
Vascular Pattern Recognition

And its Application in Privacy-Preserving Biometric Online-
Banking Systems

Daniel Hartung

Thesis submitted to Gjøvik University College

for the degree of Doctor of Philosophy in Information Security

2012





Vascular Pattern Recognition

Faculty of Computer Science and Media Technology
Gjøvik University College



Vascular Pattern Recognition and its Application in Privacy-Preserving Biometric Online-
Banking Systems / Daniel Hartung
Doctoral Dissertations at Gjøvik University College 2-2012
ISBN: 978-82-93269-01-4
ISSN: 1893-1227



To those I love, to life and to science.



Declaration of Authorship

I, Daniel Hartung, hereby declare that this thesis and the work presented in it is
entirely my own. Where I have consulted the work of others, this is always clearly
stated.

Signed:

(Daniel Hartung)

Date:



Summary

Authentication is a key building block in security systems and many applications to pre-
vent access to information, services, assets or locations for non-authorized persons or pro-
cesses. Common methods based on knowledge or possession are however not scalable
and practical in human-to-machine communication. Passwords are difficult to remember
if chosen appropriately and distinct for the increasing number of different applications,
they can be forgotten, spied-out and passed on to other persons. Tokens, like keys or cards,
can be forwarded, stolen, lost or destroyed in a similar way. Biometric systems, as the third
factor, use body properties to allow for convenient authentication. The main difference lies
in a strong link between electronic identifier and physical identity which leads to desirable
properties like non-repudiation, difficulty of replication, theft and loss. On the other hand
this may challenge privacy and may lead to identity theft, disclosure of sensitive informa-
tion and profiling if digital biometric identifiers are exposed.

Vascular biometric systems use information about the blood vessel structures inside the
hand area (finger, palm or wrist) and overcome problems of latent prints (as with finger-
prints, DNA) or unnoticed acquisition on distance (as with face) and liveness issues. Still,
the before mentioned problems of biometric systems exist and privacy enhancing technolo-
gies (PETs) were introduced to overcome them. Some PETs enable revocation of biometric
references, unlimited references from the same biometric source and unlinkability between
the generated templates. In addition the sensitive data is sealed. In order to utilize PETs
like the helper data scheme (HDS) some requirements, like a fixed-length structure of the
feature representation, have to be met. The goal of this thesis is to meet those requirements
and to make use of the HDS. In addition we strive for the application in real-life scenarios.

One of the main applications that we identified for such a system is online banking.
Those systems, as of today, are secured with authentication systems based on knowledge or
possession and constantly a vulnerable target of criminal activity. Since the recent systems
are mostly broken, new alternatives are needed. So we designed a protocol based on the
HDS that merges information about online transactions with secure biometric references to
enable secure online banking with the desirable properties of biometric systems: hence the
name BTAP – biometric transaction authentication protocol.

The work on representing patterns compatible to the HDS has been achieved for finger-
print-based systems using spectral minutiae. Therefore we designed algorithms to extract
minutiae to represent the topology of the blood vessel network with its branch and end
points. Transforming the location and orientation information of the feature points into
spectral vein minutiae leads to a translation invariant, fixed-length representation that al-
lows for alignment-free scale and rotation corrections. Those properties are especially im-
portant for hygienic, contact-free sensors without guidance for the hand or finger.

A performance evaluation revealed that the transformed spectral vein minutiae lead to
low recognition errors for sub-modalities including palm, palm dorsal (back of hand) and
wrist vein patterns. In a multi-reference scenario the performance for quantized spectral
minutiae based on palm vein patterns and a simple Hamming distance could even be im-
proved to a perfect separation between genuine and imposter attempts. The quantized,
binary feature vectors are utilized in the first stages of the HDS, they are very compact and
could also be used for extremely fast comparison systems or for biometric indexing.

In conclusion our work shows that vascular patterns can be transformed into high-
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performance representations meeting the requirements of the privacy-enhancing HDS that
is the core for the proposed online banking protocol BTAP. After solving issues with the
reproducibility of feature vectors, we will be able to combine vein patterns with BTAP to
overcome drawbacks of biometric systems to perform secure, convenient, affordable and
user accepted biometric online banking transaction authentication.

Bringing the work into a larger perspective, we can state that BTAP is an innovative
instance where a biometric system is shifted from a binary authentication decision-making
scheme to an integral part of an abstract security protocol. The combination of data from
the application with keys released from biometric templates opens new possibilities and
represents a recent paradigm shift in biometric systems. General digital biometric signa-
ture schemes and biometric message authentication primitives with a strong relation to a
natural person are the next step.
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Chapter 1

Introduction

1.1 Motivation

Authentication is key in our information society. In order to access services, assets, phys-
ical locations or information a decision is needed to whether a subject is authorized to
do so. It is not feasible to manually recognize and authenticate individuals in large-scale,
automated systems. The well-established methods for automatic authentication based on
knowledge and possession are being challenged during the last decades by biometric sys-
tems. The main difference lies in the bijective relation between electronic identifier and
physical identity. This leads to several interesting properties like non-repudiation, diffi-
culty of replication, theft and loss.

Biometrics offer great advantages over traditional authentication methods, however the
relation between digital representation and physiological or behavioral body properties
challenges privacy. The potential for misuse is immanent. Criminals can use it for iden-
tity theft and profiling, governments can use the technology for controlling the population.
Therefore special care has to be taken when designing systems using biometric data. In
many cases raw data contains medical information: the data itself has to be treated as pri-
vate and highly sensitive. For those reasons we propagate the incorporation of security
features and privacy protection as early as possible during the design phase of the applica-
tions and the biometric pipelines.

Nowadays biometric systems are commonly based on fingerprint or 2D-face informa-
tion mainly due to historical, financial and user-convenience considerations. However, the
sensors of these systems can in many cases be easily circumvented with fake artifacts; live-
ness and fake detection are not trivial. Furthermore the biometric information must be
considered public, since face images can be easily acquired on a distance if not available
in the seemingly non-disintegrating “memories” of the Internet. Fingerprints on the other
hand are left unintentionally on surfaces of objects throughout that we touch in everyday
life. It is a trivial task, and widely utilized in crime investigation, to collect those latent
prints. Those two modalities were by far researched most and hence are considered ma-
ture regarding recognition performance and will continue to be utilized mainly in low-cost
and multimodal systems.

Consequently the biometric research community made efforts to find new modalities
that overcome these drawbacks. One approach, that is only possible due to recent techno-
logical developments, is to penetrate unintrusive into the human body and gather infor-
mation from there. Hidden to the naked eye and resilient to the latent copy problem, vein
patterns were discovered to be useful in biometric authentication.

Commonly, vein patterns from the backside of the inner eye (retina recognition) and
vein patterns from the limbs are distinguished. The latter is referred to as vascular pattern
recognition or vein recognition, the information originates mostly from the hand area and
is the focus of this work. We distinguish four sub-modalities: finger, palm, hand dorsal
and wrist vein biometrics. Our goal is to improve the recognition performance of vein pat-
terns from different hand-based modalities and most importantly to enhance the privacy
properties utilizing privacy enhancing technologies (PETs) to overcome general problems
of biometric systems. How such an enhanced biometric system can be utilized as authen-
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1. INTRODUCTION

tication scheme without the need for storing sensitive data is investigated for one specific
use case: the authentication of online banking transactions.

1.2 Goals

The initial goals following the motivation are summarized in the following. They are trans-
formed into more concrete research questions found in Section 1.3. We want to select a
biometric modality that overcomes latent copy, and distance-acquisition problems. The
selected modality has to be analyzed for weak points regarding privacy and approaches
solving potential privacy and data storage problems have to be identified. The design and
implementation of a biometric subsystem based on the selected modality that satisfies the
requirements of the identified privacy protection approach is our main goal. An evaluation
of the biometric performance of the proposed biometric subsystem shall prove the applica-
bility. Furthermore we want to find one or more realistic application scenarios with real-life
impact that can make use of such a privacy-enhanced biometric subsystem. We want to de-
sign a modality-independent system for improving the application scenario. The formal
security features and proper functionality of the system has to be proven.

1.3 Research Questions

The following questions have evolved during the project from the goals defined earlier.
They form the red line of this dissertation:

Q1: Are there privacy issues arising with vascular biometric systems and can technical
solutions be utilized to protect the privacy of data subjects?

Q2: Are there practical scenarios that benefit from such a system? Can protocols be
designed that make use of state-of-the-art template protection schemes?

Q3: Is it possible to design a single algorithm for multiple sub-modalities of vascular
pattern recognition resulting in high recognition rates? Can the problem of vascular
pattern recognition be reduced to other, well-known (biometric) problems? Can the
requirements on the algorithm of state-of-the-art template protection schemes be met?

Q4: Can the biometric performance – besides the fake resistance and liveness detection
capabilities – be increased with multi-sensor and/or multimodal approaches?

Figure 1.1 indicates the relation between posed research questions and published articles.
All articles highlighted in bold letters are included in the thesis.

1.4 Structure of the Dissertation

This thesis consists of three parts: the introduction in Part I; the research papers in the main
Part II and additional work less tightly related with the research questions as well as a brief
introduction to biometric systems and our database can be found in Part III.

After a short introduction to the state of the art in Chapter 2 we continue in Chapter 3 to
clarify the approach towards our goals and our contributions to the research questions. The
main part includes a motivation for privacy protection in vascular biometrics (Chapter 4),
preparative papers on contrast in vascular images (Chapter 5) followed by an approach for
quality assessment of biometric vein samples (Chapter 6). Feature point extraction from
vein skeletons is presented in Chapter 7. A feature extraction and comparison approach
based on the vein skeleton structure and spatial distance is given in Chapter 8. The main
feature extraction pipeline is introduced in Chapter 9. As contribution to multimodal sys-
tems a feature extraction method for finger knuckles is introduced in Chapter 10. The
following Chapters 11 and 12 describe the biometric transaction authentication protocol.
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1.4 STRUCTURE OF THE DISSERTATION

Q4 

Q3 

Q2 

Q1 

Vascular 
Biometrics 

Privacy 
Issues  

& 
 Protection 

Real-life 
Application 

Feature 
Extraction  

& 
Comparison 

Multimodal 
Aspects 

• Why Vein Recognition Needs Privacy Protection (Ch. 4) 
• Entropy Estimator and Formal Model for Vascular Skeletons (Appendix C) 
• Towards a Biometric Random Number Generator – A General Approach For True 
Random Extraction From Biometric Samples (Appendix D) 
• Dynamic Random Projection for Biometric Template Protection  

• Biometric Transaction Authentication 
Protocol (Ch. 11) 
• Biometric Transaction Authentication 
Protocol: Formal Model Verification and 
"Four-Eyes" Principle Extension (Ch. 12) 
• Authenticated Transmission of Data 
(patent) 

•  Contrast Enhancement and Metrics for Biometric Vein 
Pattern Recognition (Ch. 5) 
• Quality Estimation for Vascular Pattern Recognition (Ch. 6)  
• Convolution approach for feature detection in topological 
skeletons obtained from vascular patterns (Ch. 7) 
• Vein Pattern Recognition Using Chain Codes Spatial 
Information and  Skeleton Fusing  
 

• Feature Extraction From Vein Images Using Spatial 
Information (Ch. 8) 
• Spectral minutiae for vein pattern recognition 
• Comprehensive Analysis of Spectral Minutiae for Vein 
Pattern Recognition (Ch. 9) 
• GA Parameter Selection for Vein Minutia Cylinder-Codes 
(Appendix B)  
• Vascular Biometrics based on a Minutiae Extraction Approach      

• Dorsal Finger Texture Recognition: Towards 
Fixed-Length SURF (Ch. 10) 
• Fingerprint Recognition with Cellular 
Partitioning and Co-Sinusoidal Triplets 
• Biometrische Fingererkennung – Fusion von 
Fingerabdruck, Fingervenen- und 
Fingergelenkbild  
   

Figure 1.1: Overview of this PhD thesis: research question clusters Qx and related articles
(bold = enclosed in Parts II and III).
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In Part III a short introduction into biometric systems can be found (Appendix A), an
additional feature extraction approach for vein minutiae is described in Appendix B. In-
teresting for privacy protection schemes, an approach towards the estimation of entropy
in vascular skeletons is given in Appendix C. An approach towards random number gen-
eration from biometric information e.g. for nonces in security protocols can be found in
Appendix D. The multimodal dataset gathered during the project is described in Appendix
E. A mapping from the chapters into functional blocks of a biometric pipeline is shown in
Figure 1.2.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

           Application 
                                                                         (Ch. 11,12) 

 
 
 
 
 
 
 
 
 
 
 
 
 

          Biometric Subsystem 
(Ch. 1-12) 

Data Capture Subsystem 

Signal Processing 
Subsystem  
(Ch. 4-11) 

Quality Control  
(Ch. 6) 

Pre-processing  
(Ch. 5-10) 

Feature Extraction  
(Ch. 7-10) 

Post-processing  
(Ch. 4,9,11,12) 

Data Storage Subsystem 
(Ch. 4,11,12) 

Comparison Subsystem 
(Ch. 8,10-12) 

Decision Subsystem  
(Ch. 11,12)  

Figure 1.2: Mapping of chapters into biometric pipeline.
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Chapter 2

State of the Art

This chapter gives background information about vascular hand pattern recognition. In
order to qualify as a biometric modality, every system can be assessed against several de-
sirable criteria (derived from [105]), which are:

• Universality: the characteristic should be covered by the whole population

• Uniqueness: the characteristic is unique and not determined solely by the genome

• Performance: reliable differentiation between individuals

• Permanence: the characteristic should be time-invariant

• Collectability: the characteristic can be measured

• Acceptability: system is accepted by users

• Circumvention: system is difficult to spoof

Nadort presented in 2007 [163] possibilities and limitations of hand vein patterns as bio-
metric modality and addressed the mentioned criteria. A management-view introduction
to vein recognition can be found in [253] published in 2010. The International Organization
for Standardization (ISO) defined a vascular biometrics data interchange format in [104].

We will discuss in the following mostly about the physiological background leading
to the observable patterns, the imaging technologies, liveness detection capabilities and
privacy issues that arise with the use of vascular pattern-based biometric systems.

2.1 Physiological Background

2.1.1 Cardiovascular System

The circulatory system consists of the cardiovascular system and, depending on the defini-
tion, includes also the lymph system. It can be found in humans and many animals, as it
is the basis of vascular pattern recognition it is described here based on [211, 252]. Its main
function is to maintain homeostasis – a constant set of conditions within cells. It transports
oxygen, nutrients, minerals, enzymes, hormones and other substances to every cell in the
body for storage or consumption. Metabolism residuals are carried away for excretion or
recycling. Furthermore heat is regulated utilizing the cardiovascular system reaching all
parts of the body. It also takes an important role in the immune system.

Two circles can be identified within the cardiovascular system, both are connected and
powered by the heart, in principle a complex pump structure of valves and muscles. The
pulmonary circulation loops from the heart to the lungs. In the blood vessels of the lungs
oxygen-depleted blood is re-oxygenized and carbon dioxide, a residue of the metabolism,
is released into the environment. The systemic circulation loops from the heart to all other
parts of the body to maintain homeostasis. As a subsystem, the coronary system, maintains
the heart itself.

9



2. STATE OF THE ART

Within the systemic loop, oxygen-saturated blood is carried from the heart through
a network of blood vessels to all body regions and back towards the heart – to be re-
oxygenized in the pulmonary system and fed back into the systemic loop. The structure
and properties of the vessels change with the distance to the heart, the blood within the
systemic loop passes the heart into arteries with thick vascular walls, fast flowing and with
high pressure, later it branches out into arterioles and finally into numerous thin-walled,
semi-permeable capillaries where substances and liquids are exchanged between the slow
flowing blood and the tissue. Post-capillary venules funnel the low-oxygen blood back
into venules that are also utilized to store blood adapting the diameter of these vessels.
The venules stream into veins that finally transport the blood back to the heart again – the
circle is closed.

Veins are separated in two groups: superficial (cutaneous) and deep veins. The superfi-
cial veins are located beneath the skin and transport the blood towards the deep veins that
are commonly covered with connective tissue.

2.1.2 Veins and Arteries

Major differences exist between veins and arteries (Figure 2.1). The three layers consti-
tuting the blood vessel walls (endothelium, muscle coat, adventitia) are of different size,
the smooth muscle cells of the arterial wall is thicker and stronger. In this way arter-
ies are able to handle the high pressure blood stream from the heart (typically around
120mmHg/80mmHg for systole and diastole). Vein walls are thinner and more flexible
in order to adapt to the stored blood volume. Valves prevent the back-flow of the low
pressure blood stream (∼10-15 mmHg). The diameter is larger than those of comparable
paired arteries, thus offering a larger volume. Most of the blood volume is located in the
systemic veins (∼61%), only ∼7% in the capillares, 11% in the arteries, 9% in the heart and
12% in the pulmonary circle. The estimated length of the capillary network is enourmous
(around 40000 km), every capillary has an inner diameter of around 8µm (comparison: hair
diameter ∼100µm), just enough to have hemoglobin pass through [252].

Veins are generally located closer to the proximity of the skin than arteries. One pos-
sible explanation is that superficial injuries damaging vessels carrying low pressure blood
result in less blood loss which is advantageous. Another possible explanation is based on
advantages for thermal regulation.

2.1.3 Development of Blood Vessels

Interesting and relevant for the biometric vein recognition is the development of cardiovas-
cular structures, since they form the basis for vascular pattern recognition. During ontoge-
nesis (development of an organism), in the early stages of the prenatal development, typ-
ically in week 3-4 after fertilization (week 5-6 of pregnancy), the early circulatory system
has developed and the heart begins to contract. The early circulatory systems significantly
and abruptly changes with birth and the separation in two different circles is started. Since
support of oxygen and nutrients through the placenta and the umbilical vein is no longer
available, the lungs of the newborn have to work on their own for the first time to saturate
the blood with oxygen. To achieve this, the ductus arteriosus, a shortcut between the aorta
and the pulmonary artery, needs to be closed within the first postnatal days. A shortcut
from the right atrium to the left one, the foramen ovale is also closed soon thereafter. In ad-
dition, the umbilical vein, supporting the fetus with oxygenated blood from the placenta is
closed. Other than that, the main arteriovenous structures remain unchanged thereafter.

The process of the emerging or the genesis of blood vessels itself is complicated and
still not fully understood. Persson et al. published a review article on this issue [176]. They
state that three categories of vessel growth/emerging are commonly distinguished:

• Vasculogenesis
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Figure 2.1: Sample transverse section through blood vessels. V: vein, A: artery. e: endothe-
lium, m: muscle coat, a: adventitia, the connective tissue for anchorage in environment
(Figure 448 in [63]).

• Angiogenesis

• Arteriogenesis

Vasculogenesis describes the process of the formation of new blood vessels during ontogene-
sis. The formation of this primary network is mostly genetically determined. The capillar-
ization of the network is referred to as angiogenesis and is triggered by metabolic processes
to guarantee oxygen-support of new-grown tissue. Arteriogenesis however is defined as
the outgrowing of existing blood vessels and is influence by hemodynamics – the dynam-
ics of the blood flow. There are many parameters to be considered like e.g. the geometry
and elasticity of the vessel, the blood pressure and flow speed, additionally the composi-
tion of blood makes hemodynamics difficult to predict, seemingly leading to chaotic growth
behaviour of the vessels.

Another review article [52] summarizes the current understanding of the emergence of
precursor cells as the basis of the primary vascular plexus and the molecular mechanisms
that control the development and the differentiation of the different blood and lymphatic
vessels.

2.1.4 Blood

The composition of blood is well understood, it is a composition of fluid plasma and cellular
parts. The largest proportion of cells in the blood are with 99% red blood cells (erythrocytes).
The proportion of cellular parts of the blood is defined as hematocrit, it is changing from
birth on, leveling at about 40% for females and 45% for males. Erythrocytes consist of the
protein hemoglobin surrounded by a plasma membrane. Fetal erythrocytes differ from those
of adults, they contain a nucleus and different types of hemoglobin (HbF). Adult blood
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contains less than 1% of HbF, the majority of hemoglobin is of type A (HbA). Hemoglobin
has the property of binding oxygen with its iron atoms (Fe++), in this way most of the
oxygen needed for the metabloism is transported in the blood to the tissues. Oxygen-
saturated blood in the systemic ateries has a bright-red color due to the oxyhemoglobin
(HbO2), oxygen-depleted blood in the systemic veins has a darker, violet color due to the
deoxyhemoglobin (Hb). The other one per cent of cellular parts in the blood are mainly
thrombocytes for hemostasis and white blood cells (leukocytes) for immune system support.

The complexity of the blood vessel patterns can further be understood when inves-
tigating two additional phenomena: i) redundancy and reconnection is an evolutionary
principle that also applies to blood vessels. It prevents failure of necessary blood flow (in-
farct) to and from body tissue and therefore increases probability for survival in case of
damage of parts of the circular system. ii) Arteriovenous anastomosis instead describes the
principle of connections between arterioles and venules. The reason being that a maximal
blood supply of all body parts is not possible at the same time. These shortcuts are being
utilized for blood regulation and can be closed to route blood flow through the capillaries
or opened for shortcut.

2.1.5 Skin and Blood Vessels

The major veins of the upper extremity are depicted in Figure 2.2, the hand veins in Figure
2.3. The skin of the hand, starting in the wrist area, differs from the skin of the forearm: it is
harder and the epidermis is thicker but it also is extremely sensitive and vascular, the skin
of the fingers and the thumb become thinner. The opposite sides of palm and palm dorsal
(dorsum of the hand) have different skin types: in the palm, the skin is thicker and hairless,
optimized for anchorage and grabbing, in contrast the dorsum skin of the hand is thinner,
highly flexible and not necessary hairless. Figure 2.4 illustrates the two different skin types
with the three layers they are composed of: the superficial (i) epidermis and the deeper
layers (ii) dermis and (iii) hypodermis. Fingerprint sensors capture information from the
the ridge structure of the fingertips at the outmost layer (i), whereas vein sensors capture
information from lower levels. The first blood vessels can be found directly below the
epidermis, the main trunks are located deep in the hypodermis (Figure 2.4). The epidermis
is nourished by diffusion from the dermis. The thickness of the skin varies from person to
person and depending on the location in the body.

2.2 Imaging of Blood Vessels

Visualizing the interior of the human body was mainly used for diagnosis and for medical
science. The Egyptians were the first to discover around 1000 B.C. the significance of the
cardiovascular system to health issues, blood-letting was utilized as a therapeutic therapy
[201]. As of today, the significance of diseases related to the cardiovascular system is clear
and proven: the World Health Organization (WHO) classifies it among the main causes of
death in the world [256]. Hence the analysis and the imaging of the blood vessels is of high
interest.

New technologies made it possible to gather information in vivo from the inside of the
body without opening tissue. With the discovery of the X-ray by Röntgen in 1895 [189], it
was possible to create in vivo images of bone structures. Antonio Egas Moniz developed
cerebral angiography in 1927/1928 and summarized his findings in [160]. He injected a
contrast agent absorbing X-rays into the human brain to visualize the blood vessels and
to detect abnormalities like aneurysms. Based on this principle angiography (angio = vessel,
graphy = imaging) is still performed today. The term refers to medical imaging techniques
that visualize the internal organs and in particular the arteries and veins. In the following
we will discuss the most prominent technologies. Since the 1940s medical ultrasound was
developed, in the 1980s magnetic resonance imaging was introduced. The breakthrough of
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Figure 2.2: Major veins of the upper extremity (Figure 574 in [63]).

using vein patterns for biometric purposes are based on the development of near-infrared
optical approaches in 1991 [172]. Different imaging approaches are discussed here, example
scans are given and the appropriateness for biometric purposes is discussed.

2.2.1 X-ray

The X-rays in a wavelength between 10 nanometer and 1 picometer (Figure 2.5) get ab-
sorbed by high-density materials like bones more than by soft tissue. The Beer-Lambert
law describes the absorbance Eλ as a relationship between incident intensity of radiation
I0 and the measured intensity I1 after passing through the medium, which in fact can be de-
scribed by the length of the passage d, the specific absorbance coefficient ελ and the molar
concentration c as:

Eλ = log(
I0
I1

) = ελ ∗ c ∗ d. (2.1)
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Figure 2.3: Major veins of the hand area (Figure 573 in [63]).

The coefficient ελ is for X-ray radiation proportional to the power of four with the atomic
number (number of protons in the nucleus of one atom) of the substance. Calcium in the
bones has an atomic number of Z = 20 which is significantly higher than the elements that
the tissue is mostly composed of e.g. hydrogen (Z = 1), carbon (Z = 6), nitrogen (Z = 7)
and oxygen (Z = 8). Lead with Z = 82 is commonly used to block the radiation. The molar
concentration c is defined as the ratio between density and molar mass. Both are depending
on the element, the latter one is defined as the atomic weight (similar to number of protons
plus neutrons) multiplied with the molar mass constant.

The radiation can be created in X-ray tubes and the intensity I1 can be captured on X-ray
sensitive film. Bones absorbing high amounts of the rays appear bright, other areas where
the film is highly exposed appear dark.

Fluoroscopy is an imaging technique to acquire live and continuous image sequences of
the interior of the body. Opposite to the X-ray source a fluorescent screen or nowadays an
image intensifier is placed. The image intensifier can transform the radiation into visible
light which is captured by a common charge-coupled-device (CCD). If a radio contrast
agent is used, blood vessels and the cardiovascular function can be visualized in this way.

X-ray computed tomography (CT) is a medical imaging technique on the basis of computer-
processed X-rays used since the 1970s. In CT, 2D-slices of radiographic images are created
and automatically rendered into volume data. Instead of film, digital detectors are used.
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Figure 2.4: Cross section through the skin. Thick, hairless skin as found in palm and thin
skin as found in dorsum of the hand (source: Wikipedia, shared under Creative Commons
Attribution-Share Alike 3.0 Unported license).
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Computed tomography angiography (CTA) uses CT technology to visualize blood vessels.
High-resolution images of fine structures are possible with CTA, one example volume-CTA
scan of hands is given in Figure 2.6.

Figure 2.6: CT-angiography scan of hands (shared by Wikimedia Commons, captured with
Siemens Somatom SR16, enhanced with contrast agent).

X-rays are ionizing radiation and are classified as carcinogen by the World Health Or-
ganization (WHO). The use of contrast agents to enhance the imaging is controversial since
the risk of serious reactions and death is documented (meta-study in [24]). In a CTA context
the contrast has to be injected intrusively. Capturing devices are bulky and expensive. All
these properties disqualify X-ray-based imaging of blood vessels for biometric purposes.

2.2.2 Magnetic Resonance Imaging (MRI)

Magnetic resonance imaging (MRI) is used for visualizing organs and tissues, it is a spec-
troscopic approach based not on the electromagnetic waves but on the nuclear magnetic
resonance. MRI was developed in the 1980s. Paul Lauterbur and Peter Mansfield were
honored with the Nobel Prize in Physiology or Medicine (2003) for their discovery.

A strong magnetic field aligns the spin of charged hydrogen nuclei (protons) inside the
body (63% of our body consists of hydrogen [252]). A second pulsed magnetic field is
applied in a right angle to the first one, its frequency (around 10 MHz) is identical with the
frequency of the spin of the protons around the magnetic field. The proton spin is aligned
in direction and synchrony to the pulsed magnetic field, the relaxation time of the protons
depends on the tissue type (surrounding atoms) and it can be measured to compute the
MRI image. Relaxation of the spin after the pulse is called T1 relaxation, relaxation of the
synchrony T2.

Magnetic resonance angiography (MRA) is focusing on the visualization of blood vessels.
The imaging of venous blood is blood oxygen-level dependent and therefore referred to as
BOLD venography or susceptibility weighted imaging (SWI).

MRI is known for high soft tissue contrast. It does not depend on ionizing radiation
as X-ray, however metal pieces inside or in close proximity of the body get heated and
displaced and can cause harm; electronic devices can be damaged. Further drawbacks are
expensive, noisy and large scanners and scanning times. Current research focuses on real-
time MRI. Scanners for the hand or even the finger could substantially be smaller and less
expensive.
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Frames extracted from a MRA-3D-scan of a left hand can be seen in Figure 2.7. The reso-
lution and the volume character would make it an excellent source for biometric purposes.

2.2.3 Ultrasound

Ultrasound (US) waves are sound waves with a frequency above the average human au-
dible limit of around 20kHz. Medical ultrasonography uses those ultra-high-frequency
sound waves (usually from 2-18 MHz) to capture in vivo and unintrusive cross-sections of
internal soft tissues.

Ultrasonic sensors are transceivers sending sound waves and recording the echo, this
is usually done using piezoelectric crystals and the piezoelectric effect: if the crystal is
activated with an electric signal it emits sound waves. The reflected echo produces an
electric signal at the crystal which can be measured. The reflectance of the sound waves is
depending on the echogenicy of the tissue. Liquids are anechoic since they virtually do not
reflect sound.

To visualize blood vessels the Doppler effect is used in Doppler sonography. The flow-
ing blood shifts the frequency of the emitted signal. If the blood is flowing towards the
probe, the frequency gets higher and vice versa. In Doppler mode the probe can sense the
frequency shift and the velocity and direction of the blood can be interpolated, the image
can be augmented with this additional information. In Figure 2.8 a Doppler image of an
carotid artery is shown with the velocity measure of the blood flow.

As described in [147] US can be used for fingerprint recognition by measuring the dif-
ference of the echo from the fingerprint ridges and those from the valleys with the trapped
air. Gray-scale US can image the internal anatomical structure of human fingers, or Doppler
US can visualize the blood flow inside the finger as shown in [165].

Sensors are less expensive and more compact compared to CT or MRI. However, to mit-
igate the reflection from air between the probe and the body, water-based gels are applied
to the skin which is not practical in biometric systems.

2.2.4 Far-Infrared Approach

As described in Section 2.1, one function of the vascular system is thermal regulation. In
cold environments the body has to generate heat and distribute it into the exposed periph-
ery. If the body is too warm, blood is cooled down in the superficial veins. This temperature
gradient can be measured, since heated objects will emit electromagnetic radiation in the
far-infrared (FIR) spectrum (Figure 2.5). The human body emits radiation in the range of
3− 14µm, however the atmospheric transmittance is almost zero for electromagnetic radi-
ation between 5− 8µm. The windows of 3− 5 and 8− 14µm are appropriate to capture the
human body heat far-infrared radiation. Since the body is actively emitting the radiation,
no active illumination is needed for the capturing process.

Thermal imaging has already been used e.g. in 2D-face recognition [84, 277] and in ear
recognition [248].

Before we go into details of the published approaches, we want to point out that the
term vascular or vein biometrics may be misleading. The FIR imaging technology is based
on the depth of the vessels inside the tissue. As discussed in Section 2.1.2, veins can be
found closer to the skin with larger diameters and a larger carried blood volume than ar-
teries, hence it is more likely to visualize veins than arteries. For compliance with the
literature we still use the common terminology.

Lin and Fan developed a FIR vein recognition system based on the palm dorsal in 2003
[54, 140]. In their experiments they captured 960 FIR images from 32 data subjects, in 3
sessions with a one week break in between. In each session 10 images were recorded.
The sensor recorded in the wavelength of 3.4 − 5µm with a native resolution of 256 × 256
elements. A biometric performance of 2.3% EER could be achieved. Worth mentioning
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Figure 2.7: Magnetic resonance angiographic (MRA) 3D-scan of left hand (courtesy of
Fujitsu Laboratories Ltd.).
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Figure 2.8: Medical spectral Doppler visualizing a common carotid artery and the speed of
blood flow (shared by Daniel W. Rickey 2006 on Wikimedia Commons).

is that cases with no visible temperature gradient and cases with inversed temperature
distribution (tissue warmer than blood vessels) are reported (Figures 2.9(a) and 2.9(b)).

In 2009 Kumar et al. [126] introduced another approach to FIR vein capturing and gen-
erated a large database from 100 subjects. The recognition accuracy is given with 0.1% FAR
and 1.5% FRR.

(a) (b)

Figure 2.9: Abnormal thermal images (obtained from [140]): (a) measured temperature of
blood vessels smaller than surrounding tissue; (b) no vein pattern visible.

Wang and Leedham investigated in 2005 [237] the influencing of the surroundings on
capturing in near- as in far-infrared. The sensor used for data collection is sensitive in the
spectral range of 8− 14µm. One result of the experimental data collection was that thermal
imaging is only applicable to the palm-dorsal region and not to wrist or palm [239], their
work is extended in [238,240–242]. Sample images from the study are given in Figure 2.10.
Figure 2.11 shows limitations of the FIR approach. Figure 2.11(a) shows the difficulties to
visualize vein patterns from the palm and wrist area in FIR spectrum. The changes of the
FIR image taken from the same hand are depicted in Figure 2.11(b).
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Figure 2.10: Sample FIR palm dorsal images obtained from [241].

(a)

(b)

Figure 2.11: FIR images indicating limitations of the approach (obtained from [241]): (a) no
visible vein pattern for wrist and palm area; (b) significant changes in FIR images of the
same hand “taken a few weeks apart”.
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The limited number of studies on far-infrared imaging for vein patterns revealed some
shortcomings: the resolution of the images is limited, fine structures cannot be captured
due to the heat spread in the tissue. The variability over time is large and dependent on
environmental factors, in [241], high ambient temperatures between 30-34◦ Celsius and hu-
midity over 80% led to poor contrast between veins and tissue. Only the palm dorsal area
proved to be useful for FIR hand biometrics. Furthermore the FIR-sensors are expensive
compared to visible light CCDs. Nonetheless recognition accuracy was almost perfect for
the experiments conducted in the studies [140, 239, 241] under controlled lab conditions.

The dorsal venous network (Figure 2.3) is located above the tendons of the extensor
digitorum muscle. When the muscle extends the four digits of the hand the veins can be
temporarily slightly displaced. This effect may limit the utilization of the palm-dorsal sub-
modality and therefore the FIR approach.

2.2.5 Near-Infrared Approach

Already in 1961 the relation between near-infrared radiation (NIR) and visualization of vas-
cular structures is documented. Lunnen gave practical advises for medical photographers
on how to capture diseased skin in [143]. He mentions the use of “invisible” radiation like
ultra-violet and infrared (Figure 2.5) for this purpose, and describes the increasing penetra-
tion depth with larger wavelength. The absorption by venous blood in the subcutaneous
layers of the skin is mentioned as well and the difference between conventional and in-
frared photography is shown with sample images of same hand – veins are visible in the
latter case. In the paper a reference is given to [82], the title indicates that infrared photogra-
phy was used even before in dermatology (1933). Unfortunately the paper is not available
any longer. The author of [143] gives recommendations for the capturing process in near-
infrared: active illumination from a NIR-light source (“tungsten filament bulb, flash bulb or
electronic flash discharge”), infrared-sensitive sensor (“infra-red sensitive negative”) and a
pass filter for NIR light. This very basic idea of an imaging system for vascular structures
is still the same as of today.

The principle behind the observed phenomena is that the electromagnetic absorbance
of different substances differs depending on the molecular composition. Various literature
mostly from the medical field investigated the propagation of electromagnetic radiation in
tissue, an introduction to the topic can be found in [231], a review in [32]. In [5] an overview
of skin properties of the human body are presented.

As it turns out, the permeability of human tissue is high for radiation in the wavelength
600-1400 nm [231], 600-1300 nm [5] depending on the source. This “therapeutic window”
defines the range of wavelength with the maximum depth of penetration in tissue.

The dominant chromophores in the skin (epidermis) are melanins, they are responsible
for the pigmentation and absorb light in the ultraviolet and visible range. Different forms
of melanin exist in the human skin, most commonly eumelanin and also pheomelanin,
their extinction coefficients as a function of the wavelength are given in Figure 2.12(c) in
[cm−1(mol/l)−1]. As can be seen, the extinction coefficients decrease exponentially with in-
creasing wavelengths. Thus the influence of melanin on the overall absorption gets smaller
for larger wavelength enabling the “therapeutic window”. The absorption of other parts of
tissue, mainly water and fat, are negligible for NIR-wavelength below 1000 nm.

As discussed in Section 2.1.4 the erythrocytes constitute the major part of cells inside
blood. Depending on the oxygen level of the hemoglobin (Hb/HbO2), the spectral ab-
sorbance changes (Figure 2.12(a)). The absorption of the two forms is equal around 800
nm, for shorter waves Hb absorbs more radiation and for longer waves HbO2 exceeds the
absorption of Hb.

When NIR-light reaches the skin, it gets scattered while penetrating deeper into the
tissue. In a window between 750-950 nm, the light can penetrate deep enough into the skin
to reach the superficial blood vessels. An example of effective penetration depth is given in
Figure 2.13. Light gets absorbed in these depth by the hemoglobin in the blood. Due to the
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positioning and volume of venous vessels and blood, it can be assumed that mostly veins
absorb the radiation. This absorption can be captured by CCDs. The scattering inside the
tissue causes the images to be slightly blurred.

CCDs are in most cases sensitive to NIR radiation, while being interesting to construct
vein sensors, this feature is not intended in visible light photography. Therefore a NIR-
filter (blocking only NIR) is located in front of the sensor to avoid noise, and guarantee
high quality visible light images. In cheap cameras this filter is missing and thus NIR can
be sensed. In case of vascular pattern recognition the CCD without a NIR-block-filter can
be equipped instead with a NIR-pass filter, blocking the visible light to avoid reflections
and unwanted details from the skin. In order to control the amount of NIR light, cheap and
cold light emitting diodes (LEDs) are used.

How the wavelength of the illumination effects the reflectance images of fingers is
shown in Figure 2.14. The images were captured at the VideometerLab multi-spectral sys-
tem of DTU (Technical University of Denmark) [229], the LED light sources are calibrated
and produce even and diffuse lighting from 385-1050 nm. It can be noticed that for shorter
wavelengths superficial skin structures are visible, the vascular structures are discernible
from 850 nm on. Another attempt of capturing multi-spectral palm images is shown in
Figure 2.15 for selected wavelengths.

Instead of measuring the reflectance, where the sensor and the illumination system are
placed on the same side of the probe, the transmittance of light through tissue can be
measured as well. In the latter case the sensor has to capture the scattered light shining
through the probe. This is only feasible for thin parts like the finger or it requires strong
light sources. An example image taken with an unmodified consumer camera (Canon Pow-
ershot G9) without any filters is given in Figure 2.16. The hand was placed against a 11W
compact fluorescent lamp.

The first approaches to utilize vascular palm dorsal (backhand) patterns for biometric
purposes are reported by MacGregor and Welford [172, 173]. “Veincheck” or “vein pat-
tern I.D.” as it is referred to, is introduced with few technical details in [172]. The already
known setup is described: tungsten bulb, sensor (here the electronic version: charge cou-
pled device (CCD)) with infrared pass filter. As representation a hexagonal grid is laid
over the raw vein patterns and the activated nodes are stored as a connectivity matrix.
How this is done is not explained, also the comparison is described on a high abstraction-
level: “The exact form of the matching algorithm compares the presence of like connections
in the two networks mapped onto the hexagonal grid.” [172]. Feasibility of the approach
could be shown with simulations and a comparison of twenty different vein patterns with a
perfect separation. In [173] the comparison was defined as an inverted Hamming distance-
ratio of the hexagonal connectivity matrices. Veincheck was researched by a private and
a governmental-backed sector institutions, hence the focus on productizing the new tech-
nology: “Vein check is unlikely to come to market in a fully automated form for at least
another two years.”. Before that would happen, a manual comparison of vein patterns by
security guards is recommended.

Since then a number of capturing devices for NIR vein imaging have been proposed
for the three main sub-modalities of finger, palm, palm dorsal but also for the wrist area.
Articles describing capturing devices for finger veins can be found in [31,40,81,112,130,136,
138, 162, 230, 235, 257, 258, 266, 273, 275, 276, 286, 287], Shimooka et al. utilized a commercial
sensor in [206] that is not available anymore. [156–159, 269] refer to a commercial database
from Hitachi Labs. Wrist vein imaging devices are investigated in [37, 171, 239, 241]. Most
research has been focused on palm dorsal vein patterns, capturing devices are proposed
in [8,39,55,92,93,113,127,172,173,203,204,209,214,218,233,236,239,239,241,243,244]. [83]
uses data from [8]. Palm vein-focused research can be found in [30,37,62,67,68,132,155,234,
247,291], Sanchez-Reillo et al. investigated in [194] the influence of illumination conditions,
different temperatures and extreme humidity on system and algorithm performance for
palm vein data. [37] discusses a multi-spectral band selection.
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(a)

(b)

(c)

Figure 2.12: Absorption capacity in molar extinction coefficient in relation with wavelength
of: (a) hemoglobin in oxygenized HbO2 and de-oxygenized Hb configuration; (b) absolute
difference of HbO2 and Hb; (c) eumelanin and pheomelanin. Based on data from [181,182].
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Figure 2.13: Effective penetration depth of light in breast tissue in cm (source: Wikipedia,
shared under Creative Commons Attribution-ShareAlike 3.0 Unported license).

Common for the finger vein imaging systems is a transmission setup with top or side
illumination, for all other sub-modalities (palm, palm dorsal, wrist) a reflection setup is
used.

Some of the approaches include multimodal or multi-spectral capabilities. [138] pro-
poses a sensor system for finger veins and fingerprints, [112] utilizes in addition the shape
of the finger. [127] uses palm dorsal vein patterns and the knuckle structure. In [204] the
authors combine palm dorsal vein features with hand geometry and fingerprints. Palm
prints are combined with palm vein images in [67, 68, 234].

Certain databases consist of multimodal data from the hand area as described in Section
2.5.1. For example the CASIA Multi-Spectral Palmprint Database V1.0 covers palm veins
and palm prints in the multi-spectral images, details are described in [67,68]. Interesting is
that the same sensor is used for the different spectral bands. SDUMLA-HMT contains mul-
tiple modalities, from the hand area it is limited to finger veins and fingerprints acquired
with different sensors [276]. The Hong Kong Polytechnic University Image Database V1.0
contains finger vein and finger texture images acquired with the same capturing device
but different sensors. The Bosphorus hand vein dataset and the GPDS100 database both
contain palm dorsal vein patterns. Our own database that was composed during the PhD
project is in the following referred to as GUC45. It contains finger veins, finger knuckles
and fingerprints from different sensors (Appendix E).

NIR imaging is established as a de-facto standard for vein imaging. This has several
reasons: the approach is able to produce high quality images of various sub-modalities
(finger, pal, palm dorsal and wrist) resulting in low classification errors (more in Section
2.6). Imaging quality does not depend on the environmental conditions as in the FIR ap-
proach. Furthermore the sensors are cheap and compact since common CCDs are sensitive
to the specific wavelength. Industrial sensors are based on the same technology, finger vein
systems are developed by Hitachi [87, 88, 122], palm vein systems by Fujitsu [60, 246].

2.2.6 Discussion

As of now the NIR technique proved to be advantageous in comparison with other ap-
proaches and is established as a de-facto standard for vein imaging. However other ap-
proaches might prove to be useful in the future for three dimensional imaging or improved
liveness detection (as discussed in Section 2.3). Recently attempts have been proposed to
extract vein patterns from visible light cameras for forensic applications [219]. In their
work, authors claim to inverse the process of skin color formation to derive distributions
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Figure 2.14: Finger reflectance images captured at VideometerLab [229]. Wavelengths vary-
ing between 385-1050 nm.
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Figure 2.15: Palm reflectance images captured at VideometerLab [229]. Selected wave-
lengths between 450-920 nm.

Figure 2.16: Finger transmittance image captured with unmodified Canon Powershot G9
(no filters). Background illumination: 11W compact fluorescent lamp.
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of various pigments, the depth of the dermis as well as hemoglobin to finally visualize the
vein patterns. This technique could be used in the future to further simplify the design of
the sensors for vein recognition.

After investigating the basics of the imaging approaches, it can be assumed that veins
and arteries both are visualized with the commonly used NIR approach due to the simi-
larity in the NIR absorption. However, as discussed in Section 2.1.2, veins can be found
closer to the skin with larger diameters and a larger overall blood volume is carried by the
veins, hence it is more likely to visualize veins with the NIR approach than arteries. For
simplicity and consistency we continue to use the term vein recognition.

The focus of the research community so far had to lay on the development of sensors
and on the acquirement of experimental data, before working on algorithmic aspects. This
can be explained with the restrictive policies applied to commercial vein imaging prod-
ucts that commonly do not release raw images. The limited focus on open and standard-
ized datasets was further decelerating the progress. Besides the need for constructing such
imaging devices, database acquisition is time-intense and new issues of comparability arise
since the results on different datasets are hardly comparable – almost every single capture
device proposal comes along with its own database and its own comparison algorithm.

A recent and pleasant development initiated by the research community is the develop-
ment of open databases, more on this in Section 2.5. In the future private industry should
re-consider its position on the non-disclosure policy of valuable information like raw im-
ages from sensors and large experimental databases. Their argument is that customers
see security issues with the disclosure of raw sensor data which follows an antiquated
security-by-obscurity paradigm. Instead, research work could be catalyzed and the results
could flow back into the products.

At last we want to discuss the trend of minimizing the size of biometric sensors and
give examples for vein sensors. Private sector research aims at shrinking the size of the
sensors for the integration in portable devices and mobile phones [81]. Remarkable devel-
opments are described in the literature, e.g. in [86] a finger vein sensor is integrated in a
hand grip with possible applications for door handles. As a next step the development of
micro sensors with heights of a few millimeters was tackled [61, 89]. Sample images of the
established generations of sensors can be found in Figure 2.17, the minimized sensors are
shown in Figures 2.18 and 2.19. With the size, the costs for the systems will likely decrease
and new applications and markets might be discovered. The integration in computer mice,
tablet computers and mobile phones could also initiate a paradigm shift from static to more
continuous and seamless authentication for physiological biometric modalities.

2.3 Circumvention – Liveness Detection Capabilities

In remote and unsupervised authentication scenarios it is crucial to detect spoofing at-
tempts and fake artifacts. It is well known, that fingerprint copies of sufficient quality can
be created from latent prints. For example it is reported in [293] and [216] from 2000/2002
and in [49] from 2011, that commercial fingerprint sensors could be circumvented using
artifacts. To avoid or at least to complicate that such an artifact successfully circumvents
the biometric sensor, liveness detection mechanisms are needed, where physiological signs
of life are measured. [222,255] give an overview of liveness detection methods in biometric
systems, [147] gives a comprehensive overview of liveness in fingerprint recognition, [49]
summarizes the possibilities of spoofing prevention related to the finger and the hand
area. [35] introduces a taxonomy for fingerprint-based liveness detection methods.

[222] distinguishes three liveness detection categories for physiological biometric modal-
ities:

1. Observing intrinsic properties of living body

2. Recording involuntary properties of living body
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Figure 2.17: Commercial vein sensors from left to right: reflective palm vein sensor
(Fujitsu PalmSecure, without hand guide), transmission finger vein sensors (side illumi-
nation Hitachi UBreader, top illumination UBReader2).

(a) (b) (c)

Figure 2.18: Miniaturized palm vein sensors from Fujitsu (obtained from [61]): (a) left:
sensor from 2011 model, right: new prototype sensor; (b) new prototype sensor integrated
in tablet computer; (c) new prototype sensor integrated in laptop touchpad.

Figure 2.19: Miniaturized finger vein sensor from Hitachi (obtained from [89]).

28



2.3 CIRCUMVENTION – LIVENESS DETECTION CAPABILITIES

3. Capturing bodily responses to external stimuli

1. refers to physical, electrical and optical properties that are intrinsic to tissue, DNA or
body liquids. 2. summarizes involuntary signals that are dynamic like the pulse, blood
pressure and flow, perspiration, brain wave signals (EEG) and electric heart signals (ECG,
EKG). The third category refers to all measurements that are based on a prior stimulation
and can be considered equivalent to challenge-response approaches from classic cryptog-
raphy. Reflex (pupil dilation) and intentional signals (e.g. eye blinking on command) can
be distinguished.

Two categories about the information utilized to ensure liveness can be summarized:
(a) improved quantity by acquiring additional information or (b) improved quality by ac-
quiring more precise information. Furthermore liveness detection mechanisms can be in-
tegrated (i) at the software-layer and (ii) at hardware or sensor-level. In order to maintain
the contact-less character of most vein sensors, the distinction between contact-less (-) and
contact-based (+) mechanisms is useful here.

Practical trade-offs between the security gain and many aspects like the cost of (addi-
tional) sensor, time span of acquisition, user convenience, bulkiness of solution etc. have
to be considered and restrict the actual implementation. Biometric modalities that feature
intrinsic liveness detection at software layer are therefore advantageous.

The literature describes several possibilities to distinguish between alive samples from
the hand area and artifacts or severed and cadaver body parts. In the following we will
name promising methods and discuss the applicability to vein recognition. Before, we want
to briefly explain why vein recognition is described to feature intrinsic liveness detection:
the argumentation is twofold, first as an intrinsic property of the body, the spectral absorp-
tion of blood and the tissue are indications of liveness. This assumes that the commonly
used optical approach is utilized for the imaging, that the spectral properties are difficult to
replicate and that the properties will vanish in case of severed body parts. In case of other
mechanisms for imaging, intrinsic temperature gradients or the involuntary property of
blood flow can be used for argumentation. The second point is that veins are located inside
the body under the skin, [147] argues that sub-surface information makes a strong liveness
detection against fake attacks due to the non-latent character and the difficulty to capture
the information.

Software based approaches are limited to the already existing information, specific in-
formation can be found as fingerprint-based approaches show, e.g. in [217] liveness detec-
tion based on the valley noise analysis was carried out or in [34] an analysis pointed out that
software-based dynamic and static approaches combined show an improved performance
to recognize artifacts.

2.3.1 Multimodal Approaches for Liveness Detection

Adding additional biometric modalities increases the difficulty to circumvent the system.
If we consider a fake attack, first, additional biometric data needs to be acquired by an
adversary and second, the artifact(s) needs to meet quality criteria of two or more inde-
pendently verifiable sources at the same time. If we consider severed body parts, liveness
features from two or more sources can be used to identify the imposter attempt.

The hand area features a remarkable amount of information that can be utilized for
biometric purposes. To name prominent physiological candidates: skin structure-based
(fingerprint, palm print, finger knuckle), geometry-based (hand and finger), subcutaneous
biometrics (palm vein, backhand vein, finger vein, wrist vein, nailbed).

There are good arguments pro and some arguments contra using sources of biometric
information from the same physical area of the body. If the sensor can capture more than
one trait concurrently, user convenience and possibly user throughput can be improved
since only one body part needs to be presented. However, this makes the adversary’s job
to acquire the information in the same way more easy. The approach can lead to sensor
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designs that are less bulky and more cost efficient. One question to answer is if the short
physical distance may lead to a correlation of the modalities. Loss or damage of body parts
on the other hand may lead to a complete disqualification for the system depending on
the implementation. Obviously the choice of modalities is more restricted and it may be
suboptimal regarding biometric performance or liveness detection capabilities.

2.3.2 Multi-spectral Analysis for Liveness Detection

In a multi-spectral approach, electromagnetic radiation of different or additional wave-
length other than the visible light is used. The motivation is that visible light composes
only a tiny fraction of the whole spectrum (Figure 2.5) and radiation with other wave-
lengths may reveal information that can be used for a more accurate imaging process and
for liveness detection.

Regarding liveness detection it is important to mention that absorption, reflection and
transmission of electromagnetic radiation varies for different materials depending on the
wavelength. Absorption spectroscopy describes the absorption behaviour of materials un-
der radiation of different wavelengths. An example of hemoglobin in the range of 200-1000
nm wavelength is given in Figure 2.12(a).

To ensure that a probe image originates from a live body characteristic, its spectral ab-
sorbance properties in specific ranges of the spectrum can be measured and compared with
the expected ones. Commonly used sensors based on charge-coupled devices (CCD) tech-
nology are sensitive beyond the visible light spectrum into the near-infrared region.

This technology is already in use to identify artifacts in fingerprint recognition (e.g.
[190]).

2.3.3 Pulse and Oxygen Level of Blood for Liveness Detection

Pulse oximetry is a non-invasive approach to measure the blood oxygen-level, it is often
used in a medical context and dates back to the 1940s [153]. The measurements are based
on the oxygen saturation ratio SpO2 as the ratio of the concentration C of oxygen saturated
hemoglobin HbO2 and the concentration of both types of hemoglobin in systemic arterial
blood:

SpO2 =
CHbO2

CHb + CHbO2
. (2.2)

To calculate this ratio, optical approaches are used usually in a transmission setup at thin
tissue areas like the fingertip or the ear lap. The spectral absorbance, measured in the mo-
lar extinction coefficient, differs significantly for Hb and HbO2 as shown in Figure 2.12(a).
Pulse oximetry commonly uses two LEDs in the wavelength of red (660nm) and near-
infrared light (around 920nm) with corresponding photo receptors to measure the spectral
absorbance.

