
 

 

 
 

BACHELOR THESIS: 
 

 

 

 

 

 

 

     

 

 

 

 

 

 

 

 

 

 

AUTHORS:  
Glen M. N. Grongan 

John Høegh-Omdal 

Martin Jonassen 

 

 

 

 

Dato: 19.5.2014 

 

RoSSMa 

Rotating Shift Schedule Manager 

 



RoSSMa Gjøvik University College

0.1 Summary

Title RoSSMa - Rotating Shift Schedule Manager
Nr. 1

Date 19.5.2014

Participant(s)

Glen M. N. Grongan

John Høegh-Omdal

Martin Jonassen

Supervisor(s) Frode Haug

Employer(s) Helsetjenestens driftorganisasjon

Contact Reidar Honningsv̊ag

Keywords
Turnus, HDO

PHP, Calendar

Nr. of pages: 68 Nr. of attachments: 6 Availability: Open

Short description

This report describes RoSSMa and it’s development process, a software designed to ease

the management of rotation shift schedules for Helsetjenestens Driftorganisasjon. As a

replacement solution, it needs to effectively fulfill everything the current implementation

can accomplish, in which schedules are organized in highly advanced excel sheets.

Rotating shift schedules are used in certain professions to ensure that their critical posi-

tions stay manned at every hour of the day, while ensuring that employees don’t exceed

the laws and regulations regarding appropriate durations of work schedules. It’s accom-

plished by categorizing each day into clearly defined shifts which each last for a specific

duration of hours, which are distributed into different types of weeks that are assigned to

employees. These weeks are rotated between the participants each week, resulting in a

different work pattern nearly every week. It’s therefore critical to be able to review this

schedule easily and hassle free.

The solution was made web-based to take accessibility concerns into consideration, which

is of substantial importance. The backbone of the software is developed in PHP as a

result, so that the data can be accessed in HTML format by traditional browsers.

The report is an in-depth look into the software, it’s features and how they are imple-

mented. It also describes the development process and the thought process regarding

important decisions.

I



RoSSMa Gjøvik University College

0.2 Preface

The Bachelor Project has been a great opportunity to foray into the realm of professional

software development. As the culmination of three years of study and a chance to utilize all

of our skills, we put a substantial amount of effort into making the case a reality. However,

it’s not all to our credit, and we would like to give our regards to the ones that have helped

out along the way.

We would like to thank HDO for providing us with an exciting case to work with. Reidar

Honningsv̊ag and Tor Kristan Hansen in particular, for all the useful feedback. Our insight

into the world of an HDO employee is due to Reidar’s efforts, and Tor Kristian’s experience

with a bachelor degree was a considerable benefit. The OREGO project that he completed

together with Morten Holberg was additionally a great aid in structuring the report.

We would also like to thank Frode Haug for being accessible throughout the project. His

guidance as our supervisor and input during the process has been valuable assets for writing

the report.

0.3 Terminology

The English language has no suitable substitute for the Norwegian concept of “Turnus”.

Schedule is often used in its stead as a shorthand for rotating shift schedule. A sched-

ule is an arranged list of week layouts distributed between people over a longer timespan.

Each week contains shifts, the assigned working hours of a single person on a given day.

References to the framework means the underlying structure that determines how classes

are implemented in the source code.

II



Contents

0.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I

0.2 Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II

0.3 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II

1 Introduction 1

1.1 Project introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Team Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Report Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Requirements 9

2.1 Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Operational Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Feature Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 Software Design Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Design and Analysis 21

3.1 Similar Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 Views . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3 Web Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.4 Progress Plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.5 Original Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.6 Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.7 Risk Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4 Development 30

4.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.1.1 Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

III



RoSSMa Gjøvik University College

4.1.2 High-level System Description . . . . . . . . . . . . . . . . . . . . . . 35

4.1.3 Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.1.4 External Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2 Ergonomics and Aesthetics . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.3 Testing and Quality Assurance . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.4 Encountered Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5 Installation 51

5.1 Downloads and Location . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.2 MySQL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.3 Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6 Summary 56

6.1 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Appendices 69

A Terminology 70

B Meeting Summaries 73

C Work Log and Progress Report 78

D Progress Plan A 84

E Progress Plan B 87

F Project Agreement 89

IV CONTENTS



List of Figures

2.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.1 Excel Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2 Early Design Mockup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3 Early Design Mockup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.4 Early database draft . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.1 Model/View/Controller for this project. . . . . . . . . . . . . . . . . . . . . 31

4.2 Final database design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.3 Template Picker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.4 Different incarnations of a shift . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.5 Information message . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.6 Warning message . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.7 Navigation chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.8 Header . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

V



1 — Introduction

The Introduction presents the case to the reader, delivering the scope of the project, the

assigned students and the report itself. Project Introduction outlines the assigned task

and related topics. Team Introduction gives a background description of the developer

group, while Report Introduction provides meta information on the structure of this

report.

1.1 Project introduction

1.1.1 Description

Helsetjenestens Driftsorganisasjon (HDO) have their employees working shifts using ro-

tating shift schedules. These schedules are currently managed through an advanced excel

document, with rigid functions controlling the rotation and various time calculations to

ensure the integrity of the information. As a Bachelor Project, HDO wants a software

that is both easily maintained by the administrators, as well as being convenient for the

employees to use.

The goal of the project is to create a system able to replace the excel solution and make

it accessible as a web interface. Requirements are centered around the ability to create a

template, a type of “blueprint” that describes the structure of the rotating shift schedule.

Arguably the most important functionality for the solution is to provide an interface for

the employees to easily view the schedules and the deviations from a normal week, such

as specific work tasks. Presenting different views to format the schedule is an important

aspect in elevating the usability. The administrator module is centered around the capa-

bility to create and manage templates for schedules, organizing them in a database and

make them an active part of the system

1



RoSSMa Gjøvik University College

We initially contacted and met with three different project suppliers when the bachelor

project started in October. HDO was the only project outside of campus, although the

distance was largely insubstantial in comparison. They were also the only one without

prior experience as a bachelor project provider. Coupled with an enthusiastic contact per-

son that took the role of the consumer provided a lifelike experience that weighed our

preference. Personal enthusiasm regarding the different projects was of course factored in

as well.

1.1.2 Domains

Rotating Shift Schedule

Certain professional areas such as health care and support need to have manned personnel

available at any possible hour of the day, throughout each week. Clearly defined schedules

are a common way to solve this, in which each day is divided into different types of shifts

that together cover all 24 hours. These shifts are then manned by different employees,

ensuring that there’s always someone available. Schedules often require a great amount

of time management, because of laws that govern limitations on how long an employee

is allowed to work under certain economic parameters. Working more than the indicated

time will result in overtime, which follows other payout structures. In Norway, these rules

are managed by Arbeidstilsynet.

One type of shift management is by using a rotating shift schedule. These types of schedules

have weeks consisting of different shift compositions structured into a cyclical pattern over

the course of set number of weeks. Employees are assigned to a week, and rotate through

different types of weeks over the course of the entire schedule. When an employee is set on

the last week of the schedule, the next week of that employee will be the first week of the

schedule.

HDO

HDO install and maintains the systems required for “Nødnett”, the radio network built

specifically for emergency and rescue services in Norway. It’s created for fast flow of in-

formation during times of crisis. Such a network needs to be highly reliable reliable and

stable, as health support has to be available to respond to any event without delay. They

2 CHAPTER 1. INTRODUCTION



RoSSMa Gjøvik University College

have implemented a rotating shift schedule to accomplish this.

Arbeidstilsynet

Arbeidstilsynet enacts the rules to protect employees in Norway. Schedules designed by

HDO need to go through a validation process with Arbeidstilsynet to ensure that it properly

follows the regulations they have created.

1.1.3 Target Audience

Report Audience

This report is aimed at anyone interested in gaining an understanding of our software and

the underlying reasons behind our choices. It is primarily constructed for the examiner,

but will hopefully find use as an academic resource in the Gjøvik University College library

or for anyone intending to do further development on the project.

The project is written entirely in English, primarily because it eases translation of es-

tablished programming terminology, and makes it approachable for a broader audience.

Some of the screenshots of the software have been manipulated to accommodate for this.

Software Audience

The primary audience of the software are the employees at HDO participating in a prede-

fined shift schedule. They need an easily accessible interface to get an overview of their

shift structure, as well as additional information regarding their tasks.

The other target of the application are the schedule administrators. The software needs to

provide them with a reliable way to create and export the template for schedules, and the

ability to manage ones currently in effect.

1.1.4 Goals and limitations

Goals

• Result goals

– The working software should replace the current excel solution without losing

out on any preexisting functionality.

3 CHAPTER 1. INTRODUCTION



RoSSMa Gjøvik University College

– Better usability for administrators

∗ Easier to learn.

∗ Less overhead.

– Make information presentable on any common internet browser.

– Easily maintained and expandable.

• Effect goals

– Reduce the necessary steps for administrative tasks by 50%.

– Remove the need to manually manage shift changes through email.

– The software should be displayed correctly on all common browsers. Further-

more, HDO wants the shift schedule to be accessible through mobile devices.

Limitations

• Time: The deadline for the project, and consequentially this software, is 19.5.2014

• Language: Needs to be developed in a well established programming language.

• Modularity: The software needs to be easily expandable.

Restrictions

• If we run low on time, some requirements will be dropped, depending on necessary

prerequisites and priority evaluations.

• Validating templates in the editor to meet laws and regulations was discussed during

initial meetings with the product owner. This will not be implemented, as it would

have required a broader knowledge of these rules and how Arbeidtilsynet approves

and rejects schedules. The laws are also subject for change, which the system then

would need means to accommodate for.

• We were provided the option of integrating the application with HDOs current user

system, LDAP. We believe that there is too much overhead to integrate with the

system, and would be too time consuming. The major concern comes in the difficulty

of testing an implementation, so we found it more suitable to leave it outside the scope

of the project.

4 CHAPTER 1. INTRODUCTION



RoSSMa Gjøvik University College

1.2 Team Introduction

1.2.1 The Group

The three group members all started their Bachelor Degree in Software Development at

Gjøvik University College in fall 2011. It has given opportunities to learn several different

programming languages, with an emphasis on C++, Java and PHP. Additional courses

focused on software design, security, development and data structures has prepared the

members for this final task. Having shared several previous projects since the first shared

effort during third semester has accustomed the group to working together. The members,

and their assigned roles in the project, are as follows.

• Glen M. N. Grongan - Scribe, Secretary, Programmer

• John Høegh-Omdal - Project leader, Programmer, Design

• Martin Jonassen - Scribe, Programmer, Design

Roles

The role of Project Leader was given to John Høegh-Omdal, giving him the responsibility

of controlling group decisions and managing project priorities. Glen M. N. Grongan is the

secretary, which primarily consists of being the contact person of the group and document-

ing all important meetings. It’s his role to maintain communication with the employer and

supervisor, as well as keeping a log on events and meetings.

Programmer, designer and scribe are minor roles. All group members are programmers,

developing source code for the product. Designers are concerned with the ergonomics of the

project, in areas such as aesthetics and interaction design. Scribes are the group members

assigned to write the majority of the report.

Reidar will front as the product owner on the behalf of HDO, as he’s the main admin-

istrator of the schedule

Group Rules

• Tuesdays and Wednesdays will be communal work periods between 12:00 and 18:00.

5 CHAPTER 1. INTRODUCTION



RoSSMa Gjøvik University College

• Thursdays is dedicated to individual work.

• Fridays will mainly be used for meetings and discussions.

• There will be at least one meeting with our supervisor every week, as long as there

are relevant topics to examine.

• There’s a meeting with the employer every other week. Consistent progress will be

necessary in order to have a prototype to present for each session.

1.2.2 Development Model

The contact persons at HDO expressed an eagerness in working with the development of

the project as it progressed, by providing their guidance and feedback. An agile devel-

opment method was adopted to accommodate for this need, as they are more suited for

flexibility than sequential development methods. Using a traditional method like the wa-

terfall model makes it difficult to react to customer needs during the later stages, when the

structure has already been established, and can no longer be changed. Agile methods, on

the other hand, develop each module separately, allowing them to be altered without severe

ramifications. The inexperience within the group also favors agile methods, given the low

likelihood of accurately predicting the amount of work that could feasibly be accomplished.

Previous exposition to the commonly used Scrum model gave a starting point, but it was

lacking in some areas. Scrum uses a series of Sprints, in which developers work without

external interference for a set period of time, which could possibly pose problems for the

project. The limited time to work on the project combined with other interfering school

courses resulting in adopting a more flexible method, eventually settling on Kanban, with

some artifacts adopted from Scrum.

Kanban is a lean development method centered around using a task board to manage

task flow and provide a visual representation of the work flow. It stresses incremental

development and keeping the focus on the current state instead of making too many plans

for the future. The task board contains tasks that need to be fulfilled to meet the project

requirements, which are divided into different sections depending on which phase they are

in. Common sections are “backlog”, “under development”, “testing” and “completed”,

but may be customised depending on preferences. The “work-in-progress” areas of the

6 CHAPTER 1. INTRODUCTION



RoSSMa Gjøvik University College

task board have an upper boundary on the number of tasks that may be assigned to it,

preventing developers from losing focus by undertaking too many tasks simultaneously. A

few Scrum artifacts were incorporated alongside Kanban to emphasize discussions during

the project. Daily Meetings were used to discuss current progress, in addition to having

consistent meetings with the employer. Use of model in project

• A task board is used to manage the tasks. Following the Kanban principles, tasks are

assigned within areas to specific individuals. Keeping an overview of current progress

and a method of organizing the task load improves the development flow.

