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Summary

User authentication is a means of identifying the user and verifying that the user is allowed
access to services or objects and is a very central step in many applications. People pass
through various types of authentication services in their day-to-day activities. For exam-
ple, to log on to a computer the user is required to know a secret password. Similarly, when
turning on a mobile phone the user has to know a PIN code or a touch pattern. Some per-
son authentication methods are based on human physiological or behavioural characteris-
tics, such as fingerprints, face, or voice. Authentication methods differ in their strengths
and weaknesses. PIN codes and passwords have to be remembered and gloves have to
be removed before fingerprint authentication. Security and usability are essential factors
in person authentication. Usability relates to the unobtrusiveness, user-convenience, and
human-friendliness of the authentication method. Security is related to the robustness of
the authentication method and vulnerability against attacks.

Recent advances in microelectronic chip development allow user authentication based
on gait (the way a person walks), using small, light, and low-cost sensors. One of the
benefits of this is that unobtrusive person authentication through gait recognition is now
possible by using mobile smart phones. Optimization of performance and a strong focus
on security, while not ignoring usability, will lead to an increased protection of information
on smart mobile devices through the use of gait recognition.

The general aim of the research described in this thesis was to protect smart mobile
devices against unauthorized access by using gait recognition based on the data collected
from the sensors embedded in these devices. The effort was not only to develop new inno-
vative algorithms to improve performance in gait recognition, but also to develop aware-
ness on the usability of this method by focusing on activity recognition and continuous
authentication, as well as assuring security against deliberate attackers.

The main research topics address in this thesis are: (1) Analyzing current techniques em-
ployed in accelerometer based gait recognition and identifying usability for deployment in
smart mobile devices; (2) Analysis of performance in gait recognition from data collected
on inferior sensors employed in smart mobile devices; (3) Recognition of specific gait ac-
tivities from acceleration data obtained from mobile devices; and (4) Develop a framework
for continuous authentication and test its performance.

Research question (1) provides an overview of the state of the art in user recognition
based on gait. It covers how experiments are performed, what sensors are used, how data
is analyzed, and a comparison of performance results. This overview will serve as the
starting point for all further research described in this thesis.

With respect to research question (2), and as far as we know, this is the first Ph.D. dis-
sertation that focuses on gait authentication using accelerometers from mobile devices. A
gait-based authentication system has been developed using three different phones, namely
the Google G1, the Motorola Milestone, and the Samsung Nexus S. We show how it is pos-
sible to use the data from the accelerometer sensors of these phones for gait recognition. We
considered different locations on the body to place the mobile phones, in particular the hip
and the trousers pocket. We created templates on the phones and compared subsequently
collected acceleration data to these templates. We have shown that the data collected on
the phones contains sufficient discriminative features to be used for identity verification.

Research question (3) is of the highest importance because we first need to recognize
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what kind of activity a user is doing before we can identify the user him- or herself. To have
a fully functional gait recognition system implemented in a smart phone, requires activity
recognition as a first step. In this thesis we propose and apply a model for automatic gait
recognition where we vary the speed of the walking. We applied existing machine learning
techniques to the accelerometer data to determine automatically at what speed a person is
walking at a given time.

Finally in research question (4), the thesis details how we can use gait recognition in a
continuous manner. Generally person authentication is a static access control mechanism,
applied when a user needs to access a system. Continuous authentication seeks to address
the shortcomings of this approach by continuously re-verifying the identity of the user.
This will lead to an increase of security and user friendliness of a gait recognition system
on a smart mobile device. In the thesis we have defined a way to implement continuous
gait authentication in combination with a way for analyzing performance of such a system.

In addition to the above main contributions of this thesis, we have also investigated
different types of related topics. These are either related to gait (video based or using
dedicated accelerometer sensors) or to other types of biometrics (fingerprint recognition
using a mobile phone camera).

By using dedicated accelerometer sensors, we have been able to investigate the per-
formance of gait in children compared to adults. In addition, we have also investigated
the difference in walking of children when their walking deviated from normal walking,
e.g. by walking faster or by carrying a book. Furthermore, we have investigated video
based gait recognition when using a so-called time-of-flight camera. This is a range imag-
ing camera system that resolves distances based on the known speed of light. To our best
knowledge, this was the first time that a time-of-flight camera was using in gait recognition.
Similarly there are no known records of gait recognition research using children.

Furthermore have we been researching fingerprint recognition on mobile phones where
the images are captured by the embedded camera. The results of the analysis of these im-
ages gave a promising performances and lead to new research challenges. A major ad-
vantage was that no additional fingerprint sensor was needed as a camera is generally
integrated in a mobile phone. Some of the challenges were to detect the fingerprint from
the different backgrounds and lighting conditions, in particular when a flash was used. The
major challenge was however that now fingerprints are represented as real images instead
of binary ones. We noticed that performance depended highly on the embedded camera
lens in the selected mobile phones.

A final contribution was building a demonstrator for biometric recognition in a mobile
phone that communicated via NFC (Near Field Communication) to an access control mech-
anism for opening a door. The demonstrator included both gait and fingerprint recognition,
as well as a back-up solution using a password.
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Hübner, Prof. Dr. Raul Sanchez-Reillo and Assoc. Prof. Hanno Langweg. Furthermore, I
appreciate the cooperation with Claudia Nickel at CASED and NISLab for the great work
we have performed together and thanks to Jayson Mackie for the thesis support. I would
also like to thank Werner Blessing and Kathrine Huke Markengbakken for the fruitful con-
versations.

I am very grateful to all my colleagues, Ali Imran, Anders Lvlie, Bian Yang, Bruno Fer-
nandes, Daniel Hartung, Danish Mairaj, Davrondzhon Gafurov, Erik Hjelms, Fahad Gu-
raya, Faouzi Alaya Cheikh, Gabriele Simone, Gazmend Bajrami, Goitom Weldehawaryat,
Hafez Ali Barghouthi, Hai Nguyen, Hans Pedersveen, Heiko Witte, Hewa Balisane, Jean-
Baptiste Thomas, Jose J. Gonzalez, Josef Hajek, Knut Wold, Lisa Rajbhandari, Nabeel Al-
Bahbooh, Nils Fjelds, Mark Seeger, Marius Pedersen, Martin Olsen, Ondrej Dluhos, Oscar
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Chapter 1

Introduction

Businesses and consumers are making increasing use of mobile phones to access corporate
data and networks, along with products and services that may demand authentication.
As personal mobile devices become more popular the user has come to expect the full
range of services from the mobile Internet, as limitations around screen size and interaction
capabilities have disappeared.

There are a number of emerging options for biometric authentication via mobile phone.
Some examples are fingerprint or face recognition via the camera function, voice recogni-
tion via the microphone, gait or activity recognition activity recognition via the accelerom-
eters and/or gyroscopes and gesture recognition via the camera or the accelerometer and
gyroscope. The topic of this thesis focuses on two of the mentioned biometric methods,
namely gait and activity recognition.

Most of the latest mobile phones have embedded acceleration sensors which can be
used for mobile biometric authentication. Gait recognition is a promising option for mobile
biometric gait and activity recognition. The term gait recognition describes a biometric
method that allows an automatic verification of a person by the way he or she walks. Gait
recognition has been based on the use of video sources, floor sensors or dedicated high-
grade wearable sensors (mainly accelerometers, although other sensors such as gyroscopes
and magnetic field sensors could be used).

The newest of these three approaches is based on wearing motion-recording sensors on
the body in different places: on the waist, in pockets, at the ankle and so forth. The main
advantage of gait recognition using wearable sensors is that it provides an unobtrusive
method of authentication for mobile devices that already contain accelerometers (like mo-
bile phones or tablets). It can be applied for continuous verification of the identity of the
user without user intervention. This has a great advantage over other biometric systems
such as fingerprint or face recognition, which are also suitable for implementation on mo-
bile phones, but require active user intervention. This advantage of accelerometer based
gait recognition compensates for the lesser performance.

As biometric gait recognition only works when the user is walking, this method has to
be combined with another authentication method. A suggestion is to add an additional un-
obtrusive authentication method to mobile phones (for example, voice recognition), which
decreases the necessity for regular active authentication and so, increases user friendliness.

Activity recognition can be used as a part of gait recognition. The identification of ev-
eryday routine and leisure activities such as walking, running, biking, sitting, climbing and
lying down may be tracked by accelerometer sensors in mobile devices. Activity recogni-
tion is to recognize a specific activity from the collected accelerometer data, whereas gait
recognition is to recognize the person from the collected accelerometer data. Both can be
combined to first detect what kind of specific walking (normal, slow, fast, running, etc) a
user is doing or if the user is not performing a walking related activity (for example sitting,
standing, cycling, or sleeping). Recognition accuracy for activity recognition has shown
great results and it could be useful for an automatic gait recognition system.

Biometric gait and activity recognition are also used to prevent malicious users to access
stolen phones. Without smartphone security, a subject is exposed to various threats when
he/she possesses a phone. The challenges of mobile security is to be aware of data man-
agement, identity theft and availability. Attackers are the same as found in the non-mobile
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computing space, namely the professionals, thieves, black/grey hats. The professionals
intend to steal sensitive data and also use the identity to achieve other attacks, whereas
thieves want to gain income through data or identities they have stolen. The last mentioned
intend to develop viruses, cause damage and also expose vulnerabilities of the device. The
security mechanisms in place to counter the threats is divided into multiple categories, as
all do not act at the same level. The intention of this thesis is to apply biometric gait au-
thentication to secure un-authorized access when the phone is stolen by professionals or
thieves or lost unintentionally.

1.1 Research Questions

Analyzing human gait generated considerable attention for many decades and continues
in recent research. Contributions within wearable gait recognition until now have only
focused on the task of personal identification where data was retrieved from dedicated
external sensors. In this thesis we will be focusing on wearable gait recognition on mobile
phones.
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1.1 RESEARCH QUESTIONS

The overall goal of this thesis is to investigate the following:

Is it possible, by the use of embedded sensors within personal mobile devices, to
perform gait recognition as a security mechanism?

From this goal, we extracted the following main research questions:

1. A state-of-the-art regarding wearable based gait recognition.

2. To develop a gait recognition system on mobile devices and to find out the perfor-
mance evaluations of it;

3. To develop an activity identification system to detect physical activities from data
acquired using mobile device and to perform accuracy evaluations of it;

4. Continuous authentication based on gait using wearable motion recording sensors;

These research questions are answered by the following papers included in the thesis:

1. Mohammad O. Derawi, Accelerometer-Based Gait Analysis, A survey. In Norwegian
Information Security Conference (Norsk Informasjonsssikkerhetskonferanse, NISK).
November 2010.

2. Mohammad O. Derawi, Davrondzhon Gafurov and Patrick Bours. Towards Continu-
ous Authentication Based on Gait Using Wearable Motion Recording Sensors. In Continu-
ous Authentication Using Biometrics: Data, Models, and Metrics. IGI Global (ISBN:
9781613501290)

3. Mohammad O. Derawi, Claudia Nickel, Patrick Bours and Christoph Busch. Unob-
trusive User-Authentication on Mobile Phones using Biometric Gait Recognition. In 6th
International Conference on Intelligent Information Hiding and Multimedia Signal
Processing (IIH-MSP), October 2010. (Best Paper Award)

4. Mohammad O. Derawi, Patrick Bours, Kjetil Holien. Improved Cycle Detection for Ac-
celerometer Based Gait Authentication. In 6th International Conference on Intelligent
Information Hiding and Multimedia Signal Processing (IIH-MSP), October 2010.

5. Claudia Nickel, Mohammad O. Derawi, Patrick Bours, and Christoph Busch, Scenario
test of accelerometer-based biometric gait recognition, In 3rd International Workshop on
Security and Communication Networks (IWSCN), May 2011.

6. Mohammad O. Derawi, Gazmend Bajrami, and Patrick Bours, Gait and Activity Recog-
nition using smart phones. In 2nd International conference on Pervasive Computing,
Signal Processing and Applications (PCSPA), October 2011.

7. Gazmend Bajrami, Mohammad O. Derawi, and Patrick Bours, Towards an automatic
gait recognition system using activity recognition (wearable based). In 3rd International
Workshop on Security and Communication Networks (IWSCN), May 2011

8. Mohammad O. Derawi and Patrick Bours. Gait and Activity Recognition using Commer-
cial Phones. Submitted to journal of Computers & Security - Special Issue on Active
Authentication, October 2012.

The relationship between the research questions and the included papers is shown in
Figure 1.1.

Even though the main research questions of this thesis focus on gait and activity recog-
nition on mobile devices, we have also analyzed gait recognition on children with regular
external accelerometers and video. For the video based gait recognition, we captured the
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Figure 1.1: Relationship between the included papers and the research questions

walking using an infrared video camera from a certain distance of the subject. Besides gait
recognition, but with the focus on mobile device biometrics, we have further been doing
research in fingerprint recognition on mobile devices. Finally, we have also investigated on
how to develop a secure access control by the use of the newest wireless technology, Near
Field Communication (NFC). The papers on these are listed below and can be found in the
appendices:

A. Mohammad O. Derawi, Hewa Balisane, Patrick Bours, Waqar Ahmed, and Peter Twigg,
Gait Recognition for Children over a Longer Period. In BIOSIG 2011, October 2011.

B. Hewa Balisane, Mohammad O. Derawi, Patrick Bours, Waqar Ahmed, and Peter Twigg,
Gait recognition in children under special circumstances. In 3rd International Workshop on
Security and Communication Networks (IWSCN), May 2011.

C. Hewa Balisane, Mohammad O. Derawi, Patrick Bours, Waqar Ahmed, and Peter Twigg,
Performance of Gait Recognition in Childrens Walking Compared to Adults. In 3rd Interna-
tional Workshop on Security and Communication Networks (IWSCN), May 2011.

D. Mohammad O. Derawi, Hazem Ali and Faouzi Alaya Cheikh , Gait Recognition using
Time-of-Flight Sensor. In BIOSIG 2011, October 2011.

E. Mohammad O. Derawi, Bian Yang and Christoph Busch, Fingerprint Recognition with
Embedded Cameras on Mobile Phones. In 3rd International ICST Conference on Security
and Privacy in Mobile Information and Communication Systems, MobiSec, May 2011.
(Best Paper Award)
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F. Mohammad O. Derawi, Heiko Witte, Simon McCallum and Patrick bours, Biometric Ac-
cess Control using Near Field Communication and Smart Phones. In 5th IAPR International
Conference on Biometrics (ICB12), March 2012.

G. Rubathas Thirumathyam and Mohammad O. Derawi. Biometric Template Data Protection
in Mobile Device Environment Using XML-database. In 2nd International Workshop on
Security and Communication Networks (IWSCN), May 2010.

The relationship between labeled topics and papers included in the appendices is shown
in Figure 1.2.

Figure 1.2: Relationship between labelled topics and included appendix papers

1.2 Ethical Considerations

A participant agreement form was signed by the volunteers, which is attached in Appendix
G. Data collected during experiments was anonymized such that individuals cannot be
identified from the data after the experiment. The link between the experiment volunteer
and his/her biometric data exists via a consecutively selected ID number. Such a link needs
to exist as long as the experiment takes place. The biometric acceleration data and the
personal information of the experiment participants were stored on different media. As
soon as the collection of data was finished, the information linking the individual to an ID
number was destroyed.

1.3 Structure of the Dissertation

The remainder of the thesis is organized as follows. In Chapter two, an overview of back-
ground description and related work on biometrics, is given. In Chapter three, a summary
of the contributions of the included papers and thesis is presented. In Chapters four to
eleven, the eight research papers listed on page 3 are attached. In the appendices, the six
research papers from A-F are presented and the participant agreement form is available.
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Chapter 2

Background and Related Work

2.1 Authentication

Authentication is process of determining whether someone or something is who or what it
is declared to be [51]. Authentication is an area which has grown in the recent decades and
become routinely used in different sectors. Authentication is an important aspect of infor-
mation security that aims to prevent unauthorized access and to decrease the risk against
any theft or disclosure of sensitive information. Examples of authentication are passwords
which are used to get access to computers, PIN codes that are used to get access to bank ac-
counts or mobile phones and passports that are used at border control. We identify friends
and family by their voices, faces, the way they walk, etc. The words authentication and
identification are terms that are often mixed up by people, but they are different by defini-
tion. Authentication is a 1:1 (pronounced one to one) verification of an identity whereas
identification means establishing the identity of a person. Identification is also known as
a 1:n (pronounced one to n) verification of an identity [13]. As we realize there are sev-
eral ways in which a user may be authenticated; here we outline the three factors in which
authentication can be done:

• Something you know (Knowledge based) - For example a secret password, a secret
phrase or a PIN code;

• Something you have (Object based) - For example a smart card, a token or a physical
key etc;

• Something you are (Body based) - For example fingerprint, face recognition or gait
recognition, in general a biometric property.

2.1.1 Something you know

Something you know is an authentication method which is based on some secret the user
knows and it is the oldest, best known, and most used way of identifying oneself [13].
Examples of this are passwords and personal identification number (PIN) codes. Today,
the most popular and widely used method for authenticating is by entering username and
password. It is the most common form to control access to personal computers, networks
and Internet. Usage of a PIN code is another example of authentication used to get access
to bank accounts and withdrawing money from ATM machine or access to mobile phones.

This authentication method has for a long time been applied because it is cheap, easy to
implement and is fast. It is also one of the reasons why it is used in many dissimilar appli-
cations which requires the users to apply more than one password/PIN code. Generally it
is easier to remember one particular password or a PIN code to be used for many different
applications. This raises the issue of stealing or guessing the password. If the user is forced
to remember multiple passwords, to change passwords regularly, or to choose to guess dif-
ficult passwords, then usually that leads to the risk that the user will write them down.
These passwords are often stored in an easy accessible physical place or in a file document.
These mentioned drawbacks and difficulties increases the cost of using passwords and PIN
codes.
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2.1.2 Something you have

When authenticating by something that you have requires, the user possesses a token that
an authorized user of services has given to ease authentication. Examples of tokens are
keys, magnetic cards, SIM cards, smart cards, bank cards, etc. Instead of knowing or re-
membering longer and difficult passwords, the user can use the token that stores a secret
in a secure manner. The only object the user requires for authentication is a piece of hard-
ware containing a unique secret. For an attacker to gain access he must copy or steal the
hardware item, which is in most cases very hard. The disadvantage of this authentication
method is that costs are higher due to need of hardware (both tokens and readers). In case
of loss or theft of a token the user must inform his provider for disabling of the token [13].

2.1.3 Something you are

People might forget passwords and might lose tokens. The authentication method of some-
thing you are, also known as biometrics, overcomes these problems.

Most biometric features are unique per person and they are found in almost all people
in some way or another. Human biometrics can be classified into two types:

Physiological: are the biometric characteristics related to the parts of a human body. Ex-
amples are fingerprint, face recognition, DNA, iris and hand recognition.

Behavioral: are the biometrics related to person’s behavioral characteristics, such as keystroke
recognition, gait recognition, speech/voice recognition and signature recognition, etc.

In Section 2.2 we will give more details on biometrics.

2.1.4 Multi-Factor Authentication

Multi-factor authentication requires the use of elements from two or more categories. Com-
bination of authentication factors may provide greater levels of security to the systems.
Some examples are:

Know and Have: An example is a personal PIN (something the users Know) and a bank
card (something the users Have), to get money out of an ATM.

Have and Are: For example a bank card (something the users Have) in combination with
a signature (something the users Are) when getting money at the counter inside a
bank.

Know and Are: For example using a combination of PIN code (something the users Know)
with face recognition (something the users Are) to access in a laboratory room.

Are and Are: Combination of multiple biometric modalities, such as using gait (something
the user Are) and fingerprint (something the user Are) in mobile phones for authen-
tication.

When using combination of authentication factors, it is important to make sure that
both factors are used and needed for authentication. For example, to have access to a bank
account and make a money transfer we need both to know a secret password and have a
token, if one of these are missing we cannot make the transfer [13].
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2.2 Biometrics

The following is one of the definitions of a biometric system [52].

Automated recognition of individuals based on their behavioral and biolog-
ical characteristics.

People have always been able to recognize others by their biometric properties such as
voice, face, build and many more. It is not immediately apparent that gait can be used
for biometric recognition, however even William Shakespeare referred to gait recognition.
In his play, The Tempest [Act 4, Scene 1], Ceres observes High’st Queen of state, Great Juno
comes; I know her by her gait [111].

According to ISO/IEC JTC 1/SC37 TR 24741 [52], the study of fingerprinting dates back
to ancient China; we often remember and identify people by their face or by the sound of
their voice; and a signature is the established method of authentication in banking, for legal
contracts, and passports.

In 1809 Thomas Bewick, an English wood engraver, started to use his fingerprint as his
signature, in combination with his written name to denote identity of his publications [41].
Many researchers contributed with their study on the fingerprints during these years, and
in 1846 Nehemiah Grew published the first scientific paper where he described his system-
atic study on the ridge, valley and pore structure in fingerprints. In the 1880s Faulds, Her-
schel, and Galton continued the work on fingerprint recognition. Around 1870 Alphonse
Bertillon described a system of body measurements for identifying people which was used
until the 1920s in the USA to identify prisoners [13]. Features like voice, signature and
retina recognition became popular a period after.

In the 1980s, fingerprint scanners, speaker recognition, hand geometry, signature and
retina recognition systems were being connected to personal computers to control access
to stored information. Based on a concept patented in the 1980s, iris recognition systems
became available in the mid-1990s. Today there are many commercially-available systems,
utilizing hand and finger geometry, iris and fingerprint patterns, face images, voice, gait,
signature dynamics, keystroke dynamics, and hand vein patterns.

2.2.1 Fundamental concepts

There are several biometric characteristics on individuals that can be used for identifica-
tion or authentication purposes. These biometric characteristics posses features which can
be extracted for the purpose of automated recognition of individuals. The most common
physical biometric characteristics are the eye, face, fingerprints, hand and voice; while sig-
nature, typing rhythm and gait are the most common behavioral biometric characteristics.
According to [54], a biometric characteristic should have the following properties:

Universality: Each person should have the characteristics.

Distinctiveness: Any two persons should be sufficiently different in terms of the charac-
teristics.

Permanence: The characteristics should be sufficiently invariant over a period of time.

Collectability: The characteristics can be measured quantitatively.

In order to be able to use a biometric system, these first four properties should be sat-
isfied. For a biometric authentication system to be practical, three more properties should
also be considered [54]:

Performance: Measures the recognition accuracy and speed, the resources required to achieve
the desired recognition accuracy and speed, as well as the operational and environ-
mental factors that affect the accuracy and speed.
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Acceptability: Indicates the extent to which people are willing to accept the use of a par-
ticular biometric identifier in their daily lives.

Circumvention: Reflects how easily the system can be fooled using fraudulent methods.

As all these properties are needed, a practical biometric system should have the desired
recognition accuracy and speed, be accepted by people and harmless, and should also pro-
vide proper security against any possible attack. It is impossible to choose one biometric
feature as the best solution for all situations or to say that this feature is better than another.
Each biometric feature has its own strengths and weaknesses. To decide which feature to
use in a particular situation depends on that situation and the user demands. A way to
classify biometrics characteristic is by using the properties described above. In Table 2.1
the classification is done for some biometrics. The values are ranging from high to low
(where high is best, except for circumvention where low is the best).

Table 2.1: Comparison of Various Biometric Features [13]

Biometric Features Univ Dist Perm Coll Perf Acce Circ
DNA H H H L H L L
Ear M M H M M H H
Face H L M H L H H
Facial Thermogram H H L H M H L
Fingerprint M H H M H M M
Gait M L L H L H M
Hand Geometry M M M H M M M
Hand Vein M M M M M M L
Iris H H H M H L L
Keystroke L L L M L M M
Odor H H H L L M L
Palmprint M H H M H M M
Retina H H M L H L L
Signature L L L H L H H
Voice M L L M L H H

2.2.2 Biometric systems

Given the variety of applications and technologies, it might seem difficult to draw any
generalizations about biometric systems. All such systems, however, have many elements
in common. Biometric samples are acquired from a subject by a sensor. The sensor output
can be sent to a processor which extracts the distinctive but repeatable measures of the
sample (the features), discarding all other components. The resulting features can be stored
in the database as a reference, sometimes called a biometric ”reference” or (in this case) a
biometric ”template”. A new sample can be compared to a specific reference, to many
references or to all references already in the database to determine if there is a match. A
decision regarding the identity claim is made based upon the similarity between the sample
features and those of the reference or references compared.

Figure 2.1 illustrates the information flow within a general biometric system, showing
a general biometric system consisting of data capture, signal processing, storage, match-
ing and decision subsystems. This diagram illustrates both enrollment, and the operation
of verification and identification systems. In the following we describe each of these sub-
systems briefly. It should be noted that, in any real biometric system, these conceptual
components may not exist or may not directly correspond to the physical components.
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Figure 2.1: Architecture of a Biometric System - ISO/IEC JTC1 SC37 SD11

Data capture subsystem: Biometric systems begin with the collection of a signal from a
behavioral/biological characteristic. As data from a biometric sensor can be one-
(fingerprint), two- (vein) or multi-dimensional (keyboard dynamics), we are not gen-
erally dealing with images. To simplify our vocabulary, we refer to raw signals simply
as samples.

Signal processing subsystem: The signal processing subsystem extracts the distinguish-
ing features from a biometric sample. This may involve locating the signal of the
subjects biometric characteristics within the received sample (a process known as
segmentation), feature extraction, and quality control to ensure that the extracted fea-
tures are likely to be distinguishing and repeatable. Should quality control reject the
received sample/s, control may return to the data capture subsystem to collect a fur-
ther sample/s.

Data storage subsystem Biometric references are stored within an enrollment database
held in the data storage subsystem. Each reference is associated with details of the
enrolled subject. It should be noted that prior to being stored in the enrollment
database, references may be re-formatted into a standardized biometric data inter-
change format. References may be stored within a biometric capture device, on a
portable medium such as a smart card, locally such as on a personal computer or
local server, or in a central database.

Comparison subsystem: In the comparison subsystem, the features are compared against
one or more references and comparison scores are passed to the decision subsystem.
The scores indicate the degree of fit between the features and reference/s compared.
For verification of a claim of enrollment in a simple system, a single specific claim of
a subject would lead to the comparison of a submitted sample to a single reference,
resulting in a single comparison score between the submitted sample and the claimed
reference. For identification of an unknown individual without a claim to a specific
reference, many or all references in the database may be compared with the features,
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resulting in the output of a score for each comparison, or a list of ”candidate” matches
from the database.

Decision subsystem: The decision subsystem uses the comparison scores generated from
one or more attempts to provide the decision outcome for a verification or identifica-
tion transaction.

In the case of verification, the features are considered to match a compared reference
when the comparison score exceeds a specified threshold. A claim about the subjects
enrollment can then be verified on the basis of the decision policy, which may allow
or require multiple attempts.

In the case of identification, the enrollee reference is a potential candidate for the sub-
ject when the comparison score exceeds a specified threshold, and/or when the com-
parison score is among the highest k values generated during comparisons across the
entire database. The decision policy may allow or require multiple attempts before
making an identification decision

We will in the following go into more details within the functions of a general biometric
system, i.e. the enrollment and recognition phase:

Enrollment In enrollment, a transaction by a subject is processed by the system in order
to generate and store an enrollment record for that individual. The enrollment record
will consist of the biometric reference (a stored sample, template or model) for the
individual and perhaps other information, such as a name. At the time of enrollment,
the veracity of this other information must be ascertained from external source doc-
umentation, such as birth certificates, passports or other trusted documents. The use
of biometrics does not obviate the need for care in ascertaining the validity of these
documents at the time of enrollment. Note that in some identification systems enroll-
ment may not be a distinct phase; an encounter with an individual who is not found
in the database results in an enrollment.

Verification (or authentication) In verification, a transaction by a subject is processed by
the system in order to verify a positive specific claim about the subjects enrollment
(e.g. I am enrolled as subject X). Verification will either accept or reject the claim.
The verification decision outcome is considered to be erroneous if either a false claim
is accepted (false accept) or a true claim is rejected (false reject). It should be noted
that that some biometric systems will allow a single person to enroll more than one
instance of a biometric characteristic (for example, an iris system may allow a person
to enroll both iris images, while a fingerprint system may support the enrollment of
two or more fingers as backup, in case one finger gets damaged). Verification is also
referred to as (1:1) - one to one - comparison.

Identification In identification, a transaction by a subject is processed by the system in
order to find the identifier of the subjects enrollment record. Identification provides
a candidate list of enrollment records. This list may be empty or may contain only
one record. The identification process is considered successful when the subject is
enrolled, and at least one enrollment record is in the candidate list. The identification
is considered to be erroneous if either an enrolled subjects enrollment record is not in
the resulting candidate list (false-negative identification error), or if a transaction by
a non-enrolled subject produces a non-empty candidate list (false positive identifica-
tion error). Identification is also referred to as (1:n) - one to many - comparison.

2.2.3 Basic System Errors

Biometric authentication systems typically require specifications in terms of maximum al-
lowable degree of errors, usually expressed as error rates. It is important to understand the
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type of the errors before a solution is designed. Some of these errors can be directly related
to the results deduced from a pattern recognition application, which is inherently similar
to a biometric authentication system. What is certain is that any biometric authentication
system will make false decisions, and that the true value of the various error rates cannot
be computed or theoretically established; it is only possible to obtain statistical estimates of
the errors using test databases of biometric samples.

In this section the intuitive and theoretical meaning of different error types (found in
ISO/IEC 19795-1) will be introduced. The main focus will be on the errors made by the
comparison engine of a verification system. As described earlier the comparison engine of
an authentication system corresponds to the biometric comparator that makes a (1:1) com-
parison decision based on a score s as illustrated under the decision subsystem in Figure
2.1. The comparison engine of an identification system makes (1:n) comparison decisions.

2.2.3.1 Comparison

A comparator is a system that takes two samples of biometric data as input and returns a
comparison score that indicates their similarity as output. This score is used for determin-
ing whether the two biometric samples are from the same source or not. In order to deepen
the meaning of a comparator, the following notations are introduced:

b and b’: Two biometric characteristics sources (e.g., two fingers or two faces).

B = f(b) and B’ = f(b’): The associated machine representations of these biomet-
rics. f represents the process of sampling the data with a sensor and,
perhaps, applying some processing to extract the features B and B’.

Unfortunately, the biometrics sources b and b’ (of the actual subjects) are functions of
time (meaning that a biometric characteristic, e.g. a fingerprint, may change over time),
and the sensing function f could also perhaps be a function depending on environmental
factors such like temperature or humidity. Therefore, this variability must be introduced
and is indicated by the denoted t in the following

B = B(t) = f(b(t)) and B’ = B’(t0) = f(b’(t’))

Biometric comparator makes measures whether or not the samples are from the same
source. This measure is typically an algorithmically defined similarity measure, which is
highly dependent on the precision of the acquisition device and machine representation of
the biometric samples, such as using a distance metric. If the similarity measure is able to
capture nuances in biometrics that differentiate one person from the next, this similarity
should then successfully relate to the comparison probability. Nevertheless, the compari-
son engine takes b and b’ as input and computes a score:

s(B’,B) = s(B’(t’),B(t)) = s(f(b’(t’)), f(b(t)))

Typically one of the machine representations (for instance B) is the enrolled sample,
which is rarely changed unless desired for specific reasons, and the other of the machine
representations (for instance B’) is the live query sample. However, this score s(B’,B) only
expresses some sort of likelihood that the true biometrics b’ and b are the same. It can
be assumed that for a higher similarity comparison score s(B’,B), the more likely that two
biometrics come from the same b. An alternative way to compute comparison scores is to
determine distances , or dissimilarities, d(B’,B) between the samples B’ and B. Such dis-
tance scores score are calculated by the use of a distance metric, e.g. the Absolute distance
between corresponding points in two sets. The distance metric should in principal give a
small intra-class distance, meaning that samples from the same person get a low score, and
a large inter-class distance, meaning that samples from different persons should give a high
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score. The assumption is then the opposite of a similarity comparison score, namely that
a lower distance comparison score would result that the more likely two biometrics come
from the same b.

The biometric comparison engine determines the accuracy of the error rates in terms
of the trueness of two hypotheses. Given two biometric samples, we construct the null
hypothesis and the alternate hypothesis as follows:

H0 ⇒ the two samples match; (2.1)

Ha ⇒ the two samples do not match; (2.2)

2.2.3.2 Accuracy

The definition of accuracy in biometric applications can differ; as well as the decision mak-
ing of that biometric application, which therefore gives different definitions of errors. There
are many terminologies that express the accuracy of an application, such as False Match
Rate (FMR), False Accept Rate (FAR), False Positive Rate (FPR), etc. The most common
type of errors used are False Match Rate (FMR), False Accept Rate (FAR), False Non Match
Rate (FNMR), False Rejection Rate (FRR) and the Equal Error Rate (EER).

FAR and FRR are terminologies that reflects the accuracy at system level, whereas FMR
and FNMR reflect the accuracy at algorithm level. The difference between the two pairs
of error terminologies is that FAR against FRR (and/or FMR against FNMR) consider the
Failure to Acquire rate (FTA).

The common and standardized metrics for measuring the accuracy of biometric recog-
nition algorithms are given in Table 2.2.

The trade-off between FMR/FAR and FNMR/FRR can be shown by using the Decision
Error Trade-off (DET) or Receiver Operating Characteristic (ROC) curves. The difference
between the DET and ROC curve is the change in the y-axis, where (1-FNMR) is substituted
instead of FNMR for the DET-curve.

FMR and FNMR are typically traded off against each other, usually to increase either se-
curity or convenience/inclusiveness. Both are functions of a threshold value, which can be
raised to a system-dependent level to make the biometric system more secure by reducing
the number of false matches. However, at the same time the number of false non-matches
increases and more valid users are rejected. The other way around, more impostors may
gain access, if the threshold value is chosen at a lower level to make the application more
convenient to users. This trade-off between security and convenience, FNMR and FMR, is
illustrated in the curve in Figure 2.2, and the requirements of different types of applications
(forensic, civilian and high security) are positioned.

High-security applications may require a very high threshold value, to keep the risk of
granting access to impostors as low as possible. The operator might even accept a higher
rate of valid users being rejected, only to be sure no access is granted to invalid users.
Forensic applications, such as the identification of an individual from a huge population
rather apply a lower threshold to avoid that the sought-after is wrongly excluded from the
matches. In this case, the forensic examiner might accept to manually inspect a greater
number of incorrect matches. The threshold used in civilian applications is found some-
where in the middle, depending on the application, closer to security or comfort.

The last stage is to decide what threshold the system should use. This depends highly
on the application. The extreme cases for the thresholds are when FMR is close to 1 and
FNMR is close to 0, or vice versa. The first extreme case implies that you are nearly al-
ways able to authenticate yourself, but so does everyone else, and not only are they able to
authenticate them as themselves, but also as anyone else. Another way to interpret this is
that you will have full convenience, but no security at all. The other extreme case implies
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Table 2.2: Biometric performance rates (ISO/IEC 19795-1, 2006)

Performance Metric Acronym Description
Failure to capture rate FTC The proportion of biometric capture process that failed to

produce a captured biometric sample
Failure to extract rate FTX The proportion of successfully captured samples that

failed to generate templates
Failure to acquire rate FTA The proportion of a specified set of acquisitions that were

failures to accept for subsequent comparison the output of
a data capture process. This can be two cases: fails to cap-
ture or fails to generate templates from successfully cap-
tured samples. By function: FTA = FTC + (1− FTC) ∗
FTX

Failure to enroll rate FTE Proportion of biometric enrollment transactions (that did
not fail for non-biometric reasons), that failed to create
and store a biometric enrollment data record for an eli-
gible biometric capture subject, in accordance with a bio-
metric enrollment policy

False match rate FMR The proportion of the completed biometric non-match
comparison trials that result in a false match. FMR reflects
the accuracy in algorithm level.

False non-match rate FNMR The proportion of the completed biometric match com-
parison trials that result in a false non-match FMR reflects
the accuracy in algorithm level.

False accept(ance) rate FAR The proportion of the completed biometric non-accepted
comparison trials that result in a false accept(ance). FAR
reflects the accuracy in system level. By function: FAR =
FMR ∗ (1− FTA)

False reject(ion) rate FRR The proportion of the completed biometric accept(ance)
comparison trials that result in a false non-accepted case.
FRR reflects the accuracy in system level. By function:
FRR = FNMR ∗ (1− FTA) + FTA

Genuine accept rate GAR GAR = 1 - FRR
Equal error rate EER Point where FAR equals FRR (or FMR meets FNMR)

Figure 2.2: Exemplary ROC curve of a biometric system. [118]
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that you can never authenticate you as yourself, but this also accounts for everyone else,
so they can never authenticate as you either. Therefore you will have high security, but no
convenience.

The Equal Error Rate (EER) is a point where FMR=FNMR and can be found by inter-
secting DET curve with the dashed red line (function where x = y in Figure 2.3). This
threshold gives this joint error rate, which is very commonly used to compare different
systems against each other, and thus, it generally gives one an idea of how well the system
has performed.

Figure 2.3: Performance in the algorithm level.

Biometric applications may be categorized into three main groups [118]:

1. Forensics application, where biometric is used mainly for the identification and where
no pre-enrollment exist, for example criminal investigation for corpse identification,
parenthood determination, etc.

2. Government applications, where biometric is used mainly for the authentication of
personal documents, such as passports, ID cards and driver’s licenses; border and
immigration control; social security and welfare-disbursement; voter registration and
control during elections; e-Government.

3. Commercial applications, where biometric is used mainly for the authentication of
physical access control; network logins; e-Commerce; ATMs; credit cards; device ac-
cess to computers, mobile phones, PDAs; facial recognition software; e-Health.

This order generally reflects the emergence and use over time of biometric recogni-
tion systems. Initially found mainly in the field of criminology and forensics, biometrics
underwent a market breakthrough when governments started to integrate biometric ac-
cess control mechanisms in personal documents. While access control and authentication
have remained the primary purpose, other fields of application are taking off. Google’s
photo organizer software Picasa and social-networking site Facebook have integrated face
recognition algorithms to make it easier to search and display all photos featuring a certain
person. Picasa is available as an application for several operating systems, while its photo
sharing web site (Picasa Web Albums) and Facebook provide face recognition online. Bio-
metric systems embedded in cars of a vehicle fleet can help to identify the driver, adjust
seat, rear mirrors, and steering wheel to meet individual preferences.

Commercial and government applications are likely to overlap in some fields. Future e-
commerce, e-health and e-government services may require authentication with the help of
biometric personal documents issued by governments, as soon as they are used by a large
enough part of the population. Some developing countries have used biometrics for voter
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2.3 GAIT RECOGNITION

registration in the run-up to elections in order to avoid out-dated voter lists and election
fraud.

Market forecasts on biometric spending are generally optimistic. Growth is expected
especially in commercial and government applications, where the biometrics industry and
the related smart card chip industry benefit from government decisions toward the adop-
tion of electronic personal documents and biometrics.

2.3 Gait Recognition

Data for gait recognition is generally captured using 3 different types of equipment:

• Video cameras;

• Sensors installed in the floor; and

• Wearable sensors attached to the body of the user.

The main focus of this thesis is mostly on wearable sensors, for both static and con-
tinuous authentication. This section also discusses the best possible body locations where
motion-recording sensors (MRS) could be attached or worn. Some examples are also pro-
vided regarding the performance accuracies of such locations. The three approaches in gait
recognition were first proposed by Ikeda et al. [50] and later revised by Gafurov [33] are (1)
Video Sensor Based (VS); (2) Floor Sensor based (FS) and (3) Wearable Sensor based (WS).
In the following we will go into more details of each of these approaches.

2.3.1 Video Sensor (VS) Based

VS is the most widely used gait recognition technique, as it allows the collection of gait
features from a distance. The system of video sensor approach would typically consist of
one or several digital or analog cameras (black-and-white or color), with suitable optics
in order to acquire the necessary gait data. It is mainly used in surveillance and forensics
applications [43, 67, 35]. With the use of video processing techniques there could be several
possible ways in identifying a person. The techniques could be thresholding to convert
the images into black and white, background segmentation which performs a simple back-
ground subtraction or pixel counting to count the number of light or dark pixels. Figure
2.4 shows an example of the VS-based approach how to extract information from an video
image.

Figure 2.4: Video Based Approach [91]
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Alternative techniques are to extract static features like stride length which are deter-
mined by body geometry and dynamic features from body silhouettes [11]. The VS based
gait analysis techniques can be classified as model-based [122, 12] and model free [93]. The
main advantage of model based approaches is the direct extraction of gait signatures from
model parameters, but it is computationally expensive. Model free techniques characterize
the body motion independently from body structure. VS gait analysis can also be catego-
rized according to the technology used, as marker-based or marker-less. In marker based
systems specific points in the subject’s body are labeled by markers. By tracking these
points in the video sequence the body motion can be tracked and analyzed [25, 60]. VS
based gait recognition provides wide range of gait features and many works utilized dif-
ferent sets of features and classification techniques. Benabdelkader et. al. [8] used stride
length and cadence as features extracted.

During the last decade when scientists have been analyzing the gait movements of crim-
inals caught on CCTV in order to compare them with those of a suspect [117]. In December
2004, there was a case where a perpetrator robbed a bank in Denmark[66]. Two surveillance
cameras were recording the robbery. One camera placed at the entrance that recorded the
robber’s frontal view (process of walking in, standing and walking in the bank during the
robbery, and leaving the bank). The other camera placed inside the bank that recorded the
cashier’s desk, provided the persecution enough evidence to convince the court rely on
the gait-analysis tool to convict the perpetrator of the robbery. At about the same time in
late December 2004, there was a murder crime scene in the United Kingdom. A podiatrist
explained the supreme court that the person captured on the video and some other previ-
ous videos of the murderer was the same [17]. An other case occurred around mid-April
2008, when a burglar was caught because of his bow-legged walk [7]. Despite the fact that
the burglars face was unable to be seen, they could identify the burglar. Even though in
most cases during the robbery, the perpetrator wears a mask to hide his body character-
istics of identity such as face and hands so no evidence like face or fingerprints could be
shown or found, cameras are still available and useful in recording the gait where enough
information can be used in the process of perpetrator identification.

2.3.2 Floor Sensor Based

The floor sensor approach, considers spreading touch sensors or pressure sensors on the
floor (on a mat), where the positions of people are accurately detected. Gait data can be
measured while people walk across in two different ways. The first is a force to the ground
by the person’s walk, which is also known as the GRF (Ground Reaction Force). The other
is to measure the pressure, i.e the force over an area applied by a subject in a direction
perpendicular to the surface. Floor sensors have several studies proposed to recognize
human behavior using floor sensors [97, 85]

In a research from the University of Southampton [82], a floor sensor for gait recognition
was prototyped as illustrated in Figure 2.5. Commercial customizable low profile floor mat
system that captures multiple sequential footsteps for analysis of foot function and gait are
even available for purchase. They also provide data for objective and quantified analysis
that is used to answer clinical and biometrics related questions.

2.3.3 Wearable-Sensor Based

The third gait approach, a part from the video sensor (VS) based and floor sensor (FS) based
gait recognition approach, is the wearable sensor (WS) based approach. By definition, in
this approach a recording sensor worn or attached to the human body, for example in the
pockets, waist or shoes. These sensors can measure numerous types of data. Gyro sensors
(measure rotation), accelerometers (measures acceleration), telemetry sensor system (mea-
sures footfall timing) [63], have so far had a great focus in gait research, where especially
accelerometers were used most for gait recognition. These accelerometers are becoming an
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Figure 2.5: Gait collection by floor sensors. a) is a picture of a prototype floor sensor carpet
b), shows footsteps recognized, c) shows the time spent at each location in a) and d) shows
footstep profiles for heel and toe strikes. Taken and modified from [84].

important tool into our daily life. All of the new mobile smartphones nowadays, are al-
ready equipped with wearable-sensors; they use built-in accelerometers in order to detect
when the device rotates, so it can tell whether to display what is on the screen in portrait
or landscape format. Moreover, these devices can be used for detecting when a person lifts
the phone to the ear so that phone calls are answered automatically.

It has increased the interests in performing research on different aspects within wearable-
based gait biometrics. Analyzing of the gait data is a challenge-full task for creating efficient
feature extraction approaches that works properly for both activity and gait recognition.
For general WS-based gait analysis, the signal processing flow is illustrated in Figure 2.6.

One of the more challenging research topics today lies within continuous authentica-
tion. While the user is walking, the motion is recorded by the acceleration sensor in a way
that recording could be used to verify the identity of the user continuously. In static au-
thentication, the authentication mechanism will make a decision about the correctness of
the claimed user identity directly after the person has walked. This decision is either ac-
cepting or rejecting this person, resulting in either access or not to the particular system.
In continuous authentication, the user is by default accepted since his or her identity has
been verified by a static authentication mechanism. A biometric continuous authentication
mechanism will therefore only reject users if they have proven not to be the genuine user.
In order to be able to measure the genuineness of the user, then trust levels and a way to
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Figure 2.6: Processing flow of method for gait verification

adjust the trust level based on newly defined penalty and reward functions is needed.

2.3.3.1 Databases

There are no publications so far that introduce an official public database created for ac-
celerometer based gait recognition. However, there is one semi-public gait data-set which
was collected at McGill University in June and July, 2010 by Frank et al [32]. Researchers
have the ability to test their algorithms on it but will not be able to obtain a copy of the
database. This data-set contains the raw sensor data collected from a mobile phone (HTC
Nexus One) in the pocket of 20 individuals, performing two separate 15 minute walks on
two different days. The subject information, including the gender, height, weight, and
descriptions of clothing and shoes warn on each day are also available.

The rest of the databases that have been created are considered as private databases.
In Table 2.3 a summary of collected databases performed in research is given. The table
includes the activity tested and the number of subjects.

Study Walking activities Subjects Year
Mantyjarvi et al. [78] normal 36 2001
Henriksen et al. [40] normal 20 2004

Ailisto et al. [2] normal 36 2005
Buvarp [16] normal 22 2006
Gafurov [33] normal 21, 30, 50, 100 2005 - 2008

Rong et al. [106] normal 35 2007
Holien [42] normal, fast, slow, circle 60 2008

Mjaaland [84] normal (mimicking) 50 2009
Derawi et al. [28] normal 51 2010
Wang et al. [125] normal 25 2010
Frank et al. [31] normal,running, lingering 24 2010

Nickel et al. [90] normal 36 2011

Table 2.3: Database Summary
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The databases are all controlled experiments. A controlled experiment is a fixed labo-
ratory setting which means it is quite different from a real world scenario due to its impor-
tance in getting as much data as possible during the research. While in everyday life people
keep their mobile phone in their pockets or hold it in their hands, the phone continuously
moves in different directions, it rotates and we usually attach it to a single part of the body
during the whole time. As shown in the table 2.3 the number of volunteers differs quite
a lot. The number of test-subjects has been different from one research to another which
makes the recognition performances incomparable with eachother. Clothing may appear to
be another issue because gait is different from one person to another and clothing may turn
out to be a critical parameter in affecting the gait recognition research outcomes. Moreover,
only a few studies have made research in different behavioral settings and one study has
shown that there is a slight change of the gait-signal of a person from one day to another
[42].

2.3.3.2 Data acquisition

There are several types of equipment available to gain the accelerometer data: a dedicated
accelerometer, GPS device, mobile phone, etc. these accelerometers measure the acceler-
ation of three directions, first vertical or x-direction, second horizontal or y-direction and
third lateral or z-direction. Acceleration is quantified in the SI unit meters per second per
second (m/s2), in the unit Gal (defined as 1 centimeter per second squared (1 cm/s2)), or
popularly in terms of g-force (g). An accelerometer output value is a scalar corresponding
to the magnitude of the acceleration vector. The most common acceleration, and one that
we are constantly exposed to, is the acceleration that is a result of the earth’s gravitational
pull. This is a common reference value from which all other accelerations are measured
(known as g, which is around 9.8m/s2).

Depending on where the accelerometers are built (into cell phones or dedicated devices)
they normally output values at different sample-rates per time unit. In commercial devices,
piezoelectric, piezoresistive and capacitive components are commonly used to convert the
mechanical motion into an electrical signal. Piezoelectric accelerometers rely on piezoce-
ramics (e.g. lead zirconate titanate) or single crystals (e.g. quartz, tourmaline). They are
unmatched in terms of their upper frequency range, low packaged weight and high tem-
perature range. Capacitive accelerometers typically use a silicon micro-machined sensing
element. Their performance is superior in the low frequency range and achieve high sta-
bility and linearity.

Modern accelerometers are often small micro electro-mechanical systems (MEMS), and
are indeed the simplest MEMS devices possible, consisting of little more than a cantilever
beam with a proof mass (also known as seismic mass).

A typical accelerometer has the following basic specifications [109].

Analog vs. digital: The most important specification of an accelerometer for a given appli-
cation is its type of output. Analog accelerometers output a constant variable voltage
depending on the amount of acceleration applied. Digital accelerometers output a
variable frequency square wave, a method known as pulse-width modulation.

Number of axes: Accelerometers are available that measure in one, two, or three dimen-
sions. The most familiar type of accelerometer measures across two axes. However,
three-axis accelerometers are increasingly common and inexpensive (especially in
smartphones).

Output range: To measure the acceleration of gravity for use as a tilt sensor, an output
range of 1.5 g is sufficient.

Sensitivity: An indicator of the amount of change in output signal for a given change in
acceleration. A sensitive accelerometer will be more accurate.
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Sampling rate: The sampling rate of a sensor is usually measured in Hertz and indicates
the limit of the near-unity frequency response of the sensor, or how often a reliable
reading can be taken. Humans cannot create body motion much beyond the range
of 10-12 Hz. For this reason, a bandwidth of 40-60 Hz is adequate for tilt or human
motion sensing. For vibration measurement or accurate reading of impact forces,
bandwidth should be in the range of hundreds of Hertz.

Other specifications include: Zero g offset (voltage output at 0 g), noise (sensor mini-
mum resolution), temperature range, bias drift with temperature (effect of temperature on
voltage output at 0 g) sensitivity drift with temperature (effect of temperature on voltage
output per g) and power consumption.