At the first wavelength the absorption of Hb is high, at the latter one HbO2 has a high
absorption as illustrated in Figures 2.12(a) and 2.12(b). With the pulse, the observed in-
tensity of the light reaching the photo receptors changes. The frequency of the pulsating
component is equal to the pulse and can be used itself for liveness detection. The difference
indicates the absorbance solely caused by the blood (and not the tissue). By measuring the
ratio of light received at 600 and 920nm, a calibrated device can look up the value for SpO2.
If there is no pulse, pulse oximetry does not work.

As shown in [188] it can be the basis of liveness detection in biometric systems. Trans-
mission pulse oximetry (TPO) could be utilized in combination with finger vein sensors,
reflective pulse oximetry (RPO), where the emitters and receptors of the light are on the
same side of the tissue are an interesting candidate for liveness detection with palm vein
sensors. However, the method is not instantaneous and requires information from the
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visible and near-infrared spectrum. In theory all NIR vein sensors can capture this infor-
mation with minimal changes in the hardware. Pulse oximetry does not work as reliable
with smokers, where the rate of carboxyhemoglobin (COHb) of the blood can reach more
than 5%. The COHb cannot be distinguished from HbO2 [200].

2.3.4 Pulse Glucometry for Liveness Detection

The blood glucose level (BGL) must be regularly measured by patients suffering from Dia-
betes mellitus. Currently glucose meters are based on an invasive process of pricking the
skin and dropping a blood sample (up to 1 µl) on a test strip, that is analyzed by the meter.

Another rather new approach is non-invasive, a near-infrared optical approach (900-
1700 nm) was developed in 2006 and was subsequently improved in [267, 268]. The ap-
proach captures the pulsating signals from the arterial blood 100-1800 times per second to
perform a spectrophotometric analysis to calculate the BGL.

The BGL is known to vary over a single day depending on the meal times and the diet.
However, the measure could prove effective against fake attacks and certainly can help to
prevent attacks based on severed body parts since a pulse is required and the spectropho-
tometric analysis is optimized to detect the BGL in blood. It is tempting to argue that the
instability over the daytime can in fact be utilized to have a stronger time-depended live-
ness feature. On the other hand, BGL reveals health-related information and patterns of
behaviour, thus has to be treated with care.

2.3.5 Perspiration for Liveness Detection

The effect of perspiration is used mainly for thermoregulation, the sweat pores in the palm
and fingers can be directly observed with high-resolution optical capture devices or the
effect of perspiration can be observed in a time-series of sample images as in [170, 199].
We did experiments utilizing a high-resolution digital microscope (Keyence VHX-1000E)
to visualize the sweat pores and make perspiration visible. In Figure 2.20 a fingertip is
shown, two frames from a video sequence where the perspiration effect can be observed is
shown in Fig 2.21.

Figure 2.20: Fingertip with sweat pores (taken with Keyence VHX-1000E).

The perspiration effect is visible with high-resolution sensors as shown above, or its
effects are indirectly measurable when e.g. the perspired liquids increase contact to sensors
with a total internal reflection design. The indirect measurements are until now focusing
on contact-based sensors, which is in contrast to commercial vein sensors.
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Figure 2.21: Two frames from fingertip video taken with Keyence VHX-1000E with a time
lapse of ca. 1 second. Third image indicates their differences and the perspiration effect:
white spots refer to changes and correspond to location of the sweat pores (highlighted
with circles).

2.3.6 Elasticity for Liveness Detection

Human tissue is a highly elastic material and it deforms when pressure is applied to it.
In the same way it transforms on surfaces like contact-based fingerprint readers. Those
transformations can be measured over time and could be utilized to distinguish human
tissue from other substances. In [6] artifacts made from silicone, gelatin, latex and wood
glue were utilized in the experimental section. However, it is uncertain that the approach
for skin distortion analysis holds for more advanced artifacts.

Since most vein sensors follow contact-less designs, this principle can not be applied
directly. However, oftentimes a guide is available to fix the finger or hand in a certain
position. The movements and deformations of the tissue on contact with the guide can be
observed. In non-guided designs, the variations over time caused by muscle contractions
can be observed.

2.3.7 Discussion

The argumentation that the limited availability and the difficulty to acquire biometric infor-
mation without consent leads to stronger liveness detection is questionable. In this context
it can be discussed if and how Kerckhoff’s principle applies not only to cryptosystems but
also to biometric systems. He stated that the security of a cryptosystem should solely de-
pend on the key, the details about the system itself should be public knowledge. Should
the security of the system be based on the difficulty to acquire biometric information or on
the difficulty to replicate it with all its (liveness) features?

Vendors of vein pattern sensors claim that liveness detection mechanisms are embedded
in the devices without disclosing additional information.

In this context an independent study from 2006 [56] investigated the liveness detection
capabilities of various modalities including palm dorsal. The tested vein-based system, a
TechSphere VP-II1, could only partially be circumvented. The liveness detection could not
prevent the testers to enroll and authenticate an artifact based on a latex glove over a water
bottle. Only if the liveness detection was turned off during enrolment and verification, fake
artifacts (e.g. based on re-drawn vein patterns on paper) could be used to spoof the sensor.
The model of the pattern was acquired in two ways: (i) in visible light when superficial
veins were visible, or (ii) with a slightly modified Sony DCR-TRV9E Digital Video Camera
Recorder with “nightshot” function. In this mode, the infrared-block filter in front of the
sensor is removed, the aperture is fully opened and near-infrared LEDs are activated.

The other study from 2005 on liveness detection capabilities and fake attacks in vein
recognition has been published (in Japanese language only) [224]. The authors tested the

1As of today, TechSphere as the only vendor offering solutions based on the backside of the hand disappeared
from the vein sensor market.
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liveness detection capabilities of one commercially available finger vein system with re-
markable results. Two artifacts made from different epoxy resins and one artifact made
from a radish vegetable stick could not be detected as artifacts. In fact, they could be used
for enrolment and for verification with an almost 100% verification accuracy, even one week
after the radish was enrolled. As it turned out, the NIR sensor produced patterns from the
artifacts and could be spoofed.

To the best of our knowledge independent research from the biometric field on the dis-
integration of observable vein patterns after abscission or necrosis is not available. It can
be vaguely argued that a severed body part will lose the blood over time and hence, mea-
surements of the spectral properties, the blood flow or the emitted heat will fail.

Interesting literature can be found in the field of forensic pathologists, who are inter-
ested in measuring postmortem changes of the human body and in particular changes of
the cardiovascular system to estimate time and cause of death. In [200] the author shows
in experiments on livor mortis (livor = bluish color, mortis = of death) that the theory of post-
mortem re-saturation of hemoglobin with oxygen is valid. This effect is measurable with
a spectrographic analysis up into the lower skin layers (lower dermis) in low temperature
environments (down to 4◦ Celsius). The explanation is that the cold temperatures improve
the oxygen binding of hemoglobin and thus diffusion of oxygen from the environment
takes place [213].

In [223] changes are described that take place during the early postmortem interval.
Within 30 minutes to three hours after death Livor mortis are visible on the lower parts of
the body as purple colored spots on the skin. This is due to gravitational effects on the
blood. Livor mortis can shift in the first 12 to 18 hours after death if the body position is
changed, this is assumed to be due to the high fraction of still intact erythrocytes and the
gravitation. After 18 to 24 hours after death, the livor mortis become fixed and cannot be
changed with pressure on the skin. Hemolysis, the disintegration of erythrocytes, sets in.
The released hemoglobin diffuses through the vessel walls into the surrounding tissue. In
extreme cases in cold environments, livor mortis were still shifting after 48 hours.

The color of the livor mortis is also an interesting object of investigation for forensic
pathologists. In [223] it is described that the color in the early phase is reddish and gets
darker with time. This effect can be explained with the prevailing oxygenized hemoglobin
at the early phase and a continuous oxygen dissociation from the hemoglobin. Also the
cells continue to consume oxygen even after time of death (up to eight hours in skeletal
muscle cells). The result of these processes is de-oxygenized hemoglobinHbwith its darker
slightly bluish color, as regularly found in the veins. Cold ambient temperatures (below 15◦

Celsius) inhibit oxygen dissociation and lead to a re-oxygenation and light red colored livor
mortis.

Livor mortis can be absent if large amounts of blood were lost prior to death (65% of
blood volume in adults). In case of drowning death, livor mortis can be absent due to the
water pressure on the skin surface. They can become visible after recovery from cold water
up to 72 hours after death in this case.

Smaller blood vessels and especially veins can crack when blood is pooled due to grav-
ity in the areas of livor mortis. This phenomena is called vibices or death spots [223] and is
visible as small dark spots. Autolysis, “the self-digestion” of cells, starts when the oxygen
support stops and pH-level decreases. Inner vessel layers begin to change color to red-
dish and light-brown. Anaerobic bacteria start the degradation of soft tissue (putrefaction).
Hemoglobin and other proteins in the blood are their major source of energy. Spreading of
the bacteria takes place from the gut through the blood vessels. Hemoglobin is formed into
sulfhemoglobin from the endogenous bacteria metabolism. The bacteria growth and the
autolysis of erythrocytes lead to “venous marbling”. The superficial epidermal blood ves-
sels become visible as dark structures. The same article also mentions that freezing reduces
the post-mortem changes to a very low rate close to zero.

As research from forensic pathology shows, blood vessel patterns can be observed post-
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mortem. How the commonly used vein pattern sensors react to the processes is not re-
searched. As a conclusion, the intrinsic liveness detection properties can and should opti-
mally be augmented with one or more additional methods as introduced in this chapter.

2.4 Privacy Issues & Template Protection

The vascular system is for a good reason subject to medical research, the World Health
Organization (WHO) classifies it among the main causes of death in the world [256]. In
Chapter 4, privacy issues with hand vein patterns are discussed: medical additional infor-
mation can be found within the structure of the blood vessels – the basis of vein pattern
recognition. Several examples of the hand area are given in Figure 2.22. A severe medical
condition like tumors can lead to angiogenesis to prevent infarct of growing tumor tissue.
In Figure 2.22(c) such an example of blood vessel structure changes is shown: angioma is a
tumor of the vessel walls and leads to unnatural growth of the vessels.

(a) (b) (c)

Figure 2.22: Abnormal hand vein images: (obtained from [140]): (a) hypothenar hammer
syndrome (obtained from [131]); (b) arteriovenous malformation (obtained from [131]); (b) an-
gioma – benign tumor made up from vascular or lymphatic vessels (©Dr Michel Royon /
Wikimedia Commons).

Templates – the compact representation of a biometric source – stored in biometric sys-
tems can be encrypted to avoid data leakage, however, a comparison of two templates in
the encrypted domain is not possible due to the noise sensitivity of standard cryptographic
functions. Such a security measure is therefore not sufficient for biometric data. An in-
ternational standard dealing with Biometric Information Protection can be found in [101].
Biometric systems have four major privacy risks: (i) identity fraud, (ii) cross-matching, (iii)
irrevocability and (iv) leaking of sensitive medical information [116]. Privacy enhancing
technologies (PETs) were developed as a consequence to overcome those shortcomings.
PETs in biometric authentication systems aim to feature (i) irreversibility, (ii) renewability
and (iii) unlinkability. PETs are based on modifying the template before it is stored, hence
they are also referred to as template protection mechanisms.

Section 9.1 discusses different approaches to template protection. [18, 106, 187] give a
good overview over existing approaches. Well-known existing schemes for template pro-
tection are: fuzzy commitment [109], the helper data scheme (HDS) [225], cancelable bio-
metrics [185], biometric encryption [210], fuzzy vault [108], shielding functions [141], fuzzy

34



2.5 DATABASES

extractors [114], extended PIR [19]. They can be classified as feature transformation and
key-based systems according to Kelkboom [116] and Zhou [288].

Feature transformation-based systems may overcome privacy issues for the stored bio-
metric references, however, they are solely designed for a classic authentication scenario.
Key-based systems, also referred to as biometric cryptosystems (BCSs) are more flexible
and can be further distinguished into key-binding (such as the HDS) or key-generation
schemes. In a key-binding scheme a chosen cryptographic key is fused with the biometric
template and released during verification making use of helper data. In key-generation
schemes the key is solely extracted from the biometric information itself.

Biometric subsystems can be extended with a BCS and can then be easily integrated in
higher-abstraction security protocols. In Chapters 11 and 12 we motivate our decision for
the choice of the PET and we propose a protocol integrating information from the appli-
cation with HDS secured templates to authenticate data on the example of online banking
transactions.

2.5 Databases

The availability of data has a major influence in biometric research. In vascular biometrics
no datasets are publicly available that are captured with product sensors, vendors up to
date follow restrictive information policies often completely denying the extraction of bio-
metric raw samples from the sensors. These restrictive politics made the development of
scientific prototype devices necessary in order to gather data for research purposes. The
majority of the early research papers on vascular recognition are therefore also focused on
sensorial aspects, see also Sections 2.2.4 and 2.2.5.

When we started the project there were no publicly available datasets to work with, so
we followed two approaches to get access to data for our work: i) get in touch with other
researchers working on vein recognition that already completed gathering datasets, and ii)
create our own test set with extended multi-sensor and modality features (finger vein, print
and finger knuckle) and meta-data about data subjects as well of the environment over a
longer period of time. The latter database was composed during the PhD project and is in
the following referred to as GUC45.

Our approach i) was fruitful and we got access to a several non-public datasets. The
first two databases were gathered in 2006 in Singapores Nanyang Technological University
and contain a subset of samples that were used in several publications [240, 242]. The two
parts contain 732 palm dorsal vein samples in the near-infrared and 173 in the far-infrared
spectrum from 122, respectively, 34 data subjects. We refer to them as Singapore NIR (SNIR)
and Singapore FIR (SFIR) according to the capturing spectral band. Even though they were
taken under laboratory conditions with little variations we utilized them throughout the
thesis.

The third database is referred to as UC3M. It was collected in 2010 at the University
Carlos III of Madrid [171]. The dataset consists of 348 vein images in the near-infrared
spectrum from the wrist areas of 29 data subjects. The dataset was taken under different
illumination intensities to optimize the capturing device and it does not reflect an opera-
tional database.

For more details about SNIR, SFIR, UC3M we refer to Section 9.4. A summary of the
most important features are given in Table 2.1, sample images are given for example in
Figures 9.3(a), 9.4(a) and 9.5(a). GUC45 is described in an extra chapter (Appendix E). The
small sample sets restrict the confidence of a biometric performance evaluation. According
to [249], the “rule of 3” can be applied to estimate the a posteriori confidence interval for
the calculation of the false non-match rate (FNMR). With a 95% confidence the lowest error
regarding the FNMR can be approximated with 3/N , with N equal to the number genuine
comparisons. This is a limiting factor especially for the SFIR dataset where a minimum
FNMR error of 1.73% can be established. According to the “rule of 30”, at least 30 error
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must occure to estimate the true error rate within ± 30% of the observed rate with a 90%
confidence. As can be seen in the table the datasets provide too few genuine comparisons
to estimate the FNMR with a high confidence according to this criteria.

With the selected databases all sub-modalities but palm veins, including FIR and NIR
capturing approaches are covered.

Property SNIR [242] SFIR [242] UC3M [171] GUC45 [73]

Frequency Band NIR FIR NIR NIR — visible
Modality Back of Hand (2) Back of Hand (2) Wrist (2) Finger vein (10× 3a)

finger knuckle (10)
fingerprint (10× 2a)

Data Subjects 122 34 29 45, 45, 44
Sessions 1 1 1 12, 12, 4
Images per Session 2× 3 2× ∼ 3 2× 6 10× 2
Images 732 173 348 10800(×3a), 10800,

3560(×2a)
Genuine Comparisons 732 170 870
Imposter Comparisons 266814 14708 59508
Resolution (px) 644× 492⊥ 320× 240 640× 480⊥ 512× 240†

Depth 8 Bit 8 Bit 8 Bit 8 Bit
Limitation on FNMR‡ 0.41% 1.73% 0.34%
Limitation on FNMR? 4.10% 17.64% 3.45%

Table 2.1: Properties of the biometric vein datasets used throughout the experiments.
⊥Image size reduced by 50% in each spatial dimension for experiments. †For the experi-
ment the images are cropped to size 468×122 to eliminate most non-finger area. aDifferent
sensors or finger orientation used (details in Appendix E). ‡Upper bound of FNMR accord-
ing to “rule of 3”. ?Upper bound of FNMR according to “rule of 30”.

2.5.1 Public Databases

Only very recently public “reference” datasets of reasonable quality were published online
that make benchmarking of research work possible and that help to further intensify work
in this area. However, most of them are not yet well-known and utilized by the community.
In this section we will give an overview of datasets covering various sub-modalities.

2.5.1.1 The Hong Kong Polytechnic University Finger Image Database (Version 1.0)

The Hong Kong Polytechnic University Image Database contains finger vein and finger tex-
ture images. In the paper where the database is first introduced the authors mention their
motivation to publish the dataset: “...as currently there is no finger-vein image database
publicly available for the researchers elsewhere.” [130]. The objective was to “establish
large-scale finger vein image database for the research and make it available in the pub-
lic domain to further more promising research efforts.” [221]. Work on the development
started in April 2009 and finished in March 2010. The self-built sensor captured finger vein
and finger skin texture image simultaneously and contactless. In two sessions, six images
from index and middle finger veins and textures (left hand) were captured from 156 sub-
jects. Since not all subjects participated in both sessions the number of samples is 6264.

Sample images from the database are given in Figure 2.23. Information about the
database can found on the homepage [221] as well as in the paper [130].

2.5.1.2 PKU Finger Vein Database (V2-V4)

The finger vein databases are gathered by the Artificial Intelligence Lab of Peking Univer-
sity. Three datasets are described (V2-V4):
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Figure 2.23: Sample images of the Hong Kong Polytechnic University Finger Image
Database (Version 1.0) obtained from [221].

• V2 (dated 2008/12/01) contains 4674 gray-scale finger vein samples from 431 fingers
collected in 2008.

• V3 (dated 2009/05/22) 5379 gray-scale finger vein images from 398 different fingers.

• V4 (dated 2011/04/21) contains 1597 gray-scale finger vein samples from 200 fingers
(approx. eight impressions each). The data is first automatically preselected and later
manually to ensure high quality of the images.

On the homepage [4] a list of submitted algorithms and their performance evaluation
can be found, a detailed description is missing. [40] is related to the database as it describes
how the intensity of the lighting is adapted to produce finger vein images of high contrast
in all regions.

2.5.1.3 CASIA Multi-Spectral Palmprint Image Database V1.0

The dataset is published by the Institute of Automation, Chinese Academy of Sciences and
it contains palm images captured with a self-designed multi-spectral imaging device (460,
630, 700, 850, 940 nm + “white light”). The larger wavelengths allow to observe the vein
patterns. 100 volunteers participated in two session, in each session three image sets of
both hands were captured. Some of the resulting 7200 palm images are shown in Figure
2.24.

Additional information can be found on the homepage [33], related papers are [67, 68].
The database was used for the evaluation of feature extractors by external researchers for
example in [155, 291].

2.5.1.4 SDUMLA-HMT Database

The SDUMLA-HMT is a multimodal biometric database from the Joint Lab for Intelligent
Computing and Intelligent Systems of Wuhan University. It was gathered in 2010 including
information from face, finger vein, gait, iris and fingerprint (multiple sensors). All the
biometric information comes from the same 106 volunteers. The authors claim in [64] to
have released the first open finger vein database. Six samples from index, middle and ring
finger of both hands are captured, resulting in 3816 images.
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Figure 2.24: Sample images of the CASIA Multi-Spectral Palmprint Image Database V1.0
obtained from [33].

Samples are given in Figure 2.25. The homepage gives detailed explanations about the
different modalities and the capturing procedures [64], in [276] the information is available
in paper form.

Figure 2.25: Sample images of the vein part of the SDUMLA-HMT database obtained from
[64].
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2.5.1.5 Bosphorus Hand Vein Database

The dataset is composed by Bogazici University and it is based on palm dorsal vein pat-
terns. The data is acquired in NIR from 100 subjects under different conditions: three left
hand palm images under (B) carrying a 3 kg bag for 1 minute, (A) squeezing an elastic
ball for 1 minute, (I) cooling the hand with an ice pack. Three images from both hand for
(N) normal conditions. And additionally left hand images of 25 subjects after 2-5 months.
Overall 1575 images are included. The homepage of the database can be found in [15].

2.5.1.6 GPDS100 Vein Databases

The Universidad de Las Palmas de Gran Canaria made a palm dorsal vein dataset available.
It is split into three parts the GPDS100VeinsCCDcylindrical, the GPDS100VeinsCMOS-
cylindrical and GPDS100VeinsCMOSergonomic part. The first is captured with a CCD
camera, the latter ones with a CMOS webcam in NIR. The first set contains 10 samples
from 102 subjects, the latter ones 10 samples from 103 subjects. Two sessions recording 5
samples from the right hand were conducted. The two CMOS-sets use different handles: “a
cylindrical handle with two pegs” and “an ergonomic handle which fix the hand position
in a suitable way for the user.”, hence the naming [227]. The same source contains informa-
tion about GDPS100 Vein Databases and databases covering other modalities. Information
can also be found in [55].

2.5.2 Discussions

The most important properties of the introduced datasets are summarized in Tables 2.1 and
2.2. Such an overview of public datasets containing vein data was missing until today to
the best of our knowledge. As can be seen from the table almost all submodalities of hand
vein pattern recognition are available, only a wrist dataset is missing. Unfortunately all
vein (parts of the) datasets are captured in near-infrared only.

It has to be mentioned that this is a great achievement of the community, still some
issues could be improved. There are some limitations that should be mentioned as well.
The table clearly identifies one problem of the available datasets: description is often im-
precise, possibly important information is scattered in continuous text or simply not avail-
able. The exact procedures that were utilized to capture the data is missing in almost all
cases. Dissemination and acceptance of the public datasets is yet very limited, as can be
seen by the comments of some groups publishing their data. There exist examples, e.g.
the CASIA Multi-Spectral Palmprint Image Database V1.0 that has been used in various
publications [155,291] already, other datasets are only used from researchers of the hosting
organization.

In some cases, the availability is limited, from personal experience we can state that the
registration and access to the data seems to be restricted in other cases. This could be due
to technical problems or a semi-public dissemination strategy. To furthermore enhance the
possibilities of comparability, test protocols should be recommended, standardized testing
platforms would be advantageous as well. To enable easy adaption of test platforms the
structure and the file naming should be unified. As an additional effort to improve vein
recognition some of the datasets contain multimodal information, which is a valuable de-
velopment. Augmentation of the raw data with additional measures of the environment or
metadata would enrich the data collection even further.

We are planning to improve the dissemination of the information by offering a central-
ized place where links to the specific homepages can be found.
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Property PolyU [221] PKU(V2,V3,V4) [4] CASIA [33]

Frequency Band NIR — visible NIR Multi-spectral(6)
Modality Finger vein and texture (2) Finger vein Palm (2)
Data Subjects 156 431,398,200 (fingers) 100
Sessions 2 ? 2
Images per Session ∼ 2⊥ × 6× 2 ? 2× 3× 6
Images 6264 4674,5379,1597 7200
Resolution (px) ? ? ?
Depth ? ? 8 Bit

Property SDUMLA [64] Bosphorus [15] GDPS† [227]

Frequency Band NIR NIR NIR
Modality Finger vein (6) and others Palm dorsal Palm dorsal (1)
Data Subjects 106 100 102,103,103
Sessions ? ? 2
Images per Session 6× 6 3×Xa 5
Images 3816 1575 1020,1030,1030
Resolution (px) 320× 240 300× 240 ?
Depth ? 8 Bit ?

Table 2.2: Public vein databases (names shortened, details in Section 2.5.1). ?: unclear or
missing information. ⊥Not all volunteers showed in both sessions. aSee text description
(Section 2.5.1.5). †Dataset three-split (Section 2.5.1.6).

2.6 Feature Extraction and Comparison

Most of the literature introduced in Section 2.2.5 proposes not only a capturing device but
also algorithms for feature extraction and comparison. Here we will review some promis-
ing approaches and we will classify them according to criteria like the type of feature rep-
resentation and comparison. A focus in the context of the thesis is given to approaches
that are compatible with state-of-the-art template protection schemes like the helper data
scheme (HDS) [225]. In order to use such a feature post-processing the templates need
to be of fixed-length and structure, alignment free and possibly invariant to affine trans-
formation like scaling, rotations or translations. The problem of affine transformations is
often limited due to the sensor device design, handles or guides keep the region of interest
in place. However, a feature representation that can handle those variations is applicable
more generally.

2.6.1 Representation

All proposed representations of 2D vein patterns can be classified as (i) image or pixel-
based, (ii) skeleton-based or (iii) interest point-based or derived versions thereof.

(i) Pixel-based approaches feature a low level of abstraction, they can be implemented
efficiently since in the easiest case the sensor image itself can be utilized as a reference. This
representation is usually of fixed-length and structure since the sensor resolution does not
change. Transformations can be compensated if alignment is performed.

(ii) A more abstract representation of the blood vessels is the one-pixel wide skeleton
representing its topology. More processing is needed to extract the skeletons and new er-
rors might be introduced: usually a segmentation and morphological operators lead to this
form. On the other hand storage requirements are small, efficient graph-based comparison
can be performed. New information such as the angles of the blood vessel representation
can be utilized. Skeletons can be stored as binary images of fixed-length and structure, also
here transformations can be compensated if alignment is performed.

(iii) Interest points, such as minutiae location and possibly the orientation (bifurcations
and branch points), can be utilized to represent the skeleton in a more abstract form. This
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abstract representation is often based on (ii), thus requires more processing but less storage.
The number of minutiae points will vary depending on noise and other influencing factors,
thus it can not be considered to be of fixed-length and structure. Efficient post-processing
based on simple rules may remove false minutiae and improve recognition accuracy. For
example the following situations can be easily prevented: clusters of minutiae points are
likely occurring due to noise; endpoints in close proximity to branch points are likely to
be caused by skeletonization errors; close endpoints facing each other are likely caused by
segmentation errors and do not represent an actual break in the blood vessels. Perhaps
the largest advantage is that minutiae-based systems are well researched for fingerprint
systems and the already generated knowledge can be applied in the context of vein pattern
recognition. Also template protection schemes like the fuzzy vault [108] were specifically
designed for (fingerprint) minutiae systems and could be adapted to vein minutiae. In
Chapter 9 we show – based on knowledge from fingerprint systems – how minutiae points
are transformed into a fixed-length and structure representation that is alignment-free.

2.6.2 Comparison Strategies

The HDS template protection scheme works on fixed-length vectors: simplified it can be
stated that each element R(i) of the reference vector at position i is compared to the corre-
sponding element P (i) of the probe vector. Approaches for feature comparison based on
sophisticated strategies can not be applied here. A decent biometric performance based
on a comparison of element pairs is therefore required to find approaches that could be
utilized in conjunction with the HDS.

Current survey articles about vein recognition can be found in [144, 265] but they are
very limited. A new attempt to capture vein recognition related articles is given in Table 2.3,
2.4, 2.5 and 2.6. To first structure the data, we arrange it according to the submodality, then
it is sorted according to the author(s). The overview of the state of the art is complemented
with information about the invariance to transformations and about the reported perfor-
mance. However, the performances can be considered to be of limited value, oftentimes
EERs around 1% are measured with limited possibilities for comparisons as discussed in
Section 2.2.5 due to differences in the databases and the evaluation protocols.

Our own proposals introduced in Part II and articles published with our contribution
are highlighted in bold letters to clarify the relation with the state of the art.

As can be seen from the tables, most approaches are pixel-based (i) and thus are of fixed
length. Some approaches are skeleton-based (ii) and a number are minutiae-based (iii). The
latter case is commonly not of fixed length. Only a few approaches consider transformation
invariance to some extend [8, 30, 77–79, 127, 178, 218, 228, 266]. In some of those cases a
registration or alignment of the reference and the probe is necessary [8, 30, 79, 178, 218,
218, 228], which is not applicable in the HDS. Others are not of fixed length [127, 228] and
are therefore not fulfilling the requirements of the HDS. Another approach not filtered yet
suffers from a very low number of features: the feature vectors extracted in [266] have a
length of 10 elements which is not sufficient for a strong brute-force resistance of the HDS-
secured templates.

Based on the analysis of existing approaches there is clearly a need of feature representa-
tion and comparison strategies compatible with the HDS. The spectral minutiae introduced
for fingerprint [261, 262] and our proposal for adapting them to vein minutiae [77, 78] is a
promising approach on how to combine vein data from touch-free sensors with the HDS.
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Ref Author (Year) Type1 Dataset2 Performance Remarks

[66] Guan et a. (2010) i (?/132/5/660) ∼94% Rec.-rate LDA-based
[65] Guan et a. (2011) i (?/132/5/660) ∼94% Rec.-rate PCA-based
[79, 178] Hartung/Pflug ii (reg RT) UC3M,GUC453 1.38% EER/ Chain code

et al. (2012) 25% EER + location
[136] Lee et al. (2009) iii (80/640/10/6400) 0.76% EER no thumbs, MHD
[266] Li et al. (2007) i (5R,5RTS) (32/128/2/256) 92.7% Rec-rate 10 Moment invariants

+ Hausdorff
[156] Miura et al. (2002) i (678/?/?/?) 0.145% EER Line tracking + xor
[157] Miura et al. (2004) i (678/?/?/?) 0.145% EER Line tracking + xor
[158, 159] Miura et al. (2005) i (678/?/?/?) 0.0009% EER Maximum curvature

+ correlation
[162] Mulyono et al. (2008) i (100/200/5/1000) 0% FAR, Comparison [157]

0.28% FRR
[206] Shimooka et al. (2004) i (?/?/?/?) ∼0 Inspired by

immune system
[235] Wang K. et al. (2010) i (?/300/5/1500) Orientational filtering
[258] Wu et al. (2009) i (25/50/10/500) 99.2% Ident.-rate Radon transf. + NN
[257] Wu et al. (2011) i (10/10/10/100) 99% Ident.-rate PCA + NN
[269] Yanagawa et al. (2007) i (506/506/2/1012) ∼0 Comparison [157]
[271] Yang J. et al. (2010) i (100/100/10/1000) 1.3% EER Energy maps-based
[275] Yang W. et al. (2009) i (60/60/4/240) 100% Ident.-rate Multi-spectral
[274] Yang W. et al. (2011) i (?/220/2/440) 0.44% EER Location and

direction coding
[287] Zhang et al. (2005) i (400/400/8/3200) 0.13% EER wavelet trans. + NN
[286] Zhang et al. (2006) i (400/400/8/3200) 0.128% EER curvelet trans. + NN

Table 2.3: Survey of finger vein-related literature. ?: unclear or missing information.
1according to 2.6.1, brackets indicate invariance to (R)otation, (T)ranslation and (S)caling,
eventually (reg)istration may be necessary. 2(capture subjects/biometric sources/samples
per source/files). 3According to Section 2.5.

Ref Author (Year) Type1 Dataset2 Performance Remarks

[30] Chen et al. (2009) i/ii (reg RT) (250/500/12/6000) 0.64% SMM, skeleton
+ segmented version

[62] Fuksis et al. (2011) i (50/50/5/250) 1% EER, palm print + binary
fused 0% EER biohash extension

[68] Hao Y. et al. (2008) i CASIA v1.05 0.57% EER Ordinal palmprint
Hamming distance

[132] Ladoux et al. (2009) iii (RTS) (24/24/605/1440)4 0% EER SIFT-based [142]
[155] Mirmohamadsa- i CASIA v1.05 0.4%EER Local binary patterns

deghi et al. (2011) 0.09% EER Local derivative patterns
[247] Watanabe et al (2005) (70000/140000/?/?) 0.00008% FAR Fujitsu Research

0.01% FRR
[291] Zhou et al. (2010) i CASIA v1.0 2% EER Multiscale vessel enh.

1% EER Localized radon trans.
2% EER Ordinal representation
5% EER Laplacianpalm (LPP)

Table 2.4: Survey of palm vein-related literature. ?: unclear or missing information.
1according to 2.6.1, brackets indicate invariance to (R)otation, (T)ranslation and (S)caling,
eventually (reg)istration may be necessary. 2(capture subjects/biometric sources/samples
per source/files). 3Multi-spectral images. 4Acquired in two sessions. 5According to Section
2.5.
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Ref Author (Year) Type1 Dataset2 Performance Remarks

[8] Badawi (2006) i (reg R) (500/1000/5/5000) 0.7% EER Overlap of
segmented images

[39] Cross et al. (1995) ii (20/20/5/100) 0% FAR, Dilated skeletons
5% FRR multi-sample fusion

[54] Fan et al. (2003) i (?/?/30/?) 2.3% EER FIR, Multi-scale
filter + NN

[140] Fan et al. (2004) i (32/32/30/960)4 2.3% EER [54]
[55] Ferrer et al. (2009) i (150/?/?/?) 1.42% EER Gabor filter

Hamming distance
[71] Hartung et al. (2009) i SNIR 0.55% EER Correlation/

Hamming distance
[77] Hartung et al. (2011) iii (T[RS]6) UC3M,SNIR,SFIR5 5.9%/1.35%/ Spectral minutiae

3.6% EER (SML)
[78] Hartung et al. (2012) iii (T[RS]6) UC3M,SNIR,SFIR5 3.11%/0.41%/ Spectral minutiae

0.15% EER (SML+SMC)
[83] Khan et al. (2009) ii 200 files from [8] 0% EER PCA-based
[119] Khan et al. (2010) ii 200 files from [8] 0% EER PCA-based
[126] Kumar et al. (2009) i (100/?/3/?) 0.1%FAR FIR, Gabor wavelets

1.5% FRR
[127] Kumar et al. (2009) iii (RT) (100/?/?/?) 1.14% EER Minutiae triangulation

knuckle shape
[203] Shahin et al. (2007) i subset of [8] 0.25% EER Correlation of

(50/100/5/500) segmented images
[209] Soni et al. (2010) iii (341/?/?/1750) 0.64% EER Minutiae location

+ orientation
[218] Tanaka et al. (2004) i (reg RT) (25/?/?/?) FAR 0.73% FFT, phase only correlation

FRR 4% vertical, horizontal shift
[228] Uriarte-Antonio iii (reg RT) UC3M27,SNIR7 2.27%/ Miutiae location

et al. (2011) 1.63% EER + orientation
[233] Wang H. et al. (2011) iii (?/?/?/400) 0.7% EER SIFT-based [142]
[236] Wang K. et al. (2006) i/ii (100/100/5/500) 0% FAR, Invariable Moments

0.5% FRR Fusion K-L transform
Vein geometry

[237] Wang L. et al. (2005) ii (12/12/9/108) 0% EER FIR, Local
thresholding + LHD

[239] Wang L. et al. (2006) ii (30/60/9/540) 0% EER NIR/FIR, Local
thresholding + LHD

[241] Wang L. et al. (2007) ii (150/300/9/2700) NIR, Local
thresholding + LHD

[241] Wang L. et al. (2007) ii (30/60/9/540) FIR, Local
thresholding + LHD

[242] Wang L. et al. (2008) iii (47/?/?/?) 0% EER FIR, MHD
[243] Wang Y. et al. (2010) i (102/204/10/2040) 90.88% partition local binary

Rec-rate pattern (CWPLBP)
[244] Wang Y. et al. (2011) i (102/204/10/2040) 98.83% partition local binary

Rec-rate pattern (CWPLBP)+ ECC

Table 2.5: Survey of palm dorsal vein-related literature. ?: unclear or missing information.
1according to 2.6.1, brackets indicate invariance to (R)otation, (T)ranslation and (S)caling,
eventually (reg)istration may be necessary. 2(capture subjects/biometric sources/samples
per source/files). 3Multi-spectral images. 4Acquired in three sessions. 5According to Sec-
tion 2.5. 6R,S are transformed into alignment-free translations. 7Captured with the same
sensor as UC3M, but fixed settings for lighting, (121/121/5/605).
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Ref Author (Year) Type1 Dataset2 Performance Remarks

[79, 178] Hartung/Pflug ii (reg RT) UC3M,GUC453 1.38% EER/ Chain code
et al. (2012) 25% EER + location

[77] Hartung et al. (2011) iii (T[RS]4) UC3M,SNIR,SFIR3 5.9%/1.35%/ Spectral minutiae
3.6% EER (SML)

[78] Hartung et al. (2012) iii (T[RS]4) UC3M,SNIR,SFIR3 3.11%/0.41%/ Spectral minutiae
0.15% EER (SML+SMC)

[228] Uriarte-Antonio iii (reg RT) UC3M25, 2.27%/ Miutiae location
et al. (2011) SNIR5 1.63% EER + orientation

Table 2.6: Survey of wrist vein-related literature. ?: unclear or missing information.
1according to 2.6.1, brackets indicate invariance to (R)otation, (T)ranslation and (S)caling,
eventually (reg)istration may be necessary. 2(capture subjects/biometric sources/samples
per source/files). 3According to Section 2.5. 4R,S are transformed into alignment-free
translations. 5Captured with the same sensor as UC3M, but fixed settings for lighting,
(121/121/5/605).

2.7 Discussions

To come back to the evaluation criteria introduced in the beginning of Chapter 2 and to
summarize the state of the art analysis we come the the following conclusions:

• Universality: as introduced in the physiological background (Section 2.1), it is obvi-
ous that a healthy human needs to have blood vessels in the areas of consideration.
However, as indicated in Section 2.2, the affordable imaging technologies are not ca-
pable of perfectly capturing the information. A study from 2006 [94] has shown that
the failure to enroll rate is quite low and lower than in iris-based systems.

• Uniqueness: In Section 2.1 the partly random genesis of the blood vessels is described.
Section 2.2 gives examples of the high complexity of vein patterns in the hand area.

• Performance: the research work introduced in Section 2.6 shows the high recognition
performance that can be achieved utilizing this modality.

• Permanence: it is known that vascular patterns change over time e.g. in case of med-
ical conditions (Section 2.4) or due to physical exercise. However, this is usually a
slow process and furthermore since the modality is located within the body, it is less
likely to be altered.

• Collectability: simple capturing technologies exist and are available as explained in
Section 2.2.

• Acceptability: vein patterns can be recorded without touching the sensor (hygienic),
without harming the body, they are hidden inside the body and are not related to
criminal investigation. These are good arguments for a possible high user acceptance.
The success in the East-Asian region seems to support this claim.

• Circumvention: advanced possibilities for liveness detection exist as discussed in Sec-
tion 2.3.

For the extend of the thesis we decided to focus on algorithmic aspects of NIR vein
images since the imaging technology is the most promising and commercially successful.
The research questions formulated in Section 1.3 aim at extending the importance of pri-
vacy issues with vein patterns (Q1). To overcome those issues we strive to utilize HDS-
based template protection schemes mainly due to the binary verification decision, binary,
compact and secure templates and a modular structure utilizing standard cryptography
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building blocks. It solves the problem of medical information that might be included in
the vein patterns. For this, an alignment-free and fixed-length representation of vein pat-
terns is needed since the state of the art is lacking those approaches with sufficiently large
feature vectors. This algorithm must lead to a high recognition accuracy and sufficiently
long binary sequences. Preferably the algorithm is adaptable to multiple sub-modalities
(Q3). The state of the art is also lacking systems making full use of the template protection
schemes (Q2) and finally the questions arose if the current trend of utilizing information
from multiple biometric sources can help to increase the liveness detection capabilities and
overcome potential limitations with the biometric performance (Q4).
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Chapter 3

Contributions and Conclusions

3.1 Contributions

Here we describe the contributions regarding our initial goals and the research questions
in a compact form.

Q1: Are there privacy issues arising with vascular biometric systems and can technical
solutions be utilized to protect the privacy of data subjects?

(Addressed in Chapter 4 [71])

• Vascular pattern recognition with its non-latent character and the properties dis-
cussed in Chapter 2 was identified as the modality of choice.

• The literature survey about vein biometrics revealed that no critical analysis was per-
formed yet. Our investigation attached in Chapter 4 clearly identifies medical infor-
mation that could be extracted from the vein patterns. In conclusion the use of pri-
vacy enhancing technologies with vein biometrics is recommended if not inevitable.

• Classic cryptography can solve problems with the storage of sensitive information,
but the comparison of the inherent noisy biometric templates cannot be performed in
the encrypted domain. A second survey showed that new approaches of privacy en-
hancing technologies (PETs) were developed, often designed modality-independent
and implemented for multiple modalities to overcome the known issues. However, a
vascular pattern-based privacy enhanced system have never been proposed before.

• The key-binding and releasing PETs allow for the combination of biometric secure
templates with standard cryptographic systems. One state-of-the-art instance, the
helper data scheme (HDS) [225], seemed to be the most promising candidate for solv-
ing the privacy and data storage problems. It utilizes a binary verification decision,
binary, compact and secure templates and standard cryptography building blocks.
The HDS requires feature vectors of fixed length and structure. To guarantee a high
performance of the template-protected system, the features should have a sufficient
length to avoid brute force attacks, the comparison of the underlying biometric fea-
tures must be performed element-wise and it should result in a high base perfor-
mance. In addition no registration a reference and a probe can be performed.

Q2: Are there practical scenarios that benefit from such a system? Can protocols be
designed that make use of state-of-the-art template protection schemes?

(Addressed in Chapters 11 [72] and 12 [74])

• The biometric research community searches for application scenarios besides the al-
ready exploited border control and national identity schemes. One scenario that we
identified for such a biometric system is authentication in online banking. A recent
study from 2012 initiated by Deutsch Bank Research [41] confirms this growing need
for security in online banking. The work also refers to a study that investigated the
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user acceptance regarding technologies for increasing the online banking security.
Biometric technologies placed second, right behind TAN-based approaches. How-
ever, TAN-based and other established mechanisms based on knowledge and posses-
sion for securing online transactions are widely broken. The problem of repudiation
of transactions secured with those mechanisms is immanent and can be solved with
biometrics.

• As a consequence we sketched a system to secure online banking transactions with
template-protected biometric features. The underlying protocol is called BTAP and
is introduced in Chapter 11. It is modality independent and based on the HDS as
well as on a separate hardware token for the processing of the biometric pipeline and
the BTAP. Transaction information is fused with a HDS-released key and send for the
verification to a banking server. No biometric information is stored outside the token
and the template is in addition protected by the HDS.

• The BTAP is specified, its security properties and the correct functionality are proven
in Chapter 12 using a formal model, the applied pi calculus.

Q3: Is it possible to design a single algorithm for multiple sub-modalities of vascular
pattern recognition resulting in high recognition rates? Can the problem of vascular
pattern recognition be reduced to other, well-known (biometric) problems? Can the
requirements on the algorithm of state-of-the-art template protection schemes be met?

(Addressed in Chapters 5-9 [76, 78, 166, 168, 178])

• The requirements of the HDS have been satisfied for minutiae-based fingerprint sys-
tems in the past. Therefore our approach was to map the vein patterns into a similar
minutiae-based representation. The minutiae of a fingerprint describe the end and
branch points of the fingerprint ridges, the equivalent in vein patterns describe the
topology of the blood vessels. A transformation of the location and orientation in-
formation from the varying number of minutiae points into spectral minutiae [264]
results in HDS-compatible feature vectors of fixed length and structure that are also
translation invariant. Rotations and scaling changes can be compensated without a
registration of two vectors which is useful in combination with hygienic and contact-
free vein sensors.

• The next step was the design and implementation of a biometric pipeline based on
vascular patterns fulfilling the requirements of the HDS and thus the BTAP: in or-
der to perform evaluations we needed to access vascular databases. The approach
to access the data was three-fold: (i) first, we contacted other research groups and
successfully gained access to subsets of data published in [242] and [171] which we
used throughout the work for internal comparability of the results. To make the re-
sults comparable with the state of the art, we implemented algorithms from [50, 242]
and [30]. (ii) The second approach was the gathering of our own dataset. We success-
fully captured data from 45 participants of Gjøvik University College (hence hereafter
referred to as GUC45) over a long period of time in 12 sessions. The database con-
tains multimodal (finger vein, finger knuckle, fingerprints) as well as multi-sensorial
data. Also metadata about the capture subjects and the environmental conditions
during the sessions were acquired (Appendix E). However, the quality of the images
proved to be very challenging. (iii) The last approach was to perform an evaluation
on an undisclosed, large, high-quality database of palm vein patterns at the end of
the project, the latest results on this data are described in Section 3.2.

• We investigated the effect of contrast enhancement pre-processing on vein patterns
in Chapter 5 with the conclusion that a trade-off between the level of enhancement,
the introduction of noise and required execution time is necessary.
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• A new feature point detector for minutiae was developed that works with image
skeletons. It is fast and more flexible than existing approaches as it is able to extract
the location and additionally orientational information (Chapter 7 and 9).

• We developed a quality control for vein patterns that is useful in the unsupervised
scenario of online banking (Chapter 6). We proved the effectiveness in an evaluation
for different sub-modalities. With the system, low-quality samples can be directly
refused to improve the enrolment process and the biometric performance. Another
application is the guidance of the capture subject during operation.

• The pipeline based on spectral vein minutiae is described in Chapter 9. The evalua-
tion shows that an excellent biometric performance is reached while the requirements
of the HDS are fulfilled. The solution is a flexible, unifying approach that is applica-
ble to various submodalities like palm dorsal and wrist veins captured with different
imaging techniques.

• A second biometric feature extraction and comparison algorithm was designed to
investigate if state-of-the-art performance could be reached in a multi-reference sce-
nario using vein skeletal information on a different abstraction level. The approach
is described in Chapter 8, the evaluation revealed that indeed a high, competitive
performance can be reached. However, the approach is not compatible with HDS or
BTAP since the comparison requires the registration of the samples.

• In Section 3.2 we present the latest results regarding quantized features – as they are
utilizes within the HDS. The biometric performance of the compact, binary features
from the spectral vein minutiae are further improved with a multi-reference training.
In fact, a perfect distinction between imposter and genuine comparisons of 1450 palm
vein images from 145 different palms can be reached with a superb comparison speed.
This promising result is embittered by the fact that the intra-class variance is still too
high to result in a high performance of the secured templates. The discussion in
Section 3.3.1 points out possible solutions.

Q4: Can the biometric performance – besides the fake resistance and liveness detection
capabilities – be increased with multi-sensor and/or multimodal approaches?

(Addressed in Chapter 10 [75] and Appendix E)

• As mentioned earlier, to investigate this question the GUC45 database was acquired
as a multimodal testing database.

• We introduce in Chapter 10 a feature extraction approach for finger knuckle images
from our database. The idea is to use SURF [11] descriptors and map them into a
fixed-length form to enable a possible fusion in the HDS and to solve issues with the
high intra-class variance. The biometric performance however is decreasing signifi-
cantly when transforming the SURF points into a HDS-compatible form.

• The design of the spectral minutiae vein pipeline allows the fusion with fingerprint
data on feature and other levels to increase the biometric performance.

• As the evaluation in Section 3.2 revealed, the biometric performance of the proposed
solution does not necessary need to be improved, however liveness detection will
benefit from additional modalities.

3.2 Latest Results

We strive to merge our work on a system that enables data and person authentic online
banking transactions with our high performance biometric system using vascular patterns
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of the palm. One of the major unsolved problems of nowadays online banking was ad-
dressed by our previous work: how to realize non-repudiation of authentic transactions
without introducing privacy issues for the customers. Here, a major step towards the prac-
tical realization of such a system utilizing vascular patterns is presented.

The two building blocks – the BTAP and the spectral vein minutiae biometric subsystem
– and their incorporation are depicted in Figure 3.1.
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Figure 3.1: Flowchart of the adapted biometric vein system based on [78] inside the BTAP
[72, 74]. Green: functional blocks addressed in this section; parameter optimization of
pipeline as discussed in Section 3.2.1; new performance results as in Section 3.2.1.

3.2.1 Simulations

In May 2012 the developed pipeline based on [78] could be applied to a large palm vein
dataset. Due to non disclosure agreements, the organizations name and any sensitive in-
formation as raw images can not be mentioned in the report. Image quality and the large
number of biometric samples per source (max. images 12 per session per palm) qualify the
dataset for the analysis of reliability of single elements of the feature vectors. This estima-
tion of reliable features is a critical step in the helper data scheme (HDS) to find and extract
reproducible and discriminative components.

The pipeline was extended and adapted to the specifics of the data: the optimization
process was performed on a small subset of 296 samples from 28 palms. Evaluation was
performed on normalized data that was made available. Parameters had to be greedily
optimized due to time restrictions and a relatively slow Matlab implementation. This pro-
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cedure unlikely leads to globally optimal parameters for the feature extraction and com-
parison, but is practical and may still lead to high recognition accuracy.

Adaptation of contrast enhancement algorithm: the previous methods introduced large
amounts of noise. Therefor, we chose the contrast-limited adaptive histogram equalization
(CLAHE) [292] with a low parameter for the clip limit (0.01) to minimize the noise for the
cost of a strong contrast enhancement.

Adaptation of segmentation algorithm parameter: the previously utilized Frangi filter
had to be adapted to the data, vein structures in the raw images were thinner and more
complex than in [78]. The filter scales were chosen as σ = [2, 3, 4] after evaluation on the
test set. β correction values were adapted after evaluation to β1 = 2.5; and β2 = 20. Seg-
mentation is based on a single threshold Ts = 11 selected by minimizing the EER utilizing
a modified Hausdorff performance evaluation on the test set.

Adaptation of spectral minutiae configuration: large-scale simulations of different pa-
rameter configurations and different comparison strategies including SML (location based
spectral minutiae), SMC (location and orientation based spectral minutiae) and their fast
rotation variants were performed. The complex modulus normalization of the spectra was
outperforming the second approach introduced in [78].

Best results were achieved with the following configuration according to nomenclature
in [78]: M = 128, N = 256, σ = 0.32, λl = 0.05, λh = 0.61. The change in λl indicates low
location errors of the minutiae maps. The results were analyzed distinguishing between
endpoints, bifurcation points separately and their combination. In general the measured
performance of spectra generated from the bifurcation points exceeded those of the end-
points.

Untrained and Unprotected Feature Vectors
The performance evaluation of the spectral minutiae (all minutiae types considered) on
the evaluation set revealed that SML outperformed SMC and that the fast rotation meth-
ods further improve recognition performance in terms of EER (3.94% vs. 4.83% EER). This
result is contradicting those achieved for fingerprints, one explanation can be the higher
robustness of minutiae orientations extracted from fingerprints. In vein patterns no orien-
tational field can be extracted. Furthermore, the utilized angle extractor considers only a
3× 3 neighborhood around the minutiae. A score level fusion of SML and SMC could fur-
thermore reduce the EER to 2.28%. How the biometric performance changes when feature
selection based on reliability estimation is applied, is described next.

Trained Binary Feature Vectors
The HDS requires a binarization of the feature vectors and optionally a selection of most

discriminative elements from a feature vector. For the simulations we split the evaluation
set further into a training sub-set for the binarization and the reliability estimation of the
components and an evaluation sub-set. The dataset featured up to 12 samples per palm,
we decided to include exactly 10 samples per palm to include more data subjects. From
the 10 samples, 7 were dedicated for the training and 3 for the final evaluation of binary
feature vectors. The spectra had to be scaled down by a factor of 2 in each spacial dimension
(bicubic interpolation) to 128×64 = 8192 components due to implementational restrictions.

Statistics about the means of each component for the binarization and about reliability
of every component were collected and utilized as described in [225]. A simple and very
fast Hamming distance was used for the score computation. The biometric performance of
the binarized feature vectors XBV with 2i−1 most reliable elements on the final evaluation
set is summarized in Figures 3.2 and 3.3 with a receiver operating characteristic (ROC) for
one specific configuration (SML spectra from bifurcation points). Recognition accuracy is
peaking around 1023-4095 selected reliable bits with a perfect separation of the full (sym-
metric) comparison set of 435 genuine and 93960 imposter attempts.

1M , N are the dimensions in radial and angular direction of the polar-logarithmic grid, σ refers to the sigma
of the Gaussian filtering, λl, λh refer to the distance range from which the radial values are extracted from.
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Figure 3.2: Receiver operating characteristic (ROC) of reliable binary feature vectors us-
ing Hamming distance, length: 7-127 bits. Logarithmic scale on x-axis. Legend: selected
reliable bits, EER, threshold(s).

Figure 3.3: Receiver operating characteristic (ROC) of reliable binary feature vectors using
Hamming distance, length: 255-8191 bits. Logarithmic scale on x-axis. Legend: selected
reliable bits, EER, threshold(s). Note that the graphs for 512-4096 bits are overlapping.
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As indicated by the threshold values in the legend of the figures, there is still a large
intra-class variation. This is verified when investigating the score distributions: imposter
scores are located close to 0.5 using a normalized Hamming distance, indicating almost
random variations in the comparison pairs. However, genuine attempt scores are also high,
indicating high Hamming distances. A BCH error correction code, as used in HDS, has
limited capacities for the correction of the codewords, even if 30% of bit errors could be
corrected, a FNMR of more than 35% would be the result (with 0% FMR). More research is
needed to solve this issue.

3.3 Future Directions

Many interesting aspects about vascular pattern recognition are already discussed in Chap-
ter 2. Here we want to summarize the future work for the different categories introduced
in the sections of Chapter 2.