• Each workday will begin with a meeting, in which the current progress is shared.

These discussions are used to track progress and discuss current issues.

• There will be a demonstration for the product owner every other week, providing the

people at HDO a chance to offer feedback from their perspective.

1.3 Report Introduction

The following chapters are dedicated to inform about the project and those involved with

it. Here is a short introduction as to what they contain:

• Chapter 2 -Requirements describes topics regarding the requirement specification

and the scope of the project. Of particular note is the project’s feature list, which is

contained therein.

• Chapter 3 -Design and Analysis primarily contains drafts of different designs and

ideas that resurged in the initial phases of the development phase.

• Chapter 4 -Development is a look into the development of the project, focusing on

the implemented features and various choices made regarding these.

• Chapter 5 -Installation is an installation manual for the project, how to deploy the

source code on a server and set up the database.

• Chapter 6 -Summary is a final discussion around the final results and the project

as a whole.

7 CHAPTER 1. INTRODUCTION



RoSSMa Gjøvik University College

There is a few products created during the project period that could not be put anywhere

in the report, but helps to present the bigger picture. These are therefore put in the

following appendices:

• Appendix A -Terminology is a comprehensive list of jargon and acronyms used

throughout the report that may need further elaboration.

• Appendix B -Meeting Summaries contains the notes made during meetings with

the product owner and as a group.

• Appendix C -Work Log and Progress Report is a worklog roughly outlining

what each group member worked with each given week.

• Appendix D -Progress Plan A is the gantt diagram made during the planning

phase, which describes the initial expectations to the implementation phase.

Appendix E -Progress Plan B is a diagram of how it ultimately ended up after the

development was finished.

8 CHAPTER 1. INTRODUCTION



2 — Requirements

The Requirements chapter outlines the different specification to the project that were

established in the project description, as well as those that cropped up under development.

Environment contains the domain model, as well as the deployment requirements. Op-

erational Requirements describes how the application adheres to service requirements

and Feature Requirements provides information on all the features. Software Design

Limitations is a short overview of restrictions the group made for the development.

2.1 Environment

2.1.1 Deployment

As a web service, the software necessitates a running online server that can be accessed

through a browser. The server will need to run an apache web server able to execute php

5.4 or higher.

The server will need access to a MySQL database as well. This could run on an inde-

pendent server to lessen the load created by only having one, although it’s unlikely for the

server load to reach critical numbers with such a low user base.

Details on how to deploy the solution can be found in the installation chapter.

2.1.2 Domain Model

Figure 2.1 shows the basic structure of the system. Most employees will be assigned to a

specific week in a plan. Some users are granted administrator privileges. The administra-

tors can create and change new schedules, as well as manage the active ones. A plan lasts

9



RoSSMa Gjøvik University College

for a period of time, and is effectively an activated template. Templates are created in

the editor by making a set of different shifts types, and using these to fill out an arbitrary

number of weeks.

Figure 2.1: System Model

2.2 Operational Requirements

2.2.1 Normal Operation

Usability

The application should be as accessible for the employees following the schedule as well

as the administrators of it by making it a web page possible to view using common web

browsers.

Some authentication mechanism is necessary to prevent access to advanced functional-

ity. Viewing the schedule does not require user login, making the plan easy to access from

10 CHAPTER 2. REQUIREMENTS



RoSSMa Gjøvik University College

a user perspective. The amounts of rights for a profile will vary depending on whether they

are set as a regular user or an administrator.

There will be multiple different ways to organize the data to fulfill the user requests of

having a more personal schedule view. This includes the traditional view that only con-

tains information on a given user, in addition to other formats such as a daily, monthly

and agenda view. Navigation options such as header buttons provides a simple method of

switching between the perspectives.

Administrators are given the possibility of building new schedules in the application. This

means that they need to have the ability to create and manage new schedules, and activate

them for a given date.

Safety

View access to most of the website is permitted while logged out, so it’s possible to view a

schedule without going through the login interface. The exceptions are the personal shift

exchange page and administrator features. Any management rights requires some form of

login requirements, depending on context. Utilizing personal pages, such as adding notes

to one’s own shift or viewing the shift exchange overview needs the appropriate user to

be logged in. Manipulating data without limitations, and making changes to the users

and schedules requires an administrator. A timer system was considered to prevent these

responsibilities from being abused by inappropriate individuals, but was discarded due to

usability concerns.

Users have full control over the access password to their own account. It can be changed

in the event that it should be compromised or forgotten by the user. In such a case, an

email can be requested, linking to the area in which a new password may be provided.

Availability

Work in the health department means that it’s necessary to have manned employees avail-

able for support at any hour of the day. It’s therefore important that the schedule is

accessible without fault. As a web service, it therefore needs to be accessible through the

internet, and not just on a local network. It also needs a stable server, so that hardware

11 CHAPTER 2. REQUIREMENTS



RoSSMa Gjøvik University College

fault doesn’t result in unfortunate consequences.

2.2.2 Problem Handling

Error report

Errors will be handled through the framework. A debugging mode can be enabled in the

files for testing purposes. It’s turned off by default to prevent errors messages from occur-

ring for normal users, whom would be unable to properly understand the content of the

message.

Any errors that do occur will be saved in a log file, so that it may be accessed by the

server administrators. The log file is unsuitable as a warning system, but may be useful in

case a problem is observed and reported.

Retrieval after error

MySQL has implemented methods for exporting and importing a database. Consistent

backups can therefore ensure that the information is retained after a crisis, so that it can

be restored to a previous state. The structure of the schedules will likely suffer minor

consequences, as they are created very seldomly, but some data regarding shift exchanges

such as notes may be lost in the time interval between the backup and the system fault.

Safety

Prepared statements will protect the application from sql injections. This puts a layer

between user inputs and the database by preventing content that could have a detrimental

impact on the stored data. The input will also be validated by the framework in certain

areas, as an additional precaution.

The profile passwords will be encrypted, making it more difficult to obtain administra-

tor rights by people with malicious intent.

12 CHAPTER 2. REQUIREMENTS



RoSSMa Gjøvik University College

2.3 Feature Requirements

• Overview of Standard Schedule

On a general level, it should be possible to access a view over the schedule, similar

to HDO’s current method. It’s a list of the week schedule of each participant listed

vertically, and is useful for getting an overview of their coming shifts.

It should contain the names of each participant mapped to a week, color codes for

each day to indicate working hours, and symbols, text boxes or other types of mark-

ers, to indicate shift that deviate from the normal structure and contain additional

information. Overall, this view will be best suited to give an overview of the struc-

ture, as a given schedule will look mostly the same each week, except for the rotating

participants and deviations specific for that week.

Technically, it will be a combination of the view for a template, a table contain-

ing the original structure of a schedule, and a plan, the dataset that conveys the

information of an active schedule.

• View expanded information on a Shift

Selecting a single shift should view an expanded page with dedicated information.

This page should display all notes, information about shift exchanges, the assigned

employee, date information and other relevant data. Some functionality should be

available in accordance to the user’s privileges, for management features accessible

to administrators or specific individuals.

• Profile login and information

Users should be able to log in. The site will control privileges based on user status,

separated between logged out, logged in, given user and administrator. Given user

represents situations in which the identity of the user is important, such as an em-

ployee viewing his own shift.

13 CHAPTER 2. REQUIREMENTS



RoSSMa Gjøvik University College

Normal user Logged in user Administrator

Standard plan Can access Can access Can access

Monthly and

agenda view

Can access Can access - Defaults to

personal schedule

Can access - Defaults to

personal schedule

Expanded shift

information

Can access Can access Can access

Add and edit

notes on a shift

No rights Can create notes on

personal shift and edit

these

Can create, edit and

delete any notes on any

shift

Shift changes No access Can request and accept

shifts on own behalf

Can change any shift.

An exchange must be

approved by an admin-

istrator.

Manage schedules No access No access Full access

Administrators will have additional access allowing them to perform a bundle of

additional tasks such as:

– Create a new schedule template and edit them.

– Create a new shift template, and edit existing ones.

– Set a schedule template as an active schedule.

– Manage active schedules.

– Create notes on any given day

– Edit all notes on any given day

– Administrate user profiles

The plan is to modularize the login process to such an extent that if sufficient time

is available before product delivery, it can be swapped out with the LDAP solution

of the product owner, or at the very least make it feasible for the product owner to

do this post-delivery.

• Overview of personal shift schedule

This task is mainly about outputting alternative views of the shift plans, that only

14 CHAPTER 2. REQUIREMENTS



RoSSMa Gjøvik University College

displays the schedule for a selected user. Schedules of other users will therefore be

excluded from those views, as long as they’re not selected.

The different views will have their own pages that can accessed with ease from the

header of any other page. The alternatives will be a monthly and agenda view. The

first can show all the weeks of a month for a user, this can be used to easily learn the

layout of the next couple of weeks. The latter will list shifts day by day in a vertical

manner and have more room to show notes compared to other two.

• Email notifications.

Send notification of updates from various event from the application to the affected

users. Such events include:

– A comment/note is added to a day (or an existing comment/note is edited)

(email sent to affected employee and admin)

– A shift is directly exchanged (email sent to affected employees, and admin)

– A shift exchange is requested (email is broadcasted)

– A shift exchange is accepted (email to the exchange initiator and admin)

• Mobile interface

Product owner has requested mobile compatibility. In effect, this means that the

website must be viewable and fully functionable on mobile devices.

In practical terms, this will be implemented by creating and adding various CSS

rules and JavaScript functionality optimized for the mobile platform. In general,

guidelines put constraints on amount of information displayed simultaneously, how

interaction with the website is handled, and navigation optimized for the mobile plat-

form.

All major mobile platforms have built-in calendar applications as well, which can

be used through “Export to other services” to enhance integration between the web-

site application and mobile interfaces.

15 CHAPTER 2. REQUIREMENTS



RoSSMa Gjøvik University College

• Shift exchanges and requests

A logged in user should be able to select one of his own days, and from it create a

request to swap it. The request will appear to everyone on the general overview, and

contains a list of alternative working days the requesting user will accept for the trade.

A specific page is set up to handle interaction with shift exchanges. Users can from

this panel get an overview over their own and other employees’ request, and use it

to overview and propose exchanges. Administrators can use this area to accept ex-

changes between two users. Administrators may also do direct exchanges from the

expanded shift interface.

• Export to other services (Google, .cvs/.ical formats, etc)

Major mobile platforms have built-in cloud-based calendar solutions, which can be

used to give the user additional benefits such as notifications on changes or start

of day, offline viewing of schedule and the possibility to view schedules for several

different categories simultaneously. This would also give access to the schedule for

all platforms supported by the given calendar solution.

In practical terms, this is implemented by allowing the website application to ex-

port a schedule plan to a given format (.cvs, .ical, etc) by a consistent URL link, a so

called iCal feed, which can be generated by the website, and given to the appropriate

calendar solution.

The calendar solution will after importing the URL, frequently check the link for

updates, and synchronize these updates to all devices and platforms in use by the

user.

Since these formats are fairly standardized, compatibility can be expected with most

calendar solutions, such as Apple iCal, Google calendar, outlook calendar, Windows

Live calendar, etc.

• Profile management

A simple page containing information about the user, such as email used for login

16 CHAPTER 2. REQUIREMENTS



RoSSMa Gjøvik University College

and notifications, password, name, and other options. Most of these options can be

considered trivial, and unimportant for the administrator group. By allowing the

user to edit these directly, the user no longer has to rely on administrator to update

this information, and the administrator saves the time otherwise used to maintain

the profiles. Passwords are assigned randomly and given to the assigned email, but

can be changed freely.

While profile management can be considered trivial, profile creation/removal is not,

and remains solely as the administrator’s responsibility. As such, regular users, logged

in or not, will not have access to create/remove profiles, and will only be able to edit

their own profile while logged in.

• Create/edit/remove shift templates

A shift template will define a blueprint for a single shift, including code, full name,

color, work start, end and total duration. When creating shift schedule templates,

each day in each week must select one of these shifts that it uses as a base. This

information is used to display most of the information of an active schedule.

• Create/edit/remove schedule templates

The schedule contains an undetermined set of weeks, each of which contains seven

shift templates. This defines the initial layout of a schedule, which will be rotated

each week.

The template is like a blueprint, and will not contain any actual dates, or any map-

ping to employees. As a template, it’s purpose is to define the layout that all the

dynamic data, such as exchanges, employees and notes, interact with. It will consist

of an unique name, and a list of weeks

• Manage user profiles

Profiles are used throughout the site, to assign ownership of work schedules, to allow

login, and to allow logged in users to perform additional tasks. Each profile can also

be marked with administration rights, granting access to all administrator tasks.

17 CHAPTER 2. REQUIREMENTS



RoSSMa Gjøvik University College

Profiles will be visible in a list for the administrator, and can be selected to edit or

remove the individual profile. Controls on this same page will allow the administra-

tor to create new profiles. When starting new shift schedule plans, the administrator

will also have the ability to assign employees to each week using a dropdown list

containing all active profiles.

