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PREFACE 

The study presented in this thesis is the result of collaborative efforts between the Norwegian 

Institute for Nature Research (NINA) and the Sokoine University of Agriculture (SUA) with the 

inestimable funding from the Norwegian Programme for Development, Research and Education 

(NUFU). Professor Eivin Røskaft then Director of NINA, and Professor Romanus Ishengoma, Dean 

of the Faculty of Forestry and Nature Conservation SUA initiated a platform for smooth 

collaborative arrangements which gave me an opportunity to study the ranging patterns and 

population structure of wildebeest Connochaetes taurinus in the Serengeti National Park. Indeed, 

my ambitious objectives made the focus of the study difficult to achieve given the size of the 

Serengeti ecosystem and conflicting interests in the wildebeest from various researchers. 

Accordingly, as time went by, some of the objectives were changed to become more focused and I 

should sincerely thank my supervisors, Professor Eivin Røskaft, Professor Johan du Toit, Dr. 

Sigbjørn Stokke and Dr. Simon Mduma, for their proper guidance and support. Professor Eivin 

Røskaft gave up much of his precious time for discussion, sometimes without appointment.    

 

Many people and institutions assisted me in various ways before and during data collection, 

analysis and write-up while in Serengeti and Trondheim. I have also benefited from using some of 

the data from others, with few restrictions. The funding and efforts they spent in data collection 

deserve my sincere gratitude. Very many thanks to my employer, the Sokoine University of 

Agriculture, for granting permission to further my studies and my host, the Department of Biology 

at the Norwegian University of Science and Technology (NTNU), for creating a positive working 

environment. I have also had the opportunity to work with Mr. Kai Collins and Mr. Craig Tumbling 

at the University of Pretoria, South Africa, who assisted me tirelessly with the basics of GIS 

(ArcView and ArcGIS) and vortex modelling, as well as literature. Miss Rosena Kibasa at Serengeti 
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GIS Centre, Mr. Gabriel Maliti at Conservation Information Monitoring (CIMU) and Dr. Ivar 

Herfindal at NTNU gave me much help with the GIS (ArcView and ArcGIS) software applications, 

and Dr. Børge Moe assisted me in the analyses using S-PLUS. I am so grateful to Dr. Charles 

Mlingwa (former Director General of TAWIRI) and the Serengeti TAWIRI staff for hosting me 

during the entire period of data collection. I am greatly indebted to the Serengeti National Park 

authority and its staff for field assistance, likewise the staff of Maswa Game Reserve, Ikorongo-

Grumeti Game Reserve, Frankfurt Zoological Society and Serengeti GIS Centre who made 

themselves available for regular consultations.  

 

I am also grateful to my beloved wife, Edina Kokusima, who willingly accepted and endured my 

long absences. My children, Laura, Linda, Lisa and Victor, were very composed and sympathetic 

whenever I called them. I also enjoyed the support of my parents, sisters and brothers through their 

prayers. Last, but not least, I would like to thank my colleagues and fellow students for sharing 

ideas and jokes. All of this would have been impossible without the blessing the Almighty God 

gave me.  

Tusen takk! 

Thanks!  Ahsante! 

 

Trondheim, 2007  

Vedasto Gabriel Ndibalema 
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SUMMARY 

This thesis investigates the demographic variation, distribution and wildebeest habitat use in the 

Serengeti National Park (SNP) and its adjacent protected areas in northern Tanzania. Specifically, 

the study i) examines whether life history strategies displayed by wildebeest sub-populations could 

cause variations in sex ratio and calf survival, ii) tests whether the orientation of wildebeest to 

spatial variations in food resources may have a considerable consequence on their body conditions 

when sub-populations and group sexes are compared, iii) investigates to what extent dust raised by 

moving vehicles affects the density and foraging distribution of grazers along the roads, iv) 

recommends management options suitable for conservation planning of migrating wildebeest. 

 

The sex ratio in the resident sub-population was significantly more female biased than that in the 

migratory sub-population throughout the study period. Higher birth rates with a more synchronous 

birth season were more evident in the migratory than the resident sub-population, although in both 

cases they coincided with seasonal rainfall. Furthermore, a higher annual mean calf survival rate 

[estimate (0.49)] was recorded in the migratory sub-population than among the residents (0.31). The 

proportionately higher calf mortality in the resident sub-population can probably be attributed to 

predation resulting from asynchronous birth. Predator swamping from synchronous birth in the 

migrants appeared to be more important for the calf than yearling survivals, which was much lower 

(0.44) than in the resident (0.90) populations. Since birth seasonality in resident (December-January) 

and migratory (February-March) sub-populations appeared to be distinct, their different life forms 

strategies may have demographic consequences worsened by environmental and human factors.  

 

Demographic variations between sub-populations were associated with nutritional differences 

among wildebeest individuals grouped into sexes and seasons. The residents were on the whole 
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nutritionally better-off than the migrants, perhaps due to a better nutritional environment relative to 

the energetic costs of migrating. Equally, the timing of reproductive investment strategically 

differed between the sexes due to their life history traits. Nutritional costs associated with 

pregnancy, lactation and parental care constrained the body condition of females (through 

reproduction and survival) in the event of serious food shortage, in contrast to males who thrived 

comparatively better, even in relatively poor environments. Northward migration, motivated by 

food abundance, correlated with a south-north rainfall gradient as claimed by previous migration 

hypotheses. 

 

Grazing along roadsides correlated negatively with the density of dust, which increased 

progressively with traffic volume and speed as seasons advanced. More dust gathered in the grass 

on the west than on the east side of the road, basically due to wind effects. Dust deposition was 

comparatively higher on the short grasses than the long grasses during the dry and late-dry seasons 

than during the wet season when paired distances (< 300m) were compared. However, most grazers 

fed further out on the west side due to higher dust densities on roadside swards than on the east side. 

This trend supported the ‘dust aversion hypothesis’, which states that grasses which trap a higher 

level of dust density are avoided as ungulates tend to feed further away from roads than expected 

from a random distribution. The test predictions from responsive behaviours of most grazers due to 

the ‘road disturbance’ and ‘road attraction’ hypotheses were not supported.  

 

Notwithstanding a heterogeneous distribution of resources in the Serengeti ecosystem, habitat use at 

the ecosystem scale indicates regular selection for open grassland compared to other vegetation 

types, probably due to availability rather than actual preference. The use of open grassland appeared 

to be strongest in the Serengeti National Park (SNP), probably due to the level of protection coupled 
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with productivity and nutritional suitability. Open woodland, bush with emergent trees and wooded 

grassland only served as important habitats during the critical period of food shortage. Resource 

selection in these habitat patches was largely dictated by grass greenness, the period of the day and 

the speed of wildebeest movement, which was sex related.  

 

Thus, when managing wildebeest populations, effort should be made to control the effects of 

anthropogenic activities on the landscape and the wildebeest through habitat changes and 

demographic variations, respectively. In conjunction with the ongoing natural and man-made 

changes, wildebeest population viability models need to be in place so that managers can predict the 

future of the Serengeti wildebeest and their migration.  
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INTRODUCTION 

Predicting the source of variations in the size of populations and identifying factors causing 

fluctuations in species abundance are basic questions, both in theoretical and applied ecology 

(Begon et al. 1987). Population fluctuations have been explained better by the relative importance 

of density-dependent (Elton 1949; Nicholson 1933, 1958) and density-independent processes 

(Andrewartha & Birch 1954; Haldane 1953); nevertheless, density-dependent theory has been 

central to the dynamics of most animal populations. In their studies, Andrewartha & Birch (1954) 

focused on population limitations, whereas Nicholson (1958) dwelt on population regulation. 

Limitation is the process that sets an equilibrium point and is caused by all forms of mortality and 

loss in reproduction, whereas regulation is the tendency of the population to return, due to density- 

dependent factors, to the equilibrium level when disturbed from it (Daufresne & Renault 2006; 

Sinclair & Perch 1996). Therefore, against this backdrop, environmental constraints and regulatory 

processes are likely to cause population oscillations, limit resources and alter the density of 

populations by increasing mortality and/or dispersal, reducing reproduction, or both.  

 

The population dynamics of ungulates are determined by a combination of stochastic and density-

dependent factors (Sæther et al. 2002; Coulson et al. 2001). Fluctuating climatic conditions tend to 

affect the population dynamics of various arrays of animal species (Hone & Clutton-Brock 2007; 

Sæther et al. 2004; Stenseth et al. 2002; Post & Stenseth 1999). Stochastic processes through 

environmental factors impede the reproductive output of ungulate populations through delayed 

maturity, reduced pregnancy rates and calf survival (Herfindal et al. 2006; Gaillard et al. 1998; 

Clutton-Brock et al. 1988; Schaffer 1974). For example, great variations in climate and food 

availability between seasons in temperate and arctic regions affect ungulate populations so that they 

scarcely meet their nutritional requirements in winter because of low-quality forage (Herfindal et al. 
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Banyikwa 1995; McNaughton 1990). Short grasslands have substantially higher concentrations of 

minerals in the wet-season range of migratory wildebeest than other Serengeti grasslands 

(McNaughton & Banyikwa 1995; McNaughton 1989). The body condition of wildebeest therefore 

improves where the best foraging niche (i.e. quality and quantity) is accessed and deteriorates in 

poor niches (Mduma et al. 1999; Sinclair & Arcese 1995). Moreover, feeding strategies may differ 

among wildebeest individuals, and apparent differences exist due to behavioural adaptation of sub-

groups and sex-specific nutritional requirements coupled with body-size related forage selection.  

 

The current study therefore provided an opportunity to examine the differences in sex ratios and 

annual calf and yearling survival between the two Serengeti wildebeest sub-populations. Previous 

studies (Mduma et al. 1999; Mduma 1996; Hilborn & Sinclair 1979; Estes 1976; Sinclair 1977b; 

Watson 1969; Anderson & Talbot 1965), through simple population counts, dwelt on population 

dynamics and did not compare demographic variations between ‘migratory’ and ‘resident’ sub-

populations. Life history strategies displayed between wildebeest sub-populations are also assumed 

to cause differences in body condition during different seasons due to changes in food quality and 

abundance. Predictions derived from deviations in the body condition, along with food regulation 

hypotheses, were previously tested using analyses of bone-marrow fat (Mduma et al. 1999; Mduma 

1996; Sinclair & Arcese 1995). These predictions, however, were based on wildebeest predation 

and did not focus on visually observable variations in physical condition between sexes and sub-

populations in distinct reproductive periods. The body condition was therefore compared to test the 

effect of spatial variation in wildebeest resource use and nutrition.  

 

Furthermore, tracking of food compels ungulates to randomly use road verges. However, it is 

hypothesised that most grazers avoid roads due to densities of dust and/or disturbance from vehicles, 
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whereas locally enhanced runoff from rainfall combined with soil disturbance provides green grass 

near roads which attracts ungulates to feed along the verges. Therefore, it was predicted that road 

dust and/or traffic disturbance from the ‘dust aversion’ and ‘road disturbance’ hypotheses in the 

SNP would cause ungulates to feed further from roads than expected from a random distribution. 

Alternatively, it was predicted that road attractants in the SNP would elicit a responsive behaviour 

among ungulates towards roads. All the predictions were tested together with resource use by 

surrogate species to explore the likely effects of natural and anthropogenic causes on the wildebeest 

population between habitat patches at the ecosystem scale. Finally, a recent study on wildebeest 

movements (Thirgood et al. 2004) indicated patterns of residence time and timing of migration in 

the Serengeti ecosystem, but the conclusions were supported by relatively little detailed information. 

In the present study, patterns of wildebeest movement, including habitat use, are estimated on a 

finer scale and tested for differences in movement and patterns of use in habitat patches among 

individual, collared wildebeest.   

 

This thesis investigates the factors behind the observed variations in demographic patterns between 

the Serengeti wildebeest sub-populations. Mortality agents other than food are predicted to affect 

the sex ratio, birth rate and its synchrony because of life-history events. I address age-specific 

mortality through the calf-survival rate and adult mortality from sex ratio differences as a reflection 

of wildebeest regulation from density-dependent and/or density-independent mechanisms (Paper I). 

Nutritional differences and the demographic consequences of feeding strategies displayed between 

the two sub-populations and sexes are also compared (Paper II).  

 

The study used the feeding response from surrogate species to test whether the density and 

distribution of wildebeest are ecologically affected by the influence of motor traffic on roadside 
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forage resources to raise the awareness of ecologists and managers to the potential threat of roads 

and associated tourist facilities (Paper III). Since optimal foraging models assume that animals use 

‘rules of thumb’ to decide where to forage (Musiega & Kazaidi 2004; Bailey et al. 1996), 

wildebeests would use ‘spatial memory’ to improve foraging efficiency by orienting themselves to 

nutrient-rich sites more frequently than to nutrient poor-sites. Finally, the study examined how 

biotic and abiotic components of the Serengeti ecosystem affect the distribution and grazing 

patterns of wildebeest. Telemetry data were analysed to investigate, among other things, the spatial 

influence of humans on wildebeest movements (Paper IV), as human activities interfere with animal 

distribution patterns or pre-empt access to critical habits (Kideghesho et al. 2005; Williamsom et al. 

1988; Coughenour & Singer 1991; Corfield 1973).  

 

In conclusion, the study looks into the interactive effect of biotic and abiotic factors to consider 

management options appropriate for conserving Serengeti wildebeest sub-populations and 

migration. 

 

AIMS OF THE THESIS 

The main aim of this thesis is to assess the effects of ecological gradients and anthropogenic 

activities on wildebeest in the Serengeti ecosystem in order to enhance management practices. The 

40 years’ records of Serengeti history confirm wildebeest to be the most studied animal, with much 

emphasis on population structure and dynamics (see Boone et al. 2006; Musiega & Kazaidi 2004; 

Thirgood et al. 2004; Mduma et al. 1999; Mduma 1996; Campbell & Borner 1995; Sinclair 1995; 

Dublin et al. 1990; Sinclair 1985; Sinclair & Norton-Griffiths 1982; Norton-Griffith 1973; Watson 

1967). Therefore, the thesis focuses on strategic differences between the two Serengeti sub-

populations in utilising environmental gradients with the aim to address the following questions: 
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1. Can different life history strategies among Serengeti wildebeests account for the variations 

in population structure between the resident and migratory sub-populations? (Papers I & II) 

2. Does the spatial variation in environmental conditions and resources have an effect on body 

condition between sub-populations and group sexes of wildebeest? (Paper II) 

3. To what extent can the density and distribution of grazers be affected by distance from a 

road with variable densities of dust produced by motor traffic? (Paper III) 

4. What conservation strategy would be suitable to protect migrating wildebeest if the habitats 

are utilised selectively? (Paper IV) 

 

 

STUDY AREA 

The Serengeti-Mara ecosystem (as described in papers I, II and IV) (Fig. 4) is defined as the total 

range of the migratory population of wildebeest, zebra (Equus burchelli), Thompson’s gazelle 

(Gazella thompson) and elands (Taurotragus oryx) (Pennycuick 1975). The system stretches over 

northern Tanzania and southern Kenya (34° to 36° E, 1°15’ to 3°30’ S) covering nearly 25,000 km2 

(Sinclair 1979a). Tanzania is bound by pastoral-agricultural communities in the west, whereas the 

forested Loita hills in Kenya mark the north-eastern edge (Fig. 4). The margin of the Serengeti 

plains delimits the southern extension and the Ngorongoro crater highland and Gregory rift 

escarpment merged by the Loita hills, extend south to Tanzania to form the eastern boundary. The 

system has a conservation core zone consisting of the SNP, which is continuous with the Masai-

Mara National Reserve in Kenya, the Ngorongoro Conservation Area (NCA), the Loliondo Game 

Controlled Area, and the Maswa, Grumeti and Ikorongo game reserves in Tanzania.  
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(Estes 1991), feed in the morning and afternoon, and are known to eat tree leaves when grass is not 

available (Kingdon 1989). Unlike most African mammals, wildebeest practise birth synchrony, 

most of the young being born during a few weeks (Estes 1966, 1976). 

 

Five ‘subspecies’ of blue wildebeest have been described in Africa, based on morphological criteria. 

Two of these occur in east Africa, with C. t. albojubatus - the palest - being found to the east and C. 

t. mearnsi - the darkest – to the west of the Eastern Rift Valley in Kenya and Tanzania, respectively. 

Three other subspecies, C. t. johnstoni, C. t. cooksoni and C. t. taurinus, are found in southern 

Tanzania, Zambia’s Luangwa Valley and southern Africa, respectively (Estes 1991). Large herds 

numbering thousands are observed on the Tanzania Serengeti equatorial plain where the study was 

based. Smaller herds of about thirty are found in northern Botswana, Zimbabwe (Unwin 2003) and 

the South African locations of Waterberg, the Krüger National Park and Mala Mala (Hogan et al. 

2006).  

 

Over one million wildebeests in Serengeti are sustained by a migratory system which provides 

seasonal grazing; a strategy to avoid competition with other ungulates for part of the year (Fryxell 

& Sinclair 1988; Maddock 1979). Details of the natural history and ranging pattern of Serengeti 

wildebeest are available elsewhere (Estes 1966; 1976; 1991; Kingdon 1982; Leuthold 1977; 

Sinclair 1977a; 1977b; Talbot and Talbolt 1963; Watson 1967). While the status of the species is 

considered secure as a whole, there is concern for its viability as its habitat range is being slowly 

marginalised by hunting, cattle ranching and habitat intrusion stemming from overpopulation by 

humans (Hogan et al. 2006; Campbell & Hofer 1995). 
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RESULTS AND DISCUSSION 

Question 1: Can different life history strategies among Serengeti wildebeest account for 

variations in population structure between resident and migratory sub-populations? (Paper I) 

Sampled wildebeest indicated a considerable variation in the relative percentages of individual 

females and calves between the resident and migratory sub-populations. The percentage of male 

individuals was also more pronounced in migrants, but overall the male-female sex ratio indicated a 

strong female-biased resident sub-population compared to the migratory one in all study years. 

These differences in sex ratios may suggest selective mortality in the sedentary population and not 

in mobile aggregated male individuals. Two assumptions based on previous models could explain 

the biased sex ratio, i) recruitment of initially skewed sexes at birth (Trivers & Willard 1973), ii) 

higher male mortality (Fischer & Linsernmair 2002; Holland et al., 2002; Fowler & Smith 1981; 

Leuthold 1977; Caughley 1976; Estes 1974). Both assumptions reflect a scenario typical for both 

Serengeti wildebeest sub-populations, but residents appeared to be more vulnerable to predation 

and/or illegal hunting (Holmern et al. 2006; Ottichilo et al. 2001; Hofer et al. 1993; Georgiadis 

1988) than migrants by virtue of their relative densities. Generally, the sex ratio is considered to be 

equal or slightly in favour of males at birth, but it changes slowly until males separate from females 

owing to increased male mortality due to higher exposure to mortality agents (Sinclair & Arcese 

1995).  

 

The two sub-populations also indicated clear differences in birth seasonality, suggesting an early 

birth in residents (December-February) and a late birth in migrants (February-April) with 

consequent peak fluctuations. The timing of labour appeared to be greatly dependent on the 

influence of the seasonal rainfall on food resources coupled with the condition of wildebeest sexes 

predetermined by life history events. Births in the migratory sub-population were highly 
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synchronised with a higher proportional mean annual calf survival rate of 0.49 compared to 0.31 in 

the residents; and since peak seasons closely matched with rainfall, variability appeared to be 

controlled by seasonal rainfall. The observed differences in birth peaks among migrants in the two 

breeding seasons were perhaps typical responses to climatic variations (Estes 1976; Watson 1969; 

Talbot & Talbot 1963). Rainfall, by improving forage quality, was the main factor behind such 

variations, as the timing of birth positively correlated with the seasonal variability in rainfall. 

Higher mean calf survival in the migrants confirmed previous observations that calf mortalities are 

not regulated by natural predation, but are instead density dependent (Mduma et al. 1999; Mduma 

1996; Talbot & Talbot 1963), including separation of calves from their mothers when large 

aggregations are disturbed. Accordingly, the accelerated removal of dominant males in the resident 

sub-population, through natural and/or human predation, might have allowed partially incompetent 

males to take part in the breeding process, the consequence of which is the reduced birth rate for 

residents compared to a closely balanced sex ratio in the migratory sub-population. 