Several studies have been using different accelerometer sensors for data capturing. An
overview of the placement of sensors and their models used in the literature is given in
Table 2.4.

Study Placement Sensor
Sazonov et al. [107] shoe MEMS accelerometer

Iso and Yamazaki [53] breast/hip cell phone accelerometer
Mostayed et al. [87] whole body weight force plate

Gafurov [33] ankle/pocket/arm/hip 3D accelerometer (MRS)
Rong et al. [105, 106] waist 3D accelerometer (analog)
Annadhorai et al. [3] leg wireless accelerometer(Tmote Sky)

Hynes et al. [48] pockets phone headset
Lee and Lee [68] waist 3D accelerometer (ADXL05, analog)

Ailisto et al. [1, 2] waist 3D accelerometer (ADXL202JQ, analog)
Frank et al. [31] hip cell phone accelerometer

Derawi et al. [28] hip cell phone accelerometer
Sebastijan and Damjan [112] hip cell phone accelerometer

Baechlin et al. [4] ankle 3D accelerometer
Henriksen et al. [40] elastic belt on body 3D accelerometer

Holien [42] hip 3D accelerometer (MRS)

Table 2.4: Data Acquisition Summary

The wearable sensors uses accelerometers to collect acceleration data in the x, y and z
direction, but there are many ways to go from here. Figure 2.7 shows acceleration graphs
for different directions. Each of the three top graphs are fragments of gait acceleration,
while the bottom graph is a combined version, or the resultant.

Gafurov et al. [33] refers to many different methods of combining the signals, but states
that the best performance is achieved when using all three dimensions combined into a
resultant vector :

rt =
√
x2t + y2t + z2t , t = 1, ..., N, (2.3)

where rt, xt, yt and zt are the magnitudes of resulting, vertical, horizontal and lateral
acceleration at time t, respectively and N is the number of recorded observations in the
signal.

2.3.3.3 Pre-processing

Pre-processing is the first step performed with the gait signal in all three directions (x,y
and z). Several gait pre-processing methods have been used in literature. Some studies do
include pre-processing and others not. The measured acceleration signals are sometimes
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Figure 2.7: Gait acceleration directions, vertical x, horizontal y, lateral z. The bottom graph,
is a combination of x, y and z, defined in Equation 2.3.

outputted as low-frequency signals. These signals are easily affected by different environ-
mental noise of the experiment like the equipment’s electronic noise the high frequency
noise, etc.

Interpolation:

The sampling frequency of every accelerometer sensor is different and the time is not equal
from one outputted sample to another. To make the time constant in the time axis from one
sample to the other we must apply a mathematical operation. Usually the raw data shows
that the time values obtained are typically very close to the desired values, so a simple
linear interpolation operation can solve the problem of unequal time intervals.

If the two known points are given by the coordinates (x0, y0) and (x1, y1), the linear
interpolant is the straight line between these points. For a value x in the interval (x0, y1) ,
the value y along the straight line is given from the equation 2.4

y − y0
x− x0

=
y1 − y0
x1 − x0

(2.4)

which can be derived geometrically from the Figure 2.8.
Solving this equation for y, which is the unknown value at x, gives Equation 2.5:

y = y0 + (x− x0)
y1 − y0
x1 − x0

(2.5)

Noise reduction:

Noise reduction is the process of removing noise from a signal. Noise can be random or
white noise with no coherence, or coherent noise introduced by the accelerometer sensor
or processing algorithms. The acceleration data contains unwanted values due to several
potential noise factors. This is a problem for biometrics in general, and one of the rea-
sons why a perfect reference template does not exist for most biometrics.There are differ-
ent ways of removing noise from a signal. Holien considered two possible filters in [42],
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Figure 2.8: Linear interpolation [42]

namely the Moving Average (MA) and the Weighted Moving Average (WMA). These con-
cepts are shown in Figure 2.9 a and b, respectively. The (Weighted) Moving Average filters

Figure 2.9: Moving average filters with and without weights [42]

rely on values neighboring the value in question. That is, if an extreme value lies in be-
tween several average values, the former value will be drawn towards the average to an
extent determined by the filters characteristics. The Weighted Moving Average filters let
the closest neighbors count the most, with a variable window size, while the non-weighted
Moving Average filters do not. The formulas for MA and WMA with a sliding window of
size 5 is given in Equation 2.6 and 2.7.

MA(at) =
at−2 + at−1 + at + at+1 + at+2

5
, (2.6)

where at is the acceleration-value in position t. All the four closest neighbors are given
the same weight.

WMA(at) =
(at−2 · 1) + (at−1 · 2) + (at · 3) + (at+1 · 2) + (at+2 · 1)

9
, (2.7)

where at is the acceleration-value in position t. The current value we are located at are
given weight 3, the two closest neighbors weight 2 and the next two neighbors weight 1.

There are also other options than can be used, we can use different window sizes. In
[87] Daubechies wavelet was used to remove noise.
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2.3.3.4 Data Analysis

User identification from gait patterns with accelerometers used is based on the assump-
tion of the gait acceleration profile being unique at some extent for each individual. First,
it is important to compute the feature template vector (that represents the characteristics
of the person’s gait) to authenticate and of course to store it. The feature vector is again
computed during the authentication process, based on a new biometric input and com-
pared to the feature template. An effective analyze of the accelerometer data can be made
in two domains; time-domain and/or the frequency-domain as illustrated in Figure 2.10.
The aim of the time-domain is analyzing the three acceleration signals (x,y,z) and monitor-

Figure 2.10: Top: Time Domain, Bottom: Frequency domain.

ing how these three signals change over time (t), whereas the aim of the frequency domain
analysis is showing how each band of frequencies is given. A given function or signal can
be converted between the domains of time and frequency domain by using mathematical
operators known as transformation.

Segmentation

The process of identifying boundaries in gait signals is known as gait segmentation. It can
be performed in different ways and is a very important issue. The signals gained from
different individuals are a composition of periodic segments recognized as gait cycles and
they correspond physically to two alternative steps of the individuals. These cycles begin
as soon as the foot touches the ground and finishes when the same foot touches the ground
for the second time, this process is shown in Figure 2.11.

The most common used gait segmentation is the cycle detection method as explained by
Derawi [26], Gafurov [33], Holien [42] or Mjaaland [84]. The segmentation process starts
by estimating how long one cycle is. This is done by extracting a small subset which is
further shifted to the overall signal, also known as the autocorrelation. The output of the
autocorrelation method is a new signal/curve with peaks. Each peak defines the gait sig-
nals starting and ending point. From the first peak to the other the first length of the cycle
is estimated. This is repeated until all lengst are estimated, then we are able to estimate the
overall cycle length by using the average of all lengths. Mantyjarvi et al. [78] applied more
or less same methodology with small differences.

In the following we will in more details describe how the segmentation is performed.
Individuals will differ according to the length of their legs, their weight and walking speed.
So prior to any cycle detection, it is most practical to perform an automatic estimation of
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Figure 2.11: Example of one gait cycle [42].

the cycle length. In order to detect cycles, is it very sensible to obtain an estimation of the
average cycle length.

The approach is to extract a subgraph from the middle of the gait sequence which is
compared to other parts of the graph as illustrated in Figure 2.12

Figure 2.12: Cycle length and cycle detection. A subgraph is extracted from the main signal
(subgraph) and compared to other parts of the graph. The highest correlations indicate
matching positions, and the distance between two samples in two subgraphs constitutes a
cycle. The circles represent possible starting locations of the subgraph, and averaging over
the distance between these yields the estimate [84]

.

By calculating the correlation between the subg-raph and other parts of the graph, and
remembering the positions with the best match, we can average over the distance between
each of these positions. If the starting point of the sub-graph is in the middle, then the
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correlations are high around that area before and after. If the starting point of the sub-
graph is either in the beginning or the ending, we might choose a wrong subgraph that is
not related to walking data. In this case we might have difficulties in estimating the correct
cycle length.

The actual cycle of a person could be defined differently. The beginning of a cycle could
be defined freely, meaning that you can choose where in the walking as one wants. Most
like a cycle starts when one of the foots is lifted, and ends when that foot is back in the
same position. This cycle is represented by Figure 2.13. The easiest way would be to look
at characteristics in common of the gait cycles, regardless of person.

Figure 2.13: An actual correct gait cycle. A = start of the step, B = first maximum, C = local
minimum, D = last maximum and E = end of the step [84].

Looking at the gait example in Figure 2.14, the reader might observe many characteris-
tics of the repetitive pattern. Hence, several studies did not concentrate on what is referred
to as the actual cycle, but rather any cycle defined between two repetitive points. As the
figure shows, the local extrema are clearly visible. In Derawi [26], Gafurov [33], Holien [42]
and Mjaalands [84] research, the minima are used for gait cycle detection. The process will
be described in the following.

Let N be the estimated cycle length and L the length of the entire gait sequence.

1. The minimum point, defined M, within the middle section of the gait sequence is
detected, and used as starting point. This minimum defines the start of a cycle, and
will be used as a base point to find others.

2. A search is made forward in the gait signal by jumping N data-points ahead, and
scanning the new point for another minimum, with a buffer of 10% samples of the
cycle length in each direction. This is repeated until the end of sequence is reached.
The minima are stored.

3. A search is made backward from the point M in the gait signal by jumping N data-
points backwards, and scanning the new point for another minimum, with a buffer
of 10% samples of the cyclelength in each direction. This is repeated until the start of
sequence is reached. The minima are stored.

4. The resulting cycle vector is produced, containing the sample locations of all the dis-
covered minima. The distance between these points are the cycles used. Hence, it is
known where the exact location of each cycle is.

When each is known, one can extract the cycles as illustrated in Figure 2.15
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Figure 2.14: A gait sequence example. Notice extrema that repeats throughout the signal
[84].

Figure 2.15: After each exact location is known, one can extract the cycles and overlay them
on each other [84].
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Mantyjarvi et al. [78] and Ailisto et al. [1] performed the approach in almost similar
way. Instead of extracting cycles consisting of two steps, then a cycle consisted of only one
step. These steps were further normalized into equal lengths.

Feature extraction in the time domain

One of the first applied methods in gait biometrics was the cycle detection which is a con-
tinuation of the average cycle method explained earlier. This has been the most applied
methods so far. It is a simple approach which obtains the average of all extracted cycles.
Despite the frequent use of average cycle method other extraction approaches such as n-bin
histograms and cumulants of different orders have been developed as well.

One of the first who applied the average cycle method was Ailisto [1] and Mantyjarvi
et al. [78] who averaged all segmentations (steps) in all three signals x, y, and z separately.
The averaged signals formed the feature vector for one subject (representation of a user).
Gafurov et al. [33] changed the concept slightly. Instead of using all three directions sepa-
rately, the resultant vector was used. Furthermore, all cycles were averaged instead of the
single steps. The averaging that was applied was by calculating the mean or the median.
In other papers by Derawi et al. [26] and Gafurov et al. [34] all the extracted cycles were
stored used and no average cycle was created.

The choice of averaging tool is a different story because performance is prone to degra-
dation from outliers and normalization. To solve this, proper pre-processing and a wise
choice of averaging and normalization tools are necessary. The average cycle is thus com-
puted where all cycles are averaged with each other using different approaches, for exam-
ple the mean of media as illustrated in Figure 2.16.

Figure 2.16: An averaged gait cycle, showing the mean averaging in red and median aver-
aging in blue [84].

Another approach by Gafurov [33] and Mantyjarvi et al. [78] used n-bin normalized
histogram as the feature vector. In a more general mathematical sense, a histogram is a
mapping that counts the number of observations that fall into various disjoint categories
(known as bins), whereas the graph of a histogram is merely one way to represent a his-
togram. In general, there is no ”best” number of bins, and different bin sizes can reveal
different features of the data.
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In the histogram similarity method, n bins of values are computed to form a histogram
of the combined gait signal. The histogram is normalized by the number of recorded
samples, and a distance metric is used to compute the separability between two such his-
tograms. Figure 2.17 illustrates the process of comparing two histograms.

Figure 2.17: The histogram similarity method. The gait sample is converted into what
represents the enrolled template histogram, while the right gait sample is being verified
towards this template [33].

A third approach (Sprager et al. [112]) experimented with cumulants of different orders.
All cumulant coefficients were calculated from zero-lag cumulant to cumulant with a fixed
lag constant (for second, third and fourth order) for each gait cycle. Their feature vector
was represented by the cumulant coefficients.

Gait feature extraction in the frequency domain

The extraction of the features in the frequency domain differs slightly from the time do-
main, as mathematical transformations, need to be applied. Among the most efficient ones
is known to be the Fourier transform. It is a mathematical operation which makes a trans-
formation of the signal from the time domain to the frequency domain, and vice versa.

The data which is outputted in the time domain from the accelerometer sensor needs
first to be transformed into the frequency domain by applying the Fourier transform. The
first step towards computing the power spectrum of the gait signal was applied by Rong
et al. [106] using the Discrete Fourier Transform (DFT). Another and a faster version of DFT,
the Fast Fourier Transform (FFT) was further applied by Baechlin et al. [4] and Gafurov
[33]. The outcome when applying the DFT/FFT to the acceleration signals results in a set
of coefficients. These coefficients are sine and cosine waves of appropriate frequencies.
The coefficients determined by the DFT/FFT represent the amplitudes of each of these
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components, which is used as the feature vector. The main difference between FFT and
DFT is the computation time where FFT takes O(N ∗ log2(N)) operations, whereas a DFT
takes O(N2) operations.

Figure 2.18 illustrate how a gait signal and its corresponding frequencies are trans-
formed. Once the transform is complete, it is thus possible to derive features from the

Figure 2.18: Gait signal in time (a) and frequency (b) domain [33].

signal in order to create a template. In [33], the frequency axis was divided into ranges,
and the highest amplitude within each range was used as the features, concatenated in a
feature vector.

In work of Ibrahim et al. [49], the Discrete Cosine Transform (DCT) is applied. In partic-
ular, a DCT is a Fourier-related transform similar to the DFT. DCTs are equivalent to DFTs
of roughly twice the length, operating on real data with even symmetry, where in some
variants the input and/or output data are shifted by half a sample. In the work of Ibrahim
et al., energy was calculated which was information passed through the DCT to obtain the
coefficient of the signal. These coefficients formed the feature vector.

Another method that has many similarities and few strong dissimilarities with FFT is
the Discrete Wavelet transform (DWT) that was applied by Mostayed et al. [87]. The feature
vector in the work was the de-noised signal when applying the the wavelet coefficients to
the clear signal.

In Iso et al. [53], the extraction of the spectral features such as the Wavelet Packet De-
composition (WPD) was applied. The wavelet packet decomposition (WPD) (sometimes
known as just wavelet packets) is a wavelet transform where the signal is passed through
multiple filters than the discrete wavelet transform (DWT) as mentioned earlier. Iso et al.
criticized the use of FFT stating that FFT was a typical signal processing approach that
only provided limited analysis resolution. It was further stated that the WPD was a finer
analysis in each frequency range through the use of localized orthogonal basis functions
with a splitting algorithms that down-sampled not only the scaling components but also
the wavelet components. By using the information criteria of WPD, the decomposed signal
was the representative feature of the signal patterns. The periodograms represented the
features of the best basis and the momentum of the information entropy distribution of the
best basis.

In the work of Bours and Shrestha [14], the principal component analysis (PCA) was
applied. The PCA is a statistical technique that, inside biometrics, mainly has been applied
to face recognition before, but also VS based gait recognition. In general any multidimen-
sional source of information is expressed in the basis consisting of the unit-vectors. The
idea behind PCA [20] is to find new basis vectors that express the underlying dataset best.
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Given a dataset, PCA will find new basis vectors such that the first basis vector will contain
the most information about the underlying dataset. The next basis vector will contain a
little less information, and in fact each following basis vector will contain less information
about the dataset as the basis vectors before. The basis vectors are also called eigenvectors
and the importance of the basis vectors is expressed in the so called eigenvalues. The num-
ber of eigenvalues equals the number of eigenvectors, which is again equal to the number
of dimensions in the dataset.

2.3.3.5 Comparison Algorithms

Statistical Approach

To compare two feature vectors with each other we apply a comparison function. A com-
parison function could be a distance metric function or a similarity function. There are are
infinitely many comparison functions to apply and each functions output different results.
The comparison function that is used has a major impact on the performance of the authen-
tication system and therefore it is very important to find a good comparison function.

A comparison function that has been applied by Ailisto [1] is the cross-correlation. The
cross correlation is a method of estimating the degree to which two feature vectors are the
same.

Two almost alike comparison approaches that have been applied in Gafurov [33] and
Holien [42] is the Absolute distance (mostly known as the Manhattan distance metric) and
Euclidean. Absolute distance is a very simple metric that takes the sum of the absolute
values of the differences between all the values in the template and the corresponding
values in the input. As a result of this, the Absolute distance requires that the template and
the input have equal length. It computes the distance that would be traveled to get from
one data point to the other if a grid-like path is followed. The equation of the Absolute
distance is given:

dabs.(X,Y ) =

k∑
i=1

|xi − yi|

The Euclidean distance is a slight modification of the Absolute distance. Instead of
taking the sum of the absolute differences we now take the square root of the sum of all
differences squared. This means that it measures the as-the-crow-flies distance between
two points. The equation of the Euclidean distance is given:

deucl.(X,Y ) =

√√√√ n∑
i=1

(xi − yi)2

A commonly referenced technique with strong reported performance is called Dynamic
Time Warping (DTW), this was considered by Holien [42], Mjaaland [84] and Derawi [27].
DTW is an algorithm for measuring similarity between two feature vectors which may
vary in time or speed. It can be used for slight variations of speed within a cycle. Generally
spoken, the DTW is an approach that allows to find an optimal comparison between two
given feature vectors with certain restrictions. Unlike other distance metric like the Abso-
lute or Euclidean metrics which both takes as input feature vectors of the same length, the
Dynamic Time Warping does not have that restriction.

Machine learning approach

The supervised learning in wearable gait recognition is a machine learning approach used
to get measures of a function derived from gait signal training data. The output of the
supervised learning function predicts a class label of the input known as classification.

32



2.3 GAIT RECOGNITION

Different approaches have been applied for regression and classification in wearable
gait recognition. The first example introduced in this subsection is the use of Support Vector
Machine (SVM) which was applied by Sprager et al. [112] to identify gait. The classification
was performed with machine learning tool, WEKA [104]. For the classification a kernel
function of n-order and a complexity parameter was used. The latest work performed on
accelerometer based recognition was performed by Nickel et al. [90].

Another applied classification approach by Sprager et al. [112] used the Principal Com-
ponent Analysis (PCA) to actually find out how similar walking patters are. PCA was per-
formed using Singular Value Decomposition (SVD) on the feature vector created. For this, the
Karhunen-Loeve transformation was applied.

Annadhorai et al. [3] applied Linear Discriminant Analysis (LDA) to select the best fea-
tures prior to classification. The features with the highest weighting in the LDA projection
matrix were given to the classifier that increased the classification accuracy of the system.
Furthermore, the k-Nearest Neighbor (k-NN) classifier was used for gait identification. The
k-NN classifier was chosen for its simplicity, scalability and small memory requirements.

Sazanov et al. [107] applied a multilayer perception (MLP) neural network as the pattern
classifier. The MLP uses hyperplanes to separate layers into different classes and consist
of three parts: The input layer, hidden layer, and output layer. The inputs to the network
are the determined feature vectors. The outputs of the system are the classes related to the
users.

Iso et al. [53] proposes a fuss-free gait analyzer for healthcare. The applied method-
ology, the Kohonen self-organizing map (KSOM) for deciding cluster borders on the learned
feature vector, and Bayesian theory was applied to improve the results.

2.3.3.6 Performance Evaluation

Comparing gait performances

There is no public data-set available for WS-based gait, in contrast to video-based gait bio-
metric. This complicates the issue of comparing the results obtained on various private-sets
with each other. We cannot consider any direct comparison of obtained results. Neverthe-
less, a short summary of the current WS-based gait recognition studies from years 2004 to
2012 is shown in Table 2.5. In the last column, #TP, is represented the number of subjects
that contributed to the test data set.

Study EER Recognition #TP
Huang et al. [44] - 96.93 % 9

Morris [86] - 97.4 % 10
Rong et al. [106] 5.6 % - 21
Frank et al. [106] - 100 % 25

Gafurov [33] 5 % - 30
Vildjiounaite et al. [120] 13.7 % - 31

Ailisto et al. [1] 6.4 % - 36
Ailisto et al. [2] 7.0 % , 19.0 % - 36
Nickel et al. [90] 10% - 36

Bours and Shrestha [14] 1.68% - 60
Derawi et al. [27] 5.7% - 60
Holien et al. [42] 5.9% - 60

Table 2.5: Performances of current wearable sensor-based gait recognitions
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2.4 Activity Recognition

Gait recognition is to recognize the person from the collected accelerometer data. Activity
recognition is to recognize a specific activity from the collected accelerometer data. Both
can be combined to first detect what kind of specific walking (fast, normal, slow, running,
etc) a user is doing or if the user is not performing a walking related activity (for example
sitting, standing, cycling, or sleeping).

Activity recognition is the process of identifying everyday common human activities. It
is a recently new area of study. Accelerometers are integrated in new mobile devices such
as smart phones, tablet computers, digital audio players (Ipod) etc., which can be used to
record the body motion. The majority of studies for activity recognition are performed by
using wearable sensors. In the following we will give details about the sensors that have
been used for activity recognition and which activities that were considered for identifying
human activities.

Due to many different application areas of activity recognition, there is no surprise that
the list of activities that many researchers have tried to recognize with various sensors is
long.
According to [45], activities can be categorized in three groups based on duration and/or
complexity: Gestures (or Movement/Motif), Low-Level Activities, and High-Level Activities. Ac-
tivities such as walking, sitting, standing, eating, cleaning windows are considered as low-
level activities which usually last between seconds and several minutes. As high-level
activities are considered activities like sight-seeing, cleaning the house, working at office
that usually last for more than a few minutes and up to a few hours. Figure 2.19 illustrates
these groups of activities.

Figure 2.19: Level of Activitities [45]

The way accelerometer data for activity recognition is processed is similar to the way
gait data is processed, which is illustrated in 2.6. Because of this similarity we will give
only a brief description of activity recognition.

2.4.1 Activities

The identification of everyday routine and leisure activities such as walking, running, bik-
ing, sitting, climbing and lying have already been analyzed in laboratory settings by several
researchers. All these studies were done by using different sensors such as accelerometers,
which were embedded in wearable sensing devices to collect the needed data. The types of
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sensors used for activity recognition will be mentioned in the next section. Accelerometer
sensors are very useful for low-powered equipment like smart phones or tablet computers,
with applications that are suitable for real-time detection of user’s activities. Physical ac-
tivities such as walking, going up/down stairs, standing, sitting, and running have been
studied by some of the researchers using different accelerometers sensors. Table 2.6 gives
an overview of some of the databases that has been collected.

Table 2.6: Activity recognition research studies. #TP = Test Persons

Study Activities #TP
[123] walking flat, walking slope-up, walking stairs slope-down 52
[62] walking, walking stairs, sitting, jogging, standing 29
[79] walking, sitting, standing 26
[75] walking, running, cycling 24
[3] walking, running, sitting, standing, cycling 20
[49] walking, climbing stairs 15
[92] walking, running, sitting and standing, lying down 12
[70] walking, walking stairs, sitting, standing, riding elevator up/down, and

brushing teeth
12

[37] walking, running, still, jumping 11
[115] walking, waiting at a tram stop, sitting, riding a tram 8
[117] walking, walking stairs, standing, sitting and running 6
[58] walking, walking stairs, sitting, running 6

[127] walking, running, standing, climbing 5
[38] walking, running, sitting, standing, lying 5
[71] walking, walking stairs, jogging, sitting riding a bike 2

Another class of activities, mainly studied in healthcare environments, are the so-called
”Activities of Daily Living” (ADLs). ADLs include activities such like bathing, toileting,
dressing, eating which are basic skills needed for daily self-care activities. A third class
which is an extension to ADL is known as the ”Instrumental Activities of Daily Living”
(IADLs), which are skills beyond basic self-care which a person needs to perform for inde-
pendent living. IADLs include activities like shopping, driving, cleaning, cooking, doing
laundry and managing money. Table 2.7 shows an overview of these activities.

Table 2.7: Studies of activity recognition of daily living (ADL)

Study Activities (ADL) #TP
[100] toileting, washing, housework, leisure activity, oral hygiene, heating

use, taking medication, etc.
14

[113] mopping, cleaning windows, making bed, watering plants, washing
dishes, setting the table, vacuuming, ironing, dusting

12

[30] lying, rowing, cycling (training,regular), sitting, standing, running,
walking, football

12

[88] prepare food, clean dishes, wash clothes 10
[20] showering, urination, flushing, washing Hands, defecation, brushing

teeth
4

[116] prepare food, toileting, bathing, dressing, grooming, preparing a bever-
age, doing laundry, etc.

2

[124] prepare different food, eat cereal, dust, brush teeth, tend plants, set table,
clean windows, take medication, shower, shave

2
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2.4.2 Data Acquisition

As mentioned earlier, accelerometer sensors are adequate and most commonly used for
continuous activity recognition. They are also considered to be less intrusive than other
sensors such as RFID gloves, microphones, and cameras [45]. Therefore, accelerometers
are becoming very important tools due to many advantages in activity recognition. There
is not a single sensor that can record all the body movements and recognize all different
human activities. As a result most research today have been using different sensors to
capture the data or attached multiple sensors on various parts of the body such as hip,
wrist, arm, ankle, chest, thigh or knee. For instance, activities like walking fast, walking
slow, and running can be recognized by motion sensors (accelerometer or gyroscope) but
these sensors cannot recognize activities such as, talking or reading. Table 2.8 gives an
overview of some of the most widely used sensors for activity recognition research.

Table 2.8: Sensors used in different studies.

Study Sensor Placement Sensor
[57] Above ankle, above knee,

hip, wrist, elbow,
3D Accelerometer (ADXL311)

[78] Belt (left/right) 3D Accelerometer ADXL202
[6] Chest 3D Accelerometer (ADXL213, analog)
[5] Hip, thigh, ankle, arm, wrist 2D Accelerometer (ADXL210E, analog)

[65] Legs 2D accelerometer (ADXL202JE, analog) and Ball
Switches

[119] Legs (upper), above knee 1D Accelerometer (ADXL05s, analog) , passive in-
frared sensors, carbon monoxide sensor, micro-
phones, pressure sensors, temperature sensors,
touch-sensors and light-sensors

[103] Near pelvic region 3D Accelerometer (CDXL04M3)
[37] Pocket 3D Accelerometer (ADXL330, analog)
[62] Pocket 3D Accelerometer (Cell phone)
[102] Pocket 2D Accelerometer (ADXL202), GPS

[9] Waist 3D Accelerometer
[126] Waist 3D Accelerometer and a microphone.
[108] Waist belt 3D Accelerometer
[46] Wrist, hip and thigh 2D accelerometer (ADXL202JE), Tilt switches

Other sensors that have been used for activity recognition are: Sociometer (IR transceiver,
a microphone, two accelerometers, on-board storage, and power supply) [22], GPS sen-
sors [30], vision sensors (i.e., cameras) [30, 94], microphones [20, 47], RFID tag readers
[98, 100, 113], ball switches [65], fibber optical sensors [29], gyroscope [61], body and skin
temperature sensors [119, 73, 59, 128, 92], light sensors [119, 73, 80, 101], foam pressure
sensors [15], pressure sensors [73], physiological sensors [96], humidity and barometric
sensors [73].

2.4.3 Activity Recognition Process

2.4.3.1 Segmentation

Detection of activities from the collected data is the process of finding the ”boundaries” for
different activities in the accelerometer signal. Segmentation is a necessary step in the data
analysis process before the feature extraction and the classification. Several segmentation
techniques have been used to identify different activities from the sensor data. Some of
the segmentation methods that have been used for activity recognition are: ”Sliding Win-
dows”, ”Top-Down”, ”Bottom-Up” and ”Sliding Window and Bottom-Up (SWAB)” [56].
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2.4.3.2 Feature Extraction

The input data recorded with the sensors from the human body motions is too large for
processing for personal computers, thus it is easier as an initial step to transform the large
amount of input data into a reduced representation set of features before further processing.
The process of transforming the large amount of input data into the set of features is called
feature extraction. Feature extraction is a very important step; therefore features should be
carefully chosen in order to extract relevant information from the input data, which features
are selected will have a strong influence in the results of the classification. Feature selection
is an important and essential step in the design of any activity recognition system, in order
to have an effective system. The features in different studies were analyzed mainly in time-
domain and frequency-domain. In the following we will brief describe features extraction
in both domains.

Features in the time domain

In many of the research only the time-domain features were considered to avoid the trans-
formation complexity which required a transform of the time-domain signal into frequen-
cies. They consume little processing power and the algorithms can be applied directly.

In the studies of Laerhoven and Cakmakci [64, 5], the average value was one of the
values applied as a feature for identifying activities. The average, indicated by µ, is the
mean value of a signal. It is found by adding all of the samples together, and divide by N ,
indicating the number of samples. In a mathematical form it is as in Equation 2.8:

µ =
1

N

N∑
i=1

xi (2.8)

Two closely related features to the mean that are often used are the standard deviation
and variance by Kern et al. [57] and Heinz et al. [39], respectively. The standard deviation
gives an idea of how close the entire set of signal data is to the average value, µ. In equation
form, the standard deviation is calculated as in Equation 2.9.

σ2 =
1

N

N∑
i=1

(xi − µ)2 (2.9)

Another similar feature to the mean, is the root mean square (RMS). This has been used
by Maurer et al. [80]. The RMS value of a signal is the square root of the mean value (µ)
of the squares of the original values (or the square of the function that defines the signal).
Given a signal set of N values, the Equation 2.10 shows how the RMS is calculated.

rms =

√√√√ 1

N

N∑
i=1

x2i (2.10)

Lombriser et al. [74] has used the zero or mean crossing rate as a feature. In the context
of signals, a zero crossing is said to occur if successive samples have different algebraic
signs. The rate at which zero crossings occur is a simple measure of the frequency content of
a signal. Zero-crossing rate is a measure of number of times in a given time interval/frame
that the amplitude of the speech signals passes through a value of zero as shown in Figure
2.20. This also follows for the mean crossing rate, except that the mean is used instead of
zero passing.
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Figure 2.20: Zero Crossing Rate [74]

The zero crossing rate was also applied of Chambers et al. [19]. Instead thee extracted
the features from the accelerometer data using the ZCR of the first and second derivatives
to retrieve even more features.

Amplitude peak counting is also a feature that could be used. Laerhoven et al. [65]
performed a peak extraction, where the number of peaks in different windows sized were
counted on a signal.

Features in the frequency-domain

Simple statistical descriptors, as we saw in the section before, are widely used; the vari-
ance is computed by taking the average of the squared data samples. Frequency-domain
features can be derived from several approaches, for example, the FFT-coefficients, energy
and spectral entropy.

The signal energy in a signal processing context is not the same as the conventional
notion of energy in physics and the other sciences. The two concepts are, however, closely
related. The signal energy have been extracted by Stikic et al. [114] and in signal processing,
the energy Es of a signal x(t) is defined in Equation 2.11.

Es =

∫ −∞
∞

|x(t)|2 (2.11)

Other features can be derived from the coefficients of time-frequency transforms, like
the Fast Fourier Transform (FFT), Short Time Frequency Transform (STFT) or the Discrete
Wavelet Transform (DWT) [77].

Even the frequency-domain entropy is helpful in discriminating primitives that differ
in complexity. As a matter of fact, walking can be difficult to discriminate based on energy
features; however, the different walking entropy such as walking fast turns out to be much
higher than the walking slow entropy, mainly because of the acceleration impacts, which
give rise to the distinctive high-frequency colored noise-like signatures typically observed
in the signals from on-body accelerometers. Several studies, Wang et. al [124] and Stikic et
al. [113] have applied entropy as one of the features to be used.

2.4.3.3 Classification process

The next step after the feature extraction is the classification process. In the classification
process, the classification algorithm builds up a model (classifiers) for different human ac-
tivities and then uses these classifier to identify human activities from the test data. A wide
range of machine learning approaches and algorithms are used for activity recognition.
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Most of these approaches have been used for activity recognition which can be categorized
into two groups: supervised learning and unsupervised learning.

Supervised learning is a machine learning technique, also sometimes called ”learning
with a teacher” in which the system is first trained by using a set of labeled training data.
In the next step unknown (unlabeled) data is presented to the system that will classify it
based on the learned information. There are two general phases in a supervised learning
technique: training and testing. During the training phase the system is taught (trained) by
using a set of training data to create a classification model to classify unknown data. During
the testing phase, the model of the system is tested using a set of test data to measure the
classification accuracy [72]. Training and testing phases are illustrated in Figure 2.21. The

Figure 2.21: The basic of learning process: training and testing [72]

majority of work that has been done within activity recognition have been done by using
supervised learning methods. A summary of these supervised learning approaches applied
in activity recognition so far is shown in Table 2.9.

Table 2.9: Supervised learning approaches used for activity recognition

Study Approaches
[103] Naive Bayes Classifier

[5] C4.5 Decision Tree
[61] Nearest Neighbor
[98] Hidden Markov Model
[46] Support Vector Machine
[119] Kohonen Self-Organising Map

Unsupervised learning, by contrast, does not split the available data in a training and
testing set. Instead, it tries to classify the unknown data by separating the data into dif-
ferent classes (clusters). It is a ”learning without teacher” method. The method tries to
directly build models not basing itself on any priori-built model or knowledge. The task
is to discover classes of similar examples from the unlabeled data and to organize the data
into similarity groups, which are known as clusters, or to estimate the distribution of data
within the input space which is called density estimation [10]. Clustering is the process of
organizing unlabeled data into clusters, where the data in the same cluster are similar to
each other and the data in different clusters are dissimilar [18].

A summary of the unsupervised learning approaches that are applied for activity recog-
nition is shown in Table 2.10.

2.4.4 Activity Recognition Accuracies

Studies have shown different accuracies for activity recognition systems in which the data
collection was performed in a controlled laboratory setting (subjects are told what activity
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Table 2.10: Unupervised learning approaches used for activity recognition

Study Approaches
[83] Hidden Markov Model (HMM)
[23] Hierarchies of HMM
[99] Hierarchical Dynamic Bayesian Network

[105] Multiple Eigenspaces
[89] Gaussian Mixture Models
[76] Multi-layered FSM

to perform), from the experiments in which the data was collected under normal circum-
stances (naturalistic environment).

A summary of recognition accuracies is shown in the Table 2.11.

Table 2.11: Recognition Accuracies. #TP = Test Persons. L = Laboratory setting, N = Normal
circumstance

Study Accuracy Activities Environment #TP
[75] 80% walking, running, cycling, driving, sports N 24
[5] 84% walking, sitting, standing, running, computer

work, bicycling, Lying down, etc.
N 20

[78] 83% - 90% walking, downstairs, upstairs, opening doors L 6
[81] 90% walking, jogging, upstairs, downstairs, sitting,

standing
L 29

[55] 90.8% walking (slow, normal, fast), sitting, standing, ly-
ing, falling

L 6

[69] 92.85% - 95.91% sitting, standing, walking, L 8
[57] 65% - 95% sitting, standing, walking, stairs up/down, white-

board writing, shake hands, keyboard typing
N/L 1

[37] 97,51% walking, jumping, still, running L 11
[38] 99,5% standing, sitting, lying, walking, running L/N 5

2.5 Mobile Phones and Biometrics

Mobile phones are no longer devices that are just for the purpose of communication. People
use them for surfing the web, paying for products and services as well as storing sensitive
data and information. All such mobile phone utilities demand adequate level of security.
Mobile phones need to be protected from unauthorized access and biometric techniques
are being evaluated to provide safety and security of mobile phones.

There are several concerns related to mobile phone security and biometric systems can
address each one of them;

Information Loss Most of the mobile phone users are concerned about the risks involved
in storage of information in their devices. Biometrics helps solve the issues by pro-
viding features like phone locks and content locks. In general, access control can be
taken care of by implementation of a biometric system in a mobile phone.

Phone Theft Another concerning issue is related to the possible theft and misuse of cell
phones. Phone locks and personalized number dialers are some of the options that
biometric systems offer to prevent cell phone misuse even if the device is stolen.

Mobile Services Usage A last concern is related to the security of mobile banking and
mobile commerce activities that are gaining popularity in todays world. Cell phone
users are increasingly using of their devices to make payments and to use a variety of
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commercial services. Payment authorization and e-Wallet personalization are some
of the features associated with biometric e-Commerce or what can be called mobile
commerce.

Biometric systems can be integrated in mobile phones in two ways: 1) as an on-line
device or 2) as a off-line stand-alone system, to protect unauthorized use of the mobile
phone. In the first case, cell phones are collecting data and passes it online via the Internet
to a remote location where it is processed and compared. This proves useful for remote
transactions when the identity of the caller has to be proven. As an example when a user
calls his/her bank to make a transaction, she is going to introduce herself as Alice Bobson
and in order to verify her identity she is asked to recite a pass-phrase. The voice recording
is then processed and compared to the sample that was collected when the user enrolled
in the system. Face, fingerprint, signature, gait, gesture or keystroke are other biometric
traits that todays cell phones have the capabilities to collect and transfer them to a remote
location.

In the second possible implementation of a biometric system on a mobile phone, the en-
tire biometric system resides on the mobile phone and it serves the purpose of preventing
unauthorized access to cell phone functions and data. Biometric systems can replace PIN
security and for example with a swipe of a finger the phone can be unlocked and used.
Todays implementations of biometric systems on cell phones include fingerprint recogni-
tion, voice recognition, face recognition, signature recognition, gait recognition, gesture-
recognition and keystroke dynamics.

Use and implementation of biometrics in mobile phones is further enhanced by com-
bining the technology with existing mobile phone security arrangements. For instance, a
mobile phone user may have to authorize his mobile banking transactions through bio-
metric recognition as well as using passwords and SMS codes. This is indeed a more and
more elaborate security arrangement for the people who are highly dependent upon mo-
bile phones for a variety of purposes that demand high-end security.

Previous research on using biometrics in mobile phones had already been introduced
before. In 2005, Cho et al. [21] proposed a pupil and iris localization algorithm, which is apt
for mobile phone platform based on detecting dark pupil and corneal specular reflection
by changing brightness and contrast value. A year after, Okumura et al. [95] proposed
a system where a subject could authenticate himself/herself by grasping and shaking the
phone. In this study a normal accelerometer with the size of a mobile phone was used.
In 2007, Hadid et al. [36] described and analyzed a face authentication system for person
authentication by attaching the camera of the phone in front of the subjects face. At the
same year a prototype was designed on how microphone in a mobile phone and its camera
could perform voice and fingerprint recognition [110]. This work was continued by Wang
et al [121] in 2009, who fused these two biometric features together retrieving acceptable
results. At the same year gait recognition started to get familiar as can be read throughout
the thesis. In 2011, Conti et al. [24] proposed a biometric measure to authenticate the user
of a smartphone i.e. the movement the user performs when answering (or placing) a phone
call.
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[59] KRAUSE, A., MÜNCHEN, T. U., AND SMAILAGIC, A. Unsupervised, dynamic iden-
tification of physiological and activity context in wearable computing. In In Proceed-
ings of the 7th International Symposium on Wearable Computers (2003), pp. 88–97. Avail-
able from: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.
1.135.5809. 36

[60] KUMAR NEELESH, KUNJU NISSAN, K. A. S. B. S. Active marker based kinematic
and spatio-temporal gait measurement system using labview vision. JSIR Vol.69(08)
(2010), 600–605. 18, 195

[61] KUNZE, K., BARRY, M., HEINZ, E. A., LUKOWICZ, P., MAJOE, D., AND
GUTKNECHT, J. Towards recognizing tai chi an initial experiment using wearable
sensors. In Heinz1, Paul Lukowicz, Dennis Majoe, Jurg Gutknecht; Institute for Computer
Systems and Networks UMIT (2006). 36, 39

[62] KWAPISZ, J. R., WEISS, G. M., AND MOORE, S. A. Activity recognition using cell
phone accelerometers. Human Factors (2010), 1018. Available from: http://storm.
cis.fordham.edu/˜gweiss/papers/sensorKDD-2010.pdf. 35, 36, 131, 133,
148

[63] KYRIAZIS, V., AND RIGAS, C. Software for temporal gait data analysis. Computer
Methods and Programs in Biomedicine 67, 3 (2002), 225 – 229. Available from: http://
www.sciencedirect.com/science/article/pii/S0169260701001523. 18

[64] LAERHOVEN, K. V., AND CAKMAKCI, O. What shall we teach our pants? In
Proceedings of the 4th IEEE International Symposium on Wearable Computers (Washing-
ton, DC, USA, 2000), ISWC ’00, IEEE Computer Society, pp. 77–. Available from:
http://portal.acm.org/citation.cfm?id=851037.856531. 37, 134

[65] LAERHOVEN, K. V., AND GELLERSEN, H.-W. Spine versus porcupine: A study in
distributed wearable activity recognition. In Proceedings of the Eighth International
Symposium on Wearable Computers (Washington, DC, USA, 2004), ISWC ’04, IEEE
Computer Society, pp. 142–149. Available from: http://dx.doi.org/10.1109/
ISWC.2004.40. 36, 38

[66] LARSEN, P., SIMONSEN, E., AND LYNNERUP, N. Gait analysis in forensic medicine.
J Forensic Sci (2008). 18, 133, 134, 137

[67] LARSEN, P. K., SIMONSEN, E. B., AND LYNNERUP, N. Gait analysis in forensic
medicine. Journal of Forensic Sciences 53, 5 (2008), 1149–1153. 17, 195

46



2.6 BIBLIOGRAPHY

[68] LEE, C.-Y., AND LEE, J.-J. Estimation of walking behavior using accelerometers in
gait rehabilitation. International Journal of Human-friendly Welfare Robotic Systems 3,
32–36. 22, 78, 132, 134

[69] LEE, S. W., AND MASE, K. Activity and Location Recognition Using Wearable
Sensors. IEEE Pervasive Computing 1, 3 (July 2002), 24–32. Available from: http:
//dx.doi.org/10.1109/MPRV.2002.1037719. 40

[70] LESTER, J., CHOUDHURY, T., AND BORRIELLO, G. A Practical Approach to Recog-
nizing Physical Activities. In Pervasive Computing, K. Fishkin, B. Schiele, P. Nixon,
and A. Quigley, Eds., vol. 3968 of Lecture Notes in Computer Science. Springer Berlin
/ Heidelberg, Berlin, Heidelberg, 2006, ch. 1, pp. 1–16. Available from: http:
//dx.doi.org/10.1007/11748625_1. 35, 131, 134, 148

[71] LESTER, J., CHOUDHURY, T., KERN, N., BORRIELLO, G., AND HANNAFORD, B. A
hybrid discriminative/generative approach for modeling human activities. In In
Proc. of the International Joint Conference on Artificial Intelligence (IJCAI) (2005), pp. 766–
772. Available from: http://citeseerx.ist.psu.edu/viewdoc/summary?
doi=10.1.1.77.5776. 35

[72] LIU, B. Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data (Data-
Centric Systems and Applications), 1st ed. 2007. corr. 2nd printing ed. Springer,
Jan. 2009. Available from: http://www.amazon.com/exec/obidos/redirect?
tag=citeulike07-20&path=ASIN/3540378812. ix, xi, 39, 134, 135

[73] LOGAN, B., HEALEY, J., PHILIPOSE, M., TAPIA, E., AND INTILLE, S. A Long-
Term Evaluation of Sensing Modalities for Activity Recognition. In UbiComp 2007:
Ubiquitous Computing, J. Krumm, G. D. Abowd, A. Seneviratne, and T. Strang, Eds.,
vol. 4717 of Lecture Notes in Computer Science. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2007, ch. 28, pp. 483–500. Available from: http://dx.doi.org/10.
1007/978-3-540-74853-3_28. 36

[74] LOMBRISER, C., BHARATULA, N. B., ROGGEN, D., AND TRÖSTER, G. On-body ac-
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Chapter 3

Contributions and Summary

3.1 Paper contributions

This section presents a summary of the contributions of each of the papers included in
chapters 4 - 11.

3.1.1 Accelerometer-Based Gait Analysis, A Survey [1]

This paper is on the taxonomy of person recognition approaches based on gait. It takes a
technological perspective on how biometric gait recognition can be categorized into three
approaches, namely the Machine Vision based, Floor Sensor based and Wearable Sensor
based. It covers the current state of art of accelerometer based gait recognition which is a
sub-category of wearable sensor based gait recognition. It gives a complete literature study
describing the major modules; experiments, data acquisition, data analysis and comparison
of different gait recognition systems.

The main of accelerometer gait recognition is that it provides unobtrusive user authen-
tication and identification. There are many factors that can influence the accuracy of such
a system. These factors have to be taken into consideration when developing a robust
system. Therefore, accelerometer based gait biometrics is still not mature and additional
research needs to be performed. Since wearable based gait biometrics was first investi-
gated in 2005, has there been an increasing interest within this topic. However, no public
database has been created within this research field which makes the comparison of the
performance results in the various works more difficult to compare.

3.1.2 Towards Continuous Authentication Based on Gait Using Wearable
Motion Recording Sensors [6]

In this paper we developed a framework for continuous evaluations of the genuineness of
a person through accelerometer based gait recognition.

Usually all systems conduct some kind of user authentication before granting access
to objects or services. In addition, individuals pass through authentication mechanisms
multiple times in their everyday activity, e.g. for entering a house you have to retain the
correct key to open the door or to use a laptop you need to know its password. These au-
thentications are one-time or static, which in general terms means once the user’s identity
is verified to be correct the authentication lasts persistently. Nevertheless, some systems
have the need of ensuring the identity of the user during the full session. This then requires
verification of user identity continuously. One of the important necessities for continuous
authentication is that the approach should be unobtrusive and appropriate in usage. If this
is not fulfilled the users are not going to accept continuous authentication. Hence not ev-
ery authentication method is appropriate for continuous authentication even if they offer
higher security.

We discuss the pros and cons of gait biometrics in the perspective of continuous au-
thentication. Gait is captured using wearable motion recording sensors (semi-)attached to
the individual’s body. One of the advantages of using wearable-sensor based gait recog-
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nition in continuous authentication is its unobtrusiveness. Whenever a user generates gait
information, his/her identity is verified indirectly in the background without disrupting
the person from his/her normal activity. The framework we propose prolongs the tradi-
tional static authentication to account for continuous (re-)verification of the user’s identity.
The proposed continuous authentication framework can effortlessly be attuned for other
biometric modalities which are appropriate for continuous authentication.

Guaranteeing the correct identity of a user throughout a full session is essential. In
static biometric user authentication the authentication mechanism will make a decision
about the correctness of the claimed user identity directly after the user has inputted his
biometric feature. This decision is either accepting or rejecting this user, resulting in either
access or not to the specific system. System performance is measured in terms of errors that
are made by making the decision, i.e. in terms of FMR and FNMR.

For a continuous biometric user authentication mechanism it is assumed that the iden-
tity of a user has been verified by a static authentication mechanism. A biometric continu-
ous authentication mechanism will only reject individuals if there is doubt that the current
user is not the genuine one, whose identity was verified through the static authentication
mechanism. In order to be able to measure the genuineness of a user we introduced trust
levels and a way to adjust the trust level, based on newly defined penalty and reward func-
tions. The performance of a continuous authentication system is measured in terms of how
long it takes before an impostor is detected and locked out by the system.

3.1.3 Unobtrusive User-Authentication on Mobile Phones using Biometric
Gait Recognition [7]

This research work demonstrates how one has the ability to use commercial mobile phones
equipped with accelerometers to carry out biometric gait recognition. This paper has fur-
ther been given the best paper award for its novelty and uniqueness. To the best of our
knowledge, this is the first time that data, collected by accelerometers in a standard mobile
phone, was used for biometric gait recognition.

The paper introduces how a gait recognition system is implemented into a mobile
phone. The system performs an unobtrusive operation which gives a high user friendli-
ness. We propose gait recognition as a protection mechanism to improve the device secu-
rity. Unlike previous work on wearable-based gait recognition, which was dedicated by
using high-grade accelerometers, this paper reports the performance when the data is col-
lected with a commercially available mobile device containing low-grade accelerometers.
To be more exact, the used mobile device is the Google G1 phone containing the AK8976A
embedded accelerometer sensor. The mobile device was placed at the hip off each volun-
teer to collect gait data. Several processing steps such as preprocessing, cycle detection
and recognition-analysis were applied to the acceleration signal. The raw data retrieved
from the mobile phone was processed to create robust templates for all subjects. The fea-
ture extraction method used was the average cycle method using Dynamic Time Warping for
comparison. The analysis was applied to the data of 51 volunteers. Each volunteer pro-
vided gait acceleration data in two sessions and N data samples per session. The achieved
EER of 20.1% is approximately 50% higher than the EER achieved with a similar method
using a dedicated accelerometer with a twice as high sampling rate. This obtained EER
indicates that biometric gait recognition can be run on mobile phones but it is not yet ready
for practical use.

3.1.4 Improved Cycle Detection for Accelerometer Based Gait Authentication
[5]

In this paper an improved biometric gait recognition approach is presented with a stable
cycle detection mechanism and new comparison algorithm. Compared to the previous
work on wearable gait recognition [7], which was based of simple average cycling methods,

54



3.1 PAPER CONTRIBUTIONS

this paper introduces a new approach which has a large effect on the performance. The
main purpose of this paper was to look at the performance by developing new algorithms
and not the use of mobile phone sensor for collecting data. All of the published studies on
gait recognition using acceleration data were only slightly aware of fulfilling these issues
at the very same time: 1) An stable cycle detection mechanism and 2) A well performing
comparison algorithm.

The new, simple and well performing gait recognition approach was proposed to im-
prove over the performance of the average cycle method. The proposed algorithm de-
veloped performs automated cycle-detection (which was given the name neighbour search
algorithm), which works in finding the best and most optimal distance score from two
feature vectors with the use of cross comparison and the cyclic rotation metric (CRM) as a
distance metric.

