
BACHELOROPPGAVE:

Sprek i Gjøvik

FORFATTERE:
Markus Brovold
Anders Hagebakken

DATO:
May 19, 2014

Sprek i Gjøvik

Sammendrag av Bacheloroppgaven

TiƩel: Sprek i Gjøvik Nr: -
Dato: May 19, 2014

Deltakere: Markus Brovold
Anders Hagebakken

Veiledere: Mariusz Nowostawski

Oppdragsgiver: Gjø-Vard Orienteering

Kontaktperson: Arnfinn Pedersen, arnfinn@system-tre.no, 971 28 628

SƟkkord Android, iOS, Database, Systemutvikling, Java, ObjecƟve-C, PHP, MySQL

Antall sider: 143 Antall vedlegg: 7 Tilgjengelighet: Åpen
Kort beskrivelse av bacheloroppgaven:
Sprek i Gjøvik-prosjektet forsøker å engasjere Ɵl fysisk akƟvitet i befolkningen. Gjennom
applikasjonen Stolpejakten kan brukere registrere besøk på stolper som befinner seg på ulike
steder i nærmiljøet ved hjelp av kameraet på mobiltelefonen. Brukeren kan også vise kart med
alle stolper i området og egen posisjon ved hjelp av GPS, eller se på besøksstaƟsƟkk for både seg
selv og andre brukere.

Brukere kan også få oversikt over egen akƟvitet gjennom neƩstedet vi har utviklet,
stolpejakten.no. Vi har i Ɵllegg utviklet administrasjonsmoduler Ɵl neƩstedet, slik at arrangørene
kan stå for den daglige driŌen.

For å knyƩe det hele sammen har vi utviklet en databaseløsning for prosjektet, som håndterer
brukere, stolper, områder og besøk.

Applikasjonen er utviklet for Android i Android Studio og for iOS i Xcode. De er Ɵlgjengelige for
nedlasƟng gjennom Google Play og Apple App Store.

i

Sprek i Gjøvik

Summary of Graduate Project

Title: Sprek i Gjøvik Nr: -
Date: May 19, 2014

ParƟcipants: Markus Brovold
Anders Hagebakken

Supervisor: Mariusz Nowostawski

Employer: Gjø-Vard Orienteering

Contact person: Arnfinn Pedersen, arnfinn@system-tre.no, 971 28 628

Keywords Android, iOS, Database, SoŌware Engineering, Java, ObjecƟve-C, PHP, MySQL

Pages: 143 Appendixes: 7 Availability: Open
Short descripƟon of the main project:
Sprek i Gjøvik is a public health iniƟaƟve to sƟmulate physical acƟvity in the populaƟon.

Through the applicaƟon Stolpejakten, users use the smartphone camera to scan QR-codes
from the poles placed widespread in the municipaliƟes. An interacƟve map, which displays
the locaƟon of the poles and the current locaƟon is built into the app. Various staƟsƟcs is also
available, like visited poles and a leaderboard.

Users can also track their acƟvity through the web site we developed, stolpejakten.no. At this
web site, we also included possibiliƟes for administrators to manage poles, areas and news.

To make the different parts of the project work together, we created a database with a interface
for the applicaƟons. This back-end system manages users, poles, areas and visits.

The Android applicaƟon is developed in Android Studio, while the iOS applicaƟon is developed
in Xcode. Available for download in Google Play and Apple App Store.

ii

Sprek i Gjøvik

Preface

This report document elaborates the process of developing a system consisƟng

of an Android applicaƟon, iOS applicaƟon, website and server back-end.

AŌer less than 5 months of development, the system is up-and-running. AŌer

being available to the public for only one week, more than 1500 users from the

local community have registered, and more than 13000 unique visits have been

made. The Android applicaƟon has been downloaded 500 Ɵmes, while the one

for iOS has nearly 800 downloads.

We would like to thank our customer Gjø-Vard Orienteering, represented by

Arnfinn Pedersen and Bjørn Arild Godager, for trusƟng us with this important

assignment.

iii

Sprek i Gjøvik

Contents

Preface . iii

Contents . iv

List of Figures . vii

List of Code Examples . ix

List of AbbreviaƟons . vi

1 IntroducƟon . 1

1.1 Project descripƟon . 1

1.2 Document structure . 2

1.3 Project organizaƟon . 3

1.3.1 Agile SoŌware Development 3

1.3.2 OrganizaƟon . 4

2 Background . 5

2.1 Android . 5

2.1.1 AcƟviƟes . 5

2.1.2 Fragments . 6

2.1.3 Asynchronous task . 6

2.1.4 Services . 6

2.1.5 IntentService . 7

2.1.6 Life cycle . 7

2.1.7 Sensor . 8

2.2 Database . 9

2.2.1 NormalizaƟon . 10

3 Requirement SpecificaƟon . 11

3.1 FuncƟonal Requirements . 11

3.1.1 Product Backlog - Feature List 11

3.1.2 Use Case Diagrams . 13

3.1.3 High-Level Use Cases 16

3.1.4 Expanded Use Cases 20

3.1.5 Domain Model . 25

3.2 Supplementary Requirements 26

3.2.1 FuncƟonality . 26

3.2.2 Usability . 26

3.2.3 Reliability . 27

3.2.4 Performance . 27

3.2.5 Supportability . 28

iv

Sprek i Gjøvik

3.2.6 Legal Requirements . 28

3.2.7 Licensing . 28

3.2.8 ParƟal Releases . 28

3.3 Constraints . 29

3.3.1 Tools . 29

3.3.2 Coding convenƟons . 29

3.3.3 Data Storage . 29

3.3.4 Hardware . 30

3.3.5 Android version . 30

4 Design and Architecture . 31

4.1 Architecture . 31

4.1.1 Deployment - Client Server 31

4.1.2 Structure - Three-Tier 32

4.2 Design . 34

4.2.1 ApplicaƟon . 34

4.2.2 Website . 37

4.2.3 Database AbstracƟon Layer 39

4.2.4 Database . 40

5 ImplementaƟon . 41

5.1 Tools . 41

5.2 Server-Side . 42

5.2.1 Using the Facade PaƩern 42

5.2.2 Database . 44

5.2.3 AbstracƟon layer . 46

5.2.4 Website . 49

5.3 Android ApplicaƟon . 63

5.3.1 User Interface . 63

5.3.2 User management . 64

5.3.3 Map . 67

5.3.4 Sensor Usage . 74

5.3.5 User Data Storage . 76

5.3.6 Performance and OpƟmizaƟon 80

5.3.7 Network CommunicaƟon 83

5.4 iOS ApplicaƟon . 87

5.4.1 Organizing the development 87

5.4.2 ApplicaƟon design . 89

5.4.3 Map . 90

v

Sprek i Gjøvik

5.4.4 User data . 96

5.4.5 QR scanner and pole visits 100

5.4.6 Supported devices . 101

5.4.7 Graphics . 102

5.5 Deployment . 103

6 TesƟng and Quality Assurance . 106

6.1 Unit tesƟng . 106

6.2 Beta tesƟng . 108

6.3 User feedback . 110

6.4 Field test and Quality control 113

7 Conclusion . 115

7.1 Assignment EvaluaƟon and Results 115

7.2 Group work evaluaƟon . 116

7.3 Further development and maintenance 116

7.4 Conclusion . 118

Bibliography . 119

Appendix . 121

A Project agreement . 122

B Project Plan . 124

C Correspondence with Service Provider regarding Shared SSL 134

D MeeƟngs . 135

D.1 First meeƟng with Bjørn Godager - 13.01.2014 135

D.2 Status meeƟng - 21.02.2014 137

D.3 Status meeƟng - 21.03.2014 140

D.4 Status meeƟng - 24.03.2014 142

vi

Sprek i Gjøvik

List of Figures

1 Android Life Cycle . 7

2 Feature List items in the BitBucket issue tracker 12

3 Use Case Diagram - Website administrator funcƟonality 13

4 Use Case Diagram - ApplicaƟon User funcƟonality 14

5 Use Case Diagram - Website User funcƟonality 15

6 Domain model . 25

7 Android versions in Norway. ICS = Ice Cream Sandwich 30

8 Client-Server Structure . 31

9 Three-Tier Layered Architecture 32

10 ApplicaƟon Component diagram 34

11 ApplicaƟon Class diagram . 36

12 Website AcƟvity Diagram . 37

13 Database AbstracƟon Layer . 39

14 Database Design . 40

15 Facade PaƩern Example . 42

16 Database Design . 44

17 Buddypress RegistraƟon Form 50

18 Buddypress User Profile . 50

19 Register Poles on Phone . 52

20 Register Poles on Computer . 52

21 User Plaƞorm StaƟsƟcs . 54

22 End-User Website Menu . 54

23 Administrator Website Menu 54

24 First Page with Logged in User 55

25 News Story Categories . 57

26 Pole List on Website . 58

27 Family Members FuncƟonality 60

28 Team FuncƟonality . 61

29 Grid Menu . 64

30 List Menu . 64

31 AcƟonBar Menu . 64

32 Legend . 70

33 Pole AlƟtude Example . 72

34 GPS Accuracy Symbols . 74

35 Pole Visit Submission Flowchart 76

vii

Sprek i Gjøvik

36 ViewHolder PaƩern example 81

37 Model View Controller ApplicaƟon Structure 89

38 Final Map View . 95

39 Final Pole List View . 95

40 Final User View . 98

41 User Seƫngs View . 98

42 Normal Display . 102

43 ReƟna Display . 102

44 Icons 8 Example Icons . 102

45 End-to-End Example Test . 107

46 Number of Users in Database 110

47 Number of Pole Visits in Database 110

48 Manual Visit AcƟvity . 111

49 3.5-inch Screen Issue with QR Scanner BuƩon 112

50 Propper QR Scanner BuƩon on 4-inch Screens 112

51 Markus in the Field . 114

52 Anders in the Field . 114

53 Total Downloads in App Store 118

54 Total downloads in Google Play 118

viii

Sprek i Gjøvik

List of Code Examples

5.1 PDO_CONNECT Class . 46

5.2 Prepared Statements with PDO Class 47

5.3 Returned Array . 48

5.4 Returned JSON-Array . 48

5.5 CSS Responsive Website . 53

5.6 Website - Administrator FuncƟonality 59

5.7 Website - Register Poles Table 62

5.8 Login.php . 65

5.9 Login Method from Android ApplicaƟon 66

5.10 TileMill CSS . 68

5.11 Visible Bounds . 69

5.12 Legend . 71

5.13 Pole AlƟtude . 73

5.14 GPS Accuracy Indicator . 75

5.15 Visit Poles . 77

5.16 Poles Table in SQLite . 78

5.17 Pole Content Table in SQLite 78

5.18 Usage of SharedPreferences in User.class 79

5.19 ViewHolder . 80

5.20 ViewHolder getView . 82

5.21 ASyncTask . 83

5.22 Add Parameter . 84

5.23 FetchDataTask Usage . 84

5.24 IntentService Usage in UserAcƟvity 85

5.25 IntentService Usage in UserAcƟvity 86

5.26 Loading mbƟles . 91

5.27 Add Poles to Map . 92

5.28 Create Marker Layer . 93

5.29 Get Pole AlƟtude from Database 94

5.30 Upload User Visits . 97

5.31 Save/Cancel User Seƫng . 99

5.32 Scan QR Code . 100

5.33 Convert iPhone Storyboard to iPad Storyboard 101

5.34 URL Class . 104

6.1 Register Visit Test from ApplicaƟon to Server 108

6.2 QR Scanner Issue with Sony Devices 111

ix

Sprek i Gjøvik

List of AbbreviaƟons

ADT - Android Development Tools

CRUD - Create Read Update Delete

CSS - Cascading Style Sheet

FDD - Feature-Driven Development

IDE - Integrated development environment

JSON - JavaScript Object NotaƟon

MVC - Model-View-Controller

PDO - PHP Data Objects

PHP - PHP: Hypertext Preprocessor

RAM - Random Access Memory

RDBMS - RelaƟonal Database Management System

SQL - Structured Query Language

TDD - Test-Driven Development

x

Sprek i Gjøvik

1. IntroducƟon

1.1. Project descripƟon

Gjø-Vard Orienteering club piloted a low-threshold exercise project during

summer 2013 called “Sprek i Gjøvik” (meaning; AcƟve in Gjøvik). The project

combines outdoor acƟviƟes with modern technologies. The goal is to find a set

of poles placed around the city, either by using a tradiƟonal map and compass,

or by using an applicaƟon on a mobile device.

Its popularity has grown quickly since the launch in mid-August 2013, with more

than 1000 parƟcipants.

The first mobile app for Sprek i Gjøvik has been bought from a Swedish similar

project. Because this soluƟon has some adverse weaknesses, the project group

in Gjøvik wants a beƩer soluƟon, which fully can be administered by Sprek i

Gjøvik. This new soluƟon can also be rolled out to similar projects in other

norwegian ciƟes.

The project has a wide support in both Norwegian Orienteering, Oppland

Country Council, Gjøvik Municipality and more.

The project will be extended to cover both North and South Gjøvik with 50-100

poles by May 1st 2014, and several new locaƟons by the summer. The target

number of parƟcipants is 2000 by the end of summer 2014.

Our assignment is to create the website, Android applicaƟon and back-end

server. The back-end server has to handle all the users, areas and poles

included in the project. The applicaƟon has to display a map of an area with

poles, and store visits made by users on the back-end server. Finally the

website has to have funcƟonality which allows a user to register their

visits.

1

Sprek i Gjøvik

1.2. Document structure

We have decided to divide the project report into seven chapters.

IntroducƟon

The 1st chapter contains the project descripƟon with the background

informaƟon about the project we are a part of.

Background

The 2nd chapter is a short chapter which contains some of the terminology we

will be using in the implementaƟon chapter.

Requirement SpecificaƟon

The 3rd chapter contains both the funcƟonal and supplementary system

requirements of the enƟre system.

Design and Architecture

The 4th chapter elaborates the architectural and design decisions we made

during the incepƟon phase.

ImplementaƟon

The 5th chapter contains the elaboraƟon of our soluƟon. It contains a lot of

code examples and figures of the interesƟng and challenging components of

the system. It also contains screenshots of the different user interfaces, both of

the applicaƟon and the website.

TesƟng and Quality Assurance

The 6th chapter explains howwe tested during the development phase and how

we conducted quality assurance.

Conclusion

The 7th chapter discusses the outcome of the project and what we have

achieved during the project period.

In addiƟon to the previous menƟoned seven chapters we have an appendixes

with relevant informaƟon, such as the project agreement and meeƟng

logs.

2

Sprek i Gjøvik

1.3. Project organizaƟon

1.3.1 Agile SoŌware Development

According to Schwaber and Sutherland, a Scrum team should not have more

than nine members and no less than three. A team too large creates a more

complex process which is hard to manage. While a smaller team might have

problems delivering on Ɵme [1]. Is is unnecessary for us as a group of two

members to implement Scrum 100%. Which is why will not be following Scrum

to the leƩer. We wish to use most of our Ɵme developing, rather than

esƟmaƟng, calculaƟng member velocity and maintaining a Burndown

Chart.

We will be following the principles of Scrum and borrow some arƟfacts from

other agile processes instead. From Scrum we will be using iteraƟons / sprints.

At the end of each sprint we will be conducƟng status meeƟngs with the

Customer where we demonstrate the new features. AŌer each demonstraƟon

we will evaluate the features, and plan the next sprint. The project has a

deadline, and the user should not have access to the system unƟl then. Which

is why we will not release a new feature aŌer each increment to the user, but

demonstrate it to the Customer instead.

The group will implement a product backlog, but not the same Product Backlog

arƟfact from Scrum. Instead we will implement Feature List from FDD. The

Feature List fits us beƩer, since there is less planning and esƟmaƟon, and less

complexity since the group consists of two members. The Customer also wants

us to come up with new features. By using the Feature List it allows us to

control the Feature List, rather than a Customer controlling the Product

Backlog. It also allows us to prioriƟze which features to deliver aŌer each

sprint. Of course, we will have to finish the requirements set by the Customer

by the deadline.

3

Sprek i Gjøvik

1.3.2 OrganizaƟon

When we were accepted as the group to work with this assignment, we quickly

scheduled ameeƟng with Bjørn Godager (MeeƟng D.1). Bjørn is both a assistant

professor at HiG and a member of Gjø-Vard Orienteering. The purpose of the

meeƟng was to get a feel of the project. The assignment was vague, and we

wanted to know what they actually wanted us develop. We agreed to develop

an Android applicaƟon, provide a new website and a database soluƟon.

The first thing we did aŌer the meeƟng was to get the project agreement

signed by both the Customer and the Supervisor (Appendix A). AŌer signing

the agreement and geƫng to know the task at hand, we created our iniƟal

project plan (Appendix B). The project plan has been a great resource, mainly

the GanƩ diagram, which kept us on schedule the enƟre project period. We

have previous experience with poor planning and a lot of code-and-fix. This

was not something we wanted to happen during our bachelor

assignment.

When the Design and Architecture was in place, we could start on the

development phase, which we were eager to get started on. Since the group

only consists of two members, structuring our work has not an obstacle. We

have met up, alternaƟng between working at each other's homes, every day of

the week. The daily structure has ensured that we had control and worked

efficiency during the enƟre project period.

We have been working on separate parts of the system parallel with each other,

side by side for support and guidance.We have been selecƟng different features

we wanted to work on. For instance during the first part of the development

phase, one did the back-end and one did on the front-end component of the

website. While developing the applicaƟon we split the workload in the same

fashion as we did for the server-side. One did the user feature and one did the

map feature. By separaƟng the workload, we have been able to produce the

features the Customer required, and we wanted to implement.

4

Sprek i Gjøvik

2. Background

We feel it is necessary to include a short technological background chapter for

a reader to be able to understand some the terminology used in the

implementaƟon chapter.

2.1. Android

2.1.1 AcƟviƟes

One of the most basic elements of in developing an Android applicaƟon is an

AcƟvity. An acƟvity is the first thing you see in an applicaƟon. For instance, if

you create a simple "Hello World" applicaƟon, what you see on the screen is an

acƟvitywith the text "HelloWorld". An applicaƟon can consist ofmany acƟviƟes.

For instance, in an e-mail applicaƟon, an acƟvity is used to display your inbox,

another acƟvity is used when you are wriƟng an e-mail. To create an acƟvity, it

has to extend the "AcƟvity" class.

An acƟvity can start another acƟvity. One can also pass data between the

acƟviƟes using "Interprocess communicaƟon" (IPC). There are different ways of

implemenƟng IPC, for instance, one can store flat files with the necessary

content, or store something in a SQLite database, then access it the desired

acƟvity. One can also use what is called Shared Preferences, which works like

Java's Preferences, which means one can store data on a device. For instance

User login informaƟon, so a user do not have to re-enter login informaƟon

each Ɵme a user opens an applicaƟon. One can also use what is called an

"Intent". We can put string, booleans and integers as well as other data types

into and intent, and pass them on to the new acƟvity, then get them from that

intent. In an acƟvity, one can add what is called Fragments.

5

Sprek i Gjøvik

2.1.2 Fragments

"Fragments" can be used to "divide" an AcƟvity into fragments. An applicaƟon

can consist of many fragments. As we will elaborate further in our

implementaƟon chapter, we are using fragment as the container of our

mapview. Another usage, is to have different layout in landscape and portrait

orientaƟon. Then one can add an extra fragment next to the fragment which

was visible in portrait orientaƟon.

2.1.3 Asynchronous task

An Android applicaƟon has to work in a certain way. An applicaƟon does not

lock to wait for input. If you ask a user for username and password, the

remaining code will be executed. If one wants to display an image or text from

Internet, one has to do this in a certain fashion. Android does not allow HTTP

connecƟons on the main thread. By using Asynchronous task, you can preform

asynchronous off the main thread. This way, one make sure the applicaƟon

does not hang on the main thread while processing a huge image or

downloading large amounts of text. One should also add some form of

progress bar to inform the user something is going on behind the scenes. We

will for instance do all the communicaƟon with the database

interface / abstracƟon layer with this mechanism.

2.1.4 Services

An applicaƟon can also make use of what is called a "Service". A service runs in

the background, and has no user interface. One has to extend the Service class

to create a service. An acƟvity can work as a user interface for a service. A good

example is a music player, which presents you with the opƟon of

playing/pausing, next song etc. When you lock the screen, the acƟvity goes

away, but the service keep playing the music. Another example would be

something like RunKeeper, which tracks your GPS posiƟon while your are

running. The background service tracks your posiƟon, then when the acƟvity

resumes, you can see how far you have ran and you can see where you have

been running with the data collected from the service.

6

Sprek i Gjøvik

2.1.5 IntentService

A special occurence of Services in Android is the IntentService. The

IntentService provides a set of methods which makes it easy to broadcast a

result using Intents. IntentServices can be used to download some data and

then send a broadcast back to the AcƟvity it was started from. When the

AcƟvity receives the broadcast, it can update for instance a ImageView. The

way this differs from a ASyncTask is that a IntentService does not block the

UI-thread, which enables the user to interact with the applicaƟon

uninterrupted.

2.1.6 Life cycle

An acƟvity has a life cycle. Figure 1 from the Android Developer website

illustrates how a life cycle looks. When you press the applicaƟon icon to start

the applicaƟon the main launcher acƟvity's onCreate() will be fired first. This is

an inherited method from the "AcƟvity" class. This method will be fired every

Ɵme a user changes orientaƟon from portrait to landscape and back. Then the

onStart() and onResume() method will be fired. AŌer that, we have a visible

acƟvity. When a user switches acƟvity, the onPause() and onStop() will be

fired. When a user returns to that acƟvity, it will re-fire the onStart().

Figure 1: Android Life Cycle

[2]

7

Sprek i Gjøvik

Since Android "resets" the acƟvity when you either rotate or change to another

acƟvity, one has to make sure to store what was visible in the acƟvity, such as

text. If you fill in a texƞield, and the screen displays the content of that texƞield,

it has to store it for when a user might rotate the device. So it has to be stored

before you rotate, then restored in the onCreate()/onResume().

2.1.7 Sensor

Android has support for every sensor that comes with a device. To make use of

this sensors, one has to add a SensorManager, which is an interface for

communicaƟng with the different sensors in a device. With the

SensorManager, one can listen to the different sensors. For instance, GPS,

accelerometer and orientaƟon (can be used to make a compass).

8

Sprek i Gjøvik

2.2. Database

Databases are collecƟons of data. The task of a database is to store data in a

systemaƟc way, for instance in tables, so that they can be easily organized and

used. We will use relaƟonal databases in our project. When a database is

relaƟonal, there is a set of relaƟons between the different tables. For instance

when a person has a phone number, the person is in one table, and the phone

number is in another table. To decide which phone number belongs to who, a

relaƟon exists between the two tables. Since MySQL is one of our constraints,

we will focus on MySQL. In a relaƟonal database, a table consists of columns

with the various data-types. The first thing to do is to create a table. This can

oŌen be done with a graphical user interface, like myPhpAdmin, or by wriƟng

sentences of SQL-code, called statements. This example shows how to create a

new table with the columns firstname, lastname and birthday. The name of the

will be Persons:

1 CREATE TABLE Per sons

2 (f i r s t name ,

3 las tname ,

4 b i r t h d a y)

This is maybe the simplest form of a table, with no relaƟons and no data types.

To specify what the columns should contain, we add some data types to the

statement.

1 CREATE TABLE Per sons

2 (f i r s t n ame va r cha r (4 0) ,

3 l a s tname va r cha r (4 0) ,

4 b i r t h d a y date)

A primary key should also exist in every table in the database. The primary key

must be a unique value for each row. If a column in a table is guaranteed to be

unique, it can be used as the primary key. In many cases however, it is

necessary to add a integer value which increments by one for each new row. In

our Persons-table, it is not impossible for two persons to have the same name

and the same birthday. For the RDMS to disƟnguish these persons, we add the

column personid, and set it to be the primary key.