Imaging Three dimensional imaging of vein patterns is an attractive research direction.
The rich information included in the position of the veins is currently mapped on a two
dimensional sensor. The depth information of the veins inside the limbs is lost. Most in-
teresting candidate for the additional dimension is certainly the finger vein modality that
is commonly captured with a transmission of light. Another line of research is the minia-
turization for cheap and embedded sensors while maintaining the good biometric perfor-
mance. The imaging from standard camera sensors as indicated by current work [219] is
certainly promising as well. The general trend of constructing multimodal sensors is es-
pecially tempting for the hand area due to the richness of modalities including vascular
biometrics. One aspect that will be critical for the commercial success is the open access
to raw sensor information from vendors. This will likely increase the trust in the technol-
ogy, catalyze future research and enable independent evaluations and the interoperability.
This leads directly to the next aspect: Circumvention The security-by-obscurity paradigm
for commercial products should be overcome and independent evaluation should be per-
formed. The already mentioned trend of multimodal approaches for improved liveness
detection needs to be explored. As discussed in Section 2.3.7 a clarification on the visi-
bility of vein patterns that are captured post-mortem, after death, is needed for the live-
ness claims related with vascular pattern recognition. Privacy issues In the future the
acknowledgment of the necessity of template protection from the vendors and from leg-
islative authorities is needed for large-scale deployments and commercial interest. One
interesting line of research motivated by our work is making use of the full potential of tem-
plate protection schemes for new security protocols and applications. Databases Common
standard datasets and common protocols for the assessment and comparison of algorithm
performance are needed and the research community has started to work on this issue as
described in Section 2.5. However, further dissemination is needed. Feature extraction
and comparison Standardization of vein features and interchange formats exceeding the
current standard [104] is needed. It does not acknowledge skeletonized vein patterns or
minutiae-based representations as data format. Also the wrist area is not specified as body
region for the imaging of vascular patterns. As mentioned earlier, the independent per-
formance analysis of commercial vein sensors of the latest generation is recommended to
support the claims of the vendors and to have confidence in large-scale biometric systems
based on vein patterns. In general the assessment of algorithms according to the above
mentioned standard testsets and procedures will be useful. Future feature extraction and
comparison algorithms for vascular patterns should be designed to be utilized for tem-
plate protection schemes. To further improve the recognition accuracy, algorithm fusion
based on the different abstraction levels of vein patterns (pixel, skeleton, minutiae) are an
interesting line of research.

One of the practical questions raised during our work is if the trusted sensor and envi-
ronment, that BTAP requires for securing online banking transactions, can be replaced with
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mobile devices? The current work on utilizing the sensors of mobile devices for biomet-
ric purposes and the approaches for imaging vein patterns with standard sensors certainly
motivates to investigate in this direction.

The optimization of the full parameter space of the spectral minutiae pipeline is future
work that might close the performance gap in the investigated databases to the state of the
art. Furthermore the pipeline will be evaluated on publicly available datasets. With regards
to multimodal approaches it is interesting to investigate if the spectral minutiae pipeline
can be utilized for other modalities as well. In particular the finger knuckle pipeline intro-
duced in the thesis needs an increased performance with fixed-length features.

In the following we want to focus on improvements of our own work.

3.3.1 Overcoming High Intra-class Variance

The quantization of the real-valued feature vectors produces features with a high intra-
class variance. To overcome this problem, new methods have been developed. In [28, 29]
the DROBA principle is introduced that optimizes the detection rate of a biometric system
independent from the quantization scheme. Based on dynamic programming and greedy
search, L bits from a feature vector are selected. Instead of extracting exactly b bit for
each component, none, one or several bits can be extracted depending on the influence on
the detection rate. It could be shown that the false accept rate (FAR) is similar to fixed b-
bit systems as utilized in our approach, but the false reject rate (FRR) is lower. Since the
FRR is the system performance equivalent of the FNMR, this approach could improve our
solution. Per contra the DROBA approach has a disadvantage as shown in [117]: since
the mapping from component to number of extracted bits is individual for a data subject,
the leakage of this additional helper data is leaking information that can be utilized by an
adversary to improve the probability of false accepts. It could be empirically estimated, that
if DROBA is restricted to two or three bits per component, this problem can be minimized
without influencing the biometric performance.

Another approach is presented in [261], where the feature space of the spectral minu-
tiae representation is first reduced by using Principal Component Analysis (Column-PCA)
on the columns and the Discrete Fourier Transform (Line-DFT) on the lines. PCA is de-
correlating the features, however a direct application to the spectra is not feasible. To over-
come the small sample size problem it is applied to the columns of the spectral minutiae,
effectively increasing the training sample size. Another problem is solved with this ap-
proach too: the rotation invariance of the spectra is based on circular shifts of the columns,
when using Column-PCA the spectra do not need to be aligned since only the column se-
quence is changed which does not effect the training. Features in the horizontal direction
can be reduced using Line-DFT in combination or independent of Column-PCA, since each
line spectrum is periodic. The number of columns respectively elements of the spectra that
are kept define the feature reduction rate. The reduction of the feature size does not affect
the recognition performance significantly. However, lower FNMR could not be measured
and therefore the approach does not solve the mentioned problem directly. The authors
recommend further feature reduction using PCA and Linear Discriminant Analysis (LDA)
with a ROBA bit extraction scheme or a 2D Gabor bit extraction for the combination with
fuzzy commitment-based template protection schemes like the HDS.

In [262] two binarization schemes are presented based on [261]. Spectral bits are ex-
tracted from Column-PCA-reduced real-valued spectra. From each component one bit is
extracted based on its sign, a masking-out of elements close to zero increases reliability.
Phase bits are extracted using Line-DFT feature reduction on the spectra. Masking is ap-
plied as in the latter case, but here each complex-valued element is mapped to two bits
depending on the signs of the real-valued and the imaginary component. An experimental
analysis revealed that the performance of the binarization hardly influences the biometric
performance. Fusion of the quantized features reduced the FRR slightly. The bit masking
can be implemented within the HDS using the reliable bit selection.
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In a recent work on spectral minutiae for fingerprint [205], the large intra-class variation
with error rates above 40%, could be resolved using a new 3-layer coding scheme. The
approach proposes to add additional redundancy: to utilize erasure codes – here fountain
codes [145] – on partitions (packets) of the secret as an extra layer of encoding and an
insertion of zeros in the quantized biometric information. The codes have the property that
after receiving a certain number of packets the original information can be reconstructed.
The name follows the idea of filling a bucket from a fountain: it does only matter that the
bucket is full. In the proposed algorithm every packet is then encoded with an ECC. The
insertion of zeros in between consecutive bits ensures that half of each packet is received
correctly. Results on the FVC2000-DB2 fingerprint data show a similar performance of
unprotected and protected features around 6% and 6.5% EER eventhough the fractional
intra-class distance was very high with 40%-50%. The results of the unprotected features
are similar to the case of our proposed vein pattern system, hence it can be expected that
the approach is applicable.

Instead of increasing the bit extraction, in the earlier steps of the pipeline an extensive
optimization of the parameters for the feature extraction algorithm could further improve
the quality and stability of the feature vectors.

A different approach is focused on increasing the quantity of information: if data from
multiple modalities is available, longer feature vectors could be created by simply con-
catenating them. The component selector can then chose the most reliable components
from more sources. In this context a combination with other hand-based modalities does
make sense. In Chapter 10 we tried to create fixed-length SURF feature vectors from finger
(knuckle) skin images with limited success. We want to use of the fact that the proposed
biometric pipeline is based on spectral minutiae, the same algorithm proved to be effective
with fingerprint data. The feature vectors can be fused on feature level or as a concatenated
form in the HDS to decrease the intra-class variance.

3.3.2 Updating Template Protection Schemes

The helper data scheme is investigated extensively in the related literature such as in [288].
Kelkboom in [116] recommended improvements to the HDS based on their latest research
work: DROBA-based bit extractors should be limited to avoid reversibility, linear error-
correcting codes should not be used to avoid linkability of templates, a bit randomizer
should be applied before the storage to overcome decodability attacks and finally subject
specific helper data should be utilized with care. Those modifications should be considered
for the HDS-core of the BTAP.

Another question still to be answered is the long-term security of PET-protected bio-
metric templates. The answer is out of the scope of this work, but nonetheless interesting
and important to discuss. Can we ensure the security, and therefore the privacy, for the
next decades with drastic technological changes ahead? Are we and the PETs prepared to
face a post-quantum-computer time?

3.4 Conclusions

As we could show, the biometric modality of vein pattern recognition is an interesting can-
didate for biometric cryptosystems: it is more privacy-preserving than most modalities due
to the position in the body and it reaches high recognition accuracy. We could confirm that
the approach of utilizing minutiae – similar to fingerprint minutiae – for vein patterns is
valid regarding the biometric performance. Minutiae points are the most common feature
for utilization with template protection schemes, including the most prominent instances
fuzzy commitment and fuzzy vault. Furthermore elaborate representations and compar-
ison algorithms like the spectral minutiae and the minutia cylinder-codes have been pro-
posed for minutiae points. This knowledge is accessible for vein patterns as described in
this thesis.
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Concluding the latest results it can be stated that the proposed vascular biometric sys-
tem based on spectral minutiae is delivering high recognition performance in binary fea-
ture vector form. The vectors are of fixed length and structure, very compact and could be
utilized in scenarios with limited storage capacities for templates, for large-scale systems
where comparison speed is essential, and for biometric indexing. Another interesting point
of this work is that multimodal systems based on palm vein and fingerprint, as currently
developed, could be based on the very same spectral minutiae feature extraction system.

The constitutes a work major step towards utilizing vascular patterns with template
protection schemes to further enhance the strong points of the modality. As the features
are compatible with the HDS template protection scheme and it is one core building block
of the Biometric Transaction Authentication Protocol (BTAP), online banking transactions
can be secured using vascular patterns when the before mentioned problems of the high
intra-class variance are solved. In Section 3.2 we pointed out solutions to the high this
problem.

Then, an alternative to TAN-based systems can be realized that solves the problem of
repudiation for service providers, while an improved convenience for customers can be of-
fered. The usage of a privacy protection scheme prevents leakage of sensitive information,
cross-matching and profiling. In addition concerns from the data subjects to use biometrics
can be reduced and legislative privacy protection requirements can be fulfilled.

Bringing the work into a larger perspective, we can state that BTAP is one of the first in-
stances where a biometric system is shifted from a binary authentication decision-making
scheme to an integral part of an abstract security protocol. The possibility to share informa-
tion with a strong non-repudiation property has initiated a paradigm shift in the biometric
research.

Other approaches are focused on general schemes for secret sharing (session key) for
secure communication and for mutual authentication between clients and servers [110] or
between two clients using a trusted third party [111]. The protocols are based on the fuzzy
commitment and extend it with additional permutations for template diversification, and
for the usage of multiple biometric features. Instead of a simple authentication decision
based on the released secret it is used as renewable session key for a secure communication.
The approach of bipartite biotokens [197, 198], extends the concept of fuzzy vaults [108] for
fingerprint minutiae to allow the generation of public and private biometric template parts.
The authors describe in [195, 196] how this concept can be utilized to realize biometric
public key infrastructures.

In BTAP, data from the application is directly combined with keys released from bio-
metric templates, only the key needs to be stored at the server side for authentication. It is
designed to sign small amounts of data that can be visualized within a secure environment
(e.g. for online banking transactions). General digital biometric signature schemes and
biometric message authentication primitives with a strong relation to a natural person are
the next step. Issues that need to be addressed are the “what-you-see-is-what-you-sign”-
problem of current computer systems and the extraction of strong keys from biometric
samples.
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This paper motivates the application of privacy enhancing technologies (PET) in biomet-
ric systems based on vein patterns. In the biometric pipeline this can be implemented in
the post-processing block of the features, hence the highlight in the overview figure above.
Sensitive medical information can be extracted from the vein images as shown here and
further discussed in Section 2.4. Early experiments show the applicability of such a PET,
namely the helper data scheme (HDS). The introduced feature extraction and comparison
approach is however dependent on the registration of the images which is not applicable
in the HDS.
The paper was published in: [71] HARTUNG, D., AND BUSCH, C. Why vein recognition
needs privacy protection. In Fifth International Conference on Intelligent Information Hid-
ing and Multimedia Signal Processing (IIH-MSP 09) (September 2009), pp. 1090-1095.
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Abstract

This paper describes the emerging biometric modality of vein recognition and pri-
vacy concerns that arise with its widespread use. Current sensors are able to capture
vein patterns inside the human body, this is considered as a “private” biometric char-
acteristic. In fact two medical disease patterns are presented that can be extracted from
the vein patterns. In order to be compliant with data privacy protection laws privacy
enhancing mechanisms have to be applied in vein recognition systems. Experiments of
applying the helper data scheme to a back-hand vein database were conducted with re-
markable results. A privacy-enhanced verification system can be realized, which shows
good biometric performance under laboratory conditions.

4.1 Vein Recognition

The randomness of vein patterns is epigenetic, even identical twins can be distinguished.
During the embryonic period the blood vessels are formed, this process of growth is not
determined by the DNA sequence.

The pattern is available at every healthy human, making it an interesting research ob-
jective. Commercial applications evolved out of this research, nowadays many ATMs in
Japan and Brazil are secured using this biometric modality. With the upcoming changes of
the liability situation in the Single Euro Payments Area (SEPA) it is likely that this biometric
technology will also be widespread in Europe.

The patterns are commonly extracted from images of the palm, the back of the hand or
fingers as seen in Figure 4.1. Recently Yanagawa et al. showed that the diversity of finger
vein patterns among different persons is competitive to iris-based systems [269]. The In-
ternational Biometrics Group (IBG) 6th report 2006 confirms recognition rates fairly at the
same level for two different vein and one iris-based authentication system [94]. An inter-
esting aspect of vein recognition is the fact that the information is not visible, it is hidden
inside the body. Unlike fingerprints it is not possible to leave a vein pattern representation
unintentionally in public places and thus it is not possible for an attacker to acquire the pat-
tern in daily life or to replicate it. Furthermore there is no relation to criminal prosecution.
How vein images are captured is described in the next section.

Figure 4.1: Palm, back-hand taken from [241] and finger vein images [81]

4.1.1 Imaging Techniques

The imaging approach makes use of the absorption capacity of particular substances in the
blood running through the veins. To capture the image, the region of interest is illuminated
with a near-infrared (NIR) light source with wavelengths around 700 to 1,000 nm. A reflec-
tion or transmission technique can be used. Deoxygenized hemoglobin highly absorbs rays
within this wavelength band while the surrounding tissue does not. NIR-sensitive optical
sensors are used to capture the image of the vein pattern. Examples are shown in Figure
4.1.
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The diameter of the blood vessels and their depth inside the body are limiting factors
for the feature extraction process, which is described in the next section.

4.1.2 Feature Extraction

The feature extraction process is starting from a captured vein image sample. The pat-
tern, the abstract structure of the veins, has to be extracted from the noisy vein image, a
sample is shown in Figure 4.2 taken from [159]. Features used for comparison are local-
ized in the extracted vein skeletal pattern. Various algorithms are published based on line
tracking [157], local thresholding [241], curvelets and neuronal networks [286], as well as
maximum curvature points [159]. The algorithms of those publications all have the same
outcome: a vein pattern for authentication purposes, which needs to be stored and pro-
cessed. Example vein patterns are shown in Figure 4.2 and 4.3. Why this may conflict with
privacy protection directives is explained in the following section.

Figure 4.2: Finger vein image and corresponding vein pattern based on maximum curva-
ture points [159]

Figure 4.3: Original vein image, after noise reduction and after local thresholding [241]

4.2 Privacy Concerns

Biometric systems are exposed to privacy concerns since there is an intrinsic link between
the stored biometric template and the person it originates from. The advantages, offered
by biometric authentication, are inverted when the stored data is stolen – the data theft
becomes an identity theft. The problem is that you cannot simply change a biometric char-
acteristic like a key or password. Revocation and reissuing of a specific biometric charac-
teristic is not feasible in common biometric systems.

Another privacy related aspect is cross-matching: if the same modality is used in dif-
ferent application contexts (access control, financial services, eCommerce services etc.), a
profile can be constructed linking the stored data in different databases.

Furthermore biometric data can contain information about physical traits of humans -
the risk of storing medical or health related information is therefore always existent.
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4.2.1 Medical Issues with Vein Patterns

Diseases related to the cardiovascular system are among the main causes of death in the
world [256]. Vein patterns used in biometric systems could also reveal information about
the medical state of a human. The authors found several examples of vascular diseases
related to the finger or the hand.

In general the diameter and the position of the veins are of medical interest. An example
is thrombosis, where a blood clot (thrombus) blocks the blood flow in the cardiovascular
system. Diseases changing the position and the structure of the vein network affect all
feature extraction methods resulting in a vein pattern.

After a literature survey on radiological publication two examples of disease patterns
are found that change the appearance of the hand vein pattern: arteriovenous malforma-
tion (AVM) is a congenital disorder where veins and arteries are connected in an abnormal
way. A contrast-enhanced radiographic example is given in Figure 4.5 taken from [131].
Another abnormality is the hypothenar hammer syndrome (HHS) which is also identifiable
throughout the vein pattern of the hand (Figure 4.4 taken from [131]). HHS is a thrombo-
sis of the superficial palmar arch of the ulnar artery and is caused by repeated mechanical
force, as seen in fighting sports or the work with vibrating tools (e.g. a hammer).

Figure 4.4: Hypothenar hammer syndrome [131]

Those examples illustrate that vascular image data may contain health related informa-
tion. Since the ISO standard for the vascular interchange format [103] uses those image
based vein patterns, the medical information is still available in the stored references. The
next section describes the legislative view on this special kind of personal data.

4.2.2 Legislative Regulations

Special acts are implemented to secure the privacy rights of individuals. An introduction
to data protection and biometric systems is given by Meints in [149]. In the following the
relevant European and the Norwegian regulations are introduced.
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Figure 4.5: Arteriovenous malformation [131]

The European data privacy principles are formulated with the “Directive 95/46/EC of
the European Parliament and of the Council of 24 October 1995 on the protection of indi-
viduals with regard to the processing of personal data and on the free movement of such
data”. In article 2 important terms are defined, interesting in our context are the first two
definitions (a) and (b) of “personal data” and its processing, which covers the usage in bio-
metric systems. Article 8 specifies the handling of health related personal data. Generally
member states should prohibit processing of this “special category of data”. Article 6 (c)
defines the need for the adequateness and non-extensiveness of the data in relation to its
purpose.

The Norwegian “Act of 14 April 2000 No. 31 relating to the processing of personal data
(Personal Data Act)” follows the European directive with some differences, nevertheless
the definitions for “personal data” and “processing of personal data” also apply to our
context. Section 2 defines health related information as “sensitive personal data”.

These two regulations both challenge the common praxis in biometric systems based
on vein recognition. As shown, vein data may contain medical, health-related information
and therefore the principle of adequateness in a biometric authentication system is violated.
Since the usage is prohibited by law, the stored data has to be transformed into a non-
revealing form.

Current research on template protection [186, 225, 289] show one possible way to con-
struct biometric authentication systems that satisfy the regulations. After the enrolment of
a data subject, no information about the original biometric sample is revealed. Even for the
comparison of templates the biometric information does not need to be revealed as needed
in the classical case of encrypted databases.

4.3 Experiments

The following experiments show a solution to the data privacy challenges associated with
vein images. A feature extraction algorithm based on local thresholding [241] is used to
extract vein patterns from backhand vein images. These feature vectors are then further
processed to be compliant with the helper data scheme for privacy enhancement [225].
Finally the performance based on the raw feature vectors and the processed versions is
evaluated.
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Figure 4.6: Processing steps of the feature extraction algorithm: normal image, histogram
optimized, local thresholding applied [gray-scale representation of binary image], resized
feature image.

4.3.1 Database

The database was gathered by the Nanyang Technological University in Singapore [164]
and consists of a near infrared and a far infrared part. The near infrared part, that is used
in the experiments, contains 122 data subjects with 3 samples for each hand taken in one
session with a reflection technique. The resolution of the gray-scale images is 644 x 492
pixels.

4.3.2 Feature Extraction

Features are extracted directly from the histogram-optimized images, the local threshold-
ing algorithm [241] was used. The value of each pixel in the feature space f is affected by
the surrounding pixels of the original image I : if the pixel intensity exceeds the mean value
of a defined area around the actual one it is set to 255, otherwise 0.

f(x, y) =

{
255, if I(x, y) > µI(x,y)

0, otherwise

The parameter µ was set to the mean of 30 x 30 pixel blocks, after this step 50 pixels
were cropped from each edge of the feature image due to irregularities at the boarders.
The resulting feature image has a resolution of 544 x 392 pixels. To further decrease the
variance1 caused by noise, the images were resized2 with factor 20 to a size of 28 x 20
pixels. Resulting feature vectors have 560 elements3. Figure 4.6 shows the three different
steps towards the feature vector.

4.3.3 Privacy Enhancing Mechanism

Among the several privacy enhancing mechanisms is the helper data scheme [225] which
is sketched in Figure 4.7. The scheme can process any biometric data, as long as the created

1Variance between samples from the same source.
2By means of bicubic interpolation.
3Composed by concatenating rows of the image.
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feature vectors have the same dimension. Basically the biometric data is merged with a
random secret into a secure form during the enrolment. Beforehand feature vectors are
binarized, reliable bits are extracted. These bits are combined using boolean exclusive or
(XOR) with an error encoded random and secret bit vector. The hash of the secret, the
indexes of the reliable bits (helper data) and the secured template are stored in the database.

During the verification the data belonging to the biometric claim is loaded. The probe
feature vector is binarized again, bits are extracted using the stored reliable indexes. The
boolean XOR is applied to the stored secured template and the probe reliable bit vector. The
hash of this result is compared with the stored hash. If the error decoder is able to correct
the bit flips caused by noise, an identical hash value is produced, the biometric claim is
verified.

In the experiment a reliable bit vector is generated from an intermediate (unprotected)
feature vector in the following manner:

1. Center the feature vectors around its mean (subtract the mean from each feature vec-
tor).

2. Map every value to binary 1 exceeding zero (larger than the mean), the rest to binary
0 (smaller than the mean).

In this way, the bits are equally distributed and statistically independent. The binarized
feature vectors consist of 560 bit values each.

The reliable bit extraction block estimates the optimized reliability and discrimination
power R of every component k for each subject i. Assuming Gaussian distributed compo-
nents, the following formula can be used:

Ri,k =
1

2
(1 + Erf(

µintra − µinter√
2vi,k

))

Here the variance (v), the intra-class mean (µintra) and the inter-class mean (µinter) has
to be computed in advance. Erf stands for the Gaussian error function.

The components having the highest reliability value R are selected as candidates for
the reliable bit vector. Since those vectors are used in the helper data scheme, performance
estimations can be computed for the whole system taking into account the error correction
capability of the ECC-block.

4.4 Results

4.4.1 Unprotected Features

The histograms of genuine and imposter attempts are shown in Figure 4.8(a) for the un-
secured 560-dimensional feature vectors. A good performance with an equal error rate at
0.55% is measured (Figure 4.8(d)) using the 1-correlation as distance metric.

4.4.2 Binarized Features

The extracted binary feature vectors perform at about the same level as the unprotected
feature vectors. The distribution using the Hamming distance is shown for genuine and
imposter attempts in Figure 4.8(b). The DET is shown in Figure 4.8(d), the equal error rate
is around 0.55%.

4.4.3 Protected Features

The reliability estimation of the components leads to a mean value of 520 perfectly reliable
bits per data subject. When selecting the the 255 most reliable bits from the binarized
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Figure 4.7: Block diagram of the helper data scheme.

feature vectors, performance is increasing. The reliable bit estimation was performed on
2 out of 3 samples per data subject. If training and validation sets are strictly separated, no
FNMR can be computed. Considering the 2 samples taken for the reliability estimation as
a stored reference for testing, no false non match was measured.

For a threshold in the Hamming distance of 0.18 no false match was measured as well.
The distribution of genuine and imposter attempts are shown in Figure 4.8(c). Those reli-
able bit vectors could be used in the helper data scheme. In the case that the error correction
block is able to correct 18% bit errors, imposters and genunies are perfectly separated and
the privacy is protected. The DET-curve is also plotted in Figure 4.8(d).

4.5 Conclusions

In this paper the need for privacy enhancing technologies when processing vein data is
shown: disease patterns are presented which can be extracted from vein patterns. No other
publication is known to the authors that deals with this delicate topic. One possible so-
lution is the application of a privacy enhancing scheme. The helper data scheme satisfies
the regulations, because no information about the biometric characteristic can be extracted
from the stored secure template and the helper data.

The experimental section describes a feature extraction algorithm based on local thresh-
olding and the binarization and reliable bit extraction block of the helper data scheme. For
the first time a privacy enhancing scheme was applied in the context of back-hand vein
data. The results are remarkable, a robust authentication system guaranteeing privacy can
be constructed for this specific database of 122 data subjects.

It has to be mentioned that the performance can only be reached in laboratory envi-
ronments – the database was taken in only one session, the variation in the original data
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(a) (b)

(c) (d)

Figure 4.8: Histogram of genuine and imposter attempts: (a) unprotected 560-dimensional
features, (b) 560-bit features, (c) reliable binarized features; (d) DET curves of the different
feature vectors.

is therefore fairly low. To confirm the results of the experiments a large-scale database is
needed and in preparation. Further research is needed in the field of normalization of vein
images. To satisfy security constraints in the helper data scheme long reliable bit features
are needed, multimodal, multi-spectral solutions could be the way to go.
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Chapter 5

Contrast Enhancement and Metrics for
Biometric Vein Pattern Recognition
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On the way to an effective pipeline for biometric vein recognition, the pre-processing and
specifically the contrast enhancement are of interest. The investigation revealed, that a
trade-off between the level of contrast enhancement and additional noise introduction has
to be made. Differences in processing capabilities of integrated sensors could further re-
strict the choices of algorithms, hence statistics about the efficiency are included in the
work.
The paper was published in: [168] OLSEN, M. A., HARTUNG, D., BUSCH, C., AND LARSEN,
R. Contrast enhancement and metrics for biometric vein pattern recognition. In Advanced
Intelligent Computing Theories and Applications, vol. 93 of Communications in Computer
and Information Science. Springer Berlin Heidelberg, 2010, pp. 425-434.
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Abstract

Finger vein pattern recognition is a biometric modality that uses features found in
the blood vessel structure of the fingers. Vein pattern images are captured using a spe-
cialized infrared sensitive sensor which due to physical properties of the hemoglobin
present in the blood stream give rise to a slight intensity difference between veins and
tissue. We investigate five different contrast enhancement algorithms, which range from
high to low computational complexity, and evaluate the performance by using five dif-
ferent quantitative contrast measuring methods.

5.1 Introduction

Contrast enhancement is an important aspect of vein pattern recognition due to uneven
lighting and low contrast across the biometric sample as captured by infrared sensitive
devices. The contrast between vein structures and the surrounding tissue is of special in-
terest because the quality of the subsequent feature extraction depends on how well the
vein structure can be separated from the rest of the image. Furthermore, the complexity
of segmenting the image is lowered if the veins are clearly separated from the surround-
ing tissue. For the purposes of vein patterns it is desirable that the captured image has a
high contrast. Highly sensitive sensors and controlled lighting environments can be used
to achieve even illumination and good contrast in the resulting image but the cost for doing
so can be prohibitively high. For biometric sensors, cost and size should be minimized in
order for widespread adoption to occur. Low cost sensors and lighting setups yield lower
quality images and thus it is necessary to perform digital post processing. We investigate
the influence that several different contrast enhancement methods have on vein pattern
samples from three vein pattern databases. By estimating the contrast gains achieved by
the contrast enhancements we seek to establish a relationship between contrast and bio-
metric performance.

5.2 Image Enhancement

In Wang et al. [242] a method for enhancing the contrast in back of hand vein pattern images
acquired by a far infrared sensor is presented. The algorithm proposed can be divided into
three steps: 1) Removal of speckling noise using a 5 × 5 median filter; 2) Suppression of
high frequency noise using a 7 × 7 adaptive Wiener filter; 3) Image normalization based
on local mean and variance. The image normalization is performed on a pixel-wise basis
using (5.1). Here I(x, y) is the source image value, µ and σ2 are the image global mean and
variance respectively, µd and σ2

d are the desired image mean and variance, and I ′(x, y)′ is
the contrast enhance image value.

I ′(x, y) =

 µd +

√
σ2
d·(I(x,y)−µ)2

σ2 , if I(x, y) > µ

µd −
√

σ2
d·(I(x,y)−µ)2

σ2 otherwise
(5.1)

5.2.1 Spatio-Temporal Retinex-like Envelope with Stochastic Sampling.

The Spatio-Temporal Retinex-like Envelope with Stochastic Sampling (STRESS) algorithm
[120] is an image contrast enhancing algorithm which is inspired by the properties of the
human eye. The algorithm works on a per pixel basis. Local references for maximum and
minimum values are found and used as an envelope for each pixel. The pixel value is
updated using a linear scaling between the maximum and minimum envelopes for local
contrast enhancement. A stochastic sampling (pixel count is Ns) around and including
each pixel (I(x, y)) within the Euclidean distance d is used in order to determine the max-
imum and minimum intensity value in the neighborhood of the pixel. The pixel count
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determines how well the neighbor minimum and maximum intensities are estimated; if
too few pixels are visited then the estimate is likely to deviate from the true minimum and
maximum values. It is possible to visit the whole neighborhood to increase precision but
this will increase computation time as this has to be done for each pixel. The maximum
and minimum values smax and smin are then used to determine the neighborhood intensity
range r (5.2) and the relative intensity value v of the center pixel (5.3).

r = smax − smin (5.2)

v =

{
1/2 , if r = 0
(I(x, y)− smin)/r , otherwise (5.3)

To prevent outliers in the intensity range an average over Ni iterations is calculated:

r̄ =
1

Ni

Ni∑
i=1

ri (5.4)

v̄ =
1

Ni

Ni∑
i=1

vi (5.5)

The envelopes Emax and Emin are calculated:

Emax = I(x, y)− v̄r̄ (5.6)
Emin = I(x, y) + (1− v̄)r̄ = Emin + r̄ (5.7)

The envelopes are used as local references for respectively the lowest (black) and highest
(white) possible intensities. If I(x, y) is close in intensity to the local highest intensity as
defined by Emax then the intensity of I(x, y) should be close to white in the image. A linear
scaling between Emax and Emin is performed on I(x, y):

I ′(x, y) =
I(x, y)− Emin

Emax − Emin
(5.8)

For out experiments we use r = 20, Ns = 20 and Ni = 20.

5.2.2 Partitioned Iterated Function System Based Contrast Enhancement.

A contrast enhancement algorithm based on the theory of Partitioned Iterated Function
System (PIFS) was proposed by Economopoulos et al. [51]. PIFS is based on the self-
similarity found within an image and its main application is in image compression. The
main components of the contrast enhancement approach is to partition the image I(x, y)
into two sets of blocks. The blocks in the first set are known as range blocks while those
in the second set are called domain blocks. The range blocks are non-overlapping and of
size wx × wy pixels and each contain a vector of pixel values in I which are covered by the
range block. The domain blocks are of size 2wx×2wy pixels and each contain a vector of the
average value of pixel intensities in each distinct 2×2 sub-block within I that is covered by
the domain block. The range blocks and domain blocks are indexed by their position in I
and are addressed as respectively rij and dkl. The set of range blocks have a corresponding
set of mean values, µRij , of each vector rij . Similarly for the domain blocks, µDkl

contains
the mean value of the vector dkl. For each range block rij a domain block which minimizes
the squared Euclidean distance is found with the expression:

E(k, l; i, j) = ||γ(dkl − 1µDkl
− (rij − 1µRij )) (5.9)
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In (5.9) γ is a predefined contrast parameter constant. The minimization process results
in a mapping where each range block has a corresponding domain block. Next, a global
contractive transform is performed on I as

W (I)(x, y) =
∑
ij

[γ(I(2(x− xi) + uk(i,j), 2(y − yj) + vl(i,j))− µDk(i,j)l(i,j)
)] + µRij

(5.10)

Using Equations 5.9 and 5.10 the image is encoded using γ = 0.8. The encoded image is
decoded by reapplying Equations 5.9 and 5.10 with γ = 0.1. The result,ILP(x, y) is a low-
pass version of I(x, y). A high-pass version is obtained by IHP(x, y) = I(x, y) − ILP(x, y).
Finally, the contrast enhanced image I ′(x, y) is obtained by:

I ′(x, y) = I(x, y) + λIHP(x, y) (5.11)

where λ adjusts the contrast gain. In our case we set λ = 1.0 and wx = wy = 4).

5.2.3 Linear Unsharp Masking.

The linear unsharp masking approach is constructed as a 3× 3 negative Laplacian filter as
shown in (5.12). The mask is applied to I resulting in a highpass version IHP. The enhanced
image is obtained using (5.11).

h(x, y) =

 0 −1 0
−1 4 −1

0 −1 0

 (5.12)

5.2.4 Contrast Limited Adaptive Histogram Equalization.

Contrast Limited Adaptive Histogram Equalization (CLAHE) [292] is a histogram equal-
ization method which operates by partitioning the image into regions and perform his-
togram equalization on each region separately. The equalization is performed by comput-
ing the cumulative distribution function for each wx × wy region.

5.3 Contrast Metrics

Measuring contrast is possible with different approaches, a standardized solution does not
exist. As contrast measurement and evaluation is not uniquely defined for all images we
include several methods for this purpose. To assess the performance of the contrast enhanc-
ing algorithms discussed in Section 5.2 we apply five quantitative contrast measurements
to the enhanced images. The contrast gain CGAIN is found as

CGAIN = C̄I′ − C̄I , (5.13)

where I is the source image and I ′ is the contrast enhanced image.

5.3.1 PIFS contrast enhancement metric

In [51] a contrast metric is proposed where the contrast at pixel location (x, y) is expressed
by

c(x, y) =
lv(x, y)

lm(x, y)
, (5.14)

where lv is the variance and lm is the mean. The PIFS contrast enhancement metric is thus
found by first determining the ratio of the image intensity variance and the image intensity
mean in a sliding wx × wy window, and then taking the average of this ratio across the
entire image. The method is robust towards small changes in image intensity.
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5.3.2 Weighted-Level Framework Contrast

In [208] the Weighted-Level Framework (WLF) contrast measurement method is intro-
duced. The method is divided into several steps: the image is first sub-sampled at several
levels to create a multi-level pyramid. On each level the local contrast is computed to cre-
ate local contrast maps. The global contrast measure is obtained by performing a weighted
recombination of the local contrast maps.

5.3.3 Michelson Contrast

The Michelson contrast [152] is defined as

Cmichelson =
Imax − Imin

Imax + Imin
, (5.15)

where Imax and Imin are the maximum and minimum luminance levels. Thus, for an im-
age which covers the entire dynamic range the contrast will be regarded as maximal. The
Michelson contrast measurement is expected to be a relatively poor estimator of contrast
because a small change (e.g. a single pixel) in either maximum or minimum intensity can
lead to a large change in the estimated contrast. The Michelson contrast value ranges from
0 to 1.0.

5.3.4 Local Michelson Contrast

The idea of the Michelson Contrast is pushed further on through applying the metric on
subsets of the image. Inspired by [10], we use a local version of the Michelson Contrast
with the following properties: Three different block sizes are chosen that divide the image
into subparts, those parts are then evaluated by the original Michelson Measurement. The
block size wx × wy are generated in each of the three iterations i = 1, ..., 3 from the image
size s() in the following manner:

wxi
=
s(x)

10i
(5.16)

wyi =
s(y)

10i
(5.17)

The Local Michelson Contrast (LMC) metric is the average of the resulting values from all
iterations on all non overlapping sub pixel blocks of the given sizes wx × wy .

5.3.5 RMS Contrast

The RMS contrast [174] is defined as

CRMS =

√√√√ 1

MN

N−1∑
x=0

M−1∑
y=0

(I(x, y)− Ī)2, (5.18)

where I is normalized such that 0 ≤ I(x, y) ≤ 1 and Ī is the mean image gray level. The
RMS contrast is independent of the spatial distribution of contrast and the frequency con-
tent. As the metric is more robust towards small changes in the images it is more suitable
for estimation of contrast between several images than the Michelson contrast.

73



5. CONTRAST ENHANCEMENT AND METRICS FOR BIOMETRIC VEIN PATTERN
RECOGNITION

Property GUC45 SingaporeNIR SingaporeFIR

Frequency Band NIR NIR FIR
Modality Finger (10) Back of Hand (2) Back of Hand (2)
Data Subjects 45 122 34
Sessions 12 1 1
Images per Session 10× 2 2× 3 2× 3
Images 10.800 732 202
Resolution (px) 512× 240† 644× 492 320× 240
Depth 8 Bit gray-scale
Samples in Experiments 540 (2.5%) 100 100

Table 5.1: Properties of the biometric vein datasets used in the experimental section. †For
the experiment the images are cropped to size 468× 122 to eliminate most non-finger area.

Method Complexity (avg. ACT) GUC45 SingaporeNIR SingaporeFIR

STRESS† high (8.86) 6.173 15.841 4.565
PIFS very high (70.338) 44.145 133.448 33.42
CLAHE low (0.033) 0.028 0.042 0.029
L.Unsharp M. very low (0.002) 0.002 0.002 0.002
Wang medium (0.386) 0.357 0.636 0.164

Table 5.2: Average Computation Times (ACT) of the contrast enhancement methods (in
seconds per image, lowest marked in bold) for the different data sets and a complexity
approximation based on the average ACT. †The STRESS algorithm is called as an executable
external to MATLAB.

5.4 Experiments

In order to get a general idea of the contrast enhancement capabilities for different algo-
rithms a broad set of biometric vein databases is being used for the experiments. The con-
trast enhancing methods Wang2007, STRESS, WLF, PIFS-based enhancement, linear un-
sharp masking, and CLAHE were applied to gray-scale vein pattern images from three
biometric data sets: GUC45, SingaporeNIR, SingaporeFIR. The GUC45 dataset contains
finger vein images as captured by a proprietary near infrared (NIR) sensor. The Singa-
poreNIR dataset contains back of hand vein pattern images obtained from a NIR sensor.
The SingaporeFIR dataset contains back of hand vein pattern images obtained from a far
infrared sensitive sensor. The properties of the sets are shown in Table 5.1, sample images
are provided within the next section.

Table 5.2 gives an overview of the contrast enhancement methods and their computa-
tional complexity based on the average enhancement time per image from the evaluation.

Apart from the original image we have 6 images from applying the contrast enhance-
ment methods to the original. The contrast of each image is computed using the 5 different
contrast measurements.

5.5 Contrast Enhancement Results

For this reason several contrast measurement methods were chosen, to cover the spec-
trum of approaches, from perception-oriented to simple and fast mathematical methods.
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Database Method PIFS C. WLF RMS Michelson LMC Mean

GUC45

STRESS 241,1 10,0 46,1 3,3 292,3 118,5
PIFS 79,8 1,5 10,0 3,3 64,1 31,8

CLAHE 44,9 -1,0 13,9 1,5 73,2 26,5
L.Unsharp M. 109,5 2,0 10,2 3,3 170,3 59,1

Wang 11,4 0,3 43,1 -4,0 -22,2 5,7

SingaporeNIR

STRESS 2896,9 5,4 30,1 0,5 584,3 703,5
PIFS 85,7 0,0 0,6 0,5 106,6 38,7

CLAHE 200,6 -0,1 11,8 -0,9 177,1 77,7
L.Unsharp M. 322,9 0,0 3,0 0,5 207,1 106,7

Wang -7,8 16,2 67,6 0,5 87,4 32,8

SingaporeFIR

STRESS 123,6 -49,0 -8,9 0,0 130,5 39,2
PIFS 27,3 -0,4 0,0 0,0 8,8 7,2

CLAHE -3,3 -45,6 -0,3 -1,8 57,2 1,2
L.Unsharp M. 63,4 -0,7 3,1 0,0 29,3 19,0

Wang -49,1 -61,6 -4,4 -33,3 -14,5 -32,6

Table 5.3: Mean contrast gain in percentage for GUC45, SingaporeNIR and SingaporeFIR
database with the highest gain for each metric marked in bold.

Method Complexity (avg. ACT) GUC45 SingaporeNIR SingaporeFIR

PIFS Contrast high (7.644) 4.89 13.992 4.051
WLF very high (22.859) 14.866 41.669 12.043
RMS Contrast low (0.011) 0.007 0.02 0.005
Michelson Contrast very low (0.004) 0.002 0.009 0.002
LMC medium (3.847) 3.529 3.7 4.313

Table 5.4: Average Computation Times (ACT) of the contrast measuring methods (in sec-
onds per image, fastest marked in bold) for the different data sets and a complexity ap-
proximation based on the average ACT.

Contrast measurement methods as reviewed in Section 5.3 were applied to the processed
images in order to evaluate the potential gain. The chosen methods cover the spectrum of
possible approaches, from perception-oriented to simple and fast mathematical methods.
Table 5.3 show the mean contrast gain in percentage for each of the databases GUC45,
SingaporeNIR and SingaporeFIR. For the three databases the STRESS algorithm yields the
highest mean contrast gain percentage. The results shown in the table represent the mean
value of the mean contrast gains over three runs. Table 5.4 show the methods and their
properties, the computational complexity is again abstracted from the average execution
time per image in the evaluation. For a qualitative assessment of the contrast enhancement
methods one image out of every dataset is shown as originally captured as well as the re-
sulting enhanced versions (Figure 5.1). All enhancement methods are able to improve the
average contrast of the datasets. The introduction of additional noise is possible by apply-
ing the enhancement methods, therefore it is also included in the experiments. Table 5.6
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summarizes the estimated noise power levels for each dataset and contrast enhancement
method applied. In order to not only consider the contrast gain, but also the computational
complexity, a combined table is computed showing the average contrast gain over all data
sets per time (Table 5.5). With this information it is possible to find the application specific
contrast enhancement method which is fulfilling also the computational requirements.

Method PIFS C. WLF RMS Michelson LMC

STRESS 0.9232 -0.0356 0.0268 0 0.4947
PIFS 0.0027 -0.0000 0 0 0.0009
CLAHE 20.4266 -5.5128 2.6504 -0.0816 29.4678
L.Unsharp M. 919.1596 3.8296 37.6478 9.5111 826.6191
Wang -0.7062 -1.1435 1.4241 -0.7592 -0.4315

Table 5.5: Contrast gain factor per time (Contrast gain/ACT).

Method GUC45 SingaporeNIR SingaporeFIR Mean

Original 0.0042 0.0004 0.0036 0.0027
STRESS 0.0153 0.0244 0.0107 0.0168
PIFS 0.0078 0.0008 0.0050 0.0045
CLAHE 0.0069 0.0017 0.0047 0.0044
L.Unsharp M. 0.0085 0.0021 0.0074 0.0060
Wang 0.0062 0.0004 0.0033 0.0033

Table 5.6: Noise power estimates.

5.6 Conclusions1

The paper is giving an overview of contrast enhancement and contrast measurement meth-
ods appropriate for biometric vein pattern enhancement. The computational complexity of
each method is approximated through the average computation time per image from the
three biometric databases that cover different modalities in vein pattern recognition like
finger and back of hand as well as different spectral bands (Table 5.1). Different contrast
measures assure a neutral evaluation of the contrast gain from the various enhancement
methods. It can be seen that the STRESS algorithm is enhancing the contrast of the sample
vein images most averaging the results from the contrast measures but it is also increasing
the noise in the resulting images more than the other methods. The Linear Unsharp Mask
and also to some extend CLAHE contrast enhancements are recommended for applications
where computational complexity is of concern.

1In a retro perspective it can be stated that the noise level introduced by STRESS is influencing the biometric
performance negatively. Instead, less intrusive methods, in particular the CLAHE method, are recommended.
This reflects also the subjectively perceived image quality of the enhanced images. However, the visibility of
the veins in the STRESS-enhanced images is perceived larger. The contrast metrics classified CLAHE-enhanced
images on 3rd or 4th place according to a ranked interpretation of Table 5.3 which indicates that the perceived
image quality can not be captured by the introduced metrics. In Chapter 6 we therefore proposed a different
approach to quantify the quality of the images.
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Figure 5.1: Contrast enhancement. From left to right: GUC45 (finger placed horizontally,
some background visible), SingaporeNIR, SingaporeFIR database example. From top to
down: original, STRESS, PIFS, CLAHE, Linear Unsharp Mask, Wang enhanced image.
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5. CONTRAST ENHANCEMENT AND METRICS FOR BIOMETRIC VEIN PATTERN
RECOGNITION

5.7 Future Work

In order to verify the impact of the contrast (gain) on the vein pattern based biometric
systems, a biometric performance evaluation of the enhanced images is needed. After this
step, a reasonable quality measure for vein pattern images can be constructed using the
results of this paper. Another interesting question is whether or not it does make sense to
combine two or more of the enhancement methods to gain an advanced contrast gain.
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The biometric performance of a system depends on the quality of the enrolled biometric
samples. It is therefore fundamental to ensure a minimal level of quality. Furthermore
quality estimation is useful for selecting subsequent steps in the pipeline (algorithms / pa-
rameters) and in unsupervised scenarios for user guidance. Here we propose and prove the
effectiveness of an algorithm for estimating the quality of wrist and palm dorsal (NIR/FIR)
veins that works on the images itself with the option to utilize meta-data about the envi-
ronment and the data subject as well. Unfortunately the contrast measures introduced in
the last chapter could not be used for the approach since the only two fast methods (RMS,
Michelson) did not prove to be reliable (Tables 5.3 and 5.4).

Note that due to the page limit in the original paper comprehensive arguments for the
selection of the Gray Level Co-Occurrence Matrix (GLCM), the metrics and the parame-
ters could not be included. It should be done here: the GLCM was successfully utilized
for quality control in [151], however it was applied globally on the whole image since no
background was visible on the palm images. In the data that we utilized, background and
edges of the limbs might be present that can influence the quality estimation. We decided
therefore to utilize the GLCM, but in a local manner based on a simple block structure rep-
resenting the actual limb. The selection of texture measures is based on expert knowledge
of the specific dataset. Further details are given in Section 4.7.3 in [148] and are summa-
rized here (θ refers to the angle of the GLCM metric with θ = 0 considering horizontal
transitions): GUC45 - the values generated by the Contrast, Correlation and Energy mea-
sures can not accurately rate the visibility of veins because these measures are highly af-
fected by artifacts within the image (e.g. very bright finger edges) and the non-uniformity
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6. QUALITY ESTIMATION FOR VASCULAR PATTERN RECOGNITION

of gray-levels among images. The most relevant measurements are generated by the Ho-
mogeneity measure. The texture pairs are vertically oriented because most of the veins are
horizontally defined (θ = 90). UC3M - Wrist samples, captured under NIR light, show
good segmentation and contrast from the background. Although veins are generally well
defined, light intensity varies from one sample to another. The consequence is that some
parts of the veins are smoothed or even erased. The measures selected to grade the qual-
ity of wrist samples are both Correlation and Contrast because the wrist images may have
large areas where no veins are visible even though the quality of the sample is optimal.
The texture pairs are horizontally defined (θ = 0). SNIR - Back of the hand vein samples
of this database have stable properties. They have uniform illumination, noise-free back-
ground and the hand is clearly segmented from the background. Thus the quality score
is based on the Homogeneity measure and the disposition of the pixel pairs is horizontal
direction (θ = 0). Lower homogeneity values indicate higher block quality. SFIR - Back of
the hand vein samples of this database show that the tissue regions have large ranges of
gray values where veins are represented as white regions. Thus high homogeneity in the
sample indicates well defined veins. The Homogeneity measure uses horizontal texture
pairs (θ = 0).

The selection of the parameters is based on an empirical evaluation of a subset of image
pairs resulting in very high or low genuine comparison scores for each dataset.
The paper was published in: [76] HARTUNG, D., MARTIN, S., AND BUSCH, C. Quality
estimation for vascular pattern recognition. In Hand-Based Biometrics (ICHB), 2011 Inter-
national Conference on (November 2011), pp. 1-6.
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6.1 INTRODUCTION

Abstract

The quality of captured samples is a critical aspect in biometric systems. In this pa-
per we present a quality estimation algorithm for vascular images, which uses global
and local features based on a Gray Level Co-Occurrence Matrix (GLCM) and optionally
available metadata. An evaluation of the algorithm using different processing methods
and vein sample databases shows convincing results: disregarding low estimated qual-
ity sample images helps to increase the performance. Moreover, metadata gives accurate
indications on sample quality. The algorithm works on low level raw images, it is fast
and therefore qualified to be used in feedback mode during enrolment or verification
operation.

6.1 Introduction

Recently, biometric authentication processes have been augmented with vein recognition
method that provides undeniable benefits compared to traditional systems, e.g. based on
fingerprints. Vein recognition is fake resistant against an intentional presentation of an
artifact and provides reliable biometric performance comparable to iris recognition perfor-
mance. The fake resistance capability of a vein recognition system strengthens its appli-
cation in non-supervised environments such as subject towards client computer authen-
tication in a home environment or customer / cardholder authentication against an ATM
machine that are operated in a semi-public yet non-supervised environment.

In order to achieve a reliable biometric performance for a verification attempt specifi-
cally the enrolment of the data subject is critical, since the reference for further comparisons
is created. A low quality reference will result in low performance of the overall system.

The quality estimation could also be very useful in the guidance of the data subject as
it will indicate potentially incorrect placement of the finger / hand on the capture device
and whether or not the image must be re-taken from the biometrics characteristic. Such
feedback can be communicated to the applicant without further interaction of an operator.
While the automatic assessment of a fingerprint’s signal quality is a standard procedure
according to ISO standards and technical reports [96], there is little literature focusing on
the automatic assessment of vein images.

The approach presented in this paper covers this gap and provides a method that can
automatically generate quality scores for sample images of various vein modalities. In this
paper, a quality assessment algorithm is proposed that analyses the image characteristics of
the sample and that uses knowledge of sample metadata influence on the performance of
the system. The efficiency of quality prediction of the algorithm is verified using different
sample databases containing finger vein samples stored with subject and environmental
metadata from NISlab (GUC45), wrist samples from University Carlos III Madrid (UC3M)
and dorsal hand images from Nanyang Technological University Singapore captured in
near- and far-infrared (SNIR/SFIR). Details about the databases are shown in Table 6.1.

The paper is structured as follow: Section 6.2 presents previous work of quality as-
sessment in biometrics. The proposed quality assessment algorithm for vein recognition
systems is described in Section 6.3 followed by a description of the experimental setup and
results. Finally, Section 6.5 concludes this paper and indicates future work.

6.2 Related work

Biometrics community agrees that quality assessment distinguishes the Character (inherent
to the biometric trait), the Fidelity (degree of similarity between the sample and its source)
and the Utility (prediction of the contribution of the sample to the system performance).
The latter is the result of both Character and Fidelity thus is the most important quality
measure.
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6. QUALITY ESTIMATION FOR VASCULAR PATTERN RECOGNITION

The International Standard Organization (ISO) has defined a multipart standard that
specifies generic guidelines [100], factors influencing the quality of samples [99] and rec-
ommendations for the implementation of quality metrics. Currently only guidances for
fingerprint, face and iris recognition has been defined [96–98]. Quality assessment has
been especially researched for multimodal applications [124, 179, 180] but also for finger-
print, face and iris recognition [43, 59]. Nevertheless, recent research in vein recognition
has been conducted.

Michael et al. [151] implemented a quality controller accepting samples for which a
Gray Level Co-Occurrence Matrix (GLCM) metric meets predefined thresholds. Pascual
et al. [171] built a vein recognition system where quality of the produced samples were
measured through objective measurements such as contrast, variance and light distribution
between vein and skin area. Several studies have demonstrated the correlation between
quality and influencing factors of different nature and with different degrees of influence.
In vein recognition, few publicly available research experiments focused on the analysis of
influencing factors.

Sanchez-Reillo et al. [194] examined the impact of different light, temperature and hu-
midity environments on the performance of a vein recognition systems. Yuksel et al. [278]
tested appearance- and geometry-based feature extraction algorithms on samples where
hands were stressed by different activities. Raghavendra et al. [184] and Lee et al. [137]
artificially degraded the sample images quality and could prove a decrease in biometric
performance. Yang et al. [272] and Wu et al. [259] investigated different hand areas and
found differences in the performance.

6.3 Proposed Quality Assessment Algorithm

Standardization bodies still do not have defined guidelines on quality estimation for vein
recognition systems. The proposed algorithm could be used as a bases for the definition of
such a standard. During the design of the algorithm the other ISO quality standards were
taken into account. In [96] the recommended measures for fingerprint images are orienta-
tion certainty, ridge-valley structure or orientation flow analysis; all of these measures are
based on the ridge-valley structures in the fingerprint image which are not comparable to
the vein structures in vascular-based systems. However the draft iris standard [98] gives
general measures that are also taken into account in the proposed algorithm: e.g. contrast,
gray scale density, size and orientation as well as boundary shape and usable size of the
biometric trait.

The proposed quality assessment algorithm is designed in a feedback mode prior to
any preprocessing method. Firstly, it assesses the quality using conventional image-based
methods. Secondly, a non-image-based method is implemented based on performance es-
timation of metadata that characterizes the sample. The generated quality scores are nor-
malized between 0 and 100 where 100 indicates excellent quality.