The proposed feature extraction method was adapted and applied to data from 60 vol-
unteers. We obtained a resulting EER of 5.7%, which is low compared to other research,
specially when taking into account the number of participants and the number of data
samples per participant. Even though this paper had fewer participants than some of the
other databases collected over time, we did have more data samples per participant, almost
up to twice the number of gait sequences.

3.1.5 Scenario Test of Accelerometer-Based Biometric Gait Recognition [8]

The contribution of this paper is to develop methods for accelerometer-based gait recog-
nition, which are robust, stable and fast enough to be used for authentication on mobile
devices. To show how far we are in reaching this goal we developed a new cycle extrac-
tion method, implemented an application for Android phones and conducted a scenario
test. We evaluated two different methods, which apply the same cycle extraction technique
but use different comparison methods. In total 48 subjects participated in the scenario test.
After enrollment they walked for about 15 minutes on a predefined route. To get a realis-
tic scenario this route included for example climbing of stairs, opening doors and walking
around corners. About every 30 seconds the subject stopped and the authentication was
started.

This paper introduces the new cycle extraction method and shows the Detection Error
Trade-Off-curves, error rates by route-section as well as the computation times for enroll-
ment and authentication on a Motorola Milestone phone.

The new cycle extraction method, which was based on salience vectors, was combined
with two different comparison methods. On two different days each of the 48 participants
walked for about 15 minutes on a predefined cyclic route which included 9 stopping points
where the authentication data was stored. In contrast to previously conducted experiments,
this route did contain corners, stairs and doors. Despite these obstacles, we obtained an
equal error rate of 21.7% for the module using cyclic rotation metric as a distance and of
28.0% for the module using majority voting. Although these results are not as good as
the results stated in other related papers, are the circumstance in the experiment closer to
reality. One reason is the more realistic data collection (not only flat floor) the other reason is
that the stated EERs are obtained when comparing probe data of one day to reference data
of a second day. We showed that this time difference has a great impact on the recognition
rates, which is seldom considered in literature.

Furthermore we included the use of the modules for continuous authentication. So far,
the authentication is started only once when the user wants to use his phone again and
switches off the screen saver. As extracting cycles from 30 seconds of data and doing the
comparison with the reference template takes about 30 seconds at the moment, this is not
user-friendly. Alternating phases where data is collected with those where the cycle ex-
traction and comparison is done and always storing the most current authentication result
will improve this situation as only that the latest authentication result has to be obtained.
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Adding this enhancement, the CRM-module can be used as a supplement to PIN authenti-
cation on mobile phones.

3.1.6 Towards an Automatic Gait Recognition System using Activity
Recognition (Wearable Based) [3]

This paper describes a system where the combination of activity recognition and gait recog-
nition is used to create a continuous and automatic authentication system on mobile de-
vices. Such a combined system has not been published before. By using activity recogni-
tion as an important element for the authentication process we proposed an automatic gait
recognition system to be used for continuous authentication. We proposed a solution on
how activity recognition would reduce the challenges of gait recognition by identifying the
activities of a person continuously and automatically. Activity recognition would not only
make it possible to authenticate the user in different daily activities like slow walking, nor-
mal walking, fast walking or even running, but also helps in avoiding deep analysis of the
accelerometer data when the user is in passive state like sitting or standing still. Activity
recognition is one of the key factors in gait recognition and an interesting challenge which
would beneficial to the data security area.

Activity and gait recognition has been studied separately in the recent years, but the
interest has increased lately because of the fact that mobile phones today include embedded
accelerometers. The recognition accuracy for activity recognition has shown great results,
which means that it can be useful for an automatic gait recognition system.

3.1.7 Activity Recognition Using Smart Phones [2]

In this research work we analyze activity recognition to ensure that only the authorized
user can access the data in a mobile phone.

Recent gait recognition research focuses on manual extraction of walking activities from
the accelerometer signal. In this paper we do performance analysis of activity recognition
that would reduce the disadvantages of gait recognition by identifying the activities of a
person continuously and automatically.

A novel and simple authentication system has been analyzed and proposed. The pro-
posed system in using activity recognition for gait recognition is applied to data from 45
volunteers. Activity recognition is a relatively new area of study and over the last decade
has become an interesting research field due to its application in many areas. In our exper-
iment we included stable walking activities like normal, fast and slow.

In the performance analysis we retrieved several results using different classifiers. We
performed two different main test, namely a personal and global cross validation test. In
the first test we performed a cross validation for individual-based activity recognition. This
means that we look separately at each users’s activity performance with a retrieved accu-
racy of 96.08%. In the second test we merged all data together from all sessions of all
subjects. In contrast to the personal cross validation, these results shows how similar or
different each subjects fast, slow, and normal walk is from each other for all users with a
highest accuracy of 79.62%.

3.1.8 Gait and Activity Recognition using Commercial Phones [4]

In this paper we analyzed the performance of a system that combines both activity and
gait recognition. The system is implemented on an off-the-shelf smart phone, the Samsung
Nexus S. The activity recognition feature allows users to enroll various activities, such as
running, walking, or standing. This is done by enrolling these activities as reference tem-
plates into the smart phone. When the activity recognition identifies a walking activity,
then the gait recognition system can use this information to identify the correct user. The
implemented gait feature extraction learns particular characteristics of how people walk,
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allowing the phone to identify its user. The gait recognition is further dependent on the
activity recognition, since the mobile phone should identify activities before verifying the
user with gait recognition.

The best equal error rate achieved was 5.7 %. This error rate is the lowest error rate
retrieved within gait recognition into a smartphone. Biometric gait recognition in smart
phones has become a realistic approach for smartphone users and to protect its information
from unauthorized access.

3.2 Accomplishments and Future work

User recognition based on gait using mobile devices (sensor based) is a very recent method-
ology compared to the other gait approaches, namely the machine video based and floor
sensor based, or other conventional biometric modalities. To summarize the accomplished
work, the list of the research questions and issues that needs to be resolved are given below:

1. A state-of-the-art regarding wearable based gait recognition: This research question has
been addressed in paper [1]. It gives a state-of-the-art about gait recognition in gen-
eral describing the three approaches; (1) Machine Vision, (2) Floor Sensor and (3)
Wearable Sensor Based technologies. In addition, it goes into further details describ-
ing the several methodologies on how gait analysis is performed. Since its publication
research has progressed and, like any state of the art article, it need regular updating.

2. To develop a gait recognition system on mobile devices: This research question has been
addressed in papers [4, 5, 7, 8]. Novel cycle feature extractors and comparators have
been developed deviating from the existing ones, i.e. the average cycle method and
the step detection method. An effective cycle detection mechanism has been pro-
posed and tested out on several datasets. For the comparison, 3 innovative methods
were created, namely the Cyclic Rotation Metric (CRM), Cross-DTW metric (CDM)
and Majority Voting (MV). All of the three methods incorporate the Dynamic Time
Warping (DTW). Four gait datasets were created where a phone was used to collect
data from each subject. A smartphone gait recognition application has been devel-
oped to process the gait data on the phone.

To gain a stable gait recognition system several work needs to be performed. The
application needs to be optimized in calculation time and power usage. Better meth-
ods are calculation intensive, so for the moment only simple methods works fast and
elaborate methods do not work real-time.

3. To develop an activity identification system on mobile devices: This research question
has been addressed in [2, 3, 4] These papers propose a model on how activity recog-
nition can be combined with gait recognition. Activity identification is an important
step to detect daily activities. The work deals with the detection of three different
walking speeds , i.e. normal, fast and slow walking. It is shown that the recognition
performance of different speed types are dissimilar, in particular the performance for
slow walking is lower than for fast and normal walking. Several machine learning
algorithms have been applied to the developed datasets and the performance evalua-
tion was done in the WEKA framework which has retrieved highly acceptable results.

In the future more daily activities should be identified in the analysis. Also a more
clear distinction between cyclic and non-cyclic activities should be implemented. The
analysis so far only was done on discrete datasets that contained only one activity and
a continuous change from one activity to another has not yet been investigated.

4. Continuous authentication on mobile devices: This research question has been addressed
in [6].The work proposes a model for how continuous authentication can ensure that
the legitimate user is authorized to use the phone at any time, while an illegitimate
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user is detected as soon as possible. A framework on how such a system can be imple-
mented into a phone is described. It introduced confidence interval, trust level, and
how pyramided authentication works. The paper describes a model for continuous
authentication, but has not been implemented on a smartphone so far.

Since this is a prototype, it is however a gap that needs to be working with and ful-
filled.

Future work considerations in this field of research are still there. In the following we
outline possible directions that could be a natural extension of the work presented in this
thesis:

Performance Evaluation The performance of mobile-based gait biometrics is less than the
performance of robust and strong biometrics like vein-, finger- or iris-recognition.
Since accelerometer data conducts signals as output based on time, it is most obvi-
ous that one takes a deep look into digital signal processing (DSP). Few examples
such as the FFT, DWT, cross-correlation have been tried already, but the information
retrieved has not been so specific. Furthermore, the average cycle method is not a
fully automated gait recognition method and therefore DSP could be used for the
same purpose making the process automatic and more reliable. Multi-modal bio-
metric are currently considered a major-topic in biometric systems and might also
be useful within sensor based gait recognition. Mobile devices today have several
types of built-in sensors (e.g. gyroscopes, magnetic field sensors etc.) which eventu-
ally outputs some data that might be combined with each other. Fusion of the three
directions (x, y, z) should be considered that might have a great impact improving
authentication performances.

Fast/efficient implementations The newer smartphones are produced with even better
processors than ever before. One of the advantages is that they can then run a bio-
metric gait algorithm even faster. This might help with reducing the algorithm per-
formance time saving several (milli)seconds. However, still algorithm software op-
timization is needed for gait algorithms to make some aspects of it work more effi-
ciently or to use fewer resources. The enrollment, identification or verification algo-
rithm execution time is currently still an issue and must be dealt with. It might not
be appropriate to use a smartphone application that takes longer time than the user’s
patience.

Continuous Authentication (CA) In gait biometric user authentication, the authentication
mechanism will make a decision about the correctness of the claimed user identity di-
rectly after the user has walked. This decision is either accepting or rejecting this user,
resulting in either access to the particular system or not. A difference for a continuous
biometric user authentication mechanism is that the user is by default accepted due
to the fact that his or her identity has been verified by a static authentication mech-
anism. A biometric continuous authentication mechanism will therefore only reject
users if they have shown not to be the genuine user. In order to be able to measure the
genuineness of the user we suggest, in future work, to implement trust levels and a
way to adjust the trust level based on the difference between the current walking and
the template. The performance of a continuous authentication system is measured
in terms of how long it takes before an impostor is detected and locked out by the
system. These function should be implemented as an application in mobile phones
and to measure the exact performances, i.e. the time it takes before impostor users
are recognized as such by the CA mechanism and are locked out of the system.

Template Protection The characteristic gait of a subject is recorded using accelerometers
in a mobile device. From this data biometric feature vectors can be extracted and
stored as reference data on the device. Only if the user is not recognized by his walk
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an active authentication via PIN is necessary. As the number of attacks on mobile
devices increases it cannot be assumed that the data stored on the device is under
constant control of the subject. Therefore, template protection techniques should be
applied to secure stored biometric data. No specific template protection methods for
gait recognition have been researched so far.

Mimicking Although this thesis did not research on the mimicking issue on gait, it is sug-
gested as further research. When trying to mimick another person, it is useful to
verify whether these volunteers are sheeps (people whose gait is easy to mimic) or
wolves (people who are good at mimicking other peoples gait). The bottom line ques-
tion is whether it is possible to learn to walk like someone else. If this would turn out
to be simple, it will have a severe effect on the potential of gait as an authentication
mechanism in the future. Mimicking has only been performed with the use of exter-
nal dedicated sensors and not with a mobile device. It needs to be investigated if the
results for mimicking with mobile devices are the same as for dedicated sensors.

Bio-mechanics The way you walk is a complex biological process that involves nervous
and musculo-skeletal systems. To get an understanding of gaits inherit potentials
and limitations for security applications, a (long-term) multi-disciplinary approach
that combines knowledge from various domains such as medicine, bio-mechanics,
physics, IT, etc. might be considered. In this manner, one is able to understand the
information retrieved in technical and practical means from the output that is given
by the sensors inside the mobile devices.

Public database Unlike video-based gait recognition, the mobile-based lacks a large pub-
licly available database. The creation of such a large wearable sensor-based database
using mobile devices will in the future facilitate the development in the direction of
the wearable sensor-based approach. It will further also give the possibility of di-
rect comparisons of various developed algorithms. Newly created databases should
include various external and possibly internal factors that can influence gait biomet-
rics. External factors are mostly impose challenges to the recognition approach (or
algorithm). For example, outdoor/indoor environments (e.g. sunny, rainy days),
clothes (e.g. skirts in WS-based category), walking surface conditions (e.g. hard/soft,
dry/wet grass/concrete, level/stairs, etc.), shoe types (e.g. mountain boots, sandals),
object carrying (e.g. backpack, briefcase), etc. Internal factors cause changes of the
natural gait due to sickness (e.g. foot injury, lower limb disorder, Parkinson disease
etc.) or other physiological changes in body due to aging, drunkenness, pregnancy,
gaining or losing weight, etc.
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Chapter 4

Accelerometer-Based Gait Analysis, A survey

Abstract

From a technological perspective, biometric gait recognition can be categorized into
three approaches: Machine Vision based, Floor Sensor based and Wearable Sensor based.
This survey covers historical development and current state of the art in accelerometer-
based gait analysis, a sub-category of wearable sensor based gait recognition. It gives an
all-around literature study describing the major modules; experiments, data acquisition,
data analysis and comparison of gait representations.

4.1 Introduction

A particular way or manner of moving on foot is the definition for gait. Every person has
his or her own way of walking. Several human factors, such as aging, injuries, operations
on the foot etc. may change a person’s walking style into a slight different walk, either per-
manent or temporary. Elders have a reduced range of hip motion at faster walking speeds
and 5 degrees less hip extension than in their in younger age [14]. It also appears from early
medical studies that there are twenty-four different components to human gait, and that if
all the measurements are considered, gait is unique [4]. This has made gait recognition an
interesting topic to be used for identifying individuals by the manner in which they walk.
Furthermore, Figure 4.1 illustrates the complex biological process of the musculo-skeletal
system, which can be divided into numerous types of sub events of human-gait. The in-
stances that are shown in that figure are used to extract parameters for being used as an
identification system of each individual.

The analysis of biometric gait recognition has been studied for a longer period of time

Figure 4.1: Division of the gait cycle into five stance phase periods and two swing phase
periods [22].

[19, 20, 21, 29, 15] for the use in identification, surveillance and forensic systems and is
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becoming important, since they provide more reliable and efficient means of identity veri-
fication.

There are three different approaches in gait recognition; Machine Vision Based (MV), Floor
Sensor based (FS) and Wearable Sensor based (WS). In the machine vision approach, the sys-
tem will typical consist of several digital or analog cameras (black-and-white or color) with
suitable optics for acquiring the gait data. Using techniques such as thresholding which
converts images into simply black and white; pixel counting to count the number of light
or dark pixels; or background segmentation, which performs a simple background subtrac-
tion could be some of the possible ways to identify a person.

In the floor sensor approach the sensors are placed along the floor (on a mat) where gait
data is measured when people walk across. What differs the FS-based from the MV-based
is the force to the ground by humans walk, this is also known as the GRF (Ground Reaction
Force).

In contrast to video-based and floor-sensor based gait recognition, this survey is in-
tended to provide a thorough review of the use of the accelerometer based gait recognition
which is in the category of wearable-based gait recognition.

This paper is structured as follows: Section 4.2 gives a table overview research descrip-
tion of the accelerometer based gait analysis. The section surveys related papers and goes
in deep details with the experiments, data acquisition, data analysis and comparison of
results. Section 4.3 gives an description of how wearable gait recognition can be improved
by proposing new methods for future work. Finally, section 4.4 shortly gives a summary of
the paper.

4.2 Accelerometer Based Gait Analysis

Apart from the machine vision (MV) based and floor sensor (FS) based gait recognition,
the wearable sensor based gait approach is the newest. This is based on attaching or wear-
ing motion recording sensors on the body of the person in different places; on the waist,
pockets, shoes and so forth.

The wearable sensors (WS) can have several purposes due to retrieving numerous types
of data. Sensors of different types can for instance be accelerometers (measures accelera-
tion), gyro sensors (measure rotation), force sensor (measures the force when walking) etc,
but most literature so far has put a great focus on accelerometer based gait recognition.

A WS-based gait recognition application can improve authentication in electronic de-
vices. An example would be to implement the application in mobile phones. Due to the
unobtrusive way of collecting data it can be applied for continuous-verification of the iden-
tity in mobile phones. This means that for each step a user performs, the users identity will
be re-verified to ensure that it is not another person who has the mobile phone in hand, but
the same user is authenticated.

Some of the newer mobile phones now-a-days, e.g. the iPhone, use built-in accelerom-
eters to detect when the device is rotated, so it can tell whether to display what’s on the
screen in vertical or horizontal format. This allows the user to decide which format is best
for viewing, such as a photo, web page, video. Moreover, the device can further detect
when it is being lifted to the ear so that phone calls are answered automatically.

Researching at different methodologies to analyzing the features of gait is increasing
and become a popular area of research, especially in gait biometrics. Feature extraction
from gait signals is a crucial for the efficient gait recognition. For a general gait analysis the
signal processing flow is shown in Figure 4.2.

4.2.1 Experiments

To the best of our knowledge, no public database has been created for accelerometer based
gait recognition. However, researchers have made own experiments and databases. Table
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Figure 4.2: Signal processing flow of method for gait verification/identification.

4.1 summarizes experiments performed in research with the type of activity performed,
environment and the range of walking per subject.

Table 4.1: Experiments Summary.

Study Walking activities Environment Range (meter)
[8] different speed indoor hospital 10

[17] normal indoor 20
[7] normal indoor 100

[27] normal, fast, slow long corridor (stone plates) 50
[24][23] normal indoor 30

[3] treadmill (normal, fast, slow) - -
[11] free normal,fast,slow overall -
[9] normal, fast, slow, circle hall (solid surface) 20 m

All of the mentioned experiments above except [11] are controlled experiment. A con-
trolled experiment is a fixed laboratory setting and furthermore differs from a real world
scenario. People usually place their cell phone into their pockets or holding it while the
phone is continuously moving in different directions. The mobile phone rotates and is in
much more use. In the fixed setting the phone is usually attached one place to the body at
all times.

As can be seen further on the table, then the amount of volunteers are very dissimilar.
Many of the experiments until today have had low number of test-subjects, which have
resulted in different performance. Obviously this means that the recognition performance
(viewed later in this paper) are not comparable since the number of volunteers are dissim-
ilar.

One issue which is not mentioned in the studies are the clothing. Since gait is known
to differ from one person to another, clothing might be a critical parameter affecting the
gait-recognition results.

Finally, very few studies have researched gait-recognition with different behavioral set-
tings. A study [9] have shown that the gait-signal of one person slightly changes from one
day to another.

4.2.2 Data acquisition

Accelerometer data can be derived from several types of equipments; from a dedicated
accelerometer, GPS device, mobile phone etc. An accelerometer measures acceleration
in three axes/directions, first is x-direction (up-down), second is y-direction (forward-
backward) and third is z-direction (sideways).

Table 4.2 gives an overview of the placement of sensors and sensor models that have
been used in literature.

Accelerometers (whether they are built into cell phones or are dedicated devices) usu-
ally outputs different sample-rates per time unit. Most accelerometers have a low sample-
rate/frequency while few have a high frequency rate. Moreover, some devices today con-
tain multiple sensors, such as a gyroscope, magnetic-field etc.
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Table 4.2: Data Acquisition Summary.

Study Acquistion From Device
[26] shoe MEMS accelerometer
[13] breast/hip cell phone accelerometer
[18] whole body weight force plate
[7] ankle/pocket/arm/hip 3D accelerometer (MRS)

[24][23] waist 3D accelerometer (analog)
[2] leg wireless accelerometer (Tmote Sky)

[11] pockets phone handset
[16] waist 3D accelerometer (ADXL05, analog)

[1][17] waist 3D accelerometer (ADXL202JQ, analog)
[27] hip cell phone accelerometer
[3] ankle MEMS accelerometer
[8] elastic belt on body 3D accelerometer

[6][9] hip 3D accelerometer (MRS)

4.2.3 Preprocessing

Preprocessing has been performed differently in literature. Measured acceleration signals
are sometimes low-frequency components. The signals that are being outputted are easily
affected by experiment environmental noise, such as electronic noise in the equipment,
high frequency noise etc., which will obscure/reduce the clarity of the acceleration data.
Table 4.3 overviews preprocessing methods applied.

Table 4.3: Examples of Preprocessing Approaches

Study Type Approach
[7] Time interpolation Linear time interpolation
[9] Noise filter Weighted moving average

[24] Noise filter Daubeshies wavelet (wavelet transform)

4.2.4 Data Analysis

Identifying users from gait patterns using accelerometers is based on the assumption that
the gait acceleration profile (template) is unique to some extent for every person. First, a
feature template vector that represents characteristics of the gait of the person to authenti-
cate is computed and stored as the template. The same feature vector is computed during
the authentication process and compared to the feature template.

The accelerometer data can be analyzed in two domains: time domain or frequency
domain. In the time-domain, the three acceleration signals (x,y,z) change over time (t),
whereas in the frequency-domain each frequency band over a range of frequencies is given.
A given function or a given signal can be converted between the time and frequency do-
mains with a pair of mathematical operators called a transformation. Therefore, researchers
have to decide which of these two domains, one will work with. Or somehow combine
them with each other.

4.2.5 Segmentation (Data Analysis)

Gait segmentation is the process of identifying ”boundaries” in the gait signal(s). Gait
segmentation is an important sub-problem and can be performed in various ways. Gait
signals obtained from an individual are composed of periodic segments called gait cycles.
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These cycles physically correspond to two consecutive steps of the individual. A gait cycle
begins when one foot touches the ground and ends when that same foot touches the ground
again as shown in Figure 4.3.

Figure 4.3: One gait cycle: begins when one foot touches the ground and ends when that
same foot touches the ground again.

The end of one gait cycle is the beginning of the next. To split the signal into gait cycles,
a determination of the gait cycle period is needed. This can be determined by either using
the x, y and z data separately or a combination of two or three of the axes data.

Table 4.4 summarizes three segmentation approaches that has been applied so far.

Table 4.4: Experiments Summary.

Study Segmentation Approach
[1][17] Cycle Detection Algorithm (1 step extraction)
[7][9] Cycle Detection Algorithm (2 steps extraction)

[2] Period of an periodic gait cycle

4.2.6 Feature extraction in the time domain (Data Analysis)

The time domain is a term used to describe the analysis of signals, with respect to time
as mentioned earlier. The average cycle method was one of the first methods applied in gait
biometrics within the time domain and also the most applied. The average cycle method is
a simple approach that averages all cycles extracted. However, other extraction approaches
have also been developed. Table 4.5 shows these extractions that has been developed until
recently.

Table 4.5: Time Domain Feature Approaches

Study Approach
[1] Average cycle detection
[6] Matrix with cycles

[17] N-bin normalized histogram
[27] Cumulants of different orders

65



4. ACCELEROMETER-BASED GAIT ANALYSIS, A SURVEY

4.2.7 Feature extraction in the frequency domain (Data Analysis)

Extracting features in the frequency domain is a bit different than in the time domain, since
other (mathematical) approaches has to be applied. One of the best known is the fourier
transform. A fourier fransform is a mathematical operation that transforms a signal from
the time domain to the frequency domain, and vice versa. Table 4.6 shows an overview of
other applied methods.

Table 4.6: Frequency Domain Feature Approaches

Study Approach
[24] Discrete fourier Transform (DFT)
[3] Fast fourier Transform (FFT)

[12] Discrete cosine Transform (DCT)
[18] Discrete wavelet transform (DWT)
[13] Wavelet packet decomposition (WPD)

4.2.8 Comparison functions (Data Analysis)

Usually when two feature vectors are compared to each other the use of a comparison
function is applied. One example could be a distance metric function. In mathematics,
the metric or distance function is a function which defines a distance between elements
of a set. There are infinite numbers of distance functions developed. All depending on
the metric, distance function give very different results. This has a major impact in the
authentication and therefore it is important to find or create a suitable metric. In biometrics
it is interesting in knowing the similarity of one person to another. Table 4.7 shows the
comparison functions used.

Table 4.7: Comparison Approaches

Study Comparison Metric
[1] Cross-correlation
[7] Absolute (manhattan) distance
[9] Euclidean distance
[6] Dynamic time warping (DTW)

4.2.9 Classification (Data Analysis)

Another well-studied area that is used within gait recognition is the (un)supervised learn-
ing approaches. Within wearable gait recognition, a supervised learning is a machine learn-
ing approach for deducing a function from gait signal training data. The training data con-
sist of pairs of input objects, that are extracted from the accelerometer signals. The output
of the function can be a continuous value, called regression, or can predict a class label of
the input (feature vector), called classification. An overview is shown in Table 4.8.

From an authentication point of view in data analysis and as mentioned earlier, the
purpose is to create a template that represents the subject. Accelerometer based gait recog-
nition has been explored since 2005, resulting in data analysis methods like the Average
Cycle Method (ACM). The ACM became popular because of its simplicity as a feature
extraction method for template creation. As seen throughout this literature study, many
different features were used for creation of templates and comparison, such as correlation,
cumulants, histogram similarity, ACM, FFT coefficients, and other regular features. It is
difficult to estimate whether some of these techniques are general practical for any given
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Table 4.8: Classification Approaches

Study Comparison Metric
[27] Support Vector Machine (SVM)
[27] Principal Component Analysis (PCA)
[2] Linear Discriminant Analysis (LDA)

[26] multilayer perception neural network
[13] Kohonen self-organizing map (KSOM)

data from different devices, since the experiments performed and analyses applied varied
to a larger tend.

4.2.10 Comparing gait representations

Unlike video-based gait biometric, no public data-set on wearable gait is available. This
makes the comparison issue more difficult when comparing multiple private-sets with ea-
chother. Thus, no direct comparison can be considered in this section. On the other hand,
all results will still be overviewed.

In Table 4.9 is a short summary of current WS-based gait recognition studies from years
2004 to 2010 is shown. The last column, #TP, represents the number of test-persons.

Study EER Recognition #TP
[5] 1.68 - 60
[7] 5 % - 30
[25] 5.6 % - 21
[6] 5.7 % - 60
[9] 5.9 % - 60
[1] 6.4 % - 36
[17] 7.0 % , 19.0 % - 36
[28] 13.7 % - 31
[10] - 96.93 % 9
[10] - 96.93 % 9

Table 4.9: Performance of current wearable sensor-based gait recognitions. Excerpt of best
EER from each author.

4.3 Discussion and Future Directions

This section discusses problem issues in accelerometer based gait analysis and proposes
future work.

4.3.1 Experiment Proposal:

Fixed laboratory settings have shown great performance over time. To make gait recogni-
tion more reliable, then some issues needs to be taken into consideration. E.g. the wearing
of the accelerometer device (e.g. a cell phone). By not placing the phone in a fixed position
as has been done until now would make the experiment more realistic.

Time is an important factor in an experiment. The more time one experiment last, the
more data will be retrieved. To this, a subject must wear the attached accelerometer device
over longer time. In addition, the subject should be experimented in different types of
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activities (activity recognition). Recently [11] analyzed activity recognition, unfortunately
with few volunteers. Thus, it is strongly proposed that different activities are performed
during the experiments.

As seen in Table 4.9 the numbers of subjects participating in experiments are very dis-
similar. Experiments with low number of subjects statistically gives imprecise estimations
when calculating recognition rates.

Clothes wearing might have an influence on the gait-appearance. This has to be further
researched. Another issue related to clothes wearing is shoe wearing. As has been seen
in work of [7], shoes slightly changes gait from one person to another. Therefore, several
types of walking settings most be applied including abnormal behaviors.

Gait slightly changes over time and human factors (e.g. tiredness, laziness, illness, etc.).
Experiments shall note these types of issues. Most papers during this survey does not
mention these factors.

4.3.2 Data Analysis Proposal:

Data acquisition is one of the major parts that has a great influence in the data analysis.
For example, accelerometer values which are outputted from a cell phone differ from one
phone to another. Phones usually have different embedded accelerometer chips, which
outputs different values regarding to their sample-rate. Most of the phones today have low-
cost accelerometers built-in, but still there are big differences in their qualities. A suggestion
would be to investigate which accelerometers have the best low-cost quality sensor and to
investigate how big a change sensors have in difference.

Lately, a paper was written by [5] applying the use of principal component analysis
(PCA) to wearable sensor based gait recognition and as an additional step in the Average
Cycle Method. The PCA is mostly used in the exploratory data analysis and was known
to give good recognition rates, it has been used in machine vision based gait recognition
before. An EER of 1.68% was achieved during the work. This is an great improvement by
around a factor of 3.5 compared to the best known results on the same private database.
A strong suggestion for further improvements in performance is to look closer at different
distance metrics since most simple metrics have been investigated. The merit of these re-
sults is not only the improvement of the gait recognition performance, but this can also be
seen as a first step to a combination of recognizing not only that a person is walking (as
opposed to for example sitting, running, cycling, etc.), but also who the person is (either
identifying or authenticating that person).

Since accelerometer data conducts signals as output based on time, it is most obvi-
ous that one take a deep look into digital signal processing (DSP). DSP is concerned with
the representation of signals by a sequence of numbers and the processing of these sig-
nals. The main idea of DSP is usually to measure, filter and/or compress continuous
real-world signals like gained here as gait signals. DSP algorithms have long been run
on standard computers, on specialized processors called digital signal processors (DSPs),
or on purpose-built hardware such as application-specific integrated circuit (ASICs). Today
there are additional technologies used for digital signal processing including more power-
ful general purpose microprocessors, field-programmable gate arrays (FPGAs), digital sig-
nal controllers (mostly for industrial applications such as motor control), and stream pro-
cessors, among others. In DSP, researchers usually study digital signals in the time domain
(one-dimensional signals), spatial domain (multidimensional signals), frequency domain,
autocorrelation domain, and wavelet domains. The domain in which to process a signal is
done by making an informed guess (or by trying different possibilities) as to which domain
best represents the essential characteristics of the signal. Therefore it is strongly proposed
that DSP approaches are considered and analyzed for the data processing. Few examples
such as the FFT, DWT, cross-correlation have been tried out already, but the information
retrieved has not been so specific. Furthermore, the average cycle method is not a fully
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automated gait recognition method and therefore DSP could be used for the same purpose
making the process automatic and more reliable.

Multi-modal biometric is today considered a major-topic in biometric systems and might
also be useful within accelerometer based gait recognition. Mobile devices today have sev-
eral types of built-in sensor (e.g. gyroscopes, magnetic field sensors etc.) which eventually
outputs some data that might be combined with each other. Fusion of the three directions
(x,y,z) might also be fused, which might further have a great impact improving authentica-
tion performances.

The creation of a public database for accelerometer based gait recognition is highly rec-
ommendable to have. A suggestion would be to collect data and to conduct databases
consisting of several settings (normal/slow/fast walking, going up/down stairs) so re-
searchers have the ability to compare their algorithms and results with each other.

Finally, as seen through out this paper, activity recognition research has been studied
slightly using accelerometers, thus, additional research has to be studied. Since more and
more mobile devices are embedding additional sensors than only accelerometers (such
as gyro-scopes, magnetic field sensors, rotation sensors, etc.), an interesting point in gait
recognition research is to apply multiple sensors.

4.4 Conclusion

Unlike most of the previous work in gait recognition, using machine vision or floor sensor
based approaches, a current state of the art of the accelerometer based gait biometrics has
been studied. It gives an overview of papers describing their experiments, acquisition,
data-analysis and results.

The main advantage here is to provide unobtrusive user authentication and identifica-
tion. There are many factors that can influence the accuracy of this system. These factors
has to be taken into consideration towards developing a robust system. Therefore, ac-
celerometer based gait biometrics is still in its infancy and still additional research needs to
be worked out and considered. Since wearable based gait biometrics started back in 2005
then there has been an increasingly interest within this topic until today. Furthermore, no
public database has been created within this research field which makes the comparison
of two research works more difficult to distinguish from one another. Also algorithms de-
veloped for performance evaluation would be more convenient when a public database is
available.
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Chapter 5

Towards Continuous Authentication Based on
Gait Using Wearable Motion Recording

Sensors

Abstract

Nearly all systems conduct some kind of user authentication before granting access
to the objects or services. Moreover, humans pass through authentication steps more
than once in their everyday activity, e.g. for entering a house you have to possess the cor-
rect key to open the door, to use a computer you need to know its password, etc. These
authentications are one-time or static which means once the user’s identity is verified
the authentication lasts forever. However, some high security systems require ensuring
the correct identity of the user throughout the full session. This then requires verifica-
tion of user identity continuously or periodically. One of the important requirements for
continuous authentication is that the method should be unobtrusive and convenient in
usage. If this is not satisfied the users are not going to accept continuous authentication.
Therefore not all authentication methods can be suitable for continuous authentication
even if they provide higher security.

In this chapter we present continuous authentication using gait biometric. Gait is a
person’s manner of walking and gait recognition refers to the identification and verifi-
cation of an individual based on gait. This chapter discusses advantages and disadvan-
tages of gait biometrics in the context of continuous authentication. Furthermore, we
present a framework for continuous authentication using gait biometrics. The proposed
framework extends on traditional static (one-time) user authentication. The framework
can also be applied to other biometric modalities with small modifications.

5.1 Introduction

A particular way or manner of moving on foot is a definition for gait [15]. Every person
has his or her own way of walking. From early medical studies it appears that there are
twenty-four different components to human gait, and that if all the measurements are con-
sidered, gait is unique [9]. This has made gait recognition an interesting topic to be used for
identifying individuals by the manner in which they walk. Figure 5.1 illustrates the com-
plex biological process of the musculo-skeletal system, which can be divided into several
types of sub events of human-gait. The instances that are shown in this figure are used to
extract parameters for being used as an identification system of each individual.

The analysis of biometric gait recognition has been studied for a longer period of time
[32, 41, 42, 43, 53] for the use in identification, surveillance and forensic systems and is
becoming important, since it can provide more reliable and efficient means of identity ver-
ification.

Today, computer systems demand authentication in case of using the system. Typi-
cally, the authentication is performed at login time either with a password, token, biomet-
ric characteristic and/or a combination of these. Performing the last mentioned might give
further guarantee that the claimed user logging in is the authorized user instead of a bur-
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Figure 5.1: Division of the gait cycle into five stance phase periods and two swing phase
periods.

glar. However, once the user has been granted access; most systems assume that the user
is continuously legitimated into the system.

In critical or high security environments, it should be ensured that the user must be
the legitimated throughout usage. Therefore, user authentication needs to be performed
in a continuous way within the time the system is actively being used. Furthermore, au-
thentication needs to be “attractive” for the user. This means that in the authentication
process the users do not need to do anything special, like for example periodically enter-
ing a password. Continuous authentication using biometrics can fit these needs Thus, one
of the important requirements in continuous authentication is unobtrusiveness, since this
can be monitored in a non-intrusive way. The Wearable Sensor (WS) based method can be
a very good candidate to fulfill this requirement, compared to current knowledge-based
mechanisms.

This chapter is structured as follows: Section ‘Background’ gives the state of the art
overview of gait recognition and activity recognition. Section ‘Evaluation of a Biometric
System’ introduces the definition of static and continuous authentication. The next section
introduces the biometric continuous authentication (CA) system using gait recognition.
This is the major contribution in this paper and discusses CA using gait. The last section
concludes the paper and gives a description on how wearable gait recognition can be im-
proved by proposing new ideas for future work.

5.2 Background / State of the art

This section is divided into 2 subsections. First subsection describes the motion-based (gait
biometrics) identity verification. Second subsection introduces activity recognition.

5.2.1 Gait Recognition

From how the walking data is collected, gait recognition can be categorized in three ap-
proaches [20]:

• Video Sensor Based (VS);

• Floor Sensor based (FS);

• Wearable Sensor based (WS).
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We will give a short description on all three approaches, but we will mainly focus on
the WS-based approach. We will illustrate how nicely this WS-based approach meets the
requirements of continuous authentication which were specified in the previous section.

5.2.1.1 Video Sensor Based

In the VS-based approach, the system will typically consist of several video cameras with
suitable optics for acquiring the gait data. Using techniques such as thresholding which
converts images into simply black and white; pixel counting to count the number of light
or dark pixels; and background segmentation, which performs a simple background sub-
traction could be some of the possible ways to identify a person. Figure 5.2 shows an
example of the VS-based approach with processed background segmentation.

Figure 5.2: Background segmentation for extracting the silhouette picture - subtraction

Scientist have during the last decade until currently been working on analyzing the
movements of criminals caught on CCTV and compare them with those of a suspect [51].
Back in December 2004, there was a case where a perpetrator robbed a bank in Denmark
[32]. During the robbery, two surveillance cameras were recording the crime scene. One
camera was placed at the entrance recording the robber in frontal view (walking in, stand-
ing and walking inside the bank during the robbery, and leaving the bank). The other
camera was placed inside the bank recording the cashier’s desk. The court used the gait-
analysis tool to find the perpetrator of the robbery. Almost at the same time in late De-
cember 2004, there was a murder crime scene in the United Kingdom. A podiatrist told
the supreme court jury that there were matches between the person captured on video and
known videos of the murderer [11]. In a third case, around mid-April 2008, a burglar was
caught because of his bow-legged walk [8]. Even though that the burglars face was hidden,
it was still possible to identify the burglar. In most cases in a robbery, usually the perpetra-
tor wears a mask and gloves to hide his body characteristics such as face and hands so that
no face or fingerprints can be shown or found at the crime scene. If cameras are available
that recorded the gait of the burglar, then maybe enough information is present to link a
person to the crime.

5.2.1.2 Floor Sensor Based

In the FS-based approach the sensors are placed on or in the floor where gait data is mea-
sured when people walk across. In the FS-based approach the force to the ground by hu-
man walking is measured. This is also known as the GRF (Ground Reaction Force). In a
research from the University of Southampton, such a floor sensor for gait recognition was
prototyped as illustrated in Figure 5.3.

5.2.1.3 Wearable-Sensor Based

Apart from the MV-based and FSbased gait recognition, the WS-based gait approach is the
most recent. This approach is based on attaching or wearing motion recording sensors on
the body of the person in different places; on the waist, pockets, shoes and so forth, see
Figure 5.4
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Figure 5.3: Gait collection by floor sensors. a) shows footsteps recognized, b) shows the
time spent at each location in a), c) shows footstep profiles for heel and toe strikes (x and
f(x) indicate the heal/toe locations and footfalls forces, respectively) , and finally d) is a
picture of a prototype floor sensor carpet.

Figure 5.4: Sensor attached at various locations.

The WS-based approach can serve several purposes due to retrieving numerous types
of data. Different types of sensors can for example be accelerometers (measuring acceler-
ation), gyro sensors (measuring rotation), force sensor (measuring force of walking) etc.
Most literature so far used accelerometer based gait recognition. Thus, these accelerome-
ters are becoming an important tool into our every-day. Most of the modern mobile smart
phones nowadays use built-in accelerometers to detect when the device is rotated. The
data from the accelerometers is used to display the information on the screen in either hor-
izontal or vertical format. Moreover, the device can further detect when it is being lifted
to the ear so that phone calls can be answered automatically. Feature extraction from gait
signals is important for the efficiency of gait recognition. For a general gait analysis the
signal processing flow is shown in Figure 5.5

A WS-based gait recognition application can improve authentication in electronic de-
vices. One of the advantages of WS-based gait recognition and the main argument towards
CA is its unobtrusiveness. An example would be to integrate the Motion Recording Sensor
(MRS) in clothing (e.g. footwear) or personal electronics of the user.
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Figure 5.5: Processing flow of method for gait verification.

Whenever a user walks, the MRS can record motion and the recorded motion can be
used for identity verification purposes unobtrusively in the background. Due to the unob-
trusive way of collecting data it can be applied for continuous verification of the identity
in mobile phones. This means that for each step a user takes, the identity of the user will
be re-verified to ensure that the user has not changed. In addition, MRS are cheap and
many recent personal electronic devices (e.g. mobile phone) are already equipped with
such sensors.

Experiments To the best of our knowledge, no public database has been created for ac-
celerometer based gait recognition. However, researchers have made their own experi-
ments and databases. Table 5.1 summarizes experiments performed in research with the
type of activity performed, environment and the number of subjects.

Study Walking activities Subjects
[6] treadmil(normal, fast, slow) 5
[26] free normal, free resting 5
[48] normal, fast, slow 6
[22] normal 20

[45, 46] normal 21, 35
[21] normal 21, 30, 50, 100
[37] normal 36
[24] normal, fast, slow, circle 60

Table 5.1: Experiments Summary

All of the mentioned experiments above except [26] are controlled experiments. A con-
trolled experiment is defined as taking place under fixed laboratory settings and differs
significantly from a real world scenario. People usually carry their mobile phones in their
pockets or hold them while the phone is continuously moving and rotating in different
directions. In the fixed, controlled settings the phone is usually attached to one particular
location on the body at all times.

As can be seen further in Table 5.1 , the amount of volunteers differs greatly. Many of the
experiments had a low number of volunteers. Obviously this means that the recognition
performances (viewed later in this paper) are not directly comparable since the numbers of
volunteers are dissimilar.

Finally, very few studies have researched gait-recognition with different behavioral set-
tings. A study [24] has shown that the gait-signal of one person slightly changes from one
day to another.
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Data acquisition Accelerometer data can be derived from several types of sensors; from
a dedicated accelerometer, a GPS device, a mobile phone etc. An accelerometer measures
acceleration in three directions, being the x-direction (up-down), the y-direction (forward-
backward) and the z-direction (sideways).

Table 5.2 gives an overview of the placement of sensors and sensor models that have
been used in literature.

Study Acquisition Form Subjects
[47] shoe MEMS accelerometer
[28] breast/hip cell phone accelerometer
[40] whole body weight force plate
[21] ankle/pocket/arm/hip 3D accelerometer (MRS)

[45, 46] waist 3D accelerometer (analog)
[5] leg wireless accelerometer(Tmote Sky)

[26] pockets phone headset
[33] waist 3D accelerometer (ADXL05, analog)

[2, 37] waist 3D accelerometer (ADXL202JQ, analog)
[48] hip cell phone accelerometer
[6] ankle 3D accelerometer

[22] elastic belt on body 3D accelerometer
[14, 24] hip 3D accelerometer (MRS)

Table 5.2: Data Acquisition Summary

Accelerometers (whether they are built into cell phones or are dedicated devices) usu-
ally output different sample-rates per time unit. Most accelerometers have a low sample-
rate/frequency while few have a high frequency rate. Moreover, some devices today con-
tain multiple sensors, such as a gyroscope, magnetic-field etc.

Preprocessing Preprocessing has been performed differently in literature. [24] and [21]
applied the linear time interpolation on the three axis data (x,y,z) retrieved from the sensor
to obtain an observation every X seconds since time intervals between two observation
points were not always equal.

Measured acceleration signals are sometimes low-frequency components. The signals
that are being outputted are easily affected by experiment environmental noise, such as
electronic noise in the equipment, high frequency noise etc. which will obscure/reduce the
clarity of the acceleration data. However, the accelerometer does not always measure grav-
itational acceleration; it might also measure the acceleration of light oscillation brought by
the body of the human. This results in another weakness from the sensor that is accelera-
tion data will be outputted with some noise. [24] and [21] removed this type of noise by
using a weighted moving average filter which is fast and easy to implement, whereas [40] and
[46] de-noised the signals with a Daubechies wavelet (wavelet transform). They meant that
this transform showed satisfying results in noise suppression from previous experiments,
preserving edges and would be helpful for the gait segmentation.

Since different accelerometers output different unit values, [24] and [21] had to convert
their values into practical unit values (e.g. g-forces) by using properties of the sensor they
derived the data from.

In the last preprocessing step, [24] and [21] calculated the resultant vector (also known
as the vector magnitude) by applying the following formula,

rt =
√
x2t + y2t + z2t , t = 1..., N

where rt, xt, yt and zt are the magnitudes of resulting, vertical, horizontal and lateral accel-
eration at time t, respectively and N is the number of recorded observations in the signal.
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However, for example [48] did not use any combined vector, but instead kept the vector as
is so they had a 3-component vectors of samples stored in a matrix A

A = [x y z]

where x, y and z represents vectors of acquired samples for each spatial direction.

Data Analysis Identifying users from gait patterns using accelerometers is based on the
assumption that the gait acceleration profile (“reference template”) is unique to some extent
for each and every person. First, a feature vector that represents the characteristics of the
gait of the person to authenticate is computed and stored as the reference template. A
similar feature vector is computed during the authentication process and compared to the
reference template. Acceptance of the user is based on the distance between the new feature
vector and the reference template.

The accelerometer data can be analyzed in two domains: the time domain or the fre-
quency domain. In the time domain, the three acceleration signals (x,y,z) change over time
(t), whereas in the frequency domain each frequency band over a range of frequencies is
used. A given function or a given signal can be converted between the time and the fre-
quency domain with a pair of mathematical operators called a transformation.

Segmentation (Data Analysis) Gait segmentation is the process of identifying “bound-
aries” in the gait signal(s). Gait segmentation is an important sub-problem and can be
performed in various ways. Gait signals obtained from an individual are composed of pe-
riodic segments called gait cycles. These cycles physically correspond to two consecutive
steps of the individual. A gait cycle begins when one foot touches the ground and ends
when that same foot touches the ground again as shown in Figure 1 and the acceleration
data is illustrated in Figure 5.6.

Figure 5.6: One gait cycle: begins when one foot touches the ground and ends when that
same foot touches the ground again.

The end of one gait cycle is the beginning of the next. To split the signal into gait cycles,
a determination of the gait cycle period is needed. This can be determined by either using
the x, y and z data separately or a combination of the data of two or three directions.

Table 5.3 summarizes three segmentation approaches that have been applied so far.
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Study Approach
[5] Period of an periodic gait cycle

[2, 37] Cycle Detection Algorithm (1 step extraction)
[21, 24] Cycle Detection Algorithm (2 step extraction)

Table 5.3: Segmentation Approaches

Feature extraction in the time domain (Data Analysis) The time domain is a term used to
describe that the analysis of signals is done with respect to time, as mentioned earlier. The
average cycle method was one of the first methods applied in gait biometrics within the
time domain and also the most applied. The average cycle method is a simple approach
that averages all cycles extracted. However, other extraction approaches have also been
developed. Table 5.4 shows these extractions that have been developed until recently.

Study Approach
[14] Matrix with cycles
[2] Average cycle detection

[37] N-bin normalized histogram
[48] Cumulants of different orders

Table 5.4: Time Domain Feature Approaches

Feature extraction in the frequency domain (Data Analysis) Extracting features in the
frequency domain is a bit different than in the time domain, since other (mathematical)
approaches have to be applied. The best known approach is the Fourier transform, which
is a mathematical operation that transforms a signal from the time domain to the frequency
domain, and vice versa. Table 5.5 shows an overview of other applied methods.

Study Approach
[46] Discrete Fourier Transform (DFT)
[6] Fast Fourier Transform (FFT)

[27] Discrete Cosine Transform (DCT)
[40] Discrete Wavelet Transform (DWT)
[28] Wavelet Packet Decomposition (WPD)

Table 5.5: Frequency Domain Feature Approaches

Comparison functions (Data Analysis) Usually when two feature vectors are compared
to each other the use of a comparison metric is applied, for example a distance function. In
mathematics, a metric or distance function is a function which defines the distance between
elements of a set. Many different distance functions have been developed. The obtained
results in the various researches depend on the particular distance functions that are used.
Given a particular dataset, then the performance results differ for different distance func-
tions. This has a major impact on authentication and therefore it is important to find or
create an adequate distance function. Table 5.6 shows which comparison metrics are used.

Classification (Data Analysis) Another well-studied area that is used within gait recogni-
tion is the (un)-supervised learning approaches. Supervised learning is a machine learning
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Study Comparison Metric
[2] Cross-correlation

[21] Absoulte (Manhattan) Distance
[24] Euclidean Distance
[14] Dynamic time warping (DTW)

Table 5.6: Comparison Approaches

approach of extracting a function from supervised training data, in which each sample has
a pair of input objects and a desired output value. Within wearable gait recognition, the
training data consist of pairs of input objects that are extracted from the accelerometer sig-
nals. The output of the function can be a continuous value, called regression, or can predict
a class label of the input (feature vector), called classification. An overview is shown in
Table 5.7

Study Comparison Metric
[48] Support Vector Machine (SVM)
[48] Principal Component Analysis (PCA)
[5] Linear Discriminant Analusis (LDA)

[48] Multilayer perceptrons-neural network
[28] Kohonen self-organizing map (KSOM)

Table 5.7: Classification Approaches

From an authentication point of view in data analysis and as mentioned earlier, the
purpose is to create a reference template that represents the subject. Accelerometer based
gait recognition has been explored since 2005, resulting in data analysis methods like the
Average Cycle Method (ACM). The ACM became popular because of its simplicity as a
feature extraction method for template creation. Many different features were used for
creation of templates and comparison, such as correlation, cumulants, histogram similarity,
ACM, FFT coefficients, and other regular features. It is difficult to estimate whether some
of these techniques are in general practical for any given data from different devices, since
the experiments performed and analyses applied varied to a larger extent.

Comparing gait performances Unlike VS-based gait biometric, no public data-set on WS-
based gait is available. This makes performance comparison more difficult because each
result is based on a private data set. Therefore, no direct comparison can be considered in
this section, but we will still give an overview of all reported performance results.

Table 5.8 shows a short summary of current WS-based gait recognition studies from
2004 to 2010. The last column, #TP, represents the number of test-persons.

