricing theory, as described by Crew and Kleindorfer
in [63]. However, for demand we have assumed that the sub-period loads
are proportional and interdependent, and that only parts of the demand is
price responsive. This is opposed to the continuous demand functions that
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are usually applied in the traditional models for peak-load pricing. For
generation we take into account the technologies that are already installed in
the system, and al so that the old technol ogies can have other cost parameters
than the new ones. This is different from the peak-load pricing models in
[63], where the objective is to optimise a complete system from the
beginning, without taking into consideration existing technologies. Explicit
representation of operating reserves is also omitted in the theory for peak
load pricing.

An important similarity between the models is the simpl e representation of
supply. Merit order loading of the power plants is assumed and inter-
temporal aspects, such as start-up/shut-down costs, ramp rates, and
minimum up- and down times, are not taken into account. This corresponds
to a market description where the suppliers bid their marginal costs into the
power market. Hence, we assume optimal short-term operation of the
system, both under centralised and decentralised decison making.
Consequently, the model is not suitable for studying effects of strategic
behaviour, collusion or gaming in a short-term perspective. Our aim with
the model is to study the long-term effects of different planning regimes for
the various participants in the power market in a dynamic perspective. The
simple market description combined with the stochastic dynamic investment
optimisation model facilitates such an analysis. As we have seen above, the
dynamic perspective is left out of most peak-load pricing models.
Furthermore, the inclusion of long-term uncertainties in our model is also an
element which is rarely seen in the theory of peak load pricing. It is
therefore of interest to see how our results compare to the results presented
in section 5.1.1 from the theory of peak |oad pricing.

5.3 Illustrative Examples

Having outlined the mathematical description of the model, we now look
into a set of illustrative examples where the model is used to compare
centralised and decentralised planning under a set of different assumptions.
First, we present the main assumptions for the test power system which was
used throughout the analysisin this chapter. A static assessment of prices as
function of demand for the initialy installed generation capacity is aso
shown, together with an economic evaluation of the new generation
technologies. We then use the stochastic dynamic optimisation model to
identify optima investment criteria under social welfare and profit
maximisation. We run the model for different fractions of price flexible
demand, and we also compare optimal investment criteria for marginal and
large-scale investments. In additions, we study the effect of the price cap in
the spot market and the impact of ownership in existing generation capacity
on private investors optimal investment decisions. In the end, we use the
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simulator to investigate the long-term dynamics of investments, prices and
reliability in the test power system for a set of different scenarios.

In Chapter 4 we focused on how long-term dynamics and uncertainty
affects the optimal investment decision for a decentralised investor in the
power market. The results showed that taking the dynamic aspect of
investment timing into account is very important for the investor, in order to
maximise the expected profit from new investments. The inclusion of long-
term uncertainties in load growth into the analysis also contributes to
improve decision making, although Monte Carlo simulations show that this
effect is less dgnificant. In the examples presented in this chapter we
assume that both centralised and decentralised planners use the stochastic
dynamic optimisation framework to optimise their investment decisions.
The emphasis is now on how the optimal investment criteria and the long-
term investment dynamics depends on planning regime, market design and
system characteristics such as the fraction of price responsive demand.

5.3.1 Main Assumptionsfor the lllustrative Examples

The main assumptions for the test power system are summarised in Table
5.1. The test power system is assumed to be a thermal system, and the base
load technology group could typically consist of coa and nuclear plants,
while the peak technology group could be gas combustion turbines. We
assume that only the old generation technologies are present in the system at
the initial state. If we compare the initial installed capacity to the demand in
the different sub periods, we see that the proportion of total to base
generation capacity is dightly lower than the proportion of peak to base
demand in the system (1.6 vs. 1.65). Hence, at first sight it may look as if
there isa surplus of base load capacity in the system

Table 5.1 Basic assumptions for demand and supply parameters in the test power system.

Demand Vaue Unit Supply Value Unit
VOLL 10000 NOK/MWh Xod | [10000 6000] MW
Peap 1000/20000 | NOK/MWh | Xnewinit [00] MW
Priex max 1000 NOK/MWh | MCpey [100 180] NOK/MWh
CLmax [1.00 1.40 M Cirax [120 400] NOK/kW
1.65]
Cl flex 0.01-0.20 iChew | [12000 6000] years
Id [5760 2900 hours Q, [400 200] / years
100] [171]
| growth 100 MW/year nt [30 20] NOK/MWh
| sy 200 MW/year It [371] MW
Pu » Pn 0.5 r 6 % pa.
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There are two new technologies to choose from. The first new technol ogy
represents a base load plant with high investment cost and low operating
costs, while the second option is a peak load plant with lower investment
cost and higher operating costs. Another difference between the
technologies is that the base load plant has a longer life time and
construction time than the peak load plant. The fraction of price flexible
demand varies between 1 and 20 % in the examples to follow. An expected
load growth of 100 MW/year with a standard deviation of 200 MW/year is
input to the optimisation model in all scenarios. Note that we use fixed
probabilities (pyp, Pan) for the entire planning horizon in the binomial tree for
load growth (Figure 5.6).

In order to represent short-term uncertainties in demand (ws), we introduce
a variable for relative demand, rd.,. rdn, reflects deviations from expected
demand (e.g. caused by unexpected temperatures). The state variable for
demand, Iy, is adjusted according to rdy, as shown in (5-11). Thus, we end
up with a discrete demand distribution in each demand state. The variables
for maximum and flexible load, (Lmax) and (Lfiex), in (5-1) and (5-2) are
updated accordingly, so that the relative demand has a proportional effect on
demand in all sub periods. The payoff functions under social welfare and
profit maximisation in (5-9) and (5-10) are calculated by taking the expected
value over ws, i.e. over al Ny, realisations of the relative load, rdn. rdy, could
take on any distribution, but we assume a simple normal distribution as
shown in Figure 5.9. Note that short-term and long-term uncertainties are
still assumed to be uncorrelated, just as in Chapter 4.
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o
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Figure 5.9 Probability distribution for relative demand (rd,,). rdy, has a discrete normal
distribution, N ~ (1,0.02), with 11 discrete realisations (N, = 11).

lem=lc-rd, , m=1.N,_ (5-11)
where
e m adjusted demand state, realisation m, m=1.. Ny, [MW]
rd,, relative demand, realisation m, n=1.. N,
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When using the stochastic dynamic investment model to calculate optimal
first period investment criteria we use a planning horizon of 10 years only
(T = 10 years). Furthermore, the state space for capacity extensions in the
SDP algorithm is limited to one new plant for each technology (see Figure
5.7 for an illustration of the model’s representation capacity states). The
model calculates the demand level for which it becomes optimal to invest,
and also finds the optimal technology choice, for a given level of installed
generation capacity in the system. From Table 5.1 we see that the expected
growth in base demand is 100 MW/year while the capacities of the new
technologies are 200 MW and 400 MW respectively. The restrictions
imposed by the limited number of capacity states might therefore seem very
strong and unrealistic. However, sensitivity analyses show that extending
the state space in either time or the number of capacity states has a limited
effect on the optimal investment criteria calculated by the model*®. Hence, a
formulation with a limited state space appears to capture the main effects
influencing the optimal first period investment decisions.

A limited number of capacity states are chosen in the examples, partly
because of the reduction in computation time. However, under the profit
maximising objective an increase in the number of capacity states would
aso give the investor an incentive to postpone investment number 2 and 3,
in order to earn more on his first investment. By only allowing one
investment in each plant we avoid that the first period decision is affected
by possible strategic behaviour regarding subsequent investment decisions.
Note that the limitation in capacity states only is in effect when the
investment criteria are calculated. When we simulate investments in
5.3.4and 5.3.5we assume that there are aways participants in the market
that are willing to invest when the model indicates that it is favourable.

5.3.2 Static Analysis of Investmentsand Pricesin the Initial System

The static analysis presented in this section serves as a background for the
dynamic investment optimisation in later sections of this chapter. First, we
do a simple static analysis based on load duration and technology screening
curves. Thisisillustrated in Figure 5.10 and Figure 5.11.

6 Sensitivity analyses of the results in section 5.3.3 show that the changes in optimal
investment criteria following from an extension in the model’s planning horizon to 20 years
are negligible in all the scenarios. Extending the number of capacity states to three plants of
each technology instead of only one resulted in a limited reduction in the optimal investment
criteria under social welfare optimisation, while the changes in investment criteria under the
profit objective were still very small. An obvious explanation to the limited impact of state
space expansion on investment criteria is the interest rate, which effectively discounts and
reduces the impact of cash flows from projects initiated far ahead into the future. In addition,
the representation of construction delays in the model limits the number of plants that can be
constructed within the planning horizon. This can also reduce the impact on investment
criteria from expanding the state space.
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Figure 5.10 Load duration curve in the test power system, with no price flexible demand.
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Figure 5.11 Screening curves for the two new power generation technologies and load
shedding.

If we disregard the existing power plants in the system, we can use
screening curves for the new technologies combined with the system’s load
duration curve, to determine the optimal mix of new technologies in the
system. In order to express the demand in terms of aload duration curve we
have to assume that there is no price easticity of demand. Hence, if we
disregard the price flexible part of demand in the model, the demand can be
described in terms of a simple load duration curve with linear steps, as
shown in Figure 5.10. The length of the base, medium, and peak demand
sub periods are 5760, 2900 and 100 hours respectively, and the load levels
within each of the sub periods are given by the maximum sub period loads
(Lmax) in the demand description. Figure 5.11 illustrates a screening test of
the two available new technologies. The results show that for loads with
duration higher than 4870 hours, it is optimal to invest in the base load
technology. For loads with lower duration the peaking technology is more
cost efficient. From the screening curves we can also see that for loads with
duration less than 52 hours it is actually cheaper to use load shedding than
to invest in additional peaking capacity. This number is of course highly
dependent on VOLL, which is assumed to be 10000 NOK/MWh. The simple
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static analysis based on load duration and screening curves shows that base
load plants should be constructed to meet base demand, while peaking units
are more economic for the medium demand. The capacity of peaking units
should also cover the peak load in the system, since the duration of the peak
load period in this example is longer than 52 hours. The optimal levels of
installed capacity are shown as X3 new aNd X2 new iN Figure 5.10.

In order to analyse how the existing plants in the system and the price
flexible demand affect investment decisions in new technologies, we need to
take a closer ook at how prices in the three sub periods change as function
of increasing demand. As explained in the previous section, the demands in
different sub periods are interdependent variables, so that al the sub period
prices can be expressed as function of the state variable for demand, Iy, for a
given combination of capacity states. |y is here equal to the maximum base
load, since ¢ 1mex = 1. Figure 5.12 shows the expected spot price during
base, medium, and peak demand hours as function of the demand state
variable for the initial supply system (lp), with 5 % price flexible demand.
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Figure 5.12 Expected spot prices in the three sub periods as function of demand in initial
system (lp). The expectation is taken over short-term uncertainties (ws). Cfex = 0.05.

We see from Figure 5.12 that the expected spot price in sub period 1
increases very slowly as long as the initial capacity of base plants (Xi o =
10000MW) is sufficient to meet the base demand. The rise in base price
after approximately 9800 MW is due to the increasing probability that base
demand exceeds Xj o4, and the use of peaking capacity becomes necessary
to meet base period demand. On the other hand, the demand in sub period 2
is always met by the initial peaking capacity, so that the medium price
increases very smoothly for all values of | in Figure 5.12. For sub period 3,
we see that the peak price starts to increase very quickly in the region above
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9700MW. This is when the peak demand approaches total installed
capacity, and load shedding becomes necessary to clear the market. The
stepwise increase in the peak price in this region is due to the discrete
representation of short-term uncertainties in demand (ws), which in turn
causes discrete jumps in the probability for load shedding during peak
demand. The peak period price actually continues to increase until it reaches
10000 NOK/MWh (i.e. VOLL) at Io = 10750MW. At this demand level load
shedding is required in the peak demand period for all realisations of ws,
unless new capacity is added to the system.

In order to find an optimal static investment strategy that also takes into
account the effect of existing technologies in the system we can compare the
pricesin theinitial system to the unit cost of the new technologies. Since the
old plants in the system have higher marginal costs than the new
technologies, it will be optimal for a new base load plant to run throughout
the entire year, while a new peaking plant should run during medium and
peak load periods™’. With the assumptions in Table 5.1 the total unit costs™®
for new base and peak load plants are 202 and 349 NOK/MWh, given that
they operate 8760 and 3000 hours per year respectively. These total cost
numbers can be interpreted as the long-run marginal costs (LRMC) of
increasing the base and peak capacity in the system. According to marginal
cost theory it is therefore optimal to invest in new base capacity as soon as
the average price for the entire year approaches 202 NOK/MWh. Similarly,
new peaking capacity should be added when the average price over sub
period 2 and 3 reaches 349 NOK/MWh. This is when the short-run marginal
cost (SRMC) in the system equals the LRMC of system expansion. SRMC
is the same as the price in our system, since we assume that suppliers bid
their marginal cost and end-user bid their marginal willingness to pay into
the spot market*. Under these assumptions the investment levels found in
the analysis of marginal costs should represent a centralised social optimum
as well as a decentralised investor optimum, as long as P,y equals VOLL.

A static assessment of the optimal threshold for investment in new base
load capacity in the initial system can now be accomplished by plotting the
average price over all sub periods and compare it to the total unit cost for

47 Outages due to maintenance are taken into account by using investment cost figures per
unit of average available capacity over the year for the new technologies. Therefore, we can
assume up to 8760 hours of operation for the new technologies in the calculations.

8 Total unit cost = annualised unit capital cost adjusted for the number of operating hours
and construction lead time + unit operating and fuel costs.

49 Here we define SRMC as the least expensive of either a marginal increase in generation
or a marginal decrease in load in the current system. SRMC therefore represents the
immediate marginal utility of system expansion, which is also how price is represented in the
model through the supply and demand curves.
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technology 1. Similarly, technology 2 can be assessed by looking at the
average price over the medium and peak demand periods. Thisisillustrated
in Figure 5.13, where the total unit costs for the two new technologies are
compared to the relevant average prices for two different levels of the price
cap in the spot market. We still assume that there is only 5 % price flexible
demand in the system, so that the average prices are direct functions of the
sub period prices depicted in Figure 5.12. Optimal investment levels based
on this static assessment are indicated in Figure 5.13. We see that when Pegp
equals VOLL (i.e. 10000 NOK/MWh), the break even points for both
technologies are close to each others at an initial load level of about 9900
MW. However, when Py, islowered to 1000 NOK/MWh the average prices
are also reduced, so that higher demand is required before the average prices
exceed the unit costs for the new technologies. A profit maximising investor
would therefore require higher demand before investing in new capacity,
and a discrepancy arises between the centralised and decentralised
investment criteria. The change in investment criterion is most significant
for the peaking technology, whose break even point increases more than 300
MW due to the lower price cap. In tota the analysis shows, not surprisingly,
that the lower Py, discourages private investments in new peaking capacity.
The profitability of investments in new base capacity is also affected by
Peap, but to a much lower extent.

700

—— Sub periods 1+2+3 (PCa = 10000)
—-.=. Sub periods 2+3 (PCap = 10000) ==
— Sub periods 1+2+3 (Pcap = 1000) .

_ Sub periods 2+3 (Pcap = 1000) i

500 ! R

600 r|

400 -
TC1
300

Expected price [NOK/MWh]

200F TC2

100+

0 1 1 : L 1
9400 9600 9800 10000 10200 10400 10600

Initial demand, I0 [MW]

Figure 5.13 Average prices over all three sub periods (1+2+3) and over medium and peak
sub periods (2+3) as function of demand in initial system (lp). TC1 and TC2 are total unit
costs for technology 1 and 2. The expectation is taken over short-term uncertainties (ws).
ClLflex = 0.05.
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The same static analysis of the initial system is also performed with a
higher fraction of price flexible demand (15 %). Figure 5.14 shows that the
increase in price flexible demand gives higher investment levels for both
technologies. At the same time, the relative difference in investment criteria
between the two technologies increase, making technology 1 more attractive
to invest in. This is because the rise in price flexible demand reduces the
need for load shedding in the system, and therefore also the likelihood for
the spot price to reach the price cap during peak demand. This aso explains
why the reduced Pc,p now does not give any change in investment levelsin
Figure 5.14. A reduction in Pcy, causes a deviation in average prices only
when load shedding is required in the system, and with 15 % price flexible
demand load shedding does not occur until after the unit costs for both
technologies are reached. The higher price elasticity of demand therefore
removes Pgp'S impact on the investment decisions, and the corresponding
difference in centralised and decentralised investment criteria. The optimal
investment levels from the static analyses presented here are summarised in
Table5.2.
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Figure 5.14 Average prices over all three sub periods (1+2+3) and over medium and peak
sub periods (2+3) as function of demand in initial system (lp). TC1 and TC2 are total unit
costs for technology 1 and 2. The expectation is taken over short-term uncertainties (ws).
ClLflex = 0.15.

Table 5.2 Summary of optimal demand levels (lp) for investment in technology 1 and 2,
based on static analysis of pricesfor theinitial conditionsin the test power system.

Technology CLiex = 0.05 CLaex = 0.15
Pesp = 10000 Pcap = 1000 Peap = 10000 Peap = 1000
1 (base) 9900 MW 9970 MW 10160 MW 10160 MW
2 (pek) 9920 MW 10240 MW 10770 MW 10770 MW
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It is important to bear in mind that the static analysis presented here only
looks at the power system in a “snapshot” of time. Hence, the optimal
investment thresholds found here do not take into account neither growth
nor long-term uncertainties in underlying variables. It is also a marginal
analysis, in the sense that incremental investments are optimal at the
indicated demand levels. However, in the case of large-scale investments,
new plants will influence the marginal costs and prices in the system, and
therefore aso the optimal investment levels. The stochastic dynamic
investment model takes all these factors into account, and we now use the
same input data in a dynamic analysis of optimal investments in the test
power system.

