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Summary

The ever-rising importance of communication services and devices emphasizes the signif-
icance of intrusion detection. Besides general network attacks, private hosts in particular
are within the focus of cyber criminals. Private data theft and the integration of individual
hosts into large-scale botnets are two common purposes successfully subverted systems
are used for.

In order to detect any attack, intrusion detection mechanisms need to probe the data in
question. Therefore, the acquisition of sensor data is one of the fundamental steps in any
intrusion detection system, as the execution of a detection algorithm – be it anomaly- or
signature-based – relies on the integrity of the assessed data. In cases where the intrusion
detection system (and the sensor data acquisition component, in particular) is installed on
the very same host it is supposed to protect, attacks against its preventive and detective
safeguards are rather simple and supported by potential vulnerabilities of the host’s oper-
ating system.

Detection speed plays a vital role in keeping the damage caused by subversion attempts
as small as possible. Dispatching the data acquisition and detection mechanisms from the
host is desirable, as a higher degree of independence allows high-speed execution even in
cases where the host has already been infected, or where its central processing units work
to capacity.

The history of computer science, with cryptography being an excellent example, has
taught us that the level of security can be increased by outsourcing certain operations to
additional, special-purpose hardware. Here, a positive side effect is that the increase in
security is often accompanied by an increased speed at which the corresponding operations
can be executed.

The present thesis seizes upon the idea of outsourcing, but rather than employing addi-
tional special-purpose hardware, it proposes the execution of relevant operations on com-
modity hardware. While the application of coprocessors for network intrusion detection
is common practice, and approaches using PCI add-in cards, as well as external crypto-
graphic coprocessors exist, we propose the application of commodity coprocessors for host
intrusion detection, i.e., modern graphics processing cards (GPU) found in current laptop
and desktop computers.

Our focus was on validating the assumption that modern GPUs are, in general, appli-
cable in the task of acquiring host sensor data for intrusion detection purposes. Thus, we
propose their application as independent auditors, and present research results regarding
their feasibility to function as such.

We detail abstract cost models and their practical validation, as well as a proof of con-
cept implementation of an autonomous GPU kernel. This allows us to conclude that –
leaving aside their programming and runtime frameworks – commodity, off-the-shelf co-
processors (i.e., modern GPUs) are able to perform host observation tasks in an unintrusive
manner.

i





Acknowledgments

I dedicate this thesis to my parents, Agnes and Günter Seeger. From many points of view,
they are the ones who made this work possible. They never imposed their ideals on me,
nevertheless giving me guidance whenever I needed it. They let me become the person I am
today by giving me the freedom of a bird combined with tremendous support whenever
required – for better and for worse. I will never be able to give back as much as I was given.
Thank you!

Sascia, I want to take this opportunity to thank you for who you are and for being within
the core of my heart. I cannot imagine my life without you anymore. You are my living
proof, that for every puzzle piece, there is a matching counterpart.

Special appreciation goes to my first supervisor Stephen D. Wolthusen who clearly con-
tributed the most important scientific guidance which enabled me to finally write this the-
sis. His style of supervision clearly shaped me as a researcher, and my thesis is manifesting
evidence for this. He always impressed me with his technical knowledge and his overar-
ching overview of relevant literature. Despite working to capacity, he agreed to supervise
me and often pointed me in the right direction. Every time I sent him early versions of my
writings, he was able to comment on the essence, to encourage me to take deeply technical
specifications into considerations, as well as to assess adjacent approaches concerned with
a related domain.

I also want to thank Christoph Busch, my second supervisor, for the time he took to
comment on all of my publications and for the discussions we had. His commitment gave
me the possibility to spend research periods abroad and to participate in several interna-
tional conferences.

No doubt, without the support of Stephen and Christoph, this thesis would not have
been possible. Nevertheless, it was Klaus Kasper who introduced me to Christoph in 2008
and made me aware of the newly established CASED. Thus, it is somehow by his merit
that I had the chance to apply for the position of a doctoral researcher and that I eventually
became part of this aspiring research cluster.

I would also like to thank Peter Herrmann, Thomas Kemmerich, and Katrin Franke
for being part of the examination committee, and Patrick Bours for being the head of the
committee.

For their excellent practical support, credit goes to my student assistants, Julian Knauer
and Pierre Schnarz: thank you, guys.

Naming all people who have come along with me during my time as a Ph.D. student
would clearly break the mold, and, therefore, I apologize to those who have not been
named explicitly. In this context, I want to express my appreciation to the Gjøvik University
College (GUC), Norway, the University of Applied Sciences Darmstadt (h_da), Germany,
and the Center for Advanced Security Research Darmstadt (CASED), Germany for their
administrative, technical, and financial support throughout the past three years.

Mark M. Seeger
August 22, 2012

iii





Contents

I Inception 1

1 Introduction 3
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Summary of Thesis Contributions . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.5 Document Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 Related Work 17
2.1 Modern Computer Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 Coprocessors and Direct Memory Access . . . . . . . . . . . . . . . . . . . . . 19
2.3 Intrusion Detection using Coprocessors . . . . . . . . . . . . . . . . . . . . . . 23
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

II Publications 41

3 Observation Mechanism and Cost Model 43
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.2 Computational Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.3 Interference Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.4 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4 Constraints on Autonomous Use of Standard GPU Components for Asyn-
chronous Observations 53
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.2 Asynchronous Memory Access . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.3 GPU Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.4 Observation Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.5 GPUs as Independent Auditors . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.7 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5 The Cost of Observation for Intrusion Detection: Performance Impact of
Concurrent Host Observation 67
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.2 IEEE 1394 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.3 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

v



CONTENTS

5.6 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6 Using Control-Flow Techniques in a Security Context 81
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
6.3 Flow Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
6.4 Common Prototypes Using Flow Analyzing Techniques in a Security Context 84
6.5 Example of Dynamically Altering Control-Flow . . . . . . . . . . . . . . . . . 86
6.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.7 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

7 Towards Concurrent Data Sampling using GPU Coprocessing 91
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
7.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
7.3 Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
7.4 Security Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
7.5 Autonomous Sampling using a Commodity Coprocessor . . . . . . . . . . . . 96
7.6 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

8 A Model for Partially Asynchronous Observation of Malicious Behavior 101
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
8.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
8.3 Observing Partially Ordered Attack Sets . . . . . . . . . . . . . . . . . . . . . . 103
8.4 Practical Application of Proposed Models . . . . . . . . . . . . . . . . . . . . . 107
8.5 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

Nomenclature 113

List of Publications 115

vi



List of Figures

3.1 The concrete and abstract component model. . . . . . . . . . . . . . . . . . . . . . 48

5.1 Histogram of all results from the first test. . . . . . . . . . . . . . . . . . . . . . . . 74
5.2 Measurement frequency for different data structure sizes. . . . . . . . . . . . . . . 75
5.3 Performance degradation according to the size of the observed data structure. . . 75
5.4 Increasing number of outliers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.1 Example of a control-flow graph. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.2 Example of a data-flow graph. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.3 The control-flow graph of the target program. . . . . . . . . . . . . . . . . . . . . . 86

7.1 The sequence diagram of the proof of concept implementation of our asyn-
chronous and concurrent sampling mechanism. . . . . . . . . . . . . . . . . . . . 96

7.2 Logical memory architecture of our shared memory object. . . . . . . . . . . . . . 97

8.1 The results for an application example of the proposes model. . . . . . . . . . . . 108

vii





List of Tables

3.1 Overview of notations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.1 All conditioned results obtained from observing one process with a stress ra-
tio of 1.0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.2 Normalized conditioned results for observing one process with a stress ratio
of 1.0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.3 Comparison of performance degradations depending on the amount of data
actually being written. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.1 Characteristics of the presented flow analyzing tools. . . . . . . . . . . . . . . . . 85

8.1 Comparison of assumptions incorporated into each model. . . . . . . . . . . . . . 103
8.2 Complete table of results from applying the proposed model. . . . . . . . . . . . 108

ix





List of Listings

5.1 Pseudo Code of the Workload Generator. . . . . . . . . . . . . . . . . . . . . . 70

6.1 Pseudo Code of the Target Program. . . . . . . . . . . . . . . . . . . . . . . . . 86
6.2 Pseudo Code of the DLL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
6.3 Pseudo Code the Program Executing the Exploit. . . . . . . . . . . . . . . . . . 87

7.1 Extract form the GPU kernel written in AMD IL. . . . . . . . . . . . . . . . . . 97

xi





Part I

Inception

1





Chapter 1

Introduction

Es kommt nicht darauf an, mit
dem Kopf durch die Wand zu
rennen, sondern mit den Augen
die Tür zu finden.

WERNER VON SIEMENS

1.1 Motivation

Currently, modern commercial host intrusion detection systems (IDS) are installed on the
host system itself. That is, they operate next to all other software, are executed by the host
system’s central processing units (CPU), occupy parts of the host system’s hard disk drive
(HDD) and system memory (i.e., RAM: random access memory), and consume CPU cycles.
In spite of these characteristics, the most severe fact is that they rely on the security of the
underlying host operating system (OS), which makes them highly assailable. By exploit-
ing host OS vulnerabilities, a host IDS can be shut down and scan results can be tampered
with. With ready-to-use exploits, included in software products such as the Metasploit
Framework, a free penetration testing solution, even moderately talented adversaries are
given the opportunity to execute targeted subversion attempts against individual host sys-
tems.

No matter what kind of intrusion detection system is used (i.e., signature-, specification-
or anomaly-based), they all rely on the integrity of sensor data. Incomplete or falsified
data make it difficult, if not impossible, to detect even simple attacks. Therefore, it is of
paramount importance to ensure the integrity of sensor data, as well as the component
that is in charge of acquiring this data. Here, the application of external hardware, i.e.,
coprocessors, is one possible and often-applied defense against traditional host system ex-
ploits. Due to the frequency at which an observation mechanism could be operated when
running on an autarchic coprocessor, subversion attempts would be detectable while they
are ongoing, giving the host observation system the chance to intervene before the attack
is completed.

In general, a coprocessor is any processor assisting the CPUs. While in the early days
such processors were mainly used for mathematical computations (e.g., ALU: arithmetic
logic unit), the concept has advanced over time, and is ubiquitous nowadays in all types
of computer architecture, ranging from mobile phones to mainframes. While most copro-
cessors are developed to perform very limited tasks much faster than the CPUs could, they
are often also limited in terms of programmability, which prevents their use in other op-
erations. Here, application-specific integrated circuits (ASIC ), Field programmable gate
arrays (FPGA) and modern graphics programming units (GPU) present common excep-
tions. These coprocessors offer a programming interface which allows the implementation
of custom logic and algorithms. While ASICs and FPGAs are peripheral hardware, freely
programmable GPUs are considered commodity hardware with respect to modern desktop
and mobile computers.

Today, GPUs are high performance processors, distinguished by a massively parallel
hardware architecture, and, due to the existence of abstract programming and runtime
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1. INTRODUCTION

frameworks, possess an applicability which reaches far beyond the graphics processing
scope. To this extent, the two leading GPU vendors NVIDIA and AMD/ATI are dominat-
ing the market with CUDA and ATI Stream, respectively.

Besides graphics computations, which may still be their largest field of application,
GPUs are commonly used today for non-graphics computations whenever processor-in-
tense calculations are required. Common examples are financial engineering, weather fore-
casting, bioinformatics and with respect to information security cryptography and intru-
sion detection. For intrusion detection purposes, GPUs, and coprocessors in general, are
generally only applied in the field of network intrusion detection. Here, network traffic
is assessed by algorithms executed on the GPU in order to keep latency to a minimum.
The field of host intrusion detection has not yet witnessed the broad-based application of
coprocessors.

Having such a coprocessor perform host intrusion detection would eliminate several
drawbacks of traditional systems, and would additionally create new opportunities in the
ways we defend personal computers from attackers in the near future. The parallel archi-
tecture has more to offer than pure superiority of speed over the host’s CPUs, which is
nonetheless an advantage. Due to its design, the GPU can be seen as an autonomous and
concurrent coprocessor, having autarchic physical memory and, of course, its own process-
ing units. These design features can be used to build a host intrusion detection system
decoupled from the host while still able to perform observations in real time. With no ref-
erences to host APIs (application programming interface) or DLLs (dynamic link library),
there would be no intuitive way to tamper with such an observation mechanism by, for
instance, exploiting host OS vulnerabilities. Furthermore, if intrusion detection obligations
no longer burden the CPUs, more computing power is at the disposal of the user.

1.2 Research Questions

With sensor data acquisition being one of the very fundamental techniques of any observa-
tion system, our research focuses on the application of modern GPUs for this purpose, in
the field of host intrusion detection. Since GPUs are powerful coprocessors that combine
the tamper resistance of external auxiliary hardware with the flexibility, programmability,
and ubiquity of internal standard hardware, using them for security related tasks seems
promising.

To this extent, our main research question can be formulated as follows:

What are the limitations of an asynchronously and concurrently operating commod-
ity coprocessor when applied for efficient observation of a host’s system state, and how
can these limitations be overcome?

The goal of this Ph.D. thesis is to provide a theoretical, as well as practical validation of
the assumption that commodity coprocessors (i.e., the GPU) can be used for host intrusion
detection purposes.

The GPU distinguishes itself from onboard coprocessors in terms of applicability and
computational power, and from external auxiliary processors such as FPGAs in terms of
host connectivity and the degree of its availability with respect to desktop computers and
laptops. These characteristics theoretically make it an ideal off-host host observation pro-
cessor. As its primary application lies in graphics computations, there is currently no in-
tuitive way to create a GPU-host connection that authorizes an unrestricted data access.
Therefore, observation of a host system in a thorough and efficient way is not possible
using the graphics processor as is.

Even if a host observation mechanism was operated in total self-reliance, without any
host dependent software modules, resource contention on the host-side would take place,
due to forced synchronizations between the host’s system memory and its caches. Model-
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1.2 RESEARCH QUESTIONS

ing the degree of performance degradation on the host-side, followed by a practical vali-
dation, was subject of our research.

Our ultimate goal was to validate our assumption that modern GPUs are in fact suitable
for performing host observation tasks. While we also assumed that off-the-shelf program-
ming and runtime frameworks will prevent total independence from the host, we inves-
tigated the degree to which unmodified GPUs allow autonomous, as well as concurrent
execution, and we compared existing approaches and their properties with ours.

Novel techniques operating on modern hardware often allow faster and more precise
detection of known and possibly unknown attacks. This does by no means allow the infer-
ence that existing and well-studied threats are automatically rendered harmless. We were,
therefore, also interested in the nature of attacks that could not be detected even if the
observation mechanism was to run on a high performance coprocessor.

With fast and reliable data acquisition and observation mechanisms at our disposal, we
also focused on how sampling strategies in combination with the observation of crucial
measuring points can lead to faster detection speed, as well as possible further advantages
over computer criminals trying to subvert host computers.

The above briefly motivated research scope is reflected by the following sub research
questions (RQ).

RQ1: What performance impact results from initiating observations of a host system’s
shared memory by a commodity co-processor?

1.1: How can we model the loss of performance?

1.2: How can we practically measure the loss of performance?

RQ2: What architectural features of modern GPUs counter their usability as indepen-
dent auditors?

RQ3: What is the nature of attacks for which the general advantages of GPUs render
less powerful?

RQ4: Presuming a high performance, asynchronously- and concurrently-operating,
host- observing commodity coprocessor: How can sampling strategies facilitate
real-time detection?

We will now present the answers to the above-stated research questions and point to the
publications in which each of them is regarded in detail, before summarizing each contri-
bution separately in Section 1.3.

1.2.1 RQ1: What performance impact results from initiating observations of a
host system’s shared memory by a commodity co-processor?

The detailed answers to this question can be found in Seeger and Wolthusen [10] and Seeger
et al. [13].

In order to provide a qualitative answer to this question, we inspected the architec-
tural details of modern computer systems. That is, we focused on features of non-uniform
memory architectures (NUMA) in order to describe a model capable of expressing the
performance degradation of a certain process when it is subject to frequent observation.
We discovered that, in particular, techniques that act as performance boosters under nor-
mal conditions are the ones that cause performance penalties in the case of (coprocessor)
driven observation. To be exact, snooping protocols, write-back and working-set strate-
gies are implemented for the general case of data consumption by the host’s CPU. Data
accesses according to the busy-wait approach operated by a processor other than the CPU
cause these protocols and strategies to act as performance bottlenecks. Furthermore, it is
the composition of the data under observation that yields information about the degree of
performance degradation. While observing read-only data causes no synthetic write-backs,
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1. INTRODUCTION

reading writable data actually being written confuses working-sets and causes forced syn-
chronizations [10].

The quantitative validation of the proposed model is given in Seeger et al. [13]. We
showed that the performance degradation is quantifiable but depends on many parame-
ters. Due to architectural features of the system under observation (e.g., number of CPUs,
enabled power saving features, cache size, write-back strategy, etc.), and the fact that there
is no such thing as a general data access pattern for real-life applications, the extent of
degradation may vary. In an experimental setup, we experienced a performance loss of
more than 25% when we observed two customized processes in parallel, each of them
working on a 64 byte data structure.

The two presented models and their validation reveal that relieving the host’s CPUs
from host intrusion detection duties does not imply that the performance loss is fully com-
pensated. In fact, due to main memory accesses from off-host coprocessors, combined with
the existence of internal cache and snooping protocols, forced synchronizations take place
inside the host’s memory hierarchy, causing performance degradations.

1.2.2 RQ2: What architectural features of modern GPUs counter their usability
as independent auditors?

The detailed answers to this question can be found in Riedmüller et al. [8] and Seeger and
Wolthusen [12].