5.2.2 Activity Recognition

Wearable sensors have been shown to be adequate for activity recognition. This recognition
is a required step towards continuous authentication in WS-based gait authentication using
sensors in mobile devices. These devices come prepared with sensors such as accelerom-
eters, gyro-scopes, Global Positioning Systems (GPS), etc., which can gather information
about the actions of a user. For example, a phone might observe that a user is walking
normally in a non-stressed environment, or it might make decisions regarding whether
incoming phone calls should be answered or denied

Figure 5.7 illustrates an excerpt of which activities can be recognized from the gait signal
data.
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Study EER Recognition TP
[25] - 96.93 % 9
[39] - 97.4 % 10
[46] 5.6 % - 21
[21] 5 % - 30
[52] 13.7 % - 31
[2] 6.4 % - 36

[37] 7.0 % , 19.0 % - 36
[10] 1.68% - 60
[14] 5.7% - 60
[24] 5.9% - 60

Table 5.8: Performances of current wearable sensor-based gait recognitions

Figure 5.7: Different activities.

Several applications for recognizing activities from sensor data have been implemented
in a broad range of fields such as health care [29] , fitness [12, 35], and security [1]. Dif-
ferent types of sensors have been applied, e.g., accelerometer data for recognizing physical
activities [3, 35, 38] and both mobile phone usage data [16] and GPS data [31, 36] for human
mobility analysis

Detecting primitive everyday activities, such as walking, running, biking, sitting and
laying have in laboratory settings been analyzed by several researchers [4, 18, 17, 19, 50]. In
all these studies data is collected using accelerometers built into wearable sensing devices.
Most research has shown recognition accuracy above 85% on large, complex data sets using
standard linear signal processing methods and a lot of signal statistics computations exe-
cuted. Furthermore, “high weighted” feature extractions approaches were used to decide
whether these features would be useful for classification. Whilst these methodologies work
fine, they need a lot of computing power. This will benefit applications suited for real-time
detection of activities on low-powered devices, such as mobile phones. The applicability of
the results which were presented in the studies mentioned above to out-of-lab monitoring
is vague. In the study of [18] the recognition performance decreased from 95.8% to 66.7%
as the experiment was shifted from inside to outside the laboratory. Furthermore, recog-
nition of dissimilar activities involving dynamic motion has not yet been studied in detail.
In some studies data has been composed outside the laboratory. The subjects placed ac-
celerometers on their sternum, wrist, thigh, and lower leg. The same activities, i.e. sitting,
standing, laying, and talking were recognized with an overall accuracy of 66.7%. In [7] five
biaxial accelerometers attached to hip, wrist, arm, ankle, and thigh were used to recognize
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twenty everyday patterns. From 82 to 160 min of data was collected and a decision tree
classifier was used for classification. The range of the recognition accuracies varied from
41% to 97% for different patterns

Other research groups have studied activity recognition as fraction of context awareness
research [7, 30, 34]. Context sensing and use of context information is a significant part of
the ubiquitous computing scenario [13, 49]. The purpose of context sensing is to provide
a computing device (e.g., cellular phone, or a device integrated into clothes) with some
“senses”, with which it becomes attentive of its environment. With these “senses”, the
computing device is then able to observe and measure its surroundings and it will then
become aware of its own context. The context describes the condition or status of the user
or the device. Different devices can use the context information in special ways, e.g. for
offering relevant services and information, for adapting its user interface, for annotating a
digital diary (e.g. energy expenditure), etc. Location and time belong to the set of the most
important contexts and the use of these contexts has been researched widely. However, to
recognize the physical activities of a person, a sensor-based approach is required

A very interesting research paper [44] studied the automatic classification of physical
activities. The paper described how automatic classification of everyday activities can be
used for promotion of health-enhancing physical activities and a healthier life-living. The
application could therefore be used for an “activity diary” program that would explain to
the user which activities were performed during the day and what the daily cumulative
durations of each activity were. When the user is given this information, the user can draw
his own conclusions and further adjust his behavior accordingly. This model is known as
the behavioral feedback model. This model is being effectively used in for example weight
management programs. Alternatively the activity diary information can be utilized by
context-aware services and devices that propose adapted information or adapt their user
interface (UI) based on the user’s activity type.

The latest and most successful algorithm has been implemented in real time on a mobile
phone by [19] who proposed an alternative approach for representing time series data that
significantly has lowered the memory and computational complexity. The memory and
computational savings are crucial, given that for many applications, activity recognition
would have to run in real time as a small component of a larger system on a low-powered
mobile device. The study used accelerometer data; intuitively, the acceleration recorded
by the mobile phone attaching this to the hips and legs. The techniques from nonlinear
time series analysis [23] was adopted to extract features from the time series. These fea-
tures were used as inputs to an off-theshelf classifier. The approach improves classification
performance while at the same time it extracts fewer features from the time series data

5.3 Evaluation of a Biometic System

5.3.1 Static Authentication

As can be seen in Figure 5.8, the user initially presents its biometric modality (e.g. gait) to
the sensor equipment (e.g. an accelerometer sensor in a mobile phone), which captures it
as raw biometric data (e.g. a discrete time signal). After preprocessing this raw biometric
data, features will be extracted from the data. In case of gait biometrics, these features
would typically be periodic cycles. The extracted features can then be used for comparison
against corresponding features stored in a database, based on the claimed identity of the
user. The result of the comparison is called the similarity score, S where a low value of S
indicates little similarity, while a high value indicates high similarity. The last step is to
compare the similarity score S to a predefined system threshold T, and output a decision
based on both values. In case the similarity score is above the threshold (S>T) then the
user is accepted as genuine, while a similarity score below the threshold (S<T) indicates an
impostor who is rejected by the system.
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Figure 5.8: A traditional verification process (one-time static).

Obviously the biometric features of the user must initially be stored in the database
before any comparison of a new biometric input can take place. This is done during the
enrollment phase of a biometric system. During the enrollment phase also raw biometric
data is captured from the biometric modality, after which it is processed and features are
extracted. The extracted data is now stored in a database and linked to the identity of
the user who enrolled. The stored data in the database is referred to as the (reference)
template of the user. In case of gait biometrics it is very well possible that the raw biometric
data is captured multiple times and these multiple samples are combined to make a single
template. This is a well known technique in behavioral biometrics.

The calculation of the False Match Rate (FMR) and False Non-Match Rate (FNMR) is
done in the following way. Suppose we have collected N data samples from each of M
participants, then we can calculate similarity scores between two samples, either being
from one person or from two different persons. A similarity score between two samples
from the same person is called a genuine score, while an impostor score is the similarity
score between two samples from different persons. Given our setting, we can have N*M
data samples from which we can calculate the total number of NGen = M*N*(N-1)/2
different genuine scores and NImp =M*N*(M-1)*N/2. Given these sets of genuine and
impostor scores we can calculate FMR and FNMR for any given threshold T as follows:

FMR(T ) =
number of imposter scores ≤ T

NImp

FNMR(T ) =
number of genuine scores > T

NGen
Given various values of the threshold we can create a Decision Error Tradeoff (DET) curve
which shows the relation between FMR and FMNR for various threshold values T. From
this, we can find the point where FNMR equals FMR, or in other words the Equal Error
Rate (EER). This rate is very common used value which is being used to compare different
systems against each other, and it roughly gives an idea of how well a system performs.

5.3.2 Continuous Authentication

In a continuous authentication system we can no longer evaluate the performance of the
system in terms of FMR and FNMR. In a static authentication system, the question is if a
claimed identity is genuine or not. In a continuous authentication system the question is
if the identity of the current user is still the same as the identity of the user that logged on
the system. In particular, in continuous authentication the most important issue is not if
an impostor is rejected by the system, but how fast he will be rejected. In a static biometric
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system, the lowest EER indicates the best performance. Similarly in a continuous authen-
tication system, the best performance is indicated by the fastest rejection of impostors. A
desirable property of a continuous authentication system might furthermore be that gen-
uine users will never be rejected by the system, although this might not be realistic. In case
a genuine user gets rejected, then this should obviously take much longer time in compar-
ison to rejection of impostors.

In a continuous authentication system we also have to create a reference template for
each user, which will be used for comparison against newly inputted raw biometric data.
However, the resulting similarity score S will not directly lead to the rejection or acceptance
of a user. First of all, as the user is already using the system, he/she is accepted by default,
so in case of continuous authentication, we only have to consider the rejection of a user.
Consider the situation where the genuine user is providing new biometric data to the sys-
tem that is rather dissimilar to the stored reference template. This is a common situation in
behavioral biometrics as biometric data is never exactly the same when it is presented to
the sensor. This low similarity should not immediately result in a rejection of the user by
the system, but merely in a lowered trust of the genuineness of this user. Similarly, if the
similarity score S is high, indicating a high similarity between the reference template and
the new biometric data, then the trust in the genuineness of the current user increases. This
implies that the level of trust that the system has in the genuineness of the user fluctuates.
In case of a genuine user, the level of trust will in general stay high, while for an impostor
the level ideally should drop as fast as possible. There will be a system threshold such
that a trust level below the threshold will result in a lock out of the current user and a fall
back to a static authentication procedure (which can but need not be a biometric system).
In terms of performance of a continuous authentication system, we can then say that the
faster impostors are detected (and locked out) the better the system performs.

Figure 5.9: Continuous Authentication using Gait.

Figure 5.9 represents the foundation of a CA system using gait on how to verify an
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identity of the user continuously. The main distinction between static and continuous gait
verification is that for continuous gait verification the data analysis, evaluation and autho-
rization are no longer one-time static happening. They are now elements of a continuous
procedure.

5.4 Evaluation of a Continous Authentication System

In this section we will describe in more detail how a continuous authentication system can
be evaluated. In particular we will describe the changes in confidence level by introduc-
ing so-called “penalty-and-reward” functions. We will assume that the biometric data is
collected from accelerometers in a mobile phone that is worn by a user while walking.

Activity Identification Contributions within wearable gait recognition until now have
only focused on the task of person identification where data was retrieved from dedicated
external sensors.

One important issue in continuous authentication and gait recognition is to develop and
evaluate algorithms to detect physical activities from data acquired using mobile devices
(built-in sensors) worn on different parts of the body, which is also known as either activity
identification or activity recognition.

Because wearable gait recognition research has had its focus on feature extraction and
performance evaluation, the activity identification has not been analyzed to a large extent
in wearable gait authentication before and especially not in gait recognition using mobile
devices As described in the section on Activity Recognition, we see that researchers have
not had the intention of analyzing activity recognition with respect to gait recognition. Ac-
tivity identification is required in order to be able to perform continuous gait authentication
under normal everyday walking circumstances, using mobile devices. Therefore activity
identification will be the first step towards protecting mobile devices against unauthorized
use of the device and disclosure of information present on the device. Without an activity
identifier on the mobile device, it is quite difficult to know exactly what activity a subject
is performing at a certain time. The gait recognition should only be functioning when the
subject is physically active, and thus, the recognition should not be activated when the
subject is passive (sitting down, standing, etc.).

Data Analysis The data analysis part in continuous gait recognition is similar to the data
analysis in static gait recognition. After walking activity has been identified, the walking
signal has to be segmented and the segmented walking signal needs to be analyzed fur-
ther. There are multiple ways of analyzing the data in wearable based gait recognition.
Some approaches are described in the State of the Art section. The research on wearable
sensor based gait recognition so far has only focused on ”high grade” collection devices
(high sample rate, large sample scale). The research on wearable sensor gait recognition
using the accelerometer data from mobile phones or other mobile user devices does rarely
exist. Sensor hardware (accelerometer, gyroscopes, etc.) on different mobile devices will
be of different quality and therefore a broad selection of mobile phones and mobile user
devices needs to be analyzed carefully As the sensors in the mobile devices are of lesser
quality (lower sample rate and/or lower sample scale) the performance of a gait recogni-
tion system will be not as good as compared to the high grade collection devices. Therefore
research should focus on optimizing the performance for mobile devices.

Confidence Level Function A confidence level is a new term in biometrics. It can be
used as a realistic and easy to implement step/module in continuous authentication in
general and continuous gait recognition in particular. This module is designed and located
after the feature extraction and before the decision making as illustrated in Figure 5.9. The
confidence level is updated continuously based on user actions and will go up or down,
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based upon the similarity between the current user action and the reference template. The
limitation of static biometric analysis is that the authentication process is performed at the
end of a full walking session and not during the session itself. In such a case we can only
afterwards decide if the user was genuine or not, which is obviously too late. Therefore
it is very important to introduce the idea of the confidence level function for continuous
authentication

Basically, a confidence level function is a function which updates a confidence value (C)
for every captured feature during the walking session. The initial confidence value is set
right after the static authentication and its value is 100.

Based on the distance between the current feature and the reference template, a deci-
sion rule is used to either increase or decrease the confidence value C. In particular, the
confidence value will decrease each time the distance between the current feature and the
reference template is outside the expected range, i.e. is above some pre-defined thresh-
old. The value will increase each time this distance is below that pre-defined threshold.
In other words the user should be punished when he/she makes mistakes (decreasing the
confidence value) and he/she should be rewarded (increasing the confidence value) when
he/she walks correctly. A setup for the confidence level function will look like follows:

C =

 100
C − punishment
C + reward

initial value
mistake
correct

We should note that the confidence value C is initially set to 100 (100% confidence in the
genuineness of the current user) and that it cannot rise above that. This means that in case
of a reward the value of C increases, but is still bounded by 100. Similarly the confidence
level value C cannot be lower than zero. The actual values C=100 and C=0 indicate com-
plete trust in the current user and complete distrust.

As mentioned before, there is a decision function that, based on the distance D between
the current feature and the reference template, and based on a global threshold T decides
whether the current action of the user was correct or wrong, i.e. if the user should be re-
warded or punished. Generally speaking, if D≤T then the user is rewarded and if D>T he
is punished. There are various ways to define a punishment or a reward. For example for
the punishment, one solution could be to decrease the value C with a fixed constant. An-
other option could be to decrease C by the difference between the distance D and threshold
T Similar approaches can be taken for the reward. In fact there are no restrictions against
combining a fixed reward value with a variable punishment.

In cases where data from an impostor are compared against a genuine user’s reference
template, the confidence level value is expected to generally keep decreasing. The impos-
tor should be denied access after a relatively low number of user actions i.e. after a short
walking time. This means that he cannot easily compensate his wrong walking by acci-
dentally also walking correctly, i.e. walking as described in the reference template of the
genuine user. However, when comparing data of a genuine user with its own template, the
confidence level value should more or less fluctuate near the initialization value, meaning
that wrong walking is easily compensated by correct walking.

Decision Rule: As described earlier in the section of static gait recognition a decision rule
is based on a predefined threshold. The score value which is gained from the comparison-
metric is compared to the threshold. Multiple decision rules could be implemented and
applied This mechanism can be easily translated to continuous gait authentication, by com-
paring the trust level to a pre-defined system threshold. If the value of the trust level C
drops below a system threshold Ttrust, then the system will lock out the user. Instead of
using a system wide threshold could the system also be implemented with user defined
thresholds. A user who is very stable in his way of walking could then have a higher per-
sonal threshold then a user who is less stable, i.e. is more likely to be punished for incorrect
walking.
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Backup Authentication Mechanism When a user is locked out by the CA mechanism, a
backup authentication mechanism should be activated. The user is rejected when the value
of the confidence level C, as described in an earlier section, is under a certain system wide
or personal threshold. This means that the system decides to deny the user further access
and, thus, we enter a new state as illustrated in Figure 5.9 The state which will be entered
is the static authentication state. This state must enable us to reset the confidence level in
order to use the phone and the CA mechanism again. For example, if a user of a mobile
phone gets rejected, the phone goes into the locked state. The user will now be able to enter
the PIN code to open the phone from its locked state. Once the correct PIN code is entered,
the user will return to the normal state and start with the highest trust level again.

Continuous Authentication – Multi Level Security As described in the previous section
we can use the trust level and a threshold to determine if a user needs to be locked out
or not. This mechanism can actually be extended in such a way that Multi Level Security
(MLS) can be provided. As mentioned before the value of the trust level C lies within the
interval between 0 and 100. In the simple case a single threshold T is used such that the
user gets locked out when C<T and stays logged in as long as C≥T. In principle a user can
perform all actions as long as he is logged in.

The system can be extended such that we have multiple thresholds T <T1 <. . .<Tn−1.
For simplicities sake assume n=3 here, so we have three different thresholds and T <T1

<T2. In this setting a user will be locked out of the system if the value of the trust level
C<T and he can perform all actions if C≥T2. In case T≤C<T1 then the user still will be
logged on to the system, but he will not be able to perform all actions, for example he will
only be able to make phone calls but he has no more access to any information stored on
the phone. In case T1 ≤C<T2 then the user will be granted some more privileges besides
making phone calls, but he will not have full access, for example he might then have access
to data on the phone, but not be granted access to Wi-Fi.

As the value of C varies continuously the user will lose or regain access to particular
privileges. Whenever a user wants to perform a particular action the CA system will check
the value C of the trust level with the thresholds stored in the phone and decide if particular
actions are allowed or not. Figure 5.10 illustrates an example of how the resources are
related to the trust level.

5.5 Conclusion and Future Work

Ensuring the correct identity of a user throughout a full session is important, especially for
high security applications. In static biometric user authentication the authentication mech-
anism will make a decision about the correctness of the claimed user identity directly after
the user has inputted his biometric feature. This decision is either accepting or rejecting
this user, resulting in either access or not to the particular system. System performance is
measured in terms of mistakes that are made by making the decision, i.e. in terms of FMR
and FNMR.

The first difference for a continuous biometric user authentication mechanism is that the
user is by default accepted due to the fact that his or her identity has been verified by a static
authentication mechanism. A biometric CA mechanism will therefore only reject users if
they have proven not to be the genuine user. In order to be able to measure the genuineness
of the user we introduced trust levels and a way to adjust the trust level based on newly
defined penalty and reward functions. The performance of a continuous authentication
system is measured in terms of how long it takes before an impostor is detected and locked
out by the system.

In this chapter we focused on continuous user authentication using biometric gait recog-
nition. In our approach gait is collected using wearable motion recording sensors attached
to the person’s body. One of the advantages of using WS-based gait recognition in contin-
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Figure 5.10: Pyramid Authentication: Continuous authorization and Confidence Level.

uous authentication is its unobtrusiveness. Whenever a user walks his identity is verified
implicitly in the background without distracting the user from his normal activity. The pro-
posed framework extends the traditional static authentication to account for periodic/con-
tinuous (re-)verification of identity. The proposed continuous authentication framework
can easily be adjusted for other biometric modalities which are suitable for CA.

Future work will be to implement the proposed continuous gait authentication mecha-
nism as an application in mobile phones and measure exact performances, i.e. the time it
takes before impostor users are recognized as such by the CA mechanism and are locked
out of the system.
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Chapter 6

Unobtrusive User-Authentication on Mobile
Phones using Biometric Gait Recognition

Abstract

The need for more security on mobile devices is increasing with new functionalities
and features made available. To improve the device security we propose gait recogni-
tion as a protection mechanism. Unlike previous work on gait recognition, which was
based on the use of video sources, floor sensors or dedicated high-grade accelerometers,
this paper reports the performance when the data is collected with a commercially avail-
able mobile device containing low-grade accelerometers. To be more specific, the used
mobile device is the Google G1 phone containing the AK8976A embedded accelerometer
sensor [5]. The mobile device was placed at the hip on each volunteer to collect gait data.
Preproccesing, cycle detection and recognition-analysis were applied to the acceleration
signal. The performance of the system was evaluated having 51 volunteers and resulted
in an equal error rate (EER) of 20%.

6.1 Introduction

Mobile devices – mobile phones, PDAs etc. – can be found in almost everyone’s pocket
and are considered as an essential tool in human-being’s everyday life. They are not only
used for mere communication such as calling or sending text messages; however, these
devices are also used in applications such as internetting, receiving and sending emails and
storing (sensitive) documents. As a result of this, not only phone numbers and addresses
are stored in the mobile device but also financial information and business details which
definitely should be kept private. Thus the value of the data on the phone is often higher
than the pure costs of the phone itself and therefore this data should be protected. Most
mobile phones do only offer authentication methods where the user has to remember a
number (PIN) which he explicitly has to enter. This is not very user friendly, so many
users decide to demand this authentication only once when the phone is switched on. A
survey [6] shows that 66% of the respondents use PIN-authentication only at switch on
and only 18% of the user also utilize the standby mode authentication. As a consequence,
when a phone is lost or stolen, in most cases, all data on the phone is directly available to
the new holder. This situation can be improved by offering an unobtrusive authentication
method to users of mobile phones. As this authentication is no extra-work for the user but
happens unnoticed to him, it is likely that more people would demand an authentication
after a standby period. Biometric gait recognition based on accelerometer data is such an
unobtrusive authentication method. When the owner of the phone is walking, the phone
will recognize him based on his gait, so he can directly use the phone without any further
authentication. When he is not walking, an alternative, active authentication method (e.g.
PIN) can be used. In this paper, biometric gait recognition based on accelerometer data
collected using the intrinsic sensors of the mobile device will be further explained and
analyzed.

Different biometric characteristics such as fingerprints [1] already have been proposed
to improve security of mobile devices. Biometric characteristics have the advantage that,
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unlike passwords, PINs, tokens etc., they cannot be stolen or forgotten. The main advan-
tage of biometric authentication is that it establishes an explicit link to the subject’s identity
because biometrics use human physiological and behavioral characteristics. Most of these
characteristics require an explicit user action when used for authentication, e.g. putting
the finger on a fingerprint scanner. In contrast to this, our proposed method is unobtrusive
because the relevant data is continuously recorded while the person is walking. These days
many mobile devices already contain accelerometers that can be used to record the way a
person walks.

Early studies from psychology [21], medicine [12] and biometrics [7, 14] already give ev-
idence that human gait contains very distinctive patterns that can be used for identification
and verification purposes.

All of the published studies on gait recognition using acceleration data use dedicated
devices for data collection containing high-grade accelerometers. In contrast to this, we
will describe in this paper the results on gait recognition when using data collected from a
commonly available commercial mobile phone containing low-grade accelerometers. The
particular type of mobile phone used in our research is the Google G1 phone [5] 1.

The rest of the paper is structured as follows: Section 6.2 gives an overview over differ-
ent existing gait recognition techniques. Section 6.3 gives a description of the accelerometer
embedded in the phone and in section 6.4 the used definitions are given. Section 6.5 de-
scribes the collection of gait data. In section 6.6 the methods applied for feature extraction
are described and the results are given in section 6.7. Section 6.8 gives conclusions and in
the last section (6.9) the future work is outlined.

6.2 Gait Recognition

The term gait recognition describes a biometric method which allows an automatic verifica-
tion of the identity of a person by the way he walks. There are three different approaches in
biometric gait recognition: Machine Vision Based, Floor Sensor Based and Wearable Sensor
Based Gait Recognition.

In the machine vision approaches [20, 8, 13, 24], the system will typically consist of sev-
eral digital or analog cameras with suitable optics for acquiring the gait data. Techniques
such as background segmentation are used to extract features to identify a person. This
technique is especially useful for surveillance scenarios.

In the floor sensor approach [11, 19], the sensors are placed on the floor which makes
these methods suitable for controlling access to buildings. When people walk across the
mat, they can be authenticated e.g. by the force to the ground which is measured by the
mat.

The newest of the three approaches is based on wearing motion recording sensors on
the body in different places: on the waist, in pockets, shoes and so forth. As our proposed
method belongs to this group, it is explained in more detail here.

The wearable sensors (WS) can be accelerometers (measuring acceleration), gyro sen-
sors (measuring rotation and number of degrees per second of rotation), force sensors (mea-
suring the force when walking) etc. Table 6.1 gives an overview of current WS-based gait
recognition studies from years 2004 to 2008. The last column, #TP, represents the number
of test-persons.

All studies except Morris and Huang et al. were using only accelerometers for collecting
the gait data and reported recognition rates based on the verification scenario. Morris and
Huang et al. used other types of sensors including force sensors, bend sensors, gyro sensors
etc. in addition to the accelerometer sensor.

The main advantage of gait recognition using accelerometers is that it provides an un-
obtrusive authentication method for mobile devices which already contain accelerometers

1Tanviruzzaman et al. [25] proposed a gait recognition model for a smart phone, and no experiment was
performed.

96



6.3 ACCELEROMETER

Study Sensor Location EER Recognition #TP
Holien [9] left leg (hip) 5.9 %, 25.8 % - 60

Gafurov et al. [7] ankle 5 % - 30
Gafurov et al. [7] trousers pocket 7.3 % - 50
Gafurov et al [7]. hip 13 % - 100
Gafurov et al. [7] arm 10 % - 30

Morris [17] shoe - 97.4 % 10
Huang et al. [10] shoe - 96.93 % 9
Ailisto et al.[4] waist 6.4 % - 36

Mntyjrvi et al. [14] waist 7.0 % , 19.0 % - 36
Rong et al. [22] waist 6.7 % - 35
Rong et al. [23] waist 5.6, 21.1 % - 21

Vildjiounaite et al. [27] hand 17.2, 14.3 % - 31
Vildjiounaite et al. [27] hip pocket 14.1, 16.8 % - 31
Vildjiounaite et al. [27] breast pocket 14.8, 13.7 % - 31

Table 6.1: Performance of current wearable sensor-based gait recognition systems. Modi-
fied from [7].

(like mobile phones, PDAs etc.). Therefore, it can be applied for continuous verification of
the identity of the user without his intervention. This is a great advantage to other biomet-
ric systems like fingerprint or face recognition which are also suitable for implementation
on mobile phones but require active user intervention. This advantage of accelerometer
based gait recognition compensates the so far worse recognition rates. For example, the
equal error rate (EER) of fingerprint recognition [2] or 2-dimensional face recognition [3],
compared to gait recognition, achieve lower EERs.

As biometric gait recognition only works when the user is walking, this method has
to be combined with another authentication method. In [26] Vildjiounaite et al. propose
a cascaded fusion of gait, voice and fingerprint. The active authentication via fingerprint
is only required when the two unobtrusive authentication methods fail. This happens in
10 − 60% of the cases and indicates that adding an unobtrusive authentication method to
mobile phones does decrease the neccessatity of regular active authentication and hence
increases the user friendlyness.

6.3 Accelerometer

The G1 has an integrated sensor (AK8976A) for measuring acceleration in three axes [5].
This sensor is a piezoresistive MEMS (Micro-Electro-Mechanical-System) accelerometer
which uses piezoresistors to measure the accelerations. Piezoresistors have the property
that they change their resistance on tension and compression. The sensor consists of a can-
tilever beam which deflects from its neutral position under acceleration. This deflection is
measured using piezoresistors. See Figure 6.1 for a schematic diagram of this principle [15].
Acceleration in all directions can be measured by combining three sensors perpendicular
to each other such that they span the three-dimensional space.

6.4 Definitions

In the following we give the definitions used in this paper: A go starts when the recording
of the data has been started and ends when recording has been terminated. In other words,
everything stored in one file on the phone is one go, including attachment and detachment
of the phone and the standing - turning around - standing at the end of the corridor. See
section 6.5 for more details about data collection. Figure 6.2 shows the plot of one go. One
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Figure 6.1: Schematic diagram of a piezoresistive accelerometer.

can see that two walks can be extracted from one go. One walk contains only data when the
person is walking. It begins when the person starts walking and ends when he/she stops
at the other end of the corridor. One walk contains several steps of one subject. There is a
periodic repetition every two steps which is called one cycle [7].

6.5 Data collection

The data used in this article is collected using a standard G1 mobile phone which does
contain accelerometers as described in section 6.3. The G1 uses the android platform and a
software was written for this platform to access the accelerometer and output the data from
the sensor to a file (40-50 samples per second for each of the three directions x, y and z).
While recording the gait data the phone has been placed in a pocket attached to the belt of
the subject on the right-hand side of the hip. The phone is positioned horizontal, the screen
points to the body, the upper part of the phone points in walking direction (see figure 6.3).

The walking distance was about 37 meters down the hall on flat carpet (see figure 6.4).
At the end of the hall the subjects had to wait 2 seconds, turn around, wait again and then
walk back the same distance.

The subjects were told to walk as normal as possible, which means that different sub-
jects can walk at different speeds.

In total 51 volunteers participated in the data collection (see table 6.2 for age and gender
distribution). Each of them did two sessions at two different days wearing their normal
shoes. From the data collected at each go, two walks could be extracted. One, when the
subject was walking down the hall and the other one when he was walking back. So in
total there are four walks for each subject.

The first walk was used to compute the reference template. The other three walks were
used to compute the probe feature vectors, which were used for comparison.
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Figure 6.2: Sample data collected with the G1. The acceleration in x-, y- and z-direction
collected during one go is shown, including attaching the phone etc. The dotted lines show
the walking part of one go.

Figure 6.3: Phone attached to subject and the three axes in which acceleration is measured.

6.6 Feature Extraction

The raw data retrieved from the mobile phone needs to be processed in order to create
robust templates for each subject. The program for data analysis has been developed in
Java and is based on the work of [9]. Of the three different signals retrieved from the phone
only the acceleration in x-direction is used as it showed to give the best results. From this
raw data the repeating cycles are extracted to result in one single average cycle for each
person. A brief description of the steps conducted for feature extraction is given in the
following:

• Time Interpolation: Due to the android SDK, the phone only outputs data values when-
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Figure 6.4: Photograph of the walking setting.

< 20 20− 24 25− 30 > 30 unknown
male 1 2 26 10 2

female 0 5 4 0 1
total 1 7 30 10 3

Table 6.2: Age and gender distribution of volunteers.

ever there is a change in the sensor. Therefore, the time intervals between two sample
points (acceleration values) are not always equal, which requires time interpolation.
This ensures that the time-interval between two sample-points will be fixed.

• Filtering: Removal of noise is done by applying a weighted moving average (WMA)
filter.

• Average Cycle length: From the data it is known that the cycle length is between 40−60
samples. To compute the average cycle length a small subset from the center of the
data is extracted and compared with other subsets of similar length. Based on the
distance scores between these subsets, the average cycle length is computed.

• Cycle Detection: The cycle detection starts from a minimum point Pstart = Pmin
around the center of the walk. From this point, cycles are detected in both directions.
By adding the average length to Pstart, the estimated ending point Pend = Pstart +
averageLength is retrieved (in opposite direction: Pend = Pstart − averageLength ).
The cycle end is defined to be the minimum in the interval of +/- 10% (of the aver-
age cycle length) from the estimated end point, see figure 6.5. This process will be
repeated from the new end point until all cycles are detected.

• Average Cycle: Before the average cycle is computed, irregular cycles are omitted.
This is done by using Dynamic Time Warping (DTW) [18] to calculate the distances
between all cycles and deleting the ones which have an unusual large distance to the
other cycles. The cycle with the lowest average DTW-distance to the remaining cycles
will be used as the average cycle. This average cycle, which is a vector (of real values)
of an average length around 45 samples, will be used as the feature vector for this
walk.
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Figure 6.5: Cycle Detection

6.7 Results

The quality of the feature vector extracted as described in section 6.6 was analyzed. The
distance metric used to compare two feature vectors was Dynamic Time Warping, which
was chosen because the feature vectors by nature can have different lengths. By using DTW
we avoid normalizing the feature vectors to a fixed length. The performance is measured
in terms of False Match Rate (FMR) versus False Non-Match Rate (FNMR) and the results
are graphically displayed using a DET (Detection Error Trade-off) curve in figure 6.6.

Comparing the achieved equal error rate of 20.1% to the error rate for the same analysis
settings stated in Holiens work (12.9%) [9], one can see an increase of approximately 50%.
An issue that needs to be taken into consideration is that the test data used in this paper
was collected using a mobile phone which contains a lower sampling rate accelerometer.
Its sample rate was around 40− 50 samples per second whereas the high quality dedicated
accelerometer used in Holien had around 100 samples per second.

6.8 Conclusion

The main contribution of this paper was to demonstrate that one has the ability to use com-
mercial mobile phones equipped with accelerometers to carry out biometric gait recogni-
tion. As stated before, the advantage of this method to other biometric systems which could
be implemented on mobile phones, is the unobtrusive operation which gives a high user
friendliness.

To the best of our knowledge, for the first time, data collected by accelerometers in
a standard mobile phone was used for biometric gait recognition. A feature extraction
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Figure 6.6: DET-curve: Performance of Gait Recognition with an EER of 20.1 %.

method was adapted and applied to the data from 51 volunteers collected in two sessions.
The achieved EER of 20.1% is approximately 50% higher than the EER achieved with a sim-
ilar method using a dedicated accelerometer with a twice as high sampling rate. To make
biometric gait recognition using embedded accelerometers a technology suitable for prac-
tical use, further research on feature extraction and comparison is required. However the
achieved results are promising and the proposed approach contains potential for enhance-
ment.

6.9 Future Work

The obtained equal error rate of 20.1% indicates that biometric gait recognition can be run
on mobile phones but it is not yet ready for practical use. Focus of our future work will be
enhancing the cycle extraction technique to get more reliable feature vectors.

In addition to improving the recognition rates for normal walk on flat ground, future
work will include analysis of different settings to create a gait recognition method which
provides robust verification under different circumstances. These circumstances might be
different walking conditions like walking speed or ground which will have an influence of
the walk of a person and therefore might also influence the biometric recognition. There-
fore, accelerometer data of the subjects will be recorded at several settings like different
walking speeds and different grounds (e.g. carpet, grass, gravel).

In addition, data will be collected using phones at different positions (e.g. front and
back trousers pocket and pocket attached to belt) for further analysis. To handle the move-
ments of the phone when carried in a trousers pocket, values recorded by the magnetic
field sensor can be used to normalize the orientation of the phone.

The attack resistance of biometric gait recognition should also be analyzed. Studies by
Gafurov [7] and Mjaaland [16] show that it is difficult for an attacker to imitate another
person. This needs to be confirmed for the special scenario of mobile phones.
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AILISTO, H. Identifying users of portable devices from gait pattern with accelerom-
eters. IEEE International Conference on Acoustics, Speech, and Signal Processing 2 (2005),
ii/973 – ii/976. 63, 64, 65, 67, 96, 97, 108

103



6. UNOBTRUSIVE USER-AUTHENTICATION ON MOBILE PHONES USING BIOMETRIC GAIT
RECOGNITION

[15] MIN-HANG BAO. Micro Mechanical Transducers: Pressure Sensors, Accelerometers and
Gyroscopes (Handbook of Sensors and Actuators), vol. 8. Elsevier Science, 2000. 97

[16] MJAALAND, B. B. Gait Mimicking - Attack Resistance Testing of Gait Authentication
Systems, Master Thesis, Norwegian University of Science and Technology, 2009. 102

[17] MORRIS, S. J. A shoe-integrated sensor system for wireless gait analysis and real-time ther-
apeutic feedback. Ph.D. thesis, Division of Health Sciences and Technology, Harvard
University-MIT, 2004. 97
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Chapter 7

Improved Cycle Detection for Accelerometer
Based Gait Authentication

Abstract

Over the last years, there has been an increasing research interest in the applica-
tion of accelerometry data for many kinds of automated gait analysis algorithms. The
need for more security on mobile devices is increasing with new functionalities and fea-
tures made available. To improve the device security we propose an improved biometric
gait recognition approach with a stable cycle detection mechanism and comparison al-
gorithm. Unlike previous work on wearable gait recognition, which was based from
simple average cycling methods to more complicated methods, this paper reports new
techniques for which can improve the performance, by using simple approaches. Prepro-
cessing, cycle detection and recognition-analysis were applied to the acceleration signal.
The performance of the system was evaluated having 60 volunteers and 12 sessions each
volunteer and resulted in an equal error rate (EER) of 5.7%.

7.1 Introduction

Mobility is in the future and the future is currently in the present. Today’s personal devices,
whether we are dealing with mobile phones, PDAs, iPads, etc. are being held or put into
the pocket of the user. What we dont have time to do on computers or laptops, we do
on these devices and this makes the everyday much easier. They are not only used for
mere communication such as calling or sending text messages; these devices are also used
in applications such as m-banking, m-commerce and e-mails which result in financial and
private information being stored on the device. Thus the data on the device represents
by far the more valuable asset than the pure hardware [1]. Therefore, the security risks
related to ever-present mobile devices are becoming critical since a mobile device ending
up in the wrong hands presents a serious threat to information security and user privacy.
Most common, the protection on portable devices against unauthorized usage is based on
a PIN, which is not always effective considering security and memorability aspects [21].
An additional difficulty with PIN-authentication is that it requires explicit action from the
user who has to enter it before using the phone. In consequence many users deactivate the
PIN-authentication.

This unattractive situation can be improved by exploiting the intrinsic sensors of a mo-
bile device and applying an unobtrusive method for user authentication, which does not
require explicit attention nor action of the user. Biometric gait recognition based on ac-
celerometer data such an authentication method and will be further explained and ana-
lyzed in this paper.

Today, mobile devices implements other biometric equipments such as fingerprint sen-
sors [2] to improve the security. And by using biometric characteristics instead of pass-
words, PINs, tokens etc., makes authentication more efficient since these characteristics are
not to be stolen or forgotten. In addition, biometric authentication establishes an explicit
link to the subject’s identity because biometrics use human physiological and behavioral
characteristics. Usually, most biometric characteristics require an explicit (obtrusive) user
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Figure 7.1: Background segmentation for extracting the silhouette picture (subtraction).

action for authentication, e.g. swiping the finger on a fingerprint sensor. However, the
proposed method here in this paper does not require an obtrusive action. Instead, we in-
troduce an unobtrusive gait recognition mechanism, where data is continuously recorded
while the subject is walking.

Previous studies from different aspects, psychology [18], medicine [10] and biometrics
[16] [4] [14], already give proof for that human gait contains very distinctive patterns that
can be used for identification and verification purposes.

All of the published studies on gait recognition using acceleration data were mainly
based on dedicated sensor and in the same time slightly aware of fulfilling these issues at
the very same time:

1. Automated gait recognition

2. Stable cycle detection mechanism

3. A rich and fast comparison algorithm (distance metric)

In [4], we see several different, but very simple cycle detection mechanisms that are not
fully automated. This means a lot of fixed parameters are used for the dataset. However,
[7] introduces an extended version of [4], making the cycle detection more automated, but
a lot of complicated methods were performed. In contrast to these, we describe a new pos-
sible method to gain improved results using simple cycle detection with a simpler distance
metric. The particular type of device which was used in our research was the MR100 sensor
[20].

The rest of the paper is structured as follows: Section 7.2 gives an overview over dif-
ferent existing gait recognition techniques. Section 7.3 describes the collection of gait data.
In section 7.4 the methods applied for feature extraction are described and the results are
given in section 7.6. Section 7.7 concludes the paper and, finally, section 7.8 describes future
work.

7.2 Gait Recognition

There are three different approaches in gait recognition: Machine Vision Based, Floor Sen-
sor Based and Wearable Sensor Based Gait Recognition. These will be explained in the next
paragraphs.

Machine Vision Based (MV) In the machine vision approaches, the system will typically
consist of several digital or analog cameras with suitable optics for acquiring the gait data.
Techniques such as thresholding to convert images into black and white; pixel counting to
count the number of light or dark pixels; or background segmentation are used to extract
features to identify a person. Figure 7.1 shows an example of the MV-based approach with
processed background segmentation.

Earlier gait recognition studies have shown promising results. Sarkar et al. [19] did
an experiment with 1870 gait datasets from 122 subjects and reported an recognition rate
of 78% in an identification scenario. This was further improved to a rate of 90% by other
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research [11] [5].
Most of the current gait recognition approaches are MV-based. The main advantage for
this type of recognition compared to other biometric systems is that persons are captured
unobtrusively from a distance. Even though MV-based gait analysis is not that precise as
other biometrics, e.g. fingerprints, it is still useful for surveillance scenarios.

Floor Sensor based (FS) In the floor sensor approach the sensors are placed on a mat
along the floor which makes these methods suitable for controlling access to buildings.
When people walk across the mat, the force to the ground is measured, this is also known
as the GRF (Ground Reaction Force). In a research from the University of Southampton
[17], such a floor sensor for gait recognition was prototyped and is illustrated in Figure 7.2.

Figure 7.2: Gait collection by floor sensors. a) shows footsteps recognized, b) shows the
time spent at each location in a), c) shows footstep profiles for heel and toe strikes, and
finally d) is a picture of a prototype floor sensor carpet.

Their experiment had 15 subjects and three different features were extracted, namely
the stride length (the distance traveled by the heel of one foot to the next time the same
foot strikes down), stride cadence (the rhythm of a person’s walk) and TOH ratio (the time
on toe to the time on heel ratio). Using the TOH ratio an recognition rate of 80% could
be achieved [15]. Different studies with small number of test persons (10 - 15) exist which
report recognition rates up to 98.2%. Jenkins and Ellis [9] had 62 test persons and only
reported a recognition rate of 39%.

Wearable Sensor based (WS) The wearable sensor recognition methodology is the newest
gait recognition among the other mentioned earlier and that it provides an unobtrusive au-
thentication method for mobile devices. This is based on wearing motion recording sensors
on the body of the person in different places; on the waist, pockets, shoes and so forth.
The most common wearable sensors which are built-in into mobile devices are listed below:

• Accelerometer Sensor: Measures the acceleration .

• Gyro Sensor: Measures the rotation and number of degrees per second of rotation.

• Force Sensor: Measure the force when walking

Table 7.1 overviews the latest WS-based gait recognition research from years 2004 to 2010.
The last column, #TP, represents the number of test-persons.

7.3 Data collection

The experiment was carried out on a solid surface. The 60 subjects who participated wore
an accelerometer attached to a belt. The accelerometer was placed on the left leg, by the
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Study Sensor Location EER #TP
Gafurov et al. [4] trousers pocket 7.3 % 50
Gafurov et al [4]. hip 13 % 100
Gafurov et al. [4] arm 10 % 30
Gafurov et al. [3] ankle 1.6 % 30

Holien [7] hip 5.9 % 60
Ailisto et al.[6] waist 6.4 % 36

Mntyjrvi et al. [8] waist 7.0 % , 19.0 % 36
Rong et al. [12] waist 6.7 % 35
Rong et al. [13] waist 5.6, 21.1 % 21

Vildjiounaite et al. [22] hand 17.2, 14.3 % 31
Vildjiounaite et al. [22] hip pocket 14.1, 16.8 % 31
Vildjiounaite et al. [22] breast pocket 14.8, 13.7 % 31

Table 7.1: Performance of current wearable sensor-based gait recognition systems.

hip. By attaching the accelerometer to a belt it ensured that the accelerometer more or less
had the same orientation for all subjects. The subjects made the experiment over two days
and were asked to walk as normal as possible in all 12 sessions, and to walk in a fixed
length (20 meters). The subject walked the distance, and then stopped for three seconds,
turn and wait, and then walk the same distance back. The accelerometer used was a Motion
Recording 100 (MR100) sensor, with a sampling frequency of 100 samples per second and
its dynamic range was between -6g and +6g (g = 9.8 m/s2) for each of the three directions
x,y and z.

7.4 Feature Extraction

The raw data retrieved from the MR100 sensor needs to be processed in order to create ro-
bust templates for each subject. The program for the gait data analysis has been developed
in C#.

Preprocessing: The preprocessing is based on work from [4]. At first we apply linear
time interpolation on the three axis data (x,y,z) retrieved from the sensor to obtain a obser-
vation every 1

100 second since the time intervals between two observation points are not
always equal. Another weakness from the sensor is the fact that the acceleration data will
be outputted with some noise. This noise is removed by using a weighted moving average.
Thereafter, the data values are converted to g-forces by using properties of the sensor. And
finally we calculate the resultant vector or the so-called magnitude vector by applying the
following formula,

rt =
√
x2t + y2t + z2t , t = 1, ..., N

where rt, xt, yt and zt are the magnitudes of resulting, vertical, horizontal and lateral accel-
eration at time t, respectively and N is the number of recorded observations in the signal.

Cycle Detection: From the data it is known that one cycle-length varies between 80− 140
samples depending on the speed of the person. Therefore we need to get an estimation of
how long one cycle is for each subject. This is done by extracting a small subset of the data
and then compare the subset with other subsets of similar length. Based on the distance
scores between the subsets, the average cycle length is computed, as can be seen in Figure
7.3.

The cycle detection starts from a minimum point, Pstart, around the center of the walk.
From this point, cycles are detected in both directions. By adding the average length, de-
noted γ to Pstart, the estimated ending point E = Pstart + γ is retrieved (in opposite di-
rection: E = Pstart − γ ). The cycle end is defined to be the minimum in the interval
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Figure 7.3: The yellow baseline area indicate the subset with 70 samples that are extracted,
the green area is the search area where the baseline is compared against a subset of the
search area. The 4 black subgraphs are the baseline at those points it has the lowest dis-
tance with the search area subsets, and the difference between them (blue area) indicate the
cyclelength

Neighbour Search from the estimated end point. This is illustrated in Figure 7.4. This pro-
cess is repeated from the new end point, until all cycles are detected. The end point in the
Neighbour Search is found by starting from point E. From this point we begin searching
10% of the estimated cycle length, both before and after E for the lowest point. Now three
things can happen

1) The lowest point was found in the first 1
3 of the search area, in this case we might

have skipped too many samples and will therefore search γ
10∗2 more samples backwards.

If a new lowest point was found we will continue to search additional samples backwards
until no new lowest point is found, see Figure 7.5(a).

2) The lowest point was found in the last 1
3 of the search area, in this case we might have

skipped too few samples and will therefore search γ
10∗2 more samples forwards. Like with

the previous step, if a new lowest point was found we will continue to search forward until
no new lowest point is found, see 7.5(b).

3) The lowest point was found in the middle 1
3 of the search area, in this case we assume

to have found the correct minimum point, see Figure 7.5(c). When the minimum point is
found we store it into an array and we begin searching for the next minimum point by
adding the length of one estimated cycle. When forward searching is complete we repeat
this phase by searching backwards so all steps in the data are identified. We will therefore
end up with having an array containing each steps start/end index. These points will
therefore be used for the extraction of cycles, as illustrated in Figure 7.6.

Template Creation: Before we create the feature vector template, we ensure to skip cycles
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Figure 7.4: Cycle detection showing how each cycle (i.e the steps) in the resultant vector is
automatically detected.

that are very different from the others. This is done by taking each cycle and calculate its
distance to every other cycle by using dynamic time warping (DTW),

dtwi,j = dtw(cyclei, cyclej)

where i = 1..N and j = 1..N, which means that we will get a symmetric N ×N matrix. From
this point, we calculate all the averages of one specific cycle to all others.

di =
1

n− 1

∑
j 6=i

dtwi,j

Thereafter we calculate the average of the calculated averages,

µ =
1

n

∑
i

di

which therefore will be the total average. Now we will have the opportunity to see how
much deviation one cycle differs from another. Thus, the standard deviation, µ, is calcu-
lated and to put a realistic border we will accept cycles that are within 2σ of difference from
the total average

di = [µ− 2σ;µ+ 2σ]

The 2σ is used to process trial and error. If a lower limit was chosen, we might had
ended up skipping too many cycles, while a higher limit would lead to not skipping cycles
we want to skip.
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Figure 7.5: The Neighbour Search is illustrated for the three options that can happen when
we are searching for steps, (a) we have jumped too far and since the lowest point in the
search area (blue circle) is in the first third we search additional samples back and find the
correct minimum point (green). (b) same as with the backward search only that we search
forward this time since we have jumped too short. (c) we have jumped satisfactory and the
correct minimum is in the middle third of our search area.

When all odd cycles are removed, we want to create the feature vector. In previous
work, researchers used an average cycle as a feature vector. That was computed by com-
bining all cycles (which were normalized) into one average median cycle [4]. In this paper
we propose a method where all of the extracted cycles are stored as a template for one sub-
ject, denoted CS = {CS1 , ..., CSN} where each cycle i = 1..N is normalized to a length of k
observations; in our case k = 100. Eight to fifteen cycles were stored per session.

7.5 Feature Vector Comparison

A new distance metric, named the cyclic rotation metric (CRM), is proposed. This metric
cross-compares two sets of cycles with a cyclic-rotation mechanism to find the best match-
ing pair:

Cross Comparison: is used to find the most optimal and best distance score when cross-
comparing two set of cycles, denoted CS = {CS1 , ..., CSN} and CT = {CT1 , ..., CTM}. This
simply mean that each cycle in setCS is compared to every cycle in setCT . The comparison
distances are calculated by the cyclic rotation metric (CRM). From the total number of N ×
M similarity distance scores gained, the minimum distance score is selected,

dmin = min{CRM(CSi , C
T
j )}

where i=1..N and j=1..M. The pair of cycles with the most minimum similarity score is
considered the best matching pair. Thus, this best (i.e. minimum) similarity score, dmin, is
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Figure 7.6: The cycles have been extracted by taking each steps starting and ending point.
Both these points are minimum points from the resultant-vector data set.

used as the similarity score between set CS and CT .
Cyclic Rotation Metric (CRM): is a metric that compares a reference cycle and an input

cycle with each other. The reference cycle, i.e. CSi , which is compared against the input
cycle, i.e. CTj , is stepwise cyclical rotated. After each rotation the new distance is calculated
using the manhattan distance. This is repeated until the input template has done a full
rotation, then the lowest dissimilarity is kept:

d(CSi , C
T
j ) = minw=1..k{Manh(CSi , C

T
j(w))}

, where k = 100. When having the two cycles with lowest manhattan distance, we then
finally apply dynamic time warping on these cycles which then will be the final distance
score

CRM(CSi , C
T
j ) = DTW (d(CSi , C

T
j ))

The reason why we calculate the manhattan distance when rotating and thereafter applying
DTW when the minimal manhattan distance is found, is due to the fact that manhattan runs
fast and linear, O(n) while DTW is O(n2). And furthermore the cyclic rotation is done to
minimize the problem when local extremes among the cycles we create for each input are
located at different locations.

7.6 Results

Having 12 sessions for each person; that would give 12·(12−1)·60
2 = 3960 genuine attempts

and 720·(720−12)
2 = 254880 impostor attempts. With these high numbers compared to trials

presented in the papers from Table 7.1 we gain an increased performance with an EER =
5.7 %, see Figure 7.7.