9

Sprek i Gjøvik

1 CREATE TABLE Per sons

2 (pe r son i d i n t (1 0) AUTO_INCREMENT ,

3 f i r s t n ame va r cha r (4 0) ,

4 l a s tname va r cha r (4 0) ,

5 b i r t h d a y date ,

6 PRIMARY KEY (p e r son i d))

We can now create another table, Phonenumbers. Since it is possible for one

person to have several phone numbers, personid cannot be the primary key of

the Phonenumbers table. Because it is also possible for several persons to share

a phone number, the phone number cannot be the primary key. To solve this

problem, we add a phonenumberid to the table. The statement to create this

table would then be:

1 CREATE TABLE Phonenumbers

2 (phonenumberid i n t (1 0) AUTO_INCREMENT ,

3 phonenumber i n t (2 0) ,

4 pe r son i d i n t (1 0) ,

5 PRIMARY_KEY (phonenumberid)

Now that we have two tables, we can create the relaƟonships. If we are dealing

with complicated tables it oŌen is easier to create the relaƟonships, or constraint

as they are called in MySQL. In this case, a row in the phone-number should be

deleted if a person is deleted, but a person should not be deleted if a phone

number is deleted. Since we already created the tables, we can use the ALTER

TABLE statement.

1 ALTER TABLE Phonenumbers

2 (CONSTRAINT has_phonenumber

3 FOREIGN KEY (pe r son i d)

4 REFERENCES Per sons (pe r son i d)

5 ON DELETE CASCADE

6 ON UPDATE NO ACTION)

2.2.1 NormalizaƟon

Database normalizaƟon is amethod to ensure that data is not redundant, i.e. the

same data should not appear more than one place in the database. The first task

to normalize the database is tomake sure all columns/aƩributes are atomic. The

aƩribute "car" is a nonatomic aƩribute, if it for instance contains "1985 BMW

3series". The aƩributes "car_make", "car_model", "producƟon_year" is atomic,

and would in this example contain the values (BMW, 3series, 1985). An aƩribute

is atomic when further decomposing the value would not be meaningful.

10

Sprek i Gjøvik

3. Requirement SpecificaƟon

3.1. FuncƟonal Requirements

3.1.1 Product Backlog - Feature List

As menƟoned earlier, our development process is only loosely based on Scrum,

which is why we have decided to discard the Product Backlog arƟfact. Instead

we have chosen to borrow an arƟfact from Feature Driven Development called

Feature List. The reason behind this is that we do not want to use a lot of Ɵme

esƟmaƟng beforehand. We feel this is the best opƟon for us. By doing it in this

manor, we get a more agile development process, since we are only two people,

and can simple choose feature aŌer feature from the list. We do not need to

plan as much ahead as if we were a team of for instance eight.

Our Feature List will have the standard format <acƟon> <result> <object> [4].

For instance: Display pole list in map acƟvity to a applicaƟon user

ID Name <acƟon> <result> <object>

1 Display map in applicaƟon to a applicaƟon user

2 Display registraƟon form on website to a website user

3 Display registraƟon form in applicaƟon to a applicaƟon user

4 Display CRUD opƟons for family members to a website user

5 Display CRUD opƟons for poles to area administrator

6 Display CRUD team opƟons to website user

7 Display QR Scanner in applicaƟon to a applicaƟon user

8 Store pole visits on device for a applicaƟon user

9 Upload pole visits from device to database for a applicaƟon user

10 Display pole list in map acƟvity to a applicaƟon user

11 Display form to register pole visits to website user

12 Store pole visits data provided by website user

11

Sprek i Gjøvik

We will use the processes of FDD as a guideline and select features from the

Feature List. Which for us means that each of us can work on different features

parallel with each other. By following this paƩern, it allows us to start on a

feature, complete it, implement it and then select a new feature unƟl the

feature list is empty.

The same Feature List is added to the Bitbucket issue tracker (Figure 2). By using

the issue tracker, it allows us to separate the core features from the trivial ones

by categorizing the features. Then we can select one feature, assign it to our

selves, then set the status from "New" to "Open". AŌer we have finished the

feature, we change the status to "Resolved", which means the feature is done

and implemented into the system.

Figure 2: Feature List items in the BitBucket issue tracker

12

Sprek i Gjøvik

3.1.2 Use Case Diagrams

Use Case Diagram - Website administrator funcƟonality

Figure 3: Use Case Diagram - Website administrator funcƟonality

TheUse CaseDiagram for aWebsite administrator is simple and straight forward.

The User/Actor (Website administrator) need to have the opƟons to write news

stories to the area of which an administrator administrates. Then there must

be CRUD opƟons for all poles, which allows the administrator to handle an area

and its poles without needing to include us. The last opƟons is to provide the

pole content. Some of the poles will be sponsored and some will be placed on a

historical locaƟon. Therefor the Customer wants to be able to add a descripƟon

to that pole.

13

Sprek i Gjøvik

Use Case Diagram - ApplicaƟon User funcƟonality

Figure 4: Use Case Diagram - ApplicaƟon User funcƟonality

The user must be able to register in the applicaƟon. Then one maybe should be

providedwith the opƟon if they want to create or join a team. A user should also

be able to view themapandpoles basedondifferent criteria, such as display only

one difficulty or only unvisited poles. The tag pole opƟon is a core funcƟonality

of the applicaƟon. This means that the visit must be stored on the device, and

uploaded to the server. At last, we should provide the user with some staƟsƟcs,

both their own visits and show a leaderboard with the users who have visited

the most poles.

14

Sprek i Gjøvik

Use Case Diagram - Website User funcƟonality

Figure 5: Use Case Diagram - Website User funcƟonality

The website user will have a lot of the same opƟons as the applicaƟon user.

They should be able to download a PDF version of the map, view the same

staƟsƟcs as in the applicaƟon and provide feedback on either missing poles or

general feedback. The user should be able to submit their visits in a form using

the character code (QR code value) from the pole. Then a user should be able

to add family members to its account. At last, a user has to be able to create a

team and display the team data (members and visits).

15

Sprek i Gjøvik

3.1.3 High-Level Use Cases

The High-Level use cases splits the system into User / Administrator and

website / applicaƟon. This allows us to elaborate the Use cases and split the

Feature List into smaller tasks.

Use Case User registraƟon

Primary Actor: User

Goal: The user data is stored in the database

DescripƟon: The user should be presented a registraƟon form
both in app and on the webpage. Fields should at
least be email, first name, last name, area affiliaƟon.
Maybe join/create team and add family members to
account.

Use Case Download map

Primary Actor: User

Goal: The user has downloaded the map

DescripƟon: The user should be able to download the map in A4
size, ready for prinƟng.

16

Sprek i Gjøvik

Use Case Provide feedback

Primary Actor: User

Goal: The user provides Gjø-Vard Orienteering with
feedback

DescripƟon: The user should be presented with a feedback form.

Use Case Administrator CRUD pole

Primary Actor: Administrator

Goal: A new pole is CRUD in the database

DescripƟon: When an administrator is logged in, onemust be able
to do CRUD operaƟons on a pole

Use Case View staƟsƟcs

Primary Actor: User

Goal: Get informaƟon about visited poles

DescripƟon: User should choose between different staƟsƟcs

17

Sprek i Gjøvik

Use Case View map with poles

Primary Actor: End-User

Goal: Get posiƟon on map, both user posiƟon and pole
posiƟon

DescripƟon: Possibility to show a list of poles, which can be sorted
on on difficulty.

Use Case Tag pole

Primary Actor: End-User

Goal: Get points for visited poles, keep track of visits

DescripƟon: User should be able to register a pole as visited.

Use Case Manual pole submission

Primary Actor: User

Goal: The user gets their visited poles stored in database

DescripƟon: The user should be presentedwith a formwhere one
can submit pole QR codes manually.

18

Sprek i Gjøvik

Use Case Team CRUD

Primary Actor: User

Goal: The team data gets stored in database

DescripƟon: The user should be able to do CRUD operaƟons on a
team

Use Case Add news

Primary Actor: Administrator

Goal: The users can read news

DescripƟon: The administrator should be able to submit news to
a news feed.

Use Case Provide pole content

Primary Actor: Administrator

Goal: The users can read informaƟon about certain poles

DescripƟon: The administrator should be able to submit pole
informaƟon

19

Sprek i Gjøvik

3.1.4 Expanded Use Cases

We selected some of the core funcƟonality and the more complex tasks in the

system which has to work in a certain fashion. There must be a control of the

system flow in these selected use cases, that is why we decided to expand them.

Then we know how and when to handle the different errors.

Every use case consists of a Scope, in our case it is for the website and/or the

applicaƟon. Then we have a Primary Actor, which is either an End-User or an

Website Administrator. Next item is the PrecondiƟon which as to be for filled

before the Main Success Scenario can occur. Second to last, it is the

PostcondiƟons, which in our cases ensures the either presentaƟon, storage

and/or integrity of the user data.

At last, we have the Main Success Scenario with Extensions. Main Success

Scenario occurs when every condiƟon is for filled. If something goes wrong, it

is "handled" in the Extension.

20

Sprek i Gjøvik

Use Case User registraƟon

Scope: Website and applicaƟon

Primary Actor: End-User

PrecondiƟons: User must have Internet access on device
(PC/Android)

PostcondiƟons: User data must be stored in database aŌer
registraƟon

Main Success Scenario:

1. User fills in user data in registraƟon form:

1. Email address

2. Name

3. Join team/Create team

1. Submit team name

2. Join team

4. Add family members to account

1. User presses submit buƩon

2. Data stored in database

Extensions:

2 Invalid login data:

1. System shows failure message

2. User returns to step 1

2 Invalid user data:

1. System shows failure message

2. User returns to 1 and must fix errors

21

Sprek i Gjøvik

Use Case View staƟsƟcs

Scope: Website and applicaƟon

Primary Actor: User

PrecondiƟons: To show own accomplishments, user must be signed
in

PrecondiƟons: Internet connecƟon

PostcondiƟons: The data is presented to the user

Main Success Scenario:

1. User chooses which staƟsƟcs to show

1. Own user

2. All users

1. Results is brought to screen

Extensions:

2 Invalid login data:

1. System shows failure message

2. User can look at all users scores

2 No data:

1. System shows failure message

3 No internet connecƟon:

1. System shows failure message

22

Sprek i Gjøvik

Use Case View map with poles

Scope: ApplicaƟon

Primary Actor: User

PrecondiƟons: The user must have GPS acƟvated

PostcondiƟons: The map is presented to the User

Main Success Scenario:

1. User opens map acƟvity in app

2. The user’s GPS locaƟon is displayed in map

3. User opƟons in map should be:

1. User can toggle between displaying visited/unvisited/all poles in map

2. User can select displaying only poles with a certain difficulty

3. Map acƟvity displays the user’s preferences

1. Clicking on marker displays lat/long, id and name

2. User can now go look for poles

Extensions:

2 GPS is disabled:

1. System shows failure message

2. User enables GPS - returns to acƟvity.

23

Sprek i Gjøvik

Use Case Add pole codes manually

Scope: Website

Primary Actor: User

PrecondiƟons: The user must be signed in

PostcondiƟons: The data must be stored in database

Main Success Scenario:

1. User is presented with code submission form

2. The user submits pole codes

3. Database stores the data about the user’s visits

4. Web page provides feedback (success/failure)

Extensions:

2 Illegal pole codes:

1. System shows failure message

2. User corrects the error, re-submits

3 Database error:

1. System shows failure message

2. User must try again later

24

Sprek i Gjøvik

3.1.5 Domain Model

Our domain model illustrates how the system is intwined. With the domain

model (Figure 6), we have decided to split it into three different secƟons: Data,

Logical and PresentaƟon. The reason being that we want some structure in our

model, since we will be using it later as the base for our architectural

structure.

Figure 6: Domain model

The data layer illustrates the basic enƟty relaƟonships in the database, which

will be elaborated further in Database Design (SecƟon 4.2.4). The

communicaƟon between the applicaƟon and the website should be handled in

the logical layer. The logical layer consists of the database

interface / abstracƟon layer. This layer will be used by the applicaƟon. Next we

have the SQL queries which will used by the website. We might use the same

interface for the website to ensure low coupling, but this will be decided later.

At last we have the presentaƟon layer, which is a graphical interface to the

user, either in the form of the website or the applicaƟon. The applicaƟon will

use the for menƟoned logical layer to communicate with the data layer.

25

Sprek i Gjøvik

3.2. Supplementary Requirements

3.2.1 FuncƟonality

All the different funcƟonality has already been described in the use cases. As

seen in our use cases, our system have two different user groups. We have the

user and we have the administrator. The user is split into two different user

groups, one applicaƟon user and one web user. An applicaƟon user and a web

user will have a lot of the same funcƟonality. We have decided to limit some of

the funcƟonality to only be available on the web page. Such as adding a family

member to your account and CRUD a team. This will help us limit the potenƟal

errors which might occur during user registraƟon.

3.2.2 Usability

The previous applicaƟon was, according to our customer, not a success. It was

not very user friendly and not very intuiƟve. We have to ensure our applicaƟon

will be well received by the users. That is why we will create an applicaƟon

which will be easier to use and understand. The user group consists of a lot of

different people of all ages, hence there will be a great span when it comes to

technological skills. That is why we will provide a walkthrough when the user

first launches the applicaƟon. This walkthrough will of course be available in

the help menu of the applicaƟon. By doing this we make sure the user gets an

introducƟon in how the applicaƟon works. Hopefully this will ensure the users

conƟnue to use the applicaƟon, instead of using the manual pen and paper

submission-method.

26

Sprek i Gjøvik

3.2.3 Reliability

A device or applicaƟon might malfuncƟon. That is why we have to implement a

mechanism to store the user data while the user is out and about looking for

poles. This will ensure that the user data is not lost incase of a applicaƟon

malfuncƟon.

Our data is stored in a database from a service provider which has daily

database backup. This will ensure that the user data does not get lost. Incase of

a malfuncƟon, we might have to do a roll-back. The users must to be noƟfied if

data loss occurs. The service provider also guarantees 99.9% upƟme.

3.2.4 Performance

We have to consider a device's baƩery life and therefore do minimal

processing on a device. We should do all the map pre-processing on a

computer, then aƩach the map data depending on the selected map

technology. If a task is taking some Ɵme, we need to display a progress bar so

the user knows something is happening. The last thing we want is Android Not

Responding. To make sure the applicaƟon runs smoothly, we should download

all required data at start, and use some splash mechanism while the data is

downloading. Because of these mechanisms we ensure the applicaƟon is

responsive and do not freeze while loading acƟviƟes. The most important thing

is to provide the user with the proper informaƟon, if the applicaƟon is doing a

lot of work.

27

Sprek i Gjøvik

3.2.5 Supportability

We will develop the applicaƟon in Norwegian and English. Android applicaƟons

can easily be translated and localized. If someone requests another applicaƟon

language, the website's news feed can be used to adverƟse for volunteer

translators.

Not all requirements are specified yet, but if we are going to implement e.g.

distance to pole from your GPS locaƟon, we can have the user select between

imperial or metric units. Different units of measurement might also be

implemented in pole content, e.g. “This marker is located 300 meters/328

yards above sea level”.

3.2.6 Legal Requirements

Data is stored in a safe place by a professional company. We do not handle any

sensiƟve or private user data.

3.2.7 Licensing

Wewill only use open source libraries. The project does not have any commercial

interest. It is a non-profit volunteer project from Gjø-Vard Orienteering.

3.2.8 ParƟal Releases

AŌer each sprint we will provide a new prototype of the applicaƟon to

demonstrate for our customer. There will be no public releases in Google Play

unƟl the applicaƟon is considered done, and can be tested by the

Customer.

28

Sprek i Gjøvik

3.3. Constraints

3.3.1 Tools

The Android ApplicaƟon should be developed using Android Studio as the IDE.

This means we will be using Gradle as build system, since it is used as standard

in the IDE. Git will be used for version control and source code management

through a private repository on Bitbucket.org.

3.3.2 Coding convenƟons

For the applicaƟon we will be using standard Java/Android coding

convenƟons [5]. Naming variables and methods will be done in English, and in

camel case style. Class member variables should have the m_* prefix. An

example: m_ThisIsMyVariable. Every class will be under the package

“no.hig.andmark.sprek.“.

Coding style and convenƟons for the website will depend on the programming

language.

The code should be commented in such a manner the future development and

maintenance can easily be conƟnued by someone else.

3.3.3 Data Storage

The applicaƟon should use SQLite for local storage on device. The server from

the service provider comes with MySQL only.

29

Sprek i Gjøvik

3.3.4 Hardware

Android ApplicaƟon

The applicaƟon will need access to the built-in GPS sensor in the device.

Depending on the detail level of the maps, the applicaƟon will use a larger

amount of RAM. Access to the camera is necessary to use the

QR-scanner.

Website

The website should fit all popular web browsers in resoluƟons from small

windows to fullscreen windows on high-resoluƟon clients.

3.3.5 Android version

84% of Android users who downloaded the applicaƟon RuterBilleƩ (a public

transport Ɵcket-app for Oslo and Akershus) between 18 December 2012 and

18 December 2013 was using Android 4.0 (API level 13) or higher [6]. This

number is a good guideline for us on which version the Norwegian

Android-user has. We will be targeƟng 2.3 and up, but if we need funcƟonality

which require a higher version, we will adjust thereaŌer. Although we want to

support as many devices as possible, the funcƟonality should not suffer at the

expense of device supportability.

Figure 7: Android versions in Norway. ICS = Ice Cream Sandwich

30

Sprek i Gjøvik

4. Design and Architecture

4.1. Architecture

4.1.1 Deployment - Client Server

Figure 8: Client-Server Structure

We will distribute the enƟre system using a client-server architecture. One of

our restricƟons is using an Apache web server to host the website. Another

restricƟon is will be using MySQL as the RDBMS.

A user will have the possibility to use the applicaƟon, the website or both. The

applicaƟon and thewebsitewillmostly have equal features. For an applicaƟon to

communicate with the database, we have to provide an interface. The interface,

or a database abstracƟon layer, must funcƟon independent of plaƞorm.

Most of the data processing will be done on the server. The applicaƟon should

primary be used to handle the presentaƟon. By doing most of the processing on

the server, wemake sure the device’s baƩery life is spared. The website will also

be responsible for presenƟng the data in the database.

31

Sprek i Gjøvik

4.1.2 Structure - Three-Tier

The system will be structured using a three-Ɵer architecture (illustrated in

Figure 9). All of communicaƟon in the system will be using the HTTP protocol.

By implemenƟng this structure we also ensure that the presentaƟon layer does

not directly communicate with the data layer. The communicaƟon between

the layers are linear, and all of the communicaƟon must go through the logical

layer. This is a security measure, and ensures the integrity of the data stored in

the database. The data will always be processed by the abstracƟon layer before

it will get inserted into the database. If the data format is not correct, it should

not get inserted.

Figure 9: Three-Tier Layered Architecture

Figure 9 represents the system structure. First we have the presentaƟon layer

which will be responsible for providing a user interface to the user. We have two

elements in the layer:Website and ApplicaƟon. These different components will

be responsible for displaying the same data on different plaƞorms.

Secondly we have the logical layer. This layer provides the communicaƟon

between the data layer and the presentaƟon layer. The website will be hosted

on an Apache web server. We will also store the database abstracƟon layer on

the Apache web server for communicaƟon with the back-end server. The

32

Sprek i Gjøvik

SensorManager is the naƟve package in Android which allows us to access the

GPS sensor on the different devices. Finally we need a map API, which will be

used to retrieve and display map from the map data source.

Finally we have the data layer. This is our source of data, such as the GPS sensor.

The map data source will be determined in the elaboraƟon phase. At last we

have the database where all the user data is stored.

By using the three-Ɵer structure, we provide a clean user interface to the data

stored in the data layer. A User Interface which can be used by both system users

(Administrator and End-User).We also simplify themaintenance process, aswell

as simplifying the future development. It ensures loose coupling between the

layers and allows development work to be done separate in the different layers

without compromising other funcƟons in the system. For instance we can edit

the abstracƟon layer without having to do changes in the applicaƟon nor the

website.

33

Sprek i Gjøvik

4.2. Design

4.2.1 ApplicaƟon

Component Diagram

The applicaƟon must to be designed generically. This means developing an

applicaƟon which can be used regardless of map and pole locaƟon. This

ensures scalability. Which means if Gjø-Vard Orienteering want to expand the

project and include new areas and poles, it can be done without changing

anything in the code. Figure 10 represents the Component diagram of acƟviƟes

which will included in the project.

Figure 10: ApplicaƟon Component diagram

LoginAcƟvity

Let user type credenƟals and submit. Should iniƟate a connecƟon to the server

to verify. Should contain ability to switch to RegisterAcƟvity if user is not already

registered.

MainAcƟvity

View a welcome-screen to the user with menu to navigate in the applicaƟon.

Should appear immediately aŌer login is finished.

34

Sprek i Gjøvik

MapAcƟvity

Displays themapwith poles. Should also allow user to view a list of poles. Should

contain a buƩon to start ScannerAcƟvity.

NewsAcƟvity

Should display the latest news for the user-selected area from the web

site.

RegisterAcƟvity

Lets the user register for the first Ɵme. Should iniƟate a connecƟon to the server

to verify details and create new user. Should also contain a buƩon to switch to

LoginAcƟvity, if user is already registered.

ScannerAcƟvity

Let the user use the camera to scan QR-code on pole. User-interacƟon aside

from poinƟng the device in the right direcƟon should not be necessary. Should

give feedback to user when QR has been scanned, or if any errors occur.

UserAcƟvity

View informaƟon about logged in user. Should display number of poles taken

and current ranking. Should also view a leaderboard, and a list of poles taken by

logged in user.

SeƫngsAcƟvity

Display the seƫngs that the user could change, such as "enable GPS" and

"Colorblind assistant". Should also view current version of applicaƟon, and a

form to submit feedback to developer.

35

Sprek i Gjøvik

Class Diagram

We will also integrate the different classes which we know of, such as Pole and

Area. There is also need for a DatabaseHandler class which will be used to

access and store the different Areas and Poles. The DatabaseHandler will be

accessed by the MapAcƟvity component. It is also necessary to implement a

class which represents a User, hence the User class. The User class data will be

accessed by the UserAcƟvity represented in Figure 10. We will also implement

a NewsAcƟvity, which means we need to populate the acƟvity with news

items, hence the NewsItem class.

Figure 11: ApplicaƟon Class diagram

The Component diagram (Figure 12) shows the flowof the funcƟonality we need

to implement in the website. There will be different menus based on if you are

an area administrator or an End-User.Wehave elaborated the basic funcƟonality

in the use case diagrams, and this acƟvity diagramwill be the basis of controlling

the flow in the implementaƟon of the different features of the website.

36

Sprek i Gjøvik

4.2.2 Website

Figure 12: Website AcƟvity Diagram

We will also integrate the different classes which we know of, such as Pole and

Area. There is also need for a DatabaseHandler class which will be used to

access and store the different Areas and Poles. The DatabaseHandler will be

accessed by the MapAcƟvity. It is also necessary to implement a class which

represents a User, hence the User class. The User class data will be accessed by

the UserAcƟvity represented in Figure 10. We will also implement a

NewsAcƟvity, which means we need to populate the acƟvity with news items,

37

Sprek i Gjøvik

hence the NewsItem class.

The acƟvity diagram (Figure 12) shows the flow of the funcƟonality we need to

implement in the website. There will be different menus based on if you are an

area administrator or an ordinary user. We have elaborated the basic

funcƟonality in the use case diagrams, and this acƟvity diagram will be the

basis of controlling the flow in the implementaƟon of the different features of

the website.

38

Sprek i Gjøvik

4.2.3 Database AbstracƟon Layer

Figure 13: Database AbstracƟon Layer

The abstracƟon layer will need the three classes in Figure 16. We need a

configuraƟon class, DB_CONFIG, to handle the connecƟon variables. Then we

need a class, PDO_CONNECT, which that handles the actual connecƟon. At last

we need a class which we can use to submit and request data, the DB class.