The development of an off-host host intrusion detection mechanism operated by the
GPU is possible, but – due to architectural constraints – does not offer the required level
of security. By using an unmodified GPU along with its programming and runtime frame-
work, only predefined parts of the host’s physical memory can be accessed and the detec-
tion mechanism is highly dependent on host-side software components. We investigated
the architecture of a modern GPU and compared its features to a set of properties (cf. [4, 7])
that must be fulfilled in order to operate an observation mechanism as an independent
auditor. We discovered that only three of the ten criteria are met: Inaccessibility, physical
secureness, and the provision of sufficient processing power. On the other hand, properties
such as the verifiability of the software operating the GPU, the lack of non-volatile memory,
or the fact that unrestricted access to the host’s system memory is not provided, counter
a GPU’s off-the-shelf usability as an independent auditor [8]. Next to their parallel archi-
tecture, it is the much smaller instruction set that causes the immense performance boost
compared to CPUs. On the other hand, this limits their applicability in terms of compu-
tational sophistication, and hinders them in executing, for instance, code compiled for x86
architecture.

With respect to these results, restriction in accessing the target’s memory is superior, as
full data access forms the base of any detection system. To this extent, we have validated
the assumption that access restrictions can be bypassed as the DMA (direct memory access)
connection between GPU and host generally allows the access of any addressable data [12].
We developed a GPU kernel that operates without host-side runtime references. Given a
proper configuration, as well as manual initialization of the device and the kernel as such,
we were able to execute simple operations in total independence of the host. In this case,
all control lies within the GPU itself. Moreover, due to a lack of logical host connectivity,
the observation mechanism becomes, in principle, invisible to an attacker, and if all software
parts are solely stored on the GPU itself, it is immune to host OS vulnerabilities and can
function properly even when the host system has already been subverted.
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1.3 SUMMARY OF THESIS CONTRIBUTIONS

1.2.3 RQ3: What is the nature of attacks for which the general advantages of
GPUs render less powerful?

The detailed answers to this question can be found in Seeger [9].
Using an off-host coprocessor to detect computer attacks is a very promising technique.

Once the technical constraints that burden current GPUs and their frameworks are over-
come, GPUs have the power to operate a host intrusion detection mechanism distinguished
by strong tamper resistance, high performance, and low overhead. Nevertheless, even off-
host host intrusion detection systems will not be immune to certain types of known threats.
This becomes clear when taking our proof of concept implementation of a dynamically al-
tering control-flow approach into consideration. By analyzing program code and alienating
a Linux system call mostly used for breakpoint debugging, we were able to overwrite spe-
cific variables stored on the heap. As these variables were marked for runtime alternations,
it is hard to tell whether a change in value is benign or not. Thus, detecting such attacks is
less of a technical problem than it is an architectural one. If the system design allows the
alternation of certain variables during runtime, no purely technical approach will be able
to tell legal alternations apart from illegal ones. This is, of course, also true for coprocessor
driven solutions.

1.2.4 RQ4: Presuming a high performance, asynchronously- and
concurrently-operating, host- observing commodity coprocessor: How
can sampling strategies facilitate real-time detection?

The detailed answers to this question can be found in Seeger and Wolthusen [11].
Modern cyber attacks often consist of several phases, such as the planning and recon-

naissance phase, which take place before the actual attack. From a technical point of view,
each attack itself is confronted with inevitable dependencies, where a certain step can only
be accomplished once its prerequisites have been fulfilled. Presuming the targeted obser-
vation of critical data structures, we presented a causality model built upon the potentially
caused relation proposed by Tarafda and Garg [14]. This model is based on probabilis-
tic assumptions regarding the causal dependency of attack sets, and can be used to tune
observation strategies to be more target-oriented. The overall observation frequency can
be adjusted (i.e., lowered) as we take into account that certain data elements can only be
attacked once certain activities have been observed. By only reducing the detection prob-
ability by 1% in our experiment, the burden of observing all data elements with the same
frequency could be absorbed. Furthermore, the proposed model allows the triggering of
counter measurements even before the attack succeeds.

1.3 Summary of Thesis Contributions

Each publication and its contributions is summarized in this section. All publications are
presented in the order they were published, starting with the earliest.

As already reflected by research question RQ1, the possible performance degradation
in the host under observation was one of our core focal points. In our models, presented
in [10] (cf. Chapter 3), we regard the host’s physical memory as the connection between an
off-host coprocessor and the host itself. Therefore, any coprocessor-based host observation
must inevitably access data stored within this memory entity. On the host itself, the RAM
acts as a link between caches and hard disk drives. Data currently consumed (or likely to
be consumed in the near future) by the CPUs are stored here and replicated throughout
the different caching hierarchies. Due to performance considerations, data altered in the
highest levels of these hierarchies are not instantly written back to the lower levels. Besides
different protocols that take care of data consistency, write-backs are forced whenever out-
dated data in the RAM is accessed by a different processor. That is, in order to serve any
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accessing process with the latest data, altered data from the first level cache is written back
to the RAM, causing a wait situation for that process.

The contribution of [10] is the proposal of two cost models. The first cost model is built
upon a simplified model presented by Hennessy and Patterson [3]. It allows the expression
of the synchronization cost, not only for one caching hierarchy, as presented in [3], but for
multiple such hierarchies.

To this extent, we differentiate between demand-related and coherence-related misses,
which represent the penalty times for the demand for data that needs to be retrieved from
a lower (demand-related) or adjacent (coherence-related) memory level. The second cost
model focuses on the composition of sets of most recently referenced pages1, referred to
as working sets [1], and the interference that can be caused when these sets are indirectly
accessed by a coprocessor. In theory, if all resources a certain process needs were to fit into
one working set, and if this set was to be consumed by one process only, demand-, as well
as coherence-related misses would be eliminated. As this is very unrealistic for real-world
applications, both types of misses occur continuously. Any sort of artificial interaction with
the working set (e.g., caused by forced synchronizations due to coprocessor-based host
observation) has the potential to increase the interference frequency. In order to describe
the possible severity of this interference, we introduced the interference ratio I, which takes
the composition of the working set into account in terms of read-only and writable parts,
as well as the percentage of processing time actually used to write to the writable pages.
This model proposes that observing read-only data and writable data that is, in fact, not
being written causes much less performance degradation on the host-side than observing
writable data being written does.

In order to practically validate our models as they are proposed in [10], we first assessed
modern GPUs with respect to their feasibility to act as so-called independent auditors in
[8] (cf. Chapter 4). This assessment was necessary in order to answer research question
RQ2. The reason for this is that today’s GPUs are powerful commodity hardware and are
widely available in computer systems of all sizes. Due to their system architecture, they
can be regarded as the most powerful and most widely spread coprocessors for personal
computers. Ever since the appearance of vendor-dependent programming and runtime
environments (i.e., NVIDIA CUDA and AMD/ATI Stream), GPUs can be easily applied
to tasks beyond the graphics computations’ scope. Being both powerful and ubiquitous
makes these coprocessors profitable operators of off-host host observation systems.

The contribution of [8] is the assessment of the combination of modern off-the-shelf
GPUs with their corresponding frameworks with regard to their ability to operate a sustain-
able off-host host observation system. The assessment, according to properties of existing
coprocessor solutions using extraordinary hardware such as PCI (peripheral component
interconnect) add-on cards [4, 7], revealed severe shortcomings that cannot be easily cir-
cumvented. Out of the ten proposed properties, only three are fulfilled by GPUs. These
are inaccessibility, meaning that the host must not have access to the internals of the GPU,
physical secureness, and the provision of sufficient processing power. The properties not
fulfilled by GPUs are unrestricted memory access, provision of secure transactions, conti-
nuity, transparency, verifiability, provision of non-volatile memory, and the ability to pro-
vide reports in a secure manner. In addition to the assessment according to the provided
properties, we revealed the following drawbacks: If GPUs and their frameworks are used
as is, they rely on host-side APIs, DLLs, and software components. Terminating the refer-
ences to these components terminates the kernels executed by the GPU. Additionally, GPU
kernels can only be started through software components running in the user space of the
host system, which makes them easily attackable. Furthermore, a maximum GPU kernel
runtime is traditionally set. While this seems useful in preventing system hangs, it implies
a severe weakness with respect to intrusion detection purposes.

1The term pages can be replaced by any other unit of data.
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In order to use a GPU as an independent, asynchronously, and concurrently working
auditor, at least the following architectural modifications must be made: It must be possible
for the GPU to have unrestricted access to the host’s physical memory; the observation
mechanism must be started on system boot (i.e., before the host OS is started); there must
be no logical connection to host-side software components such as APIs, DLLs, or any other
kind of host-side software, and at least a small amount of non-volatile on-device memory
must be provided.

Even though the results of our GPU assessment, presented in [8], prevent off-the-shelf
applicability of modern graphics cards in functioning as autonomous auditors, one of our
goals was to precisely quantify the performance degradation on the host-side when off-
host observation takes place. What has been theoretically validated in previous work [10]
needed practical confirmation. This confirmation is the subject of [13] (cf. Chapter 5).

Therefore, the contribution of [13] is the quantification of the maximum performance
degradation caused by observing a self-implemented, and, therefore, rule-governed pro-
cess, using an off-host coprocessor. By adjusting the parameters of the process to be ob-
served, we were also able to practically validate the cost model proposed in earlier work
[10]. Due to the constraints revealed by Riedmüller et al. [8], the experimental setup was
not comprised of a GPU and a computer, but by two computers, one being the target and
one being the observer. Having a standalone computer act as a coprocessor of another
computer may not seem feasible in many real-world scenarios, including host intrusion
detection. Despite this, it serves the purpose of fulfilling the properties of a self-sufficient
auditor (cf. [8]). The two computers were connected using FireWire technology, which,
due to a design feature of the open host controller interface (OHCI) implementation, al-
lows full access to the target’s physical memory (cf. [6, Chapter 12]). This feature provided
the possibility of observing a prepared process on the target, which, in turn, recorded the
CPU cycles consumed for its duties. By having the target execute predefined tasks with
and without observation, we were able to quantify the performance degradation due to
observation.

With respect to the cost model proposed in earlier work (cf. [10]), we adjusted the ob-
served process in a way that only a portion of its writable data was actually being written.
While the general value of the cost model was confirmed by the gathered results, the infor-
mation gleaned from the experiments has led to a slightly revised version of the model (cf.
Equation 5.1 of Chapter 5). Despite the minor adjustments made, the message remained
the same: Read-only data cannot be written, therefore, does not need to be synchronized,
and thus will not cause resource contention due to forced synchronizations.

Across all experiments, a maximum performance degradation of more than 25% was
measured for the setup in which we observed two of our rule-governed processes, each of
them working on a 64 byte data structure. In our test scenario, this must be interpreted
as the worst case, as 100% of all 128 bytes were writable and, in fact, being written. With
respect to the extent of the performance degradation caused by the observation mechanism,
we also must take the fact that the connection between observer and target (400 Mbit/s)
was rather slow compared to the speed of the GPU-host connection (up to 16 GB/s) into
account. Therefore, the performance degradation caused by applying a GPU would be
much higher if following the busy-wait approach.

In addition to the performance details regarding our coprocessor-based approach for
host observation, the identification of the nature of threats that, despite the promising
properties of an off-host coprocessor, cannot dominate, has also been examined. The corre-
sponding results of the analysis are presented in [9] (cf. Chapter 6). To achieve this goal, we
focused on flow-analyzing techniques that are commonly used in the field of information
security in order to uncover subversion attempts based on the alteration of program flow.
Nowadays, buffer-overflow attacks are the most widely-spread examples of exploiting the
deviation of control-flow. Here, software vulnerabilities are used in order to inject and ex-
ecute defective code. Most – if not all – approaches to guarding a program’s control-flow
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rely on a static analysis, which is, as among others demonstrated by Moser et al. [5], no
longer a sufficient technique for identifying malware.

The contribution of this paper is the investigation and comparison of three common
prototypes in the field of control-flow analysis, and the presentation of a dynamic control-
flow attack, which neither commercial anti-virus suites nor the assessed tools could counter
or detect. Two of the three prototypes we assessed rely on the output quality of 3rd party
tools, which they build upon, and all three tools operate statically, and thus have one short-
coming in common: They are not designed to instantly react to changes in the executional
flow caused by dynamically-loaded code. To this extent, we have developed a C++ pro-
gram which is capable of dynamically altering the control-flow of arbitrary executables by
using a late binding technique for loading dynamic link libraries (DLL). Because this ap-
proach does not exploit any soft- or hardware vulnerability, it stays undetected. Detecting
such unwanted changes in control-flow confronts the counter measurements with the prob-
lem of distinguishing legal alternations of the values of variables stored on the heap from
illegal ones. Or, to cite Forrest et al. [2], “to distinguish self from other”. This is a very gen-
eral problem, and the inability of identifying such attacks is indeed a problem not unique
to current state-of-the art commercial intrusion detection suits. It was no surprise that the
proposed observation and sensor data acquisition approach was unable to detect any attack
of this kind, as the subject of the present thesis is not the proposal of a novel general intru-
sion detection system. Instead, based on and motivated by the results presented in [8], we
succeeded in validating that modern GPUs can be used to autonomously and concurrently
perform host observation in cases where host-side programming and runtime frameworks
are not used.

Clearly, the use of an off-host coprocessor to perform host intrusion detection can have
various motivations. One major argument stems from the fact that even moderately sophis-
ticated attacks will target audit data collection and security controls (i.e., preventive and
detective safeguards). Achieving this is relatively easy when the corresponding mecha-
nisms operate in a highly heterogeneous software environment, as complex software tends
to not be fully flawless, giving adversaries the chance to take advantage of said program-
ming shortcomings. Security holes in prominent software are constantly patched while
new vulnerabilities are discovered at the same time. Therefore, it is necessary to investi-
gate modern ways of performing host intrusion detection. This includes the application of
modern techniques such as machine learning, but also requires the improvement of tradi-
tional methods (i.e., signature matching) for which an equivalent substitute has yet to be
found.

To this extent, the contribution of [12] is a presentation of a proof of concept implemen-
tation of an autonomous GPU kernel able to perform concurrent host observation tasks. As
revealed by Riedmüller et al. [8], modern GPUs cannot intuitively be used as autonomous
auditors, mostly due to the constraints of the corresponding runtime frameworks. By leav-
ing the standard GPU programming model aside, we developed a mechanism through
which the execution of code on a GPU is allowed without the host being actively involved.
That is, in a proof of concept implementation of an autonomously running GPU kernel,
we validated our assumption that a GPU can execute code even after the initializing pro-
cess is terminated. This was achieved with proper hardware configuration and a manual
initialization of the device as such, as well as the context in which the kernel runs. Once
the kernel has been started, we forced the starting process to exit and observed the mem-
ory region on which the kernel operated from a second application. While the kernel itself
performed rather simple read/write operations in this proof of concept, enriching it to the
extent to which it can actually perform security related tasks is simply a matter of good
programming skills.

In addition to detailing the implementation as such, we discuss its security aspects and
present the results of a brief performance benchmark. The untuned version of our sensor
data acquisition component was able to operate with a maximum transfer rate of about 1
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GB/s.
This result once again shows that one advantage coprocessors hold over the CPU is

their dominance in terms of speed, which also incorporates a severe drawback if applied
in conjunction with an unfavorable sampling strategy. That is, in [13], we quantified the
performance degradation in an experimental setup and reported a performance reduction
of more than 25% in one case. While we used a rather slow coprocessor/host connection
(i.e., FireWire) for this puspose, it is easy to imagine how severe the performance degrada-
tion can become when using a high performance coprocessor such as the GPU. Therefore,
achieving a high observing frequency is straightforward, while the busy-wait approach
(i.e., maximum frequency) is undesirable.

With respect to our last research question (i.e., RQ4), the contribution of [11] is the pro-
posal of essentially one model, which can be used to take attack characteristics into consid-
eration in order to optimize the observation strategy of a coprocessor-driven host intrusion
detection system.

The operation of detection algorithms on a snapshot of data is exposed to the risk that
malicious activities are ongoing while the acquired data is assessed. Therefore, limiting
the observation mechanism to a set of comprehensive data elements, while at the same
time recognizing the possibility of causalities between said elements, seems promising in
achieving the twofold objective of providing a reasonable level of security and causing as
little performance degradation as possible.

The proposed model does not only take causal dependencies between so-called attack
sets into account, but also incorporates the likelihood of observations being suppressed by
other operations of higher priority, as well as the possibility that an observed alternation
may have a benign cause. It is worth mentioning that the latter feature may be applied in
the context of dynamic control-flow detection as well, as discussed in [9].

By applying partly-altered versions of well-known models in order to incorporate our
assumptions, we experience a negligible reduction of 1%, in terms of detection probabil-
ity. In contrast to existing approaches, our model demonstrates a significant increase in
efficiency, as neither bulk data snapshots have to be taken nor are we required to observe
all data elements with the same (possibly high) frequency. Additionally to that, the model
reveals the probabilistic chance to be one step ahead of the attacker. That is, given the as-
sumed causal dependencies, a proactive action, for instance, locking the concerned data
element, can be undertaken.

With respect to the ability to perform real-time observation, the practical application of
the causality model showed that the twofold objective of performing unsuppressed obser-
vations while having a minimum failure rate (cf. Section 8.4 of Chapter 8) can be achieved
by taking advantage of the coprocessor’s computational dominance. As modern GPUs
continue to maintain performance superiority, these results underpin the initial proposal
for the use of commodity coprocessors in host intrusion detection made in 2010 (cf. [10]).

1.4 Conclusions and Future Work

Current intrusion detection systems are installed on the very same system they are sup-
posed to protect. They consume valuable system memory and CPU cycles, and are subject
to rather simple attacks, as they rely on the security of the underlying host operating sys-
tem. Consequently, an intruder can easily turn them down or may tamper with the sensor
data acquisition module as such. While the former case can be detected and signaled to the
end user, the latter may stay undiscovered, as the intrusion detection component cannot
find any threat if the data given to it by the host sensors does not show any inconsistencies.

