
Cross-comparison of Digital and Digitized
Physical Evidence

John Erik Rekdal

Master’s Thesis
Master of Science in Information Security

30 ECTS
Department of Computer Science and Media Technology

Gjøvik University College, 2014

Avdeling for
informatikk og medieteknikk
Høgskolen i Gjøvik
Postboks 191
2802 Gjøvik

Department of Computer Science
and Media Technology
Gjøvik University College
Box 191
N-2802 Gjøvik
Norway

Cross-comparison of Digital and Digitized Physical Evidence

Abstract

In forensics, investigations comprise diverse types of evidence. For example digital evidence in
form of electronic documents and physical evidence, e.g. printed paper documents. One major
challenge is to efficiently and accurately link digital evidence and physical evidence together. In
particular, a computational method is needed to deal with the huge amount of data available in
a forensic investigation and to reduce the time spent on linking and analyzing the different types
of evidence.

The thesis aims to improve the efficiency and effectiveness of this process by using computa-
tional methods such as plain text search (String search), approximate string matching and OCR
(optical character recognition), and to incorporate these in a proof-of-concept tool. The tool is
used for an experimental setup for testing of linking accuracy between similar and dissimilar
documents. A dataset was created and used for testing, based on feedback from Økokrim1. The
thesis seeks to answer how OCR affects evidence linking, characteristics of a forensics dataset,
characteristics that enables linking and how it is possible to increase efficiency in evidence link-
ing.

The proof-of-concept tool, contains five methods for comparison, four text comparison methods;
Levenshtein distance, Word frequency, Cosine similarity and W-shingles. And one image-to-image
comparison; a pixel-to-pixel similarity. It uses Optical Character Recognition for text generation
from scanned documents. Text extraction from digital documents are done through Java libraries.

The results shows that W-shingles is the best performing algorithm for matching documents
in this setting, and that text sanitation does not have any practical influence on W-shingles,
whereas it does increase the matching accuracy for the remaining methods. Characteristics that
enables evidence linking was found to be shingles and frequency of unique words used in Cosine
similarity. Characteristics in a dataset consisting of DOCX documents are bold font style, and the
combination of font size 11 and font type Calibri, which is the default combination for Microsoft
Word R© 2007, 2010 and 2013. The efficiency and accuracy of OCR can be increased by using
ensemble voting and decreasing runtime. As for OCR error rate in a forensics environment it is a
nonissue since it is not used to recreate evidence, but for matching and locating evidence.

1The Norwegian National Authority for Investigation and Prosecution of Economic and Environmental Crime

ii

Cross-comparison of Digital and Digitized Physical Evidence

Preface

Thanks to my supervisors Katrin Franke and Slobodan Petrovic. And a thanks to my fellow stu-
dents, especially Pieter Ruthven, André Nordbø, Espen Didriksen and Andrii Shalaginov through-
out the two years of the master studies for good help, feedback and camaraderie. I would also
like to thank Odd Tore Bøe for getting me out of the man cave and provide some good food,
company and discussions in between the battles.

iii

Cross-comparison of Digital and Digitized Physical Evidence

Contents

Abstract . ii
Preface . iii
Contents . iv
List of Figures . vi
List of Tables . viii
1 Introduction . 1

1.1 Keywords . 1
1.2 Covered topics . 1
1.3 Research questions . 1
1.4 Justification, Motivation and Benefits . 2
1.5 Limitations . 2
1.6 Contribution . 3
1.7 Thesis Structure . 3

2 Related work . 4
2.1 Digital Forensics and Digital Evidence . 4
2.2 Optical Character Recognition . 4
2.3 Hashing and Fuzzy hashing . 12
2.4 Dataset and characteristics . 13
2.5 Text comparison and evidence linking . 14

3 Methodologies . 17
3.0.1 Experimental design . 17
3.0.2 Literature review . 18

3.1 OCRopus . 18
3.2 The dataset . 20
3.3 Data preprocessing . 21
3.4 Levenshtein distance . 22
3.5 Cosine similarity . 23
3.6 W-shingling . 25
3.7 Word frequency . 26
3.8 Pixel comparison . 27
3.9 Fuzzy hashing . 29

4 Experimental design and results . 30
4.1 Experiment setup . 30
4.2 Results . 37

4.2.1 Analysis of the dataset . 37
4.2.2 Analysis of the experiment data . 40

iv

Cross-comparison of Digital and Digitized Physical Evidence

4.2.3 Document-to-image . 40
4.2.4 Image-to-image . 41
4.2.5 Pixel comparison . 42
4.2.6 Similarity score . 43
4.2.7 Result comparison . 43
4.2.8 Runtime . 43

5 Discussion, Conclusion and Future work . 44
5.1 Discussion . 44
5.2 Conclusion . 51

5.2.1 Theoretical implications . 52
5.2.2 Practical implications . 52

5.3 Future work . 53
Bibliography . 55
A Appendix . 60

A.1 Application . 60
A.2 Source code . 68

A.2.1 OCRMethods.java . 70
A.2.2 FileInfo.java . 87
A.2.3 OCRUI.java . 92
A.2.4 TestRun.java . 100

A.3 Extended Results . 103
A.3.1 Document to Image . 103
A.3.2 Image to Image . 103
A.3.3 Pixel comparison . 104
A.3.4 One-to-one comparison . 104

A.4 Dataset . 107
A.5 Additional information . 112

A.5.1 OCRopus testpage . 112
A.5.2 Transcript of Q&A session with Økokrim 113

v

Cross-comparison of Digital and Digitized Physical Evidence

List of Figures

1 Manual forensic process . 3
2 Simple conversion of a test document with FreeOCR 5
3 Human interaction algorithm . 8
4 Algorithm for OCR accuracy . 9
5 ssdeep fuzzy hash comparison . 13
6 General overview of the methodology for the experiment 17
7 Modularity of OCRopus . 19
8 OCRopus’ components . 20
9 Vector comparison for "aa aa" and "aa bb" . 23
10 Vector comparison for "aa" and "aa aa aa aa aa aa" 24
11 Vector comparison for "aa aa" and "bb bb" . 24
12 Intersection of two sets. 25
13 Union of two sets. 26
14 Sampling of picture . 27
15 Preliminary pixel results . 28
16 One-to-many comparison . 32
17 One-to-one comparison . 33
18 Noise reduction . 33
19 OCR output cleanup . 34
20 Single thread OCR conversion . 35
21 Multi thread OCR conversion . 35
22 Tool operation . 36
23 The most recurring fonts in the dataset. 37
24 The most recurring font sizes in the dataset. 38
25 The most frequently recurring combination of fonts and sizes in the dataset. . . . 39
26 Occurrences of different types of characteristics present in the dataset. 39
27 Matching accuracy, Document-to-Image . 40
28 Matching accuracy, Image-to-Image . 41
29 Pixel comparison score . 42
30 Embedded picture . 46
31 OCR noise . 47
32 The start screen for the application. 61
33 Choosing document folder. 62
34 Choosing document folder. 63
35 Optional keyword sort, with feedback when sorting is done. 64
36 Choosing a single picture for matching. 65

vi

Cross-comparison of Digital and Digitized Physical Evidence

37 Choosing multiple pictures for matching. 66
38 Tool, analysis screen . 67
39 All the libraries used in the application. 69
40 OCRopus test page . 112

vii

Cross-comparison of Digital and Digitized Physical Evidence

List of Tables

1 Specification for the virtual machine . 30
2 Similarity score, without text sanitation. 43
3 Similarity score, with text sanitation. 43
4 Accuracies of all texts comparison methods for all combinations of settings. . . . 43
5 Runtime for the experiments . 43
6 Results without text sanitation, document to image 103
7 Results with text sanitation, document to image 103
8 Results with text sanitation, image to image . 103
9 Results with text sanitation, image to image . 103
10 Results for the pixel comparison method . 104
11 Levenshtein corpora score . 104
12 Most occurring fonts . 107
13 Most occurring font sizes . 108
14 Other characteristics . 108
15 Fonts and sizes . 109

viii

Cross-comparison of Digital and Digitized Physical Evidence

1 Introduction

In this chapter an introduction is given on the subject and the challenges faced in this field. It
continues with the research questions, then justification, motivation and importance, and finally
the scientific contribution.

1.1 Keywords

Digital forensics, digital evidence, physical evidence, evidence linkage, approximate string match-
ing, OCR.

1.2 Covered topics

The scope of the thesis is within the field of digital forensics. The main goal is to find methods
to increase the efficiency and effectiveness of linking the digitized version of physical evidence
found at a crime scene to digital evidence stored on a computer or other digital devices.

In investigations today, it can be a problem with overwhelming amounts of electronically stored
information (ESI). And, a way to make the job of correlating digital evidence easier for investi-
gators would be a welcome addition [1].

The thesis covers many areas, such as text search (string search), optical character recognition
(OCR, which is a method to transform text from a scanned document/picture into text) and edit
distance (approximate string matching) which is a method for comparing the content difference
between two strings.

1.3 Research questions

In this thesis the following research questions are defined:

• What is an acceptable error rate for OCR in a forensics setting?

• What are characteristics of a realistic dataset in forensic research, development and testing?

• Which of the characteristics are significant and enable evidence linking?

• In which way is it possible to increase efficiency and effectiveness in evidence linking?

1

Cross-comparison of Digital and Digitized Physical Evidence

1.4 Justification, Motivation and Benefits

The methods applied here would help the people investigating cases to do their work more ef-
ficiently. Less time would be used for the linking and processing of documents, and an effect of
this could be a shorter time from start of investigations until the case goes to court. With some
countries putting a time limit on investigations [2] and changing priority of cases [3], the use of
electronically stored information (ESI) and the management of this needs to take less time [4].
Figure 1 shows a normal forensics process where the investigator has found a physical document
and manually has to search through large amounts of data using a keyword search A.5.2 [5],
and manually inspect each document matching the search criteria. Depending on the search cri-
teria and methods used this can be quite time consuming. A survey by Symantec [1], across ten
countries in Europe, Middle East and Africa, asked lawyers about the effect of ESI on their legal
proceedings.

All of the 5000 layers surveyed, confessed to:

"losing a case or legal matter in the past two years due to limitations in the technology used to
process Electronically Stored Information" [1].

Furthermore:

"60 percent of respondents admitted they struggled with the amount of information that had to
be searched; 29 percent complained that they did not have enough time to conduct thorough
investigations; and 24 percent said they lacked sufficiently sophisticated e-discovery technol-
ogy to fulfill requests effectively.

When asked how this might be alleviated, 57 percent specifically called for “improvements to
search technology used to identify, preserve and process ESI”" [1].

However, 98% of the lawyers said that digital evidence identified during the investigation had
been vital to the success of legal matters. And 91% saying ESI are important or critical in their
daily work.

Benefits for finding better matching methods are that the investigators could focus more on find-
ing the digital evidence and solving the crime, instead of being slowed down by bad applications
and lack of proper tools for the job. The authors of [4] discuss the time consumption tied to man-
agement issues, and the lack of proper tools for analyzing digital evidence, resulting in a situation
where evidence end up being put on a shelf for weeks or months before being reviewed.

1.5 Limitations

The thesis does not measure the OCR accuracy of OCRopus, neither does it compare OCRopus to
another OCR engine. The dataset contains no spreadsheets (Excel files) or presentations (Pow-
erpoint files), neither does it contain files from Autocad R© or other specialized software.

2

Cross-comparison of Digital and Digitized Physical Evidence

Figure 1: Manual forensic process, where the investigator finds the physical document, reads it, search for
documents containing keywords from the evidence and manually checks all the matches.

1.6 Contribution

The thesis seeks to find methods for increasing efficiency and accuracy when dealing with the
linkage of digitized physical evidence and electronic evidence. This will be done through the
implementation of different methods in a proof-of-concept tool for use in the experiment. The
proof-of-concept tool contains five different comparison methods, and is able to link documents
with a 100% accuracy for some methods. It is used in this thesis to measure which method is
most accurate in linking the evidence. By giving each of the methods implemented an accuracy
score, a recommendation on which methods to use, and what characteristics enables evidence
linking are answered. This could be valuable information for software developers developing
forensic tools and might give an idea for new features to implement in an already existing tool.

A test dataset was created, based on descriptions from Økokrim on which type of documents they
most frequently encounter. The dataset consists of 100 documents with a wide variety of char-
acteristics, ranging from bold characters, colors, tables to full size images. All in the Microsoft
Word R© format, DOCX and PDF.

1.7 Thesis Structure

In Chapter 2 an overview of the research and work done in the field of the thesis is given. Chapter
3 describes the different methodologies used in the experiments and the expected outcome.
Chapter 4 describes the experiment setup, how it works and the input for the proof-of-concept
tool, as well as the results from the experiments. Lastly, Chapter 5 contains the discussion, the
theoretical and practical implications of the results, the conclusion and suggested future work.

3

Cross-comparison of Digital and Digitized Physical Evidence

2 Related work

This chapter covers relevant and related work done in the areas important for this thesis. Each of
the different aspects gets its own paragraph with research being done and a description of how
it is used, to give the reader an overview of the field.

2.1 Digital Forensics and Digital Evidence

Since the terms Digital Forensics and Digital Evidence are used in thesis is important to define
what these terms mean. Below are two definitions for these terms.

Digital Forensics is defined in [6][page 16] as:

"The use of scientifically derived and proven methods toward the preservation, collection,
validation, identification, analysis, interpretation, documentation and presentation of digital
evidence derived from digital sources for the purpose of facilitating or furthering the recon-
struction of events found to be criminal, or helping to anticipate unauthorized actions shown
to be disruptive to planned operations"

Digital Evidence is defined in [7][page 7] as:

"any data stored or transmitted using a computer that support or refute a theory of how an offense
occurred or that address critical elements of the offense such as intent or alibi"

Where data refers to information in various formats, such as; text, images, audio, and video.

2.2 Optical Character Recognition

Optical character recognition is a technology that allows us to convert text from different types
of documents, such as images and scanned documents. The source for these documents can be
books [8]1, newspapers [9], handwriting [10] and research papers or other documents [11][12].
Figure 2 presents a simple conversion of the document on the left side to the text on the right
side.

1http://books.google.com/googlebooks/about/
2www.freeocr.net

4

Cross-comparison of Digital and Digitized Physical Evidence

Figure 2: Simple conversion of a test document with FreeOCR 2

In OCR, three main phases are used; pre-processing, character recognition, and post-processing.
The subtasks for each main phase are given below [16][17]:

Pre-processing

• Detect resolution, rescale

• Binarization

• De-skewing and denoising

• Page layout analysis/Segmentation/zoning

• Detection of lines and words

Character recognition

• Feature extraction

• Classification based on different algorithms

Post-processing

• Dictionaries

OCR is used in many different areas, such as the Google book project as already mentioned, but
also, automatic number plate recognition [13] and to read and check passport information [14].

5

Cross-comparison of Digital and Digitized Physical Evidence

The authors of [15] states:

"In general, these applications tend to have two characteristics: (1) they are able to parse indi-
vidual symbols from images of documents and (2) they can classify these images to reproduce
text output. To be useful, OCR software must be both accurate and fast."

The authors of [18] explains how to establish confidence in digital forensics and evidence found
by the utilized methods. Investigators might be confident that the tools and methods they use
will produce a reliable result, but they might struggle to establish the same confidence on a sci-
entific basis. In some fields of forensic sciences an error rate is used to describe the probability
of false negatives, false positives and other inaccuracies when comparing two samples, but for
digital forensics the use of statistical error rates can be misleading or inappropriate [18].

One of the main differences between digital forensics and other forensics disciplines is that dig-
ital forensics tries to find multiple artifacts that can tie a suspect to certain actions. Many of
the other disciplines try to match two samples to establish if it is from the same source or the
same substance, or identify the substance [19]. For instance when comparing DNA and trying to
match these, one would have a statistical error rate, but in digital forensics, the methods to get
to the evidence is often a series of methods and tools which all might introduce a small chance
of systematical error. A systematical error is an error that can be introduced through improper
implementation of algorithms or inherent errors in the algorithm itself etc., as opposed to ran-
dom errors which are based on the natural process, and the inability to perfectly measure them.

To mitigate some of these errors in digital forensics, the authors pose three questions:

1. Are the techniques (e.g., hashing algorithms or string searching) used to process the evi-
dence valid science?
2. Are the implementations of the techniques (e.g., software or hardware tools) correct and
appropriate for the environment where they are used?
3. Are the results of the tools interpreted correctly? [18]

In question 1 it is assumed the authors by "valid science" mean scientifically sound and reliable.

The solution to these questions can be many, such as; tool testing, dual tool verification, training,
guidelines and documentation are used to mitigate errors. One of the criteria used in the Daubert
Standard 3 for admittance of evidence is the known or potential error rate [20]. However the
other criteria state the evidence can be emitted if the technique or theory can and has been
tested, if it has been peer reviewed, there are standards controlling the operation and if it has
acceptance in the scientific community.

3Standard for admittance of digital evidence based on scientific principles.

6

Cross-comparison of Digital and Digitized Physical Evidence

The authors of [21] managed to get accuracy ratings of 99% with a voting system between differ-
ent OCR engines, this is also supported by the paper [22] stating it is a simple and very effective
method. The accuracy achieved meets the minimum 99% requirement set forth by the Meeting
of the Experts on Digital Preservation [23] and should give us an indication on what percentage
level is achievable and a baseline for future comparison.

One trend that is recurring in papers on this subject is the use of voting ensembles, where the
classification is done with different classifiers and the output from each of these are voted on.
The classifiers used can be k-nearest neighbors (kNN) and Bayes nets, and not necessarily about
combining complete OCR systems for voting. The ensemble option is described and utilized with
success in [21][22][24][25][26] and [27] where the general consensus is that the accuracy
increases when using voting ensembles. In Figure 3 an algorithm with an ensemble voting is
presented, the output from different OCR engines are compared. If they are similar they are ac-
cepted, if they are different they are sent of to an error estimator. This estimator is based on a
artificial neural network, where a "suspect" word is calculated and sent of to a clustering phase
where the average of the cluster is presented to a human operator for verification. In Figure 4 an
algorithm for ensemble voting between different classifiers are shown. After the preprocessing
the OCR conversion is done with neutral networks and kNN, and the accuracy achieved with this
system were 99.3%.

7

Cross-comparison of Digital and Digitized Physical Evidence

Figure 3: Proposed algorithm for increasing OCR accuracy, by using ensembles and human interaction.
Picture from [21].

8

Cross-comparison of Digital and Digitized Physical Evidence

Figure 4: Algorithm for increasing OCR accuracy using voting ensemble. Picture from [24]

To further improve OCR results, the authors of the article [9] study how OCR software performs
on newspapers. They determine factors that effect OCR accuracy, how to measure this and how
to increase the accuracy. Even though the paper addresses the specific use for newspapers the
concepts are representative for other documents as well. In the experiment, they use the already
built in dictionary in the OCR software and then added their own specialized dictionaries with
local names etc. The best results were obtained by utilizing the built in dictionary, second, no
dictionaries and third, both dictionaries. However, it seems the experiment with both dictionaries
obtained a poor result, because of an implementation fault, since others managed to get a better
accuracy with both dictionaries. These secondary dictionaries were specialized as in geographic
location names, which would not normally be found in a dictionary. For the default dictionary
they received results ranging from 71%-92.02%. They did not agree upon what was an accept-
able threshold, but for historic newspapers the consensus was that the categories: good, average
and bad OCR should be used. Defined as:

Good OCR accuracy = 98-99% accurate (1-2% of OCR incorrect)
Average OCR accuracy = 90-98 % accurate (2-10% of OCR incorrect)
Poor OCR accuracy = below 90 % accurate (more than 10% of OCR incorrect) [9]

The methods used to try to increase accuracy were dictionaries, greyscale vs. bi-tonal files, im-
age optimization software and correcting OCR text manually and using a confusion matrix and
language modeling, this was not tested. The conclusion is that the best method for increasing
accuracy is to manually correct the mistakes of the machine, in the paper this was done through

9

Cross-comparison of Digital and Digitized Physical Evidence

crowd sourcing, however this is too time consuming. It is also understood from the paper that
specialized dictionaries can increase the accuracy when OCR is used on documents that contain
a lot of words and abbreviations not found in a normal dictionary.

With 99% accuracy, this still amounts to 30 errors on a page of 3000 characters, which must
be corrected by a human operator, or the documents are rejected and operator entry is used
instead [28]. When humans are needed to check the output, the authors in the paper [21] have
a solution where they managed to decrease the cost in time of using humans with 50% and 83%
depending on the quality of the documents. In Figure 3 this algorithm is shown, the misclassified
words are presented to the human for manual correction.

One of the huge problems with OCR is the use of different alphabets. The authors of [29] used
OCR on Bulgarian documents written in Cyrillic with some Latin symbols in the text. A small
subset of German documents were used as well for comparison. The main problem here is that
some of the Cyrillic letters and words get recognized as Latin letters and words, decreasing the
accuracy drastically. By using two dictionaries they managed to increase the accuracy of these
documents with mixed languages, but not to the same accuracy score achievable from a single
language/alphabet document.