• Manage schedules

Administrators should be able to select a template and turn it into an active sched-

ule. The area will provide controls to select a start date, as well as an optional end

date. Each week can also be mapped to an employee, or several as long as the time

doesn’t overlap. Management of users can be controlled at a later date, as well as

week notes, also controlled from this environment.

The interface is accessed by clicking on the active button, either on a plan from

the admin panel, or from the template editor. Activating a plan from this interface

only requires a valid start date in the input field, which can be selected through a

datepicker. All other fields are optional. Employees and Week Notes are added by

similar methods, through a pop-up interface that appears when selecting a week.

Adding an employee provides a drop down menu of all users in the system, while

Week Notes are free text. Both of them have an optional field for both start and

end date, which also utilizes a datepicker. Empty fields will use the plans values as

default until changed.

While the database could theoretically support a template being used for multi-

ple schedules, it also makes the admin panel more difficult to use and understand.

Because of this, it has been limited such that a copy of the template is required for

each schedule, which are easy to create.

• Export schedule template

The possibility to export a schedule template to external format such as .cvs/.xml/excel

for external processing. Primarily as a convenience for validation purposes. It can be

accessed through the template editor, and provides a list of the schedule using day

18 CHAPTER 2. REQUIREMENTS



RoSSMa Gjøvik University College

codes, as well as the duration of each week and the definition of each day code.

• Weekly note

Certain type of notes should be able to span an entire week, as opposed to a single

shift. These notes are static in position, and do not rotate with a user as the dates

change. They are commonly used for specific tasks related that relate to all the shifts

on the given week.

These notes should be managed through the administrator’s plan manager interface,

in which he can specify the content of the notes, as well as the duration. Multiple

notes cannot occupy a week on the same date, but can be added at a point in which

the previous one has expired.

• Manage participants

Participants may leave and consequently join a plan that is currently active, result-

ing in a change between the participants on different dates. Weeks may also be left

vacant in situations where no new users have replaced the previous one.

The current implementation solves this by overwriting the user, but doing so would

destroy the integrity of the plan, as earlier dates would be retroactively changed.

The implementation to solve this is equal to that of the Weekly Notes, in which a

start date and end date may be specified. Leaving them at default means they are

participating for the entire span of the plan, or until the administrator changes the

leaving date.

2.4 Software Design Limitations

2.4.1 Standards and Languages

The application will primarily be written in PHP, utilizing javascript, HTML and CSS.

Source code should adhere to the java standards for structuring program code, and be

written in English. Non self-explanatory code should always be commented over the code

19 CHAPTER 2. REQUIREMENTS



RoSSMa Gjøvik University College

in question. Information for PHP-doc will always be included for functions and classes.

The database will be created and managed through MySQL.

2.4.2 Software packages and tools

The product owner has provided the opportunity to connect the applications with the

LDAP solution for profile management currently in use by HDO. The possibility will be

explored if time allows for it, or if it can be included with ease post-production.

The server the application is to be installed on needs to run Apache and a version of

PHP 5.4 or higher.

20 CHAPTER 2. REQUIREMENTS



3 — Design and Analysis

The Design and Analysis chapter is a detailed overview of many preliminary design

choices, presenting many of the decisions that helped shape the project from the start.

Similar Solution looks at applications that fulfill a shared purpose with our project.

Views discusses the approach to the original drafts of the interface, and the inspiration

behind it. Web Service details why a web site was preferred over other software imple-

mentation methods. Original database shows the original look of the database. Tools is

a short introduction to the tools that were used throughout the project, and Risk Analysis

presents the evaluated risk of the project as assumed in the beginning.

3.1 Similar Solutions

Numerous programs that fulfill the same purpose as this product already exist on the mar-

ket. ShiftPlanning is an example of one of these solutions, and will be used as a comparison.

It’s a well developed application of significant size and prestige. Like the product of this

project, ShiftPlanning displays the shifts in a calendar format, and have different possible

views to present the information in. It’s additionally integrated with third party payroll

managers, sending the information of work hours per employee. They provide solutions for

creating custom rules for vacations and resignations, and makes it possible to set employees

as unavailable for periods of time.

A problem with buying an existing solution or find a free alternative will make it problem-

atic to have the solution be more customized for the required needs of the organization. In

the case of HDO, there is no need for the feature found in ShiftPlanning allowing an admin-

istrator to move shifts independently, as the schedules themselves are usually very stable.

No solution was found that took the week rotation into consideration, which invalidates

21



RoSSMa Gjøvik University College

them for this specific purpose.

3.2 Views

The project description requested a method for the employees to organize the plan in a

more personal format. Google’s calendar service was an important source of inspiration

when attempting to fulfill this. Early drafts of the software initially had the full spectrum

of week, month and agenda views, in addition to the standard implementation of the plan

view. Using the same format as commonly utilized calendar applications makes the in-

terface more recognizable, and consequently more intuitive for already experienced users.

Using the similarities between the systems also makes it easier to develop potential export

mechanism.

Supporting three different views of the same information was regarded as a relatively low

priority, and the week format was eventually abandoned in favor of other, more valuable

features.

The current excel implementation of the shift schedule seen in figure 3.1 was the largest

Figure 3.1: Excel Implementation

source of inspiration on how to implement the default view, which was an important factor

for shaping the layout of the rest of the system. Much of it was designed to be familiar,

in part to not alienate the employees accustomed to the previous version, but also because

22 CHAPTER 3. DESIGN AND ANALYSIS



RoSSMa Gjøvik University College

the established approach seemed quite sensible.

There was a nearly identical resemblance in the early mockups as seen in 3.2, one of

the earliest design drafts shown to the product owner. It displays one of the early ideas

that persisted throughout the project. Having an inner and outer section of each shift

cell made it possible to use the central area to display the current shift type and the outer

section to indicate the previous shift type, in case an exchange has occurred. The comment

field also displays the intent of having several different notes on a single shift, although it

does a poor job of separating them, and has faced a significant overhaul since that point.

It became impossible to have enough space to display more than one note after author

and post date was taken into account. Multiple notes are therefore only shown in the ex-

panded view as a result. Several other parts of the layout has also evolved since that point.

Working with a dynamic screen format and being able to isolate the admin functionality

gave some leeway to work with in screen size, resulting in various different interface changes.

Figure 3.2: Early Design Mockup

Figure 3.3 shows a very early design of a pop-up containing expanded shift information.

Shifts were designed to be able to contain several different notes on a day, and some

functionality need to be put in place to make these more easily accessible than what the

standard plan view offered. A pop-up solution was concluded as the best way to solve

this problem. The pop-up would also be the container for all relevant information on a

day, providing extensive information instead of the compressed cell in the standard view.

Having it as a pop-up also prevents the flow from being disrupted too heavily, although a

redirect is implemented for mobile devices to take the limited screen size into consideration.

23 CHAPTER 3. DESIGN AND ANALYSIS



RoSSMa Gjøvik University College

Figure 3.3: Early Design Mockup

3.3 Web Service

One of the primary requirements in the project description was the accessibility of the

software. The employees should be able to view the plan with ease, with either a computer

or a mobile device. Portability problems surface when developing a mobile application

because of the different manufacturers. The application would also have to be synchro-

nized through the internet regardless of implementation. A web service would be the most

effective method of fulfilling this accessibility aspect. Although the internet requirement is

non-negligible, it can be accommodated for rather easily, and the application already has

a real-time component that it would otherwise be impossible to cover.

Presenting the information on a website comes with a few distinct advantages. The most

important one for to the group was the ease of portability. Mobile devices are designed

to display web content, making it several times easier to develop the application cross-

24 CHAPTER 3. DESIGN AND ANALYSIS



RoSSMa Gjøvik University College

platform. While the mobile display carries some limitations, it would still be easier to

make it function at a sufficient level, and custom libraries can help shore up some of the

weaknesses. Web services also removes the burden of having to download new software, as

computers are expected to have some form of web browser installed. While the employees

are likely to be a fairly static factor, it does enable them to view it at both their home

computer, working computer, mobile phone and tablets without having to prepare for it

beforehand.

The choice of programming language was largely unanimous. While the discussion of

using options such as the .NET framework, Ruby or Java Servlets did come up, it ulti-

mately ended up as a PHP implementation, largely due to prior experience among the

group members.

3.4 Progress Plan

Appendix D is the original progress plan, showing the estimated sequence for implementa-

tion of functionality and how much time each task would need. Additional information is

provided on specific entries to clarify how and why they were made.

• Standard view

Regarded as the core of the project, it was regarded as the highest priority and the

first thing to implement after the framework had reached a stable point.

• Alternative views

It was assumed that the implementation of additional views after the standard view

was implemented would in many ways just be to reuse or make variants of that view,

and was as such considered to be rather simple.

• Login

The group had a login system from an earlier student project that worked well and

tailoring it to this project was estimated to be a simple task.

• Sequence of user management

The option to manage users directly through the MySQL interface pushed this down

on the priority list, as it was unnecessary for the implementation of other features.

25 CHAPTER 3. DESIGN AND ANALYSIS



RoSSMa Gjøvik University College

3.5 Original Database

Figure 3.4: Early database draft

Figure 3.4 shows the original database design created late January, shortly before full devel-

opment started. The day-deviations was an idea of a table that would contain information

about specific days where the shift of an employee would deviate from the normal, cases

where a shift would be delayed, pushed, extended or otherwise have a duration outside

the norm. An entry in this table would serve as a replacement for that shift. This was

dropped after the contact person deemed it unnecessary. The three different tables that

mark deviations, named ”shift day plan *” used the plan reference to determine what plan

they belonged to, the week template reference find the correct week sequence and the date

field as means to decide the correct day of the week it was linked to.

26 CHAPTER 3. DESIGN AND ANALYSIS



RoSSMa Gjøvik University College

The shift plan start table contained the data for the initial week of an active schedule,

mapping each week of the schedule to a specific participant.

3.6 Tools

Inclinations towards using Eclipse surfaced early while exploring the options for devel-

oper environments, and was a likely choice given previous experience in using it for other

projects. However, the commercial software PHPStorm ultimately became the choice, de-

spite Eclipse’s familiarity and open business model. The trial version provided a superior

work environment, leading to a purchase of the IDE through the academic license by each

member. While primarily done out of preference, it also provided the benefit of working

with a shared interface throughout the team.

The shared repository is hosted at BitBucket, which synchronized all work through Mercu-

rial. Kanban tasks are hosted at the website Trello, a task board approach to collaborative

organizing. Several files are hosted on a shared Dropbox folder, while writing was done

collaboratively through Google Documents. The final report was compiled with LaTeX,

however.

The website is written in PHP, utilizing HTML, CSS, JavaScript, Jquery and MySQL.

Considerations were made for other client-side languages with the .NET framework as

the frontrunner, but they were ultimately rejected in case the inexperience would prove

detrimental to the final product.

27 CHAPTER 3. DESIGN AND ANALYSIS



RoSSMa Gjøvik University College

3.7 Risk Analysis

Description Likelihood Impact

1 It may prove difficult to create the mobile inter-

face separately.

Likely Moderate

2 Misunderstandings with regards to the em-

ployer’s requirements can cause unnecessary

amounts of time to be spent correcting previous

implementations.

Likely Moderate

3 Conflict in the group Low likelihood Moderate

4 Unpredicted delays that would break the overall

deadline

Near certainty Moderate

5 Loss of resources Low likelihood Significant

6 Illness amidst group members Low likelihood Minor

Solutions

1. By making research beforehand, it’s possible to gain a better perspective on the

situation before making a full commitment. If the task appears to be too time

consuming, an attempt to implement it through export methods may be considered

as a substitute.

2. By using an agile development method with semi-weekly prototypes, the employer

will get the ability to continuously review the produc.

3. Internal disagreement will result in a meeting to solving the issue. A discussion with

the supervisor will follow if no consensus is reached on the subject, trying to reach a

solution based on resulting advice. It’s the project leaders responsibility to organize

the initial meeting.

4. Rework the estimates of time usage. If the deadline is breached too much, some of the

the less important features will be dropped as earlier, determined by the requirement

specification.

28 CHAPTER 3. DESIGN AND ANALYSIS



RoSSMa Gjøvik University College

5. The files will be hosted in a repository, which will ensure that they stay accessible

and synchronized.

6. By developing the software through small independent modules, sickness will only

reduce the overall production the team, rather than create stalls as some parts remain

incomplete over longer durations of time.

29 CHAPTER 3. DESIGN AND ANALYSIS



4 — Development

The Development section is dedicated to the creation of the software, implemented fea-

tures and decisions made along the way. In short, it’s how the software was developed.

Implementation details some of the more important structural implementations in the

software. Ergonimics and Aesthetics is, comparatively, about the look and feel of the

software, and how it behaves from a user standpoint. Testing and Quality Assurance

describes the various methods the software was testing during the course of the project.

Finally, there’s a list of substantial issues that were detected, and how they were resolved,

in Encountered Problems.

4.1 Implementation

4.1.1 Framework

Inspiration

The original idea of the framework was intended to have an implementation much like the

common GUI interface library for Java by the name of Swing. Swing enables the developer

to create different types of interface elements and fill them with information. These can

be added to other Swing elements dynamically under runtime, and as such has much in

common with the DOM structure found on web pages. Commonly used elements could

be implemented in a library, reducing the complexity of creating web pages. Examples of

possible usage areas include warning messages, submit forms and pop-ups, with parameters

to enable different features and appearances.