Ideally, a host intrusion detection system would be an autonomous, concurrent, and
self-sufficient soft- and hardware component with full access to the host system’s memory.
As will be presented in depth in Chapter 2, Related Work, various approaches have been
proposed to achieve this ambitious goal.
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The present work proposes the application of modern graphics programming units to
this extent, as GPUs combine the autonomy of external auxiliary hardware with the avail-
ability of commodity hardware. Due to their small instruction set and parallel architecture,
GPUs are able to perform dedicated tasks at a much higher speed than CPUs. Therefore,
our first scientific contribution was a proposal of two cost models in 2010 [10]. With the
assistance of these models, the performance degradation caused by applying coprocessors
in host intrusion detection can be determined. Under the assumption that, not only the size
of the data to be observed, but its constitution in terms of read-only, writable and writable
pages actually being written matters, the general loss of performance of processes under
observation can be identified. The practical validation of this model, as well as the quantifi-
cation of said performance loss was the contribution of [13]. Here, we configured a second
desktop computer to act as a coprocessor of another one and established an interconnec-
tion between the two, taking advantage of a design feature of the FireWire technology. We
gained accurate performance benchmarks from an observed process which reported the
CPU cycles consumed in both cases; with and without being under observation.

In [8], we assessed the architecture, i.e., programming, and runtime frameworks of
modern GPUs, and compared the corresponding features against given properties of au-
tonomous host auditors. The assessment revealed that the architecture of modern GPUs
is generally suitable for building observers that suffice the required properties of self-
sufficient auditors. It is, therefore, the current software frameworks of these commodity
coprocessors that are limiting their application for secure and fully asynchronous host ob-
servations.

By waiving the aforementioned frameworks, we were able to manually configure a GPU
kernel and have it run on a GPU, even after the initializing process has already been termi-
nated. This provided validation for the results presented in [8] and was the contribution of
Seeger and Wolthusen [12].

Coprocessor-based host intrusion detection may be an answer to many of today’s ques-
tions concerning the security of a host intrusion detection system, but, indeed, is not the
answer to every threat. To this extent, we have developed a proof of concept application
that is capable of dynamically altering a program’s control-flow by taking advantage of
the late binding technique. As this technique overwrites references stored on the heap, de-
tecting such alterations is straightforward, while the automatic distinction between legal
and illegal write accesses remains problematic. These results, together with an evaluation
of three common prototypes focusing on control-flow integrity, are the contributions of
Seeger [9] and present one example of the nature of attacks for which the GPUs intrinsic
characteristics do not dominate existing host-bound approaches.

Our latest contribution can be found in Seeger and Wolthusen [11]. Here, we propose a
causality model which allows for the reduction of observation frequency through the con-
sideration of causal dependencies between critical host-side data elements and attack sets.
Besides allowing a targeted observation, the probabilistic results gained from the model
also give an observation mechanism the chance to be one step ahead of the attacker. That
is, under the assumption that a first step always precedes a second one, we can eventually
prevent the second step from being successful once we have seen the first.

One obvious question that has not been addressed so far concerns the acquired sensor
data. We have presented that gathering such data from the host using a GPU is possible at
the expense of performance, in cases where the sampling rate is too high. What has not been
addressed so far is the question of what to do with this data. Depending on how complete
the data samples are, and keeping the tremendous computing power of modern GPUs in
mind, it would be possible to calculate a graph of all possible states between sampling point
α and β. While this requires knowledge about valid system conditions, it also appears to be
a promising approach to revealing plausible and consistent, but nevertheless counterfeited,
states.

In general, it would be interesting to analyze existing intrusion detection algorithms
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to find out how well they can operate on our sensor data. This should include signature-
based, anomaly-based, and specification-based algorithms, likewise. To elaborate the de-
gree to which an algorithm (or a class of algorithms) can deal with missing data points,
could be a starting point. The ability to operate on incomplete data is only one mandatory
feature, possibly qualified algorithms have to suffice. Equally important is their applica-
bility in being executable in parallel. While data parallelism (i.e., SIMD) allows for the
execution of the same algorithm multiple times in parallel, operating on different data,
parallelizing the algorithms as such (i.e., MIMD), could provide further advantages with
respect to the execution runtime. But, special attention has to be paid to the resulting com-
munication complexity. Due to the memory architecture of modern GPUs, i.e., the existence
of several memory entities of different sizes, having different access latencies, the risk of
resource contention because of synchronizations between algorithms instances is present
and needs to be avoided.

This is especially important when aiming at the goal of real-time detection. While mod-
ern GPUs are equipped with fast onboard memory, high-speed links to the host system,
and massive parallel processors, the identification of real-time behavior of implemented
algorithms in specific and the full data acquisition and detection system as such is of in-
terest. In other words, we need to find the optimal trade-off between the level of security
(i.e., the observation frequency) and the loss of performance (i.e. forced synchronizations),
while at the same time guaranteeing a maximum time-to-detection.

Besides the detection of anomalies and intrusion attempts, the ability of self-protection
(and possibly self-healing) is a promising field of research. It must be evaluated what kind
of attacks a coprocessor (i.e., the GPU in our case) is vulnerable to. Due to the currently
very limited interface between the host system and the device, we expect the number of
attacks to be rather small.

Nevertheless, a first step towards self-protection could be the realization of a mutual
health check. That is, each of the employed GPU processors (or even GPU threads) ran-
domly checks the status of other processors/threads. If a coprocessor or thread is found
to be infiltrated or subverted the tasks assigned to this component must be taken over by
the remaining processors/threads. In this case, the infested device must be reseted. To pre-
vent further incidents of the same kind (i.e., to avoid that the attacker uses the same attack
vector again), we need a possibility to cure the affected entity from its vulnerability. A first
approach towards this ambitious goal would be a thorough and automatic analysis of the
attack, followed by a software reconfiguration.

At the very least, a reporting functionality that gives feedback about what led towards
the attack should be realized. After all, self-protection, as well as self-healing capabilities
must be resource efficient and should be operated as decentralized as possible in order to
avoid a single point of failure.

1.5 Document Structure

The present thesis is structured as follows: The related work is presented in Chapter 2. It
is divided into three sections and contains related work in the field of modern computer
architecture in Section 2.1, coprocessors in general and direct memory access in Section 2.2,
and host, as well as network intrusion detection using coprocessors in Section 2.3.

Part II presents the six publications containing the contributions of the present thesis in
full length. The first paper, proposing a cost model for tightly coupled asymmetric concur-
rency, is the subject of Section 3. In Section 4, we present the results of assessing modern
GPUs in terms of their ability to be intuitively used as autonomous host auditors, followed
by quantified performance degradation figures for various experimental setups, detailed in
Section 5. The use of control-flow techniques in a security context, as well as the common
weakness of three popular prototypes, is the subject of the paper presented in Section 6.
In Section 7, we present the validation of our assumption that by waiving the correspond-
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ing programming and runtime frameworks, modern GPUs can be detached from the host
in order to function fully autonomously. The fact that computer attacks are non-atomic is
taken advantage of in Section 8. Here, we present a probabilistic model that allows for the
countering of subversion attempts even before they are been successfully accomplished.
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Chapter 2

Related Work

This chapter provides an overview of related literature in the field of modern computer
architecture in Section 2.1, coprocessors and direct memory access in Section 2.2, and host,
as well as network intrusion detection using coprocessors in Section 2.3.

While an exhaustive amount of related scientific papers and standard work exists, we
focus on contributions most relevant to the present thesis.

2.1 Modern Computer Architecture

The architectural features of modern computer systems are of prime importance to the
present thesis. The evolution towards several caching hierarchies, multiple processors,
and memory entities supporting different clock speeds is based on a single demand: the
demand for faster computer systems. The result of interfering with said high speed mem-
ory and processing entities is lower performance.

With system architecture being the heart of any information system, the following sec-
tion will briefly introduce the history of computer architecture to make clear where today’s
ubiquitous non-uniform memory architecture comes from.

According to Hellige [31], the term computer architecture dates back to the beginning of
the 1960s, when scientists started to focus on the earlier less-commonly-regarded aspects
of computer systems: technical organization and design structure. The philosophy went
away from a construction-only approach towards the organization of the full structure of
a computer. Even before the term system architecture as such was mentioned in the IBM
(international business machines) report RC-160, authored by Johnson in 1959, Speiser, at
that time head of the European IBM research laboratories Zurich (Switzerland), authored in
1950 a design guideline in which he described the computer as a “design conflict model”,
aimed at contrary goals while trying to establish a reasonable equilibrium between hard-
ware and software efforts. Based on these thoughts, in 1961, he published his textbook
Digitale Rechenanlagen [85]. This book is known to be the first one to elaborate on a hierar-
chical architecture concept for computer systems.

Today’s commodity computers basically follow an architecture which is formally called
the von Neumann architecture [96]. Besides the fact that Zuse’s Z1 already included some
of the characteristics of this new architecture (cf. patent application Z23139/GMD Nr.
005/021), it was the technical report entitled First Draft of a Report on the EDVAC1 by von
Neumann [96], published in 1945, that outlines what is today known as the von Neumann
architecture. Whether or not von Neumann knew about Zuse’s work, and if or to what
degree he was inspired by the work of Turing (cf. [92]), cannot be answered for sure.

Besides the input/output (IO) unit, the von Neumann architecture is distinguished by a
memory unit and a processing unit divided into control and arithmetic logical units (ALU)
[96]. In particular, the presence of a memory unit for storing data, as well as programs
earned von Neumann the title of being the inventor of the first stored-program computer
[25]. Prior to this, computers such as the ENIAC (electronic numerical integrator and com-
puter) had to be programmed by reconfiguring the hardware wiring. This task was known

1EDVAC: electronic discrete variable automatic computer
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to be very complex and time consuming, described in detail by Goldstine [26], and could
only be done “at the cost of much tedious preliminary labor” [27].

According to Flynn’s taxonomy [22], “a hierarchical model of computer organizations”,
the von Neumann architecture falls under the single-instruction single-data (SISD) cate-
gory. Computers belonging to this category intrinsically suffer from the so-called von Neu-
mann bottleneck, a term introduced by Backes [4] in 1978, describing the architectural weak-
ness that occurs when one bus is used to connect the processing unit with the memory unit
that holds both data and instructions. As SISD architectures work absolutely sequentially,
the bus is the primary limiting factor, as it operates at much lower speed than the CPU.
Furthermore, the fact that CPU frequencies rose (and still do, though but at a slower pace)
much faster than the speed of buses or access times for memory exacerbates the impact of
the von Neumann bottleneck.

Even the gap between clock speeds of modern CPUs and memory access times poses a
problem and the von Neumann bottleneck is, therefore, still present. Borkar et al. [6] state
in their white paper that, to this extent, “...performance will have to come by other means
than boosting the clock speed of large monolithic cores. Instead, the solution is to divide
and conquer, breaking up functions into many concurrent operations and distributing these
across many small processing units.” Today, the effect of memory access times limiting
a computer’s performance, is known as the memory wall, briefly described by Wulf and
McKee [102].

Between 1939 and 1944, Aiken, at that time already working at Harvard University,
designed and assembled the IBM automatic sequence controlled calculator (ASCC), better
known under the name Harvard Mark I [17, 40]. In contrast to the von Neumann archi-
tecture, the design of the Harvard Mark I was based on using separate memory (i.e., also
separate buses) for data and instructions, which was seen as a solution for the root cause
of the von Neumann bottleneck (i.e., data and programs stored in the same memory and
hence connected by the same bus). As this was a fundamental step forward in the field of
computer architecture, this design was given a name: Harvard architecture. The Harvard
architecture shows a clear improvement over the von Neumann architecture as data and
instructions can be loaded in parallel, which is achieved at the cost of complexity. Today,
structures based on the Harvard architecture are, due to their performance, applied to data
intensive tasks. That is, they are included in the design of digital signal processors (DSP)
[28]. While today’s commodity computers basically follow the von Neumann architecture,
they also incorporate some design features based on the Harvard architecture. For perfor-
mance considerations, i.e., to counter the von Neumann bottleneck and the memory wall,
caches have been introduced to both architectures. In conjunction with prefetching and
write-back strategies, the number of accesses on the slower memory entities, as well as
synchronization overheads, are tried to be kept to a minimum (cf. [32]).

The increasing number of multiprocessor computers and, with it, the omnipresence of
caches, has led to several different memory architectures, of which the best known is the
non-uniform memory architecture (NUMA). Much simpler than the NUMA is the uniform
memory architecture (UMA), in which the memory access times for each processor are
identical, owning to the fact that “all processors have a uniform latency from memory even
if the memory is organized into multiple banks” [37]. The main memory, as well as the
address space is physically shared between all processors, and allows for each processor to
execute the same process. The processor architecture applying UMA is commonly known
as symmetrical multiprocessor (SMP) architecture [15]. In contrast to this, NUMA provides
each CPU (or each set of CPUs belonging together) with its own local memory and its own
local I/O subsystem, while each CPU (or CPU set, respectively) also has access to non-
local memory, i.e., the local memory of other CPUs [15]. As different memory access times
exist within this memory architecture, it is called non-uniform. Due to the corresponding
characteristic properties, UMA is best suited for cases where a single (large) process is
executed by many CPUs while NUMA performs best in scenarios where multiple tasks are
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executed by different CPUs. Concrete implementations of NUMAs vary not only among
system vendors but also between different system series built by the same vendor. The fact
that the performance of such architecture depends on its usage (e.g., execution of tailored
scientific applications, hosting of large-scale web services, gaming, office, etc.) contributes
to this fact. Therefore, NUMAs follow different strategies in terms of, for instance, when to
load certain data into a certain cache and when to omit other data. In order to increase the
so-called locality of references, different strategies that perform best in different scenarios
have been engineered.

In 1991, Ramanathan and Ni [68] provided a thorough analysis of critical factors in
NUMA memory management and found out that not replicating data into different caches
is, under certain conditions, even better than a full replication. They used “a trace driven
simulator written in GNU C++” and state that management policies should be application-
dependent, which reflects the above fact that there are various different NUMA imple-
mentations. Results on the performance of a certain NUMA management policy always
depend on the processor used. To this extent, Zhan and Qin [105] provided, in the same
year, performance results measured on a real NUMA multiprocessor2 and tested for inter-
communication overhead and remote access delay. The results are fine-grained and allow
the definition of different processing strategies, while – as could be expected – the efficiency
of both intercommunication and remote access depends on the task executed. The certainty
that there is no perfect strategy fulfilling all requirements is stressed by the fact that even
today, research on this very topic is done, as shown in the 2011 paper by Majo and Gross
[53], who assess the NUMA performance of an Intel Xeon 5520 (Nehalem) processor. Es-
sentially, they confirm the results from the early days of the NUMA, namely the fact that
its performance depends highly on the use case, as well as the way that applications make
use of different memory entities.

2.2 Coprocessors and Direct Memory Access

The concept of employing other processing units to assist the CPU has a long history, and
today, this concept is realized in information systems of all sizes. In addition to mathemat-
ical computations, which constituted a central field of application for coprocessors in the
early days, they are now valuable in many different areas.

The following section will introduce different coprocessors and give examples of their
corresponding fields of application. As the GPU is of prime importance with respect to the
present thesis, we will also detail the physical and logical architecture of this omnipresent
and powerful coprocessor, followed by an introduction of the direct memory access con-
cept. At the end of this section, we also present a coprocessor, that is able to operate concur-
rently and autonomously, but which is unfortunately rather slow, limited in its application
scope, and built upon extraordinary hardware.

Coprocessors are special-purpose processors that assist the CPU by relieving it from
dedicated tasks. A coprocessor usually has a limited instruction set and is designed to
efficiently perform a certain task at much higher speed than the CPU could do it. An
overview of the requirements of a secure coprocessor, its architecture, and the threats that
need to be countered are summarized by Smith and Weingart [80]. Earlier works by Smith
cover, for instance, the application of secure coprocessors and research issues [78], and
propose a balance between security and ease of programmability [79]. Furthermore, Yee
has in detail presented the security properties of secure coprocessors available before 1994,
and has also demonstrated “how physical security requirements may be isolated to the
secure coprocessor” in [103]. How coprocessors fulfilling corresponding properties can
be used in electronic commerce applications is also discussed by Yee in [104]. All these
early works have the fact in common that the proposed architectures and prototypes are

2They used the BBN GP1000 (cf. [2]).
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capable of performing limited cryptographic computations or are used to securely store
cryptographic keys.

From a historical point of view, von Neumann introduced the first coprocessor in his
report on the EDVAC [96], where he mentioned not only the CPU but also an assistive pro-
cessing unit in charge of arithmetic and logical operations (ALU: arithmetic logic unit). As
computer architecture matured over time, former coprocessors such as the ALU or later
the FPU (floating point unit) became integral parts of the CPU [60], which saved silicon
and reduced latencies caused by slow buses [33]. Besides its application in digital signal
processing, today, the field of graphics computations is well-known for the application of
powerful coprocessors. This is not only because of the rising demand for high resolution
images, but is also due to the fact that modern graphics processing units (GPU) are suit-
able for non-graphics computations. To this extent, the term general purpose computation
on graphics processing units (GPGPU) mainly refers today to the use of modern GPUs to-
gether with vendor dependent programming and runtime frameworks such as the CUDA
(compute unified device architecture) SDK (software development kit) from NVIDIA, or
the Stream SDK from AMD (advanced micro devices) and ATI (ATI technologies inc.), re-
spectively. These coprocessors draw their massive power mainly from their parallel ar-
chitecture, which allows the execution of single or multiple instructions on multiple data.
According to Flynn’s taxonomy [22], these architectures are called single instruction, mul-
tiple data (SIMD), and multiple instructions, multiple data (MIMD). In addition to the ar-
chitecture, it is the possession of several local off-chip (i.e., local, constant, texture and
global memory) and on-chip (i.e., registers, caches and shared memory) memory entities
of different sizes and access times that makes a GPU fast. This gives application program-
mers the chance to take advantage of bulk data transfers between host and coprocessor,
hence keeping the need for time-intensive interactions over the interconnection bus to a
minimum. Off-chip memory is just another term for the GPU’s device DRAM (dynamic
random access memory) memory, which serves as an interface between the GPU as such
and its connected host.