5.3.3 Stochastic Dynamic Analysis of Optimal Investment Criteria

Five different scenarios are analysed in the stochastic dynamic analysis of
investments (Table 5.3). All the scenarios are analysed with 5 % and 15 %
price responsive demand in the system. In the SW scenario we find the
optimal investment strategy according to the social welfare objective in
(5-9). The PI1 scenario represents a competitive market where Pcy, equals
VOLL, and there are always investors acting as new entrants to the market
(i.e. MSpit = 0). Scenarios SW and PI1 should give the same investment
strategy, according to the static analysis in section 5.3.2. In scenario PI2 we
analyse the effect of a reduction in the price cap in the spot market, still
assuming profit maximisation. The results from section 5.3.2 showed that
the effect of reducing Pcyp is highly dependent on the fraction of price
flexible demand in the system. In scenario PI3 we use the model to examine
how a capacity payment can be used to compensate for lower profits
because of the price cap in the spot market. The magnitude of the capacity
payment is set so that the initial investment threshold is the same as in the
SW scenario™. In the end, in scenario P4, we look at how the optimal
investment strategy changes for an investor with a market share in theinitial
generation capacity in the power system, combined with an exclusive right
to invest in new capacity. Aswe will seeg, it turns out that the impact on the
optimal investment threshold is very significant even for low market shares.
Note that we in this chapter only consider optimal investment thresholds

% We use the same representation of capacity price as we did in section 4.3.4(Figure 4.10).
The capacity factor, CF, is now equal to the fraction of total installed capacity to expected

2
z( )g,new,k + Xi,old,k )
peak load, i.e. CF (Xl ,0,) =2 . CFim, is set to 1.15. CP(CF=1),
o E(Quy (Xl @)

is set to 200000 NOK/MW with 5 % price flexible demand and 115000 NOK/MW with 15 %
price flexible demand. The initial investment thresholds in scenario PI3 are thereby brought
down to the same levels as under social welfare maximisation (scenario SW). Unless
otherwise stated we assume that the capacity payment is only paid to new capacity.
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under stochastic dynamic optimisation. Consequently, al the investment
criteria presented below represent optimal investment decisions according to
decision rule d, as defined in section 4.4 (Figure 4.11).

Table 5.3 Description of scenarios in the stochastic dynamic investment analysis. Py, is the
price cap in the spot market in NOK/MWh. MS;;; is the market share of initial generation
capacity. CP is capacity payment.

Scenario Objective Peap MShit CP
SW Centralised social welfare maximisation | 10000 - no
PI1 Decentralised profit maximisation 10000 0 no
PI2 Decentralised profit maximisation 1000 0 no
PI3 Decentralised profit maximisation 1000 0 yes
Pi4 Decentralised profit maximisation 10000 | 0.03 no

We start the stochastic dynamic analysis by finding optimal thresholds for
investments in new capacity with 5 % price flexible demand. The initia
conditions in the power system are the same as in the static analysis, and
still described by Table 5.1. The growth and uncertainty (Igromn = 100
MW/year, lg, = 200 MW/year) in the state variable for demand (li) are now
taken into account in the optimisation. Furthermore, new capacity additions
are lumpy (Q, = [400 200] MW]), and construction delays are explicitly
represented as construction states in the mathematical description of the
investment model, asillustrated in Figure 5.7.

First, we use the stochastic dynamic optimisation model to find the
optimal investment strategy for scenario SW. Optimal investment thresholds
under social welfare maximisation can be visualised by plotting the
expected gain in social welfare from investing along with the expected gain
from postponing the investment (Figure 5.15). The gain in socia welfare is
here defined as the difference in social welfare between the respective
investment aternatives and the situation where no investments are made
throughout the entire planning horizon. Thus, there is also an expected
social welfare gain from postponing an investment decision, as long as the
investment can be undertaken at a later stage in the planning period. The
optimal investment threshold occurs when the expected social welfare gain
from investing exceeds the expected gain from postponing the investment
decision. The initial demand at which investment becomes optimal is
indicated as lo*,gy in Figure 5.15. The general theory for investments under
uncertainty from Chapter 4 is also valid when social welfare is used in the
objective function of the investment model. Hence, the growth and
uncertainty in demand should have similar effects on the optimal investment
threshold under social welfare and profit maximisation. The only difference
is that the social welfare objective also takes into account the uncertain
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changes in consumer surplus in addition to the investor’s profit, as discussed
in section 5.2.5. From Figure 5.15 we see that it is not optimal to invest until
the initial demand level approaches 9700MW, although the expected gain in
socia welfare from investing is positive also at much lower demand levels.
This is due to the option value of the investment opportunity, which arises
from the growth and uncertainty in future demand. We can also see that the
optimal technology choice at lo*,sw is the base load plant (tech 1). When
comparing to the results from the static analysis (Figure 5.13 and Table 5.2)
we see that the optimal technology choice is the same, while the investment
level appears to be lower in the stochastic dynamic analysis. However, the
two investment thresholds are not directly comparable, as the construction
delay is not included in the static analysis. The construction time for the
base load plant is three years, so that with an expected growth in demand of
100MW/year, the demand level actualy reaches a higher level than in the
static analysis before new capacity is added to the system.
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Figure 5.15 Expected gain in social welfare as function of initial demand levd, Iy, for the
four possible investment strategies (wait, tech 1, tech 2, tech 1+2), scenario SW. C_qe =
0.05.
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The investment model is now used to find optimal investment criteria
under decentralised profit maximisation for scenario Pl1-Pl4. The results are
shown in Figure 5.16 and also summarised in Table 5.4. We see that the
investment threshold in scenario Pl 1, which represents a free market with no
disturbances in the price formation, is actually higher than in the SW
scenario. This difference in the optimal investment levels between the social
welfare and profit maximisations can not be seen from the marginal analysis
in section 5.3.2. It is due to the lumpiness in capacity additions, which
causes a feedback from investment to price and thereby different changesin
profit and social welfare, as discussed in section 5.2.5.
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Figure 5.16 Expected profit as function of initial demand level, |y, for the four possible
investment strategies (wait, tech 1, tech 2, tech 1+2), scenarios Pl1-4. ¢ g = 0.05.

Table 5.4 Summary of characteristics for optimal investment thresholds. Py 14243 @and Py,
2+3 &re average prices over the entire year and for sub periods 2 and 3. Jo* is the value of
the objective function at optimal investment threshold (i.e. expected social welfare gain for
scenario SW and expected profit for scenario P11-4). ¢ s = 0.05.

Scenario Optimal investment threshold
lo* Tech- Pav1+2+3 Pav,2+3 Jo*
[MW] nology [NOK/MWh] | [NOK/MWh] | [MNOK]
SW 9680 1 184.1 306.4 1352
PI1 9770 1 188.5 315.6 1060
PI2 10000 1 208.4 329.3 451
PI3 9680 2 184.1 306.4 484
Pl4 10090 1 242.7 404.9 6869

For scenario PI2 we see that a reduction in Pcy to 1000 NOK/MWh
lowers the expected profit from investing in new capacity. The optimal
investment threshold is therefore increased with more than 200 MW
compared to scenario PI1. This also results in significantly higher prices at
the optimal investment level in scenario PI2, as seen from Table 5.4.
However, the expected profit at the optimal investment threshold is lower
than in scenario Pl1, because of the price cap which lowers the expected
price and profit in the peak demand sub periods. Technology 1 is the
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preferred technology in both scenarios. When comparing to the results in
Table 5.2 we see that the base load plant also has the lowest investment
threshold in the static analysis. However, the increase in investment
threshold due to the lower price cap is more significant in the dynamic
analysis. Thisis because the dynamic model also takes into account how the
lower price cap affects future prices and not only the price in the initial
system.

In scenario PI3, the capacity payment increases the profitability of
investing compared to scenario Pl2. Still, the expected profit is kept down
by the price cap, and is still much lower than in scenario Pl 1. The capacity
payment brings down the demand and prices at the optimal investment
criterion to the same level asin the SW scenario, but it also causes a change
in the optimal choice of technology. This is because the capacity payment
reduces the level of income which is required from sales in the electricity
spot market, for investments in new power generation capacity to become
profitable. However, a new peaking plant operates fewer hours than a new
base load plant, and can therefore allow a larger reduction in the price
earned in the electricity market. The corresponding reduction in the optimal
investment threshold depends on the relationship between demand and spot
price in the three demand sub periods. In our case the effect is more
significant for the peaking plant. Hence, the introduction of the capacity
payment in scenario P13 causes the optimal choice of technology to change
to the peaking plant (technology 2).

In scenario Pl4 the investor optimises the sum of profits from new
investments and from his 3% share of initial capacity in the system. The
expected profit is therefore much higher than in the other profit maximising
scenarios, PI1-3. Investments in new capacity reduce the spot price and the
profitability of existing generation assets. Consequently, an investor with a
market share in existing capacity and an exclusive right to invest, has an
incentive to postpone new investments in order to avoid lower profits from
current assets. It is not optimal to invest until the profits from new
investments compensates for the loss in income from the existing capacity.
This effect is very significant, and the optimal investment threshold
increases more than 300 MW compared to scenario PI1, where the only
difference is that the investor acts a new entrant, i.e. with no initial capacity.
The large increase in optimal demand level in scenario Pl4 occurs despite
the investor’'s low market share, only 3% of total installed capacity. From
Table 5.4 we see that effect on prices is even more significant, with average
prices over the year rising more than 50 NOK/MWh and the average price
over the medium and high demand periods rising amost 90 NOK/MWh
compared to scenario PI1 at the optimal investment threshold.
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To further explore the relation between market share and optimal
investment thresholds, we plot the optima demand level for investment, |o*,
as function of the investor’s market share (Figure 5.17). It turns out that the
increase in investment threshold due to the investor’s ownership of initial
capacity is almost the same in scenarios P11-3> for small market shares (up
to 3 %). However, in scenario PI1 the investment criterion makes a distinct
jump up aready at a market share of 4 %. This extreme rise in investment
threshold occurs when the investor no longer finds it optimal to invest in
order to meet the demand in the peak sub period. Instead, the investment is
postponed until the medium demand approaches installed capacity. For
scenarios PI2 and PI3 this transition in investment criterion takes place at
higher levels of initial market share. This is because of the lower price cap
in the spot market, which reduces the profitability also of existing power
generation assets. In scenario PI3 the capacity payment also contributes to
push back the extreme rise in lg*, since the capacity payment is assumed to
be paid only to new capacity in the system.
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Figure 5.17 Optimal investment threshold as function of market share. ¢ ge = 0.05.

The effect of market power and monopolistic investment conditionsin this
example represent a situation where a profit maximising investor has an
exclusive right to invest throughout the 10 years planning horizon. Thisis of
course an extreme assumption as there in real world power markets usually
would be several competing participants considering investments at the
same time. A situation with exclusive investment rights can still arise, for
instance if the number of construction permits in the market is kept very
low. The results presented above illustrates the importance of having low
barriers for new entry to the power market, to avoid that participants with

®1 Note that scenario P14 is the same as scenario PI1, with an investor market share in initial
generation capacity of 3%.
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high market shares hold back on investments in order to increase prices.
Furthermore, the long-term effect of strategic investment decisions caused
by market power combined with high barriers for entry can be detrimental to
the system, even if the participants do not exercise market power in the
short-term bidding into the spot market.

We now repeat the analysis with a higher fraction of price flexible demand
in the system. Optimal investment thresholds with 15 % price flexible
demand are illustrated in Figure 5.18 and Figure 5.19, and also summarised
in Table 5.5. If we compare to the results for 5 % price flexible demand, we
see that the optimal initial demand levels for investment have increased in
al scenarios. This is ssimply because the higher price elasticity of demand
results in lower prices and loads for the same realisation of the demand state
variable, l. The same effect is seen in the static analysis in section 5.3.2. If
we now compare the investment thresholds in scenario SW and PI, we see
that there is still a discrepancy between the investment criteria under the
social welfare and profit objectives, and the difference in initial demand is
actually larger than it was with 5 % price flexible demand. However, the
effect of a lower Pgp in scenario P12 is much less significant after the
increase in price elagticity. From Table 5.5 we see that scenarios PI1 and
P12 now have exactly the same investment threshold and technology 1 isthe
optimal technology in both scenarios. The only difference is that the lower
price cap results in a reduction in the expected profit at the optimal
investment level. In turn, this means that the importance of regulatory
intervention, in terms of defining a price cap in the spot market, has been
considerably reduced due to the increased price elasticity of demand.
However, a capacity payment is still required in scenario PI3 to bring the
investment threshold down to the level in scenario SW, although the
magnitude of the payment is reduced®.

For scenario P14 we see that the effect of an initial market share combined
with an exclusive investment right still makes a huge impact on the optimal
investment criterion. Theinitial demand at the optimal investment threshold,
lo*, increases with more than 400 MW due to the investor’s market sharein
existing capacity. However, the corresponding price increase is less
significant than it was with 5 % price flexible demand, particularly for the
medium and peak demand sub periods. This is because of the higher price
elasticity of demand, which effectively reduces the price effect of increased
demand in the system. From Figure 5.20 we still see a distinct increase in
the optimal investment threshold, lo*, as function of increasing market
share. However, the extreme shifts in lg* now occur at higher levels of

2 CP(CF=1) in scenario PI3 is now 115000 NOK/MW, as compared to 200000 NOK/MW in
scenario PI3 for 5 % price flexible demand.
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market share than in Figure 5.17 with 5 % price flexible demand. In
addition, Figure 5.20 shows that the lower price cap in scenario PI2 and PI3
still reduces an investor’s incentive to exploit his market share in existing
capacity, also in the scenarios with higher price elasticity of demand.
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Figure 5.18 Expected gain in social welfare as function of initial demand levd, Iy, for the
four possible investment strategies (wait, tech 1, tech 2, tech 1+2), scenario SW. C_ fiex =
0.15.
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investment strategies (wait, tech 1, tech 2, tech 1+2), scenarios Pl1-4. ¢ se = 0.15.

-149-



Chapter 5

Table 5.5 Summary of characteristics for optimal investment thresholds. Puy 1.+2+3 and Py,
2+3 @re average prices over the entire year and for sub periods 2 and 3. Jo* is the value of
the objective function at optimal investment threshold (i.e. expected social welfare gain for
scenario SW and expected profit for scenario P11-4). ¢ g = 0.15.

Scenario Optimal investment threshold
lo* Tech- Pavi+2+3 Pav2+3 Jo*
[MW] nology [NOK/MWh] | [NOK/MWh] | [MNOK]

SW 10070 1 193.6 309.4 566
PI1 10260 1 211.9 318.9 551
PI2 10260 1 211.9 318.9 407
PI3 10070 1 193.6 309.4 423
PI4 10670 1 243.6 342.8 4902
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Figure 5.20 Optimal investment threshold as function of market share. ¢ ge = 0.15.

In the end we use the stochastic dynamic investment model to find optimal
investment thresholds for marginal investments in new capacity. The
fraction of price flexible demand is now varied between 1% and 20%. Table
5.6 shows that marginal investments give lower initial demand levels for
optimal investments, lo*. This is not surprising, since the feedback from
investment to price disappears when investments are marginal. Furthermore,
we see from Table 5.6 that the optimal investment thresholds and
technology choices are now identical in scenarios SW and PI1, independent
of the amount of price flexible demand in the system. Hence, when
investments are marginal the socia welfare and profit maximising
objectives yield the same result, adso in the dynamic anadysis. In the
marginal case, there should therefore be no need for regulatory intervention.
Indeed, we see that the price cap in scenario PI2 still gives too high
investment thresholds when price elasticity of demand islow. Moreover, the
capacity payments in scenario PI3 results in too low investment thresholds
when the fraction of price flexible demand is high. Note that the investment
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thresholds now deviate from the social welfare optimum, since we are using
the same levels of capacity payments as we did with lumpy investments. For
scenario Pl4, Table 5.6 shows that the effect of monopolistic investment
conditions is till a rise in investment threshold, aso when investments are
marginal.

Table 5.6 Investment thresholds, lo*, for marginal investments, 2,=[1 1] MW.
1CP(CF= 1) = 200000 NOK/MW. 2CP(CF= 1) = 115000 NOK/MW.

Scen 1% 5% 10% 15% 20%

| o,thres teCh I o,thres teCh Io,thres teCh | o,thres teCh I o,thres teCh
SW [ 9310 | 1+2 | 9470 | 1 [ 9670 | 1 [ 9860 | 1 [ 9980 | 1
PIl [ 9310 | 1+2 | 9470 | 1 [ 9670 | 1 [ 9860 | 1 | 9980 | 1
P2 [9520 | 1 |[9610| 1 [9750| 1 [ 9870 | 1 | 9980 | 1
PI3 |9310" | 1+2 | 9420" | 1+2 | 9560" | 1+2 | 9680° | 1 | 9800° | 1
Pl4 [ 9400 | 1 |9520 | 1 [ 9790 | 1 [10080| 1 |10290| 1

The analysis of marginal investments confirms that the discrepancy
between the investment thresholds in scenarios SW and PI1 in Table 5.4 and
Table 5.5 are caused by the lumpiness in investment. In those analyses we
assumed that new plants of technology 1 and 2 have an available capacity of
400 MW and 200 MW respectively. This amounts to 2.5 % and 1.25 % of
the total installed capacity of old technologies in the power system. The
relative magnitude of these capacity additions might be higher than what
would be the case for new power generation projects in most power systems
today. On the other hand, we have not taken into account how transmission
constraints can influence the spot price at the site of the new plant.
Bottlenecks in the transmission system would increase the feedback from
new investments to the local spot price of electricity, since a new capacity
addition would change the local capacity balance. Therefore, we argue that
discrepancies between the optimal investment criteria under social welfare
and profit objectives for large-scale investments in new power generation
capacity can also occur in real world power systems. In such situations, the
model results show that a capacity payment can contribute to bring a
decentralised and profit maximising investor’s investment criterion closer to
the optimal level from a social welfare point of view. However, it would
probably be very difficult for regulators to decide on appropriate investment
incentives. We have already seen that the level of capacity payments, which
brings the decentralised investment threshold down to the same level as
under the social welfare objective, depends on the fraction of price flexible
demand in the system. In addition, Table 5.6 shows that the correct level
also depends on the size of the new investment alternatives. Uncertainties
are attached to both of these factors in the real world. An optimal scheme
for capacity payments would therefore be hard to design.
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5.3.4 Analysis of Investment Dynamics, 5% Price Flexible Demand

In order to analyse the long-term dynamics of investments, prices and
reliability in the test power system, we simulate the system’s behaviour
under the 5 different scenarios in Table 5.3. Investment decisions are
simulated based on the stochastic dynamic optimisation model, as explained
in the description of the market simulator in section 5.2.7. We limit the
analysis to simulate only one realisation of growth in demand, by assuming
that |, grows at the expected rate of 100 MW/year throughout the simulation
period. However, the long-term uncertainty in demand is till taken into
account when the stochastic dynamic investment model calculates the
optimal investment criteria (i.e lggy = 200 MW/year). Investments in new
capacity are smulated over a period of 30 years, with both 5 % and 15 %
price flexible demand in the system. The new capacity additions for
technology 1 and 2 are still assumed to consist of plants with 400 MW and
200 MW of available capacity. Hence, the initial investment thresholds are
given by Table 5.4 and Table 5.5. We assume that there is surplus capacity
in the system at the beginning of the simulation period, as the initia
demand, lo, is set to 9300MW.

