BACHELOROPPGAVE:

Sprek i Gjpvik

FORFATTERE:
Markus Brovold

Anders Hagebakken

DATO:
May 19, 2014

Sprek i Gjgvik

Sammendrag av Bacheloroppgaven

Tittel: Sprek i Gjgvik Nr: -

Dato: May 19, 2014

Deltakere: Markus Brovold

Anders Hagebakken

Veiledere: Mariusz Nowostawski

Oppdragsgiver: Gjg-Vard Orienteering

Kontaktperson: Arnfinn Pedersen, arnfinn@system-tre.no, 971 28 628

Stikkord Android, iOS, Database, Systemutvikling, Java, Objective-C, PHP, MySQL

Antall sider: 143 | Antall vedlegg: 7 | Tilgjengelighet: Apen

Kort beskrivelse av bacheloroppgaven:

Sprek i Gjgvik-prosjektet forsgker a engasjere til fysisk aktivitet i befolkningen. Gjennom
applikasjonen Stolpejakten kan brukere registrere besgk pa stolper som befinner seg pa ulike
steder i naermiljget ved hjelp av kameraet pa mobiltelefonen. Brukeren kan ogsa vise kart med
alle stolper i omradet og egen posisjon ved hjelp av GPS, eller se pa besgksstatistikk for bade seg
selv og andre brukere.

Brukere kan ogsa fa oversikt over egen aktivitet gjennom nettstedet vi har utviklet,
stolpejakten.no. Viharitillegg utviklet administrasjonsmoduler til nettstedet, slik at arranggrene
kan sta for den daglige driften.

For a knytte det hele sammen har vi utviklet en databaselgsning for prosjektet, som handterer
brukere, stolper, omrader og besgk.

Applikasjonen er utviklet for Android i Android Studio og for iOS i Xcode. De er tilgjengelige for
nedlasting gjennom Google Play og Apple App Store.

Sprek i Gjgvik

Summary of Graduate Project

Title:

Sprek i Gjgvik

Nr: -

Date: May 19, 2014

Participants:

Markus Brovold

Anders Hagebakken

Supervisor:

Mariusz Nowostawski

Employer:

Gjp-Vard Orienteering

Contact person:

Arnfinn Pedersen, arnfinn@system-tre.no, 971 28 628

Keywords

Android, iOS, Database, Software Engineering, Java, Objective-C, PHP, MySQL

Pages: 143

| Appendixes: 7 | Availability: Open

Short description of the main project:
Sprek i Gjgvik is a public health initiative to stimulate physical activity in the population.

Through the application Stolpejakten, users use the smartphone camera to scan QR-codes
from the poles placed widespread in the municipalities. An interactive map, which displays
the location of the poles and the current location is built into the app. Various statistics is also
available, like visited poles and a leaderboard.

Users can also track their activity through the web site we developed, stolpejakten.no. At this
web site, we also included possibilities for administrators to manage poles, areas and news.

To make the different parts of the project work together, we created a database with a interface
for the applications. This back-end system manages users, poles, areas and visits.

The Android application is developed in Android Studio, while the iOS application is developed
in Xcode. Available for download in Google Play and Apple App Store.

Sprek i Gjgvik

Preface

This report document elaborates the process of developing a system consisting
of an Android application, iOS application, website and server back-end.

After less than 5 months of development, the system is up-and-running. After
being available to the public for only one week, more than 1500 users from the
local community have registered, and more than 13000 unique visits have been
made. The Android application has been downloaded 500 times, while the one
for iOS has nearly 800 downloads.

We would like to thank our customer Gjg-Vard Orienteering, represented by
Arnfinn Pedersen and Bjgrn Arild Godager, for trusting us with this important

assignment.

Sprek i Gjgvik

Contents
Preface iii
Contents e iv
Listof Figures vii
Listof CodeExamples ix
List of Abbreviations L oL L. vi
1 Introduction. 1
1.1 Projectdescription 1
1.2 Documentstructure 2
1.3 Projectorganization 3
1.3.1 Agile Software Development 3
1.3.2 Organization, 4
2 Background e 5
2.1 Android e 5
2.1.1 Activitieso 5
212 Fragments. e 6
2.1.3 Asynchronoustask 6
214 Services 6
215 IntentService 7
216 Lifecycle o 7
2.1.7 SeNnsSOr. oo e e e e e e e e e e e e e e 8
2.2 Database e 9
2.2.1 Normalization 10
3 Requirement Specification 11
3.1 Functional Requirements 11
3.1.1 Product Backlog-FeaturelList 11
3.1.2 UseCaseDiagrams 13
3.1.3 High-LevelUseCases 16
3.1.4 ExpandedUseCases 20
3.1.5 DomainModel, 25
3.2 Supplementary Requirements 26
3.21 Functionality 26
3.22 Usability. o 26
3.2.3 Reliability o o 27
3.2.4 Performance 27
3.2.5 Supportability oo 28

Sprek i Gjgvik

3.2.6 LegalRequirements. 28
3.2.7 Licensing 28
3.2.8 PartialReleases, 28
3.3 Constraints Lo e 29
331 Tools e 29
3.3.2 Codingconventions 29
333 DataStorage oo 29
3.34 Hardware 30
335 Androidversion.o ... 30
Design and Architecture L. 31
4.1 Architecture 31
4.1.1 Deployment-ClientServer 31
4.1.2 Structure-Three-Tier. 32
4.2 Design 34
421 Application o 34
422 Website 37
4.2.3 Database Abstractionlayer. 39
424 Database 40
Implementation e 41
51 Tools e e 41
5.2 ServerSide e 42
5.2.1 Usingthe FacadePattern 42
522 Database o 44
5.2.3 Abstractionlayer 46
524 Website 49
5.3 Android Applicationo oL 63
53.1 Userinterface. 63
5.3.2 Usermanagement 64
533 Map e 67
534 SensorUsage 74
53,5 UserDataStorage 76
5.3.6 Performance and Optimization 80
5.3.7 Network Communication 83
5.4 iOS Application o 87
5.4.1 Organizingthe development 87
5.4.2 Applicationdesign 89
543 Map e 90

Sprek i Gjgvik

544 Userdata 96

545 QRscannerandpolevisits 100

5.4.6 Supporteddevices, 101

5.4.7 Graphics. oo 102

55 Deployment e 103

6 Testingand Quality Assurance 106
6.1 Unittesting e 106

6.2 Betatesting e 108

6.3 Userfeedback 110
6.4 Fieldtestand Qualitycontrol 113

7 Conclusion 115
7.1 Assignment EvaluationandResults 115
7.2 Groupworkevaluation, 116

7.3 Further development and maintenance 116

7.4 Conclusion. e 118
Bibliography e 119
Appendix e 121
A Projectagreement 0. 122
B ProjectPlan 124
C Correspondence with Service Provider regarding Shared SSL 134
D Meetings e e 135
D.1 First meeting with Bjgrn Godager - 13.01.2014 135
D.2 Status meeting-21.02.2014 137

D.3 Status meeting-21.03.201400 140
D.4 Status meeting-24.03.2014 142

vi

Sprek i Gjgvik

List of Figures

O 00 N O U1 A W IN -

W W W W W W NN NNNDNDNNDNDNRRRRRRR R R
u b W NP O OOONO OUVLPEAE WNPRE O OOLONO U WDNRELR O

Android LifeCycleo 7
Feature List items in the BitBucket issue tracker 12
Use Case Diagram - Website administrator functionality 13
Use Case Diagram - Application User functionality 14
Use Case Diagram - Website User functionality 15
Domainmodel o 25
Android versions in Norway. ICS = Ice Cream Sandwich 30
Client-Server Structure 31
Three-Tier Layered Architecture 32
Application Component diagram 34
Application Classdiagram 36
Website Activity Diagram 37
Database Abstractionlayer 39
DatabaseDesign o 40
Facade Pattern Example 42
DatabaseDesign o 44
Buddypress Registration Form 50
BuddypressUserProfile 50
Register PolesonPhone 52
Register Poleson Computer. 52
User Platform Statistics 54
End-User WebsiteMenu 54
Administrator WebsiteMenu L. 54
First Page with LoggedinUser 55
News Story Categories 57
Pole ListonWebsite L. 58
Family Members Functionality 60
Team Functionality 61
GridMenu L 64
ListMenu 64
ActionBarMenu 64
Legend e 70
Pole Altitude Example 72
GPS Accuracy Symbols 74
Pole Visit Submission Flowchart 76

vii

Sprek i Gjgvik

36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

ViewHolder Patternexample 81
Model View Controller Application Structure 89
FinalMap View 95
Final Pole ListView 95
FinalUserView, 98
User SettingsView 98
Normal Display 102
RetinaDisplay e 102
Icons8 Examplelcons o 102
End-to-End ExampleTest 107
Number of UsersinDatabase 110
Number of Pole Visits in Database 110
Manual Visit Activity 111
3.5-inch Screen Issue with QR Scanner Button 112
Propper QR Scanner Button on 4-inch Screens 112
MarkusintheField, 114
AndersintheField 114
Total DownloadsinAppStore 118
Total downloads in GooglePlay 118

viii

Sprek i Gjgvik

List of Code Examples

5.1
5.2
53
5.4
5.5
5.6
5.7
5.8
59
5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17
5.18
5.19
5.20
5.21
5.22
5.23
5.24
5.25
5.26
5.27
5.28
5.29
5.30
5.31
5.32
5.33
5.34
6.1
6.2

PDO_CONNECTClass v v v v v v i et e e e e 46
Prepared Statements withPDOClass 47
Returned Array e 48
Returned JSON-Array 48
CSS Responsive Website 53
Website - Administrator Functionality 59
Website - Register PolesTable 62
Login.php e 65
Login Method from Android Application 66
TileMillCSS e 68
VisibleBounds 69
Legend e 71
Pole Altitude 73
GPS Accuracy Indicatoro o 75
VisitPoles 77
Poles TableinSQLite 78
Pole Content TableinSQLite 78
Usage of SharedPreferencesin Userclass 79
ViewHolder 80
ViewHolder getView 82
ASyncTask 83
Add Parameter 84
FetchDataTaskUsage 84
IntentService Usage in UserActivity 85
IntentService Usage in UserActivity 86
Loadingmbtiles o oL 91
AddPolestoMap e 92
Create MarkerLayer. 93
Get Pole Altitude from Database 94
UploadUser Visits 97
Save/Cancel UserSetting 99
ScanQRCode 100
Convert iPhone Storyboard to iPad Storyboard 101
URLCIass o e e e e e 104
Register Visit Test from Applicationto Server. 108
QR Scanner Issue with Sony Devices 111

Sprek i Gjgvik

List of Abbreviations

ADT - Android Development Tools

CRUD - Create Read Update Delete

CSS - Cascading Style Sheet

FDD - Feature-Driven Development

IDE - Integrated development environment
JSON - JavaScript Object Notation

MVC - Model-View-Controller

PDO - PHP Data Objects

PHP - PHP: Hypertext Preprocessor

RAM - Random Access Memory

RDBMS - Relational Database Management System
SQL - Structured Query Language

TDD - Test-Driven Development

Sprek i Gjgvik

1. Introduction

1.1. Project description

Gjp-Vard Orienteering club piloted a low-threshold exercise project during
summer 2013 called “Sprek i Gjgvik” (meaning; Active in Gjgvik). The project
combines outdoor activities with modern technologies. The goal is to find a set
of poles placed around the city, either by using a traditional map and compass,
or by using an application on a mobile device.

Its popularity has grown quickly since the launch in mid-August 2013, with more
than 1000 participants.

The first mobile app for Sprek i Gjgvik has been bought from a Swedish similar
project. Because this solution has some adverse weaknesses, the project group
in Gjgvik wants a better solution, which fully can be administered by Sprek i
Gjgvik. This new solution can also be rolled out to similar projects in other
norwegian cities.

The project has a wide support in both Norwegian Orienteering, Oppland
Country Council, Gjgvik Municipality and more.

The project will be extended to cover both North and South Gjgvik with 50-100
poles by May 1st 2014, and several new locations by the summer. The target
number of participants is 2000 by the end of summer 2014.

Our assignment is to create the website, Android application and back-end
server. The back-end server has to handle all the users, areas and poles
included in the project. The application has to display a map of an area with
poles, and store visits made by users on the back-end server. Finally the
website has to have functionality which allows a user to register their

visits.

Sprek i Gjgvik

1.2. Document structure

We have decided to divide the project report into seven chapters.

Introduction
The 1st chapter contains the project description with the background
information about the project we are a part of.

Background
The 2nd chapter is a short chapter which contains some of the terminology we
will be using in the implementation chapter.

Requirement Specification
The 3rd chapter contains both the functional and supplementary system
requirements of the entire system.

Design and Architecture
The 4th chapter elaborates the architectural and design decisions we made
during the inception phase.

Implementation

The 5th chapter contains the elaboration of our solution. It contains a lot of
code examples and figures of the interesting and challenging components of
the system. It also contains screenshots of the different user interfaces, both of
the application and the website.

Testing and Quality Assurance
The 6th chapter explains how we tested during the development phase and how
we conducted quality assurance.

Conclusion
The 7th chapter discusses the outcome of the project and what we have
achieved during the project period.

In addition to the previous mentioned seven chapters we have an appendixes
with relevant information, such as the project agreement and meeting
logs.

Sprek i Gjgvik

1.3. Project organization

1.3.1 Agile Software Development

According to Schwaber and Sutherland, a Scrum team should not have more
than nine members and no less than three. A team too large creates a more
complex process which is hard to manage. While a smaller team might have
problems delivering on time [1]. Is is unnecessary for us as a group of two
members to implement Scrum 100%. Which is why will not be following Scrum
to the letter. We wish to use most of our time developing, rather than
estimating, calculating member velocity and maintaining a Burndown
Chart.

We will be following the principles of Scrum and borrow some artifacts from
other agile processes instead. From Scrum we will be using iterations / sprints.
At the end of each sprint we will be conducting status meetings with the
Customer where we demonstrate the new features. After each demonstration
we will evaluate the features, and plan the next sprint. The project has a
deadline, and the user should not have access to the system until then. Which
is why we will not release a new feature after each increment to the user, but
demonstrate it to the Customer instead.

The group will implement a product backlog, but not the same Product Backlog
artifact from Scrum. Instead we will implement Feature List from FDD. The
Feature List fits us better, since there is less planning and estimation, and less
complexity since the group consists of two members. The Customer also wants
us to come up with new features. By using the Feature List it allows us to
control the Feature List, rather than a Customer controlling the Product
Backlog. It also allows us to prioritize which features to deliver after each
sprint. Of course, we will have to finish the requirements set by the Customer
by the deadline.

Sprek i Gjgvik

1.3.2 Organization

When we were accepted as the group to work with this assignment, we quickly
scheduled a meeting with Bjgrn Godager (Meeting D.1). Bjgrn is both a assistant
professor at HiG and a member of Gjg-Vard Orienteering. The purpose of the
meeting was to get a feel of the project. The assignment was vague, and we
wanted to know what they actually wanted us develop. We agreed to develop
an Android application, provide a new website and a database solution.

The first thing we did after the meeting was to get the project agreement
signed by both the Customer and the Supervisor (Appendix A). After signing
the agreement and getting to know the task at hand, we created our initial
project plan (Appendix B). The project plan has been a great resource, mainly
the Gantt diagram, which kept us on schedule the entire project period. We
have previous experience with poor planning and a lot of code-and-fix. This
was not something we wanted to happen during our bachelor
assignment.

When the Design and Architecture was in place, we could start on the
development phase, which we were eager to get started on. Since the group
only consists of two members, structuring our work has not an obstacle. We
have met up, alternating between working at each other's homes, every day of
the week. The daily structure has ensured that we had control and worked
efficiency during the entire project period.

We have been working on separate parts of the system parallel with each other,
side by side for support and guidance. We have been selecting different features
we wanted to work on. For instance during the first part of the development
phase, one did the back-end and one did on the front-end component of the
website. While developing the application we split the workload in the same
fashion as we did for the server-side. One did the user feature and one did the
map feature. By separating the workload, we have been able to produce the
features the Customer required, and we wanted to implement.

Sprek i Gjgvik

2. Background

We feel it is necessary to include a short technological background chapter for
a reader to be able to understand some the terminology used in the
implementation chapter.

2.1. Android

2.1.1 Activities

One of the most basic elements of in developing an Android application is an
Activity. An activity is the first thing you see in an application. For instance, if
you create a simple "Hello World" application, what you see on the screen is an
activity with the text "Hello World". An application can consist of many activities.
For instance, in an e-mail application, an activity is used to display your inbox,
another activity is used when you are writing an e-mail. To create an activity, it
has to extend the "Activity" class.

An activity can start another activity. One can also pass data between the
activities using "Interprocess communication" (IPC). There are different ways of
implementing IPC, for instance, one can store flat files with the necessary
content, or store something in a SQLite database, then access it the desired
activity. One can also use what is called Shared Preferences, which works like
Java's Preferences, which means one can store data on a device. For instance
User login information, so a user do not have to re-enter login information
each time a user opens an application. One can also use what is called an
"Intent". We can put string, booleans and integers as well as other data types
into and intent, and pass them on to the new activity, then get them from that
intent. In an activity, one can add what is called Fragments.

Sprek i Gjgvik

2.1.2 Fragments

"Fragments" can be used to "divide" an Activity into fragments. An application
can consist of many fragments. As we will elaborate further in our
implementation chapter, we are using fragment as the container of our
mapview. Another usage, is to have different layout in landscape and portrait
orientation. Then one can add an extra fragment next to the fragment which
was visible in portrait orientation.

2.1.3 Asynchronous task

An Android application has to work in a certain way. An application does not
lock to wait for input. If you ask a user for username and password, the
remaining code will be executed. If one wants to display an image or text from
Internet, one has to do this in a certain fashion. Android does not allow HTTP
connections on the main thread. By using Asynchronous task, you can preform
asynchronous off the main thread. This way, one make sure the application
does not hang on the main thread while processing a huge image or
downloading large amounts of text. One should also add some form of
progress bar to inform the user something is going on behind the scenes. We
will for instance do all the communication with the database
interface / abstraction layer with this mechanism.

2.1.4 Services

An application can also make use of what is called a "Service". A service runs in
the background, and has no user interface. One has to extend the Service class
to create a service. An activity can work as a user interface for a service. A good
example is a music player, which presents you with the option of
playing/pausing, next song etc. When you lock the screen, the activity goes
away, but the service keep playing the music. Another example would be
something like RunKeeper, which tracks your GPS position while your are
running. The background service tracks your position, then when the activity
resumes, you can see how far you have ran and you can see where you have
been running with the data collected from the service.

Sprek i Gjgvik

2.1.5 IntentService

A special occurence of Services in Android is the IntentService. The
IntentService provides a set of methods which makes it easy to broadcast a
result using Intents. IntentServices can be used to download some data and
then send a broadcast back to the Activity it was started from. When the
Activity receives the broadcast, it can update for instance a ImageView. The
way this differs from a ASyncTask is that a IntentService does not block the
Ul-thread, which enables the user to interact with the application
uninterrupted.

2.1.6 Life cycle

An activity has a life cycle. Figure 1 from the Android Developer website
illustrates how a life cycle looks. When you press the application icon to start
the application the main launcher activity's onCreate() will be fired first. This is
an inherited method from the "Activity" class. This method will be fired every
time a user changes orientation from portrait to landscape and back. Then the
onStart() and onResume() method will be fired. After that, we have a visible
activity. When a user switches activity, the onPause() and onStop() will be
fired. When a user returns to that activity, it will re-fire the onStart().

Resumed

(visible)
onResume() T onPause()
onResume()
Started L Paused i
|' (visible) (partially visible) |
onStart() T onStop()
onStart()
e Created onRestan(}———— Stopped

(hidden)

I" 'I
onCreate() onDestroy()
|

lgu Destroyed

Figure 1: Android Life Cycle
(2]

Sprek i Gjgvik

Since Android "resets" the activity when you either rotate or change to another
activity, one has to make sure to store what was visible in the activity, such as
text. If you fill in a textfield, and the screen displays the content of that textfield,
it has to store it for when a user might rotate the device. So it has to be stored
before you rotate, then restored in the onCreate()/onResume().

2.1.7 Sensor

Android has support for every sensor that comes with a device. To make use of
this sensors, one has to add a SensorManager, which is an interface for
communicating with the different sensors in a device. With the
SensorManager, one can listen to the different sensors. For instance, GPS,
accelerometer and orientation (can be used to make a compass).

Sprek i Gjgvik

2.2. Database

Databases are collections of data. The task of a database is to store data in a
systematic way, for instance in tables, so that they can be easily organized and
used. We will use relational databases in our project. When a database is
relational, there is a set of relations between the different tables. For instance
when a person has a phone number, the person is in one table, and the phone
number is in another table. To decide which phone number belongs to who, a
relation exists between the two tables. Since MySQL is one of our constraints,
we will focus on MySQL. In a relational database, a table consists of columns
with the various data-types. The first thing to do is to create a table. This can
often be done with a graphical user interface, like myPhpAdmin, or by writing
sentences of SQL-code, called statements. This example shows how to create a
new table with the columns firstname, lastname and birthday. The name of the
will be Persons:

1 CREATE TABLE Persons
2 (firstname ,

3 lastname ,

4 birthday)

This is maybe the simplest form of a table, with no relations and no data types.
To specify what the columns should contain, we add some data types to the
statement.

1 CREATE TABLE Persons

2 (firstname varchar(40),
3 lastname varchar (40),
4 birthday date)

A primary key should also exist in every table in the database. The primary key
must be a unique value for each row. If a column in a table is guaranteed to be
unique, it can be used as the primary key. In many cases however, it is
necessary to add a integer value which increments by one for each new row. In
our Persons-table, it is not impossible for two persons to have the same name
and the same birthday. For the RDMS to distinguish these persons, we add the
column personid, and set it to be the primary key.