In order to provide an insight into the architecture of a modern GPU, we now detail the
physical memory and the logical execution architecture of a Gainward GeForce GTC 260
GS graphics card. Facts and figures are based on the NVIDIA CUDA programming guide
(cf. [64]). The device memory is divided into three regions. Usually, the largest memory
available is the global memory. It is uncached and thus generally the slowest memory. An
alternative path to regions of the global memory is available by making use of the texture
memory. It also resides within the device memory, but, in contrast to the global memory,
the texture memory has a 6 to 8 KB on-chip cache per multiprocessor. The smallest region
of device memory is called constant memory. While it is only 64 KB large, it is referenced
to an 8 KB on-chip constant cache. As its small size and the availability of a cache already
suggest, the constant memory is very fast. That is, as long as concerned threats read from
the same address, accessing the constant cache is as fast as accessing a register. On-chip
memory is generally the smallest and fastest memory available. Each streaming processor
has access to a set of registers3. With respect to memory speed, the registers are the fastest,
while with 32 bit, they are also the smallest memory available. As one register belongs to
one streaming processor at a time only, a shared memory of 16 KB, organized in 16 banks,
connects all streaming processors belonging to the same multiprocessor. The shared mem-
ory is as fast as the registers, as long as no bank conflicts occur. In addition to private regis-
ters, each streaming processor has access to local memory. It is worth mentioning that local
memory is physically a part of the global memory and thus off-chip. Since global memory
is slow and uncached, the same holds for local memory. The programming framework of
the NVIDIA CUDA technology allows for serial programming, while the execution model
provides a massive parallel environment. A function written in the programming language
CUDA C, tagged for device execution, is called a kernel. This kernel is executed by several

316.384 per streaming multiprocessor in the case of a modern Gainward GeForce GTC 260 GS.
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blocks. While each block contains the actual threads, the blocks themselves are grouped
into one grid. The fact that only one kernel at a time can be processed implies two things:
First, kernels are processed sequentially, which implies synchronization overhead. Second,
as only one grid is executed at a time, its blocks are distributed over all available stream-
ing multiprocessors. From the communication’s point of view, threads within the same
block may synchronize via shared memory. As shared memory is a per-multiprocessor
memory, one block cannot spread over two or more multiprocessors. This also implies that
threads of different blocks cannot communicate intuitively4. That is, they operate in total
independence. Ideally, all threads within one warp (a logical unit meaning a group of 32
parallel threads) agree upon the same instruction path, as this allows the full warp to finish
with maximum speed. The model behind this is called SIMT (single instruction, multiple
threads).

Graphics computations can be complex, and the amount of data subject to these com-
putations may be vast. In order to provide a high speed connection with the host, the GPU
is attached to the northbridge, i.e., the same chip CPU and RAM are directly connected to,
and uses the PCIe (peripheral component interconnect express) bus for intercommunica-
tion. In contrast to this, USB, FireWire, and even other PCIe interfaces are attached to the
southbridge and, therefore, suffer from high latency when, for instance, communicating
with the host’s CPU or system memory. One common way of lowering latency, and, in
particular, the impact data transfers can have on the performance of the CPU (and thus, the
whole system), is through the use of the direct memory access (DMA) technology.

“Direct Memory Access (DMA) is a means by which devices can exchange data with
memory or with each other, without requiring intervention by the processor. Standard
DMA allows a device to exchange data with memory, but not with another device. Bus
Mastering DMA allows two devices to communicate directly with each other. The advan-
tage of using DMA is that it reduces the load on the processor, allowing it to perform other
tasks.” [88, p.21]

Bus mastering is also called third-party DMA, which refers to the fact that the device
itself (e.g., GPU) provides a DMA controller, and thus allows data to be transferred without
passing through the CPU [88].

In addition to intrusion detection (cf. Section 2.3), coprocessors are applied in other IT
security related fields. Two prominent examples are cryptography and digital forensics.
Cryptographic coprocessors have a variety of physical manifestations with smart cards
being the most prominent one. Smart cards with dedicated cryptographic coprocessors
are often used in conjunction with public-key infrastructures. That is, a user’s private key,
which is used to establish a secure communication environment, is stored on a smart card
[29]. The advantage of a smart card, in contrast to other coprocessors, is the convenience
of easily carrying one at all times, while their application often does not require physical
contact with the smart card reader, as cards with a contactless data transmission feature
exist. Already in 1994, Clark and Hoffman [12] envisioned a smart card’s applicability
beyond pure access control and proposed to have computers boot from smart cards in
order to ensure boot sequence integrity, which, for that time, can be seen as a modern way
of trusted computing.

In terms of execution speed and data throughput, a smart card is much slower than,
for instance, a desktop computer or dedicated hardware components. A typical AES (ad-
vanced encryption standard) computation with a 128 bit key and a 16 byte block takes 20
ms (6.4 kbit/s) on a smart card with a 16 bit CPU running at 4.9 MHz, opposed to 160
ns (400 Mbit/s) on a computer running a Pentium 4 with a 3.5 GHz CPU and 1.9 ns (34
Gbit/s) on an AES hardware component [69, p.141]. Such hardware components are gen-
erally integrated into desktop computers and servers, and are interconnected through the
PCI (or PCIe) bus. They can be seen as autonomous, as they are basically a full computer

4The only way to synchronize blocks is to make use of global memory. That is, after one kernel is finished,
another one is started, using the results of the former, which are stored in global memory.
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on a PCI-card. For instance, the IBM PCIe cryptographic coprocessor contains a “CPU, en-
cryption hardware, RAM, persistent memory, hardware random number generator, time
of day clock, infrastructure firmware, and software” [39]. Due to their equipment, such
coprocessors are of course much more sophisticated than smart cards, and are capable of
executing a wide range of algorithms including SHA 512 and RSA, for example (cf. [39]).

Field programmable gate arrays (FPGA) are yet another example of powerful coproces-
sors that are also applicable in cryptographic tasks. As is implied by its name, an FPGA
offers a programming interface that allows the implementation of custom logics and algo-
rithms. Ease of configuration is the main advantage held by an FPGA over an application-
specific integrated circuit (ASIC), which is designed for a specific task. An ASIC can execute
this specific task very quickly, but in turn, cannot be reconfigured easily.

In the field of digital forensics, coprocessors are mainly used for data acquisition. While
perpetuating digital evidence stored on a computer’s hard disk drive is straightforward,
additional hardware is needed in order to capture data from volatile memory, such as the
main memory, in a sound way, so that it may be used as evidence in court. One of the most
critical functional requirements for said hardware is that it must be capable of creating
an exact copy of the data in question without altering the system state. Various types
of coprocessors are applied in order to achieve this. Without purchasing special-purpose
hardware, FireWire technology can be used to connect one computer with another and in
order to gain access to the target system without the target system becoming aware of the
connection [19].

Both cryptography and digital forensics are, up to a certain extent, fields in which the
use of GPUs is applicable. In 2005, Cook et al. [13] assessed the feasibility of moderns GPUs
for use in cryptographic processing, and they conclude that, given the available APIs, GPUs
are not suited to process symmetric key ciphers, though they may be used for encryption
and decryption of, for instance, graphical images, in order to avoid leaving a temporal
footprint of plain text in system memory.

Two years later, Harrison and Waldron [30] presented results from their implementation
and testing of a GPU version of the AES block cipher encryption algorithm. Similarly to
Cook et al., the authors report a very high CPU utilization when the GPU program is run-
ning, and benchmark comparisons of existing CPU implementations of the AES algorithm
revealed no performance advantage on the side of the GPU. One reason for this is the fact
that GPUs benefit mostly from working on large bulk data and minimum host interaction.
A technically detailed description of a GPU-based AES algorithm including performance
results is also given in the master thesis by Rosenberg [71].

In 2008, Korobitsin and Ilyin [45] presented a GPU implementation of the GOST-28147
(cf. [18]) algorithm for symmetric ciphering, and reported a performance increase between
two and three times for their specific test setup. Based on this, the authors conclude that
“the GPU can (be) used to offload ciphering-related tasks from the CPU at times when the
GPU stays idle”, despite the fact that no performance improvement could be measured in
the GPU-based AES implementation.

The validation that modern GPUs can be used within the field of digital forensics was
provided by Marziale et al. [54] in 2007. The authors presented the results of GPU involve-
ment in the task of file carving (i.e., finding files by a set of predefined header and footer
definitions). In all test scenarios, which differed in the number of definitions to search for,
as well as amount of data to search in, the GPU performed best.

Petroni et al. [66] presented a coprocessor-based kernel runtime integrity monitor (CoPi-
lot) in 2004. This prototype is basically a single-board computer on a PCI add-in card, and
is able to establish a link between two computers. While initially presented as an off-host
host observer, it can also function as a forensics coprocessor for the task of data acquisition.
In the same year, Carrier and Grand [7] proposed a hardware-based memory acquisition
procedure. The authors described an approach based on a hardware expansion card, which
is installed into a PCI bus slot before an incident occurs, thus allowing its application when
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needed. A method of preparing a computer system for the acquisition of volatile data is
also proposed by Libster and Kornblum [50], who suggest the integration of a memory
acquisition mechanism into the operating system, thus, rendering the necessity for exter-
nalities obsolete.

2.3 Intrusion Detection using Coprocessors

Works related to intrusion detection using coprocessors are divided into three parts. In
Section 2.3.1, literature directly concerned with host intrusion detection using coprocessors
is discussed, while in Section 2.3.2, related work within the focus of network intrusion
detection using coprocessors is presented. Finally, in Section 2.3.3, literature that provides
no direct coprocessor-based approaches, but nevertheless contributes to the broad field of
using off-host components to secure the host as such, is briefly presented.

2.3.1 Host Intrusion Detection using Coprocessors

While the concept of using coprocessors for special tasks has a long history, reaching back to
the early days of computers (cf. von Neumann [96]), their application for purposes beyond
their intended scope is a rather young tradition. Considering the fact that a coprocessor is a
special-purpose processor uniquely designed to fulfill a dedicated task at maximum speed,
this is no surprise. To the best of our knowledge, Molina [57] was the first to propose the
use of coprocessors for host intrusion detection in his master thesis in 2001. Based on his
thesis, Molina and Arbaugh [58] published the idea in December 2002. Even though Zhang
et al. [106] had already published their paper proposing secure coprocessor-based intrusion
detection in July 2002, this work includes a reference to an early and unpublished version
of the December 2002 paper from Molina and Arbaugh5.

Molina and Arbaugh present a definition of what they call an independent auditor, and
detail a specific implementation using an embedded system attached to a PCI bus. In [58],
the major advantage of an observation and auditing mechanism that does not rely on the
integrity of the host operating system is already explained: the auditor and, in particular, its
results are trustworthy even if the concerned host operating system has been compromised.
In cases where the auditor is installed on the machine to be audited, an attacker may be
able to subvert the auditor itself. For a proof of concept, Molina and Arbaugh used an
evaluation board from Intel called EBSA-285, which is based on the Intel StrongARM SA-
110 processor, and installed the open source advanced intrusion detection environment
(AIDE) (cf. [48]), in order to perform file system integrity checks. The performance impact
on the target system was reported to be 5% in the worst case, and the average transfer rate
was 1.4 Mbit/s.

The approach presented by Molina and Arbaugh highlights the problems of auditors
that rely on host system integrity. Their proof of concept provides validation of the as-
sumption that coprocessors can be used to perform host intrusion detection. Due to the
fact that they establish a direct connection between their coprocessor and the host’s hard
disk drive, the performance degradation remains rather low at the cost of transmission
speed. Therefore, it remains questionable whether using an external, low-speed CPU con-
nected to a high latency memory entity can provide a reasonable level of security. Despite
the doubful applicability in real-life scenarios, the defined properties an auditor must ful-
fill in order to be called independent are an important contribution. Even though none of
the works from Smith et al. were referenced, leaving aside cryptographic qualifications,
said properties show a good congruence with the requirements of a secure coprocessor
published by Smith and Weingart [80] in 1999.

As already mentioned, Zhang et al. [106] proposed the application of a secure copro-
cessor for host intrusion detection in July 2002. The presented approach is closely related

5Reference [4] in [106].
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to that of Molina and Arbaugh, as it uses an external auxiliary coprocessor to perform
integrity checks on the host. In contrast to Molina and Arbaugh, Zhang et al. used the
IBM 4758 PCI cryptographic coprocessor. It may be interesting to know that this copro-
cessor was among others designed by Smith and Weingart. Zhang et al. summarize the
advantages of a secure coprocessor in four points: the independence from the host’s OS,
the narrow interface between host and coprocessor, the ability to boot securely, and its abil-
ity to act as a trusted observer. The authors argue that the fact that host vulnerabilities do
not affect the proper functioning of the coprocessor can be regarded as self-protection. In
contrast to this rather passive self-protection feature, McEvoy and Wolthusen [56] previ-
ously introduced a mechanism, distinguished by distributed computations, that is difficult
to subvert, even with full knowledge of the mechanism, which can be seen as active self-
protection. Zhang et al. name three different scenarios in which coprocessors can be used to
secure the host: checking invariants that belong to the data structure of the host OS kernel,
file and file system integrity checking, and virus detection. With respect to the observation
of kernel invariants, the work from Zhang et al. differs from existing on-host approaches
(cf. e.g., [23]) in its degree of abstraction. With respect to virus detection capabilities, the
authors do only state that their approach is “much less intrusive than (using) a tool like
Norton Utilities”. They also say that, due to the fact that their technique relies on sampling
(which is rather slow, as the PCI bus is used), attacks may not be detected, and thus only
the likelihood of a successful subversion attempt can be reduced. While there is no abso-
lute security, any intrusion detection approach only reduces the likelihood. Nevertheless,
sampling speed does play a vital role in increasing the chance of detecting attacks while
they are ongoing.

Based on the achievements of 2002 (cf. [58]), in 2004, Petroni et al. [66] proposed a
prototype of a coprocessor-based kernel integrity monitor called Copilot. Still based on
the EBSA-285 evaluation board, Copilot focuses on the physical memory of the host rather
than its hard disk drive. To be precise, it is equipped with knowledge about how an un-
compromised system looks, and compares its observations with this knowledge. To this
extent, Copilot does not aim to protect systems from being infected, but to prevent the in-
stallation of rootkits on those systems that have already been infected. To achieve this goal,
it simply compares known good hashes of memory that contains kernel or LKM (loadable
kernel module) text, as well as memory that contains jump tables of kernel function point-
ers, with frequently recalculated hashes of the same data. Petroni et al. note that Copilot
was able to detect the presence of 12 real-world rootkits, and they give further insight into
how the performance degradation was measured. That is, they used the STREAM [55] and
WebStone [89] benchmark and compared the data throughput with and without Copilot
being on duty. As a result, they report a performance degradation as low as 0.84% on the
host being observed when the integrity checks are repeated every 30 seconds.

The Copilot prototype is an impressive example regarding the feasibility of a secure co-
processor performing host integrity validation. Besides the limitations discussed by Petroni
et al. themselves, some questions regarding the reported performance degradation remain
open. For instance, it remains unclear how fast the coprocessor could transfer data off the
host, as well as how much data was copied during each run. This information would give
the performance penalties more significance. It is also important to keep in mind that the
figures reported in [66] reflect the hashing of only one kernel jump table, which is fine for
a proof of concept, but not enough for the real-life usability of Copilot.

As a common weakness, all proposed approaches make use of external auxiliary co-
processors, which is counterproductive with regard to their applicability in private house-
holds. In detail, Molina [57], Molina and Arbaugh [58], and Petroni et al. [66] used the
EBSA-285 evaluation board, and Zhang et al. [106] applied the IBM 4758 PCI cryptographic
coprocessor.

In 2010, Fechner [21] presented a hash-based approach that proposes the use of a GPU
for SHA-1 (secure hash algorithm 1) calculations in order to detect virus signatures in host
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data. To this extent, a host process copies the data in question off the host, onto the GPU
memory, where the actual assessment is done, taking advantage of the GPU’s architecture
in terms of executing a single command on multiple data (i.e., SIMD), which does lead to
a performance improvement compared to a host-only approach. The fact that GPUs are
beneficial for such tasks is not new and has been presented by other researchers before,
especially in the context of network intrusion detection (cf. Section 2.3.2). With respect to
the author’s aim to provide additional merit concerning host security, the presented ap-
proach seems to be inappropriate for at least one major reason. That is, the ability of the
GPU to perform its tasks depends highly upon the host components transferring the data
to audit onto the GPU. While attacking host-side services can be achieved by even moder-
ately skilled adversaries, i.e., shutting them down or invalidating the data to be assessed, a
combination of GPU and CPU services does not provide additional value in terms of host
security.

2.3.2 Network Intrusion Detection using Coprocessors

The ease of accessing network data, in contrast to the efforts one must undertake in order
to access data stored on a host system (e.g., desktop computer or laptop), may be the main
reason why coprocessors are more prominent in the field of network intrusion detection
than they are in the field of host intrusion detection. While one of the advantages of using
coprocessors for host observation is the increase in security, due to a set of properties they
have to fulfill (cf. e.g., [58, 80]), the reason to apply coprocessors for auditing network data
is solely founded by the increase in speed. As network bandwidths have come a long way
from several kilobits per second, in the early days of the Internet [72], to several hundred
gigabits per second today [62], using dedicated, high-speed devices for deep packet inspec-
tion (i.e., pattern matching on the payload of network packets) is necessary in order to keep
latency to a minimum.

Using GPUs for host intrusion detection purposes is a rather new discipline. Therefore,
this section also aims to provide references for concepts that have led to successes in the
adjacent field of network intrusion detection using coprocessors.

There are basically two types of coprocessors applied in practice: Field programmable
gate arrays (FPGA) and graphics processing units (GPU).

FPGAs for Network Intrusion Detection

In addition to early works in the field of text processing using FPGAs (cf. e.g., [51, 67]),
Sidhu et al. [76] are recognized for presenting the first FPGA implementation of a well-
known string matching algorithm (i.e., the Knuth-Morris-Pratt (KMP) algorithm for fast
pattern matching in strings (cf. [44])) in 1999. While their main focus was on the reduc-
tion of mapping time, which “refers to the time (needed) to compile, place and route the
logic to be used on the FPGA”, by using self-reconfiguration on multicontext FGPAs, the
authors implemented the KMP algorithm in order to emphasize the runtime advantage
of their approach. While the mapping process is time consuming and must be repeated
for every problem instance using CAD (computer aided design) tools, having the FPGA
itself generate future configurations based on previous ones (i.e., self-configuration) has
an enormous runtime advantage. Searching for an 8 character long string in a text of 104

characters, Sidhu et al. reported a speedup in mapping of about 6 · 106, compared to using
a CAD tool, and an improvement of 16.6 over a software version (i.e., executed on a host)
of the KMP algorithm.