In this section we present the results from the analysis of long-term
investment dynamics with 5 % price flexible demand in the system. Figure
5.21 shows the timing of capacity additions in the five different scenarios.
Note that the simulator takes into account that there is a construction delay
from an investment decision is made until new capacity is added in the
system. Therefore, investment decisions for technology 1 are taken 3 years
prior to capacity additions, while the construction delay for technology 2 is
1 year. From Figure 5.21 we see that investments in technology 1 are
triggered later for all the profit maximising scenarios (i.e. scenario Pl1-4)
than under the social welfare objective (i.e. scenario SW). Scenario PI4 has
the dowest rate of capacity additions for base load plants. Thisis due to the
investor’'s incorporation of his market share in existing assets into the
investment optimisations. For the peaking technology we see that the
capacity payment in scenario PI3 results in earlier investments than in
scenario SW, despite the low price cap in the spot market. The rate of
investment in technology 2 remains higher in scenario PI3 compared to the
other scenarios. This is because the capacity payment improves the relative
profitability of investing in the new peaking technology compared to new
base load plants. The investments in technology 2 in scenario PI1 follows
the SW scenario closely, while the capacity additions of technology 2 in
scenario PI2 and Pl4 are lower than in the SW scenario. In scenario Pl2,
where Pgyp, is reduced without any additional capacity payment, we see that
the investments in technology 2 disappear almost completely.
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Figure 5.21 Smulated capacity additions for technology 1 and 2 in the five scenarios. C_fiex
= 0.05.

The different timing of investments is directly reflected in the simulated
spot prices in the system. Figure 5.22 shows the simulated expected spot
prices for the three different demand sub periods in the model. All scenarios
follow the same price projection for the first few years in the simulation
period, due to the excess capacity in the initial system and therefore no need
for investments in new capacity. However, after the first five years we see
that the prices in the profit maximising scenarios deviate from the SW
scenario, particularly in the peak demand period. In scenario Pl1 the prices
in all sub periods are fluctuating at higher levels than in scenario SW, after
the first period of excess capacity. This is due to the higher investment
thresholds in scenario Pl1, which are again caused by the lumpiness in
investments. Still, we see that when new investments are made in scenario
PI1, the sub prices tend to fall back down to the same level asin scenario
SW. In scenario PI2 new investments are held back due to the low price cap
in the spot market, and we see that the expected spot prices in base and
medium demand are much higher than in scenarios SW and PI1. However,
in the peak demand period the price is held down by the price cap of 1000
NOK/MWh. For scenario PI3, where a capacity payment is added to
compensate for the lower price cap, the base demand price is still
considerably higher than in scenario SW. However, the pricesin sub period
2 and 3 are below the SW scenario most of the time. This is explained by
the capacity payment, which favours investments in the peaking technology.
The prices during high demand are therefore kept down, while the base
demand price increases due to less base load capacity in the system. In
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scenario P14 the capacity of both technologies are held back, due to the
investor’'s strategic investment tactic. As a result, the prices in al sub
periods increase substantially. The highest rise in prices naturally occurs in
the peak demand period, where the prices reach an equilibrium level in
scenario PI4 which is actualy close to VOLL (10000 NOK/MWh). The
simulated prices in Figure 5.22 clearly illustarte that the exercise of market
power in investment decisions can have a drastic effect on the long-term
development of pricesin the system.

| — sw _
10000 PI1 - T < T Y )\(%\ P
PI2 /)( \\ /)( >/\\ /)( b 9(\ / X\
X X X X * - N

Expected spot price [NOK/MWh]

100 o 1 1 L 1 1
Time [year]

Figure 5.22 Expected spot prices during base (lower), medium (middle) and peak demand
(upper) in the different scenarios. The expectation is taken over ws. Cnex = 0.05.

It is also interesting to analyse the average prices for the entire year and
over sub period 2 and 3. These average prices are of course given by the sub
period prices, but can be compared more directly to the total unit costs of
the new power generation technologies. The total unit costs for the new
technologies can be considered as the LRMC of system expansion, as
discussed in the static analysis in section 5.3.2. Figure 5.23 shows that in
scenario SW the average price over all sub periods fluctuates around the
total unit cost for the base load technology (202 NOK/MWh), while the
average price for sub period 2 and 3 is kept on or below the total unit cost
for the peak load plant (349 NOK/MWHh)®3, For scenarios PI1 and Pl4 we

*% The comparison of average price in sub period 2 and 3 to the total unit cost of technology
2 is not completely fair, as the total unit cost is calculated based on the assumption that a
new plant only operates during medium and peak demand (i.e. 3000 hours/year). However,
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see that the average prices fluctuate high above the LRMC of system
expansion. In scenario PI2 the price cap keeps the average prices over sub
period 2 and 3 down to a level around the total unit cost of technology 2,
whereas the average price over the year is considerably above LRMC and
close to scenario PI1. In scenario P13, the capacity payment and subsequent
investments in the peaking technology keeps the average price in sub period
2 and 3 below LRMC. The average price over the entire year is at the same
level asin the SW scenario, i.e. closeto total unit cost for technology 1.
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Figure 5.23 Expected spot prices for all sub periods (lower) and for sub period 2 and 3
(upper). The expectation is taken over ws. C_gex = 0.05.

The analysis of average prices shows that social welfare optimisation
apparently keeps the prices in the system close to the LRMC of system
expansion. The average prices in the profit maximising scenarios deviate
more or less from the total unit costs for the new technologies, depending on
the assumptions about regulations and market structure. As pointed out in
section 5.3.2, the traditional static analyses of system expansion conclude
that LRMC is the optimal long-term equilibrium price in the system. This
result seems to be valid also for stochastic dynamic investment optimisation
in this example. This is somewhat surprising, since we in Chapter 4 argued
that the inclusion of growth and uncertainty in the optimisation would result
in optimal investment thresholds which deviate from the static NPV

in high demand situations, e.g. due to short-term uncertainties, a new peaking plant can also
expect to operate in base load hours and profit from that. This explains why investments in
technology 2 occur, even if the average expected price in sub period 2 and 3 is below the
total unit cost of technology 2.
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criterion. However, the direct comparison of the simulated average prices
and the LRMC of system expansion presented here does not give the full
picture, as we only simulate the expected realisation in demand growth. At
the same time, it is assumed in the simulated investment optimisations that
the load growth is stochastic and can deviate from the expected growth. The
uncertainty in demand growth is symmetric in the model, but positive
deviations will in general cause larger upward changes in price than the
downward price changes caused by negative deviations. Consequently, a
simulation of expected growth is likely to give lower prices than the true
expected price when the long-term uncertainty is properly taken into
account. The analysis of prices and LRMC could be extended by running
Monte Carlo smulations, using the same procedure as in section 4.4.4.
However, we do not pursue a more detailed analysis of these topics here,
and focus instead on the differences between optimal investments under
centralised and decentralised decision making. These differences can not be
comprehensively analysed, without using a dynamic model.

The investments in new power generation also determine the reliability in
the power system. The level of reliability can now be examined by plotting
the simulated expected load shedding in the different scenarios (Figure
5.24). We assume that load shedding is implemented by the system operator
as soon as the fixed part of the demand can not be met by the total available
capacity of old and new technologies. This means that the required level of
operating reserves is never compromised. Moreover, we assume that the
system operator during load shedding is able to disconnect exactly the
amount of load which is required, so that the remaining part of the price
inelastic demand can be met by the total generation capacity in the system.
Figure 5.24 shows that load shedding is expected to occur in al the
scenarios. Hence, we can conclude that with 5 % price flexible demand in
the system it is too expensive to invest in new capacity so that demand is
aways met, also from a social welfare point of view. During the first five
years of the simulation period we see that there is no load shedding in the
system, due to the initial surplus of installed capacity. The initial reliability
of the system therefore appears to have been too high, based on an economic
assessment. For scenarios SW, PI1 and PI3 the expected load shedding is
kept at relatively low levels throughout the ssmulation period. However, the
shedding of load reaches much higher levels in scenarios PI2 and Pl4, due
to the lower price cap in P2 and the strategic investment behaviour in Pl4.
Table 5.7 shows that total expected load shedding in the 30 years simulation
period increases as much as 25-35 times in these two scenarios compared to
the social welfare scenario. This is another result that underlines the
importance of organising markets that provide correct long-term incentives
for investments.
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Figure 5.24 Smulated expected load shedding in the five scenarios. Total annual load in
initial system (for k=0) is 91979 GWh. The expectation is taken over ws. C__gex = 0.05.

Total investments in new capacity and total expected load shedding are
summarised in Table 5.7. The table also shows the total simulated profit for
investors in new capacity and the total gain in social welfare caused by the
new investments. It turns out that in the SW scenario investors do not
recover their investment costs completely, through sales of electricity in the
spot market. In contrast, the net present values of profits from new invest-
ments are positive in al the profit maximising scenarios. When comparing
scenarios PI2 and PI3 we see that the capacity payment in scenario PI3
increases the investor’s total profit, despite the lower prices caused by the
much higher rate of investments in technology 2. Table 5.7 also shows that
the decentralised decision making in scenario PI1 results in lower social
welfare than in the SW scenario. However, the reduction in social welfareis
small compared to scenarios PI2 and Pl4, where the delayed investment
schedules cause large losses in social welfare compared to scenario SW. In
scenario PI3 we have seen that the capacity payment leads to earlier
investments and thereby lower prices than in the other profit maximising
scenarios. However, from Table 5.7 we see that the change in investment
schedule in scenario PI3 does not result in increased social welfare in the
system, as the simulated social welfare in scenario PI3 is at a dightly lower
level than in scenario PI1. Hence, although the average prices and level of
load shedding in the system in scenario PI3 is brought closer to the social
welfare scenario, it does not necessarily mean that the capacity payment
gives a better solution from a social welfare point of view. Thisis probably
because the capacity payment in scenario PI3 gives a too high rate of
investments in new peaking capacity compared to the actual need in the
system.
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When interpreting the results we must remember that we have only
simulated one redlisation of demand growth, while the investment decisions
are optimised based on an assumption of a stochastic future. A better
assessment of the different scenarios would therefore require a stochastic
simulation of investment decisions, similar to the Monte Carlo simulations
in section 4.4.4. However, a further investigation of the power system’'s
performance under centralised and decentralised decison making under
stochastic simulations of demand growth isleft for future work.

Table 5.7 Summary of aggregate results for ssimulations of capacity additions in the test
power system. Total profits and social welfare gain are net present values. *Includes
operating profits from 3% market share in existing generation assets. ¢, g = 0.05.

Scen. | Tot. capacity | Tot. capacity | Total profit Total social | Total load
technology 1 | technology 2 | forinvestors | welfaregain | shedding
[MW] [MW] [MNOK] [MNOK] [GWh]
SW 2800 1000 -1033 18202 25.6
PI1 2400 1200 2229 18087 133
PI2 2400 200 800 16216 894
PI3 2400 1400 1285 18077 14.1
Pl4 2000 800 13086 16489 664

The socio economic consequences of the different planning scenarios are
further examined in Table 5.8. The table shows relative changes in socio
economic results for the four scenarios with decentralised decision making,
using the centralised SW scenario as a reference. Here we also consider the
distribution of socia welfare between consumers and producers in the
system. Table 5.8 clearly shows that the distributive effect can be very large,
athough the change in total socia welfare is limited. This is because the
distribution of welfare from existing capacity in the system is aso highly
dependent on the prices in the electricity market, which in the long run are
decided by the new investmentsin power generation capacity.

Table 5.8 Relative changes in social welfare, consumer surplus, producer surplus, total
load and average price for scenarios Pl1-4, using scenario SW as reference. Changes in
social welfare, consumer and producer surplus are net present values. Pl3a — capacity
payment to new capacity only. PI3b - capacity payment to all capacity. ¢ ge = 0.05.

Scenario Socia Consumer Producer Total Average
welfare surplus surplus load price
[MNOK] [MNOK] [MNOK] [GWh] | [NOK/MWh]

PI1 -115 -37534 37419 -2162 254

PI2 -1986 -22259 20275 -5086 16.8
Pl3a -125 2113 -2238 -763 0.0
PI3b -125 -38155 38030 -763 0.0

Pl4 -1713 -111060 109347 -5560 75.6
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For scenario PI1 we see that the NPV of the total reduction in social
welfare is 115 MNOK, compared to the SW scenario. This change in social
welfare by going from maximisation of social welfare to investor profits
might appear as rather small in a 30 years horizon. However, we see that the
changes in consumer and producer surpluses are very high in comparison.
The consumers loose in total more than 37000 MNOK during the simulated
period, mainly because of the higher average price in the PI1 scenario. In
addition, the aggregate reduction in total system load because of fewer
investments and higher prices also contributes to the loss in consumer
surplus. In scenario PI2 there is a much higher loss in total social welfare.
At the same time, we see that the negative effect for consumers is reduced,
due to the price cap which keeps the prices in peaking periods down. Thisis
reflected in the average price, which increases less in scenario P12 than in
scenario Pl1. However, the total reduction in load is now more than 5 TWh.
The loss in social welfare and reduced system reliability in scenario PI2 is
probably not acceptable for any of the participants in the power system.

In scenario PI3 we have seen that the increased investment incentives
along with the price cap in the spot market keep the average price over the
simulation period at the same level as in scenario SW. Still, the relative
change in socid welfare is at the same level as in scenario PI1. The
distributiona effect of the capacity payment is highly dependent on how it
is implemented, as the payment in reality is a transfer of welfare from
consumers to producers in the system. In scenario 3a in Table 5.8 we have
assumed that the capacity payment is only paid to new power generation
capacity in the system. In this case we see that the relative changes are small
in consumer and producer surplus. The other extreme is represented in
scenario 3b, where the capacity payment goes to all the capacity in the
system. It is likely that such a huge transfer of wealth to producers in the
system would trigger large protests from consumers. In this situation the
producer surplus rises above the level in scenario PI1. In the end, for
scenario PI4 we see that the exercise of strategic investment behaviour
causes extreme losses for the consumers in the system. From this we can
conclude that the end-users would be exposed to detrimental effects of
market power, if monopolistic investment conditions are present in the
system over a longer period of time. Hence, it is very important that the
power market is designed to discourage participants from exploiting their
market share in existing generation capacity.

5.3.5 Analysis of Investment Dynamics, 15 % Price Flexible Demand

The analysis of price and investment dynamics in the test power system is
now repeated, with the only difference that the fraction of price flexible
demand is increased to 15 %. Many of the results have the same
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characteristics as in the scenarios with 5 % price flexible demand. However,
there are also some significant differences, and these are pointed out as the
results are presented below.

The simulated trajectories for instaled capacity of the new technologies
are shown in Figure 5.25. The most striking change from the scenarios with
5 % price flexible demand in Figure 5.21 is that the rate of investment in the
peaking technology is now much lower. Actually, capacity additions of
technology 2 only occur in scenario PI3, where a capacity payment
contributes to enhance the attractiveness of new peaking plants. For
investments in technology 1 we see that scenarios SW and PI3 have the
highest frequency of investment. In the profit maximising scenarios Pl1 and
PI2 the capacity additions seem to follow with a time delay of 2 years.
Another interesting observation is that scenario PI1 and PI2 give amost
exactly the same investment pattern. This indicates that the lower price cap
in scenario PI2 now has a much lower impact on investment decisions. In
turn, this is due to the increased price elasticity of demand, which makes it
less likely that load shedding will be needed in the system. For scenario Pl4
we see that strategic investment behaviour due to monopolistic investment
conditions would still cause extensive delays in capacity additions. A
genera observation which is valid for al scenarios is that investments are
now triggered later than in Figure 5.21. The higher fraction of price flexible
demand reduces the effect on price from the gradually increasing demand in
the system. Consequently, it is optimal for both centralised and
decentralised investors to further postpone investment decisions, to wait for
optimal investment conditions to occur in the system.
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Figure 5.25 Smulated capacity additions, tech 1 and 2 in the five scenarios. ¢ s = 0.15.
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The observed changes in simulated investment patterns are also reflected
in the spot prices. From Figure 5.26 we see that the prices in scenarios SW
and P13 follow each others closely. The match between scenarios PI1 and
PI2 is even closer, due to the similar investment strategies. The prices in
scenario P4 are still much higher than in the other scenarios. However, the
deviation in pricesis still lower than in Figure 5.22, because the rise in price
flexible demand subdues the price effect of lower investments. This is also
reflected in Figure 5.27, where we see that the prices in all scenarios are
closer to each others than in Figure 5.23. The average price over the year in
scenario SW fluctuates around the total unit cost for technology 1, while the
average price over sub period 2 and 3 levels out sightly below the total unit
cost for technology 2. This is the same picture as we see in Figure 5.23,
athough the difference between the average price over the year and the
average price over medium and peak demand is now reduced due to the
higher price response on the demand side.
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Figure 5.26 Expected spot prices during base (lower), medium (middle) and peak demand
(upper) in the different scenarios. The expectation is taken over ws. Cnex = 0.15.