Sprek i Gjgvik

CREATE TABLE Persons
(personid int(10) AUTO_INCREMENT,
firstname varchar (40),
lastname varchar (40),
birthday date,
PRIMARY KEY(personid))

o v A W N e

We can now create another table, Phonenumbers. Since it is possible for one
person to have several phone numbers, personid cannot be the primary key of
the Phonenumbers table. Because it is also possible for several persons to share
a phone number, the phone number cannot be the primary key. To solve this
problem, we add a phonenumberid to the table. The statement to create this
table would then be:

1 CREATE TABLE Phonenumbers
2 (phonenumberid int(10) AUTO_INCREMENT,
3 phonenumber int(20),

4 personid int(10),

5 PRIMARY_KEY (phonenumberid)

Now that we have two tables, we can create the relationships. If we are dealing
with complicated tables it often is easier to create the relationships, or constraint
as they are called in MySQL. In this case, a row in the phone-number should be
deleted if a person is deleted, but a person should not be deleted if a phone
number is deleted. Since we already created the tables, we can use the ALTER
TABLE statement.

1 ALTER TABLE Phonenumbers

2 (CONSTRAINT has_phonenumber

3 FOREIGN KEY (personid)

4 REFERENCES Persons (personid)
5 ON DELETE CASCADE

6 ON UPDATE NO ACTION)

2.2.1 Normalization

Database normalization is a method to ensure that data is not redundant, i.e. the
same data should not appear more than one place in the database. The first task
to normalize the database is to make sure all columns/attributes are atomic. The
attribute "car" is a nonatomic attribute, if it for instance contains "1985 BMW
3series". The attributes "car_make", "car_model", "production_year" is atomic,
and would in this example contain the values (BMW, 3series, 1985). An attribute

is atomic when further decomposing the value would not be meaningful.

10

Sprek i Gjgvik

3. Requirement Specification

3.1. Functional Requirements

3.1.1 Product Backlog - Feature List

As mentioned earlier, our development process is only loosely based on Scrum,
which is why we have decided to discard the Product Backlog artifact. Instead
we have chosen to borrow an artifact from Feature Driven Development called
Feature List. The reason behind this is that we do not want to use a lot of time
estimating beforehand. We feel this is the best option for us. By doing it in this
manor, we get a more agile development process, since we are only two people,
and can simple choose feature after feature from the list. We do not need to
plan as much ahead as if we were a team of for instance eight.

Our Feature List will have the standard format <action> <result> <object> [4].
For instance: Display pole list in map activity to a application user

ID Name <action> <result> <object>

1 Display map in application to a application user

2 Display registration form on website to a website user

3 Display registration form in application to a application user
4 Display CRUD options for family members to a website user
5 Display CRUD options for poles to area administrator

6 Display CRUD team options to website user

7 Display QR Scanner in application to a application user

8 Store pole visits on device for a application user

9 Upload pole visits from device to database for a application user
10 Display pole list in map activity to a application user

11 Display form to register pole visits to website user

12 Store pole visits data provided by website user

11

Sprek i Gjgvik

We will use the processes of FDD as a guideline and select features from the

Feature List. Which for us means that each of us can work on different features

parallel with each other. By following this pattern, it allows us to start on a

feature, complete it, implement it and then select a new feature until the

feature list is empty.

The same Feature List is added to the Bitbucket issue tracker (Figure 2). By using

the issue tracker, it allows us to separate the core features from the trivial ones

by categorizing the features. Then we can select one feature, assign it to our

selves, then set the status from "New" to "Open". After we have finished the

feature, we change the status to "Resolved", which means the feature is done

and implemented into the system.

#7: Add poles to map based on ® +* OPEN Anders Hagebakken
various criteria

#3: user registration/login () +* OPEN Markus Brovold
#10: Retrive poles from ® 0 OPEN Anders Hagebakken
database and store poles on

device

Figure 2: Feature List items in the BitBucket issue tracker

12

2014-02-24

2014-02-24

2014-02-24

Sprek i Gjgvik

3.1.2 Use Case Diagrams

Use Case Diagram - Website administrator functionality

System

Submit news
stories

Provide pole
content

User

CRUD poles

Figure 3: Use Case Diagram - Website administrator functionality

The Use Case Diagram for a Website administrator is simple and straight forward.
The User/Actor (Website administrator) need to have the options to write news
stories to the area of which an administrator administrates. Then there must
be CRUD options for all poles, which allows the administrator to handle an area
and its poles without needing to include us. The last options is to provide the
pole content. Some of the poles will be sponsored and some will be placed on a
historical location. Therefor the Customer wants to be able to add a description
to that pole.

13

Sprek i Gjgvik

Use Case Diagram - Application User functionality

View statistics

View map
with poles

User Register

Tag poles

OONG

System

option
option

e

option

option

—_

View
own score

View
leaderboard

Show visited/
unvisited

Show certain
difficulty

Join/Create
team

Figure 4: Use Case Diagram - Application User functionality

The user must be able to register in the application. Then one maybe should be

provided with the option if they want to create or join a team. A user should also

be able to view the map and poles based on different criteria, such as display only

one difficulty or only unvisited poles. The tag pole option is a core functionality

of the application. This means that the visit must be stored on the device, and

uploaded to the server. At last, we should provide the user with some statistics,

both their own visits and show a leaderboard with the users who have visited

the most poles.

14

Sprek i Gjgvik

Use Case Diagram - Website User functionality

Download map

!
{

—

Provide feedback

Team CRUD

Ul

User

Register

Add pole codes
manually

il

View statistics optio

optio

System

option

optiol

n

View leaderboard

View own scores

Add family

n member

n

Figure 5: Use Case Diagram - Website User functionality

The website user will have a lot of the same options as the application user.

They should be able to download a PDF version of the map, view the same

statistics as in the application and provide feedback on either missing poles or

general feedback. The user should be able to submit their visits in a form using

the character code (QR code value) from the pole. Then a user should be able

to add family members to its account. At last, a user has to be able to create a

team and display the team data (members and visits).

15

Sprek i Gjgvik

3.1.3 High-Level Use Cases

The High-Level use cases splits the system into User / Administrator and

website / application. This allows us to elaborate the Use cases and split the

Feature List into smaller tasks.

Use Case User registration

Primary Actor: User

Goal: The user data is stored in the database

Description: The user should be presented a registration form
both in app and on the webpage. Fields should at
least be email, first name, last name, area affiliation.
Maybe join/create team and add family members to
account.

Use Case Download map

Primary Actor: User

Goal: The user has downloaded the map

Description: The user should be able to download the map in A4

size, ready for printing.

16

Sprek i Gjgvik

Use Case Provide feedback

Primary Actor: User

Goal: The wuser provides Gjg-Vard Orienteering with
feedback

Description: The user should be presented with a feedback form.

Use Case Administrator CRUD pole

Primary Actor: Administrator

Goal: A new pole is CRUD in the database

Description: When an administratoris logged in, one must be able
to do CRUD operations on a pole

Use Case View statistics

Primary Actor: User

Goal: Get information about visited poles

Description: User should choose between different statistics

17

Sprek i Gjgvik

Use Case View map with poles

Primary Actor: End-User

Goal: Get position on map, both user position and pole
position

Description: Possibility to show a list of poles, which can be sorted
on on difficulty.

Use Case Tag pole

Primary Actor: End-User

Goal: Get points for visited poles, keep track of visits

Description: User should be able to register a pole as visited.

Use Case Manual pole submission

Primary Actor: User

Goal: The user gets their visited poles stored in database

Description: The user should be presented with a form where one

can submit pole QR codes manually.

18

Sprek i Gjgvik

Use Case Team CRUD

Primary Actor: User

Goal: The team data gets stored in database

Description: The user should be able to do CRUD operations on a
team

Use Case Add news

Primary Actor: Administrator

Goal: The users can read news

Description: The administrator should be able to submit news to
a news feed.

Use Case Provide pole content

Primary Actor: Administrator

Goal: The users can read information about certain poles

Description: The administrator should be able to submit pole

information

19

Sprek i Gjgvik

3.1.4 Expanded Use Cases

We selected some of the core functionality and the more complex tasks in the
system which has to work in a certain fashion. There must be a control of the
system flow in these selected use cases, that is why we decided to expand them.
Then we know how and when to handle the different errors.

Every use case consists of a Scope, in our case it is for the website and/or the
application. Then we have a Primary Actor, which is either an End-User or an
Website Administrator. Next item is the Precondition which as to be for filled
before the Main Success Scenario can occur. Second to last, it is the
Postconditions, which in our cases ensures the either presentation, storage
and/or integrity of the user data.

At last, we have the Main Success Scenario with Extensions. Main Success
Scenario occurs when every condition is for filled. If something goes wrong, it
is "handled" in the Extension.

20

Sprek i Gjgvik

Use Case User registration

Scope: Website and application

Primary Actor: End-User

Preconditions: User must have Internet access on device
(PC/Android)

Postconditions: User data must be stored in database after
registration

Main Success Scenario:

1. User fills in user data in registration form:
1. Email address
2. Name
3. Join team/Create team
1. Submit team name
2. Join team
4. Add family members to account
1. User presses submit button

2. Data stored in database

Extensions:

2 Invalid login data:
1. System shows failure message
2. Userreturnstostep 1l

2 Invalid user data:
1. System shows failure message

2. User returns to 1 and must fix errors

21

Sprek i Gjgvik

Use Case View statistics

Scope: Website and application

Primary Actor: User

Preconditions: =~ To show own accomplishments, user must be signed
in

Preconditions: Internet connection

Postconditions: The data is presented to the user

Main Success Scenario:

1. User chooses which statistics to show
1. Own user
2. All users

1. Results is brought to screen

Extensions:

2 Invalid login data:

1. System shows failure message

2. User can look at all users scores
2 Nodata:

1. System shows failure message
3 Nointernet connection:

1. System shows failure message

22

Sprek i Gjgvik

Use Case View map with poles

Scope: Application

Primary Actor: User

Preconditions: ~ The user must have GPS activated

Postconditions: The map is presented to the User

Main Success Scenario:

1. User opens map activity in app

2. The user’s GPS location is displayed in map

3. User options in map should be:
1. User can toggle between displaying visited/unvisited/all poles in map
2. User can select displaying only poles with a certain difficulty
3. Map activity displays the user’s preferences

1. Clicking on marker displays lat/long, id and name

2. User can now go look for poles

Extensions:
2 GPSis disabled:
1. System shows failure message

2. User enables GPS - returns to activity.

23

Sprek i Gjgvik

Use Case Add pole codes manually

Scope: Website

Primary Actor: User

Preconditions: =~ The user must be signed in

Postconditions: The data must be stored in database

Main Success Scenario:

1. User is presented with code submission form

2. The user submits pole codes

3. Database stores the data about the user’s visits
4

Web page provides feedback (success/failure)

Extensions:
2 lllegal pole codes:

1. System shows failure message

2. User corrects the error, re-submits
3 Database error:

1. System shows failure message

2. User must try again later

24

Sprek i Gjgvik

3.1.5 Domain Model

Our domain model illustrates how the system is intwined. With the domain
model (Figure 6), we have decided to split it into three different sections: Data,
Logical and Presentation. The reason being that we want some structure in our
model, since we will be using it later as the base for our architectural

structure.
Data Logic Presentation
I = I | —— |
[| 1 j—
L | 0.1 [1
1 has A 1
isin A uses A
0.* 1 1
Pole i | b ! < on ! Datab interface ! usgs Android device
[storsdin/be]] fo.f 1 fo.f 0.r
[0.~ 1] []
1 1 1
isat A
- A —————
Visit < has made L = SQL queries usgs Web page
stored in A
1 10.*
Team [«isin User |
[| * []
I IO..’\ 1 I |

Figure 6: Domain model

The data layer illustrates the basic entity relationships in the database, which
in Database Design (Section 4.2.4). The
communication between the application and the website should be handled in
the The the
interface / abstraction layer. This layer will be used by the application. Next we

will be elaborated further

logical layer. logical layer consists of database
have the SQL queries which will used by the website. We might use the same
interface for the website to ensure low coupling, but this will be decided later.
At last we have the presentation layer, which is a graphical interface to the
user, either in the form of the website or the application. The application will

use the for mentioned logical layer to communicate with the data layer.

25

Sprek i Gjgvik

3.2. Supplementary Requirements

3.2.1 Functionality

All the different functionality has already been described in the use cases. As
seen in our use cases, our system have two different user groups. We have the
user and we have the administrator. The user is split into two different user
groups, one application user and one web user. An application user and a web
user will have a lot of the same functionality. We have decided to limit some of
the functionality to only be available on the web page. Such as adding a family
member to your account and CRUD a team. This will help us limit the potential
errors which might occur during user registration.

3.2.2 Usability

The previous application was, according to our customer, not a success. It was
not very user friendly and not very intuitive. We have to ensure our application
will be well received by the users. That is why we will create an application
which will be easier to use and understand. The user group consists of a lot of
different people of all ages, hence there will be a great span when it comes to
technological skills. That is why we will provide a walkthrough when the user
first launches the application. This walkthrough will of course be available in
the help menu of the application. By doing this we make sure the user gets an
introduction in how the application works. Hopefully this will ensure the users
continue to use the application, instead of using the manual pen and paper
submission-method.

26

Sprek i Gjgvik

3.2.3 Reliability

A device or application might malfunction. That is why we have to implement a
mechanism to store the user data while the user is out and about looking for
poles. This will ensure that the user data is not lost incase of a application

malfunction.

Our data is stored in a database from a service provider which has daily
database backup. This will ensure that the user data does not get lost. Incase of
a malfunction, we might have to do a roll-back. The users must to be notified if
data loss occurs. The service provider also guarantees 99.9% uptime.

3.2.4 Performance

We have to consider a device's battery life and therefore do minimal
processing on a device. We should do all the map pre-processing on a
computer, then attach the map data depending on the selected map
technology. If a task is taking some time, we need to display a progress bar so
the user knows something is happening. The last thing we want is Android Not
Responding. To make sure the application runs smoothly, we should download
all required data at start, and use some splash mechanism while the data is
downloading. Because of these mechanisms we ensure the application is
responsive and do not freeze while loading activities. The most important thing
is to provide the user with the proper information, if the application is doing a
lot of work.

27

Sprek i Gjgvik

3.2.5 Supportability

We will develop the application in Norwegian and English. Android applications
can easily be translated and localized. If someone requests another application
language, the website's news feed can be used to advertise for volunteer

translators.

Not all requirements are specified yet, but if we are going to implement e.g.
distance to pole from your GPS location, we can have the user select between
imperial or metric units. Different units of measurement might also be
implemented in pole content, e.g. “This marker is located 300 meters/328

|II

yards above sea leve

3.2.6 Legal Requirements

Data is stored in a safe place by a professional company. We do not handle any
sensitive or private user data.

3.2.7 Licensing

We will only use open source libraries. The project does not have any commercial
interest. It is a non-profit volunteer project from Gjg-Vard Orienteering.

3.2.8 Partial Releases

After each sprint we will provide a new prototype of the application to
demonstrate for our customer. There will be no public releases in Google Play
until the application is considered done, and can be tested by the
Customer.

28

Sprek i Gjgvik

3.3. Constraints

3.3.1 Tools

The Android Application should be developed using Android Studio as the IDE.
This means we will be using Gradle as build system, since it is used as standard
in the IDE. Git will be used for version control and source code management
through a private repository on Bitbucket.org.

3.3.2 Coding conventions

For the application we will be using standard Java/Android coding
conventions [5]. Naming variables and methods will be done in English, and in
camel case style. Class member variables should have the m_* prefix. An
example: m_ThislsMyVariable. Every class will be under the package
“no.hig.andmark.sprek.”.

Coding style and conventions for the website will depend on the programming
language.

The code should be commented in such a manner the future development and
maintenance can easily be continued by someone else.

3.3.3 Data Storage

The application should use SQLite for local storage on device. The server from
the service provider comes with MySQL only.

29

Sprek i Gjgvik

3.3.4 Hardware
Android Application

The application will need access to the built-in GPS sensor in the device.
Depending on the detail level of the maps, the application will use a larger
amount of RAM. Access to the camera is necessary to use the
QR-scanner.

Website

The website should fit all popular web browsers in resolutions from small
windows to fullscreen windows on high-resolution clients.

3.3.5 Android version

84% of Android users who downloaded the application RuterBillett (a public
transport ticket-app for Oslo and Akershus) between 18 December 2012 and
18 December 2013 was using Android 4.0 (API level 13) or higher [6]. This
number is a good guideline for us on which version the Norwegian
Android-user has. We will be targeting 2.3 and up, but if we need functionality
which require a higher version, we will adjust thereafter. Although we want to
support as many devices as possible, the functionality should not suffer at the
expense of device supportability.

vdl 47 %

ForICS 16 % ICS og senere 84 %

va3 13% V42 14%

Figure 7: Android versions in Norway. ICS = Ice Cream Sandwich

30

Sprek i Gjgvik

4. Design and Architecture

4.1. Architecture

4.1.1 Deployment - Client Server

Website User Computer
= '
L =
\H‘“H
Database Apache Web Server
Abstraction Layer Android Application

Figure 8: Client-Server Structure

We will distribute the entire system using a client-server architecture. One of
our restrictions is using an Apache web server to host the website. Another
restriction is will be using MySQL as the RDBMS.

A user will have the possibility to use the application, the website or both. The
application and the website will mostly have equal features. For an application to
communicate with the database, we have to provide an interface. The interface,
or a database abstraction layer, must function independent of platform.

Most of the data processing will be done on the server. The application should
primary be used to handle the presentation. By doing most of the processing on
the server, we make sure the device’s battery life is spared. The website will also
be responsible for presenting the data in the database.

31

Sprek i Gjgvik

4.1.2 Structure - Three-Tier

The system will be structured using a three-tier architecture (illustrated in
Figure 9). All of communication in the system will be using the HTTP protocol.
By implementing this structure we also ensure that the presentation layer does
not directly communicate with the data layer. The communication between
the layers are linear, and all of the communication must go through the logical
layer. This is a security measure, and ensures the integrity of the data stored in
the database. The data will always be processed by the abstraction layer before
it will get inserted into the database. If the data format is not correct, it should
not get inserted.

Presentation

We:site Application
(Wordpress (Android)
HTML/CSS)

Logical

Data_base SensorManager Map API
sl el abstraction layer (Android) (Android)

(PHP)

Data

Database GPS Sensor

(MySQL RDBMS) | | (Android device) Map data

Figure 9: Three-Tier Layered Architecture

Figure 9 represents the system structure. First we have the presentation layer
which will be responsible for providing a user interface to the user. We have two
elements in the layer: Website and Application. These different components will
be responsible for displaying the same data on different platforms.

Secondly we have the logical layer. This layer provides the communication
between the data layer and the presentation layer. The website will be hosted
on an Apache web server. We will also store the database abstraction layer on
the Apache web server for communication with the back-end server. The

32

Sprek i Gjgvik

SensorManager is the native package in Android which allows us to access the
GPS sensor on the different devices. Finally we need a map API, which will be
used to retrieve and display map from the map data source.

Finally we have the data layer. This is our source of data, such as the GPS sensor.
The map data source will be determined in the elaboration phase. At last we
have the database where all the user data is stored.

By using the three-tier structure, we provide a clean user interface to the data
stored in the data layer. A User Interface which can be used by both system users
(Administrator and End-User). We also simplify the maintenance process, as well
as simplifying the future development. It ensures loose coupling between the
layers and allows development work to be done separate in the different layers
without compromising other functions in the system. For instance we can edit
the abstraction layer without having to do changes in the application nor the
website.

33

Sprek i Gjgvik

4.2. Design

4.2.1 Application
Component Diagram

The application must to be designed generically. This means developing an
application which can be used regardless of map and pole location. This
ensures scalability. Which means if Gjg-Vard Orienteering want to expand the
project and include new areas and poles, it can be done without changing
anything in the code. Figure 10 represents the Component diagram of activities
which will included in the project.

UserActivity L csstarts>> | MainActivity <<atariass RegisterActivty
-displayVisitedPoles() : void -displayMenuf() - -displayRegistrationFormi)
_ - - i -submitRegistration()
costarts»s .~ 7 / b “\:-;Qtartsn
- / Y
- e tarts e <<starts>>
NewsActivity | | \ S .
- temList
nl.ews emLis / \ LoginActivity
-displayMews() | A
MapActivity SettingsActivity -diplayLoginForm()
ScannerActivity -map —— -preformLogin()
<astarts o= —pﬂleLIEt Isplay N mQEl::I
e — — — -storeSettings()
—sfang!:l?ode[:l -displayPoles() : void
-storeVisit() -scanPole() : void
+displayMap() : void
Figure 10: Application Component diagram
LoginActivity

Let user type credentials and submit. Should initiate a connection to the server
to verify. Should contain ability to switch to RegisterActivity if user is not already
registered.

MainActivity
View a welcome-screen to the user with menu to navigate in the application.
Should appear immediately after login is finished.

34

Sprek i Gjgvik

MapActivity
Displays the map with poles. Should also allow user to view a list of poles. Should
contain a button to start ScannerActivity.

NewsActivity
Should display the latest news for the user-selected area from the web
site.

RegisterActivity

Lets the user register for the first time. Should initiate a connection to the server
to verify details and create new user. Should also contain a button to switch to
LoginActivity, if user is already registered.

ScannerActivity

Let the user use the camera to scan QR-code on pole. User-interaction aside
from pointing the device in the right direction should not be necessary. Should
give feedback to user when QR has been scanned, or if any errors occur.

UserActivity

View information about logged in user. Should display number of poles taken
and current ranking. Should also view a leaderboard, and a list of poles taken by
logged in user.

SettingsActivity

Display the settings that the user could change, such as "enable GPS" and
"Colorblind assistant". Should also view current version of application, and a
form to submit feedback to developer.

35

Sprek i Gjgvik

Class Diagram

We will also integrate the different classes which we know of, such as Pole and
Area. There is also need for a DatabaseHandler class which will be used to
access and store the different Areas and Poles. The DatabaseHandler will be
accessed by the MapActivity component. It is also necessary to implement a
class which represents a User, hence the User class. The User class data will be
accessed by the UserActivity represented in Figure 10. We will also implement
a NewsActivity, which means we need to populate the activity with news
items, hence the Newsltem class.