 

Question 2: Does the spatial variation in environmental conditions and resources have an 

effect on body conditions between sub-populations and group sexes of wildebeest? (Paper II) 

General observations of the body condition indicated a healthy Serengeti wildebeest population 

where 79% of the individuals were in good body condition, 19% in moderate and 2% in poor body 

condition. However, differences in the body condition were evident between sub-populations and 

sexes. When data were pooled, the resident sub-population and female individuals were in better 

condition. Seasonal changes correlated with differences in body condition within and between sub-

populations and sexes during pre- and post-reproductive periods. Residents were, on average, 

nutritionally in better condition than migrants because they subsist optimally on abundant food. 
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This observation supports the ‘predation hypothesis’, in that migratory wildebeest should be in a 

worse body condition than residents due to the energetic costs of migrating. 

 

Predictions from the ‘nutrition hypothesis’, that the migrants should be in better condition than the 

residents since the energetic benefits of better food should more than compensate for the costs of 

migrating, were not supported. This could be attributed to the assumed body condition weakening 

from the cost of migration rather than from absolute food abundance. As predicted, the northward 

migration was associated with the improved condition of migrant individuals, which nevertheless 

did not compare favourably to residents because of the assumed predation-sensitive food foraging. 

Predation-sensitive foraging influences such behaviour as vigilance (Peacor et al. 2002); patch use, 

diet and habitat selection, including the sexual activities of individual animals (Nelson et al. 2004; 

Kie 1999; Sinclair & Arcese 1995).     

 

In addition, resident males were in better condition during post-rut than pre-rut compared to 

migrants, whereas migratory males were in better condition during rut and their condition dropped 

abruptly during the post-rut period. These differences were perhaps attributed to chance. But males 

usually accumulate fat reserves after rut for the next breeding cycle; nevertheless, the timing 

between the two sub-populations appeared to differ significantly, probably due to variations in 

social and reproductive phenology. Although the two sub-populations revealed the benefits of 

improved nutrition during rut, the condition of migratory males dropped considerably after rut, with 

a quick recovery thereafter. The behavioural mechanisms for locating high-quality food in specific 

habitats with different mortality risks probably have selective advantages to migrants (Kinnison et 

al. 2001). As the sex ratio among the migratory and resident sub-populations varied 

disproportionately (Paper I), it seemed profitable for migratory males to search for higher energy 
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food for competitive mating during the dormant period (Forsyth et al. 2005; Sinclair & Fryxell 

1985).  

 

Basically, resource competition among migratory males during and after rut could be more severe 

than would be expected among residents, because there were relatively fewer males amongst 

residents. Moreover, resident males optimise energy from easily accessible resources in close 

habitats, which imposes less physiological stress to adversely constrain body conditions in post- 

rather than pre-rut periods. The condition of females varied throughout the periods, but was 

generally better during the post-birth stage in both the resident and migratory sub-populations. The 

drop in condition in migrant females toward the dry period was probably attributable to nutritional 

stress associated with predation-sensitive foraging (Sinclair & Arcese 1995). Generally, however, 

females were more affected by variations in the environment than males, perhaps due to a higher 

demand for energy linked to pregnancy, lactation and parental care. 

 

Question 3: To what extent can grazer density and distribution be affected by distance from 

the road with variable densities of dust produced by motor traffic? (Paper III) 

The increasing number of tourist vehicles was associated with the increased density of dust along 

Serengeti roads. The effects of wind speed and direction, vehicle intensity and speed were additive 

during the dry season. The density of dust decreased with distances from the road up to 300 m and 

indicated a strong correlation with traffic volume at the closest distance of 100 m. Minor seasonal 

variations in the density of dust was evident at 200 m, and increased significantly more on the west 

side than the east side of a road due to the effect of the westerly wind blowing at an average speed 

of 13.2 km hr-1.  
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The distribution and relative density of grazers determined by distance sampling revealed road 

aversion behaviour on the west side where foliage was heavily dust contaminated compared to the 

east side. Nevertheless, it was hard to link a road aversion response with vehicle disturbances (i.e. 

noise and/or road kills) because the test predictions for these hypotheses were not supported. 

Moreover, the frequencies of observations averaged during the study period at the closest 

perpendicular distances would have been practically equal on either side of the road for the vehicle 

disturbance and road attraction hypotheses to be supported, given the random nature of resource 

distribution. Belsky (1985) suggested that very little impact of road traffic on the vegetation 

distribution was required to significantly alter the foraging patterns of sampled grazers.  

 

Usually, foliage contaminated with a fairly high level of dust contains teeth abrasive silica 

(Williams & Kay 2001; McNaughton et al. 1985). Only the Thompson’s Gazelle seemed to show a 

preference for moist Digitaria macroblephara grasses on roadsides which apparently had an 

increased level of dust density during the dry season. The reason for this was not obvious, but it was 

perhaps a response to immediate metabolic demands for moist grass (Wilmshurst et al. 1999). 

Although the relationship between the foraging distribution of grazers and road ecology is complex, 

our findings have fundamental ecological implications in that there is a more than 30% annual 

increase in vehicle numbers, and their speed, in addition to producing more road dust, has signalled 

an important ecological variant to herbivore distribution and grazing pattern along the SNP 

roadsides. Based on extrapolated figures, our conservative estimate speculates that over 700 km2 of 

SNP roadside vegetation are contaminated by dust which accumulates annually through vehicular 

movements associated also with road kills.    
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Question 4: What conservation strategy would be suitable to protect migration if wildebeest 

habitat use is constrained by human activities? (Paper IV)    

Movements of wildebeest were strongly correlated with the highly variable habitat conditions 

during the study period. Habitat use indicated regular selection for open grassland compared to 

other habitats, although, at the ecosystem scale, wildebeest appeared to be influenced by food 

availability rather than actual habitat preference. The use of open grassland appeared to be strongest 

in the Serengeti National Park (SNP), doubtless due to the level of protection and nutritional 

suitability (McNaughton 1990; Murray 1995; Banyikwa 1976). Since open short grasslands are 

greatly more productive during the wet season than other seasons (Wilmshurst et al. 1999; Murray 

1995; McNaughton 1990; McNaughton & Banyikwa 1995), there is a great need for high-quality 

food in productive areas which serve as mating and calving grounds (Mduma 1996; Estes 1969).  

 

Habitats the western Serengeti seem to have been only slightly used in the early dry period when 

collared wildebeest were apparently moving quickly northwards. During this period, open 

woodland, bush with emergent trees and wooded grassland appeared to be important habitats 

overall. Strong selection for open woodland compared to wooded grassland, and for wooded 

grassland relative to bush with emergent trees, could be linked to changed weather, period of the 

day and sexes. This suggests that wildebeest may feed opportunistically when food resources are 

scarce, and indicate selection only when food is abundant. The availability of green grass and the 

presence of surface water apparently strongly correlated with wildebeest movements, even though 

selection for inland water and permanent swamps/marsh was not apparent. Perhaps open woodland 

and wooded grassland were selected most in the western corridor during the transition period due to 

the presence of rivers, rather than the dominance and composition of green grasses.  
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Our findings and previous studies (Thirgood et al. 2004; Talbot & Talbot 1963) indicate that 

wildebeest movements are being increasingly concentrated in core protected areas, probably more 

so today than past studies indicate (Fig. 3). The increased rate of daily wildebeest speed in open 

grassland, bush with emergent trees, bush grassland, open bush and open woodland may be 

associated with effective avoidance of, or flight response from, environments where they risked 

predation (Caro 2005; Fryxell & Sinclair 1988) as these habitats are adjacent to the western corridor 

where human activities are intensive. Given the level of sensitivity toward predation, on average, 

females moved faster than males in these habitats. 

 

 

MANAGEMENT AND CONSERVATION IMPLICATIONS 

The thesis reveals that the observed demographic variations in the studied sub-populations stem 

from ecological and anthropogenic actions. For instance, cultivation and settlement outside the park 

boundaries have blocked elephant Loxodonta africana movements and changed their distribution. 

The combination of elephants, uncontrolled fires and subsequent browsing and stunting of re-

growth by giraffes has caused a decline in woodlands and a drop in rainfall (Fig. 5). Since the 

quality and quantity of forage resources at the ecosystem scale depend on the amount of rainfall, the 

biotic components of the system may be severely affected. All told, if the ecological effects of large 

herbivores are combined with human population growth west of the park, which has expanded 

rapidly over the past 40 years and brought an increase in wildlife and livestock populations, 

wildebeest can be affected because they are density dependent.  
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Figure 5. Total Serengeti annual rainfall (after Coughenour 2005) 

 

Likewise, the demand for land appears to be increasingly higher in the western part of Serengeti 

since wildlife resources are depleted elsewhere. As a consequence, 1) grazing land is becoming 

scarce as pasture land is converted into cropland, 2) local people are vulnerable to external 

development and large-scale agricultural schemes which do not benefit local communities. 

Agricultural encroachments have appeared on park boundaries and former subsistence poaching is 

slowly becoming large scale and commercial, with an estimated 40,000 - 200,000 animals being 

killed annually (Mduma 1996; Campbell & Hofer 1995), 3) the need for wild meat has also been 

exacerbated by the relatively low contribution from tourism to the local economy (Leader-Williams 

et al. 1996). Trends from a previous telemetry study (Thirgood et al. 2004; including this one) have 

indicated a potential human threat to significantly confining wildebeest ranges within core protected 

areas; yet, the ecological effects of roads seem to be additive.  

 

Perhaps long-term conservation plans involving local communities (e.g. Wildlife Management 

Areas – WMA), which have been introduced in western Serengeti, should be enhanced. Managers 

should also intervene when conservation objectives are being compromised by financial gains. For 
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instance, the increased vehicular traffic on Serengeti roads not only disrupts animal behaviour, but 

also impinges on the foliage quality, and kills many animals. The imposed and suggested 

restrictions on speed (e.g. speed bumps) and types of vehicle, especially heavy-duty vehicles, in the 

SNP will just be a good starting point.  

 

FUTURE CHALLENGES 

Several studies (including this one) have pinpointed potential threats from natural and man-made 

changes to the Serengeti ecosystem and wildebeest in particular. Since natural changes occur over a 

long period of time, management should keep abreast of predictable population and ecosystem 

changes by undertaking long-term studies to permit interpretations of possibly unpredictable 

consequences. Many of the observed demographic variations in the wildebeest sub-populations, 

together with resource selection at a spatial scale, could be associated with complex interactions of 

natural changes in the Serengeti environment through environmental events as well as ecological 

succession. For instance, rainfall through food supply is the main driver of the ecosystem and varies 

greatly from year to year, with a tendency to fail after every 10-year cycle.  

 

Non-natural changes may result from tourism, habitat encroachment (e.g. large- and small-scale 

farming), excessive hunting, fire and disease transfer from humans to wildlife. When these changes 

are detected, comparison should be made inside and outside the protected areas. For instance, an 

introduction of alien species into Serengeti through tourism may have profound ecological 

dimensions including changes in the vegetation structure and species composition. Most of the 

exotic grass species adapt quickly, thereby ravaging forage plants preferred by ungulates and 

consequently impinging on the quality of grasses, hence reshaping the patterns of migration owing 

to poor historical knowledge. Moreover, the ecosystem has lost over 18% of its rangeland to 
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cultivation between 1975 and 1996 around Kenya’s Masai-Mara National Reserve (Homewood et 

al. 2001; Homewood et al. 2002) and the western and north-western dispersal areas are still being 

transformed from pastoral grazing land to arable land and human settlement (Sinclair 1995; Sinclair 

& Arcese 1995). Managers should therefore strive to mitigate non-natural changes within protected 

areas by controlling tourism and preventing illegal extraction of resources. If the newly introduced 

community-run wildlife management areas (WMA) become operational, an additional buffer zone 

around the western Serengeti will reduce encroachment and probably widen the seasonal migratory 

range. In addition, the WMA approaches will instil conservation awareness and make local 

communities feel that they are custodians of wildlife resources, while benefiting directly through 

sustainable utilisation. 

 

Since managing migratory movements entails managing the Serengeti ecosystem, conservation of 

large species such as wildebeest can be challenging because they require sizeable protected areas. 

So far, the existing management challenges clearly show that the park is still extremely important as 

far as conservation migration is concerned, but it alone cannot protect wildebeest. Overall, however, 

long-term data are needed to develop a complex spatial model to explain the interactive effects of 

catastrophic events (i.e. drought) and man-made changes for the viability of wildebeest. The fact 

that the population is not threatened from extinction should not preclude viability analyses, as 

wildebeest can be vulnerable to catastrophic events, as well as regulatory phenomena which are 

density dependent.  
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Abstract 

Although mode of life and environmental conditions can predict the composition of relative 

age and sex structure in most savannah ungulate populations; no comparable demographic 

studies have previously been reported in Serengeti wildebeest (Connochaetes taurinus) sub-

populations, Tanzania.  Here, I report estimated annual sex ratio, calf survival rate and birth 

seasonality between resident and migratory sub-populations to test the variation in 

demographic rates and patterns. Results indicate that the sex ratio was significantly more 

female biased in the resident and slightly balanced in the migratory sub-population. Migrants 

had a higher birth rate with a more synchronous birth season than the resident sub-population. 

Apparently, birth seasonality in the migratory sub-population coincided with seasonal 

variability of rainfall and birth synchrony was more variable in the migrants than in the 

resident sub-population. The migratory sub-population had a higher annual proportional mean 

calf survival estimate (0.49) than the residents (0.31) probably due to higher calf predation 

mortality in the western corridor. Nevertheless, the proportion of yearling survival rate was 

much lower (0.44) in migrants compared to residents (0.90). Our results indicate that different 

life history strategies in the two sub-populations have demographic and conservation 

consequences engrossed in ecological, environmental and human factors. 

 

Key words: birth synchrony; calf mortality; Connochates taurinus; migratory wildebeest; 

population structure; resident wildebeest 
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The explanation for variation in sex ratios at birth is ingrained on relative profitability of 

raising sons and daughters between individual parents (Trivers & Willard, 1973). Regardless 

of the mechanisms based on sex determination, males and females are produced in 

approximately equal numbers in most species (Edward, 1998; Seger & Stubblefield, 2002). 

Sex ratio patterns after birth, however, are likely to change if the population is strongly 

subjected to density dependent factors (Kruuk et al., 1999) and/ or environmental variations 

(Kruuk et al., 1999; Van Shaik & Hrdy, 1991) apart from predation (Kruuk, 1972; Milner-

Gulland et al., 2003; Owen-Smith & Mason, 2005). 

 

In most adult ungulate populations, sex ratios tend to be female biased exhibiting attributes 

typical for polygynous mating systems due to higher male mortality (Fischer & Linsernmair, 

2002; Holland et al., 2002).  Thus, male capacity to inseminate a female is only limited when 

the adult sex ratio is severely skewed (Ginsberg & Milner-Gulland, 1994; Milner-Gulland et 

al., 2003; Mysterud et al., 2002) especially for species with narrow birth peaks, resulting into 

extended mating during the peak mating season (Laurian et al., 2000; White et al., 2001); the 

consequences of which may result in decreased fertility rate. 

 

Detailed reviews of birth seasonality by Sinclair et al., (2000) indicate that there is a diverse 

array in the patterns of birth among tropical ungulates. Generally, however, birth seasonality 

seems to be well adjusted so that birth peaks coincide with abundant food supply in both 

temperate (Linell & Andersen, 1998; Post et al., 2003; Rutberg, 1987) and tropical ungulates 

(Estes, 1976; Mduma et al., 1999; Sinclair et al., 2000). Apart from food supply, the 

phenology and birth synchrony in most seasonal gregarious breeders are adaptively 
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coordinated to minimize predation risk on newborns (Estes 1976; Estes & Estes, 1979; 

Sinclair et al., 2000). 

 

Therefore, in order to truly understand the dynamics of large-mammal populations, a measure 

of age and sex structure is required in addition to simple population counts. Demographic data 

from annual censuses coupled with an assessment of the wildebeest population structure 

(Estes, 1976; Hilborn & Sinclair, 1979; Mduma, 1996; Mduma et al., 1999; Sinclair, 1977; 

Watson, 1969) enable sex ratios and annual survival rates to be determined.  Apparently, none 

of the previous studies in Serengeti compared the demographic variations between ‘migratory’ 

and ‘resident’ sub-populations. The migratory sub-population is comprised of aggregated 

wildebeest with no lasting association between adult sexes; where males establish temporary 

territories when the aggregation is stationary, or, on the move toward north. These animals 

largely tend to seek short green grass over a large area. Resident sub-population includes all 

individuals in discrete small groups of regularly associated females which seem to have short 

distance migration towards the lake during the dry season and back to Kirawira-Nyasirori 

when it is wet but exclusively found within Kirawira, Ndabaka, and Dutwa plains the whole 

year round (Sinclair, 1972). These groups have largely restricted movements to the open short 

grass plains of the western corridor. 

 

This study aimed at recording the sexes, age composition and birth distributions of the two 

Serengeti sub-populations to test i) if the demographic patterns differ between them, ii) if their 

differences can be linked to their ecology and mode of life, iii) if the existing hypothesis that 

‘seasonal breeding coincides with food supply’ can be explained by seasonal variability of 

rainfall (Sinclair et al., 2000) in the two sub-populations. 
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The sex ratios for all wildebeest sub-populations were predicted to be equal throughout the 

study period (P1). Variation in demographic patterns through predation and life-history 

events, apart from food resources, were predicted to affect birth rate and synchrony among the 

resident than migratory sub-population (P2). This prediction however, dilutes the relative 

importance of general adaptation hypotheses first that, seasonal breeding is a response to 

seasonal variability in resource and weather (Schaller, 1967) and the second that birth 

synchrony reduces predation on newborns (Estes, 1976; Estes & Estes, 1979). The latter agree 

with the strategy displayed among individual migrants. Since rainfall vary spatially, the peak 

breeding season in migrants may vary between years and hence predicted easily by peak 

rainfall (P3).  
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Study area 

Field work was conducted in Serengeti National Park (SNP) from September 2003 to June 

2005. The Serengeti-Mara Ecosystem (Fig. 1) includes SNP, Maswa, Ikorongo and Grumeti 

Game Reserve and parts of Ngorongoro Conservation Area (NCA) and Masai-Mara National 

Reserve to the north (in Kenya). It cover some 25,000 km2 and is defined by nomadic 

movements of wildebeest. The wet season has short-rains recorded from November to 

December and the long rains from March to May (Norton-Griffiths et al., 1975). There is an 

annual rainfall gradient from south-east (500mm) to north-west (1100mm). Soils have been 

described elsewhere (Anderson et al., 2004; Anderson & Talbot, 1965). The plains cover 

about 6,500 km2 in south-east of SNP and Ngorongoro Conservation Area (NCA) and support 

large herds of migratory wildebeest during their calving in the long wet season. The 

wildebeest seasonal movements in relation to resources in the west, north to Masai-Mara and 

back to the short-grass plain are described elsewhere (Anderson et al., 2004; Hilborn & 

Sinclair, 1979; Maddock, 1979; Sinclair & Arcese, 1995;Thirgood et al., 2004). 

 

Sampling and data collection 

Age and sex counts 

Considering the size of SNP which is periodically criss-crossed by wildebeest, we divided the 

area into four distinct sampling zones (i.e. west, south-east, central and north).  Demographic 

data were determined from ‘haphazardly’ recorded age and sexes at different locations 

depending on animal sightability twice every month, from October 2003 through June 2005, 

except July to September 2004. Resident sub-population was sampled from the western zone 

and migrants all over sampling zones.   
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While inside an open vehicle, any spotted wildebeest group was approached carefully (<15 

km hr

121 
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139 
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-1) at a distance to avoid disturbance and thereafter a group of 30- individuals (i.e. 

sampling unit) were counted while simultaneously recording sex and age classes. The sex and 

age for each individual was determined using diagnostic features developed by Watson, 

(1967) basing on the genitalia and horn-shape/size. Sex counts were restricted on sub-adult 

and adult individuals only. Wildebeest individuals in a single file were recorded very closely 

at regular interval of sections of 30- individuals until the last section was recorded in the 

entire herd. Sightings and recording of extremely large non-moving herds were made by 

establishing temporary transects bisecting the herds and slowly driving through while 

simultaneously recording sections of 30- individuals in every sub-transect of 100 m on either 

sides of vehicle. A 200 m non-transect was added at the end of each transect to avoid double 

counting. The area, location name, date, time, GPS position, herd type, sex and body 

condition scores were recorded on data sheets with the aid of a binocular and tape recorder 

and later entered into a computer.  