The authors of [30] try to combat what they call alphabet confusion error, when one charac-
ters in one alphabet gets recognized as a character from another, by adding more dictionaries
and using Levenshtein distance to find the best candidates, which were then used as input into
algorithms to improve the accuracy by taking symbol confusion statistic and sentence context
into account. These post-processing methods greatly decreased the alphabet confusion error and
normal symbol recognition error. By using a dictionary tailored to the language we use OCR on,
and another one to help for optimal character recognition (like æ,ø,å or Cyrillic characters), the
accuracy will increase.

The authors of [28] identifies four potential sources for improvement.

• Improved image processing;

• Adaptation of the classifier to the current document;

• Multi-character recognition;

• Increased use of context. [28]

Image processing:
In this category they discuss degraded copies, which make the OCR process more difficult. Im-
proved image processing can help alleviate errors on the defects originating from old copiers,
printers and tabloid presses etc. Techniques discussed are better binarization and de-skewing.

10

Cross-comparison of Digital and Digitized Physical Evidence

Adaptation:
The authors here discuss how the OCR can adapt to the document where for instance the docu-
ment is essentially made up of just one font. A single-font classifier is more accurate and faster
than a multi-font classifier. One reason for this is that a multi-font classifier needs to distinguish
between the letter O and the number 0 in many different fonts which might lead to errors. This
can be avoided by automatically identifying the font or adapting the classifier parameters, such
as choosing only the appropriate characters in the current font. Font identification requires a lot
of data on every font, so the authors believe a more promising path is classifier adaptation.

To further expand on this, the authors discuss training the classifier on the most common docu-
ments, which is also supported by [31], where the OCR system learns character models directly
from the document. They identify words that they have high confidence in, have been recog-
nized correctly, and use these words for training of the classifier, resulting in an error reduction
of 34.1% in character errors.

Multi-character recognition:
Instead of recognizing single characters it might be better to recognize images of larger units
such as complete words. Half of all the words in a normal English text consist of common words4

such as; "the, a, an , to , from". When these words are discovered they can be used for training the
classifier (word recognition leads to adaptation) to recognize the shape of those specific letters
in those words. This in turn helps to recognize the remaining words. One problem with this is
when identical glyphs are used for the same symbols, for instance O and 0 or 1 and l. To solve
this, context has to be taken into account.

Linguistic context:
Here the authors discuss OCR systems choosing n-grams like ’ing’ over ’lng’ or for dictionaries
’bolt’ rather than ’holt’. By using word frequencies we could improve recognition. In addition,
they also discuss specialized dictionaries. But, to bring this to a new level, OCR needs to utilize
semantics and syntax. The example the authors give here is:

"For instance, "leek tar fail, tar lent", while lexically acceptable, is clearly ungrammatical."[28]

To avoid meaningless yet grammatically correct sentences like the one above, the OCR system
can use semantic analysis. However, the efficiency of this is based upon that the text in question
does not have nonsensical words, ungrammatical phrases, sentences that defy semantic interpre-
tation and unexpected constructs, which is more common in technical material than a novel. This
high-level linguistic context is something humans use as well when presented with an unfamiliar
handwriting [28].

The authors believe a combination of multiple techniques such as those mentioned above is
worth pursuing for improvement of OCR.

4Called stop words in information retrieval

11

Cross-comparison of Digital and Digitized Physical Evidence

The authors of [27] compare different methods for character recognition and problems still in
the field. There are several classification methods, and the paper divides them into four cat-
egories; Statistical methods, Artificial Neural networks, Kernel methods and multiple classifier
combination. Some of the methods discussed are k-nearest neighbor (kNN), artificial neural net-
works (ANNs) and support vector machines (SVMs). In the performance comparison between
the different categories, the authors stress that it is difficult to get a fair comparison because
many classifiers can be tweaked and thus their performance can be affected by human factors.
The number of steps involved in character recognition (pre-processing, feature extraction, clas-
sification) does not make it any easier. For further testing, the authors recommend using open
source code for every processing step so researchers can compare each step fairly.

2.3 Hashing and Fuzzy hashing

Prevalent hashing such as MD5, is used to identify two identical files and create bad and good
hash sets for use in digital forensics. These sets are used to exclude files from a disk image which
are not important to the investigation. An example of this can be files belonging to the operat-
ing system or known software packages such as Microsoft Office R© (as long as the files are not
modified). For bad hash sets, known malware is hashed and the value is compared to the files
in the disk image to potentially identify malware, backdoors, cracker tools etc. present on the
compromised system.

As opposed to normal hashing, fuzzy hashing is used to to check if two files are similar and not
identical. Normal hash algorithms are not suited, because the hash value from these two similar
files will be vastly different. Instead the author of [32] introduces a new technique by combining
traditional hashes to construct a new algorithm that can be used to identify similar files, like
modified versions of a document with inserted, deleted and substituted material. This hash does
not adhere to the avalanche effect 5 [32][33], for the whole output, so similar files would create
similar hashes, which can be compared and given a similarity score.

"Context triggered piecewise hashing is a powerful new method for computer forensics. It will
enable examiners to associate files that previously would have been lost in vast quantities of
data that now make up an investigation. By creating associations between files that are homol-
ogous but not identical, investigators will be able to quickly find relevant pieces of material in
new investigations." [32]

To test this, the author made an application named ssdeep, containing the fuzzy hash algorithm,
and a document containing parts of the Gettysburg Address by Abraham Lincoln. The hash sig-
nature for this document was recorded, and the document changed by editing the font and font
size, two paragraphs were added at the beginning of the document, one of them in a different
color and other insertions and deletions. At the end of the document "I AM THE LIZARD KING"
was added. In Figure 5 the comparison between the two documents is presented, resulting in a
57% match when run through ssdeep.

5A small change in the plaintext or the key, will results in a huge change in the cipher text

12

Cross-comparison of Digital and Digitized Physical Evidence

Figure 5: Result from comparing two similar files in the application ssdeep. Picture from [32].

2.4 Dataset and characteristics
The authors of [34] discuss the importance of proper datasets for OCR testing, and they mention
three types of datasets, offline handwriting, online handwriting and machine printed text. Of
these three, only the latter one is of interest to this thesis. The dataset in question i.e. the CDROM
data set developed was by the University of Washington [35]. The authors states such a dataset
should include documents in each of the world’s major languages and scripts. However, they
concentrated on the English language and Roman script. For document types they propose:

• Articles: journals, proceedings, books, etc.;

• Business letters and memorandums;

• Newspapers/magazines;

• Maps: street maps: terrain maps, etc.;

• Forms;

• Manuscripts;

• Engineering CAD/CAM drawings;

• Advertisements. [35]

For each of these types of documents, several instances are needed in various formats and qual-
ity. To describe each document they propose to include language, script, font information, zone
definition (size and location of zones) and ground truth for each document. And lastly, degrada-
tion models to simulate coffee stains and degradation which comes from the use of photocopiers
etc.

13

Cross-comparison of Digital and Digitized Physical Evidence

The authors of [36] discuss the need for a forensics corpora, and the creation of such data sets
for a fair comparison of forensics tools. They have created several data sets such as; disk images,
memory images, network packets and files available for download [37]. However they are not
alone in making such datasets. The CFReDS Project [38] and the Forensics Wiki [39] have sev-
eral datasets available for diverse purposes such as string search, memory images and filecarving
etc. For email the Enron dataset is often used [40][41].This dataset contains the emails of 150
former Enron employees all in text form with headers, subject field etc. and no attachments.
Common characteristics in forensics datasets are the need for them to be documented, i.e. the
most important features of the datasets need to be documented. The amount of documentation
required depends on the dataset. In an investigation scenario of an image, documentation of the
hash value of the image and where the evidence is located might suffice, but in a string search
dataset an exact disk address for each string is needed.

2.5 Text comparison and evidence linking

To clarify what is meant by evidence linking the author pose two scenarios; One where the goal
is to link two documents together. Here, characteristics such as content, hash values etc. are
important. For the second scenario; The goal is to link a document to a person or a user. Meta-
data such as timestamps and access rights are important. In this thesis, we look at scenario one,
and scenario two can be a continuation, when the document has been located. However, a mix
between the two is used today by law enforcement, through the use of digital forensics tools,
such as EnCase, The Sleuth Kit, AccessData Forensics Toolkit and X-Ways, which all offer string
matching, i.e. keyword search as a method for locating files [42].

Text retrieval:
Correcting misspelled words has been a problem for a long time, and perhaps the oldest poten-
tial application for approximate string matching, dating at least back to 1928 [43]. Approximate
string matching has been used since the sixties to deal with the problem and 80% of the errors
could be corrected with just one operation [44]. In this thesis, the approximate string matching
is used in information retrieval, i.e. finding relevant information in a text, where string matching
is one of the basic tools.

For string matching there are several available options. One of them is edit distance, i.e. the min-
imum number of edit operations needed to transform one string into the other [45]. This is often
called the Levenshtein distance, but there are others as well, such as Damerau edit distance. To
be able to explain the different operations properly some definitions are needed. A sequence of
operations is represented on the form S(x,y) = t, where x and y are different strings, and t is a
positive integer which represent the total cost of the operations [46]. Characters are denoted as
a and b. The amount of changes (cost) can then be used to calculate the distance between two
strings.

14

Cross-comparison of Digital and Digitized Physical Evidence

Edit operation in use are:

• Insertions: S(x,a) inserting the letter a.

• Deletion: S(a,x) deleting the letter a.

• Substitution: S(a,b) substituting a by b.

• Transposition: S(ab,ba) swap the adjacent letters a and b.

Some popular distances used are:

Levenshtein distance:
The edit operations in Levenshtein distance are; insertion, deletion and substitution. Each edit
operation of a single character usually has a cost of 1 [47].

Damerau edit distance:
Identical to Levenshtein but adds one additional operation of transposing two adjacent charac-
ters. These characters must be adjacent both before and after the operation [44].

Term frequency:
Term frequency is the number of times a certain word occurs in a text and it can be used to
compare documents. In [48] the term frequency was used to classify different documents into
categories based on the most recurring word in each document. They utilized the "bag-of-word"
representation for documents where each word is treated as a feature, and they observed that
term frequency was a superior method for smaller feature sets. In [49] they use word frequency
to compare two corpora, using keywords to differentiate one corpora from another. For each of
the corpora a word frequency list is created and the two word frequency lists are compared and
given a score.

Jaccard coefficient:
This index is used to compare the similarity between two sets. The Jaccard coefficient can be
used in information retrieval such as web search. Here, the query word is compared to the index
or the keywords in a document and the best matching result is returned. In [50], the authors use
the Jaccard coefficient in combination with other methods to compare the similarity between
keywords, and it got results close to a 100%. In [51], they use Jaccard coefficient to measure
the similarity for a word and the misspelled version of that word, by comparing each letter of
the word. Here, each letter can switch position and still be identified as the same word. The
consensus is that the Jaccard coefficient is suitable for word similarity measurement.

15

Cross-comparison of Digital and Digitized Physical Evidence

Cosine value:
This measurement is used to compare the similarity between two strings, by calculation the Co-
sine value of an angle between two vectors, a measurement of how similar they are is given. In
[52] the authors used cosine similarity as a baseline for comparing semantic similarity of texts
in two corpora. Another use for cosine similarity is shown in [53], where the authors use cosine
similarity to detect obfuscated malware. They compare the malware by extracting the instruc-
tion frequency count for each malware sample and run these two vectors through the calculation.

W-shingles:
This measurement divides text up into sets of unique "shingles" (a set of subsequences of tokens)
and calculated their resemblance using set theory [54]. In [55] the author used Patricia tree6 and
W-shingles algorithms to identify plagiarized documents in a dataset. The dataset was generated
by making one original dataset consisting of the 10 first HMTL pages returned from 900 web
searches. The plagiarized document dataset was created by taking passages from the same 10
return results and mix it up. The result of this comparison was a percentage value between the
expected similarity and similarity calculated by the two algorithms. The best result obtained was
from W-shingles with difference of 4.13%. The conclusion being that both algorithms can be used
to detect plagiarism (similarity) in a given document, but that W-shingles yields a better result.

6A radix tree where any parent with only one child is merged with its parent.

16

Cross-comparison of Digital and Digitized Physical Evidence

3 Methodologies

This chapter describes the different methodologies used in this research for the research ques-
tions. A discussion about different datasets and their flaws and merits are given and whether
they are applicable for this thesis and experiment. An overview of the methods is given, with a
description of expected output and feasibility.

To answer the research questions:

• What is an acceptable error rate for OCR in a forensics setting?

• What are characteristics of a realistic dataset in forensic research, development and testing?

• Which of the characteristics are significant and enable evidence linking?

• In which way is it possible to increase efficiency and effectiveness in evidence linking?

The authors performed a literature study, to get a better understanding and to see what the
general consensus in the field is. To produce results, the author used an experimental design,
based around a created dataset and the developed proof-of-concept tool, containing the different
text comparison methods, image comparison method and the OCR conversion by OCRopus. The
general overview of the methodology for the experiment can be seen in Figure 6.

Figure 6: General overview of the methodology for the experiment, with its four phases.

3.0.1 Experimental design

In this thesis we use experimental design in order to establish a cause-and-effect relationship, be-
tween the independent and dependent variables, where independent are the different methods,
and dependent is the matching accuracy. By tuning the input for the methods we can determine
if this affects the output i.e. the matching accuracy for each of the methods. Based on this, we are
able to observe which configurations yields the best results. The authors of the book [56][page
226] state:

"Because we have not only observed but also manipulated the situation, we have used an
experimental design"

This backs up our selection of this method, since we are testing many different configurations of
variables in the experiments.

17

Cross-comparison of Digital and Digitized Physical Evidence

3.0.2 Literature review

We use a between-study literature analysis in this thesis, which comprise of contrasting and
comparing information from two or more sources [57]. Information compared, are methods and
results. But, the paper states that every component of a paper should be compared to every
component from the other paper(s). However, not all of the components in each paper are of
interest for this thesis. By using multiple sources we allow ourself to combine the information
from various sources and increase the understanding of the field, hence, giving us the ability to
better answer the research questions.

3.1 OCRopus

OCROpus was chosen because of its open source and ease of getting the output into another
application. By using an open source application we can inspect the source code and get an un-
derstanding of what is going on, and/or modify the code if need be. This was not needed, but
parts of the code were scrutinized for better understanding of some option triggers. The use of
open source tool for testing is supported by [27] where they stress that tools cannot be compared
fairly if the implementation cannot be looked at.

The OCRopus application is built using a nearest neighbor classifier, a standard multilayer percep-
tron, a support vector machine classifier and a Hidden Markov Model line recognizer [11][58].
The application also utilizes ensembles (classifier combination), language modeling for specific
languages [58], which adhere to the methods for OCR described in Chapter 2. The language
model is based on weighted finite state transducers (WFSTs), which can utilize n-grams, dictio-
naries and regular expressions. The best model however is a combination of a dictionary based
model and a statistical character based model. The WFST models appear to be suited for multi-
script and multi-language recognition as well [58]. Another important aspect of this is that they
can be composed and used in a modular fashion to enable OCRopus to adapt quickly to new lan-
guages and document types (see Figure 7), which makes OCRopus quite versatile and increases
its potential for adaptation to other languages than just English.

18

Cross-comparison of Digital and Digitized Physical Evidence

Figure 7: "Language models based on finite state transducers can be composed modularly from dictionaries,
n-grams, grammatical patterns, and semantic patterns." Picture and text from [11].

OCRopus has three main stages, see Figure 8.

• Physical layout analysis is responsible for identifying text columns, text blocks, text lines,
and reading order.

• Text line recognition is responsible for recognizing the text contained within each line (note
that lines can be vertical or right-to-left) and representing possible recognition alternatives
as a hypothesis graph.

• Statistical language modeling integrates alternative recognition hypotheses with prior knowl-
edge about language, vocabulary, grammar, and the domain of the document. [11]

The input to this application is the images files selected in the proof-of-concept tool, and the
output from OCRopus is processed by different methods described further down in this chapter.

OCRopus does all of the usual OCR steps of preprocessing mentioned in 2.2 such as; cleanup,
layout analysis, text-image segmentation, column finding,text line modeling etc. For a full view
and in depth explanation of all of these steps, see paper [11].

Limitations as described on the homepage for OCRopus [59].

• Performance on multi-column documents

• Performance on documents containing images

Another limiting factor is the runtime of OCRopus, but this is discussed in Chapter 4.1

19

Cross-comparison of Digital and Digitized Physical Evidence

Figure 8: A rough flow diagram of OCRopus, which consists of three major components: layout analysis,
text line recognition, and statistical language modeling. Picture from [11].

3.2 The dataset

There are several datasets available for testing, but none of them fulfills the requirements needed
for this experiment. The considered datasets for the experiment are discussed in 2.4, but after
discussions with Økokrim they have recommended focusing on Microsoft Office R© file formats
(DOC, DOCX) and PDF documents. Since these are the most common file types they encounter.
Which makes sense since Microsoft R© has a leading market share for office suites [60]. Moreover,
most of these datasets are only text files, so they do not contain any tables or pictures etc. To
get these constructs, the filetypes; DOCX and PDF is used to be able to include more than just text.

The dataset created for this experiment, includes documents such as; invoices, school tasks, busi-
ness strategies, job postings etc., for a total of 100 documents. The reason for this low amount
of documents are the runtime of the experiment, the dataset had to be in a feasible size to keep
the run time down. To reflect the diversity of digital evidence the documents are not from any
particular field. The data is gathered through a web search for DOCX documents. The documents
have been screened and sanitized to ensure they do not contain any information that could iden-
tify individuals or companies. Any similarity to real companies or persons is purely coincidental.
Some documents have been created by the author for the initial testing and are included in the
dataset. The documents in the dataset contain tables, lists, figures, charts, images, different fonts
and font sizes. The dataset contains no audio or video files.

20

Cross-comparison of Digital and Digitized Physical Evidence

The characteristics looked at in the dataset are numbers of documents with:

• Fonts

• Font sizes

• Most used font and sizes

• Graphs

• Pictures

• Tables

• Lists

• Bold

• Underline

• Italic

• Color (colored character or colored background)

3.3 Data preprocessing

To ensure that all documents are compared in a fair way, they all need to be one page long, be-
cause of limitations in the proof-of-concept tool. It only supports one-to-one image comparison
for pixels. However, we can choose to do OCR on a longer document. All the other methods will
work, except that the pixel comparison will only compare the first scanned image and the first
page of document.

All documents are converted to PDF and scanned. When the application is executed, the PDF
files are converted to black and white images at 300 DPI as per the recommendation from [23].
This is done to reduce noise from different colors etc. The documents are scanned using the
Microsoft Windows 8 R© built in scan application (Windows Fax and Scan) and a HP 4800 series
scanner and the setting "Black & White" as described in [61]. For the conversion of the digital
documents to images, the tool uses a library called PDFbox [62]. This library converts images to
a Java BufferedImage of the type BINARY which is documented here [63] to give RGB values of
[0,0,0] and [255,255,255] only, which in turn converts to the sRGB value of -1 and -16777216.
These values are consistent for the converted documents, but some discrepancies are observed
in the scanned documents.

21

Cross-comparison of Digital and Digitized Physical Evidence

3.4 Levenshtein distance

As stated in [47] the Levenshtein distance uses three operations; deletions, insertions and sub-
stitutions, to get the edit distance between two strings denoted as a and b in Equation 3.1[45].

Leva,b(i, j) = min


Leva,b[i− 1, j] + the cost of deleting ai
Leva,b[i, j− 1] + the cost of inserting bj
Leva,b[i− 1, j− 1] + the cost of replacing ai with bj

(3.1)

For example, the transformation of "color" to "colossus" gives a distance of 4, since it takes a
minimum of four operations to do this.

1. color -> colos (substitution of "r" with "s")

2. colos -> coloss (insertion of "s")

3. coloss -> colossu (insertion of "u")

4. colossu -> colossus (insertion of "s")

The output from this algorithm is a number between 0 for a perfect match and is at most the
length of the longest string for a total mismatch. Where the strings:

1. "aaaaa" and "aaaaa" yields a result of 0

2. "aaaaa" and "bbbbbbbbbbb" yields a result of 10

3. "aaaaa" and "bababababa" yields a result of 5

Levenshtein distance was chosen because of its long track record in related research and it is
easy to implement and understand.

22

Cross-comparison of Digital and Digitized Physical Evidence

3.5 Cosine similarity

The cosine similarity (See Equation 3.2[53], where x and y denote the two vectors) measures the
angle between two vectors and gives an output between 0 and 1. Where 0 equals no similarity
and 1 equals that the strings are similar (not identical). This method can never yield a negative
result, since none of the frequencies can be negative. One major drawback with this method is
that two vectors containing exactly the same terms but different frequency will yield a result of
1 since the angle between these two vectors will be zero, see Figure 10.

Cos(θ) =

n∑
i=1

xi · yi√
n∑

i=1

x2i ·
√

n∑
i=1

y2i

(3.2)

Examples:

1. "This is a test" and "This is a test" yields 1.0

2. "aa" and "aa aa aa aa aa aa" yields 1.0. See Figure 10.

3. "aa aa" and "bb bb" yields 0.0. See Figure 11.

4. "aa aa" and "aa bb" yields 0.7. See Figure 9.

Cosine similarity was chosen because of its ease of implementation and understanding, as well
the promising results it shows for text comparison as seen in [53].