This class might be used by both the website, as well as the applicaƟon.

39

Sprek i Gjøvik

4.2.4 Database

Based on the applicaƟon class diagram (Figure 11) we know which classes we

need to implement in the database. Figure 14 illustrates the iniƟal database

design. We know we need a User table to store all the user data in. Then there

is also need for an Area and Pole table to store the different areas and poles.

The different poles will have some informaƟon aƩached to then, therefor we

also need a table to hold the Pole informaƟon, hence the InformaƟon table. At

last we know we need to store the visits which the users makes in a table,

hence the Visits table.

Figure 14: Database Design

40

Sprek i Gjøvik

5. ImplementaƟon

This chapter with elaborate how we implemented each part of the system. We

used the Design and Architecture chapter as a guide on how the system should

be implemented and how to handle interacƟon between the different

components. The chapter is divided into four different secƟons: Tools,

Server-Side, Website and ApplicaƟon. Tools explains all the tools we have used

during the project period. All the way from signing the Project agreement to

submiƫng the report to Fronter. The next secƟon explains how we

implemented the Server component of the system. The last two secƟons

explains how we implemented the Website and the ApplicaƟon.

5.1. Tools

We used BitBucket as the Git service provider, issue tracker and feature list

handler for the enƟre development phase. As a Git graphical client we went

with SourceTree because it supports Mac (which all of the group members

use). When it comes to IDE we choose Android Studio over Eclipse because we

wanted to try this tool since it is made explicitly for Android applicaƟon

development. For unit tesƟng in Android Studio we went with JUnit.

For the website development we went with FileZilla as the FTP client. As text

editor for the PHP files in the abstracƟon layer we went with TexasƟc because it

has great syntax highlighƟng and is made for Mac. As database administraƟon

tool we went with phpMyAdmin because this is what the service provider had

pre-installed.

During the enƟre project phase we used Google Docs to collaborate on the

content. We used TexShop (Latex client for Mac) to finalize the thesis. To create

all our graphics and diagrams, we used Magic Draw, Creately, Omnigraffle and

Astah Professional.

41

Sprek i Gjøvik

5.2. Server-Side

5.2.1 Using the Facade PaƩern

The Facade paƩern is a very commonly used paƩern in soŌware development.

It is found in every piece of soŌware aƩached to a hardware, for instance a

mobile device. When a user wants to turn on a mobile device, you do not want

to start the processor, the RAM and the storage medium separately. It would

take forever. Instead, a simple facade is available to the user: a power buƩon.

Another example would be a travel website. A user do not care what is going

on in the background. The system searches different airlines, hotels and prices

for you while you wait. You simply enter the date and locaƟon of where you

want to go, and you are represented with the result (Illustrated in Figure 15).

To explain it in a simple fashion: The paƩern takes many different and complex

parts of a system, and presents it in a simple manner to the user [7].

Figure 15: Facade PaƩern Example

In our case, we are for instance using Facade for the Administrator page where

they can do CRUD operaƟons on poles. Instead of an administrator doing work

directly in phpMyAdmin to do all the queries manually, we created different

pages on the website for the administrator. For example, one page presents

the administrator with all the exisƟng poles. It also provides the possibility to

do CRUD operaƟons in a single form. By implemenƟng the facade paƩern, we

42

Sprek i Gjøvik

make sure the administrator do not ruin the different tables in the database by

doing operaƟons directly in phpMyAdmin. It also simplifies the process of

CRUD operaƟons on poles.

We also implemented the facade paƩern in our database abstracƟon layer.

Since we only will be developing the Android applicaƟon, someone else might

be developing the iOS applicaƟon. Hence we have to develop a clean and

simple wrapper for all of the database funcƟonality, to handle the data

processing between the applicaƟon and the web server. This will also be a

security measure, because we do not want the applicaƟon to have direct

interacƟon with the database.

Because of the cross-plaƞorm funcƟonality, we have to use a data format

which works regardless plaƞorm. By using JSON objects as our data format, we

make sure that both Android and iOS can use our interface. It comes down to

the different applicaƟons how the provided user data from the interface are

displayed. Both plaƞorms have to use the correct format to submit data

through the interface. The format will be elaborated in the abstracƟon layer

reference/documentaƟon. This way, we provide a simple presentaƟon to other

developers which need to access the data. By documenƟng the abstracƟon

layer we also help whomever is going to handle the feature development. This

provides both the iOS developer, us and the feature developers with a clean

facade to the database.

43

Sprek i Gjøvik

5.2.2 Database

Design

Figure 16: Database Design

Figure 16 elaborates the database design. The tables sig_wp_users and

sig_wp_usermeta comes with WordPress, the remaining is designed by us. In

this chapter, we will discuss this soluƟon, and explain why we have done it this

way.

When a user creates a profile, a new row in sig_wp_users is created. One user

will also get several rows in the sig_wp_usermeta-table. Usermeta is aƩributes

for a user with descripƟon in “meta_key” and the actual aƩribute in

“meta_value”. Some of the aƩributes is only interesƟng for WordPress, but

some of them are also interesƟng for us. The aƩribute we will use from this

table is meta_key = “sig_wp_user_level”. The meta_value of this row is an

integer from 0 to 10, where 0 is a “standard user” without administrator

privileges, and 10 is the superadmin with all rights.

If a user visits a pole on the map, a row is inserted in the table sig_visits. The

visit has a pole_id, which represents a sig_poles.pole_id. A pole can be placed

in one out of many different areas.

44

Sprek i Gjøvik

A user can also be part of one team, if so, a row in the table

sig_team_memberships is created. If a user creates a new team, a row in

sig_teams will be inserted, as well as a row in sig_team_memberships. In

sig_teams, the row “team_owner” will contain the (sig_wp_users.ID), which

represents the administrator of the team.

45

Sprek i Gjøvik

5.2.3 AbstracƟon layer

The abstracƟon layer is the layer with the database on the server on the

"inside", and the applicaƟons and website on the "outside". When

implemenƟng an abstracƟon layer, there is a lot of concerns. The top prioriƟes

are security and integrity.

One of the most basic concerns in the abstracƟon layer is SQL-injecƟons. A

SQL-injecƟon is when a user can enter malicious SQL-statements into a input

field, i.e. the username-field. If the query for instance is "SELECT FROM

sig_wp_users WHERE ID = $user_id", the user could write "1; DROP TABLE

sig_wp_users" into the input-field. This would delete the enƟre user-table,

which would affect all users. Using PDO with prepared statements ensures no

SQL-injecƟons. [8] The PDO-implementaƟon is split out in several files. This

was done to keep the database password safe from other developers (the

original intenƟon was to include a external development team to create

iOS-applicaƟon). The class that connects to the database, 'PDO_CONNECT'

(Code Example 5.1) is placed in a separate file 'db_connect.php'. It returns a

instance of a PDO connected to the database, giving the programmer access to

the database without revealing the password.

Code Example 5.1 PDO_CONNECT Class

1 c l a s s PDO_CONNECT {

2

3 p r i v a t e s t a t i c $ i n s t a n c e = n u l l ;

4

5 / / Gets a connected PDO

6 pub l i c s t a t i c f u n c t i o n ge t () {

7 i f (s e l f : : $ i n s t a n c e == n u l l) {

8 / / Connect to the f i l e c o n t a i n i n g database−c r e d e n t i a l s

9 r equ i r e_once __DIR__ . ' / db_ con f i g . php ' ;

10 $ instance_name = " mysql : hos t = l o c a l h o s t ; dbname= " . DB_DATABASE . " ; c h a r s e t = u t f 8 " ;

11

12 t r y {

13 s e l f : : $ i n s t a n c e = new PDO ($instance_name , DB_USER , DB_PASSWORD) ;

14 } ca t ch (PDOExcept ion $e) { throw $e ; }

15 }

16 r e tu rn s e l f : : $ i n s t a n c e ;

17 }

18 }

46

Sprek i Gjøvik

To get access to the database through the PDO_CONNECT, programmers can

write PDO_CONNECT::get(), which acquires an instance ready to use. Further,

the programmer can create a prepared statement, shown in Code

Example 5.2.

Code Example 5.2 Prepared Statements with PDO Class

1 f u n c t i o n g e t _ a l l _ a r e a s () {

2

3 / / P repare s ta tement to ge t a rea s wi th bounda r i e s

4 $prepared_s ta tement = PDO_CONNECT : : ge t ()−>prepare ("

5 SELECT s i g _ a r e a s . * ,

6 s i g_bounds . bound_north ,

7 s i g_bounds . bound_south ,

8 s i g_bounds . bound_east ,

9 s i g_bounds . bound_west

10 FROM s i g _ a r e a s

11 JOIN s i g_bounds

12 ON s i g _ a r e a s . a r e a_ i d = s i g_bounds . a r e a_ i d

13 ") ;

14

15 / / Execu te the s ta tement

16 $prepared_s ta tement−>execu te () ;

17

18 / / Fe t ch an a r r a y indexed by column name

19 $ r e s u l t = $prepared_s ta tement−> f e t c h A l l (PDO : : FETCH_ASSOC) ;

20

21 r e tu rn $ r e s u l t ;

22 }

All funcƟons as the one in Code Example 5.2 is contained in the class DB. The

return-array from this parƟcular funcƟon could for instance contain the data in

Code Example 5.3. The web site uses this class directly, but the mobile

applicaƟons cannot connect directly to the DB-class. To solve this, we have

created several php-files which connects to the DB class and processes the

result on server. The php-file that uses the code in Code Example 5.2 only

transforms the returned array from 5.3 into a JSON-formaƩed (as in Code

Example 5.4 array, using "print json_encode(DB::get_all_areas());. A more

complicated example with more processing on server is shown in

SecƟon 5.3

47

Sprek i Gjøvik

Code Example 5.3 Returned Array

1 / / Returned a r r a y from get \ _ a l l \ _a rea s u s i n g r e t u r n \ $ r e s u l t :

2 Ar ray (

3 [0] => Ar r ay (

4 [" a r e a_ i d "] => 1

5 [" area_name "] => G j o v i k

6 [" bound_north "] => 60 .825

7 [" bound_south "] => 60 .785

8 [" bound_east "] => 10 .705

9 [" bound_west "] => 10 .635)

10 [1] => Ar r ay (

11 [" a r e a_ i d "] => 2

12 [" area_name "] => Rau fo s s

13 [" bound_north "] => 60 .735

14 [" bound_south "] => 60 .713

15 [" bound_east "] => 10 .615

16 [" bound_west "] => 10.5875)

17)

Code Example 5.4 Returned JSON-Array

1 / / Returned j son−a r r a y from get \ _ a l l \ _a rea s u s i n g r e t u r n j s on \ _encode (\ $ r e s u l t) :

2 {

3 " a r e a_ i d " : " 1 " ,

4 " area_name " : " G j o v i k " ,

5 " bound_north " : " 60 .825 " ,

6 " bound_south " : " 60 .785 " ,

7 " bound_east " : " 10 .705 " ,

8 " bound_west " : " 10 .635 "

9 } ,

10 / / Next area here

48

Sprek i Gjøvik

5.2.4 Website

IntegraƟng Wordpress

During the first meeƟng with Bjørn Godager (MeeƟng D.1) we agreed on using

Wordpress as the basis for the website. This meant that we did not have to

develop a Content Management System from scratch, which allowed us to

focus on the main features of the website instead.

The feature list was established in the Requirement SpecificaƟon. By extracƟng

the features of the website listed in table below, we established which features

to develop first.

ID Name <acƟon> <result> <object>

2 Display registraƟon form on website to a website user

4 Display CRUD opƟons for family members to a website user

5 Display CRUD opƟons for poles to area administrator

6 Display CRUD team opƟons to website user

11 Display form to register pole visits to website user

12 Store pole visits data provided by website user

The first feature allows the a End-User to register using the website. We did

not want any of the End-Users to be able to login using the Wordpress

Dashboard. The reason being that the Wordpress Dashboard is meant for the

administrators, ant not the End-User. We then had to figure out how to allow

users to register without using the standard Wordpress registraƟon form. AŌer

trying different soluƟons on how to implement user registraƟon, we found that

the Buddypress plugin was the best alternaƟve. Buddypress is a social network

plugin for Wordpress, which allows Wordpress websites to enable social

networking. There are a lot of features in Buddypress we were not interested

in, but there was also some features we wanted, such as a registraƟon form

(Figure 17).

49

Sprek i Gjøvik

Figure 17: Buddypress RegistraƟon Form

Buddypress allows us to present a separate registraƟon form, and as a bonus it

allows us to addUser profile funcƟonality to thewebsite (Figure 18. User profiles

means that the End-User can edit their own profile without having to access the

Wordpress Dashboard. Thiswas exactlywhatwewanted to accomplish. The user

can add a profile picture/avatar which can be displayed in the applicaƟon along

with on the website (only visible to the user itself).

Figure 18: Buddypress User Profile

50

Sprek i Gjøvik

Another plugin we added is called "Remove dashboard access from

non-admins", which does exactly what is is called. It makes sure only area

administrators can access the Wordpress Dashboard. The End-User

(non-admins) gets redirected to first page of the website if they try to access

the Dashboard. That plugin along with Buddypress ensures that the End-User

stays out of the Dashboard, but are able to edit and control their own profile.

We also added the plugin "Exec-PHP", which allows Wordpress Pages to

execute PHP code. This allows us to implement our own php funcƟons to the

website. This plugin was useful, since almost all of our funcƟonality are

executed in different Wordpress Pages. There were some other alternaƟves,

but "Exec-PHP" allowed us to encapsulate the php code with normal start and

finish tags <?php code here; ?>. A few other plugins required either:

[PHP] code here; [/PHP] or [code=php] code here; [/code].

We also added a plugin called "JSON API". This plugin works as an API which

allows us to download news stories, in the applicaƟon as JSON format. For

instance we can simply do a request to the API:

hƩp://www.stolpejakten.no/api/get_category_posts/?slug=gjovik

Where the slug, in this example gjovik, gets swapped with the home area set

by the user in the applicaƟon.

The last plugin we added is called "Restrict Categories". This plugin allows the

website administrator (us for this year's project) to limit area administrators to

write posts in certain categories. Which means that we allow the administrator

for area Gjøvik to write news stories which regards only the users in Gjøvik. The

reason behind this is that the Customer only wanted separate news stories for

all the different areas.

51

Sprek i Gjøvik

User Interface

Since the website is a Wordpress site, we simply had to find a theme the

Customer the liked. We went with a theme called "GreenChili". It is a

minimalisƟc theme and it responsive, which means it works on smaller screens

such as mobile devices. Figures 19 and 20 shows the responsiveness of the

theme on different screen sizes.

Figure 19: Register Poles on Phone

Figure 20: Register Poles on Computer

52

Sprek i Gjøvik

It was not enough to use a responsive theme to ensure our was content

presented equally responsive. We had to implement some simple CSS style to

the different pages (Code Example 5.5).

Code Example 5.5 CSS Responsive Website

1 < s t y l e >

2 <!−− Row width i n s i d e pa ren t (t a b l e) −−>

3 t r {

4 he i g h t : 1 0 0 %;

5 }

6 <!−− E n t i r e t a b l e width −−>

7 t a b l e {

8 wid th :100 %;

9 }

10 <!−− Tex t f i e l d marg ins and width , 60% width −−>

11 i n pu t [type = t e x t] {

12 marg i n− r i g h t : 5px ; : 5px ;

13 wid th : 60 %;

14 }

15 </ s t y l e >

Since we use tables to arrange the data, we had to ensure that the table width

is 100% of the content area. In the first few weeks of development, we used

staƟc sizes, such as width:300px. This soon became an issue regarding the

responsiveness of the website. It made the table too wide for some phones,

and to see the content a user had to change the phone orientaƟon to

landscape. A fixed size website is outdated, since the common Internet user

might not access the websites with a computer [9]. The users are accessing the

website from different devices.

Figure 21 shows the different plaƞorms the users are accessing the website.

The diagram a great deal of users accessing the website using iPhone, iPad and

Android. Therefor the implementaƟon of fluid width of the website was a good

idea. The alternaƟve would be to alienate a group of users from accessing the

website properly, by using the fixed width.

53

Sprek i Gjøvik

Figure 21: User Plaƞorm StaƟsƟcs

Besides being responsive, GreenChili came with a few widgets we could

implement in our system. What we did was to customize the theme's login

widget to include permalinks to our Wordpress Pages. Another alternaƟve

would have been to create our own widget. We felt that customizing the

already exisƟng widget was the best opƟon. The reason was that this was the

easiest and the least Ɵme consuming opƟon. The altered widget loads menu

items based on if you are an End-User (Figure 22) and/or an Administrator

(Figure 23).

Figure 22: End-User Website Menu Figure 23: Administrator Website Menu

54

Sprek i Gjøvik

An Administrator needs to be able to check their visits, edit their profile and

use all of the other features equal to an End-User. The menu loads everything

under the line in Figure 23, if an Administrator is logged in. If the logged in user

is an End-User, only the menu above the line is displayed. We decided to divide

the menu as we did, because it separates the different User-levels in a simple

fashion. Which meant that we have to execute one line of code (if statement),

whether or not to display the Administrator opƟons of the menu below the

End-User menu.

Gjø-Vard Orienteering was pleasedwith the final look of the website (Figure 24).

The website has a top bar menu, which allows simple navigaƟon. The Customer

andwe felt implementaƟon of a simple navigaƟonmenuwas necessary, because

according to the Customer, the technical skills of the users varies.

Figure 24: First Page with Logged in User

55

Sprek i Gjøvik

User levels

An issue we had to resolve was how to separate users from area

administrators. IniƟally we tested the naƟve Wordpress user levels, such as

Subscriber and Administrator. For instance a Subscriber can not delete posts,

but an Administrator can. Since area administrators will manage poles, and

write news stories for their area as well, we decided to take advantage of the

Wordpress feature and integrate it with our own code.

We had to combine our own sig_admins table in the database, and the naƟve

Wordpress user levels. The reason being that Wordpress uses its own

permissions to allow/deny users access to the Dashboard. Which meant we

could not exclude the user levels completely. In our case, the only reason an

area administrator should access the Dashboard is to manage news stories. To

check if a user is a Administrator (can manage poles), we created the simple

method sig_is_admin(). The method returns a boolean if a user is

administrator or not, and the content of the administrator page is loaded there

aŌer.

To ensure that a user is registered as a Subscriber, we used the Buddypress

registraƟon form with a specific role (user level): [Register role="subscribers"].

Which means when a user registers, it gets registered as a Subscriber.

Subscriber the lowest user level besides "None". In our case, Subscriber and

"None" has the same limitaƟons.

By integraƟng our own code into Wordpress pages, we ensure that the content

is loaded based on the correct user level. Since an area only can have one

administrator (in our sig_admins) to manage poles, we had to implement it in

this manor. Because an area can have mulƟple Authors (Wordpress User Level

for managing news stories), but only one "Pole Administrator". The reason

being that we decided to only let only one person at a Ɵme have access to the

poles, which means less people to do something wrong.

56

Sprek i Gjøvik

Figure 25: News Story Categories

By combining the different user levels, our own sig_admins table and the

"Restrict Categories" plugin we separate the users from the administrators,

and the area administrator from an area author. Since we use the "Restrict

Categories" plugin, we can allow Authors to only post news stories in their own

category (Figure 25). A Category, in this context, is equal to an Area.

57

Sprek i Gjøvik

Administrator funcƟonality

A website administrator have to be able to do CRUD opƟons for poles in their

area. We had to create a Wordpress Page which only an administrator could

access. The purpose of the page is to display the area's poles. Since each area

will have its own administrator, we had to create a funcƟonality which loads

correct the area for each separate administrator. Figure 26 represents how it

looks on the website for the Gjøvik administrator .

Figure 26: Pole List on Website

We arrange the poles in a table, equal to most of the content we arrange on the

website. Code Example 5.6 elaborates the implementaƟon in aWordpress Page.

Wordpress has amethod for accessing the logged in user's ID from the database.

We used this ID to check in our sig_admins table aŌer which area

58

Sprek i Gjøvik

Code Example 5.6 Website - Administrator Functionality

1 <?php
2 <!−− Execu te s i f the use r i s a dm i n i s t r a t o r −>
3 <?php i f (s i g _ i s _ a dm i n () === t rue) { ?>
4

5 <!−− Crea te t a b l e wi th a l l the po l e s i n a rea −−>
6 < t a b l e width = "100%" border = " 1 " >
7 < t r >
8 <th > ID </ th >
9 <th >NAVN</ th >

10 <th >LAT </ th >
11 <th >LONG</ th >
12 <th >QR</ th >
13 <th >DIFF </ th >
14

15 <?php
16 echo " <th > </ th > </ t r > " ;
17

18 <!−− Gets the po l e s i n area where use r i s admin .
19 D i s p l a y s each po le as row i n t a b l e . −−>
20 g l o b a l $ c u r r en t _u s e r ;
21 g e t _ c u r r e n t u s e r i n f o () ;
22

23 $ r e s u l t = DB : : ge t _po l e s_ fo r _adm in ($ cu r r en t_u se r −>ID)
24 f o r ea ch ($ r e s u l t as $row) { ?>
25

26 <!−− P r i n t s po le data ?>
27

28 <form a c t i o n = " " method= " pos t " >< t r >
29 < td width = "5%" ><?php echo $row [' p o l e _ i d '] ; ; ?> </ td >
30 < i npu t type = " h idden " i d = " po l e _ i d " name= " po l e _ i d "
31 va l ue = " <?php echo $row [' p o l e _ i d '] ; ?> " >
32

33 <?php
34 echo ' < td width =55%> ' . $row [' pole_name '] . ' </ td > ' ;
35 echo ' < td width =15%> ' . $row [' p o l e _ l a t i t u d e '] . ' </ td > ' ;
36 echo ' < td width =15%> ' . $row [' p o l e _ l o n g i t u d e '] . ' </ td > ' ;
37 echo ' < td width =10%> ' . $row [' po le_qr_code '] . ' </ td > ' ;
38 echo ' < td width =5%> ' . $row [' p o l e _ d i f f i c u l t y '] . ' </ td > ' ;
39 echo ' < td width =5%>< i npu t type = submit
40 name= submit v a l ue = S l e t t > </ td > </ t r > ' ;
41 </ form >
42 <?php
43 }
44 } e l s e {
45 echo "Du har i k k e t i l g a n g t i l denne s i den ! " ;
46 }
47 ?>

59

Sprek i Gjøvik

User funcƟonality

The feature list contained more features we had to implement, such as family

members. We had two opƟons when deciding on how to implement this

feature. One alternaƟve was to do it the same fashion as Neƞlix. Neƞlix asks

"Who?s watching?", then you can select an account member. Which for us

would translate into "Who is searching for poles?". The issue we had with this,

is that it had to be one device available for each account member. This was

contradictory to what Gjø-Vard Orienteering requested. Because the issue last

summer was that not all family members searching for poles, had their own

device (such as grandparents and young children). Therefor we went with the

second opƟon.

Figure 27: Family Members FuncƟonality

When a user has registered an account, one can add family members on the

website. The user becomes "parent" of the registered family member(s).

Figure 27 presents how it looks on the website. Which means when a user goes

searching for poles, the "parent" can select the family member(s) who are with

them on a pole search. This ensures that the requirement from Gjø-Vard

Orienteering is implemented as requested. A user can now include family

members in the pole search, and only use one device to get all of the visits

registered for each family member. Since Gjø-Vard Orienteering wanted to

include as many users as possible, without technology prevent user

parƟcipaƟon.

60

Sprek i Gjøvik

Gjø-Vard Orienteering might host some compeƟƟons such as "most acƟve work

place" or "most acƟve school class", therefor they requested team funcƟonality.

They also wanted to have a limit of maximum members of a team. The reason

behind it was it would be easier for them to calculate scores and staƟsƟcs. The

requested size was max four members.