 

Sex ratio, calving periods and calf survival 

Monthly records of males, females and calves from each section of the sub-populations were 

pooled into pre-natal (October-December), natal (January-March) and post-natal (April-June) 

periods. Variations in adult sex ratio both for migratory and resident groups were determined 

from recorded numbers of adult males divided by adult females in each case. Records of sex 

ratio were averaged from daily counts across months and years. Chi-square tests were 

performed for successive years as independent sample units to test for significance differences 

in the count of sex structures between sub-populations.  
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Calving periods were denoted by the recorded numbers of calves together with their mothers. 

Since wildebeest produce one offspring per season, changes in the proportions of calves to 

adult females after the calving season were used as an index of relative calf survival (Mason, 

1990). The age distributions of newborn calves were obtained from the ratios of recorded 

number of newborn calves per adult females in a group of 30- individuals. These ratios 

indicate the mean monthly newborn calves to mature females and were used as index of 

calving periods between sub-populations; this procedure was important to overcome bias from 

unequal samples of wildebeest counted on each month. Mature females in this case refer to all 

adult females including about 20% sub-adult females known to have started breeding 

(Mduma, 1996). A similar change of ratio in successive months was used as an index of the 

annual mean calf survival rate. The yearling survival rate was also estimated based on 

monthly changes of recorded yearlings to adults, since they are always seen associated with 

both adult sexes. 

 

Rainfall data for the entire study period was obtained from SNP (ecology unit) and analyses 

were based mostly on the frequently inspected rain gauges grouped according to the 

established sectors. Mean monthly rainfall records (in millimetres) in the western corridor was 

assumed to reflect available rainfall to the residents whereas the combined monthly rainfall 

records from other sectors invariably controlled migratory herd’s movements in quest for 

water and forage resources. 

 

The monthly mean calves per mature females ratio recorded at the natal and pre-natal periods 

reflect calf survival rate during the wet and dry seasons respectively. Calf survival rate was 

calculated as percentage of proportions of calves per breeding females, recorded as yearlings 

in the next breeding season (Equation 1). Yearling survival rate was estimated from the 
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proportion of recorded sub-adults per adult ratios, survived from yearlings at year (t - 1) and 

(t). In this case yearlings were considered as calves that survived year (t) to year (t+1) and the 

sub-adult stage, which usually last for three years, was maintained by yearlings that survived 

from year (t - 1), t

170 

171 

172 

173 

174 

175 

176 

177 

1 and (t+1). Since the adult component of the population was also affected 

by mortality factors, I used 99.5% annual monthly mean survival rate previously estimated by 

Mduma, (1996) in the estimates. I assumed a constant calf survival rate in order to calculate 

the proportion of calves which survived as yearlings per month in the following equation: 
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………………………...…….equation 1 

Where, t = yeart and t+1= yeart+1

C = calves, 

Y= yearlings, 

S= sub-adults 

Q = females and δ= males. 

The yearling mortality (recorded in 2005) was estimated using equation 2 below. Since the 

sub-adult stage lasts for three years, its proportion was divided by three and the estimated 

annual survival rate was based on the mean ratio of the subsequent recorded calves as 

yearlings and sub-adults during January and March birth peaks for residents and migratory 

respectively. Year 2003 was assumed to have the same birth patterns as subsequent years. For 

all estimates a constant adult mortality rate was assumed with regular female birth rates. The 

annual mean yearling mortality rate was thus given by the following equation; 
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Individual age and sexes 

The 18-month period of data collection resulted into a total count of 103,500 individual 

wildebeest from 3,450 30-individual group samples (ca. 9% of Serengeti population). The 

data comprised 65,359 (63.1%) adults, 14,916 (14.4%) sub-adults, 6,420 (6.2%) yearlings, 

and 16,805 (16.2%) calves. Adult proportions including both populations by percentages were 

41.1% and 25.6% females and males respectively (See Table 1 for the values). The estimated 

sex- and age-ratios from all samples had a considerably higher proportion of adult females 

and more pronounced calves in the resident than migratory sub-population (Table 1). Resident 

groups were recognized by the distinctive size of calves compared to the migratory groups 

especially when the two sub-populations mix together during transition season (early dry). 

 

Adult sex ratio 

The mean male per female monthly sex ratios for residents and migratory sub-populations 

were generally significantly different within the resident (χ2=45.8, df=2, p=0.000) and 

migratory (χ2=240, df=2, p=0.000) sub-populations in all study years (Table 2). All over, the 

pooled sex ratio for all study years significantly differed between the resident (estimate 0.26) 

and migratory (0.91) sub-populations (p < 0.001; Table 2). Sex ratios were generally female 

biased in the resident than migratory sub-population (Table 2). An independent test for the 

monthly male-female counts indicates significant differences between the two sub-populations, 

except for January and November 2004 months (Table 2). A multivariate analysis indicate 

that variations in adult sex ratio was best explained by the interaction between sub-

populations and study years (GLM, F=8.67, df=1, P = 0.003). 
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Distribution of births and calf survival rate 216 
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The average numbers of calves available per adult females in each calving season (Table 3), 

indicate that the calving period in the resident sub-population started in December through 

May, whereas in migrants started in late February through April. Residents maintained the 

calving peak at late January in all study years. Despite the pronounced birth peaks, birth 

seasons in the migrants unusually fluctuated between February and April in year 2004 and 

2005 respectively (Table 3). 

 

Rainfall on the central and south-east sectors is known to be very erratic (Norton-Griffith et 

al., 1975; Wolanski & Gereta 2001) and the year 2004 had early rains compared to recorded 

late rains in 2005 (Fig. 2). These trends in rainfall greatly affected the patterns of births, as the 

records in 2004 indicate that nearly 50% of the calves were dropped in less than two weeks. 

Nevertheless, births in migrants were highly synchronous and indicated higher production 

potential compared to the resident sub-population in both years (Fig. 2). A partial correlation 

analysis also indicates a significant positive correlation between current-season rainfall and 

calving controlling for sub-populations (r2=0.179, df=344, p = 0.001). 

 

The estimated mean annual calf survival rate (Equation 1) was 31.5± 4.7% and 49 3.4% for 

resident and migratory sub-populations respectively. When an equal birth rate between year 

2003 and 2004 was assumed, the mean annual yearling survival estimate (Equation 2) was 

90.7 2.3% and 44.3 3.8% for residents and migratory sub-populations respectively. These 

results suggest a higher calf mortality rate in the resident sub-population followed by a steady 

yearling survival rate. The calf mortality in migrants was considered to be normal despite of 

low yearling survival rate. These rates however, underestimate calves born outside the birth 

peaks, as accurate estimates for Serengeti populations suggests that nearly 80% of the young 

±

± ±
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are born within three weeks in a normal season (Estes, 1976; Watson, 1969; Estes, 1966). The 

independence test for group differences was also highly significant when the birth 

distributions were compared both in 2004 (Mann-Whitney U-test, Z=-4.104, P < 0.001) and 

2005 (Z=-9.758, P < 0.001). 

 

Discussion  

The observed demographic patterns clearly indicate variations between the migratory and 

residents sub-populations, signifying that these two sub-populations perform differently and 

their life history strategies have different survival costs and benefits. Sex ratio differences 

indicate that selective mortality factors in adult individuals manifested better in the sedentary 

than in the mobile aggregated males. Arguably one may assert a biased sex ratio from 

recruitment of initially skewed sexes at birth as Trivers & Willard, (1973) models suggests; 

but a higher male mortality in the western corridor could probably be linked to the predation 

and/or illegal hunting (Georgiadis, 1988; Hofer et al., 1993; Holmern et al., 2006; Ottichilo et 

al., 2001) which invariably alter sex ratios. Despite inadequate demographic data on the 

resident sub-population, it is generally established that bovid sex ratios are equal or slightly in 

favour of males at birth. However, the sex ratio change slowly until males significantly 

separate from females owing to increased male mortality due to higher encounter to mortality 

factors (Sinclair & Arcese, 1995). 

 

Although it may prove difficult to vividly explain the underlying factors behind sex ratio 

variation in the two sub-populations from simple population counts, female skewed sex ratio 

in the west could be attributed to illegal wild meat hunting other than natural predation due to 

i) inadequate evidence for wildebeest mortality from carcass counts (own unpublished data) in 

the west compared to other locations, ii) few groups of lions (Panthera leo) and hyenas 
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(Crocuta crocuta) recorded in the west during the non-migration phase; more over, their 

densities are considered to be low there (Campbell & Hofer, 1995), iii) frequent harassment of 

predators by illegal hunters (Holmern et al., 2006.; Loibooki et al., 2002).  Notwithstanding 

occasional observations, natural predators like hyenas (Hofer et al., 1993) and lions (Patterson 

et al., 2004) can change the demographic patterns contrary to the prediction (PI).  
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Over 55% of the cross-section of illegal hunters (n=107) arrested in the western corridor 

practiced hunting when migrants were out of range (own unpublished data). This trend 

suggests that hunters optimize their kills on resident males as previous study indicates 

(Holmern et al., 2006) probably due to their territorial behaviour. Since higher male mortality 

is a well-established phenomenon in most polygynous mating system ( Fischer & 

Linsernmair, 2002; Hofer et al., 1993; Holmern et al., 2006; Watson, 1967), the lone 

territorial bulls sighted in the west all-the-year-round would potentially be vulnerable to 

human and natural predation.  

 

Migratory males could potentially be vulnerable along western corridor during north and 

south migration as reflected by January and November 2004 sex ratio data, but the harvest 

rate is small relative to the population size (Mduma et al., 1999). Similarly, the observed 

monthly drop in migratory males could be attributed to sampling bias due to the size of the 

park and nature of group composition together with the distribution especially during south 

bound migration. While a female-biased sex ratio ensures males to maximize reproduction 

and help maintain a polygynous mating system, severely skewed sex ratios can reduce fertility 

rates and hence production (Bergerud, 1974; Ginsberg & Milner-Gulland, 1994; Milner-

Gulland, 2003; Mysterud et al., 2002). Although the Serengeti populations are no where close 

to this threat, in the long run the population may severely be affected.   
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The consequences of a female skewed sex ratio can be related to the less synchronised births 

as records of the many out of season calves in the resident sub-population suggests (Fig. 2) 

supporting prediction (P2). Observed differences in birth peaks in the two breeding seasons 

among the migratory herds were perhaps typical responses to climatic variations (Estes, 1976; 

Talbot & Talbot, 1963; Watson, 1969). Rainfall through improved forage quality was 

probably the main factor behind such variations as the timing of birth positively correlated to 

seasonal variability in rainfall. On the other hand, accelerated removal of dominant males 

through natural and human predation in the resident sub-population, might have allowed 

partially incompetent males to take part in the breeding process. The consequence is lowered 

birth rates among resident sub-populations compared to the migrants. 

 

It is a well established knowledge that male wildebeest regularly succeed in fertilizing 80% of 

the females in a 3-week mating peak in Serengeti (Estes, 1976; Estes & Estes, 1979). This 

adaptive synchronised breeding (Lent, 1974; Watson, 1967) which tightly correlated to 

seasonal rainfall was clearly demonstrated in the migratory sub-population, despite unusual 

change in rain season from February to April between the years 2004 and 2005. Thus, 

variability in migrants birth peaks supported the prediction (P3). 

 

The higher proportional mean annual calf survival rate of 0.49 in migrants compared to 0.31 

recorded in the residents suggest that survival among migrants depends upon the dry season 

food availability (Hilborn & Sinclair, 1979; Mduma, 1996; Mduma et al., 1999). The 

relatively higher mean calf survival in the migratory sub-population supported previous 

observations (Mduma, 1996; Mduma et al., 1999; Talbot & Talbot, 1963) that calf mortalities 

are not regulated by natural predation but are rather density dependent. Other mortality factors 

include separation of calves from their mothers when disturbed in large aggregations. 
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Drinking water (Gereta & Wolanski, 1998) and quality forage for lactating mothers are also 

important since under-nourished calves are randomly selected by other mortality agents such 

as diseases and predation. In bad rainfall years, annual proportional mean calf survival rates 

were estimated as low as 0.21 in 1966 (Watson, 1967) and about 0.40 between 1992-1994 

(Mduma, 1996). Since the proportional annual mean calf survival for residents was low 

(0.31), predation mortality on calves might have accounted for more than half of the crop by 

the end of the first year. Nevertheless, what maintain the resident sub-population is still 

unclear given the observed high calf mortality. 

 

Conclusion 

Different life strategies may subject wildebeest sub-populations to different vulnerabilities 

leading to various demographic consequences that act strongly on isolated individuals or 

individuals living in groups. Contrary to prediction (P1), the differences in sex and age 

structures between the two sub-populations clearly indicate that the female biased resident 

sub-population is more vulnerable to predation or illegal hunting than to environmental 

perturbations. Consistent to prediction (P2), it is persuasive to believe that birth is more 

synchronised in migrants than resident sub-population as a result of demographic variation.  

Apparently, birth rate and synchrony coincides with seasonal rainfall whereby seasonal 

breeding and calf survival rate in migrants seems to be highly regulated by rainfall hence 

support prediction (P3). 
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Table 1.   Number of individuals and groups of Serengeti wildebeests separated into sex 

and age groups during the study period 2003-2005. 

459 

460 

Population                 Adult♂    Adult♀        Sub-     Sub-        Yearling           Calf        

                                                                    adult♂    adult♀ 

Residents N(ind.)    4,565          17 970       2,522     2,662         2,562        8,151 

                N(group) 1,281          1,281         1,281     1,281         1,281         1,281 

                % (ind.)   11.9            46.7           6.5              6.9             6.6            21.2     

Migratory N(ind.)  20 555         22 269       5,757     3,975         3,858     8,659 

                N(group) 2,169          2,169         2,169     2,169         2,169     2,169 

                Percent     31.6           34.2           8.8              6.1             5.9            13.3 
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Table 2.   Test for the differences between sex ratios recorded between resident and 

migratory adult wildebeest. The overall monthly mean sex ratio for all combined years is 

indicated at the bottom of the table. 

461 

462 

463 

Resident               Migratory               χ2 - test 

Year/Month         N males /N females    Ratio       N males /N females   Ratio        

2003   October        112/497      0.23     849/730          1.16    0.000 

          November     285/673      0.42  1,139/1,060          1.07    0.000 

          December     420/1,508      0.28  1,196/1,705          0.7    0.000 

2004   January         442/1,536      0.29      92/261          0.35     0.126 

          February       146/857                 0.17               925/793         1.17            0.000 

          March           50/324                    0.15              1,344/288         4.67     0.000 

          April             83/686                    0.12             1,541/1,232         1.25    0.000 

          June              305/1,608               0.19    918/2,605         0.35            0.000 

          October        265/1,364               0.19  1,814/1,405         1.29            0.000 

          November    307/701                  0.44             2,202/4,545         0.48    0.168 

2005   January         597/2,092            0.29  2,140/1,175            1.82            0.000 

          February       244/803                 0.30             2,426/2,278         1.06            0.000 

          March           141/534                 0.26     644/769               0.84           0.000 

          April             592/2,151    0.28     796/729               1.09    0.000 

          May              163/831                 0.2                   362/573         0.64           0.000 

          June             161/527                  0.31          311/384         0.81           0.000 

All years               4,313/16 692          0.26                 18,701/20 532      0.91           0.000 
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465 

466 

Table 3. Newborn calves/adult females mean monthly ratio in Serengeti National Park. 

Highlighted are the recorded mean ratio peak months in both populations  

Year             Month      Resident               Migratory 

                                                 Mean        N            S.D.           Mean       N     S.D. 

2003                 December         0.27         98           0.26 

2004                 January             0.51        103         0.19 

                        February            0.44         64           0.18           0.79   31    2.1 

                        March                0.27         21           0.36           0.52         27    0.28 

                        April                  0.13         49          0.11           0.37   112    0.23 

                        June                   0.12         119        0.09                 0.16   12    0.20 

                        November         0.05          62          0.01 

2005                 January            0.62          189        0.29 

                        February           0.61          63          0.30                0.46         114       0.27 

                        March               0.43          44          0.20          0.57   90    0.35 

                        April                 0.33          164        0.25          0.86         83    1.34 

                        May                  0.17          54          0.14          0.53   47         0.24 

                        June                  0.12          41          0.06          0.48   32         0.22 

467 

468 

Note: The data for migratory females in December 2003, January 2004 and 2005 are missing because they did 

not have calves at that time. 
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Figure Legend 469 

470 

471 

472 

473 

474 

475 

476 

477 

Fig. 1.   Serengeti ecosystem indicating wildebeest sampled areas between 2003 and 2005. 

Filled gray triangles indicate residents and open circles indicate migratory herds. The 

distinction between resident and migratory herds in the western corridors where there is a mix 

during transition range is explained in the methodology. Sampling zones includes West (W), 

Central (C), South-east (S) and North (N). 

 

Fig. 2.  Monthly mean newborn calf per adult female (Fig.2 A) as influenced by seasonal 

rainfall (Fig. 2 B). Open and filled squares indicate resident and migratory sub-populations.
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 478 

 479 

480 Fig. 1. 
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ABSTRACT 

In this study, body conditions were scored to examine the nutritional differences between the 

wildebeest (Connochaetes taurinus) sub-populations. Variations in body conditions were 

reviewed basing on three factors (i.e. food abundance, predation disturbance) reflected in the 

existing Serengeti migration hypotheses. Predictions from these hypotheses were tested by 

examining body condition differences from October 2003 through June 2005. Results indicate 

that body conditions differed significantly within and between sub-populations, when sexes 

were compared in different reproductive periods. All-over, residents were nutritionally in 

better body condition than migratory individuals supporting predictions derived from the 

‘predation risk hypothesis’. Body conditions among migrants correlated with food in a south-

north rainfall gradient; nevertheless, the test prediction derived from the ‘nutrition hypothesis’ 

during the dry season food migration was not supported. Whereas, the energetic benefits of 

better food in migrants, north of Serengeti, compensated only for the costs of migrating, 

residents invariably optimized time and energy efficiently to improve their nutritional security. 

Additionally, the timing of reproductive investment differed between sexes and was 

dependent on the life history strategies. Male individuals thrived relatively in better conditions 

signifying that nutritional costs affects survival and reproduction of females in the event of 

serious food shortage than males.  

 

 

Key words: body condition; migration; nutrition; predation; Serengeti wildebeest. 
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 Generally, regular periodic movements in large numbers usually to and from a place of origin, 

producing lifetime tracks, are vital to the dynamics of wildlife populations (Bian 2000). 

Ungulates choose migration in response to changes in climate and fluctuations in resources. 

They are however constrained by the amount of food across habitat patches not available year 

round which otherwise would be utilized to maximize energy intake and minimize 

competition (Bergman et al. 2001; Etzenhouser et al. 1998; Fritz & De Garine-Wichatisky 

1996), humans threats (Berger 2004) and predation (Fryxell & Sinclair 1988).  

 

In temperate and arctic regions, ungulates hardly meet their nutritional requirements during 

winter because of low-quality forage hence winter nutrition is dependent on autolysis (Ball et 

al. 2001; Mautz 1978; Packer et al. 1999). Likewise, the quality of forage in tropical grazing 

systems decline progressively with advancing dry season resulting into reduced nutritional 

security rendering most ungulates to predation and disease (Anderson & Talbot 1965; Ogutu 

& Owen-Smith 2003). This means that migration behaviour forces ungulates to move between 

habitat patches to track abundant food supply and enhance access to patches with nutritious 

food despite the predation risk. Predation risk is a key determinant of lifetime reproductive 

success of large ungulate herbivores (Kjellander et al. 2004), and hence ungulate life history 

(Geist 2002). At a spatial scale, the most basic anti-predator strategy is to avoid areas with 

high predator density (Caro 2005); one of the key benefits of long-distance migration in 

ungulates (Bergerund et al. 1984; Fryxell et al. 1988; Hebblewhite & Merrill 2007).  