Even though Sidhu et al. include FPGA implementation details of a pattern matching
algorithm, as well as results of an initial performance analysis, their focal point of the work
is on self-configuration of the FPGA. Two years later, Sidhu and Prasanne [75] presented a
realization of a nondeterministic finite automaton (NFA) running on an FPGA. This novel
implementation is compared to a deterministic finite automaton (DFA) executed on a serial
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machine. The performance comparison reflects the space requirement, the construction
time, and the time per text character. With respect to the first property, the NFA reports
quadratic space requirement, whereas the DFA experiences exponential growth. In the
worst reported case, the construction time of the DFA took more than 24 hours, as opposed
to less than a tenth of a second in all NFA cases. Concerning the time needed to process
each character, the DFA version reports a constant period of 30.88 seconds, whereas the
time needed by the NFA increases roughly linearly. Nevertheless, “assuming the linear
increase holds, the time required by the FPGA (i.e., NFA) to process a text character will be
lower than the time required by software (i.e., DFA) even for regular expressions hundreds
of characters in length”.

While not directly related to information security, the previously stated early applica-
tions of FPGAs for pattern matching give an idea about the the complexity in terms of (re-)
reconfiguring said devices. This also holds for the first security focused FPGA-approaches,
as the following examples confirm.

To the best of our knowledge, it was Hutchings et al. [38], in their paper from April 2002,
who first proposed the use of coprocessors for network intrusion detection. Their FPGA-
based regular-expression module generator eventually generates an EDIF (electronic de-
sign interchange format) netlist, which is, in turn, used to create an FPGA bitstream. In
order to investigate the performance of their approach, the authors present a comparison
to a software implementation of the GNU regex program. To validate its applicability when
combined with network intrusion detection systems (NIDS), the open source NIDS Snort6

[70] was selected. The tests revealed that the software implementation performed better
for smaller regular expressions (i.e., ≤ 47 non-meta characters), but was outperformed by
the FPGA implementation, which was based on the NFA approach proposed by [75], for
larger expression in terms of latency, throughput, and CPU utilization by more than 600
times, in the best case. Based on this result, the authors conclude that FPGA-based string
matching can reduce CPU workload while at the same time processing more data packets
in less time.

Until today, research in the field of utilizing FPGAs, specifically, and coprocessors in
general, for host intrusion detection (i.e., DPI) is mostly concerned with proposing new
architectures and algorithms implemented in the latest hardware in order to consume less
memory and to assess more packets per second. To this extent, we will now continue to
briefly present remarkable contributions, mostly in chronological order:

In September 2002, Cho et al. [10] presented an FPGA-assisted software firewall, ca-
pable of processing 2.88 Gbit/s of traffic, in contrast to an original maximum of about 60
Mbit/s. Their test environment used the Hogwash7 [3, p.402] filter, which is wrapped
around the Snort IDS. Besides the actual performed measurements, the authors hypothe-
size that a properly tuned version of their approach could allow the assessment of 6 Gbit/s
without further latency.

One year later, Dharmapurikar et al. [16] proposed the use of parallel bloom filters for
string matching on FPGAs. While the data processing speed was reported to be 2.4 Gbit/s,
this performance was measured while scanning a set of 10,000 strings. In addition to the
advantage over existing approaches, that is, the ability to handle larger data by consuming
reasonable resources, the authors also state that applying bloom filters has the drawback of
causing false positive alarms, but never false negatives. Dharmapurikar et al. use a second
process to take care of said false alarms.

In the same year, Sourdis and Pnevmatikatos [82] achieved a throughput of 11 Gbit/s.
In contrast to previous work, the authors employ neither finite automata nor packet-level
parallelism (cf. [59]). Instead, full-width comparators are used. They state that by easily
extending said comparators (i.e., adding more resources), even higher throughputs can be
achieved.

6http://www.snort.org
7http://hogwash.sourceforge.net
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Baker and Prasanna [5], Cho and Mangione-Smith [8], and Clark and Schimmel [11]
presented their contributions concerning the size of the FPGA logic at the 12th annual IEEE
symposium on field-programmable custom computing machines (FCCM 2004). Baker and
Prasanna focus on a pre-filtering architecture that reduces the need for duplication within
comparators. While increasing the area-time performance, this technique also increases the
number of false positive alarms. Cho and Mangione-Smith set their focus on reusing parts
of the logic filter in order to reduce the actual filter size. Additionally, a simple rearranging
schema for better memory utilization is proposed. Both methods combined make it possi-
ble to place 230,300 gates onto a single Spartan 3 FPGA, while allowing auditing network
traffic at 3.2 Gbit/s. Clark and Schimmel presented a design for a multi-character decoder
NFA technique, which theoretically allows pattern matching to be performed at network
rates of 100 Gbit/s and more. The major advantage over existing approaches (next to the
assumption of an input width of 512 bits) is the fact that their technique allows the devel-
opment of circuits that are capable of processing more than one character per clock cycle.
The authors also compared their decoder NFA approach to experimental results from other
authors (e.g., [82]) that revealed a much lower performance at real input widths (i.e., 32 bit).

As an extract of his master thesis (cf. [81]), in 2005, Sourdis et al. [83] presented an
evaluation of different FPGA-based pattern matching techniques, which also revealed that
the approach from Clark and Schimmel may be promising for the future, but does show a
reduction in performance for common input widths.

An architecture that can be implemented for ASICs, as well as for FPGAs was presented
by Cho and Mangione-Smith [9] in the same year. The authors make use of a pattern de-
tection module and a long pattern state machine in order to deal with patterns of different
length efficiently. Another remarkable contribution is the fact that the final filter can be
adjusted without the burden of reconfiguring the hardware as such.

In 2008, Sourdis et al. [84] detailed a comparison of two competing approaches, i.e.,
decoded partial content-addressable memory (DpCAM) and perfect hashing memory (PH-
mem), in terms of performance and cost per area. In contrast to PHmem that requires both
memory and logic, DpCAM is based on logic only. Nevertheless, the authors conclude that
the best results are achieved using a combination of the two.

As part of their adaptive threat prevention system (ATPS) (cf. [42]), proposed in 2007,
Kim et al. [43] presented a multi-hash mechanism in 2009 based on a novel filtering tech-
nique called table-driven bottom-up tree for exact string matching. The bottom-up tech-
nique maximizes memory efficiency while the application of multiple hash tables improves
the run time performance. The authors report a throughput of only 2 Gbit/s, together with
a note that up to 10 Gbit/s may be possible by optimizing the clock speed. Here, it is worth
mentioning that the performance does not suffer from the higher number of signatures
and, in particular, not from patterns of variable size (i.e., usage of wildcards such as + or *),
which is a valuable feature.

In recent years, research interest regarding the use of FPGAs in network intrusion detec-
tion has declined, and GPUs are now within the focal point of industry and academia. The
fact that they can be regarded as ubiquitous (i.e., commodity) coprocessors allows for their
application in professional, as well as private use, and the existence of programming and
runtime frameworks for different platforms (e.g., Windows, Linux and Mac OS) attracts a
large community.

As already mentioned, applying FPGAs for network intrusion detection has a strong
focus on performance in terms of processing as much packets as possible per time unit.
While, of course, performance figures are important for any detection mechanism, per-
forming host intrusion detection according to the busy-wait approach (i.e., at maximum
speed) causes a considerable degree of performance degradation due to forced synchro-
nizations between the host’s memory entities [73].

In the following section, we will present remarkable publications concerning the field
of network intrusion detection using modern GPUs.
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GPUs for Network Intrusion Detection

To the best of our knowledge, Jacob and Brodley [41] were the first to propose the use of
GPUs for network intrusion detection in 2006. Their prototype, called PixelSnort, included
a rewrite of the string matching module of the traditional Snort and achieved a perfor-
mance boost of up to 40% at a line speed of 100 Mbit/s. Due to the high performance of
the applied GPU (i.e., 54 GFlops) and GPUs in general compared to CPUs (i.e., 5.6 GFlops
on an Intel Pentium 4 Xeon 2,800 MHz), as well as their parallel architecture, GPUs are
well suited to perform parallelizable tasks such as string matching. The authors used a
programming language called Cg (C for graphics) to implement the needed functionality
as fragment shaders. That is, instead of just copying Snort’s Aho-Corasick algorithm (cf.
[1]), they took advantage of the parallel rendering pipelines of the GPU and created a new
parallel-packet string matching algorithm based on the Knuth-Morris-Pratt (cf. [44]) algo-
rithm. While reporting a performance advantage between 50% and 85% in terms of CPU
and memory intensive tasks, PixelSnort does not yield measurable benefits for file system
intensive tasks.

In 2008, Vasiliadis et al. [93] presented a prototype for using the GPU as a pattern match-
ing coprocessor in a network intrusion detection system (i.e., Snort), which resembles that
of Jacob and Brodley somewhat. In contrast to their approach, the prototype, named Gnort,
by Vasiliadis et al. was implemented using CUDA (compute unified device architecture)
technology (cf. [63]), a proprietary programming and runtime framework developed by
NVIDIA, published in June 2007. In their paper, the authors detail that using single pat-
tern matching algorithms (e.g., Knuth-Morris-Pratt) does not perform well on a parallel
architecture such as the one offered by a GPU. In a test scenario where the UDP (user data-
gram protocol) packet size was set to 1,500 bytes, results from a GPU implementation of
the multi pattern matching algorithm proposed by Aho and Corasick using an NVIDIA
GeForce 8600GT card revealed a performance increase of 3.2 (at a line speed of 2.3 Gbit/s)
compared to the CPU version.

In contrast to the proof of concept presented in [74], the Jacob and Brodley [41] apply the
high-level shader language Cg and Vasiliadis et al. [93] make use of the CUDA framework.
Both approach are suitable for scanning network traffic but pose serious risks for tasks
concerning host security.

A non-security related performance comparison concerning the runtime of the naïve,
Knuth-Morris-Pratt, Boyer-Moore-Horspool (cf. [34]), and Quick-Search (cf. [86]) string
matching algorithms implemented on a GPU using CUDA was presented in 2009 by Kou-
zinopoulos and Margaritis [46]. The authors report a performance increase for all four
algorithms ranging from 1.5 to 24, depending on the algorithm and the length of the search
string. Furthermore, they reveal that incorporating the internal memory architecture of
a GPU (i.e., using shared instead of global memory) provides extreme speedups for all
algorithms besides the naïve one; here, the speedup was only 2.5.

In 2008, Huang et al. [36] proposed a GPU-based multi-pattern matching algorithm
derived from the idea of Wu-Manber (cf. [101]) and reported a doubling in execution per-
formance, compared to the Wu-Manber algorithm used in Snort. For their test scenarios,
the authors applied the publicly available network data captured during the DefCon8 cap-
ture the flag contest in 2001 (cf. [87]). Regarding the performance assessment, five different
configurations were tested that differed in terms of how the data in question was fed into
and stored on the GPU. In any case, the GPU implementation outperformed the sequen-
tial CPU version. As mentioned previously, the CUDA framework was published in June
2007. Nevertheless, the authors chose to apply open graphics library (GL) APIs to control
the communication between CPU and GPU.

In 2009, Wu et al. [100] presented a signature matching model that focuses on pattern
and search text partitioning in order to balance the loads between the corresponding multi

8http://www.defcon.org

28



2.3 INTRUSION DETECTION USING COPROCESSORS

processors of a GPU. They refer to their technique as balanced pattern set partition method
(BPSPM), which achieves a better performance because of two features: Different multi-
processors search for different pattern subsets in the same input text while different stream
processors inside a multiprocessor search for the same pattern but in different parts of the
input text. Compared to the performance of the naïve way of using the GPU for string
matching, the BPSPM always succeeded.

While the overview over the research concerning GPU-accelerated pattern matching
for applications in computer security presented by Gee [24] in 2009 is not exhaustive, in the
appendix, the source code of a CUDA version of a bloom filter is presented.

In 2010, Tumeo et al. presented the performance results of a GPU implementation of
the Aho-Corasick pattern matching algorithm. With optimizations done in terms of the
way the data is loaded into the GPU and the way the transition matrix is consumed by the
algorithm, the authors report a throughput of 6.7 Gbit/s using a NVIDIA Tesla C1060 card.
One year later, Tumeo et al. [91] compared the results from 2010 to results using the same
algorithm on the latest hardware from NVIDIA (i.e., Fermi Architecture), which showed a
maximum throughput of 22.7 Gbit/s in the best case. The fact that GPUs can also be used
by malware writers in order to obfuscate their code was stressed by Vasiliadis et al. [94] in
2010. The authors present how unpacking and run-time polymorphism can benefit from
modern GPUs. For instance, by taking advantage of the high computational power of a
GPU, malware authors can apply complex packing algorithms whose execution on the CPU
“would take a prohibitively long time to complete”. Furthermore, since GPU code is not
based on the well-known IA-32 (Intel architecture 32 bit) instruction set architecture (ISA),
existing detection mechanism may not even be able to assess such code. Vasiliadis et al. aim
to raise awareness concerning the application of GPUs for subversive tasks and provide
details about proof of concept implementations of the proposed concealing techniques.

At the beginning of 2011, a technical, thoroughly-described implementation of a GPU-
based multi-session deep packed inspection mechanism, presented by Huang et al. [35] in
2010, appeared in the collection Intrusion Detection Systems, edited by Skrobanek [77]. The
authors used the Snort signatures and the same network data they have used in previous
work (cf. [36]) and present all parts of their prototype (i.e., data flow, data structure and
control-flow mechanism) in detail. While in terms of performance, the authors state that
their approach “is potentially as good as other FPGA or ASIC solutions”, they also empha-
size the fact that their method is software-based, and can thus be reconfigured easily and
is able to operate on commodity hardware, found in modern desktop computers and even
laptops.

Very recently, Vasiliadis et al. [95] presented an implementation of a GPU-based pat-
tern matching library, which can be used for a variety of scenarios, including real-time net-
work intrusion detection. Additionally, a buffering scheme for transferring network data
onto the GPU is proposed, which partly eliminates the high overhead caused by the PCIe
bus. While, without any buffering, the transfer speed between host and GPU amounts to 8
Gbit/s, the buffering schema allows for a rate of over 45 Gbit/s. The performance analysis
of the string matching mechanism including said schema revealed a maximum throughput
of 29.7 Gbit/s using a NVIDIA GeForce GTX480 card.

The previous references verify the massive computational power of modern GPUs and
make further research towards their application within the field of host security promising.

In the following section, we will present remarkable publications showing indirect con-
nections to the present thesis.

2.3.3 Related Approaches

In 2005, Williams [98, 97] presented a coprocessing intrusion detection system called Cu-
PIDS which takes advantage of the characteristics of a symmetric multiprocessing (SMP)
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system9. That is, a dedicated processor is used to execute a so-called shadow process, ob-
serving an application running on a different processor within the same computer. The
authors state that their prototype was able to guarantee real-time (cf. [47]) reaction and
responses to attacks targeted at the process under observation, causing about 15% per-
formance degradation under certain circumstances. Compared to existing uni-processor-
based approaches such as the IDIOT intrusion detection system (cf. [14]), this is a major ad-
vantage. CuPIDS is able to perform three types of protective activities, being “application
startup/shutdown validation, state monitoring, including invariant testing, and execution
monitoring”.

In contrast to the present work, Williams mainly focused on the detection performance
of their approach, paying almost no attention to the security of the security mechanism
as such. Furthermore, using a dedicated CPU core of an SMP system does indeed have
advantages over traditional solutions, but cannot be seen as a coprocessor approach as,
for instance, no exclusive memory exists, which allows attackers to directly tamper the
observer’s resources.

Nightingale et al. [61] also propose the use of multi-core systems to accelerate run time
security checks. The authors parallelize security checks that would otherwise be executed
in sequence. That is, a process in question is replayed to a dedicated core. While the orig-
inal keeps on executing using speculative execution, one of three possible security checks
is executed on the copy: sensitive data analysis, on-access virus scanning, or taint propa-
gation. Tests using an 8-core system have revealed speedups between 2 (taint propagation
check) and 7.5 (sensitive data analysis).

Similarly to the work of Williams, Nightingale et al. do not consider protection of the
monitoring system itself and rather focus on acceleration of security checks using the pro-
cessing power of multi-core CPUs.

Besides the subversion of services operating on the host and attacks against the intru-
sion detection mechanism itself, peripherals’ firmware can also pose a security risk. For
instance, in 2010, Loïc et al. [20] presented a proof of concept for attacking a network card’s
firmware. Just recently, Li et al. [49] proposed “software-only attestation protocols to verify
the integrity of peripherals’ firmware”. A prototypical implementation called VIPER was
able to detect all known software-based attacks. VIPER is based on a challenge-response
protocol between the host’s CPU and the peripherals. The verifier program inside VIPER
has benign copies of all firmwares concerning the computer system it operates on. Addi-
tionally, a checksum simulator is present, generating the challenges and the expected re-
sponses from the corresponding firmware. On the device side, a checksum function tuned
for creating minimal overhead is implemented. In addition to a comparison of the expected
and the actual checksum returned by each peripheral, the time the checksum calculation
takes is also assessed, as large deviations may be caused by malicious activities.

The authors evaluate their approach in terms of security by implementing different
kinds of attacks (e.g., Ethernet-based proxy attack). All attack scenarios tested can be de-
tected due to causing the checksum computation to consume notably more time. In ad-
dition, a discussion covering problems, limitations, and known issues is detailed, mainly
focusing on practical problems concerning the feasibility of the proposed approach and
does not regard its security. While VIPER is able to validate the integrity of selected pe-
ripherals’ firmware, we believe that a multi-staged attack could simply shutdown VIPER
and proceed to the firmware of interest afterwards. Therefore, combining this approach
with off-host host intrusion detection mechanisms seems promising.