Figure 9: Vector comparison for "aa aa" and "aa bb" Where the cos value of 45◦is 0.7

23

Cross-comparison of Digital and Digitized Physical Evidence

Figure 10: Vector comparison for "aa" and "aa aa aa aa aa aa" Where the cos value of 0◦is 1.0

Figure 11: Vector comparison for "aa aa" and "bb bb" Where the cos value of 90◦is 0.0

24

Cross-comparison of Digital and Digitized Physical Evidence

3.6 W-shingling

In this method the strings are divided up into sequences of tokens. These tokens can be lines,
words, or letters, but they need to be countable. By associating a set of subsequences S of tokens
to every document D one can create a bag of shingles (subsequences contained in D) for each
document or its W-shingling S(D,w) where w is the size of the shingles [54]. The 4-shingling of
(an,iris,is,an,iris,is,an,iris) are; {(an,iris,is,an),(iris,is,an,iris),(is,an,iris,is),(an,iris,is,an),(iris,is,an,iris)}
After these W-shingles are created for each document, they are compared using Equation 3.3 [50]
[54], where A and B denotes two documents and r the resemblance score.

rw(A,B) =
| S(A,w) ∩ S(B,w) |
| S(A,w) ∪ S(B,w) |

(3.3)

The value returned is given by taking the intersection (see Figure 12) of the two sets divided by
the union (see Figure 13) of the sets and is between 0 and 1. A 0 means no similarity and a 1
means identical. This equation is also called the Jaccard coefficient [50].

Example output with a w value of 3

1. "an iris is an iris is an iris" and "an iris is an iris is an iris" yields 1.0

2. "aaaaaa" and "bbbbbbb" yields 0.0

3. "aa aa" and "bb bb" yields 0.0

4. "aa aa" and "aa bb" yields 0.7

5. "aaaaaa" and "aaabbb" yields 0.25

In the implementation used, the w is set to 3 and the strings are divided by characters and not
words e.g. the string "an iris is an iris" gives {(an)(n i)(ir)(iri)(ris)}. W-shingles was chosen
based on the recommendation by Økokrim (see A.5.2), its ease of understanding and implemen-
tation and promising results as seen in [55].

Figure 12: Intersection of two sets.

25

Cross-comparison of Digital and Digitized Physical Evidence

Figure 13: Union of two sets.

3.7 Word frequency

In this method, the word frequency of each document is calculated and compared. The word
frequencies for document A are put into a vector, and the word frequencies for document B
are put into another vector. To make these vectors comparable they need to contain the same
information and same length, to ensure this the terms lacking from vector A are added to vector
B with a frequency of 0 and vice versa. See below for the vector transformation.

A[a,5|b,3|c,1|d,2] → A[a,5|b,3|c,1|d,2|e,0|f,0]
B[a,3|e,2|f,7] → B[a,3|b,0|c,0|d,0|e,2|f,7]

The two vectors are iterated through and the absolute value of the difference between the entries
in the vectors are calculated. See Equation 3.4 where x denote vector A and y vector B and n the
number of unique words.

Score =

n∑
i=1

| xi − yi | (3.4)

The output is the sum of the difference in word frequencies. The output will range from 0 which
means no difference to a number depending on the number of different terms in each document.
For instance, a document A with [a,10] and B with [b,10] will yield 20 as output. One potential
problem with this methods is that it does not take word order into account. For the binary strings
1001 and 0011, they would appear to be the same (assuming each bit is processed as a word),
but the meaning/value of the two are highly different. It was chosen because it is a commonly
used method for text comparison [48] [49], and it is easy to implement a version of this in the
tool.

26

Cross-comparison of Digital and Digitized Physical Evidence

3.8 Pixel comparison

This method rescales the two input images to 300x300 pixels, where the RGB average value
of 25 areas of 30x30 pixels each (see Figure 14) are calculated and put into two 25x3 feature
vectors. The Euclidian distance between the regions in the vectors are calculated (see Equation
3.5)and accumulated and yield a result between 0 and 11041 where closer to 0 is more similar
and closer to 11041 is more different.

Score = 25 ∗
√
(r1− r2)2 + (g1− g2)2 + (b1− b2)2 (3.5)

In Equation 3.5, r1 and r2 denotes the average red value from the two images, g1 and g2 the
average green value, b1 and b2 the average blue value.

To minimize errors such as colors not being scanned correctly and converted correctly, all images
are converted to black and white images. However, this will also remove all color information
(uniqueness) that could make it easier for this algorithm to identify similar areas.

Figure 14: Sampling of picture for average pixel calculation. Picture from [64].

In Figure 15, a small comparison of some preliminary test data is presented. The first column is
the picture converted from the original PDF document, the second column is the same picture
compared with itself, the remaining columns are the scanned versions of said documents com-
pared against the converted original. The algorithm identifies three out of four pictures correctly.
The high accuracy result here is misleading since the input for the methods here are only the
few images displayed in the figure, and the results here are not representative for the methods
performance on the real dataset.

27

Cross-comparison of Digital and Digitized Physical Evidence

A problem with this method however is that in documents with a lot of uniformly distributed
text/images, the pixel average of these documents will be very similar and can yield lower scores
to documents where the content is different, which happens in row 1, column 3 in Figure 15
where another image has been ranked as the best match, but, one can easily see that these are
not the same documents.

This pixel comparison method was chosen because it is fairly easy to both understand and modify.
It is based on the code from [64]. By not using libraries for this comparison method, the author
has full insight into the workings of the algorithm.

Figure 15: Preliminary results of a pixel comparison between different images/documents, using the imple-
mented pixel-to-pixel algorithm.

28

Cross-comparison of Digital and Digitized Physical Evidence

3.9 Fuzzy hashing

Fuzzy hashing was considered as a method to be implemented in the proof-of-concept tool, but
preliminary tests showed that documents scanned to PDF files, and run though the application
ssdeep discussed in 2.3 yielded results below the built in matching threshold in ssdeep. We as-
sume this has to do with the fact that the ssdeep application takes the files bit-for-bit. A PDF
file created by a scanner software would be quite different from a PDF file created from Adobe
Acrobat R© or Microsoft Office R©, even though the files both contain the same content. Since no
matches could be found using this tool, the implementation of this method was dropped. More-
over, it would have added unnecessary complexity to the tool as more file operations and writing
to the file system would be required.

29

Cross-comparison of Digital and Digitized Physical Evidence

4 Experimental design and results

This chapter contains the description of the experiment and how it is set up, the results from the
conducted experiments and the characteristics of the dataset.

4.1 Experiment setup

The proof-of-concept tool is developed on a virtual machine hosted in VmWare running in Win-
dows 7. The specifications and tools used for the experiment in the virtual machine are listed in
Table 1. The reason for running the proof-of-concept tool in Ubuntu is the system requirement
for OCRopus [59]. OCRopus utilizes python libraries and the Linux package manager ’apt’ for
installing the required dependencies. The Java language is the one the author is proficient in,
and therefore the natural choice for development. The proof-of-concept tool is based on an early
version developed by the author for the subject "Computational Forensics" at Gjøvik University
College. It only implemented Levenshtein distance, and a one-to-one comparison of text at that
time.

Table 1: Specification for the virtual machine

Hardware/software Specification
CPU i7-720QM

1.6Ghz(2.8Ghz)
RAM 4GB
OS Ubuntu 12.04
IDE Netbeans 7.3
Language Java (JDK7)
OCR software OCRopus 0.7

The input for the tool is the path to a folder containing the digital documents, an optional key-
word to screen for, and file paths to the image files of the scanned document(s). For automatic
testing of many documents the tool only accepts one page documents, for longer documents,
the input has to be fed manually for each document. The output from the automatic tool in the
experiment are several comma separated text files, containing the best matches for each docu-
ment for each method. This data has to be examined and manually analyzed. The result of this
analysis yields a score on how accurate each of the methods are to identify the correct document.

30

Cross-comparison of Digital and Digitized Physical Evidence

In Figure 22 the general and current workings of the tool is shown. As mentioned above, the
input to the tool is a folder with digital documents, shown on the left hand side, and a folder
with image files from the scanned documents shown on the right hand side. When the program
executes, the digital documents are converted to image files and linked to the filename of the
converted document, to keep track of the connection between the files. The scanned documents
are converted to text by OCRopus and run through a regular expression method (see Figure 19)
to remove the excess column of text seen in Figure 20 on the left hand side. Since it is only the
text on the right hand side that is interesting. All the text (for both inputs) is converted to lower
case, since this does not change the content of the texts. These two texts are then sent into the
four different text comparison algorithms, while the pixel comparison gets the image from the
converted digital document and the image of the scanned document as an input. The output and
matching result are displayed in the tool (see Figure 38 in the appendix), but modifications can
be done in the code to write it to file which was done for the experiment.

For the experiment, five different configurations were used:

1. Document to Image, without text sanitation.

2. Document to Image, with text sanitation.

3. Image to Image, without text sanitation.

4. Image to Image, with text sanitation.

5. Pixel to Pixel comparison.

Where "Document to Image" denote the comparison of extracted text of the documents through
the use of Java libraries, and the OCR extracted text from the scanned document.

"Image to Image" denote the comparison between the OCR generated text from the converted
image from the original document and the OCR generated text from the scanned document.

"Pixel to Pixel" denote the pixel comparison between the converted image from the original doc-
ument and the image from the scanned documents.

Text sanitation is used for all methods except pixel-to-pixel comparison, where there are no
text to sanitize. The text sanitation method is shown in Figure 18, and it removes all non-
alphanumeric characters, single digits, single letters, and replaces double spaces with single
spaces to counteract some of the noise generated by the OCR conversion.

31

Cross-comparison of Digital and Digitized Physical Evidence

All the text generated through OCR from the scanned documents are compared against all of the
text extracted from the original document and its OCR generated text from the converted image,
a one-to-many comparison. See Figure 16, where n denote the number of original documents,
and m denote the number of scanned documents. Each scanned document are compared against
all the original documents, as well as its converted image, using all five methods with and with-
out text sanitation.

Figure 16: Each single image and OCR generated text are compared against all of the text from the original
documents as well as the converted image. Green indicates the best match.

In addition, a one-to-one comparison between the documents with the same configuration is
performed. The original document/converted document compared to its scanned version see
Figure 17. Where n denote the number of documents/images. By doing this a score for the
different configurations are given. This score reflects the potential viability of the methods used.
The results from this run are used to calculate a score shown in Equation 4.1 where x denotes the
Levenshtein distance between the two texts, y denotes the number of characters in the original,
extracted text by either libraries or OCR from the converted image and n denotes the number of
documents in the corpora. This results in a score where, closer to zero means less edits needed,
i.e. the texts are more similar, and a score further from zero, the opposite, more dissimilarity.

Score =

n∑
i=1

xi

yi

n
(4.1)

32

Cross-comparison of Digital and Digitized Physical Evidence

Figure 17: Each single image and OCR generated text are compared against the original documents and its
converted image.

Figure 18: Code for removing noise before the text comparison methods, through the use of regular expres-
sions

33

Cross-comparison of Digital and Digitized Physical Evidence

Figure 19: Code for removing excess output from OCRopus, as seen in Figure 20

There are some limitations to the tool. Because of the libraries used, it can only do pixel com-
parison of PDF documents, that is, only PDF documents can be converted to images by the
proof-of-concept tool. For all methods to work, all the test documents will need to be converted
to the PDF file format. The author did not find any free to use libraries for conversion of the Mi-
crosoft Office R© file format DOCX to images, but there are some libraries that can be purchased1.
Implementing this would make the application capable of handling these types of file formats as
well, and is something that is required if it is to be used.

One major drawback of the tool is that for single documents with multiple pages, it will not be
able to do a pixel comparison because of limitations in the code and the libraries used to imple-
ment the functionality. It will run all of the text comparison algorithms, but the pixel comparison
methods will only run on the first page of the document. With the use of other document-to-
image converter libraries, this should not be a problem, and result in a solution were a one-to-
one comparison for each of the pages and scanned pages of the same document are measured.
And at the end take the average value of these numbers for a matching score. Another way to
do this would be to divide the original document up into several one page documents and then
run the application, however this is highly impractical and defeats the purpose of the application.

1http://www.qoppa.com/wordconvert/

34

Cross-comparison of Digital and Digitized Physical Evidence

Another limiting factor is the total time it takes for OCRopus to yield a text output from a single
page. The way OCRopus is implemented and configured in the proof-of-concept tool, the process
takes close to three minutes per page, which is unfeasible if the dataset is huge. OCRopus can
be configured for multi core/thread support. This support was enabled to reduce the conversion
time of image to text, but this resulted in a garbled output as seen in Figure 20. Where the output
from the single thread conversion is shown and in the red rectangle, with the image names in
order. In Figure 21 the image names are not in an ascending order, which results in the output
being in the wrong order compared to the original document (see Figure 40 in the appendix). If
this is limited to just the virtual machine is unknown. No other mentioning of this problem was
found in OCRopus’ help section. This is a problem because of the implementation. The proof-
of-concept tool extracts the text straight from the shell, and not from the created text files from
OCRopus. By looking closely on Figures 20 and 21, one can observed that images with the same
name contains the same text. This implication is discussed in future work 5.3.

Figure 20: OCR conversion with a single thread, results in a correct order in the shell output. Also shown
here on the left hand side is the excess information OCRopus creates.

Figure 21: OCR conversion with four threads, results in a wrong order in the shell output.

35

Cross-comparison of Digital and Digitized Physical Evidence

Figure 22: Flowchart of how the tool operates, objects outside of the square are files on the file system.
Objects inside the square are operations in the application

36

Cross-comparison of Digital and Digitized Physical Evidence

4.2 Results

In this section the obtained results are presented. Only the most frequently occurring charac-
teristics from the dataset is presented. The full results are contained in the appendix A.4. The
accuracy results for the methods are presented side-by-side for each configuration for an easier
comparison.

4.2.1 Analysis of the dataset

The dataset consists of 100 documents of great variety, containing graphs, pictures and lists etc.
Many of the documents contain several of these items, as well a combination of different font
and font sizes.

The main characteristics for the created dataset are shown in the following figures. They include
the occurrences of font type, font size, and the combinations of these two. As seen in Figure 23
the font Calibri is the one that occurs the most in the dataset, and it is used in 51 out of the 100
documents. See Table 13 in the Appendix for the full list of font occurrences.

Figure 23: The most recurring fonts in the dataset.

37

Cross-comparison of Digital and Digitized Physical Evidence

The most frequently occurring font size in the dataset is 12pt. as seen in Figure 24, which is the
default font size for Times New Roman which is the default font in Microsoft Word R© 2003. The
font size 11, is the second most used font size and is the default for Microsoft Word R© 2007, 2010
and 2013. See Table 12 in the appendix for the full list of font size occurrences.

Figure 24: The most recurring font sizes in the dataset.

The most frequently occurring font and size is Calibri 11, (see Figure 25) which is the default
font and size for Microsoft Word R© 2007, 2010 and 2013. See Table 15 in the appendix for the
full list of combinations of font and font size occurrences.

38

Cross-comparison of Digital and Digitized Physical Evidence

Figure 25: The most frequently recurring combination of fonts and sizes in the dataset.

Other frequencies of characteristics can be seen in Figure 26. Where 74 documents contains
bold text, 49 contains colored characters or characters with a colored background, and 45 of the
documents contains lists see Table 14 in the Appendix for a full lists.

Figure 26: Occurrences of different types of characteristics present in the dataset.

39

Cross-comparison of Digital and Digitized Physical Evidence

4.2.2 Analysis of the experiment data

The results are presented in bar charts, where each blue bar represent the percentage of docu-
ments that are identified correctly without text sanitation and red bars represents the percentage
of documents identified correctly with text sanitation.

4.2.3 Document-to-image

The following results are obtained from the comparison of text generated from the scanned
document through OCR and the extracted text from the original documents.

Figure 27: Matching accuracy for the different text comparison methods with and without text sanitation.

In Figure 27 a small increase of 7% in matching accuracy for Levenshtein and 1% for Word
frequency when using text sanitation are displayed.

40

Cross-comparison of Digital and Digitized Physical Evidence

4.2.4 Image-to-image

The following results are obtained from the comparison of text generated from the scanned
document and the converted original document, through OCR.

Figure 28: Matching accuracy for the different text methods with and without text sanitation.

In Figure 28 Levenshtein distance reaches up to a 100% accuracy when comparing OCR gener-
ated text from the scanned document and the OCR generated text from a converted document,
whereas Word frequency and Cosine similarity drops a few percent. With text sanitation a small
increase for Cosine similarity is observed, and the accuracy for the remaining methods stays at
the same level.

41

Cross-comparison of Digital and Digitized Physical Evidence

4.2.5 Pixel comparison

Figure 29: Matching accuracy for the pixel comparison method.

In Figure 29 the pixel-to-pixel comparison methods manages to identify 21% documents correctly
based on the best match.

42

Cross-comparison of Digital and Digitized Physical Evidence

4.2.6 Similarity score

The scores here were obtained through the process described in Section 4.1, where a one-to-one
comparison between the documents with different configurations are calculated and normalized.
"Document" denote the text extracted from the original document. "OCR original text" denote the
text generated from OCR on the image from the converted PDF document. Both are compared
to the OCR generated text from the scanned documents.

Table 2: Similarity score, without text sanitation.

Text source Score
Document 0.31
OCR original text 0.18

Table 3: Similarity score, with text sanitation.

Text source Score
Document 0.20
OCR original text 0.16

4.2.7 Result comparison

Table 4: Accuracies of all texts comparison methods for all combi-
nations of settings.

Configuration/Methods Levenshtein Word freq. Cosine sim. W-shingles Average
Doc. to Img. 84% 79% 100% 100% 90.75%
Doc. to Img. Sanitized 91% 80% 100% 100% 92.75%
Img. to Img. 100% 74% 91% 100% 91.25%
Img. to Img. Sanitized 100% 74% 94% 100% 92.0%
Average per method 93.75% 76.75% 96.25% 100%

4.2.8 Runtime

The runtime was measured using a timer. This timer is started when the execute button is pushed
(see Figure 38 in the appendix), and terminates when the all the conversions and calculations
are done.

Table 5: Runtime for the experiments

Experiment Timing
Image to image (200 images, one-to-one) 8h 43m 8s
Image to image (200 images, one-to-many) 6h 2s
Document to Image (100 images, one-to-one) 4h 11m 31s
Document to image (100 images, one-to-many) 6h 32m 46s
Document to image (1 image, one-to-many) 4m 26s

43

Cross-comparison of Digital and Digitized Physical Evidence

5 Discussion, Conclusion and Future work

This chapter contains the discussion about the results and their significance, the conclusion based
on these findings and, theoretical and practical implications, and lastly future work.

5.1 Discussion

As described in Chapter 2, the term good accuracy is from 99% and upwards, which was the
threshold given by the Meeting of the Experts on Digital Preservation [23]. In Table 11 in the
appendix the number of changes to transform the OCR scanned text into the extracted text from
the document for each document without sanitation is shown. The number of changes between
two documents ranges from 28 to 1999 in the test dataset, and the average is 374 changes per
document. The average number of characters per document in this dataset is 1725. Resulting in a
21.7% dissimilarity for each document on average or, 78.3% similarity, below the proposed limit.
However, the OCR conversion of these documents are not supposed to be used as a substitute for
the real document (electronic or physical) as evidence, just as a help to locate the original ones,
but the following is worth mentioning.

A document is categorized in one of two categories; original or a duplicate. In Federal Rules
of Evidence, Rule 1002 [67] states that an original recording,photograph or writing must be
presented, before a secondary source can be admitted. If the original evidence is unavailable, a
duplicate can be admitted in lieu of the original as long as there is a satisfactory reason.
The definition of evidence types in Rule 1001 [68] states:

(a) A “writing” consists of letters, words, numbers, or their equivalent set down in any form.

(b) A “recording” consists of letters, words, numbers, or their equivalent recorded in any man-
ner.

(c) A “photograph” means a photographic image or its equivalent stored in any form.

(d) An “original” of a writing or recording means the writing or recording itself or any counter-
part intended to have the same effect by the person who executed or issued it. For electronically
stored information, “original” means any printout - or other output readable by sight - if it ac-
curately reflects the information. An “original” of a photograph includes the negative or a print
from it. [68]

The primary evidence i.e. the original source, is admissible without objection. It can still be chal-
lenged as to if it is the best evidence available.

44

Cross-comparison of Digital and Digitized Physical Evidence

Duplicates
When an original source cannot be admitted, and a copy must be used instead, provided that the
reason for this is adequately explained, it is called a duplicate and is defined in Rule 1001 [68]
as:

(e) A “duplicate” means a counterpart produced by a mechanical, photographic, chemical, elec-
tronic, or other equivalent process or technique that accurately reproduces the original.[68].

In lieu of the original source, Rule 1003 [69] states:

"A duplicate is admissible to the same extent as the original unless a genuine question is raised
about the original’s authenticity or the circumstances make it unfair to admit the duplicate."
[69]

Rule 1001 paragraph 3 & 4 [68] states that evidence reproduced with high accuracy and virtually
no possibility of error can be given the status of original evidence, such as computer printouts
and carbon paper copies1.

A common factor for the ten highest ranking matches is that they consist mainly of text, two doc-
uments has small images. No tables, and main font and font sizes are Calibri, Times New Roman,
Arial and 11 and 12 in sizes. For the ten lowest ranked documents a common theme is that they
all contain a picture which adds a lot of extra text when converted, see Figure 30, where in this
case the original text is 505 character long, but the OCR conversion is 1787 character long. For
identifying the digital document with text comparison, this is not a good thing. But, if the goal
was to make this document searchable so you could search in all of the text, the OCR does its job.