-content - String

+getHeading() : String
+getDate() : date
+getContent() : String

+getArealD() : Integer
+aetAreaMame() : String

User 1 1 UserActivity MapActivity
-User : User ; n = -ma
-userlD : Integer -displayVisitedPoles() : void -po eList
-firstname : Strin 1)
-lastname : String -displayPoles() : void
-familyMembers -scanPale() :void
+displayMap() : void
+getinstance() : User
+savellserData() : void DatabaseHandler 1
+loadUserData() : void
+getPolesinAreal) Pole
+getVisitedPoles() polelD : Integer
News Activity -poleName : String
- -latitude : double
-newsltemList -longitude : double
" -poleDifficulty - Integer
Ry iews(! -arealD : Integer
! . ! +getPolelD() : Integer
0. Area +getPoleName() : String
Newsltem) +getlatitude() : double
-arealD : Integer 3
; = I] +getlongitude() : double
ﬂggedlllggtésmng R e - ring +getPoleDifficulty() : Integer

+getArealD() : Integer

Figure 11: Application Class diagram

The Component diagram (Figure 12) shows the flow of the functionality we need
to implement in the website. There will be different menus based on if you are
an area administrator or an End-User. We have elaborated the basic functionality
in the use case diagrams, and this activity diagram will be the basis of controlling
the flow in the implementation of the different features of the website.

36

Sprek i Gjgvik

4.2.2 Website

Website user

!

(Sign in

(B aor \ [Invalid login info]

(%)e’ Sign out) (Delete account

[Is user]

R Wordpress
_J > authorizes
<

[Valid user info]

[Is admin]

Display (“submit pole to A (" Delete pole
administrator database ‘ | from database |
menu Z
N y J/
Finished f
! ! (" Connectwith)
- database
_ [Finished] e N | abstraction layer
(Update user h :Jsspe:y
profile | e
S
[Valid pole info] [Invalid pole info]
(Update i Update \‘ ‘/ Warn
database database user
[Return to] [Retumn (o] v -

[Invalid QR code] [Valid QR

L

Warn user sl

Remove team
member

(

to database

(Display team

Code] administration
l page

y
t codes

[Is team admin

[Display)

ini: ator
area
A v
/7 . N\
[Retumto] | Display L [Return to]
ator
pole page F
V.
[Add pole] [Remove pole]

)\

[Is team member]\/

™\
Leave team

[Not member of team] (Create team

~
team \

p

(

N

Update
database

.

[Return to]

']

Figure 12: Websi

te Activity Diagram

We will also integrate the different classes which we know of, such as Pole and

Area. There is also need for a DatabaseHandler class which will be used to

access and store the different Areas and Poles. The DatabaseHandler will be

accessed by the MapActivity. It is also necessary to implement a class which

represents a User, hence the User class. The User class data will be accessed by

the UserActivity represented in Figure 10. We will also implement a

NewsActivity, which means we need to populate the activity with news items,

37

Sprek i Gjgvik

hence the Newsltem class.

The activity diagram (Figure 12) shows the flow of the functionality we need to
implement in the website. There will be different menus based on if you are an
area administrator or an ordinary user. We have elaborated the basic
functionality in the use case diagrams, and this activity diagram will be the
basis of controlling the flow in the implementation of the different features of
the website.

38

Sprek i Gjgvik

4.2.3 Database Abstraction Layer

DB_CONFIG DB
-DB_USER

-DB_PASSWORD +get_all_poles()
-DB_HOST +delete_pole()
-DB_SERVER +add_pole()

+get_admin_for_area()
+get_team_name()
+get_my_team()
+add_team_member()
+delete_team_member()
+is_team_admin()
+is_team_member()
+leave_team()
+create_team()
+delete_team()

PDO_CONNECT
-instance

+getinstance()

Figure 13: Database Abstraction Layer

The abstraction layer will need the three classes in Figure 16. We need a
configuration class, DB_CONFIG, to handle the connection variables. Then we
need a class, PDO_CONNECT, which that handles the actual connection. At last
we need a class which we can use to submit and request data, the DB class.
This class might be used by both the website, as well as the application.

39

Sprek i Gjgvik

4.2.4 Database

Based on the application class diagram (Figure 11) we know which classes we
need to implement in the database. Figure 14 illustrates the initial database
design. We know we need a User table to store all the user data in. Then there
is also need for an Area and Pole table to store the different areas and poles.
The different poles will have some information attached to then, therefor we
also need a table to hold the Pole information, hence the Information table. At
last we know we need to store the visits which the users makes in a table,
hence the Visits table.

(User) Area
| user_id INT PK | area_id INT PK
email VARCHAR (100) area_name VARCHAR (100)
firstname VARCHAR (100) — 1.1
lastname VARCHAR (100) 14\1
password PASSWORD .
is_administrator BOOLEAN |sT|n
L) O.I.”
has_made (Pole)
| | pole_id INT PK
| 7 area_id INT FK
0.” pole_name VARCHAR (100)
J/ 1.1 latitude DOUBLE 1.1
(Visit h longitude DOUBLE
L gr_code VARCHAR(25)
| Vvisit_id INT PK difficulty INT
i user_id INT FK
7 pole_id INT FK - - has
visit_time DATETIME 01
N I J \v
1.1 is_on Information

7 pole_id INT PK
info VARCHAR(1000)

Figure 14: Database Design

40

Sprek i Gjgvik

5. Implementation

This chapter with elaborate how we implemented each part of the system. We
used the Design and Architecture chapter as a guide on how the system should
be implemented and how to handle interaction between the different
components. The chapter is divided into four different sections: Tools,
Server-Side, Website and Application. Tools explains all the tools we have used
during the project period. All the way from signing the Project agreement to
submitting the report to Fronter. The next section explains how we
implemented the Server component of the system. The last two sections
explains how we implemented the Website and the Application.

5.1. Tools

We used BitBucket as the Git service provider, issue tracker and feature list
handler for the entire development phase. As a Git graphical client we went
with SourceTree because it supports Mac (which all of the group members
use). When it comes to IDE we choose Android Studio over Eclipse because we
wanted to try this tool since it is made explicitly for Android application
development. For unit testing in Android Studio we went with JUnit.

For the website development we went with FileZilla as the FTP client. As text
editor for the PHP files in the abstraction layer we went with Texastic because it
has great syntax highlighting and is made for Mac. As database administration
tool we went with phpMyAdmin because this is what the service provider had
pre-installed.

During the entire project phase we used Google Docs to collaborate on the
content. We used TexShop (Latex client for Mac) to finalize the thesis. To create
all our graphics and diagrams, we used Magic Draw, Creately, Omnigraffle and
Astah Professional.

41

Sprek i Gjgvik

5.2. Server-Side

5.2.1 Using the Facade Pattern

The Facade pattern is a very commonly used pattern in software development.
It is found in every piece of software attached to a hardware, for instance a
mobile device. When a user wants to turn on a mobile device, you do not want
to start the processor, the RAM and the storage medium separately. It would
take forever. Instead, a simple facade is available to the user: a power button.
Another example would be a travel website. A user do not care what is going
on in the background. The system searches different airlines, hotels and prices
for you while you wait. You simply enter the date and location of where you
want to go, and you are represented with the result (lllustrated in Figure 15).
To explain it in a simple fashion: The pattern takes many different and complex
parts of a system, and presents it in a simple manner to the user [7].

v
System searches
for user with given
data

! !

Search each airline System searches for System searches for Search each hotel
with given data different airlines different hotels with given data

Present offers
to User

Figure 15: Facade Pattern Example

In our case, we are for instance using Facade for the Administrator page where
they can do CRUD operations on poles. Instead of an administrator doing work
directly in phpMyAdmin to do all the queries manually, we created different
pages on the website for the administrator. For example, one page presents
the administrator with all the existing poles. It also provides the possibility to
do CRUD operations in a single form. By implementing the facade pattern, we

42

Sprek i Gjgvik

make sure the administrator do not ruin the different tables in the database by
doing operations directly in phpMyAdmin. It also simplifies the process of
CRUD operations on poles.

We also implemented the facade pattern in our database abstraction layer.
Since we only will be developing the Android application, someone else might
be developing the iOS application. Hence we have to develop a clean and
simple wrapper for all of the database functionality, to handle the data
processing between the application and the web server. This will also be a
security measure, because we do not want the application to have direct
interaction with the database.

Because of the cross-platform functionality, we have to use a data format
which works regardless platform. By using JSON objects as our data format, we
make sure that both Android and iOS can use our interface. It comes down to
the different applications how the provided user data from the interface are
displayed. Both platforms have to use the correct format to submit data
through the interface. The format will be elaborated in the abstraction layer
reference/documentation. This way, we provide a simple presentation to other
developers which need to access the data. By documenting the abstraction
layer we also help whomever is going to handle the feature development. This
provides both the iOS developer, us and the feature developers with a clean
facade to the database.

43

Sprek i Gjgvik

5.2.2 Database

Design

sig_wp_usermeta sig_wp_users has 0.1

7 umeta_id BIGINT(20) PK 7 ID BIGINT(20) PK - N -

7 userid BIGINT(20) FK user_login VARCHAR (60) sig_home_areas slg_areas
meta_key VARCHAR(255) has ™17 user_pass VARCHAR (64) 11 7 user_id BIGINT(0) PK 143 7 areaid INT PK
meta_value LONGTEXT €0.m— user_nicename VARCHAR(50) area_id INT area_name VARCHAR (100) [&1.1

14— user_email VARCHAR(100) .
user_url VARCHAR(100) 0. is of 14:
14 user_registered DATETIME 0.+ s In
user_activation_key VARCHAR(60)
—_— has user_status INT(1) sig_poles
0.1 display_name VARCHAR(250)
7 pole_id INT PK
sig_team_memberships I ¥ areaiid INT FK
1.4 pole_name VARCHAR (100)

§ membership_id INT(20) PK | 1.4 it DOUBLE

¢ user_id BIGINT(20) FK has_made ongitude DOUBLE

¢ team_id BIGINT(20) FK o ar.code VARCHAR(2S)

—T e difficulty INT

1.1 sig_visits

member of 7 visit_id INT PK
| 7 userid INT FK
2.% 7 pole_id INT FK
visit_time DATETIME

0.1—has—"-1

sig_information

7 poleid INT PK

sig_teams

info VARCHAR(1000)

[team_id INT PK 0.1
¢ team_owner INT FK

L
team_name VARCHAR(100) sig_admins

user_id BIGINT(20) PK —0.*
area_id INT

U

Figure 16: Database Design

Figure 16 elaborates the database design. The tables sig wp users and
sig_wp_usermeta comes with WordPress, the remaining is designed by us. In
this chapter, we will discuss this solution, and explain why we have done it this

way.

When a user creates a profile, a new row in sig_wp_users is created. One user
will also get several rows in the sig_wp_usermeta-table. Usermeta is attributes
for a user with description in “meta_key” and the actual attribute in
“meta_value”. Some of the attributes is only interesting for WordPress, but
some of them are also interesting for us. The attribute we will use from this
table is meta_key = “sig_ wp_user_level”. The meta_value of this row is an
integer from 0 to 10, where 0 is a “standard user” without administrator
privileges, and 10 is the superadmin with all rights.

If a user visits a pole on the map, a row is inserted in the table sig_visits. The
visit has a pole_id, which represents a sig_poles.pole_id. A pole can be placed
in one out of many different areas.

44

Sprek i Gjgvik

A user can also be part of one team, if so, a row in the table
sig_team_memberships is created. If a user creates a new team, a row in
sig_teams will be inserted, as well as a row in sig_team_memberships. In
sig_teams, the row “team_owner” will contain the (sig_wp_users.ID), which
represents the administrator of the team.

45

Sprek i Gjgvik

5.2.3 Abstraction layer

The abstraction layer is the layer with the database on the server on the
"inside", and the applications and website on the "outside". When
implementing an abstraction layer, there is a lot of concerns. The top priorities
are security and integrity.

One of the most basic concerns in the abstraction layer is SQL-injections. A
SQL-injection is when a user can enter malicious SQL-statements into a input
field, i.e. the username-field. If the query for instance is "SELECT FROM
sig_wp_users WHERE ID = Suser_id", the user could write "1; DROP TABLE
sig_wp_users" into the input-field. This would delete the entire user-table,
which would affect all users. Using PDO with prepared statements ensures no
SQL-injections. [8] The PDO-implementation is split out in several files. This
was done to keep the database password safe from other developers (the
original intention was to include a external development team to create
iOS-application). The class that connects to the database, 'PDO_CONNECT'
(Code Example 5.1) is placed in a separate file 'db_connect.php'. It returns a
instance of a PDO connected to the database, giving the programmer access to
the database without revealing the password.

Code Example 5.1 PDO_CONNECT Class

1 class PDO_CONNECT {

2

3 private static Sinstance = null;

4

5 // Gets a connected PDO

6 public static function get() {

7 if(self::Sinstance == null) {

8 // Connect to the file containing database—credentials

9 require_once __DIR__ . '/db_config.php';

10 Sinstance_name="mysql: host=localhost;dbname=".DB_DATABASE."; charset=utf8";
11

12 try {

13 self::Sinstance = new PDO(S$instance_name, DB_USER, DB_PASSWORD);
14 } catch (PDOException S$e) { throw Se; }

15 }

16 return self::Sinstance;

46

Sprek i Gjgvik

To get access to the database through the PDO_CONNECT, programmers can
write PDO_CONNECT::get(), which acquires an instance ready to use. Further,
the programmer can create a prepared statement, shown in Code
Example 5.2.

Code Example 5.2 Prepared Statements with PDO Class

1 function get_all_areas () {

2

3 // Prepare statement to get areas with boundaries
4 Sprepared_statement = PDO_CONNECT:: get ()—>prepare ("
5 SELECT sig_areas.*,

6 sig_bounds.bound_north,

7 sig_bounds.bound_south,

8 sig_bounds.bound_east,

9 sig_bounds.bound_west

10 FROM sig_areas

11 JOIN sig_bounds

12 ON sig_areas.area_id = sig_bounds.area_id

13 ");

14

15 // Execute the statement

16 Sprepared_statement —>execute () ;

17

18 // Fetch an array indexed by column name

19 Sresult = $Sprepared_statement—>fetchAll (PDO:: FETCH_ASSOC);
20

21 return Sresult;

2 }

All functions as the one in Code Example 5.2 is contained in the class DB. The
return-array from this particular function could for instance contain the data in
Code Example 5.3. The web site uses this class directly, but the mobile
applications cannot connect directly to the DB-class. To solve this, we have
created several php-files which connects to the DB class and processes the
result on server. The php-file that uses the code in Code Example 5.2 only
transforms the returned array from 5.3 into a JSON-formatted (as in Code
Example 5.4 array, using "print json_encode(DB::get_all _areas());. A more
complicated example with more processing on server is shown in
Section 5.3

47

Sprek i Gjgvik

Code Example 5.3 Returned Array

11

12

13

14

15

16

17

// Returned array from get_all_areas using return \Sresult:
Array (
[0] => Array (
["area_id"] =>1
["area_name"] => Gjovik
["bound_north"] => 60.825
["bound_south"] => 60.785
["bound_east"] => 10.705
["bound_west"] => 10.635)
[1] => Array (
["area_id"] => 2
["area_name"] => Raufoss
["bound_north"] => 60.735
["bound_south"] => 60.713
["bound_east"] => 10.615
["bound_west"] => 10.5875)

Code Example 5.4 Returned JSON-Array

1

{

}

// Returned json—array from get_all_areas using return

"area_id":"1",
"area_name":" Gjovik",
"bound_north":"60.825",
"bound_south":"60.785",
"bound_east":"10.705",
"bound_west":"10.635"

// Next area here

48

json_encode (\ Sresult):

Sprek i Gjgvik

5.2.4 \Website

Integrating Wordpress

During the first meeting with Bjgrn Godager (Meeting D.1) we agreed on using
Wordpress as the basis for the website. This meant that we did not have to
develop a Content Management System from scratch, which allowed us to
focus on the main features of the website instead.

The feature list was established in the Requirement Specification. By extracting
the features of the website listed in table below, we established which features
to develop first.

ID Name <action> <result> <object>

2 Display registration form on website to a website user

4 Display CRUD options for family members to a website user
5 Display CRUD options for poles to area administrator

6 Display CRUD team options to website user

11 Display form to register pole visits to website user

12 Store pole visits data provided by website user

The first feature allows the a End-User to register using the website. We did
not want any of the End-Users to be able to login using the Wordpress
Dashboard. The reason being that the Wordpress Dashboard is meant for the
administrators, ant not the End-User. We then had to figure out how to allow
users to register without using the standard Wordpress registration form. After
trying different solutions on how to implement user registration, we found that
the Buddypress plugin was the best alternative. Buddypress is a social network
plugin for Wordpress, which allows Wordpress websites to enable social
networking. There are a lot of features in Buddypress we were not interested
in, but there was also some features we wanted, such as a registration form
(Figure 17).

49

Sprek i Gjgvik

Kontodetaljer Kontaktinformasjon
Brukernavn (obligatorisk) Navn (obligatorisk)
E-postadresse (obligatorisk) E-post

Velg et passord (obligatorisk)

Bekreft passord (obligatorisk)

Figure 17: Buddypress Registration Form

Buddypress allows us to present a separate registration form, and as a bonus it
allows us to add User profile functionality to the website (Figure 18. User profiles
means that the End-User can edit their own profile without having to access the
Wordpress Dashboard. This was exactly what we wanted to accomplish. The user
can add a profile picture/avatar which can be displayed in the application along
with on the website (only visible to the user itself).

Profil Innstillinger

Vis Rediger Endre avatar

Navn

AndMark Development

E-post

dev@andmark.no

Lagre endringene

Figure 18: Buddypress User Profile

50

Sprek i Gjgvik

Another plugin we added is called "Remove dashboard access from
non-admins", which does exactly what is is called. It makes sure only area
administrators can access the Wordpress Dashboard. The End-User
(non-admins) gets redirected to first page of the website if they try to access
the Dashboard. That plugin along with Buddypress ensures that the End-User
stays out of the Dashboard, but are able to edit and control their own profile.
We also added the plugin "Exec-PHP", which allows Wordpress Pages to
execute PHP code. This allows us to implement our own php functions to the
website. This plugin was useful, since almost all of our functionality are
executed in different Wordpress Pages. There were some other alternatives,
but "Exec-PHP" allowed us to encapsulate the php code with normal start and
finish tags <?php code here; ?>. A few other plugins required either:

[PHP] code here; [/PHP] or [code=php] code here; [/code].

We also added a plugin called "JSON API". This plugin works as an APl which
allows us to download news stories, in the application as JSON format. For
instance we can simply do a request to the API:

http://www.stolpejakten.no/api/get_category_posts/?slug=gjovik

Where the slug, in this example gjovik, gets swapped with the home area set
by the user in the application.

The last plugin we added is called "Restrict Categories". This plugin allows the
website administrator (us for this year's project) to limit area administrators to
write posts in certain categories. Which means that we allow the administrator
for area Gj@vik to write news stories which regards only the users in Gjgvik. The
reason behind this is that the Customer only wanted separate news stories for
all the different areas.

51

Sprek i Gjgvik

User Interface

Since the website is a Wordpress site, we simply had to find a theme the
Customer the liked. We went with a theme called "GreenChili". It is a
minimalistic theme and it responsive, which means it works on smaller screens
such as mobile devices. Figures 19 and 20 shows the responsiveness of the

theme on different screen sizes.

Jid| 100 % .l 34% W 11:03

Sek.

STOLPEREGISTERING

Fyll inn bokstavkodene (2 tegn) til stolpene du har
besgkt i feltene under.
Trykk sa pa registrer.

Stolpekoder

o O O O d

6 7 8 9 10

g b
Figure 19: Register Poles on Phone

Sek...

Fremsiden Nyhetel Topplister Instagram Kart Applikasjone: Om Stolpejakten Slik fungerer det Kontakt Hjelp

STOLPEREGISTERING BRUKERINNLOGGING

Fyll inn bokstavkodene (2 tegn) til stolpene du har besgkt i feltene under.

Trykk sa pa registrer.

Stolpekoder

1 | | | q | q | g |
o \ 1 | g \ | | 1 |
1| | 17 | 19 | 14] | 15]]
« SISTE INNLEGG
16] | 17] | 1] | 19 | 20]]
24l 1 2l 1 2 1 ol 1 o 1

Figure 20: Register Poles on Computer

52

Sprek i Gjgvik

It was not enough to use a responsive theme to ensure our was content
presented equally responsive. We had to implement some simple CSS style to
the different pages (Code Example 5.5).

Code Example 5.5 CSS Responsive Website

<style >

<l— Row width inside parent (table) —

tr {

height:100%;

}

<l— Entire table width —>

table {

width:100%;

}

10 <l— Text field margins and width, 60% width —>

© ® N e A W N e

11 input[type=text] {

12 margin—right: 5px;: 5px;
13 width:60%;

1}

15 </style >

Since we use tables to arrange the data, we had to ensure that the table width
is 100% of the content area. In the first few weeks of development, we used
static sizes, such as width:300px. This soon became an issue regarding the
responsiveness of the website. It made the table too wide for some phones,
and to see the content a user had to change the phone orientation to
landscape. A fixed size website is outdated, since the common Internet user
might not access the websites with a computer [9]. The users are accessing the
website from different devices.

Figure 21 shows the different platforms the users are accessing the website.
The diagram a great deal of users accessing the website using iPhone, iPad and
Android. Therefor the implementation of fluid width of the website was a good
idea. The alternative would be to alienate a group of users from accessing the
website properly, by using the fixed width.

53

Sprek i Gjgvik

Windows (1141) (compatible; DotBot/1.1; http://www.opensiteexplorer.:

Unknown (67) \ @ompaﬁble; Exabot/3.0; +http://www.exabc
Macintosh (137) t ‘\ (compatible;) (4)
Linux (11) ——— = (java 1.4) (1419)

iPhone (491) /./‘\'§ (Linux; U; Android 4.1.2; GT-19100 Build)

iPad (268) / Android (481)
j CFNetwork/672.1.13 Darwin/14.0.0 (295)
Network/672.1.14 Darwin/14.0.0 (1558)

Figure 21: User Platform Statistics

Besides being responsive, GreenChili came with a few widgets we could
implement in our system. What we did was to customize the theme's login
widget to include permalinks to our Wordpress Pages. Another alternative
would have been to create our own widget. We felt that customizing the
already existing widget was the best option. The reason was that this was the
easiest and the least time consuming option. The altered widget loads menu
items based on if you are an End-User (Figure 22) and/or an Administrator
(Figure 23).