The general problem of bootstrapping trust in commodity computers is thoroughly dis-
cussed by Parno et al. [65]. The authors present a survey of related work covering existing
approaches and techniques to validate the integrity of local and remote computers. This
includes “mechanisms for securely collecting and storing information about the execution
environment”, a goal for which secure coprocessors are used to achieve. Here, the compu-

9See also [99].
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tation of cryptographic hashes over software binaries, including all referenced libraries at
a point of time where the software has not yet booted up, is one example. The technique
of a trusted boot was introduced by Gasser et al. [52] in 1989. Here, “a root of trust initi-
ates the chain of trust”, which means that the system’s BIOS (basic input/output system)
checks and initializes the bootloader while the bootloader again checks and initializes the
operating system.

The survey from Parno et al. clearly shows the importance of secure coprocessors for
commodity computer systems, as the trust with respect to the CPU is very limited, requir-
ing the application of additional hardware. Next to secure coprocessors such as the IBM
4758, trusted platform modules (TPM ) [90] are commonly used to validate an information
system’s10 integrity. In contrast to external auxiliary processors, onboard modules are in-
trinsically not as immune to physical attacks. Parno et al. also discuss the limitations of
the presented real-world and in-research approaches of bootstrapping trust, which mainly
target the degree to which the corresponding technique can guarantee untampered hard-
and software. The authors name two weaknesses, i.e., the shortcomings of load-time-only
guarantees and the threat of physical hardware attacks. The former stresses the fact that
load-time techniques can validate that the loaded software has not been modified, but can-
not prevent attackers from, for instance, exploiting a buffer overflow vulnerability inside
said software. The latter mainly focuses on the physical vulnerability of TPM chips, which
ranges from grounding the module’s reset pin to simply removing the entire chip. The sur-
vey by Parno et al. reveals that coprocessor-based techniques are among the most promis-
ing approaches in order for establishing trust in commodity computers, mainly because of
the architecture and security features of such special-purpose computing entities.
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Chapter 3

Observation Mechanism and
Cost Model for

Tightly Coupled Asymmetric Concurrency

Abstract

Whilst the precise objectives and mechanisms used by malicious code will vary
widely and may involve wholly unknown techniques to achieve their respective ob-
jectives, certain second-order operations such as privilege escalation or concealment of
the code’s presence or activity are predictable. In particular, concealment mechanisms
must modify well-known data structures, which could be detected trivially otherwise.
We argue that any such mechanism is necessarily non-atomic and can hence be detected
through concurrent observations forcing an interleaved linearization of the malicious
code with observations of memory state changes induced in tightly coupled concurrent
processing units. Extending previous research for the case of symmetric concurrent ob-
servation, we propose a computational model and observation mechanism for the case
of tightly coupled asymmetric concurrent processing units as may be found in most cur-
rent computing environments with particular emphasis on metrics for the cost of forced
synchronizations and resource contention caused by observations. We argue that the re-
sulting observations will provide a novel sensor datum for intrusion detection but may
also be used as a standalone probabilistic detection mechanism particularly suited to
detect attacks in progress.

3.1 Introduction

To achieve its objectives, malicious code will typically have to perform some form of privi-
lege escalation and must also evade detection, potentially also in a persistent manner. The
techniques used by such code are not all known a priori, and cannot be prevented entirely
as new approaches may not be caught by analytical approaches [10, 4]. Moreover, mali-
cious code will be able to reconstruct the legitimate state of the target system or construct
a plausible alternative state in which its presence is effectively concealed. Parallel moni-
toring of execution has been a long-established approach in fault-tolerant systems and has
also been proposed for use in commodity systems based on multithreading mechanisms
by Oplinger and Lam [13], although without consideration of security concerns; similarly,
the use of low-level speculative execution and parallelization of security checks on multi-
ple concurrent processing units proposed by Nightingale et al. does not provide protection
of the monitoring system itself [11]. Coprocessor-based detection is the topic of [19] and
[14]. In contrast to [19] who considers an intrusion detection system as self-protected as
soon as it does not run on the host [9] introduced a mechanism which is distinguished by
distributed computations hard to subvert even with full knowledge of this mechanism.
Loosely coupled multiprocessing or coprocessor architectures for execution monitoring
and execution monitoring itself have also been described by Williams and Spafford [18];
their mechanism uses the facilities and capabilities afforded by a general purpose symmet-
rical multi-processing (SMP) computer architecture, dedicating one or more CPUs exclu-
sively to security-related tasks, resulting in a relatively high overhead. Whilst the number
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3. OBSERVATION MECHANISM AND COST MODEL

of potential attacks and vulnerabilities is difficult to bound, some of their actions are con-
strained (cf. [9]), and require subverting certain functions. Petroni et al. (cf. [15]) introduce
an architecture to detect malicious modifications of kernel memory by comparing the actual
observed kernel state with a specification of a kernel state known to be correct, describing a
mechanism to detect semantic integrity violations in dynamic kernel data structures while
in [16] they introduce a monitoring system concerned with observing the operating system
kernel integrity, based on a property called state-base control-flow integrity, demonstrating
that it is indeed possible to spot an intrusion by observing only certain parts of kernel and
memory structure. Finally, any such sensors can be fused as, e.g., proposed by Almgren et
al. (cf. [3]) using a multi-sensor model to improve automated attack.

The remainder of this paper is structured as follows: Section 3.2 introduces our compu-
tational model which is founded on the hierarchical arrangement found in modern comput-
ers. Also in this section, a cost model considering the case of asymmetrical multiprocessing
environments tightly coupled through shared memory systems and an example of work-
ing set interference is presented. Section 3.3 then proposes an interference model – where
interference is divided into demand and coherence related portions – and two equations for
calculating the overall average memory access time and the interference ratio. In Section 3.4,
we present our conclusion and future work.

3.1.1 Notation

Table 3.1 provides an overview of the notation used throughout this paper. We divide our
notations into three groups: The first group (Components) is the subject of our model. With
the second and third group, we pool notations with regard to Memory Access and Cache
Performance, respectively.

3.2 Computational Model

Industry-standard computer systems consist of several different components, serving sev-
eral different purposes. Some of the components located on a main board are directly
interconnected and even share certain memory locations. When performing observations
(read operations) or write operations, which can cause synchronization protocols (cf. [7])
to be applied, it must be taken into account that these interconnected components operate
at substantially different speeds. In approximate order of speed the component model rel-
evant for us includes one or more CPUs with each CPU core maintaining a separate cache
structure (typically one, possibly two-level). A cache may be shared between processing
cores, or be connected independently [7]. In the former case, synchronization will typically
be slower than for the first level of caching. The next substantial level of speed difference
manifests itself at the interface between CPU and main memory. For the purpose of this
discussion it is most relevant to note the significant differences in speed between on-CPU
memory (which, as noted above, may also itself have several levels of differing speeds) and
main memory.

3.2.1 Cost Model

We argue that malicious code intended to be executed by one of the central processing units
will, at some point in its life-cycle, come to reside either entirely or partially in a shared
main memory of a computer system, where it may be visible and accessible by other entities
connected to said memory. As shown in [8], it is possible to either trivially detect known
or inferred signatures of malicious code or to probabilistically detect activity patterns as-
sociated with malicious behavior using concurrent observation mechanisms. As most mali-
cious code will attempt to obfuscate its presence and must respond to a set of well-known
detection mechanisms, several activity patterns to be searched for are hence sufficiently
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Table 3.1: Overview of notations used throughout this paper.

Components
P Processing unit (Pi (normal duty), Pj (observation))
M Memory component (e.g., first level cache or physical mem-

ory)
G Graph consisting of P- and M-vertices
S Process

Memory Access

ml a set of one or more memory locations within the lth M -
vertex

[ml] data stored in ml

[ml]′ altered data stored in ml

ml
i memory access of memory location i in M -vertex l

c costs (measured in clock cycles)
c(ml

i) costs of ml
i

c(ml) costs accruing due accessing memory locations m in the lth

M -vertex
k computation
Pk

i computation k executed by processing unit Pi

ml

Pk
i

memory locations m belonging to the lth M -vertex and are
altered by Pk

i

Cache Performance
W (t, T ) Working set of pages T (T is a set) at point in time t

ht
i hit time to the ith M -vertex

msri miss rate to the ith M -vertex
mspdi miss penalty to the ith M -vertex (demand-related)
mspci miss penalty to the ith M -vertex (coherent-related)
Xt average memory access time
topt time needed/used for exectuting a process under optimal

conditions
tnorm time needed/used for exectuting a process under normal

conditions
|A|, |B| sets of memory locations
ac′b′def a specific cache line
c′b′de a specific working set
Pi

page→ Processing unit i writing to a set of pages
Pi

page← Processing unit i reading from a set of pages

constrained to allow identification of manipulations of semantic choke points1 based on a re-
stricted set of data structures and control-flows and in-memory side effects of such control
flows. The observation model described in [8] considered the case of symmetric multipro-
cessing environments, which also exhibit the key properties of non-atomic operations of
observed (malicious) code execution resulting in a set of possible linearizations of memory
accesses forced by the underlying computing substrate. However, in the following we are
extending these results by considering the case of asymmetrical multiprocessing environ-
ments tightly coupled through shared memory systems, which have become ubiquitous
designs at all scales of computing environments from smartphones to mainframe systems
as both performance and efficiency considerations make this approach compelling. Such
environments are characterized by having multiple processing units P coupled by shared
memory entities M . We model the interconnection between these entities by constructing
a vertex-colored (planar) graph G in which a P -vertex is never connected to another P -
vertex by a direct edge (i.e., allowing for cascaded cache structures). We note that in most
computation environments, this results in a finite tree (i.e., G is connected and acyclical)
in which the main memory is the root vertex; however, as configurations with cycles exist,
we are considering the general case of a planar graph as described above. We define that
an observation of the root vertex is possible where two P -vertices Pi and Pj are connected
by an M -path, i.e., a path in the graph consisting only of M -vertices; its constraint on the

1“Data structures and, more generally relations and invariants over data structures which subversion mech-
anisms must manipulate to conceal their presence as a failure to do so would result in their being detectable by
existing mechanisms.”[8]
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model is motivated by the fact that direct determination of the internal state of a process-
ing unit will rarely be possible. A computation k on processing unit Pi is designated as P k

i

and may alter the states of one or more memory locations ml on the lth M -vertices directly
connected to Pi; the set of all memory locations which may be altered by P k

i is hence abbre-
viated asml

Pk
i

where l is the index of theM -vertex. To characterize the costs incurred by an

observation, we now associate a cost c with each memory access ml
i where i is the index of

the accessed memory location within the set of all memory locations ml and l the M -vertex
index, respectively. However, a key aspect of our model is to observe that the cost c(ml

i)
is not necessarily constant owing to the relation forced on multiple memory locations (i.e.,
caching) described above where the memory locations of the target computation k to be
observed are within the working set (cf. Section 3.2.2) and a M -connected subgraph exists
between observer computation (Pj-vertex) and observation target computation (Pi-vertex).
We note that c(ml) � c(ml+1) in such a path, i.e., the cost (speed) of accessing each (even
adjacent) memory hierarchy will potentially differ by one or more orders of magnitude.

As noted before, the observation costs are not necessarily constant. This is especially
true, when the observed memory locations are part of a working set and are altered by Pi.
[5] defines a working set as the set of most recently referenced pages, where the term pages
could just be replaced by any other unit of information: W (t, T ), therefore, is a working set
of distinct and most recently referenced pages at time t, i.e., intuitively, the smallest subset
of pages that must reside in main memory such that a program operates at some desired
level of efficiency [6]. When a computation k is executed by Pi the affected memory loca-
tions ml are part of a working set, which affects the execution performance positively in
general. Pages can get replaced of course, for example due to capacity conflicts. Whether
or not a page being part of a working set will be replaced by another is most commonly
decided by using the least recently used (LRU) scheme [7], where the data that has not
been used for the longest time gets replaced. We assume that whenever a page gets re-
placed this happens for the benefit of efficiency. When observing Mn using Pj , there exists
a non-negligible probability that these memory locations are referenced throughout the
M -connected graph all the way up to Mi, potentially affecting performance if those ref-
erenced locations are altered whilst being subject of an observation. For altered memory
locations a write-back strategy takes care of the coherence, as due to performance reasons
the changes made are not instantly carried out to the bottom (or any lower level M -vertex)
of the hierarchy. This is only done when certain conditions hold (cf. [7]). Important for
now is the condition that the original data ([ml], l = n residing in Mn)2 of a referenced
and altered memory location ([ml]′, l = i residing in Mi) is observed by Pj . In this case a
forced synchronizations take place. Usually write-back strategies pay attention to what is
to be written back to Mn and when. But a write-back can also be triggered. Particularly
by accessing [ml], l = n when there exists [ml]′, l = i which causes [ml]′ to be written back
to the memory location of [ml]. Whenever our observation causes a forced write-back, we
generate traffic and, therefore, costs. This is especially critical if [ml]′ is part of a working
set, as we will explain now.

3.2.2 Example for Working Set Interference

Our initial working set W (t, T ) = bcde is part of the following cache line: abcdef
The value at the very left of the working set (b) denotes, that b was accessed most recently
of all pages, while the access of the value at the very right (e) has been furthermost in the
past and a and f are not part of the working set. When a processor accesses a page in order
to write to it, we denote this as Pi

page→ and when it reads, we write Pi
page← respectively,

were the term page is a set of pages containing at least one page.

2[ml] denotes data stored in ml
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Presuming the above described working set, after processing unit 1 wrote new data to

pages b and c, expressed as P1
b,c→ the cache line – the working set, to be precise – changed

and looks like this: ac′b′def with the apostrophe (′) denoting that those pages contain al-

tered data that is not yet written back. After P1
d,e← (processing unit 1 reads pages d and e)

we have the following structure: aedc′b′f
Now our observation process starts, executed by processing unit 2 which is directly

connected to the root vertex of our graph; namely the main memory. As P1 and P2 run in-
dependently and asynchronously, they can operate in parallel, possibly willing to consume

the same data: P2
b← ||P1

b←
Page b is still not synchronized with its original which causes forced synchronizations as

soon as P2 accesses the original and outdated copy residing in the main memory. Parallel
to this, P1 accesses its copy of b and has to wait, causing a wait situation and, therefore,
costs (generally expressed as c(ml

i)). Recall that the index l denotes the affiliation to the
corresponding M -vertex and index i stands for the ith memory location. Here, these costs
apply not only once, but for every level of cache; the further a cache is away from the CPU
the higher the costs. Again, presuming the altered cache line from above (aedc′b′f ) we now
show what we exactly mean by the term of interference: Without any observation in place,

P1
f← would evict page b from the working set, including now page f as the most recently

accessed page: (afedc′b′).
Imagining that we observed page b just before P1 reads f , the final cache line would

look like this:
P2

b←: abedc′f , P1
f←: afbedc′

So, page c (still not written back) would have been evicted, instead of page b. This interferes
the LRU schema, causing potentially higher costs, as pages get evicted that may still be
useful. Also keep in mind that accessing the altered page b′ in the last example causes a
forced synchronization (but no wait this time).

3.3 Interference Model

When observing the Mn-vertex, the one at the bottom of our hierarchy (main memory),
we are actually observing processes. We denote a process as S. The resources a process is
built of (code) and works with (allocated memory) are loaded into Mn. As we do not know
the exact memory access pattern of any/each process, we need a model to estimate the
difference between the costs of the normal duty and those when our observation interferes
with the normal duty. At some point in time, parts of any process make their way up the
Mi-vertex and form working setsW (t, T ). It is important to notice that working sets are not
necessarily disjoint. In other words a certain page can reside in one or more working sets,
while there are possibly nworking sets for n processes. The worst case scenario with regard
to additional costs our observation can produce, occurs when a forced synchronization
between top- and low-level M-vertices takes place; namely a cache and the main memory.
For this to happen, two conditions must hold: 1) Data [ml]′ residing in memory locations
ml, l = i of Mi (cache) is an altered copy of the data [ml] in memory locations [ml], l = n
of Mn (main memory), so [ml]′ 6= [ml]. 2) ml is accessed by either another M-vertex or
a processing unit other than the one accessing [ml]′. When [ml] is accessed by another
M -vertex a protocol commonly known as cache snooping is concerned with providing each
processing unit with the most current data. For example, [ml,m], l = i,m = j resides in
two M-vertices Mi,j on the same level, where i denotes the level and j the number; namely
M1,1 and M1,2. Notice that [m1,1] = [m1,2]. Processing unit P1 writes to [m1,1], which is
stored in its directly connected M-vertex M1,1, changing its data to [m1,1]′. M1,2 belonging
to P2 still contains [m1,2]. As soon as P2 tries to read [m1,2] a miss occurs, causing [m1,2] to
get overwritten with [m1,1]′. According to [7] the performance of a cache organization can
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i i+1

i,j i,j+1

i+1,j i+1,j+1

i+2j

Figure 3.1: Graph G, with multiple P - and M -vertices on the same level. Left: A concrete
component model. Right: The abstract component model.

be expressed in form of the average memory access time as depicted in Equation 3.1.

Xt = Hit time+Miss rate ·Miss penalty (3.1)

Hit time is the time to hit the cache and Misspenalty is the time to replace the block from
memory (i.e., the cost of a miss). To calculate the costs of a synchronization between multi-
ple levels of M-vertices, as well as multiple M-vertices on the same level, we derive Equa-
tion 3.2 from what [7] suggests.

hti = Hit time to the ith M-vertex
msri = Miss rate of the ith M-vertex
mspdi = Miss penalty of the ith M-vertex (demand-related)
mspci = Miss penalty of the ith M-vertex (coherence-related)

Xt =

n∑
i=0

hti + pd ·msri · (hti+1 +msri+1 ·ms
pd
i+1) + pc ·msri ·ms

pc
i (3.2)

pd is a ratio between 0 . . . 1 expressing which part of the miss rate is demand-related,
while pc is the ratio for coherence-related misses respectively. pd+ pc = 1

The following hit times, miss rates and miss penalties are typical values for current
desktop computers:

First level cache: Second level cache:
ht1 = 1 cc (clock cycles) ht2 = 15 cc
msr1 = 5% mpi (misses per instruction) msr2 = 25% mpi
mspd1 = 65 cc (ht2 +msr2 ·ms

pd
2 ) mspd2 = 200 cc

mspc1 = 3 cc mspc1 = 45 cc

Since coherence-related misses occur on the same level of cache, they have a rather small
miss penalty. As a result of this, in this example they add only very little to the overall
average memory access time. But with a lower level taken into account, the contribution
of coherence-related misses rises. For illustrating the above stated equation we introduce a
graphical representation of our component model with multiple P - and M -vertices on the
same level in Figure 3.1.