 

Migratory movements are sometimes dictated by sex specific nutritional requirements and/or 

body-size related forage selection. Where the nutritional requirements are governed by the 

body size, males are likely to suffer nutritional deficiency more than females particularly in 
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poor seasons. This is because of territorial defence, reproduction and maintenance (Ralls 1977; 

Toigo & Gaillard 2003) since males are substantially larger than females. Overall however, 

females endure nutritional costs to escalated maternal investment which frequently increases 

with gestation and lactation (Clutton-Brock et al. 1983; Robbins 1983 cited in Forsyth et al. 

2005).  

 

The migration phenomenon in Serengeti, Tanzania, is generally linked to seasonal shifts in 

habitat use by huge numbers of ‘migratory’ wildebeest Connochaetus taurinus between their 

wet season range on the open-grass lands and wooded grasslands in higher-rainfall areas 

during the dry-season range (Maddock 1979, Wolanski et al. 1999). A small group of 

‘resident’ wildebeests occur in the western Serengeti corridor restricted within Kirawira, 

Ndabaka and Dutwa plains the whole year-round. Nevertheless, there is a certain amount of 

overlap between the ranges of these sub-populations during the transition period (Pennycuick 

1975, Watson 1967).  

 

Migratory movements are dictated by forage availability during the dry season (Mduma et al. 

1999; McNaughton 1988; Sinclair & Arcese 1995a) together with essential nutrients (Kleuren 

1975; Murray 1995, McNaughton 1990); although rainfall and salinity predict the timing 

(Wolanski & Gereta 2001; Wolanski et al. 1999).  Despite the controversy over underlying 

causes of migration in Serengeti, the existing hypotheses have linked migration with, i) 

fluctuations in food supply as a result of a rainfall gradient (Andere 1981; Maddock 1979; 

Owen-Smith & Ogutu 2003), ii) predation risk from lions Panthera leo and spotted hyaenas 

Crocuta crocuta (Hanby et al. 1995; Hofer & East 1993) and, iii) search for water quality 

(Wollanski & Gereta 2001).  
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In this paper therefore, we analysed and compared body condition scores between resident 

and migratory wildebeest in order to test predictions based on two existing migration 

hypotheses in the Serengeti Ecosystem. Previous studies have tested predictions derived from 

deviations in body condition along with the ‘nutrition hypothesis’ using analyses of bone-

marrow fat (Sinclair & Arcese 1995a; Mduma 1996; Mduma et al. 1999). The authors, 

however, did not focus on variation in visual physical conditions in the contrasting 

reproductive periods between and within sexes and sub-populations. Thus, according to the 

‘nutrition hypothesis’ if the north migration provides the nutritional benefits then the migrants 

should generally be in better condition than the residents since the energetic benefits of better 

food should more than compensate for the costs of migrating (P1). Alternatively, if migration 

is driven by predation (the ‘predation risk’ hypothesis) the migratory wildebeest should be in 

worse body condition than the residents due to the energetic costs of migrating (P2). Males 

and females were tested in response to rut and birth seasons respectively (see Table 1). 

 

METHODS AND MATERIALS  

Study Area Description 

Field work was conducted in Serengeti National Park (SNP) Tanzania from September 2003 

through June 2005. The Serengeti-Mara Ecosystem, defined by the annual wildebeest 

migration, includes SNP, Maswa Game Reserve (MGR), Ikorongo Game Reserve (IGR), 

Grumeti Game Reserve (GGR), part of Loliondo Game Controlled Area (LGCA) and 

Ngorongoro Conservation Area (NCA) on the Tanzanian side and Masai-Mara National 

Reserve (MMNR) in northern Kenya, covers some 25,000 km2 (Fig. 1). The system is 

characterised by wet and dry seasons driven by the intercontinental convergence zone where 

short-rains start from November to December and the long rains from March through May 

(Norton-Griffiths et al. 1975; Williams et al. 1998). There is an annual rainfall gradient from 
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south-east (500 mm) to north-west (1100 mm). Temperature is moderate with a mean of 22°C 

and a daily maximum of about 30

122 
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°C and minimum of 15°C. Soils have been described 

elsewhere (Anderson & Talbot 1965; Anderson, McNaughton & Ritchie 2004). Migratory 

wildebeest here refers to wildebeest herds which move to the north of Serengeti ecosystem 

towards Masai-Mara during the dry season and return south on the Serengeti plains during the 

wet season. Resident wildebeest on the other hand are those confined to the west of SNP 

throughout the year.  

 

Data Collection 

Body condition scoring  

Although it has been difficult to assess the nutritional status of wild gregarious ungulates in 

the field, body condition score has largely been useful (Riney 1960). Generally, body 

condition reflects the amount of energy stores such as fat or protein reserves (Green 2001). 

Most frequently however, live mass, health, competitive ability (muscles) and nutrition status 

are used as proxies for body condition and have always been related to ecological fitness 

(Berry & Louw 1982; Milner et al. 2003; Riney 1960). Body conditions were ‘haphazardly’ 

scored every two weeks from various locations depending on sightability by following the 

herds’ movements all over Serengeti from September 2003 to June 2005, except July to 

September 2004. Generally, most observations were frequently made along the roads. 

Resident sub-populations were sampled from the western Serengeti corridor (west zone) and 

migrants all over Serengeti areas (all sampling zones). Group size, structure and composition 

were carefully used to separate the two sub-populations in the eastern part particularly during 

mixing. Once spotted a large group, the vehicle approached it cautiously (<15 km/hr) to 

minimise disturbance and thereafter 30 adult individuals (i.e. sampling unit) were counted and 

their sexes determined.  
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A criteria developed by Watson (1967) was used to estimate the age and sex (sexually mature 

are about 3 years and older). Individuals were grouped according to three visual ranking 

criteria (i.e. good, medium and poor condition) using visible skeletal details around 

hindquarter by eye (Berry & Louw 1982). Good condition imply round body with well 

rounded hindquarters (ribs are not visible) and the general appearance in relation to the coat 

sheen is excellent, ii) medium condition is denoted by angular hindquarter in appearance and 

well defined ribs, whereas, iii) poor condition is reflected by prominent pelvic bones and 

protruding ribs with deprived general appearance, posture and coat condition.  

 

Observations were made closer to the group where large herds were encountered and 

condition of each adult sex within a section of 30 animals was recorded accordingly up to the 

last individual in the section. The number of sections in each herd was determined by the herd 

size and behaviour. Sighting of large stationary groups involved the use of non-permanent 

transects by driving through the herds while simultaneously counting and recording 

conditions of adult sexes in every section of 30 individuals on either side of the vehicle at 

every 100 m distance within a transect. A 200 m non-transect was added at the end of each 

100 m transect to avoid double recording. The area, location name, date, time, GPS position, 

herd type, sex and body condition scores were recorded on data sheets (with the aid of a 

binocular and tape recorder) and later entered into a computer. The search was purely 

haphazard and was only dictated by availability and distribution of the wildebeest throughout 

the entire study area (Fig. 1) though most observations were made along the roads.  

Differences in male and female’s body conditions at pre- and post reproductive periods 

(explained in Table 1) were tested using Chi-square tests. Two months data from each 

reproductive stage was compared to test for the variation in conditions between populations 

and sexes. Other periods (Table 1) were also compared to track variations in body conditions 
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due to the lifestyle and feeding strategies. All data during the study period were pooled 

together because the annual differences between the sub-populations were not detected. 

 

Rainfall and body condition  

In order to test if body conditions reflect resource availability as driven by rainfall, a partial 

correlation analysis was performed to compare the conditional classes across groups. Rainfall 

data were obtained from SNP (Ecology Unit) and analyses were mostly based on regularly 

inspected monthly storage rain gauges. Monthly records were computed as millimetre (mm) 

of rain per month from 96 different stations. Stations were grouped in four major zones 

representing major habitats for wildebeest movements in SNP. Monthly rainfall records for 

each zone were averaged and the frequently visited areas were combined to establish 

correlation between body condition and rainfall. But, since rainfall do not directly impinges 

on grass productivity and hence body condition, a two-month running mean of rainfall was 

used in the analyses to indicate the likelihood of changes in grass biomass as a reflection of 

subsequent changes in wildebeest body conditions. This was very crucial since the observed 

changes in wildebeest body condition do not reflect existing resource conditions, but rather 

the impact of changes in resources that was available a month or two ago.  
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General body condition between wildebeest sexes and groups 

A total of 3,450 groups (each consisting of 30 individuals) were sampled from September 

2003 through June 2005. Adult wildebeest contributed 65,359 individuals or 63%. Of these, 

males and females proportions were 25,119 (38.4%) and 40,240 (61.6%) respectively. In total, 

adult individuals from migratory and resident population were 42,824 (66%) and 22,535 (34%) 

respectively. All over, a small number of wildebeest (< 2.4% of observations) were in poor 

condition. Those in medium condition comprised of 18.9% whereas majority of observations 

(78.7%) were in good condition. The proportions of the three different condition group 

differed significantly between sexes (χ2= 407, df=2, p < 0.001) in favour of males that was 

recorded in better condition. Furthermore, when data between sub-populations were compared 

body conditions of residents appeared to be better than migratory individuals (Table 2).  

 

Variation in body conditions during reproductive phases  

The body conditions of migratory males were slightly better during the rut and dropped 

sharply during the post-rut period. On contrary, resident males were observed in worse body 

conditions during the rut, but improved significantly during the post and pre-rut periods 

(Table 2).  The difference between the two sub-populations indicates that the body conditions 

in males were more distinct during pre- and post-rut periods (Table 2). Female conditions 

differed significantly between residents and migratory sub-populations throughout the 

different reproductive stages (Table 2). In both sub-populations, female conditions improved 

toward birth and post birth periods. During pre-birth (dry season) period the body condition of 

migrants was relatively poor (Table 2). Generally, resident females were recorded in better 

condition than migratory females in all periods (Table 2).  
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Resident males were in better condition during post-rut than during pre-rut period (Table 2, χ2 

= 9.61, df = 2, P = 0.008) while the opposite was found for migratory males (Table 2, χ

215 
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238 

2 = 270, 

df = 2, P < 0.001). On the other hand, female wildebeest in both populations were recorded in 

better conditions during the post-birth than the during pre-birth period (Table 2, residents. χ2 = 

489, df = 2, P < 0.001, migratory; χ2 = 229, df = 2, P < 0.001). 

 

The correlation between rainfall and body condition rating controlling for months and group 

sexes was statistically significantly stronger in the migratory (-0.089< r < 0.295, p < 0.01) 

than in the resident population (-0.069 < r < 0.055, p < 0.05).  

 

DISCUSSION 

Migration has long been hypothesized to reduce predation risk for many ungulates although 

there have been few direct empirical tests to ascertain the costs associated with migration. Our 

study provided conflicting support for the hypothesis that migration reduced predation risk for 

wildebeest, because migrant and resident wildebeest exploited trade-offs between natural and 

human predation differently across the Serengeti ecosystem. Predictions derived from the 

migration hypotheses through comparing body condition data strongly supported the 

‘predation risk’ hypothesis (P2), in that, resident were nutritionally better-off than migratory 

wildebeest probably due to energetic costs of migrating in a predation risk environment. 

Although the ‘nutrition hypothesis’ has commonly dominated the theory behind Serengeti 

migration (Mduma et al. 1999), the benefits derived by migrating northward for better food 

appeared only to compensate for the costs of migrating, thus we were unable to support 

prediction (P1). This means that predation risk avoidance constrained foraging strategies 

during the trade-off situation when food was a limiting factor.  
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The predation risk hypothesis asserts that predators limit populations such that as food supply 

decreases animals increase their predation risk through increased search for food. The search 

for food in habitats that are not readily available the whole year round was expected to 

increase energetic cost (Anderson et al. 2004; Fryxell et al. 1988; McNaughton 1990; Sinclair 

& Arcese 1995b) and stress to constrain migrating individuals (Table 2). For instance, the 

body condition of females in both sub-populations dropped during pre- birth indicating that 

females were probably nutritionally stressed due to escalated maternal nutritional demand 

associated with pregnancy. Thus, predation behaviour strongly affects migrants through body 

condition weakening by virtue of their movement probably more than actual off-take.  Also, 

body condition results indicated that north migration was associated with improved body 

conditions of migrants which even so could not significantly be compared to residents perhaps 

due to the imposed predation-sensitive food stress. Predation sensitive foraging influences 

behaviours including vigilance; patch use, diet and habitat selection, including sexual 

activities of individual animals (Sinclair & Arcese 1995a; Peacor 2002; Nelson, Mathew & 

Rosenheim 2004; Kie 1999).  

 

The observed differences among sexes in different breeding seasons could be attributed to life 

history strategies. Males appeared to have gradually accumulated more fat reserves after rut 

for the next breeding cycle; nevertheless the timing between the two populations was different 

probably due to differences in social and reproductive phenology. Although the two 

populations showed the benefits of improved nutrition in the wet seasons (realised during rut), 

the drop of condition in migratory males after rut was heightened with a surprisingly quick 

recovery. The behavioural mechanisms for locating high quality food to specific habitats with 

different mortality risks have probably selective advantages to migrants (Kinnison et al. 2001). 

Frequently, experienced males trade-off food intake against predation risk (Sinclair 1995b; 
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Hofer et al. 1993) in suitable grazing areas which not only provide nutritional security to repel 

and/or evade predators, but also assure body maintenance and genetic fitness (Ralls 1977; 

Toigo & Gaillard 2003).  

264 

265 

266 

267 

268 

269 

270 

271 

272 

273 

274 

275 

276 

277 

278 

279 

280 

281 

282 

283 

284 

285 

286 

287 

288 

 

Recent findings (Ndibalema in prep.) of male to female sex ratio of 1:1 and 0.3:1 for 

migratory and resident population respectively, indicate that a higher rate of energy intake 

among migratory males is probably crucial for competition (and hence mating) during the 

dormant period (Forsyth et al. 2005; Sinclair & Fryxell 1985). Males opportunistically elevate 

their energy intake during the non-reproductive period by accumulating fat reserves prior to 

the mating period so as to maximize their reproductive success (Estes 1966; Forsyth et al. 

2005). Therefore, resource competition among migratory males during rut could be more 

severe than would be expected since in nature strong males compete favourably. Apart from 

being territorial throughout the year, resident males optimize their energy from easily 

accessible resources in habitats which compel minimum energy hence least competition 

during rut.  

 

Resident females were nutritionally better-off than migratory females probably due to optimal 

environments, despite of limited foraging options in the western corridor which is potentially 

predation risky (Georgiadis 1988; Hofer et al. 1993). The condition of both populations 

appeared to drop during the pre-birth period and improved substantially during the post-birth 

period in favour of residents, most likely due to timing of reproductive events (Table 2). 

Resident females normally give birth from December to February (Ndibalema pers. observ.) 

which coincides with Lake Victoria shore rainfall which is important during lactation. 

Migratory females give birth one month later and were seen wandering between Seronera and 

Maswa plains probably because they were food constrained. Considering pronounced north-
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south SNP rainfall gradient (Owen-Smith & Ogutu 2003; Wollanski & Gereta 2001), resident 

females might optimize time and energy more quickly to recover from nutritional stress 

compared to migrants. Moreover, females require quality food to support pregnancy followed 

by lactation (Forsyth et al. 2005; Sand 1998; Sinclair, Mduma & Arcese 2000; Sinclair & 

Arcese 1995a). The combined effects with energy expenditure associated with migratory 

movements in subsequent short dry spell might have significantly lowered the body 

conditions of migratory females.  

Altogether, females appeared to be nutritionally more stressed than males because of parental 

care and a long gestation period (see also Table 2). An obvious decline in condition at pre-

birth (during gestation) compared to post-birth period (during lactation) could have resulted 

from diverted stored energy to the developing foetus (Oftedal 1985 cited in Forsyth et al. 

2005) as most females are food limited during this period (Mduma et al. 1999). Also pregnant 

wildebeest are constrained by nutrients, mainly calcium (Kleuren 1975), magnesium, sodium 

and phosphorus (Murray 1995; McNaughton 1988; McNaughton & Banyikwa 1995) which 

spur long-distance movements for quality pastures; even though the cost of pregnancy is 

assumed to be small compared to that of lactation (Clutton-Brock et al. 1983; Oftedal 1985 

cited in Sand 1998). The peak in condition for all females at the post-birth period (Table 2) 

presumably coincided with abundant food resource in the wet season. 

 

A stronger relationship between rainfall and body condition that was revealed in migrants 

suggest that annual differences in the pattern of  wildebeest movements in relation to 

resources can be linked to Serengeti rainfall (Maddock 1979; Pennycuick 1975; Sinclair 

1995a; Wollanski et al. 1999). Rainfall not only improves forage quality, but also provides 

surface water important for drinking which spatially regulates wildebeest movements 

(Thirgood et al. 2004; Wolanski & Gereta 2001).  
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CONCLUSION 314 
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This study indicates that wildebeest populations in Serengeti were at no stage under serious 

nutritive stress (< 2.4% of observations in poor condition). Food together with predation 

appeared to constrain wildebeest movement as reflected by body condition assessment. 

However, food is a key component of north migration and the relative profitability between 

the sub-populations is determined by the nutrition environment. Predation risk foraging 

coupled with energetic costs of migrating in a rather competitive environment constrained the 

condition of migrants in favour of resident individuals. Nutritional variation within and 

between sexes in different periods was explained better by comparative advantages associated 

with life history strategies and timing of weather between sub-populations.  Moreover, body 

condition assessment indicated that females would be most disadvantaged compared to males 

due to escalated nutritional demands associated with gestation and lactation. The 

measurements of body condition can be used by the park managers to quickly evaluate 

wildebeest nutritional status in different sub-populations through simple visual assessment in 

order to underscore habitat conditions. 
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Table 1.  Periods selected to test the differences in body conditions due to the timing of 

events between wildebeest sub-populations and sexes in Serengeti Ecosystem. 

489 

490 

Sex/ pop.        Pre-rut/birth            Rut /birth     Post-rut /birth   Between rut/birth  
 
Males  
___________________________________________________________________________
Resident Feb. – March          April – May      June – July             August – January 
 
Migratory April – May          June – July      Aug. – October      Nov. – March   
___________________________________________________________________________
 
Females 
___________________________________________________________________________
Residents Oct. – November     Dec. – February     March – April June – September 
 
Migratory Dec. – January         Feb. – April      May – June July – November 
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Table 2. Number of male and female wildebeest of Serengeti sub-populations in good (G), 

medium (M) and poor (P) body condition tested in seasons. Statistical differences are 

tested by Chi-square test and the percentages of individual counts (N) in each condition 

category are given in brackets (See table 1 for definition of breeding seasons). 
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Males 

 

Residents 

Pre-rut 

N (Percent) 

Rut 

N (Percent) 

Post-rut 

N (Percent) 

In-between 

N (Percent) 

Combined 

N (Percent) 

G 560 (90.8) 795 (88.2) 462 (95.4) 2112 (82.4) 3929 (86.1) 

M 55 (8.9) 100 (11.1) 22 (4.5) 397 (15.5) 574 (12.6) 

P 2 (0.3) 6 (0.6) 0 (0.0) 54 (2.1) 62 (1.3) 

 Migratory 

G 2594 (86.7) 1326 (87.9) 465 (52.0) 12451 (82.2) 16836 (81.9) 

M 388 (12.9) 173 (11.5) 382 (42.7) 2452 (16.2) 3395 (16.5) 

P 25 (0.8) 9 (0.6) 47 (5.3) 243 (1.6) 324 (1.6) 

χ2 9.62 0.119 270 5.98 457 

df 2 2 2 2 2 

p 0.008 0.942 0.000 0.137 0.000 

Females 

 

Residents 

Pre-birth 

N (Percent) 

Birth 

N (Percent) 

Post-birth 

N (Percent) 

In-between 

N (Percent) 

Combined 

N (Percent) 

G 1814 (64.1) 6564 (81.1) 3325 (85.2) 2827 (89.9) 14530 (80.8) 

M 813 (28.7) 1385 (17.1) 561 (14.4) 317 (10.1) 3076 (17.1) 

P 203 (7.2) 143 (1.8) 16 (0.4) 2 (0.1) 364 (2.0) 

  Migratory 

G 5708 (68.1) 5192 (77.9) 3026 (80.5) 2232 (64.4) 16158 (72.5) 

M 2254 (26.9) 1333 (20.0) 687 (18.3) 1048 (30.2) 5322 (23.9) 

P 417 (4.9) 140 (2.1) 47 (1.2) 185 (5.3) 789 (3.5) 

χ2 26.1 23.4 39.4 627 389 

df 2 2 2 2 2 

p 0.000 0.000 0.000 0.000 0.000 
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Fig. 1. Serengeti-ecosystem map indicating wildebeest sampled areas. Sampled 

migratory individuals are represented by a cross whereas residents are represented by 

black circles.  
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2.0 ABSTRACT 26 
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Responses of grazers to roads were recorded through dust measurements on grass and distance 

sampling of ungulates in Serengeti National Park (SNP), Tanzania. Data were collected on the 

east and west side of the Ngorongoro-Seronera main gravel road to test if vehicle traffic and 

dust were important factors determining distribution patterns amongst grazers. Results 

indicate that dust increased progressively with traffic speed and volume as seasons advanced. 