From Table 7.2, we display the performances for three cycle detection methods. The

Ours Gafurov [4] Holien [7]
Euclidean 8.2 % 13% 8.4 %
DTW - 11.75% 5.9 %
CRM 5.7 % - -

Table 7.2: Comparison of various methods - Equal error rates (EER) are presented
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Figure 7.7: DET-curve: Perfomance of Gait Recognition with an EER of 5.7 %. The x-axis
indicates the false acceptance rate (FAR) and y-axis indicitas the false rejection rate (FRR).

performance of our method is slightly more improved than Holien’s and more than twice
as good as Gafurov’s.

Furthermore, Table 7.3 shows a more detailed overview that compares Gafurov et al.
and Vildjiounaite et al. [22] who applied different approaches. However, there are still
several similarities with our experiment and Gafurov et al.s experiment such as the use of
same sensor and that the experiment was carried out in the exact same location. Holien
uses the same settings as we do; therefore, it is not described in the table.

Ours Gafurov Vildjiounaite
Sensor MR100 MR100 ADXL202JQ
Sensor Placement Left hip Right Hip Hip Pocket
Participants 60 100 31
Sessions 12 4 2
Algorithm Cross Average Cycle Step Method
Ditance Metric CRM Euclidean Correlation
EER 5.7 % 13% 14.1 %

Table 7.3: A table showing the main differences between our experiment and others.

7.7 Conclusion

This paper looks at interesting aspects of the biometric feature gait. A new, simple and rich
gait recognition approach has been proposed. The proposed feature extraction method is
adapted and applied to data from 60 volunteers. We can clearly say that we have achieved
improved result with an EER of 5.7%, especially when we look at the number of partic-
ipants and the genuine/imposter attempts. Even though that we had fewer participants
than some of the other databases described in Table 7.1, we did have more recordings per
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participant, almost up to twice the number of gait sequences. Our achieved EER is at first,
much lower than the EERs for accelerometer based gait recognition that was placed on the
hip as seen in Table 7.1 and in section 7.6. Secondly, our algorithm is more rich and stable,
meaning that we have developed and automated cycle-detection (Neighbour Search algo-
rithm), and finally the comparison that finds the best and most optimal distance score from
two feature vectors with the use of cross comparison and Cyclic Rotation Metric (CRM) as
a distance metric.

7.8 Future Work

To make biometric gait recognition a technology suitable for practical use, using embedded
accelerometers, further research on feature extraction and comparison is required. How-
ever the achieved result is promising and the proposed approach contains potential for
enhancement. Different walking conditions like walking speed or ground might have an
influence of the walk of a person and therefore might also influence the biometric recogni-
tion. Therefore, accelerometer data of the subjects will be recorded at several settings like
different walking speeds and different grounds (carpet, grass, gravel). In addition, data
will be collected using phones at different positions (front and back trouser pocket and
pocket attached to belt) for further analysis.

In addition to improving the recognition rates for normal walk on different setting, we
will in future work include analysis of the different settings mentioned before to create a
gait recognition method which provides robust verification under different circumstances
and especially begin analyzing acceleration data from a mobile phone.
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Chapter 8

Scenario Test of Accelerometer-Based Biometric
Gait Recognition

Abstract

The goal of our research is to develop methods for accelerometer-based gait recog-
nition, which are robust, stable and fast enough to be used for authentication on mobile
devices. To show how far we are in reaching this goal we developed a new cycle extrac-
tion method, implemented an application for android phones and conducted a scenario
test. We evaluated two different methods, which apply the same cycle extraction tech-
nique but use different comparison methods. 48 subjects took part in the scenario test.
After enrolment they were walking for about 15 minutes on a predefined route. To get a
realistic scenario this route included climbing of stairs, opening doors, walking around
corners etc. About every 30 seconds the subject stopped and the authentication was
started. This paper introduces the new cycle extraction method and shows the Detection
Error Trade-Off-curves, error rates separated by route-section and subject as well as the
computation times for enrolment and authentication on a Motorola milestone phone.

8.1 Introduction

The development of mobile devices is progressing rapidly and constantly new features
are added to the properties of the devices. These include high-quality cameras, UMTS-
antennas, calendars etc. which increases the number of applications that can be run on
the device and at the same time increases the amount of stored sensitive data. When
smartphones are used in a business scenario, often confidential data like business contacts,
emails, information about projects are contained in the devices. But also in a private envi-
ronment the amount of sensitive data is high. Therefore, the protection of data stored on
mobile devices is becoming more and more important.

While offering a large amount of applications, most mobile devices only offer one kind
of authentication method which is knowledge-based (e.g. PIN or password). As studies
have shown, these methods are not well accepted by the users [2]. Mainly out of conve-
nience 87% of the users do not require PIN-authentication after a stand-by phase. As a
result of this, all data stored on the device is freely available to any person gaining physical
access to the device, which is clearly a security problem.

A solution to this problem is to offer alternative authentication methods which have
a higher user acceptance. As many people who choose this low security setting do this
because entering a PIN is too much effort, an alternative method should minimize the user
interaction. We propose accelerometer-based gait recognition for authentication on mobile
devices. As most smartphones already contain accelerometers (e.g. for games or adjusting
the orientation of the screen), these can be directly used for recording of the gait data. No
extra hardware is necessary, which is a great advantage over e.g. fingerprint recognition
which can only be run on a few mobile phones containing fingerprint readers. However,
the main advantage of gait recognition is its unobtrusiveness. While a subject is walking
with his phone, the accelerometer data can be recorded. When the subject wants to use his
phone after it was locked, the probe can be extracted and compared with the reference data
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stored on the phone. When there is no match the phone remains locked, otherwise the user
can directly use it without having to enter any PIN or the like. In this case the user would
notice no difference to an unsecured phone which shows the high usability of this method.
To avoid false non-matches because of short irregularities in the gait (e.g. because of steps
or irregular ground), the authentication decision should be based on data collected during
a longer time period (e.g. 30 seconds). Clearly this method can not stand alone but has to
be combined with some kind of active authentication like PIN, to allow an authentication
in case the user is not walking.

Accelerometer-based gait recognition was first proposed by Ailisto et al. in 2005 [1] and
further developed by Gafurov [6]. They used high-quality dedicated accelerometers which
were placed on the hip, arm or ankle to record the acceleration while the subjects were
walking. Only recently researchers started to use mobile devices to record the accelerome-
ter data [4, 5, 7, 12]. Nevertheless, so far the feature extraction and comparison have always
been executed on a PC and not on the device as done for this paper.

When introducing a new biometric authentication technique it is also important to con-
sider the fraud resistance. The gait of a subject is visible to potential attackers who might
analyze it to get access to the phone via mimicking. This was considered in a study by
Mjaaland [10]. Despite having obtained feedback in the form of videos and statistical anal-
ysis, the participants did not show a significant improvement in learning a different gait.
Although this study only includes a small number of subjects, it indicates that the possi-
bility of mimicking gait does not have a big influence on the security of a gait recognition
system.

The rest of the paper is structured as follows. The following section describes our mo-
bile phone application which was used during the scenario test. Section 8.3 explains the
newly developed method for cycle extraction. This method is used by the two different
gait recognition methods described in section 8.4 followed by a description of the scenario
test in section 8.5. The results are given in section 8.6 followed by a discussion in 8.7 and
conclusions in 8.8.

8.2 Authentication System

As basis application for the tests we used our Modular Biometric Authentication Service
System (MBASSy) which is described in more detail in [13]. This system was implemented
for android phones and allows the integration of different authentication modules.

Different users can be registered in MBASSy and enroled for the active modules. Via
the module settings it is possible to configure the duration of the data recorded during en-
rolment. After enrolment of a subject the reference templates are stored on the phone. The
regular authentication procedure for our modules is as follows. By activating the screen
saver the modules start collecting accelerometer data. When the screen saver is deacti-
vated again (this happens normally when the user wants to utilize his phone) a lock screen
is shown. During this, cycles are extracted from the data which was collected in the last 30
seconds and these cycles are then compared with the reference data. If the authentication
result is true, the lock screen is closed and the phone can be used. Otherwise the lock screen
offers the possibility to enter a PIN.

To minimize the time needed for each participant during the scenario test, this authen-
tication procedure was changed. Instead of starting the cycle extraction we only store the
so far recorded data on the phone when the screen saver is deactivated. Thus we separated
the data collection from the processing and comparison. The described cycle extraction
and comparison were performed afterwards on the phone. Therefore we augmented the
mobile phone with a separate authentication application, which computed the dissimilar-
ity distances, authentication results and times used for cycle extraction and comparison
and stored them in an internal table on the phone. The advantage of this process is that
data of all subjects are available during authentication and can be used to get impostor re-
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sults. It was tested beforehand that the times computed using this separate application are
comparable to the ones obtained using the regular authentication process.

8.3 Cycle Extraction Method

When using gait recognition on mobile devices in a realistic application scenario, a ro-
bust cycle extraction has to be used, which is able to handle irregularities occurring in the
data. Former cycle extraction methods, which are mainly minimum (maximum) based, fail
in case the gait data does not have distinctive minima (maxima). Our method addresses
this problem by adapting the process depending on the data and using the salience vector
(which is defined as the right salience vector in [9]) for determining where the cycles start
[8].

The following subsections describe the conducted process which is illustrated in Fig.
8.1. Only acceleration measured in x-direction (vertical acceleration) is considered.

Figure 8.1: Flow diagram of the cycle extraction process. Only during enrolment for the
majority voting module the step Determination of best cycle is applied. For the CRM module
the cycles are normalized in length.

8.3.1 Interpolation

Due to constraints of the android API, the collected data does not have a fixed sampling
rate. For further processing the data had to be interpolated to a fixed sampling rate. Using
the Motorola Milestone R© about 120 samples per second can be obtained. Using linear
interpolation the data was transformed to have a fixed sampling rate of 150 samples per
second.

8.3.2 Zero Normalization

The acceleration measured by the mobile device in a stable position (no movement) is not
exactly zero (or gravity) and it is not stable over time. To reduce the influence of this
property, the data is normalized around zero. This is done by subtracting its mean from
the data.

8.3.3 Estimation of Cycle Length

To adapt the following cycle detection process, it is necessary to estimate the cycle length
in advance. This is done by computing the min-salience and max-salience vector. The min-
salience vector contains one entry for each data value. This entry is the number of data
values which are between that data value and the following smaller one. This results in
high entries in the salience vector in case the corresponding entry in the data vector is a
significant minimum. The max-salience vector is created similarly but using the maxima.

Each entry of the salience vector which is greater than 120 (this is called a peak) and has
a distance of at least 75 to the next peak is assumed to correspond to a cycle start. These
parameters have been experimentally determined to give the optimal results. The more
regularly spread maxima (lower standard deviation) are used for computation of the cycle
length, which is the rounded mean value of the distances between neighboring peaks.
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8.3.4 Cycle Detection

Cycle detection is also based on the salience vector. In many publications only the minima
are used to identify the cycle start. Problems occur in case the minimum at cycle start is not
greater than the minimum inside the cycle. In these cases often there are distinct maxima.
As these maxima occur right at the beginning of the cycle they can be used to determine
the correct minimum (cycle start).

The proposed method exploits this observation and computes the min-salience vector
as well as the max-salience vector. The peaks of the salience vectors which have a minimum
height of 105 (0.7*interpolation frequency) and a minimum distance of half the estimated
cycle length are determined. In case of the min-salience vector these are used as initial
cycle starts. In case of the max-salience vector the minimum before the detected maximum
is used. To see whether the minima or maxima are more suited for calculation of cycle
starts, the number of unusual long cycles (with length greater than 30 plus the estimated
cycle length) is computed. The version which resulted in less irregular cycles is assumed
to be the better one and the respective cycle starts are used.

The previously identified cycles that are too long, are further divided by again using
the max- and min-salience vector. The identified additional cycle starts and the initial ones
produce the set of cycle starts.

8.3.5 Omit Unusual Cycles

The cycles identified in the previous step are cleaned by deleting unusual cycles (see also
[10]). The pairwise distance between all cycles is computed using dynamic time warping
(DTW) [11]. The main advantage of DTW is that cycles do not have to be normalized in
length before distance computation. Those cycles which have a distance of at least 50 to at
least half of the cycles are deleted. Hereby is assured that there is always at least one cycle
left.

For the majority voting module (see section 8.4.1) this is the last step during authenti-
cation and the remaining cycles are used as probe cycles.

8.3.6 Determine Best Cycle

In the majority voting module the cycles are further analyzed during enrolment. Similar to
the previous step, the distances between all the remaining cycles are computed. The cycle
for which the sum of the distance is minimal is the one which is most typical for the walk
and hence is used as reference cycle.

8.3.7 Normalize Cycle Length

For the cyclic rotation metric module (see section 8.4.2) the cycles need to be normalized
to an equal length. The reason for this is that the manhattan distance, which is used dur-
ing cyclic rotation, can only be applied to vectors of same length. Thus, we normalize the
remaining cycles from step 8.3.5 in time such that each cycle consists of exactly 100 acceler-
ation values.

8.4 Gait Recognition Methods

Two different gait recognition methods have been implemented which are both based on
the previously described cycle extraction, but use different comparison methods.

8.4.1 Majority Voting Module (MV)

This module uses the previously described method to extract cycles. During calculation of
the probe cycles only steps 8.3.1 to 8.3.5 are executed and the remaining cycles are used as
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probe cycles. To calculate the reference cycles, during enrolment step 8.3.6 is also applied.
Comparison is done using DTW as distance function and applying majority voting: The
distances of the reference cycle to all probe cycles are computed. If the distance between
two cycles is below a pre-selected threshold this is called a match, otherwise a non-match.
If at least 50% of the results are a match, the whole comparision is assumed to be a match
and the subject is authenticated.

8.4.2 Cyclic Rotation Metric Module (CRM)

The cyclic rotation metric module cross-compares two sets of cycles with a cyclic-rotation
mechanism to find the best matching pair. The process is described in detail in [3] and what
we observe here is that the CRM gives better performances than the usual use of euclidean,
manhattan or DTW separately since it is always finding the optimal distance between two
cycles. However, the CRM itself applies the last two mentioned distance metrics i.e., the
manhattan distance and DTW. The metric works as follows: two normalized cycles are
shifted 100 times and each time the manhattan distance is computed. If this distance is
smaller than the so far computed minimal distance, the DTW-distance is also computed.
At the end of the shifting process the minimum manhattan distance along with the corre-
sponding DTW distance exists. This process is repeated for each combination of reference
and probe cycle. The minimum of the resulting DTW distances and the corresponding
manhattan distances is the final distance pair of this comparison. If at least one of these
two distances is below the threshold the result is a match.

Figure 8.2: Subjects walked on this route. Authentication was started at the nine numbered
points. Dashed lines indicate door sills.

8.5 Scenario Test

The goal of the scenario test1 is to see how good the methods perform in a realistic scenario
and if the time necessary to perform cycle extraction and comparison on a mobile device
is acceptable. 48 subjects took part in our test. The mean age of the 18 female participants
was 28.5 (minimum 20 years and maximum 53). The male participants were between 22
and 59 years old (mean age was 30.5 years). The participants were told to walk in their
normal pace during the whole test. Each participant took part twice on two different days
and in most cases was wearing the same shoes during both sessions. The phone was inside

1The target environment is an outdoor walking environment where a person will come in contact with other
people and where there is a risk for a phone to be stolen. An example target environment could be a shopping
street. The target environment can deviate from the test environment depending on the number of people and
objects present making it less likely that the test person can walk in a straight line because he needs to avoid these
other people and obstacle
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a pouch which was attached to the right side of the hip of the subject. During each session
we did the enrollment and authentication as described in the following sections.

8.5.1 Enrolment

As in each biometric system, the subjects had to be enrolled on the phone before the real
test can start. For each module the subject had to walk 10 seconds straight on a flat floor.
Depending on the module one or several reference cycles were computed from that data
and stored on the phone. The computation times are stated in table 8.1. The longer time for
the majority voting module is due to the additional step which selects the best cycle.

8.5.2 Data Collection

After enrolment the subjects had to walk on a predefined route three times. This route
involved two floors of the institute which has a rectangular shape with a patio in the center,
which allowed us to define a route without dead end (see Fig. 8.2). During walking on that
route the subjects had to stop at nine predefined authentication points approximately 30
seconds apart from each other. In order not to influence them, the subjects were walking
unattended. The route was chosen in such a way that it corresponds to a realistic scenario.
Therefore it involved walking around corners, walking up and down stairs, opening and
closing doors, having to cross door sills and walking on different surfaces (linoleum and
tiles)2. For each of the 48 subjects and each module we obtained 27 data sets in each session,
2592 in total. Fig. 8.3 shows the data collected of one subject in section four. The part where
the subject is walking downstairs is clearly visible in the right half of the figure. The file
also contains the data where the subject was still standing. It is not further preprocessed
but directly input to step one of the cycle extraction.

8.6 Results

To allow for a fair comparison of the two modules, it is necessary that the same data is
used for calculation of the reference templates. Therefore we reconstructed the reference
templates of the majority voting module by using the enrolment data of the CRM mod-
ule. These reconstructed references are used in all following tests. Using the previously
described authentication application probe cycles were extracted and compared to the ref-
erence data (see table 8.1 for mean times).

CRM MV

extraction of reference cycle(s)
min 1179 2135
max 4823 4880

mean 2381 3067

extraction of probe cycles
min 8758 7408
max 65573 58021

mean 26210 22843

comparison
min 920 84
max 107628 1864

mean 5685 372

Table 8.1: Mean times (in milliseconds) needed for cycle extraction and comparison.

For each subject and each module we have two reference templates, one for each ses-
sion. An interesting point is to see the influence of the reference template and the influence
of the time period between enrolment and authentication. Therefore we separated the data

2Appendix H describes more information on length and other characteristics.
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Figure 8.3: Sample data of section four in which the subjects also had to walk downstairs.

of the two sessions. Each reference template was compared with the data from the same
session and the other session (on a different day). In Fig. 8.4 and 8.5 one can see the
DET-curves. The thin red lines (R1Px) show the results when using the reference template
recorded during the first session, the medium black lines (R2Px) show the results obtained
with the reference template of the second session. The dotted lines (RxP0) show the same-
day results, the continuous line (RxP1) the different-day results and the dash-dotted-lines
(RxP2) show the result when data of both days is used for testing. The equal error rates
can be seen from the crossing with the diagonal. One can clearly see that the error rates
increase when enrolment and probe data are not from the same day.

The bold green lines (R3Px) correspond to the results obtained when using the best
reference template. This is determined by computing the false non match rates using the
same-day probe data. For each subject that template is chosen which has the lower num-
ber of false non matches. This process would in a real scenario correspond to a training
phase: Several templates are computed during enrolment. The one which gives the best
performance (in terms of false non match rate) during the same day is finally stored as the
reference template. The continuous green line (R3P1) gives the most realistic results of all
tests: A training phase ensures that a high-quality template is used as reference and this
reference will in general be compared with data which is not collected on the same day.
This means that for the CRM module we obtain a EER of 21.7% and for the MV module of
28.0%.

The results were further analyzed seperately for each section (see Fig. 8.6) and each
subject (see Fig. 8.7). The given false non match rates are obtained at a false match rate of
approximately 10% for each module, while using the previously determined best reference
template and probe data of a different day. One can see that for both modules the false non
match rates are nearly the same for all sections, only section 4 and 8 show worse results.
The reason for this will be that these sections contain only two short walking parts, divided
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Figure 8.4: DET-curves for CRM method using different reference and probe data.

Figure 8.5: DET-curves for majority voting method using different reference and probe
data.
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Figure 8.6: FNMR seperateted by section.

by the stairs. Fig. 8.7 shows that the authentication results greatly depend on the subject.
Some subjects are never recognized, whereas some are always. One reason for this is that
some subjects (8, 13, 15, 17, and 27) wore different shoes during the two sessions. For
subject 8 and 13, the influence of the different shoes is not noticable, but it clearly is for the
other three subjects.

8.7 Discussion

The conducted analyses had several goals:

• See how gait recognition performs in a scenario testing,

• determine which of the developed methods results in lower error rates,

• check if the modules perform fast enough on the phone.

For the realistic scenario of using the best (in terms of same day false non match rate)
reference templates and comparing these with data collected on a different day, we got an
EER of 21.7% for the CRM-module and of 28.0% for the MV-module. Fig. 8.7 shows that
the recognition rates greatly depend on the subject. As already stated one reason could be
the wearing of different shoes during the different sessions. Further influencing factors are
the worn trousers which have an impact on the position (height, angle etc.) of the pouch
as well as on how firmly it was attached. As a consequence, one can see that it is probably
necessary that each subject does the enrolment several times using different trousers and

125



8. SCENARIO TEST OF ACCELEROMETER-BASED BIOMETRIC GAIT RECOGNITION

Figure 8.7: FNMR separated by subject (at a FMR of ca. 10%).

shoes. Adapting the threshold to the subjects would not be a suitable solution as a higher
threshold makes it easier for attackers to get authenticated.

As one can see from the times given in table 8.1, extracting the probe cycles from data of
one section and comparing these cycles with the stored reference cycle(s), takes around 32
seconds for the CRM-module and about 27 seconds for the MV-module. The longer com-
putation time for the CRM-module is due to the length normalization of the cycles and the
expensive cyclic rotation metric. These durations are far too high for a real authentication
application, as a user would have to wait around half a minute until the phone unlocks it-
self, which is much more than entering a PIN would take. This situation could be improved
by doing a continuous authentication. This means that the module collects 30 seconds of
data, directly starts the authentications, stores the authentication result and starts collect-
ing data again for the next 30 seconds and so on. The achieved recognition rates and times
are good enough to implement this approach. When the user of the mobile phone starts
the authentication, the last authentication result just needs to be obtained from memory,
which could be done fast enough to be unnoticed by the user. With about 3 seconds for
each module, the enrolment times are acceptable.

8.8 Conclusion and Future Work

In this paper a new cycle extraction method, based on salience vectors, was combined
with two different comparison methods. The methods have been implemented for android
phones and tested in a scenario test. On two different days each of the 48 participants
walked for about 15 minutes on a predefined route which included 9 stopping points where
the authentication data was stored. In contrast to previously conducted experiments, this
route did contain corners, stairs, doors and door sills. Despite these obstacles, we obtained
an equal error rate of 21.7% for the module using cyclic rotation metric as a distance and
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of 28.0% for the module using majority voting. Although these results are not as good
as the results stated in many related papers, these are closer to reality. One reason is the
more realistic data collection (not only flat floor) the other reason is that the stated EERs
are obtained when comparing probe data of one day to reference data of a second day. We
showed that this time difference has a great impact on the recogntion rates, which is seldom
considered in literature.

Future work will include the conversion of the modules to applying continuous au-
thentication. So far the authentication is started only once when the user wants to use his
phone again and switches off the screen saver. As extracting cycles from 30 seconds of
data and doing the comparison with the reference template takes about 30 seconds at the
moment, this is not user-friendly. Alternating phases where data is collected with those
where the cycle extraction and comparison is done and always storing the most current
authentication result will improve this situation as only that result has to be obtained from
the database. Adding this enhancement, the CRM-module can be used as a supplement to
PIN authentication on mobile phones.
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Chapter 9

Towards an Automatic Gait Recognition
System using Activity Recognition (Wearable

Based)

Abstract

The need of increasing the security measures in mobile devices has led researchers
focus on finding new security mechanisms. In this paper we propose a solution to keep
data secured by ensuring that only the authorized user can access the data in a mobile
phone. By using gait recognition as an important element for the authentication process
we propose an automatic gait recognition system to be used for continuous authentica-
tion. Since recent gait recognition research only focuses on manual extraction of walking
activities from the accelerometer signal, a solution to this issue could be activity recogni-
tion that would reduce the disadvantages of gait recognition by identifying the activities
of a person continuously and automatically. Activity recognition would not only make
it possible to authenticate the user in different daily activities like slow walking, normal
walking, fast walking even running, but also help in avoiding authentication when the
user is in passive state like sitting, standing still, etc.. This is one of the key factors and
an interesting challenge which would benefit the data security area.

9.1 Introduction

In recent years, activity recognition has become a very important field of research due to its
application in many different areas such as health care, fitness, industrial application, se-
curity, entertainment, etc.. The goal of activity recognition is to recognize and track human
activities, which is also an important goal of ubiquities computing [21]. Computers are
becoming more pervasive in modern society by integrating in our phones, music players,
cars etc.. The idea of ubiquitous computing is to integrate computers into our environment,
everyday objects and activities etc., to become assistance in our everyday lives and work
[25].

Today, whenever we use computer systems, they demand authentication as a measure
of security. Typically, we perform the authentication at login time with either a password,
token, biometric characteristic and/or a combination of these. Performing the last men-
tioned measure is a stronger guarantee that the claimed user logging in is not an impostor
but an authorized user. An issue raises that not many systems of security requires any fur-
ther measures once the user is granted access (thus assuming that the user is continuously
legitimated into the system). Continuous authentication insurance of the user’s legitimacy
is of high importance in critical or high security environments, this means that it is neces-
sary to continuously ensure that the user is the legitimated one. Therefore, performing the
user authentication continuously while the system is actively used is something essential.
Nevertheless, this kind of authentication needs to be ”attractive” for the user. A very good
solution for continues authentication is activity recognition from the gait signal.

The latest generation of mobile devices (smart phones, PDA etc.) are more sophisticated
and they come with built-in sensors like accelerometers, gyro-scopes, Global Positioning
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Figure 9.1: Level of Activitities [25]

Systems (GPS), etc., for example accelerometers can record the motion of the body and
provide sufficient data that can be used for recognizing activities. Thus, accelerometers
are becoming a very important tool due to good results in activity recognition: they are
cheap, small, effective, require little energy, they are not sensitive on the conditions of the
environment etc.. Because of these advantages of accelerometers they are incorporated in
newer mobile devices, e.g. the iPhones, iPod, iPad, HTC etc..

This paper is divided into three sections. Section 9.2 gives an elaborate study related
work overview on activity recognition to be used for gait recognition. Although gait recog-
nition is not mentioned in this paper, an extensive survey of gait recognition can be found
in [16]. Section 9.3 proposes a solution for a full automatic wearable based gait recognition
system. Finally, Section 9.4 concludes the paper.

9.2 Activity Recognition - Related Work

Activity recognition is the process of identifying everyday common human activities in
real life. It is a new area of study, and is becoming an interesting research field due to
different areas of application. Accelerometers come integrated on new models of mobile
devices such as smart phones, tablet computers, digital audio players (Ipod) etc., which
record the body motion. The majority of studies for activity recognition are performed by
using wearable sensors. Several studies have shown that wearable sensors are adequate for
activity recognition. In the following we will show some of the sensors that have been used
so far for activity recognition, a summary of different activities that were recognized by
using various sensors and the approaches used for identifying different human activities.

Due to many different application areas of activity recognition, there is no surprise that
the list of activities that many researchers have tried to recognize with various sensors is
long. According to [25], activities can be categorized in three groups based on duration
and/or complexity: Gestures (or Movement/Motif), Low-Level Activities, and High-Level Activ-
ities. Activities such as walking, sitting, standing, eating, cleaning windows are considered
as low-level activities which usually last between seconds and several minutes. As high-
level activities are considered activities like sightseeing, cleaning the house, working at
office, that usually last for more than a few minutes up to a few hours. Figure 9.1 illustrates
these groups of activities.

9.2.1 Experiments (Activities)

The identification of everyday routine and leisure activities such as walking, running, bik-
ing, sitting, climbing and lying have already been analyzed in laboratory settings by several
researchers. All these studies were done by different sensors such as accelerometers which
were embedded in wearable sensing devices to collect the needed data. The types of sen-
sors used for activity recognition are to be discussed in the next section. Accelerometer
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sensors are very useful for low-powered equipments like smart phones, tablet computers
with applications that are suitable for real-time detection of user’s activities. Physical ac-
tivities such as walking, walking up/down stairs standing, sitting, and running have been
studied by some of the researchers using different accelerometers sensors. Table 9.1 sum-
maries different activities by different studies.

Table 9.1: Activity recognition research studies. #TP = Test Persons

Study Activities #TP
[68] walking flat, walking slope-up, slope-

down, walking stairs
52

[36] sitting, walking, jogging, walking
stairs, standing

29

[48] sitting, standing, and walking 26
[45] walking, running, cycling 24
[4] walking, running, sitting, standing, bi-

cycling
20

[13] walking, climbing stairs 15
[19] lying down, sitting and standing,

walking, running,
12

[40] sitting, standing, walking, walking
stairs, riding elevator up/down, and
brushing teeth

12

[21] running, still, jumping and walking 11
[9] sitting, walking, walking (street), wait-

ing at a tram stop, riding a tram
8

[49] walking, standing, sitting and run-
ning, walking stairs

6

[33] sitting, walking, running, walking
stairs

6

[74] standing, walking, running, climbing 5
[22] standing, sitting, lying, walking, run-

ning
5

[41] sitting, walking, jogging, riding a bike,
walking stairs

2

Another class of activities, mainly studied in healthcare environments, are the so-called
”Activities of Daily Living” (ADLs). ADLs include activities such like bathing, toileting,
dressing, feeding ourselves, homemaking which are basic skills needed for daily self-care
activities. A set of ADLs is known as the ”Instrumental Activities of Daily Living” (IADLs),
those are skills beyond basic self-care which a person needs to perform for an independent
living. IADLs include activities like shopping, driving, cleaning, cooking, doing laundry
and managing money. Table 9.2 shows an overview of these activities.

9.2.2 Data Acquisition

Depending on the activities there have been used several kinds of sensors in the data acqui-
sition process for activity recognition. As mentioned earlier, accelerometer sensors are ad-
equate and most commonly used for continues activity recognition. They are also consid-
ered to be less intrusive than other sensors such as RFID gloves, microphones, and cameras
[25]. Therefore, accelerometers are becoming very important tools due to many advantages
in activity recognition. There is not a single sensor that can record all the body movements
and recognize all kind of human everyday activities at one time. Therefore, most researches
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Table 9.2: Studies of activity recognition of daily living (ADL)

Study Activities (ADL) #TP
[58] toileting, washing, housework, leisure

activity, oral hygiene, heating use, tak-
ing medication, etc.

14

[63] mopping, cleaning windows, making
bed, watering plants, washing dishes,
setting the table, vacuuming, ironing,
dusting

12

[19] lying, rowing, cycling (train-
ing,regular), sitting, standing, running,
walking, football

12

[52] prepare food, clean dishes, wash
clothes

10

[12] showering, urination, flushing, wash-
ing Hands, defecation, brushing teeth

4

[65] prepare food, toileting, bathing, dress-
ing, grooming, preparing a beverage,
doing laundry, etc.

2

[69] prepare different food, eat cereal, dust,
brush teeth, tend plants, set table, clean
windows, take medication, shower,
shave

2

today have been using different sensors to capture the data and multiple sensors attached
on multiple parts of the body such as, hip, wrist, arm, ankle, chest, thigh, knee. For in-
stance, activities like walking fast, walking slow, and running can be recognized by motion
sensors but these sensors can not recognize activities such as, talking, reading, driving car
etc.. Table 9.3 overviews some of the most widely used sensors for activity recognition
research.

Other sensors that have been used for activity recognition are: GPS sensors [19], vision
sensors (i.e., cameras) [19, 54], microphones [12, 29], RFID tag readers [56, 58, 63], ball
switches [38], fibber optical sensors [18], gyroscope [35], body and skin temperature sensors
[66, 43, 34, 76, 19], light sensors [66, 43, 49, 59], foam pressure sensors [8], pressure sensors
[43], physiological sensors [55], humidity and barometric sensors [43].

9.2.3 Activity Recognition Process

9.2.3.1 Segmentation

Detection of activities from the collected data is the process of finding the ”boundaries” for
different activities in the accelerometer signal. Segmentation is a necessary step in the data
analysis process before the feature extraction and the classification. Several segmentation
techniques have been used to identify different activities from the sensor data. Some of
the segmentation methods that have been used for activity recognition are: ”Sliding Win-
dows”, ”Top-Down”, ”Bottom-Up” and ”Sliding Window and Bottom-Up (SWAB)” [31].

9.2.3.2 Feature Extraction

The input data recorded with the sensors from the human body motions is too large for pro-
cessing, thus it is easier as an initial step to transform the large input data into a reduced
representation set of features before further processing. The process of transforming the
large input data into the set of features is called feature extraction. The feature extraction is
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Table 9.3: Sensors used in different studies.

Study Sensor
Placement

Sensor

[32] Above an-
kle, above
knee,hip,
wrist,elbow,

3D Accelerometer (ADXL311)

[47] Belt (left-
/right)

3D Accelerometer ADXL202

[5] Chest 3D Accelerometers (ADXL213,
analog)

[4] Hip, thigh,
ankle, arm,
wrist

2D Accelerometer (ADXL210E,
analog)

[38] Legs 2D accelerometer (ADXL202JE,
analog) and Ball Switches

[66] Legs (up-
per), above
knee

1D Accelerometer (ADXL05s,
analog) , passive infrared
sensors, carbon monoxide
sensor, microphones, pressure
sensors, temperature sensors,
touch-sensors and light-sensors

[61] Near pelvic
region

3D Accelerometer (CDXL04M3)

[21] Pocket 3D Accelerometer (ADXL330,
analog)

[36] Pocket 3D Accelerometer (Cell phone)
[60] Pocket 2D Accelerometer (ADXL202),

GPS
[14] Shoulder Sociometer (IR transceiver, a mi-

crophone, two accelerometers,
on-board storage, and power
supply)

[6] Waist 3D Accelerometer
[71] Waist 3D Accelerometer and a micro-

phone.
[62] Waist belt 3D Accelerometer
[26] Wrist, hip

and thigh
2D accelerometer (ADXL202JE),
Tilt switches

a very important step; therefore features should be carefully chosen in order to extract rel-
evant information from the input data, because it will have a strong influence in the results
of classification. Features selection is an important and essential step in the design of any
activity recognition system, in order to design an effective system. The features in different
studies were analyzed mainly in time-domain and frequency-domain. In the following we
will brief describe features extraction in the time-domain and frequency-domain.

Feature extraction in the Time-Domain

In much of the research, studies were considering only time-domain features due to avoid
the complexity of pre-processing that required transformation of the signal into frequen-
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cies. They consume little processing power and the algorithms can be applied directly.
Table 9.4 shows a summary of papers that consider the time domain features.

Table 9.4: Feature extraction studies in the time domain

Study Approaches
[37, 4, 70, 32, 61, 75, 20, 27,
49, 44, 22, 24, 11, 69, 63, 64,
41]

Mean

[32, 24, 61, 37, 71, 44, 75,
20, 27, 49, 69, 63, 64, 41]

Variance or standard deviation

[20, 49, 75, 11] Root mean square (RMS)
[11, 49, 37, 44, 59] Zero or Mean Crossing Rate
[44, 20, 66, 11] Derivative
[38, 3, 39, 72, 67] Peak Count and Amplitude

Feature extraction in the Frequency-Domain

Unlike the time-domain features, the signal should transform data into the frequency do-
main and this process requires pre-processing and different transformations such as the use
of Fast Fourier transform (FFT). Table 9.5 shows the most widely used features in frequency
domain.

Table 9.5: Feature extraction studies in the frequency domain

Study Approaches
[34, 66, 69, 63, 64, 29, 41,
27, 40, 2]

Fast Fourier Transform

[69, 63, 64, 61, 27, 40] Energy
[69, 63, 64, 41, 23, 27, 40] Spectral Entropy
[35, 23] Frequency range power

9.2.3.3 Classification

Next step after the feature extraction is the classification process. In the classification pro-
cess, the classification algorithm builds up a model (classifiers) for different human activ-
ities and then uses these classifier to identify human activities from the test data. A wide
range of machine learning approaches and algorithms are used for activity recognition.
Most of these approaches have been used for activity recognition which can be categorized
into two groups: supervised learning and unsupervised learning.

Supervised learning is a machine learning technique, also sometimes called ”learning
with a teacher” in which the system is trained by using a set of training data before it comes
into use in classifying the test data. There are two general phases in a supervised learning
technique: training and testing. During the training phase the system is taught (trained) by
using a set of training data to create a classification model to classify unknown data. During
the testing phase, the model of the system is tested using a set of test data to measure the
classification accuracy [42]. Training and testing phases are illustrated in Figure 9.2.

The majority of works in activity recognition have been done by using supervised learn-
ing methods. A summary of these approaches applied so far is shown in Table 9.6. Super-
vised learning techniques are mostly used for activity recognition in majority of the re-
searches. Next step is to look at the unsupervised learning techniques which are dissimilar
than the supervised learning.
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Figure 9.2: The basic of learning process: training and testing [42]

Table 9.6: Supervised learning approaches used for activity recognition

Study Approaches
[67, 4, 28, 61] Naive Bayes Classifier

[4, 49, 61] C4.5 Decision Tree
[35, 26, 66, 61] Nearest Neighbor

[72, 41, 56] Hidden Markov Model
[26, 61] Support Vector Machine

[66] Kohonen Self-Organising Map

Unsupervised learning by contrast does not use any training or testing data. Instead, it
”tries” to classify the unknown data by separating the data into different classes (clusters).
It is a ”learning without teacher” method. The method tries to directly build models not
basing itself on any priori-built model or knowledge. It learns from the unlabeled data, the
task of this method is to discover classes of similar examples from the unlabeled data and
organizes data into similarity groups, which is known as clustering, or by estimating the
distribution of data within the input space which is called density estimation [7]. Clustering
is the process of organizing unlabeled data into clusters, where the data in the same cluster
are similar to each other and the data in different clusters are dissimilar [10]. A summary
of the unsupervised learning approaches that are applied for activity recognition is shown
in Table 9.7.

Table 9.7: Unupervised learning approaches used for activity recognition

Study Approaches
[51, 73, 53] Hidden Markov Model (HMM)

[15] Hierarchies of HMM
[57] Hierarchical Dynamic Bayesian Network
[29] Multiple Eigenspaces
[53] Gaussian Mixture Models
[46] Multi-layered FSM

The process flow for unsupervised learning is illustrated in Figure 9.3.

9.2.4 Activity Recognition Performances

Studies have shown different accuracies for activity recognition systems in which the data
collection was performed in a controlled laboratory settings (subjects are told how to walk,
run etc.), from the experiments in which the data was collected under normal circum-
stances. As we saw in the data collection section a range of different sensors are used to
collect the data. Experiments were performed by placing these sensors in one or multiple
locations on the body. A summary of recognition accuracies is shown in the Table 9.8.
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Figure 9.3: Unsupervised Learning Workflow [1]

9.3 Scenario and Proposal

A full automatic wearable sensor (WS) based gait recognition system using mobile devices
is proposed in this section. The WS based recognition approach is the newest approach
among the gait recognition methods available, i.e Machine Vision (MV) Based and Floor
Sensor (FS) Based. WS is based on wearing motion recording sensors on the body of the
person in different places; on the waist, pockets, shoes and so forth. Since wearable gait
recognition system do not offer a full automatic mechanism today we will in this section
give a possible solution to how this system is to be designed and implemented by includ-
ing activity recognition as a major main step. Sensor based biometric gait research shows
an increase in performance over time since 2005 where external dedicated sensors were
applied until today where mobile phone accelerometers are being used. And to make gait
recognition more stable, some issues need to be taken into consideration which we will see
at the following subsections.

9.3.1 Scenario

We will here give some examples on different scenarios where activity recognition and gait
recognition would make phones applicable as a security mechanism.

• Shopping: When a person is shopping, he or she is performing a lot of walking and
standing. Since the user is constantly watching out for new equipments or clothing it
will simply mean that the person is performing different activities by walking from
one shop to another, from one cashier to another, etc.. In this case we can protect data
of the person to ensure security of the phone.

• Going to Work People go to work by different means of transport. Some people
use car, bicycle or even their motorbike. Since the mobile phone might be lost while
walking out of the car or bicycling, it can ensure security. However, if a person is
sitting in the car and the phone is standing still, the phone will also recognize that a
”standing still” activity is ongoing, and thus the phone should not be used at all for
authentication. In this case, a backup solution should be applied such as using the
PIN-code.

• Fitness/Jogging Even when people are making fitness, they might loose their phone
when running outside their home. Running is still an activity and can also be used as
a security mechanism towards authentication to the phone for usage.

These examples are only few out of many. An illustration of which activities can be
recognized from gait signal data is shown in Figure 9.4. The interesting point of view here
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Table 9.8: Recognition Accuracies.

Study Recognition Accuracy Activities Recog-
nized

#TP

[45] 80% walking, running,
cycling, driving,
sports

24

[4] 84% walking, sitting,
standing, running,
computer work,
bicycling, Lying
down, etc.

20

[47] 83% - 90% walking, down-
stairs, upstairs,
opening doors

6

[50] 90% walking, jogging,
upstairs, down-
stairs, sitting,
standing

29

[30] 90.8% walking (slow, nor-
mal, fast), sitting,
standing, lying,
falling

6

[39] 92.85% - 95.91% sitting, standing,
walking,

8

[32] 65% - 95% sitting, standing,
walking, stairs
up/down, white-
board writing,
shake hands,
keyboard typing

1

[21] 97,51% walking, jumping,
still, running

11

[22] 99,5% standing, sitting,
lying, walking,
running

5

Figure 9.4: Walking and Non-Walking Activities

is that the mobile phone by using activity recognition for identifying activities and gait
recognition for identifying the uniqueness of a person, together can establish a security
link for mobile phone devices as an access control mechanism. Research has to the best
of our knowledge not implemented these two technologies into one full system. What we
will see in the next subsection is how we can apply activity and gait recognition approaches
together and how this should work like.
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9.3.2 Design and Proposal

The detection of everyday routine and leisure activities as we saw earlier like walking,
running, sitting, and standing from gait signal recorded from wearable sensors make a
step forward in the authentication. There has been done studies on gait recognition for
authentication in mobile devices [17], but there are so far no studies in activity recogni-
tion for authentication. The data obtained from wearable sensors can be very useful for
activity recognition as we have seen in the recent section. Therefore, activity recognition
is becoming a necessary step regarding continues authentication that is based on gait us-
ing wearable motion recording sensors in mobile devices. A proposal towards full gait
recognition includes activity recognition. This simply means that a full automatic system
includes:

• Activity Recognition Identifying activities from a gait signal where we only focus on
stable activities, such as walking normal, slow or fast.

• Gait Recognition Extraction of the unique from the stable walking activities to be
used for authentication on a mobile device.

Since a full gait signal consist of different activities, we propose to divide the activity
recognition in two phases. First phase is segmentation that is to find out where an each
activities start and end point is located on the signal as illustrated in Figure 9.5. For this
we propose the use of Sliding Windows, Top-Down, Bottom-Up and Sliding Window and
Bottom-Up (SWAB) as referred to in section 9.2.3.1. Second phase is the classification where

Figure 9.5: A full gait signal without segmentation (upper signal figure) and segmented
walks (lower signal figure)

we can see which activities are useful to forward to the gait recognition mechanism as
illustrated in Figure 9.6. The classification task as can be seen in Figure 9.6 consists in
itself that pre-processing before inputting the data for segmentation, is needed. After the
segmentation process we apply feature extraction approaches. Feature extraction is the
process of extracting the most relevant information form the data segments. The features
extracted then passes through the classification stage. This stage includes the classification
process of the data and creation of classifiers which are used to identify different human
activities. For the classifications there are different approaches to apply. We thus propose
to apply methods that are shown in section 9.2.3.3
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Figure 9.6: Classification of the Activities

9.4 Conclusion

In this paper we have proposed that by using activity recognition and gait recognition we
can create a continuous and automatic authentication system on mobile devices. Since
wearable sensor based gait recognition do not offer this mechanism today future work
will then be to make an implementation of the design which was proposed during this
paper. Activity and Gait Recognition has been studied separately in the recent years, but
the interest has become so high lately when mobile phones today include these embedded
accelerometers. The recognition accuracy for activity recognition has shown great results,
which means to be useful for gait an automatic gait recognition system.

9.5 Bibliography

[1] Machine learning - who’s the boss? http://awesomeful.net/posts/78-machine-
learning-who-s-the-boss. [Online; accessed 13-march-2011]. xi, 136

[2] ALLEN, F. R., AMBIKAIRAJAH, E., LOVELL, N. H., AND CELLER, B. G. An Adapted
Gaussian Mixture Model Approach to Accelerometry-Based Movement Classification
Using Time-Domain Features. pp. 3600–3603. Available from: http://dx.doi.
org/10.1109/IEMBS.2006.259613. 134

[3] AMFT, O., STGER, M., AND TRSTER, G. Analysis of chewing sounds for dietary mon-
itoring. In In UbiComp 2005 (2005), Springer, pp. 56–72. 82, 134

[4] BAO, L., AND INTILLE, S. S. Activity Recognition from User-Annotated Accel-
eration Data. Pervasive Computing (2004), 1–17. Available from: http://www.
springerlink.com/content/9aqflyk4f47khyjd. 22, 33, 35, 78, 80, 81, 131, 133,
134, 135, 137, 148

[5] BARRALON, P., NOURY, N., AND VUILLERME, N. Classification of daily physical
activities from a single kinematic sensor. Conference proceedings : ... Annual International
Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in
Medicine and Biology Society. Conference 3 (2005), 2447–2450. Available from: http:
//dx.doi.org/10.1109/IEMBS.2005.1616963. 36, 133

[6] BIDARGADDI, N., KLINGBEIL, L., AND SARELA, A. Detecting walking activity in
cardiac rehabilitation by using accelerometer. Intelligent Sensors, Sensor Networks and
Information, 2007. ISSNIP 2007. 3rd International Conference on (2007), 555–560. Avail-
able from: http://dx.doi.org/10.1109/ISSNIP.2007.4496903. 36, 133

[7] BISHOP, C. M. Pattern Recognition and Machine Learning. 2006. 39, 135

[8] BRADY, S., DUNNE, L. E., TYNAN, R., DIAMOND, D., SMYTH, B., AND O’HARE,
G. M. P. Garment-based monitoring of respiration rate using a foam pressure sen-
sor. In Proceedings of the Ninth IEEE International Symposium on Wearable Computers

139



9. TOWARDS AN AUTOMATIC GAIT RECOGNITION SYSTEM USING ACTIVITY
RECOGNITION (WEARABLE BASED)

(Washington, DC, USA, 2005), IEEE Computer Society, pp. 214–215. Available from:
http://portal.acm.org/citation.cfm?id=1104998.1105315. 32, 33, 78,
80, 81, 82, 132

[9] BULLING, A., WARD, J., GELLERSEN, H., AND TROESTER, G. Robust recognition of
reading activity in transit using wearable electrooculography. In Pervasive Computing,
J. Indulska, D. Patterson, T. Rodden, and M. Ott, Eds., vol. 5013 of Lecture Notes in Com-
puter Science. Springer Berlin / Heidelberg, 2008, pp. 19–37. 10.1007/978-3-540-79576-
6 2. Available from: http://dx.doi.org/10.1007/978-3-540-79576-6_2.
35, 83, 131

[10] CAREY, MICHAEL J., C. S. Data-Centric Systems and Applications. 2006. 39, 135

[11] CHAMBERS, G. S., VENKATESH, S., WEST, G. A. W., AND BUI, H. H. Hierarchi-
cal recognition of intentional human gestures for sports video annotation. In 16th
International Conference on Pattern Recognition (2002), vol. 2, pp. 1082–1085. Avail-
able from: http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=
1048493. 134

[12] CHEN, J., KAM, A. H., ZHANG, J., LIU, N., AND SHUE, L. Bathroom Activity Moni-
toring Based on Sound. 2005, pp. 47–61. Available from: http://dx.doi.org/10.
1007/11428572_4. 18, 132

[13] CHOUDHURY, T., BORRIELLO, G., CONSOLVO, S., HAEHNEL, D., HARRISON, B.,
HEMINGWAY, B., HIGHTOWER, J., KLASNJA, P., KOSCHER, K., LAMARCA, A., LAN-
DAY, J. A., LEGRAND, L., LESTER, J., RAHIMI, A., REA, A., AND WYATT, D. The
Mobile Sensing Platform: An Embedded Activity Recognition System. IEEE Pervasive
Computing 7, 2 (Apr. 2008), 32–41. Available from: http://dx.doi.org/10.1109/
MPRV.2008.39. 31, 35, 80, 131, 148

[14] CHOUDHURY, T., AND PENTLAND, A. Sensing and modeling human networks
using the sociometer. In Proceedings of the 7th IEEE International Symposium on
Wearable Computers (Washington, DC, USA, 2003), ISWC ’03, IEEE Computer Soci-
ety, pp. 216–. Available from: http://portal.acm.org/citation.cfm?id=
946249.946901. 133

[15] CLARKSON, B., AND PENTLAND, A. Unsupervised clustering of ambulatory audio
and video. In ICASSP ’99: Proceedings of the Acoustics, Speech, and Signal Processing,
1999. on 1999 IEEE International Conference (Washington, DC, USA, 1999), vol. 6, IEEE
Computer Society, pp. 3037–3040. Available from: http://dx.doi.org/10.1109/
ICASSP.1999.757481. 40, 135

[16] DERAWI, M. O. Accelerometer-based gait analysis, a survey. In Norwegian Information
Security Conference (NISK) (Gjøvik, Norway, 2010), NISK ’10, Tapir, pp. 33–44. 130

[17] DERAWI, M. O., NICKEL, C., BOURS, P., AND BUSCH, C. Unobtrusive user-
authentication on mobile phones using biometric gait recognition. Intelligent Informa-
tion Hiding and Multimedia Signal Processing, International Conference on 0 (2010), 306–
311. 20, 22, 138

[18] DUNNE, L., WALSH, P., SMYTH, B., AND CAULFIELD, B. Design and evaluation of
a wearable optical sensor for monitoring seated spinal posture. Wearable Computers,
IEEE International Symposium 0 (2006), 65–68. 82, 132

[19] ERMES, M., PÄRKKA, J., MANTYJARVI, J., AND KORHONEN, I. Detection of daily ac-
tivities and sports with wearable sensors in controlled and uncontrolled conditions.
IEEE transactions on information technology in biomedicine : a publication of the IEEE
Engineering in Medicine and Biology Society 12, 1 (Jan. 2008), 20–26. Available from:
http://dx.doi.org/10.1109/TITB.2007.899496. 35, 36, 131, 132, 148

140



9.5 BIBLIOGRAPHY

[20] GHASEMZADEH, H., LOSEU, V., GUENTERBERG, E., AND JAFARI, R. Sport training
using body sensor networks: a statistical approach to measure wrist rotation for golf
swing. In Proceedings of the Fourth International Conference on Body Area Networks (ICST,
Brussels, Belgium, Belgium, 2009), BodyNets ’09, ICST (Institute for Computer Sci-
ences, Social-Informatics and Telecommunications Engineering), pp. 2:1–2:8. 134

[21] HE, Z., AND JIN, L. Activity recognition from acceleration data based on discrete
consine transform and svm. In Systems, Man and Cybernetics, 2009. SMC 2009. IEEE
International Conference on (2009), pp. 5041 –5044. 35, 36, 40, 129, 131, 133, 137, 147, 148

[22] HEE LEE, M., KIM, J., KIM, K., LEE, I., JEE, S. H., AND YOO, S. K. Physical activity
recognition using a single tri-axis accelerometer. In Proceedings of the World Congress on
Engineering and Computer Science 2009 Vol I, WCECS ’09, October 20 - 22, 2009, San Fran-
cisco, USA (2009), S. I. Ao, C. Douglas, W. S. Grundfest, and J. Burgstone, Eds., Lecture
Notes in Engineering and Computer Science, International Association of Engineers,
Newswood Limited, pp. 14–17. 35, 40, 131, 134, 137

[23] HEINZ, E. A., KUNZE, K. S., GRUBER, M., BANNACH, D., AND LUKOWICZ, P. Using
Wearable Sensors for Real-Time Recognition Tasks in Games of Martial Arts - An Ini-
tial Experiment. Computational Intelligence and Games, 2006 IEEE Symposium on (2006),
98–102. Available from: http://dx.doi.org/10.1109/CIG.2006.311687. 134

[24] HEINZ, E. A., KUNZE, K.-S., SULISTYO, S., JUNKER, H., LUKOWICZ, P., AND
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Chapter 10

Activity Recognition Using Smart Phones

Abstract

In this paper we analyze activity recognition to ensuring that only the authorized
user can access the data in a mobile phone. Since recent gait recognition research only
focus on manual extraction of walking activities from the accelerometer signal, we ana-
lyze the importance and performance of activity recognition that would reduce the dis-
advantages of gait recognition by identifying the activities of a person continuously and
automatically. Activity recognition would not only make it possible to authenticate the
user in different daily activities like slow walking, normal walking, fast walking even
running, but also help in avoiding authentication when the user is in passive state like
sitting, standing still, etc. This is one of the key factors and an interesting challenge
which would benefit the data security area.