The need for load shedding has been vastly reduced, following the higher
price flexibility on the demand side. Figure 5.28 shows that scenario Pl4 is
now the only scenario that has a significant amount of load shedding, which
only occurs towards the end of the ssmulation period. This result illustrates
that an increase in the amount of price flexible demand from 5 % to 15 %
drastically improves the market’s ability to settle correct prices on its own.
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Conseguently, the need for the regulator to interfere in the market with load
shedding and a corresponding price cap has been significantly reduced.
Active demand side participation in the market is therefore crucial to obtain
arobust and viable market for electrical power.
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Figure 5.27 Expected spot prices for all sub periods (lower) and for sub period 2 and 3
(upper). The expectation is taken over ws. C__ge = 0.15.
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Figure 5.28 Smulated expected load shedding in the five scenarios. Total annual load in
initial system (for k=0) is 90293 GWh. The expectation is taken over ws. € siex = 0.15.
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The main results for the analysis are summarised in Table 5.9. We see that
investors aggregate profit is still negative in the social welfare scenario,
while the investor profits in scenarios PlI1-PI3 are positive. There are now
only small differences between the simulated profits in these three profit
maximising scenarios. In contrast, the total profit in scenario PI4 is of
course still much higher than in the other scenarios. However, the simulated
profit in scenario PI4 is reduced with more than 50 % compared to the same
result in Table 5.7. Thisis mainly because of the increased amount of price
flexible demand, which effectively lowers the possibility for pressing up
prices by holding back on investments. The effect is particularly significant
during peak demand periods, where the price is now much less likely to
reach up to VOLL. From the simulated gain in social welfare we see that the
differences between the scenarios are smaller than in Table 5.7. This is
another indication that the higher amount of price flexible demand enhances
the power market’s robustness, by reducing the spot prices sensitivity to
installed capacity in the system.

Table 5.9 Summary of aggregate results for simulations of capacity additions in the test
power system. Total profits and social welfare gain are net present values. *Includes
operating profits from 3% market share in existing generation assets. ¢, g = 0.15.

Scen. | Tot. capacity | Tot. capacity | Total profit | Total socia | Totd load
technology 1 | technology 2 | forinvestors | welfaregain | shedding
[MW] [MW] [MNOK] [MNOK] [GWh]

SW 2400 0 -218.3 3834 0
PI1 2000 0 556.1 3752 0.14
PI2 2000 0 648.1 3744 0.23
PI3 2400 400 518.6 3808 0
Pl4 1600 0 5816* 3015 16

In the end we also here examine the socio-economic consequences further,
by calculating the relative distributional effects in the profit maximising
scenarios, using scenario SW as a reference. Table 5.10 shows that relative
changes in consumer and producer surplus are reduced compared to the
results in Table 5.8 with only 5 % price flexible demand. This is due to the
lower impact on price from the differences in investment schedules. The
increased changes in total load, which follow naturally from higher price
elasticity of demand, are of less importance for the distributional effects.
Table 5.10 also confirms that the difference between scenario PI1 and PI2
disappears almost completely. However, there is still an extensive loss in
consumer surplus in going from the social welfare maximisation in scenario
SW to the profit maximisation in scenarios PI1 and Pl2. The capacity
payment in scenario PI3 can contribute to remove this loss in consumer
surplus, but only if the payment is limited to the new investments in power
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generation capacity. A capacity payment to al instaled capacity in the
system (scenario PI3b) makes the consumers worse off than in scenarios PI1
and P12. However, the worst case scenario for end-usersis still scenario Pl4,
where a producer exploits a monopolistic investment opportunity by holding
back on investmentsin order to increase prices and profits.

Table 5.10 Relative changes in social welfare, consumer surplus, producer surplus, total
load and average price for scenarios Pl1-4, using scenario SW as reference. Changes in
social welfare, consumer and producer surplus are net present values. Pl13a — capacity
payment to new capacity only. PI3b - capacity payment to all capacity. ¢ ne = 0.15.

Scenario Socia Consumer Producer Total Average
welfare surplus surplus load price
[MNOK] [MNOK] [MNOK] [GWh] | [NOK/MWHh]

PI1 -82 -11985 11903 -5509 11
PI2 -90 -12686 12596 -6059 12

Pl3a -26 -182 156 465.6 -0.54

PI3b -26 -21215 21189 465.6 -0.54
Pl4 -819 -33486 32667 -15790 34

The most important finding in this section, which has been commented
several places throughout the analysis, is that an increase in price flexible
demand from 5 % to 15 % makes the power market in this case study much
more robust. The higher fraction of price flexible demand does not remove
the differencesin investment strategies between the social welfare and profit
maximising scenarios. However, the system consequences of these
differences are significantly reduced, due to the demand side's increased
ability of adjusting load according to the prices in the system. Consequently,
the necessity of regulatory intervention into the market is also significantly
reduced. Nevertheless, it is worth noting that a capacity payment now
apparently brings the investments and prices in the system closer to
optimum from a social welfare point of view. It does so by reducing the gap
in investment criterion between social welfare and profit maximisation,
which arises from the lumpiness of the investment projects.

5.3.6 Computational |ssues

The optimisation model presented in this chapter is an extension of the
model in Chapter 4, and is therefore aso implemented in MATLAB. The
size of the state space increases quickly as a function of the length of the
planning period and the number of capacity states for the two power
generation technologies. However, with the limited state space
representation used in the examples presented here, the computing time for
an investment optimisation for a given level of initial demand isin the range
of 3-4 seconds on a computer with a 1.2 GHz processor and 256 MB RAM.
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5.4 Chapter Summary and Concluding Remarks

In this chapter we have extended the stochastic dynamic framework for
investment optimisation to include two power generation technologies. At
the same time we now describe the electricity market explicitly in terms of
supply and demand curves. With this market description we can find
optimal investment strategies with regards to maximisation of either profits
from new investments or total social welfare in the system. The temporal
variation in demand is now represented in the model by using three demand
sub periods. At the same time we assume that parts of the demand are
responsive to price. A similar representation of demand is used in the static
optimisation models for peak load pricing. With our stochastic dynamic
framework we are able to include the effect of growth and uncertainty in
demand on the optima investment strategies. These factors are rarely
represented in the traditional literature on dynamic pricing of electricity.

With this version of the investment optimisation model we can anayse the
long-term effects of different planning regimes in the power system. Results
from the case study show that the optimal investment strategies under social
welfare and profit maximisation react similarly to growth and uncertainty in
demand. However, the profit maximising investment criterion tends to
deviate from the social welfare result when the new investment is lumpy
and thereby causing a significant reduction in the electricity price. A price
cap in the spot market below VOLL can contribute to increase this
difference, and thereby lead to under investment in new power generation
capacity. The introduction of an appropriate capacity payment will bring the
investment criterion to the same level as under the social welfare measure.
However, the capacity payment tends to give too much investment in
peaking capacity in the case study, and the effect on the total social welfare
in the system is not necessarily positive. The distributional effect of the
capacity payment is also highly dependent on how it is implemented. The
design of an optimal scheme of investment incentives is also very difficult
given all the uncertainties in the system.

The model can also be used to analyse how a decentralised investor with
ownership in existing generation assets can exploit an exclusive right to
invest in the system. In the case study it turns out that the profit maximising
investment strategy changes drastically when this effect is included in the
optimisation model, even if the investor’ sinitial market shareisvery low. A
price cap contributes to reduce the incentive to strategically postpone
investment decisions, but only to a limited extent. These results underline
the importance of having low barriers for entry into the market, so that
monopolistic investment conditions do not occur.
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In genera, the results from the model show that the necessity and
importance of regulatory intervention in the power market is significantly
reduced as the amount of price elastic demand in the system rises. It is
therefore highly desirable to increase the price responsiveness of the
demand side, in order to obtain a market for electric power which is robust
and viable in the long run. Increased price elagticity also contributes to
reduce the negative effects of delayed capacity additions which can follow
from strategic investment planning.

The examples in this chapter illustrate a range of possible applications of
the stochastic dynamic investment model. Some of the issues that are
addressed in the analyses, such as the effect of a price cap and monopolistic
investment conditions, are hard to include properly into a static analysis. At
the same time, we see that some of the results in the case study deviate from
what we would expect from a static and marginal analysis. For instance,
differences can arise between the centralised social welfare and the
decentralised profit criteria for new investments, even without exercise of
market power. In addition, the long-run equilibrium price in the system is
not necessarily equal to the LRMC of system expansion. In redlity, the
equilibrium levels of investments and prices in the power system are
dependent on trends and uncertainties in underlying variables. In order to
assess and improve the long-run performance of liberalised electricity
markets it is therefore important to use planning models that take these
effects into account.
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Chapter 6  concLusions anD

DIRECTIONS FOR
FURTHER RESEARCH

This thesis describes the development of three decision support models for
long-term investment planning in restructured power systems. The model
concepts address the changing conditions for the electric power industry,
with introduction of more competitive markets, higher uncertainty and less
centralised planning. Under these circumstances there is an emerging need
for new planning models, also for analyses of the power system in a long-
term perspective. This thesis focuses particularly on how dynamic and
stochastic modelling can contribute to the improvement of decision making
in a restructured power industry. We argue that the use of such modelling
approaches has become more important after the introduction of competitive
power markets, due to the participants increased exposure to price
fluctuations and economic risk. Our models can be applied by individua
participants in the power system to evaluate investment projects for new
power generation capacity. The models can also serve as a decision support
tool on aregulatory level, providing analyses of the long-term performance
of the power system under different regulations and market designs.

The system dynamics model in Chapter 3 is a descriptive model, which
simulates investments in a number of different power generation
technologies. The investment decisions in the model are static and based on
a deterministic projection of prices, which in turn indicates expected future
profitability of investing in the different technologies. Technology choice
and timing of new capacity expansions also depend on a number of
underlying factors, such as regulatory incentives (permit approval policy,
taxes, and subsidies), construction delays and technology learning. The
simulated investments are not necessarily optimal, but rather meant to
describe real world decision making, which in most cases is based on
limited foresight and bounded rationality. Results from the model show that
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construction cycles are likely to occur in a power system where the most
competitive power generation technologies are large-scale with long lead
times. However, the introduction of investment incentives for renewable
power generation technologies can substantially change the pattern of
investments and prices. In general, the model can contribute to better
understanding of the long-term dynamics of investments and prices in the
power market.

The investment model in Chapter 4 is a prescriptive optimisation model. It
builds upon real options theory and calculates the optimal timing of
investments in new power generation for a decentralised and profit-
maximising investor. The stochastic dynamic algorithm takes uncertainty in
load growth, and its effect on future electricity prices, explicitly into account
in the optimisation. Prices and profits are calculated in a separate model,
whose parameters can be estimated based on historical data for load, prices
and installed capacity in the power system. Investment decisions by other
participants can aso be represented in the model, although the case study
shows that this has a limited effect on the investor’s optimal strategy for
new investments. In the case study we use the model to analyse how the
representation of dynamic decision making and stochastic load growth
changes the optimal investment strategy. The results show a substantial
increase in the investment threshold when going from a static to a dynamic
project evaluation. A stochastic representation of load growth contributes to
further postpone the investment decisions, athough this effect is less
significant. Monte Carlo simulations show that an investor increases his
profits by using stochastic dynamic optimisation, as opposed to static and
deterministic approaches, to decide the timing of new investments. In
addition to calculate optimal investment strategies, the model can also be
used for analysis of long-term system consequences. Results from the case
study show that the investment strategy which follow from the stochastic
dynamic model result in along-term price level which is above the long-run
marginal cost of system expansion. Hence, an average electricity price
above the static long-run equilibrium price is likely to occur before new
investments are triggered. This is not necessarily an indication of market
failure. However, if the energy prices in the power market do not provide
adequate investment signals, regulatory incentives can trigger earlier
investments and thereby reduce the long-term prices. Our analysis indicates
that direct investment subsidies would give lower additional costs to the end
user than dynamic capacity payments, which depend on the future capacity
balance in the power system. This is because constant investment subsidies
do not give rise to an option value of postponing investments in new power
generation capacity.
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Conclusions and Directions for Further Research

In Chapter 5 we extend the stochastic dynamic framework to include
investments in two different technologies. In addition, the power market is
now represented with explicit supply and demand curves. With the
aternative market description the model can calculate optimal investment
strategies under both a centralised social welfare and a decentralised profit
objective. Results from the case study show that the dynamic and stochastic
aspects have the same effect on the optimal investment thresholds under
both objectives. However, a difference arises between the centralised and
decentralised strategy when investments are large-scale and thereby causing
asignificant reduction in the electricity price. A price cap below the value of
lost load will increase this discrepancy, particularly for investments in peak
load technologies. The introduction of a capacity payment can eliminate the
difference between the centralised and decentralised investment thresholds.
However, the design of an appropriate investment incentive will be very
difficult, given all the uncertainties in the system, and does not necessarily
lead to an increase in total social welfare. The case study also illustrates the
crucial role of a price responsive demand side in the power system. The
necessity and impact of regulatory intervention in the market will be
significantly reduced if the fraction of price flexible demand rises. Increased
price elasticity of demand also reduces the negative consequences of
delayed capacity additions, which could follow from inappropriate
regulations, and possibly also from strategic investment planning. In the
case study it is shown that new investments are delayed dramaticaly if an
investor owns existing generation capacity and at the same time exploits an
exclusive right to invest in the system. Hence, it is very important that the
regulators maintain competition in the power system, by reducing the
barriers to entry into the market for new investors.

The main scientific contributions in the thesis lie in the combined use of
economic theory for restructured power systems and theory for optimal
investments under uncertainty. With an explicit representation of the power
market, the dynamic investment models can identify profit maximising
investment strategies under different regulations and market designs. The
use of physical state variables in the models also facilitates analyses of the
long-term consequences for the power system, which result from the
optimal decentralised investment decisions. Decision support models for
expansion planning in the regulated power industry do not address the
aspect of competition and decentralised decision making. At the same time,
long-term uncertainties and their impact on optimal investment decisions are
rarely represented in planning models for the competitive industry. The
stochastic dynamic models in this thesis therefore provide a new framework
for long-term analysis of investments and prices in restructured power
systems.
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Throughout this thesis we have focused on developing models that can
describe the long-term dynamics of investments and prices in restructured
power systems. Less attention has been given to the representation of the
short-term operation of the power system. A natura direction for future
work is therefore to take more of the short-term factors into account in the
dynamic investment models. A number of extensions could be implemented
within the flexible modelling approaches proposed in this thesis. For
instance, an explicit representation of the transmission network would make
it possible to also address the locational dimension of the expansion
planning problem within the framework of our dynamic investment models.
Another very relevant extension is to add more details to the modelling of
demand, for instance by increasing the time resolution in the models and by
better representing the long-term relationship between electricity price and
demand. Improved modelling of demand would facilitate a more balanced
analysis of the long-term consequences of power system restructuring for
both the supply- and demand-side of the market.

A second direction for future research lies in the representation of
uncertainty and risk preferences in the investment models. In the stochastic
models in Chapter 4 and Chapter 5 we have only included growth in
demand as a long-term uncertainty. An interesting extension would
therefore be to include other long-term uncertainties, such as fuel prices and
market regulations, as stochastic variables in the models, and see how this
affects the optimal investment decisions. Alternatives to the use of binomial
trees with constant probabilities for representation of long-term uncertainties
could also be explored. When it comes to risk preferences we have applied
the expected value paradigm for decision making, and only taken risk into
account in terms of a risk-adjusted discount rate. Decison makers risk
preferences could be directly represented in the models by using expected
utility instead of expected profit in the investor’ s objective functions. Future
research efforts could also look further into how the investment problem can
be formulated, so that the principles in contingent claims analysis and risk-
neutral valuation from the real options theory are more directly applicable to
the problem.

-170-



REFERENCES

[1]
[2]

[3]

[4]
[5]

[6]

[7]

(8]

[9]

[10]

llic M., Gadliana F.,, Fink L., “Power Systems Restructuring:
Engineering and Economics’, Kluwer Academic Publishers, 1996.
Wangesteen 1., Lecture notes in the course “Power markets —
resources and the environment”, Dept. of Electrical Power
Engineering, Norwegian University of Science and Technology, 2003.
Hobbs B.F., “Optimization methods for electric utility resource
planning”, European Journal of Operational Research, Vol. 83, pp. 1-
20, 1995.

Dyner |., Larsen E.R., “From planning to strategy in the electricity
industry”, Energy Policy, Vol.29, pp. 1145-1154, 2001.

Swisher JN., de Martino Januzzi G., Redlinger R.l., “Tools and
Methods for Integrated Resource Planning: Improving Energy
Efficiency and Protecting the Environment”, Working Paper No. 7,
UNEP Collaborating Center on Energy and Environment, Riso
National Laboratory, Roskilde, Denmark, 1997.

Hobbs B.F., Meier P., “Energy Decisions and the Environment: A
Guide to the Use of Multicriteria Methods’, Kluwer Academic
Publishers, 2000.

Merrill H.M., Scwheppe F.C., “Strategic Planning for Electric
Utilities: Problems and Analytic Methods’, Interfaces, Vol. 14, No. 1,
1984.