6.3.1 Image-based

The image-based method shall evaluate both global and local features of the sample, for
the remainder of this paper we will refer to it as image-based analysis.

6.3.1.1 Mask Correlation

The global quality assessment evaluates the quality of the sample mask. The mask defines
the region of interest of the sample, distinguishing between background and body limb.
The implemented segmentation process may produce undesired image deficiencies such as
holes and islands. First, using the non-parametric Kendall rank correlation the similarity
between the sample mask M and an average mask Mµ is evaluated, then the proportion of
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Figure 6.1: Block categorization of a sample from GUC45.

holes Mhole and islands Misl is combined into the quality score Smask as follows:

Smask = corr(M,Mµ) · (1− (α1 ·Misl + (1− α1) ·Mhole)), (6.1)

where the parameter 0 ≤ α1 ≤ 1 is weighting the influence of image deficiencies.

6.3.1.2 Local Gray Level Co-Occurrence

The vein sample images are then partitioned into blocks of the same size, depending on the
size of both image and veins. The blocks are then categorized as: background (the block does
not contain any biometric trait), edges (the block contains the edge of the biometric trait) or
foreground (the block contains only the biometric trait). Figure 6.1 shows a sample with
the categorization of the blocks. The local quality assessment is based on Gray Level Co-
Occurrence Matrix (GLCM) and is inspired by the quality assessment method proposed by
Michael et al. [151]. GLCM has been originally proposed by Haralick et al. [69] and eval-
uates the frequency of specific pixel intensity pairs in a determined spatial combination.
Based on the matrix several texture measurements φ are defined: e.g. Contrast, Correla-
tion, Energy and Homogeneity.

The GLCM is calculated for each block Bf that has been categorized as foreground. The
quality score of the local block-based analysis Sblk is generated as follows (described in
pseudo code):

Sblk = 0
FOREACH block Bf in {foreground} DO

IF (Tmin < φ(GLCM(Bf )) < Tmax) DO
Sblk = Sblk + (1/|{foreground}|)

END
END

with thresholds Tmin and Tmax specific to both texture measure φ and database. These
thresholds describe the range for which a meaningful and rich texture of the vein image
can be expected. The process above can be executed several times with alternating φ and
parameters for the GLCM-calculations, then a fusion has to be made, here the minimum
value is taken as measure Sblk. The thresholds have been selected through empirical inves-
tigations on images generating the best and worst genuine comparison scores.

Both mask and block scores are combined to the image-based quality score Simg:

Simg = α2 · Sblk + (1− α2) · Smask (6.2)

with 0 ≤ α2 ≤ 1 weighting the influence of the two measures.

6.3.2 Metadata

The metadata-based method relies on an analysis of the performance changes measured
in equal error rates (EER) of sample sets that share a certain factor. Each sample is sup-
plemented by a set of factors which belongs to a metadata category. For instance, the cat-
egory Gender has both factors Male and Female. The factors selected for the experiments
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Figure 6.2: Metadata categories and their factors.

are based on finger, subject and environmental properties that were captured within the
GUC45 database, they are presented in Figure 6.2. Other metadata could be used like cap-
ture system characteristics. In a verification scenario the whole metadata could be used,
since the identity claim can point to the subject and finger or limb data. The environmental
data can be gathered during capture time and is available also in an identification scenario.

6.3.2.1 Precalculation

For each factor, an EER is generated by selecting samples specified by the factor of interest.
This is completed for each factor and pair of preprocessing and comparison methods: first,
within each category the impact of the factors on system performance is measured. Let
Ci = {f1, f2, ..., fm} be the set of m factors for category Ci, with i = 1, ..., n:

Emin
fj = min(EERCi

)− EERfj (6.3)

Emax
fj = max(EERCi)− EERfj (6.4)

with j = 1, ...,m, min(EERCi) and max(EERCi) are the minimal and maximal EER in the
category Ci, respectively. EERfj is the EER of factor fj in category Ci. Both maximal and
minimal EERs used in Equations 6.3 and 6.4 enable to measure how much the factors within
a category impact the performance of the system. Both Emin

fj
and Emax

fj
are then combined:

Efj = Emin
fj + Emax

fj . (6.5)

The weightWtotal is needed later for normalization and is computed from the one factor
fCi

max = max(ECi
) of each category that influences performance most:

Wtotal =

n∑
i=1

fCi
max. (6.6)

Results from Equations 6.3-6.6 can be precalculated once.
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6.3.2.2 Metadata Influence on Sample

Let F = {f1, f2, ..., fn} be the set of n factors characterizing the sample. Then the weight of
influence of all factors W characterizing the sample is added up:

W =

l∑
z=1

Efz (6.7)

This weight can either be positive when factors increase the performances or negative oth-
erwise.

6.3.2.3 Normalization

In order to transform the metadata weight into a normalized score, the weight is first shifted
and then normalized between 0 and 100. It is relative to the maximal weight possibleWtotal:

Smeta = 100 · (W +Wtotal)

2 ·Wtotal
(6.8)

Although the metadata score can indicate a performance improvement (values above
50) it may decrease the global score, when later the metadata score is combined with the
image based score. This will happen, if the metadata score level is less than the image-
based score level. So the metadata score must be re-evaluated on the basis of the image-
based score. Therefore the weight Wimg meta is calculated to shift the image-based score
Simg according to the influence of the metadata of the sample.

Wimg meta =


2(Smeta−50)

100 · Simg if Smeta ≤ 50

2(Smeta−50)
100 · (100− Simg) if Smeta > 50

(6.9)

The weight is combined with the image-based score as follows:

Simg meta = (Simg +Wimg meta) (6.10)

6.3.3 Final Quality Score

The final score S of the proposed quality assessment algorithm for vein images is calculated
as follows:

S = α3 · Simg + (1− α3) · Simg meta, (6.11)

with 0 ≤ α3 ≤ 1 weighting between the image-based score and the metadata based score.

6.4 Experiments

To verify the capabilities of the proposed algorithm to assess biometric sample quality sev-
eral experiments are performed on different vein databases. The characteristics and the
GLCM texture parameters of the different data sets are summarized in Table 6.1.

Samples of GUC45 have heterogeneous finger positions, contrast and brightness. Addi-
tionally, subject and environment metadata characterizing the captured sample is recorded.
On the other hand samples from UC3M, SNIR and SFIR databases have homogeneous
hand position, contrast and brightness, and recorded in one session, thus in general gener-
ate better EERs.
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Table 6.1: Databases characteristics.
Name GUC45 [73] UC3M [171] SNIR [242] SFIR [242]
Trait 10 Fingers 2 Wrists 2 Dorsal hands 2 Dorsal hands
Subjects 45 29 122 33
Attempts 2 6 3 3
Sessions 12 1 1 1
Total 10 800 348 732 173
Light NIR NIR NIR FIR
GLCM Homogeneity Correlation Homogeneity Homogeneity

Contrast
Block size 25 40 30 30
Thresholds {0.4, 0.7} {0.85, 0.98} {0.6, 0.8} {0.95,∞}
{Tmin, Tmax}
{α1, α2, α3} {0.5, 0.5, 0.5} {0.5, 0.5, -} {0.5, 0.5, -} {0.5, 0.5, -}

6.4.1 Setup

Different preprocessing and comparison method combinations have been used throughout
the experiments. With GUC45, the preprocessing based on Otsu [169] and the comparison
strategy based on Modified Hausdorff Distance (MHD) [242] as well as a combination of
Chan-Vese [27] and Similarity-based Mix Matching (SMM) [30] are being used. The algo-
rithm of Wang [242] did not show convincing results. Image-based, metadata-based quality
assessment algorithms as well as the combination of both are used in the experiments. Ta-
bles 6.2 and 6.3 indicate the number of genuine and imposter scores randomly selected for
different quality levels and summarizes the results for the comparison and preprocessing
pairs Otsu and MHD and Chan-Vese and SMM, respectively.

With UC3M, SNIR and SFIR, both Otsu and Wang [242] preprocessing methods are
used with both Location-Based Spectral Minutiae Representation (SML) [260] and SMM.
The preprocessing based on Wang’s methods was preferred to Chan-Vese for the reason of
computational complexity. These sample databases have no recorded metadata, so only the
image-based algorithm could be tested. The different parameter values for the weighting
factors α are set to 0.5, using the arithmetic mean.

6.4.2 Examples for Quality Assessment

For all experiments, the classification of low and high quality samples is achieved, example
of correct classifications for the datasets are given in Figure 6.3.

6.4.3 Results on GUC45

The very challenging image quality of the GUC45 database is reflected in the high error
rates. With the pair Otsu and MHD, system performance is improved by less than 10%.
The image-based analysis has the lowest performance improvement with 4.99% because
it considers samples with numerous features (low homogeneity) as high quality images.
But detected features can be of diverse natures that are not identified by the image-based
analysis such as veins or light artifacts. The metadata-based analysis has a performance im-
provement by 6.48% between high quality and without assessment. Moreover, it achieves
the best performance improvement between low and high quality samples with 14.79%.
Based on the ratio between without and high quality, the best performance improvement is
produced by the metadata- and image-based analysis with 9.87%. This can be explained by
the fact that the combination refines the high quality scores by removing eventual quality
assessment errors that falsely accepted poor quality samples.

With the pair Chan-Vese and SMM the quality assessment algorithms using image-
based analysis generate the best performance improvement because the comparison method
SMM is sensitive to the linearity and continuity of the vein pattern in the processed sample
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(a) (b)

(c) (d)

Figure 6.3: Classification examples of the quality assessment algorithm: (a) GUC45; (b)
UC3M; (c) SNIR; (d) SFIR; Green check mark: high quality sample, red cross: low quality
sample.

87



6. QUALITY ESTIMATION FOR VASCULAR PATTERN RECOGNITION

Table 6.2: EERs (in %) of GUC45 database generated by the method pair Otsu/MHD with
different quality assessment approaches and performance improvement.

Quality Quality Number of scores EER
analysis level genuine / imposter

- Without 29 702 / 13 070 888 33.88%
Image Low 1 426 / 136 299 36.15%
(Simg) High 1 072 / 130 806 32.18%

Improvement (Without/High) 4.99%
Improvement (Low/High) 10.97%

Metadata Low 2 985 / 77 070 37.178%
(Smeta) High 1 092 / 11 894 31.68%

Improvement (Without/High) 6.48%
Improvement (Low/High) 14.79%

Image Low 1 171 / 99 180 34.50%
Metadata High 1 089 / 93 552 30.53%

(S, α3 = 0.5) Improvement (Without/High) 9.87%
Improvement (Low/High) 11.50%

Table 6.3: EERs (in %) of GUC45 database generated by the method pair Chan-Vese/SMM
with different quality assessment approaches and performance improvement.

Quality Quality Number of scores EER
analysis level genuine / imposter

- Without 12 173 / 390 964 29.18%
Image Low 1 219 / 17 792 31.50%
(Simg) High 1 288 / 22 426 24.11%

Improvement (Without/High) 17.38%
Improvement (Low/High) 23.47%

Metadata Low 1 299 / 4 430 32.11%
(Smeta) High 1 580 / 28 577 27.27%

Improvement (Without/High) 6.53%
Improvement (Low/High) 15.06%

Image Low 1 151 / 16 245 31.97%
Metadata High 1 239 / 11 690 24.82%

(S, α3 = 0.5) Improvement (Without/High) 14.94%
Improvement (Low/High) 22.38%

image. The image-based analysis has the best performance improvement with 17.38%. The
metadata analysis shows a performance improvement by only 6.53%. The reason might be
that not all influencing factors were analysed for this preprocessing and comparison pair
(i.e. finger types). So further factors increasing or decreasing the system performance re-
main unknown. The image and metadata analysis improves the performance by 14.94%,
this result can be explained by the fact that samples identified as low and high quality have
been excluded by this analysis.

Further experiments have shown that preprocessing and comparison methods have dif-
ferent requirements concerning the properties of image samples. Moreover, regardless of
image properties, metadata like finger, subject and environment properties, provides ac-
curate indications on the performance of samples on the recognition system. In particular
male performed better than female, non-smokers better than smokers, Asians better than
Caucasians or Indians and samples captured during last sessions performed better than
those from the first ones.
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Table 6.4: EERs of UC3M database at different quality levels and processing methods and
performance improvement using Simg.

Quality Number of scores Otsu Wang2007
level genuine / imposter SML SMM SML SMM

Without 870 / 49 590 7.13% 1.15% 10.29% 5.75%
Low 191 / 6 945 10.00% 3.14% 13.09% 8.38%
High 181 / 7 031 5.53% 0.55% 7.73% 4.42%

Improvement (Without/High) 22.47% 51.93% 24.8% 23.09%
Improvement (Low/High) 49.75% 82.41% 40.91% 47.24%

Table 6.5: EERs of SNIR database at different quality levels and processing methods and
performance improvement using Simg.

Quality Number of scores Otsu Wang2007
level genuine / imposter SML SMM SML SMM

Without 732 / 177 876 0.55% 0.27% 0.96% 0.27%
Low 227 / 19 686 0.44% 0% 1.32% 0.44%
High 228 / 20 968 0.44% 0% 0.88% 0%

Improvement (Without/High) 19.74% 100% 8.27% 100%
Improvement (Low/High) 0.43% 0% 33.63% 100%

Table 6.6: EERs of SFIR database at different quality levels and processing methods and
performance improvement using Simg.

Quality Number of scores Otsu Wang2007
level genuine / imposter SML SMM SML SMM

Without 169 / 9 684 5.33% 2.37% 6.51% 4.73%
Low 26 / 659 7.69% 7.69% 11.54% 7.69%
High 28 / 630 3.57% 0% 3.57% 0%

Improvement (Without/High) 32.94% 100% 45.13% 100%
Improvement (Low/High) 53.57% 100% 69.05% 100%

6.4.4 Results on other Databases

The combination of any preprocessing and comparison method on UC3M samples im-
proves the performances as shown in Table 6.4. The best improvement is achieved with
Otsu and SMM by over 51.93%. Other methods improve performance by about 23%.

On SNIR samples, performances are improved by 100% with SMM, with SML 19.74%
for Otsu and 8.27% for Wang as presented in Table 6.5. But the identification of low qual-
ity samples with Otsu fails because the classification has separated sample combinations
that degrade the performances of the system. A manual analysis has identified that the
performance decrease is caused by samples with important diagonal and horizontal hand
translation and hairy hands.

Using SFIR data, the performance of the system is improved for any configuration and
especially with SMM that achieves 100%. The rates are exposed in Table 6.6. Some of
the rates of low and high quality are the same among the configuration and shows that the
characteristics of the selected samples impact similarly both preprocessing and comparison
methods.

6.4.5 Throughput

An important concern in quality estimation after sensor acquisition is the throughput.
For each sample database the time required by preprocessing methods and the quality
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Figure 6.4: Throughput (in seconds) of preprocessing and quality assessment methods.

checker is measured and compared using 50 samples randomly selected. With GUC45 the
metadata- and image-based analysis is used, while with the other databases the image-
based analysis is applied. The results of the throughput investigation, presented in Figure
6.4, show that for any sample database the proposed quality assessment algorithm is faster
than any preprocessing method used in the experiments. The runtime of a naive Matlab
implementation was 300-650 ms per sample.

6.5 Conclusions and Future Work

This paper proposes a modular quality assessment algorithm for vein recognition systems
based on the analysis of the image and metadata characterizing the image. The experi-
ments conducted with diverse processing methods and on several databases have shown
in general a substantial improvement in the biometric performance of the vein recognition
systems. The image analysis is especially efficient, when samples of a database have similar
characteristics on which static thresholds are defined like the position, similar brightness
and contrast. Moreover, the proposed quality analysis requires significantly less computa-
tional effort than any preprocessing method used.

Used in a feedback mode during operation, especially during the enrolment, the pro-
posed quality assessment algorithm can help to create higher quality references, which
will influence the overall system performance positively. The quality assessment can help
to make decisions to either re-capture a new sample or to adapt the recognition algorithms.
In a multimodal system the assessment can be used to weight the different signals accord-
ingly.

It has been shown in the experiments that the assessment is flexible and adaptable to
different vein data like finger, wrist and dorsal hand images even though the parameter
space was optimized empirically.

Future work will focus on the parameter optimization. Also problems regarding the
utilization of metadata have to be solved, as new issues such as privacy concerns or new
physical attacks may arise. Attacker could influence environmental factors artificially for
their gain. Since throughput is a major issue, the algorithm will be implemented in more
efficient programming languages or in hardware.
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Minutiae points are a compact representation and easy to compare not only for fingerprints
but also for vascular patterns. Here, we propose an efficient algorithm, that extracts bifurca-
tion and end points from eight-connected skeletons. The approach is based on convolution
and proves to be more flexible than the known crossing number approach. In Chapter 9
the same approach is extended to extract angles between joining branches of a skeleton.
The paper was published in: [166] OLSEN, M., HARTUNG, D., BUSCH, C., AND LARSEN,
R. Convolution approach for feature detection in topological skeletons obtained from vas-
cular patterns. In IEEE Symposium Series on Computational Intelligence 2011 (April 2011).
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7. CONVOLUTION APPROACH FOR FEATURE POINT DETECTION IN TOPOLOGICAL
SKELETONS

Abstract

In image processing connected structures can be reduced to an abstract binary skele-
ton. These skeletons are 1-pixel wide structures which retain the topology of the seg-
mented image. They are used for computer vision, edge detection or high level feature
extraction for example in biometric systems. In this paper a fast method on how to ex-
tract specific feature points from skeletonized structures is presented. The convolution
of the skeleton image with a bi-dimensional mask of size M × N enables us to identify
arbitrary structures of the mask size in the skeleton. Of special interest are branch and
endpoints of the vein skeletons to get high level features for biometric comparisons. The
problem can here be reduced to the following: in an 8-connected skeleton within a 3x3
mask there are 8 structures that correspond to endpoints and 18 to branch points. Af-
ter applying the convolution, the search for feature points corresponds to finding the 26
different filter response values in the resulting signal. We describe how the convolution
approach is applied to biometric vein recognition systems and compare the method with
the crossing number approach.

7.1 Introduction

Abstraction is usually needed in image processing to cope with the vast amount of data.
In order to get reasonable information, high level features need to be extracted from im-
ages. Often the shape of objects in images are of interest, it is used for example in pattern
recognition, machine vision and feature extraction. The topological skeleton can help to
describe the properties of such a shape. It is a 1-pixel wide high level abstract represen-
tation keeping the core properties like the topology, connectivity, length and direction of
the shape. Constructing skeletons usually demands binarized images and can be achieved
using iterated morphological operations performed on the image. The proposed method is
based on the skeletal representation and will hence not focus on the process of extracting
skeletons from images.

The question how to extract feature points from biometric data motivated this work and
is used to visualize the proposed method. Of interest in biometric systems are features that
can be extracted in a reliable manner from physiological and behavioral biometric traits.
In fingerprint recognition for example, the ridges and valleys of the fingertip skin surface
are used as features, distinguishing different data subjects. A comparison of raw images
from the region of interest will rise sever problems: the fingertip might be misplaced or
swiveled, lighting conditions, dirt and distortions of the skin will make a direct compar-
ison unreasonable. To avoid those factors higher level features need to be extracted from
an image to extract the core biometric information. One approach that is followed for fin-
gerprint recognition, is the comparison of minutiae, the bifurcation and endpoints of the
fingerprint ridges. First the skeletal pattern of the ridges is extracted and secondly the
skeleton is analyzed for the specific patterns of those points.

In this paper the idea of extracting the before mentioned feature points in an efficient
and reliable manner is presented using a convolution approach on the skeleton. The next
section will focus on the background of topological skeletons and in specific the skele-
tonization process. Section 7.3 describes the convolution approach for feature point de-
tection, Section 7.3.1 describes the application for endpoint detection. The application for
branch point detection is covered in Section 7.3.2. Section 7.4 shows results from the pro-
posed algorithm performed on skeletonized vein images. The last sections concludes this
paper and indicates future works.

7.2 Background and Related Work

In order to formalize the method, a definition for the skeleton is needed. In the literature
sometimes the medial axis is used as a synonym for the concept of skeletons, also the term
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thinning is used as the process of skeletonization. Not only the name convention is still
diverse, there are also different definitions and formalizations of skeletons. The defini-
tion of when two pixels are topologically connected depends on with which connectivity
rule we regard the binarized image [25]. The skeletonization performed here assumes 8-
connectivity and will be described by the thinning process.

7.2.1 Thinning

Thinning of the binarized image can be performed by iteratively eroding the image with
a 3 × 3 structuring element while checking that the topology remains the same. In [133]
several skeletonization methods are compared and one method for thinning which is also
implemented in MATLAB is described here. The algorithm is outlined as follows1: The
neighborhood around pixel p are enumerated as x1, x2, ..., x8. The binary image is divided
into two subfields in a checkerboard pattern. Alternating between the two subfields the
pixel p is deleted when the following conditions are true:

1. XH(p) = 1, i.e. in the 4-neighborhood of p there is exactly one crossover from 1 to 0.

2. 2 ≤ min{n1(p), n2(p)} ≤ 3, and

3. For the first sub-iteration: (x2 ∨ x3 ∨ ¬x8) ∧ x1 = 0 or for the second sub-iteration:
(x6 ∨ x7 ∨ ¬x4) ∧ x5 = 0.

XH(p) =

4∑
i=1

bi (7.1)

where

bi =

{
1 , if ¬x2i−1 ∧ (x2i ∨ x2i+1)
0 , otherwise (7.2)

n1(p) =

4∑
k=1

x2k−1 ∨ x2k (7.3)

n2(p) =

4∑
k=1

x2k ∨ x2k+1 (7.4)

7.2.2 Crossing number

The crossing number [7] is a method for detecting bifurcations and endpoints in a bi-
nary skeletonized image. The crossing number cn is calculated by investigating the 8-
neighborhood of each pixel p in order to determine the count of crossovers occurrences.
cn(p) is found to be half the sum of the differences between pairs of adjacent pixels in an
ordered sequence of the 8-neighborhood of p and val(p) ∈ {0, 1} [147]:

1It is an extension of [285] described in [133]. Note that the choice of the thinning algorithm is for comparison
purposes only: the proposed method works on any skeletonization algorithm. However, in some cases additional
patterns for bifurcations and endpoints have to be considered (this occurs when the definition of the one pixel
width varies). The selection of the skeletonization algorithm for the biometric pipeline is elaborated in Section
8.3.2.
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Figure 7.1: Example of skeletonization.

p1 p2 p3

p0 p p4

p7 p6 p5

Figure 7.2: Relative locations and ordering of the eight neighborhood of p.

cn(p) =
1

2

8∑
i=1

|val(pi mod 8)− val(pi−1)| , (7.5)

where p0, p1, ..., p7 are the pixels in the ordered sequence of the 8-neighborhood of p
(shown in Figure 7.2). For a pixel p with val(p) = 1, p is: a 1-pixel island if cn(p) = 0,
if cn(p) = 2 then p is an intermediate ridge point; a ridge endpoint if cn(p) = 1; a ridge
bifurcation if cn(p) = 3; a complex bifurcation or crossover if cn(p) > 3.

In [207] a run length coding based method for bifurcation and endpoint detection which
does not require thinning is presented. The run length coding requires that the input image
is binary and it is performed in two dimensions, thus allowing for the detection of starting,
ending, merging, and splitting runs. Since the method does not rely on thinning it should
have a low computational complexity while maintaining a reliable detecting performance.

In [135] a detection method which uses an extension to Gabor filters is applied to detect
discontinuities in a fingerprint image. The discontinuities are interpreted as features. It is
not immediately possible to detect if the feature is a bifurcation or an endpoint. Due to this
deficiency we will not consider the Gabor filter minutiae detection method.

7.3 Convolution Based Feature Detection

In a vein pattern certain structures such as endpoints and bifurcations can be detected by
convolving the skeleton image with a single bi-dimensional filter G and a two look up
tables Te and Tb, where Te and Tb are the sets of filter response values for respectively
endpoints and bifurcations. The 2D discrete convolution of I(x, y) with the filter G(x, y) of
size M ×N is defined as
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I ′(x, y) = G(x, y) ∗ I(x, y) (7.6)

=

M−1∑
m=0

N−1∑
n=0

G(m,n)I(x(m), y(n)) (7.7)

where
x(m) = x− (m− M − 1

2
)

and
y(n) = y − (n− N − 1

2
)

In the term I(x(m), y(n), the subtractions from x and y correspond to flipping G along
both dimensions and then multiply with the values in I which are beneath the filter as it
slides across the image.

From Equation 7.7 we obtained a map of filter responses, I ′. Further, we have the set of
endpoint response values Te, and bifurcation response values Tb. For each index I ′(x, y) we
determine if it belongs in either Te or Tb, and if so we register the index as either endpoint
or bifurcation.

More generally we can, in a binary image, detect any structure which fits within an
M ×N window by constructing anM ×N mask where the mask values are unique powers
of 2. This is possible because any given structure that can be described within the window
will activate a unique subset of the values in H resulting in a specific response. By com-
paring the response with a look up table containing activations for specific patterns thus
identifying the spatial positions of endpoints and bifurcations or any other pattern fitting
the window. An example of a 3 × 3 mask with unique power of 2 values and the corre-
sponding flipped version is shown in Figure 7.3. An example of convolving a binary image
with the mask is given in Figure 7.4 (values outside the image are treated as zeros). The
figure shows the filter response as the image is convoluted with the filter. If we want to
detect three-pixel structures like the one shown then we just have to note where the filter
response is equal to 392.
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Figure 7.3: Mask used for feature detection.
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Figure 7.4: Convoluting a binary image with a 3× 3 powers of 2 mask.

7.3.1 Endpoint Detection

Using the convolution approach described in Section 7.3 it is possible to find endpoints in
a skeleton. Endpoints in biometric data like in vein pattern images are not necessarily true
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endpoints in the sense that a vein has an end wall. It might as well be because the vein
turns and extends parallel to the normal of the sensor plane. As we cannot distinguish the
two forms using just the reflectance data obtained from a single side of the finger, we will
consider them both as endpoints.

An endpoint in a skeletonized binary image is any active pixel which has exactly one
active neighboring pixel; in an 8-connectivity setting there are eight such possibilities. Us-
ing the filter values from the mask in Figure 7.3 we can derive the response values for each
of the eight possible configurations - this is shown in Figure 7.5. The endpoint response
values are Te = {257, 258, 260, 264, 272, 288, 320, 384}.

288 384 258 264 257 272

320 260

Figure 7.5: Endpoint patterns and their corresponding filter response.

7.3.2 Branch Point Detection

Branch points are points where two or more branches join. In the context of biometric vein
pattern recognition such a branch may be observed when a vein splits into two or more
veins, or when two or more veins cross each other at different depths in the tissue. As with
endpoints, we do not distinguish between the two situations in the extraction of bifurcation
points.

Any such branch can be detected by a 3×3 mask like the one shown in Figure 7.3. An ex-
haustive list of the bifurcation patterns and their corresponding response levels to the filter
is shown in Figure 7.6. The bifurcations response values are Tb = {277, 293, 297, 298, 325, 329,
330, 337, 338, 340, 341, 394, 402, 404, 418, 420, 424, 426}.

7.4 Feature Extraction Examples and Experiments

Figure 7.7 shows an example vein pattern image and its segmented version in Figure 7.7(a).
The image is transformed to a skeleton representing the topology of the vein pattern (Fig-
ure 7.7(b)) as described earlier. The skeleton is cleaned from small islands and artifacts like
spurious branches. The endpoints and branch points are detected using the convolution
based feature detection (Equation 7.7) . In Figure 7.7(d) the skeleton and features are over-
layed on the cropped input image. The figure show that the skeleton is located on top of
the veins and that the convolution approach is able to detect all end and branch points. The
computational effort for the convolution and the crossing numbers approach is simulated
using a database consisting of 11660 finger vein images having a size of 111 × 401 pixel
and an average skeleton coverage of 3.47% of the image. For each algorithm we iterate
across the entire dataset, applying the algorithm on the image and recording the time spent
detecting the features.

The results shown in Table 7.1 are obtained from performing the experiment three times
and averaging across them. For each method we show the mean, standard deviation, max-
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424 394 298 418 297 402

330 420325 340 337 277

329 404 293 338 426 341

Figure 7.6: Bifurcation patterns and their corresponding filter response.

Method Std. dev Mean Max Min
Convolution endp. 0.0001 0.0014 0.0051 0.0012
Convolution bif. 0.0001 0.0014 0.0024 0.0012
Window endp. 0.0022 0.1219 0.1488 0.1178
Window bif. 0.0122 0.1067 0.1783 0.0658
Crossing number† 0.0008 0.0079 0.0129 0.0026
Convolution† 0.0001 0.0018 0.0048 0.0017

Table 7.1: Results from experiment. Numbers are in seconds. †Both endpoint and bifurca-
tion detection included.

imum and minimum time (in seconds) for performing the processing. The two first rows
show the convolution approach respectively for endpoint and for bifurcation detection. We
can see that the time spent on is close to equal which means that most of the processing time
is spent convolving the mask and image. Thus the process can be sped up by performing
endpoint and bifurcation detection in one pass (method Convolution, last line in the table).
The average computation time for the extraction of the end- and bifurcation points for one
skeletonized image using the convolution approach is about 0.0018 seconds on a Intel Core
i7 (avg. number of endpoints: 38.17, bifurcations: 35.66). Compared to the crossing num-
ber approach which uses about 0.0079 seconds per image this translates to a speedup of
roughly 4.3 times.

7.5 Conclusions and Future Work

The convolution approach presented herein is able to detect arbitrary patterns within the
mask size and is therefore also qualified for the application of feature point detection in
biometric systems based on skeleton structure like vein patterns or fingerprint ridges. The
convolution approach is very efficient as shown in the experiment. When using the convo-
lution approach a speedup of roughly 4.3 times is achieved compared to using the crossing
number approach. The speedup is significant as biometric systems work on increasingly
large datasets and need to be operating in near real time so as to maximize throughput.

One drawback of the feature point detection using convolution is that the patterns need
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(a) Segmentation of a vein pattern image.

(b) Skeletonization of segmented image.

(c) Skeleton with features marked.

(d) Overlayed with input image.

Figure 7.7: Skeleton and features (bifurcations in red, endpoints in blue) from a sample
finger vein image (preprocessed with STRESS [120], segmented with LoG).

to be known in advance. The number of possible patterns is growing exponentially with the
mask size, but in practice the number of desired patterns is often limited. The extendability
of the method is a desirable as arbitrary features can be detected by updating the mask and
the set of filter responses to detect. For vein pattern recognition a 3 × 3 neighborhood
gives sufficient information for the distinction between end- and bifurcation points. In the
context of other image processing applications other sets of patterns are of interest and still
the same underlying concept of convolution and filter response matching can be applied.

In the context of biometrics the skeleton needs to be stable, small islands and false minu-
tiae can disturb the comparison of two biometric samples, research has to focus on the
reliable extraction of those skeletons.
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Chapter 8

Feature Extraction From Vein Images Using
Spatial Information and Chain Codes
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A biometric pipeline for comparison of finger and wrist vein images is introduced here.
The comparison is based on the distance and orientation of vein skeletons and results in
a state-of-the-art recognition accuracy, however, the algorithm has major drawbacks: (i)
comparison process is complex and expensive in computation; (ii) features are not compat-
ible to HDS. Parts of the developed pre-processing are re-used for succeeding algorithms
as the one introduced in Chapter 9.
The original paper was published in: [79] HARTUNG, D., PFLUG, A., AND BUSCH, C.
Vein pattern recognition using chain codes spatial information and skeleton fusing. In
Sicherheit (2012), pp. 245256. The attached extended version is published in: [178] PFLUG,
A., HARTUNG, D., AND BUSCH, C. Feature extraction from vein images using spatial
information and chain codes. Information Security Technical Report, (2012).
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Abstract

The pattern formed by subcutaneous blood vessels is unique attribute of each in-
dividual and can therefore be used as a biometric characteristic. Exploiting the spe-
cific near infrared light absorption properties of blood, the capture procedure for this
biometric characteristic is convenient and allows contact-less sensors. However, image
skeletons extracted from vein images are often unstable, because the raw vein images
suffer from low contrast. We propose a new chain code based feature encoding method,
using spatial and orientation properties of vein patterns, which is capable of dealing
with noisy and unstable image skeletons. Chain code comparison and a selection of pre-
processing methods have been evaluated in a series of different experiments in single
and multi-reference scenarios on two different vein image databases. The experiments
showed that chain code comparison outperforms minutiae-based approaches and simi-
larity based mix matching.

8.1 Introduction

Intended to be a robust approach for liveness detection in fingerprint and hand geome-
try systems, vein recognition evolved to an independent biometric modality over the last
decade. Classically the capturing process can be categorized in near and far infrared ap-
proaches. Vein recognition systems based on the near infrared approach are exploiting
differences in the light absorption properties of the de-oxygenated blood flowing in subcu-
taneous blood vessels and the surrounding tissue. Veins become visible, as seen in Figure
8.1, as dark tubular structures. They absorb higher quantities of the infrared light emitted
by the LED of the sensor, than the surrounding tissue. Alternatively in the far infrared ap-
proach the heat radiation of the body can be measured. Because the temperature of blood is
typically higher than the temperature of the surrounding tissue, the temperature gradient
between the blood vessels and the tissue can be measured in this spectrum. Additionally,
vein scanners can work contact-less, hence they are considered to be more hygienic than
systems requiring direct physical contact. This makes them particularly suitable for appli-
cations in public areas.

Vein patterns evolve during the embryonic vasculogenesis. Their final structure is
mainly influence by the process of cell division and can therefore expected to be ran-
dom [52]. Even though scientific research about the uniqueness of vein patterns is sparse,
many resources state that vein patterns are unique among individuals. Due to the fact, that
the network of blood vessels forming the vein patterns is located underneath the skin, a
vein pattern is hard to forge without the data subject’s knowledge. Known approaches for
forging vein patterns not only include the subject’s knowledge but also his cooperation,
such as shown in [56].

It is also expected, that the position of veins is constant over a whole lifetime [107].
Offering the same user convenience as fingerprints while being highly secure against forg-
ing, vein recognition has been applied in various fields of authentication and access control
during the last years such as ATMs or airports. As a reaction to increasing misuse of bank
cards for instance, a number of large banks in Japan integrated vein recognition systems
into their ATMs [247]. The German logistics service DHL decided to use vein recognition
for access control to high security areas at their new hub at Leipzig airport [254].

Still vein recognition faces challenges: limitations in capturing in-vivo images from the
inside of the body, as well as ambient sunlight, temperature and varying skin properties
like the pigmentation, or the thickness influence the image quality. As a result of all these
factors the raw images delivered by the sensor have a low contrast, contain noise and a
non-uniform brightness. Sophisticated algorithms for the preprocessing like contrast en-
hancement and segmentation as well as the final feature extraction and comparison are
necessary to handle the variations and the noise.

In this paper we contribute a new chain code based feature extraction method and in-
vestigate its performance in combination with fusion techniques of image skeletons. The
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(a) (b)

Figure 8.1: Finger/wrist vein samples images from: (a) GUC45; (b) UC3M database.
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Figure 8.2: Structure of this paper [refers to in-chapter numbering].

fusion aims at enhancing the biometric performance and the robustness against noise.
Our approach is compared with minutiae-based feature extraction and a state-of-the-art
geometry-based direct comparison approach.Moreover we measure the impact of differ-
ent segmentation methods, image skeleton extractors and error weighting schemes on the
biometric performance of our chain code based feature extractor. The experiments using
finger vein images and wrist vein images showed that chain code comparison combined
with skeleton fusing performs better than alternative direct comparison methods from the
literature. An illustration of the work flow of our benchmark system in connection to the
structure of this work is illustrated in Figure 8.2

The rest of this work is structured as follows. Section 2 will give an elaborate overview
over relevant work in the field of vein recognition including work on the enhancement of
vascular images. In Section 3, image enhancement, segmentation algorithms, the extrac-
tion of image skeletons and the skeleton fusing techniques used during the benchmarks
in this paper will be described. After having introduced all necessary preprocessing steps,
Section 4 will focus on the extraction and comparison of chain codes. The experiments and
benchmarks conducted on the vein data will then be presented in Section 5. Finally Section
6 will conclude the paper with some future perspectives concerning vein recognition.

The paper extends the work from [79]. It contains an elaborate survey on the state
of the art in the field of vein recognition and also introduces a new weighting scheme as
an extension of the already published paper. Moreover we provide more details on the
proposed algorithm and also present additional experimental results including the impact
of skeleton pruning and the impact of different parameters on chain code comparison.
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8.2 State of the Art

Since the first suggestion to use the blood vessel network as a biometric characteristic was
made more than one decade ago [121], a large number of different techniques for extracting
and comparing vein patterns have been made. This section gives an overview of prepro-
cessing, feature extraction and comparison algorithms.

8.2.1 Preprocessing

As stated above, vein images tend to suffer from low contrast and noise. This raises the
necessity for contrast enhancement methods. these methods suppress noise and enhance
the local contrast of a vein image. Olsen achieved good results by using the STRESS algo-
rithm [120, 168], which not only enhances the image’s contrast but also balances irregular
shading. A very fast and simple method for contrast enhancement is Wang and Leedham’s
normalization method [237]. It stretches the contrast by normalizing the gray values con-
tained in the images but is not able to compensate irregular shading.

Another common problem with vein images is noise, which is hard to remove without
loosing information about the vein contours. Due to the imaging technique used by the
sensor, the vein’s edges are blurry. Deepika and Kandaswamy [45] solve this problem by
using the non-linear diffusion method, which smoothens homogeneous image regions and
preserves the vein’s edges. The GSZ-Shock Filter used by Deepalmar and Madheswaran
[44] can also be used for this purpose. If no explicit edge enhancement is needed, noise can
be reduced by using a Gaussian filter [30] or dyadic wavelet transform [266].

Since many feature extraction algorithms work on image skeletons, the vein images
must be segmented after the noise has been removed. A well-established histogram based
segmentation approach was proposed by Otsu [169]. His method calculates a number of
thresholds based on the gray level histogram in such a way that large quantities of similar
gray values are considered as representing an object. Wang and Leedham [237] propose an
algorithm called Adaptive Local Thresholds, which segments normalized images by using
the local brightness information of the image. However this method has problems with
blurry edges and low local contrast.

With their algorithms Repeated Line Tracking [157] and its successor Maximum Cur-
vature Points [159], Miura and Nagasaka proposed two segmentation methods, which are
robust to irregular shading and blurry edges. The maximum curvature points algorithm
analyses brightness changes in cross-sectional image profiles and hence is not affected by
a vein’s width and brightness. Repeated Line Tracking starts at various random points in
the vein image and follows light-colored structures in the image. All pixels visited by the
algorithm are tracked in a separate locus image, which is representing the location of the
veins after the algorithms has terminated. A modified version of repeated line tracking is
used by Yang et. al. [275].

A widely used segmentation algorithm in different applications for segmentation al-
gorithms is the active contours method as proposed by Chan and Vese [27]. It has been
applied to vein images of palm dorsal by Soni et. al. [209]. Active contours works with the
principle of the intensity gradient. At least one initial shape is placed at a random point
in the image before active contours moves, splits, merges and warps this shape until it
represents the contours of the veins displayed in the image.

A completely different approach to segmentation are filter based methods. Olsen achieved
good segmentation results by using the standard technique of Laplacian of Gaussian [168],
whereas Vlachos and Dermatas designed a dedicated compound filter, which is specialized
in detecting horizontal, tubular structures [230]. A similar approach has been propose din
a earlier publication by Frangi et. al. [58], who also designed a special filter for detecting
blood vessels in retina images.
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8.2.2 Feature Extraction and Comparison

A multitude of different feature extractors and comparison algorithms have been proposed
over time. This chapter categorizes different comparison algorithms applied in vein recog-
nition following the features they are using. We differentiate between local comparison
methods, which use certain details of the image for feature extraction, whereas holistic
methods use whole images or image skeletons for comparison.

8.2.2.1 Holistic Methods

One of the most famous holistic comparison methods is the principal component analysis
(PCA), which used in numerous pattern recognition tasks. In [119] Khan et. al. applied
PCA on image skeletons derived from hand vein images. Principal component analysis
can also be applied directly on enhanced images [236].

Xueyan et. al. derive vein descriptors using invariant moments for distinguishing the
segmented vein images from different subjects. In [65] Guan et. al. have proposed to use
bi-directional weighted modular PCA and compared the performance of different flavor of
their algorithm with each other. In their studies, which were conducted with 132 subjects
and a self-made capturing device, bi-directional weighted modular PCA showed the best
performance among the other tested approaches. In a later approach Guan et. al. also
evaluate the performance of an approach based on linear discriminant analysis on the same
database, but could not improve the biometric performance with this approach [66].

All feature extraction and comparison algorithms enumerated so far are working with
statistical properties of vein images. Chen et. al. [30] propose two algorithms for direct
point-wise comparison, which overcome problems with affine transformations. Iterative
Closest Point Matching (ICPM) is a modified version of the Iterative Closest Points algo-
rithm for registering images. The second algorithm proposed by Chen et al., Similarity-
based Mix-matching (SMM), compensates small translation and rotation errors by compar-
ing the segmented version of one image with the image skeleton of the other one.

Yang and Li [271] propose a set extract energy maps from the responses of steerable
filters. Based on the amount of energy returned by a filter, they assign a gray value to each
block of 5x5 pixels in the vein image. The resulting images with each pixel representing the
average response of a 5x5 block in the vein image are then compared bit pixel by pixel. They
evaluate the performance of their feature extraction technique by using a database, which
consists of 100 subjects, and showed that their approach performances other approaches.
However they do not provide results using other databases.

In [155], Mirmohamadsadeghi and Drygajlo apply histograms of local binary patterns
(LBP) as well as local derivative patterns (LDP) for feature extraction on palm vein images.
In elaborate experiments they evaluated the behaviour of these descriptors under differ-
ent constraints and also measured the performance of different distance measures for the
histograms. They were able to achieve promising results with both descriptors, especially
with a histogram intersection method.

8.2.2.2 Local Methods

Known as established features from fingerprints, minutiae have also been used for extract-
ing features from skeletonized vein images [228]. Because minutiae are composed of spatial
coordinates, they are subject to translation and rotation. This issue is addressed by project-
ing minutiae points into frequency space [260], where translation gets eliminated and rota-
tion becomes translation. Spectral minutiae have also been applied to vein recognition [228]
in different variants. SML performs an element-wise comparison of two minutiae-spectra
in frequency space, whereas SML fast Rotate (SMLFR) compares the spectra while trying
different translations of them. However the number of minutiae contained in the image
can be very small. Instead of comparing their positions directly, it is also possible to use
the distances between all minutiae as features [236]. Wang further proposes to use the line
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segments, which are separated by endpoints and bifurcations [237]. Fan et. al. propose to
use the watershed algorithm for detecting dominant points from a vein image [54]. Three
different filters generate a multi resolution representations of these dominant points, which
serve as features.

8.3 Preprocessing

8.3.1 Contrast Enhancement and Segmentation

As already mentioned, all vein images have to be enhanced in a preprocessing stage before
features can be extracted from the image. The vein images used during our experiments are
first enhanced by using adaptive non-local means taken from [212] followed by the noise
suppressing and edge enhancing non-linear diffusion algorithm [250].

The image enhancement step is followed by a segmentation step. In order to see, if there
is an image segmentation method, which is particularly suitable for segmenting vein im-
ages, three different segmentation methods have been compared. The first of these methods
is Otsu’s histogram-based segmentation [169]. Additionally the active contours algorithm
proposed by Chan and Vese [27] and the multi-scale filter method by Frangi et. al. [58] have
been tested on the finger vein images.

8.3.2 Skeletonization

In the approaches we used in our experiments, skeleton images are the basis for feature
extraction. Because of noise and poor contrast, these skeletons can look different, even
though they come from the same biometric source. In order to improve the reliability of the
extracted image skeletons and hence the reliability of the extracted features, we propose to
use fast marching skeletonization1 as proposed in [220] in combination with two different
approaches for fusing multiple skeletons to a single one. The goal is to create a more stable
version than any of the input skeletons.

In fast marching skeletonization incremental indices are assigned to each pixel on the
edge of the figure. Then they are collapsed until only the center line is left. From the
difference between two neighboring indices in the collapsed figure, a local weight of a
branch can be determined. For those parts of the image skeleton, derived from the center
part of the figure, the difference between the indices is high and so is their weight. These
fine-grained branches are likely to be artifacts, which were introduced by segmentation
errors or noise and can be removed by applying a threshold. All skeleton points where the
difference between their indices falls below the threshold are deleted. All other points are
kept. Hence, depending on the threshold, more or less of these remote branches are cut off.
The larger the threshold value, the more details are removed (see Figure 8.3).

8.3.3 Skeleton Fusing

In order to further enhance the stability of skeletons, we propose two basic fusing tech-
niques. The first one is called skeleton unification and produces a skeleton which possesses
all branches and details, of the input skeletons. The second one, called skeleton intersect-
ing, combines a variable number of input skeletons and delivers combined skeletons which
possess only the branches which the majority of the input skeletons has in common. The
goal is to create a more stable version than any of the input skeletons.

1The skeletonization algorithm by Zhang and Suen [285] introduced in Chapter 7 proved to be error prone
for noisy shapes like segmented vein patterns. In some cases new edges were introduced from noisy parts of
the segmented image. Therefore we decided to utilize the fast marching skeletonization. It is based on the fast
marching method by Sethian [202] and can be classified as a distance transform (DT) method where the resulting
skeleton lies along the singularities. The main advantages are the real-time execution with similar results to
other DT approaches, the robustness with respect to noisy boundaries and the possibility for pruning of spurious
branches.
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(a) Threshold 15 (b) Threshold 35

(c) Threshold 50 (d) Threshold 75

Figure 8.3: Skeletons extracted by fast marching skeletonization methods using different
thresholds. The higher the threshold the more details are cut off from the skeleton.

(a) (b) (c)

Figure 8.4: Fusion based on unification (GUC45 samples) using n = 3 input skeletons: (a)
superimposed structure Suni1 ; (b) disk-shape structuring element dilated structure Suni2 ;
(c) final unified skeleton Suni.

(a) (b) (c)

Figure 8.5: Fusion based on intersection (GUC45 samples) with n = 5 input skeletons and
threshold t = 3: (a) dilated density structure Sint2 ; (b) Sint3 (threshold t applied to segment
Sint2 ); (c) final intersection skeleton Sint.

8.3.3.1 Unified Skeletons

For deriving a unified skeleton it takes n input skeletons, where n was set to 3 in our
experiments. In a first step, all input skeletons Si(x, y) are aligned using ICP [192] and then
super-imposed to a common structure Suni1 (Figure 8.4(a)).

Suni1(x, y) = ∪ni=1Si(x, y) (8.1)

The registered input skeletons are fused together by dilating the superimposed figure Suni1

with a disk-shaped structuring element (Figure 8.4(b)) to get Suni2 . Afterwards the fast
marching skeletonization algorithm [220] is applied to the dilated figure in order to create
the unified skeleton Suni (Figure 8.4(c)).

8.3.3.2 Intersected Skeletons

The second proposed algorithm creates an intersected skeleton, which possesses only those
features which occur in at least t of the input skeletons. An example for skeleton intersec-
tion with n = 5 input skeletons is illustrated in Figure 8.5. The intersected skeleton in
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Figure 8.5 consists of the lines which occur in at least three of the five input skeletons
(t ≥ 3).

Similarly to the unification approach, the input skeletons Si need to be aligned to each
other. Then each of the n input skeletons is dilated with a disk-shaped structuring ele-
ment, creating binary structures Sint1 . These dilated skeletons are then added up to form a
common unified density structure called Sint2 .

Sint2(x, y) =
∑
n

Sint1n(x, y) (8.2)

Sint2 contains values between 0 and n. All input skeletons having a pixel that is clas-
sified as vein at position (x,y) in case of Sint2 = n and 0, meaning that none of the input
skeletons has any veins at this coordinate. Now a threshold value t with 1 ≤ t ≤ n is
applied to Sint2 resulting in Sint3 . In this step all pixels which at least occur t times in the
input skeletons are kept, all other pixels are set to zero.

Sint3(x, y) =

{
1 for Sint2 ≥ t
0 else (8.3)

Finally the fast marching skeletonization is applied again, which results in the inter-
sected skeleton Sint.

8.4 Chain Code Comparison

Similarities between two image skeletons can be determined by measuring the relative po-
sitions of the skeleton lines as well as their relative orientation. Two lines, which are parallel
should be considered to be more similar than two non-parallel skeleton lines. Chain code
based feature extraction uses the position of each pixel on a skeleton line in combination
with its local orientation reflected by the chain code value for feature encoding. This en-
ables the algorithm to find associated points between the probe and the reference skeleton
and to measure parallelism.

8.4.1 Preliminaries and Chain Code Assignment

Before chain code values can be assigned to an image skeleton, some preliminaries have to
be met. In a first step the probe and the reference skeleton have to be aligned with each
other. As for skeleton fusing, we used ICP for skeleton alignment. Moreover all points
where veins split up (bifurcations) have to be removed from the image skeleton in order to
avoid ambiguities. To make sure all chain codes refer to a common starting point, a reading
direction has to be defined. In our work, chain code extraction started from the bottom left
corner of the image and ended at the top right corner. If the reading direction is fixed, chain
codes extracted from the same shape with different coordinates will be identical. After the
skeletons are computed, the feature extraction module iterates over each pixel (x,y) of the
skeleton starting from the bottom left corner. Each skeleton pixel is assigned a chain code
value according to the relative position of its successor in reading direction (see Figure 8.6).
The chain code assignment for each pixel indexed by its coordinates x and y in the skeleton
image Iskel is defined as

C(x, y) =



1 if Iskel(x+ 1, y) = 1
3 if Iskel(x+ 1, y + 1) = 1
5 if Iskel(x, y + 1) = 1
7 if Iskel(x− 1, y + 1) = 1
9 if Iskel(x− 1, y) = 1
0 else

(8.4)
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8.4.2 Comparison

After chain code assignment, the similarity between two aligned chain codes C and C ′ is
calculated. The algorithm tries to find pairs of associated points by searching in orthogonal
direction to the local orientation of the chain code value stored at the currently examined
point. The search for associated pixels stops if either an associated point could be found or
if the maximum search depth dmax is exceeded. When a pair of associated skeleton points
has been found, their similarity is calculated based on their spatial distance d and the chain
code difference c.Where (x, y) and (x′, y′) are the coordinates of the two associated points
and C(x, y) and C ′(x′, y′) are their chain code values.

d =
√
|x− x′|2 + |y − y′|2 (8.5)

c = |C(x, y)− C ′(x′, y′)|2 (8.6)

The local error E at the point (x, y) is then calculated as follows.

E(x, y) =
d+ c

Emax
(8.7)

Emax =
dmax + cmax

2
(8.8)

The values for dmax and cmax denote the maximum search depth and the maximum possible
difference between two chain code values. Following Equation 8.6 and the scheme sketched
in Figure 8.6, cmax = 82 = 64. The local error is stored at position (x, y) in an error map E,
which has the same size as the input images.

The assignment of associated points is depending on the order of the two skeletons to
be compared (probe/reference). If we start with the reference skeleton and search for an
associated pixel in the probe skeleton, a different pixel pair can be identified as if we would
have started the other way around. This also means that the local error depends on the
order of the two skeletons. This is handled by computing two error maps E1 and E2. E1

contains all local errors calculated by using C as reference and C ′ as probe skeleton and E2

contains all local errors using C ′ as probe and C as reference, respectively. The total error
map Etotal is the sum of local errors for each point in the skeleton images and is computed
as follows:

Etotal(x, y) = E1(x, y) + E2(x, y) (8.9)

Finally the similarity score of the skeletons to compare is defined as:

Score = 1−
∑
x

∑
y Etotal(x, y)∑
x

∑
y Emax

(8.10)

An example of how a point pair can be found by using the local chain code value is
shown in Figure 8.6(b). The algorithm starts at the boldly bordered point in C and searches
in orthogonal direction for a corresponding point in C ′. After two mated points have been
identified, their local error, which is a value between 0 (no error) and 2 (maximum error) is
calculated. The global distance measure between all points in C and C ′ is, as stated before,
the weighted sum of all local errors.
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Figure 8.6: Chain code extraction scheme for feature extraction from prepared image skele-
tons and calculation of local error using the spacial distance between two associated pixels
and the chain code difference

8.4.3 Error Weights

Caused by the position of the infrared-LEDs in the sensor and the human physiology, the
contrast is not the same throughout the image region. Especially the edge regions of the
image are typically darker than the center region of the image, which means that local
error extracted from the center regions of the image are more likely to be reliable than
local error in the edge regions. In order to take this into account a weighting function
ω1(x, y) is introduced which assigns higher weights to the local errors in the center regions
of the image. It calculates a weight for each local error according to its position in the
image. width represents the total width of the image. An threshold value t is defined,
which specifies the image region where the weight of the local error decreases. We assigned
an error weight smaller than one to the leftmost quarter of errors and the rightmost quarter
of error respectively. Hence the value 0.25 for t was used here. w denotes the total with of
the image.