We showed that with this generalization, we are able to not only calculate Xt for the
occurrence of misses due to demanded data that is not available in Mi but in Mi+1 but
also to take into account that data may be incoherent in M-vertices on the same level. To
consider this, the miss rate is divided into two fractions defined by pd and pc.

Regarding the additional costs generated by the observation we could now come up
with a probabilistic model consisting of basically two probabilities: One, the probability
that observed data is part of a working set and possibly altered by the corresponding pro-
cessing unit. Two, the probability that we observe such data. We would end up with two
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values hard to correlate. Furthermore, paying respect to coherence-related misses would
make this model far too complex for our purpose:

Our observation can be seen as a totally passive process: We do not write to any M-
vertex and we do not send instructions to any processing unit (besides Pj). The costs that
accrue are due to the fact that during any synchronization of data the processing unit will-
ing to compute has to wait until the synchronization is done before it can proceed. More
formally, the higher costs appear, as Pi has to wait until the outdated data [ml, l = i] is
synchronized with [ml]′, l = n.

So, what we need is a model that gives us a good measure of the computing time of a
process under normal duty and under observation. We decided to build our measures on
the paging and working set schemes, as those are two of the most powerful methods to
overcome the ever rising gap between processor and main memory speed (cf. [2, 17]) and
are fundamental when it comes to performance related issues.

The ideal conditions for any process to be executed in optimal time topt are a) all re-
sources S fit into the working setW (t, T ) for any t and b) the resources are being consumed
by one processing unit only. With these two conditions met demand-related (a), as well as
coherence-related (b) misses would be eliminated. As this is very unlikely to happen – and
if, only for very small processes – the normal conditions (tnorm, respectively) are described
by a) the existence of a working set W (t, T ) which insures that the corresponding process
can be executed at some level of efficiency and b) the resources are shared over two or more
processing units in order to achieve a higher performance.

Presuming tnorm we are interested in the additional processing time occurring when the
corresponding process is under observation. With regard to the equation mentioned earlier,
it is the factor (or degree) by which the miss rate (mr

i ) of each memory hierarchy level is
affected. One might say that the size of each memory level, as well as the set-associatively
of each cache-level also pay a vital role when talking about interference; and that’s true.
But, as the named parameters are known for their impact, they are already reflected by the
miss rate, as according to [7] a bigger cache size and higher set-associatively result in lower
miss rates. For our purpose we define the following triple (r, w, x). Each variable can be
expressed by a value between 0 . . . 1 (including 0 and 1): With regard to each working set, r
is the percentage of read-only memory locations andw the percentage of the writeable ones
where r+w = 1. All three values are time dependent, and must relate to the same period of
time [t]: Choosing the length of the period of time is crucial as we will explain now: There
is no such thing as a general memory access pattern for processes. While this may not be
entirely true for scientific applications, we argue that it is true in general. But patterns can
be derived for certain phases occurring during the life time of a process, e.g., the process
start-up where due to an empty working set compulsory misses occur until the working set
is built3. Whenever a new phase starts, the memory access pattern may change. Ideally the
period of time regarding the triple (r, w, x) represents one phase. If phases are very short,
it makes sense to let [t] span several phases in order to relativize read or/and write peaks.
Since the pure presence of a writeable memory location does not mean that it is actually
being written, x stands for the percentage of processing time spent on really writing data
(e.g., x = 0.7 means that 70% of time span [t] for processing process S were used for writing
data). The equation for calculating the interference ratio I is defined as follows:

I =
w · x

(x− w) · (r)
· [t]


I →∞, for w → x→ 1,

I → 0, for x→ 0,

I = undef, for t = 0

(3.3)

3We know about the chance that the working set may never be entirely built, as it is possible that even during
start-up time a process can massively renew its working set (mentioned in [1]), but leave this out of scope.
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The leading fraction in Equation 3.3 is multiplied by the time span [t] which serves the
purpose of making clear that smaller time spans do not have as much influence on the
result as bigger ones. The interference I approaches 0 for x → 0: If no data is written, no
inconsistency between the copied data in cache and the original data in physical memory
exists. Therefore, no forced synchronizations will be triggered and so, no additional costs
apply.

If x→ 1 data is written continuously, causing an ongoing forced synchronization if the
process is under observation, which leads to a very high interference ratio, labeled as ∞.
As mentioned before, [t] is a time span and, therefore, cannot be 0.

3.4 Conclusion and Future Work

In this paper, we presented a novel sensor datum for intrusion detection with the main
aspect of a resilient cost model. The cost model pays respect to the hierarchical connection
between several memory components and takes into account that the speed of each level
slows down from top (first-level cache) to bottom (main memory). We also introduced two
equations which are capable of calculating the overall average memory access time and the
interference ratio with respect to demand and coherence related misses.

As implied by the model introduced in the previous chapters, we assume the obser-
vation will be triggered by a processing unit other than the central processing unit. We
have decided to make use of “a highly parallel, multithreaded, many-core processor with
tremendous computational horsepower and very high memory bandwidth” [12] in order
to execute our observation algorithms. So, the next step will be taken by examining ex-
isting pattern matching algorithms with regard to their ability to be executed by a general
purpose coprocessor. We will also start to develop our own algorithms with regard to a
high degree of parallelism. Furthermore, our future work will contain a proof of concept
implementation of the previous described observation method, which will include the im-
plementation of a chosen algorithm, as well as a kernel module serving as an interface
between the GPU and the main memory of the host.
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Chapter 4

Constraints on Autonomous Use of Standard
GPU Components for Asynchronous
Observations and Intrusion Detection

Abstract

The high computational power of graphics processing units (GPU) is used for sev-
eral purposes nowadays. Factoring integers, computing discrete logarithms, and pattern
matching in network intrusion detection systems (IDS) are popular tasks in the field of
information security where GPUs are used for acceleration. GPUs are commodity com-
ponents and are widely available in computer systems which would make them an ideal
platform for a wide-spread IDS.

We investigate the feasibility to use current GPUs for asynchronous host intrusion
detection as proposed in a former work and come to the conclusion that several con-
straints of GPUs limit the use for concurrent and asynchronous off-CPU processing in
host IDSs. GPUs have restrictions in terms of continuity, asynchronism, and unrestricted
access to perform this task. We propose an observation mechanism and discuss current
constraints on autonomous use of standard GPU components for intrusion detection.
Finally, we come to the conclusion that several modifications to graphics cards are nec-
essary to enable our approach.

4.1 Introduction

The detection and prevention of malware attacks at an early state is highly desirable.
Steadily rising complexity of attacks makes it increasingly difficult to detect malware with
commonly used techniques. Malware uses hiding techniques, obfuscation approaches like
polymorphism or metamorphism, or obscure targeted attacks to bypass signature-based
detection systems. A successful malware attack compromises the operating system’s (OS)
Trusted Computing Base (TCB) and, therefore, all components which base on it [29]. Rootk-
its, for example, undermine the integrity of the system and any installed host intrusion
detection mechanisms. After an attack occurred, an alternative reconstructed system state
is established. The new state is also legitimate and plausible for the system. Therefore,
the system cannot detect its compromised state. Once suitable hiding techniques were
used, the detection of these reconstructed states is problematic for traditional computa-
tional models [18, 8]. The states cannot be distinguished from legitimate states [16].

In a previous work [16], a defensive detection mechanism is described which is not
bound to the traditional model of computation. The mechanism uses approaches from
distributed systems [14] and relies on the use of an increasing amount of mostly idling
multi-processor (multi-core) host systems to achieve a non-deterministic concurrency. A
large number of deployed simultaneous observer sensors monitor attacks and defensive
measures. The approach does not rely on obfuscation, concealment or insulation to pre-
vent manipulation of the attacker. It benefits from non-deterministic concurrency which
renders it impossible to predict and control the mechanism. Even if the attacker knows the
mechanism, he cannot benefit from this knowledge because the attacker cannot control or
predict the observation. Respectively, he would be observed at attacking the mechanism.
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[15] proposes the integration of coprocessors or other non-standard sensors like graph-
ics chipsets or PCI processing devices. With this approach, a self-protection of the IDS mon-
itor is achieved since a compromise of the host does not affect the independent coprocessor
[29]. This mechanism is generally immune to tampering and enables intrusion detection
techniques such as sampling memory areas, process flow, and memory shadowing. For at-
tackers this detection mechanism would be practically not discernible by running isolated
from the system and, therefore, hidden from the attacker. Furthermore, the outsourcing of
the intrusion detection to off-CPU components could prevent the performance impact on
the host system almost entirely. The observation of the system does in fact require many
threads, since the sensors are stateless and behave probabilistically. A large number of
kernel threads would have a noticeable effect on the performance of the system.

Graphics cards with one or more GPUs are commodity components and are widely
available in current computer systems. This would make them an ideal platform for a
wide-spread IDS. Modern graphics cards are connected via a fast PCI Express 2.0 (PCIe)
x16 interface and allow high performance parallel computations. However, constraints of
current GPU’s hardware and programming architecture render it difficult to use them as
autonomous sensors for asynchronous memory observation. GPU program code cannot
run independently of the initiating instance which resides on the host system. Thus, GPU
kernels cannot assure continuity of examination in the case of a compromised host system.1

Furthermore, APIs of current GPUs offer only a user space interface – GPU kernels cannot
access kernel space memory due to limitations in the graphics driver. Therefore, no access
to the host’s memory for observing sensitive OS structures is possible.

In our work we outline the occurring constraints on autonomous use of current GPUs
for asynchronous observations and intrusion detection and present an observation mech-
anism which we will discuss afterwards. The design goals of the proposed independent
detection approach contain the unfeasibility for an attacker to predict, attack, or control the
IDS mechanism [16].

The remainder of this paper is organized as follows: In Section 4.2, we investigate on
asynchronous memory access and then, in Section 4.3, we review GPUs, especially the ar-
chitecture of the control-flow and the memory architecture. In Section 4.4, we propose our
observation mechanism, followed by Section 4.5 where we evaluate GPUs as independent
auditors. Then, in Section 4.6, we discuss the occurring constraints, propose modifications
to GPUs, and give an overview of most recent related work in Section 4.7. Finally, in Section
4.8, we draw our conclusions and present challenges concerning future work.

4.2 Asynchronous Memory Access

Modern computer’s peripheral devices use direct memory access (DMA) to access system
memory independently of the CPU. In most cases, the system’s chipset offers two DMA
controllers with several independent DMA channels for this task. DMA controllers allow
concurrent data transfers providing one transfer per channel. Therefore, DMA is another
source of parallelization [1].

In a common control-flow, the CPU initiates the transfer, continues with normal oper-
ation while the transfer is in progress, and gets notified from the DMA controller when
the operation has been done. Similarly, a DMA engine in a graphics card can transfer data
while the processing element carries on with its own task. The graphics card typically uses
bus mastering DMA to let the device take control of the PCIe bus and perform the transfer
itself. Especially in stream processing DMA plays a vital role since it is essential to have
data processing and transfers in parallel in order to achieve sufficient processing through-
put. Nevertheless, in such an environment a great number of threads have to share few
DMA channels.

1Presupposed the application of host-side programming and runtime frameworks.
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It is important to say that memory accesses are generally expensive [26]. Even at read
only accesses they reduce the possible concurrency and force synchronizations between
the units in the worst case. In addition, memory accesses via DMA can lead to a cache
coherency problem which will affect the overall system performance even though they are
bypassing the CPU and, therefore, do not affect the CPU caches directly.

4.3 GPU Architecture

General-purpose computing on graphics processing units (GPGPU) allows the use of stream
processors for highly parallel non-graphics calculations. GPUs are based on a stream pro-
cessing architecture and follow a data-centric model. They have a SIMD (Single Instruction,
Multiple Data) architecture which allows achieving data parallelism. Each stream processor
performs the same kernel instructions in parallel on different pieces of a distributed data
stream [11].

The GPU acts as a coprocessor of the CPU. Data-parallel code is outsourced in desig-
nated functions which are then executed on the GPU. With asynchronous function calls,
the CPU continues to execute instructions while the GPU is running a kernel.

The performance of GPUs benefits from cost intensive operations with few I/O and
global memory access bandwidth. Furthermore, it profits from a high amount of data-
parallel operations which process an input data stream simultaneously. By executing mul-
tiple parallel copies of program code, the GPU can utilize a large number of the available
arithmetic logical units (ALU), thus reaching a high load factor. In addition, the latency
of dynamic random access memory (DRAM) read operations can be hidden by utilizing
thousands of simultaneously running threads. Also, a high data locality, whereupon data
is produced once, immediately processed, and never read again is beneficial [6].

4.3.1 Memory Architecture

The memory architecture of GPUs consists of three major memory domains: host (CPU)
memory, PCIe memory, and local (GPU) memory. Host memory cannot be accessed by a
GPU kernel; only code running on the host can access it. PCIe memory is a part of host
memory which is reserved for PCIe usage. It can be both modified from host programs
and GPU. Local memory is only accessible by the GPU and cannot be accessed through
the CPU [1]. There are different local memory types available which differ only in caching
algorithms and access models.

Basic DMA memory transfers from host to GPU involve two memory copy steps: be-
tween host and PCIe, and between PCIe and GPU’s local memory. Since DMA transfers
require page-locking, memory regions have to be copied to page-locked memory areas
managed by the device driver. After that they are transferred to GPU’s local memory. With
proper transfer management and the use of system page-locked memory (host memory
remapped to the PCIe memory space) copying between host memory and PCIe memory
can be skipped [1]. However, this memory access is limited to user space virtual memory of
the user process which called the coprocessor. Accessing of other processes’ virtual mem-
ory is not possible. Whereas, benefit of this design is that the GPU cannot accidentally or
maliciously corrupt the memory content of another process [10], it limits the GPU’s ability
to scan host’s kernel space memory.

In a multi-GPU environment one GPU cannot access another GPU’s memory directly.
Transfers are made via the PCIe bus.

4.3.2 Control-Flow

The host application does not interact with the GPU directly. A driver layer translates and
issues commands to the hardware on behalf of the application. Most commands to the
GPU are buffered in a command queue on the host-side. The command queue is flushed to
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the GPU, and the commands are processed by it, only when a kernel program is executed.
Flushing sends the current state of the command queue to the GPU. Transfers from the
host to the GPU are done either by the command processor or by the DMA engine. The
communication is done via the PCIe bus [1].

Before calls can be issued to the GPU, a CPU-GPU context has to be established [4,
pp. 23-24]. In terms of NVIDIA, such a context is established by the first CUDA call that
changes the state. State changes occur, for example, by calling cudaMalloc or after a kernel
launch. A context is destroyed by an explicit call of an appropriate function or after the
host thread terminates. Additionally, the CUDA resources are allocated per context.

One context can be maintained by a host thread at a time. In a multi-GPU environment
every GPU needs a host thread. Additionally, multiple host threads can establish contexts
with the same GPU. To enable that, the driver handles time-sharing and resource partition-
ing for the GPUs.

To access a host’s main memory from a GPU kernel the memory has to be copied to the
graphics card’s device memory. GPUs use a DMA architecture to transfer data between the
device memory and the host memory. DMA requires page-locking of the host’s memory
for asynchronous memcpy. Pageable memory cannot be copied asynchronously since the OS
may move it or swap it out to disk before the GPU has finished using it [20]. The graphics
card driver maintains page-locked memory for this purpose where the requested memory
is copied before the actual DMA transfer via the PCIe bus. Alternatively, current GPUs
allow mapping page-locked host memory into the address space of the GPU.

GPUs can execute instructions in parallel, separately from each other. For this task
they can maintain several thousand simultaneously running lightweight threads. With the
simultaneous execution of those threads they solve the problem of high memory access
latencies. If a DRAM access occurs, the thread which is waiting for data from memory is
suspended and another thread can be executed without latencies (latency hiding). Com-
pared to costs of hundreds of cycles per thread change for CPUs, GPUs can switch several
threads per cycle.

The two mentioned mechanisms, DMA and the simultaneous execution of threads, al-
low the GPU to execute parallel memory accesses.

There are certain bottlenecks in the GPU architecture in terms of interaction and data
flow. For this reason, the GPU program often relies on the CPU to manage actions such
as control-flow, process termination, and memory I/O accesses. The CPU-GPU link has
relatively low performance and high latencies compared to other accesses of GPUs. As a
result, the GPU cannot take advantage of the performance gain due to its parallel execution
of kernels.

Copies between host memory and PCIe memory usually are in the hundreds of MB/s.
Copies between the PCIe memory and the GPU memory reach a theoretical (actual transfer
rates are CPU and chipset dependent) throughput of 4 GB/s for PCIe x16 Generation 1
and 8 GB/s for Generation 2 in each direction. (Local) memory bandwidth is in the tens
to hundred GB/s range due to the usage of several memory controllers. Nevertheless, it
suffers from very high latencies (several hundred cycles) and is not cacheable.

4.3.3 Programming Interfaces

Currently the GPU market consists of two major vendors: NVIDIA with its CUDA SDK
[19] and its direct competitor AMD/ATI with its Stream SDK [2]. Both participate in the
upcoming open standard OpenCL [12] which aims at interoperability of GPUs with other
computing environments.

Unfortunately, GPU hardware is proprietary. With the exception of AMD/ATI GPUs,
for which partially open documentation is available [3], there is neither open code nor
any specification available for the underlying kernel interfaces of the above mentioned
technologies. For example, NVIDIA’s hardware documentation is a closely guarded trade
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secret. This renders it very difficult to implement functionality on the GPU without using
available APIs.

Several programming APIs, e.g., NVIDIA’s CUDA Driver API or Runtime API are avail-
able for developers. In its functionality, GPU programming APIs are very similar to the C
language. But conceptionally they offer, for example, no support for timers and no con-
currency between jobs. Moreover, it is not possible to observe data at different levels of
abstraction [16] because graphics cards cannot access OS APIs.