Burke W.J., Merrill H.M, Schweppe F.C., Lovell B.E., McCoy M.F.,
Monohon SA., “Trade Off Methods in System Planning”, |EEE
Transactions on Power Systems, Vol. 3, No. 3, pp. 1284-1290, 1988.
Connors S.R., “Informing decision makers and identifying niche
opportunities for wind power: Use of multiattribute trade off analysis
to evaluate non-dispatchable resources’, Energy Policy, Vol. 24, No.
2, pp. 165-176, 1996.

Schenler W.W, Gheorghe A.V., " Strategic Electric Sector Assessment
Methodology under Sustainability Conditions: A Swiss Case Study”,
Final Project Report, Alliance for Global Sustainability, April 1998.

-171-



References

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

Eliasson B., Lee Y.Y. (eds), “Integrated Assessment of Sustainable
Energy Systems in China: The China Technology Program. A
Framework for Decision Support in the Electric Sector of Shandong
Province”, Kluwer Academic Publishers, Dordrecht, 2003.
Bhattacharyya A., “An Analytic Structure for Sustainable Energy in
Competitive Electricity Markets’, Masters Thesis, Massachusetts
Ingtitute of Technology, 2003.

Visudhipan P., “An Agent-Based Approach to Vauation, Hedging
and Speculation in Deregulated Electricity Markets’, PhD Thesis,
Massachusetts I nstitute of Technology, 2003.

Ventosa M., Denis R., Redondo C., “Expansion planning in e ectricity
markets. Two different approaches’, Proceedings 14th Power Systems
Computation Conference, Seville, Spain, June 2002.

Johansen S., Wangensteen |., “Optimal planning and ssmulation of a
local/regional energy system by means of an integrated energy
model”, Proceedings 10" European Conference on Operational
Research, Beograd, Y ugoslavia 1989.

Mo B., Hegge J., Wangensteen 1., “Stochastic generation expansion
planning by means of stochastic dynamic programming’, |EEE
Transactions on Power Systems, Vol. 6, No.2, pp.662-668, 1991.
Johnsen T.A., Unander F.F., “Norwegian Residential Energy Demand:
Coordinated use of a System Engineering and a Macroeconomic
Model”, Modeing, Identification and Control, Vol. 17, No. 3, pp.
183-192, 1996.

Johnsen T.A., “Modelling the Norwegian and Nordic electricity
market”, PhD dissertation No. 48, Dept. of Economics, University of
Oslo, 1998.

Fosso O.B., Gjelsvik A., Haugstad A., Mo. B, Wangensteen I.,
"Generation scheduling in a deregulated system. The Norwegian
case’, |EEE Transactions on Power Systems, Vol. 14, No. 1, pp. 75-
81, 1999.

Botterud A., Korpas M., Vogstad K-O., Wangensteen |., “A dynamic
simulation model for long-term analysis of the power market”,
Proceedings 14th Power Systems Computation Conference, Seville,
Spain, June 2002.

Skantze P., llic M.D., “Vauation, Hedging and Speculation in
Competitive Electricity Markets — a Fundamental Approach”, Kluwer
Academic Publishers, 2001.

Chuang A.S, Wu F., Varaiya P., “A Game-Theoretic Model for
Generation Expansion Planning: Problem Formulation and Numerical
Comparisons’, IEEE Transactions on Power Systems, Vol. 16, No. 4,
pp. 885-891, 2001.

-172 -



[23]
[24]
[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

References

Forrester JW., "Industrial Dynamics’, MIT Press, Cambridge MA,
1961.

Sterman J., "Business Dynamics: Systems Thinking and Modeling for
aComplex World”, Irwin/ McGraw Hill, 2000.

Senge P., “The Fifth Discipline: The Art and Practice of the Learning
Organization”, DoubleDay, 1990.

Bunn D., Dyner |., “Systems Simulation to Support Integrated Energy
Analysis and Liberalised Planning”, International Transactions on
Operational Research, Val. 3, No. 2, pp. 105-115, 1996.

Gary S, Larsen E.R., “Improving firm performance in out-of-
equilibrium, deregulated markets using feedback simulation models”,
Energy Policy, Vol. 28, pp. 845-855, 2000.

Ford A., “Cycles in competitive electricity markets. a simulation study
of the western United States’, Energy Policy, Vol. 27, pp. 637-658,
1999.

Ford A., “Waiting for the boom: a smulation study of power plant
construction in California’, Energy Policy, Vol. 29, pp. 847-869,
2001.

Powersim 2.5 User’'s Guide and Reference Manual, Powersim Press,
1996.

“Energi og kraftbalansen mot 2020”, (“ The energy and power balance
towards 2020"), report prepared for the Norwegian Ministry of
Petroleum and Energy, NOU 11-1998.

Homepages of the Norwegian Water Resources and Energy
Directorate, http://www.nve.no, Nov. 2001.

Vogstad K-O., Botterud A., Maribu K-M., Grenaa Jensen S., “The
transition from fossil fuelled to a renewable power supply in a
deregulated electricity market”, Proceedings 20th System Dynamics
Conference, Palermo, Italy, 2002.

Maribu K-M., * Sustainable Nordic Power Supply. Analysis based on
System Dynamic Modelling”, Masters Thesis, Dept. of Physics,
Norwegian University of Science and Technology, Trondheim,
Norway, 2002.

Vogstad K-O., Slungérd Kristensen |., Wolfgang O., " Tradable green
certificatess The dynamics of coupled electricity markets’,
Proceedings 21th System Dynamics Conference, New York, USA,
2003.

Slungérd Kristensen 1., “Use of Green Certificates in Nordic Power
Supply”, Magters Thesis, Dept. of Electrical Power Engineering,
Norwegian University of Science and Technology, Trondheim,
Norway, 2003.

-173-



References

[37]

[38]

[39]

[40]

[41]

[42]

[43]
[44]
[45]
[46]

[47]

[48]

[49]

[50]

[51]

[52]

Botterud A., llic M.D., Wangensteen |., “Optimization of generation
investments under uncertainty in restructured power markets’,
Proceedings 12" Intelligent Systems Application to Power Systems
Conference, Greece, 2003.

Dixit A.K., Pindyck R.S., “Investment under Uncertainty”, Princeton
University Press, 1994.

Brennan M.J., Trigeorigis L., “Rea Options: Development and New
Contributions’, in “Project Flexibility, Agency and Competition”,
edited by Brennan M.J. and Trigeorgis L., Oxford University Press,
2000.

Ross S. A., “Uses, Abuses, and Alternatives to the Net-Present-Value
Rule”, Financial Management, VVol.24, No.3, pp. 96-102, 1995.
Faanes H.H., Lecture notes in the course “ Energigkonomi” (* Energy
Economics’), in Norwegian, Norwegian University of Science and
Technology, Trondheim, Norway, 1997.

Trigeorgis L., “Real Options: an Overview”, in “Rea Options and
Investment under Uncertainty”, edited by Schwartz E.S and Trigeorgis
L., The MIT Press, 2001.

Black F., Scholes M., “The Pricing of Options and Corporate
Liabilities’, Journal of Political Economy, Val. 81, pp. 637-659, 1973.
Merton R., “The Theory of Rational Option Pricing”, Bell Journal of
Economics and Management Science, Vol. 4, pp. 141-183, 1973.
Myers S.C., Brealey R.A., “Principles of Corporate Finance”,
McGraw-Hill/Irwin, 2003.

Hull J.C., “Options, Futures and Other Derivatives’, Prentice Hall,
2000.

Schwartz E.S., Smith J.E., “Short-Term Variations and Long-Term
Dynamics in Commodity Prices’, Management Science Vol. 46, No.7,
pp.893-911, July 2000.

Smit T.J.,, Ankum L.A., “A real options and game-theoretic approach
to corporate investment strategy under competition”, Financia
Management, Vol. 22, pp.241-250, 1993.

Gorenstin B.G., Campodonico N.M., Costa J.P., Pereira M.V.F,
“Power system expansion planning under uncertainty”, |EEE
Transactions on Power Systems, Vol.8, No.1, pp. 129-136, 1993.
Gardner D.T., “Flexibility in electric power planning: coping with
demand uncertainty”, Energy, Vol. 21, No.2, pp. 1207-1218, 1996.
Gardner D.T., Rogers J.S., “Planning Electric Power Systems under
Demand Uncertainty with Different Technology Lead Times’,
Management Science, Vol. 45, No.10, pp. 1289-1306, 1999.

Teisberg E.O., “An Option Vauation Anaysis of Investment Choices
by a Regulated Firm”, Management Science, Volume 40, No.4, pp.
535-548, 1994.

- 174 -



[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

References

Deng S-J., Johnson B., Sogomonian A, ” Exotic electricity options and
the valuation of electricity generation and transmission assets’,
Decision Support Systems, Vol. 30, pp. 383-392, 2001.

Dobbe T., Fleten S-E., Sigmo S., “Valuing gas power EI ants with CO,
capture and tradable quotas’, Proceedings 16" International
Conference on Efficiency, Costs, Optimization, Simulation and
Environmental Impact of Energy Systems, Denmark 2003.

Oren S.S., “Integrating real and financial options in demand-side
electricity contracts’, Decision Support Systems, Vol. 30, pp. 279-
288, 2001.

Min KJ., Wang C-H., "Generation Planning for Inter-related
Generation Units: A Real Options Approach”, Proceedings |EEE
Power Engineering Society Summer Meeting, Vol. 4, pp. 2261-2265,
2000.

Venetsanos K., Angelopoulou P., Tsoutsos T., “Renewable energy
sources project appraisal under uncertainty: the case of wind energy
exploitation within a changing energy market environment”, Energy
Policy, Vol. 30, pp. 293-307, 2002.

Tseng C-L., Barz G., " Short-term Generation Asset Vauation: a Real
Options Approach”, Operations Research, Vol. 50, No. 2, pp. 297-
310, 2002.

Bertsekas D.P., “Dynamic Programming and Optimal Control”, 2™
edition, Athena Scientific, 2000.

Haugstad A., Rismark O., “Price Forecasting in an Open Electricity
Market based on System Simulation”, Proceedings EPSOM'’98,
Zurich, Switzerland, 1998.

Mo B., Grundt A., Gjelsvik A., "Integrated Risk Management of
Hydropower Scheduling and Contract Management”, |EEE
Transactions on Power Systems, Vol. 16, No.2, pp. 216-221, 2001.
Mo B., “Stochastic methods in energy planning — application to
expansion planning and short-term load forecasting”, Doctoral Thesis,
The University of Trondheim, Norwegian Institute of Technology,
1991.

Crew M.A., Fernando C.S,, Kleindorfer, P.R., “The Theory of Peak-
Load Pricing: A Survey”, Journal of Regulatory Economics, Vol.8,
pp. 215-248, 1995.

Doorman G. L., “Peaking Capacity in Restructured Power Systems”,
Doctoral Thesis, Norwegian University of Science and Technology,
Trondheim, Norway, 2000.

Boiteux M., “Peak-Load Pricing”, The Journal of Business, Vol. 33,
No.2, pp. 157-179, 1960.

Crew M.A., Kleindorfer P.R., “Public Utility Economics’, St.
Martin’s Press, New Y ork, 1979.

-175-



References

[67]
[68]

[69]

[70]

[71]

[72]

[73]

Stoft S., “Power System Economics’, |EEE Press, Piscataway NJ,
2002.

Schweppe F.C., Caramanis M.C., Tabors R.D., Bohn R.E., “Spot
Pricing of Electricity”, Kluwer Academic Publishers, 1988.

Caramanis M., “Investment decisions and long-term planning under
electricity spot pricing”, IEEE Transactions on Power Apparatus and
Systems, Vol. PAS-101, No.12, pp. 4640-4648, 1982.

Vézquez C., Rivier M., Pérez-Arriaga 1.J., “A Market Approach to
Long-Term Security of Supply”, IEEE Transactions on Power
Systems, Vol. 17, No. 2, pp. 349-357, 2002.

NORDEL, “Peaking production capability and peak load in the Nordic
electricity market”, NORDEL report, October 2002 (available at
http://www.nordel.org).

Kaya Y., Asano H., “Electric power system planning under time-of-
use rates’, IEEE Transactions on Power Systems, Vol.4, No.3, pp.
943-949, 19809.

Stoft S., “The Demand for Operating Reserves. Key to Price Spikes
and Investment”, |EEE Transactions on Power Systems, Vol. 18, No.
2, pp. 470-477, 2003.

- 176 -



APPENDIX A PAPER 1

“Futures and spot prices — an analysis of the Scandinavian electricity
market”

The paper appears in the Proceedings of the 34" Annual North American
Power Symposium (NAPS 2002), Tempe AZ — USA, October 2002.

- 177 -






Paper 1

Futures and spot prices — an analysis of the
Scandinavian electricity market

Audun Botterud, NTNU, Arnob K. Bhattacharyya, MIT, and Marijallic, MIT

Abstract--In this paper we first give a presentation of the
history and organisation of the electricity market in
Scandinavia, which has been gradually restructured over the
last decade. A futures market has been in operation there since
September 1995. We analyse the historical pricesin the spot and
futures markets, using general theory for pricing of commodities
futures contracts. We find that the futures prices on average
exceeded the actual spot price at delivery. Hence, we conclude
that there is a negative risk premium in the electricity futures
market. This result contradicts the findings in most other
commodities markets, where the risk premium from holding a
futures contract tend to be zero or positive. Physical factors like
unexpected precipitation can contribute to explain parts of the
observations. However, we also identify the difference in
flexibility between the supply and demand sides of the
electricity market, leaving the demand side with higher
incentive to hedge their positions in the futures market, as a
possible explanation for the negative risk premium. The limited
data available might not be sufficient to draw fully conclusive
results. However, the analysis described in the paper can be
repeated with higher significancein a few years from now.

Index Terms--Futures prices, price dynamics, restructured
electricity markets, risk premium, spot prices.

|. INTRODUCTION

One of the conseguences of the ongoing deregulation of
the power sector around the world, is that futures and
forward markets for eectricity have gained increased interest
for suppliers and consumers of eectricity. Long-term
contracts provide participants in the power market with an
important tool for reducing their risk exposure, and economic
risk management has become more important in the new
market setting. The futures and forward markets can also
serve as a profitability indicator for investments in the power
system, and thereby contribute to a balanced development of
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demand and supply. In order to use these markets in an
optimal way, it is important for the power industry to gain
knowledge about the information hidden in the long-term
prices, and in particular the relationship between the long-
and short-term prices of dectricity. Scandinavia® is one of the
regions of the world that has the longest experience with a
restructured power market, and futures contracts have been
traded on the Nordic Power Exchange, Nord Pool, since
1995. In this paper we take a closer look at the experiences
from the Scandinavian market. In order to do this we first
describe the conditions in, and organization of, the Nord Pool
market. Then we look into finance theory for pricing of
commodities futures contracts. The historical data from
Scandinavia is analysed in order to assess the applicability of
the traditional theory to the conditions in the dectricity
market. We are particularly interested in the relation between
the long- and short-term pricesin the market.

1. THE SCANDINAVIAN ELECTRICITY MARKET

A. The history of deregulation in Scandinavia

Norway was the first country in Scandinavia to introduce
competition in the power sector when a new energy act went
into effect January 1%, 1991. The act mandated separation of
transmisson from generation activities, a least in
accounting. Point-of-connection tariffs, which help to
increase the competition in the market considerably, were
established in 1992. At the same time all networks were
opened for third party access. A similar tariff structure was
established in Sweden in January 1995, and a legidation
providing for competition became effective January 1%, 1996.
Finland’s new energy market legidation instituted market
competition beginning June 1%, 1995, and a point-of-
connection tariff was introduced in November of the same
year. Denmark instituted a stepwise opening of the market,
beginning in 1996, but with a shorter transition period than
required by the EU directives. By January 2003 the market
will be fully open to competition, as in the other three
countries[1].

The power exchange, Nord Pool, has evolved in paralle
with the deregulation process in the Scandinavian countries.

! By Scandinavia we here mean the four countries Norway, Sweden,
Denmark and Finland, although gtrictly speaking it does not include Finland.
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When established in 1993, it only served the Norwegian
market. The Swedish and Norwegian markets merged into a
common market, served by Nord Pool, in January ‘96.
Finland joined in September ‘98, followed by western
Denmark in January ‘99, and eastern Denmark in October
2000. Nordpool is owned by the Norwegian and Swedish
transmission system operators (Statnett and Svenska
Kraftnett), but all Scandinavian TSOs cooperate closely on
operational and market aspects in the common power market.
The core responsibilities of the power exchange can be
summarized as[1]:

1. Provide apricereference to the power market

2. Operate a physica spot market and a financia
market for derivative products (e.g. futures contracts)

3. Act as a neutral and reliable power-contract
counterpart to market participants

4. Use the spot market’s price mechanism to aleviate
grid congestion. Report all traded power delivery and
take-off schedules to the respective TSOs

B. Supply and demand of electricity

The power generation in the three countries are based on
various energy sources, as shown in Fig. 1. In Norway, nearly
al eectricity is generated from hydropower. Sweden uses a
combination of hydropower, nuclear power, and conventional
thermal power. Hydropower stations are located mainly in
northern areas, whereas thermal power prevails in the south.
Denmark relies mainly on conventional thermal power, but
wind power’'s share of the generation is rapidly increasing.
The high share of controllable hydropower in the system
makes it easy to regulate the generation on short notice.
Hence, the spot price of electricity varies less over the day
than what we see in pure therma systems. However, the
seasonal price fluctuations tend to be higher, due to the
variations in inflow to the reservoirs. The price volatility is
therefore high in the Scandinavian power market.
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Fig. 1. Power generation by source in Scandinavia, 2000. Note that the hydro
generation was record high in 2000. The generation in years with average inflow
are 118, 64 and 13 TWh in Norway, Sweden and Finland respectively. The
black linesin the figure represent undersea transmission lines. Source: [1].