The second scenario is where a picture adds a lot of extra noise, as seen in Figure 31. Here
the logo has been translated into ",42 -w", the logo name has been translated correctly, but the
header and the line beneath is unintelligible. The table add some noise, and the picture adds a
lot of excess characters. The original OCR output before run through the text sanitation is 633
characters, and after the text sanitation the OCR text is cut down to 351 characters, which is a
decrease of 44.5%. The original text is cut down to 221 from 254 which is a decrease of 13%. So,
we remove a lot of noise from the text output from the images, but retain most of the original
text.

However, since the proof-of-concept tool and OCR in this instance is used to locate the origi-
nal digital document, the accuracy does not have such a high impact except, on the results for
the linking. In addition, when you get a potential match with the application, the match would
need to be verified by an operator, to ensure it is the correct document. One implication of the
evidence rule is that if the physical document you find is tarnished in some way that makes it dif-
ficult to read, a fresh copy could be printed from the original document and presented in its place.

1The laws discussed here apply to the US.

45

Cross-comparison of Digital and Digitized Physical Evidence

Figure 30: Document with an embedded picture with a lot of text, which adds extra text in the OCR
conversion.

46

Cross-comparison of Digital and Digitized Physical Evidence

Figure 31: The OCR results of the document to the left. The second column of text is the continuation of
the text on the right beneath the first column, to make one long string.

47

Cross-comparison of Digital and Digitized Physical Evidence

As seen in Section 4.2.1 the font Calibri is the most recurring one in the dataset, and it is used
in 51 out of the 100 documents. Calibri is the default font in Microsoft Office R© 2007, 2010 and
2013, and as such, no big surprise to see it rank this high.

For the font sizes, 12 is the most frequent. Font size 12 is the default size for Times New Roman,
which is the default font in Word 2003. Next in line is font size 11, and is the default size used in
Microsoft Word R© 2007, 2010 and 2013. Only three occurrences separates these two results, and
had the dataset included Excel (XLSX) files, the occurrences of font size 11, would most likely
been more preeminent.

The prominent occurrences of Calibri 11, does not come as a big surprise either since Calibri 11
is the default font and font size combination for Microsoft Word R© 2007, 2010 and 2013.

Other characteristics emerging, are bold letters, colored background or colored letters, lists and
pictures (here graphs that are not made by the graph tool in Word count as a picture). This is
true for this dataset, and the distribution of characteristics in Figure 26 might be different if the
dataset had included documents with several pages. This is only speculation from the author, but
we assume that the number of documents with tables, pictures, and color would increase. This is
also tied to the type of document used to create the dataset. Had the dataset been created with
only text files, there would have been no tables, pictures, or graphs etc., only text.

As to how realistic this dataset is, it is difficult to give an answer, since there are such a variety
of datasets and file types available. The dataset fulfills some of the criteria put forth in Section
2.4. However, not all of the criteria are applicable to this dataset. Characteristics that should be
added are more file types and documents with degradation, such as; coffee spills, water damage,
crumbled together etc. The most likely characteristic for this dataset that should be changed is
the length of each document.

The Levenshtein distance results are at an 84% accuracy, see Figure 27 without text sanitation.
Which means that, the excess information added by OCR conversion makes noise that affects the
matching accuracy. With text sanitation the accuracy improves with 7%, so the removal of the
excess noise improves the results for Levenshtein distance.

By comparing the text generated with OCR from all documents and images, as seen in Figure 28,
Levenshtein distance increased to 100% accuracy, while Word frequency and Cosine similarity
drops, W-shingles stays at a 100% throughout all configurations.

The Word frequency method manages to identify 79% of the documents correctly without text
sanitation see Figure 27. However, for this method the text sanitation did not have such a good
effect where we got a 1% increase. As seen in Figure 28 the result drops when comparing image-
to-image with OCR generated text. This drop in accuracy could be the results of the OCR con-
version generating too much noise on both sides, and the removal of this potential noise did not

48

Cross-comparison of Digital and Digitized Physical Evidence

have any impact. To improve these results for Word frequency, a different way to calculate the
scores than the one implemented could be used, one example of such a calculation is the one
used in [49].

For Cosine similarity and W-shingles they both score a 100% without text sanitation, as seen
in Figure 27 and a 100 % with text sanitation when using document-to-image comparison. In
the results from the image-to-image comparison in Figure 27, we see that Cosine similarity falls
behind without text sanitation. Again, this might because of the noise introduced by the OCR
conversion. However, we see a small increase in the accuracy when the text sanitation method is
utilized. The W-shingle method keeps itself at a steady 100% for all the combinations.

The results for the pixel comparison method are shown in Figure 29, and the accuracy here is
quite low at 21%. The poor results of the pixel comparison can be a result of the limitations
discussed in Section 3.8.

Using string sanitation resulted in an increase of 8% on the best matching documents (7% for
Levenshtein and 1% for Word frequency), and it did not affect the top matching algorithms at
all when comparing documents to OCR generated text from the scanned documents. With the
comparison of image-to-image we see a small increase of 3% for Cosine similarity when uti-
lizing string sanitation. In total, the difference between the worst and best result for different
configurations are 2% with document to image comparison without sanitation at 90.75% and
document-to-image comparison with sanitation at 92.75%. Whereas, image-to-image compari-
son with and without sanitation scores 92% and 91.25% shown in Table 4.

These results are not consistent with the similarity score given in Tables 2 and 3. According
to these numbers the configuration which should have scored the highest is image-to-image
comparison with text sanitation at a score of 0.16, but it is 0.75% behind document-to-image
comparison with text sanitation at a score of 0.20 and 92.75%. However, if we look at the results
for just Levenshtein distance the similarity score matches up with the percentage. This is not a
big surprise since Levenshtein distance was used to calculate both of these scores.

Based on the results for this dataset (see Table 4) the characteristics that enables evidence link-
ing most accurately are "shingles" used in W-shingles and the frequency of unique words used in
Cosine similarity on a document-to-image comparison with text sanitation. However, the author
stress that this is true for the dataset used in the thesis, and might not be true for other datasets.

By looking at the scores in tables 2 and 3 we can see that OCR generated text from the original
document, compared to the OCR generated text from the scanned documents with text sanita-
tion yields the best score. By comparing OCR generated text from two images, we circumvent the
problem about text extraction and excess text discussed in 5.1. Since both images contains the
same information, they are more likely to create the same noise. However, as seen in column 5 in
Table 4 the impact of image-to-image comparison versus document-to-image with and without

49

Cross-comparison of Digital and Digitized Physical Evidence

text sanitation is minimal, the maximum difference is 2.5%.

The run time of the tool while converting image to text is slow, as seen in Table 5. The runtime
for each experiment is several hours, which contradicts the statement in [15].

"To be useful, OCR software must be both accurate and fast."

This application and its implementation of OCRopus is not fast enough when running the com-
parison with a 100 documents. However, if we want to only locate one document, and its best
matches, the tool is useful. One single image takes approximate 4 minutes and 20 seconds to
be processed and matched. The reason for this, is that the conversion of all 100 PDFs to image
files takes additional time. To reduce the time and make the tool and experiments more efficient
would be to find a faster way to convert the documents to images, and a faster OCR engine. Or,
by dropping the pixel-to-pixel comparison as well as the image-to-image comparison with OCR.
The time for each single image would drop down again to around 2 minutes. Moreover, the re-
moval of excess methods can also help reduce the processing time. There are also the possibility
to scan directly to PDF and run the OCR engine in Adobe Acrobat R© on these documents, and
then use the proof-of-concept tool to extract the text from these documents for comparison to
the corpora. The discrepancies in the run times can be the result of some of the experiments
being run in batches of 25 and 25 documents, and not all in one go. Each of these batches would
add a new preprocessing stage with the document to image conversion, and some extra time has
accumulated in the end results. However, the difference between 200 images, one-to-many and
100 images, one-to-many with only 30 minutes extra for double the amount of images we can
not explain. Betters timers should be used and the machine running the experiment should be in
a controlled environment for the duration of the experiments.

As discussed previously in Chapter 2 ensemble voting is a good way to increase the accuracy of
OCR engines. For the results here, the ensemble voting is not a good idea. Since the four other
methods would decrease the overall similarity score for a document compared to W-shingle’s
100% matching accuracy. The implementation of ensemble voting and the removal or addition
of methods are a part of the future work, see Section 5.3.

50

Cross-comparison of Digital and Digitized Physical Evidence

5.2 Conclusion

General
The methods chosen for this thesis (Experimental design and literature review) yielded tangi-
ble results, but it should be mentioned that a qualitative method with interviews with law en-
forcement investigators or a quantitative method with questionnaires about file types, problems
encountered when using forensics software etc., would have added more weight to the Justifica-
tion, Motivation and Benefits parts of the thesis.

What is an acceptable error rate for OCR in a forensics setting?
As discussed the acceptable error rate for OCR in a forensics setting is really not that important
since it is only used for matching. But the higher the accuracy of the OCR engine the more likely
we are to get an accurate match. The best way to increase this accuracy is by using voting en-
sembles on the classifier level of the OCR system, or character for character between two OCR
engines. The proposed level for a good OCR system is at 99%.

What are characteristics of a realistic dataset in forensic research, development and test-
ing?
As seen, the characteristics varies quite a lot, but for this specific dataset the most prominent
characteristics are the font Calibri, font size 12, and combination of font and font size, Calibri
11. As well as the occurrences of bold text, color, lists and pictures.

Which of the characteristics are significant and enable evidence linking?
The characteristics that enables linking most accurate are "shingles" used by W-shingles and
unique word frequency and the angle between the two vectors used in Cosine similarity. Cosine
similarity does not take order into account so the order does not really matter for the identifica-
tion. However documents could be crafted that would identify as a match even though the order
is completely different, just as long the word frequencies are the same. W-shingles on the other
hand does take order into account and is the best algorithm for matching on this dataset for all
configurations.

In which way is it possible to increase efficiency and effectiveness in evidence linking?
We made sure that the input for the comparison methods were as similar as possible. Either by
comparing image-to-image with OCR, or document-to-image with and without text sanitation.
In addition the run times for the OCR engine needs to be reduced. The author believes that the
proof-of-concept tool can help investigators locate evidence faster if the proposed changes are
made.

51

Cross-comparison of Digital and Digitized Physical Evidence

5.2.1 Theoretical implications

As seen from the results presented, one could in theory drop all other methods except, W-shingles
and still get a 100% linking accuracy, but we need to keep in mind the "No Free Lunch Theorem"
and that these result might not be the same for other datasets. As discussed in Chapter 2 ensem-
ble voting can be used to increase OCR accuracy, but the results here show that there is no need
for this in this setting. Had W-shingles not scored a 100% for all configurations this could have
been a way to increase the matching accuracy. However, it must be said that ensemble voting
could still be used for the conversion if it was between two OCR engines, which in turn could
improve the overall accuracy of each method. It should also be mentioned that we are aware that
the implementation and utilization of some methods completely ignore semantics, word order
and important relationships in sentence structures, such as dependencies between words.

5.2.2 Practical implications

As discussed earlier the runtime of these experiments are too long. A faster OCR engine is needed,
or tweaking of the current one needs to be done. The runtime for matching a single document
is acceptable, but the runtime becomes infeasible when comparing several documents at a time.
In effect, the conversion of documents into images should be dropped, as well as the pixel-to-
pixel comparison which has the lowest accuracy score overall, or be replaced by a better image
recognition algorithm. The Word frequency and Levenshtein distance methods can be dropped
as well to reduce complexity of the source code. For the experimental part, image-to-image
comparison should be dropped, unless a faster OCR engine is found or the multi thread options
is enabled and the output ordered. A practical implication of implementing ensemble voting on
OCR level would most likely result in an even longer runtime unless both of the OCR engines are
fast.

52

Cross-comparison of Digital and Digitized Physical Evidence

5.3 Future work

The main areas that needs an improvement are:

OCR engine
For this proof-of-concept tool to be usable the total matching time needs to be reduced. This can
be done through tweaking OCRpus, training OCRopus on the dataset or replacing OCRopus as
the OCR engine. Tests with multi thread support should be done as well. If this are to be imple-
mented in the proof-of-concept tool, the raw text generated by OCRopusTMcan be processed and
sorted to get the correct order, before removing the excess text.

It is worth mentioning that many scanners have the option to scan to a PDF document instead
of an image file. By using Adobe Acrobat R©, this document can then be made searchable and the
text can be extracted using Java libraries (as done in the proof-of-concept tool). Adobe Acrobat R©

supports batch jobs, which speeds up this process [65], a server side solution for automation
of this process exists as well [66]. By using these we could circumvent the slow processing of
OCRopus and only use the text comparison features of the proof-of-concept tool.

Dataset
A more realistic dataset should be created. To get access to a proper dataset from a law en-
forcement agency and base a new dataset on this would be a promising start. In addition the
dataset should include documents that are tarnished, either by coffee spills, crumbled together
and straightened out, wet and dried and partially shredded etc. This would give the methods and
OCR engine an additional challenge, and it is not unlikely to encounter documents like this on
a crime scene. A combination of file types should be added to the dataset as well, spread sheets,
images, PDFs, DOC, DOCX, txt files and emails to make it less uniform and more realistic. The
dataset should also contain modified files from the original one, so matching accuracy for similar
documents can be tested. To make the dataset more interesting, documents created and modified
by several users could be added, so the investigators can take the investigation one step further
by looking at the metadata of the documents.

Proof-of-concept tool
If this tool is to be used, the GUI needs to be cleaned up, as well as the source code, and bet-
ter libraries must be found (for file conversion so file naming can be controlled), depending on
which methods are kept and which are dropped. To make it even more usable the application
should be able to run on a Windows machine, information on that can be found here: [70]. If
this is not possible a different OCR engine should be considered. Support for documents with
multiple pages, and the automatic conversion and extraction should be added, but this requires
tremendous modifications in the source code.

53

Cross-comparison of Digital and Digitized Physical Evidence

Methods
More text comparison methods can be found and tested to see how they handle this dataset. As
shown, the text extraction methods used for the original documents does not manage to extract
the text in the embedded images as the OCR engines does. One might look into dropping all text
comparison algorithms, and only look at image recognition algorithms for the matching, since
this would circumvent the problem with a difference in the two documents. The W-shingles
algorithm should be further tested, and the w value should be varied to see which one yield
best results. The computational complexity of the methods, and the comparison in the proof-of-
concept tool should be discussed as well.

Experiment
The matching accuracy between two similar documents should be tested. The dataset should
include an original document, and a modified version of this, with either text added or removed.
To see if it manages to match the scanned document to a modified digital document. Modifica-
tions here can be: added or removed paragraphs, pictures and graphs etc. In addition, the timing
of the experiments should be better, and one way would be to have seperate timers for image
conversion, similarity calculations, OCR conversion and total runtime.

54

Cross-comparison of Digital and Digitized Physical Evidence

Bibliography

[1] Symantec. 2010. Survey reveals poor availability of digital evidence brings legal process to
a halt across emea. http://www.symantec.com/en/uk/about/news/release/article.

jsp?prid=20100907_01. Visited 23.05.2014.

[2] Izenberg, D. 2010. A-g sets time limits for criminal investigations. http://www.jpost.com/
Israel/A-G-sets-time-limits-for-criminal-investigations. Visited 23.05.2014.

[3] Riksadvokaten. 2013. MÅl og prioriteringer for straffesaksbehandlingen i 2013 —
politiet og statsadvokatene. http://riksadvokaten.no/filestore/Dokumenter/2013/

Rundskrivnr1for2013-Mlogpriforstraffesaksbehandlingen.pdf. Visited 21.05.2014.

[4] Garfinkel, S. L. 2010. Digital forensics research: The next 10 years. Digital Investigation, 7,
Supplement(0), S64 – S73. The Proceedings of the Tenth Annual {DFRWS} Conference.

[5] Rekdal, J. E. John rekdal - cross comparison of digital and digitized physical evidence.
https://kepler.hig.no/share.cgi?ssid=0F6ma0t. Visited 16.05.14.

[6] Palmer, G. 2001. A road map for digital forensic research. In First Digital Forensic Research
Workshop, Utica, New York, 27–30.

[7] Casey, E. 2011. Digital evidence and computer crime: forensic science, computers and the
internet. Academic press.

[8] Breuel, T. 2009. Recent progress on the ocropus ocr system. In Proceedings of the Interna-
tional Workshop on Multilingual OCR, 2. ACM.

[9] Holley, R. March/April 2009. How good can it get? analysing and improving ocr accuracy
in large scale historic newspaper digitisation programs. D-Lib Magazine, 15(3/4).

[10] Broda, B. & Piasecki, M. 2007. Correction of medical handwriting ocr based on semantic
similarity. In Intelligent Data Engineering and Automated Learning - IDEAL 2007, Yin, H.,
Tino, P., Corchado, E., Byrne, W., & Yao, X., eds, volume 4881 of Lecture Notes in Computer
Science, 437–446. Springer Berlin Heidelberg.

[11] Breuel, n. M. 2008. The ocropus open source ocr system. volume 6815, 68150F–68150F–
15.

[12] Shafait, F. 2009. Document image analysis with ocropus. In Multitopic Conference, 2009.
INMIC 2009. IEEE 13th International, 1–6.

[13] Du, S., Ibrahim, M., Shehata, M., & Badawy, W. Feb 2013. Automatic license plate recog-
nition (alpr): A state-of-the-art review. Circuits and Systems for Video Technology, IEEE
Transactions on, 23(2), 311–325.

55

http://www.symantec.com/en/uk/about/news/release/article.jsp?prid=20100907_01
http://www.symantec.com/en/uk/about/news/release/article.jsp?prid=20100907_01
http://www.jpost.com/Israel/A-G-sets-time-limits-for-criminal-investigations
http://www.jpost.com/Israel/A-G-sets-time-limits-for-criminal-investigations
http://riksadvokaten.no/filestore/Dokumenter/2013/Rundskrivnr1for2013-Mlogpriforstraffesaksbehandlingen.pdf
http://riksadvokaten.no/filestore/Dokumenter/2013/Rundskrivnr1for2013-Mlogpriforstraffesaksbehandlingen.pdf
https://kepler.hig.no/share.cgi?ssid=0F6ma0t

Cross-comparison of Digital and Digitized Physical Evidence

[14] Bessmeltsev, V., Bulushev, E., & Goloshevsky, N. High-speed ocr algorithm for portable
passport readers.

[15] Kindseth, J., Peterson, M., Khole, M., & Gogte, A. Character recognition using machine
learning techniques.

[16] Eikvil, L. Ocr - optical character recognition". http://www.nr.no/~eikvil/OCR.pdf. Vis-
ited 16.05.14.

[17] Guyon, I., Haralick, R. M., Hull, J. J., & Phillips, I. T. 1997. Data sets for ocr and document
image understanding research. Handbook of character recognition and document image
analysis, 779–799.

[18] Scientific Working Group on Digital Evidence. 2013. Swgde establishing confi-
dence in digital forensic results by error mitigation analysis. https://www.swgde.org/

documents/CurrentDocuments/2013-09-14SWGDEErrorMitigationAnalysisV1-3. Vis-
ited 23.05.2014.

[19] Carrier, B., Spafford, E. H., et al. 2003. Getting physical with the digital investigation
process. International Journal of digital evidence, 2(2), 1–20.

[20] Cornell University Law School. Daubert standard. http://www.law.cornell.edu/wex/

daubert_standard. Visited 23.05.2014.

[21] Abdulkader, A. & Casey, M. 2009. Low cost correction of ocr errors using learning in a
multi-engine environment. In Document Analysis and Recognition, 2009. ICDAR ’09. 10th
International Conference on, 576–580.

[22] Rahman, A. & Fairhurst, M. 2003. Multiple classifier decision combination strategies for
character recognition: A review. Document Analysis and Recognition, 5(4), 166–194.

[23] Russell, J. C. March 12 2004. Report on the meeting of experts on digital preservation.
U.S. Government Printing Office, Washington, DC.

[24] Matei, O., Pop, P., & Vălean, H. 2013. Optical character recognition in real environments
using neural networks and k-nearest neighbor. Applied Intelligence, 39(4), 739–748.

[25] Mao, J. 1998. A case study on bagging, boosting, and basic ensembles of neural net-
works for ocr. In Neural Networks Proceedings, 1998. IEEE World Congress on Computational
Intelligence. The 1998 IEEE International Joint Conference on, volume 3, 1828–1833. IEEE.

[26] William B. Lund, Douglas J. Kennard, E. K. R. 2013. Why multiple document image bina-
rizations improve ocr. Proceedings of the 2nd International Workshop on Historical Document
Imaging and Processing.

[27] Liu, C.-L. & Fujisawa, H. 2005. Classification and learning for character recognition: com-
parison of methods and remaining problems. In Int. Workshop on Neural Networks and
Learning in Document Analysis and Recognition. Citeseer.