BRUKERINNLOGGING

BRUKERINNLOGGING

Figure 22: End-User Website Menu Figure 23: Administrator Website Menu

54

Sprek i Gjgvik

An Administrator needs to be able to check their visits, edit their profile and
use all of the other features equal to an End-User. The menu loads everything
under the line in Figure 23, if an Administrator is logged in. If the logged in user
is an End-User, only the menu above the line is displayed. We decided to divide
the menu as we did, because it separates the different User-levels in a simple
fashion. Which meant that we have to execute one line of code (if statement),
whether or not to display the Administrator options of the menu below the
End-User menu.

Gj@-Vard Orienteering was pleased with the final look of the website (Figure 24).
The website has a top bar menu, which allows simple navigation. The Customer
and we felt implementation of a simple navigation menu was necessary, because
according to the Customer, the technical skills of the users varies.

Sek...

Fremsiden Nyheter Instagrambilder Kart Applikasjoner Kontakt Om Stolpejakten Hijelp

BRUKERINNLOGGING

» SISTE INNLEGG

loten

Figure 24: First Page with Logged in User

55

Sprek i Gjgvik

User levels

An issue we had to resolve was how to separate users from area
administrators. Initially we tested the native Wordpress user levels, such as
Subscriber and Administrator. For instance a Subscriber can not delete posts,
but an Administrator can. Since area administrators will manage poles, and
write news stories for their area as well, we decided to take advantage of the
Wordpress feature and integrate it with our own code.

We had to combine our own sig_admins table in the database, and the native
Wordpress user levels. The reason being that Wordpress uses its own
permissions to allow/deny users access to the Dashboard. Which meant we
could not exclude the user levels completely. In our case, the only reason an
area administrator should access the Dashboard is to manage news stories. To
check if a user is a Administrator (can manage poles), we created the simple
method sig_is_admin(). The method returns a boolean if a user is
administrator or not, and the content of the administrator page is loaded there
after.

To ensure that a user is registered as a Subscriber, we used the Buddypress
registration form with a specific role (user level): [Register role="subscribers"].
Which means when a user registers, it gets registered as a Subscriber.
Subscriber the lowest user level besides "None". In our case, Subscriber and
"None" has the same limitations.

By integrating our own code into Wordpress pages, we ensure that the content
is loaded based on the correct user level. Since an area only can have one
administrator (in our sig_admins) to manage poles, we had to implement it in
this manor. Because an area can have multiple Authors (Wordpress User Level
for managing news stories), but only one "Pole Administrator". The reason
being that we decided to only let only one person at a time have access to the
poles, which means less people to do something wrong.

56

Sprek i Gjgvik

Kategorier

Alle kategorier Mest brukt

Gjevik
Toten
Raufoss

Stolpejakten

+ Legg til ny kategori

Figure 25: News Story Categories

By combining the different user levels, our own sig_admins table and the
"Restrict Categories" plugin we separate the users from the administrators,
and the area administrator from an area author. Since we use the "Restrict
Categories" plugin, we can allow Authors to only post news stories in their own
category (Figure 25). A Category, in this context, is equal to an Area.

57

Sprek i Gjgvik

Administrator functionality

A website administrator have to be able to do CRUD options for poles in their
area. We had to create a Wordpress Page which only an administrator could
access. The purpose of the page is to display the area's poles. Since each area
will have its own administrator, we had to create a functionality which loads
correct the area for each separate administrator. Figure 26 represents how it
looks on the website for the Gjgvik administrator .

Stolper Gjavik

1D NAVN LAT LONG QR DIFF

1 Totens Sparebank 60.795243 10.690124 001BE 1 [slett |
2 Toten Treningssenter 60.794141 10.687504 002BC 1 \m\
3 Gamletorvet 60.795127 10.687375 003BA 1 ‘m‘
4 Nordbohus 60.784225 10.699193 004AG 1 ‘m‘
5 Kiwi 60.785285 10.695526 005BK 1 ‘m‘
6 Sentrum Installasjon 60.783901 10.690174 006BR 1 ‘m‘
7 Gjevik @konomitienester 60.784827 10.692313 007BN 1 [slett |

Figure 26: Pole List on Website

We arrange the poles in a table, equal to most of the content we arrange on the
website. Code Example 5.6 elaborates the implementation in a Wordpress Page.
Wordpress has a method for accessing the logged in user's ID from the database.
We used this ID to check in our sig_admins table after which area

58

Sprek i Gjgvik

Code Example 5.6 Website - Administrator Functionality

1 <?php

2 <l—— Executes if the user is administrator —>

3 <?php if (sig_is_admin() === true) { ?>

4

5 <l—— Create table with all the poles in area —>

6 <table width="100%" border="1">

7 <tr>

8 <th>ID</th>

9 <th>NAVN</th>

10 <th>LAT</th>

1 <th>LONG</th>

12 <th>QR</th>

13 <th>DIFF </th>

14

15 <?php

16 echo "<th></th></tr>";

17

18 <l—— Gets the poles in area where user is admin.

19 Displays each pole as row in table. —>

20 global Scurrent_user;

2n get_currentuserinfo ();

22

23 Sresult = DB::get_poles_for_admin(Scurrent_user—>ID)

2 foreach (Sresult as Srow) { ?>

25

2 <l—— Prints pole data ?>

27

28 <form action="" method="post"><tr>

29 <td width="5%"><?php echo Srow|['pole_id"'];; ?> </td>
30 <input type="hidden" id="pole_id" name="pole_id"

31 value="<?php echo Srow['pole_id ']; ?>">

32

33 <?php

34 echo '<td width=55%>"'. Srow|['pole_name'] . '</td>"';
35 echo '<td width=15%>"'. Srow|['pole_latitude '] . '</td>";
36 echo '<td width=15%>"'. Srow|['pole_longitude'] . '</td>"';
37 echo '<td width=10%>"'. Srow]['pole_qr_code'] . '</td>"';
38 echo '<td width=5%>"'. Srow['pole_difficulty'] . '</td>"';
39 echo '<td width=5%><input type=submit

40 name=submit value=Slett ></td></tr>";

a1 </form>

a2 <?php

23 }

a } else {

45 echo "Du har ikke tilgang til denne siden!";

%}

a7 ?>

59

Sprek i Gjgvik

User functionality

The feature list contained more features we had to implement, such as family
members. We had two options when deciding on how to implement this
feature. One alternative was to do it the same fashion as Netflix. Netflix asks
"Who?s watching?", then you can select an account member. Which for us
would translate into "Who is searching for poles?". The issue we had with this,
is that it had to be one device available for each account member. This was
contradictory to what Gjg-Vard Orienteering requested. Because the issue last
summer was that not all family members searching for poles, had their own
device (such as grandparents and young children). Therefor we went with the
second option.

Legg til familiemedlemmer

Figure 27: Family Members Functionality

When a user has registered an account, one can add family members on the
website. The user becomes "parent" of the registered family member(s).
Figure 27 presents how it looks on the website. Which means when a user goes
searching for poles, the "parent" can select the family member(s) who are with
them on a pole search. This ensures that the requirement from Gjg-Vard
Orienteering is implemented as requested. A user can now include family
members in the pole search, and only use one device to get all of the visits
registered for each family member. Since Gjg-Vard Orienteering wanted to
include as many users as possible, without technology prevent user
participation.

60

Sprek i Gjgvik

Gjg-Vard Orienteering might host some competitions such as "most active work
place" or "most active school class", therefor they requested team functionality.
They also wanted to have a limit of maximum members of a team. The reason
behind it was it would be easier for them to calculate scores and statistics. The
requested size was max four members.

We first considered the group functionality included in Buddypress, which
allows users to create groups. The only main difference between a group and a
team, in this context, is the name. The issue with Buddypress's group
functionality, was that maximum members in a group was unsupported. The
group functionally could be altered in such a fashion that it only allowed a user
to member of one group. This was inadequate to meet the requirements set by
Gjg-Vard Orienteering.

Instead we decided to create our own team functionality. Figure 28 is an example
on how a team is composed in the team administrator's page.

Team AndMark
Administrator anders@andmark.no 2 Fjern
Anders Hagebakken anders@hagebakken.no 1 Fjern
Markus Brovold markus.brovold@gmail.com 12 Fjern

E-post medlem:

Legg til medlem

Slett lag

Figure 28: Team Functionality

61

Sprek i Gjgvik

The team creator becomes the administrator of that team. An administrator has
the option to add and remove a team member. While the team member has
the option to leave their current team. We also decided to add a column which
displays the team member's number of visited poles. Which in a competition
might be useful for teams to see who is lagging behind so the team can ensure
maximum effort. Our implementation of teams satisfied the requirements set
by Gjg-Vard Orienteering.

Finally we had to implement the feature which allows a user to register their
visits on the website. The initial implementation consisted of a table which
contained a textfield for each pole in a given area below each other. It turned
out to be inconvenient, because one had to scroll immensely to reach the
submit button at the bottom.

To resolve this inconvenient issue we decided to re-design the layout. We
started out with the same table as the base. Then we created a for loop, which
generates a new row in the table whenever the loop reaches five columns. The
row contains five textfields with a corresponding pole ID (Figure 20). This
implementation ensures that the user always have to write the correct pole QR
code in the corresponding pole ID textfield.

Code Example 5.7 Website - Register Poles Table

<form action="" method="post">
<?php Sresult = DB::get_poles(Suser_id); ?>
<table border="1"><tr>

<?php for (Si = Sinit; $Si <= count(Sresult); Si++) { ?>
<td><label ><?php echo S$i; ?></label>

<input type="text" id="pole_qr" size="6"

© ® N U R W N e

name="<?php echo "pole_qr_codes[".Si."][".Si."]"; ?>" value="">
10 </td>
11
12 <!—— Break row at 5 columns —>
13 <?php if (($i%5) === 0) { echo "</tr>"; } };?2>

14 <input type="submit" name="submit" value="Register">
15 </form>
16 </table>

Code Example 5.7 represents our implementation simplified. We implemented
a check if the content of pole_gr_codes[][] matches a pole in the database, then
store the visit if the submitted combination is correct. Otherwise we present
an error message to the user, informing the user that the submitted data was
incorrect.

62

Sprek i Gjgvik

5.3. Android Application

5.3.1 User Interface

When creating the main layout of the application, we had a couple of
alternatives for the in-app navigation. We could either create a home screen
with buttons arranged in a GridlLayout (Figure 29), a list with buttons
(Figure 30), or by adding icons to the ActionBar (Figure 31). The advantage of
using a home screen with buttons (either in a GridLayout or in a simple list of
buttons), is that each button gets more space for text. This way it is easier to
explain in detail what action a click would initiate. When using the ActionBar,
only a icon will be visible to the user. The advantages of using the ActionBar is
that the user would not have to go back to the main screen to change activity.
If the user for instance wants to go directly from the map to the settings, the
user can press the settings-icon on the ActionBar.

Because Android has standardized all common buttons. The Official Android
Developer Design Guide states that "Pictures are faster than words", and
enchants developers to use the ActionBar instead of buttons for changing
Activities. [10]. They further state that an applications core functionality should
always be available from the ActionBar. Therefore, we choose to add icons for
MainActivity, MapActivity, UserActivity and UserSettingsActivity on the
ActionBar. In Figure 31 the application is in MainActivity, showing the icons for
Map, User and Settings in the action bar.

Furthermore, Google suggests to make the application stand out from others
using your brands color in the ActionBar. Note the difference in Figure 30 and 31.
The green color (Hex triplet color 99CC00), also appearsin the Launcher Icon and
in a splash screen shown when the application is launching.

63

Sprek i Gjgvik

181 Sprek - not logged in : S Stolpejakten

P
DTy X)

Sy N

P Map

sl Nyheter
t @ Settings

Sosialt

v Login

e Totale besok i dag: 1043
Mest besokte stolpe: Totens Sparebank (134 besok)
@ News
Y Statistics
Figure 29: Grid Menu Figure 30: List Menu Figure 31: ActionBar Menu

5.3.2 User management

The core functionality of the application, such as visiting poles and viewing
statistics, depends on the user being logged in. When deciding how to
implement the log in-feature, there was a couple of options and matters to
consider. When logging in, the users submits a username and a password. Our
task is to ensure that the data is handled properly to minimize the risk of
leaking user-passwords. There are four steps in the login-process. The first is
the user typing the credentials into the form in the application. The second is
the application sending the credentials to to server for verification, the third is
the server verifying and processing it, and the fourth is the server telling the
application wether it is successful or not.

The first step is done straight-forward, by creating a layout which contains
EditText-fields for username and password. The password-field is declared as a
password-field, making the input censored with asterisks for each
character.

The second step is done through the FetchDataTask from Chapter 5.3.7, which
transfers the data through a HTTPS-connection to a php-file on the server.

The third step is the server receiving the data from the HTTPS-connection. The
processing on the server is explained in Code Example 5.8.

64

Sprek i Gjgvik

The fourth step is explained in Code Example 5.9. The "Url.LOGIN" is the link to

the php-file on the server (Code Example 5.8).

Code Example 5.8 Login.php

1 <?php

2 header('Content—Type: application/json; charset=utf—8', true,200);
3 // Include the DB class containing prepared statements

4 require_once(". ./ pdo.php");

6 // Include the config file to make direct use of the database.
7 require_once(". ./ wp—config.php");

8 // Include the PasswordHass class to check if the passwords are matching.
9 include_once(". ./ wp—includes/class—phpass.php");

10

1 // Get arguments from application

12 Susername = $_POST['username'];

13 Spassword = $_POST['password'];

14

15 // Get user for username

16 Suser = DB::get_user(Susername);

17

18 // Encode and decode json_array to access as array
19 Sjson_user = json_encode(Suser);

20 Sjson_decoded_user = json_decode(S$json_user, true);
21

2 // Get relevant data from query result array

23 foreach (S$json_decoded_user as Sarr) {

24 // Get the hashed password and the user id from the database
25 Spassword_hashed = Sarr['user_pass'];

2 Suser_id = Sarr['ID'];

27 }

28

29 // Use WordPress and PHPASS to create a hash of the typed password

30 Swp_hasher = new PasswordHash (8, TRUE);

31

32 // Verifies the hashes, returns 'l1' if the typed password is correct,
33 Slogged_in = (Swp_hasher—>CheckPassword (Spassword, S$password_hashed));

34

35 if(Slogged_in == true) {

36 // Send the userid back to application

37 print json_encode(Suser);

38 } else {

39 // Send userid = 0 bak to application. Not logged in.
40 SjsonString = '[{ "ID" : "0" }]°';

a print $SjsonString;

2 }

a3 ?>

65

0"

Sprek i Gjgvik

Code Example 5.9 Login Method from Android Application

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

private void

login () {

String username = m_UsernameEditText.getText().toString();

String password = m_PasswordEditText.getText().toString();

// Only try to sign in if credentials are given

if (lusername.matches("") && !password.matches("")) {

// Create ASyncTask to execute PHP on server:

FetchDataTask connection = new FetchDataTask(LoginActivity.

// Add attributes
connection.addValuePair (new BasicNameValuePair("username",
connection.addValuePair (new BasicNameValuePair("password",

// Execute query to verify credentials

String result;

try {
result = connection.execute(Url.LOGIN).get();
// Get the object from the result—string:
JSONArray jArray = new JSONArray(result);
JSONObject jsonData = jArray.getJSONObject(0);

int userld = jsonData.getint("ID");
if (userld != 0) {

this);

username)) ;
password)) ;

// Set the userld value of the singleton—instance of User.

User.getinstance (getApplicationContext()).setValues(userld, this);

finish(); // Disables possibility to go back to this activity

startActivity (new Intent(LoginActivity.this, MainActivity.class));

} else {

Toast.makeText(this ,

getResources () .getString (R.string.wrong_username_password),

Toast.LENGTH_LONG) . show () ;
}

} catch (InterruptedException e) {
} catch (ExecutionException e) {
} catch (JSONException e) {

}

} else {

// Missing either username or password.
Toast.makeText(this,

getResources () .getText(R.string.enter_values),
Toast.LENGTH_SHORT) .show () ;

66

Sprek i Gjgvik

5.3.3 Map

Choosing map technology

We had a meeting with our supervisor before we started the project planning,
where we discussed the different options for implementing the map. Our initial
plan was simply to implement either OpenStreetMap or Google Maps, and our
supervisor agreed. We found that these maps were adequate for displaying
poles in the terrain to a user. The reason being that a normal user does not
care whether or not the map is extremely detailed. Therefor we thought we
could convince the customer that either OpenStreetMap or Google Maps were
enough. Both of these services are simple to implement in Android. We
wanted a simple map because we wanted focus on the other features of the
application.

After we finished the project plan, started the next iteration. The last day of
the iteration we had a status meeting with our customer. We showed them we
had done so far and told them what we were doing the next sprint. We talked
about the map and our ideas and thoughts, about the detail level of the map
and the everyday user’s ability to read maps. The customer was quite clear that
they had to have an orienteering map, and nothing else. They wanted a link to
orienteering. Because the customer is an orienteering club, we understand that
they want an orienteering map, but we told them the everyday user (such as us)
do not care.

The map’s detail level were the customer’s concern, not the user’s. Since one of
the main goals for the project is to get people off the sofa and outside and not
teaching them orienteering, we did not see the importance of a very detailed
map. We still wanted to please our customer and told them, a bit reluctantly,
that we would fix it. They were pleased. We then got a beta map we could use
to test with.

The map from the customer was created in a software called OCAD, which is
used for drawing orienteering maps. Our challenge was to create a functional
map with GPS location and functionality to add poles. We started looking for
an Android library which supports OCAD, but we only found an OCAD
application in the Google Play Store. This application is written by OCAD

67

Sprek i Gjgvik

themselves. This did not help us much. Luckily OCAD have the possibility to
export to other formats, such as KMZ/KML (Overlay for Google Maps). We
found a library called ArcGIS which could read simple KML files and add them
as a ground overlay to a map. Since the file we got from the customer
contained thousands of polygons and polylines, it would not be able to be
processed on a normal handheld device anyway. The device would quickly run
out of memory trying to create the map.

Then we looked at other OCAD export formats, such as EPS, PDF and
Shape-files. After searching for libraries to handle geo-referenced PDF and EPS,
we found a Norwegian library from Norkart which can use something called
MBTiles. MBTiles is MapBox Tiles. We then found that MapBox has a software
called TileMill. TileMill can read Shape-files and add them to a MapBox map.
We then exported the OCAD file to four different shape files (points, area, lines
and text) and opened them in TileMill. TileMill allowed us the style our own
map using CSS-like syntax.

Code Example 5.10 TileMill CSS

#layer {
line—color: #O0AF;
line—opacity: 0.5;
line—width: 2;

[7 R N CR

After trying and failing with creating our own styles, we found that the problem
was that the layers are not layered properly. Every line were in one layer and
all the points in one layer and so on. Therefor we could not style the map in
orienteering colors. We even found a GitHub repository [11] which had done
the coloring before Another problem was that the APl from Norkart did not read
the MBTiles properly. Neither the file we created nor an example MBTiles file we
found online. Therefor we had to find some other solution.

The last thing we tried was to Export the OCAD to TIFF. Because we found that
Google Maps API v2 for Android has the ability to add image tiles as overlay.
By implementing the TileProvider and overriding a couple of functions, we had
an application which could add tiles to Google Maps. We then had to find some
software which could create the tiles for us. MapTiler was the software of choice.

68

Sprek i Gjgvik

We had to pay 175 NOK for a version that allowed us to control the maximum
and minimum zoom levels and remove the watermark. After trying and testing
MapTiler, we had success loading the orienteering map as overlays. The next
thing we did was to set the Google Map type to NONE, which just shows a white
and gray grid in background. By choosing this solution, we get all the options in
Google Maps, but with our own map. This solution works great on both high-end
and low-end devices.

The last thing we did was to add functionality to limit the viewable area to our
overlay. Code Example 5.11 is our solution. We set LatLng bounds (BOUNDS)
created from Northeast and Southwest coordinates of the map. Then we check
if the current visible region is inside the bounds, if so, it does nothing. When a
user moves the camera to a valid target inside our bounds, we simply move the
camera to that region based on x/y coordinates.

Code Example 5.11 Visible Bounds

1 private void limitVisibleMapRegion () {

3 if (BOUNDS.contains (googleMap.getCameraPosition().target)) {
4 return;

5 }

6

7 double x = googleMap.getCameraPosition().target.longitude;
8 double y = googleMap.getCameraPosition().target.latitude;
9

10 double maxX = BOUNDS.northeast.longitude;

11 double maxY = BOUNDS.northeast.latitude;

12 double minX = BOUNDS.southwest.longitude;

13 double minY = BOUNDS.southwest.latitude;

14

15 if (x < minX) {

16 X = minX;

17 }

18 if (x > maxX) {

19 X = maxX;

20 }

21 if (y < miny) {

2 y = minY;

23 }

2 if (y > maxy) {

25 y = maxy;

2 }

27 googleMap.moveCamera(CameraUpdateFactory.new LatLng(new LatLng(y, x)));

28 }

69

Sprek i Gjgvik

Legend

After the customer showed us the paper map from last summer, we noticed that
the map had a legend table. We thought that this was a cool and nice-to-have
feature. From the customer we got a single image with all of the symbols. We
implemented this in a simple scrollable view, and it looked quite bad, since it was
a single image. We then decided to contact the person that created last year’s
map brochure to get a hold of the separate images. We got sixty eight images
named after the symbol it represents. The challenge was to get these images
with the corresponding text into a ListView.