In addition to the inflow to hydro reservoirs, the demand
for electric power aso plays an important role in the
eectricity price formation. When looking at the demand of
eectricity we see that the seasonal variations in dectricity
consumption in Norway and Sweden follow the same pattern
(Fig. 2). This is because both countries use a substantial
amount of electricity for heating purposes. In Denmark,
where most of the heating demand is met by gas and digtrict
heating networks, the variation in eectricity consumption
over the year is much lower. Finland lies somewhere in
between when it comesto seasonal variations. The seasonality
in consumption aso contributes to seasonal prices in the
eectricity market. Another fact that is worth noting is that
there ill seems to be a considerable load growth in the
system. The gross consumption increased on average with
1.55 % pa. in the 90's. Finland and Norway have experienced
the highest growth rates, while the increase in Sweden and
Denmark has been more modest [4].
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Fig. 2. Daily dectricity consumption in Scandinavia, 2001. The annual figures
are 147.3, 123.3, 79.1 and 35.5 TWh/year for Sweden, Norway, Finland and
Denmark respectively. Source: [5].

C. The spot market

The spot market serves several purposes in the Nord Pool
market area. First of al it distributes relevant neutral market
information in terms of a transparent reference price for both
the wholesale and retail markets. It also provides easy access
to a physica market, and it creates the possibility of
balancing portfolios close to time of operation. At the same
time, the spot market in Scandinavia serves as a grid
congestion management tool. Market splitting is used to
relieve  bottlenecks  within  Norway, and a the
interconnections between the four countries. So called
bidding areas may become separate price areas if the
contractual flow of power between these bid areas exceeds the
capacity allocated for spot contracts by the TSOS”.

The spot market isin reality a day-ahead market, and it is
based on hids for purchase and sale of hourly contracts and
block contracts® that cover the 24 hours of the next day. The

2 Within Sweden, Finland and Denmark, grid congestion is managed by
counter-trade purchases based on bids from generators.

% A block contract hid has the same fixed price and volume for a number of
hours of the day.
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participants use specific bidding forms to submit their bids,
and the spot prices are determined through auction trade with
uniform price for each delivery hour. Table 1 shows when the
different activities in the spot market take place. The system
price is calculated by aggregating the supply and demand
functions from all participants in the market for each
individual hour, without taking transmission congestion into
account (Fig. 3). Therefore, thispriceis also referred to asthe
unconstrained market price. It serves as reference for the
contracts traded in the financial derivatives market. The
system price prevails throughout the whole market area when
there is no grid congestion between the bidding aress.
However, several different area prices might occur in periods
with bottlenecks in the system. 97 TWh was traded on Nord
Pool’s spot market in 2000, and that amounts to about 26% of
total annual generation in the market area. Fig. 4 shows the
system price in the spot market since 1993.

TABLE1
TIME LINE OF ACTIVITIESIN NORD POOL’ S SPOT MARKET

Time Activity

11:00 | Deadline for TSOs to submit their capacity allocations
for the spot market

12:00 | Deadline for submitting bids to the spot market for the
following day

14:00 | Calculation of system price and area prices finished
and published

24:00 | The contract period starts
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Fig. 3. Theprinciplefor calculation of the system price. Source: [2].
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Fig. 4. System price in Nord Pool’s spot market, 1993-2001. $1 = NOK 9.
Source: [5].
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Due to the long time span (up to 36 hours) between spot
market price fixing and delivery, participants may need
access to markets closer to real-time. In addition to the spot
market Nord Pool therefore also operates a balancing market,
caled Elbas. In this market participants can trade one-hour
contracts until two hours before delivery. The Elbas market is
currently only available for the Swedish and Finish market
aress, but there are plans to extend it to also include Norway
and Denmark. Deviations from the scheduled power
generation and consumption in the spot and Elbas market are
traded in real-time markets operated by the TSOs. These
markets are used to balance power generation to load in real-
time, and is open to participants who can regulate their
generation or load on short notice. The TSOs in the four
countries apply dightly different rules for how the real-time
prices are calculated and how power imbalances are cleared.

D. Thefinancial derivatives market

Four types of contracts are traded in Nord Pool’s financial
derivatives market: base load futures, base load forwards,
options and contracts for difference. All four contract types
are pure financial contracts, i.e. there is no physical delivery.
The contracts are settled using the system price in the spot
market as areference. Hence, the physical trade takes placein
the spot market. The derivatives market has been designed to
serve as risk management tools for generators and retailers
that want to hedge their future profit. At the same time, the
market also tries to attract speculators who seek to profit from
the highly volatile eectricity prices in order to increase the
liquidity in the market. The current organization of the
futures and forward markets are further described below®.

The futures market contains day, week and block
(consisting of 4 weeks) contracts. The sdection of available
contracts is updated dynamically for every week. Trading of
the daily contracts starts every Friday for contracts with
delivery the following week. The block contracts are split into
week contracts four weeks before the delivery period starts,
while new block contracts are issued one year before delivery.
Consequently, the futures market has a time horizon of 8-12
months. The settlement of the futures contracts involves a
daily mark-to-market settlement during the trading period,
and a fina settlement in the delivery period. The mark-to-
market settlement covers gains and losses from the daily
changes in the market price of the futures contracts. Thefinal
price-securing settlement covers the difference between the
last closing price of the futures contract and the system price
during the delivery period [3]. Fig. 5 gives an illustrative
example of how the settlement procedure in the futures
market works. By taking a position in the futures market, and
making a corresponding trade in the spot market during the
delivery week, a participant is completely hedged for the

4 Minor modifications to the organization of the market have taken place
several times since the start in Sept.-1995.
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contractual volume. The settlement procedure therefore
removes the basis risk from the electricity futures market®.
Still, the participants cannot use the futures market to hedge
againgt uncertainties concerning future load (volume risk).
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Fig. 5. Illugtration of the settlement procedure for a futures contract traded at
Nord Pool. The purchaser of the contract receives 10 NOK/MWh in the mark-to-
market settlement. Deviations from the futures price on the last day of trading
(the fixing price) is taken care of in the price-securing settlement, so that contract
holder ends up with a final price equal to the initial price of the futures contract,
when buying the contractual amount in the spot market. Source: [6].

The forward market facilitates hedging of positions further
ahead into the future, and consists of season and year
contracts. The year contracts are split into three season
contracts® following specific rules, while the season contracts
are not subject to further splitting. As opposed to the futures
market, there is no mark-to-market settlement in the forward
market. Therefore, the accumulated profit and loss during the
trading period is not realized until the delivery period starts.
This contributes to increase the liquidity for the long-term
forward contracts, since no cash payment is required during
the trading period. The additional settlement throughout the
delivery period is, however, organized in the same way as for
the futures contracts. The total volume traded in Nord Pool’s
derivatives market, including options and contracts for
difference (CfDs), was 359 TWh in 2000. Estimates for the
total volume of financia power contracts traded in
Scandinavia in 2000 are between 1500 and 2000 TWh. This
amounts to amost 5 times the annua physica power
ddivery, a figure that is similar to what is found in other
commodities markets ([1] and [3]).

I1l. FUTURESPRICING THEORY

A. Therelationship between spot and futures prices

There are two main views of the relationship between
commodity spot and futures prices [8]. The first theory is
closaly linked to the cost and convenience of holding
inventories, while the second theory applies arisk premium to
derive a model for the relationship between short-term and
long-term prices. Both theories are briefly presented below,

® Basisrisk isusually present in other commodities markets and occurs when
the futures contract does not match completely the exposure in the spot market.
See [6] for a discussion about basisrisk and the electricity market.

® Winter 1, Summer and Winter 2 cover week 1-16, 17-40 and 41-52.

followed by a discussion about their relevance in the
electricity market.

Inventories play a crucia role in the price formation in
markets for storable commaodities [7] (also sometimes referred
to as “cash and carry markets’). The theory of storage
explains the difference between current spot prices and
futures prices in terms of interest foregone in storing a
commodity, warehousing costs and a convenience yield on
inventory. The convenience yield can be regarded as a
liquidity premium and represents the privilege of holding a
unit of inventory, for instance to be able to meet unexpected
demand. By assuming no possibilities for arbitrage between
the spot and futures market one can easily derive the
following formula [7] for the futures price (Fy1) at timet for
deivery at timet+T:

Ft,T = SerT —Yr t kT @
where S is the spot price of the commodity at timet, rristhe
risk-free interest rate for the period T, 5 is the convenience
yield and kr is the cost of physical storage over the holding
period.

The second pricing theory explains the price of a futures
contract in terms of the expected future spot price (E«(S+1))
and a corresponding risk premium, pr = - (rr - i), for the
commodity. it represent investor’'s appropriate discount rate
for investing in the futures contract, while ry ill isthe risk-
freeinterest rate. The futures price can now be expressed as'”:

Ft,T = Et(StJrT)e(rT_iT) =E, (SHT)e_pT @)

One way of explaining the risk premium in (2) would be to
look at the conditions within the specific commodity market.
An overweight of risk-averse producers wanting to hedge
their products in the futures market would probably result in
futures prices lower than the expected future spot price (pr >
0). The opposite relation (pr < 0) would occur when the
demand side is the most risk averse. The risk premium could
aso be traced back to the concepts of storage cost and
convenience yield for the commodity. A second way of
explaining the risk premium is to consider the futures
contract as a financial asset and compare it to other assetsin
the stock market. Hence, if the return on the futures contract
is positively correlated to the level of the stock market,
holding the contract involves positive systematic risk and an
expected return above the risk-free rate is required (it > ry or
pr > 0)% It is worth noting that this price theory aso can be

" This formula is derived by looking at the net present value of purchasing a
futures contract at time t, holding it until expiry, and sdlling the commodity in
the spot market at time T. The net present value at time t of this investment
equals -Fire™" + E(S.7)e", assuming that all transactions take place at time T,
and that the investor earns the risk-free interest rate on the payment of the futures
contract. See [12] for more details.

8 See [6] and [9] for a further explanation of systematic risk and the futures
market, and how the Capital Asset Pricing Mode (CAPM) can be used for
pricing futures contracts.
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applied in markets where the commodity is perishable (also
sometimes referred to as “price discovery markets’). The no
arbitrage argument underlying (1) cannot be applied when it
the commodity is non-storable, as there is no possihility of
obtaining a risk-free position by buying the commodity in the
spot market and selling in the futures market.

The futures market is said to exhibit backwardation when
the expected spot price exceeds the futures price (pr > 0). The
term contango is used to describe the opposite condition when
the futures price exceeds the expected future spot price (pr <
0), asshown in Fig. 6.

[futures 4
price]
E(ST)

Normal Backwardation

Fig. 6. Illugtration of contango and normal backwardation in the futures market
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Before we analyse the dectricity market in further detail it
is worth taking a look at studies of futures markets for other
commodities. Pindyck (2001) [7] studies the futures markets
for petroleum products (crude oil, heating oil and gasoline)
and finds support for the backwardation theory in these
markets, particularly when the variance in the spot price is
high. Fama and French (1987) [8] find marginal evidence of
norma backwardation when 21 commodities (agriculture,
wood, animal and metal products) are combined into
portfolios but conclude that the evidence is not strong enough
to resolve the existence of a nonzero risk premium. Bodie and
Rosansky (1980) [10] studied risk and return in commodities
futures for all major commodities traded in the United States
between 1950 and 1976. They found that the mean rate of
return on a portfolio consisting of their selected commodity
futures contracts in the 27 years period was well in excess of
the average risk free rate. Their findings lend support to the
normal backwardation hypothesis. Chang (1985) [11] aso
finds evidence of normal backwardation for wheat, corn, and
soybeans over the time interval from 1951 to 1980. In sum,
the empirical research carried out on commodities futures
prices finds evidence to support normal backwardation for
some products. The risk premium may be time varying, but is
not related to the general level of the stock market.

B. The electricity market

The lack of direct storage possibilities for eectricity, and
the physical requirement of constant match of supply and
demand, makes the eectricity market somewhat different
from most other commodities markets. It can be argued that
power generators can “store€” the commodity, for instance as

Paper 1

water reservoirs for hydropower plants or as coal for thermal
power plants. However, it is not possible to buy the electricity
today and store it for future sales, at least not in substantial
amounts’. The argument about no arbitrage that (1) is based
on is therefore not applicable to the conditions in the
eectricity market, which must be characterised as a price
discovery market.

It is more interesting to look at the possible existence and
motivation for a risk premium in the éectricity futures
market, and to what degree (2) can be used to characterise the
market. A risk premium could arise if either the number of
participants on the supply side differs substantially from the
number on the demand side, or if the degree of risk
averseness varies considerably between the two sides. Most of
the companies participating in the market are both generators
and load serving entities. Hence, there is no reason to believe
that the futures market is biased towards any of the two sides
in terms of the number of participants. However, if welook at
the flexibility of adjusting the quantity on the supply and
demand side there is a significant difference. The generators
can control parts of their generation on a very short notice™.
This alows them to take advantage of the price fluctuations
that occur in the market, by adjusting their generation.
Therefore, it does not necessarily make sense to fix the price
in the futures market for all of the planned future generation.
The flexibility in generation creates a possibility of profiting
from the price pesks in the day-ahead spot market, and
possibly also in the markets even closer to rea time. The
situation is different on the demand side, where the load
serving entities have very limited ability to adjust the demand
according to the price. Hence, it makes sense to lock in as
much as possible of expected future demand in the futures
market, given that the participants on the demand side are
risk averse. In this sense the electricity market deviates from
most other markets, where the demand side can stock up the
commodity for some period ahead in time, and in that sense
use the stock to adjust to fluctuating prices instead of the
futures market. If the difference in flexibility on the demand
and supply leads to an excess demand for futures contracts,
this would trandate into a negative risk premium in (2), i.e.
pr < 0. The futures price would, in turn, exceed the expected
future spot price, and on average one would experience
negative returns from holding futures contracts.

A study of Nord Pool’s futures market was carried out in
1997 [6]. Hypothesis testing was used to analyse the returns

® One could of course argue that consumers have the possibility to store
dectricity in batteries, but this option is not available in large scale. Energy
systems in the future could possibly include large-scale storage capacity, e.g. in
hydrogen reservoirs. On the supply side there is a limited amount of pumped
hydro storage in the system today. However, all these storage options involve
subgtantial losses and costs, and we do not see them as possible tools for making
arbitrage from the difference between spot and futures prices.

1 The fast controllable part of the power generation in the Scandinavian
system is particularly big, dueto the large share of hydropower in the system.

- 183 -



Appendix A

on futures contracts over various holding periods, and also on
portfolios of futures contracts. The null hypothesis was that
the futures price eguals the expected future spot price (pr =
0). The analysis did not find sufficient evidence to rgject the
hypothesis, athough the results showed that the returns on
the futures contracts on average were below the risk free rate
(i.e. contango; pr < 0). The study also looked at the relations
between the returns in the futures market and in the stock
market, and found no significant evidence for using the
systematic risk in the futures market as an explanatory factor
for the observed futures prices. The reiability of the analysis
in 1997 was low, due to the short time period the market had
been in operation (2 years). It istherefore of interest to revisit
the problem and carry out a new analysis of the market with
data that now covers more than 6 years.

1V. EMPIRICAL ANALYSIS

In the analysis of the historical data we first present some
general graphs and figures to look for obvious trends and
relations in the observed spot and futures prices. We then turn
to analyse the relationship between the long- and short-term
pricesin more detail using the framework presented above.

A. The data

The analysis is based on historical spot and futures prices
from Nord Pool covering the period from the opening of the
futures market in September 1995 until the end of 2001. The
futures data contained the closing price for each day of
trading for all futures contracts traded. Although we had
futures data for each day of trading, only the closing price on
the last day of trading for each week was used in our analysis.
The spot data used in the analysis contained spot prices for
each hour of each day of the year. To consolidate the data,
the spot price for a particular day was calculated by averaging
the spot price for each hour of the day. To further consolidate
the data, the daily spot prices are averaged over the week to
get an average weekly spot price. Although we do not use the
hourly spot price data explicitly, the average daily and weekly
values are functions of the hourly spot price.

B. oot prices

Fig. 7 shows the daily spot prices for al six years from
1996 to 2001. Thereisalot of similarity in the spot prices
for the years from 1997 to 2000. Although the prices vary, the
shape of the graphs is similar in many respects. We clearly
see the seasonal pattern with low prices during the summer
when the demand is low, and high prices in the winter when
demand is high (compare to demand in Fig. 2). The leve of
the spot prices in 1996 is much higher. The prices remain
high throughout the summer, and increase even further in the
fal. This is due to very low precipitation and inflow to the
water reservoirs that year. The prices come back down again
in the winter of 1997. Also in 2001 the prices are higher than
what we see from 1997 to 2000. This can again be explained
from lower inflow to the reservoirs. These observations
illustrate how dependent the prices are upon the hydropower

generation in the region. Another observations is that the
price peaks in the beginning of 2001 occurs at the same time
as the peak values for demand in the system. Hence, the
current system runs into capacity problems on cold winter
days with high demand. Actually, hourly prices above 1500
NOK/MWh occurred four times in the two first weeks of
February 2001.
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Fig. 7. Average daily prices in Nord Pool’s spot market for years 1996-2001.
Source: [5].

C. Futuresprices

Fig. 8 shows prices for weekly futures contracts at the last
day of trading, for delivery the following week. As can be
seen from the graph, the futures prices follow the same trend
as the spot prices, as we would expect for futures contracts
with short time to delivery. It is reasonable to believe that the
market expects the prices for the next week, as reflected in
the futures prices, to resemble the spot price for the current
week. The daily price fluctuations do not appear for the
futures contracts though, since the prices shown are for
weekly contracts.
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Fig. 8. Prices of a futures contract at the end of week t, for delivery week t+1,
1996 to 2001. Source: [5].