More dust was intercepted by the grass on the west than the east side of the road mainly due 

to westerly wind. Dust deposition measured as density was higher on the short grasses than 

the long grasses during the dry and late-dry seasons than during the wet season, when paired 

perpendicular distances up to 300m were compared. Mean number of sighted grazers species 

indicated that most fed further from the west side of the road than the east perhaps to 

minimize higher density of dust commonly spread on foliage up to 200 m from the road. 

Despite that most grazers avoided road side grass shoulders, supporting the ‘dust aversion 

hypothesis’, the test predictions from the ‘road disturbance’ and the ‘road attraction’ 

hypotheses did not support the responsive behaviours of grazers toward roads.  

 

Key words: distance sampling, dust pollution, ecology, grazing, road, vehicle traffic 
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3.0 INTRODUCTION  43 
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The effects of roads and associated vehicular traffic on the environment, animal populations 

and behaviour near roadsides are immense (Cuperus et al. 1996; Forman et al. 2003; Lonsdale 

& Lane, 1994; Reijnen & Foppen, 1991; Spellerberg, 1998). Roadside resources may attract 

many mammals which end up as victims of road accidents and poisoned from grasses fed on 

the road shoulders contaminated by lead and other heavy metals used as additives in gasoline 

(Smith 1971) and de-icing agents in temperate countries (Hofstra & Hall, 1971; Davison, 

1971).  

 

Unpaved roads are particularly important sources of dust pollution which not only cause 

gaseous phototoxic pollutants (Farmer, 1991) but also failure in photosynthesis, respiration 

and plant transpiration (Thompson et al. 1984). Grazers too, suffer from excessive tooth wear 

from dust contaminated forage (Williams & Kay, 2001; McNaughton et al. 1985). Deposition 

rate of dust from the road to grass is nevertheless dependent on wind speed and direction, leaf 

area index, moisture, particulate size and traffic intensity. The size of dust declines with the 

distance from road and diameter of the particulates from motor vehicles range from 0.01 to 

5000µm (Ninomiya et al. 1971). 

 

Most tourist activities inside African national parks and reserves are associated with 

increasing number of traffic volumes (Freitag-Ronaldson & Foxcroft, 2003), whose effects on 

wildlife, have rarely been documented. Studies have focused on altered animal behaviour 

(Reijnen, 1995; Wasser et al. 1997), movements (Dyer et al. 2002; Kerley et al. 2002; Reijnen 

& Foppen, 1995) and mortality along roadsides (Pienaar, 1968; Walker & Everett, 1987) at an 

individual, species and population level. However, at the ecosystem and landscape level, 
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roads influence abundance, distribution, mortality and colonization rate (Tshiguvho, 2000 

cited in Freitag-Ronaldson & Foxcroft, 2003).  

 

In order to test the underlying influence of roads to animals, we conducted a study in 

Serengeti National Park (SNP), Tanzania. SNP represents an extant member of a prominent 

grazing ecosystem in the world (Fryxell & Sinclair, 1988) whose resources attract huge 

numbers of tourists. However, tourism have had environmental problems linked to motor 

traffic and/or frequent road repair processes (Belsky, 1985). The aim of this study was to 

record the effects of road dust and traffic on ungulate distribution and foraging responses 

along the Seronera - Ngorongoro main road with the following specific objectives; 1) to test if 

there is any variation in the dust intercepted by the grasses and its overall effect to ungulate 

distributions on the road sides; 2) to test whether motor traffic produced dust and/or 

disturbance elicit any response to grazers distribution while feeding along the road; 3) to test 

for seasonal variation in the dust with consequent effects on grazers foraging distribution.  

 

We hypothesized that, H1: Dust on grass causes ungulates to feed further from roads than 

expected from a random distribution (dust aversion hypothesis). H2: Vehicle traffic disturbs 

animals and force them to move away from roads (road disturbance hypothesis). H3: Locally 

enhanced runoff of rainfall combined with soil disturbance provides green grass near roads, 

which attracts ungulates to feed along the road verges (road attraction hypothesis). 

 

The ‘dust aversion hypothesis’ (H1) predicts more sighting frequency of ungulate species 

away from grasses exposed in extreme dust than on the grass that intercept less dust i.e. more 

sightings on the sides of the road with less dust (P1). The ‘road disturbance hypothesis’ 

predicts more sightings away from the road due to the traffic disturbance other than dust, i.e. 
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there should be no difference in grazers distributions on the road sides (P2). The ‘road 

attraction hypothesis’ predicts that grazers’ trade-off food with dust and/or vehicle traffic 

disturbance during the period when food is limiting than when it is plenty (P3). The study was 

confounded by several ecological limitations and had the following assumptions; i) forage 

quality was similar across the study area, ii) rainfall was uniformly distributed over the entire 

study area, iii) road soil properties were the same all along and bigger vehicles had more road 

impact than small vehicles, iv) grazers had the same foraging strategy, and were observed 

while feeding.  
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4.0 MATERIALS AND METHODS 100 

101 

102 

103 

104 

105 

106 

107 

108 

109 

110 

111 

112 

113 

114 

115 

116 

117 

118 

119 

120 

121 

122 

123 

124 

4.1 Study Area Description 

Field work was conducted in the central SNP (Fig. 1) from October 2003 to June 2005. SNP 

is composed of 13,000 km2 of grassland, open savannah and sparse woodlands that lie in 

altitudes between 1,350 and 1,800 m. The park has the characteristic wet and dry seasons 

driven by the intercontinental convergence zone: the short rains start from November to 

December and the long rains from March to May (Williams et al. 1998). Rainfall increases 

from 500 mm annually in the south-east where the soil is composed of highly saline volcanic 

ash, to 1,100 mm in the north-west, where the soil is derived from granitic substrate (Jager, 

1982). Vegetation composition and community structures are largely governed by rainfall 

(Williams et al. 1998; McNaughton, 1985). Short grass communities occur in the arid south 

east, where mid-grass savannah occurs in the centre of the park where data was collected (Fig. 

1). 

 

Common grazers on the plains include wildebeest (Connochaetes taurinus), zebra (Equus 

burchelli), Thomson’s gazelle (Gazella thomsoni), Grant gazelle (Gazella granti), topi 

(Damaliscus lunatus), buffalo (Syncerus caffer) and warthog (Phacochoerus aethiopicus). 

Intense grazing on the short grass plains during the rainy season maintain the height of the 

herbaceous vegetation below 5 cm south of Naabi gate (Fig. 1A) while mild grazing in the 

mid and tall-grass savannas, north of Naabi gate during dry season (Fig. 1B) allow the 

vegetation to grow between 0.5 m to 2.0 m in height. The park vegetation is frequently 

subjected to natural disturbances, fires, erosion and termites (Belsky, 1985).  

 

4.2 Sampling design  

4.2.1 Road dust and traffic intensity 
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Samples of grasses for dust were clipped from 96 sites positioned perpendicular east and west 

of the road on 12 dust transects, six from both south and north of Naabi gate on Serengeti 

short grass plains (Figure 1). The road dust transects were superimposed on existing road 

count transects in order to record the effect of grazers distribution as influenced by roads. 

These transects were spaced after every 5 km each with four paired sites at 100 m, 200 m, 300 

m and 1000 m perpendicular to the road. Grasses were clipped to determine the deposition 

rate of dust and the direction and sequence for clipping was pre-determined each time a 

station was sampled. A handful of grass tufts devoid of forbs or shrubs were clipped carefully 

and systematically from all sites in order to standardize the handling procedure in the 

laboratory. About 80 gm of grass sample was clipped once above ground level at each 

location using a heavy-duty scissor.  

 

Clipped grass was scrupulously put in labelled plastic bags, tightened and subsequently 

packed serially in boxes before were taken to the laboratory for dust extraction and 

measurements. These boxes were properly covered using a plastic paper during transportation 

to prevent additional dust from the surroundings. Later, each sample was washed thoroughly 

well in a 2.0 l water jar, semi-filled with 1.0 l of distilled water before was emptied in 

corresponding labelled filter paper (0.001 mm fisher-brand) affixed to a 0.5 l funnel. Washed 

grasses together with dust filters were put into well-labelled paper bags and air dried for 12 

hours prior to oven drying at 60○C for 24 hours. Oven-dried grass and filter papers were 

measured instantly by a sensitive scale (Mettler PM100) calibrated to three decimals. Net 

grass weight and dust were obtained by subtracting average weight of repeated measured 

empty filters and polythene papers from gross weights of respective grass samples. 

Furthermore, the measurement from each sample was recorded on the data sheet for further 

analyses. We used gram dust per gram grass as a currency to describe the density of dust.  
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4.2.2 Sampling of vehicle and wind speed  150 
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Motor traffic records were obtained from SNP at Naabi gate each day. This involved monthly 

recording of incoming and outgoing vehicles at Naabi gate (Fig. 1) from October 2003 to June 

2005. The speed of vehicles was also monitored using hand-held speed gun (Laser detection 

device) provided by SNP. A vantage point was located and a speed gun was systematically 

pointed straight to any selected approaching vehicle in order to read its speed. A systematic 

random sampling was adopted by recording the speed of every third vehicle within three peak 

intervals i.e. 7:00-9:00 a.m., 12:00-2:00 p.m., and 5:00-7:00 p.m. once every week. The speed 

was averaged first within each day and then across months in all study years.  

 

The wind speed and direction were recorded randomly alongside transects by raising an 

anemometer 5 m above the ground where the initial and last readings were noted each time of 

recording. The records were later converted to km hr-1. The speed was calculated from a 

continuous 15 minutes of wind observations and later a fraction of that speed (15/60) was 

adjusted to one hour. Sampling sites were visited according to an established sampling 

schedule. This involved subsequent alternation between sampling of the long and the short 

grass transects to minimize systematic sampling errors.  

 

4.2.3 Sampling of animals 

Distance sampling method was used to read data from animal counts on transects randomly 

superimposed to the existing road-system in the study area. Each transect had a total length of 

1km spaced by 2 km intervals with marked GPS-positions at the beginning and end points of 

transect. All sampling were conducted inside a pick-up that moved along transects at slow 

speed (< 20 km hr-1) with two observers standing at the backside, each covering a sector of 

180o. When an animal was spotted, the vehicle immediately halted and observers recorded the 
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UTM-position of the car followed by distance to the animals by the use of a range finder. If 

the object was a cluster of animals, the distance was defined to represent the line from the 

observers to the middle of the observed animal group.  The maximum operational distance for 

the range finder was 1000 m. The angle to the animals as well as to the road was also 

determined in order to estimate the exact position of the animals and calculate their 

perpendicular distance from the road. The frequency of animal sightings in every transect 

count were used in the analysis to get the total number and mean sighting frequency. The 

analyses were limited to small groups, of less than 50 individual from each species of animal 

sampled, as the accuracy of mid-point of big groups is distorted by distribution of animals 

sighted through a range finder. 

 

The following factors other than road dust, were important source of errors during the 

sampling process although did not radically change our results, i) soil disturbance from 

animals, ii) rain wash/splashing on grass, iii) grass characteristics (i.e. tall/short, moist/dry, 

smooth/hairy), iv) wind speed and direction. 
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5.0 RESULTS 190 
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5.1 Wind speed and direction 

Over 75% of recorded winds were easterly winds blowing westwards and in very rare cases 

north to northwest. Winds were strong at dawn and progressively slowed down in the 

afternoon with monthly average speed of 16.6 (± 6.4, N=34) and 14.2 (± 6.2, N=51) km hr-1 

respectively. The mean record of wind speed during the study period was 13.2 km hr-1. 

 

5.2 Dust from paired sites 

The overall density of dust was statistically significantly higher on the west side than that of 

the east side of road when paired distances were compared (100 m, Z=-8.14, N=215, P<0.001; 

200 m, Z=-3.01, N=201, P< 0.002; 300 m, Z=-3.56, N=197, P< 0.001) except for 1000 m 

(Z=-0.29, N=193, P=0.772) (Fig. 3). When the east and west side of the road was split into 

short and long grass corresponding to south and north side of Naabi gate respectively (Fig. 1), 

the difference in the density of dust was highly significant up to 300 m on the short grass and 

significantly different at 100 m for the long grass (Fig. 3). The density of dust varied 

significantly on the west side of the road even when an independent test was carried out 

during the wet, dry and late dry seasons. All over, the density of dust recorded beyond 100 m 

was not statistically significant except at 200 m during the dry season (Table 1). 

 

5.3 Traffic volume and speed 

The records for mean daily traffic volume were statistically significantly different across 

months in all study years (χ2=1276.6, DF=9, P<0.001). Light duty vehicles (Land lovers/Land 

cruisers) represented 70% of all sampled vehicles out of which 50% and 20% were tourist and 

non-tourist vehicles respectively. Heavy duty vehicles (trucks and buses) represented only 

30%. There was about 40% annual vehicles increase with progressive mean increase from 111, 
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161 to 182 vehicles day-1 during the wet, dry and late-dry season respectively. Overall 

monthly mean traffic speed in all study years was 68.2 (±4.4, N=18) km hr
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-1. However, 

vehicle speed averaged within days and across months for all the study years varied 

significantly within months and between seasons (ANOVA, F=176, DF=9, P<0.001). Mean 

vehicle speed averaged in wet months was relatively higher 69 (±3.7, N=8) km hr-1 than 

during late 67 (± 3.8, N=7) and dry months 67 (± 0.07, N=2) km hr-1 respectively.  

 

Generally, the density of dust increased with traffic volume in the dry than the wet season 

(Fig. 2). The average amount of dust correlated significantly with mean traffic density, both at 

the short (r2=0.234, N=108, P < 0.015) and the long grass (r2=0.241, N=107, P<0.012). There 

were significant differences in the density of dust between the east and west sides of the road 

at 100 m in all seasons. The difference in the density of dust between east and west sides at 

200 m was significantly different during the dry season (Table 1). A multiple regression 

analysis indicated that perpendicular distance, grass height, vehicle numbers and road sides 

(east or west) independently explained the variation in the density of dust (Table 2). However, 

seasons were not important determinants of variation in the levels of dust density recorded 

between grass sites and heights.  

 

5.4 Distance sampling and animal distribution along perpendicular sites 

The east side, with least density of dust, recorded grazers significantly more frequently than 

the west side at the closest distance (i.e. 100 m) (Fig. 4A). However, the observed animal 

frequencies at distances beyond 100 m were not statistically significantly different (Fig. 4B-

D). Despite of significant variation in the density of dust at 100 m, there was no significant 

difference between east and west side of the road due to seasonal variation in the observed 

mean frequencies of grazers. Furthermore, observed animal frequencies in the short grass 
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plains were more variable at 100 m only during the wet season and less variable at distances 

beyond 100 m. The most frequently sighted grazers in decreasing order of magnitude included; 

Thompson’s Gazelle, Grant’s gazelle, wildebeest, warthog, topi, hartebeest (Alcelaphus 

buselaphus), ostrich (Struthio camelus), eland (Taurotragus oryx), elephant (Loxodonta 

africana) and reedbuck (Redunca redunca).  
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6.0  DISCUSSION 245 
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Our preliminary results indicate important ecological function of roads to wild ungulate 

species. The overall vehicle traffic effects on Serengeti roads is to repel, disturb and 

sometimes attract some ungulates species at different times of the year with possible 

ecological consequences. The prediction from ‘dust aversion hypothesis’ (P1) was supported 

as most grazers were seen on the east side of the road avoiding road grass shoulders on the 

west side probably due to dust contamination which impinge on the grass quality (Anon, 1966; 

Spellerberg, 1998). Neither disturbances from tourist vehicles nor attraction toward high 

quality herbaceous growth near roads tested by sighting frequencies of grazers near the roads 

(i.e. 100 m) supported prediction ‘road attraction hypothesis’ (P2) and ‘road disturbance 

hypothesis’ (P3). Instead, majority of the grazers appeared to be dust sensitive in their 

distribution with occasional sightings of indiscriminate grazing on foliage with high densities 

of dust. 

 

Elevated levels of dust on the west presumably elicited herbivores aversion response towards 

the east side of the road as the mean sighting frequencies within 100 m of the east side 

suggests (Fig 4A). This indicates that the increased tendency of sighting frequencies of 

grazers on the east side was not attributed by chance. If the assumed motor vehicle 

disturbance (visual and noise/vibrations) was the case, the level of sighting frequencies would 

have been expected to occur at random; hence  the sighting frequencies would be roughly 

equal on both sides of the road especially at the closest 100 m distances as the records of the 

paired distances beyond 100 m suggests. Previous study indicate that superficial road traffic 

disturbance have little effect on vegetation patterns to broadly alter the grazer’s foraging 

pattern (Belsky, 1985).  
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It is also reasonable to assume that grazers would tend to avoid excessive dust contaminated 

grass due to teeth abrasive silica (McNaughton et al. 1985; Williams & Kay, 2001). 

Notwithstanding occasional sightings from Thompson’s Gazelle’s that were seen to subsist on 

the roadside grasses especially Digitaria macroblephara (pers. obs.), deviation from this 

assumption can not be ruled out. Laboratory results indicate incredible levels of dust from 

grass samples dominated by Digitaria macroblephara because it is hairy and probably able to 

trap dust broadly.  

 

The variations of vegetation structure and composition of grass species all over Serengeti 

plains during dry season might force Thompson’s Gazelles to feed on moist but dust 

contaminated foliage hence trade-off teeth abrasion against immediate metabolic demands 

from moist grass (Wilmshurst et al. 1999). This tendency may support the predictions both 

from the ‘road attraction hypothesis’ and the ‘road disturbance hypothesis’. These predictions 

were however not easily tested on the account of 1) traffic disturbance which impinges on 

responsive behaviour of grazers toward road edge resources, and 2) too few observations from 

some species to support the ‘disturbance hypothesis’. Prediction (P3) would probably be more 

conclusively supported if the study was carried out at night without any traffic influence. Any 

road avoidance by grazers at night would definitely be linked to extreme dust pollution on 

grass adjacent to the road and/or predation. Potential carnivores especially lions Panthera leo 

and hyenas Crocuta crocuta are known to hunt actively at night (Packer, 1996; Hofer & East, 

1995) and were mostly seen along the road which in this case may substitute vehicle traffic 

effects.  

 

The size of vehicle, intensity and speed were probably important factors whose effects were 

additive during the dry season. Altogether the effect might be facilitated by easterly winds 
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which steadily amass extra dust at the average speed of 13.2 (±6.3, N=26) km hr-1. Higher 

traffic volumes  significantly correlated with the increased amount of dust, especially in 

months with higher records of heavy duty vehicle indicating that the dust is spread out more 

with bigger vehicles particularly at a higher than at a lower vehicle speed. In view of SNP 

road maintenance program, scheduled during dry period when there are more visitors, roads 

could prompt high speed driving.  As far as SNP management is concerned there is less 

maintenance cost (J. Hando pers. com) in dry than during the wet season. The speed limit in 

both NCA and SNP is set at 50 km hr

295 
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306 

-1, but drivers rarely observed this speed limit, as 110 km 

hr-1 was not uncommon. Despite of heavy penalty imposed upon over-speeding, the vehicle 

speed averaged during the entire study period was unusually higher (i.e. 68 km hr-1). The daily 

mean vehicle speed dropped during the time when rainfall was excessively high and only in 

sections where roads were in terrible shape.  
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7.0 CONCLUSION AND RECOMMENDATION 307 
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The relationship between road aversion behaviour by grazers and dust is complex; although 

our findings from major impacts of road and associated dust to the grazers can have important 

ecological implications. The linkages between grazing distribution pattern and dust 

pollution/traffic disturbance supported the dust aversion hypothesis. The test predictions for 

road attraction and road disturbance were not strongly supportive to confidently confirm that 

roads deter and/or elicit feeding response to grazers. It is therefore convincing to believe that 

dust (mainly from vehicles) on grass keep ungulate away from feeding closest to roads 

contrary to speculated random associated road events. Our observations however are not 

conclusive and call for additional data especially night transects for tight comparisons.  