« 0045 Li148% cm 11:20

Map Symbol Info

Apent omrade

Apent omrade med spredte treer

Apent sandomrade

Avlangt hgydepunkt

Bart fjell

Bekk

Blokkfelt

Bro

Brgnn

Bruddfelt omrade med smakoller

Bygning

Dyrket mark (forbudt & ferdes pa)

Close

Figure 32: Legend

The first thing we did was to create a custom layout for a row. This row
contains an ImageView and a TextView located next to each other. The finished
product can be seen in in figure 32. Code Example 5.12 shows how we created
a pre-defined array with drawable resource IDs, and a pre-defined string-array
populated with pre-defined strings from strings.xml. This allows us to easily
translate the legend to other languages.

70

Sprek i Gjgvik

Code Example 5.12 Legend

10

11

12

13

14

15

16

17

18

19

20

21

<resources>
<! Array of drawable resources —>
<array name="info_images">
<item>@drawable/info_open_area</item>
<item>@drawable/info_open_area_with_scattered_trees</item>

<l— 66 more items .. —>
</array>
<l—Array of string resources —>

<string —array name="info_images_text">
<item>@string/info_open_area</item>
<item>@string/info_open_area_with_scattered_trees</item>
<!l— 66 more items .. —>
</string —array>
</resources>

<l— Then we have the corresponding strings defined in strings —>
<string name="info_open_area">Open area</string>

<string name="info_open_area_with_scattered_trees">0Open area with
scattered trees</string>

71

Sprek i Gjgvik

Pole altitude

After a status meeting with the Customer and Supervisor, we discussed the
features of the application. A requested feature was to get the altitude (meters
above sea level) of the pole. After searching the Internet for solutions, we
found the Google Elevation APl. One can simply provide a location using
latitude and longitude and get a calculated altitude in JSON format. The
downside of this API, is the daily quota. Every time a user downloads new
poles, the APl is accessed. Which means the daily quota will get exceeded
quite fast. To ensure that the quota was never exceeded, we had to store it in
the server database before the users could use the application. We created a
script which loads all the pole's locations from the database, then create a long
query which we send as a request to the API (Code Example 5.13).

All the altitudes are stored into the poles table in a separate column. Which
means when we download the poles in the application, we get the altitude along
with everything else. Regarding the credibility of the altitudes from the API, we
have Mjgsa as a reference point. Which we know has the altitude of 123 meters
above sea level [12]. There is a pole located by the bank of the lake, and the
altitude from the APl is 123 meters above sea level. The screenshot (Figure 33)
of the application shows the accuracy of the for mentioned pole.

2R D0 5 i 50% Cm 11:55
S Kart
‘ i
AR\, ©
juss= \‘l/\
Il
///
///
b H

Figure 33: Pole Altitude Example

72

Sprek i Gjgvik

Code Example 5.13 Pole Altitude

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

44

45

46

47

<?

?>

php

Sall_poles =

// Create the

DB :

start of the

:get_poles();

request with the URL

Surl = "https://maps.googleapis.com/maps/api/elevation/json?locations=";
Srequest = Surl;
Scomma = ",";

Sseperator =
Send = "&sensor=false&key=API_KEY";

Scounter

= 0;

"o47C";

Spole_ids = array();
// Loop through
(Sall_poles as S$pole) {

foreach

// Stores the pole ids in an array for

pole_ids []

// Append

Srequest .=

Srequest .=

Srequest .=

all the poles

= Spole['pole_id"'];

latitude , then comma,

later use

then longitude.

Spole['pole_latitude '];

Scomma;

Spole['pole_longitude '];

// If the counter is at the last request, add the separator.
if (Scounter < count(Sall_poles)—1) {
Srequest .= Sseperator;
}
Scounter ++;
}
// Add the last part of the request
Srequest .= Send;
// Get JSON data from the request result
SjsonData = json_decode(file_get_contents(Srequest), true);

SqrsCounter =

0;

// Adds each altitude to the pole database
// using elements in the pole ids

array

foreach (S$jsonData['results '] as Skey => Seval) {

Sev =

Sid

round (Seval['elevation'],

$pole_ids[$qrsCounter ++];
DB::update_altitude (Sid, Sev);

0);

73

Sprek i Gjgvik

5.3.4 Sensor Usage
Camera

Since the application needs to scan the QR codes located on the poles, we had
to implement a scanner library. In a previous project, we had some success
implementing the “ZBar Scanner” library. This library must be started using
“startActivityForResult”, then when the library is done scanning, it returns the
result to the overridden function called “onActivityResult”, in the activity which
launched the scanner library using the “startActivityForResult”. We had some
issues with this, because the library did not open / release the camera
properly, so it caused to application to crash. Therefor we discarded this library
for this project.

Another option was the ZXing library. We found that this library was too
advanced for our purpose, and we felt it was like cracking a nut with a
sledgehammer. We needed a simpler library that just read a simple QR code.
While looking for alternatives to ZBar, we found that the developer had
stopped maintaining the project, and had moved to another. This project was
called Bar Code Scanner We tested this library with great success. It opens and
releases the camera properly, and we have yet to experience the application
crashing because of it.

GPS

We decided to implement a graphical strength indicator in the map layout. The
reason behind it was whether or not a user could trust the GPS location. At least
now, the user know how good the signal is and can trust the GPS thereafter. The
Figure (34) shows the three different symbols we used to illustrate the accuracy.
Green is good, orange is medium and red is weak.

Figure 34: GPS Accuracy Symbols

Code Example 5.14 explains the simple algorithm we used to display the
accuracy. We created a simple class that implements the LocationListener
(native Android). The rest is explain the the code comments.

74

Sprek i Gjgvik

Code Example 5.14 GPS Accuracy Indicator

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

32

33

private class GPSLocationlndicator

/1l

Stored the accuracy

private int oldAccuracy;

private static final int GOOD_SIGNAL
private static final int WEAK_SIGNAL

// Everytime the ’users GPS

implements LocationListener {

public void onLocationChanged(Location

// Get

10;
20;

location changes, this

location)

{

method is

the accuracy in meters, rounds to closest meter.

int newAccuracy = Math.round(lastLocation.getAccuracy());

/1
if

If the old accurcy is different from the new location,

(oldAccuracy != newAccuracy)

oldAccuracy = newAccuracy;

/1
if

/!
if

{

10 meters or less accuracy — Good signal

(oldAccuracy <= GOOD_SIGNAL)

{

m_GPSIndicator.setImageResource (R.drawable.gps_good);

Between 10 and 20 meters accuracy — Medium signal
(oldAccuracy > GOOD_SIGNAL && oldAccuracy <= WEAK_SIGNAL) {
m_GPSIndicator.setlmageResource (R.drawable.gps_medium);

// Over 20 meters accuracy — Weak signal

if

(oldAccuracy > WEAK_SIGNAL)

{

m_GPSIndicator.setlmageResource (R.drawable.gps_weak);

}

75

called.

update the

accuracy.

Sprek i Gjgvik

5.3.5 User Data Storage
SQLite

One of many challenges with the application is that it needs to handle a user not
having Internet access. Because of this we need to store most of the data on the
device. We decided to go with SQLite, because it is very similar to MySQL which
we are familiar with and Android has great support for SQLite. The other option
would be to use a proprietary flat file to read and write from. The disadvantages
with a flat file is that one needs to load the entire file each time we need one
particular file. Using a SQLite allows us to preform a query to a table to get exactly
what we want. With a flat file one needs to get all the file content, then selecting
data from that content. It is also much simpler to delete and update a row in a
SQLlite table, rather than loading a file, removing / update that line, re-writing
the entire file and storing it to the device.

A major functionality of the application is to register a pole visit after you scan
the code. Hence we need to support pole visits if a user has no Internet access.
We divided to go with a SQLite table which stores the pole_qr_code (which is
unique in the SIG_POLES table), and a timestamp when the user scanned the
QR code. We also added a column which has a uploaded flag, which gets set to
‘1" if it successfully got uploaded, and ‘0’ if not. Then the next time a user scans
a code, it will try to upload every visit in the table which has the ‘0’ uploaded
flag. The flow chart (Figure 35) shows the order of execution.

Scanner Activity . StorE§ visited Submit data to
e QR code is scanned pole in local el R
database on device
Sets unsuccessful Upload
successfull

Sets successful
flag in database
table

flag in database
table

Pole visit is stored
in database on
external server

Try to upload
same pole at
next pole visit

Figure 35: Pole Visit Submission Flowchart

76

Sprek i Gjgvik

Code Example 5.15 shows a minimal example on how we implemented offline
storage of visits programmatically.

Code Example 5.15 Visit Poles

1 // Gets the text from the QR scanner
2 public void handleResult(Result rawResult) {
3 String qr = rawResult.getText();

s // Adds the visited ’‘poles QR code to the database
6 db.visitPole(qr);

s // The database tries to upload the visits from the table

9 // If the result string length is 0, it was not uploaded.

10 // Any other string length means it was uploaded.

u // User feedback is given thereafter.

12 String result = db.uploadPoles();

13}

14

15 public String uploadPoles () {

16 // The uploadPoles function tries to parse the result to an integer,
17 // because we return the visit_id from the database.

18 // The uploaded flag is set to “1

19 String result = ;

0 try {

21 result = uploadVisitsTask.get();

22 int number = Integer.parselnt(result);

23

u // If the parselnt throws a NumberFormatException,

»x // we know it was not uploaded, and we return a empty result string
%6 // Then we uploaded flag is set to “0

27

28 } catch (NumberFormatException e) {

29 result = "";
0}

31

32 return result;
33}

We also had to store all the pole data in a SQLite table locally on the device.
By using our simple abstraction layer, we preform simple request tasks which
downloads the data as JSON, then we parse the JSON data on the device. Code
Example 5.15 shows our create table query. This query is the same for the SQLite
database on the device and the MySQL database on the server.

77

Sprek i Gjgvik

Code Example 5.16 Poles Table in SQLite

1 private static final String CREATE_POLES_TABLE = "CREATE TABLE sig_poles “ +
2 (pole_id INTEGER PRIMARY KEY AUTOINCREMENT, " +

3 "area_id INTEGER," +

4 "pole_name TEXT," +

5 "pole_latitude DOULBE," +

6 "pole_longitude DOUBLE," +

7 "pole_altitude INT, " +

8 "pole_qr_code ," +

9 "pole_difficulty)";

Another feature of the application is the pole content. Some of the poles are
sponsored by local business, and some poles are placed on a historical
location. Therefor the poles have some content attached to them. We store
them on the MySQL database server, then when a user download the poles at
start-up, it will fetch the pole content as well. The create table query is listed in
Code Example 5.17.

Code Example 5.17 Pole Content Table in SQLite

1 private static final String CREATE_POLE_CONTENT_TABLE = "CREATE TABLE " +

2 pole_contents (pole_qr_code TEXT,

+

3 pole_content TEXT)";

We also implemented a “Download poles” preference button in the User
settings, which allows a user to always have the newest poles, because there
will be submitted new poles during the summer.

78

Sprek i Gjgvik

SharedPreferences

We use shared preferences in the application to store preferences and data
about the user, so that the application remembers important settings if it is
killed and restarted. All the preferences from UserSettingsActivity are stored
here, as well as the singleton instance of User. When a change is made to
settings or the user-instance (for instance if the user changes home-area in
UserSettingsActivity), the preferences is overwritten. In Code Example 5.18,
methods for saving to and loading from SharedPreferences is shown.

Code Example 5.18 Usage of SharedPreferences in User.class

/*SAVE TO PREFERENCES*/

private void savePreferences () {
// Open sharedpreferences for editing:
SharedPreferences. Editor editor = sharedPreferences.edit();

/* Put all data from this instance of User into the editor
* (uppercase arguments are refs to static Strings,

* used to uniquely identify a preference) */
editor.putint (USER_ID, m_Id);

10 editor.putString (USER_NAME, m_Name) ;

1 editor.putint (USER_HOME_AREA, m_HomeArea) ;

12 editor.putint (USER_UNSUBMITTED, m_UnsubmittedPoles);

© ® N U A W N e

14 if (m_FamilyMembers.isEmpty()) { // If no registered members, put 0

15 editor . putint (USER_FAMILY_SIZE, 0);

16

17 } else { // Number of members > 0

18

19 editor.putint (USER_FAMILY_SIZE, m_FamilyMembers.size ());

20 User familyMember;

n for (int i = 0; i < m_FamilyMembers.size (); i++) {

22

23 // Get User—objects from the ArraylList <User> m_FamilyMembers.

% familyMember = m_FamilyMembers.get(i);

25 // Put family member—data into the editor

2 editor. putint (USER_FAMILY_MEMBER + i + USER_ID, familyMember. getld ());
27 editor.putString (USER_FAMILY_MEMBER + i + USER_NAME, familyMember.getName());
28 }

29 } editor.commit(); } // Commit changes to preferences

31 /* LOAD FROM PREFERENCES */

32 private void loadFromPreferences () {

33 m_lId = sharedPreferences.getIint (USER_ID, 0);

34 m_Name = sharedPreferences.getString (USER_NAME, "");

35 m_HomeArea = sharedPreferences.getint (USER_HOME_AREA, 0);

36 m_UnsubmittedPoles = sharedPreferences.getlint (USER_UNSUBMITTED, O0);

38 for (int i = 0; i < sharedPreferences.getlnt(USER_FAMILY_SIZE, 0); i++) {
39 m_FamilyMembers.add (new User (

40 sharedPreferences. getlint (USER_FAMILY_MEMBER + i + USER_ID, 0),

a1 sharedPreferences.getString (USER_FAMILY_MEMBER + i + USER_NAME, null)));
2} }

79

Sprek i Gjgvik

5.3.6 Performance and Optimization

Using the ViewHolder Pattern

ViewHolder might not be a renowned design pattern by Gang of Four, but it is
quite essential in increasing performance in Android applications where lists
are used. Android has a view feature called ListView, which allows us to create
lists of objects. We are using ListView in our MapActivity to display every pole,
and news stories in our NewsActivity. We experienced quite slow performance
in both ListViews during development. At times it even made the application to
crash, even on high-end devices. Most Google search results for “poor
performance in listview”, guided us to the ViewHolder pattern. ViewHolder
radically increases performance in a listview. By creating a simple class in our
custom list adapter class. The example below shows how we implemented a
ViewHolder class in NewsActivity’s list adapter.

Code Example 5.19 ViewHolder

1 private class ViewHolderltem {

2

3 public TextView title;

4 public TextView date;

5 public TextView excerpt;

6

7 public ViewHolderltem (View view) {

8

9 title = (TextView) view.findViewByld(R.id.news_title);
10 date = (TextView) view.findViewByld(R.id.news_date);
1 excerpt = (TextView) view.findViewByld(R.id.excerpt);

By using public members, we can set and get the values without using setter and
getter methods. The security of using private members are not a concern, since
the class are private inside of a private custom list adapter class. We use a public
constructor which finds each row view element. In this case, we are using three
TextViews to display the title, date and excerpt of a news story. This means every
row in the list consists of these three views.

80

Sprek i Gjgvik

Android's getView
is called for each
list element

Display list

Using
ViewHolder

E

inflate row,
not recycling or
reusing anything

. . ,

findViewByld

- Get holder. Create
is called for each row Recycle and ViewHold
element everytime a A lDely Iewiiorer
: reuse view object
|_ user scrolls the list) L J

Yy Y

-
va\us:; :r:edwrgslfﬁrthis Set view element as isﬁcr;i::?;?tlgis
; holder for this row]
view row view element
. ’ \ /

A

Figure 36: ViewHolder Pattern example

The flowchart (Figure 36) is a course illustration of how the list adapter with
and without the ViewHolder pattern. The getView method looks like this:

public View getView(int position, View convertView, ViewGroup parent);

This function has to be implemented in order to implement a custom adapter.
It takes three parameters: position in the ListView, convertView (in this case
our custom row layout) and the parent, which is the View parent.

When the list is displayed, and the getView method is called for each element in
a row. The code below shows a simplified example of how our getView method
looks like.

81

Sprek i Gjgvik

Code Example 5.20 ViewHolder getView
1 public View getView(int position, View convertView , ViewGroup parent) {
3 ViewHolderltem viewHolder = null;

s // If we have not seen this row element before we have to inflate it:

¢ if(convertView == null) {

7 Layoutinflater inflater = (Layoutinflater)getContext ()

8 .getSystemService (Context.LAYOUT_INFLATER_SERVICE);
9

10 // Inflate from XML layout

1 convertView = inflater.inflate (R.layout.news_row, parent, false);
12

13 // Create a new ViewHolder item

14 viewHolder = new ViewHolderltem () ;

15

16 // Stores our holder

17 convertView.setTag (viewHolder);

18 } else {
19 // This view exists from before, reuse it. Get the holder.
0 viewHolder = (ViewHolderltem) convertView.getTag();

n }
2 // Here we can set the text of the different textViews in our holder:
3 viewHolder. title .setText“(News "title);

»s // The the row view is returned
26 return convertView;

27}

We start by check if a convertView is null, if so, we have to inflate it from our
layout XML file. Then we create a new ViewHolderltem, which calls the
constructor that calls the findViewByld method for each View in our custom
XML layout (news_row parameter in the inflate method). Then we store the
holder to that convertView element.

Because we set the holder of a convertView to be our viewHolder, we do not
have to inflate the row and call the findViewByld method again and again every
time a user scrolls through the list. Which is a redundant process, because
nothing has changed in our TextViews. Instead of inflating the row each time,
we inflate the element once and reuse it. After we reuse it, we can easily set
the text, for instance of the newsTitle member to the reused view. By
implementing this simple pattern, we made sure the ListViews worked very
well both on high-end and low-end devices. Which means no lagging and no
freezing during scrolling.

82

Sprek i Gjgvik

5.3.7 Network Communication

ASyncTask

The Android Developer guide suggests to use ASyncTask to perform network
operations. We implemented an ASyncTask (Code Example 5.21) as a
generalized class to be able to use it to perform different tasks. Because this
ASyncTask also will transfer the password from the device to the server, we
choose to use HttpPost instead of HttpGet, as HttpPost supports using HTTPS.
This encrypts the data to avoid man-in-the-middle attacks.

Code Example 5.21 ASyncTask

1 public class FetchDataTask extends AsyncTask<String , Integer, String> {

3 @Override

4 protected String dolnBackground(String ... params) {

5

6 HttpClient httpclient = new DefaultHttpClient();

7 HttpPost httppost = new HttpPost(params[0]);

8 url = params|[0];

9

10 try {

11

12 httppost.setEntity (new UrlEncodedFormEntity (nameValuePairs));
13 HttpResponse response = httpclient.execute(httppost);
14 jsonResult = inputStreamToString(response.getEntity ().getContent());
15

16 } catch (ClientProtocolException e) {

17 return "";

18 } catch (UnsupportedEncodingException e) {

19 return "";

20 } catch (IOException e) {

21 return "";

2 }

23

2 return jsonResult;

25 }

We can instantiate this class from wherever we to download data. Most of the
internet operations in the application is to connect to the database abstraction
layer, which consists of several PHP-files on our server. The PHP-scripts returns
a JSON-formatted array from a databasequery. If the objective is to for instance
download a users visits, the query needs to uniquely identify the user. Because
many of the operations needs one or more parameters, we created a function

83

Sprek i Gjgvik

to add parameters to the query.

Code Example 5.22 Add Parameter

1 // The list of parameters to send along with the PHP.
2 private List <NameValuePair> nameValuePairs = new ArrayList <NameValuePair >();

4 // Public method allow adding parameters from outside of FetchDataTask—class

s public void addValuePair(BasicNameValuePair vp) {

7 nameValuePairs.add(vp);

The complete call to use the FetchDataTask to get the URL to the standing of the
user is showed in Code Example 5.23

Code Example 5.23 FetchDataTask Usage

1 FetchDataTask connection = new FetchDataTask(UserActivity.this);

2 connection.addValuePair (new BasicNameValuePair("user_id",

3 Integer.toString (User.getinstance (getApplicationContext()).getld())));
4

5 String result = null;

6

7 try {

8 result = connection.execute(Url.GET_STANDING).get().trim();
9 } catch (InterruptedException e) {

10 e.printStackTrace () ;

1 } catch (ExecutionException e) {

12 e.printStackTrace () ;

13 }

IntentService

Another way to do work in Android is by extending the IntentService-class.
IntentService is used to execute tasks aside from the main thread. Like
ASyncTask, IntentService also executes work asynchronously [13]. The main
most important difference between ASyncTask and IntentService, is the
execution. Where the ASyncTask freezes the Ul, IntentService does not. In
some operations, freezing the Ul until the execution is finished is good, like
when the user executes an operation that always should finish before the user
can proceed. We use this approach for instance when a user visits a pole.
When completing the operation is not crucial, we use IntentService. In this
setting, not crucial means that aborting an operation will not have impact on
any other part of the system. An example from our application is when the

84

Sprek i Gjgvik

user opens UserActivity. In this activity, the user should be presented with
various statistics. The global leaderboard, which shows the users who have
visited the most poles, is downloaded using an IntentService. This allows the
user to navigate inside the activity while waiting for the IntentService to finish.
When the IntentService is finished, the ListView which holds the leaderboard is
updated with the downloaded data. In Code Example 5.25 we look at how we
extended IntentService in HighScoreDownloadService, and in Code
Example 5.24 we look at how this is being used in UserActivity.