We first considered the group funcƟonality included in Buddypress, which

allows users to create groups. The only main difference between a group and a

team, in this context, is the name. The issue with Buddypress's group

funcƟonality, was that maximum members in a group was unsupported. The

group funcƟonally could be altered in such a fashion that it only allowed a user

to member of one group. This was inadequate to meet the requirements set by

Gjø-Vard Orienteering.

Insteadwedecided to create our own team funcƟonality. Figure 28 is an example

on how a team is composed in the team administrator's page.

Figure 28: Team FuncƟonality

61

Sprek i Gjøvik

The team creator becomes the administrator of that team. An administrator has

the opƟon to add and remove a team member. While the team member has

the opƟon to leave their current team. We also decided to add a column which

displays the team member's number of visited poles. Which in a compeƟƟon

might be useful for teams to see who is lagging behind so the team can ensure

maximum effort. Our implementaƟon of teams saƟsfied the requirements set

by Gjø-Vard Orienteering.

Finally we had to implement the feature which allows a user to register their

visits on the website. The iniƟal implementaƟon consisted of a table which

contained a texƞield for each pole in a given area below each other. It turned

out to be inconvenient, because one had to scroll immensely to reach the

submit buƩon at the boƩom.

To resolve this inconvenient issue we decided to re-design the layout. We

started out with the same table as the base. Then we created a for loop, which

generates a new row in the table whenever the loop reaches five columns. The

row contains five texƞields with a corresponding pole ID (Figure 20). This

implementaƟon ensures that the user always have to write the correct pole QR

code in the corresponding pole ID texƞield.

Code Example 5.7 Website - Register Poles Table

1 <form a c t i o n = " " method= " pos t " >
2 <?php $ r e s u l t = DB : : g e t _po l e s ($u s e r _ i d) ; ?>
3 < t a b l e border = " 1 " >< t r >
4

5 <?php f o r ($ i = $ i n i t ; $ i <= count ($ r e s u l t) ; $ i ++) { ?>
6 <td >< l a be l ><?php echo $ i ; ? > </ l a be l >
7

8 < i npu t type = " t e x t " i d = " po l e_q r " s i z e = " 6 "
9 name= " <?php echo " po le_q r_codes [" . $ i . "] [" . $ i . "] " ; ?> " va l ue = " " >

10 </ td >
11

12 <!−− Break row at 5 columns −−>
13 <?php i f (($ i %5) === 0) { echo " </ t r > " ; } } ; ? >
14 < i npu t type = " submit " name= " submit " v a l ue = " R e g i s t e r " >
15 </ form >
16 </ t ab l e >

Code Example 5.7 represents our implementaƟon simplified. We implemented

a check if the content of pole_qr_codes[][]matches a pole in the database, then

store the visit if the submiƩed combinaƟon is correct. Otherwise we present

an error message to the user, informing the user that the submiƩed data was

incorrect.

62

Sprek i Gjøvik

5.3. Android ApplicaƟon

5.3.1 User Interface

When creaƟng the main layout of the applicaƟon, we had a couple of

alternaƟves for the in-app navigaƟon. We could either create a home screen

with buƩons arranged in a GridLayout (Figure 29), a list with buƩons

(Figure 30), or by adding icons to the AcƟonBar (Figure 31). The advantage of

using a home screen with buƩons (either in a GridLayout or in a simple list of

buƩons), is that each buƩon gets more space for text. This way it is easier to

explain in detail what acƟon a click would iniƟate. When using the AcƟonBar,

only a icon will be visible to the user. The advantages of using the AcƟonBar is

that the user would not have to go back to the main screen to change acƟvity.

If the user for instance wants to go directly from the map to the seƫngs, the

user can press the seƫngs-icon on the AcƟonBar.

Because Android has standardized all common buƩons. The Official Android

Developer Design Guide states that "Pictures are faster than words", and

enchants developers to use the AcƟonBar instead of buƩons for changing

AcƟviƟes. [10]. They further state that an applicaƟons core funcƟonality should

always be available from the AcƟonBar. Therefore, we choose to add icons for

MainAcƟvity, MapAcƟvity, UserAcƟvity and UserSeƫngsAcƟvity on the

AcƟonBar. In Figure 31 the applicaƟon is in MainAcƟvity, showing the icons for

Map, User and Seƫngs in the acƟon bar.

Furthermore, Google suggests to make the applicaƟon stand out from others

using your brands color in the AcƟonBar. Note the difference in Figure 30 and 31.

The green color (Hex triplet color 99CC00), also appears in the Launcher Icon and

in a splash screen shown when the applicaƟon is launching.

63

Sprek i Gjøvik

Figure 29: Grid Menu Figure 30: List Menu Figure 31: AcƟonBar Menu

5.3.2 User management

The core funcƟonality of the applicaƟon, such as visiƟng poles and viewing

staƟsƟcs, depends on the user being logged in. When deciding how to

implement the log in-feature, there was a couple of opƟons and maƩers to

consider. When logging in, the users submits a username and a password. Our

task is to ensure that the data is handled properly to minimize the risk of

leaking user-passwords. There are four steps in the login-process. The first is

the user typing the credenƟals into the form in the applicaƟon. The second is

the applicaƟon sending the credenƟals to to server for verificaƟon, the third is

the server verifying and processing it, and the fourth is the server telling the

applicaƟon wether it is successful or not.

The first step is done straight-forward, by creaƟng a layout which contains

EditText-fields for username and password. The password-field is declared as a

password-field, making the input censored with asterisks for each

character.

The second step is done through the FetchDataTask from Chapter 5.3.7, which

transfers the data through a HTTPS-connecƟon to a php-file on the server.

The third step is the server receiving the data from the HTTPS-connecƟon. The

processing on the server is explained in Code Example 5.8.

64

Sprek i Gjøvik

The fourth step is explained in Code Example 5.9. The "Url.LOGIN" is the link to

the php-file on the server (Code Example 5.8).

Code Example 5.8 Login.php

1 <?php

2 header (' Content−Type : a p p l i c a t i o n / j s on ; c h a r s e t = ut f −8 ' , t rue , 2 0 0) ;

3 / / I n c l u d e the DB c l a s s c o n t a i n i n g prepared s ta tement s

4 r equ i r e_once (" . ./ pdo . php ") ;

5

6 / / I n c l u d e the c o n f i g f i l e to make d i r e c t use o f the database .

7 r equ i r e_once (" . ./ wp−c o n f i g . php ") ;

8 / / I n c l u d e the PasswordHass c l a s s to check i f the passwords are match ing .

9 i n c l ude_once (" . ./ wp− i n c l u d e s / c l a s s −phpass . php ") ;

10

11 / / Get arguments from a p p l i c a t i o n

12 $username = $_POST [' username '] ;

13 $password = $_POST [' password '] ;

14

15 / / Get use r f o r username

16 $user = DB : : g e t _u se r ($username) ;

17

18 / / Encode and decode j s o n _ a r r a y to a c c e s s as a r r a y

19 $ j s on_u se r = j son_encode ($user) ;

20 $ j son_decoded_user = j son_decode ($ j son_use r , t rue) ;

21

22 / / Get r e l e v a n t data from query r e s u l t a r r a y

23 f o r ea ch ($ j son_decoded_user as $ a r r) {

24 / / Get the hashed password and the use r i d from the database

25 $password_hashed = $a r r [' u s e r _pa s s '] ;

26 $u se r _ i d = $a r r [' ID '] ;

27 }

28

29 / / Use WordPress and PHPASS to c r e a t e a hash o f the typed password

30 $wp_hasher = new PasswordHash (8 , TRUE) ;

31

32 / / V e r i f i e s the hashes , r e t u r n s ' 1 ' i f the typed password i s c o r r e c t , e l s e ' 0 '

33 $ l o gged_ i n = ($wp_hasher−>CheckPassword ($password , $password_hashed)) ;

34

35 i f ($ l o g ged_ i n == t rue) {

36 / / Send the u s e r i d back to a p p l i c a t i o n

37 p r i n t j son_encode ($user) ;

38 } e l s e {

39 / / Send u s e r i d = 0 bak to a p p l i c a t i o n . Not logged i n .

40 $ j s o n S t r i n g = ' [{ " ID " : "0" }] ' ;

41 p r i n t $ j s o n S t r i n g ;

42 }

43 ?>

65

Sprek i Gjøvik

Code Example 5.9 Login Method from Android Application

1 p r i v a t e vo id l o g i n () {

2

3 S t r i n g username = m_UsernameEditText . g e t T e x t () . t o S t r i n g () ;

4 S t r i n g password = m_PasswordEd i tTex t . g e t T e x t () . t o S t r i n g () ;

5

6 / / Only t r y to s i g n i n i f c r e d e n t i a l s a re g i v en

7 i f (! username . matches (" ") && ! password . matches (" ")) {

8

9 / / C rea te ASyncTask to execu te PHP on s e r v e r :

10 Fe t chDa taTa sk connec t i on = new Fe t chDa taTa sk (L o g i n A c t i v i t y . t h i s) ;

11

12 / / Add a t t r i b u t e s

13 connec t i on . addVa l uePa i r (new Bas i cNameVa luePa i r (" username " , username)) ;

14 connec t i on . addVa l uePa i r (new Bas i cNameVa luePa i r (" password " , password)) ;

15

16 / / Execu te query to v e r i f y c r e d e n t i a l s

17 S t r i n g r e s u l t ;

18 t r y {

19 r e s u l t = connec t i on . execu te (U r l . LOGIN) . ge t () ;

20 / / Get the ob j e c t from the r e s u l t −s t r i n g :

21 JSONArray j A r r a y = new JSONArray (r e s u l t) ;

22 JSONObject j s onDa ta = j A r r a y . ge t J SONOb jec t (0) ;

23

24 i n t u s e r I d = j s onDa ta . g e t I n t (" ID ") ;

25 i f (u s e r I d ! = 0) {

26 / / Se t the u s e r I d va l ue o f the s i n g l e t o n− i n s t a n c e o f User .

27 User . g e t I n s t a n c e (g e t A p p l i c a t i o n C o n t e x t ()) . s e t V a l u e s (u se r I d , t h i s) ;

28 f i n i s h () ; / / D i s a b l e s p o s s i b i l i t y to go back to t h i s a c t i v i t y

29 s t a r t A c t i v i t y (new I n t e n t (L o g i n A c t i v i t y . t h i s , M a i n A c t i v i t y . c l a s s)) ;

30 } e l s e {

31 Toas t . makeText (t h i s ,

32 ge tRe sou r ce s () . g e t S t r i n g (R . s t r i n g . wrong_username_password) ,

33 Toas t . LENGTH_LONG) . show () ;

34 }

35

36 } ca t ch (I n t e r r u p t e d E x c e p t i o n e) {

37 } ca t ch (E x e c u t i o n E x c ep t i o n e) {

38 } ca t ch (J SONExcept ion e) {

39 }

40

41 } e l s e {

42 / / M i s s i n g e i t h e r username or password .

43 Toas t . makeText (t h i s ,

44 ge tRe sou r ce s () . g e t T e x t (R . s t r i n g . e n t e r _ v a l u e s) ,

45 Toas t . LENGTH_SHORT) . show () ;

46 }

47 }

66

Sprek i Gjøvik

5.3.3 Map

Choosing map technology

We had a meeƟng with our supervisor before we started the project planning,

where we discussed the different opƟons for implemenƟng the map. Our iniƟal

plan was simply to implement either OpenStreetMap or Google Maps, and our

supervisor agreed. We found that these maps were adequate for displaying

poles in the terrain to a user. The reason being that a normal user does not

care whether or not the map is extremely detailed. Therefor we thought we

could convince the customer that either OpenStreetMap or Google Maps were

enough. Both of these services are simple to implement in Android. We

wanted a simple map because we wanted focus on the other features of the

applicaƟon.

AŌer we finished the project plan, started the next iteraƟon. The last day of

the iteraƟon we had a status meeƟng with our customer. We showed them we

had done so far and told them what we were doing the next sprint. We talked

about the map and our ideas and thoughts, about the detail level of the map

and the everyday user’s ability to read maps. The customer was quite clear that

they had to have an orienteering map, and nothing else. They wanted a link to

orienteering. Because the customer is an orienteering club, we understand that

they want an orienteering map, but we told them the everyday user (such as us)

do not care.

The map’s detail level were the customer’s concern, not the user’s. Since one of

the main goals for the project is to get people off the sofa and outside and not

teaching them orienteering, we did not see the importance of a very detailed

map. We sƟll wanted to please our customer and told them, a bit reluctantly,

that we would fix it. They were pleased. We then got a beta map we could use

to test with.

The map from the customer was created in a soŌware called OCAD, which is

used for drawing orienteering maps. Our challenge was to create a funcƟonal

map with GPS locaƟon and funcƟonality to add poles. We started looking for

an Android library which supports OCAD, but we only found an OCAD

applicaƟon in the Google Play Store. This applicaƟon is wriƩen by OCAD

67

Sprek i Gjøvik

themselves. This did not help us much. Luckily OCAD have the possibility to

export to other formats, such as KMZ/KML (Overlay for Google Maps). We

found a library called ArcGIS which could read simple KML files and add them

as a ground overlay to a map. Since the file we got from the customer

contained thousands of polygons and polylines, it would not be able to be

processed on a normal handheld device anyway. The device would quickly run

out of memory trying to create the map.

Then we looked at other OCAD export formats, such as EPS, PDF and

Shape-files. AŌer searching for libraries to handle geo-referenced PDF and EPS,

we found a Norwegian library from Norkart which can use something called

MBTiles. MBTiles is MapBox Tiles. We then found that MapBox has a soŌware

called TileMill. TileMill can read Shape-files and add them to a MapBox map.

We then exported the OCAD file to four different shape files (points, area, lines

and text) and opened them in TileMill. TileMill allowed us the style our own

map using CSS-like syntax.

Code Example 5.10 TileMill CSS

1 # l a y e r {

2 l i n e− c o l o r : #0AF ;

3 l i n e−op a c i t y : 0 . 5 ;

4 l i n e−wid th : 2 ;

5 }

AŌer trying and failing with creaƟng our own styles, we found that the problem

was that the layers are not layered properly. Every line were in one layer and

all the points in one layer and so on. Therefor we could not style the map in

orienteering colors. We even found a GitHub repository [11] which had done

the coloring before Another problemwas that the API fromNorkart did not read

theMBTiles properly. Neither the file we created nor an exampleMBTiles file we

found online. Therefor we had to find some other soluƟon.

The last thing we tried was to Export the OCAD to TIFF. Because we found that

Google Maps API v2 for Android has the ability to add image Ɵles as overlay.

By implemenƟng the TileProvider and overriding a couple of funcƟons, we had

an applicaƟon which could add Ɵles to Google Maps. We then had to find some

soŌwarewhich could create the Ɵles for us.MapTilerwas the soŌware of choice.

68

Sprek i Gjøvik

We had to pay 175 NOK for a version that allowed us to control the maximum

and minimum zoom levels and remove the watermark. AŌer trying and tesƟng

MapTiler, we had success loading the orienteering map as overlays. The next

thing we did was to set the Google Map type to NONE, which just shows a white

and gray grid in background. By choosing this soluƟon, we get all the opƟons in

GoogleMaps, but with our ownmap. This soluƟonworks great on both high-end

and low-end devices.

The last thing we did was to add funcƟonality to limit the viewable area to our

overlay. Code Example 5.11 is our soluƟon. We set LatLng bounds (BOUNDS)

created from Northeast and Southwest coordinates of the map. Then we check

if the current visible region is inside the bounds, if so, it does nothing. When a

user moves the camera to a valid target inside our bounds, we simply move the

camera to that region based on x/y coordinates.

Code Example 5.11 Visible Bounds

1 p r i v a t e vo id l im i tV i s i b l eMapReg i on () {

2

3 i f (BOUNDS . con t a i n s (googleMap . ge tCameraPos i t i on () . t a r g e t)) {

4 r e tu rn ;

5 }

6

7 double x = googleMap . ge tCameraPos i t i on () . t a r g e t . l o n g i t u d e ;

8 double y = googleMap . ge tCameraPos i t i on () . t a r g e t . l a t i t u d e ;

9

10 double maxX = BOUNDS . no r t h ea s t . l o n g i t u d e ;

11 double maxY = BOUNDS . no r t h ea s t . l a t i t u d e ;

12 double minX = BOUNDS . southwest . l o n g i t u d e ;

13 double minY = BOUNDS . southwest . l a t i t u d e ;

14

15 i f (x < minX) {

16 x = minX ;

17 }

18 i f (x > maxX) {

19 x = maxX ;

20 }

21 i f (y < minY) {

22 y = minY ;

23 }

24 i f (y > maxY) {

25 y = maxY ;

26 }

27 googleMap . moveCamera (CameraUpdateFactory . new L a t Lng (new L a t Lng (y , x))) ;

28 }

69

Sprek i Gjøvik

Legend

AŌer the customer showed us the papermap from last summer, we noƟced that

the map had a legend table. We thought that this was a cool and nice-to-have

feature. From the customer we got a single image with all of the symbols. We

implemented this in a simple scrollable view, and it looked quite bad, since it was

a single image. We then decided to contact the person that created last year’s

map brochure to get a hold of the separate images. We got sixty eight images

named aŌer the symbol it represents. The challenge was to get these images

with the corresponding text into a ListView.

Figure 32: Legend

The first thing we did was to create a custom layout for a row. This row

contains an ImageView and a TextView located next to each other. The finished

product can be seen in in figure 32. Code Example 5.12 shows how we created

a pre-defined array with drawable resource IDs, and a pre-defined string-array

populated with pre-defined strings from strings.xml. This allows us to easily

translate the legend to other languages.

70

Sprek i Gjøvik

Code Example 5.12 Legend

1 < r e s ou r c e s >

2 < !−− Ar ray o f drawable r e s ou r c e s −−>

3 < a r r a y name= " i n f o_ image s " >

4 < i tem >@drawable / i n fo_open_a rea < / i tem >

5 < i tem >@drawable / i n f o _open_ a r e a _w i t h _ s c a t t e r e d _ t r e e s < / i tem >

6 < !−− 66 more i tems … −−>

7 < / a r r a y >

8

9 < !−−Ar ray o f s t r i n g r e s ou r c e s −−>

10 < s t r i n g −a r r a y name= " i n f o _ ima g e s _ t e x t " >

11 < i tem >@st r ing / i n fo_open_a rea < / i tem >

12 < i tem >@st r ing / i n f o _open_ a r e a _w i t h _ s c a t t e r e d _ t r e e s < / i tem >

13 < !−− 66 more i tems … −−>

14 < / s t r i n g −a r r a y >

15 < / r e s ou r c e s >

16

17 < !−− Then we have the co r r e spond i ng s t r i n g s de f i ned i n s t r i n g s −−>

18 < s t r i n g name= " i n fo_open_a rea " >Open area < / s t r i n g >

19 < s t r i n g name= " i n f o _open_ a r e a _w i t h _ s c a t t e r e d _ t r e e s " >Open area wi th

20 s c a t t e r e d t r e e s < / s t r i n g >

21 . . .

71

Sprek i Gjøvik

Pole alƟtude

AŌer a status meeƟng with the Customer and Supervisor, we discussed the

features of the applicaƟon. A requested feature was to get the alƟtude (meters

above sea level) of the pole. AŌer searching the Internet for soluƟons, we

found the Google ElevaƟon API. One can simply provide a locaƟon using

laƟtude and longitude and get a calculated alƟtude in JSON format. The

downside of this API, is the daily quota. Every Ɵme a user downloads new

poles, the API is accessed. Which means the daily quota will get exceeded

quite fast. To ensure that the quota was never exceeded, we had to store it in

the server database before the users could use the applicaƟon. We created a

script which loads all the pole's locaƟons from the database, then create a long

query which we send as a request to the API (Code Example 5.13).

All the alƟtudes are stored into the poles table in a separate column. Which

meanswhenwe download the poles in the applicaƟon, we get the alƟtude along

with everything else. Regarding the credibility of the alƟtudes from the API, we

have Mjøsa as a reference point. Which we know has the alƟtude of 123 meters

above sea level [12]. There is a pole located by the bank of the lake, and the

alƟtude from the API is 123 meters above sea level. The screenshot (Figure 33)

of the applicaƟon shows the accuracy of the for menƟoned pole.

Figure 33: Pole AlƟtude Example

72

Sprek i Gjøvik

Code Example 5.13 Pole Altitude

1 <?php

2 $ a l l _ p o l e s = DB : : g e t _po l e s () ;

3

4 / / C rea te the s t a r t o f the reque s t w i th the URL

5 $ u r l = " h t t p s : / / maps . g o o g l e a p i s . com/maps / ap i / e l e v a t i o n / j s on ? l o c a t i o n s = " ;

6 $ reques t = $ u r l ;

7 $comma = " , " ;

8 $ sepe r a t o r = "%7C" ;

9 $end = "&senso r = f a l s e&key =API_KEY " ;

10

11 $counte r = 0 ;

12

13 $po l e _ i d s = a r r a y () ;

14 / / Loop through a l l the po l e s

15 f o r ea ch ($ a l l _ p o l e s as $po le) {

16

17 / / S t o r e s the po le i d s i n an a r r a y f o r l a t e r use

18 po l e _ i d s [] = $po le [' p o l e _ i d '] ;

19

20 / / Append l a t i t u d e , then comma , then l o n g i t u d e .

21 $ reques t . = $po le [' p o l e _ l a t i t u d e '] ;

22 $ reques t . = $comma ;

23 $ reques t . = $po le [' p o l e _ l o n g i t u d e '] ;

24

25 / / I f the counte r i s a t the l a s t reques t , add the s ep a r a t o r .

26 i f ($counte r < count ($ a l l _ p o l e s) −1) {

27 $ reques t . = $ sepe r a t o r ;

28 }

29 $counte r ++ ;

30 }

31

32 / / Add the l a s t p a r t o f the reque s t

33 $ reques t . = $end ;

34

35 / / Get JSON data from the reque s t r e s u l t

36 $ j sonDa ta = j son_decode (f i l e _ g e t _ c o n t e n t s ($ reques t) , t rue) ;

37

38 $qr sCounte r = 0 ;

39

40 / / Adds each a l t i t u d e to the po le database

41 / / u s i n g e lements i n the po le i d s a r r a y

42 f o r ea ch ($ j sonDa ta [' r e s u l t s '] as $key => $eva l) {

43 $ev = round ($eva l [' e l e v a t i o n '] , 0) ;

44 $ i d = $po l e _ i d s [$q r sCoun te r + +] ;

45 DB : : u p d a t e _ a l t i t u d e ($ id , $ev) ;

46 }

47 ?>

73

Sprek i Gjøvik

5.3.4 Sensor Usage

Camera

Since the applicaƟon needs to scan the QR codes located on the poles, we had

to implement a scanner library. In a previous project, we had some success

implemenƟng the “ZBar Scanner” library. This library must be started using

“startAcƟvityForResult”, then when the library is done scanning, it returns the

result to the overridden funcƟon called “onAcƟvityResult”, in the acƟvity which

launched the scanner library using the “startAcƟvityForResult”. We had some

issues with this, because the library did not open / release the camera

properly, so it caused to applicaƟon to crash. Therefor we discarded this library

for this project.

Another opƟon was the ZXing library. We found that this library was too

advanced for our purpose, and we felt it was like cracking a nut with a

sledgehammer. We needed a simpler library that just read a simple QR code.

While looking for alternaƟves to ZBar, we found that the developer had

stopped maintaining the project, and had moved to another. This project was

called Bar Code Scanner We tested this library with great success. It opens and

releases the camera properly, and we have yet to experience the applicaƟon

crashing because of it.

GPS

We decided to implement a graphical strength indicator in the map layout. The

reason behind it was whether or not a user could trust the GPS locaƟon. At least

now, the user know how good the signal is and can trust the GPS thereaŌer. The

Figure (34) shows the three different symbols we used to illustrate the accuracy.

Green is good, orange is medium and red is weak.

Figure 34: GPS Accuracy Symbols

Code Example 5.14 explains the simple algorithm we used to display the

accuracy. We created a simple class that implements the LocaƟonListener

(naƟve Android). The rest is explain the the code comments.