ω1(x, y) =


y−x
w−t if x < w − t
t−x
t if x > t

1 else
(8.11)

Another possibility of error weighting is based on the fact that most veins in our finger
vein image are horizontal, which is caused by the architecture of the sensor. Hence, the
portability of being a noise artifacts is assumed to be higher, the more a chain code value
differs from horizontal orientation. As the local chain codes for the veins have already been
assigned, this information can additionally be used for applying a weighting factor based
on the local orientation of a line, namely the local chain code value. As mentioned above,
chain code values already indicate the local orientation of a skeleton line, hence the local
error can also be weighted using the chain code values. ω2 calculates a weighting factor for
each error depending on the chain code value C in the comparison image. The constant
h represents the chain code value assigned to a line with horizontal orientation. For our
chain code extraction scheme, h is set to 5.
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Database GUC45 UC3M?

Frequency Band NIR (850nm)
Sensor non-commercial
Modality Finger (10) Wrist (2)
Data Subjects 45 29
Sessions 12 1
Images per Session 10× 2 2× 6
Images 10800 348
Resolution (px) 512× 240† 640× 480
Depth 8 Bit gray-scale

Table 8.1: Properties of the biometric vein datasets used in the experimental section. †For
the experiment the images are cropped to size 468× 122 to eliminate most non-finger area.
?Details published in [171].

ω2(C) =

{
1− (C − h)2 if C 6= h
1 else (8.12)

8.5 Experimental Setup

All experiments were conducted on the basis of a modular vein verification system imple-
mented in MATLAB. The benchmark system allows for arbitrary combinations of differ-
ent segmentation, feature extraction and comparison modules. The main quality measure
used for benchmarking different pipeline configurations is the equal error rate (EER). We
conducted two different experiments, one covering aspects of preprocessing in connection
with chain code comparison and the second one dealing with the comparison of selected
feature extraction, error weighting and comparison approaches. Information about both
experiments and the databases which were used during the evaluation is provided in this
section.

8.5.1 Vein Databases

In the experiments two different vein databases were used. Their main properties are sum-
marized in Table 8.1. In both cases the images were captured with a CCD-camera and
illuminated with NIR light at a wavelength of 850nm. The GUC45 dataset contains finger
vein images from 45 data subjects collected at Gjøvik University College in Norway over
a long period of time. Each finger, including the thumbs, was captured two times during
each of the 12 sessions, which results in 10800 unique vein images in total. The images from
GUC45 suffer from low contrast and high noise, which makes it hard for any algorithm to
extract stable skeletons and hence to achieve a low error rate on this data. However this
fact makes them particularly interesting for research purposes as it allows for exploring the
limitations of algorithms for feature extraction and comparison.

The second database, called UC3M, consists of wrist vein images, which were collected
as described in [171]. The focus of this experiment was to evaluate the effect of different
illumination intensities on the visibility of veins. For each of the 29 users, 6 images were
taken for each hand under three different illumination settings. This results into 348 images
in total.
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8.5.2 Preprocessing

The preprocessing stage consists of three steps, namely image enhancement, segmentation
and skeletonization. During image enhancement, noise should be removed and at the same
time image contrast should be enhanced. In order to meet both criteria, different methods
are combined. In a first step, the vein images are enhanced with adaptive non-local means
as proposed by Struc and Pavesic [212] followed by non-linear diffusion for noise suppress-
ing and edge enhancement [250].

The image enhancement step is followed by a segmentation step. In order to see, if
there is an image segmentation method, which is particularly suitable for segmenting vein
images, three different segmentation methods have been benchmarked. The first of these
methods is Otsu’s histogram-based segmentation [169]. Additionally the active contours
algorithm proposed by Chan and Vese [27] and the multi-scale filter method by Frangi et.
al. [58] have been tested on the vein images.

Preprocessing is concluded by the skeletonization approach proposed by Telea and van
Wijk [220]. For determining the influence of skeleton pruning on the EER, we compared
the biometric performance of different pipelines using chain code comparison and Otsu’s
segmentation algorithm with different thresholds during the skeletonization step.

8.5.3 Feature Extraction Evaluation

For comparing the biometric performance of chain code comparison to other feature extrac-
tion methods, we evaluated chain code comparison on GUC45 and UC3M. We compared
the performance to the evaluation results of spectral minutiae (SML and SMLFR) as pro-
posed in [77], Similarity-based Mix-Matching (SMM) [30] and the performance of chain
code comparison on single references and fused skeletons. In all experiments using fused
skeletons, the fused skeleton served as the reference image and a skeleton extracted from
one vein image was used as the probe image.

We investigate the influence of the maximum search distance on the error rate of chain
code comparison and evaluated the discriminating potential of spatial and chain code dis-
tance. Furthermore evaluate the influence of the previously introduced error weighting
schemes on the EER. For doing this we configured a pipeline using Otsu’s segmentation
algorithm, fast marching skeletonization with a threshold of 35 and chain code comparison
for feature extraction.

8.6 Results

In our experiments, the segmentation algorithms came to slightly different results, but had
a minor effect on the overall system’s performance. The measured performance difference
between the different segmentation algorithms on GUC45 is less than 2% points in terms of
the EER. The main difference between the evaluated segmentation approaches was in terms
of computation time, however the approach by Frangi and Niessen performed slightly
better on the UC3M dataset.

In contrast to the preprocessing step, the impact of the feature extraction and compar-
ison method is significant. Table 8.2 summarizes the performance measures for each of
the datasets. The results for GUC45 were obtained using Otsu’s segmentation algorithm,
whereas the EER measures on UC3M are based on Frangi and Niessen’s filter-based ap-
proach. For each of the evaluated configurations we measured the EER and the operating
point for 0.1% FAR. Furthermore we provide the 90% confidence intervals for each of the
measured performance indicators.

The images in GUC45 have a particularly low contrast and therefore cannot be expected
to give good biometric performance. However, GUC45 is a challenge for all tested algo-
rithms. In addition, it also contains multiple samples per subject. The results of the dif-
ferent feature extraction and comparison approaches on GUC45 are summarized in Figure
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8.7. The best performance could be achieved with chain code comparison using unified
skeletons as reference samples and skeletons derived from only one image as probes. This
configuration was named Fused Union. With an EER of 24.67% Fused Union outperformed
all other configurations including SMM, but also single reference chain code comparison.
This shows that already a simple skeleton fusing approach like the proposed one, enhances
the quality of image skeletons and improves the system performance. None of the error
weighting schemes has an effect on the performance of chain code comparison. On aver-
age, ω2 had a slightly better performance than ω1, but the confidence value indicate that
there is no statistically significant difference between these two configurations.

Further investigations on the performance of Fused Union for each finger on GUC45
showed, that the fingers of the left hand appear to be more suited for vein recognition than
the right hand fingers (see Figure 8.7(b)). In our experiments, the highest error rate was
measured with images from the thumbs (Fingers indices 5 and 6). The EER of configu-
rations using intersected skeletons increases the more input skeletons are used. A reason
for this could be that unstable skeletons have only few intersecting parts, which results in
fused skeletons with low details. Less details however mean less discriminative power and
results in increasing error rates.

For the UC3M dataset an excellent biometric performance could be measured without
the skeleton fusion techniques proposed. SMM and the chain code algorithm perform at the
same level (EER around 1% EER). Skeleton fusion could reduce the EER to 0.63%, whereas
skeleton intersection with n = 3 and t = 2 yielded an EER of 0.67%.

Whereas the segmentation did not have any effect on the EER, the level of detail in the
skeletons had a measurable effect on the performance of chain code comparison. Figure
8.7(c) shows, that a careful selection of the threshold during fast marching skeletonization
can deliver a considerable improvement of the overall performance. The lowest EER could
be achieved when using a threshold of 35. The performance obtained from other thresholds
is similar and moves around approximately 31% EER. The only outlier is the threshold
5. The reason for this are artifacts, introduces by fast marching skeletoization during the
assignment of indices. These artifacts are removed when applying thresholds above 15, but
are sill part of the skeleton for low thresholds.

Experiments on the behaviour of chain code comparison using different search depths
showed, that the careful choice of this parameter is crucial, as the spatial distance between
two skeleton points appeared to have a larger impact on the biometric performance than
the difference between two adjacent chain codes. The reason for this is that there the possi-
ble variance between two chain code values is small compared to the variance of the spatial
distance. The maximum search depth should be chosen according to the resolution of the
input vein images and the expected density of the vein patterns. For GUC and UC3M a
maximum search depth of 9 pixels delivered the best performance.

8.7 Conclusions and Future Work

The proposed chain code algorithm as well as the state of the art SMM [30] algorithm
perform very similar on the chosen datasets, it seems the quality of the images is a limiting
factor here. Only a multi-reference approach could further improve the results.

Even though the proposed comparison on Fused Union skeletons showed promising
results, the algorithm’s time wise performance is not impressive compared to other feature
extraction and comparison algorithms. Future work focuses on reducing the required com-
puting time by replacing the pixel-based chain code extraction with a convolution-based
approach and by selecting less reference points for skeleton registration and comparison in
order to further decrease the size of the feature vector.

Further improvements could also be made by extending the error calculation to com-
plete line segments in order to make chain code comparison less sensitive to single out-
liers and more sensitive to mismatching line segments. Moreover, additional simulations
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(a) (b)

(c) (d)

Figure 8.7: ROC curves for (a) selection of feature extraction algorithms and (b) Fused Union
configuration, different finger samples from GUC45 dataset. Finger indices are assigned
according to the ISO-standard [102] with indices 1 until 5 for the right hand fingers in
indices 6 until 10 for the left hand fingers, where counting always starts from the thumbs.
(c) shows ROC curves for a selection of different thresholds in fast marching skeletonization
using chain code comparison. (d) shows ROC curves for chain code pipelines and SMM on
the UC3M dataset
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Comparison Algorithm GUC45 UC3M
EER OP EER OP

Chain Codes 29.06 (±0.73) 77.97 (±0.67) 1.38 (±1.27) 3.10 (±1.68)
Chain Codes with ω1 29.42 (±0.89) 78.65 (±0.66) 1.38 (±1.13) 1.72 (±1.26)
Chain Codes with ω2 28.44 (±0.72) 77.041 (±0.68) 2.07 (±1.37) 4.48 (±1.99)
Fused Union 25.21 (±0.71) 84.15 (±0.62) 0.63 (±0.87) 1.72 (±1.62)
Fused Intersect t=2, n=3 34.49 (±0.89) 95.60 (±0.34) 0.67 (±1.10) 1.15 (±1.33)
Fused Intersect t=3, n=5 32.87 (±0.92) 93.71 (±0.43) NA NA
Fused Intersect t=5, n=7 32.20 (±0.97) 97.27 (±0.31) NA NA

SMM 27.84 (±0.71) 78.40 (±1.13) 1.38 (±0.67) 1.38 (±1.13)
SML 39.089 NA 6.13 NA
SMLFR 40.25 NA 5.90 NA

Table 8.2: Benchmark results (EER in % and OP = FNMR at 0.1% FMR) for finger vein
(GUC45) and wrist images (U3CM). The numbers in brackets after each result are the 90%
confidence interval for the results. NA: not measured in the experiments.

on different vein datasets will also show the feasibility of the approach for different vein
modalities.
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Chapter 9

Comprehensive Analysis of Spectral Minutiae
for Vein Pattern Recognition
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The transformation of minutiae points into the spectral minutiae representation has inter-
esting properties: it has been shown that recognition accuracy for fingerprints is high, in
addition the representation is of fixed length and the comparison can be done element-wise.
The latter two properties of the resulting feature vectors are a requirement for template pro-
tection schemes based on fuzzy commitment like the HDS. Furthermore, the approach is
robust to translations of the input, rotations and scaling can be compensated. A single
pipeline is designed that processes wrist and palm dorsal (NIR/FIR) raw vein images into
spectral minutiae resulting in very high recognition accuracy.
The original paper was published in: [77] HARTUNG, D., OLSEN, M. A., XU, H., AND
BUSCH, C. Spectral minutiae for vein pattern recognition. In Biometrics (IJCB), 2011 In-
ternational Joint Conference on (October 2011), pp. 1-7. The attached extended version is
published in: [78] HARTUNG, D., OLSEN, M. A., XU, H., NGUYEN, H. T., AND BUSCH,
C. Comprehensive analysis of spectral minutiae for vein pattern recognition. In IET Bio-
metrics (March 2012), vol. 1, pp. 25-36.

115
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RECOGNITION

Abstract

Similar to biometric fingerprint recognition, characteristic minutiae points – here end
and branch points – can be extracted from skeletonized vein images to distinguish indi-
viduals. An approach to extract those vein minutiae and to transform them into a fixed-
length, translation invariant representation where scaling and rotations can be easily
compensated is presented in this study1. The proposed solution based on spectral minu-
tiae is evaluated against other comparison strategies on three different datasets of wrist
and palm dorsal vein samples. The authors’ analysis shows a competitive biometric
performance while producing features that are compatible with state-of-the-art template
protection systems. In addition, a modified and more distinctive, but not transform or
rotation invariant, representation is proposed and evaluated.

9.1 Introduction

Intended to be a robust approach for liveness detection in fingerprint and hand geome-
try systems, vein recognition evolved to an independent biometric modality over the last
decade [16]. Classically the capturing process can be categorized as a near- or a far-infrared
approach. Vein recognition systems based on the near-infrared approach are exploiting
differences in the light absorption properties of the de-oxygenated blood flowing in sub-
cutaneous blood vessels and the surrounding tissue. Veins become visible as dark tubu-
lar structures. They absorb higher quantities of the near-infrared light, that is commonly
emitted by light-emitting diodes (LEDs) of the sensor, than the tissue. Alternatively in the
far-infrared approach the heat radiation of the body can be measured [242]: the temper-
ature gradient between the blood vessels carrying the warm blood and the tissue can be
measured in this spectrum.

Vein patterns evolve during the embryonic vasculogenesis. Their final structure is
mostly influenced by random factors [52]. Scientific research about the uniqueness of vein
patterns is sparse and many sources state that vein patterns are unique among individuals.
It is also expected that the position of veins is constant over a whole lifetime [46]. As vein
scanners work contact-less, they are considered to be more hygienic than systems requiring
direct physical contact. This makes vein recognition particularly suited for applications in
public environments.

Owing to the fact that the mesh of blood vessels forming the vein patterns are located
underneath the skin, a person’s individual vein patterns is hard to forge; no latent prints
are left unintentionally. Offering the same user convenience as fingerprints while being
highly secure against forging, vein recognition has been applied in various fields of access
control during the last few years. Besides this privacy protecting property, there are also
privacy concerns reported in vein recognition systems since disease patterns can be read
from the biometrics reference images [71]. There are some attempts to prevent the prolifer-
ation of sensitive data from biometric references. First, to overcome the linkability between
different databases and second to enable revocation capacities, so that multiple identifiers
can be constructed from the same biometric trait. It is not sufficient to simply encrypt bio-
metric templates with classic cryptographic functions since they cannot be compared in
the encrypted domain. The goal is to introduce pseudonymous identifiers that cannot be
tracked back to the data subject. At the same time profiling should be denied, multiple
pseudonymous identifiers of the same data subject should be unlinkable.

An overview of existing biometric template protection systems is given in [18]. The
proposed harmonized reference architecture is integrated in the international standard
ISO/IEC 24745 Biometric Information Protection and its nomenclature is used throughout this
paper. Jain et al. [106] gives a comprehensive introduction to the topic of biometric template
security with a focus on template database security. The authors propose a categorization

1In the article scale invariance was mentioned by mistake.
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of template protection schemes and discuss pros and cons. One interesting category cov-
ers key-binding biometric cryptosystems, they enable the integration of biometric systems
into cryptographic protocols. As one advantage the authors mention the tolerance towards
intra-user variability and the adaptability through error correction. However, the major
drawback described in this paper is that sophisticated comparators cannot be utilized be-
cause to requirements on the structure of the feature vectors.

The fuzzy commitment scheme [109] is one of the systems for template protection falling
in this category. It introduced error-correcting codes and cryptographic functions to secure
biometric data. The helper data scheme (HDS) [225, 226] uses the principle of fuzzy com-
mitments to protect the privacy of biometric features and to satisfy the above-mentioned
requirements. It is an extension of classic biometric systems where the extracted feature
vectors are further processed. In the scheme, the above-mentioned restriction applies: no
specifically designed comparator can be used, the feature vectors must be of fixed-length
and structure, so that components can be analyzed for reliability and can consistently be
reconstructed from biometric data.

Current work in vein recognition is not focused on solving this issue. However, in [127]
a hand vein-based authentication system using Delaunay triangulation of minutiae was
presented. The approach is based on the extraction of minutiae groups to form triplets
as well as a triplet type, determined from the composition of endpoints and bifurcations.
The resulting rotation and translation invariant feature vector is variable in length as de-
termined by the number of identified triplets. Other approaches focus on the extraction
of local binary patterns or derived versions [137, 155], which are dependent on alignment
based on minutiae points or a region of interest selection. The feature vectors are of fixed
length, but they are not invariant against translation, scaling or rotation.

The goal of this paper is to investigate an algorithm that transforms feature vectors
from vein patterns into a fixed-length and structure representation compatible with the
HDS without loosing performance compared to the original representation [77]. The pro-
posed feature extraction method for vein patterns is based on minutiae points, known from
fingerprint recognition, where the position of end and branch points from the skeletal rep-
resentation of vein patterns are being used. Owing to noise from various sources such as
the sensor, the biometric trait, or the pre-processing these feature points cannot be recon-
structed perfectly; their amount and their position will vary. To overcome these issues an
approach called spectral minutiae is applied to the original vein minutiae. This approach
was applied very successfully to fingerprint minutiae [264].

In this work, we further analyse the spectral minutiae for vein recognition: we propose
a fast orientation estimator of the minutiae, which then can be used to encode the com-
plex spectral minutiae (SMC). Further, we propose a second normalization method for the
spectra that increases recognition performance at the cost of invariance to affine transfor-
mation of the input data. In addition, a mutual information-based comparator is included
and investigated. The experimental section covers an extensive set of investigations: per-
formance for the different types of minutiae is analyzed, statistics about the computational
requirements are provided and score-level fusion techniques are applied to further increase
the biometric performance. The pipeline of the proposed pre-processing and the feature ex-
traction algorithm is sketched in Figure 9.1, the comparison strategies are shown in Figure
9.2. In bold letters the newly introduced parts are highlighted, and the corresponding sec-
tions are given in curly brackets.

The structure of the paper is as follows: beginning with the introduction of the vein pat-
tern pre-processing and feature extraction system in Section 9.2, the approach of mapping
those features into a fixed-length, translation invariant representation is given in Section
9.3. The following Section 9.4 is showing the feasibility of the approach using simulations
over several databases. Details about the databases and the performance evaluation are
described there as well. In the last section conclusions and future works are given.
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Raw Image 

Vein Pattern Pre-
Processing  

{2.1} 

Image Enhancement 
{2.1.1} 

Segmentation 
{2.1.2} 

Skeletonization 
{2.1.3} 

Feature Point 
Detection 

{2.2} 

Orientation Detection 
{2.3} 

SML Coding for Vein 
{3.1} 

SMC Coding For Vein 
{3.2} 

Minutiae Type 
Selection 

(All, Bifurcations, Endpoints) 
{2.2, 4.3.3} 

Spectra Normalization 
{3.3} 

Figure 9.1: Overview biometric pipeline. Bold: newly proposed algorithms with regard
to [77]. Corresponding sections given in curly brackets [refers to in-chapter numbering].
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Comparison 
{3.4} 

Correlation 
{3.4.1} 

Direct 
{3.4.1} 

Mutual Information 
{3.4.2} 

Fast Rotation 
{3.4.3} 

Figure 9.2: Overview spectral comparison strategies. Bold: newly proposed algorithms
with regard to [77]. Corresponding sections given in curly brackets [refers to in-chapter
numbering].

9.2 Proposed Biometric Vascular Pattern Recognition System

The biometric system based on vein data is introduced in this section. One challenge in
vein recognition systems is to cope with noise and low contrast in the captured images.
Vein image quality is subject to several factors such as ambient light, air temperature, skin
color and varying thicknesses of the skin layers and the limbs. As a result of all these factors
sensors usually deliver images suffering from an unfavorable signal-to-noise ratio, low
contrast and non-uniform brightness. The vein recognition system has to cope with global
and local contrast changes in the image, while suppressing noise. Therefore sophisticated
image processing is indispensable in order to improve the images.

Unlike in fingerprint, it is not possible to extract or estimate an orientation field based
on the veins. The veins are sparse compared to the fingerprint ridges and their orienta-
tions do not seem to be as strongly correlated. The orientational field in fingerprints can
be estimated from gray-scale images and can be used to extract minutiae locations and ori-
entations. In vein recognition the enhanced images must be segmented before an image
skeleton representing the topological structure of the data subject’s veins can be extracted.
Minutiae feature points are extracted based on this skeleton and will form the input to the
spectral minutiae post-processing which is introduced in Section 9.3.

9.2.1 Vein Pattern Pre-Processing

The proposed solution is not performing a region of interest (ROI) selection to be as generic
as possible. Therefore the first step in the pre-processing pipeline is the contrast enhance-
ment.

9.2.1.1 Contrast enhancement

For the proposed system the images are first enhanced by using the adaptive non-local
means algorithm which was successfully applied to face recognition in [212], followed by
the noise suppressing and edge enhancing non-linear diffusion algorithm [250]. At this
point the image is inverted such that veins now appear as high-intensity pixels, whereas
the tissue between the veins appear as low intensity. The results of the algorithm applied
to raw wrist and dorsal palm vein images can be seen in Figures 9.3(b), 9.4(b) and 9.5(b).
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(a) (b) (c)

(d) (e)

Figure 9.3: Sample dorsal hand vein (SNIR) after different stages of the pre-processing
pipeline of the proposed system: (a) raw, cropped vein image; (b) contrast enhanced im-
age; (c) segmentation of an optimized vein pattern image; (d) skeletonization of segmented
image; (e) overlay of extracted minutiae points and skeleton. Red circles: endpoints, blue
stars: branch points

(a) (b) (c)

(d) (e)

Figure 9.4: Sample far-infrared dorsal hand vein image (SFIR-GT) [171], (a) raw, cropped
vein image; (b) contrast enhanced image; (c) segmentation of an optimized vein pattern
image; (d) skeletonization of segmented image; (e) overlay of extracted minutiae points
and skeleton. Red circles: endpoints, blue stars: branch points
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(a) (b) (c)

(d) (e)

Figure 9.5: Sample wrist vein image (UC3M) [171], (a) raw, cropped vein image; (b) contrast
enhanced image; (c) segmentation of an optimized vein pattern image; (d) skeletonization
of segmented image; (e) overlay of extracted minutiae points and skeleton. Red circles:
endpoints, blue stars: branch points

9.2.1.2 Segmentation

The multi-scale filter method by Frangi et al. [58], designed for simultaneous noise and
background suppression in medical imaging of vessels, is used as a segmentation method
on the vein images. The method searches for tubular structures in the image by analyzing
the second-order information (Hessian). The second-order derivative of a Gaussian kernel
generates a probe kernel that can measure contrast inside a defined range in the direction
of the derivative. An eigenvalue analysis of the Hessian gives the direction of smallest
curvature and thus the direction of the vessel, the eigenvalues can be used to classify pixels
as vessel or background. Figures 9.3(c), 9.4(c) and 9.5(c) show the effect of the method
applied to the contrast enhanced images.

9.2.1.3 Skeletonization

Skeletons are extracted by the fast marching skeletonization algorithm [220]. One ad-
vantage of this method is the built-in pruning method, which allows cutting off certain
branches from the image skeleton. In fast marching skeletonization, incremental indices
are assigned to each pixel on the edge of the figure. Then they are collapsed until only the
center line remains. From the difference between two neighboring indices, it can be con-
cluded, how close a skeleton branch is to the center of the figure. The difference between
indices at fine-grained branches at the edge of the image skeleton is small, whereas it is
large in the center part. These fine-grained branches are most likely artifacts, which were
introduced by segmentation errors or noise and can be removed by applying a threshold.
The skeleton points where the difference between their indices falls below the threshold
are deleted. All other points are kept. Hence, depending on the threshold, more or less of
these remote branches are cut off. Examples are shown in Figures 9.3(d), 9.4(d) and 9.5(d).
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9.2.2 Feature Point Detection

After extracting the skeletal representation from a vein image, the specific feature points
have to be extracted. An efficient and reliable method is proposed in [166]. It is based
on convoluting the binary image with a filter consisting of unique power of two values
to get unique filter responses for every pattern in the mask size. The end as well as the
branch points of the vascular skeleton can be found by searching for their pre-computed
filter response values in the filter response of the image. The extracted minutiae points are
overlayed with the corresponding skeletons in Figures 9.3(e), 9.4(e) and 9.5(e).

9.2.3 Orientation Detection

The same approach for extraction the minutiae location can be also used to extract the
orientations. We propose a fast and reliable method to detect the orientation of minutiae
points in an eight-connected binary image within a 3x3 pixel window size based on [166].
Therefore the mask of the convolution approach has to be adapted as shown in Figure 9.6.

The geometrical interpretation of the approach is straightforward for the endpoints: the
orientation is defined as the absolute angle (towards an upwards defined zero angle) facing
the direction of the skeletonized vein (Figure 9.7). In case of bifurcation or trifurcation
points the orientation is defined as the sum of all absolute angles facing the existing veins
within modulo 360. It should be noted that neighboring bifurcation patterns (as shown in
Figure 9.8), are assigned the maximum distance of 180, which is reasonable since the pairs
are geometrically inverse, mirrored on one axis through the center of the mask. The two
cases of trifurcation points (the last two patterns) are also distinguished using the mask
from Figure 9.6.

After applying the mask to the binarized image, the orientations can be extracted at the
positions identified with the algorithm described in Section 9.2.2.

135 180 225

90 0 270

45 0 315

315 0 45

90

135180225

0270

Figure 9.6: Filter mask used for orientation detection. Left side: kernel, right side: as
applied on binary image.

0 90 180 270 135 315

45 225

Figure 9.7: Endpoint patterns and their corresponding filter response.
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0 180 90 270 45 225

135 31545 225 135 315

0 18090 270 180 0

Figure 9.8: Bifurcation patterns and their corresponding filter response.

9.3 Spectral Minutiae

The spectral minutiae representation is a method to represent a fingerprint minutiae set as
a fixed-length feature vector, which is invariant to translation, rotation and scaling. This
approach enables the combination of minutiae-based recognition systems with template
protection schemes based on the HDS and allow for fast minutiae-based comparison as
well. Considering the similar characteristics of vein and fingerprint minutiae patterns, we
applied this method to the extracted vein minutiae.

In the following sections, we introduce two spectral minutiae representations to encode
the vein minutiae; the first one is solely based on the location of the points and the second
one incorporates in addition their orientation. The location-based spectral minutiae (SML)
representation approach was presented in [260, 264], and the complex spectral minutiae
(SMC) representation in [263].

9.3.1 SML Approach

Assume that we have a fingerprint or vein pattern with Z minutiae. In SML, we code the
minutiae locations by indicator functions

m(x, y;σ2
L) =

Z∑
i=1

1

2πσ2
L

exp(− (x− xi)2 + (y − yi)2

2σ2
L

), (9.1)

with (xi, yi) the location of the i-th minutiae in the image. Thus, in the spatial domain,
each minutiae is represented by an isotropic two-dimensional (2D) Gaussian function with
variance σ2, illustrated in Figure 9.9(b). In this way, the signal is more robust to small
variations of the minutiae locations.

Taking the Fourier transform of m(x, y;σ2
L) and keeping only the magnitude of the

Fourier spectrum (in order to make the spectrum invariant to translation of the input),
we obtain the SML representation
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(a) (b)

(c) (d)

Figure 9.9: Illustration of the SML representation procedure. (a) vein pattern and its minu-
tiae points; (b) representing minutiae points as isotropic two-dimensional Gaussian func-
tions. (c) the Fourier spectrum in a Cartesian coordinate and a polar-logarithmic sampling
grid. (d) the Fourier spectrum sampled on a polar-logarithmic grid.
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ML(ωx, ωy;σ2
L) =∣∣∣∣∣exp

(
−
ω2

x + ω2
y

2σ−2
L

)
Z∑
i=1

exp(−j(ωxxi + ωyyi))

∣∣∣∣∣ . (9.2)

In order to obtain the final spectral representations, the continuous spectra SML (9.2)
need to be sampled on a polar-logarithmic grid. A polar mapping transforms rotation to
translation in the horizontal direction, whereas a logarithmic mapping transforms scaling
to translation in the vertical direction. In the radial direction λ, we use M = 128 samples
between λl and λh. In the angular direction β, we use N = 256 samples uniformly dis-
tributed between β = 0 and β = π. A polar-logarithmic sampling process is illustrated in
Figure 9.9(c) and Figure 9.9(d).2

9.3.2 SMC Approach

As an additional feature specific to minutiae points besides their location, the orientation
of the veins in those points can be measured and used. As shown in [263] there are dif-
ferent ways of incorporating the orientation θ into the spectral minutiae. We will focus
on the SMC approach that yielded better performance on fingerprint data compared other
approaches.

In SMC the minutiae information is encoded as a 2D Gaussian in the spatial domain as
in the SML approach. Additionally, each Gaussian is assigned a complex amplitude based
on the orientation of the original minutiae shifting the phase in the frequency domain.
The complex spectral minutiae representation is defined as the magnitude of the Fourier
spectrum

MC(ωx, ωy;σ2
C) =∣∣∣∣∣exp

(
−
ω2

x + ω2
y

2σ−2
C

)
Z∑
i=1

exp(−j(ωxxi + ωyyi) + jθi)

∣∣∣∣∣ . (9.3)

The mapping into the polar-logarithmic sampling grid is done as in the case of SML, the
difference being that the parameters for the angular direction are chosen between β = 0
and β = 2π, since the SMC is not symmetrical.

9.3.3 Normalization of Spectra

As described in (9.2) and (9.3), we want to keep the magnitude of the spectrum. We used
two approaches that return for each imaginary element z = a + bj of the spectrum (a) the
complex modulus as

√
(a2 + b2) or (b) the real-valued part a of the spectrum.

2The selection of the parameters is based on recommendation for fingerprint [264]: the fingerprint sensors that
were utilized for the acquisition of the databases featured a 500 dpi optical resolution which resulted in an image
resolution of around 256× 400 (MCYT fingerprint) or 296× 560 (FVC2002-DB2). From those images in average
20-70 minutiae could be extracted and were utilized for the SM parameter optimization. Since the resolution does
not significantly differ from the ones of the vein databases (Table 9.1) and the amount of detected minutiae is in
a similar range (Table 9.5) the parameters are deployed in the proposed vascular pattern pipeline. However, the
selection is likely to be non-optimal. In case of the UC3M data the generic selection of the parameters seems to
have a negative effect on the performance, this could be due to the larger amount of detected minutiae. In line
with the experience from SM for fingerprints, a manual optimization did reveal that M,N does not influence
the biometric performance significantly. In Section 3.2.1 SM parameters are optimized for a palm vein database
indicating the influence of the λl parameter on the performance. The optimization further revealed that the
pre-processing and in particular the segmentation introduced here can be further improved and has a stronger
influence on the performance than the SM parameters. This has to be considered as future work at least for the
UC3M data as this may reduce the amount of falsely detected minutiae.
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(a) (b)

Figure 9.10: Sample SML spectra as described in 9.3.3. (a) complex modulus; (b) real-valued
spectrum.

(a) (b)

Figure 9.11: Sample SMC spectra as described in 9.3.3. (a) complex modulus; (b) real-
valued spectrum.

Two resulting spectra are shown in Figure 9.10 for SML and SMC in Figure 9.11. The
performance evaluation of approach (a) is reflected in Table 9.2 and yields higher error rates
compared to approach (b), which is then used further on throughout the paper.

It has to be stated although that approach (a) results in a translation and rotation invari-
ant representation in contrast to method (b). Depending on the dataset and the layout of
the system approach (a) could be more appropriate.

9.3.4 Comparison Subsystem

Different comparison strategies are considered, the direct and the fast rotation shift search.
Both can be utilized with a correlation or mutual information approach. They are described
in this section.

9.3.4.1 Direct Comparison

Let R(m,n) and T (m,n) be the two sampled minutiae spectra in the polar-logarithmic
domain, respectively, achieved from the reference sample and test sample (probe sample) –
originating from a fingerprint or a vein source. Both R(m,n) and T (m,n) are normalized
to have zero mean and unit energy and are of fixed lengthM ×N . As a similarity score, the
normalized cross-correlation with zero lag of two minutiae spectra was chosen, which is a
common similarity measure in image processing. Therefore the SML correlation (SML-C),
respectively, SMC correlations (SMC-C) similarity score between R and T is defined as

S
(R,T )
DC =

1

MN

M,N∑
m=1,n=1

R(m,n)T (m,n). (9.4)
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9.3.4.2 Mutual Information-based Comparison

The similarity between R(m,n) and T (m,n) can also be measured by mutual information.
In contrast with the correlation measure that considers linear relationship, the mutual in-
formation from information theory [38] is utilized to quantify the non-linear relationship
between the two variables. If we consider two sampled spectraR(m,n) and T (m,n) as vec-
tors as follows: R(m,n) = (r1, r2, ..., rMN ), T (m,n) = (t1, t2, ..., tMN ), then the SML/SMC
mutual information (SML-MI/SMC-MI) as similarity score between them is given as:

S
(R,T )
MI =

MN∑
i=1

MN∑
j=1

p(ri, tj) log

(
p(ri, tj)

p(ri)p(tj)

)
, (9.5)

where p(ri, tj) is the joint probability distribution function of R and T ; and pri and pri
are the marginal probability distribution functions of R and T respectively.

9.3.4.3 Fast Rotation Shift Searching

Rotations might not only be a problem in fingerprint recognition but as well in vein recogni-
tion, depending on the capture device used for the acquisition. The fast rotation shift search
algorithm introduced in [260] makes a costly normalization of the minutiae points unnec-
essary by compensating for rotations by testing several rotated spectra. As we applied the
polar-logarithmic transform to the Fourier spectra, rotations become circular shifts in the
horizontal direction in our minutiae spectra. We chose to test rotations from −10 ◦ to +10 ◦

as starting points, which corresponds to circular shifts from -15 units to +15 units in the
polar-logarithmic domain.

Let Tk(m,n) be defined as T (m,n) with a circular shift k in the horizontal direction. For
each shift attempt, a new similarity score S(R,Tk) is calculated using (9.4) or (9.5). Finally,
the highest score is chosen as the similarity score and the corresponding shift k is recorded
as the best shift (i.e. the best rotation).

We applied a fast search for the best shift. This algorithm consists of the following steps:
(1) Five circular shifts (k = −12,−6, 0, 6, 12) are applied to T (m,n) and the similarity scores
S(R,Tk) are calculated. The maximum value of S(R,Tk) is denoted as S1 and its correspond-
ing shift k is denoted as k1;
(2) Two circular shifts (k = k1 − 2, k1 + 2) are applied to T (m,n), and the similarity scores
S(R,Tk) are calculated. The maximum value of S(R,Tk) and S1 is denoted as S2, and its
corresponding shift k is denoted as k2;
(3) Two circular shifts (k = k2 − 1, k2 + 1) are applied to T (m,n), and the similarity scores
S(R,Tk) are calculated. The maximum value of S(R,Tk) and S2 is denoted as Sfinal.

Using this fast rotation shift search algorithm, only nine shift trials need to be tested, in-
stead of 31 shift trials for an exhaustive search. After these steps, the value Sfinal is recorded
as the final similarity score between R and T .

The scores can be computed for SML as well as for the SMC approaches, when using
the correlation or direct comparison approach we referred to it SML-C-FR and SMC-C-FR,
for the mutual information measure, we us SML-MI-FR and SMC-MI-FR respectively.

9.4 Experiments

The simulations are designed to examine the performance – measured in equal error rates
(EER) – of different comparison strategies used in vein recognition. Three datasets, which
main properties are described in Table 9.1, will give a broad basis for conclusions about the
proposed approach of using spectral minutiae as features.
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9.4.1 Databases

The first two databases were gathered in 2006 in Singapores Nanyang Technological Uni-
versity and contain a subset of samples that were used in several publications [240, 242].
The two parts contain 732 palm dorsal vein samples in the near-infrared and 173 in the far-
infrared spectrum from 122, respectively, 34 data subjects. We refer to them as Singapore
NIR (SNIR) and Singapore FIR (SFIR) according to the capturing spectral band.

During the experiments, ground truth errors in the SFIR database were discovered,
the naming of some files were erroneous, thus imposter comparisons were considered as
genuine and vice versa. These errors were resulting in a limited performance of about
2.37% equal error rate (EER) using the proposed algorithms with normalisation method (b)
(Section 9.3.3) and the SMM algorithm. The naming errors have been corrected and the
corrected version is referred to as SFIR-GT. This version also features inverted images to
consider the nature of the far-infrared data.

The third database used for the experiment is referred to as UC3M [171]. It was collected
in 2010 in the University Carlos III of Madrid. The dataset consists of 348 vein images
in the near-infrared spectrum from the wrist areas of 29 data subjects. The dataset was
taken under different illumination intensities to optimize the capturing device and does
not reflect an operational database.

One limitation of the datasets is that they were captured during only one session, which
limits the variability in the signals. In addition, the sizes of the databases limit the signifi-
cance of the results.

Property SNIR SFIR UC3M

Frequency Band NIR FIR NIR
Modality Back of Hand (2) Back of Hand (2) Wrist (2)
Data Subjects 122 34 29
Sessions 1 1 1
Images per Session 2× 3 2× ∼ 3 2× 6
Images 732 173 348
Genuine Comparisons 732 170 870
Imposter Comparisons 266814 14708 59508
Resolution (px) (644× 492)⊥ 320× 240 (640× 480)⊥

Depth 8 Bit 8 Bit 8 Bit

Table 9.1: Properties of the biometric vein datasets used in the experimental section.
⊥Image size reduced by 50% in each spatial dimension for experiments.

9.4.2 Comparison Strategies

Our selection of comparison strategies covers a range of different features types that are
used. We distinguish here between minutiae-based approaches and geometrical based
ones.

Table 9.3 shows the comparison strategies used in the simulations, from the literature
we selected the Hausdorff distance, modified Hausdorff (MHD) [50, 242], and Similarity-
based Mix-matching (SMM) [30].

The first category is represented by the Hausdorff as well as the MHD algorithms that
use the location of the minutiae points directly. The SML algorithm is based on the spectral
minutiae representation of the minutiae location, the SMC approach in addition on the
orientation. Both are introduced in Section 9.3, for their comparison different approaches
are introduced in detail in Section 9.3.4. A correlation (-C) or mutual information (-MI) in
combination with the fast rotation (-FR) strategy is used.
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Formally the Hausdorff distance between two sets of numbers A = {a1, a2, ..., an} and
B = {b1, b2, ..., bm} is defined as

SH(A,B) = max

{
max
a∈A

min
b∈B
||b− a||,max

b∈B
min
a∈A
||a− b||

}
(9.6)

Where ||b− a|| is the Euclidean distance between the points a and b.
The MHD is more resilient to outliers and defined as

SMHD(A,B) =
1

|A|
∑
ai∈A

min
bj∈B

||ai − bj || (9.7)

Were |A| is the number of elements in A.
The Similarity-based Mix-matching (SMM) algorithm proposed by Chen et alet al. [30]

uses geometrical properties of image skeletons and segmented images to overcome prob-
lems with affine transformations. It compensates small translation and rotation errors by
comparing the segmented version of the reference sample with the image skeleton of the
test sample. The computational effort is higher than the feature point-based approaches.

9.4.3 Performance Evaluation

The evaluation is based on three databases using the EER as main metric. The proposed
system of pre-processing and feature point detection and orientation estimation from Sec-
tion 9.2 is used. During the skeletonization approach using the fast marching algorithm,
images from the UC3M database are pruned using a radial threshold of 15, whereas the
threshold is set to 75 for the other datasets based on an empirical evaluation of the skeleton
variability. All other parameters are generic across the datasets.

Within the simulations the full amount of genuine and imposter comparisons were
taken into account for the EER calculations and plots as indicated in Table 9.1.

The biometric performance results are summarized in Table 9.3 giving the EER as well
as the error margin with a confidence interval of 90%. Table 9.4 shows the evaluation results
of the false non-match rate (FNMR) at a fixed rate of 0.1% false match rate (FMR) and the
error margin again at a confidence interval of 90%. The Receiver operating characteristics
(ROC) are plotted in Figure 9.12 using a logarithmic scale on the x-axis to increase details
in the interesting low false positive region.

All proposed algorithms and the ones from the literature are (re-)implemented in Mat-
lab.

Comparison SNIR SFIR UC3M

Hausdorff 34.65% 25.84% 42.50%
MHD† 1.13% 3.88% 10.61%

SMM` 0.27% 2.37% 1.26%

SML-C-a)3 1.35% 3.60% 6.13%
SML-C-FR-a)3 1.62% 4.33% 5.90%

Table 9.2: Previous results of the evaluation of the proposed SML in comparison to other
comparison strategies in equal error rates. †Modified Hausdorff distance as proposed in
[50, 242]. `Similarity-based Mix-matching [30]. 3Normalization as described in Section
9.3.3.
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Comparison SNIR SFIR-GT UC3M

Hausdorff 34.64% ± 1.08% 21.43% ± 2.88% 42.5% ± 1.09%
MHD† 1.23% ± 0.35% 1.69% ± 0.93% 11.96% ± 1.01%

SMM` 0.27% ± 0.17% 0.04% ± 0.02% 1.26% ± 0.35%

SML-C 0.55% ± 0.24% 0.12% ± 0.03% 5.4% ± 0.71%
SML-C-FR 0.41% ± 0.2% 0.15% ± 0.04% 4.48% ± 0.65%
SML-MI 0.82% ± 0.29% 0.06% ± 0.02% 7.35% ± 0.82%
SML-MI-FR 0.55% ± 0.24% 0.09% ± 0.03% 6.45% ± 0.77%

SMC-C 0.68% ± 0.26% 0.54% ± 0.53% 5.17% ± 0.69%
SMC-C-FR 0.55% ± 0.24% 0.57% ± 0.53% 4.37% ± 0.64%
SMC-MI 0.82% ± 0.29% 0.59% ± 0.53% 8.49% ± 0.87%
SMC-MI-FR 0.55% ± 0.24% 0.57% ± 0.53% 8.19% ± 0.86%

Table 9.3: Evaluation of the proposed solution in comparison to other comparison strategies
in equal error rates (EER) and the error margin around the EER at a confidence interval
of 90%. †Modified Hausdorff distance as proposed in [50, 242]. `Similarity-based Mix-
matching [30].

Comparison SNIR SFIR-GT UC3M

Hausdorff 95.77% ± 0.87% 93.45% ± 3.14% 93.45% ± 0.98%
MHD† 3.56% ± 1.13% 7.14% ± 3.27% 23.1% ± 2.35%

SMM` 0.27% ± 0.32% 0% ± 0% 1.72% ± 0.73%

SML-C 1.23% ± 0.67% 0.59% ± 0.96% 10.23% ± 1.69%
SML-C-FR 1.09% ± 0.63% 1.18% ± 1.36% 8.05% ± 1.52%
SML-MI 1.64% ± 0.77% 0.59% ± 0.96% 14.14% ± 1.94%
SML-MI-FR 1.37% ± 0.71% 0.59% ± 0.96% 11.95% ± 1.81%

SMC-C 0.96% ± 0.59% 1.18% ± 1.36% 10.69% ± 1.72%
SMC-C-FR 0.82% ± 0.55% 1.18% ± 1.36% 9.31% ± 1.62%
SMC-MI 1.37% ± 0.71% 1.18% ± 1.36% 16.55% ± 2.07%
SMC-MI-FR 0.96% ± 0.59% 1.18% ± 1.36% 15.63% ± 2.03%

Table 9.4: False non-match rate (FNMR) at a fixed rate of 0.1% false match rate (FMR) and
the error margin around the FNMR at a confidence interval of 90%. †Modified Hausdorff
distance as proposed in [50, 242]. `Similarity-based Mix-matching [30].

9.4.3.1 Minutiae Statistics

In addition to the performance evaluation, statistical information regarding the number of
extracted minutiae, as well as the skeletons are summarized in Table 9.5.

9.4.3.2 Computation Statistics

Statistics about the execution time necessary to compute the spectral minutiae and to com-
pare them with the different approaches were collected to give an idea about the general
execution-time-wise performance. The test system features an Intel Core i7 processor and
6 GB of RAM, Windows 7 as well as MATLAB are 64 bit versions. The majority of the code
is executed within MATLAB, only the MI comparison is based on a C++ implementation
from [175], using the MEX system to integrate it into the MATLAB pipeline.
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Property SNIR SFIR/SFIR-GT UC3M

Bifurcations 56.93 28.82 87.21
Endpoints 16.42 18.32 62.01
Skeleton length 3146.23 2157.4 3594.62

Table 9.5: Statistics about the average number of end and bifurcation points, as well as the
average skeleton length (in pixels) for the different datasets.

The code is not optimized for fast runtime and despite the programming language, the
times for generating a spectral minutiae representation from a skeletonized image can be
approximated around 250-630 ms depending on the number of minutiae points. It seems
there is a linear relation between the number of minutiae Z and the time T for the compu-
tation of the spectra, which can be approximated by: T ≈ 225ms+ Z · 2.65ms. The results
are summarized in Figures 9.13 and 9.14.

9.4.3.3 Minutiae-Type Sets

It is interesting to investigate how reliable the different types of minutiae can be extracted
from the samples. A direct measurement is only possible with a ground truth set of minu-
tiae that is not available, therefore we investigated the algorithm performance by means of
EERs.

For the simulations, we distinguished three sets of minutiae types as input for the spec-
tral transformation: (i) using all minutiae points as one concatenated feature vector, not
distinguishing between end- or branch points, (2) only endpoints, (3) only bifurcations.

The results are summarized in Tables 9.6 and 9.7, also indicating the confidence interval
of 90%. In general the SML performance seems to peak when all of the minutiae types are
considered. Only in case of the SNIR dataset the performance difference is significant al-
though. The latter holds true for the trend that bifurcations perform better than endpoints.

Considering all minutiae types in one concatenated feature vector can be seen as feature
level fusion. In the next subsection, we compare the results against a score level fusion
approach.

The proposed orientation estimation algorithm seems to produce minutiae orientations
of reasonable quality. The difference in biometric performance of the SML approach (con-
sidering only the location of the minutiae) and the SMC approach (considering also the
orientation) regarding the different minutiae type sets is statistically insignificant.

Type SNIR SFIR-GT UC3M

All minutiae 0.41% ± 0.2% 0.15% ± 0.04% 4.48% ± 0.65%
Bifurcation 0.55% ± 0.24% 0.59% ± 0.53% 4.14% ± 0.62%
Endpoints 1.89% ± 0.44% 0.62% ± 0.54% 4.82% ± 0.67%

Table 9.6: Evaluation of the SML-C-FR method for the different minutiae types (in EER ±
90% confidence interval).

9.4.3.4 Score Level Fusion

Different experiments were designed to investigate the potential performance increase that
can be achieved using a normalized score fusion approach with equal weighting. The first
two experiments are focused on the combination of comparison scores generated using
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Type SNIR SFIR-GT UC3M

All minutiae 0.55% ± 0.24% 0.57% ± 0.53% 4.37% ± 0.64%
Bifurcation 0.68% ± 0.26% 0.62% ± 0.54% 4.83% ± 0.67%
Endpoints 2.73% ± 0.52% 0.59% ± 0.53% 4.95% ± 0.68%

Table 9.7: Evaluation of the SMC-C-FR method for the different minutiae types (in EER ±
90% confidence interval).

Experiment SNIR SFIR-GT UC3M

Exp1 0.55% ± 0.24% 0.45% ± 0.52% 3.11% ± 0.54%
Exp2 0.41% ± 0.2% 0.07% ± 0.03% 3.33% ± 0.56%

Exp3 0.27% ± 0.17% - -
Exp4 - 0.03% ± 0.02% -
Exp5 - - 1.15% ± 0.33%

Exp6 0.41% ± 0.2% 0.08% ± 0.03% 4.48% ± 0.65%

Table 9.8: Evaluation of score level fusion approaches using different minutiae types and
comparison strategies (in EER ± 90% confidence interval). Experiment description in Sec-
tion 9.4.3.4.

separate spectral minutiae for the different minutiae type sets. The following three simula-
tions focus on combining the two best performing approaches for each dataset. Experiment
6 fuses the location and complex spectral minutiae scores. In more detail:

• Experiment 1: Bifurcation + endpoints using SML-C-FR;

• Experiment 2: All minutiae + bifurcation + endpoints using SML-C-FR;

• Experiment 3: SNIR – all minutiae SML-C-FR + All minutiae SMM;

• Experiment 4: SFIR-GT – all minutiae SML-MI + All minutiae SMM;

• Experiment 5: UC3M – Experiment 1 + all minutiae SMM;

• Experiment 6: All minutiae SML-C + all minutiae SMC-C.

Experiment 1 shows that the different datasets are behaving in completely different
ways when comparing the feature fusion level with the score fusion approach: the perfor-
mance of the SNIR database stays constant, in SFIR-GT the performance of score fusion
lowers slightly the EER, whereas the performance of the UC3M dataset strongly improves.
In experiment 2, the redundancy of a feature level fused score plus scores of the separate
features increases the biometric performance for all datasets. Experiments 3-5 show that the
classification performance of the most reliable method, the SMM method, can only slightly
be improved in case of the SFIR-GT and the UC3M databases. In experiment 6 a slight per-
formance increase compared to the separate evaluations can be noticed using scores from
both the SML and SMC approaches with the simple direct correlation comparison. Since
no dedicated comparison strategies can be used in case of a helper data-based template
protection system, this results is valuable for the selection of features.
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Figure 9.12: Receiver operating characteristics (ROC) from the databases: (a) SNIR, (b)
SFIR, (c) SFIR-GT, (d) UC3M.

9.5 Conclusions

The paper has extended the work on spectral minutiae representations for vein [77]. The
complex spectral minutiae are introduced which utilize the orientation in addition to the
minutiae location; therefore a minutiae orientation extraction algorithm based on a fast con-
volution approach is proposed. Furthermore, mutual information as a comparison method
is investigated with promising biometric performances in case of the SFIR-GT database
using the SML method.

Two different approaches for the normalization of the spectra are investigated: the com-
plex magnitude approach and the proposed real-valued method. An evaluation revealed:
the latter method performs better in terms of EERs for the selected databases. Since this
representation is not translation and rotation invariant the following assumptions can be
made: (i) the samples of the datasets are only slightly translated and rotated, and (ii) the
real-valued part of the spectra has higher capabilities for classification.

The fast rotation comparison improves the performance compared to the direct corre-
lation measure utilizing the SNIR and the UC3M datasets, although not statistically signif-
icant. In SFIR-GT the direct comparison yields in a superior performance, thus it can be
assumed that the samples are less rotated.

Statistics about the computation time for the spectra generation and the comparisons
are provided, proving its applicability.
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Figure 9.13: Statistics on the average time (in milliseconds) for computing one spectral
minutiae representations for the different datasets.

Figure 9.14: Statistics on the average comparison time (in milliseconds) for the location and
complex minutiae (SML/SMC) using comparison based on correlation (C), correlation fast
rotation (C-FR), the mutual information (MI) as well as MI in combination with the fast
rotation (MI-FR) for the different datasets. Details in Section 9.4.3.2.

The reliability is further increased using algorithm fusion. Analyzing the performance
of different vein minutiae type sets (bifurcation and endpoints) show diverse results, bifur-
cations seem to be more stable than endpoints. Fusion at feature level of the two type sets
leads to significantly better performance in some cases.

Score level fusion between location and complex spectral minutiae seems to increase
recognition performance slightly. Fusing scores from the two best performing algorithms
is not improving accuracy significantly.
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9.6 ACKNOWLEDGMENTS

Summarizing it can be stated, that the proposed solution yields in most cases a signifi-
cantly improved performance in comparison with other point-to-point-based approaches.
In addition, it produces fixed-length and structure feature vectors, that are compatible with
state-of-the-art template protection systems. Depending on the normalization of the spec-
tra, a trade-off between an improved biometric performance (outperforming all other pre-
sented point-to-point-based approaches) and the property of translation invariance can be
made.

Future work focuses on combining the advantages of the normalization approaches –
high classification performance and translation invariant representation – into a single one.