To further analyze the data, we compared the futures
prices one week and one year ahead to the actual spot pricein
the ddivery period (Fig. 9). For instance, for 1996 we
recorded the futures prices with delivery one year ahead, in
1997, and plotted it together with the weekly spot prices for
1997. The futures price one week ahead is presented in the
same way. We repeated this process for 1997 through 2000.
As can be seen in the figure, the futures price one year ahead
do not correspond very well with the actual spot pricesin the
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delivery period. Looking closely at the graph, we see that both
the futures and spot prices show a seasonal pattern. The long-
term contracts with delivery one year ahead are season
contracts™, and the distinct jumps in this futures price curve
occurs at changes between contracts (e.g. from Winter 1 to
Summer). On average the futures price seems to overestimate
the actual spot price in this period. However, in 2001, the
futures price underestimates the actual spot price. There are
several points of intersection between the two graphs. At
these points, the futures price actually equaled the actual spot
price for that week. In general however, the one-year ahead
futures prices ability to predict the spot prices is rather low,
and there are large differences between the futures and spot
prices in most of the period. For the contracts with delivery
one week ahead, the fit is naturally much better, due to the
much shorter time to delivery.

Paper 1

expiry. In our calculations we used all historical datathat was
accessible from the futures market. The results are show in
Table 2. We see that the average risk premium is negative for
al holding periods. The magnitude and standard deviation of
the premium increases naturaly with the length of the
holding period. The p-values for the z-test show that we can
reject the hypothesis that the futures price equals the expected
future spot price with high significance for all holding
periods. Thisis confirmed by the negative values for both the
upper and lower limits of the 99 % confidence intervals for
the risk premium. Our findings therefore lend support to the
contango hypothesis for the electricity futures market in
Scandinavia, i.e. there is a negative risk premium for holding

afutures contract.
TABLE 2
STATISTICAL ANALYSISOF THE RISK PREMIUM ESTIMATE, f)T ,FOR 1, 4, 26

AND 52 WEEKS' HOLDING PERIOD OF THE FUTURES CONTRACT
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Fig. 9. Futures prices for last trading day before delivery and 52 weeks before
delivery, compared to spot pricein delivery week. Weekly values. Source: [5].
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D. Therisk premiumin the futures market

We now try to estimate the observed risk premium in the
Scandinavian eectricity market based on the data presented
above. From (2) we derive the following estimate for the risk
premium, p, of afutures contract with holding period T:

— |n Et (S+T)
Ft,T

Ft+T -11 (3)

— P =In
pT Ft,T

Pr
where Fi.r.11 is the price at the last day of trading for the
futures contract with delivery in week t+T, which in turn isa
good approximation for the spot price in the delivery week. In
other words, we assume that the market participants in the
long run have an unbiased prediction of the future spot
price’?. We calculated the estimate for the risk premium for
futures contracts with 1 week, 4 weeks, 2 year and 1 year
holding periods, assuming that the contracts are held until

™ Nord Pool stopped the trading of seasonal futures contracts (with one year
or more to delivery) after 1999, and replaced them with seasonal forward
contracts. The one-year ahead futures prices with delivery in 2001 (traded in
2000) are therefore actually forward contract prices.

2 Note that the estimate of pr equals the return (in excess of the risk-free
rate) on a futures contract purchased at time t and sold at the last day of trading
(in week t+T-1). It also eguals the return on a contract that is held throughout
deivery, if the contractual amount is purchased in the spot market during the
week of delivery. This is due to the price securing settlement in the futures
market, as described in section I1.

1 week 4 weeks | 26 weeks| 52 weeks
Sample size 326 323 300 275
Mean -0.015 -0.035 -0.085 -0.183
St. deviation 0.101 0.187 0.432 0.399
p-value, z-test!|  0.9968 0.9996 0.9997 1.0000
CFI2, up-limit -0.001 -0.008 -0.020 -0.122
CFI2, lo-limit -0.030 -0.062 -0.149 -0.245

"The z-test tests for p_ < 0, given p_= 0 asnull hypothesis.
ZCFl is the 99% confidence interval.

E. Discussion

The negative risk premium that we find in the futures
price data is in line with our observation of the difference in
flexibility on the supply and demand side of the eectricity
market, leaving the demand side with a higher incentive for
hedging in futures contracts. However, there are most likely
also other factors that can contribute to explain our findings.
To further examine possible explanations we therefore ook at
the main source of power in the Scandinavian system —
namely hydropower. As stated in section |1 the precipitation,
and thereby the water level of the reservoirs, has a high
degree of influence on the short-term prices of electricity in
Scandinavia. However, the expectations about the spot prices
far ahead into the future are probably based on assumptions of
average reservoir levels. To investigate this further we plotted
the average reservoir level in Norway along with the actual
reservoir level in Fig. 10", We also add the spot price and the
one year ahead futures price. Looking closely at the graph, we
see that the actual reservoir leve is higher than the average
for most of the period from 1998 through early 2001. High
reservoir levels results in low spot prices, and during this
period the spot price was below the futures price. In 2001,
when the actual reservoir level falls below the average, we
notice a sharp increase in the spot price. During most of
2001, the actua reservoir level is below the average and the

3 More than 60% of the hydropower capacity in the current Nord Pool area
isingalled in Norway.
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spot price is higher then the futures. Thus, the analysis of the
inflow is helpful in explaining the deviation between the spot
and futures prices. However, the deviations in reservoir levels
can only be used as an explanatory factor for the behavior of
futures contracts with long maturity. The change in reservoir
level is very limited in the near future. Therefore, it cannot
contribute to explain the negative risk premiums for the
contracts with only 1 and 4 weeks to delivery.
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[—Spot price — Futures price (one year) — Reservoir level — Average reservoir level]

Fig. 10. Spot price, futures price one year ahead, average reservoir level (1990-
2000) and actual reservoir level for Norway. Source: [5] and [13].

It is important to treat the results in this analysis with
caution, as the data period is ill limited to 6 years. A longer
time period is usualy used in similar analyses of futures
prices for other commodities. The results for the z-test and
confidence intervals in Table 2 aso rey on a strong
assumption of normality in the observed risk premiums.
However, the existence of a negative risk premium can be
stated with considerably higher significance than what was
the case after the study in 1997.

V. CONCLUSION AND FUTURE WORK

Spot and futures markets for eectricity have existed in the
restructured Scandinavian electricity system for more than 6
years. The considerable history of prices makes it interesting
to study the relationship between long- and short-term
eectricity prices in this market. Our analysis shows that the
futures prices on average have been above the spot prices in
the actual week of delivery, and we find significant evidence
for a negative risk premium in the eectricity futures market.
Our results contradict to the findings in most other
commodities futures markets, where the risk premium tends
to be zero or positive. Physical factors like unexpected
precipitation can contribute to explain parts of the
observations. However, we also identify the difference in
flexibility between the supply and demand sides as a possible
explanation for the negative risk premium. In the future we
will try to develop models that are better at capturing the
dynamics between short and long-term prices in the
electricity market. Our aim in the long run is to model how
these prices influence the investments in new technology on
the supply and demand side in the system, using methods for
model aggregation from large-scal e dynamic systems theory.
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Abstract — This paper presents an ongoing research
project where the objective is to inform decision-makers
about the trade-offs between costs and environmental
performance when deciding how to meet the future de-
mand for energy in Scandinavia. The paper startswith an
overview of the current stationary energy supply within
Norway, Sweden and Denmark. A short overview of fu-
ture technological energy supply options for the respec-
tive countries is also presented. The main part of the
paper is devoted to describing the framework we use in
our analysis. The trend of liberalisation in energy mar-
kets, and thereby less centralised planning, gives rise to
new planning challenges that require a new set of analyti-
cal toals. The conditions in the Scandinavian energy sys-
tem, with a variety of energy resources, close links be-
tween the countries electric power networks and a high
degree of deregulation in the energy markets, makes the
region particularly interesting for testing and applying
such tools.

Keywords: Energy planning, decison support,
multi-attribute trade-off analysis, power and energy
system analysis, smulations, scenarios, Scandinavia

1 INTRODUCTION

The increasing use of energy in the world is one of
the major threats against a sustainable development for
the earth’s environment. As more attention is paid to
the negative environmental consequences of our in-
creased energy use the objectives in energy system
planning changes. The aim is no longer simply to meet
the projected future energy demand for the lowest pos-
sible cost. The environmenta consequences of different
supply alternatives have to be given more careful atten-
tion. Predicting the environmental impacts from new
energy-related investmentsisin its own a very demand-
ing task, considering the wide range of pollutants oc-
curring from different forms of energy conversion. The
long lifetime of many energy system constructions
contribute to increase the uncertainty of such environ-
mental assessments. At the same time, there is a global
trend of deregulation and liberalisation of energy mar-
kets. As a result, planning decisions are taken at more
distributed levels in the system, and the authorities are
left with less direct influence on what energy supply
solutions are chosen for the future. Considering al the
technological, social, economic, environmental and
political factors that influence the development of the

energy system, we realise that long-term energy system
planning becomes an extremely complex task. Conse-
quently, results from advanced simulation models are
frequently used as decision support in the planning of
local and regional energy systems.

The Scandinavian region faces some of the same
challenges as many other countries when it comes to
energy and environmental planning. New investments
are required to meet the energy demand, and thereare a
number of technological alternatives to choose from. At
the same time the countries are aiming at reducing
emissions of greenhouse gases in order to meet their
limits in the Kyoto treaty. Hydropower has traditionally
played an important role in the energy supply in Nor-
way and Sweden, but there are only limited resources
remaining for new hydro projects. Other options must
therefore be considered. Sweden also has a large frac-
tion of nuclear power generation, but is planning to
shut down these plants. Denmark has traditionally
based its power generation on coal, but is now switch-
ing towards gas, biomass and wind. The power market
in Scandinavia was one of the first to be deregulated,
and there are close links between the power networksin
each of the countries. The various energy resources
within Scandinavia, the well functioning deregul ated
power market, and also the limited size of the region
makes it well suited for testing of analytical tools for
decison support in energy and environmental plan-
ning. Analytical tools applicable to this region should
also be applicable to most other regions of the world.

The current and future energy supply in Norway,
Sweden and Denmark is subject for a new research
project where NTNU (Norway), MIT (USA) and
Chalmers (Sweden) are the involved university partici-
pants. In this project we are going to apply scenario
analysis to assess and illustrate the trade-offs between
cost and environmental performance for a number of
technological alternatives. Our aim is to take both sup-
ply and demand side options equally into account, to
avoid the bias towards supply side solutions that usually
occurs in similar studies. Since the project was recently
started we do not yet have any firm conclusions to pre-
sent. The aim of this paper is therefore to give a presen-
tation of the historical energy supply within the three
countries and also describe a set of future supply alter-
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natives. Furthermore, the methodological framework
within which we are planning to carry out our analysis
is outlined. The preparation of the scenario results for
discussion with stakeholders from authorities, energy
companies, NGO’ s and cthersis al so discussed.

2 CURRENT ENERGY SUPPLY

Some of the main characteristics of the current and
historical energy supply and demand within Norway,
Sweden and Denmark are presented in this section. The
purpose is to highlight the differences in the energy
systems between the three countries.

2.1 Norway

Wind, sun etc.
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Biomass,waste

6% oil
31%

Hydro
46%
Gas

Nuclear 13%

0%

Figure 1: Tota primary energy supply by source in Norway
(2000), in total 26.27 mtoe or 230 GJ/capita. Source: IEA [1].
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Figure 2: Total fina energy consumption by energy carrier
in Norway (1999), in total 20.33 mtoe or 191 GJcapita
Source: IEA [1].

Figure 1 shows that hydropower is the primary
source of energy in Norway, followed by oil and gas. It
is worth noting that even if Norway is a major exporter
of ail and natura gas to continental Europe, the infra-
structure and end-use of gas on mainland Norway is
very limited so far. The use of gas is mainly for own
purposes within the oil and gas sector. Renewable en-
ergy resources like wind and waves do not contribute
considerably so far, while biomass and waste delivers a
substantial amount of energy. When looking a the
distribution between the energy carriers (Figure 2) we
see that eectricity plays a major role in the Norwegian
energy system, deivering 45 % of the fina end-use of

energy. This is related to the long history of abundant
hydro power supply in Norway, which has been accom-
panied by huge investments in eectricity based tech-
nology, as e.g. ovens for direct eectric heating in most
Norwegian households. When looking at the distribu-
tion of energy supply between the different sectors
(Figure 3), we can see that the amount that goes to
industrial purposes has been relatively stable the last 20
years, while the consumption in service, residential and
transport sectors increased considerably.
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Figure 3: Total final energy consumption by sector in Nor-
way (1980-1999). Source: IEA [1].

2.2 Swneden
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Figure 4: Total primary energy supply by source in Sweden
(2000), in total 46.79 mtoe or 223 GJ/capita. Source: |EA [1].
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Figure 5: Total final energy consumption by energy carrier
in Sweden (1999), in total 35.42 mtoe or 167 GJcapita.
Source: IEA [1].
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Figure 4 shows that nuclear and oil are the most im-
portant sources of energy in Sweden, while hydro-
power, biomass and waste also makes a substantial
contribution. Sweden has no resources of natural gas,
and is not connected to any gas pipeline, so the use of
gas is therefore low. The use of new renewable sources
like wind and sun is aso very limited so far in Sweden.
When looking at the distribution between energy carri-
ers (Figure 5) we see that energy as heat has a much
higher share of the end-use delivery than in Norway.
This is mainly due to the more widespread use of dis-
trict heating in Sweden. Figure 6 shows that the total
final energy consumption decreased during the 80's
and then increased again to the 1980 level in the 90's.
The energy use in the industry sector has also been
stable in Sweden, while the use in service and transport
sectors increased. The consumption in the residential
sector isactually lower in 1999 than in 1980.
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@ Industry

0 T T
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Figure 6: Total final energy consumption by sector in Swe-
den (1980-1999). Source: IEA [1].

2.3 Denmark
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Figure 7. Total primary energy supply by source in Den-
mark (2000), in total 19.25 mtoe or 152 GJ/capita. Source:
IEA [1].

The energy supply in Denmark is to a higher degree
based on fossil fuels (ail, gas and coal), since Denmark
has no hydropower resources and has chosen not to
invest in nuclear power (Figure 7). However, thereis an
increasing focus on new renewable sources in Den-
mark, and it is worth noting that particularly wind

Paper 2

power is starting to contribute to the total energy sup-
ply. Electricity as an energy carrier plays a much less
important role than in Norway and Sweden. This is
mainly because of the extensive district heating and gas
networks that are present in Denmark (Figure 8).
Figure 9 shows that the total final energy consumption
fdl in the mid 80's, but is now back to the same level
asin 1980. The transport sector is the only one that has
increased its energy use consistently for each 5-years
period since 1980.

Heat Coal

Electricity
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Oil
51%

Biomass, waste
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Gas
11%

Figure 8: Total fina energy consumption by energy carrier
in Denmark (1999), in total 15.63 mtoe or 123 GJ/capita.
Source: IEA [1].
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Figure 9: Tota final energy consumption by sector in Den-
mark (1980-1999). Source: IEA [1].

2.4 The common electric power market

There are close connections between the electric
power systems in Norway, Sweden and Denmark, both
in terms of physical tie lines and a common organisa-
tion of the power markets. Several power lines are
crossing the border between Norway and Sweden.
There are also sea cables connecting the Norwegian
and Swedish power systems to Denmark. All the three
countries participate in the Nordic power exchange,
Nordpool. The power exchange organises the physical
day-ahead market for eectricity, and also offers a num-
ber of longer term financial contracts for hedging and
speculation in the power market. The process of de-
regulation started in Norway in 1991, and was then
followed by Sweden in 1996 and later Denmark in
1999. Scandinaviais therefore one of the regionsin the
world with the longest experience with deregulated
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power markets. In fact, Nordpool became the first in-
ternational commaodity exchange for trading of dectric
power when Sweden became a member in 1996

The power generation in the three countries have
different characteristics (Table 1). In Norway, nearly all
eectricity is generated from hydropower. Sweden uses
a combination of hydropower, nuclear power, and con-
ventional thermal power. Hydropower stations are lo-
cated mainly in northern areas, whereas thermal power
prevails in the south. Denmark relies mainly on con-
ventional thermal power, but wind power is providing
an increasing part of the demand for eectricity. From
the table we can also see that the demand has increased
considerably in Norway during the 90's, while the
increase is much more modest in Sweden and Den-
mark.

Table 1: Electricity generation by source and gross con-
sumption for Norway, Sweden and Denmark (1990 and 2000)
in TWh. Source: |EA [1] and Nordel [2].

Source Norway Sneden Denmark
‘90 | ‘00 | ‘90 | ‘00 | ‘90 ‘00
Coal 0.2 0.2 18 33| 233[ 169
Oil 0.0 0.0 12 2.0 1.1 4.4
Gas 0 0.3 0.4 0.3 0.6 8.8
Biom./Waste 0.2 0.3 1.9 3.7 0.2 18
Nucl ear 0 0| 682] 570 0 0
Wind, sun 0 0.0 0.0 0.4 0.6 4.2
Hydro 121.2| 141.6| 725| 78.6 0.0 0.0
Total 121.6| 142.4| 146.0| 1453 25.7| 36.2
Consumption | 105.7| 123.8| 144.2| 146.6| 32.8| 349
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Figure 10: Daily electricity consumption in Norway, Swe-
den and Denmark 2001. Source: Nordpool [3].

The seasonal variation in eectricity demand shows
that the consumption in Norway and Sweden follows a
similar pattern (Figure 10). This is because both coun-
tries use a substantial amount of eectricity for heating
purposes. In Denmark, where most of the heating de-
mand is met by gas and district heating networks, the

! Finland also deregulated its power market and be-
came a member of Nordpool in 1998. However, Finland
isleft out of thisanalysis.

variation in electricity consumption over the year is
much lower. The demand also varies over the day,
according to the activity level in the countries. When
looking at the variation over the day, it follows more or
less the same pattern in the three countries.