74

Sprek i Gjøvik

Code Example 5.14 GPS Accuracy Indicator

1 p r i v a t e c l a s s GP S L o c a t i o n I n d i c a t o r implements L o c a t i o n L i s t e n e r {

2 / / S to red the a c cu r a c y

3 p r i v a t e i n t o l dAc cu r a c y ;

4 p r i v a t e s t a t i c f i n a l i n t GOOD_SIGNAL = 10 ;

5 p r i v a t e s t a t i c f i n a l i n t WEAK_SIGNAL = 20 ;

6 }

7

8 / / Eve r y t ime the ’ u s e r s GPS l o c a t i o n changes , t h i s method i s c a l l e d .

9 pub l i c vo id onLocat ionChanged (L o c a t i o n l o c a t i o n) {

10

11 / / Get the a c cu r a c y i n meters , rounds to c l o s e s t meter .

12 i n t newAccuracy = Math . round (l a s t L o c a t i o n . ge tA c cu r a c y ()) ;

13

14 / / I f the o ld a c cu r c y i s d i f f e r e n t from the new l o c a t i o n , update the a c cu r a c y .

15 i f (o l dA c cu r a c y ! = newAccuracy) {

16 o l dAc cu r a c y = newAccuracy ;

17

18 / / 10 meters or l e s s a c cu r a c y − Good s i g n a l

19 i f (o l dA c cu r a c y <= GOOD_SIGNAL) {

20 m_GPS Ind i ca to r . se t ImageResource (R . drawable . gps_good) ;

21 }

22

23 / / Between 10 and 20 meters a c cu r a c y − Medium s i g n a l

24 i f (o l dA c cu r a c y > GOOD_SIGNAL && o ldAc cu r a c y <= WEAK_SIGNAL) {

25 m_GPS Ind i ca to r . se t ImageResource (R . drawable . gps_medium) ;

26 }

27

28 / / Over 20 meters a c cu r a c y − Weak s i g n a l

29 i f (o l dA c cu r a c y > WEAK_SIGNAL) {

30 m_GPS Ind i ca to r . se t ImageResource (R . drawable . gps_weak) ;

31 }

32 }

33 }

75

Sprek i Gjøvik

5.3.5 User Data Storage

SQLite

One of many challenges with the applicaƟon is that it needs to handle a user not

having Internet access. Because of this we need to store most of the data on the

device. We decided to go with SQLite, because it is very similar to MySQL which

we are familiar with and Android has great support for SQLite. The other opƟon

would be to use a proprietary flat file to read and write from. The disadvantages

with a flat file is that one needs to load the enƟre file each Ɵme we need one

parƟcular file. Using a SQLite allowsus to preformaquery to a table to get exactly

what wewant.With a flat file one needs to get all the file content, then selecƟng

data from that content. It is also much simpler to delete and update a row in a

SQLite table, rather than loading a file, removing / update that line, re-wriƟng

the enƟre file and storing it to the device.

A major funcƟonality of the applicaƟon is to register a pole visit aŌer you scan

the code. Hence we need to support pole visits if a user has no Internet access.

We divided to go with a SQLite table which stores the pole_qr_code (which is

unique in the SIG_POLES table), and a Ɵmestamp when the user scanned the

QR code. We also added a column which has a uploaded flag, which gets set to

‘1’ if it successfully got uploaded, and ‘0’ if not. Then the next Ɵme a user scans

a code, it will try to upload every visit in the table which has the ‘0’ uploaded

flag. The flow chart (Figure 35) shows the order of execuƟon.

Figure 35: Pole Visit Submission Flowchart

76

Sprek i Gjøvik

Code Example 5.15 shows a minimal example on how we implemented offline

storage of visits programmaƟcally.

Code Example 5.15 Visit Poles

1 / / Gets the t e x t from the QR scanner

2 pub l i c vo id hand l eRe s u l t (R e s u l t r awResu l t) {

3 S t r i n g qr = r awResu l t . g e t T e x t () ;

4

5 / / Adds the v i s i t e d ’ po l e s QR code to the database

6 db . v i s i t P o l e (qr) ;

7

8 / / The database t r i e s to up load the v i s i t s from the t a b l e

9 / / I f the r e s u l t s t r i n g l e n g t h i s 0 , i t was not uploaded .

10 / / Any o the r s t r i n g l e n g t h means i t was uploaded .

11 / / User feedback i s g i v en t h e r e a f t e r .

12 S t r i n g r e s u l t = db . up l oadPo l e s () ;

13 }

14

15 pub l i c S t r i n g up l oadPo l e s () {

16 / / The up l oadPo l e s f u n c t i o n t r i e s to pa r se the r e s u l t to an i n t e g e r ,

17 / / because we r e t u r n the v i s i t _ i d from the database .

18 / / The uploaded f l a g i s s e t to ‘’1

19 S t r i n g r e s u l t =“” ;

20 t r y {

21 r e s u l t = u p l o a d V i s i t s T a s k . ge t () ;

22 i n t number = I n t e g e r . p a r s e I n t (r e s u l t) ;

23

24 / / I f the p a r s e I n t throws a NumberFormatExcept ion ,

25 / / we know i t was not uploaded , and we r e t u r n a empty r e s u l t s t r i n g

26 / / Then we uploaded f l a g i s s e t to ‘’0

27

28 } ca t ch (NumberFormatExcept ion e) {

29 r e s u l t = " " ;

30 }

31

32 r e tu rn r e s u l t ;

33 }

We also had to store all the pole data in a SQLite table locally on the device.

By using our simple abstracƟon layer, we preform simple request tasks which

downloads the data as JSON, then we parse the JSON data on the device. Code

Example 5.15 shows our create table query. This query is the same for the SQLite

database on the device and the MySQL database on the server.

77

Sprek i Gjøvik

Code Example 5.16 Poles Table in SQLite

1 p r i v a t e s t a t i c f i n a l S t r i n g CREATE_POLES_TABLE = " CREATE TABLE s i g _ p o l e s “ +

2 (p o l e _ i d INTEGER PRIMARY KEY AUTOINCREMENT , " +

3 " a r e a_ i d INTEGER , " +

4 " pole_name TEXT , " +

5 " p o l e _ l a t i t u d e DOULBE , " +

6 " p o l e _ l o n g i t u d e DOUBLE , " +

7 " p o l e _ a l t i t u d e INT , " +

8 " po le_qr_code , " +

9 " p o l e _ d i f f i c u l t y) " ;

Another feature of the applicaƟon is the pole content. Some of the poles are

sponsored by local business, and some poles are placed on a historical

locaƟon. Therefor the poles have some content aƩached to them. We store

them on the MySQL database server, then when a user download the poles at

start-up, it will fetch the pole content as well. The create table query is listed in

Code Example 5.17.

Code Example 5.17 Pole Content Table in SQLite

1 p r i v a t e s t a t i c f i n a l S t r i n g CREATE_POLE_CONTENT_TABLE = " CREATE TABLE " +

2 " po l e _ con t en t s (po le_qr_code TEXT , " +

3 " po l e_ con ten t TEXT) " ;

We also implemented a “Download poles” preference buƩon in the User

seƫngs, which allows a user to always have the newest poles, because there

will be submiƩed new poles during the summer.

78

Sprek i Gjøvik

SharedPreferences

We use shared preferences in the applicaƟon to store preferences and data

about the user, so that the applicaƟon remembers important seƫngs if it is

killed and restarted. All the preferences from UserSeƫngsAcƟvity are stored

here, as well as the singleton instance of User. When a change is made to

seƫngs or the user-instance (for instance if the user changes home-area in

UserSeƫngsAcƟvity), the preferences is overwriƩen. In Code Example 5.18,

methods for saving to and loading from SharedPreferences is shown.

Code Example 5.18 Usage of SharedPreferences in User.class

1 /* SAVE TO PREFERENCES */
2 p r i v a t e vo id s a v eP r e f e r en c e s () {
3 / / Open sha r edp r e f e r en c e s f o r e d i t i n g :
4 Sha r edP r e f e r en ce s . E d i t o r e d i t o r = s h a r edP r e f e r en c e s . e d i t () ;
5

6 /* Put a l l data from t h i s i n s t a n c e o f User i n t o the e d i t o r
7 * (uppercase arguments are r e f s to s t a t i c S t r i n g s ,
8 * used to un i que l y i d e n t i f y a p r e f e r en ce) */
9 e d i t o r . p u t I n t (USER_ID , m_Id) ;

10 e d i t o r . p u t S t r i n g (USER_NAME , m_Name) ;
11 e d i t o r . p u t I n t (USER_HOME_AREA , m_HomeArea) ;
12 e d i t o r . p u t I n t (USER_UNSUBMITTED , m_UnsubmittedPoles) ;
13

14 i f (m_FamilyMembers . i sEmpty ()) { / / I f no r e g i s t e r e d members , put 0
15 e d i t o r . p u t I n t (USER_FAMILY_SIZE , 0) ;
16

17 } e l s e { / / Number o f members > 0
18

19 e d i t o r . p u t I n t (USER_FAMILY_SIZE , m_FamilyMembers . s i z e ()) ;
20 User familyMember ;
21 f o r (i n t i = 0 ; i < m_FamilyMembers . s i z e () ; i ++) {
22

23 / / Get User−ob j e c t s from the A r r a y L i s t <User > m_FamilyMembers .
24 familyMember = m_FamilyMembers . ge t (i) ;
25 / / Put f am i l y member−data i n t o the e d i t o r
26 e d i t o r . p u t I n t (USER_FAMILY_MEMBER + i + USER_ID , familyMember . g e t I d ()) ;
27 e d i t o r . p u t S t r i n g (USER_FAMILY_MEMBER + i + USER_NAME , familyMember . getName ()) ;
28 }
29 } e d i t o r . commit () ; } / / Commit changes to p r e f e r e n c e s
30

31 /* LOAD FROM PREFERENCES */
32 p r i v a t e vo id l o adF romPre fe rence s () {
33 m_Id = s h a r edP r e f e r en c e s . g e t I n t (USER_ID , 0) ;
34 m_Name = s h a r edP r e f e r en c e s . g e t S t r i n g (USER_NAME , " ") ;
35 m_HomeArea = s h a r edP r e f e r en c e s . g e t I n t (USER_HOME_AREA , 0) ;
36 m_UnsubmittedPoles = s h a r edP r e f e r en c e s . g e t I n t (USER_UNSUBMITTED , 0) ;
37

38 f o r (i n t i = 0 ; i < s h a r edP r e f e r en c e s . g e t I n t (USER_FAMILY_SIZE , 0) ; i ++) {
39 m_FamilyMembers . add (new User (
40 s h a r edP r e f e r en c e s . g e t I n t (USER_FAMILY_MEMBER + i + USER_ID , 0) ,
41 s h a r edP r e f e r en c e s . g e t S t r i n g (USER_FAMILY_MEMBER + i + USER_NAME , n u l l))) ;
42 } }

79

Sprek i Gjøvik

5.3.6 Performance and OpƟmizaƟon

Using the ViewHolder PaƩern

ViewHolder might not be a renowned design paƩern by Gang of Four, but it is

quite essenƟal in increasing performance in Android applicaƟons where lists

are used. Android has a view feature called ListView, which allows us to create

lists of objects. We are using ListView in our MapAcƟvity to display every pole,

and news stories in our NewsAcƟvity. We experienced quite slow performance

in both ListViews during development. At Ɵmes it even made the applicaƟon to

crash, even on high-end devices. Most Google search results for “poor

performance in listview”, guided us to the ViewHolder paƩern. ViewHolder

radically increases performance in a listview. By creaƟng a simple class in our

custom list adapter class. The example below shows how we implemented a

ViewHolder class in NewsAcƟvity’s list adapter.

Code Example 5.19 ViewHolder

1 p r i v a t e c l a s s ViewHolder I tem {

2

3 pub l i c TextView t i t l e ;

4 pub l i c TextView date ;

5 pub l i c TextView e x c e r p t ;

6

7 pub l i c ViewHolder I tem (View view) {

8

9 t i t l e = (TextView) v iew . f i n dV i ewBy I d (R . i d . n ew s _ t i t l e) ;

10 date = (TextView) v iew . f i n dV i ewBy I d (R . i d . news_date) ;

11 e x c e r p t = (TextView) v iew . f i ndV i ewBy I d (R . i d . e x c e r p t) ;

12 }

13 }

By using public members, we can set and get the values without using seƩer and

geƩer methods. The security of using private members are not a concern, since

the class are private inside of a private custom list adapter class. We use a public

constructor which finds each row view element. In this case, we are using three

TextViews to display the Ɵtle, date and excerpt of a news story. This means every

row in the list consists of these three views.

80

Sprek i Gjøvik

Figure 36: ViewHolder PaƩern example

The flowchart (Figure 36) is a course illustraƟon of how the list adapter with

and without the ViewHolder paƩern. The getView method looks like this:

public View getView(int posiƟon, View convertView, ViewGroup parent);

This funcƟon has to be implemented in order to implement a custom adapter.

It takes three parameters: posiƟon in the ListView, convertView (in this case

our custom row layout) and the parent, which is the View parent.

When the list is displayed, and the getViewmethod is called for each element in

a row. The code below shows a simplified example of how our getView method

looks like.

81

Sprek i Gjøvik

Code Example 5.20 ViewHolder getView

1 pub l i c View getView (i n t po s i t i o n , View conver tV iew , ViewGroup paren t) {

2

3 ViewHolder I tem v iewHo lder = n u l l ;

4

5 / / I f we have not seen t h i s row element be fo re we have to i n f l a t e i t :

6 i f (conver tV iew == n u l l) {

7 L a y o u t I n f l a t e r i n f l a t e r = (L a y o u t I n f l a t e r) ge tContex t ()

8 . g e t S y s t emSe r v i c e (Con tex t . LAYOUT_INFLATER_SERVICE) ;

9

10 / / I n f l a t e from XML l a y ou t

11 conver tV iew = i n f l a t e r . i n f l a t e (R . l a y o u t . news_row , parent , f a l s e) ;

12

13 / / C rea te a new ViewHolder i tem

14 v iewHo lder = new ViewHolder I tem () ;

15

16 / / S t o r e s our ho l de r

17 conver tV iew . se tTag (v i ewHo lder) ;

18 } e l s e {

19 / / T h i s v iew e x i s t s from before , reuse i t . Get the ho l de r .

20 v iewHo lder = (V iewHolder I tem) conver tV iew . getTag () ;

21 }

22 / / Here we can s e t the t e x t o f the d i f f e r e n t t e x tV i ews i n our ho l de r :

23 v iewHo lder . t i t l e . s e t T e x t “ (News ” t i t l e) ;

24

25 / / The the row view i s r e tu rned

26 r e tu rn conver tV iew ;

27 }

We start by check if a convertView is null, if so, we have to inflate it from our

layout XML file. Then we create a new ViewHolderItem, which calls the

constructor that calls the findViewById method for each View in our custom

XML layout (news_row parameter in the inflate method). Then we store the

holder to that convertView element.

Because we set the holder of a convertView to be our viewHolder, we do not

have to inflate the row and call the findViewById method again and again every

Ɵme a user scrolls through the list. Which is a redundant process, because

nothing has changed in our TextViews. Instead of inflaƟng the row each Ɵme,

we inflate the element once and reuse it. AŌer we reuse it, we can easily set

the text, for instance of the newsTitle member to the reused view. By

implemenƟng this simple paƩern, we made sure the ListViews worked very

well both on high-end and low-end devices. Which means no lagging and no

freezing during scrolling.

82

Sprek i Gjøvik

5.3.7 Network CommunicaƟon

ASyncTask

The Android Developer guide suggests to use ASyncTask to perform network

operaƟons. We implemented an ASyncTask (Code Example 5.21) as a

generalized class to be able to use it to perform different tasks. Because this

ASyncTask also will transfer the password from the device to the server, we

choose to use HƩpPost instead of HƩpGet, as HƩpPost supports using HTTPS.

This encrypts the data to avoid man-in-the-middle aƩacks.

Code Example 5.21 ASyncTask

1 pub l i c c l a s s Fe t chDa taTa sk extends AsyncTask < S t r i n g , I n t e ge r , S t r i n g > {

2

3 @Overr ide

4 pro te c ted S t r i n g do InBackground (S t r i n g . . . params) {

5

6 H t t p C l i e n t h t t p c l i e n t = new D e f a u l t H t t p C l i e n t () ;

7 Ht tpPos t h t t ppo s t = new Ht tpPos t (params [0]) ;

8 u r l = params [0] ;

9

10 t r y {

11

12 h t t ppo s t . s e t E n t i t y (new Ur l EncodedFo rmEn t i t y (nameVa luePa i r s)) ;

13 HttpResponse response = h t t p c l i e n t . execu te (h t t ppo s t) ;

14 j s o n R e s u l t = i n p u t S t r e amToS t r i n g (response . g e t E n t i t y () . ge tCon ten t ()) ;

15

16 } ca t ch (C l i e n t P r o t o c o l E x c e p t i o n e) {

17 r e tu rn " " ;

18 } ca t ch (Unsuppor tedEncod ingExcep t i on e) {

19 r e tu rn " " ;

20 } ca t ch (I OE x c ep t i on e) {

21 r e tu rn " " ;

22 }

23

24 r e tu rn j s o n R e s u l t ;

25 }

We can instanƟate this class from wherever we to download data. Most of the

internet operaƟons in the applicaƟon is to connect to the database abstracƟon

layer, which consists of several PHP-files on our server. The PHP-scripts returns

a JSON-formaƩed array from a databasequery. If the objecƟve is to for instance

download a users visits, the query needs to uniquely idenƟfy the user. Because

many of the operaƟons needs one or more parameters, we created a funcƟon

83

Sprek i Gjøvik

to add parameters to the query.

Code Example 5.22 Add Parameter

1 / / The l i s t o f parameters to send a long wi th the PHP .

2 p r i v a t e L i s t <NameValuePair > nameVa luePa i r s = new A r r a y L i s t <NameValuePair > () ;

3

4 / / P u b l i c method a l l ow add ing parameters from ou t s i d e o f Fe tchDataTask−c l a s s

5 pub l i c vo id addVa l uePa i r (Ba s i cNameVa luePa i r vp) {

6

7 nameVa luePa i r s . add (vp) ;

8

9 }

The complete call to use the FetchDataTask to get the URL to the standing of the

user is showed in Code Example 5.23

Code Example 5.23 FetchDataTask Usage

1 Fe t chDa taTa sk connec t i on = new Fe t chDa taTa sk (U s e r A c t i v i t y . t h i s) ;

2 connec t i on . addVa l uePa i r (new Bas i cNameVa luePa i r (" u s e r _ i d " ,

3 I n t e g e r . t o S t r i n g (User . g e t I n s t a n c e (g e t A p p l i c a t i o n C o n t e x t ()) . g e t I d ()))) ;

4

5 S t r i n g r e s u l t = n u l l ;

6

7 t r y {

8 r e s u l t = connec t i on . execu te (U r l . GET_STANDING) . ge t () . t r im () ;

9 } ca t ch (I n t e r r u p t e d E x c e p t i o n e) {

10 e . p r i n t S t a c k T r a c e () ;

11 } ca t ch (E x e c u t i o n E x c ep t i o n e) {

12 e . p r i n t S t a c k T r a c e () ;

13 }

IntentService

Another way to do work in Android is by extending the IntentService-class.
IntentService is used to execute tasks aside from the main thread. Like
ASyncTask, IntentService also executes work asynchronously [13]. The main
most important difference between ASyncTask and IntentService, is the
execuƟon. Where the ASyncTask freezes the UI, IntentService does not. In
some operaƟons, freezing the UI unƟl the execuƟon is finished is good, like
when the user executes an operaƟon that always should finish before the user
can proceed. We use this approach for instance when a user visits a pole.
When compleƟng the operaƟon is not crucial, we use IntentService. In this
seƫng, not crucial means that aborƟng an operaƟon will not have impact on
any other part of the system. An example from our applicaƟon is when the

84

Sprek i Gjøvik

user opens UserAcƟvity. In this acƟvity, the user should be presented with
various staƟsƟcs. The global leaderboard, which shows the users who have
visited the most poles, is downloaded using an IntentService. This allows the
user to navigate inside the acƟvity while waiƟng for the IntentService to finish.
When the IntentService is finished, the ListView which holds the leaderboard is
updated with the downloaded data. In Code Example 5.25 we look at how we
extended IntentService in HighScoreDownloadService, and in Code
Example 5.24 we look at how this is being used in UserAcƟvity.