56

http://www.nr.no/~eikvil/OCR.pdf
https://www.swgde.org/documents/Current Documents/2013-09-14 SWGDE Error Mitigation Analysis V1-3
https://www.swgde.org/documents/Current Documents/2013-09-14 SWGDE Error Mitigation Analysis V1-3
http://www.law.cornell.edu/wex/daubert_standard
http://www.law.cornell.edu/wex/daubert_standard

Cross-comparison of Digital and Digitized Physical Evidence

[28] Rice, S. V., Nagy, G. L., & Nartker, T. A. 1999. Optical Character Recognition: An Illustrated
Guide to the Frontier. Kluwer Academic Publishers, Norwell, MA, USA.

[29] Mihov, S., Schulz, K., Ringlstetter, C., Dojchinova, V., Nakova, V., Kalpakchieva, K., Gerasi-
mov, O., Gotscharek, A., & Gercke, C. 2005. A corpus for comparative evaluation of ocr
software and postcorrection techniques. In Document Analysis and Recognition, 2005. Pro-
ceedings. Eighth International Conference on, 162–166 Vol. 1.

[30] Ringlstetter, C., Schulz, K., Mihov, S., & Louka, K. 2005. The same is not the same -
postcorrection of alphabet confusion errors in mixed-alphabet ocr recognition. In Document
Analysis and Recognition, 2005. Proceedings. Eighth International Conference on, 406–410
Vol. 1.

[31] Kae, A., Huang, G. B., Doersch, C., & Learned-Miller, E. G. 2010. Improving state-of-the-art
ocr through high-precision document-specific modeling. In CVPR, 1935–1942. IEEE.

[32] Kornblum, J. September 2006. Identifying almost identical files using context triggered
piecewise hashing. Digital Investigation, 3(Supplement).

[33] Mandal, A. K. & Tiwari, M. A. October 2012. Analysis of avalanche effect in plaintext of
des using binary codes. International Journal of Emerging Trends & Technology in Computer
Science, 1(Issue 3).

[34] Guyon, I., Haralick, R. M., Hull, J. J., & Phillips, I. T. 1997. Data sets for ocr and document
image understanding research. Handbook of character recognition and document image
analysis, 779–799.

[35] Phillips, I., Chen, S., & Haralick, R. Oct 1993. Cd-rom document database standard. In Doc-
ument Analysis and Recognition, 1993., Proceedings of the Second International Conference
on, 478–483.

[36] Garfinkel, S., Farrell, P., Roussev, V., & Dinolt, G. 2009. Bringing science to digital forensics
with standardized forensic corpora. digital investigation, 6, S2–S11.

[37] Garfinkel, S., Farrell, P., Roussev, V., & Dinolt, G. 2014. Digital corpora producing the
digital body. http://digitalcorpora.org/. Visited 23.05.2014.

[38] NIST. 2013. The cfreds project. http://www.cfreds.nist.gov/. Visited 23.05.2014.

[39] Forensics Wiki. 2014. Forensic corpora. http://www.forensicswiki.org/wiki/

Forensic_corpora. Visited 23.05.2014.

[40] EDRM. New edrm enron email data set. http://www.edrm.net/resources/data-sets/

edrm-enron-email-data-set. Visited 23.05.14.

[41] Project, C. Enron email dataset. http://www.cs.cmu.edu/~./enron/. Visited 23.05.2014.

[42] Puzyriov, R. 2013. Digital forensics tool testing. 32. Limited access.

57

http://digitalcorpora.org/
http://www.forensicswiki.org/wiki/Forensic_corpora
http://www.forensicswiki.org/wiki/Forensic_corpora
http://www.edrm.net/resources/data-sets/edrm-enron-email-data-set
http://www.edrm.net/resources/data-sets/edrm-enron-email-data-set
http://www.cs.cmu.edu/~./enron/

Cross-comparison of Digital and Digitized Physical Evidence

[43] Masters, H. V. 1928. A study of spelling errors: A critical analysis of spelling errors occurring
in words commonly used in writing and frequently misspelled. The Phi Delta Kappan, 11(2),
pp. 39–41. http://jstor.org Requires registration.

[44] Damerau, F. J. March 1964. A technique for computer detection and correction of spelling
errors. Commun. ACM, 7(3), 171–176.

[45] Ristad, E. S. & Yianilos, P. N. 1998. Learning string-edit distance. Pattern Analysis and
Machine Intelligence, IEEE Transactions on, 20(5), 522–532.

[46] Navarro, G. 1999. A guided tour to approximate string matching. ACM Computing Surveys,
33, 2001.

[47] Levenshtein, V. 1966. Binary Codes Capable of Correcting Deletions, Insertions and Rever-
sals. Soviet Physics Doklady, 10, 707.

[48] Azam, N. & Yao, J. 2012. Comparison of term frequency and document frequency based
feature selection metrics in text categorization. Expert Systems with Applications, 39(5),
4760–4768.

[49] Rayson, P. & Garside, R. 2000. Comparing corpora using frequency profiling. In Proceedings
of the workshop on Comparing Corpora, 1–6. Association for Computational Linguistics.

[50] Singthongchai, J. & Niwattanakul, S. 2013. A method for measuring keywords similarity
by applying jaccard’s, n-gram and vector space. Lecture Notes on Information Theory Vol,
1(4).

[51] Niwattanakul, S., Singthongchai, J., Ekkachai, Naenudorn, Supachanun, & Wanapu. 2013.
Using of jaccard coefficient for keywords similarity. Proceedings of the International Multi-
Conference of Engineers and Computer Scientists, 1.

[52] Mihalcea, R., Corley, C., & Strapparava, C. 2006. Corpus-based and knowledge-based
measures of text semantic similarity. In AAAI, volume 6, 775–780.

[53] Karnik, A., Goswami, S., & Guha, R. 2007. Detecting obfuscated viruses using cosine simi-
larity analysis. In Modelling & Simulation, 2007. AMS’07. First Asia International Conference
on, 165–170. IEEE.

[54] Broder, A. Z. 1997. On the resemblance and containment of documents. In Compression
and Complexity of Sequences 1997. Proceedings, 21–29. IEEE.

[55] Pereira, A. & Ziviani, N. 2003. Syntactic similarity of web documents. In Web Congress,
2003. Proceedings. First Latin American, 194–200. IEEE.

[56] Leedy, P. D. & Ormrod, J. E. 2012. Pratical Research: Planning and Design. Tenth Edition.
Pearson.

[57] Onwuegbuzie, Anthony J., N. L. L. & Collins, K. M. 2012. Qualitative analysis techniques
for the review of the literature. Qualitative Report 17.

58

Cross-comparison of Digital and Digitized Physical Evidence

[58] Breuel, T. 2009. Recent progress on the ocropus ocr system. In Proceedings of the Interna-
tional Workshop on Multilingual OCR, MOCR ’09, 2:1–2:10, New York, NY, USA. ACM.

[59] Breuel, T. M. ocropus the ocropus(tm) open source document analysis and ocr system.
https://code.google.com/p/ocropus/. Visited 23.05.2014.

[60] Trefis Team. 2013. An overview why microsoft’s worth $42. http://www.forbes.com/

sites/greatspeculations/2013/01/09/an-overview-why-microsofts-worth-42/.
Visited 23.05.2014.

[61] Hewlett Packard. Hp scanjet 4800 series photo scanner. http://www.hp.com/ctg/Manual/
c00437630.pdf. Visited 23.05.2014.

[62] The Apache Software Foundation. Apache pdfbox - a java pdf library. http://pdfbox.

apache.org/. Visited 23.05.2014.

[63] Oracle. Class bufferedimage. http://docs.oracle.com/javase/7/docs/api/java/awt/
image/BufferedImage.html. Visited 23.05.2014.

[64] Santos, R. How do i compare two images to see if they are equal? http://www.lac.inpe.

br/JIPCookbook/6050-howto-compareimages.jsp. Visited 23.05.2014.

[65] Adobe. Batch ocr using acrobat professional. http://blogs.adobe.com/acrolaw/2005/

10/batch_ocr_using_1/. Visited 23.05.2014.

[66] Adobe. Adobe livecycle pdf generator es4. http://www.adobe.com/content/dam/Adobe/
en/products/livecycle/pdfs/pdf_generator.pdf. Visited 23.05.2014.

[67] Cornwell University Law School. Rule 1002. requirement of the original. http://www.

law.cornell.edu/rules/fre/rule_1002. Visited 19.05.14.

[68] Cornwell University Law School. Rule 1001. definitions that apply to this article. http:

//www.law.cornell.edu/rules/fre/rule_1001. Visited 19.05.14.

[69] Cornwell University Law School. Rule 1003. admissibility of duplicates. http://www.law.
cornell.edu/rules/fre/rule_1003. Visited 19.05.14.

[70] Google Groups. ocropus in windows. https://groups.google.com/forum/#!topic/

ocropus/HJ_kEsxHue0. Visited 21.05.14.

59

https://code.google.com/p/ocropus/
http://www.forbes.com/sites/greatspeculations/2013/01/09/an-overview-why-microsofts-worth-42/
http://www.forbes.com/sites/greatspeculations/2013/01/09/an-overview-why-microsofts-worth-42/
http://www.hp.com/ctg/Manual/c00437630.pdf
http://www.hp.com/ctg/Manual/c00437630.pdf
http://pdfbox.apache.org/
http://pdfbox.apache.org/
http://docs.oracle.com/javase/7/docs/api/java/awt/image/BufferedImage.html
http://docs.oracle.com/javase/7/docs/api/java/awt/image/BufferedImage.html
http://www.lac.inpe.br/JIPCookbook/6050-howto-compareimages.jsp
http://www.lac.inpe.br/JIPCookbook/6050-howto-compareimages.jsp
http://blogs.adobe.com/acrolaw/2005/10/batch_ocr_using_1/
http://blogs.adobe.com/acrolaw/2005/10/batch_ocr_using_1/
http://www.adobe.com/content/dam/Adobe/en/products/livecycle/pdfs/pdf_generator.pdf
http://www.adobe.com/content/dam/Adobe/en/products/livecycle/pdfs/pdf_generator.pdf
http://www.law.cornell.edu/rules/fre/rule_1002
http://www.law.cornell.edu/rules/fre/rule_1002
http://www.law.cornell.edu/rules/fre/rule_1001
http://www.law.cornell.edu/rules/fre/rule_1001
http://www.law.cornell.edu/rules/fre/rule_1003
http://www.law.cornell.edu/rules/fre/rule_1003
https://groups.google.com/forum/#!topic/ocropus/HJ_kEsxHue0
https://groups.google.com/forum/#!topic/ocropus/HJ_kEsxHue0

Cross-comparison of Digital and Digitized Physical Evidence

A Appendix

A.1 Application

When the application is executed the start screen in Figure 32 is displayed. And it is in here all
the operations takes place. To start the process of document linking, push "Choose folder" button
as shown in 33, browse to the folder containing your original documents and hit ok, see Figure
34. Next we have the option to screen the documents for keywords as shown in Figure 35, this
was not done for the experiments. The next mandatory step is to choose a picture 36, or several
pictures 37, remember to check of the multiple pictures box. For the whole process to start, push
the execute button and wait for the results 38. When the results are calculated you have the
ability to sort the results by using the buttons in the middle, and then use the arrow buttons to
browse the different documents and their score within that method.

60

Cross-comparison of Digital and Digitized Physical Evidence

Figure 32: The start screen for the application.

61

Cross-comparison of Digital and Digitized Physical Evidence

Figure 33: Choosing document folder.

62

Cross-comparison of Digital and Digitized Physical Evidence

Figure 34: Choosing document folder.

63

Cross-comparison of Digital and Digitized Physical Evidence

Figure 35: Optional keyword sort, with feedback when sorting is done.

64

Cross-comparison of Digital and Digitized Physical Evidence

Figure 36: Choosing a single picture for matching.

65

Cross-comparison of Digital and Digitized Physical Evidence

Figure 37: Choosing multiple pictures for matching.

66

Cross-comparison of Digital and Digitized Physical Evidence

Figure 38: The result after execution With the possibility to sort on hits for each methods, and the ability
to browse through all the documents. The original text is displayed on the left hand side, while the OCR
text is displayed on the right hand side. At the bottom of the screen the filename and matched document is
shown, together with the scores for all the methods

67

Cross-comparison of Digital and Digitized Physical Evidence

A.2 Source code

The source code of the application is divided into four classes;

• OCRMethods.java

• OCRUI.java

• FileInfo.java

• Testrun.java

OCRMethods.java is the class which contains all the methods for calculations, file handling, con-
version of documents, text manipulation, and execution. See A.2.1 for detailed code.

FileInfo.java is the class for the object that contains all the information about the different docu-
ments. It contains the path to the document, the name of the converted picture and which picture
it is compare to which yielded the highest match. See A.2.2 for detailed code.

OCRUI.java contains the automatically generated code by Netbeans from the drag and drop cre-
ation of the GUI, and is not really that interesting. However, the file do contain some snippets
of code, for instances executing of methods when a button is pushed. See A.2.3 for detailed code.

Testrun.java contains a lot of test code, to debug faulty methods and for an easier access to meth-
ods, without having to run the whole application. It contains the same methods as OCRMeth-
ods.java

The application utilizes many different libraries for file conversion etc, and to be able to run this
application these need to be installed as well. See Figure 39 for the full list of libraries used.

68

Cross-comparison of Digital and Digitized Physical Evidence

Figure 39: All the libraries used in the application.

69

Cross-comparison of Digital and Digitized Physical Evidence

A.2.1 OCRMethods.java

Listing A.1: Library imports used in OCRMethods.java

import j ava . awt . Color ;
import java . awt . image . BufferedImage ;
import java . awt . image . RenderedImage ;
import java . awt . image . renderab le . ParameterBlock ;
import java . io . BufferedReader ;
import java . io . Buf fe redWri te r ;
import java . io . F i l e ;
import java . io . F i le InputSt ream ;
import java . io . F i leReader ;
import java . io . F i l e W r i t e r ;
import java . io . IOException ;
import java . io . InputStreamReader ;
import java . u t i l . A r r a y L i s t ;
import java . u t i l . C o l l e c t i o n s ;
import java . u t i l . HashMap ;
import java . u t i l . HashSet ;
import java . u t i l . Set ;
import java . u t i l . regex . Matcher ;
import java . u t i l . regex . Pa t te rn ;
import javax . imageio . ImageIO ;
import javax . media . j a i . I n t e r p o l a t i o n N e a r e s t ;
import javax . media . j a i . JAI ;
import javax . media . j a i . i t e r a t o r . RandomIter ;
import javax . media . j a i . i t e r a t o r . RandomIterFactory ;
import javax . swing . JF i l eChooser ;
import org . apache . pdfbox . pdmodel . PDDocument ;
import org . apache . pdfbox . u t i l . PDFImageWriter ;
import org . apache . pdfbox . u t i l . PDFTextStr ipper ;
import org . apache . poi . hwpf . HWPFDocument ;
import org . apache . poi . hwpf . e x t r a c t o r . WordExtractor ;
import org . apache . poi . xwpf . e x t r a c t o r . XWPFWordExtractor ;
import org . apache . poi . xwpf . usermodel . XWPFDocument ;
import org . apache . poi . openxml4j . opc . OPCPackage ;
import org . apache . poi . x s s f . e x t r a c t o r . XSSFExce lExtrac tor ;
import org . apache . poi . x s s f . usermodel . XSSFWorkbook ;

Listing A.2: Global variables in OCRMethods.java

p r i v a t e i n t counter = 1;
p r i v a t e Color [] [] s i gna tu re ;
// The base s i z e of the images .
p r i v a t e s t a t i c f i n a l i n t baseS ize = 300;

70

Cross-comparison of Digital and Digitized Physical Evidence

Listing A.3: Converter from *.PDF to *.png files in OCRMethods.java

pub l i c S t r i ng convertPDFtoImage (S t r i ng f i l e P a t h){
S t r i ng IMAGE_FORMAT = " jpg " ;
i n t DEFAULT_IMAGE_RESOLUTION = 300;
S t r i ng newFilePath = " " ;
S t r i ng ou tpu tP re f i x = " " ;
i f (counter < 10){

ou tpu tP re f i x = "/ mnt/ hgfs / App l i ca t i on /Data/ docs / converted /0" + counter ;
newFilePath = "/ mnt/ hgfs / App l i c a t i on /Data/ docs / converted /0" + counter
+ " 1 . jpg " ;
counter++;

} e l s e {
ou tpu tP re f i x = "/ mnt/ hgfs / App l i ca t i on /Data/ docs / converted / " + counter ;
newFilePath = "/ mnt/ hgfs / App l i c a t i on /Data/ docs / converted / " + counter
+ " 1 . jpg " ;
counter++;

}

PDDocument document = n u l l ;
t r y {

document = PDDocument . load (f i l e P a t h) ;
} catch (Except ion e){

System . out . p r i n t l n (" F a i l u r e in convertPDFtoImage : " + e) ;
}

PDFImageWriter imageWriter = new PDFImageWriter () ;
t r y {

// Replaced In t ege r .MAX_VALUE with the second 1 to
// only have the code conver t the f i r s t page .
boolean succes s = imageWriter . writeImage (document , IMAGE_FORMAT, nul l , 1 , 1 , ou tputPre f i x , BufferedImage . TYPE_BYTE_BINARY , DEFAULT_IMAGE_RESOLUTION) ;
document . c l o s e () ;
i f (! succe s s) {

// System . e r r . p r i n t l n (" Er ror : no wr i t e r found f o r image format ’ "
//+ IMAGE_FORMAT + " ’ ") ;
System . e x i t (1) ;

}
} catch (Except ion e){

System . out . p r i n t l n (" F a i l u r e in imageWriter : " + e) ;
}

re turn newFilePath ;
}

71

Cross-comparison of Digital and Digitized Physical Evidence

Listing A.4: OCR conversion code

pub l i c S t r i ng conver tP i c tureToText (Ar rayL i s t <Str ing> p i c t u r e F i l e P a t h s){
S t r i ng [] input = new St r ing [3] ;
input [0] = "/ bin /bash " ;
input [1] = "−c " ;
input [2] = " ocropus−nlb in " ;
f o r (i n t i = 0; i < p i c t u r e F i l e P a t h s . s i z e () ; i++){

input [2] += p i c t u r e F i l e P a t h s . get (i) . t o S t r i n g () + " " ;
}

input [2] += "−o temp " ;

t r y {
Run(new St r ing [] { " / bin /bash " , "−c " , " rm −r f temp " }) ;

} catch (Except ion e){
System . out . p r i n t l n (" Removing f o l d e r : " + e) ;

}
Run(input) ;
Run(new St r ing [] { " / bin /bash " , "−c " , " ocropus−gpageseg ’ temp /???? . bin . png ’ "
+ " −−minscale 00 "}) ;
S t r i ng output = Run(new St r ing [] { " / bin /bash " , "−c " , " ocropus−rpred "
+ " ’ temp /????/?????? . bin . png ’ " }) ;
re turn output ;

}

72

Cross-comparison of Digital and Digitized Physical Evidence

Listing A.5: Code to run shell commands in Bash

pub l i c S t r i ng Run(S t r ing [] cmd) {
S t r i n g B u f f e r theRun = n u l l ;
t r y {

System . out . p r i n t l n ("Command passed : " + cmd[2]) ;
Process process = Runtime . getRuntime () . exec (cmd) ;
BufferedReader reader = new BufferedReader
(new InputStreamReader (process . getInputStream ())) ;
i n t read ;
char [] b u f f e r = new char [4096];
S t r i n g B u f f e r output = new S t r i n g B u f f e r () ;
while ((read = reader . read (bu f f e r)) > 0) {

theRun = output . append (buf fer , 0 , read) ;
}
reader . c l o s e () ;
process . waitFor () ;

} catch (IOException | In te r rup tedExcep t ion e) {
System . out . p r i n t l n (" F a i l u r e in Run () : " + e) ;

}

i f (theRun . t o S t r i n g () == n u l l){
re turn " The s t r i n g i s empty " ;

}
re turn theRun . t o S t r i n g () . t r im () ;

}

Listing A.6: Directory chooser for the document folder

pub l i c S t r i ng d i rec toryChooser (){
JF i l eChooser chooser= new JF i leChooser () ;
chooser . se tF i l eSe lec t ionMode (JF i leChooser . DIRECTORIES_ONLY) ;
i n t choice = chooser . showOpenDialog (nu l l) ;
i f (cho ice != JF i leChooser . APPROVE_OPTION) re turn n u l l ;
F i l e chosenF i l e = chooser . g e t S e l e c t e d F i l e () ;
re turn chosenF i l e . g e t A b s o l u t e F i l e () . t o S t r i n g () ;

}

73

Cross-comparison of Digital and Digitized Physical Evidence

Listing A.7: Method for sorting documents based on keyword

// This methods s o r t documemts based on a keyword . I t a l so adds a l l the
// needed informat ion about each document in to the document o b j e c t .

pub l i c Ar rayL i s t <F i l e I n f o > s o r t (Ar rayL i s t <F i l e > myFiles , S t r i ng keyword){
Ar rayL i s t <F i l e I n f o > myFi le In fo = new A r r a y L i s t () ;
t r y {

fo r (F i l e f : myFi les){
S t r i ng f i l e p a t h = f . getAbso lutePath () ;
S t r i ng t e x t = " " ;

i f (keyword . equals IgnoreCase (" Enter keyword ")) {
S t r i ng imageName = convertPDFtoImage (f i l e p a t h) ;

//Comment t h i s out when using image−to−image comparison
t e x t = documentReader (f i l e p a t h) ;
S t r i ng imageName = convertPDFtoImage (f i l e p a t h) ;