The next step is to combine the proposed approach for vein recognition, where the
sensitive information is hidden inside the body, with the HDS – as a privacy enhancing
technology – resulting in a secure system fulfilling strict legislative requirements and user
expectations regarding privacy.
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Chapter 10

Dorsal Finger Texture Recognition:
Investigating Fixed-Length SURF

 
 
 
 
 
 
 
 
 
 
 
 
 
 

          Biometric Subsystem 

Data Capture 
Subsystem 

Signal Processing 
Subsystem 

Quality Control 

Pre-processing 

Feature Extraction 

Post-processing 
Data Storage 
Subsystem 

Comparison 
Subsystem 

Decision 
Subsystem 

Multimodal biometric systems can help to improve the biometric performance and can
at the same time strengthen liveness detection. Here, a biometric pipeline for dorsal fin-
ger skin texture information (including finger knuckle information) is proposed based on
data from the multimodal database GUC45 introduced in Appendix E. The project insti-
gates how SURF, as a prominent feature descriptor, can be utilized to generate fixed-length
features for the fusion with vein data inside the helper data (HDS) template protection
scheme.
The paper is accepted for publication in: [75] HARTUNG, D., AND KÜCKELHAHN, J.
Dorsal finger texture recognition: Investigating fixed-length surf. In Proceedings of the
IEEE International Conference on Systems, Man and Cybernetics, Seoul, Korea, October
14-17, 2012 (2012).
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Abstract

We seek to create fixed-length features from dorsal finger skin images extracted by
the SURF interest point detector to combine it in the privacy enhancing helper data
scheme. The source of the biometric samples is the GUC45 database which features fin-
ger vein, fingerprint and dorsal finger skin images for modality fusion. First, the region
of interest (ROI) is extracted, after which SURF features are extracted, and finally two
different approaches for creating fixed length feature vectors are applied. SURF perfor-
mance on the ROI is comparable to the PolyU database reported in the literature, namely
an equal error rate of 0.74%. Of the two explored approaches for fixed-length features
creation, averaging the descriptor components proved the most successful, achieving an
equal error rate of 11.72%. Potential run-time performance increases were discovered as
a side-effect. Without changing the complexity of the SURF matching scheme, a reduc-
tion in run-time of 75%-80% has been achieved, with only minimal precision loss; EER
increases from 0.74% to 1%. The complexity of the matching can be reduced from O(n2)
to constant time, but at a higher precision cost and resulting in an EER of 16.51%.

10.1 Multimodal and Privacy Enhancement

Much of the recent work in the field of biometric recognition systems has been focusing
on fusing multiple biometric modalities, as this has shown to improve the performance in
terms of verification rate. As biometric systems have become more popular and more in-
formation is stored about the subjects of systems, privacy issues have become a significant
threat. Different approaches have been suggest, which seek minimize the privacy risks, one
of which is the helper data system. This particular scheme requires the biometric templates
to be of fixed-length.

We seek to create such fixed-length features from the features extracted by the SURF
interest point detector and descriptor. Two main approaches will be explored; setting a
global limit on the amount of interest points detected, and various methods of averaging
the descriptor components themselves. The source of the biometric samples is the GUC45
database which features finger vein, fingerprint and dorsal finger skin images for modality
fusion. For this work the focus is on the finger dorsal of the left middle finger. First, the
region of interest has to be extracted from these samples, after which SURF features are
extracted, and finally two different approaches for creating fixed length feature vectors are
applied. Example images for the finger extraction can be found in Figures 10.1 (a-f), details
are given in [125].

By fusing two or more of these modalities, it is possible to make the final biometric
system more robust. As this work is focusing on modalities from the hand, a fusion system
could be based on finger, knuckle and palm prints along with hand veins. If a user were to
pass verification, the chance of a false acceptance would be extremely low. This is one of the
advantages of relying on more than one modality for user verification. Another advantage
of such a system is that faking a users biometric characteristics also becomes more difficult,
as each and every modality will have to be captured and reproduced. There are numerous
examples of fake finger print replication, mainly because obtaining a latent finger print is
relatively easy. But if the attacker also needs to obtain the knuckle print or vein pattern, the
task of defeating the biometric system becomes more improbable.

One of the challenges of fusion systems is that a lot of information needs to be kept
about the user. If the system were to be compromised, the attacker could obtain much in-
formation about the user, and might even be able to use the data to produce fakes. Another
attack vector could also be tracking the users behavior by comparing enrolment samples
across different biometric systems. If a user’s biometric templates is compromised, it is
not possible to reissue this template, since the subject cannot change it’s biometric charac-
teristics. Privacy enhancement of the biometric templates is an approach to migrate these
challenges, and much research has been done in this field. Common for the approaches
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(a) (b)

(c) (d)

(e) (f)

Figure 10.1: Examples for finger extraction, background obfuscated for NDA: finger vein
sensor. (a) Original image, (b) Skin detection, (c) Finger root and tip detection, (d) Orienta-
tion correction, (e) Extraction mask, (f) Final extracted dorsal finger skin image.

is that either transform the input data or seek to encrypt or hash the templates stored of
the subject’s biometric characteristics, such that it is not feasible to obtain the user’s origi-
nal template. This helps prevent privacy issues such as identity theft and subject tracking.
To solve these issues multiple approaches have been suggested, this work focuses on the
helper data system described in [118], which requires a fixed length feature vector.

10.2 State of the Art

Research in finger knuckle prints (FKP) is still fairly new. In 2009 Zhang et al. [280] claim
that finger knuckle prints can be used as an biometric trait. The article describes a complete
process and setup for a FKP recognition system; capturing a sample, identifying the region
of interest and extracting and encoding the features. The system proposed by the authors
uses a specially built capturing device, that captures a specific area of the finger dorsal.
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This makes multiple sample captures very similar, which almost negates the need for pre-
processing, since there is practically no rotation, scale or other dynamic properties between
sample captures. This database, the PolyU FKP Database [13], is a very interesting tool for
researchers as it allows for a consistent performance measurement of different extraction
methods. The following articles use this database to experiment with different approaches
to finger knuckle print recognition: [115, 134, 150, 161, 245]. An obvious disadvantage of
the described capturing method is that there is not much flexibility in the area that can be
analyzed, as the area extracted is very local.

In [128], the authors use a different capturing set-up, where the sample image is also
captured in a specially built device, but it allows for flexibility since the device can capture
a sample of the whole hand, except for the thumb. This gives better flexibility, but as the
authors also note, poor performance can be an issue in the case of too much rotation of the
sample.

If not using a specially built device for capturing a local area, methods are needed that
can extract regions in the image, from which feature extraction needs to be performed. Dif-
ferent methods are suggested for segmenting the image into the two classes, foreground
(the hand/finger) and background (everything else). In [128] a thresholding technique is
used which seeks to optimize the measure of separability in the classes. In [139] conver-
sion of RGB color space to HSV color space is suggested along with a k-means clustering
algorithm. Other methods require complete knowledge of the background before a sam-
ple image is captured, such that the difference in these two images can be measured [146].
The authors of [36], have developed a system that seeks to optimize skin detection values
(thresholding values) by capturing images in human visible lighting and infra-red light-
ing. This makes it possible to fairly accurate segment an image into foreground and back-
ground.

For actual finger detection the authors of [128] capture a large and consistent portion of
the back of the hand, which is used for calculating the finger placements, based on valleys
and peaks in the euclidean distance between the middle of the hand-back and the contour
of the hand. This is possible because, even though some flexibility in the capture method is
possible, there is still a large similarity in the captured sample images. In [139] the fingers
are extracted based on knowledge of the placement of the wrist and finger tip and valley
localization is done via corner detection.

In [280, 281, 283, 284] the region of interest (ROI) extraction process involves detection
of curvatures in the wrinkles of the finger knuckle print. By classifying the wrinkles as
either left-ward or right-ward it is possible to detect the center of this region (the middle
of the knuckle) as the fixed size area where there is an (almost) equal amount of opposite
going wrinkles on either side of the region center line. This is used for defining a coordinate
system that has its center in the middle of the knuckle, both vertical and horizontal. In [115]
another method is presented that also uses direction to determine the center point of the
region of interest, but uses gradient fields instead of edge detection (as in [280]). In [128]
the authors present two methods for region of interest detection. The first method uses the
finger length only, to determine the placement of the ROI (the ROI is extracted 1

3 of the way
from the finger base to the finger tip). The second method uses edge density to pin point
the ROI, since wrinkles will appear as edges in the edge image.

To extract features from the detected ROIs, [280] use CompCode (competitive coding).
The encoding uses the response values from a bank of Gabor filters, in which the dominat-
ing pixel response is used in the final encoding. In [283] this encoding method is improved
(ImCompCode) by verifying that there actually is a dominating response value. If there is no
dominating response value in the responses, the authors claim that the corresponding pixel
value is irrelevant, and encoding an orientation value for it, will decrease the precision in
the matching process. In [281] the monogenicCode is presented, which provides better per-
formance compared to CompCode. This approach is based on the Hilbert transform instead
of Gabor filtering. Common for the above methods are that the resulting encoding is fixed
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length, with a size that is linear in the size of the region of interest.
In [129], Kumar et al. use a similar approach based on Radon transformations to identify

knuckle lines and creases; the resulting encoding is named AjayKumar2009 by the authors.
As CompCode, the resulting KnuckleCode is of fixed length and number of dimensions is
linear in the size of the region of interest. Both CompCodes and AjayKumar2009 rely on
texture information from localized areas.

In [161] the authors use SIFT [142] to extract the ROI features, by detecting interest
points in the region of interest and describing the local area around these points. SURF [11],
which is another interest point detector and descriptor inspired by SIFT, is used in [134].
Both of these methods’ strengths are that they are invariant to image translation, rotation
and scaling, since they are not reliant on the geometric locations of the interest points. This
feature makes the algorithms suited for feature recognition and extraction in uncontrolled
environments. SURF’s use of integral images and box-filters makes it more efficient than
SIFT, which makes it a good candidate for on-line feature extraction. Furthermore SURF
does not detect as many interest points as SIFT, which speeds up the algorithm even more
in the interest point matching phase.

10.3 Goals

This work focuses on recognition of biometric samples taken in an environment where
scaling, rotation, orientation and amount of sample captured is not fixed. This limits the
types of feature extraction methods, since these must be invariant, or at least robust, to such
variations in the samples. Feature extraction methods presented in [280] and [129], seem
interesting since they produce a fixed length feature, are fast to compute and produce good
results, but do not seem applicable under such conditions.

Interest point detectors and descriptors, such as SIFT [142] and SURF [11] are able to
detect correlating interest points in different samples, but do not produce a fixed length
feature vector. The goal of this work, is to examine the possibility of creating fixed length
feature vectors using SURF as a detector and descriptor. The focus will not only be on
finger knuckle prints but on the finger dorsal, as the finger dorsal should contain more
information. Furthermore, the database used for testing, GUC45 [73], includes samples in
which not all of the knuckle is contained, which would exclude such samples from being
used. The samples are captured utilizing an out of the shelf consumer camera (Canon
Powershot G9). The database features in addition to the finger dorsal skin images also
fingerprint and finger vein images from 45 data subjects, making it an interesting set for
modality fusion approaches. The final goal is to utilize the different modalities to create
secure templates with the helper data scheme.

To evaluate the results obtained, the final method will be applied to the PolyU [13]
finger knuckle print database, as many of the papers on finger knuckle print recognition
uses this database ( [115, 134, 150, 161, 245, 280, 281, 283, 284]).

As seen from Section 10.2 there are many approaches to extract and match finger knuckle
prints. The feature extraction techniques suggested by Zhang et al. [280, 281, 283] are inter-
esting in the context of privacy enhancement, since the length of the extracted features can
easily be fixed, simply by ensuring that the size of the captured sample is always the same.
However, this restricts the capturing environment, as the extracted features are dependent
on the scale, orientation, resolution etc. being the same. While these conditions are met in
the PolyU database, this is not guaranteed to be true for other capturing techniques, which
is the case of GUC45.

Based on the observation that the samples in the GUC45 database range in both scale
and orientation, SURF has been selected as the feature extractor. Zhu showed in [134]
that SURF can achieve good results when applied to the finger knuckle prints found in
the PolyU database. The challenge now becomes to create a fixed length feature vector
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based on resulting SURF descriptors. Due space limitations we refer for details of the SURF
algorithm to [11].

10.4 Modifications to SURF

The SURF descriptor is a collection of all the interest point descriptors. Since the number
of interest points is likely to vary between different samples, the length of the SURF feature
vector will also vary. The internal order the interest points in the SURF descriptor is not
relevant for SURF matching, since this often involves an exhaustive search for the best
matching interest points between two sets. However, in order to apply the helper data
scheme (HDS) ordering of the interest points is crucial for achieving usable results. These
are the two issues that have to be solved for utilizing SURF in conjunction with HDS.

The information produced by SURF is summarized in the following:

• Location – The (x,y) coordinates of the interest point in the sample image is known

• Orientation – The orientation at which the descriptor has been extracted

• Laplacian – The Laplacian value which indicates the contrast relationship between
the blob (detected point of interest) and its background/surroundings.

• Scale – The size of the area around the interest point

• Octave – The octave at which the interest point was detected

• Response – The Fast-Hessian response value

• Descriptor – The description of the area around the interest point; orientation and
scale normalized. This is of fixed size and internal ordering of the elements is consis-
tent.

The most naive approach to fix the length of the SURF feature vector, is to set a limit on
the amount of interest points that are included in the final collection. This would create a
fixed-length feature vector, since the length of a single interest point descriptor is constant.
However, a method of ordering the interest points consistently is still needed.

The descriptor for a single SURF interest point contains 64 elements, which are consis-
tently ordered. By averaging each of the elements in the same position of the descriptor
across all interest point detected, a feature vector of fixed length and ordered elements can
be obtained. This will reduce the SURF feature vector to the size of a single interest point
descriptor, but much information will be lost in the process.

In order to reduce the amount of information lost in the above averaging process, more
information most be kept. Two methods are examined in this work, both seek to identify
groups in a interest point collection, before calculating the average. Then the average is
calculated for each group, such that the final feature vector has a length equal to the number
of groups (multiplied by the descriptor length).

10.4.1 Fixed number of sorted interest points

In its current form, SURF does not directly implement setting a threshold on the amount of
interest points. It is possible to set a response threshold, which limits the amount of interest
points by setting a minimum requirement on the response value used in the Fast-Hessian
interest point detection step. However, there is no guarantee that the detected amount of
points is fixed, as the amount of response values above the threshold may vary.

If the number of interest points are to be limited to a fixed amount, the points that are
chosen for this, is of high importance, since these points will have to be the most repeat-
able, e.g. if the points chosen are not the most distinctive, in terms of the features that are

142



10.4 MODIFICATIONS TO SURF

identified by the Fast-Hessian, interest points from different samples will not be matchable.
Another concern is that if a fixed limit is set, the total amount of interest points detected
in the sample must at least be the same as the set limit. Therefore this limit will become
directly dependent on the Fast-Hessian response value threshold, since a higher threshold
produces less points and this amount of points might vary from sample to sample.

In the process of detecting interest points, the Fast-Hessian searches for blob-like objects
in the image, and the higher the octave number is, the larger the blob-like object is. If it is
assumed, that larger objects are more repeatable (since they are less likely to be the result
of noise), it makes sense to chose interest points detected at a high octave level. By setting a
fixed amount of interest points to be selected from each octave, favoring the higher levels,
a rough ordering of the interest points is possible. Table 10.1 show an example of such a

Octave number
#Ipts 1 2 3 4 5

Original SURF 647 382 200 45 15 5
Limited to 250 Ipts 250 105 80 45 15 5

Table 10.1: Example of interest point based on octave

selection. To order interest points belonging to the same octave either the scale, response
value or a combination could be used as in the aforementioned proposed ordering. Such
a structure will limit the amount of shifting that is possible, as the ordering will be “reset”
at every octave. However, since the number of interest points is fixed for a given octave, it
is necessary to introduce “blank” interest points, if there are not enough interest points in
an octave. This could potentially introduces errors in the matching phase, decreasing the
performance of this approach.

10.4.1.1 Averaging the descriptor

A simple way of obtaining a single descriptor for all interest points detected, is to calculate
the averages of all interest points’ descriptors. While simple, this might causes loss of detail
in the process, but has the advantage that the feature vector is ordered. Three methods of
averaging the descriptors are examined.

If the descriptor component is viewed as a vector with 64 elements, the simplest method
of averaging all the descriptors, is to create a new vector in which each element is the
average of the elements in the same position in the interest point descriptors:

v = [avg(d1...n[1]), avg(d1−n[2]), ..., avg(d1−n[64])] (10.1)

where d is the collection of descriptors and n is the number of interest points. Though
this is simple, a lot of information is lost during this process. The following averaging
methods, try to keep more information by grouping the interest points, and then applying
this averaging method to each of the groups. For each group a feature vector of 64 elements
is created, which reduce the information loss. However, in order for this to be applicable in
regards to HDS, it most be possible to consistently order the groups.

10.4.1.2 Binning the descriptors

Some considerations have to be done in regards to the amount of bins and the assignment
of a descriptor to a bin. The more bins that are used, the more likely it is for some bins to
be empty, which could lead to poor matching results. However, the less bins that are used,
the more information will be lost; if only one bin is used, the results will be the same as
averaging all the descriptors. The bin assignment criteria also has a major influence on the
results, and many different criteria could be used such as:
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• Fast-Hessian response value – The Fast-Hessian detects blob-like structures in the
image, and the response value indicates the significants of this structure. Grouping
by response value could group blobs that have resemble each other texture-wise. This
would minimize the amount of information loss during averaging. However, the
opposite might also prove true, which would significantly decrease the comparison
scores.

• The dax : day ratio – Averaging these ratios would described the overall direction of
the sub-regions in the descriptor. If there exists a strong general direction in all the
descriptors this approach could prove successful, since the binning would be very
distinct. However, if the identified directions in sub-regions of a descriptor are very
different, i.e. like a circle, many descriptors that overall do not resemble each other
could be grouped, which would lead to information loss.

• The average mdx or mdy only – Binning based on these values could minimize some
of the disadvantages mentioned about, but new ones arise as the value used might
not be the dominant of the two.

In the above dax, day,mdx,mdy refer to elements in a SURF interest point descriptor. More
information about this can be found in [53].

Each of these binning criteria focus on different features of the descriptor, but it has to
be recognized that the descriptors are meant to be as unique and distinctive as possible,
such that interest points across different images can be compared.

10.4.1.3 Clustering

Another method of dividing the interest points into groups is to use a clustering algorithm.
The clustering can be done in various feature spaces, such as those previously described,
but clustering based on interest point locations, gives the best results on the GUC45 dataset.

10.5 Results

10.5.1 Averaging the descriptor

As the descriptors already are represented as an ordered fixed length structure, it might be
possible to condense all the descriptors into a single vector by averaging all the descriptors
created for a sample image. Table 10.2 shows the results of creating such a single feature
vector. As the table shows, the best results in terms of equal error rate is achieved by
averaging all the interest points’ descriptors, by which an equal error rate of 20.82% is
achieved for the test database. It is interesting to note, that while some distinctiveness is
lost during the averaging, enough information is kept to partially match samples from the
same subject.

Number of interest points
Method all 300 200 100 50 25 10
Octave (desc) 20.8 23.2 23.8 30.3 34.5 33.6 42.4
Response (desc) 20.8 22.2 21.3 18.1 23.9 28.4 32.5
Scale 20.8 24.1 28.2 31.7 37.7 43.2 44.1
Octave, response 20.8 23.5 23.9 25.9 26.1 31.3 37.9
OSR 20.8 23.1 22.7 24.9 34.3 35.6 36.6

Table 10.2: EERs (%) for average descriptor.
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10.5.2 Binning

If more information were to be kept, it might be possible to improve the results. One way
of attempting to keep more information, is to create a fixed number of bins which contain
averages of the descriptors assigned to them. Table 10.3 shows the results of several bin-
ning methods: using information from the descriptors prove much more reliable compared
to features of the interest point (octave, response etc.), and that binning by such features
produce better results than just averaging the descriptors. This is likely due to the fact that
more information is kept, but as the results also show, the EER declines when too many
bins are used.

Number of bins
2 3 4 5

Octave 33.59 44.57 37.24 35.88
Response 38.48 42.37 44.96 41.64
Scale 40.85 45.64 46.17 43.14
Octave, response 40.55 42.54 40.23 39.31
OSR 41.78 42.39 44.28 46.71
Ratios
mdx : mdy 20.43 18.93 18.56 22.81
dx : dy 49.99 49.82 46.72 50.00
dx : mdx 24.45 23.95 22.04 24.12
dy : mdy 34.37 29.35 27.91 33.09
Averages
mdx 15.98 17.57 18.47 21.25
mdy 20.66 22.70 24.44 25.63
dx 34.21 27.00 31.80 32.17
dy 31.64 25.77 25.79 28.75
descriptor 26.54 28.57 30.65 33.14

Table 10.3: EERs (%) from different binning methods.

10.5.3 Clustering

Finding clusters is another way of dividing the interest points/descriptors into smaller
groups. This method is interesting because it allows for the use of the interest points co-
ordinates, since the location of the coordinates are not of interest, but only the relationship
between them. However, there are some issues with using clusters, such as ordering the
clusters and identifying the same clusters. As seen, the results of creating 2 clusters resem-
ble those of binning. However, as the figures above show, clustering has the disadvantage
of not creating robust clusters, which makes the matching phase error prone. Thus, when
creating more than two clusters, it is important to 1) find a robust method of clustering and
2) a method of ordering the clusters. The clustering method used in this work is k-means
which is a much used clustering approach. Different methods of ordering the clusters has
been attempted, such as size of the cluster, average response value for interest points in
a cluster etc, but none order the clusters robustly enough. An option in the case where
clustering is done in the geometric space, is to order the clusters according to the location
of the center. While this maintains scale invariance, it is not robust to orientation changes,
as there would not be any fixed starting point. Table 10.4 shows the results of ordering
clusters found in the geometric space by the location of their center point, which gives an
indication of a best case scenario where orientation invariance is not a requirement. It can
be seen that ordering by geometric location does provide a more stable ordering even with
a high number of clusters, but at the cost of removing orientation invariance. Using the
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center of the cluster as an ordering criteria makes it possible to utilize more clusters while
still maintaining a low EER. It is possible to use up to 5 clusters, while maintaining an EER
of approx. 20% or less, and the best results were obtained when partitioning the points into
4 clusters with an average EER of 17.37%.

Number of clusters
2 3 4 5 6 8

Average 17.58 17.49 17.37 20.50 31.42 36.90
Standard deviation 0.71 0.44 0.97 0.77 1.31 2.40

Table 10.4: EERs (%) obtained by clustering by (x, y), ordered by location of the cluster
centers

(a) (b)

(c)

Figure 10.2: Clustering SURF interest points. Interest points marked with the same color
belong to the same cluster. Number of clusters: (a) 5, (b) 6, (c) 8

Figure 10.2 depicts the issues that arise, when creating more than five clusters. As
shown in 10.2(b) and 10.2(c), the interest points have not been clustered similarly in the
samples with the same amount of clusters.

From the visualizations of the clusters, it is clear that ordering by the clusters’ center
location works, because the finger dorsal is used, and not only the knuckle area. Clusters
are therefore typically spread out along the finger, such that the clusters divide the finger
into sections. If only the knuckle area were to be used (as in the PolyU database), it is likely
that the ordering suggested would not achieve the same results, as the area where interest
points are to be detected is more quadratic.

10.5.4 Fusion

By fusing the three comparison methods based on binning, clustering and averaging all,
better performance might be obtained. The fusion is done by calculating the scores for each
method, after which a weighted sum of the 3 scores is used as the final fused score. The
weights that are assigned to each of the scores has a significant impact on the final results,
and to determine the most robust and optimal weighting, exhaustive search is used.

To determine the actual EER for a fusion based system with the above parameters,
the average EER over ten runs is calculated with an average EER of 11.77% (weighting
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Figure 10.3: DET plot of GUC45 results

43%,56%,1% for binning, clustering and averaging). Results are summarized in Figure
10.3.

10.5.5 Results on the PolyU database

For comparison reasons the averaging methods, averaging all, clustering, binning and fu-
sion have been applied to subset of the PolyU database. The subset has been created by
randomly selecting 3 ROI samples (left index finger) from 30 subjects (subjects 1-30). The
list shows the EERs obtained by extracting the U-SURF-128 descriptors and using different
matching schemes:

• NNDR – 1.10%

• Averaging All – 24.12%

• Binning (4 bins) – 26.42%

• Clustering (3 clusters) – 28.88%

• Fusion (3 bins, 2 clusters) – 19.47%

When using the NNDR and averaging all matching schemes, the EERs are similar to those
obtained from the GUC45 database. However, binning and clustering provide better re-
sults on the GUC45 dataset. A likely explanation for this deviance is that the number
interest points detected in the PolyU database is much lower than the amount detected in
the GUC45 samples (approx 100 vs 500 detected interest points), which means that indi-
vidual descriptors have a much higher influence on the average values created in the bins
and clusters. Furthermore, detecting clusters by interest point location is more prone to
errors when ordering by the x-coordinate value, when more than 2 clusters are used, be-
cause of the height:width ratio of the PolyU ROI image samples. Fusing the 3 methods, still
provides better results compared to the results of the individual matching schemes.
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PolyU database [13]
CompCode [280] 1.09
MonogenicCode [281] 1.72
SURF [9] 0.83
SIFT [161] 2.02
Enh-FUSE [9] 0.22
OE-SIFT [161] 0.85
LFI [282] 1.27
LGIC [284] 0.40
LGIC2 [282] 0.36
Fixed-length SURF 19.47

IIT Delhi Database [129]
AjayKumar2009 [129] 1.08

GUC45 [73]
SURF 0.74
Fixed-length SURF 11.77

Table 10.5: EERs (%) reported in the literature and in this work. Fixed-length SURF refers to
the fusion matching method.

.

10.6 Conclusions

SURF has previously been used in finger knuckle-print recognition systems in [9] an EER of
0.83% on the PolyU dataset was achieved. During this work an EER of 0.74% was achieved
on a subset of GUC45 data using the standard SURF matching scheme, suggesting that
finger dorsal skin texture recognition using standard consumer cameras is feasible.

Experiments regarding the creation of a fixed-length (FL) feature vectors from SURF
descriptors have been conducted. By finding a FL feature vector, it is possible to apply the
HDS privacy enhancement to the extracted features. Two main approaches for FL creation
have been researched, resulting in an fused equal error rate of 11.77% (Table 10.5). Future
work needs to focuse on improving the recognition accuracy.

It has been discovered that it is possible to limit and order the amount interest points,
whereby minimal recognition accuracy is measured. This result obtained on the GUC45
database indicates a possible speed-up of the comparison phase for SURF in general. The
average amount of interest points detected in GUC45 samples were approx. 650, and it was
possible to set a fixed limit of 300 points with minimum impact on the EER. The nearest
neighbor distance ratio (NNDR) comparison times could be reduced by between 75% and
80%. The comparison schemes based on averaging the descriptors are able to distinguish
individuals, but at a high cost of precision. In the simplest scenario of averaging all the
descriptors the matching complexity is reduced from O(n ∗ m) (n and m are the amount
of interest points detected in the samples to be compared) to constant time. The loss of
precision is rather high, as an EER of 0.74% becomes 16.51%. However the amount of in-
formation compression, in terms of vector length, is on average 99.85% (the 650 descriptors
are reduced to one).
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Biometric Transaction Authentication Protocol
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The chapter extends the focus to the application of biometric systems. The approach that is
sketched here, merges protected templates with information from the application to consti-
tute an authentication system for online banking transactions. Such a system could prove
to be useful in real life since a strong authentication overcomes repudiation problems for
the service provider while offering improved convenience to a customer without introduc-
ing privacy issues.

Although designed modality-independent, a biometric vein system based on Chapter 9
with the improvements presented in Chapter 3 could be used.
The paper was published in: [72] HARTUNG, D., AND BUSCH, C. Biometric transaction
authentication protocol. In Proceedings of the 2010 Fourth International Conference on
Emerging Security Information, Systems and Technologies (Washington, DC, USA, 2010),
SECURWARE 10, IEEE Computer Society, pp. 207-215. The ideas are patented in: [21]
BUSCH, C., AND HARTUNG, D. (EN) AUTHENTICATED TRANSMISSION OF DATA,
June 2011. (WO/2011/063992).
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Abstract

The threat of phishing or malicious software (malware)-based attacks is significant
and growing, at the same time online banking gets more and more popular. Finan-
cial loss may be one of the consequences if credentials get stolen. In many protocols,
the transaction information is not secured properly. The proposed Biometric Transaction
Authentication Protocol (BTAP) is based on the one hand on the helper data scheme for
biometric template protection and on the other hand on a trusted biometric transaction
device. BTAP provides data- and person authentic transactions since the relevant infor-
mation in financial online transactions is fused with a secure biometric template from a
verified natural person in a way that it is proven to the executing party, that the transac-
tion, as it is received, was in fact initiated and confirmed by an identified natural person.

11.1 Introduction

An identity fraud can be defined as the exploit of an identity theft or more precisely a theft
of an identity attribute with the intent to harm the affected person. The goal of an attacker
is in most cases financial gain. The risk of being a victim of such an event has increased dra-
matically over the last years. The Identity Theft Resource Center (IDTRC) recorded recently
a yearly increase of 46%. In the first three weeks of 2010 the IDTRC [90] registered 1,255,092
data records that were exposed whithin the reported breaches in the U.S. (where numbers
were made available), not considering exposed encrypted data records. The list covers in-
cidents of credit card misuse, bank account theft and banking defraud. Manipulated card
readers, phishing attacks as well as sophisticated social engineering attacks were tracked.
One of the reasons of increasing incidents is seen in the more and more widespread usage of
online banking. According to the Federal Association of German Banks, the number of on-
line bank accounts in Germany has increased from 15 Million in 2000 to 39 Million in 2008.
The amount of online transactions is expected to increase even more within Europe with the
implementation of the Single Euro Payments Area (SEPA) transaction initiative. A study of
the Federal Association for Information Technology, Telecommunications and New Media
(BITKOM) states that seven percent of all internet users above 14 years already experienced
finicial loss through viruses, in online auctions or in online banking [17]. The vulnerabil-
ity of knowledge-based finiancial transaction system became again obvious as hundred of
thousand credit cards of German bank customers had to be re-issued after a data theft in a
Spanish credit card processor in November 2009. Furthermore a year 2009 report from the
German Federal Office for Information Security (BSI) claims that the threat from phishing
attacks is still small but incidents related to online banking fraud will increase through the
improved and technically mature mechanisms of malware [20]. Viruses and Trojan horses
are representatives of malware. This kind of software is spread over various channels on
private computers and is able to gather information like financial transactions. Without
being noticed, this information can be sent to remote machines. The user will experience
dramatical loss, if credentials like bank account numbers, passwords and valid transaction
numbers will be used by the operator of the remote machine. The responsible software is
often not detectable, since elaborate technologies like self-encryption and mutation make
it impossible to match the malware against patterns used by anti-virus programs. On the
other hand rootkits are used to infiltrate the whole operation system itself – this malware
can hardly be detected with todays methods [193].

In consequence, a reliable transaction protocol is needed that securely links 1) Receiver-
Account-Number, 2) Ordered Amount, 3) Sender-Account-Number, 4) Initiator and option-
ally various additional information like transaction number and time stamp in a reliable
manner.

The paper is organized as follows: after introducing to the state of the art in biometric
template protection and authentication in online transactions, the proposed protocol will
be described in detail covering design objectives, sketching the use scenario, describing
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the components and their interaction. Furthermore the enrolment and the verification /
authentication process are shown followed by a brief discussion of security considerations.
The paper concludes after further research directions are identified.

11.2 State of the Art

The state of the art of the two main building blocks of the proposed protocol – biometric
template protection and online authentication approaches – are described in this section.

11.2.1 Biometric Template Protection

Biometric systems determine whether the observed biometric characteristic of a subject
and the previously recorded representation in the reference data match. In contrary to
knowledge or token-based authentication methods a biometric characteristic is bound to a
natural person and such the likelihood that a security policy is violated by unauthorized
delegation of the authentication factor can be minimized. However the limited number of
biometric characteristics for a natural person and privacy regulations do require protection
of the biometric data. It is not sufficient to simply encrypt biometric templates with classic
cryptographic functions since they can not be compared in the encrypted domain. Fur-
thermore requirements on template protection systems are: Revocability – pseudonymous
identifiers can be revoked, multiple identifiers can be constructed from the same biometric
trait. Unlinkability – pseudonymous identifiers cannot be tracked back to the data subject
and multiple pseudonymous identifiers of the same data subject cannot be linked against
each other. Removal of additional information like medical information.

A recent overview of existing biometric template protection systems is given in Bree-
baart [18]. The described harmonized reference architecture is integrated in the interna-
tional standard ISO/IEC CD 24745 Biometric Template Protection and its nomenclature is
used throughout this paper. The Fuzzy Commitment Scheme [109] is one of the systems
for template protection, it introduced shielding functions to secure biometric data. An es-
sential building block of our proposed protocol is the helper data scheme (HDS) [226] that
uses the principle of fuzzy commitments to privacy protect biometric features and satisfy
the above-mentioned requirements.

11.2.2 Authentication in Online Transactions

Up to now, many different systems are being used for online transactions that are, depend-
ing on the threat assessment, not adequately secure [1].

PIN/TAN – Since 1990 international banks were using two dynamic factor authentica-
tion based on personal identification number (PIN) and transaction number (TAN), which
are pre-shared secrets between the customer and the bank. A list of a certain number of
TANs is in the possession of the customer. To authenticate a transaction, the next valid
TAN in the list is used and it gets invalid automatically. A new list can be sent via post.
Due to the increasing threat posed through phishing attacks, the PIN/TAN approach is
nowadays rarely in use.

PIN/iTAN In response to phishing attacks a new attempt of online transaction authen-
tication, the iTAN, is used since 2006. It is based on the PIN/TAN approach, but in contrast
it uses indexed TANs. For a certain transaction a TAN with a specific index is requested
from the customer, therefore iTAN. Still, phishing is not prevented. If malware is on the
customers computer, a man-in-the-middle attack is possible and the transaction can be ma-
nipulated (rerouting to a new beneficiary).

Mobile TAN (mTAN) This concept introduces a second channel towards the banking
customer, through which relevant transaction data is sent. The channel is realized as a Short
Message Service (SMS) towards the customers mobile phone. In this way the receiver is able
to check the integrity of the transaction through visual comparison and is furthermore able
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to confirm the transaction with a one time password (mTAN) that was also sent within
the SMS. The mTAN has a limited validity and needs to be typed into the online banking
software. Compared to the TAN and iTAN method mTAN is considered to be more secure.
Man-in-the-middle attacks that intend to re-route the transaction fail. The mTAN-method
requires a trusted platform (mobile phone) that can not be manipulated at the same time as
the client computer of the customer. The method met with criticism because SMS messages
can be traced [251]. During the next years the line between mobiles and web clients is
blurring more and more, with the consequence of loosing this independent communication
channel.

TAN Generators – Mobile tokens are used as TAN generators that produce sequen-
tially new TANs. Some tokens like the RSA-token work on a timer basis. The different
approaches are described below. sm@rt-TAN – a TAN can be generated if the banking card
with chip and EMV TAN generator is inserted into the token. This approach is vulnerable
to phishing and transaction monitoring through malware. eTAN generator – TANs are
generated with the time and receiver bank account number as parameters. As the receiver
number has to be typed into the token the approach is less convenient for customers but it is
phishing proof. chipTAN manual – the banking cards needs to be inserted in order to gen-
erate a TAN. The transaction data (receiver account number, ordered amount) that needs
to be secured has to be typed manually into the token. The device computes a transaction
specific TAN. The approach results in a high level of security but also in inconvenience for
the customer. chipTAN comfort – extension of the before mentioned approach. The trans-
action data is read through optical sensors into the generator. Furthermore the token is able
to display the transaction data. With the activation of the generator the customer confirms
the transaction. An assumption is that man-in-the-middle attacks are not possible because
a generated TAN is only valid for one transaction. One comfort features make this assump-
tion invalid: collective transfers are possible. In this case the receiver account number is
not displayed by the device any more, which allow attacks that – assuming carelessness
of a customer – can also effect single transactions. This online protocol and the interface
to the used Hand Held Device (HHD) are standardized through the German Central Credit
Committee (ZKA) as HHD 1.3.2 with optical interface.

photo TAN – photoTAN equates to the HHD 1.3.2 standard with optical interface, even
though the transaction data is displayed as a two dimensional bar code from the banking
server and captured with the mobile phone of the bank customer.

Digital Signature / HBCI – Digital signatures can also be used for online banking au-
thentication. Its application was standardized with the Home Banking Computer Interface
(HBCI) that was developed since 1996 from several German banking groups and standard-
ized through the ZKA. This interface supports chip card based online transaction proto-
cols. The protocol was further developed by the ZKA under Financial Transaction Services
(FinTS) [279]. HBCI / FinTS render TAN lists unnecessary with a security assessed chip
card and reader in the possession of the customer. HBCI establishes a secure tunnel from
the client computer to the banking server and uses a public key infrastructure to digitally
sign the transaction data with the private keys of the customer (signing key pair). This key
pair is stored securely inside the chip card. The transaction data with the signature is then
send to the banking server. As with all signature based approaches, also the HBCI suffers
from the modification of the transaction data before the signature is done. The deployment
of secure signature units can minimize this risk. A manipulation could nevertheless been
performed by malware on the client computer before the signature is done by the chip
card. The assumption that the client computers are malware free is not firm, in fact it is
very improbably. Online banking based on digital signatures therefore requires a secure
visualization concept for the transaction data that should be signed, as implemented in the
Secoder.

Online-Banking with USB-Token – A token-based approach is followed by KOBIL
with the mIDentity-USB-token, where the URL of the banking server is cast in hardware
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to avoid rerouting to an attacker URL. In addition secure communication channels can be
established. One drawback: authentication against the stick is based on on knowledge
(PIN) typed into a (probably) insecure client program. Another provider for USB-token-
based transaction security is Novosec: here not the communication itself is secured but the
approach is based on digital signatures of the transaction data. Weigold et al. presented
the Zurich Trusted Information Channel (ZTIC), which is especially designed for insecure
environments like malware-infected client computers [251]. The token establishes a secure
connection to the banking server and displays the received transaction information, which
can be accepted or denied on this dedicated piece of hardware.

11.3 Biometric Transaction Authentication Protocol

This section describes the proposed Biometric Transaction Authentication Protocol in detail.
The abstract pipeline of the helper data scheme (HDS) as a building block and the BTAP
are sketched in Figure 11.3. The acronyms are described in Table 11.2.

11.3.1 Design Objectives

We designed a new protocol, which addresses the two main requirements for online bank-
ing transactions. Reliable Person Authentication: the enrolled banking customer and only
this natural person has initiated and confirmed the transaction. Repudiation of de facto ex-
ecuted transactions should be impossible. Reliable Data Authentication: The enrolled
banking customer has checked the transaction within a trustworthy environment and con-
firmed the data with the supported biometric modality. The authentication data is send via
a second autonomous and secure channel to a banking server.

11.3.2 Assumptions

The scenario in which the BTAP might be used can be described as follows: on a poten-
tially insecure and malware infected client computer an Online Banking Software (BSW)
is running, which communicates with a secure Online Banking Server (OBS). The BSW
transmits the transaction data to the OBS and to a secure dedicated token, the Biometric
Transaction Device (BTD). On the BTD the transaction is confirmed through the customer,
a seal is created over the transaction data (the Transaction Order Seal (TOS)), which fuses
the transaction data with the biometric data of the customer. The threat scenario for the
BTAP is illustrated in Figure 11.1.

Figure 11.1: Sketch of threat scenario for the BTAP components. Green: trustworthy,
tamper-proof (OBS, BTD); red/orange: probably insecure, malware infected (BSW)

The following list identifies components that are interacting for secure online transac-
tions (Figures 11.4 / 11.5) and outlines their individual properties:
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• Secure Online Banking Server (OBS): has access to customer data; establishes com-
munication with the Online Banking Software (BSW); conducts capital transactions;
is able to identify a Biometric Trusted Device (BTD) as communication partner and
preferably establishes a secure connection.

• Online Banking Software (BSW) on insecure client computer: executed on client
computer that is threatened by Trojan horses, root kits, etc.; implemented as client
software or browser based application; communicates with OBS and transfers trans-
action data as Transaction Order Records (TOR); TOR consist of: Transaction Identi-
fier (TID), Sender Account Number (SAN), Receiver Account Number (RAN) and Or-
dered Amount (ORA); connected to the client computer is a trusted Biometric Trans-
action Device (BTD)

• Secure Biometric Transaction Device (BTD): trusted piece of hardware, ideally with
assessed security (e.g., common criteria), minimal and provable secure functionality;
cannot be manipulated by malware; captures a biometric modality through Biometric
Capture Device (BCD) as a fake resistant sensor, which is qualified for unsupervised
operation in home and office environments; is able to connect to an Online Banking
Server (OBS); is able to receive a TOR and visualize it on the trusted display (elements
of a TOR are TID, SAN, RAN and ORA).

11.3.3 Enrolment Protocol

The enrolment process for the Biometric Transaction Authentication Protocol (BTAP) is
sketched in Figure 11.4. The enrolment process of the helper data scheme (HDS) is modi-
fied for BTAP – the necessary steps are the following (executed operations are highlighted
in italic, numbers in brackets indicate the time of execution and refer also to Figure 11.4):

11.3.3.1 Enrolment on the Online Banking Server (OBS)

• Generate shared Secret SBV, send it to customer(secure mail)/BTD(secure connection)
(1)

• Create user record with: Account Number (AN) and Pseudo Identifier PI = h(SBV),
which is derived from pre-shared secret SBV (2)

11.3.3.2 Enrolment steps inside the Biometric Transaction Device (BTD)

• Data subject (i.e., bank customer) presents the biometric characteristic (3)

• Capture multiple biometric (enrolment) samples (4)

• Extract real number reference feature vectors RRV (5)

• Binarize biometric features into quantized form QBV (6)

• Derive Auxiliary Data 1 (AD1) from biometric samples in the Reliable Bit Selector
(RBS) block (7)

• Keep Robust Binarized Feature Vector RBV extracted from enrolment samples and
AD1 (7)

• Insert shared Secret Bit Vector (SBV), e.g., sent via secure mail and typed in (8)

• Calculate Codebook Vector (CBV): CBV = ENC(SBV) (9) (e.g., using an error correc-
tion code like BCH)

• Calculate Auxiliary Data 2 (AD2) from CBV and RBV: AD2 = CBV XOR RBV (10)

• Store non-sensitive data AD1 and AD2 into BTD or on personal chip card (11)
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11.3.4 Transaction Authentication Protocol

To confirm an online transaction initiated by a bank customer, the Biometric Transaction
Authentication Protocol (BTAP) extends the authentication with a biometric verification
system. This protocol therefore follows a new approach, where a Transaction Order Seal
(TOS) is computed locally and is sent instead of a TAN (sketched in Figure 11.5). The
exchanged messages are sketched in Figure 11.2.

11.3.4.1 Operations executed by the insecure Online Banking Software (BSW)

• Creates through interaction with banking customer a Transaction Order Record (TOR),
that contains: Transaction Identifier (TID), Sender Account Number (SAN), Receiver
Account Number (RAN) and Ordered Amount (ORA)
TOR = (TID, SAN,RAN,ORA) (1)

• Transmits TOR to Online Banking Server (OBS) (2)

• Transmits TOR to Biometric Transaction Device (BTD), which is connected to client
computer (3)

11.3.4.2 Operations executed within the Biometric Transaction Device (BTD)

• Displays relevant information from TOR (at least RAN, ORA) on trusted display (4)

• Initiator and banking customer presents unforgeable biometric characteristic to the
Biometric Capture Device (BCD) (5) for the transaction confirmation, that is further
on processed as the probe sample image (6)

• Extract features from probe (7)

• Binarize features (8)

• Load Auxiliary Data AD1 from BTD memory or smart card (9)

• Compute binarized probe vector XBV from probe sample and AD1 (9)

• Compute codebook vector CBV’ from stored Auxiliary Data 2 (AD2) and XBV: CBV′ =
AD2 XOR XBV (10)

• Decode CBV’ into SBV’: SBV′ = DEC(CBV′) (11)

• Compute Pseudo Identifier (PI’) from SBV’: PI′ = h(SBV′) (12)

• Compute Transaction Order Seal (TOS’) from Transaction Order Record and recon-
structed PI’: TOS′ = MAC(h(TOR),PI′) (13)

• Transmit Transaction Order Seal (TOS’) to Online Banking Server (13)

11.3.4.3 Operations executed on the Online Banking Server (OBS)

• Received the Transaction Order Record (TOR) from the Online Banking Software
(BSW) (2)

• Received also the Transaction Order Seal (TOS’) from the Biometric Transaction De-
vice (BTD) (13)

• Hash the received TOR (14)

• Load stored Pseudo Identifier (PI) in the database for the customer (PI = h(SBV)) (15)

• Reconstructs TOS: TOS = MAC(h(TOR),PI) (15)

155



11. BIOMETRIC TRANSACTION AUTHENTICATION PROTOCOL

Figure 11.2: Arrows indicate messages exchanged between the different entities. Trans-
action Order Record TOR = (TID, SAN,RAN,ORA), Transaction Order Seal TOS =
MAC(h(TOR),PI)

Authentication Method
Attack TAN iTAN mTAN Electr. Signature Security Token BTAP

Password Phishing 1 1 0 0 0 0
Visual Spoofing 1 1 0 1 0 0

Malware 1 1 1 1 0 0
Man-in-the-Middle 1 1 1 0 0 0

Denial of Service 1 1 1 1 1 1
Human Factor 1 1 1 1 1 1

Delegation / Repudiation 1 1 1 1 1 0

Table 11.1: Vulnerability of authentication methods (strongest representative) in online
banking based on threats as categorized in [1].

• Compares TOS with the received TOS’ from the BTD: TOS == TOS′ (16)

The transaction is person and data authentic if, and only if, TOS and TOS’ are identical.
In this case the transaction, encoded into the Transaction Order Record (TOR), is considered
authentic and confirmed and thus the order will be conducted by the OBS. The various
steps of the protocol that are executed in the BTD and on the OBS to confirm a transaction
and to validate the authenticity of the data and the initiator are sketched in Figure 11.5. The
BTAP Protocol operates on a minimal number of message that are transferred between the
components as illustrated in Figure 11.2.

11.3.5 Security Considerations

The proposed BTA-protocol is based on the helper data scheme for Template Protection and
on generic standard cryptographic primitives. The following primitives are used: Hash
Function, Message Authentication Code, Error Correction Code and the XOR-operation
used as a Vernam pad (where the key and the message are of the same length). The Bio-
metric Transaction Device (BTD) is considered to be a tamper-proof trusted environment
that cannot be modified nor eavesdropped. Assuming a secure enrolment process the fol-
lowing attacks aiming at gaining control over the transactions are identified according to
the pipeline of BTAP and the exchanged messages (Figures 11.2 / 11.3(b)).

11.3.5.1 Attacks on the helper data scheme (HDS)

The helper data scheme is not leaking information about the secret nor the biometric fea-
tures if the biometric information can be modeled as independent and identically-distributed
(i.i.d.) random variables [226]. Further research on the security of template protective sys-
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tems can be found in Ignatenko et al. [91] and Zhou et al. [290]. The main requirements of
the HDS are in fact requirements on the entropy of the underlying biometric system1.

11.3.5.2 Modification of Transaction Data

The transaction data encoded in the Transaction Order Records (TOR) can easily be mod-
ified inside the potentially insecure client computer. There are two possibilities how to
proceed an attack if the transaction data (e.g., the Receiver Account Number (RAN) and
the Ordered Receiver Amount (ORA)) has been modified by malware.

The first approach is modifying the data that is sent to the Online Banking Server (OBS)
and to the Biometric Transaction Device (BTD) in the same way. This attack focuses on the
human factor, since the initiator of the transaction has to check and confirm the transaction
data that is displayed on the trusted display of the BTD. If the transaction is confirmed the
attacker succeeded.

The second approach attacks the protocol itself. The transaction data forwarded to the
BTD is not changed but the data sent to the OBS is modified. In this scenario the initiator
would confirm the intended transaction. The comparison on the server site would result in
a negative authentication if the Transaction Order Seals (TOS and TOS’) are not equal. The
TOR sent to the BTD could be constructed by choice. Assuming that a transaction initiated
and authenticated by the customer will always be positively authenticated by the system,
the secret SBV has to be error free when inputted to the MAC block. What follows directly:
h(TOR) has to be the same on both sides, in the BTD as well as in the OBS. A construction
attack on TOR turns out to be an attack on the full hash space (assuming the MAC block is

1The entropy of the biometric features in the information theoretic sense is not an issue, rather the reliable
extraction of the core information that is invariant to noise and that could be described as biometric entropy.
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Figure 11.3: Abstract pipelines of the helper data scheme (HDS) and the Biometric Trans-
action Authentication Protocol (BTAP).
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secure, completely random guesses for the TOS’ have to be made that could fit the chosen
TOR). By replacing the hash function the protocol would still be secure.

11.3.5.3 Replay Attacks

Since the Transaction Identifier (TID) is included within the transaction information, which
is hashed afterwards, a replay attack cannot succeed. A modification of the TOR results in
a different hash value h(TOR) and therefore the value of the Transaction Order Seal (TOS)
results in a not foreseeable different value.

11.3.5.4 Attack on the Transaction Order Seal (TOS)

If the independent and preferably secure channel between the BTD and the OBS is broken
or an attacker gets hold of the communication between the parties (Man-in-the-Middle
Attack), the Transaction Order Seal (TOS) can be attacked, since there is the possibility to
extract information about the Pseudo Identifier (PI) from the TOS. The TOS is the result
of a Message Authentication Code (MAC) that is applied with the hash value of TOR as
message and the Pseudo Identifier (PI) as key. If the MAC is broken, PI could be extracted.
In this scenario the security of the TOS depends on the MAC, which has to be exchanged if
broken.

Another approach would be a brute force attack on the key (PI) when TOS and TOR are
known to an attacker. To solve this issue the size of the key has to be sufficiently large to
make this attack too expensive considering the computational effort.

Assuming the BTD to be powerful enough to perform asymmetric cryptography, TOS
can be encrypted with the public key of the OBS to secure the link.

11.3.5.5 Limitations and Attacks on Biometric Subsystem

Limitations and potential attacks on the biometric subsystem need to be considered, as this
is an essential component in the BTAP:

• Imposter Authentication – an attacker could try to authenticate a transaction, this
would refer to an attack on the biometric system in combination with the helper data
scheme (HDS). If the reliable bit vector (XBV) consists of equally distributed bits (over
the population and inside each feature vector) and the RNG block generates also
equally distributed secrets, the chances of having the same two reliable bit vectors
from two different data subjects depends on the length of the XRV. The next points
resumes this issue.

• Limited biometric performance – it has to be clearly stated that the error correction
capability should be chosen as small as possible to add as less as possible redun-
dancy to the secret. This is in fact a challenge of the underlying biometric system, the
feature extraction has to be accurate in order to render the need for error correction
unnecessary.

• Aging and Changes in the biometric characteristic – the biometric modality should be
chosen in a way that aging can be neglected and that changes in the characteristic can
be handled by the feature extraction. In the worst case the biometric characteristic
has to be re-enrolled.

• Attacks on the Biometric Capture Device – the sensor - as part of the BTD - is con-
sidered to be trusted, non-attackable and also qualified for unsupervised biometric
verification.

• Hill Climbing – cannot be conducted since the output of the system is not a compari-
son score but a binary decision.
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11.3.5.6 Attacks on Privacy

• If TOR can be read by an attacker, transactions can be tracked. This could happen
through malware on the client computer or weak links between either the BSW and
the OBS or between the BSW and the BTD.

• Cross-Matching attacks cannot succeed if different Pseudonymous Identifiers (PI) are
used in different application scenarios. To achieve this, different secrets have to be
created and merged with the biometric information.

• Biometric Additional Information cannot be extracted if the BTD is secure and the
used helper data scheme for privacy protection is not broken.

11.3.5.7 The Human Factor

As mentioned earlier the system can only operate in a secure manner, if the human factor
is not exploited. A risk that could be foreseen is that to much information (e.g., long IBAN
numbers) is displayed to the natural person. In such a case the likelihood that the sub-
ject approves that information without carefully comparing displayed information to the
intended information is high (this happens widely, when users accept ”blindly” software
license conditions). This risk of information overflow is in no way specific to the BTA-
protocol.

A comparison of BTAP with standard approaches for transaction authentication is shown
in Table 11.1 indicating that BTAP show robustness against more attacks than current alter-
native protocols.

As long as the building blocks of the Biometric Transaction Authentication Protocol are
not broken, the protocol is secure against various attacks. The modular design provides the
possibility to exchange most of the cryptographic primitives with limited effort in the case
of an incident. The knowledge about the correct implementation of the system is a root of
trust. Thus in order to increase trust of operators and users in the system, components and
desirably the whole system should be subject to Common Criteria security analysis and its
trustworthiness should be certified by an independent institution.

11.4 Future Work

The proposed protocol for transaction authentication can be used also in a more general
context, since the biometric information can be fused with any kind of information. The re-
sulting biometric signature system can be used in various applications. A future extension
will handle multiple person transaction authentication to reach a higher level of security
e.g., confirm transaction of large volumes in the cooperate and inter-banking sector or to
satisfy regulations like the four-eyes principle. The BTAP can be hardened using multi-
factor authentication adding also knowledge and/or possession factors.