Code Example 5.24 IntentService Usage in UserActivity

1 /* To c r e a t e a HighScoreDownloadTask , we use an i n t e n t f i l t e r , to make su re
2 we can r e c e i v e the i n t e n t when i t i s f i n i s h e d . T h i s i s done i n the OnResume ,
3 which i s c a l l e d when the U s e r A c t i v i t y i s b rought to the fo reg round */
4 @Override
5 pro te c ted vo id onResume () {
6 super . onResume () ;
7 r e g i s t e r R e c e i v e r (b r o ad c a s t Re ce i v e r ,
8 new I n t e n t F i l t e r (H i ghSco reDown loadSe rv i ce . TAG)) ;
9 s t a r t S e r v i c e (new I n t e n t (t h i s , H i ghSco reDown loadSe rv i ce . c l a s s)) ;

10 }
11

12 /* Un r e g i s t e r the r e c e i v e r i f the A c t i v i t y no l onge r i s i n the fo reg round */
13 @Override
14 pro te c ted vo id onPause () {
15 super . onPause () ;
16 t r y { u n r e g i s t e r R e c e i v e r (b r o ad c a s t R e c e i v e r) ;
17 } ca t ch (I l l e g a l A r g umen t E x c e p t i o n i gno red) { }
18 }
19

20 /* The b r o ad c a s t R e c e i v e r i n the c a l l to r e g i s t e r R e c e i v e r above i s
21 i n s t a n t i a t e d i n the c l a s s : */
22 p r i v a t e B r o ad c a s t R e c e i v e r b r o ad c a s t R e c e i v e r = new B r o ad c a s t R e c e i v e r () {
23 / / When a b roadca s t i s r e ce i ved , t h i s method i s c a l l e d :
24 @Overr ide
25 pub l i c vo id onRece ive (Con tex t con tex t , I n t e n t i n t e n t) {
26 Bundle bundle = i n t e n t . g e t E x t r a s () ;
27 i f (bundle ! = n u l l) {
28 i n t r e s u l t = bundle . g e t I n t (H i ghSco reDown loadSe rv i ce . RESULT) ;
29

30 / / I f RESULT from the E x t r a i s OK :
31 i f (r e s u l t == A c t i v i t y . RESULT_OK) {
32 / / Get the r e s u l t −s t r i n g from the E x t r a :
33 S t r i n g t o p S t r i n g = bundle . g e t S t r i n g (H i ghSco reDown loadSe rv i ce . DOWNLOADED_DATA) ;
34 u n r e g i s t e r R e c e i v e r (b r o ad c a s t R e c e i v e r) ;
35 / / Use a custom pa r s e r to c r e a t e an A r r a y L i s t from the r e s u l t −s t r i n g :
36 t o p L i s t = pa r se J SONResu l t (t o p S t r i n g) ;
37

38 / / Use a custom Ar rayAdap te r to c r e a t e l i s t −i tems , and add them to a L i s t V i ew :
39 CustomArrayAdapter adap te r = new CustomArrayAdapter (con tex t , t o p L i s t) ;
40 s t a t i s t i c s L i s t V i e w . s e tAdap te r (adap te r) ;
41 adapte r . no t i f yDa t a Se tChanged () ;
42 } } } } ;

85

Sprek i Gjøvik

Code Example 5.25 IntentService Usage in UserActivity

1 / / The p u b l i c c l a s s t h a t ex tends I n t e n t S e r v i c e :
2 pub l i c c l a s s H ighSco reDown loadSe rv i ce extends I n t e n t S e r v i c e {
3

4 pub l i c s t a t i c f i n a l S t r i n g TAG = " H i ghSco reDown loadSe rv i ce " ;
5 pub l i c s t a t i c f i n a l S t r i n g RESULT = " r e s u l t " ;
6 pub l i c s t a t i c f i n a l S t r i n g DOWNLOADED_DATA = " downloaded_data " ;
7 p r i v a t e L i s t <NameValuePair > nameVa luePa i r s = new A r r a y L i s t <NameValuePair > () ;
8 i n t r e s u l t ;
9

10 pub l i c H ighSco reDown loadSe rv i ce () { super (" H i ghSco reDown loadSe rv i ce ") ; }
11

12 / / T h i s method i s c a l l e d when s t a r t S e r v i c e i s c a l l e d i n an A c t i v i t y .
13 @Overr ide
14 pro te c ted vo id onHand l e I n t en t (I n t e n t i n t e n t) {
15 i f (i n t e n t ! = n u l l) {
16

17 H t t p C l i e n t h t t p C l i e n t = new D e f a u l t H t t p C l i e n t () ;
18 Ht tpPos t h t t p Po s t = new Ht tpPos t (U r l . GET_TOP_TEN) ;
19 S t r i n g down loadResu l t = n u l l ;
20

21 nameVa luePa i r s . add (new Bas i cNameVa luePa i r (" u s e r _ i d " ,
22 I n t e g e r . t o S t r i n g (User . g e t I n s t a n c e (g e t A p p l i c a t i o n C o n t e x t ()) . g e t I d ()))) ;
23 t r y {
24 HttpResponse response = n u l l ;
25 h t t p Po s t . s e t E n t i t y (new Ur l EncodedFo rmEn t i t y (nameVa luePa i r s)) ;
26 response = h t t p C l i e n t . execu te (h t t p Po s t) ;
27 down loadResu l t = i n p u t S t r e amToS t r i n g (response . g e t E n t i t y () . ge tCon ten t ()) ;
28 r e s u l t = A c t i v i t y . RESULT_OK ;
29 } ca t ch (I OE x c ep t i on e) {
30 r e s u l t = A c t i v i t y . RESULT_CANCELED ;
31 }
32 p u b l i s h R e s u l t s (r e s u l t , down loadResu l t) ;
33 }
34 }
35

36 / / Conve r t s i npu t s t r eam to s t r i n g
37 p r i v a t e S t r i n g i n pu t S t r e amToS t r i n g (I npu tS t ream i s) { /* Removed i n example */ }
38

39 / / Send a b roadca s t w i th the r e s u l t s
40 p r i v a t e vo id p u b l i s h R e s u l t s (i n t r e s u l t , S t r i n g downloaded) {
41

42 I n t e n t i n t e n t = new I n t e n t (TAG) ;
43 i n t e n t . p u t E x t r a (RESULT , r e s u l t) ;
44 i n t e n t . p u t E x t r a (DOWNLOADED_DATA , downloaded) ;
45 sendBroadca s t (i n t e n t) ;
46 }
47

48 }

86

Sprek i Gjøvik

5.4. iOS ApplicaƟon

5.4.1 Organizing the development

We never planned on doing the iOS applicaƟon, because we did not know

anything about iOS development. During a status meeƟng with the customer

on the 21st of March (MeeƟng D.3), they discussed internally what they should

do regarding the iOS applicaƟon. Since we were not doing it, they said they had

to purchase the applicaƟon for a company. Because our main focus of the

project has always been on pleasing the Customer, we had a quick group

discussion. We agreed, and told them that we would try to create an

applicaƟon for iOS with limited funcƟonality, and see how far we got. The

customer was pleased to hear this, and we scheduled a status meeƟng two

weeks later to discuss the iOS applicaƟon progress. AŌer the meeƟng

(MeeƟng D.3) the group agreed that one should focus on finishing the Android

applicaƟon, and one focus on the iOS version. Since Anders is a registered iOS

developer, we agreed that Markus should focus on finishing the Android

applicaƟon, while Anders develops the iOS version.

Even though we "split" the work of the applicaƟons between us, it was

important to sƟll to reach the deadline we iniƟally set ourselves in the project

planning phase. Therefor we had to come up with a limited scope based on the

system requirements we created for the Android applicaƟon. The first thing we

did was to select which requirements were a must in the iOS applicaƟon. Then

we created a small feature list based on the one we made for Android. Even

though Android and iOS are two different plaƞorms, we knew that the main

funcƟonality should be the same. We quickly decided that the main

funcƟonality should be the following:

87

Sprek i Gjøvik

ID Name <acƟon> <result> <object>

1 Display map in applicaƟon to a applicaƟon user

2 Display QR Scanner in applicaƟon to a applicaƟon user

3 Store pole visits on device for a applicaƟon user

4 Upload pole visits from device to database for a applicaƟon user

5 Display pole list in map acƟvity to a applicaƟon user

6 Handle login informaƟon on device for a applicaƟon user

Everything that was not listed in the miniature Feature List were considered a

bonus. We knew that Ɵme was short, since we only had two weeks before we

were to present what we were able to do with the iOS version.

Organizing thework with the iOS applicaƟon regarding tools was quite easy. One

has to use Apple's XCode as IDE to develop naƟve iOS. XCode has a Git repository

client aƩached to it which sets up a local Git repository in the project folder.

Therefor it was no need to create another repository on Bitbucket, but only use

the Issue tracker in the Android repository. XCode also comes with a great iOS

simulator, which supports iPhone 4, 5 and iPad devices. Of course the simulator

has some limitaƟons, such as the lack of GPS and camera. Luckily we have access

to an iPhone 5 and an iPad mini for tesƟng.

The next thing we had to do, was to go through the guidelines for the App

Store [14]. SubmiƩed applicaƟons to the App Store has to follow certain

criteria before they are released, which we had to consider while developing

the applicaƟon. Since Apple rejects applicaƟons with a lot of branding and

adverƟsement, we knew that we could not integrate any of the sponsor's logos

in the applicaƟon.

We also had to focus on creaƟng a stable and working applicaƟon, since

applicaƟons with clear bugs and crashes will not be approved. This was not a

major concern, since we already wanted to create a funcƟoning

applicaƟon.

88

Sprek i Gjøvik

5.4.2 ApplicaƟon design

AŌer understanding more and more about how iOS development works, we

started out seƫng up the iniƟal project. Because we already had the system

architecture and design in place for Android, we knew which classes to

implement. We also knew how to structure the applicaƟon thereaŌer. We

needed to store the data, display the data and manipulate the data. Which is

exactly how we iniƟally set up the three-layer architecture (Figure 9). A similar

paƩern to Three-Ɵer, is Model-View-Controller, which is much used in iOS

development [15]. We decided to structure our app accordingly.

The applicaƟon project was divided into three different groups, Model, View

and Controller (Figure 37). The Model, or the data group was set up to contain

all our data classes, which iniƟally was the User and the Pole classes. We then

added the controllers, such as a database handler class. This class was created to

handle most the communicaƟon between the View and the Model (database),

since the majority of our data would be stored in the SQLite database. At last

we added the known view classes to the view group, for instance the Map and

the User views. This ensured us a simple, but efficient structure in our Xcode

project.

Figure 37: Model View Controller ApplicaƟon Structure

89

Sprek i Gjøvik

5.4.3 Map

AŌer we set up the iniƟal project and familiarized us with the App Store

guidelines. Then we started tesƟng different funcƟonality of iOS, geƫng

familiar with ObjecƟve-C (programming language for iOS) and Cocoa Touch

(GUI framework for iOS). The most important feature was to display the map

with the corresponding poles. We then again had to figure out what opƟons

there was for displaying the map with poles in our map view. The first idea we

had was to do the same thing we did with the Android version, where we used

Google Maps and add the Ɵles as an overlay. The second opƟon was to use

Apple's own MapKit then adding the Ɵles as an overlay. As a third opƟon, we

discussed using Open Street Map, which also supports Ɵle overlays. We tried

using Google Maps, but Apple's MapKit was much simpler to integrate into our

iOS project. There was no need for API-keys and addiƟonal libraries, we only

had to include the MapKit framework. One concern, which we also shared with

the Android ApplicaƟon, was offline support. We had to discard both Google

Maps and MapKit because of limited offline support.

AŌer conducƟngmore research, we foundMapBox SDK for iOS. Sincewe already

were familiar with MapBox (TileMill and mbƟles), we found this interesƟng. The

MapBox SDK had support for mbƟles, which meant we could use MapTiler to

create the mbƟles. MapTiler was also used to create the Ɵles for the Android

applicaƟon. MapBox SDK with mbƟles meant that we can have our own map in

the applicaƟon available offline. Another great feature is that the visible area in

the applicaƟon is only our own map. We did not have to limit any visible area,

which we had to do with Google Maps in the Android applicaƟon.

Code Example 5.26 shows how we load mbƟles to our applicaƟon. The map

loads different map based on each user's home area. For instance, if a user has

homeAreaID set to 1, gjovik maps get loaded. Which means that adding a new

if-statement is the only thing that has to be added to include a new map for

and new area.

90

Sprek i Gjøvik

Code Example 5.26 Loading mbtiles

1

2 RMMapboxSource * t i l e S o u r c e = [[RMMapboxSource a l l o c] i n i tW i thMap ID :@" g j o v i k "] ;

3 RMMapView *mapView = [[RMMapView a l l o c] i n i tW i t h F r ame : s e l f . v iew . bounds

4 a nd T i l e s o u r c e : t i l e S o u r c e] ;

The next step aŌer integraƟng our own map, was to download the poles from

the database and store it on the device. Since we already used SQLite for

Android, we felt this was a natural choice for iOS as well, because we can

implement the same logic and the same database queries. We started out with

a simple and self-wriƩen database handler which did not support features like

transacƟons, which lead to an unstable applicaƟon. Insert queries were

executed our of order and caused crashes, which made us re-structure our

DatabaseHandler class. We re-wrote some of the code to use transacƟons,

which lead to a more stable applicaƟon, but we sƟll had a few bugs. Statements

were sƟll happening out-of-order which led to the applicaƟon crashing.

We went online for Ɵps on how SQLite could support out-of-order transacƟons

and mulƟ-threading. Most of the online tutorials recommended the

FMDatabase framework. FMDatabase handled all of our issues and had a query

"queue" system. We re-wrote the DatabaseHandler one final Ɵme including

FMDatabase instead. This Ɵme the applicaƟon funcƟoned nicely, but sƟll with

a few bugs. AŌer reading more about FMDB's "does and dont's" and by

implemenƟng the correct methods, the applicaƟon worked like a charm.

AŌer downloading and storing the poles, the next step was to add

poles(markers) with different colors based on the pole difficulty to the map.

MapBox has support for custom markers, which allowed us to create different

markers with different colors. The only thing we had to implement was two

methods.

Every item which is added to the map, is called a layer. A layer can be

everything from an polygon to a marker. For instance, we implemented a

for-loop, which iterates through the all poles and adds them as layers to the

map (Code Example 5.27).

91

Sprek i Gjøvik

Code Example 5.27 Add Poles to Map

1

2 / / C r ea t e s an immutable (read−on l y) a r r a y wi th the po l e s from the

3 / / da tabase i n a s e l e c t e d area .

4 NSArray * po l e s = [da tabaseHand le r ge tA l l Po l e s F romDB] ;

5

6 / / I t e r a t e s t rough every po le i n the a r r a y

7 f o r (Pole * po le i n po l e s) {

8

9 / / Gets the l a t i t u d e and l o n g i t u d e o f a pole , then c r e a t e s a

10 / / c oo r d i n a t e to where the po le shou ld be p l a ced

11 CLLoca t ionCoord ina te2D coord = CLLocat ionCoord inate2DMake (po le . l a t ,

12 po le . l n g) ;

13

14 / / C r e a t e s an anno t a t i on l a y e r (w i l l soon be turned i n t o a marker)

15 / / based on the coo rd i na t e s , and the po le name as t i t l e .

16 RMAnnotation * anno t a t i on = [[RMAnnotation a l l o c]

17 i n i tWi thMapView : mapView coo r d i n a t e : coord a n d T i t l e : po le . name] ;

18

19 / / T h i s anno ta t i onType i s used to i d e n t i f y the unique marker ,

20 / / and w i l l be used i n the t a pOnCa l l o u t A c c e s s o r y Con t r o l method

21 anno t a t i on . anno ta t i onType = po le . qrCode ;

22

23 / / Then reads the po le d i f f i c u l t y , and adds another i d e n t i f i e r

24 / / " u s e r I n f o " , which w i l l be used i n the l a y e r F o r Anno t a t i o n method

25 i f ([po le . d i f f i c u l t y i s E q u a l : @"1 "]) {

26 anno t a t i on . u s e r I n f o = @" green " ;

27 }

28

29 i f ([po le . d i f f i c u l t y i s E q u a l : @"2 "]) {

30 anno t a t i on . u s e r I n f o = @" b lue " ;

31 }

32

33 i f ([po le . d i f f i c u l t y i s E q u a l : @"3 "]) {

34 anno t a t i on . u s e r I n f o = @" red " ;

35 }

36

37 i f ([po le . d i f f i c u l t y i s E q u a l : @"4 "]) {

38 anno t a t i on . u s e r I n f o = @" b l a c k " ;

39 }

40

41 / / T h i s w i l l t r i g g e r the l a y e r F o r Anno t a t i o n method

42 [mapView addAnnota t ion : anno t a t i on] ;

43

44 }

The method addAnnotaƟon adds a pole to the map, which fires the

layerForAnnotaƟon method. Our layerForAnnotaƟon implementaƟon is in

Code Example 5.28. We also wanted to implement a pole list similar to the one

92

Sprek i Gjøvik

in Android, where a user can select a pole and the map zooms to that pole. The

issue we had with this funcƟonality was that the informaƟon view (callout) did

not appear. AŌer reading the documentaƟon we discovered the

selectAnnotaƟon method, which launches the callout when a pole is selected

in the pole list. For the callout to work, we had to set marker.canShowCallout =

YES.

Code Example 5.28 Create Marker Layer

1

2 − (RMMapLayer *) mapView : (RMMapView *) mapView
3 l a y e r F o r Anno t a t i o n : (RMAnnotation *) anno t a t i on {
4

5 / / C r ea t e s a marker ob j e c t .
6 RMMarker *marker ;
7

8 / / Here we use the u s e r I n f o i s a c ce s sed to c r e a t e a marker
9 / / w i th d i f f e r e n t c o l o r s based on the d i f f i c u l t y .

10 i f ([anno t a t i on . u s e r I n f o i s E q u a l T o S t r i n g :@" green "]) {
11 marker = [[RMMarker a l l o c] in i tWithMapboxMarker Image :@"marker "
12 t i n t C o l o r : [UICo lo r g reenCo l o r]] ;
13 }
14

15 i f ([anno t a t i on . u s e r I n f o i s E q u a l T o S t r i n g :@" b lue "]) {
16 marker = [[RMMarker a l l o c] in i tWithMapboxMarker Image :@"marker "
17 t i n t C o l o r : [UICo lo r b l u eCo l o r]] ;
18 }
19

20 i f ([anno t a t i on . u s e r I n f o i s E q u a l T o S t r i n g :@" red "]) {
21 marker = [[RMMarker a l l o c] in i tWithMapboxMarker Image :@"marker "
22 t i n t C o l o r : [UICo lo r r edCo l o r]] ;
23 }
24

25 i f ([anno t a t i on . u s e r I n f o i s E q u a l T o S t r i n g :@" b l a c k "]) {
26 marker = [[RMMarker a l l o c] in i tWithMapboxMarker Image :@"marker "
27 t i n t C o l o r : [UICo lo r b l a c k C o l o r]] ;
28 }
29

30 / / Then adds a " i n f o but ton " to the view when you c l i c k a marker .
31 marker . r i g h t C a l l o u t A c c e s s o r y V i ew = [UIButton buttonWithType :
32 U I Bu t t o n T y p e I n f o L i g h t] ;
33

34 / / We d i s p l a y the t i t l e / po le name and the i n f o but ton .
35 / / When a marker i s c l i c k e d , the t a pOnCa l l o u t A c c e s s o r y Con t r o l
36 / / method i s f i r e d .
37 marker . canShowCa l l ou t = YES ;
38

39 / / Re tu rn s marker o v e r l a y .
40 r e tu rn marker ;
41 }

93

Sprek i Gjøvik

When a user clicks the marker on the map, the following method will get

fired:

- (void)tapOnCalloutAccessoryControl:(UIControl *)control forAnnotaƟon:

(RMAnnotaƟon *)annotaƟon onMap:(RMMapView *)map

This method displays the pole informaƟon such as the name, alƟtude and

content (if any). We use the annotaƟon.annotaƟonType (on our case is the QR

code) to idenƟfy the pole, so the corresponding alƟtude and content is

displayed for the correct pole. For instance the method in example 5.29,

queries the SQLite POLES table to get the alƟtude for the pole with the

corresponding QR code by accessing annotaƟon.annotaƟonType.

Code Example 5.29 Get Pole Altitude from Database

1

2 / / R e t r i e v e po le a l t i t u d e

3 NSS t r i n g * p o l e A l t i t u t d e = [da tabaseHand le r

4 g e t P o l e A l t i t u d e : anno t a t i on . anno ta t i onType] ;

5

6 / / Imp lementa t ion :

7 − (NSS t r i n g *) g e t P o l e A l t i t u d e : (NSS t r i n g *) poleQR {

8

9 / / Open the database to i n t e r a c t w i th i t

10 [da tabase open] ;

11

12 / / C rea te s e l e c t query based on the QR code

13 NSS t r i n g *querySQL = [NSS t r i n g s t r i n gW i t h Fo rma t :

14 @" SELECT ALT FROM POLES WHERE QRCODE= \"%@\" " , poleQR] ;

15

16 / / E xe cu te s query and the r e s u l t i s r e tu rned .

17 FMResul tSet * r e s u l t s = [da tabase executeQuery : querySQL] ;

18

19 NSS t r i n g * a l t i t u d e ;

20

21 / / I f a r e s u l t i s found , ge t the s t r i n g f o r column wi th name " ALT "

22 i f ([r e s u l t s nex t]) {

23 a l t i t u d e = [r e s u l t s s t r i n g Fo rCo l umn :@" ALT "] ;

24 }

25

26 / / C l o s e the database so i t can be acce s sed wi th o the r methods

27 [da tabase c l o s e] ;

28

29 / / r e t u r n the a l t i t u d e

30 r e tu rn a l t i t u d e ;

31 }

94

Sprek i Gjøvik

Regarding the marker look, the MapBox SDK supplies different images in their

Maki icon set [16]. The following line of code shows how to set a marker with a

Mapbox marker image:

RMMarker marker = [[RMMarker alloc]

initWithMapboxMarkerImage:@"marker"

ƟntColor:[UIColor redColor]];

We decided to use the "marker" icon, because it is it is similar to themarker icon

inmany othermaps, such asMapKit and Googlemaps. All this code and graphics

results in the final map view in Figure 38.

Figure 38: Final Map View Figure 39: Final Pole List View

The finished map view contains three different subviews, which are called

segments. The first segment contains the map. Next segment contains the list

of poles in the selected home area (final pole list view in Figure 39). The final

segment contains the QR scanner (elaborated in SecƟon 5.4.5).

95

Sprek i Gjøvik

5.4.4 User data

Before we could get started with the QR scanner item from the Feature List, we

had to implement the user funcƟonality. Which meant creaƟng a login view,

fetch the user informaƟon from the database and storing it. iOS has an

equivalent to Android's SharedPreferences, which is NSUserDefaults. By using

this mechanism, we can store the user informaƟon so the user do not have to

login each Ɵme the applicaƟon starts. Since it is only one user logged in at a

Ɵme, we felt it was unnecessary to create a database table to hold just a single

user row, which is why we went with NSUserDefaults instead.

AŌer hard-coding user-test data to get familiar with NSUserDefaults, the login

view was created and the login connecƟon to the database was successful. We

downloaded the user data in the same fashion as we did on Android, and stored

them in NSUserDefaults. The next stepwas to create a database table for storing

the user's visits, both from when a pole QR code is scanned, and when they

are downloaded from the web server. The method for uploading the user visits,

which has yet to be uploaded, are in Code Example 5.30. It is a lot of iteraƟng

and conversion between data types, but it ensures that the result is a valid JSON

string, which can be processed on the web server.

96

Sprek i Gjøvik

Code Example 5.30 Upload User Visits

1 / / Open database f o r s e l e c t i o n
2 [da tabase open] ;
3

4 / / C rea te a mutable (read−wr i t e) a r r a y to s t o r e the r e s u l t s
5 / / from the v i s i t s t a b l e .
6 NSMutableArray * o b j e c t s = [[NSMutableArray a l l o c] i n i t] ;
7

8 / / S e l e c t s the po le ID , QR code and the t ime the po le was v i s i t e d ,
9 / / where the uploaded f l a g i s 0/NO

10 NSS t r i n g *querySQL = @" SELECT ID , QRCODE , V I S I TT IME "
11 "FROM V I S I T S LEFT JOIN POLES USING (QRCODE) WHERE UPLOADED = 0 " ;
12

13 / / E xe cu te s the query and r e t u r n s the r e s u l t
14 FMResul tSet * r e s u l t s = [da tabase executeQuery : querySQL] ;
15

16 / / I t e r a t e s i f any r e s u l t s
17 whi le ([r e s u l t s nex t]) {
18

19 / / C rea te a mutable a r r a y to s t o r e each row of r e s u l t
20 NSMutableArray* temp = [[NSMutableArray a l l o c] i n i t] ;
21

22 / / Gets the ID , V I S I TT IME and QRCODE columns and
23 / / adds them to the temp a r r a y
24 temp [0] = [r e s u l t s s t r i n g Fo rCo l umn :@" ID "] ;
25 temp [1] = [r e s u l t s s t r i n g Fo rCo l umn :@" V I S I TT IME "] ;
26 temp [2] = [r e s u l t s s t r i n g Fo rCo l umn :@"QRCODE"] ;
27

28 / / Then s e t s the uploaded f l a g to 1/ YES
29 [da tabase executeUpdate :@"UPDATE V I S I T S SET
30 UPLOADED = ' 1 ' WHERE QRCODE = ? " , temp [2]] ;
31

32 / / Adds temp a r r a y to the a r r a y o f r e s u l t s
33 [o b j e c t s addObjec t : temp] ;
34 }
35

36 / / c l o s e s the database so i t can be used i n o the r methods
37 [r e s u l t s c l o s e] ;
38

39 / / Then c r e a t e a d i c t i o n a r y from tha t a r r a y which w i l l be turned
40 / / i n t o a v a l i d JSON s t r i n g to be uploaded to the database .
41 NSMutableArray * v i s i t s = [[NSMutableArray a l l o c] i n i t] ;
42

43 / / I t e r a t e s through the v i s i t a r r a y s , adds them to the d i c t i o n a r y .
44 f o r (NSArray* t i n o b j e c t s) {
45

46 NSMutab leD i c t ionary * j s o n D i c t = [[NSMutab leD i c t ionary a l l o c] i n i t] ;
47

48 [j s o n D i c t s e tOb j e c t : t [0] f o rKey :@" po le \ _ i d "] ;
49 [j s o n D i c t s e tOb j e c t : [[User g e t I n s t a n c e] u se r ID] f o rKey :@" use r \ _ i d "] ;
50 [j s o n D i c t s e tOb j e c t : t [1] f o rKey :@" v i s i t \ _t ime "] ;
51 [v i s i t s j s o n D i c t] ;
52 }
53

54 / / C r e a t e s a JSON data ob j e c t from the d i r e c t o r y o f o b j e c t s
55 NSData* j sonDa ta = [N S J SON S e r i a l i z a t i o n dataWith JSONObjec t : v i s i t s
56 op t i on s : N S J SONWr i t i n g P r e t t y P r i n t e d e r r o r :& e r r o r] ;
57

58

59 / / C r e a t e s the f i n a l JSON s t r i n g from the v a l i d JSON data
60 NSS t r i n g * v i s i t e d = [[NSS t r i n g a l l o c] i n i tW i t hD a t a : j s onDa ta
61 encod ing : NSUTF8S t r i ngEncod ing] ;
62

63 / / Database connec t i on i s then made and the r e s u l t s uploaded . . .