/∗ This block enables image−to−image comparison with ocr
Ar rayL i s t <Str ing> orgimage = new ArrayL i s t <>();
orgimage . add(imageName) ;
t e x t = Regex (conver tP i c tureToText (orgimage)) ;
∗/

myFi le In fo . add(new F i l e I n f o (tex t , f i l e p a t h ,
f . getName () , imageName)) ;

} e l s e {
t e x t = documentReader (f i l e p a t h) ;
Pa t te rn . compile (Pa t te rn . quote (keyword) ,
Pa t te rn . CASE_INSENSITIVE) . matcher (t e x t) . f i nd () ;
myFi le In fo . add(new F i l e I n f o (tex t , f i l e p a t h , f . getName () ,
convertPDFtoImage (f i l e p a t h))) ;

}
}

} catch (Except ion e){
System . out . p r i n t l n (" F a i l u r e in s o r t : " + e) ;

}
re turn myFi le In fo ;

}

74

Cross-comparison of Digital and Digitized Physical Evidence

Listing A.8: Method for choosing picturefiles

pub l i c Ar rayL i s t <Str ing> f i l eC h o o s e r (){
JF i l eChooser chooser= new JF i leChooser () ;
chooser . s e tMu l t iSe l e c t i onEnab led (t rue) ;

i n t choice = chooser . showOpenDialog (nu l l) ;
i f (cho ice != JF i leChooser . APPROVE_OPTION) re turn n u l l ;
F i l e [] f i l e s = chooser . g e t S e l e c t e d F i l e s () ;
A r rayL i s t <Str ing> f i l e P a t h s = new ArrayL i s t <Str ing >();
f o r (F i l e f i l e : f i l e s) {

f i l e P a t h s . add(f i l e . g e t A b s o l u t e F i l e () . t o S t r i n g ()) ;
}
re turn f i l e P a t h s ;

}

Listing A.9: Sorts the FileInfo objects based on the comparison method

pub l i c A r r a y L i s t s o r t F i l e s (Ar rayL i s t <F i l e I n f o > dataArray){
C o l l e c t i o n s . s o r t (dataArray) ;
re turn dataArray ;

}

Listing A.10: Method for calling the correct text extractor

pub l i c S t r i ng documentReader (S t r i ng f i l e P a t h){
S t r i ng t e x t = " " ;
t r y {

i f (f i l e P a t h . endsWith (" . pdf ")) {
t e x t = readPDF (f i l e P a t h) ;

} e l s e i f (f i l e P a t h . endsWith (" . doc ")) {
t e x t = readDOC(f i l e P a t h) ;

} e l s e i f (f i l e P a t h . endsWith (" . docx ")) {
t e x t = readDOCX(f i l e P a t h) ;

} e l s e i f (f i l e P a t h . endsWith (" . x l s x ")) {
t e x t = readXLSX (f i l e P a t h) ;

} e l s e {
t e x t = readText (f i l e P a t h) ;

}
} catch (Except ion e) {

System . out . p r i n t l n (" Fau l t in documentReader : " + e) ;
}
re turn t e x t ;

}

75

Cross-comparison of Digital and Digitized Physical Evidence

Listing A.11: Method for reading text files

pub l i c S t r i ng readText (S t r i ng f i l e P a t h) throws Except ion {
BufferedReader br = n u l l ;
S t r i ng every th ing = " " ;
t r y {

br = new BufferedReader (new Fi leReader (f i l e P a t h)) ;
S t r i n g B u i l d e r sb = new S t r i n g B u i l d e r () ;
S t r i ng l i n e = br . readLine () ;

while (l i n e != n u l l) {
sb . append (l i n e) ;
sb . append (" \ n ") ;
l i n e = br . readLine () ;

}
every th ing = sb . t o S t r i n g () ;

} catch (IOException e){
System . out . p r i n t l n (" F a i l u r e in readText : " + e) ;

}
f i n a l l y {

br . c l o s e () ;
re turn every th ing ;

}
}

Listing A.12: Method for extracting text from DOC files

pub l i c S t r i ng readDOC(S t r ing f i l e P a t h){
F i l e f i l e = n u l l ;
WordExtractor e x t r a c t o r = n u l l ;
S t r i ng t e x t = " " ;
t r y {

f i l e = new F i l e (f i l e P a t h) ;
F i le InputSt ream f i s = new Fi le InputSt ream (f i l e . getAbso lutePath ()) ;
HWPFDocument document = new HWPFDocument(f i s) ;
e x t r a c t o r = new WordExtractor (document) ;
S t r i ng [] f i l e D a t a = e x t r a c t o r . getParagraphText () ;
f o r (S t r i ng f i l e D a t a 1 : f i l e D a t a) {

i f (f i l e D a t a 1 != n u l l) {
t e x t += f i l e D a t a 1 ;

}
}
}
catch (Except ion e){

System . out . p r i n t l n (" F a i l u r e in readDOC : " + e) ;
}
re turn t e x t ;

}

76

Cross-comparison of Digital and Digitized Physical Evidence

Listing A.13: Method for extracting text from PDF files

pub l i c S t r i ng readPDF (S t r ing f i l e P a t h){
PDDocument doc = n u l l ;
S t r i ng t e x t = " " ;
t r y {

doc = PDDocument . load (f i l e P a t h) ;
PDFTextStr ipper myStripper = new PDFTextStr ipper () ;
t e x t = myStripper . getText (doc) ;

} catch (Except ion e) {
System . out . p r i n t l n (e) ;

} f i n a l l y {
i f (doc != n u l l){

t r y {
doc . c l o s e () ;

} catch (Except ion e){
System . out . p r i n t l n (" F a i l u r e in readPDF : " + e) ;

}
}

}
re turn t e x t ;

}

Listing A.14: Method for extracting text from DOCX files

pub l i c S t r i ng readDOCX(S t r ing f i l e P a t h){
XWPFDocument docx = n u l l ;
S t r i ng t e x t = " " ;

t r y {
docx = new XWPFDocument(OPCPackage . openOrCreate (new F i l e (f i l e P a t h))) ;

} catch (Except ion e){
System . out . p r i n t l n (" F a i l u r e in readDOCX " + e) ;

}
XWPFWordExtractor wx = new XWPFWordExtractor (docx) ;
t e x t = wx . getText () ;

re turn t e x t ;
}

77

Cross-comparison of Digital and Digitized Physical Evidence

Listing A.15: Method for extracting text from XLSX files

pub l i c S t r i ng readXLSX (S t r ing f i l e P a t h){
XSSFWorkbook x l s x = n u l l ;
S t r i ng t e x t = " " ;
t r y {

x l s x = new XSSFWorkbook(OPCPackage . openOrCreate (new F i l e (f i l e P a t h))) ;
XSSFExce lExtrac tor ex = new XSSFExce lExtrac tor (x l s x) ;
t e x t = ex . getText () ;

} catch (Except ion e){
System . out . p r i n t l n (" F a i l u r e in readXLSX " + e) ;

}
re turn t e x t ;

}

Listing A.16: Levenshtein Distance calculation

//Code modif ied from ht tp :// s tackover f low . com/ ques t ions /
955110/ s i m i l a r i t y −s t r i ng −comparison−in−j ava
pub l i c i n t computeLevenshteinDistance (S t r i ng s1 , S t r i ng s2){

//Remove/add comment to enable / d i s a b l e s t r i n g s a n i t a z i o n
// s1 = s1 . toLowerCase () ;
// s2 = s2 . toLowerCase () ;
s1 = s t r i n g C l e a n e r (s1 . toLowerCase ()) ;
s2 = s t r i n g C l e a n e r (s2 . toLowerCase ()) ;

i n t [] c o s t s = new i n t [s2 . length () + 1] ;
f o r (i n t i =0; i <= s1 . length () ; i++){

i n t l a s t V a l u e = i ;
f o r (i n t j = 0; j <= s2 . length () ; j++){

i f (i == 0){
c o s t s [j] = j ;

} e l s e {
i f (j > 0){

i n t newValue = c o s t s [j −1];
i f (s1 . charAt (i −1) != s2 . charAt (j −1)){

//Minimun cos t of the three opera t ions
newValue = Math . min(Math . min(newValue ,
l a s t V a l u e) , c o s t s [j]) + 1;
c o s t s [j −1] = l a s t V a l u e ;
l a s t V a l u e = newValue ;

}
}

}
}
i f (i > 0){

c o s t s [s2 . length ()] = l a s t V a l u e ;
}

}
re turn c o s t s [s2 . length ()] ;

}

78

Cross-comparison of Digital and Digitized Physical Evidence

Listing A.17: Methods for creating a HashMap

p r i v a t e HashMap<Str ing , In teger> frequencyMap (S t r i ng input){
HashMap<Str ing , In teger> map = new HashMap<>();
S t r i ng [] s p l i t = input . s p l i t (" ") ;
f o r (S t r i ng s : s p l i t) {

i f (!map . conta insKey (s . t r im ())) {
map . put (s . t r im () , new In tege r (" 1 ")) ;

} e l s e {
map . put (s . t r im () , map . get (s . t r im ()) + new In tege r (1)) ;

}
}
re turn map;

}

Listing A.18: Method for string sanitazion

p r i v a t e S t r i ng s t r i n g C l e a n e r (S t r i ng input){
//Removes every th ing tha t i s not alphanumeric and spaces
S t r i ng newstr = input . r e p l a c e A l l ("[^A−Za−z0−9] " , " ") ;
//Removes s i n g l e d i g i t s
newstr= newstr . r e p l a c e A l l ("(? <!\\S)\\d (? !\\ S) " , " ") ;
//Removes s i n g l e l e t t e r s
newstr= newstr . r e p l a c e A l l ("(? <!\\S)\\w(? !\\ S) " , " ") ;
// Replaces double space with a s i n g l e space
newstr = newstr . r e p l a c e A l l (" \ \ s {2 ,} " , " ") ;
re turn newstr ;

}

Listing A.19: Method for removing excess output from OCRopus

pub l i c S t r i ng Regex (S t r ing input){
t r y {

S t r i ng regex01 = " (. . . .) (/) (\ \ d∗) (/) (\\ d ∗ . ∗) (\ \ .) (. . .)
+ " (\ \ .) (. . .) (\ \ s) (.) (\ \ s) " ;
Pa t te rn p = Pat te rn . compile (" (. . . .) (/) (\ \ d∗) (/) (\\ d ∗ .∗)
+ " (\ \ .) (. . .) (\ \ .) (. . .) (\ \ s) (.) (\ \ s) ") ;
Matcher m = p . matcher (input) ;
//The i f s tatement below must be here f o r the s a n i t a z i o n to work .
// Also used f o r bug f i x ing .
i f (m. f ind ()) {

// System . out . p r i n t l n ("MATCH FOUND") ;
// System . out . p r i n t l n (m. group (0)) ;

}

input = input . s u b s t r i n g (input . indexOf (m. group ())) ;
input = input . r e p l a c e A l l (regex01 , " ") ;
} catch (Except ion e){

System . out . p r i n t l n (" F a i l u r e in Regex : " + e) ;
}
re turn input ;

}

79

Cross-comparison of Digital and Digitized Physical Evidence

Listing A.20: Method for calculating word frequency

pub l i c i n t countWordFrequency (S t r i ng inputOrg , S t r i ng inputOcr){
S t r i ng [] s t r i n g S p l i t O r g = inputOrg . toLowerCase () . s p l i t (" ") ;
S t r i ng [] s t r i n g S p l i t O c r = inputOcr . toLowerCase () . s p l i t (" ") ;

A r rayL i s t <Str ing> cleanedOrgArray = new ArrayL i s t <>();
Ar rayL i s t <Str ing> cleanedOcrArray = new ArrayL i s t <>();

S t r i ng c leanedStr ingOrg = " " ;
S t r i ng c leanedStr ingOcr = " " ;

// Adding the s p l i t s t r i n g to a s a n i t i z e d s t r i n g array ,
//and c r e a t i n g a new s a n i t i z e d s t r i n g
f o r (S t r i ng s : s t r i n g S p l i t O r g){

i f (! s t r i n g C l e a n e r (s) . equals IgnoreCase (" ") ||
! s t r i n g C l e a n e r (s) . equals IgnoreCase (" ")) {

cleanedOrgArray . add(s) ;
c leanedStr ingOrg += s . tr im () + " " ;

}
}

f o r (S t r i ng s : s t r i n g S p l i t O c r){
i f (! s t r i n g C l e a n e r (s) . equals IgnoreCase (" ") ||
! s t r i n g C l e a n e r (s) . equals IgnoreCase (" ")) {

cleanedOcrArray . add(s) ;
c leanedStr ingOcr += s . tr im () + " " ;

}
}

//Add/remove comments to enable / d i s a b l e s t r i n g s a n i t a z i o n
HashMap org = frequencyMap (c leanedStr ingOrg) ;
HashMap ocr = frequencyMap (c leanedStr ingOcr) ;
//HashMap org = frequencyMap (inputOrg . toLowerCase ()) ;
//HashMap ocr = frequencyMap (inputOcr . toLowerCase ()) ;

// Copying the miss ing keys from each s e t in to the other s e t
// with a value of 0 f o r both s e t s .

f o r (i n t i = 0; i < cleanedOrgArray . s i z e () ; i++){
i f (! ocr . conta insKey (cleanedOrgArray . get (i) . t r im ())) {

ocr . put (cleanedOrgArray . get (i) . t r im () , 0) ;
}

}

f o r (i n t i = 0; i < cleanedOcrArray . s i z e () ; i++){
i f (! org . conta insKey (cleanedOcrArray . get (i) . t r im ())) {

org . put (cleanedOcrArray . get (i) . t r im () , 0) ;
}

}

80

Cross-comparison of Digital and Digitized Physical Evidence

i n t changes = 0;

// Ca l c u l a t i n g d i f f e r e n c e
f o r (Object o : org . keySet ()){

changes += Math . abs ((i n t) org . get (o) − (i n t) ocr . get (o)) ;
}
re turn changes ;

}

81

Cross-comparison of Digital and Digitized Physical Evidence

Listing A.21: Method for calculating cosine similarity

//Code modif ied from ht tp s : // gi thub . com/ Simmetrics / s immetr ics / blob / master /
s r c /uk/ ac / she f / wit / s immetr ics / s i m i l a r i t y m e t r i c s / C o s i n e S i m i l a r i t y . j ava

pub l i c f l o a t g e t C o s i n e S i m i l a r i t y (S t r i ng inputOrg , S t r i ng inputOcr) {

//Remove/add comment to enable / d i s a b l e s t r i n g s a n i t a z i o n /
/ S t r i ng [] s t r i n g S p l i t O r g = inputOrg . toLowerCase () . s p l i t (" ") ;
// S t r ing [] s t r i n g S p l i t O c r = inputOcr . toLowerCase () . s p l i t (" ") ;
S t r i ng [] s t r i n g S p l i t O r g = s t r i n g C l e a n e r (inputOrg . toLowerCase ()) . s p l i t (" ") ;
S t r i ng [] s t r i n g S p l i t O c r = s t r i n g C l e a n e r (inputOcr . toLowerCase ()) . s p l i t (" ") ;

A r rayL i s t <Str ing> cleanedOrgArray = new ArrayL i s t <>();
Ar rayL i s t <Str ing> cleanedOcrArray = new ArrayL i s t <>();

f o r (S t r i ng s : s t r i n g S p l i t O r g){
i f (! s t r i n g C l e a n e r (s) . equals IgnoreCase (" ") ||
! s t r i n g C l e a n e r (s) . equals IgnoreCase (" ")) {

i f (s . l ength () != 1){
cleanedOrgArray . add(s) ;

}
}

}
f o r (S t r i ng s : s t r i n g S p l i t O c r){

i f (! s t r i n g C l e a n e r (s) . equals IgnoreCase (" ") ||
! s t r i n g C l e a n e r (s) . equals IgnoreCase (" ")) {

i f (s . l ength () != 1){
cleanedOcrArray . add(s) ;

}
}

}

f i n a l Set<Str ing> al lTokens = new HashSet <>();
a l lTokens . addAl l (cleanedOrgArray) ;
f i n a l i n t te rmsInSt r ing1 = al lTokens . s i z e () ;
f i n a l Set<Str ing> secondStr ingTokens = new HashSet <>();
secondStr ingTokens . addAl l (c leanedOcrArray) ;
f i n a l i n t te rmsInSt r ing2 = secondStr ingTokens . s i z e () ;

// Combining s e t s
a l lTokens . addAl l (secondStr ingTokens) ;
f i n a l i n t commonTerms =
(termsInSt r ing1 + termsInSt r ing2) − a l lTokens . s i z e () ;

re turn (f l o a t) (commonTerms) / (f l o a t) (Math . pow((f l o a t) termsInStr ing1 ,
0.5 f) ∗ Math . pow((f l o a t) termsInStr ing2 , 0.5 f)) ;

}

82

Cross-comparison of Digital and Digitized Physical Evidence

Listing A.22: Method for making w-shingles

//Code modif ied from ht tp s : // gi thub . com/commoncrawl/commoncrawl−crawler /
blob / master / s r c / org /commoncrawl/ u t i l / Shingle . j ava

pub l i c Set<Str ing> ge tSh ing le s (S t r i ng l i n e) {
i n t CHAR_GRAM_LENGTH = 3;
//Add/remove comments to enable / d i s a b l e s t r i n g s a n i t a z i o n
// S t r ing c lean = l i n e ;
S t r i ng c lean = s t r i n g C l e a n e r (l i n e) ;
HashSet<Str ing> s h i n g l e s = new HashSet <>();
f o r (i n t i = 0; i < clean . length () − CHAR_GRAM_LENGTH + 1; i++) {

// E x t r a c t the ngrams .
S t r i ng sh ing l e = clean . t o S t r i n g () . s u b s t r i n g (i , i +
CHAR_GRAM_LENGTH) . toLowerCase () ;

s h i n g l e s . add(sh ing l e) ;
}
re turn s h i n g l e s ;

}

Listing A.23: Method for calcualting the Jaccard Index used by W-shingles

pub l i c f l o a t getJaccardIndex (Set<Str ing> shinglesA , Set<Str ing> sh ing le sB) {
Set<Str ing> i n t e r s e c t i o n = new HashSet<>(sh ing lesA) ;
i n t e r s e c t i o n . r e t a i n A l l (sh ing le sB) ;
Set<Str ing> union = new HashSet<>(sh ing lesA) ;
union . addAl l (sh ing le sB) ;

f l o a t neumerator = i n t e r s e c t i o n . s i z e () ;
f l o a t denominator = union . s i z e () ;
re turn neumerator / denominator ;

}

Listing A.24: Method for calculating image signature

//Code modif ied from ht tp ://www. l a c . inpe . br / JIPCookbook/
6050−howto−compareimages . j s p

p r i v a t e Color [] [] ca l cS i gna tu re (RenderedImage i){
// Get memory f o r the s i gna tu re .
Color [] [] s i g = new Color [5] [5] ;
// For each of the 25 s i gna tu re va lues average the p i x e l s around i t .
// Note tha t the coord inate of the c e n t r a l p i x e l i s in propor t ions .
f l o a t [] prop = new f l o a t []
{1 f / 10f , 3 f / 10f , 5 f / 10f , 7 f / 10f , 9 f / 10 f } ;
f o r (i n t x = 0; x < 5; x++){

fo r (i n t y = 0; y < 5; y++){
s i g [x][y] = averageAround (i , prop [x] , prop [y]) ;

}
}
re turn s i g ;

}

83

Cross-comparison of Digital and Digitized Physical Evidence

Listing A.25: Method for averaging the pixel values around a central point and return the average as an
instance of Color. The point coordinates are proportional to the image.

p r i v a t e Color averageAround (RenderedImage i , double px , double py){
// Get an i t e r a t o r f o r the image .
RandomIter i t e r a t o r = RandomIterFactory . c r ea t e (i , n u l l) ;
// Get memory f o r a p i x e l and f o r the accumulator .
double [] p i x e l = new double [3] ;
double [] accum = new double [3] ;
// The s i z e of the sampling area .
i n t sampleSize = 15;
i n t numPixels = 0;
// Sample the p i x e l s .
f o r (double x = px ∗ baseSize − sampleSize ; x < px ∗

baseSize + sampleSize ; x++){
fo r (double y = py ∗ baseSize − sampleSize ; y < py ∗

baseSize + sampleSize ; y++){
i t e r a t o r . g e t P i x e l ((i n t) x , (i n t) y , p i x e l) ;
accum[0] += p i x e l [0] ;
accum[1] += p i x e l [1] ;
accum[2] += p i x e l [2] ;
p i x e l [2]) . getRGB ()) ;
numPixels++;

}
}
// Average the accumulated va lues .
accum[0] /= numPixels ;
accum[1] /= numPixels ;
accum[2] /= numPixels ;
re turn new Color ((i n t) accum [0] , (i n t) accum [1] , (i n t) accum [2]) ;

}

84

Cross-comparison of Digital and Digitized Physical Evidence

Listing A.26: Method for calculating the distance between the signatures of an image and the reference one.
The signatures for the image passed as the parameter are calculated inside the method.