10.1 Introduction

In recent years, activity recognition has become a very important field of research due to
its application in many different areas such as health care, fitness, industrial application,
security, entertainment, etc.. The goal of activity recognition is to recognize and track hu-
man activities, which is also an important goal of ubiquities computing [4]. Computers are
becoming more pervasive in modern society by integrating in our phones, music players,
cars etc. The idea of ubiquitous computing is to integrate computers into our environment,
everyday objects and activities etc, to become assistance in our everyday lives and work
[5].

Today, whenever we use computer systems, they demand authentication as a measure
of security. Typically, we perform the authentication at login time with either a password,
token, biometric characteristic and/or a combination of these. Performing the last men-
tioned measure is a stronger guarantee that the claimed user logging in is not a impostor
but an authorized user. An issue raises that, not many systems of security requires any fur-
ther measure once the user is granted access thus assuming that the user is continuously
legitimated into the system. Continuous authentication insurance of the user’s legitimacy
is of high importance in critical or high security environments, this means that it is neces-
sary to continuously ensure that the user is the legitimated one. Therefore, performing the
user authentication continuously while the system is actively used is something essential.
Nevertheless, this kind of authentication needs to be ”attractive” for the user. A very good
solution for continues authentication is activity recognition from the gait signal.

Last generation of mobile devices (smart phones, PDA etc) are more sophisticated and
they come with built-in sensors like accelerometers, gyro-scopes, Global Positioning Sys-
tems (GPS), etc., for example accelerometers can record the motion of the body and provide
sufficient data that can be used for recognizing activities. Thus, accelerometers are becom-
ing a very important tool due to good results in activity recognition: they are cheap, small,
effective, require little energy, they are not sensitive on the conditions of the environment
etc.. Because of these advantages of accelerometers they are incorporated in newer mobile
devices, e.g. the iPhones, iPod, iPad, HTC etc.
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The majority of studies for activity recognition are performed by using wearable sen-
sors. Several studies have shown that wearable sensors are adequate for activity recog-
nition. The identification of everyday routine and leisure activities such as walking, run-
ning, biking, sitting, climbing, lying, etc. have been analyzed in by several researchers
[10, 6, 9, 8, 1, 2, 3, 7, 4] . In all these studies different sensors were used such as accelerom-
eters which were embedded in wearable sensing devices to collect the needed data. The
types of sensors used for activity recognition will be discussed in the next section. Ac-
celerometer sensors are very useful for low-powered equipments like smart phones, tablet
computers with applications that are suitable for real-time detection of user’s activities.
Physical activities such as walking, walking up/down stairs standing, sitting, and running
have been studied by some of the researchers using different accelerometers sensors.

10.2 Experiment

In order to acquire acceleration data we used a Mobile Phone called Motorola Milestone.
It consists of a triaxial accelerometer which can measure body motion. The acceleration
range of the accelerometer is between -2g and +2g with a frequency sampling about 100
samples per second. In the experiment we asked volunteers to perform different activities,
namely walking normal, fast and slow. The test-subjects attached the mobile phone to
a belt and was placed on the right leg. The volunteers was asked to perform the three
mentioned types of activities 15 times for the same fixed distance of around 29 meters for
one activity, that would give 29 * 15 = 435 meters of walking for one user per session. The
session includes random chosen activities (normal, fast or slow) equally distributed. The
volunteers in the experiment were students and employees from all places. In total, 45
subjects (15 females and 30 males) participated where most of them used shoes with flat
sole. The age range was from 9 to 59 years old.

10.3 Feature Extraction and Analysis

Since a full gait signal consist of different walking and non-walking activities, we must
apply a main analysis approach before we are able to extract features for activity and gait
recognition. This approach is for common usage and known as segmentation, that is to
find out where walking and non-walking activity are located.

10.3.1 Segmenation

A visual description of the segmentation approach is illustrated in Figure 10.1. The data
used are the resultant vector of all three (x,y,z) accelerations. The figure is just an excerpt of
the data that is used for each subject. For the analysis data we have the gait signal consist of
15 activities that needs to be segmented first. The experiment was set up in such a way that
the relevant tasks were separated from each other by periods of inactivity, i.e. standing still,
turning around and standing still again. In Figure 10.1 you can see this period of inactivity
clearly between two activities as a more or less ”flat line” with a small burst of activity in
the middle due to the turning around.

The first step of the data segmentation for this data set has been performed by looking at
activity over a short time interval. In particular for each datapoint we looked at the interval
starting 25 samples before that data point to 25 samples after that data point (i.e. an interval
of 51 samples representing 0.51 seconds of collected data). If the maximal difference in
acceleration values collected in that interval was above a threshold, then we concluded that
an activity was going on for that datapoint. This procedure was repeated for all datapoints
that had at least 25 datapoints before and after it.

In the second step we looked at the intervals where we detected activity and inactivity
and removed all intervals that were too short. For example if we find an interval of activity
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Figure 10.1: A full gait signal without segmentation (upper signal figure) and segmented
walks (lower signal figure)

of length 1100, followed by an interval of inactivity of length 10 and then followed by
an interval of activity of length 490, then we concluded that the interval of inactivity of
length 10 was misclassified and the three intervals were combine to an interval of length
1600 = 1100 + 10 + 490 of activity. In the same manner short intervals of activity between
longer intervals of inactivity were removed. By removing these short intervals in increasing
length we were able to also remove the short bursts of activity from the turning around in
the middle of the ”flat line” between the activities from the experiment.

10.3.2 Gait Cycle Extraction

The raw segmented data retrieved needs now to be processed in order to create robust
templates for each subject. From this raw data the repeating cycles are extracted for each
person. A brief description of the steps conducted for feature extraction is given in the
following:

Time Interpolation: Due to the android SDK, the phone only outputs data values when-
ever there is a change in the sensor. Therefore, the time intervals between two sample
points (acceleration values) are not always equal, which requires time interpolation. This
ensures that the time-interval between two sample-points will be fixed.

Filtering: Removal of noise is done by applying a weighted moving average (WMA)
filter.

Cycle length estimation: From the data it is known that the cycle length is between 80−120
samples. To compute the average cycle length a small subset from the center of the data is
extracted and compared with other subsets of similar length. Based on the distance scores
between these subsets, the average cycle length is computed.

Cycle Detection: The cycle detection starts from a minimum point Pstart = Pmin around
the center of the walk. From this point, cycles are detected in both directions. By adding
the average length to Pstart, the estimated ending point Pend = Pstart + averageLength
is retrieved (in opposite direction: Pend = Pstart − averageLength ). The cycle end is de-
fined to be the minimum in the interval of +/- 10% (of the average cycle length) from the
estimated end point, see figure 10.2. This process will be repeated from the new end point
until all cycles are detected. Finally after going through previous phases and finding the
minimum points we are ready to start with the actual detection and able to find the begin-
ning and end of each cycle. This is done by first searching cycles forward from the starting
location point detected in the previous phase, and when forward searching is complete we
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Figure 10.2: Cycle Detection

repeat this process by searching backwards. The cycles extracted are would then be stored
as shown in Figure 10.3.

Figure 10.3: The cycles extracted from normal walk

10.3.3 Activity Recognition Analysis

Activity recognition consist of two phases. First phase is the extraction of features from gait
cycles extracted for each walk that was segmented. In the second phase we apply different
classification approaches to evaluate the accuracy from the extracted features. Both phases
are described in more details below.

10.3.3.1 Features

We need to select and calculate individual features for each activity performed. Feature
extraction for activity recognition is very important step. They need to be carefully chosen
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Figure 10.4: Classification of the Activities

due to strong influence in the result of final classification. For each of the 15 walks per
user we have selected four features to extract for each cycles: Standard Deviation, Mini-
mum valuse, Maximum Value, and Cyclelenght. The reason why we chose these feature is
because each of them output different values for different activities.

10.3.3.2 Classification

The classification task as can be seen in Figure 10.4 consists in itself that preprocessing
before inputting the data for segmentation, is needed. After the segmentation process we
apply feature extraction approaches. Feature extraction is the process of extracting the most
relevant information form the data segments. The features extracted then passes through
the classification stage. This stage includes the classification process of the data and cre-
ation of classifiers which are used to identify different human activities. For the classifica-
tions there are different approaches to apply. The evaluation has been calculated by using
the open source software called WeKa. Weka is a collection of machine learning algorithms,
and it contains tools for data pre-processing, classification, regression, clustering, associa-
tion rules etc.

10.4 Results

Before introducing the results separately for both activity and gait recognition, we will
first propose a novel system to be developed in order to understand why gait recognition
system is strongly depended on activity identification for security reasons. Figure 10.5
illustrates a scenario on how the system should be used. Following the black arrow, we
first perform the so-called template creation for different kind of activities. This is done
in way that the subject is training the system, and thus, the different template creation for
different activites, i.e., fast, normal, and slow walk templates are stored into a database
in a mobile devices. Next time the subject is going to walk with his mobile phone and
is going to get authenticated (red arrow), the mobile devices initially extracts information
about which activity has been performed. If the walk extracted was a normal walk, then we
compare the normal walk probe template against the normal walk reference template in the
database. In this case, we discard to compare the probe reference template with other than
different types of walking templates. Thus, we ensure that the probability of false matches
are lower than comparing the probe template against all templates in the database.1

10.4.1 Activity Recognition

With the extracted features from fifteen session where each session consist of one of the
three different walking activities (normal, fast and slow) performed by 45 subjects we did

1When a user performs any activity the system first checks if it is cyclic, i.e. if cycles can be detected. If not,
then the data is ignored. If a cyclic activity is detected, then the system will try to match it against one of the three
known activities, meaning that any untrained (cyclic) activity will be matched incorrectly to one of the trained
activities.
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Figure 10.5: Authentication Process System. Black arrow indicates the process towards
template protection. Red arrow indicates activity classification and green arrow the com-
parison

two different evaluations; personal based and global based. We applied supervised learn-
ing approaches consisted of both training and testing data and several known algorithms.
Therefore, we have split the data into training and testing set by using cross validation.
Cross-validation with k-fold uses k-1 folds for training and the remaining one for training,
and splits the data by choosing randomly, where k = 10.

Personal Cross Validation: The first performance evaluation we did was cross valida-
tion for individual-based activity recognition. This means that we look separately at each
users’s activity performance. Table 10.1 shows the results of classification for different clas-
sifiers used. From the results we see the great performance of distinguishing one activity
from another. The best retrieved result was given by LMT (Logistic Model Trees) with an
accuracy of 96.08%, also an accuracy of 94.88% was achieved by BayesNet. Accuracy rate of
96.08% and 94.88% indicate how useful are these two algorithms for correctly identifying
different activities performed by a subject.

Table 10.1: Crossvalidation

Classifier Personal Global
BayesNet 94.88% 73.62%

NaiveBayes 89.31% 71.57%
LibSVM 92.59% 79.58%

MultilayerPercepton 92.77% 73.13
RBFNetwork 91.98% 72.87
RandomTree 93.87% 75.16

LMT 96.08% 79.62

Global Cross Validation: Second test was global cross validation. In this test we merged
all data together from all sessions of all 45 subjects into one file. In contrast to the personal
cross validation, these results shows how similar or different each subjects fast,slow, and
normal walk is from each other for all users. From a performance point of view, we would
like to strive after higher accuracies. The results shows that the LMT and LibSVM per-
forms better with an average recognition rate of 79.62% and 79.58%, for four features. This
clearly shows that the recognition accuracy is lower compared to cross validation used for
individual-based activities classification. This is due to the fact that some peoples normal
walk might look like other peoples slow or fast walk, vice versa. These results are satis-
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factory since peoples walking types and speed are very dissimilar so that we would have
overlaps.

10.5 Conclusion

This paper looks at interesting aspects of the biometric feature gait and its application to be
developed by using activity recognition. A novel, simple and rich authentication system
has been analyzed and proposed. The proposed system in using activity recognition for
gait recognition is applied to data from 45 volunteers. Activity recognition is a new area of
study and in the last decade is becoming an interesting research field duo to its application
in many areas. In our experiment we included stable walking activities like normal, fast
and slow. Future work would be to include more circumstances like, walking upstairs and
downstairs, walking up- or downhill. Another interesting research topic would be looking
at different environments and performing an experiment under normal circumstances and
not only controlled laboratory settings where subject are told how to walk. And finally also
look at the approaches for segmentation and classification.
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Chapter 11

Gait and Activity Recognition using
Commercial Phones

Abstract

In this paper we develop an application framework for gait and activity recogni-
tion in a commercial mobile phone. The activity recognition feature allows individuals
to enroll various activities, such as running, walking, or standing, into the phone, and
the system can then identify when those activities are performed. The gait recognition
feature learns particular characteristics of how participants walk, allowing the phone
to identify its user. The gait recognition is further dependent on the activity recogni-
tion, since the mobile phone should identify activities before verifying the user with gait
recognition.

11.1 Introduction

The combination between gait and activity recognition as a biometric is a relatively new
area of study, within the realms of mobile phones. It has been receiving growing interest
within the mobile phone community and a number of gait approaches have been devel-
oped. Initial studies into gait suggested that gait was a ”unique” personal characteristic,
with cadence and was cyclic in nature in 1967 [14]. Later, Johansson [10] attached moving
lights onto human subjects on all the major body parts and showed these moving patterns
to human observers. The observers could recognize the biological patterns of gait from the
moving light displays (MLDs), even when some of the markers were detached, once again
indicating gait as a potential candidate as a prominent biometric.

Research on accelerometer-based gait recognition started in 2005 by Ailisto et al. [1]
and was further investigated by Gafurov [7]. In the initial stages, dedicated accelerometers
were used and worn to different body parts like the feet, hip, arm or ankle. Only recently
researchers started to use smart phones as ”sensors” [5], [6], [11]. Research can be divided
in two main groups. Either so-called gait cycles are extracted from the sensor data or the
data are divided into segments from which features are extracted. Gait cycles correspond
to two steps and can be compared using distances like Dynamic Time Warping (DTW)
[17] or Cyclic Rotation Metric (CRM) [4]. For comparison of feature vectors the prominent
approach is to use machine learning algorithms that are well established in other pattern
recognition domains such as speaker recognition. These promising approaches include
neural networks [11], Hidden Markov Models [16] and Support Vector Machines [15].

Gait recognition can be seen as advantageous over other forms of biometric identifi-
cation techniques for the the following two reasons 1) Unobtrusive meaning that the gait
of a person walking, can be extracted without the user knowing they are being analyzed
and without any cooperation from the user in the information gathering stage unlike fin-
gerprinting or retina scans 2) Difficult to mimic meaning that the gait of an individual is
difficult to mimic, by trying to do so the mimicker will appear more unnatural and in the
same time not able to exactly the same walk. With other biometrics techniques such as
fingerprint recognition, the individuals fingerprint can easily be faked.

However, an individuals gait can even be affected by certain challenges such as 1) Stim-
ulants meaning that drugs and alcohol may affect the way in which a person gaits 2) Physical
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which changes a person during pregnancy, after an accident/disease affecting the leg, or
after severe weight gain/loss may affect the movement characteristic of an individual 3)
Psychological where a persons mood may affect an individuals gait characteristics. 4) Cloth-
ing where a person wearing different clothing may cause an automatic signature extraction
method to create a widely varying signature for an individual

In this paper we use the term gait recognition to signify the identification of an individ-
ual from a sensor based approach of the subject walking. This does not mean that gait is
limited to walking, it can also be applied to running or any means of activities on foot, or
in other words called for activity recognition.

Activity recognition has become a very important area of research due to its application
in many different areas such as health care, fitness, industrial application, security, enter-
tainment, etc. [12, 13, 8, 2, 3]. The goal of activity recognition is to recognize and track
human activities, which is also an important goal of ubiquities computing [8]. The idea of
ubiquitous computing is to integrate smart phones into our environment, everyday objects
and activities etc, to become assistance in our everyday lives and work [9].

The combination of gait and activity recognition will be used as an authentication ser-
vice to secure smart phones from unauthorized access. Still now-a-days, smart phone users
users only perform authentication at login time with either a password or pattern. Perform-
ing the last mentioned measure gives a stronger guarantee that the claimed user logging in
is not a impostor but an authorized user. An issue raises that, not many systems of security
requires any further measure once the user is granted access thus assuming that the user is
legitimated into the system.

This paper is divided into five further sections. Section 11.2 gives an brief explanation
on the implementation that has been performed onto the Samsung Nexus S smart phone
to be used for gait recognition and activity. Section 11.3 describes the experiment and
the technology used for data collection. Section 11.4 presents the feature extraction and
analysis. Experimental results are presented in Section 11.5. Finally, Section 11.6 gives
conclusion and future work.

11.2 Implementation

We have implemented a framework for activity and gait recognition for the Samsung Nexus
S, which also runs on smart phones from a variety of brands (support Android OS). The
application builds models and performs classification for accelerometer data collected on
mobile phones. Due to the optimized algorithms applied for activity recognition and gait
recognition, our application is able perform recognition and classification in real-time on
the phone with-out reducing large amount of battery. Furthermore, the application pro-
vides an graphical user interface sending the real-live information of the comparison and
classification to the user as seen in Figure 11.1, 11.2 and 11.3. In the enrollment mode, the
user can choose how many walks needs to be performed. The more walks one chooses the
more stable the reference template will be for a given user. In the authentication mode, one
has only the ability to choose the length of time that is needed for authentication. Typically
10 second is enough for data retrieval. Furthermore, the smart phone does not need to be
attached in a special way to the body of the individual, and can be placed wherever the
subject wants.

It further allows also other biometric characteristics to be implemented and used for
authentication, such as face, fingerprint, voice,knuckle and gesture recognition. The main
purpose of this paper only focuses on gait and activity recognition.

11.3 Experiment

So as to obtain acceleration data we used the Samsung Nexus S smart phone as mentioned
earlier. It consists of a high quality accelerometer which can measure the body motion
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Figure 11.1: Left: The main menu of the application, Right: Enrollment and Authentication
choice.

Figure 11.2: Left: Enrollment process, Right: Authentication process

in three directions (x,y,z). The acceleration range of the accelerometer is between -2g and
+2g. The sampling occurs at non equidistant intervals with a frequency sampling about
150 samples per second in all three directions. The x direction indicates the vertical acceler-
ation which does also contain the gravity. The y-acceleration corresponds to the forward-
backward movement and the z-acceleration indicates the lateral acceleration.

For gait and activity recognition, we will train the phone with a number of activities that
can be safely performed indoors without extra equipment. Subjects will be asked to walk
with the phone for approximately 10 seconds, while the phone creates a reference template
to their gait. Volunteers will then be asked to perform those activities, one at a time, while
carrying the phone in their pocket. The comparison and classification will be performed on
the phone. The participants will have the opportunity to observe which activity they have
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Figure 11.3: Output of the application (with comparison scores) after an authentication
has been performed. The application identifies the activity by marking the text with gray
colors.

been performed while carrying the phone
In the experiment we requested volunteers to execute different activities, namely nor-

mal, fast and slow walking. In total, 30 subjects participated where most of them used
shoes with flat sole. All volunteers were asked to perform the three mentioned types of
activities 15 times for the same fixed distance of around 29 meters for one activity. That
would give 29 * 15 = 435 meters of walking for one user per session. One session includes
random chosen activities (normal, fast or slow) equally distributed. The volunteers in the
experiment were students and employees from all places. In addition 5 random volunteers
were asked to walk one extra time per activity per session. This will cause in (5 * 16) + (25
* 15) = 455 walks in total.

11.4 Feature Extraction and Analysis

11.4.1 Extraction of Cycles from each type of walk

Each type of walk, whether is it slow, normal or fast needs now to be processed in order
to create reference and probe templates for each subject. From these types of walks the
repeating cycles are extracted for each person. The extraction of cycles a first step towards
performance of gait and activity recognition analysis. A brief description of the steps con-
ducted for feature extraction is given in the following:

Linear Time Interpolation: Due to the android SDK, the Nexus S only outputs data values
whenever there is a change in the sensor. Therefore, the time intervals between two sample
points (acceleration values) are not always equal, which requires time interpolation. This
ensures that the time-interval between two sample-points will be fixed.

Filtering: Removal of noise is done by applying a weighted moving average (WMA)
filter. This ensures to smoothen the signal and removes high peaks.

Cycle length estimation: From the data it is known that the cycle length is between 130−
150 samples. To compute the average cycle length a small subset from the center of the
data is extracted and compared with other subsets of similar length. Based on the distance
scores between these subsets, the average cycle length is computed.
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Cycle Detection: The cycle detection starts from a minimum point Pstart = Pmin around
the center of the walk. From this point, cycles are detected in both directions. By adding
the average length to Pstart, the estimated ending point Pend = Pstart + averageLength
is retrieved (in opposite direction: Pend = Pstart − averageLength ). The cycle end is de-
fined to be the minimum in the interval of +/- 10% (of the average cycle length) from the
estimated end point, see figure 11.4. This process will be repeated from the new end point
until all cycles are detected. Finally after going through previous phases and finding the

Figure 11.4: Cycle Detection

minimum points we are ready to start with the actual detection and able to find the begin-
ning and end of each cycle. This is done by first searching cycles forward from the starting
location point detected in the previous phase, and when forward searching is complete we
repeat this process by searching backwards. The cycles extracted are would then be stored
as shown in Figure 11.5.

Figure 11.5: The cycles extracted from normal walk
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Figure 11.6: Classification of the Activities

11.4.2 Activity Recognition Analysis

Activity recognition consist of two part. First part explains how the extraction of features
from the gait cycles for each walk was performed. Second part uses different classification
techniques to evaluate the accuracy from the extracted features:

11.4.2.1 Features

Selection and calculation of individual features is needed for each activity performed. Fea-
ture extraction is an essential step for activity recognition. They need to be carefully chosen
since they have a great influence in the result of final classification. For each of the 15 (16)
walks per user we have selected four features to extract for each cycles: Standard Devia-
tion, Minimum Value, Maximum Value, and Cyclelength. The reason why we chose these
feature is because each of them output different values for different activities.

11.4.2.2 Classification

An overview of the classification is illustrated in Figure 11.6. The first step is the prepro-
cessing, where the signal is processed by filters to remove noise, or eventually segmentation
if the signal consist of more than one type of walk. The next step is the feature extraction.
This is the process of extracting the most relevant information form the data segments. The
features extracted passes through the classification phase. This phase classifies the data
into labeled classifiers which are used to identify different human activities. One can ap-
ply different approaches for the classification, such as the support vector machine, Bayes
network, neural network, etc.

The accuracy evaluation has been executed by the use of the open source software
WEKA. WEKA is a collection of machine learning algorithms, and it contains tools for
data pre-processing, classification, regression, clustering, association rules etc.

11.4.3 Gait Recognition Analysis

Gait recognition performance evaluation consist of also two phases. First phase consist of
the gait cycle extraction from each type of walk. Second part shows how to compare fea-
tures vectors against each other. This part does not apply machine learning approaches, but
instead uses several distance metrics/functions. Both parts are described in more details
below.

11.4.3.1 Feature Extraction

Each user performed 15 walks of different types. From each of the 15 walks the cycles
are extracted as described in Section 11.4.1. For each walk a feature vector is created and
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consists of all extracted cycles stored in a template (either as reference or probe), denoted
CS = {CS1 , ..., CSN}. This is further illustrated in Figure 11.5.

11.4.3.2 Feature Comparison

Since each feature vector template has similar length we applied several distance metric-
s/functions such as the Manhattan and Euclidean. Furthermore, we applied a time series
analysis named the Dynamic Time Warping (DTW) which is an algorithm for measuring
similarity between two sequences which may vary in time or speed.

In addition we have also applied a modified distance metric, named the Cross-DTW
metric (CDM). This metric cross-compares two sets of cycles to find the best matching pair
for vectors or unequal length. The algorithm is explained in more details in the following:

Cross Comparison: is used to find the most optimal and best distance score when cross-
comparing two set of cycles, denoted CS = {CS1 , ..., CSN} and CT = {CT1 , ..., CTM}. This
means that each cycle in set CS is compared to every cycle in set CT . The comparison
distances are calculated by the Cross-DTW metric (CDM). From the total number of N ×
M similarity distance scores gained, the minimum distance score is selected,

dmin = min{CDM(CSi , C
T
j )}

where i=1..N and j=1..M. The pair of cycles with the most minimum similarity score is
considered the best matching pair. Thus, this best (i.e. minimum) similarity score, dmin, is
used as the similarity score between set CS and CT .

The output of the CDM is called the comparison score S, where a low value of S indicates
high similarity, while a high value indicates low similarity.

11.5 Results

This section is split into a section that describes the accuracy of activity recognition and the
performance of gait recognition.1

11.5.1 Activity Recognition

With extracted features from 5 session where each session consist of one of the three differ-
ent walking activities (normal, fast and slow) performed by 30 subjects we did two different
evaluations; personal based and global based. We applied supervised learning approaches
consisted of both training and testing data and several known algorithms. Therefore, we
have split the data into training and testing set by using cross validation. Cross-validation
with k-fold uses k-1 folds for training and the remaining one for training, and splits the
data by choosing randomly.

Personal Cross Validation: The first performance evaluation we did was cross valida-
tion for individual-based activity recognition. This means that we look separately at each
users’s activity performance. Table 11.1 shows the results of classification for different clas-
sifiers used. From the results we see the great performance of distinguishing one activity
from another. The best retrieved result was given by Support Vector Machine (SVM) with
an accuracy of 99.59%, also an accuracy of 98.98% was achieved by RBFNetwork. These
accuracy rate clearly indicates how applicable the two approaches for correctly identifying
different activities performed by a subject are.

Global Cross Validation: Second test was global cross validation. In this combination we
merged all data together from all 30 subjects into one file. The results are shown on Table

1When a user performs any activity the system first checks if it is cyclic, i.e. if cycles can be detected. If not,
then the data is ignored. If a cyclic activity is detected, then the system will try to match it against one of the three
known activities, meaning that any untrained (cyclic) activity will be matched incorrectly to one of the trained
activities.
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Table 11.1: Crossvalidation

Classifier Personal Global
BayesNet 97.9% 81.9%
LibSVM 99.6% 87.6%

LMT 98.1% 86.7%
MultilayerPercepton 96.77% 83.3%

NaiveBayes 97.3% 80.5%
RBFNetwork 98.9% 81.1%
RandomTree 97.9% 80.9%

11.1, third column. These results indicate how different normal, fast and slow walk are
from each for all users. The LibSVM and LMT (Logistic Model Trees) performed better with
an average recognition rate of 87.61% and 86.74%. Compared to personal cross validation,
this clearly shows that recognition accuracies are lower.

11.5.2 Gait Recognition

Performance evaluation was performed on several settings. We calculated the equal error
rates (EER) by comparing all three walking types with each other: normal against normal,
slow against slow, and fast against fast. In addition we have also calculated the overall per-
formance, i.e. to include both normal, fast and slow. The comparison approach is described
in subsection 11.4.3.2 and the results retrieved are shown in this section.

One of the first performance evaluation analysis performed was to investigate the sim-
ilarities of fast, normal and slow. In this test we assumed that the fast, normal and slow
for the same user should be marked as a genuine trial. This means that whenever a fast
reference template compares itself against either a slow or normal probe template from the
same user, then we consider this as a genuine attempt. Table 11.2 shows an overview of
these equal error rates.

Table 11.2: EER when comparison of normal,fast and slow for the same user is considered
as a genuine attempt.

Comparison Approach EER
Euclidean 41%
Manhattan 40%

DTW 38%
Proposed CDM 36%

These equal error rates are high and not practical for gait recognition. In this test we
can verify that three types of walking are different and further can not assume that a slow
template compared against either a normal or fast, vice versa, should be considers as a
genuine attempt. This is to be compared with fingerprint recognition. Different types of
walking are the same as different fingers. The index finger is not alike a thumb finger,
even since they are both from the same user. That concludes the fact that the three types of
walking should be considered as impostor attempt when they are compared against each
other from the same user.

The second evaluation test is performed as the first mentioned. However the difference
here is that we do not consider comparison of the three types of walking (slow,fast,normal)
from the same user marked as a genuine attempt. Table 11.3 overviews the EER.

Comparing Table 11.2 with 11.3, we observe a great improvement where the EER went
down from 36% to 7.59% using the proposed CDM. This is a very significant reduction,
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Table 11.3: EER when comparison of normal,fast and slow for the same user is considered
as an impostor attempt.

Comparison Approach EER
Euclidean 16.0%
Manhattan 15.5%

DTW 10.3%
Proposed CDM 7.5%

where we further can conclude that dissimilar types of walk should be considered as non-
genuine-attempts when comparison is performed with the same user.

Table 11.4: Performance Evaluation (EER) of Gait Recognition when looking at the com-
parison of normal,fast and slow separately.

Comparison Approach Fast Normal Slow
Euclidean 13.7 % 18.3% 22.4%
Manhattan 12.5 % 17.9% 21.7%

DTW 7.6 % 10.3% 15.4%
Proposed CDM 5.7 % 12.6% 13.2%

What we observe from these three results are that by walking fast we retrieve better
performance with a difference of almost to 8% to the worst. At least one valid factor plays
a role. When walking fast we retrieve more information compared to slow walking. The
user is in a rush and thus applies more movements in all of the three directions (x,y,z) to the
body. When the subject is slow walking, he/she would have almost no acceleration in the
the three directions. In a mathematically sense, we see the the standard deviation is larger
from the mean when looking at the fast walking compared to slow walking. This is why
the normal walking is in between.

11.6 Conclusions and future work

In this paper we described how a Samsung Nexus S smart phone can be used to perform
activity recognition and gait recognition, simply by attaching it in into a pocket. An real ap-
plication has been developed where it is possible to enroll user with their walking and with
different activities. We have demonstrated that acceleration data collected while walking,
either fast, normal or slow, have the potential to function as biometric signatures in real-life.
Furthermore, we show that users can often be recognized quickly, using only 10 seconds
worth of data. In addition we showed that by using the algorithms proposed for authenti-
cation, we can offer practical performance with an EER of 5.7 if the user is walking normal.
Biometric gait recognition in smart phones has become and realistic and practical way of
protecting the smart phone from unauthorized access.
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Appendix A

Gait Recognition for Children over a Longer
Period

Abstract

In this paper a comparative investigation into the effects of time on gait recognition
in children’s walking has been carried out. Gait recognition has attracted considerable
interest recently; however very little work has been reported in the literature which is
related to gait recognition in children. It has been suggested ([13])that the gait of chil-
dren does not stabilize before they are 11 years old. In this papers we will provide
arguments that support this suggestion. When looking at the performance of gait recog-
nition, which serves as an indicator for the stability of gait, we found a relationship be-
tween performance improvement and aging of children. The gait of a group of children
was measured twice with a 6 months period between the two measurements. Our anal-
ysis showed that the similarity between these two measurements is significantly lower
than the similarity within each of the measurements. Finally we also report the effect of
gender on performance of gait recognition.

A.1 Introduction

Even though gait analysis has a long history dating back to the time of Aristotle, who
studied animal locomotion using artistic works, it was much later that work on the biome-
chanics of human walking was carried out at the end of the 19th century [1, 17]. In recent
years gait analysis has progressed rapidly with the development of more sophisticated elec-
tronics, advanced computer technology and more accurate sensors [9]. A major interest in
gait analysis involves its applications to bioengineering, physiotherapy, rehabilitation, the
management of medical problems affecting the locomotor system and sports performance
[20, 18, 12, 21]. More recently, it has also attracted considerable attention of researchers in
identification and recognition for security and safety purposes [14, 6]. Gait has a number
of advantages over other forms of biometric features. For example, it is unique as each
person has a distinctive walk, it is unobtrusive as gait avoids physical contact whilst col-
lecting data unlike most other methods which involve physical touching; data can also be
collected at a distance without the need for close proximity [7, 4].

For improved security, gait analysis is being used for biometric authentication and iden-
tification [11]. Currently, there are three types of systems being employed, which are ma-
chine vision based (MV), floor sensor based (FS) and wearable sensors (WS). Each type has
its own unique advantages and disadvantages depending on the specific application being
considered. The MV systems can be used remotely without any user interaction; however
it is expensive and involves the use of background subtraction. FS based is very accurate
but it is expensive to install and maintain. WS are simple, small and inexpensive devices
and are not location dependent [10]. These can be readily incorporated into mobile devices
such as the popular i-Phone.

For adults of both genders, considerable research has been done on gait recognition and
medical applications [8, 22, 6, 5]. However, with children very little work has been reported
in the literature [16, 15]. In previous studies we have reported an analysis of gait perfor-
mance in children compared to adults [3] and gait analysis under special circumstances [2]
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A. GAIT RECOGNITION FOR CHILDREN OVER A LONGER PERIOD

such as variations in walking speed and carrying objects. In this paper we present a study
on the effects of time on gait patterns in children and its relationships to gender and age.
The accelerometer sensor was placed on the left side of hip. A comparative analysis of gait
patterns in children and adults both male and female for the purposes of recognition and
identification is presented.

A.2 Experiment Design

In this study a programmable sensor (Model GP1, see Figure A.1) purchased from Sensr
(USA, http://www.sensr.com) was programmed and used to record the motion of the
children in several walking cycles. The GP1 measures the acceleration in three perpendicu-
lar directions which will be referred to as x, y and z. Figure A.2 is an example of the output
obtained from the GP1 sensor and shows the signals obtained in the x, y and z directions.
These signals provided the raw data for the subsequent analysis reported in later sections
of this paper. It is converted into a unique pattern for each individual for comparison. The
GP1 can collect acceleration data up to 10g and has a sampling rate of 100 Hz per axis.
Acceleration data is filtered inside the GP1 by a 2 pole Butterworth low pass filter with a
cut-off frequency of 45 Hz [19]. The device has a USB interface for transferring data and a
1 Mbyte memory for storage purposes. An overview of the specification of the Sensr GP 1
is given in Table A.1.

Figure A.1: SENSR GP1
Device Figure A.2: (x,y,z) Acceleration Output

Item Specification
Size 3.935” x 2.560” x 1.140”
Weight with batteries 8.25 oz
Connectivity USB
Accelerometer type Programmable 3 axis MEMS
Accelerometer range Programmable ±2.5g, ±3.3g, ±6.7g, ±10g
Sampling rate 100 Hz per axis
Memory type Non-volatile EEPROM
Memory size 1 MByte
Device Temperature Range −20oC to + 80oC

Table A.1: Partial Specification of the GP1 Sensor.
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A.2 EXPERIMENT DESIGN

In this study, 46 children (31 boys and 15 girls) with ages ranging between 5 to 16 years
participated. Ethical approval was obtained from the school principal, the university’s
ethical approval committee and parents of the children. For each child, the parents formally
approved participation in the study by signing a standard University approval consent
form prior to volunteering. The criteria set for the child to take part of this study were that
they should have no previous history of injury to the lower extremities within the past year,
and no known musculoskeletal or neurological disease.

The Sensor was attached to left side of the hip (see Figure A.3) because previous stud-
ies have shown that the hip is the most stable position compared to leg, arm and other
body positions. Volunteers were told to walk normally for a distance 17.5 meters in a car-
peted hall on a flat surface in bare feet (see Figure A.4). At the end of the hall section the
volunteers waited 5 seconds, turned round, waited 5 seconds and then walked back again.

Figure A.3: The Sensor Po-
sition Figure A.4: Walking Hall

This procedure was repeated twice and the data recorded was transferred to a PC for
storage and analysis. The detailed sequence is as follows.

1. Connect to PC and initialise

2. Attach to the belt on the left hand side of the hip

3. Press the start recording button

4. Wait for 5 seconds

5. Walk 17.5 meters from one end of hall section to the other

6. Stop and wait for 5 seconds

7. Turn around and wait for 5 seconds

8. Walk back 17.5 meters wait for 5 seconds and turn around

9. Repeat procedure

After walking twice the sensor was detached from the volunteer, connected to the com-
puter and the data inside the GP1 device was downloaded and stored and the filed was
named appropriately.

The main experiment was carried out over a time period of 6 months. First experiment
was performed in September 2010 and the second was performed in March 2011. There
were 20 volunteers who participated in the long term experiment out of an initial group of
46. In September 2010, each subject did 2 sessions, whilst 16 sessions were performed in
March 2011. This means that each subject participated in 18 sessions in total.
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A. GAIT RECOGNITION FOR CHILDREN OVER A LONGER PERIOD

A.3 Feature Extraction

The raw data retrieved from the Sensr sensor needs to be processed in order to create robust
templates for each subject. The feature extraction steps are based on the work of [8].

Preprocessing: First we apply linear time interpolation on the three axis data (x,y,z) re-
trieved from the sensor to obtain an observation every 1

100 second since the time intervals
between two observation points are not always equal. Another potential problem is that
the acceleration data from the sensor includes some noise. This noise is removed by using
a weighted moving average filter (WMA) . The formula for WMA with a sliding window of
size 5 is given in Equation A.1.

(at−2) + (2at−1) + (3at∗) + (2at+1) + (at+2)

9
, (A.1)

where at is the acceleration-value in position t. The current value we are located at are
given weight 3, the two closest neighbors weight 2 and the next two neighbors weight 1.

Finally we calculate the resultant vector or the so-called magnitude vector by applying
the following formula,

rt =
√
x2t + y2t + z2t , t = 1, ..., N

where rt, xt, yt and zt are the magnitudes of resulting, vertical, horizontal and lateral accel-
eration at time t, respectively and N is the number of recorded observations in the signal.

Cycle Detection: From the data it is known that one cycle-length varies between 80− 140
samples depending on the speed of the person. Therefore we need to get an estimation of
how long one cycle is for each subject. This is done by extracting a small subset of the data
and then comparing the subset with other subsets of similar lengths. Based on the distance
scores between the subsets, the average cycle length is computed, as can be seen in Figure
A.5.

Figure A.5: The yellow baseline area indicates the subset with 70 samples that are extracted,
the green area is the search area where the baseline is compared against a subset of the
search area. The 4 black subgraphs are the baseline at those points that has the lowest
distance with the search area subsets, and the difference between them (blue area) indicate
the cycle length [8].
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A.3 FEATURE EXTRACTION

The cycle detection starts from a minimum point, Pstart, around the center of the walk.
From this point, cycles are detected in both directions. By adding the average length, de-
noted γ to Pstart, the estimated ending point E = Pstart + γ is retrieved (in the opposite
direction: E = Pstart − γ ). The cycle end is defined to be the minimum in the interval
Neighbour Search from the estimated end point. This is illustrated in Figure A.6. This pro-

Figure A.6: Cycle detection showing how each cycle (i.e the steps) in the resultant vector is
automatically detected [8].

cess is repeated from the new end point, until all the cycles are detected. The end point in
the Neighbour Search is found by starting from point E. From this point we begin search-
ing 10% of the estimated cycle length, both before and after E for the lowest point. When
the minimum point is found we store it into an array and we begin searching for the next
minimum point by adding the length of one estimated cycle. When forward searching is
complete we repeat this phase by searching backwards so all steps in the data are identi-
fied. We will therefore end up with having an array containing start/end index for each
step. These points will therefore be used for the extraction of cycles, as illustrated in Figure
A.7.

Template Creation: Before we create the feature vector template, we ensure that cycles
that are very different from the others are skipped. This is done by taking each cycle
and calculating its distance compared to every other cycle by using dynamic time warping
(DTW),

dtwi,j = dtw(cyclei, cyclej)

where i = 1..N and j = 1..N, which means that we will get a symmetrical N × N matrix.
From this point, we calculate all the averages of one specific cycle to all others.

di =
1

N − 1

∑
j 6=i

dtwi,j

Thereafter we calculate the average of the calculated averages,

µ =
1

N

∑
i

di
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A. GAIT RECOGNITION FOR CHILDREN OVER A LONGER PERIOD

Figure A.7: The cycles have been extracted by taking starting and ending point for each
step. Both these points are minimum points from the resultant-vector data set.

which therefore will be the total average. Now we will have the opportunity to see how
much deviation exists from one cycle to another. Thus, the standard deviation, µ, is calcu-
lated and to use a realistic border we will accept cycles that are within 2σ of difference from
the total average

di = [µ− 2σ;µ+ 2σ]

The 2σ is used to process trial and error. If a lower limit was chosen, we might have
ended up skipping too many cycles, while a higher limit would lead to accepting too many
cycles.

When all odd cycles are removed, we create the feature vector. In previous work [10],
researchers used the average cycle as a feature vector. That was computed by combining
all the cycles (which were normalized) into one average median cycle. In this paper all of
the extracted cycles are stored as a template for one subject, denoted CS = {CS1 , ..., CSN}
where each cycle i = 1..N is normalized to a length of k observations; in our case k = 100.

A.4 Feature Vector Comparison

A distance metric, named the cyclic rotation metric (CRM) with small changes, is applied
[8]. This metric cross-compares two sets of cycles with a cyclic-rotation mechanism to find
the best matching pair:

Cross Comparison: is used to find the most optimal and best distance score when cross-
comparing two set of cycles, denoted CS = {CS1 , ..., CSN} and CT = {CT1 , ..., CTM}. This
simply means that each cycle in the set CS is compared to every cycle in the set CT . The
comparative distances are calculated by the cyclic rotation metric (CRM). From the total
number of N ×M distance scores calculated, the minimum score is selected,

dmin = min{CRM(CSi , C
T
j )}

where i=1..N and j=1..M. The pair of cycles with the most minimum similarity score is
considered the best matching pair. Thus, this best (i.e. minimum) similarity score, dmin, is
used as the similarity score between set CS and CT .

Cyclic Rotation Metric (CRM): is a metric that compares a reference cycle and an input
cycle with each other. The reference cycle, i.e. CSi , which is compared against the input
cycle, i.e. CTj , is stepwise cyclical rotated. After each rotation the new distance is calculated

172
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using the Manhattan distance. This is repeated until the input template has done a full
rotation, then the lowest distance value is kept:

d(CSi , C
T
j ) = minw=1..k{Manh(CSi , C

T
j(w))}

The reason why we use the Manhattan distance when rotating is due to the fact that
Manhattan runs fast. Furthermore the cyclic rotation is done to minimize the problem
when local extremes among the cycles we create for each input are located at different
locations.

A.5 Analysis and Results

In this section we will present the analysis performed and results. Three different tests have
been performed and these are as follows:

1. The first test analyzes the performance of gait and how it varies with the age of the
children.

2. The second test analyzes the performance of gait and studies its variations over time,
with a 6 months interval measurements.

3. The third test analyzes and compares the performance of gait between boys and girls.

As mentioned in a previous study by [13], it was suggested that the gait of children does
not stabilize before they are 11 years old. In order to test this hypothesis, we have split the
set of the 46 children into three groups. The first group consisted of 17 children that are at
most 10 years old. The second group consisted of the 11 children in our experiment that
are only 10 years old, whilst the third group consisted of 18 children that were between 11 -
16 years old. The split was done in this way because the size of the three groups is more or
less equal. We do realize that the number of children in each of the three data sets is rather
small, which influences the statistical significance of the results negatively. Nevertheless
we want to present the results of our analysis on all three groups as an indication of the
performance.

The data used for the analysis is the collected gait data from March 2011, i.e. all of the
participants contributed 16 data samples for the analysis. The resulting EER values are
given in Table A.2 for each of the three age groups. We also included the analysis results
for the case where the group of 46 children was not split. The resulting EER can be found
in the columns ”All against All”.

5-9 years 10 years 11-16 years All against All
Manh.+Rotation 16.12 13.74 13.21 14.23

Table A.2: EER Performance results in % on the collected dataset due to age.

From the results in Table A.2 we see that with increasing age the EER value decreases,
indicating an increase in the stability of the walking of children with increaing age. This
seems to confirm the suggestion from [13]. In order to test this suggestion further we tested
how the walking of children would change over time. As mentioned in Section A.2 do
we have gait data samples from 20 children who participated in the experiment in both
September 2010 and in March 2011. In September 2010 each of the 20 children provided
only 2 gait data samples, but in March 2011 each of them provided 16 data samples. Of
these 20 children, 18 were below 11 years old, one was exactly 11 years old and one who
was 14 years old.

We have determined the EER for each of these periods separately and we see in Table
A.3 that the resulting EER values are rather similar: 18.88% for September 2010 and 18.94%
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for March 2011. In order to see if the gait has developed over time we also added a test
where the template was created with the September 2010 data, while the test data came
from the March 2011 data. From Table A.3 we see that the EER value increases significantly
from approximately 18.9% to 34.02%. This indicates a major change in the way of walking
of these children, confirming the suggestion from [13] once again.

September 2010 March 2011 6 Months
Manh.+Rotation 18.88 18.94 34.02

Table A.3: EER Performance results in % on the collected dataset due to time.

Although the number of participants in the tests is rather low, we can still clearly see
a change of performance over time. We see that one group of children measured twice,
with 6 months interval between measurements, has a large change in their way of walking,
while we on the other hand there is also an increased stability in walking with growing
age. Both these facts support the suggestion that the walking of children stabilizes around
11 years as Kyriazis suggested in [13].

A final test was performed to see if there are differences in gait recognition between boys
and girls. The results can be found in Table A.4. We know from Section A.2 that the number
of boys was more than twice the number of girls in the experiment conducted in March
2011. In order to make the results comparable we have used the gait data from all 15 girls
and randomly selected 15 boys. The distance metric used was again the Manhattan with
Rotation metric. The slightly lower EER for girls (13.44% compared to 14.86%) indicates a
that the gait of female subjects is slightly more stable than the gait of male subjects.

The result in Table A.4 for the boys is based on a random selection of 15 out of the
available 31 boys. In order to make the result independent of the selected boys, this random
selection has been performed 100 times and the presented performance is the average over
these 100 results.

Males Females
Manh.+Rotation 14.86 13.44

Table A.4: EER Performance results in % on the collected dataset over time due to gender.

A.6 Conclusions

As far as we know there are no published results on the stability of gait for young children,
except from the suggestion in [13]. In this paper we have given evidence indicating the
correctness of that suggestion. It has been shown that as the children get older their gait
becomes more stable and that there is a large difference between the gait of a group of 20
young children measured six months apart; this indicates that the gait of children is still
developing at these young ages.

In addition, a comparison was carried out between the stability of gait from girls and
boys and it was found that the female gait was slightly more stable as indicated by a lower
EER.

Whilst the results presented in this study are interesting and in line with previous sug-
gestions, a more comprehensive study with a higher number of participants is required to
confirm the results described in this paper. In addition, research on the stability of gait
from adults over a longer period of time is needed to compare against the results presented
in this paper.
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Appendix B

Performance of Gait Recognition in Children’s
Walking Compared to Adults

Abstract

In this paper the first known results on gait recognition in children’s walking are
presented. All research on gait recognition has so far focused on adult walking, mostly
under normal conditions, but sometimes under special circumstances. So far some pa-
pers have only mentioned that children’s walking was most likely different from adult
walking, but no scientific data was available to prove or disprove this statement.

In this paper we will show that the performance degradation for children’s walking
compared to adult walking is approximately 100%. In comparable settings we reached a
6.21% Equal Error Rate (EER) for adult gait recognition, while for children’s walking we
only reached an EER of 12.69%.