97

Sprek i Gjøvik

Figure 40 illustrates how the final user view looks. We have a profile picture

which the user can provide by using the website. Next we have the number of

visited poles-counter, which sums up all the visits in all the areas. Below the

counter, we have single area counters which shows how many you have visited

in that parƟcular area. The menu has three menu items. First item is the user's

latest visits in a scrollable list. Second item is the top ten standing overall. Third

item is the team acƟvity, which members have taken which poles with

corresponding date.

Figure 40: Final User View Figure 41: User Seƫngs View

The top right item of Figure 40 is the "Edit Profile" buƩon. In the Profile seƫngs

the user can switch home area and include family members in their pole search.

The Figure 41 shows how the UI looks. We have the opƟon to store ("Lagre")

this changes, but also discard ("Avbryt"). Whichmeans unless a user presses the

store buƩon in the seƫngs menu, it does not save the changes. To implement

the cancel changes feature, we had to store the original data whenever a user

presses the "Edit Profile" buƩon. Code Example 5.31 shows a simplified version

98

Sprek i Gjøvik

of the implementaƟon. When a user changes something, the value is stored in

the database and/or the NSUserDefaults. We only restore the original data if the

user presses cancel. Which means when a user changes something, and then

presses "Lagre", nothing really happens, because the value changes is already

stored.

Code Example 5.31 Save/Cancel User Setting

1 / / I n the . h (i n t e r f a c e) f i l e
2 @in te r f a ce S e t t i n g s V i ew C o n t r o l l e r {
3 NSArray* re s to reSe l e c t edFam i l yMember s ;
4 NSS t r i n g * re s to reSe l e c tedHomeArea ID ;
5 }
6

7 / / I n the m. (imp lementa t ion f i l e)
8

9 / / T h i s method ge t s f i r e d when a use r p r e s s e s the " E d i t P r o f i l e " but ton .
10 / / Which s t o r e s a l l the o r i g i n a l data i n the c l a s s v a r i a b l e s .
11 − (vo id) s t o r e O r i g i n a l D a t a {
12

13 / / S t o r e s the home area
14 r e s to reSe l e c tedHomeArea ID = [[NSUserDe fau l t s s t a nd a r dU s e rDe f a u l t s]
15 ob j e c t Fo r Ke y : HOME_AREA_ID] ;
16

17 / / S t o r e s the s e l e c t e d f am i l y members
18 r e s to reSe l e c t edFam i l yMember s = [[DatabaseHandler g e t I n s t a n c e]
19 getSe lec tedFami l yMembers] ;
20 }
21

22

23 / / T h i s method ge t s f i r e d i f the use r p r e s s e s " Cance l " .
24 − (vo id) r e s t o r e O r i g i n a l D a t a : (U IBa rBu t ton I t em *) sender {
25

26 / / Re s t o r e s the home area
27 [[NSUserDe fau l t s s t a nd a r dU s e rDe f a u l t s] s e tOb j e c t : r e s to reSe l e c tedHomeArea ID
28 f o r Key : HOME_AREA_ID] ;
29

30 / / Re s t o r e s a l l the s e l e c t e d f am i l y members
31 f o r (NSS t r i n g * member i n re s to reSe l e c tedFam i l yMember s) {
32

33 [[DatabaseHandler g e t I n s t a n c e] u p d a t e F am i l y I n c l u d e d I n T r i p : member :@" YES "] ;
34 }
35

36 / / I f any changes done i n the s e l e c t e d f am i l y t ab l e , r e s t o r e to o r i g i n a l s t a t e .
37 f o r (NSS t r i n g * member i n [[DatabaseHandler g e t I n s t a n c e] getFami lyMembers]) {
38

39 i f (! [r e s to reSe l e c t edFam i l yMember s c o n t a i n sOb j e c t : member]) {
40

41 [[DatabaseHandler g e t I n s t a n c e] u p d a t e F am i l y I n c l u d e d I n T r i p : member :@"NO"] ;
42 }
43 }
44 }

99

Sprek i Gjøvik

5.4.5 QR scanner and pole visits

Since the database table and logic all ready was in place in the Android

applicaƟon, we wrote similar logic and queries for ObjecƟve-C. The next step

was to find a stable QR scanner soluƟon. Since iOS 7, Apple added QR reader

funcƟonality to their AVFoundaƟon framework. AŌer following a tutorial, we

had successfully implemented our own scanner without any external libraries.

Next we created our own QR codes to test with. We then successfully read the

code, stored it in our local database as a visited pole.

Since storing visits locally on the device was not enough, we had implement

upload funcƟonality to our database as well. Therefor we decided to do it in a

similar fashion as we did on the Android version. The iOS implementaƟon

(simplified) is listed in Code Example 5.32. We validate the scanned QR Code

with the QR codes stored in the device's local SQLite database. Then we either

submit the result (if it is valid), or present the user with a suitable error

message.

Code Example 5.32 Scan QR Code

1

2 / / Gets checks i f scanned ob j e c t i s a v a l i d QR code i n l o c a l da tabase
3 NSS t r i n g * qrCode = [[[DatabaseHandler g e t I n s t a n c e]
4 g e t S i n g l e P o l e : [s c anOb j e c t s t r i n g V a l u e]] m_PoleQRCode] ;
5

6 / / I f v a l i d QR code
7 i f (qrCode) {
8

9 / / Add po le to v i s i t e d t a b l e u s i n g QR Code
10 [db v i s i t P o l e : qrCode] ;
11

12 / / In fo rm the use r t h a t the v i s i t went we l l
13 [r e s u l t s e t T e x t : @" S to l pen b l e l a g t i nn ! "] ;
14

15 / / Stop the QR Code reader , and
16 [s e l f s topRead ing] ;
17

18 / / T e l l the database to up load the v i s i t s to s e r v e r
19 [[DatabaseHandler g e t I n s t a n c e] v i s i t P o l e s] ;
20

21 / / E l s e not v a l i d QR code
22 } e l s e {
23

24 / / In fo rm the use r
25 [r e s u l t s e t T e x t : @" Ug y l d i g QR−kode ! "] ;
26

27 / / Re− r e s t a r t the QR code reade r
28 [s e l f s t a r t R e a d i n g] ;
29 }

100

Sprek i Gjøvik

5.4.6 Supported devices

The applicaƟon is created for iPhone 3GSS (which is required if we want our

applicaƟon to be accepted by Apple), 4, 5/5s and iPad (both original and mini).

We decided on doing an universal applicaƟon, because it is not hard to change

an iPhone Storyboard to an iPad Storyboard. By making a copy of the excising

Storyboard and altering two lines of code, we get a Storyboard for iPad. Then

we had to alter the UI elements to fit the iPad screen (explained in Code

Example 5.33). This "hack" came from a StackOverflow post ([17]).

Code Example 5.33 Convert iPhone Storyboard to iPad Storyboard

1

2 < !−− Change −−>

3 t a r ge tRun t ime = " iOS . CocoaTouch "

4 < !−− to −−>

5 t a r ge tRun t ime = " iOS . CocoaTouch . i Pad "

6

7 < !−− Then change −−>

8 < s imu l a t e d S c r e enMe t r i c s key = " d e s t i n a t i o n " type = " r e t i n a 4 " / >

9 < !−− to −−>

10 < s imu l a t e d S c r e enMe t r i c s key = " d e s t i n a t i o n " / >

The target iOS version is 7.0 since the majority of iOS users are now using iOS

7. According to Apple ([18]), 87% of all Apple devices are using iOS 7. Equal to

the Android applicaƟon, the funcƟonality should not suffer at the expense of

supportability.We have included some funcƟonality which is unsupported in iOS

6 and below, such as the QR scanner funcƟonality from AVFoundaƟon.

101

Sprek i Gjøvik

5.4.7 Graphics

Graphics on iOS requires two images, one for normal screens, and another for

reƟna display. It is quite simple to implement these images, we simply have to

add one image for standard resoluƟon and one for reƟna. The reƟna must have

twice the resoluƟon as the normal image. All you have to do is, to add "@2x"

before the file extension for a reƟna image. For instance "user.png" for normal

screens, and "user@2x.png" for reƟna display. To add the image to our UI, we

simply have to call:

UIImage* userImage = [UIImage imageWithName:"user"];

Then iOS loads the correct image for the corresponding screen

resoluƟon.

Figure 42: Normal Display Figure 43: ReƟna Display

All of the icons used in the applicaƟon is provided by Icons 8 [19] and is free

to use. The set comes in five different sizes for most icons. For instance when

we want a buƩon with icon size 50x50 pixels, we had to include the 50x50 icon

to support normal screen and the 100x100 pixel to support reƟna display. Both

resoluƟons is provided by the Icons 8 pack (Example icons in Figure 44).

Figure 44: Icons 8 Example Icons

102

Sprek i Gjøvik

5.5. Deployment

The deadline from Gjø-Vard Orienteering were the launch date of the project,

which was the 10th of May 2014. We finished the applicaƟons and submiƩed

both to the applicaƟon stores about a week before the launch. The iOS

applicaƟon had some review Ɵme, and was luckily approved just in Ɵme on

May 9th. Regarding the Android applicaƟon, there was no review Ɵme since

Google Play allows applicaƟon submission without a review. To prepare for the

launch, we had to move the enƟre system from our own private server which

we have used for tesƟng, to the server Gjø-Vard Orienteering had

acquired.

This operaƟon to move the the AbstracƟon Layer was painless. Since we set up

an class to handle the host informaƟon, we only had to change the username

and password to match the new server. We also iniƟally set up the complete

database with all the tables on our own server. PhpMyAdmin allows export of

a database, which worked perfectly. We only had to login to the new server

and import the old tables into the new database using phpMyAdmin. Both the

export and import operaƟon with assurance tesƟng took approximately 10

minutes.

The next step was to change the URLs in both of the applicaƟons. It turned out

to cause a lot of havoc, because we did not start out correctly during the

development phase. We were foolish enough to hard-code the URLs inside

different methods in the Android and iOS applicaƟon. This is not good pracƟce.

To solve this once and for all, incase we had to move it to another server. We

created a constants class which holds all of the URLs (Code Example 5.34). This

soluƟon is what we should have implemented iniƟally. We have certainly

learned from this experience. It would have saved us a lot of Ɵme with the

deployment, if the URLs class was implemented originally. We could easily just

altered the DOMAIN string to the correct domain, and upload the files to the

new server.

103

Sprek i Gjøvik

Code Example 5.34 URL Class

1 pub l i c c l a s s Ur l {

2 / / Domain URL

3 p r i v a t e s t a t i c f i n a l S t r i n g DOMAIN = " h t t p : / / s t o l p e j a k t e n . no / " ;

4

5

6 / / F i l e URL

7 pub l i c s t a t i c f i n a l S t r i n g GET_AREAS = DOMAIN + " a b s t r a c t i o n l a y e r / ge t _ a r e a s . php " ;

8 pub l i c s t a t i c f i n a l S t r i n g GET_POLES = DOMAIN + " a b s t r a c t i o n l a y e r / g e t _po l e s . php " ;

9 }

The last step and the most Ɵme consuming was to move the website to the

new server. One can not move Wordpress files to a new server and new

domain without having to deal with a few issues. The first thing we had to do

was to update the .htaccess-file. To alter this file we had to go into the

Wordpress Dashboard and update the "Permalinks" seƫng, which updates the

.htaccess-file. Permalinks is a permanent link (URL), which means it never

changes by it self, and is oŌen used on blog sites such as Wordpress. An

example is the permalink for the different leaderboards:

hƩp://www.stolpejakten.no/topplister-for-ulike-omrader/.

If we did not complete this step, none of our pages with work. AŌer the

permalinks was in place, we had to add two lines in the wp-config file:

update_opƟon('siteurl', 'hƩp://stolpejakten.no');

update_opƟon('home', 'hƩp://stolpejakten.no');

Then we had to load the website once, go back into the wp-config and remove

the two previously inserted lines. AŌer this was taken care of, all we had to do

was to update the website URL inside the Wordpress Dashboard. This enƟre

process was not the most Ɵme consuming, but the process of figuring out why

website did not funcƟon properly. Such as the website redirects to the old

page and figuring out why and how to correct it. The migraƟon took about half

a day's work.

104

Sprek i Gjøvik

The fun part is that Gjø-Vard Orienteering at first wanted us to use

stolpejakt.no. Then they told us to use stolpejakten.no instead. Which meant

we had to repeat the enƟre process once more Ɵme to get it to the correct

server and domain. At least this Ɵme, we knew exactly how to do it, so it luckily

took us about half an hour.

When the website and database were up and running at the correct server,

under the correct domain, we allowed some of the members of Gjø-Vard

Orienteering to test the system. AŌer the customer had tested the system,

some eager users already downloaded the applicaƟons and registered on the

website on the the 9th of May. Since the system was up and running a few days

before launch we concluded that the deployment, even though we had to do it

twice, was a success.

105

Sprek i Gjøvik

6. TesƟng and Quality Assurance

6.1. Unit tesƟng

The first thing we started with was the requirements, then we finished the

design. AŌer the design was finished, we turned the design into code. For each

new feature we completed, we had to test the feature in the system. The

problem with the manual tesƟng we executed is that it is ineffecƟve. If this was

a paid assignment, it would have been cheaper for customer if we had

automated unit tests, since developer Ɵme is expensive [20].

We wanted to implement automated tests in the development phase. Which

for us meant to write the test before we write the code. It turned out that this

was easier said than done. Wewere not strict enough to implement unit tests in

the development phase. The idea was to implement both end-to-end and single

method unit tesƟng. Unit tesƟng is simply put, the tesƟng of funcƟonality and

parts (units) of the code. This tesƟng pracƟce allows a developer to check if the

system works as excepted, without having to do any manual tesƟng.

Unit tests would help us check if our code logic is correct, and it helps us as

developers to write effecƟve code that is easy to test [21]. Unit tests would

therefor ensure a more efficient development phase, if we knew how to

properly implement it. This was the main reason why we did not implement

unit tesƟng. We did not know to execute it. Instead we agreed that we would

focus on the development (write code), and create an applicaƟon and website

which works well.

Unit tesƟng would also help us regarding scaleability. If we were to add new

maps, more areas, more poles and more content, we could have used the

automated test cases to check that scaling the database did not affect the

current working system. Because we do not have any automated tests, we had

to check manually if new parts of the system funcƟoned properly. To simplify

our development phase, what we could have done is to implement a few

simple end-to-end tests. Figure 45 illustrates how the flow of our potenƟal

end-to-end unit test could funcƟon.

106

Sprek i Gjøvik

Figure 45: End-to-End Example Test

The end-to-end test could have been used to ensure that the communicaƟon

funcƟons between the three different layers (elaborated in Chapter 4) of the

system. Code Example 6.1 elaborates howwe could have implemented a simple

test case in Android, to test a complex part of the system. The same test logic

could also been added to the iOS applicaƟon.

107

Sprek i Gjøvik

Code Example 6.1 Register Visit Test from Application to Server

1 S t r i n g po leQr = " ASDF " ;

2 da tabaseHand le r . v i s i t P o l e (po leQr) ;

3

4 / / Database a b s t r a c t i o n l a y e r r e t u r n s the row ID of the i n s e r t

5 S t r i n g r e s u l t = da tabaseHand le r . u p l o a d V i s i t s () ;

6

7 S t r i n g a s s e r t R e s u l t = " 0 " ;

8

9 boolean r e s u l t E q u a l s = f a l s e ;

10

11

12 / / I f r e s u l t i s not empty , up load was s u c c e s s f u l .

13 i f (! a s s e r t R e s u l t . equa l s (r e s u l t)) {

14 r e s u l t E q u a l s = t rue ;

15 }

16

17 / / I f t rue , t e s t i s OK .

18 a s s e r t T r u e (r e s u l t E q u a l s) ;

Instead of implemenƟng the for menƟoned unit tests, we used a lot of Logger

funcƟonality in Android Studio, and in XCode. Loggers prints text to a console

in the respecƟve IDE. For instance when we were tesƟng to see if the String

result = databaseHandler.uploadVisits(); funcƟoned properly, we printed the

content of the result as such: Log.d("RESULT", result);. By doing it in this

manor, we had to check the console to check if the string was correct instead

of tesƟng it automaƟcally.

108

Sprek i Gjøvik

6.2. Beta tesƟng

Since we as the developers were the alpha testers, the customer became the

beta testers. A week before the project started, we opened the website for the

customer to register and test the funcƟonality of the website. We also

submiƩed the Android applicaƟon to Google Play. Which allowed the customer

to download and test the funcƟonality of the applicaƟon before launch. Then a

day before launch, the iOS applicaƟon got accepted to the App Store, which

then allowed the customer to test the applicaƟon as well. By including the

customer a few days before the users, helped ensure that the system funcƟons

properly aŌer launch.

There were a few bugs and some unexpected behavior. Which might have been

solved earlier if we had implemented unit tests. There was a short period for

the customer to test before the project launch, which meant a few hecƟc days

of bug fixing andmanual tesƟng. Then again, this might have been avoided if we

had implemented automated tests. What we did learn during the beta test, is

that next project we are involved in will include automated tests.

Since we did not implement proper tests, we sƟll wanted to stress-test the

system. To stress-test the system we decided to let the users try the system

over the launch weekend (10th and 11th of May 2014). Over the weekend we

could use the feedback from the users to improve and ensure the quality of the

system.

109

Sprek i Gjøvik

6.3. User feedback

Since the project started on the 10th ofMay, the usermass has increased rapidly

each day. On the 14th of May the database contains 1474 members including

family members (Figure 46), and 10146 registered pole visits (Figure 47).

Figure 46: Number of Users in Database
Figure 47: Number of Pole Visits in
Database

Since we implemented a contact form on the website, and a feedback opƟon in

the Android ApplicaƟon, the users which have experienced difficulƟes has

contacted us. If an issue received affected more than one user, we have

corrected it, and re-submiƩed it to the respecƟve store. We came across two

major issues, one became of user feedback and another because our own field

test (elaborated later in the chapter).

Two examples of issues from users regarding the Android applicaƟon, was the

offline storing of the pole visits and the QR scanner crashes with Sony devices.

The offline storage the of visits, turned out to only upload the latest visit when

the user decided to upload unsubmiƩedpoles. This reason behind this issue,was

an JSON Object placed on outside of the for-loop, and not inside. Which means

that the visit got overwriƩen with the next visit, and the last visit remained. The

next issue was the QR scanner crash on Sony devices. It turned out to be an

issue with Xperia models and the autoFocus-funcƟonality. To fix this issue, we

had to create a separate acƟvity (Figure 48), which is launched if a device is a

Sony model (Code Example 6.2 explains the implementaƟon).

110

Sprek i Gjøvik

Figure 48: Manual Visit AcƟvity

Code Example 6.2 QR Scanner Issue with Sony Devices

1 p r i v a t e vo id se tupScanBut ton () {

2 / / Get manu f a c t u r e r f i n a l

3 S t r i n g manufac tu re r = and ro id . os . B u i l d . MANUFACTURER ;

4

5 / / Se t up o n C l i c k f o r but ton

6 Button scanBut ton = (But ton) f i n dV i ewBy I d (R . i d . s can_but ton) ;

7 s canBut ton . s e t O n C l i c k L i s t e n e r (new View . O n C l i c k L i s t e n e r () {

8

9 @Override

10 pub l i c vo id o n C l i c k (View v) {

11

12 / / i f manufac tu re r i s sony , s t a r t the manual a c t i v i t y

13 i f (manufac tu re r . toLowerCase (L o c a l e . ENGLISH) . con t a i n s (" sony ")) {

14 s t a r t A c t i v i t y (new I n t e n t (MapAc t i v i t y . t h i s , M a n u a l V i s i t A c t i v i t y . c l a s s)) ;

15

16 / / i f not sony , s t a r t normal s canner a c t i v i t y

17 } e l s e {

18 s t a r t A c t i v i t y (new I n t e n t (g e t A p p l i c a t i o n C o n t e x t () , S c a n n e r A c t i v i t y . c l a s s)) ;

19 }

20 } }) ;

21 }

Two examples of iOS issues which were corrected because of user feedback

was the non-scrollable registraƟon form, and missing QR scan buƩon on

iPhone (3.5-inch screens, which is iPhone 4S and older). It turned out that the

registraƟon form was not completely visible on a 3.5-inch screen, and was

non-scrollable. To solve this issue we had to move all the texƞields higher up

on the screen so they became visible on 3.5-inch screens.

111

Sprek i Gjøvik

It was our fault, because we did not check every part of the system manually

on a simulator properly. The next issue was the missing QR scanner buƩon on

3.5-inch screens.Users reported that the QR scanner "froze" aŌer scanning a

code, because the screen turned white, and nothing happened. One user sent

us a screenshot of the issue (Figure 49).

Figure 49: 3.5-inch Screen Issue with QR
Scanner BuƩon

Figure 50: Propper QR Scanner BuƩon on
4-inch Screens

Figure 50 is a screenshot of a 4 inch screen, which displays the buƩon properly. It

did not turned out to be a frozen screen, butwhat happened on 3.5-inch screens,

was that the result text and the Scan buƩon popped up too far down on the

screen. Which resulted in invisible buƩon and text on 3.5-inch screens. These

two issues was fixed because of user feedback.

112

Sprek i Gjøvik

6.4. Field test and Quality control

Incase there were no user feedback, we decided to go out field our selves to

test the two applicaƟons as soon as the poles were in place. Figure 51 and 52 is

pictures of us, out in the field tesƟng the QR codes and the applicaƟons. We had

with us three devices, one Android and one iPhone 5S with Internet connecƟon,

and one Android without Internet connecƟon.

While we were tesƟng ten poles in Gjøvik, it seemed that everything worked

perfectly. AŌer we were done, we controlled the visits in the database. Both

the iPhone 5S and HTC One (both with Internet ConnecƟon) worked perfect.

The Samsung S2 without Internet connecƟon did not submit every unsubmiƩed

pole as menƟoned previously when it came back online, only the last visit. This

is how we came across, and solved this issue.

Because of the field test we conducted and because we implemented the

different feedback possibiliƟes, such as contact forms, as well as using the

feedback from the users in both App Store and Google Play, we have been able

to correct the known kinks and bugs. Because of all the feedback and manual

tests, were able to ensure the quality of the system.

A week aŌer the launch, we have a funcƟonal system which is capable of

handling a constant growth of user mass. Because the system is funcƟonal and

running well a week aŌer launch, it ensures us that the system is scaleable.

Which means we can implement more areas, more poles and more users in the

feature without any unexpected issues. Even though we did not implement

automated tests, we have a successful and funcƟonal system which the users

seem to enjoy. On the other hand, we have learned that if we implemented

automated tests, we would have saved us a lot of Ɵme and frustraƟon. We

have certainly learned from our mistakes.

113

Sprek i Gjøvik

Figure 51: Markus in the Field Figure 52: Anders in the Field

114

Sprek i Gjøvik

7. Conclusion

7.1. Assignment EvaluaƟon and Results

Since we had worked with development of an applicaƟon for the Sprek project

in 2013, we somewhat knew in large terms what the customer wanted before

choosing this project as our bachelor assignment. Other student groups had

interviewed a lot of the users from 2013, which helped both us and the

customer to determine what the main focus should be in the new applicaƟon.

Because of all this knowledge, producƟvity was high from the very beginning of

the development phase. The customers iniƟal plan was to pay for another

development team to develop a independent soluƟon parallel to ours. Because

we got such a good start, they cancelled the parallel process. The fact that they

trusted us with the future for the project gave us confidence in what we had

accomplished.