The electricity supply system must be able to take
care of the seasonal and daily variation in demand. The
output from hydropower station is easy and fast to regu-
late, while thermal plants are dower with higher costs
involved in changing the power output. There are
therefore mutual benefits from exchanging power be-
tween the countries, and a substantial trade aso takes
place. In genera power is exported from the hydro
areas in Norway and Sweden to Denmark and conti-
nental Europe during daytime pesk hours. In the
nights, when the load is lower, the power flow goes the
other way. As a result, the thermal power plants can
operate with less fluctuation in their output. Another
advantage of the exchange opportunity given by the
transmission lines is that the hydropower dependent
regions are less exposed to power shortages during
longer periods of low inflow.

3 FUTURE ALTERNATIVES

A systematic and detailed study of the future energy
resources is not yet carried out, as this project is till in
its initial phase. Resource and technology assessments
have been accomplished in a number of previous stud-
ies, s0 there are several sources of information avail-
able. However, the focus has usually been on the large-
scale supply side solutions, so that we will need to put
more work into estimating the possible contributions
from distributed generation and demand-side technolo-
gies. The alternatives that we currently see as most
likely to contribute considerably to change the future
energy supply within the three countries are briefly
listed below.

Large-scale supply options:

e Increased use of gas, as fuel for new power
plants, but also for direct end-use purposes. In
Norway and Sweden this would require large
investments in pipelines and gas distribution
networks. Environmental benefits arise if the
new gas consumption replaces more polluting
sources like coal and oil. Gas power plants
with CO,-sequestration are also on the energy
agenda, particularly in Norway.

e Biomass from wood, waste or energy crops can
also be used asfuel in power and heat plants.

e Largescale wind parks are being planned in
al the three countries. There are ill huge
wind resources available onshore in Norway
and Sweden, while Denmark is focusing more
on offshore windmills due to the high penetra-
tion of windmills on the land. However, the
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economic attractiveness is limited for parts of
the wind resources, due to the long distance to
transmission lines and areas of demand.

e Hydrogen technology could possibly also start
to contribute towards the end of the 30 years
period we consider. However, considerable
technological development has to take place
before hydrogen technology can become a
commercial aternative. A future “hydrogen
society” also requires fundamental changes in
the energy infrastructure system.

Small-scale options:

e Distributed generation of electricity islikely to
play a moreimportant rolein the future energy
system. Several sources of energy could be ap-
plied, from small windmills to hydrogen. If
fuel cells are applied one could possibly gener-
ate both heat and electricity.

e Geothermal energy is an interesting option for
heat supply in buildings of all sizes. Heat
pump technology is improving quickly, mak-
ing this into a more attractive alternative for
end-users.

e Energy conservation is maybe the most impor-
tant option to take into consideration. Conser-
vation technologies ranges from increased in-
sulation to better building design.

e The solar collector is another technology that
could contribute considerably to the heat sup-
ply in new buildings.

4 FRAMEWORK OF ANALYSIS

4.1 System boundary

The electric power system is considered as the core
of the analysis in our scenario study. However, we also
want to take other types of stationary energy use into
account, like for instance district heating and direct
end-use of gas. In order to compare the results from
different smulation scenarios in a consistent way, we
need to clearly specify our system boundary. One ap-
proach would be to look at the energy supply that is
currently served by dectricity, and constrain the scenar-
ios to only include future projections of this part of the
stationary energy supply. Alternative energy carriers
could still come into account in the scenarios by replac-
ing parts of the eectricity demand. A more fundamen-
tal approach would be to look at the total stationary
demand for energy, divided into end-use groups like
light, mechanical work, heat etc. This would require
the use of either a comprehensive energy system model
like the MARKAL? model, or a number of modes in

2 MARKket ALlocation model — a demand driven en-
ergy system model for optimization of stationary energy
supply within a country or region. This model is used
for planning purposes within several countries.

Paper 2

addition to the dectric power market model, in order to
take all costs and emissions into account. All available
energy carriers would have to be assessed with this
approach. It is also possible to choose something in
between, e.g. looking at the part of stationary energy
use that is currently served by certain energy carriers,
like eg. dectricity, gas and heat, as illustrated in
Figure 11. We choose this approach in our scenario
analysis, with the possihility of extending the system
boundary in later stages of the project.

Centralised options Distributed options

Large-scale Small-scale
technologies technologies

Power plants, CHP Heat
pumps, solar
plants hedt planis otc i colectors loed
‘ response, fuel cells etc.

Electricity
market

Market supply
?
Transport
technologies

g netwrks e -

Gndlmﬁ pipelines,

Figure 11: General framework of analysis, with centralised
and distributed energy supply options. The part of the total
initial energy demand met by the electricity, heat and gas
carriers (market demand) defines the system boundary.

Figure 11 illustrates that the energy resources could
go either through the supply side or directly to the de-
mand side of the market, depending on whether or not
the technologies are connected to energy transport
systems before reaching the end-user. The proportion of
energy demand met by the centralised large-scale tech-
nologies, through local or regiona energy markets,
depend on the current and future technology mix, the
end-user’ s preferences, and the resulting energy prices.
The mix of technologies changes as new investments
are carried out at different places in the system. One
possible scenario is for instance that parts of the de-
mand that is met by the centraised large-scae tech-
nologies today will be met by distributed local tech-
nologies in the future. The participants on the supply
and demand sides might have different motivation for
investing in new technologies. Large-scale investments
in new generation and transportation infrastructure are
likely to be based on pure economic arguments in the
liberalised market. The expected profit of the invest-
ments is usually less important for decisions on the
demand side, particularly for small-scale consumers.
Authorities will therefore need to use a set of different
incentives to trigger the desired investments in the
energy system. Investments on both sides contribute to
dter the characteristics and prices in the eectricity,
heat and gas markets. In the first phase of the project
we focus our analytical analysis on the economic and
technological constraints in the electricity market. The
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conditions in the heat and gas markets are also in-
cluded in the analysis, but with less detail .

4.2 Multi-attribute trade-off analysis and stakeholder
intervention

Multi-attribute trade-off analysis will be applied to
assess different technological energy system solutions.
Figure 12 describes the major steps in the approach.
First we need to define the set of attributes that we want
to use in the comparison of the alternatives. The attrib-
utes include both cost and environmental figures. In the
initial phase of the project we only consider direct
emissions from the energy conversion. However, in the
long run we want to take into account the whole life-
cycle impact of various alternatives. Multiple stake-
holders in the society are affected by the choice of en-
ergy system. It is therefore crucial for the credibility of
the project to establish a dialogue with representatives
from authorities, energy companies, NGO's and others.
Consequently, a stakeholder group is chosen in order to
continuoudly give feedback on the work within the
project. We are planning to have regular meetings with
the stakeholder group, and input from the group is of
importance already in the first step of identifying issues
and attributes.

In the second step we define a set of alternatives that
includes the technological options that we with today’s
knowledge mean could occur within a time horizon of
30 years into the future. We are aiming at putting equal
emphasis on the demand and supply side technologies
in our approach, to avoid the typical supply side bias
that is usually present in similar studies. We also need
to make assumptions about a number of uncertain non-
technological factors that influence the operation of the
energy system. These factors could include assumptions
about general demand growth, fuel prices and the cost
and performance of new technologies. By organising
the uncertainties into a set of futures, we can carry out
sensitivity analysis for the technological alternatives, in
order to assess the risk and sensitivities involved in the
various investment strategies. Each combination of a
technological strategy and a future form one scenario.
Computational models are then applied to analyse all
the scenarios from a cost and environmental point of
view, using the selected attributes from step 1. The
results from the simulations can be expressed in so-
called trade-off graphs, as shown in Figure 12. This
visualisation of the results is useful in the process of
communicating the results to the stakeholder group and
alsoto public at large.

The results from the scenarios are then analysed, in
order to find better technological strategies compared to
the ones initially sdected. Thisis step 3 in the figure.
The choice of attributes could also be revised at the
same time, following discussions with the stakeholder
group. We expect a number of iterations with scenario

runs and stakeholder meetings before reaching final
consensus on what to include in the analysis. Changes
in the selection of strategies, uncertainties and attrib-
utes are accompanied with further development of
modelling tools and refinement of the input data base.
In the end, by analysing the trade-offs between all the
final attributes, our ultimate goal is to reach consensus
on a set of preferable strategies within the stakehol der

group (step 4).

7 Develop & .
47 | e—— .

1} Hdentily e and
Aitributes

Strategiesand Futures
into Scenarios |

§ Measuring Frogre: ; & i &

| AlongTssues & F o
M ......................................... %‘/,

o &
M~ Fpitrcer
0 J Strateges >
1] Ay 0 (Twpacs fov @ [6s orate Futare) A

F dnafze Scenario Data &

iy | Irvent Bettar Strategias

BB Ml 5 e,
% & i Effects of Uncertainty?

i Strongest Options?

< Symergistic Strategies?

% j}%t_,
b ?%h

1] Ay

Figure 12: The four basic steps of performing multi-
atribute trade-off analysis in a multi-stakeholder policy
debate. Source: Connors, S.R. [4].

One of the important characteristics of the multi-
attribute trade-off analysis approach is that we do not
end up with only one optimal solution. That is usually
the case when applying traditional optimisation proce-
dures and models for energy and power system plan-
ning. The result from our analysis will instead be a
number of solutions that meet the requirements for the
given system attributes. At the same time we also ana-
lyse adverse dtrategies that are far from the optimal
trade-off frontier. Awareness of such drategies is also
useful information for decision makers, to avoid in-
vestments with negative implications.

The multi-attribute trade-off analysis has previousy
been applied in New England [4], Switzerland [5] and
the Shangdong region in China. A more comprehensive
description of the general trade-off approach can be
found in [4] and [5]. The conditions in the current
region of analysis, with three different countries and
three very different energy systems involved, give rise
to new research challenges from a modelling point of
view. We aso need to adjust the general framework of
analysis, in order to take into account the new market
conditions in the power sector. Thisis further discussed
in chapter 5.
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4.3 Computational models and input data

A set of models is required to smulate the different
scenarios for the development of the energy system. We
prefer to use so-called bottom-up models, with empha-
sis on the technical description of the system, for this
purpose. Technology investment strategies and assump-
tions about future uncertainties are therefore decided
exogenously and used as input to the models. The
choice of computational models is dependent on the
system boundary, and on the characteristics of the re-
spective energy systems. Figure 13 shows a representa-
tion of models and input data. We want to use this
framework to ssimulate the scenarios for a time period
of 30 yearsinto thefuture.

Assumptions
(strategies, future
uncertainties, attributes

Trade-off anaysis
(trade-off graphs,
MADM)

Stakeholder interaction

Analytical work

Hydropower
simulator

(EMPS model?)

Expansion
" scenarios Electricity market
> simulator
Coordinated M (Multisym?)
input data | District heat market
N Demand simul ator
projections e Gas market
simulator

Figure 13: Schematic representation of models and input
data. The differentiation between stakeholder interaction and
analytical work is indicated. ‘EMPS — EFI's Multiarea Power
Market Simulator is a hydropower optimization model devel-
oped by SINTEF Energy Research, Trondheim Norway.
Multisym is a power market simulator developed by Hen-
wood Technologies, Sacramento CA USA.

As aready stated the dectric services are the core
point of the analysis. A detailed representation of the
power system is therefore a main priority. In the initial
phase of the project we have therefore spent consider-
able time surveying different commercial models that
are capable to meet our needs. In order to represent the
hydropower generation in the system we need to apply
a hydro scheduling model specifically developed for the
conditions in Scandinavia (the EMPS modd). This
mode has a weekly time resolution and is usually used
to optimise the generation and storage of hydropower
resources within atime horizon of 3-5 years. Therepre-
sentation of thermal power generation is not very de-
tailed in the EMPS model. To modd the operation of
thermal plants, their costs and emissions, we therefore
want to apply a more detailed power system model. We
have chosen a chronological model (Multisym) with
hourly time resolution. The model is able to represent
start-up and shutdown costs, minimum up/down times
and quadratic fuel consumption functions in thermal
plants. On the other hand, the model has a simplified
long-term description of hydropower. Consequently, it
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makes sense to first model the hydropower in the
EMPS model, and then use the hydro results asinput to
the Multisym model. A somewhat redlistic representa-
tion of the power transmission requires a multi-area
description of the system. Thisis possible in both mod-
es. So far, we have not identified any particular models
for the heat and gas markets. These two energy carriers
will be treated with less analytical rigour in the first
phase of the project. This approach is justified by the
less complex technical constraints in these systems,
combined with gas and heat’s lower share of the total
energy supply compared to electricity within the region.

A range of different data is necessary to develop con-
sistent scenarios and to run rdiable simulations with
the computer mode's. Regional resource data is needed
to assess the availability and cost of different energy
resources. Renewable sources like hydro- and wind
power must be converted, usually to eectricity, at the
location of the resource. Data about the stochastic
nature of these sources, i.e. parameters describing their
variability over day, season and year, are important to
take them properly into account in the analysis. Com-
bustible resources like oil, gas and biomass are also
energy carriers, and can therefore be transported before
conversion. These sources can also be stored before
usage, and the access to them is more dependent on
human activities than natural phenomenon. The impor-
tant data are therefore resource constraints and price.
Technology data are techno-economic parameters de-
scribing current and expected future fuel efficiencies,
emissions and costs (operation and investment) for the
various energy conversion and transportation technolo-
gies. The physical properties of a given technology are
independent of location, but costs may vary due to dif-
ferent availability of resources. Structural data con-
tains information about the current installed capacities
of the different technologies and demand for the vari-
ous energy carriers within the three countries. Existing
plans for decommissioning of old equipment and con-
struction of new are also important information when
creating the set of strategies and scenarios. The organi-
sation of the energy marketsis also a part of the energy
system structure. In order to establish demand forecasts
we also need macroeconomic data, since the energy
demand traditionally is closely related to the economic
devdopment. In the end we make assumptions about
the future costs of the various fud types. Such price
forecasts go into the group of global data. Various
sources of information will be used to obtain the re-
quired data. In the process of gathering data we can
partly build upon previous work. There are for instance
substantial amounts of relevant data available from the
recent Balmorel modd project [6]. In this project an
investment optimisation model for analyses of the elec-
tricity and CHP markets in the whole Baltic Searegion
was developed. The grouping of data presented aboveis
based on the classification used in the Bamorel model.
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Appendix B

5 MULTI-ATTRIBUTE TRADE-OFF
ANALYSISAND DEREGULATED MARKETS

Energy utilities have traditionally been frequent us-
ers of multi-attribute decision making for integrated
resource planning within their own area of supply. The
two major purposes of using the technique are to de-
scribe the trade-offs among different attributes, and to
help participants apply the resultsrationally and consis-
tently [7]. Usually, the alternative plans are ranked in
the end, in order to make the decision making easier for
the utility. A number of multi-objective optimisation
methodologies have been developed for this purpose
(see [7] and [8]). This approach makes sense when
there is one decision maker, e.g. an energy utility, mak-
ing one investment decision. In our project we are
studying a region of 3 countries with alarge number of
decison makers, particularly when including invest-
ments in technologies on the demand side. Theliberali-
sation of the power market has aso resulted in more
decentralised decison making. The importance of
ranking the alternatives and identifying the optimal one
is therefore less important, as there is no single deci-
sion maker that can make the optimal alternative be-
come a reality. However, by identifying a set of several
acceptable alternatives we still meet the two purposes of
the trade-off technique, and also in a way that we mean
are better suited for the conditions in the Scandinavian
region.

The framework presented in this paper identifies a
set of desired energy supply solutions, based upon the
views within the stakeholder group. However, the re-
sults from the smulations do not address how to make
sure that the right investments are made, so that the
system develops in the desired direction. Even though
the authorities have given up parts of their direct influ-
ence on the large-scale investment decisions, they still
have an interest in controlling that the infrastructure
changes in the system are to the better. They can do
this through their direct ownership in the energy sector,
although the trend is a movement towards more private
ownership. Political decisions concerning project ap-
provals, taxes, subsidies and research spending also
affect the investment decisions. Other types of compu-
tational models, including investments as internal (en-
dogenous) variables, are required to analyse the effect
of such palitical measures upon the technology mix.
Modelling of investment dynamics in the energy and
power markets has gained increased attention in the
deregulated market setting [9]. It is worth noting that
we could possibly also address investment dynamics
within our trade-off analysis project, by adding an extra
step to the 4 basic steps presented in Figure 12.

The trade-offs between pollution attributes like SO,,
NO, and CO,-emissions on the one hand, and total
system costs on the other hand, are usually the trade-
offs that are given most attention in traditional inte-

grated resource planning. In our setting, where the
costs are spread between alarge number of participants,
the aggregate system costs might, however, be of less
interest. The utilities' investments in new generation
facilities are profit driven today, as opposed to the con-
ditions in the regulated industry where investments
were more based on expectations about future demand.
Large-scale supply side investments have become more
risky, as end-users now can switch between utilities.
This makes it more difficult for the utilities to recover
poorly judged investments ssimply by increasing the
price to their customers. The risk profiles for different
participants in the energy markets should therefore be
taken into account when assessing aggregate cost fig-
ures, e.g. by adjusting the discount factor. The utilities
objective for operating the system has also changed,
from cost minimisation in the old regime to profit
maximisation today. As aresult, the presence of market
power and strategic bidding are topics that are fre-
quently discussed, particularly in power markets. We
include this into our analysis by using a power market
model that can use bid-based instead of cost-based
dispatch of the power system.

6 CONCLUSION AND FUTURE WORK

The current status for the energy supply within Nor-
way, Sweden and Denmark are presented in the first
part of the paper. The conditions in this region, with
very different characteristics of the energy system in the
three countries and a common deregulated power mar-
ket, makes it very well suited for testing and applying
new energy planning methodologies. The multi-
attribute trade-off analysis framework, where frequent
interaction with multiple stakeholders is one of the
main features, could possibly become a very useful tool
for energy and environmental assessments. However,
the framework must be further developed, in order to
adjust completely to a deregulated market setting. The
methodological development will continue within the
current project. At the same time we will carry out the
specific analysis of the Scandinavian region under close
cooperation with the stakeholder group.
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