B.1 Introduction

Gait analysis has attracted considerable attention in recent years and can be defined as the
systematic study of human walking [13, 6, 20, 14]. However, the subject of gait analysis
is not a new field and has been around since the 17th century. For example, Aristotle pio-
neered gait analysis and a number of his artistic works are available on the gait analysis of
animals [3]. The Italian scientist, Borelli also in the 17th Century had a significant interest
in biomechanics, in particular animal locomotion and was the first to suggest contractile
movement of muscles, thus contributing to modern principles of scientific investigation
[4]. In 1890 the German autonomist, Braune [1] did some pioneering work on biomechan-
ics using lithographic cross sections of the human body and published in a book a chap-
ter on ”biomechanical of human gait under loaded and unloaded conditions”. Braune’s
methodology is still being used today for gait analysis.

Interest in gait analysis may be divided into two categories; biomedical applications and
biometric gait identification. Gait analysis in the medical field is one of the most interesting
and useful applications. For example, gait analysis is useful in the medical management
of diseases that affect the locomotors system. It has been used for carrying out detailed
diagnoses and subsequent optimal treatment for illnesses such as Parkinson’s disease [28]
which is associated with a reduction in the co-ordination between locomotion and the res-
piratory system.

Gait analysis is being investigated for the purposes of improved security for biometric
authentication and to identify users [17]. This can be divided into three main categories:
Machine Vision based (MV), Floor Sensor based (FS) and Wearable Sensor based (WS) anal-
yses [27, 21, 23, 18, 9, 11].

Gait analysis had been widely studied in males and females, elderly people and adults.
There are significant differences in the structural characteristics of males and females in the
human species. Yu et al [29] showed that humans of different genders can be recognized
from gait information; they carried out numerical analysis of gait information and various
contributions of body components such as head and hair, back, chest and legs. They also
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B. PERFORMANCE OF GAIT RECOGNITION IN CHILDREN’S WALKING COMPARED TO
ADULTS

Figure B.1: GP 1 Sensor from Sensr, http://www.sensr.com.

looked at gender differences in Asians and Europeans in a controlled environment. How-
ever, the analysis is not readily translatable to real situations where gait data is affected by
various factors such shoes, clothing and carrying objects.

In the past few decades the human population of elderly citizens has increased signifi-
cantly placing increased demands on families and carers. Therefore to reduce costs, the use
of sensors and monitors will enable information regarding the activities and movements of
elderly subjects to be monitored remotely so that interventions can be carried out in case of
emergencies such as a fall. Real time gait information can be gathered and assessed by fam-
ily and carers, and modern technologies such as mobile devices make them non-intrusive
and highly valuable. Purwar et al have investigated activity monitoring using real time
tri-axial accelerometer for fall detection from gait analysis data [25].

Numerous biometric and biomedical studies in gait analysis in adults have been carried
out [15, 7, 5, 12, 8]. However, very few studies have been carried out in children. Sutherland
et al [26] investigated gait development in children looking at the development of mature
walking. Oeffinger et al [22] did a comparison of gait analysis in children with and without
wearing shoes. They found that significant differences existed in kinematic, kinetic and
temporal spatial data in gait patterns. Another study [24] investigated the influence of
carrying book bags on gait cycle in children and found that the gait cycle was modified
when children carried bags.

This paper describes, to our best knowledge, the first investigation into gait recognition
in children using a body worn sensor. An accelerometer sensor has been placed on the left
side of the hip and is used for collecting information for gait recognition. Using the gait
data of acceleration of the signal from the walking children, a cycle has been detected and
analyzed for recognition purposes. From [16] we know that the gait pattern of children
changes until the age of 11, when it becomes more or less stable. Moreover, from the age
of 10 only small changes occur in the walking pattern. So it will not only be relevant to
investigate the performance of gait recognition from children, but also see it in relation to
the performance for adults.

B.2 Experiment design and data analysis

In this study a programmable sensor (Model GP1, see Figure B.1) purchased from Sensr
(USA, http://www.sensr.com) was programmed and used to record the motion of the
children in several walking cycles [14]. The GP1 measures the acceleration in three perpen-
dicular directions which will be referred to as x, y and z. Figure B.2 shows an example of
the output of the sensor. The GP1 can collect acceleration data between ±2.5g to ±10g and
has a sampling rate of 100 Hz per axis. Acceleration data is filtered inside the GP1 by a 2
pole Butterworth low pass filter with a cut-off frequency of 45 Hz [2]. The device has a USB
interface for transferring data and a 1 Mbyte memory for storage purposes. An overview
of the specification of the Sensr GP 1 is given in Table B.1.
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Figure B.2: Output example of the GP1 sensor.

Item Specification
Size 3.935” x 2.560” x 1.140”
Weight with batteries 8.25 oz
Connectivity USB
Accelerometer type Programmable 3 axis MEMS
Accelerometer range Programmable ±2.5g, ±3.3g, ±6.7g, ±10g
Sampling rate 100 Hz per axis
Memory type Non-volatile EEPROM
Memory size 1 MByte

Table B.1: Partial Specification of the GP1 Sensor.

Age 5 6 7 8 9 10
Number of Children 1 1 2 4 7 11
Age 11 12 13 14 15 16
Number of Children 4 3 2 4 1 3

Table B.2: Age distribution of participants.

B.2.1 Experiment design

In this study, 43 children (29 male and 14 female) participated, with ages ranging from 5
to 16 years. The average male participant was 11.3 years old, while the female participants
were on average 9.0 years old. Detailed information on the number of participants of a
certain age is given in Table B.2. Approval was obtained from the school principal, the uni-
versity’s ethical approval committee and parents of the children. For each child the parents
formally approved participation in the study by signing a standard University approved
consent form prior to volunteering. The criteria set for the child to take part in this study
were that they should have no previous history of lower extremity injury occurring within
the past year, and no known musculoskeletal or neurological disease. Height and weight
measurements were also taken. These measurements are not used however in the analysis
presented in this paper.

The GP1 sensor was attached to a belt and positioned on the left hand side of the hip.
Volunteers were asked to walk normally for a distance of approximately 17.5 meters in a
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carpeted hall on a flat surface without shoes. At the end of the hall the volunteers waited
5 seconds, turned round, waited 5 seconds more and then walked back. They repeated
this procedure four times. The recorded data was then transferred to a PC for storage
and analysis and the participants repeated the same procedure again. In total, each of the
participants walked the full length of the hallway 2 · 4 · 2 = 16 times. In the remainder of
this paper we will refer to a walk as the data collected from walking the full length of the
hallway one time. In other words, the data of each participant represents 16 walks.

B.2.2 Data preprocessing and analysis

As is displayed in the title of this paper, the objective of the analysis is to determine the
performance of gait recognition in children’s walking compared to adults. In this section
we will analyze the walking data from the children that participated in the experiment to
determine their gait recognition performance. These results will later be compared to a
similar data set collected on adult walking.

As mentioned before, each participant walked in two different sessions and each session
was downloaded as a separate file to the PC. Each of these files contained the data of 8
walks, each again separated by standing still, turning and again standing still. In each file
the data representing a walk could be differentiated from standing still by looking at the
variation in the data over a 50 sample period (representing 0.5 second). Also the turning
could be removed from the relevant walking data, not by looking at the variation in the
data but at the duration of the activity: while turning took only a brief moment, a full walk
of the hall took at least 10 seconds (i.e. at least 1000 samples). The data from each collected
file was thus split into 8 separate files, where each file contained a single separated walk of
the hall.

Using the above method the originally 43·2 = 86 collected files were split into 86·8 = 688
files, where each file contained the data of exactly one walk. Each file was labeled in such a
way that participant, session number (1 or 2) and walk within session (1..8) was identifiable
from the filename. Each file contained 4 columns, representing respectively the time, the
x-acceleration, the y-acceleration and the z-acceleration. The values in the time column
were the original values from the collected files. From one row to the next the time value
increased by 0.01 because the sampling rate was 100 samples per second.

Each of the files containing the data of a single walk were processed next using the
Average Cycle Method (ACM). The ACM (see [5] for details) has been applied to the col-
lected data. In our analysis in step 1 of the ACM, the noise was reduced by using the
Weighted Moving Average (WMA) filter of length 5 and weights ( 1

9 ,
2
9 ,

3
9 ,

2
9 ,

1
9 ). The detec-

tion of cycles in step 2 of the ACM was done using the Salient method from [19]. Before
creating the average cycle, all detected cycles in each walk have been normalized to 100
samples. Three different methods were used to create an average cycle: (1) median, (2)
mean, and (3) Dynamic Time Warping (DTW). Suppose that N cycles were detected in a
walk: ci = (c1i , c

2
i , . . . , c

100
i ) for i = 1..N . When creating the median or mean average cycle,

then the average cycle c is defined as (c1, c2, . . . , c100), where ci = median(ci1, c
i
2, . . . c

i
N ) or

ci = mean(ci1, c
i
2, . . . c

i
N ) for i = 1..100. The DTW average is calculated in the following

way; the average DTW distance between each available cycle ci and the remaining avail-
able cycles cj , where j = 1..N and j 6= i, is calculated and the cycle with the least average
DTW distance to the remaining available cycles has been selected as the DTW average cy-
cle, so c = ci for some i ∈ {1, 2, . . . , N}. In the case of median and mean average cycle, the
resulting cycle is created from the available cycles, while in case of the DTW average, one
of the available cycles is selected as the average cycle.

The three average cycles that are created in these ways were stored separately as a refer-
ence template (results shown in the first 3 columns of Table B.3), in addition to a reference
template consisting of all 3 different averaged cycles (results shown in the fourth column
of Table B.3). Besides that, in our analysis we also followed the work of Gafurov et al.
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Mean Median DTW All 3 None
Euclidean 27.30 25.77 32.01 24.92 18.93
Manhattan 27.31 24.59 30.45 24.38 18.51
Manh.+Rotation 27.26 22.20 24.17 22.54 16.94
DTW+Rotation 21.95 12.69

Table B.3: EER Performance results in % on the collected dataset.

[10] where all detected cycles were used separately without creating an average cycle. The
results for this particular method of analysis are shown in the last column of Table B.3.

Various distance metrics have been applied to find genuine and impostor scores and
from that, the Decision Error Trade-off (DET) curve has been drawn and the EER has been
determined. Besides the ordinary Euclidean and Manhattan distance we also used Dy-
namic Time Warping (DTW) as a distance metric. Both Manhattan distance and DTW have
been applied in combination with the rotation method as described in [8]. Details can be
found in Section B.3.

B.3 Results

In this section we will present the results of the analysis. The results from performing the
analysis as described in section B.2.2 are presented in Table B.3. In this table the columns
represent various averaging methods where the last column (None) represents using the
separate cycles as described in [10]. The rows represent the various distance metrics that
we applied.

From this table a few things are clear; first of all, using the median to create the average
cycles seems to perform better than the other two averaging methods, and using all three
averages does not improve the results significantly. We do however see that the method
from Gafurov [10] gives the best results for each particular distance metric. Moreover, the
best performance result is then reached for combining this method with the DTW+Rotation
distance metric.

The results should not only be considered on their own; as mentioned previously, the
data is collected using young children as volunteers and walking characteristics might not
be as stable with children as it is with adults. We therefore need to compare these results to
equivalent results on data collected on adults. As we do not have data available with the
same sensor from adults, we have chosen to use the database that was also used in [5, 8].
This data is collected with a sensor that also collected 100 samples per second and a fixed
acceleration range from -6g to +6g. The particular dataset contains data from 60 adults
comprising 12 walking samples per adult, collected in 2 different sessions. The data from
this dataset is analyzed in the same way as the data set of the young children, meaning we
apply the same noise reduction (WMA filter), cycle detection (salient method), and normal-
ization (to 100 samples per cycle) as is described in Section B.2.2. It is clear from Table B.3
that the methods used by Gafurov et al. [10] gives the best performance, and consequently
we only applied the further analysis using this method. We applied the same distance met-
rics to the dataset of adult volunteers and found the following results as in Table B.4. In
this table the performance degradation is defined as follows; if the performance EER for
children’s walking is n% and for adults m%, then we define the performance degradation
as: n−mm · 100%

From Table B.4 we can see that the performance degradation due to the less stable walk-
ing of young children is between 67 and 140%. Roughly speaking we can see that the
performance degradation is 100% when we look at the optimal performance, i.e. when
combining the Dynamic Time Warping distance with rotation of the cycles.

As mentioned in [16], the gait of children has not stabilized before they are 11 years old.
In order to test this we have split the set of users into two groups. The first group consists of
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Distance Metric Children Adults Performance Degradation
Euclidean 18.93 11.20 69%
Manhattan 18.51 11.10 67%
Manh.+Rotation 16.94 7.07 140%
DTW+Rotation 12.69 6.21 104%

Table B.4: Performance comparison between adult and children’s walking.

All children Young Children Old Children
Euclidean 18.93 17.35 17.78
Manhattan 18.51 17.38 17.78
Manh.+Rotation 16.94 15.25 13.23
DTW+Rotation 12.69 14.11 11.40

Table B.5: EER Performance results in % on the different datasets.

26 children that are at most 10 years old, while the second group consists of the 17 children
in our experiment that are at least 11 years old. Obviously both groups are too small to
give statistically significant results, but nevertheless we want to present the results of our
analysis on both groups. In this analysis we did use separate cycles, as explained in [10]
and as used in the last column of B.3. The results are given in Table B.5, where the columns
”All Children” is copied from the last column of Table B.3, the column ”Young Children”
represents the 26 children that are at most 10 years old, and the column ”Old Children”
represents the children that are at least 11 years old.

As mentioned above, the results are statistically less significant due to the small number
of children in both groups, but we can see in the last row, when the distance metric is DTW
+ Rotation [8], then the performance for the group of youngest children is even worse than
the performance for the full group of children. In that case the performance of the group
of children that are at least 11 years old is better than the performance for the full group.
The fact that in all other three cases the performance for both subgroups is better than the
performance for the full group can be easily explained. When considering all the genuine
scores and impostor scores calculated in the original analysis for the full group, we can see
that each of the genuine scores either relates to the group of young children or to the group
of old children. For the impostor scores this no longer holds, as there are some impostor
scores in the original analysis that related to a template from a young child and a test input
from an older child or vise versa. As these impostor scores are left out in the analysis of
the two smaller groups it might happen (and indeed does happen) that the performance
results of both smaller groups are better than the performance of the full group.

B.4 Conclusions

In this paper we presented the first known results on gait recognition in young children.
When analyzing the data we could already visually see that the cycles were not as regular
as we can normally see with adult walkers. This was later confirmed during the analysis of
the data. Although we have seen worse performance than 12.69% previously in literature
on gait recognition, we needed to see the performance in comparison to adult walking.
Therefore we applied the exact same analysis methods to another dataset of similar charac-
teristics. Though there are small differences in the number of participants and the number
of walks per participant, the 100% performance degradation is a good indication of per-
formance degradation when going from adults to young children. The walking pattern
of children matures from the age of 11 [16] and looking at the ages of the participants in
our experiment we see that 26 of them were younger than 11, 4 were 11 at the time of the
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experiment, while the remaining were older than 11.
In future research, focus on gait recognition in children’s walking should be on cycle

detection and finding methods to deal with the larger intra-person variation of the cycle
data. Techniques that will improve the performance for gait recognition for children will
then also be applicable to gait recognition for adults, thereby improving the performance
for adult gait recognition too.
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Appendix C

Gait Recognition in Children under Special
Circumstances

Abstract

In this paper we investigate gait recognition in children’s walking under special cir-
cumstances. Gait research so far has only focused on adult walking and mostly under
normal walking conditions. This paper confirms that the results for adult walking under
special circumstances also apply to children’s walking.

In this paper we show that the performance of children’s walking while carrying an
object actually improves on the performance when walking normally, but when asked
to walk fast the walking becomes unstable, resulting in a higher Equal Error Rate (EER).
Furthermore we show that using a single template obtained from normal walking does
not perform well when children can walk under various different circumstances.

C.1 Introduction

Gait analysis is defined as the study of human movement and has been the subject of con-
siderable interest from researchers in the fields of bioengineering, physical therapy, neu-
rology and rehabilitation for the management of medical problems affecting the locomotor
system [22, 21, 23, 7, 26]. In addition, in recent years it has become important as a biometric
feature in identification and recognition for the purposes of security and safety. Interest in
gait spans several centuries dating back to descriptive studies by Leonardo di Vinci, Galileo
and Newton with the first scientific description of gait being given by the Italian scientist
Borelli in 1862 in ”De Motu Animalum” [3]; he described human movement in terms of
maintenance of the center of gravity by constant movement forward of the gait by the feet.
Weber et al [24] gave a description of the gait cycle in 1836. Kinematic studies of gait be-
gan with Marcy in the 1870s culminating in more recent works by Bernstein in the 1930s
using a variety of photographic techniques with over 150 subjects [19]. In the last couple of
decades, there has been rapid development in technology such as electronics, sensors, pho-
tographic and video equipment and intelligent systems which has accelerated advances in
gait analysis [12, 25, 16, 17].

Gait recognition has involved several approaches. The first is the machine vision based
approach involving a video camera to analyze gait [23, 4]. The gait is captured from a
distance with a video camera, and image processing techniques are used to extract gait
data for recognition. Studies have shown that gait has distinctive patterns which can be
used for individual recognition [5].

The second approach uses floor sensors, and the analysis of the movement on special
surfaces gives information on gait recognition features [13, 18, 20]. A set of sensors is in-
stalled on the floor and gait related data is measured when subjects walk on these sensors
and enables the collection of gait features such as ground reaction force, heel-to-toe ratio
etc that are not readily captured with vision based systems.

The third and most recent approach involves wearing sensors on various areas of the
body such as belt, leg, ankle and arm which measure acceleration along the x, y and z direc-
tions. The information extracted can be used to identify the gait cycle and salient features
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Figure C.1: GP 1 Sensor from Sensr, http://www.sensr.com.

of the human gait [10, 8, 6]. Various types of sensors are available such as accelerometers,
gyro sensors, force sensors and bend sensors that measure a range of walking characteris-
tics. They have been used for medical applications for patients with locomotion disorders.
Such sensors are cheaper and readily available for gait analysis. However, very little work
has been done on using wearable sensors in gait analysis for recognition. There are no
reported studies of gait recognition in children.

This paper is a follow-up to our previous paper presented at [2] on gait recognition in
children under normal walking conditions. Here we report on a study carried out with
children walking under special circumstances such as carrying weighted objects and fast
walking using the wearable accelerometer on the belt. The volunteers who participated in
this study are the same children who participated in our previous study.

C.2 Experiment design and data analysis

In this study, a programmable sensor (Model GP1, see Figure C.1) purchased from Sensr
(USA, http://www.sensr.com) was programmed and used to record the motion of the
children in several walking cycles [14]. The GP1 measures the acceleration in three perpen-
dicular directions that will be referred to as x, y and z. Figure C.2 shows an example of
the output of the sensor. The GP1 can collect acceleration data between ±2.5g to ±10g and
has a sampling rate of 100 Hz per axis. Acceleration data is filtered inside the GP1 by a 2
pole Butterworth low pass filter with a cut-off frequency of 45 Hz [1]. The device has a USB
interface for transferring data and a 1 Mbyte memory for storage purposes.

C.2.1 Experiment design

This study involved the participation of 43 children (29 male and 14 female), with ages
ranging from 5 to 16 years. The average male participant was 11.3 years old, while the
female participants were on average 9.0 years old. Detailed information on the number of
participants of a certain age is given in Table C.1. Approval was obtained from the school
principal, the university’s ethical approval committee and parents of the children. For
each child the parents formally approved participation in the study by signing a standard
University approved consent form prior to volunteering. The criteria set for the child to
take part in this study were that they should have no previous history of lower extremity
injury occurring within the past year, and no known musculoskeletal or neurological dis-
ease. Height and weight measurements were also taken. These measurements are not used
however in the analysis presented in this paper.

In this experiment, the volunteers were asked to walk normally (to create a baseline
performance) and in addition, walk under special circumstances. The special circumstances
selected for this experiment were carrying an object and walking more quickly. The object
that the volunteers were asked to carry was a 3.5 kg book. Due to their young age, two of
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Figure C.2: Output example of the GP1 sensor.

Age 5 6 7 8 9 10
Number of Children 1 1 2 4 7 11
Age 11 12 13 14 15 16
Number of Children 4 3 2 4 1 3

Table C.1: Age distribution of participants.

the participants were not able to carry that book and instead carried a lighter book. The
ages of these participants were 5 and 7 year and the other book they carried weight 1.5 kg.
For the fast walking, the children were instructed to walk at a higher speed than what they
consider to be a normal walking speed but to not run.

The GP1 sensor was attached to a belt and positioned on the left hand side of the hip.
Volunteers were asked to walk for a distance of approximately 17.5 meters in a carpeted
hall on a flat surface without shoes. At the end of the hall the volunteers waited 5 seconds,
turned round, waited a further 5 seconds and then walked back. They repeated this proce-
dure four times after which the sensor was detached from the volunteer and connected to
the PC for downloading the data. The recorded data was stored on a PC for later analysis
and file naming was done later to recognize the participant and the type of walking from
the filename.

The walking procedure was repeated 4 times in total. Depending on the age of the
child, either 2 sessions were carried out on one day and two on another, or all 4 sessions
were carried out on a single day. In the first two of these sessions the participants walked at
their normal speed, while the third session was for faster walking test, and the last session
was used for the walk whilst carrying the object. On each occasion the volunteers walked
the full length of the hallway 4 × 2 = 8 times. This implies that in total they walked the
hallway 16 times at normal speed, 8 times at a higher speed, and 8 times carrying the object.
In the remainder of this paper, we will refer to a walk as the data collected from walking
the full length of the hallway once. In other words, the data of each participant represents
16 + 8 + 8 = 32 walks.

The gait samples for normal walking have been analyzed in [2] and the optimal result
was a 12.7% Equal Error Rate (EER). The purpose of this research is to look at performance
degradation when the children are not walking in their normal way, but when special cir-
cumstances apply.
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C.2.2 Data preprocessing and analysis

As described, each participant walked in four different sessions and each session was
downloaded as a separate file to the PC. Each of these files contained the data of 8 assessed
walks, each again separated by standing still, turning and again standing still. In each file
the data representing a walk could be differentiated from standing still by looking at the
variation in the data over a 50 sample period (representing 0.5 seconds). The turning could
also be removed from the relevant walking data, not by looking at the variation in the data
but at the duration of the activity; while turning took only a brief moment, a full walk of
the hall took at least 10 seconds (i.e. at least 1000 samples). The data from each collected
file was thus split into 8 separate files, where each file contained a single separated walk of
the hall.

Using the above method the originally 43× 4 = 172 collected files were split into 172×
8 = 1376 files, where each file contained the data of exactly one walk. Each file was labeled
in such a way that participant, session number (1 or 2), walk within session (1..8), and type
of walk (normal, carrying, or fast) were identifiable from the filename. Each file contained
4 columns, representing respectively the time, the x-acceleration, the y-acceleration and the
z-acceleration. The values in the time column were the original values from the collected
files. The time value increased by 0.01 from one row to the next because the sampling rate
was 100 samples per second.

Each of the files containing the data of a single walk was processed next using the Av-
erage Cycle Method (ACM). The ACM (see [6] for details) has been applied to the collected
data. In our analysis in step 1 of the ACM, the noise was reduced by using the Weighted
Moving Average (WMA) filter of length 5 and weights ( 1

9 ,
2
9 ,

3
9 ,

2
9 ,

1
9 ) on the data of each of

the three separate directions. The three directions were then combined to a single value by
calculating the resultant acceleration: ri =

√
x2i + y2i + z2i . The detection of cycles in step 2

of the ACM was done using the Salience method from [15]. As the best performance in [2]
was reached by not creating an average cycle, but by keeping all detected cycles, we have
now applied that method here too, i.e. we followed the work of Gafurov et al. [9]. Again,
because it resulted in the best performance when analyzing the data in [2], we decided to
use the Dynamic Time Warping distance metric in combination with the rotation method
as described in [8].

We performed various analyses. From [2] we already know that the performance of
normal walking for children has an EER of 12.7%. The first tests we applied were to check
how well children could be recognized when comparing a template from either carrying
or walking fast against a test data sample from the same set. In these two cases, the first of
the 8 data samples for a circumstance is used to create a template and the remaining 7 are
used as test inputs for the performance evaluation. We applied two more tests to see the
difference between fast walking or walking when carrying an object, and normal walking.
In this case templates from normal walking were used and tested against 8 test inputs from
fast walking or 8 test inputs from walking while carrying an object. Results of the tests are
presented in Section C.3.

C.3 Results

In this section we will present the results of the analysis. The results from performing
the analysis as described in section C.2.2 are presented in Table C.2. The first and second
columns in this table represent the type of gait data used for creating the template, and
the type of data used for test input. The third and fourth columns represent the number of
genuine and impostor scores used in this analysis. Furthermore the fifth column represents
the EER for that particular test and the last column represents the performance degradation
from the normal walking situation. Performance degradation is calculated as the difference
between EER of a particular test and the EER for the baseline situation, divided by the
EER of the baseline situation. The baseline situation is where both template and test input
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Template Test Input # of Gen. Scores # of Imp. Scores EER Degradation
Normal Normal 645 27090 12.7% 0%
Normal Carrying 344 14448 25.4% 100%
Normal Fast 344 14448 33.4% 163%
Normal Fast & Carrying 688 28896 35.9% 183%
Fast Fast 301 12642 22.2% 75%
Carrying Carrying 301 12642 10.1% -20%

Table C.2: Performance results on the collected dataset.

are based on normal walking and the EER in that case is 12.7%. In all cases the analysis
method to calculate the EER has been a combination of using separate cycles from [9] in
combination with the rotation method from [8].

From this table several conclusions can be made. First of all, walking faster results in a
less stable gait and because of that a higher EER value. The performance degradation from
normal to fast walking is 75% and when compare to a normal walking template, then the
performance degradation is even greater (163%). This phenomena, that fast walking is less
stable than normal walking, has been observed before in [11]. There it can be seen that the
performance degradation from normal to fast walking is 80%, which is in accordance with
our results.

We can also see there is a performance improvement when children are carrying an
object. Although this result seems odd at first glance, there is a rational explanation. The
children were instructed to walk in a normal manner and anyone given that instruction will
up to a certain degree start to think about the way they walk. This will then result in slight
deviations from the actual way of normal walking and will result in a slightly unstable gait.
When the children were asked to carry a 3.5 kg book, their minds was taken off the task
of walking normally, which then actually resulted in them walking in a natural and more
stable way [14]. More research should confirm that the given explanation is indeed correct.

We have also tested the situation where the template represented normal walking and
the test input was from either fast walking, or walking while carrying an object or both.
This represents a scenario where a normal walking template is applied but a child’s current
way of walking deviates from that. We see that in all cases we have a severe performance
degradation, where the degradation for walking when carrying an object is the least. These
results show that walking carrying an object or walking fast are really different from walk-
ing normally. Children can to some degree still be recognized, but the high EER clearly
shows that we cannot use a single template (for normal walking) to recognize a person
under all circumstances.

C.4 Conclusions

In this paper we presented the results of gait recognition in young children when walking
under special circumstances. We can conclude that a single template for normal walking
will not be sufficient to recognize the children walking fast or carrying an object. The
performance of gait recognition improves especially when carrying an object, which might
be due to the fact that the participants in the experiment were no longer focusing on the
way they walked. Fast walking had been known to be less stable than normal walking
and these results have been confirmed in this study. The results for the gait studies on
children agree with those of the previous study carried out with adults when considering
the performance degradation from normal walking to fast walking (80% for adults and 75%
for children).

Future research should focus also on different walking circumstances like walking slow,
or walking up or down stairs. It would be interesting to see the influence of the particular
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object that is carried on the walking stability. Carrying a 3.5 kg book is clearly different from
carrying a glass of water, and the difference is not only due to the weight of the object. More
research is needed to confirm that the increased performance when walking while carrying
an object is due to the distraction from the actual walking.
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Appendix D

Gait Recognition using Time-of-Flight Sensor

Abstract

This paper develops a biometric gait recognition system based on 3D video acquired
by a Time-of-Flight (ToF) sensor providing depth and intensity frames. A first step of the
proposed gait analysis is the automatic extraction of the silhouette of the person via seg-
mentation. The segmentation of the silhouette is performed on the depth frame which
provide information which describes the distance from the camera of every pixel in the
intensity frame. The range data is sensitive to noise thus we apply morphological fil-
tering operations to enhance the segmented object and eliminate the background noise.
The positions of the joint angles are estimated based on the splitting of the silhouette
into several body segments, based on anatomical knowledge, and ellipse fitting. The
resulting parameters from this analysis of the silhouette are used for feature extraction
from each frame. The evolutions of these features in time are used to characterize the
gait patterns of the test subjects. Finally, we do biometric performance evaluation for the
whole system. To the best of our knowledge, this article is the first article that introduces
biometric gait recognition based on ToF Sensor.

D.1 Introduction

The ability to use gait for people recognition and identification has been known for a long
time. The earliest research started in the sixties of the twentieth century, where studies from
medicine [14] and psychology [10] proved that human gait has discriminative patterns
from which individuals can be identified. It is however just in the last decade that gait as a
biometric feature has been introduced, and from a technical point of view gait recognition
can be grouped in three different classes. Machine vision (MV) which uses video from one
or more cameras, to capture gait data and video/image processing to extract its features.
Floor sensors (FS), that use sensors installed in the floor, are able to measure gait features
such as ground reaction forces and heel-to-toe ratio when a person walks on them. The
third class uses wearable sensors (WS) where the gait data is collected using body-worn
sensors.

MV based gait recognition is mainly used in surveillance and forensics applications
[12, 8]. In MV image processing techniques are used to extract static like stride length
which are determined by body geometry [2], and dynamic features from body silhouettes.
The MV based gait analysis techniques can be classified as model-based [3] and model free
[7]. The main advantage of model based approaches is the direct extraction of gait signa-
tures from model parameters, but it is computationally expensive. Model free techniques
characterize the body motion independently from body structure. MV gait analysis can
also be categorized according to the technology used, as marker-based or marker-less. In
marker based systems specific points in the subject’s body are labeled by markers. By track-
ing these points in the video sequence the body motion can be tracked and analyzed [4, 11].
MV based gait recognition provides wide range of gait features and many works utilized
different sets of features and classification techniques. Benabdelkader et. al. [1] used stride
length and cadence as features extracted from 17 subjects’ silhouettes walking in outdoor
environment for 30 meters in a straight line at fixed speed to achieve EER of 11%, using
linear regression for classification. Wang et. al. [17] utilized silhouette structure evolution

195



D. GAIT RECOGNITION USING TIME-OF-FLIGHT SENSOR

over time to characterize gait, by calculating the silhouette centre and obtaining its contour
they converted the 2D silhouette into 1D signal by calculating the distance between the
centroid and every pixel on the contour. Principal component analysis (PCA) were used
for dimensionality reduction of normalized distance signals using normalized Euclidean
distance (NED) as similarity measure and nearest neighbour classifier with respect to class
exemplars (ENN) classification approach. They achieved an EER of 20%, 13%, and 9% for
20 subjects filmed at 0, 45, and 90 degrees view respectively. The most related work to ours
was done by He and Le [7], in which temporal leg angles was used as gait features for
4 walking styles slow, fast, incline and walking with a ball, on a running machine. They
achieved wide range of CCR for the different walk styles using NN and ENN classification
techniques. The best result for 9 subjects were in worst case 74,91% using NN for the shin
parameters alone in fast walk and best case 100% using NN for merging thigh the shin
parameters alone in ball walk, running the test over the whole CMU database 96.39 % was
achieved for fast walk. Jensen et. al [9] used ToF camera to analyse gait, in their work step
and stride length, speead, cadence and angles of joints were extracted as extracted as gait
features. They used model fitting technique to extract the joint angles. To the best of our
knowledge, this article is the first article that introduces biometric gait recognition with the
use of ToF Sensor.

D.2 Experiment Design

In order to verify the usefulness of the proposed system, we performed an individual gait
identification experiment. In this section we will go through the different issues related to
our experiment.

We used the Swiss ranger SR-4000 CW10 sensor by Mesa technologies [13] seen in Fig-
ure D.1. The SR4000 is an optical imaging system housed in an anodized aluminum en-
closure. The camera operates with 24 LED emitting infra-red in the 850nm range, it mod-
ulates the illumination light emitting diodes (LED) at modulation frequency of 15MHz.
Range measurements are obtained at each pixel using the phase shift principle, with non-
ambiguity range of 10 meters. The camera has USB port for data acquisition and supplied
with software library for C and Matlab.

Figure D.1: SR-4000 ToF
sensor Figure D.2: set-up of the experiment

The subject’s motion was filmed from the side by means of a ToF camera at 30 frames/sec,
while the subject was walking on a track in front of the camera as shown in Figure D.2. Due
to the camera’s narrow field of view, the length of the filmable track was limited to about 3
meters, therefore the subjects were asked to walk back and forth 10 times on a track longer
than the camera’s field of view’s width. we used this longer track to allow recording the
subject in full motion. To reduce the noise in the distance data, the camera was calibrated
such that the image starts from the walking track in order to eliminate the reflection from
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the floor. The camera was put on a tripod at 0.7 meter from the floor and was tilted up
about 5 degrees, as recommended by the camera manufacturer, see Figure D.2.

The experiment was carried out on a solid surface in the lab. The subjects were asked
to walk a fixed track in front of the camera. This fixed track allow the participants to walk
for 1.5 to 2 gait cycles depending on the participants gait characteristics, and because some
of the participants may not start precisely at the marker where the field of view of the
camera starts. Each participant walks the track at least 5 times to extract one full gait cycle
from each pass in front of the camera. The experiment procedure by the participant can be
summarized in three steps to be repeated 5 times on average. First, the user walks the track,
turns around and walks the track back.

The experiment was done in lab at Gjøvik University College. An invitation was sent to
the students at the faculty to participate in the experiment, and 30 participants volunteered.
They were of different age and height groups. The average age for the volunteers was 29.1
years, the average height was 176.9 cm. The participants were asked to wear the same type
of shoes during the two sessions. In the experiment two sessions we collected data for the
30 subjects over a month, time gap between the two session varied from subject to subject,
for a few subjects it was one week and for others about a month.

D.3 Feature Extraction

The image sequences of the subjects were acquired while walking in front of the camera.
Followed by segmentation to extract the subjects body silhouette, morphological opera-
tions are applied to reduce background noise and fill holes in the extracted human silhou-
ettes. Next, each of the enhanced human silhouettes is divided into six body segments
based on human anatomical knowledge [15]. Ellipse fitting is applied to each of the six
segments, and the orientation of each of the ellipses is used to calculate the orientation of
each of the lower body parts for further analysis. The following steps are hereby described
in more details:

Video segmentation is the process of partitioning a video spatially or temporally. It is
an integral part of many video analysis and coding systems, including video indexing and
retrieval, video coding, motion analysis and surveillance. In order to perform gait analysis
of a person from image sequence, the subject needs to be extracted from the background
of the video sequence. Image segmentation is used to separate foreground objects like
people, from the background of the image sequence. Thresholding is the simplest image
segmentation technique, in which each pixel of the original image is compared to a speci-
fied threshold, if the pixel’s value is greater than the threshold value it is set as foreground
pixel with value 1 if not it is set to zero as background pixel producing a binary image.
In some complex images the operation can be iterated using two thresholds, in this case
threshold works like band pass filtering. Histograms can be used to find the proper thresh-
old values [16], where peaks correspond to foreground objects are used to determine the
threshold values. If the image’s histogram shows no clear peaks, then, thresholding can
not produce acceptable segmentation.

Morphological operations are shape based technique for processing of digital images
[6]. Morphological operations are used to simplify image data preserving their main shape
characteristics and eliminating irrelevant details. Morphological operations have two in-
puts the original image and structuring element to be applied to the input image, creating
an output image of the same size. In a morphological operation, the value of each pixel in
the output image is based on a comparison of the corresponding pixel in the input image
with its neighbours. The shape and size of the structuring element constructs a morpho-
logical operation that is sensitive to specific shapes in the input image. The most basic
morphological operations are dilation and erosion.

Ellipse fitting is used next to find the characteristics of the body parts. Having extracted
body silhouette, the subject body are segmented into six parts [15] as illustrated in Figure
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D.3. First, the centroid of the silhouette is determined by calculating its center of mass. The
area above the centroid is considered to be made of the upper body, head, neck and torso.
The area below the centroid is considered made of the lower body, legs and feet. Next,
one third of the upper body is divided into the head and neck. The remaining two thirds
of the upper body are classified as the torso. The lower body is divided into two portions
thighs and shins. Fitting an ellipse to each of the six body parts and finding their centres of
mass, orientations, and major axes length we can characterize these body parts. Evolution
of these parameters in the video sequence describes the human gait characteristics in time.

Figure D.3: (a): body parts, (b): ellipse fitting model and (c) tracking of legs, blue ellipses
for the leg closer to the camera

Leg tracking is performed next. Gait analysis requires reliable tracking of moving hu-
man body segments. As the human body is segmented into six parts, we need to track the
lower limbs in the successive frames to construct meaningful output of the measured an-
gles in the following step. To track the body parts along the image sequence we utilize the
depth information acquired at each frame, we calculate the mean range values of each seg-
ment. The segment with higher mean range value belongs to the farthest away leg from the
camera and vice versa, in Figure D.3(c) a sample sequence of images with tracking results
are shown.

Leg angles calculation is the last step of the features extraction. Human body is mod-
eled as rigid segments connected by joints. The simplest model as 2D stick [5], as in Fig-
ure (D.4-a). To extract the gait signatures we will mainly extract the thigh and shin an-
gles from each frame of the video sequence to characterize the gait cycle. In this final
step we extract the angles based on the data extracted from ellipse fitting to the body seg-
ments. The fitted ellipse parameters: orientation, major axis length (lmajor) and centroid
will be used to approximately calculate the start and end points coordinates for each of the
body segments, such that each segment will be defined by two points in two dimensional
space ((pi1, pi2)) using equations (x1 = x0 + lmajor ∗ cos(ϕ)), (x2 = x0 − lmajor ∗ cos(ϕ)),
(y1 = y0 + lmajor ∗ sin(ϕ)) and y2 = y0 − lmajor ∗ sin(ϕ) as shown in Figure (D.4-b). To

Figure D.4: Illustration of joint locations, (a) 2D stick figure, (b) sample frame and (c) cal-
culated angles.

calculate the angles of the leg segments, we reduced the impact of the non-precise fitting
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of the ellipses to the body segments, by estimating the location of the joints as the average
location of the start point of one of the segments and the end point of the segment con-
nected by the joint. The hip and knee joints’ locations are calculated by the equation set
(p1 = p22+p31+p41

3 ), (p2 = p32+p51
2 ) and p3 = p42+p61

2 as shown in Figure D.4(c) The extracted
features for each of the segments were calculated by equation θ = arctan y2−y1x2−x1

. We calcu-
late the inclination angle of thigh and shin for each of the subject’s legs to characterize the
gait by the evolution of these angles in time at each image of the video sequence. Since the
gait is quasi-periodic movement we extract a single gait cycle from each video sequence.
The extracted feature are filtered using a local median filter to filter out the outliers. The
outliers can be due to losing track of the legs, or bad ellipse fitting, in Figure D.5 plots for 5
different gait cycle for one subject before and after filtering.

Figure D.5: Extracted data for 5 different walking cycles,(a): original data, (b):filtered data.

D.4 Analysis and Results

As mentioned in earlier sections, each participant was filmed during two different sessions,
and each session was downloaded as a separate file to the PC. Each of these files contained
the data of 5 assessed gait data records, each again separated by leg types, i.e. front shin,
back shin, front thigh and back thigh. In each file the data representing more than one gait
cycle was manually aligned and cut such that one cycle started at a minimum and ended
at a minimum value. This was done for all files. So the data from each collected file was
split into 4 other files (for each leg type).

Using the above method the originally 30 × 5 = 150 collected files were split into 150
× 4 = 600 files, where each file contained the data of exactly one gait cycle for each leg
type. Each file was labeled in such a way that participant, session number (1 or 2) and
type of leg (front shin, back shin, front thigh, back thigh) are identifiable from the file
name. Each file contained one column, representing the feature vector. The length of this
feature vector varied indicating the length of gait cycle was varying from one participant
to another. For the second session, 20 out of the 30 volunteers participated. This means that
the performance evaluation over a certain time interval will only consist with 20 volunteers.

In our analysis in step 1, the noise was reduced by using the running median filter as
described in the previous section. This resulted in having a filtered gait cycle representing
our new feature vector. Since each file has dissimilar lengths we were unable to use distance
metrics such as the Manhattan or Euclidean. Instead we applied a time series analysis
named the Dynamic Time Warping (DTW) which is an algorithm for measuring similarity
between two sequences which may vary in time or speed.

Several performance evaluations were calculated. Table D.1 shows the performance of
the first session with 30 subjects (second column) and the subset of 20 users (third column)
who also participated at the second session. The first column indicates which template and
test input were applied for performance testing. We notice that if we apply all the four
types of legs as feature vector for one subject, we obtain an better EER than when applying
them separately. This is due to the fact that more information is stored for a given subject.
Since only a subset of users participated at the second session the EER has not changed
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significantly. With the performances for the second session we observe a significant change
of the performance and the reason is that the users are more used to the walking in the
second session and more comfortable with the experiment.

Template/Test 30 Participants 20 Participants - 1st 20 Participants - 2nd
Back thigh 8.42 7.48 4.72
Front thigh 7.39 6.62 6.02
Back shin 12.31 11.16 6.28
Front shin 11.32 10.24 9.41
All above 4.63 4.08 2.62

Table D.1: EER Performance Results in % on the collected dataset. Second column is first
session. Last column is session session

An interesting performance analysis is to investigate the change between the two ses-
sion as can be seen in Table D.2. We are analysing what will happen if we apply the first
sessions data as training set and the second sessions data as test input. What we observe
here is that the change over time becomes worse. Different shoe-type, clothes may have
also an impact, and we realized that unfortunately not all participants came back for the
second session.

Session 1 Session 2 Session 1 + Session 2
4.09 2.48 9.25

Table D.2: EER Performance Results in % where session 1 as reference template and session
2 as test input (20 users).

D.5 Conclusion

In this paper we presented the first known results on gait recognition using the 3D ToF Sen-
sor. When analyzing the data we could already visually see that gait cycles were detectable
for each subject which are dissimilar from others’. The experiment was performed over
two different days (sessions) where each of the subjects (first session 30 subjects, second
session 20 subjects) walked a track within the camera field of view. The best equal error
rate obtained was 2.66 % for a separate session where the change over time we retrieve an
equal error rate of about 9.25 %. Although the last mentioned result is not so low, this paper
presents a first step towards a better performance in the future. Future work includes to
work with multiple session over multiple days, and more cycles person to see the stability
over time.D.6 Acknowledgments

The authors would like to thank all the (anonymous) participants in this experiment. The
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Appendix E

Fingerprint Recognition with Embedded
Cameras on Mobile Phones

Abstract

Mobile phones with a camera function are capable of capturing image and process-
ing tasks. Fingerprint recognition has been used in many different applications where
high security is required. A first step towards a novel biometric authentication ap-
proach applying cell phone cameras capturing fingerprint images as biometric traits is
proposed. The proposed method is evaluated using 1320 fingerprint images from each
embedded capturing device. Fingerprints are collected by a Nokia N95 and a HTC De-
sire. The overall results of this approach show a biometric performance with an Equal
Error Rate (EER) of 4.5% by applying a commercial extractor/comparator and without
any preproccesing on the images.

E.1 Introduction

Current mobile devices implement various new kinds of applications such as taking photos, and movie shooting
by using embedded camera devices. This progress was made possible by the evolution of miniaturized embedded
camera technology. Mobile devices – particularly mobile phones – are being found in almost everyone’s hip
pocket these days all over the world. Almost all newer cell phones now-a-days have embedded camera devices,
and some of those have more than over 5 mega-pixel image cameras.

From a security point of view, the issues related to ever-present mobile devices are becoming critical, since
the stored information in them (names, addresses, messages, pictures and future plans stored in a user calendar)
has a significant personal value. Moreover, the services which can be accessed via mobile devices (e.g., m-banking
and m-commerce, e-mails etc.) represent a major value. Therefore, the danger of a mobile device ending up in the
wrong hands presents a serious threat to information security and user privacy. According to the latest research
from Halifax Home Insurance claims, 390 million British pounds a year is lost in Britain due to the theft of mobile
phones. With the average handset costing more than 100 British pounds, it is perhaps not surprising that there
are more than 2 million stolen in the UK every year [9].

Authentication is an area which has grown over the last decades, and will continue to grow in the future. It
is used in many places today and being authenticated has become a daily habit for most people. Examples of this
are PIN code to your banking card, password to get access to a computer and passport used at border control.
We identify friends and family by their face, voice, how they walk, etc. As we realize there are different ways in
which a user can be authenticated, but all these methods can be categorized into one of three classes [20]. The first
is something you know (e.g., a password), the second is something you have (e.g., a token) and the third is something
you are (e.g., a biometric property).

Unlike passwords, PINs, tokens etc. biometric characteristics cannot be stolen or forgotten. The use of biomet-
ric was first known in the 14th century in China where ”Chinese merchants were stamping childrens palm- and
foot prints on paper with ink in order to distinguish young children from one another”. Approximately after 500
years has passed, the first fingerprinting was used for identification of persons. In 1892, the Argentineans devel-
oped an identification system when a woman was found guilty of a murder after the investigation police proved
that the blood of the womans finger on the crime scene was hers. The main advantage of biometric authentication
is that it establishes an explicit link to the identity because biometrics use human biological and behavioral charac-
teristics. The first mentioned are the biometrics derived directly from the part of a human body. The most used
and prominent examples are the fingerprint, face, iris and hand recognition. The behavioral characteristics are the
biometrics by persons behavioral characteristics, such as gait-recognition, keystroke recognition, speech/voice
recognition and etc.

Many fingerprint recognition algorithms perform well on databases that had been collected with high-resolution
cameras and in highly controlled situations [10]. Recent publications show that the performance of a baseline sys-
tem deteriorates from Equal Error Rate (EER) around 0.02 % with very high quality images to EER = 25 % due
to low qualities images [15]. Thus active research is still going on to improve the recognition performance. In
applications such as fingerprint authentication using cameras in cell phones and PDAs, the cameras may intro-
duce image distortions (e.g., because of fish-eye lenses), and fingerprint images may exhibit a wide range of
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Figure E.1: Optical fingerprint sensing by frustrated total internal reflection.

illumination conditions, as well as scale and pose variations. An important question is which of the fingerprint
authentication algorithms will work well with fingerprint images produced by cell phone cameras?

However, recent research [18, 16] have shown that by using low-cost webcam devices it is possible to extract
fingerprint information when applying different pre-processing and image enhancements approaches. In this
paper we present fingerprint recognition as means of verifying the identity of the user of a mobile phone. The
main purpose of this paper is to study how it is possible to lower down the user effort while keeping the error
rates in an acceptable and practical range. Therefore, this proposal is a realistic approach to be implemented in
mobile devices for user authentication. To address this issue, we collected a fingerprint database at the Norwegian
Information Security Laboratory using two different cell phone cameras, namely the Nokia N95 and HTC Desire
where details mentioned later.

E.2 Fingerprint Recognition

Fingerprint recognition is the most matured approach among all the biometric techniques ever discovered. With
its success of use in different applications, it is today used in many access controls applications as each individual
has an immutable, unique fingerprint. The hand skin or the finger skin consists of the so called friction ridges with
pores. The ridges are already created in the ninth week of an individuals fetal development life [4], and remains
the same all life long, only growing up to adult size, but if severe injuries occur the skin may be reconstructed the
same as before. Researchers have found out that identical twins have fingerprints that are quite different and that
in the forensic community it is believed that no two people have the same fingerprint [19].

Many capture device technologies have been developed over the last decades replacing the old ink imaging
process. The old process was based on sensing ridges on an individuals finger with ink, where newer technologies
uses a scanner placing the surface of the finger onto this device. Such technologies are referred to as live-scan and
based on four techniques [14]:

Frustrated total internal reflection (FTR) and optical methods is a first live scan technology. Figure E.1 illus-
trates, how the reflected signal is acquired by a camera from the underside of a prism when a finger
touches the top of the prism. The typical image acquisition surface of 1 inch by 1 inch is converted to 500
dots per inch (DPI) using either charge coupled device (CCD) or complementary metal oxide semiconduc-
tor (CMOS) camera.

CMOS Capacitance. The ridges and valleys create different charge accumulations, when a finger hits a CMOS
chip grid. This charge is converted to an intensity value of a pixel using various competing techniques such
as alternating current (AC), direct current (DC) and radio frequency (RF). The typical image acquisition
surface of 0.5 inch by 0.5 inch is converted to 500 dots per inch (DPI). The resultant images also have a
propensity to be affected by the skin dryness and wetness.

Ultrasound Sensing. The thermal sensor is developed by using pyro-electric material, which measures temper-
ature changes due to the ridge-valley structure as the finger is swiped over the scanner and produces an
image. In this case the skin is a better thermal conductor than air and thus contact with the ridges causes a
noticeable temperature drop on a heated surface. This technology is claimed to overcome the dryness and
wetness of the skin issues of optical scanners. But the resulting images are not affluent in gray value im-
ages. The thermal sensor is becoming more popular today, because they are small and of low cost. Swipe
sensors based on optical and CMOS technology are also available as commercial products.
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Figure E.2: Left: CMOS Sesnor (HTC Desire), Right: CMOS Sensor (Nokia N90) and a
cropped/contrasted fingerprint image from each cell, at the same scale factor.

E.3 Data Collection

E.3.1 Rationale
Besides fingerprint recognition systems deployed for applications with high-security requirements such as border
control [12, 1] and forensics [8], fingerprint recognition is supposed to be promising for consumer markets as well
for many years [6, 5]. In the meanwhile, privacy concerns over fingerprint recognition technologies’ deployment
in non-high-security applications have been raised [11, 3] and thus leads to a refrained development of biometrics
in consumer market in recent years compared with the rapid development in the public sectors such as border
control, critical infrastructure’s access control, and crime investigations.