30



RoSSMa Gjøvik University College

Model/View/Controller

The framework of the project use a variant of the Model/View/Controller design pattern

to handle use and page construction. Systems following this pattern mainly share the fact

that the responsibilities for the interactions are shared between three segments: model,

view and controller. However, there is seemingly no uniform agreement on how these re-

sponsibilities should be properly assigned.

Figure 4.1: Model/View/Controller for this project.

In this project the models are the objects that inherit from ModelBase. They usually

contain a row from a corresponding table in the database. The exception to this is the

ModelWeek class, which consist of selected data from two different tables. Models are

instantiated during runtime when the application need access to the data found in the

database. Instantiated objects are only used to get the data, not edit it. That is done

through the “Page” files.

The “Page” files are the controllers. These files instantiate models and process these

objects. Those objects, or the data processed from them are usually sent to the view,

called “HTMLElements”, which builds the DOM-document with it. The pages handles

manipulation of the database as well, such as editing, saving and removing data

31 CHAPTER 4. DEVELOPMENT



RoSSMa Gjøvik University College

The view segment was initially split into two parts so the pages could call the view-classes

and have them create HTML, XML or JSON, based on what was needed. Later, it was

realized that the project only ever used HTML output, and the functionality and wrappers

for the other other output types were dropped from the framework and project.

Dom-document creation

The web pages viewed by the users of the system is generated in php by creating a DOM-

Document tree. Initially, an external library, QueryPath, was used for this purpose. How-

ever, serious performance concerns, as well as compatibility issues with the rest of the

system, eventually led to an effort to replace QueryPath with our system. SimpleDOMEle-

ment was created for the task, which had the goals of eliminating the performance issues

QueryPath had, while also being simpler in it’s usage.

The elements of the web-page that will always stay the same, mainly the header and footer,

is created by site.class.php through a call to the “HTMLRoot” class. The container avail-

able by the request page is defined here as well. The content of that container is filled by

having the controller get the data and send it to the various HTMLElements that handle

the representation. The controller is selected through a call to “Page::findNavPage()”,

which selects a page based on the requirements of each page compared to the user input.

The resulting page is built from the bottom up, constructing a tree structure of Simple-

DOMElements, ready for output.

32 CHAPTER 4. DEVELOPMENT



RoSSMa Gjøvik University College

Following is an example of how SimpleDOMElement creates a day cell as can be seen in

Standard view, amongst others (using the global shortcut function of spe()).

// Frame

$ c e l l = spe ( ” td” )−>addClass ( ”day” ) ;

$ c e l l−>a t t r ( ” s t y l e ” , ”background−c o l o r : { $th i s−>mDay−>
getOriginalDayTemplate ( )−>getColor ( ) }” ) ;

$ c e l l−>a t t r ( ”data−pop−up” , $th i s−>mDay−>getURI ( ) ) ;

$ c e l l−>a t t r ( ” t i t l e ” , ”Dag { $th i s−>mDay−>getDate ( )−>format ( ”Y−m−
d” ) }” ) ;

// Inner frame

$ c e l l−>append ( $ i n n e r C e l l = spe ( ” div ” )−>a t t r ( ” s t y l e ” , ”

background−c o l o r : { $th i s−>mDay−>getDayTemplate ( )−>getColor ( )

}” ) ) ;

$ inne rCe l l−>append ( $ t i t l e = spe ( ” div ” )−>addClass ( ” t i t l e ” ) ) ;

// T i t l e ( code , time )

$ t i t l e −>append ( spe ( ” span” )−>addc la s s ( ” code ” )−>append ( $th i s−>
mDay−>getDayTemplate ( )−>getCode ( ) ) ) ;

$ t i t l e −>append (

spe ( ” span” )−>addClass ( ” time ” )−>append (

”{ $th i s−>mDay−>getDayTemplate ( )−>getStartTime ( )−>format ( ”H:

i ” ) } − { $th i s−>mDay−>getDayTemplate ( )−>getEndTime ( )−>
format ( ”H: i ” ) }”

)

) ;

Any SimpleDOMElement object, “spe”, can be extended with an unlimited amount of

attributes. These need each a name and a value. The addClass() method was added

specifically because css classes were very frequently used,, but also as a remaining artifact

from the time that Query Path was used.

Children are appended to a parent using “parent− > append(child)”. The append method

was made flexible in that one can append not just other SimpleDOMElements, but entire

33 CHAPTER 4. DEVELOPMENT



RoSSMa Gjøvik University College

Blocks, or simple strings as well.

pop-ups

The web-page relies heavily on pop-ups. It uses its own system to create them by creating

a jQueryUI dialog that floats on top of the page, which it subsequently fills using ajax, with

the requested html content from a page. Serverside, pop-ups are handled no differently

then a regular page. Instead, the javascript pop-up system will extract the main contents

of the retrieved page, and fill the pop-up/dialog with the contents. As a side effect, each

pop-up page can be served as a full stand-alone page instead of a pop-up, on demand.

A requirement going into the project was that it should be viable for use on mobile plat-

forms. The implementation of pop-ups provided some problems in terms of screen space,

and were often unwiedly in practice. Handheld devices therefore use a redirect instead

of opening a pop-up, which adds some unwanted navigation time but brings considerable

benefits to the interface.

Date

The various views always assume that participants and schedules starts at a Monday. Ro-

tation shift schedules are entirely centered around weeks, and the provided information

specified that employees never start participating in the middle of a week. Specified dates

that refer to a day other than Monday will still redirect to the Monday of that week. A

global function was designed for this purpose. PHP operates under the assumption that

weeks start with Sunday, which had to be taken into consideration for the function, and

was also one of the reason a global method to handle it was made.

func t i on getMonday ( DateTime $date ) {
$ d i f f e r e n c e = 1 − $date−>format ( ”N” ) ; i f ( $ d i f f e r e n c e >

0) { $ d i f f e r e n c e −= 7 ; }
$date−>modify ( $ d i f f e r e n c e . ” days” ) ;

r e turn $date ;

}

34 CHAPTER 4. DEVELOPMENT



RoSSMa Gjøvik University College

Shift Templates

A schedule need to be approved before it can be activated. Because of this, it should be

impossible to change the structure after that point. However, some cases may occur where

small changes are necessary between different schedules, or a name has to be reused for

something different.

It was necessary to make it possible to change shifts between templates but not create

ramifications for earlier shifts, to ensure that the integrity of the history is not lost. Each

schedule template therefore uses it’s own set of shift templates, independent from the rest.

New templates copy the entries from the previous one to reduce unnecessary work, as they

are likely to stay the same for most of the time. Any deleted template will also remove all

associated shift templates.

Shift changes

Making an exchange between two shifts on a date that has already occurred is meaningless,

as the shift has already transpired. It’s therefore impossible to access the exchange inter-

face for prior days. The overview over exchange requests and responses will additionally

hide those for previous dates, removing unnecessary clutter and distractive elements.

Shift requests also provides users with the possibility of specifying the parameters for

what type of shifts may be provided in exchange, chosen from the list of templates con-

nected to the schedule. This limits the number of employees that can respond down to

those who have a shift of the designated type on that day. The final conclusion on whether

an exchange request is acceptable or not is still determined by the administrator.

Date checks and calculations are all done through PHP, and therefore use the server time

instead of the client’s time clock.

4.1.2 High-level System Description

The root folder contains 4 subfolders and the index file. The javascript and css folders are

used for javascript and css files. Each page includes these files on their own, often having

one dedicated javascript and css file for each different view. The site.css file is a notable

exception to this, being included in every web page. The image folders are used to store

35 CHAPTER 4. DEVELOPMENT



RoSSMa Gjøvik University College

pictures used for backgrounds and icons. The final system folder is the most important one,

containing all the php source code, excluding the aforementioned index file. It contains 2

php files; globalFunctions.php, which as the name suggest, is a list of global functions, and

init.php, which is launched through index.php and is the beginning of the system stack.

The following 6 subfolders can be found in the system folder, and determine the majority

of the framework:

• Classes: Contains the superclasses most of the other classes inherit from, namely

ModelBase, HTMLElement and page.class.php. This folder also contains Simple-

DOMElement.class.php used for DOMtree generation. The arghandler.class.php used

for handling arguments sent through forms and URI, retrieved through GET and

POST values, can be found in this folder as well.

• Config: This folder only contains config.php, and is used for accessing the database.

It consists of the name of the database, as well as the proper name and password

used to access it. This specified database profile should have read and write access

to the database, as it will otherwise prevent the application from operating properly.

It’s also possible to set the debugging options in the config file, which determines the

level of information that are provided by the system when errors occur.

• HTMLElements: Contains the views and elements used to design the interface when

creating a page. Most classes in this folder extends HTMLElement.class.php. The

constructor of these files will initializing the member variables, in addition to speci-

fying the required css or javascript through the following two functions:

S i t e : : r e q u i r e S t y l e s h e e t (∗ c s s f i l ename ∗) ;

S i t e : : r e q u i r e S t y l e s h e e t (∗ j a v a s c r i p t f i l ename ∗) ;

File extensions are not used for these functions.

• Models: Consists of the classes used to access and manipulate information stored

in the database. The constructor can contain several parameters that are used to

specify the type of objects to create, such as all shifts on a specific week, or within a

given time frame.

The majority of the objects have a “searchDB” and “searchDBForSingle” method,

which are utilized by the inherited “find” and “findSingle” functions. They are used

36 CHAPTER 4. DEVELOPMENT



RoSSMa Gjøvik University College

to find all objects that match a specific parameter, and the object with a specific ID,

respectively. The two find functions will access the database if the matching objects

have yet to be loaded into memory.

• Pages: Contains the classes that the system uses to create pages or manipulate the

database.

• Requirements: Originally contained files which checked and specified the privileges

of a user, returning true or false on whether a user was logged in, a user specified by

the system, or an administrator, depending on the type of request. Checks on user

privileges determined by user id was moved outside this system, and is used more

preemptively in the system, due to difficulties in determining the proper user during

page load. The file is therefore only used to determine if a user has admin privileges

or not.

37 CHAPTER 4. DEVELOPMENT



RoSSMa Gjøvik University College

4.1.3 Database

Various changes has occurred to the database since the original draft was implemented, as

can be seen when comparing 4.2 and 3.4. Some of it has been simple naming conventions

for clarification purposes. More drastic changes, such as adding additional fields or tables,

were done to accommodate to changes in the framework and unexpected features.

Figure 4.2: Final database design

The database went through a significant change in February, to help clear up some confusion

and ambiguity. The large amount of prefixes were often redundant, and had a substantial

impact on readability. Some important changes were removing the “day” identifier and

only use “shifts” to denote them instead instead, as well as removing the parent suffix in

many table fields. The “shift” and “plan” prefix was removed in most areas where it was

unnecessary, such that tables like “shift week template” are now simply “weekTemplate”

instead.

The “template” table was added for two reasons. First, it made it easier to find a list

of templates, instead of assembling them through other tables, namely the template links

found in “plan” and “weekTemplate”. Secondly, and more importantly, it enabled the

38 CHAPTER 4. DEVELOPMENT



RoSSMa Gjøvik University College

possibility of naming them, which is important both to organize them and as a reference

amongst employees.

The ”swapRequest”, ”swapResponses” and ”passReset” tables are necessary for certain

functionality and were added accordingly. The first two are used to handle employee re-

quests to exchange a shift, and the responses to these. The third one was added for the

”forgotten password” feature, where each row stores a password change request that must

be completed within a time period of 6 hours before becoming invalid.

Week notes and day notes originally used the same table, as they shared a lot of the

same attributes, with a single attribute used to tell the two types apart. They were di-

vided into the two tables “weeklynote” and “note” fairly late into the project, as they

became noticeably different, resulting in several of the fields becoming superfluous. Notes

had no need to know their end date, and week notes didn’t need an author, as a couple

examples.

The initial implementation of “planStart” didn’t have a field to determine when a user

joined or left the plan, working under the incorrect assumption that employees wouldn’t

leave a plan after being assigned. The primary purpose was to determine the rotation in

a schedule. However, after a start and end attribute was added, it could also preserve the

history of participants.

A “duration” field was added to the “dayTemplate” table. The first incarnation determined

the duration by calculating it from the start and end time attributes. Adding a duration

field removed the need to calculate using DateTime objects in php, which is rather cum-

bersome. However, the primary reason for this change was because certain type of shifts

have a duration that doesn’t correspond with the time interval, sometimes being shorter

than normal. This distinction is important when calculating the duration of an entire week.

As seen in the figure, most tables owns a reference to “weekTemplate”. Those references

existed in the early database as well, but not as prevalent as it eventually became. It shows

how incorporated the system is around the idea of depending on weeks and their rotation,

as mentioned previously .

39 CHAPTER 4. DEVELOPMENT



RoSSMa Gjøvik University College

4.1.4 External Libraries

Software development is a well explored area, and solutions to common situations have

been devised by many intellectual people. Several libraries have been implemented in the

project to save valuable time, with features that have been developed by well experienced

teams.

Name TimePicker

Type Javascript

Licences MIT and GPL

Usage Timepicker is a jQuery based featured used to list time entries.This

list is navigable and bound to an input element containing the

last selected entry value. It’s used in the shift template editor to

specify the start and end point of the shift, as a more convenient

method than traditional input fields. Some modifications were

done to the source to enable auto-complete.