 

Research recommendation 

i). Chemical analyses of effects of exhaust fumes on road-edge grasses and possible 

consequences on grazers 

ii). Mineral/chemical analyses of dust to show rates and accumulation level on roadside biota 

and possible effects on primary production (photosynthesis) 

iii). Correlated changes in plant diversity and grazers toward road habitat-edge 

iv). Night distance sampling transects to track changes in distribution pattern of animals with 

little influence from vehicle disturbance. 

 

Management recommendation 

The speed limit set by SNP i.e. 50 km hr-1 should be enforced to minimize further ecological 

effects. So far recorded road dust linked with vehicular traffic and associated speed has 

signalled an important ecological variant to herbivores distribution and grazing pattern along 

the roadsides. In order to reduce further impacts at broader scale speed bumps should be 
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332 

333 

334 

335 

336 

337 

338 

339 

340 

341 

342 

343 

344 

345 

introduced on busy roads and heavy duty carriers on transit especially lorries should be 

controlled by introducing a special fee.  
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10.0 TABLES 418 

419 

420 

421 

422 

423 

Table 1. Differences in the density of dust (g dust/g grass) during wet and dry seasons 

and the mean sighting frequencies (observ.) of animals between east and west sides of 

the road. The mean density of dust and sightings beyond 200m are not presented here 

because they were not statistically significant (Mann-Whitney U-tests were used to test 

the differences). N= number of observations; Z= Mann-Whitney U-value 

Season     Variable          E-W distance       N     Mean +S.E.         Z          P value 

Wet         Dust                    E 100m          72      0.053 + 0.005  -2.814    0.005     

                  W 100m             71      0.072 + 0.006     

                Dust                    E 200m         65     0.025 + 0.002  -1.027    0.305 

                                            W 200m   66     0.032 + 0.004  

                Observ.               E 100m               6            6.3 + 2.5   -0.322    0.748     

                                            W100m                4           6.0 + 1.2                            

                Observ.               E 200m               6           4.6 +1.2   -0.643    0.520     

                                            W 200m               5     6.2 + 2.0         

Dry          Dust                    E 100m               60      0.082 + 0.018  -4.750   0.000     

                  W100m              60      0.146 + 0.018            

                Dust                    E 200m               58     0.033 + 0.007  -2.137    0.033 

                                            W 200m             59     0.047 + 0.008  

                Observ.                E 100m                9     4.2 + 0.99   -0.216   0.829     

                                             W100m             12            4.0 + 0.58                        

                Observ.                E 200m              10     3.6 + 0.89              -1.632    0.103     

                                             W 200m            12            2.1 + 0.38          

Late-Dry  Dust                     E 100m             83      0.069 + 0.018  -4.279    0.000     

                                             W 100m            84      0.104 + 0.018    

                Dust                     E 200m              83     0.034 + 0.007   -1.88    0.060 

                                             W 200m            82     0.044 + 0.008  

                Observ.                E 100m              10     5.9 + 1.2              -1.781    0.075     

                                            W 100m             11     3.2 + 0.7                                   

                Observ.                E 200m   9             4.4 + 1.6                  -0.833             0.405     

                                           W 200m            10     4.9 + 1.3        

 424 
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Table 2.  A multiple linear regression analysis for variables explaining the variation in 

the density of dust from the grass sampled along road sides in Serengeti National Park. 

425 

426 

427   

Independent variables              t   P 

Perpendicular distance              -13.0              0.001 

Short or long grass    7.59   0.001 

Vehicle numbers    5.83   0.001 

East or west side    4.52   0.001 

Season of the year    0.21              NS 

428  
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12.0 FIGURE LEGEND 429 

430 

431 

432 

433 
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442 

443 

444 

445 

Fig. 1. The Serengeti National Park (SNP) study area located between Ngorongoro (NCA) 

and Seronera plains marked as box A and B respectively. The land feature which divides the 

two sites (hereinafter referred to as short and long grass respectively) is Naabi hill Gate 

conspicuously divided by a continuous dotted line. 

Figure 2. Monthly mean variation in the density of dust measured east and west of the road 

and monthly traffic volume 

Figure 3. Mean (+/- SE) of dust weight east and west sides of the road in the study area. The 

mean dust weights for the short and the long grass are represented by filled and open squares 

respectively. Bars represent +/- SE of means and boxes; 3) a, b, c and d indicates 100, 200, 

300 and 1000 m perpendicular distances respectively 

Figure 4. Mean (+/- SE) numbers of animal groups sighted for species recorded between the 

established perpendicular distances east and west side of the road. Differences between east 

and west (Wilcoxon signed rank test: a) 100 m (Z=-2.224, P=0.026), b) 200 m (Z=-1.253, 

P=0.210), c) 300 m (Z=-0.204, P=0.838) and d) 1000 m (Z=-1.45, P=0.147). Bars represents 

+/- SE of means and the mean sighting frequencies are represented by circles and boxes 4) a, 

b, c and d indicates 100, 200, 300 and 1000 m perpendicular distances respectively. 
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ABSTRACT 

Serengeti wildebeest Connochaetes taurinus often come in contact with human activities associated 

with development during their annual movements. Since the influence of these activities is poorly 

understood, we examined the distribution and daily wildebeest movement from ten GPS collared 

wildebeest from 2002 to 2004 to test for any significant difference in the habitat use. 

Compositional analysis and daily mean movement rate were used to asses wildebeest distribution 

and habitat use. A pairwise comparison of different habitats computed using log-ratio among 

GPS collared wildebeests indicated that open grassland, open woodland and wooded grassland 

were used significantly more frequently than other vegetation types. Habitat uses changed with 

seasons reflecting opportunistic feeding due to resources variability. Migrating wildebeest avoided 

the western corridor during the north migration despite the relative potential of green grass and 

surface water. The pattern of space use was better explained by daily wildebeest movement which 

seemed to have increased even in the most frequently used habitats reflecting resource 

competition. The difference in daily mean rate between wildebeest sexes was better explained by 

the interaction between sexes and period of the day. Males appeared to be more active at night 

compared to females. Less movement in females was recorded during the calving period (wet 

season), probably a strategy to minimize predation on less mobile neonates. Future monitoring of 

habitat use would be enhanced using a long-term data set from large sample sizes of wildebeest 

with detailed daily location GPS fixes. Managers would benefits more if the analyses of habitat 

use among wildebeest individuals compared foraging movements between resident and migratory 

sub-populations in habitats within the migration corridors. 

 

Key words: available habitat, migration, movement, Serengeti, used habitat, wildebeest, vegetation. 
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INTRODUCTION 

A central focus in animal ecology is to consider the association of an animal with its 

environments, particularly the varieties of habitats it occupies or prefers. Habitat preference 

studies correlate the use of habitats by animals against their availability (Hall et al. 1997; Manly et 

al. 2002; Calenge & Dufour 2006). Migrating ungulates in most grazing ecosystems e.g. northern 

Tanzania, have maintained diversity and abundance through selection of most suitable habitats at 

times extending beyond the boundaries of parks and game reserves into surrounding communal 

and private lands (Rodgers 2003). Habitats with food sources that vary in amount and quality 

both temporary and spatially are critical when migratory ungulates are making route choices 

(McNaughton 1988, 1990; Musiega & Kazaidi 2004). The biggest challenge in habitat selection 

studies is how to develop a suitable method for the analyses of selection from proposed 

approaches when resources are defined by several categories (Aebisher et al. 1993; Calenge & 

Dufour 2006; Gillies et al. 2006). Nevertheless, any study design for habitat selection fall into one 

of three broad methodological approaches which consider measurements of I) habitat use and 

availability at the population level, II) habitat used by identified animals while considering 

available habitat at the population level or III) both availability and use of habitat for each single 

animal in question.  

 

The movements between habitat patches in most environments are constrained by resource and 

landscape heterogeneity together with terrain features. The means in which ungulates respond to 

environmental heterogeneity impinge on their movement patterns in many ways (Johnson et al. 

1992; Etzenhouser et al. 1998). Wildebeest for example, function best in environments with 

variable resource availability particularly suitable niches at different times of the year. They move 

between habitat patches in response to changes in climate associated with fluctuations in resource 

availability (Mduma et al. 1999; Wilmshurst et al. 1999; Boone et al. 2006). Nevertheless, 

predation pressure (Fryxell & Sinclair 1988), uneven distribution of rainfall and surface water 
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(Wollanski et al. 1999; Wollanski & Gereta 2001), specific nutrients in foliage (Kleuren 1975; 

McNaughton 1990; Murray 1995), fire  (S.N.Hassan pers. comm.) and habitat suitability have 

greatly influenced habitat selection and ungulate movements between habitat patches (Andersen 

1991). Above all, foraging economics during movements play an important role in habitat 

selection (Poldolsky & Price 1990; Wilmshurst et al. 2000; Bergman et al. 2001).  

 

Therefore, in order to conserve migration it is essential to know what resource categories 

influence habitat use and to correlate the distribution patterns of grazers to the vegetation 

characteristics in the geographical region. Recent telemetry studies in Serengeti (Thirgood et al. 

2004) including simulation models (Musiega et al. 2004; Boone et al.  2006) suggest a close link 

between wildebeest migration routes and new forage growth as influenced by rainfall. 

Observation also affirms that both vegetation and landscape heterogeneity are key players 

determining wildebeest movement.  

 

Studies on individual collared wildebeest (Inglish 1976; Thirgood et al., 2004; Boone et al. 2006) 

suggest that there is limited use of areas outside core protected zones. Wildebeest mobility and 

residence time in these areas have only increased in the presence of drought during north 

migration (Hilborn et al. 1994; Thirgood et al. 2004). In view of these findings our telemetry 

study examined the distribution and abundance of wildebeest in Serengeti National Park and its 

adjacent protected areas using detailed GPS collared data and related distribution patterns to 

available vegetation / land-cover maps in order to answer the following questions; i) are different 

habitat types used at different levels? ii) if so, is habitat use significantly different among GPS 

collared individuals with regard to the available habitat? iii) is the rate of movement amongst 

wildebeest individuals significantly influenced by  habitat types, sex, season and period of the 

day? 
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MATERIALS AND METHODS 

Study Area  

The Serengeti Ecosystem (SE) is comprised of nearly 25,000 km2 on the boarder between 

Tanzania and Kenya. The system has a conservation core zone consisting of Serengeti National 

Park (SNP) and Masai Mara National Reserve (MMNR) in Tanzania and Kenya respectively. The 

SNP is shielded by Maswa Game Reserve (MGR), Grumeti Game Reserve (GGR) and Ikorongo 

Game Reserve (IGR) to the south and north-west and Ngorongoro Conservation Area (NCA) to 

the south-east (Fig. 1). Grassland forms the most extensive land cover, reaching to less than 75% 

in areas of extensive woodland (Campbell & Hofer 1995). Open grassland dominates in the 

southeast whereas woodland dominates the western and northern parts (Senzota, 1982).  Patches 

with over 25% woody canopy cover occur largely in the southern SNP - MGR boarder and high 

relief being confined to west and southwest of the Serengeti, Ngorongoro crater and Loliondo 

highland in the east.  

 

Wildebeest population size has maintained around 1.3 million individuals between 1970 and 2001 

with yearly fluctuations due to rainfall in the dry seasons (Serneels & Lambin 2001). Apart from 

dry season rainfall, the density of migratory wildebeest in the open woodland and wooded 

grassland habitats, north and outside the Serengeti plains, is influenced by the level of human 

disturbance (Campbell & Hofer 1995). Fire effects on woodland (Dublin et al. 1990, Koppel & 

Prins 1998) coupled with the effects of small to medium (e.g. impala Aepyceros melampus, 

wildebeest, buffalo Syncerus caffer) and large (e.g. elephants or giraffe Giraffa camelopardalis) 

herbivores have been instrumental in shaping the vegetation (Prins & Van der Jeugd 1993). This 

implies that since wildebeest is food regulated (Mduma et al. 1999), short term habitat alteration 

from bushfire; agro-pastoral and poaching activities (Sinclair & Arcese 1995; Kideghesho et al. 

2005) may largely constrain resources available for the migrating wildebeest.  
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GPS Collaring 

Sixteen adult wildebeest, ten (six males and four females) and six (four males and two females) 

were fitted with GPS collars in Ndutu area, South of Naabi gate in Serengeti National Park on 

April 27, 2002 and May 5, 2003 respectively. These animals were stalked with a car and darted to 

the rump region with a combination of etorfin (etorphine 9 mg/ml, M99) and medetomidin 

(medetomidine 10 mg/ml, Zalopine) from inside the vehicle. The GPS collar was fitted when the 

wildebeest was down and calm and the anaesthesia was reversed using diprenorphine. 

Wildebeests fitted with collar were closely monitored for one hour after recovery and no 

undesirable effects were observed during handling and monitoring process. Televit of Sweden 

delivered the GPS-Simplex collars with their assembly.  

 

SPM Simplex project manager software was used to set up a scheduled program for the GPS-

units. All GPS-collars fitted in 2002 were set to record their positions every third hour and those 

fitted in 2003 took positions every one hour. Remote downloading was programmed to occur 

once every month but the topography, remoteness and climatic conditions of the area made this 

approach very difficult. Therefore, collars were recovered after one year of service when the 

drop-off unit had been triggered. We managed to retrieve eight collars (six males and two females) 

in 2003 and the remaining two were localized but never collected due to difficult terrain 

associated with the wet season (April-May). Only two collars (one male and one female) were 

retrieved in 2004 and the remaining four were never localized. A total of 14,996 and 13,166 

animal positions (fixes) were recorded in 2003 and 2004 respectively.  

 

Available habitat, habitat use and compositional analysis 

We used the minimum convex polygon (MCP) from pooled GPS coordinates from all collared 

wildebeest to define a home range of available habitat. The composition of available vegetation 

types within this home-range was based on the Serengeti ecosystem vegetation map of 1994 
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(supplied by IRA-University of Dar es Salaam). We assumed, we considered all wildebeest to 

have access to the same habitats given the migration patterns of Serengeti. Similarly, the use of 

habitat by the GPS-collared wildebeest was found by acquiring the vegetation type at each GPS 

location, based on the same vegetation map as mentioned above. Due to the lack of an updated 

vegetation map for MMNR (Kenya), habitat use in MMNR was not performed.  

 

Compositional analysis (Aebischer et al. 1993) is a general approach for comparing the 

proportions of different types of habitat that were available and used. Resource use in this case 

was defined as proportions of different vegetation types within the estimated available area 

specified by the frequency of wildebeest observations. Based on the equations modified from 

Manly et al. (2002), there were ten types of available habitat units, and the proportional use of 

these habitats by each individual wildebeest were described by the composition Hu1, H u2……………. 

H u10; where Hui is the estimated proportion of the habitat (u) used by the individual that are of 

type i (Note that all proportions sum to one). Similarly, the available proportions for the same 

wildebeest were πa1, πa2……………. πa10. For any component Hj of a composition, the log-ratio 

transformation yi =loge(Hi/ Hj) produces linearly independent variables with a specific choice for 

j. Based on this, the differences    di=loge (Hui/ Huj) - log(πai/πaj)  were calculated to obtain the 

relative use and availability of habitats i and j for all GPS collared wildebeests. 

 

In the calculation, it was first assumed that the proportion of habitat used is the same as the 

proportion of habitat available. Secondly, that each individual collared wildebeest was 

independent of the other, hence there was no dependence for relocations. Thus, in order to test 

for overall habitat selection, we used the differences in log-ratios (di) and tested whether the 

vector of mean values of d (d1, d2………d6) was significantly different from a zero vector, using 

Wilk’s lambda test. Habitat types whose use observations were proportionally low were pooled 

together and a zero data was replaced by an arbitrary small positive number when calculating di 

7 



values, in case of zero record for the ith value. In order to test for the differences in habitat 

selection, a one sample t-test was used to compare the mean of di value to zero and subsequently 

a paired t-test for pairs of sample means.  Since the data was divided into groups of categorical 

variables i.e. sex, year, seasons and period of the day, a generalised linear model was performed to 

test the effect of interacting variables in habitat selection. An individual GPS collared wildebeests 

whose fixes in year days covered less than 50% were omitted to avoid bias from fewer 

observations in habitat use. Available data reflect time from April 2002 through March 2004 

whereas seasons considered the annual movements and habitat use in distinct periods covering 

January - May, June - July and August - December for wet, early dry and late dry range 

respectively.  

 

Daily wildebeest movement 

The rate of movement of each GPS collared wildebeest in different habitats was obtained by 

calculating the mean lengths of line paths from daily fixes of all wildebeest covered in each 

habitat for the entire study period. The movements between line paths for daily fixes recorded 

after one and three hours were standardised in km per hour and later averaged across days. In 

order to capture the differences in movements as a function of period of the day, daily fixes were 

split into day and night. All wildebeest fixes retrieved from 7:00 to 18:59 and from 19:00 to 6:59 

hours covered day and night sections of 24 hours respectively. Movement data were tested for 

normality and later log10transformed where graphs were non-normal. A mixed linear model was 

developed to test the effect of interacting factors as well as the model that best explain the rate of 

movement. We started with the full model, including all main effects and interactions. Then we 

stepwise excluded non-significant terms one by one. GPS collared wildebeest individuals were 

entered in the model as a random factor whereas study years, seasons, period of the day, habitat 

types and protected areas as fixed factors. We started the full model, including all main effects 

and interactions. Then we stepwise excluded non-significant terms one by one. The parameter 
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estimates of wildebeest movement were independently tested to determine if the variations from 

the intercept significantly differed in factor combinations using S-Plus v7.0 (Insightful Corp.). 

Other statistics were done in SPSS inc. (2006) and are 2-tailed with 0.05 significance level. 

 

RESULTS 

Movement patterns in 2002 -2004 

Position fixes from individual collared wildebeest indicated higher proportional uses of areas 

under core protection than areas with lower protection status (Table 1). Serengeti National Park 

(SNP) was predominantly used throughout the year followed closely by Ngorongoro 

Conservation Area (NCA). Frequencies of wildebeest uses in different protected areas between 

the study years were significantly different (χ2=901, DF=5, P<0.001). Serengeti National Park 

(SNP) and Ngorongoro Conservation Area (NCA) were used significantly more frequently than 

other protected areas in 2004 than 2003 (Table 1). All GPS collared wildebeest fixes during the 

study years are indicated in Fig. 2a; where seasonal uses in different habitats are indicated by a 

series of maps in Fig. 2.  

 

The general pattern of movements indicated an even distribution of collared wildebeest in the 

south-east of the SNP and NCA short grass plains toward Maswa Game Reserve (MGR) during 

wet season (Fig. 2b). At the onset of the dry season the movement headed north of SNP through 

the west (Fig. 2c). The open land and the protected areas outside SNP appeared to be avoided as 

wildebeest moved west and north-west of the park toward Masai Mara National Reserve (MMNR) 

in Kenya (Fig. 2c). A substantial amount of time was spent within the habitats of Tanzania-Kenya 

boarder of the ecosystem and later collared wildebeests moved back to SNP spreading 

throughout the centre, south-east and part of NCA during late dry season (Fig. 2d). 
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Habitat use    

GPS collared wildebeest were recorded during the study period in a range of habitats (Table 2) 

with the following decreasing order of importance: open grassland (OG), bushed grassland (BG), 

bushland with emergent trees (BET), wooded grassland (WG), open woodland (OW), open 

bushland (OB), bare soil (BS), dense bushland (DB), grassland with scattered cropland (GSC), 

inland water and permanent swamp/marsh (IW) and woodland with scattered cropland (WSC). 

The proportions of available and used habitats for individual wildebeest in each habitat are 

provided in Table 3. Differences in log ratios from the proportions of habitat use computed from 

each individual collared wildebeest are indicated in Table 4. Pairwise comparison of different 

habitat combination indicated a significantly higher selection for open grassland compared to 

open woodland and bushland with emergent trees, when their mean differences were compared 

across the ten collared wildebeest (Table 5). In addition, open woodland was used more 

frequently compared to wooded grassland whereas wooded grassland was selected more frequent 

compared to bush land with emergent trees (Table 5). Despite the other habitats being available 

in relatively higher proportions, comparisons of their mean differences from the pairs were not 

statistically significant (Table 5). Without considering seasonal influence on wildebeest habitat use, 

there was a clear difference between frequencies of habitat use dominated by open grassland (Fig. 