From the biometrics perspective further research has to focus on unsupervised biomet-
ric capture devices that generate biometric samples with sufficient entropy to make the
proposed protocol strong against brute force attacks on the secret.

An interesting aspect is also the concrete implementation using existing technologies
and products available on the market to realize the BTAP.

From an economic point of view the question has to be solved if the return of investment
is guaranteed with the usage of the BTAP and the BTD. Considering not only that BTAP
would prevent online transaction frauds but also the fact that the quantity of incidents is
increasing rapidly one could assume that the investment is amortized after a rather short
time span depending on the costs of the device and changes in the infrastructure.

A more formal security analysis is needed in order to prove the properties of the proto-
col – it is in preparation.
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Figure 11.4: Process flow of the enrolment protocol
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Name Description

AD1 Auxiliary Data 1: Reliable Bit Indexes from RBS block
AD2 Auxiliary Data 2: AD2 = CBV XOR RBV
AN Account Number
BCD Biometric Capture Device
BSW Online Banking Software
BTAP Biometric Transaction Authentication Protocol
BTD Biometric Transaction Device
CBV Codebook Vector: CBV = ENC(SBV)
ENC Error Correction Encoding Block
DEC Error Correction Decoding Block
HDS Helper Data Scheme
OBS Online Banking Server
ORA Ordered Amount
PI Pseudo Identifier: PI = h(SBV)
QBV Quantized Binary Vector
RAN Receiver Account Number
RBV Robust binarized feature vector from enrolment process

(derived from QBV at positions AD1)
RBS Reliable Bit Selector block (identifies stable positions in feature vectors)
SAN Sender Account Number
SBV Pre-shared Secret (Binary Vector)
TID Transaction Identifier
TOR Transaction Order Record: TOR = (TID, SAN,RAN,ORA)
TOS Transaction Order Seal: TOS = MAC(h(TOR),PI) =

MAC(h(TID, SAN, RAN, ORA), h(SBV))
XBV Robust binarized probe vector for the verification process: XBV = RBV’

Table 11.2: Acronyms of the used variables and components in BTAP.

11.5 Conclusions

The proposed Biometric Transaction Authentication Protocol solves a basic problem of
nowadays online banking: how to realize a person and transaction data authentic protocol
in a potentially insecure environment. Furthermore the requirement to use biometrics in
online banking scenarios to reach a binding of the biometric trait with the intended trans-
action data, is fulfilled in BTAP. At the same time the biometric information is sealed in a
privacy preserving way and cannot be extracted by any party. BTAP offers two important
features of a security protocol: low complexity and strong modularization.
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Figure 11.5: Process flow of the transaction verification protocol
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The BTAP, for biometric authentication of banking transactions, introduced in Chapter 11,
is further specified in this chapter. A formal analysis in the applied pi calculus proves
security properties of the core protocol. Additionally extensions are sketched to expand
the transaction authentication to allow for multiple persons and for the encryption of ex-
changed messages.
The paper was published in: [74] HARTUNG, D., AND BUSCH, C. Biometric Transaction
Authentication Protocol: Formal Model Verification and “Four-Eyes” Principle Extension.
In LNCS 7126, Financial Cryptography and Data Security (2012). The ideas are patented
in: [21] BUSCH, C., AND HARTUNG, D. (EN) AUTHENTICATED TRANSMISSION OF
DATA, June 2011. (WO/2011/063992).
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Abstract

The BTA protocol for biometric authentication of online banking transactions is ex-
tended to allow for multiple person authenticated transactions. In addition a formal
specification is given, the protocol is modelled in the applied pi calculus and the secu-
rity properties of data and person authentication as well as non-repudiation are verified
using the tool ProVerif.

12.1 Introduction

The need for secure authentication methods is evident when looking at the assets trans-
ferred over the Internet, the level of interconnectedness and the posed threats: a recent
example of malware affecting vital, well-protected infrastructures is the Stuxnet computer
worm. And even more, badly protected client computers are exposed to threats: malware
on clients endanger especially online banking transactions, whose manipulation promise
rapid financial gain to attackers. This has to be prevented. However from a service providers
view, not only the integrity of the data, but also its origin is to be guaranteed, which will be
referred to as data and person authentication throughout the paper. Until now, no method
for online banking transactions features non-repudiation of origin (natural person). One
reasonable solution to this problem is the use of biometric systems, but not without raising
threats to the users privacy.

In [72] a protocol was proposed that addresses the aforementioned problems, it uses a
system for biometric person authentication using so called Privacy Enhancing Technologies
(PETs) or Template Protection to authenticate online banking transactions without reveal-
ing the sensitive biometric data. At the same time the transaction data has to be authentic
in order to get executed by the banking server side. These properties hold true even if the
client is considered to be insecure and possibly controlled by an attacker.

The BTA protocol – Biometric Transaction Authentication Protocol – is summarized in
the next section. It is modelled in Section 12.3 using the applied pi calculus [154] and its
security properties are verified using the tool ProVerif [14] in Section 12.4. Before con-
cluding the paper, an extension of the protocol, enabling multi-user, multimodal as well as
multi-factor authentication of single transactions, is given in Section 12.6.

12.2 BTAP Wrap-Up

The goal of BTAP [72] is to enable data and person authentic online banking transactions
on insecure client computer environments. To reach this goal a biometric subsystem has
to be combined with classic cryptographic functionality. The critical transaction authenti-
cation is sourced out on a tamper-proof biometric transaction device (BTD) with limited
functionality that can be certified using information technology security evaluations. The
other different parties that communicate in the protocol are shown in Figure 12.1: the cus-
tomer using a potentially insecure client computer running a banking software (BSW) and
a trusted online banking server (OBS).

Within the first phase of the protocol, the user is enrolled on the BTD using a biometric
identifier and a pre-shared secret key (SBV). The user can afterwards conveniently initiate
a transaction on the client as it is done nowadays using e.g. the online portal of the bank.
The transaction information is then shared with the OBS and the BTD. On the BTD the
information is displayed within the trusted environment, the user has to check and verify
the data by presenting his or her biometric trait(s) to the sensor of the BTD. A seal TOS’ is
created within the BTD over the transaction data using the pre-shared key, that is released
by the biometric sample. This seal is sent to the OBS, which can then check the authenticity
of the transaction data as well as the authenticity of the transaction initiator – only in the
case of a successful verification of the seal, the transaction is confirmed and executed.
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Figure 12.1: Threat scenario: online banking SW (BSW) resides on possibly malware con-
trolled client environment and communicates with trusted online banking server (OBS) as
well as with a secure biometric transaction device (BTD).

12.2.1 Information Flow Enrolment and Verification

The protocol involves more complex procedures inside the building blocks. Within the
BTD the biometric subsystem is found, it covers the process of enrolment and verification
that are inspired by the helper data scheme [226] for privacy protection, which performs
a fuzzy commitment. For the enrolment, a biometric sensor inside the BTD captures the
biometric sample multiple times, extracts a fixed-length bit feature vector, which is then
analyzed for reliable positions. The resulting reliable bit vector (RBV) is fused using the
XOR-function (⊕) with an error-encoded version of a pre-shared key (CBV = ECC(SBV))
that has the same length. Correcting errors using the decoding DEC of the ECC makes
it possible to cope with the noise caused by the variability in the biometric information.
The information stored on the BTD are not revealing any sensitive biometric information:
pseudo identifier PI = hash(SBV), auxiliary data AD1 = indexes of reliable positions in the
feature vector, auxiliary data AD2 = CBV ⊕ RBV. Figure 12.2 depicts the enrolment process
of binding an identity to a pre-shared secret key, this process is modelled in a simplified
way as described in Section 12.3.6. Note that the pseudo identifier can be renewed or ex-
changed to enable revocation in a biometric system, which is not possible if the biometric
information itself was used for the verification of identity. Furthermore no cross-matching
of different template protected biometric databases can succeed if the secret SBV is cho-
sen independent from each other. Potentially sensitive biometric data is never stored or
decrypted for comparison in its original form.

After this step, transactions can be authenticated as shown in Figure 12.3. Inverting
the enrolment process is releasing the hash value of the pre-shared secret: the data subject
presents the biometric trait, a biometric sample is generated, features are extracted. The
helper data is loaded, so the system is able to extract the bits of the fixed-length feature
vector at positions that should be reliable for the enrolled data subject. The resulting reli-
able bit vector XBV is releasing the key if the error correction capabilities ε (in bits) of the
used code is higher than the amount of single bit errors |(XBV ⊕ RBV )| occurred during
the feature extraction step:

AD2 ⊕XBV = (CBV ⊕ RBV )⊕XBV
= CBV ⊕ (RBV ⊕XBV ) = CBV ′

with |(RBV ⊕XBV )| < ε
⇒ SBV = DEC (CBV ) = DEC (CBV ′) = SBV ′

The hash value of the extracted secret bit vector SBV’ is identical to the stored value PI=hash(SBV)
if the enrolled biometric sample was presented and the noise could be compensated using
the error correction decoder function DEC. The seal TOS’/TOS can be computed over the
transaction data TOR (transaction identifier TID, sender account number SAN, receiver ac-
count number RAN, ordered amount ORA) using the keyed message authentication code
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Figure 12.2: Information flow of the enrolment protocol.

function:

TOS ′ = mac(hash(TOR), hash(SBV ′))

and accordingly on the server side

TOS = mac(hash(TOR), hash(SBV )).

12.2.2 Usage Scenario

The usage scenario of BTAP is seen in high value transactions like in the inter-banking
sector, requiring a maximum level of security – the costs of enrolling the system in such
an environment is negligible. Nonetheless since there is the need for secure authentica-
tion methods, BTAP could also be deployed in large scale, as in personal online banking
transaction services, since the fixed cost for the BTD and the infrastructure would amortize
considering the loss due to malware triggered false transactions over time.
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Figure 12.3: Information flow of the transaction verification protocol in the core BTAP.

12.3 Formal model

This section describes the formal method that was used to model BTAP and to analyse
its security properties. The considered attacker model is sketched, the intended security
properties are defined. Then the protocol is described using the exchanged messages as
well as the applied pi calculus. The verification process based on the formal model is given
in the end of this section.

12.3.1 Applied Pi Calculus and ProVerif

The applied pi calculus is a generalized version of the spi calculus [2], which itself is an
extension of the pi calculus [154]. The pi calculus is a process calculus with the goal to for-
mally describe concurrent systems, whose configuration may change during execution. Its
variants are specifically designed to analyse and verify security properties of cryptographic
protocols. The tool ProVerif was developed by Blanchet et al. [14] and it supports auto-
mated reasoning for applied pi calculus processes. It translates the protocol description
into Horn clauses and acts upon them as a resolution prover. ProVerif fully automatically
tries to prove security properties, its outcome can be either one of the following: robust
safety can be proven, an attack as counter example is found, or it can neither prove or dis-
prove robust safety according to the property. The protocol is modelled and verified using
ProVerif, one advantage of using the tool: the Dolev-Yao attacker model, which is described
in the next section, is specified and can be used directly.
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12.3.2 Attacker Model

We assume the Dolev-Yao attacker model [47], which uses idealizations about the crypto-
graphic primitives: an attacker can not learn from encrypted messages without the knowl-
edge of the keys used for encryption. Changing an encrypted message without the knowl-
edge of the key is detectable. Keys can not be guessed or learned from encrypted messages,
also random numbers can not be guessed. Hash functions are collision free one-way func-
tions. The attacker has full control over the communication channels, specifically he can:
eavesdrop, inject and redirect messages. Furthermore he can generate keys and random
numbers, as well as apply cryptographic primitives on what he learned.

12.3.3 Intended Security Properties

The intended properties of the BTA protocol are:

• Authentication: of the transaction data (integrity), the transaction initiator (proof of
identity).

• Non-Repudiation of Origin: a valid transaction can not be repudiated by the initiator.

• Secrecy: the pre-shared secret and the sensitive biometric information stay secret.

Note: secrecy of the transaction data itself can not be assured if the client computer is com-
promised, and is therefore not covered in the core protocol. Additionally the internal BTD
process is not modelled according to the applied pi calculus. Using the security assump-
tions, we model an idealized version of it.

12.3.4 Security Assumptions

The security assumptions for the verification of BTAP are listed below:

• BTD (in the model B) is tamper proof: no malware infection or manipulation of the
processes and the storage of the BTD are possible (Note the advantages of using the
privacy enhancing technology: revocation is enabled, the templates are protected ad-
ditionally, only nonsensitive data is stored, storage capacity is negligible, efficient
processing of the bitstrings, no hill climbing attacks possible). BTD supports secure
I/O.

• Biometric subsystem: the biometric sensor can only be spoofed with unreasonable
effort (suitable for unsupervised authentication). Biometric traits are unique and can
not be replicated. The feature extraction system is able to extract a feature vector close
to the enrolled sample, in a way that the shared key is released correctly (see Section
12.2.1).

• Enrolment phase is completed by the authentic person, the process is not tampered.

• Helper data scheme (HDS) is not leaking private information about the extracted
biometric feature vector nor the pre-shared secret. The biometric entropy is high
enough to enable reasonable long pre-shared secrets to avoid brute force attacks.

• Online banking server OBS, or short S in the model: trusted and secure environment.
Its public key pkEncS for encryption and pkSignS for signatures are publicly available.

• Client computer is considered untrusted and can be manipulated by malware.

• Secret keys are secret: pre-shared key SBV is shared1 between server OBS and BTD,
extracted biometric feature vector is also secret.

1In a real-life scenario the key could be shared using a secure independent channel. Personalized confidential
(physical) mails or credentials could serve as a direct input to the BTD.
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• Computational limitations are: none for the client and server, no public-key crypto
for BTD.

• Communication channel between server S and client C (running the banking software
BSW), unidirectional channels from C to the BTD and from BTD to the server.

12.3.5 BTAP: Message Sequence

Informally a protocol can be described by the messages that are exchanged, the core mes-
sage sequence for BTAP [72] is given below, where {} indicate an encryption with a sym-
metric key Kxy, a public key pkEncX from X for encryption, or a signature using the private
key prSignX from X. X->Y stands for a message from X to Y. The four parties are client C,
server S, biometric transaction device B and user U:

Message 1: C->S: {(Nonce1, AN, ORA, RAN)}pkEncS
Message 2: S->C: {(Nonce1, Nonce2, AN, ORA, RAN)}prSignS
Message 3: C->B: (Nonce2, AN, ORA, RAN)
Message 4: U->B: (Ok)
Message 5: B->S: (mac(hash(Nonce2, AN, ORA, RAN), hash(SBV’)))
Message 6: S->C: {hash(true, Nonce2, AN, ORA, RAN)}prSignS

The transaction information consists of the sender account number AN, ordered amount of
money to be transferred ORA, and the receiver account number RAN. Nonces are random
numbers that are used only once for proof of freshness. Nonce1 in message 1 and 2 serve
as server authentication, only the owner of the private signature key prSignS (server S)
can decrypt message 1 and reply the correct Nonce1 (Nonce1 should include a simple time
stamp besides the random part, that has to be checked for freshness on the server side
before sending message 2). Message 1 is encrypted with the public encryption key of the
server. Nonce2 is included for the freshness of the transaction data, to avoid replay attacks
and to limit the validity using a timestamp part. The transaction data received by the
server as well as Nonce1 and Nonce2 are signed and send back to the client as message 2.
The client forwards the information in message 3 to the BTD. The user has to check and
verify the transaction data displayed on the BTD with his or her biometric trait(s), which is
modelled simplified as message 4. The pre-shared key SBV is released and used to create
a seal TOS’=mac(hash(Nonce2, AN, ORA, RAN), hash(SBV’)) using a message authentication
code (MAC) mechanism in message 5 with hash(Nonce2, AN, ORA, RAN) as the message
and hash(SBV’) as the secret key. The server confirms the transaction in message 6 only if
the seal from message 5 is identical to the seal TOS that can be created on the server side
with the information from message 1, Nonce2, and the pre-shared key SBV’.

12.3.6 BTAP: Model in the Applied Pi Calculus

The internal processes of the biometric key release inside the BTD are not modelled here,
since we are assuming a secure and tamper-proof environment and an idealized biometric
subsystem. An attacker has no access per definition on the internal variables and processes.
In order to model the process of checking and verification of the authentic transaction data
by the user, we use the following approximation: the authentic transaction data is modelled
as data signed with the secret key (the reliable biometric information XBV or equivalently
RBV (see Section 12.3.4)) of a “public-key biometric” system only known to the user and
verifiable by, among others, the BTD.
The attacker can create an arbitrary number of transaction information, which is modelled
as evilRAN and evilORA. As we will see in Section 12.4, this is interesting for proving if
such transaction information can be falsely authenticated.

All other protocol steps are modelled straightforward according to the message se-
quence shown in Section 12.3.5. The ProVerif code for the definition of functions, reductions
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and free names is given below. The number behind a function name is its cardinality. As
primitives we need the hash-, mac-function as well as public-key crypto in this model, the
destructors describe the behaviour of the abstract functions:

(* Constants *)
data true/0.

(* Functions *)
fun hash/1.
fun mac/2. (* with destructor checkmac/2.*)

(* Asymmetric Encryption *)
fun pencrypt/2. (* with destructor pdecrypt/2 *)
fun prv/1. (* private part of a key pair *)
fun pub/1. (* public part of a key pair *)

(* Reductions *)
reduc pdecrypt(pencrypt(x , prv(y)), pub(y)) = x ;

pdecrypt(pencrypt(x , pub(y)), prv(y)) = x .
reduc checkmac(mac(y , x ), x ) = y .

(* Security Assumptions *)
(* Public Channels / Free Names *)
free c, cs, sb, cb, ub, uc,ORA,RAN,m,m2,m3.

The core of the protocol model are the processes, which define the behaviour of the com-
municating parties using the applied pi calculus. The processes are behaving like the user
(processU), the client (processC), the server (processS), the BTD (processB) as well as the at-
tacker (processAttacker). If a message is not as expected, the 0.-process is executed (process
stops).

ProcessC receives a message m on the open channel uc. m is expected to have the form of
a 2-tuple, the two elements are defined as ORA and RAN in the rest of the process. A nonce
(Nonce1) is created and send on the open channel cs (to the server) with the transaction data
received in m as well as the fixed account number, all encrypted with public encryption key
of S. A reply is expected on cs in the form of a 5-tuple. The values received should be signed
with the private signature key of the server, and they are expected to be equal to Nonce1,
AN, ORA and RAN. On the second position a new nonce is received, which is defined
Nonce2. The new nonce (used as a transaction identifier) as well as the transaction data is
send on the open channel cb (also to the BTD B). The last line indicates the process to be
waiting for the decision of the server (without function in the model, for the notification if
a transaction was successful):

let processC =
in(uc,m); (* user interaction: transaction data generated *)
let (ORA,RAN) = m in
(new Nonce1 ;
out(cs, pencrypt((Nonce1 ,AN ,ORA,RAN), pub(secretEncS))); (* Message 1 *)
in(cs, reply); (* Message 2 *)
let (= Nonce1 ,Nonce2 ,= AN ,= ORA,= RAN) = pdecrypt(reply , pub(secretSignS)) in
(out(cb, (Nonce2 ,AN ,ORA,RAN)); (* Message 3 *)
in(cs, decision))).

ProcessS describes the server behaviour. It receives a message on channel cs, which is en-
crypted with the public encryption key of S. Its decrypted form is expected to be a 4-tuple
(Nonce1, SAN, ORA, RAN). If Nonce1 is fresh (was not received before) and its timestamp
is valid, a fresh and random number is generated (Nonce2) and send on cs with Nonce1 as
proof of authenticity as well as SAN, ORA and RAN, all signed with the private signature
key from S. Note: in the model the freshness check of Nonce1 is not performed due to limi-
tations in the abstraction of memory in the applied pi calculus. The next expected message
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is the seal sent on channel sb (from the BTD B). If the MAC was created using the secret pre-
shared key hash(SBV) and using the transaction data received earlier in m, then the server
accepts the transaction and creates a signed authentication reply over the transaction data
including the nonce.

let processS =
in(cs,m);
let (Nonce1 ,SAN ,ORA,RAN) = pdecrypt(m, prv(secretEncS)) in (* Message 1 *)
(new Nonce2 ;
out(cs, pencrypt((Nonce1 ,Nonce2 ,SAN ,ORA,RAN), prv(secretSignS))); (* Message 2 *)
in(sb,m2); (* Message 5 *)
if checkmac(m2, hash(SBV )) = hash((Nonce2 ,SAN ,ORA,RAN)) then
(* Message 6 *)
out(cs, pencrypt(hash((true,Nonce2 ,SAN ,ORA,RAN)), prv(secretSignS)))).

ProcessB describes the biometric transaction device (BTD, here short: B). It receives message
m3 on channel ub (from the user). The message is expected to be a signed hash value of the
authentic transaction data, only the party in possession of the private signature key can
sign. This is a simplified model of the biometric subsystem. Message 3 is received from the
(possibly malware infected) client C. Only if the hash of this transaction data is equal to the
received signed hash, the seal (keyed MAC) is created over the message m:

let processB =
(* reliable and authentic RAN, ORA from the user *)
in(ub,m3);
let hashvalue = pdecrypt(m3, pub(XBV )) in
(* possibly UNreliable and UNauthentic RAN, ORA from the client *)
(in(cb,m); (* Message 3 *)
(let (Nonce,= AN ,ORAin,RANin) = m in
(if hashvalue = hash((ORAin,RANin)) then
out(sb,mac(hash(m), hash(SBV )))))). (* Message 5 *)

ProcessU models the user, which is creating new authentic ordered amount and receiver
account numbers (a new transaction). It signs these values with the secret private key
(check and verify with biometric trait) and sends it on channel ub. The transaction data is
not considered to be private (guessable + insecure client) and needs to be submitted to the
client C, so it is made available on channel uc:

let processU =
(* user creates new transaction *)
new authORA;
new authRAN ;
(* user checks and verifies authentic transaction data *)
out(ub, pencrypt(hash((authORA, authRAN )), prv(XBV )));
out(uc, (authORA, authRAN )).

The last process, the attacker, is simply creating evil (non-authentic) transaction informa-
tion and makes it available on channel c. The idea behind this is to check later, if non-signed
transaction data can be authenticated:

let processAttacker =
new evilORA;
new evilRAN ;
out(c, (evilORA, evilRAN )).

The following steps are modelled in the main process that is executed initially: create a
new secret biometric feature vector XBV and make its public part available for verification.
This is for the simulation of the checked and verified transaction data. A new secret pre-
shared key SBV is created, as well as a sender account number AN, which is made pub-
lic. secretEncS and secretSignS are the secrets for generating the servers key-pairs, again,
the public keys are made available to all parties on channel c. The last part describes the
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processes that can run after this initialization in parallel. Note: an unlimited number of
processes is indicated by !process . A parallel execution of two processes X and Y is de-
fined by (processX ) | (processY ). That means any number of process instances of the user
(processU), the client (processC), the server (processS), the BTD (processB) and the attacker
(processAttacker) can run in parallel. The client and server are running by purpose with
an unbound number of instances in this model, this may be counter intuitive but can be
understood when looking at the specific processes:

process
new XBV ;
out(c, pub(XBV ));
new SBV ;
new AN ;
out(c,AN );
new secretEncS ;
new secretSignS ;
out(c, pub(secretEncS));
out(c, pub(secretSignS));

((!processAttacker) | (!processU ) | (!processC ) | (!processS) | (!processB))

12.4 Verification of security properties

In order to verify security properties, queries have to be formalized that are checked by
ProVerif. A query of the form query attacker :x., checks if the attacker gets to know x during
the execution of the processes. The attacker model is set to active.

(* Queries *)
(* Query 1: reliable bit vector extracted from biometric trait(s) *)
query attacker :XBV .
(* Query 2: modelled as public-key system *)
query attacker :prv(XBV ).
(* Query 3: pre-shared secret key *)
query attacker :SBV .
(* Query 4: *)
query attacker :hash(SBV ).
(* Query 5: encryption secret for public-key server construction *)
query attacker :secretEncS .
(* Query 6: private encryption server key *)
query attacker :prv(secretEncS).
(* Query 7: signature secret for public-key server construction *)
query attacker :secretSignS .
(* Query 8: private signature server key *)
query attacker :prv(secretSignS).
(* Query 9: seal over authentic transaction data *)
query attacker :mac(hash((Nonce2 ,AN , authORA, authRAN )), hash(SBV )).
(* Query 10: seal over arbitrary transaction data *)
query attacker :mac(hash((Nonce2 ,AN , evilORA, evilRAN )), hash(SBV )).
(* Query 11: server reply over authentic transaction data *)
query attacker :pencrypt(hash((true,Nonce2 ,AN , authORA, authRAN )), prv(secretSignS)).
(* Query 12: server reply over arbitrary transaction data *)
query attacker :pencrypt(hash((true,Nonce2 ,AN , evilORA, evilRAN )), prv(secretSignS)).

Execution of the queries in ProVerif shows: query 9 (authentic seal) and query 11 (authentic
reply from the server) are true. That means, the attacker gets to know information that is
available on the channels after a successful run of the transaction authentication protocol
using authentic transaction data on the server as well as in the BTD. The fresh nonce with
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limited time validity inside the seal and the server reply avoid replay and delayed-play
attacks, therefore the information can not be used to authenticate another transaction.

To wrap up the ProVerif simulation we could show, that the attacker does not get knowl-
edge about the secret keys and the biometric feature vector. Non-authentic transaction data
does not get sealed because of the process of checking and verifying inside the secure envi-
ronment. If the integrity of a verified transaction is compromised, the two generated seals,
the one inside the BTD and the one inside the server will differ, in this case the transaction
is dropped. Non-repudiation of origin is ensured using the biometric subsystem, which
only releases the key that is used to generate the seal, if the enrolled person is verifying
the transaction. The private server keys stay secret, therefore the authenticity of the server
towards C is guaranteed in the protocol, since only the owner of the private encryption key
can respond with the correct nonce from message 1 (S only responds to message 1 if Nonce1
is fresh). Attacks on availability are possible in our model if the attacker drops messages
from the channels.

The security properties from Section 12.3.3 hold if the security assumptions from Sec-
tion 12.3.4 hold true. Especially the assumption, that the authentic user is completing the
enrolment phase correctly, is necessary for the non-repudiation of origin property. In a
real-life scenario the enrolment of a user could be performed under controlled conditions
to satisfy the assumption.

A drawback of the core protocol is that the user is incapable of deciding if the transac-
tion was successfully executed, since a malware infected client can compromise / drop the
result from the server, this issue and new features are addressed in the next section.

12.5 BTAP Extension: Secret Message Exchange

2 Even though an attacker can not gain information from the seal, it is desirable to encrypt
all exchanged messages to ensure privacy of the banking information. Note that the seal
in message 5 does not need to be encrypted, since an attacker can not get any information
about the key, nor the message from the MAC value. The best known forgery attacks for
an MAC based on iterated keyed hash functions are birthday attacks, that are also used
to find collisions in hash functions [12, 183]. Note also that the property of secrecy of the
messages can not hold when the client is compromised, since for convenience reasons the
client is still used to generate the transactions and to communicate with the server.

Message 1: C->S: {(Nonce1, Ksc, AN, ORA, RAN)}pkEncS
Message 2: S->C: {{(Nonce1,Nonce2,Nonce3,AN,ORA,RAN, ...

({(Nonce2, AN, ORA, RAN)}Kbs))}prSignS}Ksc
Message 3: C->B: (Nonce3,AN,ORA,RAN,{(Nonce2, AN, ORA, RAN)}Kbs)
Message 4: U->B: (Ok)
Message 5: B->S: {(mac(hash(Nonce2, AN, ORA, RAN), hash(SBV)))}Kbs
Message 6: S->C: {{hash(true, Nonce2, AN, ORA, RAN), ...

({hash(true, Nonce2, AN, ORA, RAN)}Kbs)}prSignS}Ksc
Message 7: C->B: {hash(true, Nonce2, AN, ORA, RAN)}Kbs

Message 1 carries a symmetric session key Ksc, encrypted with the server’s public encryp-
tion key pkEncS for an encrypted communication between S and C (PKI key verification
required). Another symmetric session key, derived from the pre-shared secret SBV, is se-
curing the communication for message 5, 6 and 7:

Kbs = onewayfunction(hash(Nonce3 ), hash(SBV )).

Since hash(SBV) is known to S and B, Kbs can only be computed within the two parties (on
B after the enrolled user presents his or her biometric trait to release SBV).

2One parenthesis in message 2 was erroneous and is updated.
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After releasing Kbs on the BTD, it is ensured to the device, that S has received the infor-
mation (Nonce2, AN, ORA, RAN), since it is forwarded encrypted with Kbs in message 3
from the client. The BTD can check if the same transaction information was also send from
the client and displayed to the user. Only if the two sets are identical, the transaction seal
is created, otherwise a warning is shown on the secure display. When receiving message 7,
it is proven to the BTD, that the server executed the transaction encoded in the authentic
transaction data. On the secure display of the BTD the decision can be shown to the user.

The extended protocol does not send any transaction data in an unencrypted form over
the channels, without the need for public-key crypto on the BTD. This extension ensures
that the transaction data stays private and that the execution of the authentic transaction
can be verified.

12.6 BTAP Extension: Online Banking Transactions Using the
“Four-Eyes” Principle

Authentication of transaction data through multiple persons might be part of a policy if the
ordered amount succeeds the liability of a single person or role. This procedure might help
to prevent financial frauds. BTAP is extendible without much effort to comply with this
requirement. Three different scenarios of a multiple-person authentication are identified,
the pros and cons are discussed thereafter: 1.) one local BTD, one shared secret, 2.) one
local BTD, multiple shared secrets, 3.) multiple remote BTDs, multiple shared secrets.

12.6.1 One local BTD, one shared secret

The enrolment process of the helper data scheme subsystem (Figure 12.2) has to be adapted,
the shared secret has to be binded to n different data subjects. Therefore n different auxiliary-
data-1 (AD1) sets have to be generated that define the reliable positions in the fixed length
biometric feature vectors of each biometric trait. The pseudo identifier is created as in the
original enrolment: PI = hash(SBV ). Only one auxiliary-data-2 (AD2) is generated during
the process using the following formula for the error correction encoded pre-shared secret
CBV = ECC (SBV ) and the data subjects reliable boolean biometric feature vectors RBV i

for i = 2...n and n ≥ 2:
AD2 = CBV ⊕ (

⊕
i=1...n

RBV i)

The result of this adapted enrolment: the shared secret can only be released and therefore
the transaction seal can only be generated over the transaction data, if all enrolled biometric
feature vectors RBV i can be extracted during the authentication phase. This means, every
enrolled person must verify the transaction data locally with his or her biometric trait. Ad-
vantage: the order of presenting the biometric traits is negligible since the XOR-operation is
commutative (still AD1 is person specific and therefore an ID claim like a token is needed);
a data subject k could be revoked, by just presenting the biometric trait (where RBV k can
be extracted from), AD2 could be updated accordingly:

AD2 ′ = AD2 ⊕ RBV k

= CBV ⊕ (
⊕

i=1...nRBV i)⊕ RBV k

= CBV ⊕ (
⊕

i=1...(k−1),(k+1)...nRBV i)⊕ (RBV k ⊕ RBV k)

= CBV ⊕ (
⊕

i=1...(k−1),(k+1)...nRBV i)

The drawback in this operation mode is that the amount of bit errors that can be cor-
rected stays limited – only CBV carries the error-correction code. Evenly distributed bit
errors in the feature vectors RBV i would affect all positions of the codeword.

Alternatively the XOR-operation is applied to the concatenation of all RBV i vectors
and CBV. The entropy of the concatenated feature vector will be increased compared to a
single feature vector, a longer key SBV and a longer resulting CBV could be used for high
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security demands:

AD2 = CBV ⊕ (RBV 1, ...RBV k, ..., RBV n)

Advantage: Higher level of security against brute force attacks on the secret SBV. Disad-
vantage: the system is inflexible, a re-enrolment is needed if data subject k is not allowed
to authenticate online banking transactions anymore.

12.6.2 One local BTD, multiple shared secrets

When using multiple shared secrets, again an ID claim like a token is needed to distinguish
between the enrolled data subjects. A binding of a pre-shared secret key and each extracted
reliable boolean biometric feature vector (RBV i) has to be conducted. This relates to n
different enrolments on the same biometric transaction device (BTD) as described in the
core BTAP. In this scenario, it is possible to create n different transaction order seals (TOS i)
over the same transaction order record TOR = (TID, SAN, RAN, ORA) using a keyed MAC-
function:

TOS i = mac(hash(TOR), hash(SBV i))

The seals are send independently from each other to the server, which knows all the en-
rolled subject for a specific banking account. Advantage: Flexible solution for the user
enrolment; Fine-grained policies on the server side enable different levels of security and
flexible requirements (number of seals, seals from specific persons) for a transaction based
on the ordered amount or the receiver account number, or other metadata. And the non-
repudiation property is hold in this scenario, since a unique pre-shared key is bind to a
natural person.

12.6.3 Multiple remote BTDs, multiple shared secrets

As seen in the previous case, a flexible system could be constructed using multiple shared
secrets and one local BTDs. The same description applies to this case, with the difference
that different BTDs could be used independent from each other, no ID claim is needed if ev-
ery data subject is enrolled on a different BTD using a different pre-shared secret. This case
enables time-shifted transaction authentication but it requires the distribution of pending
transactions to the client, which could be done by using the online banking portal, simple
e-mail transfer or a dedicated software.

12.6.4 Additional Authentication Factors and Multiple Biometric Modalities

BTAP can be extended to a multiple factor authentication system, adding possession as
well as knowledge authentication factors that are given as input to the BTD. Including
this information, which is shared with the server side, the transaction seal TOS would be
computed as:

TOS = mac(hash(TOR), (hash(SBV ), hash(Password), hash(TokenSecret)))

with the keyed mac-function. Adding additional authentication factors would strengthen
the BTAP even more.

Extracted reliable biometric feature vectors RBV i originating from multiple biometric
modalities Mi with i = 2...n and n ≥ 2 of the same person, like e.g. fingerprint and
finger vein data, can be used to generate a concatenated biometric feature vector RBV ′ =
(RBV 1, ..., RBV n) that is used to release the pre-shared key in the BTA protocol.
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12.7 Conclusions

The proposed security properties could be proven using a formal model of the core BTA
protocol message exchanges and the protocol verification tool ProVerif. The protocol en-
ables non-repudiable person and data authentic online banking transaction. The extensions
enable privacy of the transaction data and in addition new security features: transactions
can be sealed by multiple individuals to comply with restrictive policies. BTAP supports
multiple biometric modalities and can be extended for multi-factor authentication as well.
In the near future the pi-calculus must be extended in order to be able to deal with noisy
biometric data as part of security protocols – then also the internal processes of the biomet-
ric transaction device could be modelled and verified.
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Appendix A

Biometric Systems

A.1 Introduction

We tried to stick to the ISO SC37 Harmonized Biometric Vocabulary throughout the the-
sis and according to their specification, biometrics is the field of “automated recognition
of individuals based on their behavioral and biological characteristics”. Examples for be-
havioral biometrics are signature, keystroke dynamics and gait, biological modalities are
fingerprint, face, DNA, iris and vein. Many more characteristics can be used though and
the list is continuously extended.

1 General Biometric System 

1.1 Conceptual representation of general biometric system 

Given the variety of applications and technologies, it might seem difficult to draw any 
generalizations about biometric systems. All such systems, however, have many elements in 
common. Captured biometric samples are acquired from a subject by a sensor. The sensor 
output is sent to a processor that extracts the distinctive but repeatable measures of the sample 
(the “features”), discarding all other components. The resulting features can be stored in the 
database as a “reference”, sometimes called a "biometric reference" or (in this case) a biometric 
"template". In other cases the sample (without feature extraction) may be stored as the biometric 
reference.  A new sample can be compared to a specific reference, to many references or to all 
references already in the database to determine if there is a match. A decision regarding the 
identity claim is made based upon the similarity between the sample features and those of the 
reference or references compared.   
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Figure 1 — Components of general biometric system 

Figure 1 illustrates the information flow within a general biometric system, showing a general 
biometric system consisting of data capture, signal processing, data storage, comparison and 
decision subsystems. This diagram illustrates both enrolment, and the operation of verification 
and identification systems. The following sub-clauses describe each of these subsystems in more 
detail. However, it should be noted that in any implemented system, some of these conceptual 
components may be absent, or may not have a direct correspondence with a physical or software 
entity.  

Figure A.1: Biometric pipeline obtained from [95].

The structure of a classic biometric system is shown in Figure A.1. In particular it de-
scribes the two stages of every biometric system (enrolment vs. operation), the basic modes
that a biometric system can operate (identification vs. verification), the interaction of single
functional blocks and the standardized nomenclature.

Before the automated recognition of a human can take place, its characteristics have
to be known to the system. This process is referred to as enrolment, an entry in the data
storage subsystem is created filled with a reference, also known as template, that represents
the bodily characteristics in a compact form and that can later be used for comparisons.
The template creation is based on the sensor information of a biometric characteristic from
a capture subject that is further processed within the signal processing subsystem.
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Two basic modes of a biometric system are distinguished, in an identification scenario no
additional information is associated with a probe (biometric characteristic presented during
operation), a candidate list is chosen from the enrolment database that is most similar to the
probe (often referred to as 1:N comparison). The similarity score of two templates is decided
by the comparison subsystem.

In a verification scenario a biometric claim has to be made, e.g. in form of a user ID
or a token. Based on the claim a 1:1 comparison between the reference and the probe is
performed. Depending on the similarity score from the comparison subsystem and a threshold
that balances the the behaviour of the system, a match or a non-match is the result of the
comparison.

A.2 Performance Evaluation

Biometric systems are error-prone probabilistic systems. To evaluate the biometric perfor-
mance error rates are calculated at different stages of the pipeline, lower recognition errors
correspond to a better biometric performance. System performance values for scenario test-
ing reflect errors that may occur during the whole process depicted in Figure A.1, whereas
algorithm performance for technology testing only considers errors that occur in the decision
subsystem. We will focus in the following of verification scenarios only, identification sce-
narios require centralized databases and are often privacy intrusive and can be performed
without consent of the capture subjects.

Commonly used as system performance measures are false accepts, that ISO defines as an
“error of accepting a biometric claim that should have been rejected in accordance with
ground truth”. Its counterpart, the false reject is defined as “error of rejecting a biometric
claim that should have been accepted in accordance with ground truth”. The fraction of
misclassifications including errors during the capturing process, the extraction of features
that are observed are referred to as false accept rate (FAR) and false reject rate (FRR).

The equivalents for the algorithm performance are false matches, that are defined as
“comparison decision of “match” for a biometric probe and a biometric reference that are
from different biometric capture subjects” and false non-matches, “comparison decision of
“non-match” for a biometric probe and a biometric reference that are from the same bio-
metric capture subject and of the same biometric characteristic”. The error rates are defined
as successfully completed comparison trials that result in a misclassification: false match rate
(FMR) and false non-match rate (FNMR).

A receiver operating characteristic curve (ROC) plots the FMR on the x-axis against 1-
FNMR on the y-axis to visualize and compare the performances of different algorithms.
Perfect biometric classification is indicated with the constant value of 1.

The equal error rate (EER) is often used as a scalar value indicating the performance of an
algorithm or system. It is defined as the point where FMR/FNMR or FAR/FRR are equal
or have the least distance for a fixed threshold.

A.2.1 Discussion

As indicated in Figure A.1, biometric systems are still considered to solely make decisions
for authentication. However, with recent developments as shown in Chapters 11 and 12,
it is possible to fuse information from the application, in which the biometric sub-system
is integrated, with the released or extracted keys derived from biometric templates. This
leads to new primitives and protocols, extending the intended use of biometric systems,
and the need for standardization of those new scenarios.
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Appendix B

Vein Minutia Cylinder-Codes1

Abstract

Vein recognition has been extensively studied in the past. The topology of the vein
patterns allows to adopt simple representations, based on edges and their endings, which
are quite similar to the fingerprint minutiae. In this paper, the Minutia Cylinder-Codes
(MCC), developed for the comparison of fingerprint minutiae, are adapted to character-
ize vein minutiae. The algorithm adaptation requires to understand the vein topology
and how to consequently define the parameter sets. Toward this end, an optimization
problem is defined and solved using a genetic algorithm (GA) approach. The experi-
mental results prove the applicability of MCC on three extended vein data sets of wrist
and palm dorsal. The performance of the reference parameter set is improved and can
compete with other state-of-the-art algorithms for vein-based verification.

B.1 Introduction

The key to successful biometric classification is often related to the choice of the represen-
tation (or template) adopted for the sampled biometric data. This, in turn, depends upon
the choice of the features which are extracted from the raw data. For example, features
with a fixed-length and structure can be further processed to improve a biometric system:
in [225,226] a system for privacy protection was proposed that seals the biometric data from
being extracted and reconstructed. It enables revocation and renewal of secure biometric
templates with the inclusion of random keys into the secure template. It also hinders pro-
filing the data subject over several databases. Therefore, it is very important to develop a
feature representation which can cope with the limitations of a fixed length and order.

In the past several algorithms for extracting minutiae for vein pattern images have been
proposed [127, 242]. However, the representation and comparison of such point clouds in
a fixed-length form is not a trivial task if high biometric accuracy should be maintained.
The spectral minutiae proposed in [264] is such a representation method that offers a fixed
structure of the features and is invariant to translation and scaling of the input, rotations
can be easily compensated. The original parameter set was utilized for vein data [77, 78].
However, for the investigated datasets representing different vein modalities, the recogni-
tion performance was deviating strongly.

Still, the reported biometric performance cannot compete with other state-of-art com-
parison methods, like the Similarity-based Mix-matching algorithm [30], that is using seg-
mented and skeletonized versions of the input vein image. To resolve the currently limited
biometric performance of fixed-length feature extractors in vein pattern recognition, this
paper presents the investigation of the MCC algorithm to compare minutiae information
extracted from different vein modalities, like the wrist area as well as the dorsal back areas.
The MCC algorithm is one promising candidate that achieved solid recognition perfor-
mance for fingerprint data while creating fixed-length features. It offers a variety of pa-
rameters, which makes it potentially an adaptable and flexible solution for the comparison

1submitted for publication
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of various kinds of feature points with spatial and orientational information. The main fo-
cus of the work is to customize the MCC algorithm to improve the accuracy and robustness
of biometric vein recognition.

B.2 MCC: the Minutia Cylinder-Code

The MCC algorithm, originally proposed in [22], it was designed to compare fingerprints
minutiae according to the ISO/IEC 19794-2 template standard [102]. The location and ori-
entational information of single minutia points is utilized to create a new representation.
The MCC comparison of such a representation can be categorized as a local, fixed radius-
based approach, which is in incorporating strong points of the alternative nearest neighbor-
based approach: the descriptors are of fixed-length and can be efficiently compared. In the
next sections the basic working principles of the algorithm are sketched.

B.2.1 Encoding

For each minutia m a cylinder is generated that has different layers and that is normalized
according to m’s orientation. The quantized orientation is encoded in the layer structure:
all neighboring minutiae sharing the same quantized orientation are coded in the same
layer.

Each layer is organized in cells that represent the quantized location around m in a
fixed-length radius. Neighboring minutiae influence the cell’s value that is corresponding
to the distance and position towards m.

The encoding is invariant to translations and orientational changes of the minutiae
points since it utilizes distances and locally normalized orientations.

B.2.2 Comparison

The global comparison score between two minutiae sets is composed of local, cylinder-
based comparison scores. Whereas the local scores are defined as normalized Euclidean
distances between two linearized cylinders. Finding minutiae pairs that will be compared
is controlled based on a purely local manner or in a more complex way pre-selecting pairs
based on local similarities, relaxing based on global relationships and optimizing for effi-
ciency in the end.

B.2.3 Discussions

In [23] the algorithm was extended including enhanced techniques to improve the compar-
ison: a new minutiae pair pre-selection method and a new relaxation method are proposed.
In addition a reference parameter set was specified. With these parameters, MCC is defined
as a baseline algorithm for the fingerprint verification competition FVC-onGoing introduced
in 2009 in [48].

The MCC algorithm is highly parametrized: 7 parameters control the cylinder cre-
ation, 4 the local similarity and 12 the global similarity score computation. This extended
parametrization makes the algorithm very adaptable and flexible. Yet, at the same time,
finding the best parameter set according to some quality criteria is not trivial. Even though
in [23] the parameters were tuned and optimized, the employed methodology is not de-
scribed.

This paper aims to adapt and optimize the MCC algorithm (parameters) for minutiae
from vein pattern images. It can be defined as an optimization or search problem, where
the MCC parameters span the search space.
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B.3 MCC for Vein Data

B.3.1 Problem Description

In biometric systems the performance – often reported as the equal error rate (EER) – is an
essential measure in algorithm testing to determine the ability to distinguish genuine from
imposter comparisons. The EER is defined as the operation point of a biometric system
where a chosen threshold t yields an identical error rate for genuine and imposter attempts.
The two error rates are often referred to as false non-match rate (FNMR) and false match
rate (FMR). Utilizing normalized similarity score values s ∈ [0, 1] and the probability den-
sity distributions (pdf) Φg(s) of genuine comparisons and Φi(s) of imposter comparisons.
We can define the false non-match rate (FNMR) and the false match rate (FMR) for thresh-
old t more formally as

FNMR(t) :=

∫ t

0

Φg(s)ds and FMR(t) :=

∫ 1

t

Φi(s)ds. (B.1)

The equal error rate can then be defined as:

EER := FNMR(tEER),with FNMR(tEER) = FMR(tEER) (B.2)

The classical optimization problem in biometric system is defined as: min EER. In case
of the MCC algorithm, the error rates depend on the parameter set P = {p1, ..., pn} and the
biometric minutiae training set T , therefore the search problem can be defined as:

argP min EERMCC(P, T ), (B.3)

which translates to finding the MCC-algorithm parameter set P that minimizes the clas-
sification error measured in the equal error rate EER of the MCC algorithm applied to a
training set T .

B.3.2 (Fingerprint vs.) Vein Pattern Recognition

Since the originally proposed MCC algorithm was designed for minutiae extracted from
fingerprints, we briefly discuss similarities and differences between the two modalities.

Generally the samples captured for vein recognition are blood vessel images acquired
from the hand area. Current research mainly focuses on palm and finger vein images, also
palm dorsal and wrist vein patterns have been exploited.

Vein data features advantages compared to fingerprint-based biometric systems: no la-
tent prints are left, there is no relation to crime investigation and therefore the acceptance
in the population can be increased. It can be implemented touchless and is particularly
suited for public applications. In addition it is considered to be more robust to fake attacks
and liveness detection mechanisms possibilities are extended. But also drawbacks are in-
herent to this technology: the capturing devices are as of now more costly and voluminous.
Reported error rates are often not reproducible, large-scale standardized datasets are not
available and in general fingerprint recognition is considered more mature. However, in
the last years vein recognition became more popular as an alternative to fingerprints.

Following a recent trend in biometric systems, vein data is captured to complement
existing fingerprint systems. This fusion approach is recently being investigated and also
products are being developed for the market. In the future, combined fingerprint and
finger vein sensors can be expected as well as combined palm vein and multiple-fingerprint
sensors.

Feature extraction in vein recognition can be categorized according to different criteria:
(i) abstraction level for feature extraction; (ii) extracted features; (iii) comparison methods.

Criteria (i) covers different levels of abstraction with the need for different image pro-
cessing stages (in ascending order of abstraction): raw sensor data, gray-scale image, con-
trast-enhanced image, segmented vein image and the skeletonized vein pattern. Further
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abstractions are often based on the skeletonized vein pattern version and extract points
describing the topography of the skeletonized vein pattern.

Criteria (ii) is based on the topology of the veins and can include: the vein image itself,
local texture descriptors, the vein skeleton, minutiae points of vein skeletons, curvature
information about the vein pattern, geometrical relations between veins and many more.

The comparison methods (iii) are derived from the field of research the features fall into.
In consequence correlation-based, texture-based, graph-theory-based and point cloud-based
strategies are feasible. The advantage of using minutiae points extracted from the vein
skeletons is that the huge knowledge base from fingerprint-based minutiae comparators is
available.

The main perceivable differences between fingerprint images and vein pattern images,
that may influence the parameter selection and challenge the algorithm, are:

• Contrast in vein pattern images is in general low.

• Variation in contrast throughout the image.

• Sparsity of the veins, orientational field computation infeasible. Quality of orienta-
tion and angle extraction may suffer.

• Varying diameter of the blood vessels.

• Background diversity.

• In case of finger veins: shape of region of interest is rectangular.

• Angles may be highly correlated.

• Statistics of minutiae may differ from fingerprint and for different vein modalities.

B.3.3 Hypotheses

Due to the inherent differences between the modalities mentioned in Section B.3.2, it is
expected that the reference parameter set of the MCC algorithm will not be suited to the
vein data and will not result in lower biometric performance compared to state-of-the-art
algorithms. The hypotheses H1 hence formulates for falsifiability testing as: MCC using the
reference parameter set results in state-of-the-art performance.

It is also expected that optimal parameter sets for different vein modalities will differ as
they have particular properties. Hence hypothesis H2: Optimal parameter sets will be equal
for all vein modality datasets.

As a last hypotheses we state that due to the variability of the MCC algorithm, parame-
ter sets that result in state-of-the-art performance, can be found. Which leads to falsifiable
hypothesis H3: State-of-the-art performance using MCC for vein cannot be reached.

B.3.4 MCC Parameterization

As mentioned earlier, a variety of parameters, overall 23, influence the behaviour of the
algorithm regarding two main aspects: (i) generation of templates and (ii) comparison of
templates. Within (ii), we can distinguish between (ii a) the local comparison computation
and (ii b) the global score composition.

Please find an overview of all parameters in Table B.1.
The search space spanned by the 23 parameters is too large for a reasonable exhaustive

search.If there are x ∈ N values for each parameter pi=1,...,Nparam ∈ P , there are xNparam differ-
ent parameter combinations. Even a small value for x, and therefore a strong quantization
of the parameter value range, leads to large search spaces: with the MCC parameter car-
dinality of Nparam = |P | = 23 and x = 5 we have 523 ≥ 1016 possible combinations, if no
limitations are assumed for the parameter selection. Since every parameter set P needs to

184



B.3 MCC FOR VEIN DATA

be evaluated, e.g. according to Equation B.3, this leads to infeasible search times. However
this approach will return the globally best parameter set for the training data.

The other naive approach, is to optimize each parameter independently of the others,
which relates to a greedy search where local optima are chosen with the goal to find a global
optimum. Unfortunately the assumption that the parameters are independent from each
other is not necessary given here. To give an example, it is unlikely that the parameters that
influence the generation of the templates are independent from the comparison parameters.
In consequence the solution can be found efficiently, but it is most likely not finding the
globally best solution.

Our approach to this optimization problem is to utilize the principles of Genetic Al-
gorithms (GA) to find reasonable parameters for the MCC algorithm on the vein data. In
the next section we are introducing the basics and the specific design for this designated
problem.

Parameter Description
R Cylinder radius (in pixel)
NS Number of cells along the cylinder

sections
ND Number of cylinder section
σS Standard deviation in Gaussian for

spatial contribution
σD Standard deviation in Gaussian for

directional contribution
µΨ, τΨ Sigmoid parameter for function Ψ
Ω Offset applied to enlarge the convex

hull (in pixel)

minV C Minimum number of valid cells for a
cylinder to be valid
(fraction of max number)

minM Minimum number of minutiae for a
cylinder to be valid

minME Minimum number of matching
elements in two matchable cylinders
(fraction of max number)

σΘ Maximum global rotation allowed
between two templates

µP , τP Sigmoid parameters for LSS technique
minnp ,maxnp Minimum and maximum number of

minutiae in LSS
wR Weight parameter for LSS relaxation
µρ1, τ

ρ
1 Sigmoid parameters for d1

µρ2, τ
ρ
2 Sigmoid parameters for d2

µρ3, τ
ρ
3 Sigmoid parameters for d3

nrel Number of relaxation iterations for
LSS-R and LSA-R

Table B.1: Parameters of the MCC algorithm according to [22]. Separation between param-
eters for (i) template generation, (ii a) local comparison score computation and (ii b) global
score composition.
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B.4 Genetic Algorithms

Genetic algorithms (GA) are heuristic optimization or search strategies that are often used
for problems where a solution cannot efficiently be computed. The basic principles are
inspired from the natural evolution and from genetics – hence the name.

The idea is to create a population of candidate solutions for a problem and to select those
individuals which comply best to a specified quality criteria (natural selection, survival of
the fittest). The properties (genes) of the selected individuals are slightly modified (muta-
tion) and recombined to generate a new generation of solutions (recombination/crossover).

The evaluation of GA is sometimes slow, but it improves the solutions from generation
to generation until it converges without any knowledge about the problem itself. The de-
sign of a GA is specific to the application, the expert knowledge and problem description
are encoded within the system. This is the crucial step for the effectiveness and efficiency.
The main design decisions for the MCC parameter optimization are discussed in the next
section.