p r i v a t e double ca l cD i s t ance (RenderedImage other){
// Ca l cu l a t e the s i gna tu re f o r tha t image .
Color [] [] s igOther = ca l cS igna tu re (other) ;
// There are s e v e r a l ways to c a l c u l a t e d i s t a n c e s between two vec tors ,
// we w i l l c a l c u l a t e the sum of the d i s t a n c e s between the RGB values of
// p i x e l s in the same p o s i t i o n s .
double d i s t = 0;
f o r (i n t x = 0; x < 5; x++){

fo r (i n t y = 0; y < 5; y++){
i n t r1 = s igna tu re [x][y] . getRed () ;
i n t g1 = s igna tu re [x][y] . getGreen () ;
i n t b1 = s igna tu re [x][y] . getBlue () ;
i n t r2 = s igOther [x][y] . getRed () ;
i n t g2 = sigOther [x][y] . getGreen () ;
i n t b2 = sigOther [x][y] . getBlue () ;
double tempDist = Math . s q r t ((r1 − r2) ∗ (r1 − r2) + (g1 − g2)

∗ (g1 − g2) + (b1 − b2) ∗ (b1 − b2)) ;
d i s t += tempDist ;

}
}
re turn d i s t ;

}

Listing A.27: Method for calculating the similarity between two pictures

pub l i c double ca l cu la te ImageDi s tance (S t r i ng o r i g i n a l F i l e P a t h ,
S t r i ng p i c t u r e F i l e P a t h){

double d i s t ance = 0;
t r y {

RenderedImage r e f = r e s c a l e (ImageIO . read (new F i l e (p i c t u r e F i l e P a t h))) ;
// Ca l cu l a t e the s i gna tu re vec to r f o r the re f e rence .
s i gna tu re = ca l cS igna tu re (r e f) ;

// F i l ep a th to the converted image from the o r i g i n a l document
F i l e myOrg = new F i l e (o r i g i n a l F i l e P a t h) ;
// For each image , c a l c u l a t e i t s s i gna tu re and i t s d i s t ance from the
// re f e rence s i gna tu re .
RenderedImage ro ther = r e s c a l e (ImageIO . read (myOrg)) ;
d i s t ance = ca l cD i s t ance (ro ther) ;

} catch (Except ion e){
System . out . p r i n t l n (" F a i l u r e in c a l c u l a t e D i s t a n c e : " +e) ;

}
re turn d i s t ance ;

}

85

Cross-comparison of Digital and Digitized Physical Evidence

Listing A.28: Method for rescaling images to 300x300

p r i v a t e RenderedImage r e s c a l e (RenderedImage i){
f l o a t scaleW = ((f l o a t) baseS ize) / i . getWidth () ;
f l o a t scaleH = ((f l o a t) baseS ize) / i . getHeight () ;
// Sca le s the o r i g i n a l image
ParameterBlock pb = new ParameterBlock () ;
pb . addSource (i) ;
pb . add(scaleW) ;
pb . add(scaleH) ;
pb . add (0.0 F) ;
pb . add (0.0 F) ;
pb . add(new I n t e r p o l a t i o n N e a r e s t ()) ;

re turn JAI . c r ea t e (" s c a l e " , pb) ;
}

Listing A.29: Method for writing data to a textfile

pub l i c void wr i t eToF i l e (S t r i ng fi lename , S t r i ng t e x t){
Buf fe redWri te r wr i t e r = n u l l ;
t r y {

wr i t e r = new Buf fe redWri te r (new F i l e W r i t e r (f i lename , t rue)) ;
wr i t e r . wr i te (t e x t) ;

}
catch (IOException e){

System . out . p r i n t l n (" F a i l u r e in wr i t eToF i l e : " + e) ;
}
f i n a l l y {

t r y {
i f (wr i t e r != n u l l){

wr i t e r . c l o s e () ;
}

}
catch (IOException e){

System . out . p r i n t l n (" F a i l u r e in wr i t eToF i l e : " + e) ;
}

}
}

Listing A.30: Method for writing info to file for several objects

pub l i c void wr i te In format ion (Ar rayL i s t <F i l e I n f o > info , S t r i ng f i lename){
f o r (F i l e I n f o f : i n fo){

wr i t eToF i l e (f i lename , f . toStringMod ()) ;
}

}

86

Cross-comparison of Digital and Digitized Physical Evidence

A.2.2 FileInfo.java

Listing A.31: The FileInfo.java code with constructor getters and setters. And additional methods for sorting
cloning and print output label

/∗∗
∗ Clas s conta in ing a l l the in fo about the d i f f e r e n t documents in the document
∗ f o l d e r and the bes t matching image f i l e from the scanned documents ,
∗ and the sco re s from the d i f f e r e n t methods .
∗/

pub l i c c l a s s F i l e I n f o implements Comparable<F i l e I n f o > {
S t r ing t e x t ;
S t r i ng f i l e p a t h ;
S t r i ng f i lename ;
S t r i ng imageFileName ;
S t r i ng comparedTo ;
//The value sor tBy i s used by the a p p l i c a t i o n to
//be able to s o r t the documents on the bes t matches
// f o r each d i f f e r e n t method .
i n t sor tBy ;
double wordFrequency ;
double ed i t D i s t an ce ;
f l o a t cos ine ;
double p i x e l D i s t a n c e ;
f l o a t w_shingle ;

// Cons t ruc tor
pub l i c F i l e I n f o (S t r ing tex t , S t r i ng f i l e p a t h ,

S t r i ng fi lename , S t r i ng imageFileName) {
t h i s . t e x t = t e x t ;
t h i s . f i l e p a t h = f i l e p a t h ;
t h i s . f i lename = fi lename ;
// t h i s . changePercentage = 100;
t h i s . wordFrequency = 100;
t h i s . p i x e l D i s t a n c e = 100;
t h i s . w_shingle = 0;
t h i s . sor tBy = 0;
t h i s . imageFileName = imageFileName ;

}

// Get and s e t methods
pub l i c S t r i ng getImageFileName () {

re turn imageFileName ;
}

pub l i c void setImageFileName (S t r i ng imageFileName) {

87

Cross-comparison of Digital and Digitized Physical Evidence

t h i s . imageFileName = imageFileName ;
}

pub l i c void se tCos ine (f l o a t cos ine) {
t h i s . cos ine = cos ine ;

}

pub l i c void se tSor tBy (i n t sor tBy) {
t h i s . sor tBy = sor tBy ;

}

pub l i c S t r i ng getComparedTo () {
re turn comparedTo ;

}

pub l i c void setComparedTo (S t r ing comparedTo) {
t h i s . comparedTo = comparedTo ;

}

pub l i c double g e t P i x e l D i s t a n c e () {
re turn p i x e l D i s t a n c e ;

}

pub l i c void s e t P i x e l D i s t a n c e (double p i x e l D i s t a n c e) {
t h i s . p i x e l D i s t a n c e = p i x e l D i s t a n c e ;

}

pub l i c double getWordFrequency () {
re turn wordFrequency ;

}

pub l i c void setWordFrequency (double wordFrequency) {
t h i s . wordFrequency = wordFrequency ;

}

pub l i c double ge tEd i tD i s t ance () {
re turn ed i t D i s t an ce ;

}

pub l i c void s e t E d i t D i s t a n c e (double e d i t d i s t a n c e) {
t h i s . ed i tD i s t a nce = e d i t d i s t a n c e ;

}

pub l i c void setW_shingle (f l o a t w_shingle) {
t h i s . w_shingle = w_shingle ;

}

pub l i c S t r i ng getText () {
re turn t e x t ;

88

Cross-comparison of Digital and Digitized Physical Evidence

}

pub l i c void se tTex t (S t r i ng t e x t) {
t h i s . t e x t = t e x t ;

}

pub l i c S t r i ng g e t F i l e p a t h () {
re turn f i l e p a t h ;

}

pub l i c void s e t F i l e p a t h (S t r ing f i l e p a t h) {
t h i s . f i l e p a t h = f i l e p a t h ;

}

pub l i c S t r i ng getFi lename () {
re turn f i lename ;

}

pub l i c void setF i lename (S t r ing f i lename) {
t h i s . f i lename = fi lename ;

}

pub l i c i n t getSortBy () {
re turn sor tBy ;

}

pub l i c f l o a t getCos ine () {
re turn cos ine ;

}

pub l i c f l o a t getW_shingle () {
re turn w_shingle ;

}

//Method f o r c lon ing the ob jec t s , used to generate output f o r the experiment
@Override
pub l i c F i l e I n f o c lone (){

F i l e I n f o myNewFile = new F i l e I n f o (getText () ,
g e t F i l e p a t h () , getFi lename () , getImageFileName ()) ;

myNewFile . setComparedTo (getComparedTo ()) ;
myNewFile . se tSor tBy (getSortBy ()) ;
myNewFile . setWordFrequency (getWordFrequency ()) ;
myNewFile . s e t E d i t D i s t a n c e (ge tEd i tD i s t ance ()) ;
myNewFile . se tCos ine (getCos ine ()) ;
myNewFile . s e t P i x e l D i s t a n c e (g e t P i x e l D i s t a n c e ()) ;
myNewFile . setW_shingle (getW_shingle ()) ;

89

Cross-comparison of Digital and Digitized Physical Evidence

re turn myNewFile ;
}

// This method i s used to s o r t i n s t a n c e s of t h i s c l a s s in an array .
@Override
pub l i c i n t compareTo (F i l e I n f o o) {

i f (sor tBy == 0){
// ed i tD i s t ance
i f (ed i tD i s t a nce < o . ed i tD i s t a nce){

re turn −1;
} e l s e i f (e d i t D i s t an ce > o . ed i t D i s t an ce) {

re turn 1;
} e l s e {

re turn 0;
}

} e l s e i f (sor tBy == 1){
i f (wordFrequency < o . wordFrequency){

re turn −1;
} e l s e i f (wordFrequency > o . wordFrequency) {

re turn 1;
} e l s e {

re turn 0;
}

} e l s e i f (sor tBy == 2){
i f (p ixe lD i s tance < o . p i x e l D i s t a n c e){

re turn −1;
} e l s e i f (p i x e l D i s t a n c e > o . p i x e l D i s t a n c e) {

re turn 1;
} e l s e {

re turn 0;
}

} e l s e i f (sor tBy == 3){
i f (cos ine> o . cos ine){

re turn −1;
} e l s e i f (cos ine < o . cos ine) {

re turn 1;
} e l s e {

re turn 0;
}

} e l s e i f (sor tBy == 4){
i f (w_shingle> o . w_shingle){

re turn −1;
} e l s e i f (w_shingle < o . w_shingle) {

re turn 1;
} e l s e {

re turn 0;
}

}
re turn 0;

90

Cross-comparison of Digital and Digitized Physical Evidence

}

// t o S t r i n g method used in the GUI
@Override
pub l i c S t r i ng t o S t r i n g () {

re turn "\ n\ r F i l e p a t h : " + f i l e p a t h + "\ nFilename : " + f i lename
+ "\ n\ r P i c t u r e f i lename : " + imageFileName
+ "\ n\rCompare to : " + comparedTo
+ "\ n\ rChecking with : " + sor tBy
//+ "\ n\rNumber of c h a r a c t e r s in o r i g i n a l t e x t : " + t e x t . length ()
+ "\ n\ rLevenshte in Dis tance : " + ed i tD i s t anc e
//+ "\ nBest Word frequency match in : " + bestFrequencyMatch
+ "\ n\rWord frequency change : " + (wordFrequency)
//+ "\ nBest P i x e l match in " + bestP ixe lMatch
+ "\ n\ r P i x e l change : " + p i x e l D i s t a n c e
+ "\ n\ rCos ine value : " + cos ine
+ "\ n\rw−sh ing l e : " + w_shingle ;

}

// t o S t r i n g method used to c rea t e csv f i l e s f o r the experiment
pub l i c S t r i ng toStringMod () {

re turn "\ r \n"+ f i l e p a t h
+ " , " + imageFileName
+ " , " + comparedTo
+ " , " + sor tBy
//+ "\ n\rNumber of c h a r a c t e r s in o r i g i n a l t e x t : " + t e x t . length ()
+ " , " + ed i tD i s t a nce
//+ "\ nBest Word frequency match in : " + bestFrequencyMatch
+ " , " + (wordFrequency)
//+ "\ nBest P i x e l match in " + bestP ixe lMatch
+ " , " + p i x e l D i s t a n c e
+ " , " + cos ine
+ " , " + w_shingle ;

}

}

91

Cross-comparison of Digital and Digitized Physical Evidence

A.2.3 OCRUI.java

Listing A.32: Executed code for the Execute button

jBut ton1 . addAct ionL i s tener (new A c t i o n L i s t e n e r () {
pub l i c void act ionPerformed (Act ionEvent e){

// Checks i f a p i c t u r e has been chosen f o r convers ion
i f (p i c t u r e F i l e P a t h . equals (" ")) {

p i c t u r e F i l e P a t h = myOCR. f i l e C h o o s e r () ;
}

// Gets the op t iona l keyword f o r s o r t i n g
S t r i ng keyword = j T e x t F i e l d 1 . getText () ;

myFi le In fo = myOCR. s o r t (myFiles , keyword) ;

// For t iming the experiment
long s t a r t = System . cu r ren tT imeMi l l i s () ;
t r y {
// Checking to see i f mu l t ip l e documents are chosen .
i f (! jCheckBox1 . i s S e l e c t e d ()){

S t r i ng input = myOCR. conver tP i c tureToText (p i c t u r e F i l e P a t h) ;
S t r i ng output = myOCR. Regex (input) ;
scannedText . s e tTex t (output) ;

// For each F i l e I n f o o b j e c t (one f o r each document)
//Adds the c a l c u l a t e d d i s t a n c e s
f o r (F i l e I n f o f : myFi le In fo){

S t r i ng o r i g i n a l = f . getText () ;
double d i s t ance =
myOCR. computeLevenshteinDistance (o r i g i n a l , output) ;
double change = myOCR. countWordFrequency (o r i g i n a l , output) ;
f l o a t cos ine = myOCR. g e t C o s i n e S i m i l a r i t y (o r i g i n a l , output) ;
f . setComparedTo (p i c t u r e F i l e P a t h . get (0) . t o S t r i n g ()) ;
f . setWordFrequency (change) ;
f . s e t E d i t D i s t a n c e (d i s t ance) ;
f . se tCos ine (cos ine) ;
f . setW_shingle (myOCR. getJaccardIndex (
myOCR. ge tSh ing le s (o r i g i n a l) , myOCR. ge tSh ing le s (output))) ;
f . s e t P i x e l D i s t a n c e (myOCR. ca l cu la te ImageDi s tance (
f . getImageFileName () , p i c t u r e F i l e P a t h . get (0) . t o S t r i n g ())) ;

}
} e l s e {

// For mul t ip l e documents .
f o r (S t r i ng s : p i c t u r e F i l e P a t h){

Ar rayL i s t <Str ing> myTemp = new ArrayL i s t <>();
myTemp. add(s . t o S t r i n g ()) ;
S t r i ng input = myOCR. conver tP i c tureToText (myTemp) ;
S t r i ng output = myOCR. Regex (input) ;
scannedText . s e tTex t (output) ;

92

Cross-comparison of Digital and Digitized Physical Evidence

f o r (F i l e I n f o f : myFi le In fo){
S t r i ng o r i g i n a l = f . getText () ;
double d i s t ance = myOCR. computeLevenshteinDistance (
o r i g i n a l , output) ;
double change = myOCR. countWordFrequency (
o r i g i n a l , output) ;
f l o a t cos ine = myOCR. g e t C o s i n e S i m i l a r i t y (
o r i g i n a l , output) ;
f . setComparedTo (s . t o S t r i n g ()) ;
f . setWordFrequency (change) ;
f . s e t E d i t D i s t a n c e (d i s t ance) ;
f . se tCos ine (cos ine) ;
f . setW_shingle (myOCR. getJaccardIndex (
myOCR. ge tSh ing le s (o r i g i n a l) , myOCR. ge tSh ing le s (output))) ;
f . s e t P i x e l D i s t a n c e (myOCR. ca l cu la te ImageDi s tance (
f . getImageFileName () , s . t o S t r i n g ())) ;

}
//The fo l lowing i f s tatement i s here f o r the experiments par t
//To clone the f i l e s and add them do ar ray s f o r l a t e r output .
i f (t rue){

// Sor t ing on Levenshte in d i s t ance
fo r (F i l e I n f o f : myFi le In fo){

f . sor tBy = 0;
}

myFi le In fo = myOCR. s o r t F i l e s (myFi le In fo) ;
myMethod0 . add(myFi le In fo . get (0) . c lone ()) ;
myMethod5 . add(myFi le In fo . get (1) . c lone ()) ;

// Sor t ing on Word frequency
fo r (F i l e I n f o f : myFi le In fo){

f . sor tBy = 1;
}
myFi le In fo = myOCR. s o r t F i l e s (myFi le In fo) ;
myMethod1 . add(myFi le In fo . get (0) . c lone ()) ;
myMethod6 . add(myFi le In fo . get (1) . c lone ()) ;

// Sor t ing on P i x e l d i s t ance
f o r (F i l e I n f o f : myFi le In fo){

f . sor tBy = 2;
}
myFi le In fo = myOCR. s o r t F i l e s (myFi le In fo) ;
myMethod2 . add(myFi le In fo . get (0) . c lone ()) ;
myMethod7 . add(myFi le In fo . get (1) . c lone ()) ;

// Sor t ing on Cosine s i m i l a r i t y
f o r (F i l e I n f o f : myFi le In fo){

f . sor tBy = 3;

93

Cross-comparison of Digital and Digitized Physical Evidence

}
myFi le In fo = myOCR. s o r t F i l e s (myFi le In fo) ;
myMethod3 . add(myFi le In fo . get (0) . c lone ()) ;
myMethod8 . add(myFi le In fo . get (1) . c lone ()) ;

// Sor t ing on W−sh ing l e score
fo r (F i l e I n f o f : myFi le In fo){

f . sor tBy = 4;
}
myFi le In fo = myOCR. s o r t F i l e s (myFi le In fo) ;
myMethod4 . add(myFi le In fo . get (0) . c lone ()) ;
myMethod9 . add(myFi le In fo . get (1) . c lone ()) ;

}
}
}

} catch (Except ion ex){
System . out . p r i n t l n (" F a i l u r e in Execute : " + ex) ;

}

System . out . p r i n t l n ((System . cu r ren tT imeMi l l i s () − s t a r t) / 1000);
myFi le In fo = myOCR. s o r t F i l e s (myFi le In fo) ;

// Wri tes the bes t match f o r each document in fo
// to cvs f i l e s f o r each method .
myOCR. wr i te In format ion (myMethod0,"00− Levenshte in . t x t ") ;
myOCR. wr i te In format ion (myMethod1,"01−WordFrequency . t x t ") ;
myOCR. wr i te In format ion (myMethod2,"02− P i x e l . t x t ") ;
myOCR. wr i te In format ion (myMethod3,"03−Cosine . t x t ") ;
myOCR. wr i te In format ion (myMethod4,"04−wshingle . t x t ") ;

// Wri tes the second bes t match f o r each document in fo
// to cvs f i l e s f o r each method .
myOCR. wr i te In format ion (myMethod5,"05− Levenshte in . t x t ") ;
myOCR. wr i te In format ion (myMethod6,"06−WordFrequency . t x t ") ;
myOCR. wr i te In format ion (myMethod7,"07− P i x e l . t x t ") ;
myOCR. wr i te In format ion (myMethod8,"08−Cosine . t x t ") ;
myOCR. wr i te In format ion (myMethod9,"09−wshingle . t x t ") ;

}
}) ;

94

Cross-comparison of Digital and Digitized Physical Evidence

Listing A.33: Executed code for the Edit distance button

jBut ton5 . addAct ionL i s tener (new A c t i o n L i s t e n e r () {
pub l i c void act ionPerformed (Act ionEvent e) {

f o r (F i l e I n f o f : myFi le In fo){
// System . out . p r i n t l n (f . getFi lename () + " vs . " + p i c t u r e F i l e P a t h . get (0)) ;

f . sor tBy = 0;
}
// Sor t ing the f i l e s based on change Levenshte in d i s t ance
myFi le In fo = myOCR. s o r t F i l e s (myFi le In fo) ;
// D i sp lay ing the t e x t from the bes t matching f i l e
o r i g i n a l T e x t . s e tTex t (myFi le In fo . get (0) . getText ()) ;
// D i sp lay ing in fo about the bes t matching f i l e
commandText . s e tTex t (myFi le In fo . get (0) . t o S t r i n g ()) ;

}
}) ;

Listing A.34: Executed code for the Frequency button

jBut ton6 . addAct ionL i s tener (new A c t i o n L i s t e n e r () {
pub l i c void act ionPerformed (Act ionEvent e) {

f o r (F i l e I n f o f : myFi le In fo){
// System . out . p r i n t l n (f . getFi lename () + " vs . " + p i c t u r e F i l e P a t h . get (0)) ;

f . sor tBy = 1;
}

// Sor t ing the f i l e s based on Word frequency
myFi le In fo = myOCR. s o r t F i l e s (myFi le In fo) ;
// D i sp lay ing the t e x t from the bes t matching f i l e
o r i g i n a l T e x t . s e tTex t (myFi le In fo . get (0) . getText ()) ;
// D i sp lay ing in fo about the bes t matching f i l e
commandText . s e tTex t (myFi le In fo . get (0) . t o S t r i n g ()) ;

}
}) ;