Code Example 5.24 IntentService Usage in UserActivity

1 /* To create a HighScoreDownloadTask, we use an intent filter , to make sure
2 we can receive the intent when it is finished. This is done in the OnResume,
3 which is called when the UserActivity is brought to the foreground*/

4 @Override

5 protected void onResume() {

6 super.onResume () ;

7 registerReceiver (broadcastReceiver,

8 new IntentFilter (HighScoreDownloadService.TAG));

9 startService (new Intent(this, HighScoreDownloadService.class));

10 }

11
12 /* Unregister the receiver if the Activity no longer is in the foreground?*/
13 @Override

14 protected void onPause () {

15 super.onPause () ;

16 try { unregisterReceiver(broadcastReceiver);
17 } catch (lllegalArgumentException ignored) { }
18 }

19

20 /* The broadcastReceiver in the call to registerReceiver above is

21 instantiated in the class: */

22 private BroadcastReceiver broadcastReceiver = new BroadcastReceiver () {

23 // When a broadcast is received, this method is called:

24 @Override

25 public void onReceive(Context context, Intent intent) {

2 Bundle bundle = intent.getExtras();

27 if (bundle != null) {

28 int result = bundle.getInt(HighScoreDownloadService.RESULT);

29

30 // |f RESULT from the Extra is OK:

a1 if (result == Activity.RESULT_OK) {

32 // Get the result—string from the Extra:

33 String topString = bundle.getString (HighScoreDownloadService .DOWNLOADED_DATA) ;
34 unregisterReceiver(broadcastReceiver);

35 // Use a custom parser to create an Arraylist from the result—string:

36 topList = parseJSONResult(topString);

37

38 // Use a custom ArrayAdapter to create list—items, and add them to a ListView:
39 CustomArrayAdapter adapter = new CustomArrayAdapter(context, toplist);

40 statisticsListView .setAdapter(adapter);

a adapter.notifyDataSetChanged () ;

2 Y11} b

85

Sprek i Gjgvik

Code Example 5.25 IntentService Usage in UserActivity

1 // The public class that extends IntentService:

2 public class HighScoreDownloadService extends IntentService {

3

4 public static final String TAG = "HighScoreDownloadService";

5 public static final String RESULT = "result";

6 public static final String DOWNLOADED_DATA = "downloaded_data";

7 private List <NameValuePair> nameValuePairs = new ArraylList <NameValuePair >();
8 int result;

9

10 public HighScoreDownloadService () { super("HighScoreDownloadService"); }
11

12 // This method is called when startService is called in an Activity.

13 @Override

14 protected void onHandlelntent(Intent intent) ({

15 if (intent != null) {

16

17 HttpClient httpClient = new DefaultHttpClient();

18 HttpPost httpPost = new HttpPost(Url.GET_TOP_TEN);

19 String downloadResult = null;

20

21 nameValuePairs.add(new BasicNameValuePair("user_id",

2 Integer.toString (User.getinstance (getApplicationContext()).getld())));
23 try {

2 HttpResponse response = null;

25 httpPost.setEntity (new UrlEncodedFormEntity (nameValuePairs));

2 response = httpClient.execute(httpPost);

27 downloadResult = inputStreamToString(response.getEntity ().getContent());
28 result = Activity .RESULT_OK;

29 } catch (I1OException e) {

30 result = Activity .RESULT_CANCELED;

31 }

32 publishResults(result, downloadResult);

33 }

34 }

35

36 // Converts inputstream to string

37 private String inputStreamToString(InputStream is) {/*Removed in example*/ }
38

39 // Send a broadcast with the results

40 private void publishResults(int result, String downloaded) {

41

2 Intent intent = new Intent (TAG);

43 intent.putExtra (RESULT, result);

a intent.putExtra (DOWNLOADED_DATA, downloaded);

45 sendBroadcast(intent);

6 }

47

8}

86

Sprek i Gjgvik

5.4.i0S Application

5.4.1 Organizing the development

We never planned on doing the iOS application, because we did not know
anything about iOS development. During a status meeting with the customer
on the 21st of March (Meeting D.3), they discussed internally what they should
do regarding the iOS application. Since we were not doing it, they said they had
to purchase the application for a company. Because our main focus of the
project has always been on pleasing the Customer, we had a quick group
discussion. We agreed, and told them that we would try to create an
application for iOS with limited functionality, and see how far we got. The
customer was pleased to hear this, and we scheduled a status meeting two
weeks later to discuss the iOS application progress. After the meeting
(Meeting D.3) the group agreed that one should focus on finishing the Android
application, and one focus on the iOS version. Since Anders is a registered iOS
developer, we agreed that Markus should focus on finishing the Android
application, while Anders develops the iOS version.

Even though we "split" the work of the applications between us, it was
important to still to reach the deadline we initially set ourselves in the project
planning phase. Therefor we had to come up with a limited scope based on the
system requirements we created for the Android application. The first thing we
did was to select which requirements were a must in the iOS application. Then
we created a small feature list based on the one we made for Android. Even
though Android and iOS are two different platforms, we knew that the main
functionality should be the same. We quickly decided that the main
functionality should be the following:

87

Sprek i Gjgvik

ID Name <action> <result> <object>

1 Display map in application to a application user

2 Display QR Scanner in application to a application user

3 Store pole visits on device for a application user

4 Upload pole visits from device to database for a application user
5 Display pole list in map activity to a application user

6 Handle login information on device for a application user

Everything that was not listed in the miniature Feature List were considered a
bonus. We knew that time was short, since we only had two weeks before we
were to present what we were able to do with the iOS version.

Organizing the work with the iOS application regarding tools was quite easy. One
has to use Apple's XCode as IDE to develop native iOS. XCode has a Git repository
client attached to it which sets up a local Git repository in the project folder.
Therefor it was no need to create another repository on Bitbucket, but only use
the Issue tracker in the Android repository. XCode also comes with a great iOS
simulator, which supports iPhone 4, 5 and iPad devices. Of course the simulator
has some limitations, such as the lack of GPS and camera. Luckily we have access
to an iPhone 5 and an iPad mini for testing.

The next thing we had to do, was to go through the guidelines for the App
Store [14]. Submitted applications to the App Store has to follow certain
criteria before they are released, which we had to consider while developing
the application. Since Apple rejects applications with a lot of branding and
advertisement, we knew that we could not integrate any of the sponsor's logos
in the application.

We also had to focus on creating a stable and working application, since
applications with clear bugs and crashes will not be approved. This was not a
major concern, since we already wanted to create a functioning
application.

88

Sprek i Gjgvik

5.4.2 Application design

After understanding more and more about how iOS development works, we
started out setting up the initial project. Because we already had the system
architecture and design in place for Android, we knew which classes to
implement. We also knew how to structure the application thereafter. We
needed to store the data, display the data and manipulate the data. Which is
exactly how we initially set up the three-layer architecture (Figure 9). A similar
pattern to Three-tier, is Model-View-Controller, which is much used in iOS
development [15]. We decided to structure our app accordingly.

The application project was divided into three different groups, Model, View
and Controller (Figure 37). The Model, or the data group was set up to contain
all our data classes, which initially was the User and the Pole classes. We then
added the controllers, such as a database handler class. This class was created to
handle most the communication between the View and the Model (database),
since the majority of our data would be stored in the SQLite database. At last
we added the known view classes to the view group, for instance the Map and
the User views. This ensured us a simple, but efficient structure in our Xcode
project.

Controller

DatabaseHandler

Notify User interaction

Update Update

Model View
User UserView
Newsltem MapView
Pole NewsView
SocialView
StatisticsView

Figure 37: Model View Controller Application Structure

89

Sprek i Gjgvik

5.4.3 Map

After we set up the initial project and familiarized us with the App Store
guidelines. Then we started testing different functionality of iOS, getting
familiar with Objective-C (programming language for iOS) and Cocoa Touch
(GUI framework for iOS). The most important feature was to display the map
with the corresponding poles. We then again had to figure out what options
there was for displaying the map with poles in our map view. The first idea we
had was to do the same thing we did with the Android version, where we used
Google Maps and add the tiles as an overlay. The second option was to use
Apple's own MapKit then adding the tiles as an overlay. As a third option, we
discussed using Open Street Map, which also supports tile overlays. We tried
using Google Maps, but Apple's MapKit was much simpler to integrate into our
iOS project. There was no need for API-keys and additional libraries, we only
had to include the MapKit framework. One concern, which we also shared with
the Android Application, was offline support. We had to discard both Google
Maps and MapKit because of limited offline support.

After conducting more research, we found MapBox SDK for iOS. Since we already
were familiar with MapBox (TileMill and mbtiles), we found this interesting. The
MapBox SDK had support for mbtiles, which meant we could use MapTiler to
create the mbtiles. MapTiler was also used to create the tiles for the Android
application. MapBox SDK with mbtiles meant that we can have our own map in
the application available offline. Another great feature is that the visible area in
the application is only our own map. We did not have to limit any visible area,
which we had to do with Google Maps in the Android application.

Code Example 5.26 shows how we load mbtiles to our application. The map
loads different map based on each user's home area. For instance, if a user has
homeArealD set to 1, gjovik maps get loaded. Which means that adding a new
if-statement is the only thing that has to be added to include a new map for

and new area.

90

Sprek i Gjgvik

Code Example 5.26 Loading mbtiles

RMMapboxSource *tileSource = [[RMMapboxSource alloc] initWithMapID:@"gjovik"];
RMMapView *mapView = [[RMMapView alloc] initWithFrame:self.view.bounds

A W N e

andTilesource:tileSource];

The next step after integrating our own map, was to download the poles from
the database and store it on the device. Since we already used SQLite for
Android, we felt this was a natural choice for iOS as well, because we can
implement the same logic and the same database queries. We started out with
a simple and self-written database handler which did not support features like
transactions, which lead to an unstable application. Insert queries were
executed our of order and caused crashes, which made us re-structure our
DatabaseHandler class. We re-wrote some of the code to use transactions,
which lead to a more stable application, but we still had a few bugs. Statements
were still happening out-of-order which led to the application crashing.

We went online for tips on how SQLite could support out-of-order transactions
and multi-threading. Most of the online tutorials recommended the
FMDatabase framework. FMDatabase handled all of our issues and had a query
"queue" system. We re-wrote the DatabaseHandler one final time including
FMDatabase instead. This time the application functioned nicely, but still with
a few bugs. After reading more about FMDB's "does and dont's" and by
implementing the correct methods, the application worked like a charm.

After downloading and storing the poles, the next step was to add
poles(markers) with different colors based on the pole difficulty to the map.
MapBox has support for custom markers, which allowed us to create different
markers with different colors. The only thing we had to implement was two
methods.

Every item which is added to the map, is called a layer. A layer can be
everything from an polygon to a marker. For instance, we implemented a
for-loop, which iterates through the all poles and adds them as layers to the
map (Code Example 5.27).

91

Sprek i Gjgvik

Code Example 5.27 Add Poles to Map

10

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

// Creates an immutable (read—only) array with the poles from the
//database in a selected area.
NSArray* poles = [databaseHandler getAllPolesFromDB];

// lterates trough every pole in the array
for (Pole* pole in poles) {

// Gets the latitude and longitude of a pole, then creates a
// coordinate to where the pole should be placed
CLLocationCoordinate2D coord = CLLocationCoordinate2DMake (pole.lat,
pole.Ing);

// Creates an annotation layer (will soon be turned into a marker)
// based on the coordinates, and the pole name as title.
RMAnnotation *annotation = [[RMAnnotation alloc]
initWithMapView : mapView coordinate:coord andTitle:pole.name];

// This annotationType is used to identify the unique marker,
// and will be used in the tapOnCalloutAccessoryControl method
annotation.annotationType = pole.qrCode;

// Then reads the pole difficulty , and adds another identifier
// "userinfo", which will be used in the layerForAnnotation method
if ([pole.difficulty isEqual: @'1"]) {

annotation.userinfo = @"green";

if ([pole.difficulty isEqual: @"2"]) {
annotation.userinfo = @"blue";

if ([pole.difficulty isEqual: @'3"]) {
annotation.userinfo = @"red";

if ([pole.difficulty isEqual: @'4"]) {
annotation.userinfo = @"black";

// This will trigger the layerForAnnotation method
[mapView addAnnotation:annotation];

The method addAnnotation adds a pole to the map, which fires the

layerForAnnotation method. Our layerForAnnotation implementation is in

Code Example 5.28. We also wanted to implement a pole list similar to the one

92

Sprek i Gjgvik

in Android, where a user can select a pole and the map zooms to that pole. The
issue we had with this functionality was that the information view (callout) did
not appear. After reading the documentation we discovered the
selectAnnotation method, which launches the callout when a pole is selected
in the pole list. For the callout to work, we had to set marker.canShowCallout =
YES.

Code Example 5.28 Create Marker Layer

— (RMMaplLayer *)mapView :(RMMapView *)mapView
layerForAnnotation :(RMAnnotation *)annotation {

RMMarker *marker;

// Here we use the userinfo is accessed to create a marker

1

2

3

4

s // Creates a marker object.

6

7

8

9 // with different colors based on the difficulty.

10 if ([annotation.userinfo isEqualToString :@"green"]) {

11 marker = [[RMMarker alloc] initWithMapboxMarkerimage :@" marker"
12 tintColor:[UlColor greenColor]];

13 }

14

15 if ([annotation.userinfo isEqualToString :@"blue"]) {

16 marker = [[RMMarker alloc] initWithMapboxMarkerlmage :@"marker"
17 tintColor:[UlColor blueColor]];

18 }

19

20 if ([annotation.userinfo isEqualToString :@"red"]) {

21 marker = [[RMMarker alloc] initWithMapboxMarkerlmage :@"marker"
2 tintColor:[UlColor redColor]];

23 }

24

2 if ([annotation.userinfo isEqualToString :@"black"]) {

2 marker = [[RMMarker alloc] initWithMapboxMarkerimage :@" marker"
27 tintColor:[UlColor blackColor]];

28 }

29

30 // Then adds a "info button" to the view when you click a marker.
31 marker.rightCalloutAccessoryView = [UlButton buttonWithType:

32 UlButtonTypelnfolight];

34 // We display the title / pole name and the info button.

35 // When a marker is clicked, the tapOnCalloutAccessoryControl
36 // method is fired.

37 marker.canShowCallout = YES;

38

39 // Returns marker overlay.

40 return marker;

a}

93

Sprek i Gjgvik

When a user clicks the marker on the map, the following method will get
fired:

- (void)tapOnCalloutAccessoryControl:(UlControl *)control forAnnotation:
(RMAnnotation *)annotation onMap:(RMMapView *)map

This method displays the pole information such as the name, altitude and
content (if any). We use the annotation.annotationType (on our case is the QR
code) to identify the pole, so the corresponding altitude and content is
displayed for the correct pole. For instance the method in example 5.29,
queries the SQLite POLES table to get the altitude for the pole with the
corresponding QR code by accessing annotation.annotationType.

Code Example 5.29 Get Pole Altitude from Database

2 // Retrieve pole altitude
3 NSString* poleAltitutde = [databaseHandler
4 getPoleAltitude :annotation.annotationType];

6 // Implementation:
7 — (NSString*) getPoleAltitude: (NSString*)poleQR {

9 // Open the database to interact with it

10 [database open];

11

12 // Create select query based on the QR code

13 NSString *querySQL = [NSString stringWithFormat:

14 @"SELECT ALT FROM POLES WHERE QRCODE=\"%@\"", poleQR];

16 // Executes query and the result is returned.
17 FMResultSet *results = [database executeQuery:querySQL];

18

19 NSString* altitude;

20

21 // 1f a result is found, get the string for column with name "ALT"
2 if([results next]) {

23 altitude = [results stringForColumn :@"ALT"];

2 }

25

2 // Close the database so it can be accessed with other methods
27 [database close];

28

29 // return the altitude

30 return altitude;

31}

94

Sprek i Gjgvik

Regarding the marker look, the MapBox SDK supplies different images in their
Maki icon set [16]. The following line of code shows how to set a marker with a
Mapbox marker image:

RMMarker marker = [[RMMarker alloc]
initWithMapboxMarkerlmage: @ "marker"
tintColor:[UIColor redColor]];

We decided to use the "marker" icon, because it is it is similar to the marker icon
in many other maps, such as MapKit and Google maps. All this code and graphics
results in the final map view in Figure 38.

7 . Carrier & 1:38 PM v .
STOLPER ’ QR KART QR

1 Totens Sparebank
Besokt

Gjovik
Glo-vard 0:4ng 60.795243 10.690124

2 Toten Treningssenter
60.794141 10.687504

3 Gamletorvet
60.795127 10.687375

4 Nordbohus
60.784225 10.699193

5 Kiwi

60.785285 10.695526

6 Sentrum Installasjon
60.783901 10.690174
7 Gjovik Gkonomitjenester

60.784827 10.692313
8 Mustad Neeringspark
60.790366 10.673406
9 Stein i Brusvefaret
60.790404 10.66783

Aamodt tradtrekkeri

N ®E S

Statistikk Bruker Kar Nyheter Sosialt Statistikk

&8.

Nyheter Sosialt

Bruker Kart

Figure 38: Final Map View Figure 39: Final Pole List View

The finished map view contains three different subviews, which are called
segments. The first segment contains the map. Next segment contains the list
of poles in the selected home area (final pole list view in Figure 39). The final
segment contains the QR scanner (elaborated in Section 5.4.5).

95

Sprek i Gjgvik

5.4.4 User data

Before we could get started with the QR scanner item from the Feature List, we
had to implement the user functionality. Which meant creating a login view,
fetch the user information from the database and storing it. iOS has an
equivalent to Android's SharedPreferences, which is NSUserDefaults. By using
this mechanism, we can store the user information so the user do not have to
login each time the application starts. Since it is only one user logged in at a
time, we felt it was unnecessary to create a database table to hold just a single
user row, which is why we went with NSUserDefaults instead.

After hard-coding user-test data to get familiar with NSUserDefaults, the login
view was created and the login connection to the database was successful. We
downloaded the user data in the same fashion as we did on Android, and stored
them in NSUserDefaults. The next step was to create a database table for storing
the user's visits, both from when a pole QR code is scanned, and when they
are downloaded from the web server. The method for uploading the user visits,
which has yet to be uploaded, are in Code Example 5.30. It is a lot of iterating
and conversion between data types, but it ensures that the result is a valid JSON
string, which can be processed on the web server.

96

Sprek i Gjgvik

Code Example 5.30 Upload User Visits

© ® N O U A W N e

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

// Open database for selection
[database open];

// Create a mutable (read—write) array to store the results
// from the visits table.
NSMutableArray * objects = [[NSMutableArray alloc] init];

// Selects the pole ID, QR code and the time the pole was visited,

// where the uploaded flag is 0/NO
NSString *querySQL = @"SELECT ID, QRCODE, VISITTIME "
"FROM VISITS LEFT JOIN POLES USING(QRCODE) WHERE UPLOADED = 0";

// Executes the query and returns the result
FMResultSet *results = [database executeQuery:querySQL];

// lterates if any results
while ([results next]) {

// Create a mutable array to store each row of result
NSMutableArray* temp = [[NSMutableArray alloc] init];

// Gets the ID, VISITTIME and QRCODE columns and
// adds them to the temp array

temp[0] = [results stringForColumn:@"ID"];
temp[1l] = [results stringForColumn :@"VISITTIME"];
temp[2] = [results stringForColumn :@"QRCODE"];

// Then sets the uploaded flag to 1/YES
[database executeUpdate :@"UPDATE VISITS SET
UPLOADED ='1' WHERE QRCODE = ?", temp([2]];

// Adds temp array to the array of results
[objects addObject:temp];
}

// closes the database so it can be used in other methods
[results close];

// Then create a dictionary from that array which will be turned
// into a valid JSON string to be uploaded to the database.
NSMutableArray *visits = [[NSMutableArray alloc] init];

// Iterates through the visit arrays, adds them to the dictionary.

for (NSArray* t in objects) {

NSMutableDictionary *jsonDict = [[NSMutableDictionary alloc] init];

[jsonDict setObject:t[0] forKey:@"pole_id"];

[jsonDict setObject:[[User getinstance] userID] forKey:@"user_id"];

[jsonDict setObject:t[1] forKey:@"visit_time"];
[visits jsonDict];

}
// Creates a JSON data object from the directory of objects

NSData* jsonData = [NSJSONSerialization dataWithJSONObject: visits
options: NSISONWritingPrettyPrinted error:&error];

// Creates the final JSON string from the valid JSON data
NSString* visited = [[NSString alloc]initWithData:jsonData
encoding : NSUTF8StringEncoding];

// Database connection is then made and the results uploaded

97

Sprek i Gjgvik

Figure 40 illustrates how the final user view looks. We have a profile picture
which the user can provide by using the website. Next we have the number of
visited poles-counter, which sums up all the visits in all the areas. Below the
counter, we have single area counters which shows how many you have visited
in that particular area. The menu has three menu items. First item is the user's
latest visits in a scrollable list. Second item is the top ten standing overall. Third
item is the team activity, which members have taken which poles with
corresponding date.

Carrier ¥ 10:34 AM [Carrier 11:28 AM —

Nils Nisen Avbryt Rediger Profil Lagre

ﬂ/ OMRADE

Besgkte stolper 1

Gjovik

Q % FAMILEMEDLEMMER

Markus Brovold

Den 29. April tok du stolpe Totens Spare...))
@ Malin Granheim

B Logg ut

Figure 40: Final User View Figure 41: User Settings View

The top right item of Figure 40 is the "Edit Profile" button. In the Profile settings
the user can switch home area and include family members in their pole search.
The Figure 41 shows how the Ul looks. We have the option to store ("Lagre")
this changes, but also discard ("Avbryt"). Which means unless a user presses the
store button in the settings menu, it does not save the changes. To implement
the cancel changes feature, we had to store the original data whenever a user
presses the "Edit Profile" button. Code Example 5.31 shows a simplified version

98

Sprek i Gjgvik

of the implementation. When a user changes something, the value is stored in

the database and/or the NSUserDefaults. We only restore the original data if the

user presses cancel. Which means when a user changes something, and then

presses "Lagre", nothing really happens, because the value changes is already

stored.

Code Example 5.31 Save/Cancel User Setting

© ® N U AW N e

27

// In the .h (interface)

file

@interface SettingsViewController {

restoreSelectedFamilyMembers;

NSArray*

NSString* restoreSelectedHomeArealD;
}
// In the m. (implementation

// This method gets

// Which stores all

— (void) storeOriginalData
// Stores the home area
restoreSelectedHomeArealD

// Stores the

// This method gets fired
— (void)restoreOriginalData

// Restores the home area

[[NSUserDefaults standardUserDefaults]

// Restores all the
for (NSString* member in

[[DatabaseHandler

}
/1

for

If any changes done in
(NSString* member in

if

[[DatabaseHandler getinstance]

}
}
}

fired when a user
the original

if the user

getlnstance]

(![restoreSelectedFamilyMembers

file)

"Edit Profile"
variables.

presses the button.

data in the class

{

= [[NSUserDefaults standardUserDefaults]
objectForKey :HOME_AREA_ID];

selected family members
restoreSelectedFamilyMembers =

[[DatabaseHandler getinstance]
getSelectedFamilyMembers];

presses "Cancel".
:(UlBarButtonltem *)sender {

setObject:restoreSelectedHomeArealD
forKey : HOME_AREA_ID];

selected family members

restoreSelectedFamilyMembers) {

updateFamilylncludedInTrip : member :@"YES"];

the selected family table, restore to original state.
[[DatabaseHandler getinstance] getFamilyMembers]) {
containsObject :member]) {

updateFamilylncludedInTrip :member :@"NO"];

99

Sprek i Gjgvik

5.4.5 QR scanner and pole visits

Since the database table and logic all ready was in place in the Android
application, we wrote similar logic and queries for Objective-C. The next step
was to find a stable QR scanner solution. Since iOS 7, Apple added QR reader
functionality to their AVFoundation framework. After following a tutorial, we
had successfully implemented our own scanner without any external libraries.
Next we created our own QR codes to test with. We then successfully read the
code, stored it in our local database as a visited pole.