IniƟally, we had decided that we would not make an applicaƟon for iOS. In

MeeƟng D.3), the customer discussed what they were going to do with the iOS

applicaƟon. Because we had most of the Android applicaƟon and the enƟre

back-end finished, we told them that we would try to make one and see how

far we got. Over the easter holiday, the applicaƟon got developed. At least to a

stage which allowed for beta tesƟng. Since most of the logic was in place in the

Android applicaƟon, all we had to do was to learn ObjecƟve-C enough to

implement the same logic for iOS. AŌer two weeks of development and

tesƟng, the applicaƟon was ready to be presented to Gjø-Vard Orienteering.

They were impressed and decided to go with our applicaƟon, instead of

acquiring it from someone else.

115

Sprek i Gjøvik

7.2. Group work evaluaƟon

In the development process, we have kept each iteraƟons deadline. AŌer each

iteraƟon, we have had status meeƟngs, where we have evaluated the previous

iteraƟon and planned the next. Both group members has been eager to saƟsfy

the customers wishes. This has affected the wriƟng process of the thesis. In

retrospect, we could have set shorter limits for each of the iteraƟons, and

stopped developing at an earlier stage. In the final stage of the project period,

we have had a lot of contact with users, which have occupied much of our

Ɵme. The upside of this is that the product delivered to the customer is more

stable, and in the end, all we wanted was happy users.

116

Sprek i Gjøvik

7.3. Further development and maintenance

Although the Android applicaƟon is finished according to the requirement,

there is always a new feature which could be implemented. As we see it, the

most interesƟng feature to add is the possibility to download new maps

without having to update the applicaƟon.

First of all, since we have zero experience with iOS, there is a lot which can be

done it improve the applicaƟon. The iOS applicaƟon could be updated to get all

the features that the Android app has, such as the same level of offline

support. Currently, the iOS applicaƟon is missing the funcƟonality to upload

unsubmiƩed poles. It only stores the visits in on the device, but do not tell the

user if visits are unsubmiƩed. To upload unsubmiƩed poles unƟl the new

upload is available, a user has to be online for the last pole visit of the day to

get all of their unsubmiƩed poles uploaded.

Second, the applicaƟon is not very robust in terms of networking. When the

opportunity arrives, we will upgrade the networking part of the applicaƟon to

use AFNetworking. AFNetworking is a networking framework for iOS. This

framework will greatly improve the network funcƟonality of the

applicaƟon.

Finally, the UI could be upgraded. We might replace the storyboards with

programmaƟcally created UI instead in the feature. It is easier to deal with one

file of code for different screen support, rather than the current three different

storyboards. Which is something we did not figure out unƟl aŌer the

applicaƟon was done.

117

Sprek i Gjøvik

7.4. Conclusion

It has been an interesƟng project period. Gjø-Vard Orienteering has been both

an interesƟng and challenging customer. It has been a great, challenging

experience. In addiƟon to the pracƟcal skills we have acquired, this project has

let us take advantage of much of the theoreƟcal knowledge from our three

years from Gjøvik University College.

It has been great to work for such a comprehensive public health iniƟaƟve, and

the fast-growing user-mass at the last weeks of the project period has been a

nice reward.

We are especially proud to have naƟve applicaƟons for both Android and iOS.

Both of the applicaƟons can and will be used as future reference. We are both

very proud of the end result.

We will bring all of our new experiences which we have acquired during this

project period into our newly founded company, AndMark SoŌware

Development DA.

The iOS applicaƟon has been downloaded on 872 units, and the Android

applicaƟon has been downloaded on 538 units

Figure 53: Total Downloads in App Store Figure 54: Total downloads in Google Play

118

Sprek i Gjøvik

Bibliography

[1] Schwaber, K. & Sutherland, J. 2011. The scrum guide - the definiƟve guide

to scrum: The rules of the game. https://www.scrum.org/Portals/0/
Documents/Scrum%20Guides/Scrum_Guide.pdf. (Visited Feb. 2014).

[2] Google. Unknown. StarƟng an acƟvity, basics, android developer.

http://developer.android.com/training/basics/activity-lifecycle/
starting.html. (Visited Apr. 2014).

[3] Kniberg, H. 2007. Scrum and XP from the Trenches. C4Media.

[4] Goyal, S. 2007. Major seminar on feature driven development. http://csis.
pace.edu/~marchese/CS616/Agile/FDD/fdd.pdf. (Visited Feb. 2014).

[5] Google. Unknown. Code style guidelines for contributors. http://source.
android.com/source/code-style.html. (Visited Feb. 2014).

[6] Otgard, H. 2014. Det norske android-landskapet. http://beta.knowitlabs.
no/android-telefoner-i-norge/. (Visited Jan. 2014).

[7] Gamma, E., Helm, R., Johnson, R., & Vlissides, J. 1995. Design PaƩerns -

Elements of Reusable Object-Oriented SoŌware. Addison-Wesley.

[8] PHProup, T. Unknown. Prepared statements and stored procedures. http:
//no2.php.net/pdo.prepared-statements. (Visited May 2014).

[9] Bill, G. Unknown. 45 useful responsive web design

tools and techniques. http://www.freshdesignweb.com/
responsive-web-design-tools-and-techniques.html. (Visited May

2014).

[10] Google. Unknown. Iconography, design, android developers. http:
//developer.android.com/design/style/iconography.html. (Visited May

2014).

[11] geografa. 2011. Isom. https://github.com/geografa/ISOM. (Visited Feb.

2014).

119

https://www.scrum.org/Portals/0/Documents/Scrum%20Guides/Scrum_Guide.pdf
https://www.scrum.org/Portals/0/Documents/Scrum%20Guides/Scrum_Guide.pdf
http://developer.android.com/training/basics/activity-lifecycle/starting.html
http://developer.android.com/training/basics/activity-lifecycle/starting.html
http://csis.pace.edu/~marchese/CS616/Agile/FDD/fdd.pdf
http://csis.pace.edu/~marchese/CS616/Agile/FDD/fdd.pdf
http://source.android.com/source/code-style.html
http://source.android.com/source/code-style.html
http://beta.knowitlabs.no/android-telefoner-i-norge/
http://beta.knowitlabs.no/android-telefoner-i-norge/
http://no2.php.net/pdo.prepared-statements
http://no2.php.net/pdo.prepared-statements
http://www.freshdesignweb.com/responsive-web-design-tools-and-techniques.html
http://www.freshdesignweb.com/responsive-web-design-tools-and-techniques.html
http://developer.android.com/design/style/iconography.html
http://developer.android.com/design/style/iconography.html
https://github.com/geografa/ISOM

Sprek i Gjøvik

[12] Wikipedia. Unknown. Mjøsa. http://no.wikipedia.org/wiki/Mj%C3%
B8sa. (Visited May 2014).

[13] Google. 2014. Intentservice, reference, android developers. http:
//developer.android.com/reference/android/app/IntentService.html.
(Visited Apr. 2014).

[14] Apple. Unknown. App store review guidelines. https://developer.apple.
com/appstore/resources/approval/guidelines.html. (Visited Apr. 2014).

[15] Apple. Unknown. Model-view-controller. https://developer.apple.com/
library/ios/documentation/general/conceptual/devpedia-cocoacore/
MVC.html. (Visited Apr. 2014).

[16] MapBox. Unknown. Maki icon set. https://www.mapbox.com/maki/.
(Visited May 2014).

[17] tharkay. Unknown. ConverƟng storyboard from iphone to ipad. http:
//stackoverflow.com/a/8694985. (Visited Apr. 2014).

[18] Apple. Unknown. App store distribuƟon. https://developer.apple.com/
support/appstore. (Visited May 2014).

[19] Icons8. Unknown. Icon pack for ios 7. http://icons8.com/
free-ios-7-icons-in-vector/. (Visited Apr. 2014).

[20] Vaaraniemi, S. 2003. The benefits of automated unit

tesƟng. http://www.codeproject.com/Articles/5404/
The-benefits-of-automated-unit-testing. (Visited May 2014).

[21] McFarlin, T. 2012. The beginner's guide to unit tesƟng:

What is unit tesƟng? http://code.tutsplus.com/articles/
the-beginners-guide-to-unit-testing-what-is-unit-testing--wp-25728.
(Visited May 2014).

120

http://no.wikipedia.org/wiki/Mj%C3%B8sa
http://no.wikipedia.org/wiki/Mj%C3%B8sa
http://developer.android.com/reference/android/app/IntentService.html
http://developer.android.com/reference/android/app/IntentService.html
https://developer.apple.com/appstore/resources/approval/guidelines.html
https://developer.apple.com/appstore/resources/approval/guidelines.html
https://developer.apple.com/library/ios/documentation/general/conceptual/devpedia-cocoacore/MVC.html
https://developer.apple.com/library/ios/documentation/general/conceptual/devpedia-cocoacore/MVC.html
https://developer.apple.com/library/ios/documentation/general/conceptual/devpedia-cocoacore/MVC.html
https://www.mapbox.com/maki/
http://stackoverflow.com/a/8694985
http://stackoverflow.com/a/8694985
https://developer.apple.com/support/appstore
https://developer.apple.com/support/appstore
http://icons8.com/free-ios-7-icons-in-vector/
http://icons8.com/free-ios-7-icons-in-vector/
http://www.codeproject.com/Articles/5404/The-benefits-of-automated-unit-testing
http://www.codeproject.com/Articles/5404/The-benefits-of-automated-unit-testing
http://code.tutsplus.com/articles/the-beginners-guide-to-unit-testing-what-is-unit-testing--wp-25728
http://code.tutsplus.com/articles/the-beginners-guide-to-unit-testing-what-is-unit-testing--wp-25728

Sprek i Gjøvik

Appendix

121

Sprek i Gjøvik

A. Project agreement

122

Sprek i Gjøvik

B. Project Plan

124

PÙÊ¹��ã Ö½�Ä

SÖÙ�» ® G¹Óò®»

Markus BÙÊòÊ½� Anders H�¦���»»�Ä

May 2, 2014

Table of Contents

1 ObjecƟves and limitaƟons 1
1.1 Background . 1
1.2 ObjecƟves . 1
1.3 Boundaries . 1

2 Scope 3
2.1 Field of study . 3
2.2 LimitaƟons . 3
2.3 DescripƟon . 3

3 Project organizaƟon 4
3.1 Roles and responsibiliƟes . 4
3.2 Group rules and rouƟnes . 4

4 Planning, follow-up and reporƟng 4
4.1 Choosing SoŌware development process . 4
4.2 Status meeƟng and points of decision plans . 5

5 Quality control 5
5.1 DocumentaƟon and coding convenƟons . 5
5.2 Version Control / Source Code Management . 5

6 Risk analysis 6

7 Plan of execuƟon 7
7.1 GanƩ . 7
7.2 Work Breakdown Structure . 8

1 ObjecƟves and limitaƟons

1.1 Background

Sprek i Gjøvik was started by Gjø-Vard orienteering the summer of 2013. The main goals of the

project is to get people out and about Gjøvik. The summer of 2013 had about thousand users.

They wish to double that amount for this summer. This summer they will include other areas

of the municipality, like Sørbyen and Biri. They will place markers around Gjøvik, with different

difficulƟes, and the point being that the users should visit as many as possible during the summer.

During last semester we developed an Android applicaƟon for the Sprek i Gjøvik project. We got a

feel of what the project were about, and got to know our customer. Some of our fellow students

also developed applicaƟons, and others did a thorough studies of the previous user experiences

and feedback. We have access to their work, and will at least be using the user feedback in the

development process in our applicaƟon.

1.2 ObjecƟves

1.2.1 Impact objecƟves

• Increased public health in Gjøvik.

• Increased navigaƟonal skills for the everyday user.

1.2.2 Outcome objecƟves

• Increase the user mass from summer 2013.

• Get more people to use the Android applicaƟon.

1.2.3 Learning objecƟves

• Learn more about state of the art technologies used in both Android and web development,

as well as the link between the two.

• Learn more about wriƟng a proper thesis.

1.3 Boundaries

We have to stay within our Ɵme frame; January 13th - May 19th of this year. Our applicaƟon have

to be ready for out-in-the-field at least by the 3rd ofMay. The customer has to have an applicaƟon

1

ready for deployment before the project goes live and the poles are placed at their locaƟons.

Since we are not handling sensiƟve data (i.e. Visa card number and credit info), we really do not

have to worry about any government laws. When a user trusts us with their email address, we

have a responsibility to at least treat it with respect and not abuse their email in any way.

Because we are doing a bachelor assignment, the development is free. Hence we do not have a

budget to worry about.

When it comes to technology, we do not have any clear boundaries from the customer. As long as

we use free libraries and open soŌware.

2

2 Scope

2.1 Field of study

During our bachelor assignment we will be studying Android ApplicaƟon development, different

server side and map technologies, cross plaƞorm data interacƟon (Web and Android), database

design and system architecture.

2.2 LimitaƟons

Since we are developing for Android, we are limited to the naƟve funcƟonality that Android has

to offer. Because we our applicaƟon research does not start unƟl middle of February, we are

uncertain of what limitaƟons we might encounter in the development process.

2.3 DescripƟon

The assignment will be split into several tasks, as the system required by the customer consists of

several modules.

The first module is the server side, which shall be capable of supporƟng all the required funcƟons

in the later describedmobile applicaƟon. The server side should contain a database. The database

should be designed in such a way that the product owner can manage it aŌer the project period.

The second module of the assignment is the mobile applicaƟon. The applicaƟons main purposes

are to show the user the interacƟvemapwith the poles posiƟon, the ability to scan QR-codes from

the poles and register which poles are visited by each user. The applicaƟon should synchronize

staƟsƟcs with the database on the server. The applicaƟon should be able to save data for later

synchronizaƟon in cases where the user has no internet access.

The third module of the system is a web site. This web site should let users register and man-

age family accounts. It should also show various staƟsƟcs. The web site should also contain a

admin-module where the administrators can manage both poles and users. There should also

be a possibility to register companies. This will be further specified in the research process in

February.

3

3 Project organizaƟon

3.1 Roles and responsibiliƟes

Customer

Gjø-Vard Orienteering club, represented by Bjørn Godager.

Mentor

Mariusz Nowostawski, Associate Professor at Gjøvik University College.

Group leader

Anders Hagebakken. Group leader has the overall responsibility to make sure we follow our Ɵme

schedule as well as the main communicaƟon with both the customer and supervisor.

Chief Development Officer

Markus Brovold. The Chief Development Officer has the responsibility to verify the result of a

sprint according to specificaƟons. He is also responsible for keeping proper documentaƟon at the

required level at all Ɵme.

3.2 Group rules and rouƟnes

• Use version control - Submit working code!

• Follow standard Java/Android Coding convenƟons.

• Document code!

• If a disagreement should occur, supervisor and/or customer should be consulted in thedecision-

making.

4

4 Planning, follow-up and reporƟng

4.1 Choosing SoŌware development process

Our group consists for two people. Because of the limited amount of availablework force, we need

a way to maximize producƟvity. From earlier projects we have experienced that a Scrum/Kanban

hybrid works very well for our group. We find that a simple process with simple but effecƟve tools

are the best for us. From Scrum we will be using iteraƟons (non-staƟc length), and from Kanban

we will be using the Work In Progress Limit handling our tasks. This way we can control what is

being done by whom easily.

We will be using iteraƟon even though Kanban do not have iteraƟon, but the iteraƟon length

will be non-staƟc. This fits our development process well, and is a great compromise between

iteraƟons and no iteraƟons.

4.2 Status meeƟng and points of decision plans

Since we are working by an agile soŌware development methodology, the process will be divided

into shorter iteraƟons (“sprints”). AŌer each iteraƟon therewill be a short statusmeeƟngwith our

supervisor and customer. During these meeƟngs we will discuss the past iteraƟon and the next

iteraƟon.This will give us a foundaƟon for further development. Then we can create our to-do

list for that iteraƟon. By including the customer in our development process, we can re-prioriƟze

tasks if required in our backlog for the next iteraƟon.

5

5 Quality control

5.1 DocumentaƟon and coding convenƟons

Wewill deliver the applicaƟon to the customer for further development andmaintenance. There-

fore we have to provide documentaƟon good enough for someone else to conƟnue to work with

the applicaƟon. Code will be commented and documented during the development-process.

Regarding coding convenƟons and -style, wewill follow the standard Java coding convenƟonswhile

developing for Android. Since we will be using Android Studio for the development, the soŌware

formats the code correctly for us.

5.2 Version Control / Source Code Management

Source code for the applicaƟon will be stored in a Git repository. The group is familiar with Git and

how a distributed system works from previous projects. Bitbucket will be the service provider.

Because the group members are accustomed with using Git through Bitbucket, this will let us

focus more on the development and the report.

6

6 Risk analysis

7

Sprek i Gjøvik

C. Correspondence with Service Provider regarding

Shared SSL

134

Sprek i Gjøvik

D. MeeƟngs

D.1. First meeƟng with Bjørn Godager - 13.01.2014

135

Date: Jan 13. 2014
Present at meeting:

Customer: Bjørn Godager
Students: Anders Hagebakken

Markus Brovold
Purpose of meeting:

1. Thoughts on web site
Nettside til prosjektet kan lages med wordpress. Nettside kan ha en admin­modul hvor
administrator kan legge inn flere stolper. Nettsiden kan også vise besøksstatistikk. /
Web site is preferred to be WordPress or similar. Customer wants to be able to post news and
access administrator­tasks such as adding poles to the map and getting user­statistics. Web
site should also show visitor­per­pole­statistics to all users.
Highscore/hall of fame.

2. Application(s) platform
Bachelor project should focus mainly on Android­application.

3. Maps
Customer wants us to spend some time on researching what map­types will be best on Android,
regarding both performance and detail level.

4. Database
Customer wants a easy­to­manage database, which the orienteering club can host when the
project period is done. Customer wants documentation on how to use this after the
project­period.

5. Competitive application
Study how Karlstad manages competitions and if possible; improve and apply.

Sprek i Gjøvik

D.2. Status meeƟng - 21.02.2014

137

Tema: Sprek i Gjøvik ­ bachelor 2014

Arrangør: AndMark v/ Anders Hagebakken og Markus Brovold
Inviterte: Arnfinn Pedersen, Bjørn Godager og Mariusz Nowostawski

Tilstede: Anders, Markus, Arnfinn, Bjørn
Ikke møtt: Mariusz

Referatet lister opp temaene vi diskuterte i kronologisk rekkefølge.

1 Avvikshåndtering
(med avvik menes her manglende stolpe eller ødelagt stolpe)
1.1 Hvem skal få ansvaret for å ordne manglende stolper eller feil stolpe­informasjon?

­ Hvert område har kontakperson(er) som tar imot meldinger om stolper.
­ Kontaktpersonene tar kontakt med områdeadministrator (se pkt. 3.2)

2 Hovedstruktur på websiden:

2.1 stolpejakt.no:
­ Generell informasjon om prosjektet / generell informasjon om stolpejakt
­ Informasjon/bruksanvisning for apper, manuell registrering osv.
­ Kart med klikkbare områder, f.eks Gjøvik, Hamar, osv, hvor brukeren kan
 klikke på ønsket område og blir sendt dit.

2.2 De enkelte områdenes hjemmesider:
­ På de spesielle områdene (Hamar/Gjøvik osv):
­ Spesiell informasjon for området.
­ Nyheter for området.

3 Administrering:
3.1 Super­administrator (Arnfinn eller Bjørn, evt Anders og Markus):

­ Opprette under­administrator for de spesifikke områdene.
­ Legge ut globale nyheter (nyheter for alle områder ­ på forsiden)

3.2 Underadministratorer:
­ Legge inn stolper for sine områder
­ Publisere nyheter for sitt område

Eksempel (“user story”):
Arnfinn gir “per erik fra toten” underadministrator­rettigheter.
“Per erik fra toten” legger inn stolper som står på Totenåsen.

“Per erik fra toten” tar kontakt med Arnfinn, fordi det skal arrangeres et stort stolpeløp 14.
Juni på Toten. Arnfinn lager da en nyhet på stolpejakten.no slik at alle norges stolpejegere får
med seg dette.

4 Kart:
4.1: Fordelene med offline kart er at vi kan style kartene, slik at vi får orienteringskart.

4.2 Bjørn undersøker videre eksportmuligheter av kart fra OCAD slik at vi kan bruke
kartdata rett i appen, hhv. med GeoJSON­format.

4.3 Knut Olaf Sunde kan å koble SOSI­formatet til OCAD, utviklerteamet tar evt. kontakt
med han.

4.4 Det er også et alternativ å ha kartdataene på en WMS­server (altså ferdig stylet med
orientering­utseende), dette sjekker Bjørn videre og melder tilbake til utviklerteamet om.

Sprek i Gjøvik

D.3. Status meeƟng - 21.03.2014

140

Tema: Status på appen og nettsida
Inviterte: Anders, Markus, Arnfinn, Bjørn, Mariusz
Møtt: Anders, Markus, Arnfinn, Bjørn

1. Demonstrasjon av hjemmesiden og appen
1.2 Mangler:

1.2.1 Familie­konto (flere navn på samme epost)
1.2.2 Geo­referering av ocad­kart. Bjørn fikser dette asap.

2 Generere QR
https://www.the­qrcode­generator.com

3 Legge inn stolper
3.1 På nettsida: kan gjøres så fort nettstedet er flyttet
3.2 Via XML eller KML­filer: Kan laste opp en fil med info for flere stolper (for eksempel et
“slipp” når det skal komme nye stolper)

4 iOS­app
4.1 Anders og Markus ser på muligheten for å sette sammen en app til iOS. Dette blir i
første omgang bare en kartlegging for å avgjøre hvorvidt vi kan lage en app eller ikke.

Sprek i Gjøvik

D.4. Status meeƟng - 24.03.2014

142

Invited: Anders, Markus, Bjørn, Arnfinn, Mariusz
Present: All

1. Demo of applications (iOS and Android)

­ Bjørn and Arnfin will send updated pole difficulty­XML
­ Markus will update pole­content to show altitude from DB.
­ Logos in app (for companies) are not allowed in iOS­app.
­ Anders and Markus will take care of pole­numbers.

2. Demo of web site:

­ Make visited poles highlighted
­ Bjørn will create .PDF­maps for download
­ Bjørn will take care of TotenTroll­map (get it georeferenced)
­ Cultural information will be delivered later.
­ make the list on http://www.stolpejakt.no/mine­besokte­stolper/ clickable or hoverable to

show cultural information. Also some information about altitude and difficulty to make it easier to
decide which pole to visit.

­ Maybe take a look at labs.kartverket.no
­ Firmalogoer (til nettsiden) fikser Arnfinn, via Sondre. Disse må grupperes på område.
 Disse skal være klikkbare på nettsiden (Anders).

3. Additional wishes for app:
:Icon: Herb/AndMark ­

Create a new icon with a pole (black on top, white and wood)

Note to self:

Manual pole registering is not checking admin­shit, and registering wrong display_name
in sig_wp_users !!!

Thesis:

­ Write something about the teamwork and the.
­ Write about time used on developing
­ Always say why when a desicion is made.
­ Write a lot about cross platform development., but only in the imp­chapter.
­ Write about how we decided that iOS is actually doable.

	Preface
	Contents
	List of Figures
	List of Code Examples
	List of Abbreviations
	Introduction
	Project description
	Document structure
	Project organization

	Background
	Android
	Database

	Requirement Specification
	Functional Requirements
	Supplementary Requirements
	Constraints

	Design and Architecture
	Architecture
	Design

	Implementation
	Tools
	Server-Side
	Android Application
	iOS Application
	Deployment

	Testing and Quality Assurance
	Unit testing
	Beta testing
	User feedback
	Field test and Quality control

	Conclusion
	Assignment Evaluation and Results
	Group work evaluation
	Further development and maintenance
	Conclusion

	Bibliography
	Appendix
	Project agreement
	Project Plan
	Correspondence with Service Provider regarding Shared SSL
	Meetings
	First meeting with Bjørn Godager - 13.01.2014
	Status meeting - 21.02.2014
	Status meeting - 21.03.2014
	Status meeting - 24.03.2014