Name Spectrum

Type Javascript

Licences MIT

Usage Spectrum is a library designed for color selection. It provides a

color selector that provides a user interface for specifying colors

and their saturation level, and is used as the default option for

color type inputs in Google Chrome. It’s used in the shift template

editor to specify the color of the shift.

40 CHAPTER 4. DEVELOPMENT



RoSSMa Gjøvik University College

Name detectmobile

Type javascript

Usage Discerning if the browser used by a user to connect to the webpage

is a browser for a mobile phone or not, is error prone at best. This

library have seen more extensive testing than anything done by us

would have been able to see during the project period. Used for

checking if the browser is a mobile browser or not when opening

a pop-up.

Name jQuery.Datepicker

Type javascript

Usage Datepicker is an interactive tool used to fill out date values for

input elements. It provides an interface to select date values from,

instead of making the user type it in manually, which can result

in possible formatting errors. The datepicker is used in several

places, such as specifying what week to view, or determining the

date interval of a week note.

Name jQuery.Drag & Drop

Type javascript

Usage The jQuery library for drag and drop is utilized in the Template

Editor. Each week row can be dragged up or down to change

the position of the table layout, which determines the starting

structure of the plan.

Name Contextmenu

Type javascript

Licences MIT and GPLv3

Usage The context menu is used in the template editor for accessing the

options used to copy, cut, delete and paste rows. It’s effectively a

right click menu for web interfaces.

41 CHAPTER 4. DEVELOPMENT



RoSSMa Gjøvik University College

4.2 Ergonomics and Aesthetics

Plan Views

Three different views were created to enable users to access the information in different

formats according to preferences. The primary view, used as the front page of the site,

shows a single week for all participants. It defaults to the current week of the month. Users

can gain information regarding the current week with ease because of the general nature

of the standard view. If a user wants to view a plan dedicated to his own schedule, then

both the monthly and agenda view fulfill this purpose. The monthly view is constructed

to show the time schedule, while the agenda is more suitable for displaying notes. As a

default option, the monthly and agenda view navigates to the user’s personal schedule if

he or she is currently logged in, to save unnecessary time selecting the correct user.

Administrator Panel

The administrator panel was designed to express a large amount of stored information

while providing easy methods to access areas to manipulate it. The area is divided into

two sections. The primary area contains plans and templates that the administrator has

made. They are created as a simplified representation of a schedule template, and can be

identified through both name and structure. Useful features, such as editing or copying an

object, is presented when the user interacts with the given item. If it’s a template, then

it’s also possible to delete it or make an active plan out of it through this menu. Unneces-

sary clutter on the screen is reduced by ensuring that these option are only available when

someone hovers over an object.

42 CHAPTER 4. DEVELOPMENT



RoSSMa Gjøvik University College

Figure 4.3: Template Picker

The other section of the panel administrates users. It displays every user registered

in the database, and provides options to make changes to the existing users or add new

ones to the system. The header field can be used as a search field in case a user becomes

difficult to locate.

Editor

This view is designed for administrators to create the backbone structure of shift schedules.

It allows creating of shift templates and plan templates. The former is done through the

interface on the right side. The editor area for shift templates are done through a pop-up

accessible by clicking on an existing template or the area for creating new ones, in which

you get the opportunity to change the values of an existing template or create an entirely

new one.

The section on the left is dedicated to creating the plan itself. It contains a number

of diagonal rows that represent the different weeks, containing the seven days and the total

duration of the week. Each day contains an input field with a shift codes, and uses an

autocomplete feature that helps fill out the days more efficiently. New empty rows are

added incrementally as each one is filled out. Each row also has mouse support for certain

features. A jQuery drag and drop implementation makes it easy to reorganize rows after

they have been created, and a right click menu provides options to delete, cut, copy and

paste entire rows at once.

43 CHAPTER 4. DEVELOPMENT



RoSSMa Gjøvik University College

Manager

The manager is the view dedicated to making changes to an active shift. It contains a

table with a schedule. Each week can be selected to get additional information, and more

importantly add users and week notes to the selected week. Users and notes are specified

with a start and end date that determines the duration that they are included in the

schedule. Date pickers are included in the input fields to make these values easier to input.

Leaving the start and end field empty makes the system assume that it’s included from the

start of the schedule and to the end of the schedule. Users are also selected from a drop

down to prevent types and increase efficiency, while notes are entirely in free text.

Iconography

The site has a series of tiny icons that are used across the various pages that convey context

dependant actions.

Create a new entry of an item.

Delete an entry of an item.

Edit the entry of an item.

Indicates that an item contains a single note.

Indicates that an item contains several notes.

Indicates that an exchange has occurred on a shift.

Indicates that an exchange has been requested on a shift.

Denotes an information box.

Denotes a prohibition or warning box.

Figure 4.4: Different incarnations of a shift

44 CHAPTER 4. DEVELOPMENT



RoSSMa Gjøvik University College

Shift instances generally follow a consistent pattern throughout the different views. Cen-

tral between all of them are the inherited color coding and day code. The outer frame are

used whenever there’s a possibility that there has been an exchange between two shifts, in

which case the outer color represents the original value of the day. This puts the focus on

the current value of the day, making it easier to read the flow of a schedule. However, the

border is an important visual cue that draws attention to the fact that a shift has been

exchanged, while also conveying the original status of the day. Being able to determine the

original layout of a schedule where exchanges had occurred was an important concern for

the consumer.

Easily discernable alert messages are utilized throughout the system to draw the user’s

Figure 4.5: Information message

attention to important details. They come in two forms, either as blue information boxes

like seen in figure 4.5 or orange warning boxes like figure 4.6, and are used both proactively

and reactively. Reactive alert messages usually inform the user on one of his actions, such

as confirming that he successfully logged in. Proactive messages informs of specific circum-

stances, like preemptively notifying the user that he lacks the privileges to add notes to a

selected shift.

Figure 4.6: Warning message

45 CHAPTER 4. DEVELOPMENT



RoSSMa Gjøvik University College

Navigation

Figure 4.7: Navigation chart

Figure 4.7 shows the navigation map between pages. Solid arrows denotes hyperlinks, while

dotted arrows indicates areas where pop-ups are utilized. Colors are used to show areas

restricted through login, with blue as the default. Pages in green indicate that the content

is only accessible to users currently logged in, while purple is used for areas that requires

administrator privileges. The Header container indicates all the pages that can be accessed

through the header tabs, available from any page.

The number of necessary steps to reach a page are related to how commonly a user will

access it as well as how much information is necessary to display the relevant content. It

rarely requires more than three steps to reach a single page when taking the optimal route.

Most of the information that is most commonly relevant to the user all are found in the

header tabs, a single click away.

46 CHAPTER 4. DEVELOPMENT



RoSSMa Gjøvik University College

Figure 4.8: Header

4.3 Testing and Quality Assurance

The majority of the testing process was done through co-operative work within the group.

Unintended functionalities were brought up whenever they would occur, so that they could

be dealt with as soon as possible. The current state of the software would always be acces-

sible to the group members by virtue of having consistent synchronization of the repository.

Usability and interface choices were likewise discussed by the team during development of

the feature utilizing the object in question, before being presented to HDO.

The continuous meetings between the product owner and the development team, scheduled

to Friday every other week, proved vital for the progress of development. Having to present

the current state of the software at repeated intervals required the product to hold a certain

standard. Alternate weekly meetings also ensured that HDO could provide their opinions

on the current iteration, preventing the project from drifting away from their vision of the

software. The responsibilities that comes with working with an employer helps to keep the

quality both consistent and in line with the desired outcome.

A web server was deployed during the later stages of the project, enabling HDO to try

out the current builds and provide feedback accordingly. This utility was useful to let

HDO test how the application worked in a real scenario. Giving the product owner a

deeper insight into the flow of the program provided some important information that

could otherwise be received too late in the process to take into account. Hosting it on the

GUC server provided to each student was under consideration. However, it was ultimately

deployed on a personal server, as the GUC servers run PHP 5.2, which disables a lot of

important functionality.

A profiling was initiated in the middle of March because of issues with the loading time of

the pages. Testing data suggested that it regularly used around 4 seconds to fully load a

single week on the standard schedule. A combination of the Google Chrome developer tools

and the Xdebug PHP extension was used to get a detailed analysis on the response time.

47 CHAPTER 4. DEVELOPMENT



RoSSMa Gjøvik University College

Google Chrome was used to check the loading time of javascript, while Xdebug inspected

the delay from PHP functions. The solutions provided in the next chapter provided a

substantial decrease in the site’s response time.

4.4 Encountered Problems

Name Surpassed Nesting Level

Problem The website frequently crashed as a result of having too many re-

cursive function. The nesting level of the program stack breached

the PHP limitations.

Solution Several of the major functions that used recursion were changed

to use a stack based method instead. While functionally identical,

it ensures that the nesting level doesn’t reach a critical level by

stacking the functions after the ”‘Last in, First out”’ principle.

Name Object References

Problem All of the Model classes initially had direct references to relevant

child objects. It made them easy to access once the parent object

was attained. However, since the system stores serialized objects

to reduce unnecessary database queries, it made their serialized

form too complex. The creation of one new Model object almost

always lead to the creation of a multitude other Models, most of

them doing a search in the database. They increased the load

time of each page with an unacceptable amount. This problem

was discovered during the performance testing in March.

Solution Child parents are now stored as identificators instead, to reduce

the complexity of the objects. The system now uses find and find-

Single together with the ID’s to accommodate for the structural

changes. This means that the page need to search for the correct

data when it’s needed, but it saves time by not having to create

the entire model structure when a single object is instantiated.

48 CHAPTER 4. DEVELOPMENT



RoSSMa Gjøvik University College

Name Query Path

Problem Earlier incarnations of the framework used the PHP library Query

Path to construct the HTML layout in the views. Performance

testing in March showed that Query Path demanded an unaccept-

able amount of time to load. It was also deemed as inflexible to

use, as the ability to affect an element were lost the moment it

was appended to the tree.

Solution The Query Path class was substituted with a custom DOMEle-

ment class instead. This fixed the problem with loosing control

over the element, as the custom class builds the tree structure

when the entire thing is finalizes, as opposed updating it when-

ever a new element is appended.

Name Schedule Rotations

Problem The rotation was first implemented with the assumption that

weeks would be changing the position under rotation, as opposed

to the participants. This assumption was faulty.

Solution The weeks are from a technical standpoint still rotated instead

of the employees, although in the opposite direction. Weeks are

kept static from an aesthetics standpoint by using a different week

template as the first week depending on the date. Early attempts

at fixing this caused the employee list to be mirrored on the first

participant entry, an issue that was eventually resolved.

Name Change of participants in active plan

Problem Multiple planStart entries that all references the same week in

a plan prevented the schedules from loading, even if they were

assigned to different time intervals, because the start and end dates

weren’t taken into consideration.

Solution This was fixed by using a new Model, ModelParticipant, to deter-

mine the participants of a week based on the date they join and

leave the schedule.

49 CHAPTER 4. DEVELOPMENT



RoSSMa Gjøvik University College

Name DateTime objects

Problem The DateTime object found in PHP and utilized in this project use

the normal conventions for weeks in an English calendar, which

means they start with Sunday. This was rather troublesome, as

calendars in Norway use Monday as the start of a week. An-

other frequently problem was how DateTime objects was handled

between features, often causing changes done to the DateTime

object in one place have unintended ramifications in another.

Solution Instead of using standard functions existing in the DateTime class,

the system calls a global custom “getMonday” function. The Date-

Time reference problem was solved by cloning the DateTime when-

ever it was passed, so functions operated on a new object instead

of one inherent to another object.

50 CHAPTER 4. DEVELOPMENT



5 — Installation

This chapter introduces topics regarding how to implement the completed software. Down-

loads and Location shows where to get the necessary software, MySQL provides how to

get the necessary data for the software to operate and Configurations is a guide through

the configuration options.

5.1 Downloads and Location

• This manual assumes a working installation of Windows Server 2008 R2.

• Download and follow the instructions found on www.apachelounge.com/downloads.

• Extract the files to somewhere in the machine, make note of the path. For these

instructions, assume that they are extracted to C:\webServer\

• Extract the project files to C:\webServer\apache24\htdocs\

• Download a non-experimental, Thread-Safe zip from http://windows.php.net/download.

• Extract the files to the same path that apachelounge was extracted to.

• Download the web community MySQL installer (1.5M) from

http://dev.mysql.com/downloads/installer/ by clicking download. You can press “No

thanks, just start my download” on the following page to avoid having to create an

account on oracle. The MySQL installer might ask you to install .NET, which you can

find a download for at http://www.microsoft.com/en-us/download/details.aspx?id=17113,

click “Download”. If prompted to install additional microsoft software in “Microsoft

recommends”, you can press “No, thanks and continue”.

51



RoSSMa Gjøvik University College

5.2 MySQL

5.2.1 Installation

1. Install MySQL and MySQL workbench through the installer by starting it, then

clicking install MySQL products.

2. At setup type, choose custom, as only a few extensions is needed.

3. Check for all basic main tools, uncheck everything else except MySQL workbench.

4. In the configuration menu, choose “Show advanced configurations”

5. Give the root user a password you’ll remember.

6. Choose wanted logs, default is acceptable. Choose path for where the logs go, if so

preferred.