Since storing visits locally on the device was not enough, we had implement
upload functionality to our database as well. Therefor we decided to do it in a
similar fashion as we did on the Android version. The iOS implementation
(simplified) is listed in Code Example 5.32. We validate the scanned QR Code
with the QR codes stored in the device's local SQLite database. Then we either
submit the result (if it is valid), or present the user with a suitable error
message.

Code Example 5.32 Scan QR Code

// Gets checks if scanned object is a valid QR code in local database
NSString* qrCode = [[[DatabaseHandler getinstance]
getSinglePole :[scanObject stringValue]] m_PoleQRCode];

// If valid QR code
if (qrCode) {

© ® N U AW N e

// Add pole to visited table using QR Code
10 [db visitPole :qrCode];

11

12 // Inform the user that the visit went well
13 [result setText: @"Stolpen ble lagt inn!"];
14

15 // Stop the QR Code reader, and

16 [self stopReading];

17

18 // Tell the database to upload the visits to server
19 [[DatabaseHandler getlinstance] visitPoles];
20

21 // Else not valid QR code

2» } else {

23

24 [/ Inform the user

s [result setText: @"Ugyldig QR—kode!"];

26

27 // Re—restart the QR code reader

8 [self startReading];

29}

100

Sprek i Gjgvik

5.4.6 Supported devices

The application is created for iPhone 3GSS (which is required if we want our
application to be accepted by Apple), 4, 5/5s and iPad (both original and mini).
We decided on doing an universal application, because it is not hard to change
an iPhone Storyboard to an iPad Storyboard. By making a copy of the excising
Storyboard and altering two lines of code, we get a Storyboard for iPad. Then
we had to alter the Ul elements to fit the iPad screen (explained in Code
Example 5.33). This "hack" came from a StackOverflow post ([17]).

Code Example 5.33 Convert iPhone Storyboard to iPad Storyboard

<!— Change —>
targetRuntime="i0S.CocoaTouch"
<l— to —>

targetRuntime="i0S.CocoaTouch.iPad"

<!— Then change —>
<simulatedScreenMetrics key="destination" type="retinad"/>

© ® N e U A W N e

<l— to —>

10 <simulatedScreenMetrics key="destination"/>

The target iOS version is 7.0 since the majority of iOS users are now using iOS
7. According to Apple ([18]), 87% of all Apple devices are using iOS 7. Equal to
the Android application, the functionality should not suffer at the expense of
supportability. We have included some functionality which is unsupported in iOS
6 and below, such as the QR scanner functionality from AVFoundation.

101

Sprek i Gjgvik

5.4.7 Graphics

Graphics on iOS requires two images, one for normal screens, and another for
retina display. It is quite simple to implement these images, we simply have to
add one image for standard resolution and one for retina. The retina must have
twice the resolution as the normal image. All you have to do is, to add "@2x"
before the file extension for a retina image. For instance "user.png" for normal
screens, and "user@2x.png" for retina display. To add the image to our Ul, we
simply have to call:

Ullmage* userimage = [Ullmage imageWithName:"user"];
Then iOS loads the correct image for the corresponding screen
resolution.

Figure 42: Normal Display Figure 43: Retina Display

All of the icons used in the application is provided by lcons 8 [19] and is free
to use. The set comes in five different sizes for most icons. For instance when
we want a button with icon size 50x50 pixels, we had to include the 50x50 icon
to support normal screen and the 100x100 pixel to support retina display. Both
resolutions is provided by the Icons 8 pack (Example icons in Figure 44).

& <

News Line Chart
Feed Out Feed In

Figure 44: Icons 8 Example Icons

102

Sprek i Gjgvik

5.5. Deployment

The deadline from Gjg-Vard Orienteering were the launch date of the project,
which was the 10th of May 2014. We finished the applications and submitted
both to the application stores about a week before the launch. The iOS
application had some review time, and was luckily approved just in time on
May 9th. Regarding the Android application, there was no review time since
Google Play allows application submission without a review. To prepare for the
launch, we had to move the entire system from our own private server which
we have used for testing, to the server Gjp-Vard Orienteering had
acquired.

This operation to move the the Abstraction Layer was painless. Since we set up
an class to handle the host information, we only had to change the username
and password to match the new server. We also initially set up the complete
database with all the tables on our own server. PhpMyAdmin allows export of
a database, which worked perfectly. We only had to login to the new server
and import the old tables into the new database using phpMyAdmin. Both the
export and import operation with assurance testing took approximately 10
minutes.

The next step was to change the URLs in both of the applications. It turned out
to cause a lot of havoc, because we did not start out correctly during the
development phase. We were foolish enough to hard-code the URLs inside
different methods in the Android and iOS application. This is not good practice.
To solve this once and for all, incase we had to move it to another server. We
created a constants class which holds all of the URLs (Code Example 5.34). This
solution is what we should have implemented initially. We have certainly
learned from this experience. It would have saved us a lot of time with the
deployment, if the URLs class was implemented originally. We could easily just
altered the DOMAIN string to the correct domain, and upload the files to the

new server.

103

Sprek i Gjgvik

Code Example 5.34 URL Class

public class Url {
// Domain URL
private static final String DOMAIN = "http://stolpejakten.no/";

// File URL

public static final String GET_AREAS

public static final String GET_POLES = DOMAIN + "abstractionlayer/get_poles.php";
}

DOMAIN + "abstractionlayer/get_areas.php";

© ® N e U A W N e

The last step and the most time consuming was to move the website to the
new server. One can not move Wordpress files to a new server and new
domain without having to deal with a few issues. The first thing we had to do
was to update the .htaccess-file. To alter this file we had to go into the
Wordpress Dashboard and update the "Permalinks" setting, which updates the
.htaccess-file. Permalinks is a permanent link (URL), which means it never
changes by it self, and is often used on blog sites such as Wordpress. An
example is the permalink for the different leaderboards:

http.//www.stolpejakten.no/topplister-for-ulike-omrader/.

If we did not complete this step, none of our pages with work. After the
permalinks was in place, we had to add two lines in the wp-config file:

update_option('siteurl’, 'http://stolpejakten.no");
update_option('home’, 'http://stolpejakten.no’);

Then we had to load the website once, go back into the wp-config and remove
the two previously inserted lines. After this was taken care of, all we had to do
was to update the website URL inside the Wordpress Dashboard. This entire
process was not the most time consuming, but the process of figuring out why
website did not function properly. Such as the website redirects to the old
page and figuring out why and how to correct it. The migration took about half
a day's work.

104

Sprek i Gjgvik

The fun part is that Gjg-Vard Orienteering at first wanted us to use
stolpejakt.no. Then they told us to use stolpejakten.no instead. Which meant
we had to repeat the entire process once more time to get it to the correct
server and domain. At least this time, we knew exactly how to do it, so it luckily
took us about half an hour.

When the website and database were up and running at the correct server,
under the correct domain, we allowed some of the members of Gjg-Vard
Orienteering to test the system. After the customer had tested the system,
some eager users already downloaded the applications and registered on the
website on the the 9th of May. Since the system was up and running a few days
before launch we concluded that the deployment, even though we had to do it
twice, was a success.

105

Sprek i Gjgvik

6. Testing and Quality Assurance

6.1. Unit testing

The first thing we started with was the requirements, then we finished the
design. After the design was finished, we turned the design into code. For each
new feature we completed, we had to test the feature in the system. The
problem with the manual testing we executed is that it is ineffective. If this was
a paid assignment, it would have been cheaper for customer if we had
automated unit tests, since developer time is expensive [20].

We wanted to implement automated tests in the development phase. Which
for us meant to write the test before we write the code. It turned out that this
was easier said than done. We were not strict enough to implement unit tests in
the development phase. The idea was to implement both end-to-end and single
method unit testing. Unit testing is simply put, the testing of functionality and
parts (units) of the code. This testing practice allows a developer to check if the
system works as excepted, without having to do any manual testing.

Unit tests would help us check if our code logic is correct, and it helps us as
developers to write effective code that is easy to test [21]. Unit tests would
therefor ensure a more efficient development phase, if we knew how to
properly implement it. This was the main reason why we did not implement
unit testing. We did not know to execute it. Instead we agreed that we would
focus on the development (write code), and create an application and website
which works well.

Unit testing would also help us regarding scaleability. If we were to add new
maps, more areas, more poles and more content, we could have used the
automated test cases to check that scaling the database did not affect the
current working system. Because we do not have any automated tests, we had
to check manually if new parts of the system functioned properly. To simplify
our development phase, what we could have done is to implement a few
simple end-to-end tests. Figure 45 illustrates how the flow of our potential
end-to-end unit test could function.

106

Sprek i Gjgvik

Simulate scan
result

If the pole is valid,
the devices stores
the visit in local
database

Present developer
with test result

Device uploads visit

Y

J _

Abstraction Layer
connects to database

J

\4

Abstraction Layer
tries to insert visit

Device reads
the result

r

A

Abstraction Layer
returns result to
device

N\

A

Database returns
attempted
visit result

Visit successful,
resultEquals is
set to true

—

assertEquals is true
] and end-to-end test
was successful
.

Yes

Visit unsuccessful,
resultEquals
remains false

R E—

assertEquals is false
and end-to-end test

was unsuccessful

_l_J

Figure 45: End-to-End Example Test

The end-to-end test could have been used to ensure that the communication
functions between the three different layers (elaborated in Chapter 4) of the
system. Code Example 6.1 elaborates how we could have implemented a simple
test case in Android, to test a complex part of the system. The same test logic
could also been added to the iOS application.

107

Sprek i Gjgvik

Code Example 6.1 Register Visit Test from Application to Server

10

11

12

13

14

15

16

17

18

String poleQr = "ASDF";
databaseHandler.visitPole (poleQr);

// Database abstraction layer returns the row ID of the insert

String result = databaseHandler.uploadVisits ();
String assertResult = "0";
boolean resultEquals = false;

// 1f result is not empty, upload was successful.
if (lassertResult .equals(result)) {
resultEquals = true;

// |f true, test is OK.
assertTrue (resultEquals);

Instead of implementing the for mentioned unit tests, we used a lot of Logger

functionality in Android Studio, and in XCode. Loggers prints text to a console

in the respective IDE. For instance when we were testing to see if the String

result = databaseHandler.uploadVisits(); functioned properly, we printed the
content of the result as such: Log.d("RESULT", result);. By doing it in this
manor, we had to check the console to check if the string was correct instead

of testing it automatically.

108

Sprek i Gjgvik

6.2. Beta testing

Since we as the developers were the alpha testers, the customer became the
beta testers. A week before the project started, we opened the website for the
customer to register and test the functionality of the website. We also
submitted the Android application to Google Play. Which allowed the customer
to download and test the functionality of the application before launch. Then a
day before launch, the iOS application got accepted to the App Store, which
then allowed the customer to test the application as well. By including the
customer a few days before the users, helped ensure that the system functions
properly after launch.

There were a few bugs and some unexpected behavior. Which might have been
solved earlier if we had implemented unit tests. There was a short period for
the customer to test before the project launch, which meant a few hectic days
of bug fixing and manual testing. Then again, this might have been avoided if we
had implemented automated tests. What we did learn during the beta test, is
that next project we are involved in will include automated tests.

Since we did not implement proper tests, we still wanted to stress-test the
system. To stress-test the system we decided to let the users try the system
over the launch weekend (10th and 11th of May 2014). Over the weekend we
could use the feedback from the users to improve and ensure the quality of the
system.

109

Sprek i Gjgvik

6.3. User feedback

Since the project started on the 10th of May, the user mass has increased rapidly
each day. On the 14th of May the database contains 1474 members including
family members (Figure 46), and 10146 registered pole visits (Figure 47).

select count(*) from sig visits

select count(*) from sig_wp_users

+ Innstillinger

+ Innstillinger count(*)
count(*) 10146
1474

Figure 47: Number of Pole Visits in
Figure 46: Number of Users in Database Database

Since we implemented a contact form on the website, and a feedback option in
the Android Application, the users which have experienced difficulties has
contacted us. If an issue received affected more than one user, we have
corrected it, and re-submitted it to the respective store. We came across two
major issues, one became of user feedback and another because our own field
test (elaborated later in the chapter).

Two examples of issues from users regarding the Android application, was the
offline storing of the pole visits and the QR scanner crashes with Sony devices.
The offline storage the of visits, turned out to only upload the latest visit when
the user decided to upload unsubmitted poles. This reason behind this issue, was
an JSON Object placed on outside of the for-loop, and not inside. Which means
that the visit got overwritten with the next visit, and the last visit remained. The
next issue was the QR scanner crash on Sony devices. It turned out to be an
issue with Xperia models and the autoFocus-functionality. To fix this issue, we
had to create a separate activity (Figure 48), which is launched if a device is a
Sony model (Code Example 6.2 explains the implementation).

110

Sprek i Gjgvik

Register visit

Velg stolpe

y|
Skriv inn QR

XX

Registrer

Figure 48: Manual Visit Activity

Code Example 6.2 QR Scanner Issue with Sony Devices

1 private void setupScanButton () {
2 // Get manufacturerfinal
3 String manufacturer = android.os.Build . MANUFACTURER;

s // Set up onClick for button
6 Button scanButton = (Button)findViewByld(R.id.scan_button);
7 scanButton.setOnClickListener (new View.OnClickListener () {

9 @Override

10 public void onClick (View v){

11

12 // if manufacturer is sony, start the manual activity

13 if (manufacturer.toLowerCase(Locale.ENGLISH).contains("sony")) {

14 startActivity (new Intent(MapActivity.this, ManualVisitActivity.class));
15

16 // if not sony, start normal scanner activity

17 } else {

18 startActivity (new Intent(getApplicationContext(), ScannerActivity.class));
19 }

20 I3

an }

Two examples of iOS issues which were corrected because of user feedback
was the non-scrollable registration form, and missing QR scan button on
iPhone (3.5-inch screens, which is iPhone 4S and older). It turned out that the
registration form was not completely visible on a 3.5-inch screen, and was
non-scrollable. To solve this issue we had to move all the textfields higher up
on the screen so they became visible on 3.5-inch screens.

111

Sprek i Gjgvik

It was our fault, because we did not check every part of the system manually
on a simulator properly. The next issue was the missing QR scanner button on
3.5-inch screens.Users reported that the QR scanner "froze" after scanning a
code, because the screen turned white, and nothing happened. One user sent

us a screenshot of the issue (Figure 49).

eeee0 N Telenor = 12:28 @& 7 99 %

eeeee N Telenor 3G 19:33 749 % WD

Du har besgkt BE! Bra jobbet!

Scan

Figure 49: 3.5-inch Screen Issue with QR Figure 50: Propper QR Scanner Button on
Scanner Button 4-inch Screens

Figure 50 is a screenshot of a 4 inch screen, which displays the button properly. It
did not turned out to be a frozen screen, but what happened on 3.5-inch screens,
was that the result text and the Scan button popped up too far down on the
screen. Which resulted in invisible button and text on 3.5-inch screens. These

two issues was fixed because of user feedback.

112

Sprek i Gjgvik

6.4. Field test and Quality control

Incase there were no user feedback, we decided to go out field our selves to
test the two applications as soon as the poles were in place. Figure 51 and 52 is
pictures of us, out in the field testing the QR codes and the applications. We had
with us three devices, one Android and one iPhone 5S with Internet connection,
and one Android without Internet connection.

While we were testing ten poles in Gjgvik, it seemed that everything worked
perfectly. After we were done, we controlled the visits in the database. Both
the iPhone 5S and HTC One (both with Internet Connection) worked perfect.
The Samsung S2 without Internet connection did not submit every unsubmitted
pole as mentioned previously when it came back online, only the last visit. This
is how we came across, and solved this issue.

Because of the field test we conducted and because we implemented the
different feedback possibilities, such as contact forms, as well as using the
feedback from the users in both App Store and Google Play, we have been able
to correct the known kinks and bugs. Because of all the feedback and manual
tests, were able to ensure the quality of the system.

A week after the launch, we have a functional system which is capable of
handling a constant growth of user mass. Because the system is functional and
running well a week after launch, it ensures us that the system is scaleable.
Which means we can implement more areas, more poles and more users in the
feature without any unexpected issues. Even though we did not implement
automated tests, we have a successful and functional system which the users
seem to enjoy. On the other hand, we have learned that if we implemented
automated tests, we would have saved us a lot of time and frustration. We
have certainly learned from our mistakes.

113

Sprek i Gjgvik

Figure 51: Markus in the Field Figure 52: Anders in the Field

114

Sprek i Gjgvik

7. Conclusion

7.1. Assignment Evaluation and Results

Since we had worked with development of an application for the Sprek project
in 2013, we somewhat knew in large terms what the customer wanted before
choosing this project as our bachelor assignment. Other student groups had
interviewed a lot of the users from 2013, which helped both us and the
customer to determine what the main focus should be in the new application.
Because of all this knowledge, productivity was high from the very beginning of
the development phase. The customers initial plan was to pay for another
development team to develop a independent solution parallel to ours. Because
we got such a good start, they cancelled the parallel process. The fact that they
trusted us with the future for the project gave us confidence in what we had
accomplished.

Initially, we had decided that we would not make an application for iOS. In
Meeting D.3), the customer discussed what they were going to do with the iOS
application. Because we had most of the Android application and the entire
back-end finished, we told them that we would try to make one and see how
far we got. Over the easter holiday, the application got developed. At least to a
stage which allowed for beta testing. Since most of the logic was in place in the
Android application, all we had to do was to learn Objective-C enough to
implement the same logic for i0S. After two weeks of development and
testing, the application was ready to be presented to Gjg-Vard Orienteering.
They were impressed and decided to go with our application, instead of
acquiring it from someone else.

115

Sprek i Gjgvik

7.2. Group work evaluation

In the development process, we have kept each iterations deadline. After each
iteration, we have had status meetings, where we have evaluated the previous
iteration and planned the next. Both group members has been eager to satisfy
the customers wishes. This has affected the writing process of the thesis. In
retrospect, we could have set shorter limits for each of the iterations, and
stopped developing at an earlier stage. In the final stage of the project period,
we have had a lot of contact with users, which have occupied much of our
time. The upside of this is that the product delivered to the customer is more

stable, and in the end, all we wanted was happy users.

116

Sprek i Gjgvik

7.3. Further development and maintenance

Although the Android application is finished according to the requirement,
there is always a new feature which could be implemented. As we see it, the
most interesting feature to add is the possibility to download new maps
without having to update the application.

First of all, since we have zero experience with i0OS, there is a lot which can be
done it improve the application. The iOS application could be updated to get all
the features that the Android app has, such as the same level of offline
support. Currently, the iOS application is missing the functionality to upload
unsubmitted poles. It only stores the visits in on the device, but do not tell the
user if visits are unsubmitted. To upload unsubmitted poles until the new
upload is available, a user has to be online for the last pole visit of the day to
get all of their unsubmitted poles uploaded.

Second, the application is not very robust in terms of networking. When the
opportunity arrives, we will upgrade the networking part of the application to
use AFNetworking. AFNetworking is a networking framework for iOS. This
framework will greatly improve the network functionality of the
application.

Finally, the Ul could be upgraded. We might replace the storyboards with
programmatically created Ul instead in the feature. It is easier to deal with one
file of code for different screen support, rather than the current three different
storyboards. Which is something we did not figure out until after the
application was done.

117

Sprek i Gjgvik

7.4. Conclusion

It has been an interesting project period. Gjg-Vard Orienteering has been both
an interesting and challenging customer. It has been a great, challenging
experience. In addition to the practical skills we have acquired, this project has
let us take advantage of much of the theoretical knowledge from our three
years from Gjgvik University College.

It has been great to work for such a comprehensive public health initiative, and
the fast-growing user-mass at the last weeks of the project period has been a
nice reward.

We are especially proud to have native applications for both Android and iOS.
Both of the applications can and will be used as future reference. We are both
very proud of the end result.

We will bring all of our new experiences which we have acquired during this
project period into our newly founded company, AndMark Software
Development DA.

The i0S application has been downloaded on 872 units, and the Android
application has been downloaded on 538 units

Units
May 08, 2014 to May 17, 2014 872

Overview By Territory By Platform By Category By Content Type By Transaction Type

600

Units per Day
450 /
300
. /

150

vwg mai 2014 12. mai 2014 15. mai 2014

0

Figure 53: Total Downloads in App Store Figure 54: Total downloads in Google Play

118

Sprek i Gjgvik

Bibliography

[1] Schwaber, K. & Sutherland, J. 2011. The scrum guide - the definitive guide
to scrum: The rules of the game. https://www.scrum.org/Portals/0/
Documents/Scrum%20Guides/Scrum__Guide.pdf. (Visited Feb. 2014).

[2] Google. Unknown. Starting an activity, basics, android developer.
http://developer.android.com/training/basics /activity-lifecycle/
starting.html. (Visited Apr. 2014).

[3] Kniberg, H. 2007. Scrum and XP from the Trenches. CAMedia.

[4] Goyal, S. 2007. Major seminar on feature driven development. http://csis.
pace.edu/~marchese/CS616/Agile/FDD/fdd.pdf. (Visited Feb. 2014).

[5] Google. Unknown. Code style guidelines for contributors. http://source.
android.com/source/code-style.html. (Visited Feb. 2014).