3). Open woodland appeared to be an important habitat during the wet season whereas; bushed 

and wooded grasslands were selected more frequently than other habitats in the late dry season 

(Fig. 3).  

 

 Wilk’s Lambda tests indicated significant selection when different variables interacted in a 

Multivariate Analysis. Habitat use was best explained by the interaction between period of the day 

(day and night) and seasons, [General Linear Model (GLM), F=10.8, DF=3, P<0.001) and also 

the season and habitats GLM, F=6.26, DF=18, P<0.001]. Other interactions (i.e. period of the 

day*sex; period of the day*habitat; period of the day*season*sex; period of the 
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day*season*habitat; period of the day*sex*habitats; season*sex; season*sex*habitat) were not 

significant.  

 

Rate of movement in different habitats 

Daily mean rate of movement averaged from wildebeest fixes for all study years was 4.9(±1.2 km, 

N=26,290). There was no significant difference in movement rate between the study years. The 

lowest and highest movement rates were 0.04 to 63 and 0.8 to 32.6 km for year 2003 and 2004 

respectively. There were significantly differences in movement rate between period of the day, 

seasons, vegetation types and protected areas (Table 6). The difference in daily mean rate 

between wildebeest sexes was better explained by the interaction between sex and period of the 

day (Table 6). Males appeared to be more active at night compared to females, and night 

movement rate was reduced by almost 50% in both sexes (Table 6). On the other hand females 

covered significantly longer distances (6.03±1.02 km day-1) than males (4.49±1.2 km day-1) during 

the day than night time (Table 7). Despite the lack of seasonal influence on the wildebeest 

movement, females were relatively slower during the wet season (4.9±1.2 km) compared to the 

early dry (5.9±1.0 km) and late dry season (6.2±1.0 km) (Table 7). Generally, however, the daily 

movement rate for all collared wildebeest across habitats was highest in inland water/swamps 

(7.1±1.6 km) and lowest in grassland with scattered cropland (2.4±1.2 km) (Table 7). Individual 

collared wildebeest appeared to move faster in GGR and SNP (6.1±1.6 km and 4.9±1.2 km day-1 

respectively) and were relatively slower both in MGR and LGR (3.6±1.1 km day-1).  
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DISCUSSION 

This study indicates that anthropogenic changes may potentially deter wildebeest from using 

habitats in reserves adjacent to core protection areas as habitats in SNP and NCA were used 

proportionally more frequently compared to those found in areas of lower protection status. For 

instance, Grumeti Game Reserve appeared to be completely avoided whereas in agreement with a 

previous study, the Ikorongo Game Reserve (Fig. 2) was partially used (Thirgood et al. 2004). 

Indeed, threats (particularly poaching) to wildebeest outside the core protected areas can be 

associated with annual wildebeest migration (Homewood et al. 2001, Serneels & Lambin 2001a, 

b., Thigood et al. 2004, Holmern et al. 2007). Moreover, in connection with documented threats, 

complex interactions linking protected areas network of Serengeti ecosystem have been 

associated with increased human population (Kideghesho et al. 2005). Increased illegal hunting 

from densely populated areas in western Serengeti together with natural predation can likely 

disrupt wildebeest migratory movements and ranging patterns, when balancing physiological 

needs and safety.  

 

Wildebeest patterns of space use could be described by movement rates among wildebeest 

individuals. However, our data should be treated cautiously due to the differences in interpreting 

movement data that arise when comparing collared individuals with different time intervals 

between fixes records (Ferguson et al. 1998). Ignoring possible differences due to time interval 

differences between years, our study indicates that there was consistent selection for open 

grassland compared to other habitats. However, the use preference of open grassland was 

strongest in the Serengeti National Park (SNP) with more recorded fixes (Table 1) probably due 

to the level of protection and nutritional suitability of the south-east plains grasslands 

(McNaughton 1990, Murray 1995). Generally, open short grasslands are considered to be 

extremely productive areas in Serengeti primarily during the wet season (McNaughton 1990, 

McNaughton & Banyikwa 1995, Murray 1995, Wilmshurst et al. 1999).  
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Despite of elevated requirements for high-quality food in open grassland areas, the estimated rate 

of wildebeest movement was comparatively higher probably due to strong competition for 

quality resources. Other factors being equal, higher movement rate between habitat patches 

would reflect little use possibly due to either intra- and inter specific competition or disturbance 

from predators and human activities or both. Alternatively, the amount of plant biomass available 

per unit area is important for forage intake rates (Distel et al. 2005). Lower sward bulk density in 

high-quality short grasslands could result in higher movement rates.  

 

The habitats of western Serengeti were slightly used during the dry period and the collared 

wildebeest appeared to have been moving quickly towards the north as dry season advanced 

(Table 7; Fig. 2c, d). During this period open woodland, bushland with emergent trees and 

wooded grassland were important habitats. However, preference should not be seen as a choice 

function along a gradient from open grassland to close woodland only. Differences in vegetation 

physiognomy also result from differences in the dominant woody plant species which can, in turn, 

reflect other environmental variability such as that caused by soil type and moisture availability. 

The strong selection for open woodland versus wooded grassland as well as for wooded 

grassland versus bushland with emergent trees could be influenced by the outcome of the 

interaction between sexes with period of the day during the dry period when food resource is 

scarce. Moreover, casual observations (Ndibalema pers. observ.) indicated that availability of 

green grass and the presence of surface water strongly correlated with wildebeest movements.  

 

Grass quality and availability tend to limit ungulate food intake during the dormant season 

(McNaughton & Georgiadis 1986, Bergman et al. 2001). For instance, as demonstrated in a 

recent study (S.N.Hassan pers. comm.) consumption of plant biomass in the north-west and 

western corridor of SNP shifted significantly between burnt and non-burnt patches apparently 
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due to changes in the relative composition of the swards in terms of the amount and the quality 

of the forage available.  

 

Higher daily movement rate recorded in Grumeti Game Reserve indicated a general flight 

tendency in the Western Corridor. These could be related to human disturbance from large-scale 

farming, range competition from agro-pastoralists and higher poaching levels (Arcese et al. 1995, 

Campbell & Hofer 1995, Mduma et al. 1999). Early-dry-season (May-July) fires profusely 

occurring in the game reserve areas and coincident with the northern migration (J. Dempewolf, 

unpubl. data) significantly reduce the amount of plant biomass available for migrants (Rusch et al. 

2005). Both wildebeest migrants and other wildlife species appear to use game reserve areas less 

than the core protected area, even with no evidence for competition for forage resources with 

livestock (Rusch et al. 2005). Tourist lodges and camps in the west strategically located on the 

wildebeest migration corridor might have also influenced the observed ranging pattern. Similarly, 

seasonal differences in daily movement rate could be primarily linked to differences in quality 

range associated with forage growth due to rainfall distribution patterns of Serengeti (Sinclair & 

Norton-Griffiths 1979, Pennycuick 1975, Sinclair 1995, Frank et al. 1998, Mduma et al. 1999, 

Boone et al. 2006).  

 

Movement rates averaged across collared wildebeest in both study years was 4.9 km day-1 which 

differs considerably from the 10 km day-1 reported over two decades ago (Pennycuick 1979 cited 

in Murray 1995). However, this reduction in movement rate might reflect differences in sampling 

methods or the influence of environmental parameters on spatial variations in food resources. 

Differences in the rate of movement among GPS collared wildebeest during time of the day and 

season were another notable finding in this study. 
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Daily estimates of female movements were significantly lower during the calving period (wet 

season) compared to early dry and late dry seasons, an observation similar to seasonal 

movements of caribou Rangifer tarandus caribou (Bergman et al. 2000, Rettie & Messier 2001, 

Ferguson & Elkie 2004). The low rate of movement by females during the wet season could be a 

strategy related to minimize predation on less mobile neonates, or a comparatively higher 

exploitation of habitats of high quality. Higher rate of movements during the dry season could be 

associated with effective avoidance or flight response toward predation risk-sensitive 

environments (Fryxell & Sinclair 1988, Caro 2005) given the level of sensitivity in females with 

calves. The obvious seasonal differences in the rate of movement between sexes could mainly be 

associated with male’s territorial behaviour (Estes 1991). However, our results should be treated 

with caution because of small sample size (i.e. seven males and three females).   

 

The observed differences in movement between wildebeest sexes during day and night might also 

reflect life history strategies engrossed in parental care and nutritional demands in females that 

were relatively more active during the day than night time. Male individuals were expected to be 

quite mobile considering their group roles, but physiological demands in search for better 

resources associated with pregnancy and lactation in females might account for the differences 

(V.Ndibalema unpubl. data). In addition, the need for water resource tends to drive movements 

within wildebeest groups (Wolanski et al. 1999, Wolanski & Gereta 2001). The night movements 

were reduced to about 50% in both cases probably for rumination, rest and/or sleep and to 

minimize encounters with predators such as lions Panthera leo and hyenas Crocuta crocuta 

known to maximize their hunts by night (Hofer & East 1995, Packer 1996).  
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TABLE LEGEND 

Table 1.  Wildebeest fixes from ten collars (7 males and 3 females) in different protected 

areas of Serengeti Ecosystem during the annual migration cycle of year 2003 and 

2004 averaged to obtain mean percent observed frequency locations of daily use. 

Wildebeest fixes in 2002 and 2003 were recorded after every 3 and 1 hour 

respectively. SNP=Serengeti National Park, NCAA=Ngorongoro Conservation 

Area Authority, MGR=Maswa Game Reserve, IGR=Ikorongo Game Reserve, 

IGR=Ikorongo Game Reserve, LGCA=Loliondo Game Controlled Area. 

 

Table 2.  Vegetation description used in the study (After Pratt & Gwynne 1966). 

 

Table 3.  Differences in log-ratios calculated from data in Table 1 comparing habitat use 

within MCP home range to availability defined by the home ranges (See Table 2 

for definitions of the habitat types). 

 

Table 4.  Used and available proportions of seven habitat types for ten radio-collared 

wildebeest.  

 

Table 5. Means, standard deviation (SD) and t-test results for compositional analyses of 

habitat types and habitat pairwise comparisons (one sample and paired t-tests with 

nine df). 

 

Table 6. Summary of a mixed linear model analysing the log10transformed wildebeest 

movement rate as a function of year, season, time of the day, sex, vegetation type 

and protected areas (fixed factors). Wildebeest was entered as a ‘random factor’ to 
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control for repeated measures of movement for the same collared wildebeest. 

Wildebeest movement was log transformed to get better normal distribution.  

 

Table 7.  Summary of the test effect of interactive parameters in the final model 

independently explaining estimates of wildebeest movement rates in log10 (km day-

1) changed to km day-1. 
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Table 1.    

 

Year Mean wildebeest fixes in different protected areas  Total year days 
Beest    SNP       NCA       IG         GR      MGR     LGR      Days     (% year) 

2003 3222* 1783 480 23 11    97 - 306 85.0 
 3152** 1516 740 - - 6 106 304 84.0 
 3202* 1521 451 - -    63  64 285 79.0 
 3212* 1577 446 119 -  8 - 279 77.5 
 3162** 1004 711  3 -   401   3 271 75.3 
 3242* 1644 189   32 - - 10 241 67.0 
 3232*   488 318 77 - - - 177 49.2 
  10,300 3,598  251 11   619   205   
          

2004 4162** 6701 1204 17 -   256 - 368 100 
 4222* 3215 - - - 68 - 167 45.6 
 4202*   999  419 - - - -  63 17.0 
  10,915 1,983 17 -   324 -   

Mean percent 
observ. freq.  74.6 19.6 0.9 0.07 3.3 1.4   

*male; **female 
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Table 2. 

Vegetation                            Description 

Open grassland (OG)           land dominated by grasses and occasionally other herbs,  

                                             sometimes with widely scattered or grouped tree and shrubs  

                                             (<2% canopy cover)      

Bushed grassland (BG)         grassland with scattered or grouped shrubs (<20% cover)  

                                             subjected to periodic burning   

Open woodland (OW)          a stand of trees (up to 18m high) with an open but not  

                                             thickly interlaced canopy with shrubs interspersed (<20%  

                                             canopy cover)  

Open bushland (OB)            an assemblage of woody plants, mostly of open shrubby  

                                             habit having a shrub canopy of <6m high and canopy cover  

                                             of  < 20%  

Wooded grassland (WG)      grassland with scattered or conspicuous grouped trees, but  

                                             Having canopy cover of <20% and often subjected to  

                                             periodic burning  

Bushland with emergent       an assemblage of woody plants, mostly of shrubby habit with  

 Trees (BET)                        a shrub canopy of <6m in high and occasional emergent  

                                             Acacia spp.    

Bare soil (BS)                        land (e.g. rock, saline, and desert) naturally devoid of  

                                             vascular plants 

Grassland with scattered       land dominated by grasses and occasionally other herbs  

 cropland (GSC)                   sometimes with widely scattered cropland                      

Inland water and swamp       permanent standing water and associated plant communities  

(IWS)                                   (e.g. reeds, sedges, rushes, trees or shrubs and aquatic species)             

Woodland with scattered      a stand of trees (< 18m high) with an open thickly interlaced     

cropland (WSC)                    canopy. Scattered crop and grasses dominate ground cover 
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 Table 3.   

 OG BG OW OB WG BET *OT 

Beest π1 H2 π H π H π H π H π H π H 

3152 0.44 0.448 0.09 0.073 0.10 0.102 0.07 0.044 0.06 0.054 0.19 0.094 0.037 0.005

3162 0.44 0.317 0.09 0.061 0.10 0.056 0.07 0.022 0.06 0.113 0.19 0.149 0.037 0.025

3202 0.44 0.50 0.09 0.078 0.10 0.017 0.07 0.068 0.06 0.036 0.19 0.025 0.037 0.016

3212 0.44 0.408 0.09 0.201 0.10 0.108 0.07 0.121 0.06 0.061 0.19 0.081 0.037 0.017

3222 0.44 0.504 0.09 0.00 0.10 0.075 0.07 0.029 0.06 0.038 0.19 0.011 0.037 0.166

3232 0.44 0.591 0.09 0.057 0.10 0.002 0.07 0.004 0.06 0.014 0.19 0.229 0.037 0.101

3242 0.44 0.468 0.09 0.191 0.10 0.071 0.07 0.093 0.06 0.054 0.19 0.005 0.037 0.003

4162 0.44 0.504 0.09 0.178 0.10 0.048 0.07 0.052 0.06 0.090 0.19 0.045 0.037 0.020

4222 0.44 0.331 0.09 0.101 0.10 0.033 0.07 0.053 0.06 0.022 0.19 0.048 0.037 0.007

1Available proportion of habitat   

2Used proportion of habitat 

*Pooled data from BS, GSC and IW (see table 2 for description) 
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Table 4.  
Differences in log ratios (d) 

Beest 
OG/OT(d1) BG/OT(d2) OW/OT(d3) OB/OT(d4) WG/OT(d5) BET/OT(d6)

3152** 1.987 1.766 1.990 1.506 1.881 1.274 

3162** 0.081 0.020 -0.169 -0.747 1.042 0.166 

3202* 0.947 0.681 -0.914 0.787 0.309 -1.205 

3212* 0.714 1.593 0.867 1.337 0.813 -0.059 

3222* -1.348 -7.048 -1.769 -2.354 -1.942 -4.269 

3232* -0.690 -1.438 -4.782 -3.732 -2.400 -0.800 

3242* 2.331 3.022 1.935 2.563 2.174 -1.238 

4162** 0.765 1.315 -0.099 0.334 1.042 -0.795 

4222* 1.307 1.705 0.490 1.313 0.620 0.213 

  *male; **female 
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Table 5. 

Comparison                      Differences (di)          Mean                 SD                  P value 

OG/OT                                 d1                          0.787                   1.17              0.063 

BG/OT                                 d2                          0.340                   2.86              0.716 NS 

OW/OT                                d3                         -0.416                   2.02              0.532 NS 

OB/OT                                 d4                          0.173                   1.92              0.783 NS 

WG/OT                                d5                          0.436                   1.49              0.378 NS 

BET/OT                               d6                         -0.796                   1.47              0.121 NS 

OG versus BG                     d1-d2                     0.447                   1.91               0.479 NS 

OG versus OW                    d1-d3                     1.202                   1.48               0.030 

OG versus OB                     d1-d4                     0.614                   1.01               0.087 NS 

OG versus WG                    d1-d5                     0.351                   0.74               0.166 NS 

OG versus BET                   d1-d6                     1.583                   1.28               0.004 

BG versus OW                    d2-d3                     0.756                   2.43               0.352 NS 

BG versus OB                     d2-d4                     0.167                   1.83               0.779 NS 

BG versus WG                    d2-d5                     0.095                   1.87               0.876 NS 

BG versus BET                   d2-d6                     1.136                   1.99               0.105 NS 

OW versus OB                    d3-d4                   -0.589                    0.99               0.093 NS 

OW versus WG                   d3-d5                   -0.851                    1.01               0.026 

OW versus BET                  d3-d6                    0.380                    1.92               0.546 NS 

OB versus WG                    d4-d5                   -0.263                    0.83               0.345 NS 

OB versus BET                   d4-d6                     0.969                   1.84               0.130 NS 

WG versus BET                  d5-d5                     1.232                   1.35               0.018 
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Table 6. 

Final model                                               numDF      denDF              F                   P 

                            Intercept                        1               26290              179.54          < 0.0001       

                            Period of the day           1               26290              831.93          < 0.0001 

                            Sex                                 1                      8                 0.89              0.3720 

                            Season                            2              26290                 8.01              0.0003 

                            Vegetation                      9              26290              14.02            < 0.0001 

                            Protected areas               5              26290                4.71               0.0003 

                            Period of day × sex        1              26290            161.20            < 0.0001 

Rejected terms     Seasons × sex                2              26288                1.02                0.3588 
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Table 7.  

Parameter                             Estimates(SE)             DF                   t-value                 p-value 

Intercept                                  4.90 (1.15)           26290                   11.481                <0.0001 

Night                                      -2.29 (1.03)           26290                  -28.948               <0.0001 

Male                                       -1.54 (1.18)                   8                  -2.619                   0.0387 

Early dry season                      1.05 (1.03)           26290                   1.786                    0.0740 

Late dry season                       1.13 (1.02)           26290                   4.453                  <0.0001 

BG                                         -1.11 (1.03)           26290                  -3.425                   0.0006 

OW                                        -1.07 (1.04)           26290                  -1.585                   0.1128 

OB                                          1.01 (1.04)           26290                    0.173                   0.8620 

WG                                       -1.25 (1.04)            26290                  -5.421                 <0.0001 

BET                                      -1.21 (1.03)            26290                  -4.874                 <0.0001 

BS                                         -1.27 (1.08)            26290                  -2.932                    0.0034 

GSC                                      -2.56 (1.16)            26290                  -6.084                 <0.0001 

IWS                                        2.17 (1.61)           26290                    1.624                   0.1043 

WSC                                       1.10 (1.82)           26290                    0.160                   0.8727 

Ngorongoro                          -1.03 (1.02)            26290                  -0.989                   0.3224 

Ikorongo                               -1.16 (1.11)            26290                  -1.388                   0.1651 

Grumeti                                  1.16 (1.61)            26290                   0.303                   0.7611 

Maswa                                  -1.26 (1.04)            26290                   -3.922                   0.0001 

Loliondo                               -1.35 (1.12)            26290                   -2.474                   0.0133 

Rejected Terms 

 Early dry season × male      -1.05 (1.05)            26288                   -0.890                   0.373 

 Late dry season × male         1.04 (1.05)            26288                    0.812                   0.417 
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FIGURE LEGEND 
 

Fig. 1. Map of the Serengeti Ecosystem indicating the location of protected categories. 

SNP=Serengeti National Park, NCAA=Ngorongoro Conservation Area 

Authority, MGR=Maswa Game Reserve, GGR=Grumeti Game Reserve, 

IGR=Ikorongo Game Reserve, LGCA=Loliondo Game Controlled Area. SNP 

and NCA are core protected areas whereas, MGR, IGR,GGR and LGCA are 

partial protected areas 

 

Fig. 2. Movements of combined individual collared migratory wildebeest in the Serengeti 

ecosystem during 2002 – 2003. Fig. 1a) indicate broad distribution of wildebeest 

by GPS position fixes during the study years. Seasonal movements are predicted 

by wet and dry seasons i.e. wet season range (January-May), early dry season 

(June-July) and late dry season (August-December) for Fig. 2b, c and d, 

respectively. 