7. Start workbench after the installation is complete, and click “local instance *name

of instance*

8. To import the structure of the database

(a) Click data import/restore.

(b) Click “Import from Self-Contained File”, and set it to “*projectzip*/sql\hdoturnus structure.sql”.

(c) Click “Start import”.

9. To insert data into the structure:

(a) Go to “data import/restore”.

(b) Click “Import from Self-Contained File”, and set it to “*projectzip*\sql\hdoturnus data.sql”.

(c) Set default target schema as hdoturnus.

(d) Click “Start import”

52 CHAPTER 5. INSTALLATION



RoSSMa Gjøvik University College

5.2.2 Password

For the sake of security, it is widely recommended to create a limited MySQL user that is

only authorized to access site resources, while limiting other potentially harmful operations

such as creating or destroying entire databases, dropping tables, and so forth. Since the

site only reads and writes data using SELECT, INSERT, UPDATE, DELETE, it can be

safely assumed that any other operation should be completely unused, and if executed,

would be the work of a malicious user.

You can create the user in one of two ways:

There’s a default user bundled in the project folder

1. Go to “data import/restore” again.

2. Click “Import from Self-Contained File”, and set it to “*projectzip*\sql\hdoturnus user.sql”.

3. Set default target schema as hdoturnus.

4. Click “Start import”

Or you could create it manually through sql workbench:

1. To create a limited user, open MySQL workbench, connect, and navigate to ”Users

and Privileges”.

2. Login name can be anything you’d like, example: ”hdoturnus”

3. Authentication type can be left to standard

4. Limit to hosts matching: localhost

5. Password: Pick any password. This password will only be used once, in the configu-

ration file of the site itself. It is otherwise unimportant to note or remember, and it

is therefore recommended to follow practices for very strong passwords. Mix letters,

numbers, and symbols, and use many characters (10+).

6. Leave everything in ”Administrative Roles” unchecked/unmarked

7. In Schema Privileges click ”Add entry”. In the following window, first click ”Se-

lected schema:”, then the database used in this project (hdoturnus by default). Click

Ok. In the category of object rights, select ”SELECT”, ”INSERT”, ”UPDATE”,

”DELETE”. Leave everything else unchecked. Finally, click Apply at bottom

53 CHAPTER 5. INSTALLATION



RoSSMa Gjøvik University College

5.3 Configurations

5.3.1 Apache

First of all, note that all paths in apache config uses forward slashes, meaning a path should

look like “C:/apache24/”. Comments are prefixed with the symbol “#”, which can be used

to leave in notes, sections, categories, comments, etc.

1. Open the apache configuration files with a text editor at C:\webServer \apache24\conf\httpd.conf.

2. Find all occurences of “c:/apache24/” and replace it with your path, in this instance:

“c:/webServer/apache24/”. Only change the directory part of the path. (Note,

wrapping the path name in quotes will allow space in the path name.)

3. Add “index.php” to the DirectoryIndex, making it look like this:

<IfModule dir module>

DirectoryIndex index . html index . php

</ifModule>

4. At the end of the file, add:

LoadModule php5 module C: / webServer /php/ php5apache2 4 . d l l

AddType a p p l i c a t i o n /x−httpd−php . php

PHPIniDir C: / webServer /php

5. If logs should go somewhere specific edit the line

”ErrorLog ”C:/webServer/apache24/logs/apache error.log” and

“CustomLog ”C:/webServer/apache24/logs/access.log” common” to your preferred

path.

6. Save the changes.

5.3.2 PHP

The paths are written with backslash, and not slash. Lines are commented out with semi-

colon ( ; )

54 CHAPTER 5. INSTALLATION



RoSSMa Gjøvik University College

1. Copy “php-ini-production.ini” found in c:\webServer \php\, and rename it to “php.ini”

and open the file in a text editor.

2. Edit all occurrences of C:\php\to say C:\webServer\php

3. Edit extension dir: Uncomment the line under “On windows”. Insert your path into

into the quotes.

; D i r ec tory in which the l oadab l e ex t en s i on s ( modules

) r e s i d e .

; http : //php . net / ex tens ion−d i r

; e x t e n s i o n d i r = ” . / ”

; On windows :

e x t e n s i o n d i r = ”C:\ webServer\php\ ext ”

4. Uncomment the line containing extension=php pdo mysql.dll

5. Edit sessions.save path: Set to temporary files directory in windows.

6. Add the PHP directory to the environment variables.

(a) Go to “Control Panel”, then navigate to system.

(b) Open advanced system settings, continue to Environment Variables.

(c) Find a variable named “Path” among the System Variables, and append “;C:\webServer\php”.

5.3.3 Project

If you created the database user yourself, or decided to use the root user do the connection:

1. Open *projectpath*\config\config

2. Edit “db user” to the username of your user.

3. Edit “db pass” to the password of your user.

55 CHAPTER 5. INSTALLATION



6 — Summary

This is a summary of the project’s conclusion. It looks into the end result and topics sur-

rounding it. Discussion brings up matters regarding the software within the perspective

of the specification requirements, what was accomplished and the possible expansion op-

tions. Evaluation discusses the development process and personal opinions regarding the

final software. Some final words are offered in Conclusion, which concludes the report.

6.1 Discussions

6.1.1 Unimplemented features

• Caching

The framework was created with caching in mind. The model system’s find, and find-

Single methods will actually look through previous searches to determine if any prior

search contains or is equal the requested search parameters. If the search parameters

match, it will return the result collection in its entirety. If the search parameters are

contained within one of the cached search parameters, the system will automatically

filter through each result in the collection, and filter away each result that does not

match. The advantage of such a system is that data from previous searches can be

reused without querying the database a second time.

Each model is compared using a method aptly named ModelBase::compare(Modelbase

param). Each model can override this method if special treatment is necessary. By

default, the implementation will assume a match if the cached model A has at the

minimum all the same attributes matching the search parameter B’s attributes. Us-

ing this system, a search can be constructed by creating an empty model, and setting

the attributes one wish to search for. The specified attributes will require an exact

56



RoSSMa Gjøvik University College

match, while the attributes that remained unset will be matched as a wildcard. If

the search is not cached, ModelBase::searchDB, or ModelBase::searchDBForSingle is

queried for results from the database, which is then subsequently cached using the

previously described system.

Because previous searches are reused, the order in which searches are performed

becomes significant. If a generic match-all search runs before a bundle of more spe-

cific searches does, maximum reusage of data can be ensured. For this reason, certain

parts of the system will preload data using a generic search, to prevent the many sub-

sequent sub-searches from each querying the database. However, the cache system’s

real potential is in combination with a memory-based cache system such as mem-

cached, where the search results can essentially be reused between many page loads.

Unfortunately, the implementation of memcached, or any similar such system was

down-prioritized to the point where it got dropped due to time constraints. As such,

while the system has potential to run with great data-efficiency, it wasn’t completed,

and loses it’s cache between each page load, which in turn means a lot of the queries

that now will run for each page load could have been avoided. Overall, the perfor-

mance is still clearly within margin-levels considering the scope and size of the project,

and a fully optimized solution can be easily delayed until the project scales to 20-40x

its size, or the framework is reused in another, much bigger, more demanding project.

• LDAP integration

The LDAP system that has been referenced several times could have substituted

the user module, using an API to connect to HDOs current user management sys-

tem. This would, as mentioned, only be done towards the end of the project, as the

scope of such an endeavour was difficult to estimate. It would also require access to

the system under development, and make testing more troublesome after completion.

This was discard as time became too limited, which was to be expected. The dif-

ficulty of integrating such a system is too unclear, making the risk too high from

a development standpoint. It’s highly likely that the login system has became too

integrated with the rest of the system, making a transition to LDAP unnecessary

57 CHAPTER 6. SUMMARY



RoSSMa Gjøvik University College

difficult, which is opposite to the original intentions of a flexible solution. The Mod-

elUser class in particular is probably the biggest obstacle. While the object itself

doesn’t present many difficulties, all the references to it does. When the references

were changes to use identifiers instead of objects, it also changed how users were

accessed. The current find method retrieves data from the database, and would need

modifications to use an LDAP API instead.

• Notes with extended duration

The note functionality was quite likely the source of most discussion, in addition to

shift exchanges. It didn’t differ a whole lot from the previous implementation, but

gave a new degree of flexibility that could be explored. Making a custom platform

also meant the option to bypass many of the limitations that excel brings with it.

One of the examples was the possibility to have a note apply to all the days within a

set interval of dates, such as Monday to Friday. The effect would be quite similar to

how shift exchanges are handled. Time restrictions and convolutions in trying to im-

plement it resulted in the feature being excluded, as it was ultimately a convenience

feature, although it had a lot of merit.

It was under consideration for some time, however, in case a sufficient solution should

come up. The database, for example, had attributes to fulfill this possibility in case

a solution was devised. Notes contained a field for end dates to specify the duration

of the note, and the employee field was used to track whom the note was assigned

to. The latter was eventually made redundant by a week template fulfilling the same

purpose, and was changed to store the author of the note instead.

• Separation of different schedules

Different methods of separating multiple plans that were active simultaneously was

discussed under various occasions during April. The software technically already took

this possibility into consideration, as it lists all current schedules sequentially in the

main view. This implementation had some flaws, as it was primarily an afterthought,

and not something it was specifically designed to do. A header was added to serve

this new request. The header lists all active plans in the specified time period, and

contains links that makes it easier to navigate to these schedules.

A more elaborate solution would require more time to develop. Possible implementa-

58 CHAPTER 6. SUMMARY



RoSSMa Gjøvik University College

tions that were brainstormed included a drop-down menu of all the possible schedules,

or splitting them into different tabs. It was omitted in favor of other more beneficial

features because such a change would have a minor impact on functionality compared

to the current implementation.

• “Message of the week”

A message of the week feature was brought up during the last meeting with HDO,

at which point the project was nearly over. It would feature a global message to

all participants of a schedule, with information for that specific week. Most likely

displayed as some form of header.

The application had no support for such a feature at the time, as it hadn’t been

discussed at any previous opportunities. As such, it would require changes to the

interface, updates to the database, and most importantly some sort of method to

create and manage these messages. The current stage of the project meant that the

emphasis had to be shifted towards writing the report, which didn’t leave room for

any last minute request. It would in all likelihood have been implemented if it was

included in the initial draft, not being too difficult to implement and having distinct

benefits.

• Weekly view

Early versions of the database included a field for shift deviations, as shown in fig-

ure 3.4. The deviations table was intended to store situations where a single shift

wouldn’t last for the normally specified duration. Rotating shift schedules don’t ac-

count for such situations due to the rigid time restrictions, so it was discarded from

the database. The functionality can technically also be done through the shift ex-

changes already, although it would be highly cumbersome.

The primary feature that would make use of this was the weekly view, a dedicated

display of the number of work hours on each individual day in a week. The week view

was included in the early drafts because of various different reasons. It didn’t differ

too much from the other views, so it required little effort to implement. It also gave

the employees more options, and wasn’t obtrusive for those who felt no need to use

it. Lastly, it was part of the Google Calendar application, the source of inspiration

for a majority of the views. When the deviation table eventually got dropped, it

59 CHAPTER 6. SUMMARY



RoSSMa Gjøvik University College

became more and more evident that the week view didn’t add a whole lot to the

software. Most participants will be well accustomed to the exact definition that a

day code represents, so the monthly view is already suited for the situation. A week

view is more beneficial if there are several different events that needs to be taken into

consideration, which doesn’t apply to this case. With that in mind, it was deemed

unnecessary and dropped from development.

6.1.2 End results

What is delivered?

The requests made in the project description is met, as it’s possible to access and view the

plans by users through the internet, and administrators are able to create new templates

and manage certain aspects of an active plan. In addition, a minor requirement mentioned

in the project description showing the shifts for one user have been accommodated through

the implementation of Monthly View and Agenda View. The solution is available for use

on mobile platforms as well.

As it was thoroughly specified at various meetings that the original structure of the sched-

ule never should be overwritten while viewing it, early designs to accommodate this was

made. These designs lasted in a big part throughout the whole project period, and shows

adequately and intuitively both of the original structure as well as changes affecting a single

week after they’re made like seen in figure 4.4 on page 44

The solution can keep a history of the schedules, which include earlier schedules that

are no longer active, how participants of a schedule have changed throughout the active

period of it and likewise with the different fixed work assignments mapped to weeks. This

feature was requested and not possible to attain in the excel solution without keeping a

history of files. The solution supports multiple active schedules at the same time as well,

treating them as independent entitities, as it should. The pop-up showing expanded shift

information by clicking on a day functions much like originally envisioned and written in

the early operational requirements, so are the access rights for users of the system.

60 CHAPTER 6. SUMMARY



RoSSMa Gjøvik University College

What is not delivered?

The final solution provides a large degree of freedom with regards to shift exchanges. How-

ever, one of the larger appeal factors of the implementation was automating the process to

reduce the strain on the administrators. Shift exchanges between two employees usually

necessitates that they compensate for it at a later date with another exchange, to keep

the total work duration valid. It can be accomplished manually, but there is no method of

proposing several related trades simultaneously. It’s theoretically possible that the lack of

this feature puts too much of the responsibilities on the admin to oversee that everything

is handled correctly.