B.5 GA MCC Parameter Optimization

Since the MCC, designed for fingerprints, uses minutiae locations and angles and this data
is used for vein recognition already e.g. in [77, 78], we can apply it directly to vein data.
However, the parameters of the algorithm might not fit the data. Therefore we decided
to use GA as a search strategy to find optimal parameters in the vast search space for the
MCC algorithm applied to vein data.

For the extend of this work, we restrict the optimization of the parameters to those
16 influencing the comparison behaviour of MCC (translating to the last two parameter
groups (ii a) and (ii b) in Table B.1). The motivation for this decision is that the creation
of templates takes space and computational time, which is restricting the iterations and
population size of the genetic algorithm. In consequence the results may not be optimal
and a re-consideration after the initial evaluation could be necessary. The design of the GA
is described in this section.

B.5.1 How to represent genomes?

The genome of an individual is defined as a fixed-size array G of float values ranging in
[0, 1]. Each element of the genome (gene gi ∈ G) is coding exactly one parameter pi ∈ P
of the MCC algorithm with i = 1, ..., Ngenes. The order of the genes relates to the order of
the parameters in Table B.1. It starts with parameter p1 := minV C , as the first parameter
coding the comparison part of MCC, and ends with p16 := nrel.

The initialization of genomes Gs of the first population is done using a seeded random
generator using parameter seed. Each element gi ∈ Gs for each individual s in the pop-
ulation with population size Npop is assigned a random value within the defined range
[0, 1]:

Gs := gi,∀s = 1, ..., Npop, i = 1, ..., Ngenes, (B.4)

with: gi := randseed([0, 1]), (B.5)

and random generator rand that returns a value in [0, 1].
The range [0, 1] is equal for all genes to guarantee that mutations and recombinations are

resulting in the same range. However, that indicates that genes cannot directly be utilized
as parameters since they may have different ranges and may even be of different number
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i 1 2 3 … 14 15 16 

gi 0.28 0.34 0.74 … 0.56 0.66 0.33 

pi 0.28 3 0.74 … 1.74 -28 4 

Figure B.1: Sample genome with genes gi and the parsed parameters pi. Rounded to 2
digits after decimal point.

sets. E.g. parameters describe integer pixel values, whereas others describe angles in cer-
tain ranges. First, a definition of the number set a parameter belongs to, has to be defined.
The two possibilities are:

∀pi ∈ P : pi ∈ Z ∨ pi ∈ R. (B.6)

A function f : N → {0, 1} maps an index i into a binary value indicating the number
set:

f(i) := {0,if pi∈Z1,if pi∈R,∀i = 1, ..., Ngenes. (B.7)

Secondly, upper ζUi and lower boundaries ζLi for each parameter pi ∈ P are defined:

∀pi ∈ P : ζLi ≤ pi ≤ ζUi . (B.8)

A parsing of the genes is performed based on Equations B.7 and B.8, only then the
parameter set coded in the genome of an individual can be evaluated using the MCC algo-
rithm. The parsing algorithm is a function h : [0, 1]×N→ Z∨R, that maps a gene g ∈ [0, 1]
depending on the position in the genome i ∈ 1, ..., Ngenes to a parameter value p ∈ Z ∨ R.
The algorithm works as follows:

pi = h(gi, i) := {rnd(t(gi,i)),if f(i)=0
t(gi,i)if f(i)=1 (B.9)

with t(gi, i) := ((gi|ζUi − ζLi |) + ζLi ), (B.10)

with rnd rounding a real value towards the closest integer number. Parsing a whole genome
is equivalent to mapping all genes into their according parameter values, and it is defined
as:

P = H(G) := h(gi, i),∀gi ∈ G. (B.11)

The selection of ζLi and ζUi is shown in Table B.2, it is based on the standard parameter
pstd
i defined in [23]. In general, if not restricted otherwise, at least a range of 2pstd

i centered
around pstd

i is defined as range for parameter pi. An analysis of the best genomes after the
simulation may reveal that the ranges have to be adapted. Example genomes and parame-
ter sets are given in Figure B.1.

B.5.2 How to define the fitness function?

The fitness functions is the second key building block of the genetic algorithm. It defines
a quality criteria based on the genome of an individual. High fitness results in a high
probability of individuals for mating and therefore in maintaining (parts of) the genome for
the next generation. Low quality results in a high probability for extinction of the genome
which directly relates to Darwin’s evolution theory of the natural world and the natural
selection.
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i Parameter pstd
i Range (ζLi , ζ

U
i ) ∈

1 minV C 1
5

[0, 1] R

2 minM 1 [0, 10] Z

3 minME
1
5

[0, 1] R

4 σΘ
3
4
π [0, 2π[ R

5 µP 30 [0, 60] R

6 τP
2
5

[0, 5] R

7 minnp 3 [1, 5] Z

8 maxnp 10 [minnp + 1, 15] Z

9 wR
3
10

[0, 1] R

10 µρ1
1
30

[0, π[ R

11 τρ1 -150 [−300, 0] Z

12 µρ2
π
4

[0, π[ R

13 τρ2 -15 [−30, 0] Z

14 µρ3
π
18

[0, π[ R

15 τρ3 -40 [−80, 0] Z

16 nrel 3 [0, 10] Z

Table B.2: Parameters boundaries for the MCC algorithm. Standard parameter pstd
i as in

[23].

This method has the advantage that the functionality of the fitness function can be a
black-box approach – no knowledge about the internals is needed. As long as the fitness
function returns a fitness score for a given individual, the GA will find better and better
solutions if possible and until convergence. In case of biometric systems the obvious sin-
gular value that can be utilized as a quality criteria and fitness value is the equal error rate.
Since the rate should be minimized, the fitness function is defined according to Equations
B.2 and B.11 as:

W(G) := 1− EERMCC(H(G), T ), (B.12)

using minutiae training set T .
Evaluating the GA using the fitness function leads to increasing values forW and there-

fore decreasing values for the equal error rate: the search problem of Equation B.3 is en-
coded in the GA.

In some cases, the selection of parameters leads to extremely small genuine comparison
scores. This makes not only the EER computation costly, but also only a fraction of the
normalized score range [0, 1] of the MCC algorithm is utilized. Average genuine score
values smaller than 10−8 are punished with a fitness score of 0.

Alternatively, additional statistical information about the genuine and imposter com-
parisons can be incorporated into the fitness function. Also an optimization for minimal
computational effort can be incorporated, e.g. when low values for parameter σΘ are cho-
sen, that control the maximum global rotation allowed between two templates.

B.5.3 How to choose the population size?

The larger the population size, the larger the genetic material of a population due to the
random initialization for the first generation described in Section B.5.1. Since every indi-
vidual is evaluated as described in Section B.5.2, and therefore comparable to one search
in the search space, it is advantageous to choose a large population. It also directly influ-
ences the resulting best fitted solutions since recombination mixes the best genomes of the
population. However, an evaluation takes time, a trade-off has to be found.

In the experiments the population size is chosen as Npop = 1000.
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B.5.4 How to generate the next generation?

The next generation of individuals is created using a mating probability according to the
fitness function and according to the crossover and mutation operators describes next. The
probabilities for crossover and mutation is set to p(cross) = 0.8 and p(mut) = 0.05.

B.5.5 How to define crossover/mutation operators?

Crossover is defined as a single point crossover, the mutations are defined as swappings of
single genes. The application of the operators are depicted in Figures B.2(a) and B.2(b).

 

(a)

(b)

Figure B.2: Abstraction of the (a) single point crossover, (b) swap mutator operators of the
GA.

B.5.6 How to define the stopping criteria?

Two stopping criteria are defined: (i) the number of generations is limited to 100 and (ii) a
convergence rate of the best fitness score of 1 for 3 subsequent generations of the GA. The
latter criteria translates to: if in three generations the best fitness score does not change, the
algorithm terminates and reports accordingly this individual as best fitted and therefore its
parameter interpretation as best set for the MCC algorithm on the training data.

B.6 Experimental Results

B.6.1 Implementation

For the GA system the GAlib library [232] is used. An MCC SDK was kindly supported by
the authors of [22, 23]. The implementation languages for controlling GAlib and the MCC
SDK are C respectively C++. Computation times for generating templates and for single
comparisons using the MCC implementation are extremely fast (ms). However a large
amount of comparisons is needed to get reliable fitness estimates for the GA subsystem.
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B.6.2 Training Protocol

The minutiae points of all samples of the specific database are extracted according to the
preprocessing introduced in [77]. As a first step, the minutiae information is encoded as
MCC templates using the standard parameters as introduced in [23].

In the second phase the parameter optimization is performed. For this we introduce the
rate of biometric samples of the hole dataset that are considered for the training phase as
Rtrain = 0.25. The MCC templates are chosen from the first file of the database until the
rate is reached, in this way the maximal possible genuine as well as imposter scores of the
selected samples are generated. A random selection may lead to an insufficient amount
of genuine comparisons: all datasets feature a limited amount of captures for a biometric
source (Table B.3). The remaining templates are used as the testing data set.

The GA is set up according to Section B.5. For each call of the fitness function, an
evaluation using the MCC SDK is launched using the parameters encoded in the genome.

B.6.3 Databases

Table B.3 summarizes the main characteristics of the datasets. The three sets cover different
capturing wavelengths (near and far infrared), as well as different vein modalities (palm
dorsal and wrist vein images), therefor providing a broad basis for conclusions about the
proposed method for adapting the MCC algorithm to vein data.

The SNIR and SFIR databases were gathered in 2006 in Singapores Nanyang Tech-
nological University and contain a subset of samples that were used in several publica-
tions [240,242]. The two parts contain 732 back hand vein samples in the near infrared and
173 in the far infrared spectrum from 122 respectively 34 data subjects. For comparison
purposes the labeling-failure corrected version of SFIR, SFIR-GT, is used here.

The third database used for the experiment is referred to as UC3M [171]. It was collected
in 2010 in the University Carlos III of Madrid. The dataset consists of 348 vein images
in the near infrared spectrum from the wrist areas of 29 data subjects. The dataset was
taken under different illumination intensities to optimize the capturing device and does
not reflect an operational database.

One limitation of the datasets is that they were captured during only one session, which
limits the variability in the signals. In addition the sizes of the databases limit the signif-
icance of the results. Example raw images are given in Figures B.3(a), B.3(b) and B.3(c).
Statistical information regarding the number of extracted minutiae, as well as the skeletons
are summarized in Table B.3.

B.6.4 Best Individuals

For the extend of the paper the best individuals (MCC parameter configurations) for the
experimental datasets are given in Table B.4. The individuals with best fitness score (1%
of all individuals) are evaluated on the testing data and the best parameter set is given. In
addition an evaluation using the standard MCC-parameters on the testing data is provided.

The biometric performance of the MCC algorithm with the defined standard parameter
[23], is low for the SNIR and SFIR-GT data (2.06%/3.15% EER) and excelent for the UC3M
data (0.31% EER). In the first two cases the equal error rate is reduced to 1.45% respectively
1.88% using the parameters optimization procedure introduced in this paper. However, in
case of the UC3M data the excellent performance is maintained.

B.7 Discussions

In case of the UC3M data, many genomes were evaluated with the same maximum score
of 0.999858. However, their performance on the testing data differed significantly. Also the
distribution of parameters for this data set of individuals differs, further investigation is
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(a) (b)

(c)

Figure B.3: Sample raw images of the datasets (a) SNIR, (b) SFIR, (c) UC3M.

Property SNIR SFIR-GT UC3M
Frequency Band NIR FIR NIR
Modality Dorsal Dorsal Wrist (2)

hand (2) hand (2)
Data Subjects 122 34 29
Sessions 1 1 1
Images per Session 2× 3 2× ∼ 3 2× 6
Images 732 173 348
Genuine 732 170 870
Comparisons
Imposter 266814 14708 59508
Comparisons
Resolution (px) (644× 492)⊥ 320× 240 (640× 480)⊥

Depth 8 bit 8 bit 8 bit

Bifurcations 56.93 28.82 87.21
Endpoints 16.42 18.32 62.01
Skeleton length (px) 3146.23 2157.4 3594.62

Table B.3: Properties and statistics of the biometric vein datasets. ⊥Image size reduced by
50% in each spatial dimension for experiments.
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Parameter Pstd SNIR SFIR-GT UC3M
minV C 1

5
0.84 0.84 0.48

minM 1 9 9 3
minME

1
5

0.42 0.25 0.04
σΘ

3
4
π 0.58 0.58 3.07

µP 30 28.53 28.53 23.86
τP

2
5

4.89 4.89 2.04
minnp 3 4 4 4
maxnp 10 8 9 6
wR

3
10

0.32 0.32 0.33
µρ1

1
30

0.02 0.02 0.04
τρ1 -150 -213 -213 -199
µρ2

π
4

1.07 1.07 2.62
τρ2 -15 -28 -28 -26
µρ3

π
18

0.12 0.12 0.09
τρ3 -40 -15 -15 -76
nrel 3 4 5 3

Performance 2.06% 3.15% 0.31%
with P 1

std

Fitness score 0.9805 0.9623 0.9999
Performance 1.45% 1.88% 0.31%
with P 2

opt

Improvement 29.61% 40.32% 0%

Table B.4: Best parameters after evaluation of the GA. Performance measured in EER on
the testing data. 1Standard parameter as in [23]. 2Optimized parameters according to this
table.

needed. It may be caused by the limited size of the data set. Additional information for
calculating the fitness function values could improve the results.

It can be useful to analyse the vast amount of tested parameters to eventually approx-
imate the influence of all parameters on the performance and to find non-evaluated areas
in the search space that may lead to even better biometric accuracy.

As can be seen from the evaluation, the standard parameter (chosen for fingerprint)
perform surprisingly well on the vein data as well. In two cases the EER could even be
improved with the GA parameter optimization. In one case, however, performance was
not improved, and stayed constant. It is highly unlikely that the standard parameter set
is the optimal one, considering the vast search space, a re-optimization of the parameter
ranges centered around the best parameter sets and with a “higher resolution” could be
one approach. Alternatively the population size of the GA can be adapted, which requires
additional computational time.

The optimal parameter sets for the three vein datasets differ. However, a high correla-
tion between parameters for SNIR and SFIR-GT data are visible with identical parameters
for pi with i = {1, 2, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15}. Also a correlation with the parameters
of the UC3M data is evident for i = {5, 7, 9, 10, 11, 13, 14} as can be seen in Table B.4.

If the performance results of the MCC algorithm are compared to Spectral Minutiae
(SM) [77, 78] on the same data, the following observations can be noted: SM performs
better on SNIR (0.41% vs. 1.45% EER) and SFIR-GT data (0.06% vs. 1.88% EER); MCC out-
performs SM significantly on UC3M data (4.37% vs. 0.31% EER), MCC even outperforms
the state-of-the-art Similarity-based Mix-matching algorithm (SMM) [30].
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B.8 Conclusions and Future Work

Parameter optimization is a challenge, especially in high-dimensional search spaces. The
proposed GA-based solution finds parameter sets that improve the biometric performance
(EER) up to 40% compared to the standard parameter set. This result is promising and
the proposed GA parameter optimization can be utilized for all parametrized biometric
algorithms.

All hypotheses of Section B.3.3 could be falsified: performance of optimized parameter
sets compared to the reference parameter set was at least at the same level if not improved
(H1). Optimized parameter sets differ for the different vein datasets. However, the differ-
ence between SNIR and SFIR-GT parameters is marginal and a correlation of some param-
eters can be identified (H2). State-of-the-art algorithm performance could be reached for
the UC3M data (H3).

As future work, the mapping function (genome to parameter) needs to be reconsidered.
Additional information should be utilized for the fitness function, instead of focusing on
the EER only. Also involving the parameters controlling the template creation is planned.
As a next step, the MCC standard parameters for the fingerprint verification challenge
FVC-onGoing will be re-optimized.
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Appendix C

Entropy Estimator and Formal Model for
Vascular Skeletons1

Abstract

Currently biometric systems are evaluated using performance measures like the equal
error rate in database comparisons. The biometric performance can give an indication
how good a certain system is suited to handle the biometric samples. However, there
are more factors of reasoning: test data and simulations are always limited and the per-
formance does not give any insight in how discriminating the features from a certain
source are in theory. In this paper we propose a model for vein skeletons and an entropy
estimator on the skeletonized representation of the vein patterns to overcome the be-
fore mentioned limitations. The results are compared to information theoretical entropy
estimations on a specific finger vein database.

C.1 Introduction

Modeling formally the structure of biometric samples of a specific modality is a challenging
but useful approach to get further insight in the data. It enables researches to optimize
the feature extraction algorithms and comparison strategies, to estimate the discriminating
power. It points out theoretical boundaries for large-scale scenarios like the number of
data subjects that can be distinguished, or it helps to configure cryptographic template
protection schemes based on e.g. the fuzzy commitment scheme [18, 226] or biometric
enhanced security protocols [72, 74]. Some work has been done to describe the entropy
for distinguishing individuals [3] and statistical randomness properties of irises [42]. This
work is focused on modeling skeletons of vein patterns and estimating their entropy.

The paper is organized as follows: a brief introduction to vein pattern recognition is
given in the next section. The main contribution can be found in Section C.3, where the
model and the estimator are described, followed by Section C.4 describing a finger vein
database which will be used later in the experimental part in Section C.5. There, the model
is applied to the test database before the paper is concluded.

C.2 Vein Pattern Recognition

Vein pattern recognition has particular properties which makes it an interesting research
area in the field of biometrics. This section introduces the physiological modality and dis-
cusses the applicability according to the following requirements:

• Universality - characteristic is available at every data subject.

• Uniqueness - biometric trait differs for different sources.

• Permanence - variance over time.

1 [70] HARTUNG, D. Entropy estimator and formal model for vascular skeletons. In Biometric Measurements
and Systems for Security and Medical Applications(BIOMS), 2011 IEEE Workshop on (September 2011), pp. 1-5.
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• Collectability - ease of acquisition process.

• Performance - accuracy of decisions (biometric performance), decision delay and
throughput (physical performance).

• Acceptability - degree of objections of population.

• Circumvention - ease of spoofing the system or successfully faking the biometric.

Vein patterns evolve during the embryonic vasclogenesis and their final structure is
mostly influenced by random factors [52]. Even identical twins can be distinguished. The
pattern is available and can be read from every healthy human.

Commercial applications evolved out of this research, nowadays many ATMs in Japan
and Brazil are secured using this biometric modality, commercial sensors are available.
With the upcoming changes of the liability situation in the Single Euro Payments Area
(SEPA) it is likely that this biometric technology will also be widespread in Europe.

The patterns are commonly extracted from images of the palm, the back of the hand or
fingers as seen in Figure C.1, also the wrist area can be used [171]. Yanagawa et al. showed
that the diversity of finger vein patterns among different persons is competitive to iris-
based systems [269]. The International Biometrics Group (IBG) 6th report 2006 confirms
recognition rates fairly at the same level for two different vein and one iris-based authenti-
cation system [94]. An interesting aspect of vein recognition is the fact that the information
is not visible, it is hidden inside the body. Unlike fingerprints it is not possible to leave
a vein pattern representation unintentionally in public places and thus it is not possible
for an attacker to acquire the pattern in daily life or to replicate it. Furthermore there is
no relation to criminal prosecution, which is an argument for its acceptance in biometric
systems.

Permanence of vein patterns is not studied in large scale since the research on this
modality is relatively young. For now the vendors claim liveness detection mechanisms, on
which there is no publicly available information. So far those sensors could not be spoofed,
if an enrolment using the true biometric source was performed.

The imaging approach makes use of the absorption capacity of particular substances
in the blood running through the veins. To capture the image, the region of interest is
illuminated with a near-infrared (NIR) light source with wavelengths around 700 to 1,000
nm. A reflection or transmission technique can be used. Deoxygenized hemoglobin highly
absorbs rays within this wavelength band while the surrounding tissue does not. NIR-
sensitive optical sensors are used to capture the image of the vein pattern. Examples are
shown in Figure C.1.

Figure C.1: Near infrared examples for vein pattern images taken from the palm, back-
hand [241] and finger [81].
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C.3 Vein Model and Entropy Estimation

In this section a skeletal vein model is proposed and a entropy estimation is given for that
model.

C.3.1 Entropy Estimation

The amount of information – or entropy – H, that can be extracted from K occurrences, each
having the probability pi with i = 1, 2, ...,K can be computed using the Shannon-Entropy:

H = −
K∑
i=1

pi · log2(pi), (C.1)

In praxis the probabilities are not known, the concept of the maximum-likelihood estimator
p̂i, that estimates the probabilities by using absolute frequencies ni over N observations,
can help out. Where occurrence i is approximated with: p̂i = ni/N . The resulting formula
is given by:

Ĥ = −
N∑
i=1

p̂i · log2(p̂i) (C.2)

It will be used in Section C.5 to estimate the entropy for the test database.

C.3.2 Skeletal Model

In order to refine the entropy estimation we propose a model for the skeletonized form
– where the structure of the vein pattern is reduced to a 1-pixel wide and 8-connected
mesh representing the topology of the original data. The model is based on the following
information of the data:

• Px: Image size (pixel) in horizontal direction (in finger vein images: from finger root
to finger tip)

• Py : Image size (pixel) in vertical direction

• P : Number of pixels in the image (P = Px × Py)

• Pnull: Number of elements always classified as background

• Pskel: Average number of pixels describing the skeletal pattern

• Nend: Average number of endpoints

• Nbra: Average number of branch points

• Nd: Number of possible directions to a neighbor in the skeleton

• Ar: Average rate of angle changes in the skeleton

• Ac: Average change in the angles

The model is discussed and elaborated in detail during this subsection.
Starting with the idea that the amount S of different binary images ISkl of size P = Px×

Py – considering that there are Pnull pixels which are always zero and therefore classified
as background and not as vein, and that Pskel belong to a skeleton (are equal to one or are
“active”), and that the pixels are independent from each other – can be expressed as:
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S =

(
P − Pnull
Pskel

)
. (C.3)

This amount is tremendously large and not reflecting the nature of the vein patterns in
detail.

If the vein skeletal structure is completely connected (not necessarily given in practice),
the possible unique structures would be a tiny subset of the before mentioned expression
from Equation C.3. If we consider a 8-connected structure of the skeleton (guaranteed by
the skeletonization algorithm), the possible combinations could be approximated by:

S = (P − Pnull) ·N
(Pskel)
d , (C.4)

assuming a given random start pixel and Nd positions in the 8-connected grid that
the vein structure can follow for each of the following pixels, which is equal to 5 in a 8-
connected structure for all but the starting, end point of a skeleton part or pixels at the bor-
ders of the image. Again this model is simplified, but it does consider bifurcation points
– when the vein structure splits into two branches – it could loop, since the direction is
chosen freely. But it could also visit the same location more than once.

To further analyze the amount of possible unique vein structures the amount of end-
points Nend is considered as well. If the vein segments between endpoints are of equal
length we can approximate the possible unique structures with:

S = a · (Nd)b, (C.5)

with

a = ((P − Pnull)!− (P − Pnull − (Nend/2))!), (C.6)

and

b = (Pskel − (Nend/2))/(Nend/2). (C.7)

Considering a possible positions for Nend/2 start points resulting in sub vein patterns
of length b.

The direction changes should also be considered, therefore we introduce Ar for the rate
in percentage that an angle is changed and Ac for the actual average change in directions
from the direction of the pre-visited pixel, which is zero for an unchanged direction, one
for a one pixel change and two for the maximal change in direction. The estimation of the
amount of possible vein patterns is then described by:

S = a · cb, (C.8)

with

c = (1−Ar) + (Ar · 2Ac). (C.9)

In the equation, (1−Ar) describes the case of no change of direction andAr ·2Ac stands
for the average changes in directions.
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C.4 DATABASE

Database GUC45

Frequency Band NIR (850nm)
Sensor non-commercial
Modality Finger (10)
Data Subjects 45
Sessions 12
Images per Session 10× 2
Images 10800
Resolution (px) 512× 240†

Depth 8 Bit gray-scale

Table C.1: Properties of the biometric vein dataset used for the entropy estimation. †For
the experiment the images are cropped to size 401× 111 pixel to eliminate most non-finger
area.

C.4 Database

For the entropy estimation we use the database GUC45. Their main properties are summa-
rized in Table C.1. The images contained in the finger vein database were collected from
45 subjects in 12 sessions at Gjøvik University College in Norway. Each finger was cap-
tured twice during each session, which results in 10800 unique vein images in total. The
sensor used for gathering the finger vein data employed the transmission method [81]. It is
composed of a CCD camera and an array of near infrared LED operating at a wavelength
of 850nm. Because of the open structure, not only the light emitted by the LED but also
ambient light reaches the sensor. Due to different size of the fingers the amount of ambient
light and therefore the overall lightning is uneven among different fingers and users.

One example for a cropped raw image can be seen in Figure C.2(a). Its contrast is opti-
mized using the STRESS algorithm [120], which uses a stochastic sampling strategy in the
vicinity of each pixel to adapt its gray value to boost the local contrast (Figure C.2(b)). After
this step the optimized image is segmented using a Laplacian of Gaussian approach, the
outcome is shown in Figure C.2(c). To further remove unnecessary data, a skeletonization
is applied using the algorithm from [133], also implemented in MATLAB as bwmorph with
the “thin” option, the resulting image is shown in Figure C.2(d).

C.5 Experiment

In GUC45 the average entropy of each of the 111 × 401 components in the skeletal vein
image database is approx. 0.199, which leads to a summed entropy of 8853.3 bits for one
sample. That means according to a naive estimator approximately 8853.3 bits of informa-
tion can be extracted in average from one processed vein pattern image.

Extracting the coordinates from the end and branch points from the skeletons using
a fast convolution based approach [166], made it possible also estimate the entropy for
this representation. Average entropy for the bi- and multifications is around 376 bits, the
estimated entropy for the endpoints is slightly higher with approximately 416 bits. The
results are summarized in Table C.2.

Each input image has a size of P = Px × Py = 401 × 111 = 44511 px and an average
skeleton coverage of 3.47% of the image, which corresponds to approximately Pskel = 1544
pixels. Pnull = 3728 pixels of the images are never active over all samples, the average ac-
tive pixel is active appriximately 442 times with a standard deviation of 409 in the database
of 10800 images originating from 45 datasubjects finger vein patterns (with 24 images per
finger). The average amount of endpoints Nend in the database following the preprocess-
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(a) Raw, cropped vein image IRaw .

(b) Contrast enhanced image IOpt.

(c) Segmentation of a vein pattern image ISeg .

(d) Skeletonization of segmented image ISkl.

Representation Average Entropy (bits)

Skeletal Pattern 8853.3

Branch points 376.4254
End points 416.5209

Table C.2: Average entropy estimation for the different representations of the GUC45 finger
vein data.
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Property GUC45

Px 401
Py 111
P 44511
Pnull 3728
Pskel 1544
Nend 38.1746
Nbra 35.6757
Nd 5
Ar 0.3324
Ac 1.1639

Table C.3: Model properties for the GUC45 finger vein data.

ing described in Section C.4 is equal to approximately 38. The properties are listed in Table
C.3, with the information about the direction changes, the estimator from Equation C.8 is
applied here.

The Equation C.8 is then equal to:

S = a · c((1544−(38.1746/2))/(38.1746/2))

with
a = ((44511− 3728)!− (4451− 3728− 38.1746/2))!)

and
c = (1− 0.3324) + (0.3324 · 2 · 1.1639) = 1.4415

This leads to the following approximations:

S = (40783!− 40764!) · 1.441579.89148

= 3.95624 · 1087 · 1.4415185.50227

= 1.142256 · 10117 ≈ 2388.8574

The model shows an entropy of approx. 388 bits for the GUC45 database in the model;
not considering the angle information the entropy is estimated to approx. 476 bits. The
modeled entropy is more close to the entropy measured for the minutiae points as can
be seen in Table C.2, but not correspondent to the naive information theoretical estimated
entropy, that is not considering correlations between the pixels.

C.6 Conclusions

We proposed a model for vein patterns skeletons. With this model the average entropy of a
database can be estimated using statistical information about the vein pattern skeletons. We
designed the model to be as generic as possible allowing to be applied to vein data gathered
from various locations like the finger, the palm, the wrist or the back hand. The model
is applied to the GUC45 database and a discrepancy between the estimated information
theoretical entropy and the entropy estimated with the model is seen.

The model is describing the information in the finger vein skeletons more strict than
the naive entropy estimation from Section C.3.1, since correlations between the pixels are
considered. At the current state it does not contain any descriptors for noise in the image
due to sensor noise, environmental changes and changes in the biometric characteristic as
well as noise introduced by the contrast enhancement, segmentation and skeletonization
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process. The model is aimed at describing the distinct information – maybe best described
as biometric entropy — usable to distinguish individuals. It can be used to limit the in-
formation that is extracted from the vein pattern in the context of crypto-based template
protection mechanisms like the approach in [226].

The model also allows to generate artificial vein skeletal patterns that correspond to
the statistical properties of a training database. In that way large scale databases could be
generated with little effort, with the additional bonus of avoiding privacy issues. Those
databases could be used for the optimization of feature extraction algorithms or compari-
son strategies based on the skeletal representation.

In addition the entropy of different databases of the same vein modality or datasets
containing different modalities (finger, hand, wrist or dorsal hand data) can be compared
against each other.

Some question for the future work: How to consider noise issues in the model? How
can information about line segments be used to overcome certain approximations in the
model? How does the quality of the pre-processing correlates with the estimated entropy?
Finally the stability of the features: what is the correlation between biometric performance
and the entropy estimator.
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Appendix D

Towards a Biometric Random Number
Generator – A General Approach For True

Random Extraction From Biometric Samples1

Abstract

Biometric systems are per definition used to identify individuals or verify an identity
claim – one difficulty of getting reliable decisions is the inherent noise that makes it dif-
ficult to extract stable features from biometric data. This paper describes how biometric
samples can be used to generate strong random numbers which form the basis of many
security protocols. Independent from the biometric modality, the only requirement of
the proposed solution are feature vectors of fixed length and structure. Each element of
such a feature vector is analyzed for its reliability – only unreliable positions, that cannot
be reproduced coherently from one source, are extracted as bits to form the final random
bit sequences. Optionally a strong hash-based random extraction can be used. The prac-
ticability is shown testing vascular patterns against the NIST-recommended test suite for
random number generators.

D.1 Introduction

One observation with biometric systems is that they deal with noisy physiological or be-
havioral data. Another observation is that the extraction of reliable features, which allows
to discriminate between imposter and genuine attempts, is usually a non-trivial and dif-
ficult task. Both observations contribute to the motivation of this work. The common
strategy in a biometric system is to extract a compact representation that includes only the
most stable, reliable and distinctive information from the raw sensorial data.

On the other hand cryptographic protocols are used more and more widely in nowa-
days every-day applications as e.g. authentication in online banking. One major building
block of those protocols is the proof of freshness. Such a proof is usually done by inserting
a cryptographic nonce – a freshly generated random number that is only used once – in a
message, which makes a simple message replay detectable. Such random numbers have to
be unpredictable for an attacker in order to not compromise the whole protocol. Therefore
strong random number generators are needed. The sources of true randomness are often
physical processes while randomness from deterministic and highly non-chaotic systems
like computers is often very limited. One example of a security protocol using a biometric
transaction authentication with the need for strong random numbers for enrolment is the
BTAP [72, 74].

In this paper, we present and evaluate the idea to use physical, biometric data to gen-
erate strong random numbers. This paper investigates how to combine biometric feature
extraction and random number generation , how to generate the random numbers and how
to verify the claimed randomness properties. Simulation results are presented before the
paper concludes.

1 [80] HARTUNG, D., WOLD, K., GRAFFI, K., AND PETROVIC, S. Towards a biometric random number
generator - a general approach for true random extraction from biometric samples. In BIOSIG (2011), pp. 267-274.
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FOR TRUE RANDOM EXTRACTION FROM BIOMETRIC SAMPLES

D.1.1 Noise and Biometrics

Noise is inherently existent in biometric data – data from alive individuals. The term bio-
metric noise is not yet clearly defined and it is often used to describe the variability in
the signals due to changes in the biometric (e.g. dirty or torn off finger tips in fingerprint
systems, different hair style in face recognition systems), inaccuracies of the sensorial sub-
system (e.g. camera noise, dust on fingerprint sensor, pose towards camera), or varying
environmental conditions (e.g. lighting, humidity). Here, we use these variations and the
noise to generate random sequences.

D.1.2 Vein Patterns

Vein patterns evolve during the embryonic vasculogenesis and their final structure is mostly
influenced by random factors [52]. Even identical twins can be distinguished. The pattern
is available at every healthy human, making it an interesting research objective. Commer-
cial applications evolved out of this research, nowadays many ATMs in Japan and Brazil
are secured using this biometric modality. The patterns are commonly extracted from im-
ages of the palm, the back of the hand or fingers. The International Biometrics Group (IBG)
6th report 2006 confirms recognition rates fairly at the same level for two different vein and
one iris-based authentication system [94]. An interesting aspect of vein recognition is the
fact that the information is not visible, it is hidden inside the body. Unlike fingerprints it
is not possible to leave a vein pattern representation unintentionally in public places and
thus it is not possible for an attacker to acquire the pattern in daily life or to replicate it.
Furthermore there is no relation to criminal prosecution.

The imaging approach makes use of the absorption capacity of particular substances
in the blood running through the veins. To capture the image, the region of interest is
illuminated with a near-infrared (NIR) light source with wavelengths around 700 to 1,000
nm. A reflection or transmission technique can be used. Deoxygenized hemoglobin highly
absorbs rays within this wavelength band while the surrounding tissue does not. NIR-
sensitive optical sensors are used to capture the image of the vein pattern.

D.1.2.1 Feature Extraction Examples

The following images will be used during later stages of the random extraction: Figure
D.1(a) shows an example vein pattern image and a STRESS [120] contrast enhanced version
in Figure D.1(b), its segmented version in Figure D.1(c) produced using a local thresholding
algorithm. The image is then transformed to a skeleton representing the topology of the
vein pattern (Figure D.1(d)) by using morphological operators. The database consists of
10800 finger vein images from all 10 fingers of 45 data subjects acquired in 12 sessions,
each image having a size of 111 × 401 pixels. Throughout the paper only the left middle
fingers will be considered.

D.2 Biometric Random Number Generator

D.2.1 Random Number Generation

Random numbers have various important applications in computer science, from com-
puter simulations, statistical sampling to cryptology. This section will describe some prop-
erties of randomness and the general classification into two distinctive classes: True ran-
dom number generators (TRNG) are based on measurements of physical processes that are
expected to be random like coin flipping, chemical processes including radioactive decay
and atmospheric radio noise or processes based on quantum mechanics. Pseudo random
number generators (PRNG) are based on deterministic computations where the output is
predictable, but initialized with a true random seed or key makes the PRNG output difficult
to predict.
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(a) Raw, cropped vein image IRaw . (b) Contrast enhanced image IOpt.

(c) Segmentation of a vein pattern image ISeg . (d) Skeletonization of segmented image ISkl.

Figure D.1: A sample finger vein image and its representations within the pipeline. Note:
an unstable segmentation and skeletonization method was chosen.

In order to verify the before mentioned and additional properties, statistical tests can
be performed on random numbers. The NIST suite “A Statistical Test Suite for Random
and Pseudo random Number Generators for Cryptographic Applications” based on [191]
is a complete and commonly used test suite. It will be the basis for the evaluation of the
generated random numbers in Section D.3.

D.2.2 State of the Art

Very limited work has yet been done on the field of biometric random generation. During
the literature search only a hand full of papers was focusing on biometric random number
generation. Often the terms were used incorrectly, in [26], the title indicated a random
key generation from iris data, instead the extraction of non-random keys from the same
biometric trait was discussed, related to a biometric key release or extraction. The research
work in [123] was focusing on the sources of randomness in mobile devices, focusing on
hardware sensorial noise from the camera or the microphone, not considering the use of
the built-in sensors as sensors for biometric traits like voice or face recognition.

The work in [215], was closest to the scope of this paper. In there, the use of biometric
data in the medical sense – in example animal neurophysical brain responses and human
galvanic skin responses – were examined as sources of randomness. An approach was
used, where physical measurement data was binarized and the last fluctuating digit was
used as random bit sequence over time. Their true random generator passed successfully
the NIST test suite as well as other statistical tests, whereas the brain signals come along
with complex data measurement and the skin response did not show a sufficiently fast
sampling rate.

Basis for the verification of the approach presented in this paper is a subsection of the
database described in Section D.1.2.1.

D.2.3 Entropy Estimation

Entropy is an important measure in random number generators to estimate the quality of
randomness. The amount of information – or entropy – H, that can be extracted from K
occurrences, each having the probability pi with i = 1, 2, ...,K can be computed using the
Shannon-Entropy:

H = −
K∑
i=1

pi · log2(pi), (D.1)
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Source Entropy (bits)

IRaw 25165
IOpt 26930
ISeg 19211
ISkl 8003

Table D.1: Entropy estimation for the different stages of the pipeline.

In practice the probabilities are not known, the concept of the maximum-likelihood estima-
tor p̂i, that estimates the probabilities by using absolute frequencies ni overN observations,
can help out. Where occurrence i is approximated with: p̂i = ni/N . The resulting formula
is given by:

Ĥ = −
K∑
i=1

p̂i · log2(p̂i) (D.2)

The entropy is estimated for our test database, the average entropy of the skeletal vein
images is given in Table D.1, not considering the correlation between the single pixels.
That means according to the estimator theoretically about that many bits of information
can be extracted in average from one vein pattern image. A more refined estimation for
the biometric entropy in finger vein images is currently under development and will be
published soon.

D.2.4 Image Based Biometric Random Number Generation (BRNG)

Having discussed the motivation and requirements for a biometric random number gener-
ator, next, we present our approach for a BRNG. Data from different stages of a biometric
pipeline are used as input to the proposed BRNG. The generic approach only requires a
fixed length and a fixed structure of the feature vector. Here we will use images from the
vein patterns, every other kind of features would also work. In order to find the most
appropriate stage of the feature vector, first the raw image itself (IRaw), followed by an en-
hanced and contrast optimized image is taken into account (IOpt). After that the segmented
and binarized representation (ISeg) is considered as well as the skeletonized version (ISkl).

The idea is that lower level features (in earlier stages of the pipeline) yield higher de-
grees of noise e.g. from the sensor, and recent work shows that using the Photo-Response
Non-Uniformity (PRNU) of sample images the imaging sensors can be distinguished [57].
The randomness in higher level features is more and more based on the biometric informa-
tion since unnecessary information is being removed during the preprocessing steps. One
assumption is that these features have a better statistical quality and are more difficult to
predict even though the amount of information in the images is reduced. The hypothesis
that is tested later on: low level features produce lower quality random sequences than
higher level features.

All real-valued feature vectors or images can be binarized using the interclass mean
image (Ī) of a training set (one / two dimensional case). One advantage of the binarization
is that the amount of ones and zeros is approximately equal. The bit value IBin(x, y) of
every pixel I(x, y) at position (x,y) in the source image I is computed as:

FBin(i) =


0, if F (i) < inter(i)

1, if F (i) ≥ inter(i)
(D.3)
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D.2 BIOMETRIC RANDOM NUMBER GENERATOR

Note the feature vector F is derived as concatenation from the image I’s columns:

F = [I(1, 1), I(2, 1), . . . , I(end, 1), I(1, 2), I(2, 2), . . . , I(end, 2), . . . , I(end, end)] (D.4)

The binarized feature vector FBin is derived from IBin in the same way.
During the next step of the BRNG, every position in the feature vector F – which is

defined in Equation D.4 – is analyzed for its reliability, meaning that single positions can
be reproduced very accurately over many captures. The idea is based on work from Tuyls
et al. [226], where the helper data scheme (HDS) is introduced that combines cryptogra-
phy with biometrics to secure the privacy and the templates. Following this approach we
could use the same mechanism used there to estimate the reliability of positions in the fea-
ture vector to estimate the inverse, the least reliable positions, and to use those bits for our
random sequence. Using the inverse measure, we can select positions that are not repro-
duced accurately over many captures and that are being close to the mean value used for
the binarization, resulting in random and flipping bits.

Reliability R(i) (data subject specific) on position i of a fixed length and structured real-
valued feature vector F , in the context of the HDS is estimated using the fraction of the
inter-class varinter and the intra-class varintra variance:

R(i) =
varinter
varintra

=
(F (i)− inter(i))2

(F (i)− intra(i))2
, (D.5)

using the mean value of the class intra (calculated from a fixed number of samples of the
same biometric trait – called training set) and the mean value of the whole population inter
(mean of all training sets together).

Here we introduce the unreliability measure:

U(i) =
1

R(i)
. (D.6)

Border zones in the image that are always set to zero or one are resulting in high values
for U , since they are very close to the inter class mean. Those positions are not interesting
for the bit extraction since they are constant over the samples and occur in blocks, therefore
U(i) is set to zero for those positions.

In order to make an extraction of bits more efficient the indexing vector Uidx contains
the indexes i sorted in descending order of U(i).

A variable κ < |F | is introduced to define the amount of unreliable bits that are to be
extracted from and used for the random sequence ∆:

∆ = [F (Uidx(1), F (Uidx(2)), . . . , F (Uidx(κ))], (D.7)

A further degree of freedom is given when using the help of a hash function h as a
random extractor. Depending on the needed length of the random bit vector and the quality
of randomness a variable λ is introduced splitting the random sequence ∆ into k chunks
Ci of length bκ/λc. If λ is set to one, the whole sequence is used as input to a hash function,
the larger it gets, the more chunks are created. Each chunk itself can be used to create a
new hashvalue h(Ci). The length of each chunk Ci should be larger or equal to the output
length of the hash function.

∆h = [h(C1), h(C2), . . . , h(Ck)].∆ = ∆⊕∆−1. (D.8)

The final sequences ∆ and ∆h are xor-ed with its inverse order version to enhance the
distribution of biased features, since mainly positions containing logical zeros are selected
as most unreliable bits.
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D. TOWARDS A BIOMETRIC RANDOM NUMBER GENERATOR – A GENERAL APPROACH
FOR TRUE RANDOM EXTRACTION FROM BIOMETRIC SAMPLES

Source κ λ Length Bitstream # Bitstreams Result

IRaw 25165 x 135000 100 5.6%
IRaw 25165 157 135000 100 87.9%
IRaw 25165 78 67000 100 93.4%

IOpt 26930 x 145000 100 69.3%
IOpt 26930 168 145000 100 98.2%
IOpt 26930 84 72000 100 98.2%

ISeg 19211 x 100000 100 66.9%
ISeg 19211 120 100000 100 98.1%
ISeg 19211 60 50000 100 97.2%

ISkl 8003 x 43000 100 1.4%
ISkl 8003 50 43000 100 95.3%
ISkl 8003 25 21000 100 97.9%

Table D.2: Experimental results of NIST test suite (standard parameters) applied to the
random sequences extracted from the vein database. Hash function used: SHA-1. x = no
hashing. Result: ratio of how many of the NIST tests successfully passed.

D.3 Simulations

The simulations cover the statistical test of NIST based on the data that was extracted as
described in Section D.2.1. The database was divided into two distinct sets each containing
540 samples – 12 samples from 6 sessions of each of middle left finger of 45 data subjects:
the odd numbered sessions are taking as training set and the even numbered ones for ver-
ification. In order to run the NIST test suite several Mbit of data are needed, therefore the
resulting random sequences will be concatenated and presented to the test suite. The max-
imal amount of unreliable bits κ extracted from the various samples is set to the estimated
entropy value from Table D.1.

D.3.1 NIST Results

The unreliable bits from the raw images are not qualified for the random extraction, but
after a strong random extraction using a hash function very good NIST test results are
achieved. With more than 95% of successfully passed tests, hashed unreliable bits from
higher level features (IOpt, ISeg and ISkl) are especially qualified. The amount of success-
fully passed tests is peaking with more than 98% for the hashed unreliable bits extracted
from the optimized or segmented images (see Table D.2). Lower values for λ, resulting
in bigger chunks as input for the hash function, are not effective to improve the random
properties for higher level features.

D.4 Conclusions And Future Works

The results are quite diverse – on the one hand the pure unhashed versions of the data are
not useful as a basis for BRNG, as they pass only a minor amount of the tests . On the other
hand, good randomness properties are seen in case of the hashed version of all images, in
particular higher level images.

The hypothesis cannot be verified; the quality of the random sequence extracted, mea-
sured in successful runs over the NIST test suite, is increasing from the raw level to the
more abstract ones (IRaw, IOpt, ISeg), but the skeletonized features pass only few of the
NIST test if unhashed. The influence of hashing on passing the NIST test is too large to
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D.4 CONCLUSIONS AND FUTURE WORKS

claim the hypothesis that abstract biometric information offers a higher entropy and thus
better randomness characteristics.

Future works will focus on an improved quality of random bits generated from one bio-
metric sample and on the statistical properties. In addition future research will focus on a
more sophisticated model for the biometric finger vein entropy estimation which may lead
to quality metric for single samples as well as for capturing devices and feature extraction
algorithms.
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Appendix E

GUC45 Dataset

The GUC45 was gathered to have a solid data basis for the experimental work of the project.
It was intended to be a multimodal database featuring finger vein, finger knuckle and to
some extend fingerprint images. The period of data acquisition was around 15 weeks (late
August - mid December 2009) split in 12 sessions, fingerprint acquisition was added for the
last four sessions.

The setup of the data gathering is shown in Figure E.1, five different sensors were used:
two self-built transmittance setups with CCDs, NIR pass-filters and LED illumination of
850 and 940nm wavelength (finger vein sensors 1 and 2), one finger knuckle sensor based
on a Canon Powershot G9 and two commercial optical fingerprint sensors.

The procedure for each session was the following:

• Experiment 1: capture finger veins and finger knuckles on finger vein sensor 1 (almost
simultaneously)

• Experiment 2: capture finger veins in a 90 degrees rotated way on finger vein sensor
1

• Experiment 3: capture finger veins on finger vein sensor 2 (video and extracted frames)

• Experiment 4: capture fingerprints with Cross Match L SCAN 100

• Experiment 5: capture fingerprints with Lumidigm V 100

Each capturing process was performed following the following protocol:

• 1st round: capture one sample from each finger according to order shown in Figure
E.2

• 2nd round: repeat the same procedure again

The procedure led to two samples for each finger for each sensor in each session. Since
45 volunteers completed all 12 sessions, the resulting amount of data is 45× 10× 12× 2 =
10800 images for experiments 2-3, in experiment 1 additionally 10800 finger knuckle images
are captured. In experiment 3 also a video clip of the whole process is stored. Experiments
4 and 5 cover only 4 sessions and only 44 volunteers (one refused due to privacy concerns),
summing up to each 3560 fingerprints. The main facts are summarized in Table 2.1.

During the enrolment and the final session additional measurements of the fingers were
performed at points defined in Figure E.3 and two questionnaires about the volunteers
physiological features (age, gender, nationality, handedness) and specific habits (smoking,
snus, regular sports, type of work) were acquired. Also one calibration image of the palm
dorsal was taken to be able to extract the skin color under controlled conditions.

During each session the following meta-data besides data and time was recorded: tem-
perature (in/out), humidity and atmospheric pressure. The statistical information is ad-
dressed in the next section.
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E. GUC45 DATASET

Figure E.1: GUC45 data acquisition setup.

E.1 Metadata Statistics

This section contains statistical information about the metadata describing the subjects, the
fingers and session parameters of samples belonging to the GUC45 database. The statis-
tics were generated in [148] and are extracted from Section 2.2 and Appendix B. First an
overview is given in Tables and E.1 E.2 for the subjects respectively the session metadata.
Details will be discussed in the following sections.

E.1.1 Subject Metadata

The subject properties are classified under different categories and displayed as bar charts.
Figure E.4 displays the bar graphs of the number of subjects per gender, handedness, smok-
ers, snus, sport, work and origin. Figure E.5 shows bar graphs of the number of subjects
per age and per countries.
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E.1 METADATA STATISTICS

Figure E.2: GUC45 capturing order.

Figure E.3: GUC45 finger measurements.

Subject metadata Total Subject metadata Total
Age range [21-30[ 18 Ethnicity Asian 5

[30-45[ 14 Caucasian 37
[45-66[ 13 Indian 3

Gender Male 35 Handedness Left 6
Female 10 Right 39

Smoker Yes 7 Snusdagger Yes 3
No 38 No 42

Sport Regular 20 Work Office 44
Non-regular 25 Physical 1

Disease Yes - Width and length of captured fingers
No - Height and weight of subjects

Table E.1: Subject metadata of the GUC45 database. daggerSnus is a moist tobacco powder
especially consumed in Sweden and Norway.
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Figure E.4: Number of subjects for each category of the metadata (1/2).
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E.2 SAMPLE IMAGES

Session metadata Minimal Maximal Mean

Temperature in °C Inside 18.5 28.5 23.3
Outside -10 26.5 6.4

Humidity in % Inside <15 61 28.1
Outside 43 >95 81.4

Atmospheric pressure in hPa 968 1024 994.2

Table E.2: Session metadata of the GUC45 database.

Aus Austria Ita Italy Nor Norway Spa Spain
Ban Bangladesh Jap Japan Pak Pakistan Swi Switzerland
Chi China Lit Lithuania Pol Poland Taj Tajikistan
Den Denmark Nep Nepal Rus Russia Tha Thailand
Ger Germany Net Netherlands Ser Serbia Vie Vietnam

Table E.3: Country abbreviations

E.1.2 Finger Metadata

The finger metadata consists of the width and length of each finger. A scattergraph is de-
fined for each finger and plots the dimensions of each finger (Figure E.6). The scatter points
are colored and indicate an occurrence range of finger dimensions. The x axis indicates the
length of the finger while the y axis represents the width. The mean dimension of each
finger is also plotted.

E.1.3 Session Metadata

The metadata of the sessions describes inside and outside temperature and humidity as
well as the atmospheric pressure. The data is displayed through two graphical representa-
tions. The first plot is a bar charts which values are distributed within 6 bins. The second
plot is a scattergraph which shows the value distribution for each session. The mean value
of each session is also indicated.

Comment: The barometer used for the measurement of the humidity level gave values
between 15% and 95%. Values below and above the maximal numeric values have “LOW”
and “HIGH”, respectively. In the graphics, these extreme values were set to 10 for “LOW”
and 96 for “HIGH”. In the graphs two lines were plotted to clearly delimite these extreme
values from the numeric ones.

E.2 Sample Images

The image quality of the finger vein images is challenging due to the lack of experience
in the setup of the capturing devices and technical difficulties. Sample images for for two
fingers of two subjects are given in Figures E.12 and E.13. Images from all fingers were
captured and the latter figure shows problems of the vein sensor for thick fingers like the
thumb of the data subject. The vertical images of experiment 3 were designed to examine
the potential to capture the finger veins from two side and to reconstruct a 3D model, how-
ever the visibility of the veins is very limited. Finger knuckle images are partly obfuscated
to avoid conflicts with the organization lending parts of the vein sensor.

In conclusion, even though the dataset contains generally low quality vein images, in-
teresting results could be achieved as the database is utilized in the experimental sections
of several publications (e.g. those included in Chapters 6, 7 8, 10, C and Appendix D). It
was as well the bases for several master theses [125, 148, 167, 177].
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Figure E.5: Number of subjects for each category of the metadata (2/2).

Mostly data from experiment 1, 4 and 5 was utilized. To be able to continue the work
on GUC45 and use its full potential the volunteers have to be contacted for their consent
to extend the purpose of the data collection. In addition the Norsk samfunnsvitenskapelig
datatjeneste AS (NSD) as official Norwegian institution responsible for database acquire-
ments has to be contacted. Every scientific database gathering has to be registered with and
approved by the NSD to ensure amongst others the privacy of data subjects. The extend of
GUC45 was limited to the PhD project, hence it could not be made public.
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Figure E.6: Length and width of fingers (ISO finger code).
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Figure E.7: Inside temperatures.
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Figure E.8: Outside temperatures.
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Figure E.9: Inside humidity.
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Figure E.10: Outside humidity.
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Figure E.11: Atmospheric pressure.
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(a) (b)

(c) (d)

(e) (f)

Figure E.12: Sample image set from one session (2 attempts each) of a left little finger: (a)
Exp 1: vein part sensor 1; (b) Exp 1: knuckle part (vein sensor obfuscated due to NDA);
(c) Exp 2: vein side view sensor 1; (d) Exp 3: vein sensor 2; (e) Exp 4: fingerprints (Cross
Match L SCAN 100); (f) Exp 5: fingerprints (Lumidigm V 100). 221



E. GUC45 DATASET

(a) (b)

(c) (d)

(e) (f)

Figure E.13: Sample image set from one session (2 attempts each) of a left thumb: (a) Exp
1: vein part sensor 1; (b) Exp 1: knuckle part (vein sensor obfuscated due to NDA); (c) Exp
2: vein side view sensor 1; (d) Exp 3: vein sensor 2; (e) Exp 4: fingerprints (Cross Match L
SCAN 100); (f) Exp 5: fingerprints (Lumidigm V 100).222
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