 

Fig. 3.  Mean log ratios (available/used habitat) and Error bars indicating 95.0% 

Confidence Interval of mean presenting the differences in habitat use. Higher 

preference for any given habitat is indicated by positive values. No seasons means 

all seasons together.  
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Doctoral theses in Biology 

Norwegian University of Science and Technology 
Department of Biology 

 
 Year Name Degree Title 

 1974 Tor-Henning Iversen Dr. philos 
Botany 

The roles of statholiths, auxin transport, and auxin 
metabolism in root gravitropism 

 1978 Tore Slagsvold Dr. philos. 
Zoology 

Breeding events of birds in relation to spring temperature 
and environmental phenology. 

 1978 Egil Sakshaug Dr.philos 
Botany 

"The influence of environmental factors on the chemical 
composition of cultivated and natural populations of 
marine phytoplankton" 

 1980 Arnfinn Langeland Dr. philos. 
Zoology 

Interaction between fish and zooplankton populations 
and their effects on the material utilization in a 
freshwater lake. 

 1980 Helge Reinertsen Dr. philos 
Botany 

The effect of lake fertilization on the dynamics and 
stability of a limnetic ecosystem with special reference to 
the phytoplankton 

 1982 Gunn Mari Olsen Dr. scient 
Botany 

Gravitropism in roots of Pisum sativum and Arabidopsis 
thaliana 

 1982 Dag Dolmen Dr. philos. 
Zoology 

Life aspects of two sympartic species of newts (Triturus, 
Amphibia) in Norway, with special emphasis on their 
ecological niche segregation. 

 1984 Eivin Røskaft Dr. philos. 
Zoology 

Sociobiological studies of the rook Corvus frugilegus. 

 1984 Anne Margrethe 
Cameron 

Dr. scient 
Botany 

Effects of alcohol inhalation on levels of circulating 
testosterone, follicle stimulating hormone and luteinzing 
hormone in male mature rats 

 1984 Asbjørn Magne Nilsen Dr. scient 
Botany 

Alveolar macrophages from expectorates – Biological 
monitoring of workers exosed to occupational air 
pollution. An evaluation of the AM-test 

 1985 Jarle Mork Dr. philos. 
Zoology 

Biochemical genetic studies in fish. 

 1985 John Solem Dr. philos. 
Zoology 

Taxonomy, distribution and ecology of caddisflies 
(Trichoptera) in the Dovrefjell mountains. 

 1985 Randi E. Reinertsen Dr. philos. 
Zoology 

Energy strategies in the cold: Metabolic and 
thermoregulatory adaptations in small northern birds. 

 1986 Bernt-Erik Sæther Dr. philos. 
Zoology 

Ecological and evolutionary basis for variation in 
reproductive traits of some vertebrates: A comparative 
approach. 

 1986 Torleif Holthe Dr. philos. 
Zoology 

Evolution, systematics, nomenclature, and zoogeography 
in the polychaete orders Oweniimorpha and 
Terebellomorpha, with special reference to the Arctic 
and Scandinavian fauna. 

 1987 Helene Lampe Dr. scient. 
Zoology 

The function of bird song in mate attraction and 
territorial defence, and the importance of song 
repertoires. 

 1987 Olav Hogstad Dr. philos. 
Zoology 

Winter survival strategies of the Willow tit Parus 
montanus. 



 1987 Jarle Inge Holten Dr. philos 
Bothany 

Autecological investigations along a coust-inland 
transect at Nord-Møre, Central Norway 

 1987 Rita Kumar Dr. scient 
Botany 

Somaclonal variation in plants regenerated from cell 
cultures of Nicotiana sanderae and Chrysanthemum 
morifolium 

 1987 Bjørn Åge Tømmerås Dr. scient. 
Zoology 

Olfaction in bark beetle communities: Interspecific 
interactions in regulation of colonization density, 
predator - prey relationship and host attraction. 

 1988 Hans Christian 
Pedersen 

Dr. philos. 
Zoology 

Reproductive behaviour in willow ptarmigan with 
special emphasis on territoriality and parental care. 

 1988 Tor G. Heggberget Dr. philos. 
Zoology 

Reproduction in Atlantic Salmon (Salmo salar): Aspects 
of spawning, incubation, early life history and population 
structure. 

 1988 Marianne V. Nielsen Dr. scient. 
Zoology 

The effects of selected environmental factors on carbon 
allocation/growth of larval and juvenile mussels (Mytilus 
edulis). 

 1988 Ole Kristian Berg Dr. scient. 
Zoology 

The formation of landlocked Atlantic salmon (Salmo 
salar L.). 

 1989 John W. Jensen Dr. philos. 
Zoology 

Crustacean plankton and fish during the first decade of 
the manmade Nesjø reservoir, with special emphasis on 
the effects of gill nets and salmonid growth. 

 1989 Helga J. Vivås Dr. scient. 
Zoology 

Theoretical models of activity pattern and optimal 
foraging: Predictions for the Moose Alces alces. 

 1989 Reidar Andersen Dr. scient. 
Zoology 

Interactions between a generalist herbivore, the moose 
Alces alces, and its winter food resources: a study of 
behavioural variation. 

 1989 Kurt Ingar Draget Dr. scient 
Botany 

Alginate gel media for plant tissue culture, 
 

 1990 Bengt Finstad Dr. scient. 
Zoology 

Osmotic and ionic regulation in Atlantic salmon, 
rainbow trout and Arctic charr: Effect of temperature, 
salinity and season. 

 1990 Hege Johannesen Dr. scient. 
Zoology 

Respiration and temperature regulation in birds with 
special emphasis on the oxygen extraction by the lung. 

 1990 Åse Krøkje Dr. scient 
Botany 

The mutagenic load from air pollution at two work-
places with PAH-exposure measured with Ames 
Salmonella/microsome test 

 1990 Arne Johan Jensen Dr. philos. 
Zoology 

Effects of water temperature on early life history, 
juvenile growth and prespawning migrations of Atlantic 
salmion (Salmo salar) and brown trout (Salmo trutta): A 
summary of studies in Norwegian streams. 

 1990 Tor Jørgen Almaas Dr. scient. 
Zoology 

Pheromone reception in moths: Response characteristics 
of olfactory receptor neurons to intra- and interspecific 
chemical cues. 

 1990 Magne Husby Dr. scient. 
Zoology 

Breeding strategies in birds: Experiments with the 
Magpie Pica pica. 

 1991 Tor Kvam Dr. scient. 
Zoology 

Population biology of the European lynx (Lynx lynx) in 
Norway. 

 1991 Jan Henning L'Abêe 
Lund 

Dr. philos. 
Zoology 

Reproductive biology in freshwater fish, brown trout 
Salmo trutta and roach Rutilus rutilus in particular. 

 1991 Asbjørn Moen Dr. philos 
Botany 

The plant cover of the boreal uplands of Central Norway. 
I. Vegetation ecology of Sølendet nature reserve; 
haymaking fens and birch woodlands 

 1991 Else Marie Løbersli Dr. scient 
Botany 

Soil acidification and metal uptake in plants 



 1991 Trond Nordtug Dr. scient. 
Zoology 

Reflctometric studies of photomechanical adaptation in 
superposition eyes of arthropods. 

 1991 Thyra Solem Dr. scient 
Botany 

Age, origin and development of blanket mires in Central 
Norway 

 1991 Odd Terje Sandlund Dr. philos. 
Zoology 

The dynamics of habitat use in the salmonid genera 
Coregonus and Salvelinus: Ontogenic niche shifts and 
polymorphism. 

 1991 Nina Jonsson Dr. philos. Aspects of migration and spawning in salmonids. 
 1991 Atle Bones Dr. scient 

Botany 
Compartmentation and molecular properties of 
thioglucoside glucohydrolase (myrosinase) 

 1992 Torgrim Breiehagen Dr. scient. 
Zoology 

Mating behaviour and evolutionary aspects of the 
breeding system of two bird species: the Temminck's 
stint and the Pied flycatcher. 

 1992 Anne Kjersti Bakken Dr. scient 
Botany 

The influence of photoperiod on nitrate assimilation and 
nitrogen status in timothy (Phleum pratense L.) 

 1992 
 
Tycho Anker-Nilssen Dr. scient. 

Zoology 
Food supply as a determinant of reproduction and 
population development in Norwegian Puffins 
Fratercula arctica 

 1992 Bjørn Munro Jenssen Dr. philos. 
Zoology 

Thermoregulation in aquatic birds in air and water: With 
special emphasis on the effects of crude oil, chemically 
treated oil and cleaning on the thermal balance of ducks. 

 1992 Arne Vollan Aarset Dr. philos. 
Zoology 

The ecophysiology of under-ice fauna: Osmotic 
regulation, low temperature tolerance and metabolism in 
polar crustaceans. 

 1993 Geir Slupphaug Dr. scient 
Botany 

Regulation and expression of uracil-DNA glycosylase 
and O6-methylguanine-DNA methyltransferase in 
mammalian cells 

 1993 Tor Fredrik Næsje Dr. scient. 
Zoology 

Habitat shifts in coregonids. 

 1993 Yngvar Asbjørn Olsen Dr. scient. 
Zoology 

Cortisol dynamics in Atlantic salmon, Salmo salar L.: 
Basal and stressor-induced variations in plasma levels 
ans some secondary effects. 

 1993 Bård Pedersen Dr. scient 
Botany 

Theoretical studies of life history evolution in modular 
and clonal organisms 

 1993 Ole Petter Thangstad Dr. scient 
Botany 

Molecular studies of myrosinase in Brassicaceae 

 1993 Thrine L. M. 
Heggberget 

Dr. scient. 
Zoology 

Reproductive strategy and feeding ecology of the 
Eurasian otter Lutra lutra. 

 1993 Kjetil Bevanger Dr. scient. 
Zoology 

Avian interactions with utility structures, a biological 
approach. 

 1993 Kåre Haugan Dr. scient 
Bothany 

Mutations in the replication control gene trfA of the 
broad host-range plasmid RK2 

 1994 Peder Fiske Dr. scient. 
Zoology 

Sexual selection in the lekking great snipe (Gallinago 
media): Male mating success and female behaviour at the
lek. 

 1994 Kjell Inge Reitan Dr. scient 
Botany 

Nutritional effects of algae in first-feeding of marine fish 
larvae 

 1994 Nils Røv Dr. scient. 
Zoology 

Breeding distribution, population status and regulation of 
breeding numbers in the northeast-Atlantic Great 
Cormorant Phalacrocorax carbo carbo. 

 1994 Annette-Susanne 
Hoepfner 

Dr. scient 
Botany 

Tissue culture techniques in propagation and breeding of 
Red Raspberry (Rubus idaeus L.) 



 1994 Inga Elise Bruteig Dr. scient 
Bothany 

Distribution, ecology and biomonitoring studies of 
epiphytic lichens on conifers 

 1994 Geir Johnsen Dr. scient 
Botany 

Light harvesting and utilization in marine phytoplankton: 
Species-specific and photoadaptive responses 

 1994 Morten Bakken Dr. scient. 
Zoology 
 

Infanticidal behaviour and reproductive performance in 
relation to competition capacity among farmed silver fox 
vixens, Vulpes vulpes. 

 1994 Arne Moksnes Dr. philos. 
Zoology 

Host adaptations towards brood parasitism by the 
Cockoo. 

 1994 Solveig Bakken Dr. scient 
Bothany 

Growth and nitrogen status in the moss Dicranum majus 
Sm. as influenced by nitrogen supply 

 1995 Olav Vadstein Dr. philos 
Botany 

The role of heterotrophic planktonic bacteria in the 
cycling of phosphorus in lakes: Phosphorus requirement, 
competitive ability and food web interactions. 

 1995 Hanne Christensen Dr. scient. 
Zoology 

Determinants of Otter Lutra lutra distribution in 
Norway: Effects of harvest, polychlorinated biphenyls 
(PCBs), human population density and competition with 
mink Mustela vision. 

 1995 Svein Håkon Lorentsen Dr. scient. 
Zoology 

Reproductive effort in the Antarctic Petrel Thalassoica 
antarctica; the effect of parental body size and condition.

 1995 Chris Jørgen Jensen Dr. scient. 
Zoology 

The surface electromyographic (EMG) amplitude as an 
estimate of upper trapezius muscle activity 

 1995 Martha Kold Bakkevig Dr. scient. 
Zoology 

The impact of clothing textiles and construction in a 
clothing system on thermoregulatory responses, sweat 
accumulation and heat transport. 

 1995 Vidar Moen Dr. scient. 
Zoology 

Distribution patterns and adaptations to light in newly 
introduced populations of Mysis relicta and constraints 
on Cladoceran and Char populations. 

 1995 Hans Haavardsholm 
Blom 

Dr. philos 
Bothany 

A revision of the Schistidium apocarpum complex in 
Norway and Sweden. 

 1996 Jorun Skjærmo Dr. scient 
Botany 

Microbial ecology of early stages of cultivated marine 
fish; inpact fish-bacterial interactions on growth and 
survival of larvae. 

 1996 Ola Ugedal Dr. scient. 
Zoology 

Radiocesium turnover in freshwater fishes 

 1996 Ingibjørg Einarsdottir Dr. scient. 
Zoology 

Production of Atlantic salmon (Salmo salar) and Arctic 
charr (Salvelinus alpinus): A study of some 
physiological and immunological responses to rearing 
routines. 

 1996 Christina M. S. Pereira Dr. scient. 
Zoology 

Glucose metabolism in salmonids: Dietary effects and 
hormonal regulation. 

 1996 Jan Fredrik Børseth Dr. scient. 
Zoology 

The sodium energy gradients in muscle cells of Mytilus 
edulis and the effects of organic xenobiotics. 

 1996 Gunnar Henriksen Dr. scient. 
Zoology 

Status of Grey seal Halichoerus grypus and Harbour seal 
Phoca vitulina in the Barents sea region. 

 1997 Gunvor Øie Dr. scient 
Bothany 

Eevalution of rotifer Brachionus plicatilis quality in 
early first feeding of turbot Scophtalmus maximus L. 
larvae. 

 1997 Håkon Holien Dr. scient 
Botany 

Studies of lichens in spurce forest of Central Norway. 
Diversity, old growth species and the relationship to site 
and stand parameters. 

 1997 Ole Reitan  Dr. scient. 
Zoology 

Responses of birds to habitat disturbance due to 
damming. 



 1997 Jon Arne Grøttum  Dr. scient. 
Zoology 

Physiological effects of reduced water quality on fish in 
aquaculture. 

 1997 Per Gustav Thingstad  Dr. scient. 
Zoology 

Birds as indicators for studying natural and human-
induced variations in the environment, with special 
emphasis on the suitability of the Pied Flycatcher. 

 1997 Torgeir Nygård  Dr. scient. 
Zoology 

Temporal and spatial trends of pollutants in birds in 
Norway: Birds of prey and Willow Grouse used as 
Biomonitors. 

 1997 Signe Nybø  Dr. scient. 
Zoology 

Impacts of long-range transported air pollution on birds 
with particular reference to the dipper Cinclus cinclus in 
southern Norway. 

 1997 Atle Wibe  Dr. scient. 
Zoology 

Identification of conifer volatiles detected by receptor 
neurons in the pine weevil (Hylobius abietis), analysed 
by gas chromatography linked to electrophysiology and 
to mass spectrometry. 

 1997 Rolv Lundheim  Dr. scient. 
Zoology 

Adaptive and incidental biological ice nucleators.     

 1997 Arild Magne Landa Dr. scient. 
Zoology 

Wolverines in Scandinavia: ecology, sheep depredation 
and conservation. 

 1997 Kåre Magne Nielsen Dr. scient 
Botany 

An evolution of possible horizontal gene transfer from 
plants to sail bacteria by studies of natural transformation 
in Acinetobacter calcoacetius. 

 1997 Jarle Tufto  Dr. scient. 
Zoology 

Gene flow and genetic drift in geographically structured 
populations: Ecological, population genetic, and 
statistical models 

 1997 Trygve Hesthagen  Dr. philos. 
Zoology 

Population responces of Arctic charr (Salvelinus alpinus 
(L.)) and brown trout (Salmo trutta L.) to acidification in 
Norwegian inland waters 

 1997 Trygve Sigholt  Dr. philos. 
Zoology 

Control of  Parr-smolt transformation and seawater 
tolerance in farmed Atlantic Salmon (Salmo salar) 
Effects of photoperiod, temperature, gradual seawater 
acclimation, NaCl and betaine in the diet 

 1997 Jan Østnes  Dr. scient. 
Zoology 

Cold sensation in adult and neonate birds 

 1998 Seethaledsumy 
Visvalingam 

Dr. scient 
Botany 

Influence of environmental factors on myrosinases and 
myrosinase-binding proteins. 

 1998 Thor Harald Ringsby Dr. scient. 
Zoology 

Variation in space and time: The biology of a House 
sparrow metapopulation 

 1998 Erling Johan Solberg Dr. scient. 
Zoology 

Variation in population dynamics and life history in a 
Norwegian moose (Alces alces) population: 
consequences of harvesting in a variable environment 

 1998 Sigurd Mjøen Saastad Dr. scient 
Botany 

Species delimitation and phylogenetic relationships 
between the Sphagnum recurvum complex (Bryophyta): 
genetic variation and phenotypic plasticity. 

 1998 Bjarte Mortensen Dr. scient 
Botany 

Metabolism of volatile organic chemicals (VOCs) in a 
head liver S9 vial  equilibration system in vitro. 

 1998 Gunnar Austrheim Dr. scient 
Botany 

Plant biodiversity and land use in subalpine grasslands. – 
A conservtaion biological approach. 

 1998 Bente Gunnveig Berg Dr. scient. 
Zoology 

Encoding of pheromone information in two related moth 
species 

 1999 Kristian Overskaug Dr. scient. 
Zoology 

Behavioural and morphological characteristics in 
Northern Tawny Owls Strix aluco: An intra- and 
interspecific comparative approach 



 1999 Hans Kristen Stenøien Dr. scient 
Bothany 

Genetic studies of evolutionary processes in various 
populations of nonvascular plants (mosses, liverworts 
and hornworts) 

 1999 Trond Arnesen Dr. scient 
Botany 

Vegetation dynamics following trampling and burning in 
the outlying haylands at Sølendet, Central Norway. 

 1999 Ingvar Stenberg Dr. scient. 
Zoology 

Habitat selection, reproduction and survival in the 
White-backed Woodpecker Dendrocopos leucotos 

 1999 Stein Olle Johansen Dr. scient 
Botany 

A study of driftwood dispersal to the Nordic Seas by 
dendrochronology and wood anatomical analysis. 

 1999 Trina Falck Galloway Dr. scient. 
Zoology 

Muscle development and growth in early life stages of 
the Atlantic cod (Gadus morhua L.) and Halibut 
(Hippoglossus hippoglossus L.) 

 1999 Torbjørn Forseth Dr. scient. 
Zoology 

Bioenergetics in ecological and life history studies of 
fishes. 

 1999 Marianne Giæver Dr. scient. 
Zoology 

Population genetic studies in three gadoid species: blue 
whiting (Micromisistius poutassou), haddock 
(Melanogrammus aeglefinus) and cod (Gradus morhua) 
in the North-East Atlantic 

 1999 Hans Martin Hanslin Dr. scient 
Botany 

The impact of environmental conditions of density 
dependent performance in the boreal forest bryophytes 
Dicranum majus, Hylocomium splendens, Plagiochila 
asplenigides, Ptilium crista-castrensis and 
Rhytidiadelphus lokeus. 

 1999 Ingrid Bysveen 
Mjølnerød 

Dr. scient. 
Zoology 

Aspects of population genetics, behaviour and 
performance of wild and farmed Atlantic salmon (Salmo 
salar) revealed by molecular genetic techniques 

 1999 Else Berit Skagen Dr. scient 
Botany 

The early regeneration process in protoplasts from 
Brassica napus hypocotyls cultivated under various g-
forces 

 1999 Stein-Are Sæther Dr. philos. 
Zoology 
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