The extensive numbers of browsers and digital devices makes it difficult to properly support

them all. Some areas of the interface may be distorted or not work properly on specific

platforms, especially on outdated browsers without support for modern features.

The aforementioned inability to create several notes simultaneously is a convenience feature

that never reached implementation.

6.1.3 Expansion Opportunities

While the project did complete the specified requirements, they commonly end up expand-

ing beyond the initial goal. Feature request cropped up throughout the project period,

and while some were taken into account, some had to be abandoned as well. The most

important one, which could possibly be undertaken as a project in itself, would be to inte-

grate the LDAP login system as part of the framework. As mentioned in section 6.1.1 the

system ended up being heavily integrated with the user table, making it a bigger project

than originally intended. It would require a significant amount of work to reorganize it

to take into account the external system, as well as integrating the LDAP interface itself

into the software, though libraries for this does exist. However, it’s difficult to measure the

extent of work that such an undertaking would require, as the group never had the time

to fully invest into exploring this possibility.

Another possibility for expansion of this extent is the implementations features that could

help the administrators in their tasks by adding information of how much an employee has

worked, and how it translates in the form of overtime and payment. This features could

61 CHAPTER 6. SUMMARY



RoSSMa Gjøvik University College

include the creation of new schedules as well, not allowing changes that would infringe the

laws and regulations of Norway.

A resource intensive feature that could be implemented, but probably isn’t big enough

to justify as a bachelor project is the possibility to have a note written for all shifts in a

certain period, as it would have improved the usability of that feature immensely.

Other aforementioned features are likely not as resource intensive to fulfill, but could still

provide a significant improvement for the software. The structure doesn’t put too many

restrictions on how to create a new interface for several active plans, nor does a “Message

of the Week” demand a whole lot other than a new database table and the proper func-

tionality to edit it. The export feature also has the flexibility to be expanded for other

formats.

6.2 Evaluation

6.2.1 Tools

Several tools were used during development, both familiar and new. The majority of these

were adopted with ease, but some were of higher relevance than others. In particular, the

PHPStorm IDE, Trello task board and Mercurial repository were both new and of signifi-

cant importance.

Trello The Trello Task Board was used with the intent of organizing the Kanban devel-

opment process. While utilized in previous projects, it had never been used to the

extent that was intended this time around. Trello certainly proved it’s worth in the

initial stage of development, where it was a valuable tool in outlining the feature

list. However, most of the work were co-ordinated between the group members on

a case-by-case basis, so Trello lost a lot of it’s purpose after a while. It continued

to be used individually to some extend, in part as some advanced checklist software.

Ultimately, it proved useful, but was never fully actualized for it’s intended purpose.

Mercurial A repository is almost mandatory for software development when working in a group.

The group adopted Mercurial and BitBucket as their synchronization tool of choice,

62 CHAPTER 6. SUMMARY



RoSSMa Gjøvik University College

over Subversion and Git which have been used for previous group assignments. Hav-

ing been underwhelmed with the aforementioned softwares, the group adopted Mer-

curial and found it to be to it’s liking. Mercurial can technically be used to support

Git as well, so the decision to host it at BitBucket instead was quite likely arbitrary.

Using the tool before getting accustomed to the featured resulted in some difficulties.

The most common one was the resolution of merge conflicts, which has been trouble-

some in other software as well. It was resolved when the group became accustomed

to the update feature, after which it became trivial to keep an updated version of the

software at any point. A somewhat reckless consistency in pushing features did have

some repercussions on group performance whenever severe bugs would crop up, but it

also helped resolve said bugs, as well as supporting the Kanban development method.

PHPStorm The group chose Jetbrains’ PHPStorm as the IDE of choice despite being familiar

with Eclipse. Because of a well developed ergonomic design, it was easy to get ac-

customed to. Furthermore, having a shared IDE made it easier to learn the features

through each other. Using the same interface was also useful when drafting more

general programming questions.

PHPStorm also had a lot of new and convenient features. While general utilities

such as autocomplete, syntax highlighting and error checking were certainly appre-

ciated, they didn’t play any major roles in the development other than increasing

effectivity. Of more particular note is the database integration and debugging envi-

ronment. Being able to manage the database without doing a context switch to the

mysql interface saves a lot of time, and reduces the number of areas to interact with.

The XDebug integration, on the other hand, was invaluable in finding obscure errors

through warning messages and run-time object inspection.

6.2.2 Process

The work schedule identified in section 1.2 has been followed throughout the project pe-

riod as specified with communal work on Tuesdays and Wednesdays. There was situations

where they didn’t start entirely on time, but usually lasted well past 18:00, commonly into

the range of 20:00 to 21:00. Group development also occurred on Thursdays from time to

time, as the productivity often diminished on individual work days. These deviations were

63 CHAPTER 6. SUMMARY



RoSSMa Gjøvik University College

usually for reaching specific deadlines. Fridays were originally meant for guidance with the

supervisor and demonstrations for the product owner. Discussions about the meetings were

supposed to fill the rest of the day. However, it commonly resulted in group development, a

result of the supervisor becoming less important during development, and most discussion

topics reaching a consensus relatively quickly.

The work schedule was maintained with acceptable consistency, but was insufficient to

uphold the initial expectations. The original progress plan underwent some adjustments

to reflect the current situation, as the initial draft was deemed to be a little too optimistic.

Further adjustments had to be considered around April times, as some features had taken

too long to implement. There are several possible explanations as to why things ended up

this way:

• The tasks in the list of functionality and features that had to be implemented were

too wide, and tried to cover too much. This made it hard to track the progress of

them, and the project as a whole, since the tasks never reached a finished state.

• The time it would take to implement a feature was estimated in days in the original

work breakdown sheet. Small problems could therefore have severe impacts on the

estimation dates, compared to an estimation system with work hours.

• A new schedule was not written as the initial development fell behind schedule. This

resulted in each individual task not having a deadline that the members of the group

could relate to.

• The deadlines of the original schedule was poorly adhered to in the first place, only

utilizing it for the implementation sequence.

Work related to project management was generally seen as low priority tasks, and often

dropped because of that. This made it hard to keep the worklog updated, which was in-

tended to contain the number of hours each member used on different tasks each day. The

final log, found in appendix C is the product of that endeavor, tailored together with the

commits and commit messages from the bitbucket repository. The reduced priority of the

managerial tasks made it so that the second and third progress report never got made.

A test server was set up in early April, giving HDO the possibility of testing the cur-

rently implemented features. It would probably have been a better idea to set up the

64 CHAPTER 6. SUMMARY



RoSSMa Gjøvik University College

server earlier, giving them access to test as the development progressed. This would also

let other employees get accustomed to the software, increasing the options for white-box

testing. Most of the feedback on the prototype came from only one individual.

6.2.3 Subjective Evaluation

Working with a development project on such a grand scale has been an exciting venture into

the real world, bringing with it a fair share of positive encounters and difficult situations.

Being left to our own devices to solve pressing issues was both exciting and frightening,

knowing that we are responsible for a software that HDO could potentially use several

years into the future if well executed.

Being in a development group for such an extended period of time was also a something

relatively new, although prior experience in working together have already made us ac-

customed to each other’s traits. The most relevant aspect introduced was likely trying to

have an organized work schedule, in which we had partial success. We feel that the group

cohesion was good, but with certain rooms for improvement.

Having a real employer to work together with was the most refreshing aspect, and provided

an overall positive experience. Getting continuous feedback on the progress was both en-

couraging and educational. Most important was the need to account for the requests of

an external source, and conclude on a common consensus on how to fulfill it. Meetings

every other week was a great discussion opportunity, as well as a motivation for performing

better towards the end result, creating virtual deadlines on certain features.

We are very pleased with how the Standard Plan ended up, which we agree is the most

well-executed part of the software. It’s visually clean, and provides sufficient information

to the user without demanding a lot of effort. While it has no extraordinary features to

speak of, it’s overall quite solid. We appreciate how it turned out, as the centerpiece of

the application. The Template Editor, on the other hand, is the most underwhelming im-

plementation in our opinion. It looks a little alien, not adhering to the consistent interface

of the rest of the application. It’s also rather unworkable through a mobile interface, as it

was designed with efficiency towards keyboard and mouse.

65 CHAPTER 6. SUMMARY



RoSSMa Gjøvik University College

6.3 Conclusion

The opportunity to work with a case of this large a scale has been a valuable experience

for the group. Having such a tight relationship with the employer and putting together

our collective knowledge provided an environment closer to a real scenario than previous

group projects have up until this point. It also gave us the ability to see the full value

of the bachelor degree courses from a new perspective, from the beginning to end of the

development cycle.

There are certainly things left undone, that would have been nice to fulfill. However,

as with most development projects, certain features will have to be prioritized in favor

of others. All the initial feature demands were sufficiently fulfilled at the end of the day,

leaving only requests that cropped up under development, as well as software tweaks to

improve existing solutions. Our priorities for the future would quite likely be implementing

a message of the week system, data caching and interface tweaks on the Template Editor.

Nevertheless, it ultimately fulfills all the necessary functionality, and prototypes indicated

that HDO will put it to good use.

Attempting to use a development methodology for an extended period of time was an

important learning experience. There were some glaring issues in the attempt to utilize it,

but it wasn’t entirely without merit either. The biggest benefit probably came from using a

lean development process, involving small tasks and regular meetings, both with HDO and

within the group. Keeping the repository updated and individual tasks small was handled

sufficiently without too many faults. However, using the namesake task board should with

certainty have been utilized better. It was rarely taken into account with regards to task

distribution, often leaving some tasks under development while fulfilling others. It was

at times necessary when a segment unexpectedly necessitated the development of another

feature, but it shouldn’t have occurred with the frequence, even in spite of such events.

The other significant educational aspect of the bachelor project is interacting with someone

else invested in your project, providing the perspective of a consumer. Previous endeavours

have been very isolated in comparison, so it was great to have some expectations to strive

towards. We are personally satisfied with the end result, and hope that HDO benefits from

our parting gift, signaling the conclusion of three years at Gjøvik University College.

66 CHAPTER 6. SUMMARY



Bibliography

Sources:

[1] HDO. Om HDO[Online]

Available from: https://www.hdo.no/no/Om HDO/

[2] Directorate for emergency communication. Nødnett - a brief description -[online]

Available from: http://www.dinkom.no/en/Development-of-Emergency-

Network/About-Nodnett-the-Norwegian-Public-Safety-Network/Nodnett—a-brief-

description/

[3] ShiftPlanning. Product Touronline

Available from: http://www.shiftplanning.com/tour/

Tools:

[4] rello[online]

Available from: https://trello.com/

[5] PHPStorm[online]

Available from: http://www.jetbrains.com/phpstorm/

[6] Bitbucket[online]

Available from https://bitbucket.org/]

[7] Mercurial[online]

Avalable from: http://mercurial.selenic.com/

[8] Google DevTools[online]

Available from https://developer.chrome.com/devtools/index

67



RoSSMa Gjøvik University College

[9] xdebug[online]

Available from http://xdebug.org/

Libraries:

[10] jQuery Foundation. jQuery[online]

Available from: http://jquery.com/

[11] jQuery Foundation.jQueryUI[online]

Available from:http://jqueryui.com/

[12] Rodney Rehm. jQuery contextMenu[online]

Available from:http://medialize.github.com/jQuery-contextMenu/

[13] Anders Fajerson. timePicker[online]

Available from: https://github.com/perifer/timePicker

[14] Brian Grinstead. Spectrum[online]

Available from:http://bgrins.github.io/spectrum/

[15] Detect mobile browser - Open source mobile phone detection[online]

Available from: http://detectmobilebrowsers.com/

[16] QueryPath: Find your way[online]

Available from: http://querypath.org/

68 BIBLIOGRAPHY



Appendices

69



A — Terminology

B

BitBucket Web-based hosting system for the revision control systems Mer-

curial and Git.

C

Client A program accessing a server, often used to denote the user in a

client-server relationship.

CSS Cascading Style Sheets, a language used to format markup lan-

guages. Commonly used to determine the layout of web pages

together with HTML.

csv Comma-seperated values. Some eCalendars use this format.

D

Dropbox Free cloud based hosting service for file storage and synchroniza-

tion.

E

Eclipse Open source IDE written in Java that uses plugins to support

numerous programming languages.

Excel Microsoft’s spreadsheets solution included in the Microsoft Office

package.

G

70



RoSSMa Gjøvik University College

Google Drive Cloud based file storage application hosted by Google, commonly

used as a collaborative text editor.

Google Calendar Calendar service used to synchronize and view schedules.

H

HDO Helsetjenestens Driftorganisasjon.

HTML Hypertext Markup Language, the standard markup language used

for creating web pages.

HTMLElement Parent class for classes tasked with creating the content of web

pages.

I

IDE Shorthand for Integrated Development Environment, applications

designed for software development.

iCal Format readable by most eCalendars

J

JavaScript Programming language commonly implemented as client-side

scripts in web sites to dynamically alter page content.

jQuery Open Source JavaScript library commonly employed for HTML

traversal and manipulation.

L

LDAP Shorthand for Lightweight Directory Access Protocol, an applica-

tion protocol used by HDO’s login system.

M

Mercurial Distributed revision control system and interface.