We suppose there are at least two ways to alleviating these privacy concerns. Biometric template protection
[17, 7] is one of the most promising solutions to provide a positive-sum of both performance and privacy for
biometric systems’ users. The European Research Project TURBINE [2] demonstrated a good result in both per-
formance and privacy of the ISO fingerprint minutiae template based privacy-enhancement biometric solutions.
On the other hand, for the consumer market, we think using customers’ own biometric sensors will also help
alleviate the customers’ privacy concerns. That is the motivation of this paper to try using cell phone cameras as
sensors for fingerprint sample collection.

Obviously, for applications requiring high security, subjects’ own biometric sensors may not be suitable for
data collection unless the cell phone can be authenticated as a registered and un-tampered device in both software
and hardware aspects, which is difficult to realize for a normal consumer electronics that is out of the control of
the inspection party. However for consumer market, cell phone can be deemed nowadays as a secure device
accepted by many customers, e.g, many banking services send transaction password, TAN code or PIN code via
SMS to customers’ cell phone. So in this paper we assume biometric data collection by the customers’ cell phone
cameras will not raise more privacy and security concerns to the customers than the cell phone based banking
services.

In the meanwhile we expect technical challenges in quality control to the cell phone camera captured samples,
especially from the sample image processing aspects such as bias lighting conditions and unstable sample collec-
tion environment caused by hand-holding. In addition, most existing cell phone cameras are not designed for
biometric use and accurate focusing will always be a challenge for fingerprint image capturing. We address these
potential challenges in this paper in a simplified way to investigate whether cell phone camera can generate good
quality samples and corresponding good biometric performance in a relative stable data collection environment.

E.3.2 Data Collection Steps
As there is no standard benchmark database available for fingerprint images captured by digital camera, we con-
structed an independent database. The image database is comprised of 22 subjects from which fingerprint images
were taken with a cell phone camera. The fingerprint data used in this paper are captured by two commercial
sensors as shown in Figure E.2. The cell cameras used were Carl Zeiss Optics from Nokia N95 and HTC Desires’
embedded camera. Further detailed information of the sensors is described in Table E.1.

The constructed independent database comprises of 1320 fingerprint images. These images stem from 220
finger instances, where each instance was captured 6 times. The images are stored in the internal memory of the
phones and all the images were collected in the cameras ”Burst Mode”. For evaluating the performance of various
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Cell Phone Nokia N95 HTC Desire
Lens Type CMOS, Tessar lens CMOS
Mega Pixel 5.0 5.0
Resolution 2592x1944 2592x1552
Flash LED Flash LED Flash
ISO Speed 100 - 800 52
Auto-Focus Yes Yes

Table E.1: Cell phone camera setting for fingerprint image acquisition.

Figure E.3: Setup for the Nokia N95 capture device.

algorithms under different settings, the Nokia N95 was fixed placed on a hanger as illustrated in Figure E.3 where
images were taken by a human operator holding the phone and capturing images for the HTC Desire. The image
capture was performed inside a laboratory with normal lighting conditions.

E.4 Evaluation

As can be seen in Figure E.4, the user initially presents its biometric characteristic (i.e., capturing the fingerprint)
to the sensor equipment (i.e. camera in a mobile phone), which captures it as captured biometric sample. After
preprocessing this captured sample, features will be extracted from the sample. In case of fingerprint biometrics,
these features would typically be minutia points. The extracted features can then be used for comparison against
corresponding features stored in a database, based on the claimed identity of the user. The result of the compar-
ison is called the similarity score S, where a low value of S indicates little similarity, while a high value indicates
high similarity. The last step is to compare the similarity score S to a predefined system threshold T, and output a
decision based on both values. In case the similarity score is above the threshold (S > T ) then the user is accepted
as genuine, while a similarity score below the threshold (S < T ) indicates an impostor who is rejected by the sys-
tem. Obviously the biometric features of the user must initially be stored in the database before any comparison
of a probe feature vector can take place. This is done during the enrolment phase. During the enrolment biometric
samples are captured from the biometric characteristic, after which it is processed and features are extracted. The
extracted data is now stored in a database and linked to the identity of the user who enrolled. The stored data
in the database is referred to as the reference template of the user. In case of fingerprint biometrics it is a common
approach to derive the features from multiple captured samples and generate a single minutiae template.

E.4.1 Feature Extraction
In order to measure the sensor performance we have applied the Neurotechnology, Verifinger 6.0 Extended SDK
commercial minutia extractor for the feature extraction. The SDK includes functionality to extract a set of minutiae
data from an individual fingerprint image and to compute a comparison-score by comparing one set of minutiae
data with another. Both SDKs support open and interoperable systems as the generated minutiae templates can
be stored according to the ISO or ANSI interchange standard.

E.4.2 Feature Comparison
We compared the verification results of the Neurotechnology algorithm on the processed images. For each algo-
rithm the error rates were determined based on a threshold separating genuine and impostor scores. The False
Match Rate (FMR) and False None-Match Rate (FNMR) were calculated. The calculation of FMR and FNMR is
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Figure E.4: A traditional verification process.

done in the following way. We have collected N data samples from each of M participants, then we have cal-
culated similarity scores between two samples, either stemming from one finger instance or from two different
instances. A similarity score between two samples from the same source is called a genuine score, while an im-
postor score is the similarity score between two samples from different instances. Given our setting, we can have
N ∗M data samples from which we can calculate the total number of NGen =

M∗N∗(N−1)
2

different genuine

scores and NImp =
M∗N∗(M−1)∗N

2
. Given these sets of genuine and impostor scores we can calculate FMR and

FNMR for any given threshold T as follows:

FMR(T ) =
Number of incorrectly accepted impostor images ≥ T

Total number of impostor images
(E.1)

FNMR(T ) =
Number of incorrectly rejected genuine images < T

Total number of genuine images
(E.2)

From this, we can find the point where FNMR equals FMR, or in other words the Equal Error Rate (EER).
This rate is very common used value which is being used to compare different systems against each other, and it
roughly gives an idea of how well a system performs.

The images that were generated with the mobile phones encode the finger position according to Table E.2 and
the equal error rates retrieved corresponding to the finger codes are overviewed in Table E.3

Finger Position Code
Right thumb 1
Right index finger 2
Right middle finger 3
Right ring finger 4
Right little finger 5
Left thumb 6
Left index finger 7
Left middle finger 8
Left ring finger 9
Left little finger 10

Table E.2: Finger position codes according to ISO 19794-2.

In general we see that the left index finger (code 7) has performed best for both phones with EER of 0.0%
and 8.47%. The overall performance (cross comparison of all ten fingers) which can be seen in column all for
Nokia N95 performs significantly better than the Desire. This is so because of various reasons. The Nokia was
placed in fixed way on the holder while capturing. Furthermore, the Nokia was set to an internal close-up mode
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Cell Phone 1 2 3 4 5 6 7 8 9 10 all
Nokia N95: 5.77 5.92 5.11 7.36 5.43 2.98 0.0 0.43 6.26 5.45 4.66
HTC Desire: 11.73 11.43 23.62 21.17 16.01 10.98 8.47 15.37 16.11 15.96 14.65

Table E.3: EERs of cell phone fingerprint recognition. Numbers are in percentage.

setting. This mode is ideal for capturing details of small objects within a distance between 10 and 60 cm. Here we
had to ensure that the auto-focus always resulted in better quality images at a small distance when capturing the
fingerprints, whereas the HTC was manually adjusted by the human operator. Thus, this means that the Nokia
N95’s auto-focus was performing slightly better than the HTC Desire.

E.5 Discussion

Since personal mobile devices at present time only offer means for explicit user authentication, this authentication
usually takes place one time; only when the mobile device has been switched on. After that the device will
function for a long time without shielding user privacy. As of today the majority of Internet users are expecting a
transparent transition of services from the wired to the wireless mobile world. As personal mobile devices such
as Apple’s iPhone, T-Mobile’s G1 or Nokia’s S60 become more popular the ordinary user is expecting and using
the full range of Internet services in the mobile Internet, since former limitations with regard to screen size and
interaction capabilities (zooming, ”copy and paste” functionality etc.) disappeared recently. In fact many users are
even extending their expectations from their home and office environment, as they enjoy typical mobile features,
such as location-based services, which are supported by widespread GPS-features.

On the contrary users tend to ignore the risks, which they accept while operating Internet services from their
mobile device. Not only sensitive information is accessible from the mobile device but also transactions on the
stock market and other critical services, which grant access to financial assets. At the same time mobile devices
are more exposed to the public and thus there is likelihood that a mobile device is lost or stolen in an unattended
moment. This threat is shown by the number of approx. 10.000 mobile phones, which were left in London taxis
every month in 2008 [13].

It is obvious that a mobile Internet can only exist, if there is a strong link between the mobile device and
the authorized user of that specific device. This requires that proper access control mechanisms are in place,
to control that the registered user and only the registered user operates the mobile device. Unfortunately most
mobile devices are operated today with knowledge-based access control only, which is widely deactivated due to
the associated inconvenience.

A promising way out of these pressing problems is to implement on mobile devices secure biometric access
control mechanisms, which provide a non-reputable approach based on the observation of biological character-
istics (i.e. the fingerprint) of the registered user. The aim of a biometric access control process is, to determine
whether the biometric characteristic of the interacting subject and the previously recorded representation in the
reference data match.

A possible application scenario of a the fingerprint biometric user verification system in a mobile device
could be as follows; When a device such as a mobile phone, is first taken into use it would enter a ”practicing”
learning mode where the high quality fingerprints data are processed and stored. Password-based or PIN code
user authentication would be used during the learning session. If the solidity fingerprint biometrics was sufficient
enough, the system would go into a biometric authentication ”state”, a state that will need confirmation from the
owner. In this state the system would asynchronously verify the owner’s identity every time the owner wanted
to authenticate.

E.6 Conclusion

The cell phone camera database has been used to study the performance of some fingerprint verification algo-
rithms in a first step towards real-life situations. The database has scaled and posed distortions in addition to
illumination. The camera lens’ cause further distortion in the images with changes in orientation.

The novel biometric method for frequent authentication of users of mobile devices proposed in this paper
was investigated in a technology test. It contained fingerprints data. The recognition resulted in different per-
formances of using one minutia extractor and comparator. The best algorithm performance gained resulted in an
EER of 4.66.% for the Nokia N95. Looking forward into which finger was performing best, then we observe an
EER of 0.0% for the left index finger as well.

The shown results suggest the possibility of using the proposed method for protecting personal devices such
as PDAs, smart suitcases, mobile phones etc. In a future of truly pervasive computing, when small and inex-
pensive hardware can be embedded in various objects, this method could also be used for protecting valuable
personal items. Moreover, reliably authenticated mobile devices may also serve as an automated authentication
in relation to other systems such as access control system or automated external system logon.
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Appendix F

Biometric Access Control using Near Field
Communication and Smart Phones

Abstract

Near Field Communication or NFC is a short-range communication channel that is
one of the most promising technologies around. One of the purposes for this technology
is to simplify first-time connections to other wireless technologies, like Wi-Fi and Blue-
tooth. In this article we will show how Near Field Communication in a Samsung Nexus
S smartphone can be used as part of a two-factor access control system for unlocking a
door. Biometric Fingerprint recognition is used for authentication and NFC will be used
to transmit authentication information to computer controlling the door. We will define
some requirements for the system to increase security and propose some solutions for
implementation to improve protection of biometric assets.

F.1 Introduction

Authentication in smart phones is an area which has grown over the last decades, and will continue to grow
in the future. It is used in many places today and being authenticated has become a daily habit for most people.
Examples of this are PIN code, pattern password or biometrics. We identify friends and family by their face, voice,
how they walk, etc. Many possible mobile biometrics applications require the transmission of information in the
form of biometric templates or identification information, such as business, cards between phones at close physical
proximity. Near Field Communication (NFC) is proposed as a solution that is considered the most human-centric
or user-friendly and the quickest for the passing of small amounts of data at close range.

NFC is a wireless short range communication technology, allowing us to transfer over a distance of up to 10
cm, but typically around 0-4 cm in practical. The major advantage of NFC compared to other wireless technology
is its simplicity. Simply by touching a reader, another NFC device or a NFC compliant tag, transactions are
initialized automatically. With applications like using it as a contactless credit card or as a contactless bus ticket,
or establishing Bluetooth or Wi-Fi connections by touching a tag, NFC technology gives additional functionality
to a mobile device. Estimations show that by 2012 there are about 180 million mobile devices (equivalent to 20
% penetration) equipped with this technology [25]. Because of its close proximity and automatic transfer with an
access point, it will make the process of setting up and transfer of the network settings easier and more secure.

In this article we introduce NFC in a access control scenario, where people can get quick access to their
homes on their mobile devices by using either their biometric characteristics or a PIN, thus deploying a two-
factor authentication scheme based on biometric traits or knowledge and the possession of a token. For the
biometrics part, we have chosen to work with an Android Phone(HTC Desire) and a Symbian phone(Nokia N95),
where as for the NFC implementation we have used the Samsung Nexus S. Due to late arrival of the NFC-enabled
Samsung Nexus S phone we did not have the opportunity to execute the fingerprint recognition experiment on
that. However, the NFC implementation and the the fingerprint recognition part are independent of eachother.
The Samsung Nexus S is the only NFC-enabled android phone of the ones used in this article.

F.2 Related Work

F.2.1 Biometric Smart-Phone recognition (BSR)
Biometric recognition related to smartphones is increasing. The most related work on BSR system uses the camera
device for fingerprint recognition [20], face recognition (Android 4.0) and accelerometer sensors for gait recogni-
tion [19]. In this section we focus at the first mentioned, namely how a BSR system using fingerprint is possible.

Fingerprint recognition is the most matured approach among all the biometric techniques ever discovered.
With its success of use in different applications, it is today used in many access controls applications as each
individual has an immutable, unique fingerprint. The hand skin or the finger skin consists of the so called friction
ridges with pores. The ridges are already created in the ninth week of an individuals fetal development life [4],
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Figure F.1: NFC in the OSI model.

and remains the same all life long, only growing up to adult size, but if severe injuries occur the skin may be
reconstructed the same as before. Researchers have found out that identical twins have fingerprints that are quite
different and that in the forensic community it is believed that no two people have the same fingerprint [27].

Many fingerprint recognition algorithms perform well on databases that had been collected with high-resolution
cameras and in highly controlled situations [14]. Recent publications show that the performance of a baseline sys-
tem deteriorates from Equal Error Rate (EER) around 0.02 % with very high quality images to EER = 25 % due
to low qualities images [21]. Thus active research is still going on to improve the recognition performance. In
applications such as fingerprint authentication using cameras in cell phones and PDAs, the cameras may intro-
duce image distortions (e.g., because of fish-eye lenses), and fingerprint images may exhibit a wide range of
illumination conditions, as well as scale and pose variations. An important question is which of the fingerprint
authentication algorithms will work well with fingerprint images produced by cell phone cameras?

However, recent research [26, 22] have shown that by using low-cost webcam devices it is possible to extract
fingerprint information when applying different pre-processing and image enhancements approaches. In this
paper we present fingerprint recognition as means of verifying the identity of the user of a mobile phone [20].

F.2.2 Near Field Communication

NFC is a short range communication standard developed by NFC Forum [12], which is a nonprofit organization.
This forum consists of cooperation between several participants and is working in four different groups where
they specialize in hardware, applications, security and testing.

NFC is based on RFID, and the underlying magnetic field induction technology restricts the range of the
communication to typically 0-2 centimeters, and maximum up to ten centimetres. It is a successor to early stage
of smartcard technology found in Sony FeliCa and Phillips MIFARE. NFC operates in the unlicensed and globally
available ISM band of 13.56MHz.

RFID and NFC are basically using the same working standards, but as mentioned the NFC standard restrict
the range with use of magnetic field induction. In addition to contact less smart cards (ISO14443), which only
support communication between powered devices and passive tags, NFC also provides peer-to-peer communi-
cation. NFC combines the feature to read out and emulate RFID tags and to share data between electronic devices
that both have active power.

The data rates within the distances can be up to 424 Kbps depending on the tag specification. It also depends
on what kind of coding schemes implemented and modulation techniques used. Similar technologies for short
range communication include Bluetooth and TransferJet. We do not discuss these technologies in this thesis
because they are not relevant to our security discussion, but instead refers to them for interested readers.

The purpose of NFC is to exchange information or establish a connection between two units (both between
devices, like two mobile phones, or between a device and a tag, e.g. a mobile phone and a smart card), with a
simple ”touch”, where the devices are close enough to perform a communication session without any form of
configuration. The information exchanged between devices and/or tags could be used for identification, authen-
tication, and exchange of data or setup of other communication links.

In principle a NFC device contains an RFID reader/writer which is integrated into the user device with a
host controller interface, developed for NFC support. The limitation of using areas of this standard lies in the
application framework, since the standard is very ”general”. It can be used in many different areas, like for
example bootstrapping of other communication standards, exchange of small amount of information, door locks,
payment machines, ticketing, cars, TVs and so on.
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Figure F.2: System Architecture of a Near Field Communication System.

F.2.2.1 Standards

NFC is described in the protocols NFCIP-1 and NFCIP-2 (Near Field Communication Interface and Protocol 1
and 2). NFCIP- is standardized in ISO18092 , ECMA 340 and ETSI TS 102 190. It is composed of a physical layer
and data link layer, as illustrated in Figure F.1 with blue color. This protocol specifies different functions for the
RF device. It defines the active and passive communication modes. It specifies modulation schemes, coding,
transfer speed and frame format for the interface. The protocol also defines initializing schemes and conditions
for collision control.

F.2.2.2 System Architecture

Typical system architecture of a Near Field Communication system is illustrated in Figure F.2. A NFC commu-
nication is based on point to point, and therefore the two devices can communicate at the same time. The figure
illustrates a NFC device 1, which want to initiate a connection with the NFC system, which contains a NFC read-
er/writer. This system is further connected to a host controller interface (HCI) which is an interface between the
NFC system and an enterprise subsystem.

F.2.2.3 Communication Modes

The NFC interface can operate in two different communication modes; passive and active. In the active mode
both devices are active and generate their own RF field. In passive mode the passive device must use inductive
coupling to transmit data.

In passive mode, a passive device can be powered by the RF field of an active NFC device and transfer data
using load modulation. The passive devices do not require an internal power recourse, which means that in
scenarios where an NFC mobile phone is used for payment, the phone does not require battery to use the NFC
device.

In active mode, both NFC devices are generating their own RF fields when they want to send data. Only one
of the devices can generate an RF field and send data at a time, therefore no duplex functionality is implemented.

Generally, only two devices can communicate at the same time, but in passive communication mode the
initiator (which is active) is able to communicate to several passive devices at the same time. This is realized by a
time slot method, which is used to perform a Single Device Detection (SDD). The maximum number of time slots
is limited to 16. A target responds in a random chosen time slot that can lead to collision with the response of
another target. In order to reduce the collisions, a target may ignore a polling request set out by the initiator. If
the initiator does not receive any response, it has to send the polling request again [23].

F.2.2.4 Initiator and Target

NFC defines two different modes for a device in a given session. One of the communication participants are the
initiator and the other is the target.

The initiator is the one who wants to communicate and initiates the communication. The target receives the
initiators communication request and sends back a reply. This concept prevents the target from sending any data
without first receiving a request message from the initiator. Regarding the passive communication mode, the
passive device acts always as the NFC target. In this case the active device is the initiator, which is responsible for
generating the RF field. In the case of an active configuration in which the RF field is alternately generated, the
roles of initiator and target are strictly assigned to the one who starts the communication. By default, all devices
are NFC targets and only act as a NFC initiator device if it is required by the application. It is not possible to
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initiate communication between an initiator and a target where both devices are passive. This is because none of
the devices would be able to generate any RF field. Therefore none of them are able to either request or respond
to any messages [23].

F.2.2.5 NFC Connection Scenerios

There are four possible scenarios for setting up a Near Field Communication which involve different types of
units, described in table 1 and illustrated below. The tag is typically used to receive configuration settings from
an AP and exchange these settings with a NFC enabled WLAN device for setting up the wireless network. The
tags will not be further described in this paper, but only illustrated for the scenario and example purposes.

1. Access Point↔ NFC tag

2. Mobile NFC device↔ NFC enabled Access Point

3. Mobile NFC device↔ NFC tag

4. Mobile NFC device↔Mobile NFC device

F.2.2.6 Collision Avoidance

In order to not disturb any other NFC communication or any current infrastructure running on the carrier fre-
quency, an Initiator shall not generate its own RF field as long as another RF field is detected. To start communi-
cation with the Target device, either in the Active or the Passive communication mode, an Initiator shall sense the
presence of an external RF field.

If the Initiator do not detect any RF field within a given timeframe, the RF field shall switch on. In addition
to the initial RF Collision Avoidance, an RF collision avoidance response during activation shall be required in
the Active communication mode. This is to avoid collision of data by simultaneous response from more than one
target. A more detailed specification of the collision avoidance can be found in the NFCIP-1 specification [23].

F.3 Implementation, Analysis and Evaluation

F.3.1 Fingerprint Recognition

F.3.1.1 Rationale

Besides fingerprint recognition systems deployed for applications with high-security requirements such as border
control [18, 1] and forensics [10], fingerprint recognition is supposed to be promising for consumer markets as well
for many years [6, 5]. In the meanwhile, privacy concerns over fingerprint recognition technologies’ deployment
in non-high-security applications have been raised [17, 3] and thus leads to a refrained development of biometrics
in consumer market in recent years compared with the rapid development in the public sectors such as border
control, critical infrastructure’s access control, and crime investigations.

We suppose there are at least two ways to alleviating these privacy concerns. Biometric template protection
[24, 8] is one of the most promising solutions to provide a positive-sum of both performance and privacy for
biometric systems’ users. The European Research Project TURBINE [2] demonstrated a good result in both per-
formance and privacy of the ISO fingerprint minutiae template based privacy-enhancement biometric solutions.
On the other hand, for the consumer market, we think using customers’ own biometric sensors will also help
alleviate the customers’ privacy concerns. That is the motivation of this paper to try using cell phone cameras as
sensors for fingerprint sample collection.

Obviously, for applications requiring high security, subjects’ own biometric sensors may not be suitable for
data collection unless the cell phone can be authenticated as a registered and un-tampered device in both software
and hardware aspects, which is difficult to realize for a normal consumer electronics that is out of the control of
the inspection party. However for consumer market, cell phone can be deemed nowadays as a secure device
accepted by many customers, e.g, many banking services send transaction password, TAN code or PIN code via
SMS to customers’ cell phone. So in this paper we assume biometric data collection by the customers’ cell phone
cameras will not raise more privacy and security concerns to the customers than the cell phone based banking
services.

In the meanwhile we expect technical challenges in quality control to the cell phone camera captured samples,
especially from the sample image processing aspects such as bias lighting conditions and unstable sample collec-
tion environment caused by hand-holding. In addition, most existing cell phone cameras are not designed for
biometric use and accurate focusing will always be a challenge for fingerprint image capturing. We address these
potential challenges in this paper in a simplified way to investigate whether cell phone camera can generate good
quality samples and corresponding good biometric performance in a relative stable data collection environment.
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Figure F.3: A traditional verification process.

F.3.1.2 Data Collection Steps

As there is no standard benchmark database available for fingerprint images captured by digital camera, we con-
structed an independent database. The image database is comprised of 22 subjects from which fingerprint images
were taken with a cell phone camera. The fingerprint data used in this paper are captured by two commercial
sensors.

The cell cameras used were Carl Zeiss Optics from Nokia N95 and HTC Desires’ embedded camera. Further
detailed information of the sensors is described in Table F.1.

Cell Phone Nokia N95 HTC Desire
Lens Type CMOS, Tessar lens CMOS
Mega Pixel 5.0 5.0
Resolution 2592x1944 2592x1552
Flash LED Flash LED Flash
ISO Speed 100 - 800 52
Auto-Focus Yes Yes

Table F.1: Cell phone camera setting for fingerprint image acquisition.

The constructed independent database comprises of 1320 fingerprint images. These images stem from 220
finger instances, where each instance was captured 6 times. The images are stored in the internal memory of the
phones and all the images were collected in the cameras ”Burst Mode”.

For evaluating the performance of various algorithms under different settings, the Nokia N95 was fixed
placed on a hanger where images were taken by a human operator holding the phone and capturing images
for the HTC Desire. The image capture was performed inside a laboratory with normal lighting conditions.

As can be seen in Figure F.3, the user initially presents its biometric characteristic (i.e., capturing the finger-
print) to the sensor equipment (i.e. camera in a mobile phone), which captures it as captured biometric sample.
After preprocessing this captured sample, features will be extracted from the sample. In case of fingerprint bio-
metrics, these features would typically be minutia points. The extracted features can then be used for comparison
against corresponding features stored in a database, based on the claimed identity of the user. The result of the
comparison is called the similarity score S, where a low value of S indicates little similarity, while a high value
indicates high similarity. The last step is to compare the similarity score S to a predefined system threshold T, and
output a decision based on both values. In case the similarity score is above the threshold (S > T ) then the user
is accepted as genuine, while a similarity score below the threshold (S < T ) indicates an impostor who is rejected
by the system. Obviously the biometric features of the user must initially be stored in the database before any
comparison of a probe feature vector can take place. This is done during the enrollment phase. During the enroll-
ment biometric samples are captured from the biometric characteristic, after which it is processed and features
are extracted. The extracted data is now stored in a database and linked to the identity of the user who enrolled.
The stored data in the database is referred to as the reference template of the user. In case of fingerprint biometrics
it is a common approach to derive the features from multiple captured samples and generate a single minutiae
template.

F.3.1.3 Feature Extraction

In order to measure the sensor performance we have applied the Neurotechnology, Verifinger 6.0 Extended SDK
commercial minutia extractor for the feature extraction. The SDK includes functionality to extract a set of minutiae
data from an individual fingerprint image and to compute a comparison-score by comparing one set of minutiae
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Figure F.4: Finger position codes according to ISO 19794-2.

data with another. Both SDKs support open and interoperable systems as the generated minutiae templates can
be stored according to the ISO or ANSI interchange standard.

F.3.1.4 Feature Comparison

We compared the verification results of the Neurotechnology algorithm on the processed images. For each algo-
rithm the error rates were determined based on a threshold separating genuine and impostor scores. The False
Match Rate (FMR) and False None-Match Rate (FNMR) were calculated. The calculation of FMR and FNMR is
done in the following way. We have collected N data samples from each of M participants, then we have cal-
culated similarity scores between two samples, either stemming from one finger instance or from two different
instances. A similarity score between two samples from the same source is called a genuine score, while an im-
postor score is the similarity score between two samples from different instances. Given our setting, we can have
N ∗M data samples from which we can calculate the total number of NGen =

M∗N∗(N−1)
2

different genuine

scores and NImp =
M∗N∗(M−1)∗N

2
. Given these sets of genuine and impostor scores we can calculate FMR and

FNMR for any given threshold T as follows:

FMR(T ) =
incorrectly accepted impostor images ≥ T

total number of impostor images

FNMR(T ) =
incorrectly rejected genuine images < T

total number of genuine images

From this, we can find the point where FNMR equals FMR, or in other words the Equal Error
Rate (EER). This rate is very common used value which is being used to compare different systems
against each other, and it roughly gives an idea of how well a system performs.

The images that were generated with the mobile phones encode the finger position according to
Figure F.4 and the equal error rates retrieved corresponding to the finger codes are overviewed in
Table F.2

In general we see that the left index finger (code 7) has performed best for both phones with EER
of 0.0% and 8.47%. The overall performance (cross comparison of all ten fingers) which can be seen in
column all for Nokia N95 performs significantly better than the Desire. This is so because of various
reasons. The Nokia was placed in fixed way on the holder while capturing. Furthermore, the Nokia
was set to an internal close-up mode setting. This mode is ideal for capturing details of small objects
within a distance between 10 and 60 cm. Here we had to ensure that the auto-focus always resulted
in better quality images at a small distance when capturing the fingerprints, whereas the HTC was
manually adjusted by the human operator. Thus, this means that the Nokia N95’s auto-focus was
performing slightly better than the HTC Desire.
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Nokia N95 HTC Desire
1 5.77 11.73
2 5.92 11.43
3 5.11 23.62
4 7.36 21.17
5 5.43 16.01
6 2.98 10.98
7 0.0 8.47
8 0.43 15.37
9 6.26 16.11
10 5.45 15.96
all 4.66 14.65

Table F.2: EERs of cell phone fingerprint recognition. Numbers are in percentage.

Actor
Nexus S PC Door lock

authenticateB()
verfiyFingerprint()

[success] authenticateT()

[success] openDoor()

verfiyAuthToken()

Figure F.5: Nexus S as a two-factor authentication door key

F.3.2 Near Field Communication

F.3.2.1 Using a Nexus S smart phone as a two-factor authentication door key

NFC technology has been integrated into smart phones for years, without seeing broad adoption
by the mass market. This is about to change as feature phones are increasingly replaced by smart
phones, which enable more interesting and complex usage scenarios. One of the key scenarios has
always been mobile payment, which is getting more momentum again, with Google offering the new
Wallet service [7], which integrates the Nexus S smart phones NFC technology with the MasterCard
PayPass service.

In this work we used a Nexus S smart phone with android version 2.3.4 and an ACR122U NFC
reader that was connected to a desktop PC running Ubuntu 11.04. Additionally the PC was connected
to the electrical door opener with a relay. In the chosen usage scenario, a user has to take a picture
of his finger with the built-in camera and tap the NFC reader with his smart phone afterwards to
open a door. If the verification of the fingerprint image fails, the phone will not send the required
authentication token to the NFC reader at the door. The usage scenario is depicted in the sequence
diagram in Figure F.5.

NFC is supported by the android operating system beginning with version 2.3.1 (API level 9).
Tags are automatically recognized and read and the according NDEF messages (NMs) are dispatched
to an activity that registered for that type of message. The API also provides functions to write NMs
to various types of tags. Starting with API level 10 (android 2.3.3), Peer to Peer (P2P) data exchange
is supported with the NDEF Push Protocol (NPP)[11]. The NPP is implemented as a service on top
of LLCP and is addressable with the service name “com.android.npp”. The NPP specification is
available on the android website. As we used a NFC reader to communicate with the phone, P2P
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Figure F.6: Information PDU format [13]

communication over NPP was the natural choice.
Every android application, that wants to use the NFC API has to define the following permission

in its manifest file:

Listing F.1: Request NFC permission
1 <uses−permission android : name=” android . permission .NFC”/>

Next, a NM should be created and initialized with a NdefRecord (NR) that contains the authenti-
cation token for the door. We used a static token in order to avoid developing an application for the
desktop PC, where devices could be registered and an access control list (ACL) could be managed.
The following code example demonstrates the creation of such a NM:

Listing F.2: Creating a NdefMessage
1 NfcManager nfcm = ( NfcManager ) getSystemService ( NFC SERVICE ) ;
2 mAdapter = nfcm . getDefaultAdapter ( ) ;
3 myNdefMessage = new NdefMessage (new NdefRecord [ ] { newTextRecord ( ”

device auth token ” , Locale . ENGLISH, t rue ) } ) ;
4 mAdapter . enableForegroundNdefPush ( this , myNdefMessage ) ;

The newTextRecord method converts the message to the UTF-8 encoding. The operating system
now automatically sends the NM as an NDEF Entry (NE) in the NPP packet as soon as the LLCP link
is established. The activity which registered the NdefPush message has to be active in the foreground.

On the desktop side we built and installed libnfc, libnfc-llcp, the acsccid driver for the ACR122U
NFC reader from ACS and the following required software packages and dependencies:

• autotools (packages: autoconf, automake, libtool)

• libusb-dev [9]

• PCSC-Lite [16]

• libpcsclite-dev

• OpenSC [15]

We used version 1.7.0 of PCSC-Lite, because the latest version did not work with the latest version
of libnfc and the NFC reader. The libnfc-llcp library includes a demonstration program which cre-
ates a LLCP service with either connectionless or connection-oriented transport. Connection-oriented
transport is characterized by the establishment of a data link connection and the subsequent acknowl-
edgement of received packets. In connectionless transport mode, no such connection establishment
or packet acknowledgement takes place. The android NFC stack uses the connection-oriented trans-
port mode, so we set-up a connection-oriented server on the desktop side and disabled the creation
of a connectionless server.

In order to receive NDEF messages sent by an android device, the LLCP service shall be bound
the service name “com.android.npp”. This service name, which is defined in the NPP specification
from Google, does not conform to the service name URI specification from the NFC Forum and thus
is not well-formed. The NPP payload, a Service Data Unit (SDU), is stored in the information field of
the Information Protocol Data Unit (Information PDU), which is depicted in Figure F.6.

An NPP packet consists of a header and one or more NEs. The header has a field for the NPP
protocol version and a field for the number of NEs, followed by the NEs. Each NE contains an action
code, the length of the NM in bytes and the NM itself. The layout of a NPP packet is depicted in
Figure F.7.

The NE structure is depicted in Figure F.8.
Every NM consists of one or more NRs. The layout of a typical NR is depicted in Figure F.9.
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Figure F.7: NPP packet format as described in version 1 of NPP

Figure F.8: NDEF Entry format as described in version 1 of NPP

Figure F.9: NDEF Record layout [13]

The specification defines two different record types: the normal record format includes four octets
for the payload length field, while the short record format includes only one octet for the payload
length field, requiring that the payload size does not exceed 256 octets. When the short record format
is used, the Short Record (SR) flag shall be set.

At the time the LLCP service is initialized, we set a callback for the server thread. This thread
listens on the incoming queue and proceeds as soon as a PDU is received. If the received PDU is
an Information PDU, we inspect the payload and check for the NPP protocol version and number of
NEs. The actual payload offset can be determined by summing up the header sizes. The NPP header
has one byte for the protocol version and four bytes for the number of NEs. In the first version of NPP
only one NE is allowed. An NE has one byte for the action code and four bytes for the length of the
following NM. So 10 bytes are already used by the NPP protocol. The NDEF record can either have
six or nine bytes for the header, depending on the type of record (normal or short record). This sums
up to 16 or 19 bytes, depending on the type of NR. As we send a very short authentication token that
fits in a single NR, we can directly jump to the offset in the received packet and read the token.

This design should only be used for demonstration purposes. Additional security measures
should be applied in real world applications. A communication channel over NFC is not secure by
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default, so to prevent eavesdropping or replay attacks a higher level security scheme like SSL should
be deployed. Furthermore, centralized account management with features like privilege revocation
is desirable.

F.4 Conclusion

We have measured the performance of fingerprint recognition based on images from digital cameras
in smart phones. The results indicate that especially the autofocus algorithms should be improved in
order for the feature extraction to yield better results. We integrated this experiment into a realistic
usage scenario, where the fingerprint recognition is combined with token-based authentication. We
have shown that a Nexus S smart phone, which features a 5MP digital camera and a NFC chip, can
be used as a two-factor authentication door key. We gave a brief description of NFC technology and
protocols and a protocol for P2P communication over NFC and how we used this technology to build
a token-based authentication model. The concept is currently implemented as a prototype, where a
Nexus S smart phone is used as a token to open a door.
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Appendix G

Participant Agreement Declaration

Participation in acquisition of gait data

I am participating in the acquisition of gait data on a voluntarily basis. The data are taken using
accelerometers in mobile devices to fulfill the purpose that is described in detail on the back side of
this sheet.

The data processing institutions are the Gjøvik University College (Hgskolen i Gjøvik). These
institutions take care that the recorded data are solely used for teaching and research purposes.

With my signature I confirm the following:

1. I have been informed in oral and written form about the content and purpose of the collected
data that is in relation to my person.

2. My data will only be used to serve this purpose. The detailed description of the purpose is
documented on the back side of this sheet.

3. I allow that gait data from me are collected.

4. I have been informed that I can reject to sign the agreement.

5. I have been informed that I can request to receive insight in the collected data before such data
is used for teaching and research purposes.

6. I know that I can withdraw my participation anytime I want without giving any explanation
and all data collected from we will be deleted permanently.

All data will be deleted respectively the link between the data and my name will be destroyed
as soon as it is not necessary to maintain it. This will happen as the research experiment has been
completed.

First name - family name:

Gender:

Age:

Height (in cm):

Weight (in kg):

Lenght of leg (in cm):

Kind of worn shoes):

Time, Date and Signature:
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G. PARTICIPANT AGREEMENT DECLARATION

Background information for this agreement

Purpose of this project

From each participant we capture video data while the participant is walking.
The data will be used for the following purpose: Provision of data to the biometric research

groups in the Gjøvik University College. The data will be stored and analyzed without link to the
name of the student but with the research relevant meta data such as age and gender.

Background information

The recorded data will be used to develop and test methods which allow the authentication on mobile
devices by gait recognition. Data on mobile devices is often insufficiently protected as it is more com-
fortable for the user to stay logged-in. This means that anybody having physical access to the mobile
device can directly access all data stored in it. This shows the need for user-friendly authentication
methods which enable an unobtrusive authentication.

A second focus is on technology research for enabling privacy protection of the stored refer-
ences (so called biometric templates) in a biometric system. Since biometric technologies are widely
adopted in multiple applications, the threat of compromising the biometric templates becomes ever
more serious. Based on earlier studies it is expected that this research will lead to new technologi-
cal measures that allows for templates that prevent the possibility for cross-matching and associated
data mining, and allows for renewability in case the biometric record is compromised. The data set
will be used to validate the scientific research results. It will be taken care that no attempt is being
made to analyze the captured signals regarding diseases or personal characteristics and habits of the
subject. For the purpose of this research project it is only of relevance, whether or not recognition can
be performed with high reliability.
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Appendix H

Data Acquisition, Statistics and Methods

This appendix discuss information and methods used throughtout the chapters 4 - 11.

H.1 Data Acquisition

This section gives an overview of the equipments applied and the statistics of the databases created
and used. In total, four datasets have been created from three different phones (Datasets 1 -4) and one
dataset was used for performance evaluation (Dataset 5). The phones used are illustrated in Figure
H.1 and the information of the datasets are given in Table H.1.

Figure H.1: Left: Google G1, Middle: Motorola Milestone, Right: Samsung Nexus S

Dataset 1 Dataset 2 Dataset 3 Dataset 4 Dataset 5
Sensor G1 Phone Milestone Milestone Nexus S MR100

Subjects 51 48 45 25 60
Output Rate 40 - 50 80 80 120 100
Placement Hip Hip Hip Hip Hip

Environment Indoor Indoor Indoor Indoor Indoor
Distance 37 m 240 m 27 m 29 20
Used in [8] [13] [5] [6] [7]

Table H.1: Number of participants and gender information for each dataset.

H.1.1 Speed Issues

All datasets, whether the data was used for gait or for activity recognition, have had the same con-
ditions. No fixed pace was given, so the walking speed varies from subject to subject depending
on what the subject interpreted to be his/her normal, slow, or fast walking. It is believed that by
prescribing a particular speed to a subject will result in an unnatural way of walking with too much
focus at the speed.
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H. DATA ACQUISITION, STATISTICS AND METHODS

H.2 Statistics

This section gives an overview of the gender, age, weight, height and ’length of leg’ statistics in
Table H.2 to Table H.6 for the created datasets. All ’Participant Agreement Declaration’ forms were
collected and an overview from that has been made. Unfortunately it is not all forms that were filled
up with all information or eventually missing, thus a Not Available (N/A) attribute is written.

No./subjects % Male % Female
Dataset 1 51 N/A N/A
Dataset 2 48 62.5 % 37.5 %
Dataset 3 45 67 % 33 %
Dataset 4 25 88 % 12 %

Table H.2: Number of participants and gender information for each dataset.

Average age Std.Dev Min. age Max age
Dataset 1 28.8 N/A N/A N/A
Dataset 2 29.5 8.8 22 59
Dataset 3 25.9 9.4 9 59
Dataset 4 31.1 6.9 21 60

Table H.3: Age statistics

Average weight [kg] Std.Dev Min. weight [kg] Max weight [kg]
Dataset 1 N/A N/A N/A N/A
Dataset 2 72.5 16.2 45 140
Dataset 3 71.8 17.5 30 120
Dataset 4 N/A N/A N/A N/A

Table H.4: Weight statistics

Average height [cm] Std.Dev Min. height [cm] Max height [cm]
Dataset 1 N/A N/A N/A N/A
Dataset 2 174.2 8.5 156 193
Dataset 3 173.8 10.1 140 197
Dataset 4 N/A N/A N/A N/A

Table H.5: Height statistics

Average lenght of leg [cm] Std.Dev Min. lenght [cm] Max lenght [cm]
Dataset 1 N/A N/A N/A N/A
Dataset 2 97.7 7.2 84 112
Dataset 3 98.9 8.3 84 114
Dataset 4 N/A N/A N/A N/A

Table H.6: Lenght of leg statistics.
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H.3 METHODS

H.3 Methods

H.3.1 Gait Recognition Methods

The human walking pattern consists of multiple repeated gait cycles. Each gait cycle contains two
steps. Listed below are all the feature extraction and comparison methods applied within the chapters
4 - 11.

H.3.1.1 Feature Extraction

Preprocessing

First, the preprocessing applies the linear time interpolation on the three axis data (x,y,z) retrieved from
the sensor to obtain a observation every equally fixed amount of seconds - for example, every 1

100

seconds - since the time intervals between two observation points are not always equal.
A weakness from the sensor is the fact that the acceleration data will be outputted with some

noise. This noise is reduced by using a noise reduction filter, e.g. the weighted moving average filter.
Thereafter, the data values are converted to g-forces by using properties of the sensor. And fi-

nally we calculate the resultant vector or the so-called magnitude vector by applying the following
formula,

rt =
√
x2t + y2t + z2t , t = 1, ..., N

where rt, xt, yt and zt are the magnitudes of resulting, vertical, horizontal and lateral acceleration at
time t, respectively and N is the number of recorded observations in the signal.

Cycle Detection

Each accelerometer outputs data a specific sample rate. In newer mobile phones the sample rates
are between 80 - 120 samples per second. One gait cycle, will approximately also take a second to
perform, thus it follows that one cycle-length varies between 60 − 140 samples depending on the
speed of the person. An estimation of how long one cycle is can be calculated. This is done by
extracting a small subset of the data and compare that subset with other subsets of similar length.
Based on the distance scores between the subsets, the average cycle length is computed.

The cycle detection starts from a minimum point, Pstart, around the center of the walk. From this
point, cycles will be detected in both directions. By adding the average length, denoted γ to Pstart,
the estimated ending point E = Pstart + γ is retrieved (in opposite direction: E = Pstart − γ ). The
cycle end is defined to be the minimum in the interval Neighbour Search (see [7]) from the estimated
end point. This process is repeated from the new end point, until all cycles are detected.

Template Creation

The last step of the feature extraction is to create the feature vector template. Here we ensure to skip
cycles that are very different from the others. This is performed by taking each cycle and calculate its
distance to every other cycle by using dynamic time warping (DTW),

dtwi,j = dtw(cyclei, cyclej)

where i = 1..N and j = 1..N, which means that we will get a symmetric N×N matrix. From this point,
we calculate all the averages of one specific cycle to all others.

di =
1

n− 1

∑
j 6=i

dtwi,j

We calculate the mean, µ, and the standard deviation, σ, from the set of di

di = [µ− 2σ;µ+ 2σ]

The factor 2 in 2σ is determined by trial and error. A lower limit resulted in skipping too many
cycles, while a higher limit would lead to not skipping some of the irregular cycles.

When all irregular cycles are removed, a feature vector is created. The feature vector can be a
simple one-dimensional vector consisting of one average cycle (e.g. the mean or median cycle) or
multi-dimensional vector consisting of multiple cycles (e.g. keeping all extracted cycles).
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H. DATA ACQUISITION, STATISTICS AND METHODS

H.3.1.2 Feature Comparators

During comparison, distances between stored references and probes have to be computed. Two fea-
ture vector comparators have been created, namely the Cyclic Rotation Metric and Cross-DTW Metric
(CDM). Below these are described in details. Also the more common Manhattan and Euclidean dis-
tance are described, as well as the Majority Voting Scheme.

Manhattan

The Manhattan distance also known as absolute distance is given in the Equation below

dManhattan(X,Y ) =

k∑
i=1

|xi − yi|

This is a simple metric that takes the sum of the absolute values of the differences between all
the values in the template and the corresponding values in the probe. As a result of this, Manhattan
distance requires that the template and the input have equal length. In addition, this distance metric
is computationally the least expensive one.

Euclidean

The Euclidean distance is a slightly modified version of to the Manhattan and is given by Equation
below.

dEuclidean(X,Y ) =

√√√√ n∑
i=1

(xi − yi)2

The Euclidean distance is defined as the distance between two points defined as the square root
of the sum of the squares of the differences between the corresponding coordinates of the points. As
a result of this, Euclidean distance requires that the template and the input have equal length.

Dynamic Time Warping [12]

The dynamic time warping (DTW) is a well-known technique to find an optimal alignment between
two given (time-dependent) sequences under certain restrictions. A cost matrix C is computed, which
is based on cost for substitution, deletion and insertion.

Cyclic Rotation Metric (CRM)

For this distance, the cycles have to be of equal length, l. The probe cycle is cyclically rotated l
times. For each rotated version of the probe the Manhattan distance is calculated to the template.
The minimal Manhattan distance together with the DTW distance of the corresponding cycles is the
final distance pair. Two thresholds are applied in the classification process, one for each distance. At
least one of them has to be lower than the corresponding threshold.

Cross-DTW Metric (CDM)

As a first step, the locations of the minima of the probe cycle are computed. The cycle is rotated,
such that each of these minima is once the cycle start. For each rotated cycle pi, the DTW distance is
computed. The minimum of these distances is the final distance between the two cycles: CDM(r; p)
= mini(DTW(r; pi)), where i = 1,..,n and n is the number of computed minima in the probe cycle.

Majority Voting

Comparison is done using DTW as distance function and applying majority voting: The distances of
the reference cycle to all probe cycles are computed. If the distance between two cycles is below a
pre-selected threshold this is called a match, otherwise a non-match. If at least 50% of the results are
a match, the whole comparision is assumed to be a match and the subject is authenticated.
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H.3.2 Activity Recognition Methods

To process only meaningful data, it is necessary to identify those parts of the collected data where
a subject is walking. In general, this can be done by applying activity recognition methods. In this
section we will state the applied methods and their parameters.

H.3.2.1 Feature Extraction

The cyclke extraction methods that have been applied for gait recognition are also applied here. The
actual featues which are selected for a further process are based on the cycles extracted. The features
used for activity recognition are stated:

Mean Mean value of the cycle.

Median Median value of the cycle.

Min Minimal value of the cycle.

Max Maximal value of the cycle.

Std Standard deviation of the cycle.

Clen Cycle Lenght of the cycle.

H.3.2.2 Classifications

Several different machine learning algorithms for classification were evaluated and identified to de-
liver suitable results for accelerometer-based activity recognition. These algorithms are very briefly
presented with a reference and its given parameters applied. All of these methods have in common,
that they need to be trained during enrollment, i.e. supervised learning algorithms. For the calcula-
tion of the accuracy an open source software WEKA (Waikato Environment for Knowledge Analysis))
has been applied. This workbench contains a collection of visualization tools and algorithms for data
analysis and predictive modeling, together with graphical user interfaces. It supports several stan-
dard data mining tasks, more specifically, data preprocessing, clustering, classification, regression,
visualization, and feature selection.

Support Vector Machines [3]

The support vector Machines parameters used in WEKA are shown in Table H.7

Parameter Value
SVMType C-SVM)

kernel type exp(−gamma ∗ |u− v|2)
kernel degree 3

eps (terminate tolerance) 0.001
gamma 0

Table H.7: LibSVM parameters in WEKA

MultilayerPercepton [9]

The multilayerPercepton parameters used in WEKA are shown in Table H.8

Parameter Value
hidden layers (features + classes) / 2
learning rate 0.3
momentum 0.2

Table H.8: MLP parameters in WEKA
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Radial Basis Function Network [14]

The radial basis function network parameters used in WEKA are shown in Table H.9

Parameter Value
minStdDev 0.1

numClusters 2
ridge 1.0E-8

Table H.9: RBFNetwork parameters in WEKA

Bayesian network [4]

The bayesian network parameters used in WEKA are shown in Table H.10

Parameter Value
alpha (estimator) 0.5 (simple)

score type BAYES
maxNrofParent 1

Table H.10: Bayesian network parameters in WEKA

NaiveBayes [11]

There naivebayes are no parameters set in WEKA for this algorithm,

RandomTree [2]

The randomtree parameters used in WEKA are shown in Table H.11.

Parameter Value
KValue 0

maxDepth 0
minNum 1.0
numFolds 0

Table H.11: RandomTree parameters in WEKA

Logistic Model Trees [10]

Parameter Value
minNumInstances 15

weightTrimBeta 0.0
numBoostingIterations -1

Table H.12: LMT parameters in WEKA
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H.4 BIBLIOGRAPHY

H.3.3 Parameters Affecting the Performance

This thesis work did not make any contribution on which factors might have an affect of the gait
performance. However, some of these factors have been described in a study by Boyd and James [1].
Even though the gait cycle is primarily determined by the skeletal measurements of an individual
such as leg length, thigh length, foots size etc, the gait cycle described in the background chapter can
be altered significantly by other parameters such as injury and muscle development. For example, a
person who has had a sports injury walks completely differently to someone who is fit and healthy.
Even a slight muscular discomfort can alter the gait cycle and therefore for applications of gait in
authentication presents an added complication. Another parameter that might affect is training, such
as those undertaken by ballet dancers changes the way they walked previously. Even when a person
gets tired or fatigue issues, there is a dissimilarity in the walking cycle that could affect gait analysis.
By wearing different footwear, it has been shown that that muscle activation in walkers changes when
people walk bare foot as opposed to wearing shoes. The gait cycle may also be affected by culture
issues. For example, if a subject achieves a high position such as manager of an organization he/she
will modify the walking style to reflect his/her new status and factor that may confound biometric
gait recognition. Each of these factors may confound biometric gait recognition.
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