95

Cross-comparison of Digital and Digitized Physical Evidence

Listing A.35: Executed code for the Cosine button

jBut ton7 . addAct ionL i s tener (new A c t i o n L i s t e n e r () {
pub l i c void act ionPerformed (Act ionEvent e) {

f o r (F i l e I n f o f : myFi le In fo){
// System . out . p r i n t l n (f . getFi lename () + " vs . " + p i c t u r e F i l e P a t h . get (0)) ;

f . sor tBy = 3;
}

// Sor t ing the f i l e s based on change percentage
myFi le In fo = myOCR. s o r t F i l e s (myFi le In fo) ;
// D i sp lay ing the t e x t from the bes t matching f i l e
o r i g i n a l T e x t . s e tTex t (myFi le In fo . get (0) . getText ()) ;
// D i sp lay ing in fo about the bes t matching f i l e
commandText . s e tTex t (myFi le In fo . get (0) . t o S t r i n g ()) ;

}
}) ;

Listing A.36: Executed code for the W_shingle button label

jButton10 . addAct ionL i s tener (new A c t i o n L i s t e n e r () {
pub l i c void act ionPerformed (Act ionEvent e) {

f o r (F i l e I n f o f : myFi le In fo){
// System . out . p r i n t l n (f . getFi lename () + " vs . " + p i c t u r e F i l e P a t h . get (0)) ;

f . sor tBy = 4;
}

// Sor t ing the f i l e s based on change percentage
myFi le In fo = myOCR. s o r t F i l e s (myFi le In fo) ;
// D i sp lay ing the t e x t from the bes t matching f i l e
o r i g i n a l T e x t . s e tTex t (myFi le In fo . get (0) . getText ()) ;
// D i sp lay ing in fo about the bes t matching f i l e
commandText . s e tTex t (myFi le In fo . get (0) . t o S t r i n g ()) ;

}
}) ;

96

Cross-comparison of Digital and Digitized Physical Evidence

Listing A.37: Executed code for the Image Similarity button

jButton11 . addAct ionL i s tener (new A c t i o n L i s t e n e r () {
pub l i c void act ionPerformed (Act ionEvent e) {

f o r (F i l e I n f o f : myFi le In fo){
// System . out . p r i n t l n (f . getFi lename () + " vs . " + p i c t u r e F i l e P a t h . get (0)) ;

f . sor tBy = 2;
}

// Sor t ing the f i l e s based on change percentage
myFi le In fo = myOCR. s o r t F i l e s (myFi le In fo) ;
// D i sp lay ing the t e x t from the bes t matching f i l e
o r i g i n a l T e x t . s e tTex t (myFi le In fo . get (0) . getText ()) ;
// D i sp lay ing in fo about the bes t matching f i l e
commandText . s e tTex t (myFi le In fo . get (0) . t o S t r i n g ()) ;

}
}) ;

Listing A.38: Executed code for the "arrow left" button

jBut ton8 . addAct ionL i s tener (new A c t i o n L i s t e n e r () {
pub l i c void act ionPerformed (Act ionEvent e) {

index−−;
i f (index < 0){

index = myFi le In fo . s i z e () −1;
} e l s e i f (index >= myFi le In fo . s i z e ()){

index = index % myFi le In fo . s i z e () ;
}

// Di sp lay ing the t e x t from the bes t matching f i l e
o r i g i n a l T e x t . s e tTex t (myFi le In fo . get (index) . getText ()) ;
// D i sp lay ing in fo about the bes t matching f i l e
commandText . s e tTex t (myFi le In fo . get (index) . t o S t r i n g ()) ;
// System . out . p r i n t l n (index) ;

}
}) ;

97

Cross-comparison of Digital and Digitized Physical Evidence

Listing A.39: Executed code for the "arrow right" button

jBut ton9 . addAct ionL i s tener (new A c t i o n L i s t e n e r () {
pub l i c void act ionPerformed (Act ionEvent e) {

index ++;
index = index % myFi le In fo . s i z e () ;
// D i sp lay ing the t e x t from the bes t matching f i l e
o r i g i n a l T e x t . s e tTex t (myFi le In fo . get (index) . getText ()) ;
// D i sp lay ing in fo about the bes t matching f i l e
commandText . s e tTex t (myFi le In fo . get (index) . t o S t r i n g ()) ;
// System . out . p r i n t l n (index) ;

}
}) ;

Listing A.40: Executed code for the Choose folder button

jBut ton2 . addAct ionL i s tener (new A c t i o n L i s t e n e r () {
pub l i c void act ionPerformed (Act ionEvent e) {

// Choosing a f o l d e r
documentDirectoryPath = myOCR. d i rec toryChooser () ;

F i l e f = new F i l e (documentDirectoryPath) ;
//Makes a l i s t of a l l the f i l e s / f o l d e r s in tha t f o l d e r
Ar rayL i s t <F i l e > f i l e L i s t i n g = new ArrayL i s t <F i l e >(Arrays . a s L i s t (f . l i s t F i l e s ())) ;

//Adds only f i l e s to the ac tua l l i s t
myFi les . c l e a r () ;
f o r (F i l e f i : f i l e L i s t i n g){

i f (f i . i s F i l e ()){
myFi les . add(f i) ;

}
}

}
}) ;

Listing A.41: Executed code for the Choose picture button

jBut ton3 . addAct ionL i s tener (new A c t i o n L i s t e n e r () {
pub l i c void act ionPerformed (Act ionEvent e) {

// Chooses a p i c t u r e f i l e to run OCR on .
p i c t u r e F i l e P a t h = myOCR. f i l e C h o o s e r () ;

}
}) ;

98

Cross-comparison of Digital and Digitized Physical Evidence

Listing A.42: Executed code for the Sort button

jBut ton4 . addAct ionL i s tener (new A c t i o n L i s t e n e r () {
pub l i c void act ionPerformed (Act ionEvent e) {

//Check to see i f a document f o l d e r has been chosen .
i f (documentDirectoryPath . equals (" ")) {

documentDirectoryPath = myOCR. d i rec toryChooser () ;
}
S t r i ng keyword = j T e x t F i e l d 1 . getText () ;
// Sor t documents based on keyword
myFi le In fo = myOCR. s o r t (myFiles , keyword) ;

commandText . s e tTex t (" Sor t ing done ") ;
}

}) ;

99

Cross-comparison of Digital and Digitized Physical Evidence

A.2.4 TestRun.java

Listing A.43: Code for getting the Levenshtein distance between the document and the OCR from the
matching scanned document.

ArrayL i s t <Str ing> p i c t u r e F i l e P a t h ;
Ar rayL i s t <Str ing> documentFilePath ;

Testrun myTestRun = new Testrun () ;

t r y {
documentFilePath = myTestRun . f i l e C h o o s e r () ;
p i c t u r e F i l e P a t h = myTestRun . f i l e C h o o s e r () ;
f o r (i n t i = 0 ; i < p i c t u r e F i l e P a t h . s i z e () ; i++){

Ar rayL i s t <Str ing> myTemp = new ArrayL i s t <>();
myTemp. add(p i c t u r e F i l e P a t h . get (i) . t o S t r i n g ()) ;

S t r i ng o r i g i n a l =
myTestRun . documentReader (documentFilePath . get (i) . t o S t r i n g ()) ;
S t r i ng ocr = myTestRun . conver tP i c tureToText (myTemp) ;
S t r i ng cleaned = myTestRun . Regex (ocr) ;
double d i s t ance =
myTestRun . computeLevenshteinDistance (o r i g i n a l , c leaned) ;
double change = (d i s t ance / o r i g i n a l . l ength ()) ∗ 100;
S t r i ng output = documentFilePath . get (i) . t o S t r i n g () + " , "

+ p i c t u r e F i l e P a t h . get (i) . t o S t r i n g () + " , " + change
+ " , " + d i s t ance + " , " + o r i g i n a l . length () + "\ r \n " ;

myTestRun . wr i t eToF i l e (" percentage . t x t " , output) ;

}

} catch (Except ion e){
System . out . p r i n t l n (" F a i l u r e in t e s t code " + e) ;

}
}

100

Cross-comparison of Digital and Digitized Physical Evidence

Listing A.44: Code for a one-to-one image-to-image comparison with OCR.

ArrayL i s t <Str ing> p i c t u r e F i l e P a t h ;
Ar rayL i s t <Str ing> documentFilePath ;
Ar rayL i s t <F i l e > myFi les = new A r r a y L i s t () ;
A r rayL i s t <F i l e I n f o > myFi le In fo = new A r r a y L i s t () ;
Testrun myTestRun = new Testrun () ;

t r y {
documentFilePath = myTestRun . f i l e C h o o s e r () ;
p i c t u r e F i l e P a t h = myTestRun . f i l e C h o o s e r () ;

// Image to image cleaned / noclean
System . out . p r i n t l n (documentFilePath . s i z e ()) ;
System . out . p r i n t l n (p i c t u r e F i l e P a t h . s i z e ()) ;
f o r (i n t i = 0 ; i < p i c t u r e F i l e P a t h . s i z e () ; i++){

Ar rayL i s t <Str ing> myTemp01 = new ArrayL i s t <>();
myTemp01 . add(documentFilePath . get (i) . t o S t r i n g ()) ;
Ar rayL i s t <Str ing> myTemp02 = new ArrayL i s t <>();
myTemp02 . add(p i c t u r e F i l e P a t h . get (i) . t o S t r i n g ()) ;

S t r i ng imageORG = myTestRun . conver tP i c tureToText (myTemp01) ;
S t r i ng regex01 = myTestRun . Regex (imageORG) ;

S t r i ng imageOCR = myTestRun . conver tP i c tureToText (myTemp02) ;
S t r i ng regex02 = myTestRun . Regex (imageOCR) ;

S t r i ng cleaned01 = myTestRun . s t r i n g C l e a n e r (regex01) ;
S t r i ng cleaned02 = myTestRun . s t r i n g C l e a n e r (regex02) ;

i n t levnoc lean = myTestRun . computeLevenshteinDistance (
regex01 , regex02) ;
i n t l e v c l ean = myTestRun . computeLevenshteinDistance (
cleaned01 , cleaned02) ;

i n t wordnoclean = myTestRun . countWordFrequency (
regex01 , regex02) ;
i n t wordclean = myTestRun . countWordFrequency (
cleaned01 , cleaned02) ;

double cos inenoc lean = myTestRun . g e t C o s i n e S i m i l a r i t y (regex01 , regex02) ;
double cos inec l ean = myTestRun . g e t C o s i n e S i m i l a r i t y (cleaned01 , cleaned02) ;

Set wnoclean01 = myTestRun . ge tSh ing le s (regex01) ;
Set wclean01 = myTestRun . ge tSh ing le s (regex02) ;

101

Cross-comparison of Digital and Digitized Physical Evidence

f l o a t sh ing les01 = myTestRun . getJaccardIndex (wnoclean01 , wclean01) ;

Set wnoclean02 = myTestRun . ge tSh ing le s (cleaned01) ;
Set wclean02 = myTestRun . ge tSh ing le s (cleaned02) ;

f l o a t sh ing les02 = myTestRun . getJaccardIndex (wnoclean02 , wclean02) ;

S t r i ng output = myTemp01 . get (0) . t o S t r i n g () + " , " +
myTemp02 . get (0) . t o S t r i n g () + " , " + levnoc lean + " , " +
levc l ean + " , " + wordnoclean + " , " + wordclean + " , " +
cos inenoc lean + " , " + cos inec l ean + " , " + sh ing les01 + " , " +
sh ing les02 + " , " + regex01 . length () + " , " +
regex02 . length () + " , " + cleaned01 . length () + " , " +
cleaned02 . length () + "\ r \n " ;

myTestRun . wr i t eToF i l e (" imagetoimage . t x t " , output) ;
}

102

Cross-comparison of Digital and Digitized Physical Evidence

A.3 Extended Results

A.3.1 Document to Image

The following results are from obtained through the comparison of text extracted from the
scanned document through OCR and the extracted text from the original documents.

Table 6: Results without text sanitation, document to image

Method Accuracy
Levenshtein 84%
Word frequency 79%
Cosine similarity 100%
W-shingle 100%

Table 7: Results with text sanitation, document to image

Method Accuracy
Levenshtein 91%
Word frequency 80%
Cosine similarity 100%
W-shingle 100%

A.3.2 Image to Image

The following results are from obtained through the comparison of text extracted from the
scanned document and the converted original document, through OCR.

Table 8: Results with text sanitation, image to image

Method Accuracy
Levenshtein 100%
Word frequency 74%
Cosine similarity 91%
W-shingle 100%

Table 9: Results with text sanitation, image to image

Method Accuracy
Levenshtein 91%
Word frequency 80%
Cosine similarity 100%
W-shingle 100%

103

Cross-comparison of Digital and Digitized Physical Evidence

A.3.3 Pixel comparison

Results from the pixel comparison methods.

Table 10: Results for the pixel comparison method

Method Accuracy
Pixel comparison 21%

A.3.4 One-to-one comparison

Table 11: List of Levenshtein distance between the OCR conver-
sion of the scanned document and the original document. No text
sanitation.

Document name Number of changes
01.pdf 158
02.pdf 688
03.pdf 88
04.pdf 223
05.pdf 519
06.pdf 87
07.pdf 95
08.pdf 1191
09.pdf 130
10.pdf 90
11.pdf 226
12.pdf 369
13.pdf 299
14.pdf 201
15.pdf 263
16.pdf 309
17.pdf 137
18.pdf 30
19.pdf 230
20.pdf 82
21.pdf 100
22.pdf 327
23.pdf 90
24.pdf 32
25.pdf 1526
26.pdf 287
27.pdf 127
28.pdf 66
29.pdf 101
30.pdf 714
31.pdf 57
32.pdf 921
33.pdf 1088

104

Cross-comparison of Digital and Digitized Physical Evidence

34.pdf 190
35.pdf 374
36.pdf 891
37.pdf 101
38.pdf 110
39.pdf 364
40.pdf 460
41.pdf 162
42.pdf 338
43.pdf 105
44.pdf 97
45.pdf 358
46.pdf 615
47.pdf 1860
48.pdf 320
49.pdf 552
50.pdf 399
51.pdf 478
52.pdf 580
53.pdf 278
54.pdf 350
55.pdf 94
56.pdf 220
57.pdf 70
58.pdf 183
59.pdf 506
60.pdf 310
61.pdf 305
62.pdf 282
63.pdf 168
64.pdf 225
65.pdf 133
66.pdf 108
67.pdf 696
68.pdf 72
69.pdf 206
70.pdf 819
71.pdf 88
72.pdf 1999
73.pdf 197
74.pdf 371
75.pdf 204
76.pdf 206
77.pdf 235
78.pdf 100
79.pdf 28

105

Cross-comparison of Digital and Digitized Physical Evidence

80.pdf 535
81.pdf 312
82.pdf 138
83.pdf 473
84.pdf 245
85.pdf 137
86.pdf 102
87.pdf 694
88.pdf 166
89.pdf 149
90.pdf 240
91.pdf 303
92.pdf 442
93.pdf 143
94.pdf 576
95.pdf 711
96.pdf 326
97.pdf 1164
98.pdf 829
99.pdf 1473
100.pdf 570

106

Cross-comparison of Digital and Digitized Physical Evidence

A.4 Dataset

All this data shows number of documents out of the 100 that contains the characteristics. The
total number of occurrences will exceed a 100 because one document can have several instances
of the same font but in different font size and different fonts.

Table 12: Most occurring fonts

Font type # of occurrences
American Typewriter 1
Arial 24
Book Antiqua 1
Calibri 51
Cambria 12
Courier New 4
Franklin Gothic Book 12
Georgia 1
Helvetica-Bold 1
Hobo Std 1
Informal Roman 1
Lucida Sans 2
Monotype Corsiva 1
Palatino 1
Tahoma 3
Times New Roman 27
Trebuchet MS 1
Verdana 2

107

Cross-comparison of Digital and Digitized Physical Evidence

Table 13: Most occurring font sizes

Font size # of occurrences
6 1
6.5 1
7 1
8 8
8.5 1
9 8
9.5 1
10 36
10.5 1
11 45
12 48
13 3
14 22
15 1
15.5 1
16 9
18 11
20 4
22 2
24 2
26 6
36 2

Table 14: Other characteristics

Characteristics # of occurrences
Graphs 6
Pictures 33
Tables 21
Lists 45
Bold 74
Underline 24
Italic 17
Color 49
Average word count 249
Average number of
characters

1725

108

Cross-comparison of Digital and Digitized Physical Evidence

Table 15: Fonts and sizes

Font and size # of occurrences
Arial 6 1
Arial 8 2
Arial 8.5 1
Arial 9 4
Arial 9.5 1
Arial 10 10
Arial 11 3
Arial 12 16
Arial 13 1
Arial 14 3
Arial 15 1
Arial 14 1
Arial 16 2
Arial 18 1
Arial 20 2
Arial 24 1
Times New Roman 8 1
Times New Roman 9 1
Times New Roman 10 2
Times New Roman 11 9
Times New Roman 12 17
Times New Roman 13 2
Times New Roman 14 5
Times New Roman 16 3
Times New Roman 18 3
Times New Roman 22 1
Calibri 8 4
Calibri 9 3
Calibri 10 24
Calibri 11 33
Calibri 12 10
Calibri 14 10
Calibi 16 3
Calibri 18 5
Calibri 20 2
Calibri 22 1
Helvetica-Bold 14 1
Monotype Corsiva 14 1
Courier New 10 1
Courier New 20 1
Courier New 12 3
Courier New 14 1
Courier New 18 2
Courier New 36 1

109

Cross-comparison of Digital and Digitized Physical Evidence

Informal Roman 24 1
Georgia 12 1
American Typewriter 36 1
American Typewriter 12 1
American Typewriter 15.5 1
Tahoma 10.5 1
Tahoma 8 1
Tahome 10 2
Cambria (Body) 14 1
Cambria 16 3
Cambria (Headings) 26 7
Book Antiqua (Headings) 32 1
Verdana 7 1
Verdana 6.5 1
Verdana 9 2
Verdana 10 1
Verdana 12 1
Trebuchet MS 14 1
Trebuchet MS 11 1
Franklin Gothic Book 14 1
Lucida Sans 10 1
Hobo Std 18 1
Palatino 12 1

110

Cross-comparison of Digital and Digitized Physical Evidence

111

Cross-comparison of Digital and Digitized Physical Evidence

A.5 Additional information

A.5.1 OCRopus testpage

Figure 40: Test page from OCRopus. Picture from [59].
112

Cross-comparison of Digital and Digitized Physical Evidence

A.5.2 Transcript of Q&A session with Økokrim

This is a extract from a transcript from the Q&A part of a presentation the author did at Økokrim
the 14.03.14 [5]. Only the relevant pieces of feedback are presented here.

09.00 into the video
Thomas (Økokrim): Could also be of interest of preprocessing, like if you have a lot of logos
and stuff, then, maybe the pixel one should have sort of a higher weighting factor, if you have a
lot of text, then you should maybe look at shingles. Shingles seems to be the leading tool at the
moment to compare text.

12:05 into the video
Thomas (Økokrim): When it comes to the last question I will turn the word over to Egil, I think
it’s, more like you will see later when we walk around, that we provide access to the digital data
for the investigators. Its basically up to them at the moment if they have some paper documents
they want to find in the digital evidence, and I guess then you mostly use search words?

Egil (Økokrim): search words, yes.

Me: So keyword search, so you import a folder with documents into the tool you use and just
search for well "fraud" or "money".

Egil (Økokrim): Yeah, try to find similar data and documents. And its also, when you find phys-
ical evidence, its dated and its important for us to go into the electronical information and find
the same document and look when its created, because that is often different than the , than the
using searching words by word.

Thomas (Økokrim): Get the correct date from an electronic document, was created , then you
see that they backdated the document. Like the original digital document was created in word
2010 and it is dated 1998.

Thomas (Økokrim): We have a small project ourself, were we will be using shingles to look for..
when we start an investigation , we typically get some papers from someone, and then the idea
is to scan that and OCR treat it, and put it into the, and look for it using shingles.

113

	Abstract
	Preface
	Contents
	List of Figures
	List of Tables
	Introduction
	Keywords
	Covered topics
	Research questions
	Justification, Motivation and Benefits
	Limitations
	Contribution
	Thesis Structure

	Related work
	Digital Forensics and Digital Evidence
	Optical Character Recognition
	Hashing and Fuzzy hashing
	Dataset and characteristics
	Text comparison and evidence linking

	Methodologies
	Experimental design
	Literature review

	OCRopus
	The dataset
	Data preprocessing
	Levenshtein distance
	Cosine similarity
	W-shingling
	Word frequency
	Pixel comparison
	Fuzzy hashing

	Experimental design and results
	Experiment setup
	Results
	Analysis of the dataset
	Analysis of the experiment data
	Document-to-image
	Image-to-image
	Pixel comparison
	Similarity score
	Result comparison
	Runtime

	Discussion, Conclusion and Future work
	Discussion
	Conclusion
	Theoretical implications
	Practical implications

	Future work

	Bibliography
	Appendix
	Application
	Source code
	OCRMethods.java
	FileInfo.java
	OCRUI.java
	TestRun.java

	Extended Results
	Document to Image
	Image to Image
	Pixel comparison
	One-to-one comparison

	Dataset
	Additional information
	OCRopus testpage
	Transcript of Q&A session with Økokrim