ModelBase Superclass for objects that represent the stored database values.

MySQL Open Source relational database management system developed

by Oracle.

71 APPENDIX A. TERMINOLOGY



RoSSMa Gjøvik University College

P

PHP Server side programming language for websites.

PHPStorm PHP IDE developed by JetBrains.

Page Custom class used to handle page requests from the browser.

R

Rotating Shift Schedule A list of predetermined weekly schedules that is distributed among

a group of employees and rotated between the participants after

each week.

S

Schedule Used as a shorthand for Rotating Shift Schedules.

Server A system used to manage a computer network, such as hosting a

website.

spe Shortand for the custom DOMElement custom class implementa-

tion.

Stack Software implementation using the Last-in-First-out data struc-

ture, where items are retrieved in the reverse order of how they

were deposited.

T

Trello Web based task board application used for collaborative task man-

agement.

Q

Query Path DOM traversal PHP library.

72 APPENDIX A. TERMINOLOGY



B — Meeting Summaries

15.1.2014

• HDO

– Notes

∗ Administrator should be able to write notes on the shifts of all employees,

while other employees should just be able to write on their own.

∗ Note history?

∗ Comments with author.

– Day deviations should be written as comments, and not change the viewing of

plan.

– HDO wants the possibility to export templates

– Accesscontrol

∗ Possibility to see standard view without login.

∗ Log-in for user specific information and adding notes.

∗ Seperate administrator ”type”

– Administrator must approve all shift changes.

– possibility to create plans running on the side of the active plan.

• Decisions

– Treat ”no-shift” as an type of shift with no time.

– Ask for vacation the same way as an shift is changed.

– Remove day-deviations from the database.

– Drop-down menu for shift change.

73



RoSSMa Gjøvik University College

21.1.2014

• Decisions

– We’ll test php-storm and buy licenses if we think it works well.

– Try to sell the idea of keeping a frame around a day as the original template,

but change the content, including shiftname.

31.1.2014

• HDO

– Framework will handle GUI creation and database connection.

– We estimate to begin actual development in one week.

– See own role.

– Define weeks.

– Need to be able to change participants in active schedule.

∗ Make weeks ”open”/”free”.

– Weeknotes

∗ Worktask supposed to be manned whole week.

– Error reports

– Modulbased profilesystem

∗ Can be integrated with LDAP later.

∗ Profiles must be created by administrator.

– Create installation package.

– Administrator need to be able to set days available for change, or do it manually.

– Exchanged shifts should preferably be of the same type.

– Browser versions 1-2 versions backwards compatibility. (IE and Chrome men-

tioned.)

– Server: Windowsserver (Normal machine/2008 R2)

14.02.2014

• HDO

74 APPENDIX B. MEETING SUMMARIES



RoSSMa Gjøvik University College

– Standard view

∗ White symbols in the plan

∗ Seem happy with current design.

∗ Seemed happy with current visualization of day comments

· Importancy of author.

· Mark author type

∗ Keep hours per week.

∗ Discussion: Permantent notes on weeks

· Beside name of user. (Solution of today.)

· Beneath name of user.

· Directly beneath shiftcode.

∗ Weekly sum of hours.

· Always show sum for original template.

· Show correct sum after shift exchanges.

– Editor

∗ Show average on all weeks in editor.

∗ History of earlier schedules.

∗ Autofill combobox for shifts.

∗ Autocreate new week.

∗ Navigation.

– Active schedule

∗ Change color on shift where employees are not present.

∗ Switch

· Actual exchange of two shifts.

· Switch/overwrite

∗ Shifting

· Days should not be changed.

· Do not show as exchange.

· Possibility to change a dayshift after a nightshift.

14.3.2014

75 APPENDIX B. MEETING SUMMARIES



RoSSMa Gjøvik University College

• HDO

– Standard view

∗ Show multiple schedules.

∗ Normal weekly hours without changes, and hours with change.

∗ More employees at the same week? (Likely not).

∗ Bulk editation of days

– Show day

∗ Edit a note.

∗ Print pop-up

∗ Add change.

∗ Full name (”Dag”, ”Dag(lengre”))

– Editor

∗ Decide number of weeks first.

∗ On mouseclick.

– Shift editor

∗ Shift information is never changed for a code.

∗ Restricted color choice is alright.

• Decisions

– Button to copy templates

– Let all plan editation(set active, enddate, fill with employees) happen in the

same editor.

18.3.2014

• Discovered time problem

– The cache system

– Make models slightly less integrated.

– Query path

– Dynamic generation of objects.

76 APPENDIX B. MEETING SUMMARIES



RoSSMa Gjøvik University College

– Update

∗ Nearly solved.

∗ 116 DB queries to 20

∗ QP: Nearly completely rewritten.

28.3.2014

• HDO

– Export: Keep shift codes, start and end for template export.

– Export: Standard Outlook calendar.

– Schedule: Set start of schedule to end of previous.

– E-mail: Standard outlook mailserver.

– E-mail: Shift changes

25.4.2014

• HDO

– Shift exchanges

∗ Unsure about automatic shift exchanging among participants due to restric-

tions.

∗ Finish possibility of administrators changing shift over a period.

– Bulletin: Box at top of page showing information specific for week. (Message of

the Week)

– “Bakvakt”: Shift set as lasting the whole day, but only a part of it is effectively

considered as work hours.

– John will try to work on site some time next week, trying to implement and test

mail services.

– Assortment of bugs listed on trello.

77 APPENDIX B. MEETING SUMMARIES



C — Work Log and Progress Report

Work Log

Week 3 — 13.1- 19.1

Met HDO to get the process started and specify some requirements.

Had initial meeting with Frode Haug, our supervisor, discussing the process.

Glen: Projectplan and requirement specification

John: Projectplan and requirement specification

Martin: Projectplan and requirement specification

Week 4 — 20.1 - 26.1

Got feedback about the project plan and requirements from Frode

Glen: Projectplan and requirement specification

John: Development - Framework

Martin: Projectplan and requirement specification

Week 5 — 27.1 - 2.2

Meeting with HDO, discussed our understanding of the requirements.

Glen: Projectplan and requirement specification

John: Development - Framework

Martin: Projectplan and requirement specification

Week 6 — 3.2 - 9.2

Meeting with Frode, discussed start of development.

Glen: Web page content creation, figure creations.

John: Development - Framework

Week 7 — 10.2 - 16.2

Meeting with HDO, first demonstration, mostly early design drafts.

Glen: Created initial testdata, Development - Shift Template editor

78



RoSSMa Gjøvik University College

John: Development - Framework, Development - basic webpage structure

Martin: Development - Standard view

Week 8 — 17.2 - 23.2

First progress report, discussed what discovered with Frode.

Glen: Development - Shift Template editor

John: Development - basic webpage structure, Development - Standard view

Martin: Development - Standard view, Development - Admin panel, Development - Tem-

plate editor

Week 9 — 24.2 - 2.3

Glen: Development - Shift Template editor

John: Web page - Produced code, Development - Standard view

Martin: Development - Admin panel, Development - Template editor

Week 10 — 3.3 - 9.3

Glen: Development - Shift Template editor

John: Development - weekly notes, Development - Pop-up system.

Martin: Development - Admin panel, Development - Template editor

Week 11 — 10.3 - 16.3

Meeting with HDO, second demonstration. There had been much progress since the pre-

vious, as there had been no meeting for four weeks.

Glen: Development - Shift Template editor

John: Development - Pop-up system, Development - view day

Martin: Development - Template editor

Week 12 — 17.3 - 23.3

Glen: Development - Shift Template editor, Research - Export,

John: Development - Pop-up system, Development - view day

Martin: Development - Template editor

Week 13 — 24.3 - 30.3

Demonstration for HDO, not much progress.

Glen: Development - Export, Development - Create Shift templates through editor

John: Development - Framework(answer time problems)

Martin: Development - Template editor, Development - Plan manager

Week 14 — 31.3 - 6.4

Glen: Development - Export, Development - User creation and management

John: Development - Standard view, Development - Monthly view, Development - view

79 APPENDIX C. WORK LOG AND PROGRESS REPORT



RoSSMa Gjøvik University College

day

Martin: Development - Plan manager

Week 15 — 7.4 - 13.4

Glen: Development - User creation and management, Development - View agenda

John: Development - view day, Development - Shift edit

Martin: Development - Plan manager

Week 16 — 14.4 - 20.4

Easter. Group got somwhat split.

Glen: Development - View agenda, Development - Admin Panel, Development - Template

Editor

John: Development - Shift changes, Development - Layout

Martin: Development - Plan manager

Week 17 — 21.4 - 27.4

Last development meeting with HDO, still work to do.

Glen: Development - Template Editor, Development - Template Export, Development -

Participant changes.

John: Development - Shift changes, Development - Participant changes.

Martin: Development - Plan manager

Week 18 — 28.4 - 4.5

Glen: Report - writing, Development - Day duration

John: Development - Plan manager, Development - Shift changes, Development - Emails.

Martin: Report writing

Week 19 — 5.5 - 11.5

Glen: Report - writing, Development - Bug fixing

John: Development - Bug fixing, Development - Mobile tabs

Martin: Report - writing

Week 20 — 12.5 - 18.5

Meeting with Frode regarding the report.

John worked on-site to check out some bugs and such discovered by Reidar.

Glen: Report - writing

John: Development - Bug fixing, Development - emails, Report - writing

Martin: Report - writing

80 APPENDIX C. WORK LOG AND PROGRESS REPORT



RoSSMa Gjøvik University College

Progress Report 20.2.2014

Status

Planning/Work breakdown sheet

Framework

The framework has been implemented, but will be expanded to meet further functionality

as it becomes necessary.

Standardplan

Supposed to be finished as of 19.2. While the logical structure is in place, but some design

choices remains undecided.

Still in progress, and will be revisited.

Standard admin tools

Supposed to be finished by 26.2. Work on the implementation is in process.

Organization of work and responsibility

The group as a whole needs to improve at task distribution. The Kanban principles aren’t

utilized enough in the workflow, such as the taskboard on Trello and daily meetings. This

is mitigated to a certain degree by the frequent meetings throughout the weeks.

Report

There has been no noteworthy work done on the report since the completion of the project

plan.

Summary

The group faces a minor delay with regards to the standard plan view, but the project as

a whole is mostly on track. There needs to be more awareness regarding the development

method, and some work should be delegated towards the report.

Risks

Our work breakdown sheet is poorly planned with short time estimates, which may make

us fall disproportionately far behind as time goes by.

81 APPENDIX C. WORK LOG AND PROGRESS REPORT



RoSSMa Gjøvik University College

Finished functionality

The logical structure of the application, the framework, is completed and currently used in

the other tasks. It will evolve to accommodate for future needs, but is unlikely to undergo

any radical changes in structure.

The methods for processing data with regards to the standard plan is nearly complete, and

the design is at a satisfactory level.

We expect our current database design to stay without any big changes for the rest of the

project. Small changes may still occur.

Work in progress

We’re currently developing controllers and interface for managing shifts(days) and sched-

ules(templates), as well as working on the design for the administrator panel. Some com-

ponents needed for these views are being worked on as well, like pop-up windows and

autocomplete comboboxes.

The standard plan needs some finishing touches.

Time constraints

We intend to have a presentable prototype for the product owner at our next meeting

on 07.03.2014. The prototype should be able to accommodate for the basic functionality

already handled by their current spreadsheet implementation.

Motivation

There have been no noteworthy incidents within the group that has caused any impact on

the motivation.

Supervisor

The group is somewhat uncertain about how to properly utilize the supervisor, but has no

major qualms.

82 APPENDIX C. WORK LOG AND PROGRESS REPORT



RoSSMa Gjøvik University College

Progress Report to Frode, 7.3.2014

• The solution will be able to do what the current solution do relatively soon.

• The progress plan is likely breached, and might need to be reworked.

• There will be no demonstration with product owner in about a month, due to time

off and vacation

83 APPENDIX C. WORK LOG AND PROGRESS REPORT



D — Progress Plan A

84



RoSSMa Gjøvik University College

85 APPENDIX D. PROGRESS PLAN A



RoSSMa Gjøvik University College

86 APPENDIX D. PROGRESS PLAN A



E — Progress Plan B

87



RoSSMa Gjøvik University College

88 APPENDIX E. PROGRESS PLAN B



F — Project Agreement

89






	Summary
	Preface
	Terminology
	Introduction
	Project introduction
	Team Introduction
	Report Introduction

	Requirements
	Environment
	Operational Requirements
	Feature Requirements
	Software Design Limitations

	Design and Analysis
	Similar Solutions
	Views
	Web Service
	Progress Plan
	Original Database
	Tools
	Risk Analysis

	Development
	Implementation
	Ergonomics and Aesthetics
	Testing and Quality Assurance
	Encountered Problems

	Installation
	Downloads and Location
	MySQL
	Configurations

	Summary
	Discussions
	Evaluation
	Conclusion

	Appendices
	Terminology
	Meeting Summaries
	Work Log and Progress Report
	Progress Plan A
	Progress Plan B
	Project Agreement
	C:\Users\Glen\Documents\Bachelor i programvareutvikling\Bachelor oppgave\prosjektavtale\1.png
	C:\Users\Glen\Documents\Bachelor i programvareutvikling\Bachelor oppgave\prosjektavtale\2.png