[6] Otgard, H. 2014. Det norske android-landskapet. http://beta.knowitlabs.
no/android-telefoner-i-norge/. (Visited Jan. 2014).

[7] Gamma, E., Helm, R., Johnson, R., & Vlissides, J. 1995. Design Patterns -
Elements of Reusable Object-Oriented Software. Addison-Wesley.

[8] PHProup, T. Unknown. Prepared statements and stored procedures. http:
//no2.php.net /pdo.prepared-statements. (Visited May 2014).

[9] Bill, G. Unknown. 45 useful responsive web design
tools and techniques. http://www.freshdesignweb.com/
responsive-web-design-tools-and-techniques.html. (Visited May
2014).

[10] Google. Unknown. Iconography, design, android developers. http:
//developer.android.com/design /style/iconography.html. (Visited May
2014).

[11] geografa. 2011. Isom. https://github.com/geografa/ISOM. (Visited Feb.
2014).

119

https://www.scrum.org/Portals/0/Documents/Scrum%20Guides/Scrum_Guide.pdf
https://www.scrum.org/Portals/0/Documents/Scrum%20Guides/Scrum_Guide.pdf
http://developer.android.com/training/basics/activity-lifecycle/starting.html
http://developer.android.com/training/basics/activity-lifecycle/starting.html
http://csis.pace.edu/~marchese/CS616/Agile/FDD/fdd.pdf
http://csis.pace.edu/~marchese/CS616/Agile/FDD/fdd.pdf
http://source.android.com/source/code-style.html
http://source.android.com/source/code-style.html
http://beta.knowitlabs.no/android-telefoner-i-norge/
http://beta.knowitlabs.no/android-telefoner-i-norge/
http://no2.php.net/pdo.prepared-statements
http://no2.php.net/pdo.prepared-statements
http://www.freshdesignweb.com/responsive-web-design-tools-and-techniques.html
http://www.freshdesignweb.com/responsive-web-design-tools-and-techniques.html
http://developer.android.com/design/style/iconography.html
http://developer.android.com/design/style/iconography.html
https://github.com/geografa/ISOM

Sprek i Gjgvik

[12] Wikipedia. Unknown. Mijgsa. http://no.wikipedia.org/wiki/Mj%C3%
BS&sa. (Visited May 2014).

[13] Google. 2014. Intentservice, reference, android developers. http:
//developer.android.com/reference/android /app/IntentService.html.
(Visited Apr. 2014).

[14] Apple. Unknown. App store review guidelines. https://developer.apple.
com/appstore/resources/approval /guidelines.html. (Visited Apr. 2014).

[15] Apple. Unknown. Model-view-controller. https://developer.apple.com/
library /ios/documentation/general /conceptual /devpedia-cocoacore/
MVC.html. (Visited Apr. 2014).

[16] MapBox. Unknown. Maki icon set. https://www.mapbox.com/maki/.
(Visited May 2014).

[17] tharkay. Unknown. Converting storyboard from iphone to ipad. http:
//stackoverflow.com/a/8694985. (Visited Apr. 2014).

[18] Apple. Unknown. App store distribution. https://developer.apple.com/
support/appstore. (Visited May 2014).

[19] Icons8. Unknown. Icon pack for ios 7. http://icons8.com/
free-ios-7-icons-in-vector/. (Visited Apr. 2014).

[20] Vaaraniemi, S. 2003. The benefits of automated unit
testing. http://www.codeproject.com/Articles/5404/
The-benefits-of-automated-unit-testing. (Visited May 2014).

[21] McFarlin, T. 2012. The beginner's guide to unit testing:
What is unit testing? http://code.tutsplus.com /articles/
the-beginners-guide-to-unit-testing-what-is-unit-testing--wp-25728.
(Visited May 2014).

120

http://no.wikipedia.org/wiki/Mj%C3%B8sa
http://no.wikipedia.org/wiki/Mj%C3%B8sa
http://developer.android.com/reference/android/app/IntentService.html
http://developer.android.com/reference/android/app/IntentService.html
https://developer.apple.com/appstore/resources/approval/guidelines.html
https://developer.apple.com/appstore/resources/approval/guidelines.html
https://developer.apple.com/library/ios/documentation/general/conceptual/devpedia-cocoacore/MVC.html
https://developer.apple.com/library/ios/documentation/general/conceptual/devpedia-cocoacore/MVC.html
https://developer.apple.com/library/ios/documentation/general/conceptual/devpedia-cocoacore/MVC.html
https://www.mapbox.com/maki/
http://stackoverflow.com/a/8694985
http://stackoverflow.com/a/8694985
https://developer.apple.com/support/appstore
https://developer.apple.com/support/appstore
http://icons8.com/free-ios-7-icons-in-vector/
http://icons8.com/free-ios-7-icons-in-vector/
http://www.codeproject.com/Articles/5404/The-benefits-of-automated-unit-testing
http://www.codeproject.com/Articles/5404/The-benefits-of-automated-unit-testing
http://code.tutsplus.com/articles/the-beginners-guide-to-unit-testing-what-is-unit-testing--wp-25728
http://code.tutsplus.com/articles/the-beginners-guide-to-unit-testing-what-is-unit-testing--wp-25728

Sprek i Gjgvik

Appendix

121

Sprek i Gjgvik

A. Project agreement

122

HOGSKOLEN I GIOVIK

PROJECT AGREEMENT

between Gjovik University College (GUC) (education institution),

Aen€ing Pederen (630-vard O-lagy)

(employer), and

Anders Buagebakken,

Markys Brovo L

(student(s))

The agreement specifies obligations of the contracting parties concerning the completion of the project and the
rights to use the results that the project produces:

1. The student(s) shall complete the project in the period from Ol ‘ O ' - 2 oy to lol .0 §- 20 {4 .

The students shall in this period follow a set schedule where GUC gives academic supervision. The employer
contributes with project assistance as agreed upon at set times. The employer puts knowledge and materials
at disposal necessary to complete the project. It is assumed that given problems in the project are adapted to a
suitable level for the students’ academic knowledge. It is the employer’s duty to evaluate the project for free
on enquiry from GUC.

2. The costs of completion of the project are covered as follows:

- Employer covers completion of the project such as materials, phone/fax, travelling and necessary
accommodation on places far from GUC. Students cover the expenses for printing and completion of the
written assignment of the project.

- The right of ownership to potential prototypes falls to those who have paid the components and materials
and so on used to make the prototype. If it is necessary with larger or specific investments to complete the
project, it has to be made an own agreement between parties about potential cost allocation and right of
ownership.

3. GUC is no guarantor that what employer have ordered works after intentions, nor that the project will be
completed. The project must be considered as an exam related assignment that will be evaluated by
lecturer/supervisor and examiner. Nevertheless it is an obligation for the performer of the project to complete
it according to specifications, function level and times as agreed upon.

4. The total assignment with drawings, models and apparatus as well as program listing, source codes and so on
included as a part of or as an appendix to the assignment, is handed over as a copy to GUC who free of
charge can use it in lessons and in research purpose. The assignment or appendix cannot be used by GUC for
other purposes, and will not be handed over to an outsider without an agreement with the rest of the parties in
this agreement. This applies as well to companies where employees at GUC and/or students have interests.

Assignments with grade C or better are registered and placed at the school’s library. An electronic project
assignment without attachments will be placed on the library part of the school’s website. This depends on
that the students sign a separate agreement where they give the library rights to make their main project
available both on print and on Internet (ck. The Copyright Act). Employer and supervisor accept this kind of
disclosure when they sign this project agreement, and they must possibly give a written message to students
and dean if they during the project period change view on this kind of disclosure.

Sprek i Gjgvik

B. Project Plan

124

PROJECT PLAN

SPREK | GJ@VIK

Markus BROVOLD Anders HAGEBAKKEN

May 2, 2014

Table of Contents

1 Objectives and limitations

1.1 Background e e e e e e e e e

1.2 Objectives o o e e e e e e e

1.3 Boundaries e e e e e e e e
2 Scope

2.1 Fieldofstudy e e e e

2.2 Limitations e e e e e e e e e

2.3 Description e e e e e e e e e e e e e

3 Project organization
3.1 Rolesandresponsibilities e e e e e
3.2 Grouprulesand routines L L e e e e e e e e e

4 Planning, follow-up and reporting
4.1 Choosing Software development process. i i e e e e e e
4.2 Status meeting and points of decisionplans L L L

5 Quality control
5.1 Documentation and coding conventions e e e e
5.2 Version Control / Source Code Management e

6 Risk analysis

7 Plan of execution
7.1 Gantt . . . e e e e e s e
7.2 Work Breakdown Structure e e e e e e e e e e

w w ww Ll B e]

H B

~

1 Objectives and limitations

1.1 Background

Sprek i Gjgvik was started by Gjg-Vard orienteering the summer of 2013. The main goals of the
project is to get people out and about Gjgvik. The summer of 2013 had about thousand users.
They wish to double that amount for this summer. This summer they will include other areas
of the municipality, like S@rbyen and Biri. They will place markers around Gjgvik, with different
difficulties, and the point being that the users should visit as many as possible during the summer.

During last semester we developed an Android application for the Sprek i Gjgvik project. We got a
feel of what the project were about, and got to know our customer. Some of our fellow students
also developed applications, and others did a thorough studies of the previous user experiences
and feedback. We have access to their work, and will at least be using the user feedback in the
development process in our application.

1.2 Objectives
1.2.1 Impact objectives

e Increased public health in Gjgvik.
e Increased navigational skills for the everyday user.

1.2.2 Outcome objectives

¢ Increase the user mass from summer 2013.
e Get more people to use the Android application.

1.2.3 Learning objectives

e Learn more about state of the art technologies used in both Android and web development,
as well as the link between the two.

e Learn more about writing a proper thesis.

1.3 Boundaries

We have to stay within our time frame; January 13th - May 19th of this year. Our application have
to be ready for out-in-the-field at least by the 3rd of May. The customer has to have an application

ready for deployment before the project goes live and the poles are placed at their locations.

Since we are not handling sensitive data (i.e. Visa card number and credit info), we really do not
have to worry about any government laws. When a user trusts us with their email address, we
have a responsibility to at least treat it with respect and not abuse their email in any way.

Because we are doing a bachelor assignment, the development is free. Hence we do not have a

budget to worry about.

When it comes to technology, we do not have any clear boundaries from the customer. As long as
we use free libraries and open software.

2 Scope

2.1 Field of study

During our bachelor assignment we will be studying Android Application development, different
server side and map technologies, cross platform data interaction (Web and Android), database
design and system architecture.

2.2 Limitations

Since we are developing for Android, we are limited to the native functionality that Android has
to offer. Because we our application research does not start until middle of February, we are
uncertain of what limitations we might encounter in the development process.

2.3 Description

The assignment will be split into several tasks, as the system required by the customer consists of
several modules.

The first module is the server side, which shall be capable of supporting all the required functions
in the later described mobile application. The server side should contain a database. The database
should be designed in such a way that the product owner can manage it after the project period.

The second module of the assignment is the mobile application. The applications main purposes
are to show the user the interactive map with the poles position, the ability to scan QR-codes from
the poles and register which poles are visited by each user. The application should synchronize
statistics with the database on the server. The application should be able to save data for later
synchronization in cases where the user has no internet access.

The third module of the system is a web site. This web site should let users register and man-
age family accounts. It should also show various statistics. The web site should also contain a
admin-module where the administrators can manage both poles and users. There should also
be a possibility to register companies. This will be further specified in the research process in
February.

3 Project organization

3.1 Roles and responsibilities

Customer

Gjp-Vard Orienteering club, represented by Bjgrn Godager.

Mentor

Mariusz Nowostawski, Associate Professor at Gjgvik University College.

Group leader

Anders Hagebakken. Group leader has the overall responsibility to make sure we follow our time
schedule as well as the main communication with both the customer and supervisor.

Chief Development Officer

Markus Brovold. The Chief Development Officer has the responsibility to verify the result of a
sprint according to specifications. He is also responsible for keeping proper documentation at the

required level at all time.

3.2 Group rules and routines

e Use version control - Submit working code!

e Follow standard Java/Android Coding conventions.

e Document code!

e Ifadisagreement should occur, supervisor and/or customer should be consulted in the decision-

making.

4 Planning, follow-up and reporting

4.1 Choosing Software development process

Our group consists for two people. Because of the limited amount of available work force, we need
a way to maximize productivity. From earlier projects we have experienced that a Scrum/Kanban
hybrid works very well for our group. We find that a simple process with simple but effective tools
are the best for us. From Scrum we will be using iterations (non-static length), and from Kanban
we will be using the Work In Progress Limit handling our tasks. This way we can control what is
being done by whom easily.

We will be using iteration even though Kanban do not have iteration, but the iteration length
will be non-static. This fits our development process well, and is a great compromise between
iterations and no iterations.

4.2 Status meeting and points of decision plans

Since we are working by an agile software development methodology, the process will be divided
into shorter iterations (“sprints”). After each iteration there will be a short status meeting with our
supervisor and customer. During these meetings we will discuss the past iteration and the next
iteration.This will give us a foundation for further development. Then we can create our to-do
list for that iteration. By including the customer in our development process, we can re-prioritize
tasks if required in our backlog for the next iteration.

5 Quality control

5.1 Documentation and coding conventions

We will deliver the application to the customer for further development and maintenance. There-
fore we have to provide documentation good enough for someone else to continue to work with
the application. Code will be commented and documented during the development-process.

Regarding coding conventions and -style, we will follow the standard Java coding conventions while
developing for Android. Since we will be using Android Studio for the development, the software
formats the code correctly for us.

5.2 Version Control / Source Code Management

Source code for the application will be stored in a Git repository. The group is familiar with Git and
how a distributed system works from previous projects. Bitbucket will be the service provider.
Because the group members are accustomed with using Git through Bitbucket, this will let us
focus more on the development and the report.

6 Risk analysis

Consequence
Low Medium High Very High
Very high
High
Probability Medium
Low
Number Risk Probability Consequence
1 Android Not Responding Medium Very high
2 Unavailable server Low Very high
3 Corrupt data Medium High
4 User data theft / leakage Low Medium
5 Project group gets dissolved | Low Very High
6 Serious disease Medium Very High
7 Hardcoded passwords Low Very High
8 Customer absence Medium High
9 Governmental constraints Low High
10 Bitbucket unavailable Low Medium
11 Not following time schedule Medium High
12 Incomplete product Low Medium

Number

Follow-up

Test on several different devices. Follow good coding conventions.

Be friends.

Store user data locally on device, upload when server is available.

Have proper fail safe checks before user data is manipulated.

Stay healthy.

Make sure not to hardcode anything. Do code review frequently.
Establish different contact points within Gje-Vard Orienteering.

Re-prioritize if needed. Discard trivial functionality for important functionality.

Sprek i Gjgvik

C. Correspondence with Service Provider regarding
Shared SSL

134

Sprek i Gjgvik

D. Meetings

D.1. First meeting with Bjorn Godager - 13.01.2014

135

Date: Jan 13. 2014
Present at meeting:
Customer: Bjorn Godager
Students: Anders Hagebakken
Markus Brovold
Purpose of meeting:

1. Thoughts on web site

Nettside til prosjektet kan lages med wordpress. Nettside kan ha en admin-modul hvor
administrator kan legge inn flere stolper. Nettsiden kan ogsa vise besgksstatistikk. /

Web site is preferred to be WordPress or similar. Customer wants to be able to post news and
access administrator-tasks such as adding poles to the map and getting user-statistics. Web
site should also show visitor-per-pole-statistics to all users.

Highscore/hall of fame.

2. Application(s) platform
Bachelor project should focus mainly on Android-application.

3. Maps
Customer wants us to spend some time on researching what map-types will be best on Android,
regarding both performance and detail level.

4. Database

Customer wants a easy-to-manage database, which the orienteering club can host when the
project period is done. Customer wants documentation on how to use this after the
project-period.

5. Competitive application
Study how Karlstad manages competitions and if possible; improve and apply.

Sprek i Gjgvik

D.2. Status meeting - 21.02.2014

137

Tema: Sprek i Gjovik - bachelor 2014

Arranger: AndMark v/ Anders Hagebakken og Markus Brovold
Inviterte: Arnfinn Pedersen, Bjgrn Godager og Mariusz Nowostawski

Tilstede: Anders, Markus, Arnfinn, Bjarn
Ikke mett: Mariusz

Referatet lister opp temaene vi diskuterte i kronologisk rekkefglge.

1 Avvikshandtering

(med avvik menes her manglende stolpe eller gdelagt stolpe)

1.1 Hvem skal fa ansvaret for a ordne manglende stolper eller feil stolpe-informasjon?
- Hvert omrade har kontakperson(er) som tar imot meldinger om stolper.
- Kontaktpersonene tar kontakt med omradeadministrator (se pkt. 3.2)

2 Hovedstruktur pa websiden:

2.1 stolpejakt.no:
- Generell informasjon om prosjektet / generell informasjon om stolpejakt
- Informasjon/bruksanvisning for apper, manuell registrering osv.
- Kart med klikkbare omrader, f.eks Gjavik, Hamar, osv, hvor brukeren kan
klikke pa gnsket omrade og blir sendt dit.
2.2 De enkelte omradenes hjemmesider:
- Pa de spesielle omradene (Hamar/Gjgvik osv):
- Spesiell informasjon for omradet.
- Nyheter for omradet.

3 Administrering:
3.1 Super-administrator (Arnfinn eller Bjarn, evt Anders og Markus):
- Opprette under-administrator for de spesifikke omradene.
- Legge ut globale nyheter (nyheter for alle omrader - pa forsiden)

3.2 Underadministratorer:
- Legge inn stolper for sine omrader
- Publisere nyheter for sitt omrade

Eksempel (“user story”):
Arnfinn gir “per erik fra toten” underadministrator-rettigheter.
“Per erik fra toten” legger inn stolper som star pa Totenasen.

“Per erik fra toten” tar kontakt med Arnfinn, fordi det skal arrangeres et stort stolpelgp 14.
Juni pa Toten. Arnfinn lager da en nyhet pa stolpejakten.no slik at alle norges stolpejegere far
med seg dette.

4 Kart:
4.1: Fordelene med offline kart er at vi kan style kartene, slik at vi far orienteringskart.

4.2 Bjorn undersgker videre eksportmuligheter av kart fra OCAD slik at vi kan bruke
kartdata rett i appen, hhv. med GeoJSON-format.

4.3 Knut Olaf Sunde kan a koble SOSI-formatet tii OCAD, utviklerteamet tar evt. kontakt
med han.

4.4 Det er ogsa et alternativ & ha kartdataene pa en WMS-server (altsa ferdig stylet med
orientering-utseende), dette sjekker Bjarn videre og melder tilbake til utviklerteamet om.

Sprek i Gjgvik

D.3. Status meeting - 21.03.2014

140

Tema: Status pa appen og nettsida
Inviterte: Anders, Markus, Arnfinn, Bjarn, Mariusz
Mott: Anders, Markus, Arnfinn, Bjgrn

1. Demonstrasjon av hjemmesiden og appen
1.2 Mangler:
1.2.1 Familie-konto (flere navn pa samme epost)
1.2.2 Geo-referering av ocad-kart. Bjgrn fikser dette asap.

2 Generere QR
https://www.the-grcode-generator.com

3 Legge inn stolper
3.1 P& nettsida: kan gjeres sa fort nettstedet er flyttet
3.2 Via XML eller KML-filer: Kan laste opp en fil med info for flere stolper (for eksempel et
“slipp” nar det skal komme nye stolper)

4 i0S-app
4.1 Anders og Markus ser pa muligheten for a sette sammen en app til iOS. Dette blir i
fagrste omgang bare en kartlegging for a avgjgre hvorvidt vi kan lage en app eller ikke.

Sprek i Gjgvik

D.4. Status meeting - 24.03.2014

142

Invited: Anders, Markus, Bjgrn, Arnfinn, Mariusz
Present: All

1. Demo of applications (iOS and Android)
- Bjgrn and Arnfin will send updated pole difficulty-XML
- Markus will update pole-content to show altitude from DB.
- Logos in app (for companies) are not allowed in iOS-app.
- Anders and Markus will take care of pole-numbers.

2. Demo of web site:

- Make visited poles highlighted

- Bjorn will create .PDF-maps for download

- Bjarn will take care of TotenTroll-map (get it georeferenced)

- Cultural information will be delivered later.

- make the list on http://www.stolpejakt.no/mine-besokte-stolper/ clickable or hoverable to
show cultural information. Also some information about altitude and difficulty to make it easier to
decide which pole to visit.

- Maybe take a look at labs.kartverket.no

- Firmalogoer (til nettsiden) fikser Arnfinn, via Sondre. Disse ma grupperes pa omrade.

Disse skal veere klikkbare pa nettsiden (Anders).

3. Additional wishes for app:
:Icon: Herb/AndMark -
Create a new icon with a pole (black on top, white and wood)

Note to self:
Manual pole registering is not checking admin-shit, and registering wrong display_name
in sig_wp_users !l

Thesis:
- Write something about the teamwork and the.
- Write about time used on developing
- Always say why when a desicion is made.
- Write a lot about cross platform development., but only in the imp-chapter.
- Write about how we decided that iOS is actually doable.

	Preface
	Contents
	List of Figures
	List of Code Examples
	List of Abbreviations
	Introduction
	Project description
	Document structure
	Project organization

	Background
	Android
	Database

	Requirement Specification
	Functional Requirements
	Supplementary Requirements
	Constraints

	Design and Architecture
	Architecture
	Design

	Implementation
	Tools
	Server-Side
	Android Application
	iOS Application
	Deployment

	Testing and Quality Assurance
	Unit testing
	Beta testing
	User feedback
	Field test and Quality control

	Conclusion
	Assignment Evaluation and Results
	Group work evaluation
	Further development and maintenance
	Conclusion

	Bibliography
	Appendix
	Project agreement
	Project Plan
	Correspondence with Service Provider regarding Shared SSL
	Meetings
	First meeting with Bjørn Godager - 13.01.2014
	Status meeting - 21.02.2014
	Status meeting - 21.03.2014
	Status meeting - 24.03.2014