4.4 Observation Mechanism

The intrusion detection mechanism [16] mentioned in the introduction relies on non-de-
terministic concurrency. With this approach the mechanism detects violations by the lin-
earization of observations of invariants and relations among critical components of the OS,
so-called semantic chokepoints. Semantic chokepoints describe data structures in the sys-
tem which the malware must manipulate in order to remain undetected. Thus, the precise
functions of the malware need not be known. The preservation of the integrity of these few
points already helps to detect a number of attacks.

The points have to be monitored simultaneously by sensors from different and indepen-
dent points of view at frequent, but probabilistically determined intervals [15]. In [16] this
is accomplished by using processes residing on different CPUs, viewing higher and lower
level APIs within the kernel structure. Additionally, direct measurement of selected areas
in memory to provide a concurrent four-dimensional view of system activity is mentioned.

Our proposed autonomous observation mechanism consists of two components: one
or many concurrent running GPU kernels and a module on the host system which consists
of a device driver and the main application. The latter defines the tasks regarding the ob-
servation, assigns the required number of GPU kernel threads for each observation, and
initiates the observation mechanism on the GPU. Once initiated, the GPU repeats the exe-
cution of the observation at predefined intervals. The measurement frequency is a tunable
parameter and defines the granularity of observation and affects the performance of the
host system.

The observations are weakly synchronized [16]. After every measurement, the sensors
exchange messages with each other to compare results and report consistence of the state.
Therefore, if using a multi-GPU environment, communication between the GPUs has to be
taken into account.

If using multiple GPUs, kernels can simultaneously observe the host system. Thus,
independent points of view can be realized within this concurrent multi-GPU environment.
Our approach uses at least one graphics card which can reside integrated on the mainboard
or on a PCIe expansion card.

Using GPUs, it is not possible to perform cross-sectional analysis of OS kernel layers
and of relations between the current states of kernel structures. This refers to the off-OS
operation of the GPU sensors. Nevertheless, every sensor has direct access to selected areas
of the host system’s main memory. Therefore, GPUs can monitor these areas at frequent
intervals.

Our observation mechanism profits from asynchronous and parallel measurements at
detecting inconsistencies in the system state. In particular, the comparison of observations
makes it possible to create linearizations which show transitions occurring in the system
state. Thus, the breakdown of known relations indicates behavioral inconsistencies.

Furthermore, heuristics which are implemented on the GPU can reconstruct states from
asynchronous observations of kernel state by treating inconsistencies in state as transitions
and then comparing the set of all possible transitions from the model with the set of ob-
served transitions to uncover any unfeasible sequencing in states [16]. Thus, the integrity
of important kernel structures, for example, process structures or function tables can be
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monitored. Beside these heuristically approaches, fast pattern matching with signatures of
malicious code can be implemented with the proposed observation mechanism.

The GPU kernels subsequently write their observation results to a secured memory area
accessible by the kernel module. The kernel module then creates appropriate alerts.

With periodic tests of the integrity of the mechanism, multiple sensors in a multi-GPU
environment can protect the observation mechanism by observing data elements associated
with the observation mechanism itself [16].

Last but not least, as for all security applications the system has to be started in a trusted
environment, e.g., measured by a trusted platform module (TPM). In this case the intrusion
detection mechanism is required to load as part of the boot process of the host system before
the OS gets started. Once started, the observation mechanism should operate throughout
the operation of the system.

4.5 GPUs as Independent Auditors

In the following section, we investigate on the limitations of current GPUs acting as co-
processors for intrusion detection. We evaluate the proposed autonomous GPU approach
with the properties of a former PCI add-in card solution [17, 24]. These papers define a
set of properties which have to be accomplished in order to indicate that machine A is an
out-of-band or independent auditor of machine B. In our case machine A is a GPU (our
coprocessor) and machine B is our host system. The following list illustrates the require-
ments of an independent auditor. This list covers the most important requirements and is
not intended to be exhaustive.

• Unrestricted access: Machine A must have unrestricted access to the internal devices of ma-
chine B to be verified or needed for the verification, including peripherals, hard disks and
interrupts.
The intrusion detection mechanism running on the GPU does not have unrestricted
access to the physical memory and other components of the host system as the con-
trolling host application is running in the user address space. Only a subset of the full
range of the host memory can be accessed by the GPU. This concludes that the GPU
does not have unrestricted access to the host system’s resources.

• Secure transactions: The channel used by the independent auditor to retrieve the data should
be a secure channel, meaning a channel which cannot be eavesdropped or intercepted, nor
modified.
The channel is not secure. Once the graphics card has control of the PCIe bus com-
mands and data passing through host-side controllers may be eavesdropped or inter-
cepted (cf. [25]).

• Inaccessibility: Machine B must not have access in any way to the internal components of
machine A, including memory and internal interrupts.
The host system has no access to the internals of the GPU. Access is only possible
indirectly using the GPU’s API routines.

• Continuity: Machine A must run immediately after machine B has setup the internal devices
and is in a known trusted state. From this moment, Machine A must run continuously,
independently of the behavior of machine B, particularly when it has been compromised.
Code in the GPU cannot be started before the host system booted the OS. The OS can
be in a not trusted state at that moment. Moreover, the GPU is not independent of the
host system.

• Transparency: To the maximum degree possible, machine A should not be visible to the host
processor. At a minimum, it should not disrupt the host’s normal activities and should require
no changes to the host’s OS or system software.
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Transparency would be possible only if we had unrestricted access to the host system.
Access to the host system memory would be possible transparently using DMA, if
somehow unrestricted access can be achieved.

• Verifiable software: All the code running in machine A must be trusted and verifiable. This,
at least, implies that all running software in machine A must have the source code available.
This includes the firmware, OS and user space programs in machine A.
GPUs are not verifiable. There is no source code available for the firmware.

• Non-volatile memory: Machine A must be capable of retaining a record of the alerts even in
the event of a power failure or reboot. Hence, machine A should have some non-volatile storage
to record sensitive data.
There is no non-volatile memory available on current GPUs to retain record of alerts.
Also GPUs do not have direct access to disks or other storage media.

• Physically secure: Machine A should be physically secure.
GPUs are built-in into the host system and, therefore, can be treated as physically
secure.

• Sufficient processing power: The coprocessor will, at a minimum, need to be able to process
large amounts of memory efficiently.
A GPU can handle large amounts of memory efficiently due to its data-parallel pro-
cessing architecture.

• Out-of-band reporting: Machine A must be able to securely report the state of machine B. To
do so, there must be no reliance on a possibly compromised host, even to perform basic disk or
network operations. Machine A must have its own secure channel to the admin station.
GPUs do not have appropriate external communication interfaces.

In addition to the constraints mentioned above, a major disadvantage of using autonomous
coprocessors in intrusion detection is that they are unable to interpose themselves between
the malicious process and the OS to collect IDS data and analyze the attacks. To examine
and additionally modify the host’s state the coprocessor has to share interfaces with the
host processor. The number and choice of interfaces determines the degree to which intru-
sion detection is possible [29]. Furthermore, because coprocessors operate asynchronously
they suffer limitations in their ability to reconstruct kernel states [16].

Current GPU APIs offer only user space interfaces. Thus, GPU kernels can only be
initiated via a user mode process.

With current GPUs, independent execution of program logic is not possible because
of the host-bound kernel execution. Once the host’s user mode process which started the
kernel exits, the running GPU kernel gets terminated. In terms of malware infection this
means that if the host is subverted the GPU kernel cannot run in a trusted state anymore.
In addition, implementations in user mode or kernel drivers are not asynchronous because
they are dependent on the OS’s scheduler. For this reason, asynchronous measurement is
not possible.

The GPU kernel has no unrestricted access to the host’s physical memory so it cannot
directly interact with the host system and directly scanning for malware in host’s memory
is not feasible. Host memory has to be available in the graphics card’s address space before
the GPU kernel can access it. This can be done either by explicitly copying the memory to
the graphics card or by mapping memory to pre-allocated page-locked user space memory
areas which can be accessed by the GPU via a zero-copy mechanism [20].

The observation of the memory is based on sampling. Thus, there is no guarantee to
detect the attack in time. An appropriate combination of placement of the samples, the
number of samples, the sampling period, and the period distribution has to be found [29].
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The number of samples is limited by the data access latency of the graphics card. Addi-
tionally, in a multi-GPU environment the data exchange between GPUs via the PCIe bus is
a limiting factor.

Another limitation refers to the maximum runtime of a kernel. Current GPUs are not
built to run graphics calculations and time intensive or infinite general purpose computa-
tions simultaneously. For the current Microsoft Windows OSs the window manager ter-
minates any kernel externally via the driver that runs more than a certain period of time
(approximately five seconds). This mechanism exists to prevent system hangs where the
display will freeze until the kernel has finished executing.

4.6 Discussion

The autonomous use of standard GPU components without modifications of their architec-
ture is not feasible due to components which control the GPU from host-side. For example,
the graphics card driver makes the approach dependent on the OS’s scheduler. Moreover,
necessary hardware components are missing which would allow using graphics cards as
coprocessors for intrusion detection.

4.6.1 Limitations

Working around the GPU APIs is not possible without further investigation of the closed
architecture of the involved driver and the graphics card. There is currently no way to
start kernels from within a kernel driver. [5] uses a microdriver architecture to circumvent
this limitation. Although technically feasible it is unlikely that GPU vendors will provide
kernel interfaces which directly access GPUs in the near future [5]. This is probably caused
by stability issues which would arise. If the kernels are initiated from user address space,
malware which resides in kernel space can interfere the execution with minimum effort.

Another limitation regards to the maximum GPU kernel runtime. To prevent system
hangs, graphics calculations are limited in their maximum execution time. This prevents
freezing screens if a kernel computation fails and lasts too long. Although this behavior
can be changed by increasing the watchdog’s time threshold or by completely disabling the
watchdog, these modifications are recommended only for debugging and testing purposes2

and are not feasible in a real environment.
A potential solution for this problem is to use NVIDIA’s new GPU generation [21] which

supports simultaneous execution of multiple kernels. This way, displaying tasks can stick
to short time limits and computational tasks can have no runtime limitations. Alternatively,
the kernel execution can be broken into smaller bits. However, this is a major constraint for
the design of the intrusion detection algorithm.

Another solution is to use a dedicated card for kernel computations which has no dis-
play connected. But the demand for an additional graphics card for GPU processing only
breaks the benefit of using commodity hardware for intrusion detection. It is a requirement
that apart from the intrusion detection the GPU should be usable for displaying tasks. Only
then our proposed wide-spread IDS approach is practicable.

4.6.2 Architectural Modifications

To use GPUs as independent auditors we propose several modifications which have to
be made regarding their architecture. First of all, a mechanism needs to be devised to get
unrestricted access to the host’s physical memory. A potential solution is using unrestricted
DMA as previously done in [24]. The current DMA functionality is too restrictive and does
not allow the required accesses.

2http://msdn.microsoft.com/en-us/library/ms797877.aspx
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In terms of continuity, the operation of the IDS on the GPU has to be started at an
early stage of the host system’s boot process. As there is no driver loaded at that time,
the GPU is independent of the OS. To support such a functionality, a new independent
operation mode has to be implemented which still works with the normal graphics driver
activity. In addition, this approach circumvents the GPU APIs with its CPU-GPU context
behavior which terminates the GPU kernel at certain events. The GPU kernel must run
independently of the host’s software routines and especially must not have a maximum
runtime limitation.

Additionally, hardware vendors have to open their code and/or their architecture for
at least the sensitive sections which affect the secure operation of the IDS.

Moreover, current GPUs lack of a non-volatile memory to store records of alerts. The
only permanent storage is an EEPROM which holds the graphics card’s BIOS code. By
providing a small amount of flash memory on the graphics card – accessible by the GPU
kernel – this limitation can be resolved.

4.6.3 Efficiency

Unfortunately, we cannot compare our proposed observation mechanism with existing IDS
schemes due to the current unfeasibility of creating a proof of concept.

In general, GPU’s parallelization capabilities should be beneficial compared to exist-
ing solutions based on common PCI devices. Especially at pattern matching much higher
performance can be expected than from other IDSs.

Because the CPU is not directly involved into the IDS, only few CPU cycles are occu-
pied. Due to most of the time underutilized GPU kernels especially in desktop environ-
ments, only minor decreases on graphics performance can be expected. Nevertheless, the
asynchronous memory accesses via DMA can lead to a cache coherency problem which
will affect the overall system performance.

Additionally, with current possibilities it is not feasible to gain a complete picture of
the system’s host memory. As proposed, major modifications of GPU’s architecture are
necessary to enable this functionality.

The actual advantage of our proposed observation mechanism is the fast connection
to the mainboard’s chipset and the high computational throughput reached through par-
allelization of the GPU kernels. In addition, computation performance increases rapidly
with every new GPU revision.

Furthermore, an increasingly amount of computers have access to GPU’s computa-
tion resource. This wide-spread availability makes the idea of an IDS worth investigating.
Moreover, keeping in mind that integrated GPU solutions in mobile computers and devices
already use parts of host’s main memory our mechanism shows its strength regarding the
performance of memory observation.

4.6.4 Security

Since the proposed intrusion detection mechanism does not work independently, a com-
promise of the host system does affect its operation. Moreover, the DMA mechanism of the
GPU has only read access to protect the integrity of the OS in case of a malfunction. Fur-
thermore, processes on the host system cannot access GPU’s resources directly – especially
the local memory – since the graphics driver manages and restricts all interactions.

With current GPUs, it is not possible to secure the communication between the host
components and the graphics card. As shown with a PCI-based cryptographic coprocessor
[29], the communication with the IDS can be authenticated. Thus, only the main application
is permitted to configure the IDS during its operation.

Regarding denial of service attacks or other compromises against the graphics driver,
it has to be mentioned that driver isolation is a common topic [28, 7, 13, 27] and helps to
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secure both the graphics card driver and the kernel driver used for the observation mecha-
nism.

4.7 Related Work

Related work regarding independent auditors was proposed in [24] with a coprocessor-
based kernel integrity monitor. The proposed monitor does not depend on the underlying
OS. Based on a single-board computer which is embedded on a PCI add-in card the monitor
is able to examine the host’s RAM without the knowledge or intervention of the host kernel.
Unrestricted memory access is gathered via DMA. Due to its architecture, any access to PCI
memory corresponds directly to an access in the 32-bit physical address space of the host
system [24]. Unfortunately, Rutkowska [25] showed that by manipulating certain chipset
registers the memory acquisition via DMA can be, for example, redirected to garbage data.

Zhang et al. [29] used a PCI-based cryptographic coprocessor to implement host-based
intrusion detection tasks on a tamper-resistant computing device which is designed to per-
form critical tasks in an environment in which physical attacks are possible. With this ap-
proach, messages from the sensors can be authenticated in contrast to our GPU approach.

Other solutions proposed virtual machine monitors [9, 23] to get a secured and complete
picture of a host system’s activity.

Although these mentioned systems offer relatively good observation platforms, they
all use special hardware components which have no wide-spread availability compared to
our standard GPU components approach. This renders their usage difficult in terms of host
intrusion detection.

The necessity of an isolated graphics system was mentioned by Okhravi and Nicol [22].
They describe the design and implementation of a trusted graphics subsystem for high as-
surance systems. Nevertheless, their approach deals with problems at a higher abstraction
level.

Seeger and Wolthusen [26] proposed a computational model and observation mecha-
nism for the case of tightly coupled asymmetric concurrent processing units. They deal
with costs of forced synchronizations and resource contention caused by observations.

4.8 Conclusion

In this paper we investigated the constraints of using GPUs as autonomous coprocessors
for asynchronous observations and intrusion detection. GPUs with general purpose com-
puting capabilities are wide-spread commodity hardware and deliver a fast coprocessor.
They have a fast connection to the motherboard’s chipset and have highly parallel compu-
tation units. Furthermore, graphics cards are a mostly underutilized computing resource
and operate outside the OS. Under ideal conditions the intrusion detection mechanism is
undiscoverable. As a result, a high attack resistance of the IDS monitor is achieved since
a compromise of the host does not affect the coprocessor. Nevertheless, in comparison to
the architecture of each CPU, the GPU’s SIMD architecture offers only a very limited pro-
gramming model. Memory accesses reduce the possible concurrency and workloads have
to meet certain requirements in order for the GPU to perform best.

We presented an observation mechanism and showed that current GPUs have several
major constraints in executing our proposed task. The list of requirements of independent
auditors showed that several basic requirements are not fulfilled. GPU kernels cannot run
independently from the host system and have no unrestricted access to the physical mem-
ory of the host system. In addition, graphics cards have no appropriate permanent storage
mechanism.

Since our approach is not feasible with current graphics hardware, we suggested several
modifications to graphics cards which are necessary to enable our proposed mechanism.
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In our future work, we will investigate on modifying the existing graphics device in-
terfaces to reach our goal: the usage of fast commodity hardware for asynchronous host
IDSs. Additionally, we want to focus on appropriate algorithms to process our observa-
tions and we want to measure how the generated asynchronous memory accesses affect
the performance of the host system.
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[28] WITCHEL, E., RHEE, J., AND ASANOVIĆ, K. Mondrix: Memory Isolation for Linux
using Mondriaan Memory Protection. In Proceedings of the 20th ACM Symposium on Op-
erating Systems Principles (SOSP 2005) (Brighton, UK, Oct. 2005), vol. 39, ACM, pp. 31–
44. doi:10.1145/1095809.1095814. 61

[29] ZHANG, X., VAN DOORN, L., JAEGER, T., PEREZ, R., AND SAILER, R. Secure
Coprocessor-Based Intrusion Detection. In Proceedings of the 10th ACM SIGOPS Euro-
pean Workshop (Saint-Emilion, France, July 2002), ACM, pp. 239–242. doi:10.1145/
1133373.1133423. 23, 24, 43, 53, 54, 59, 61, 62, 67

65

http://www.blackhat.com/presentations/bh-dc-07/Rutkowska/Presentation/bh-dc-07-Rutkowska-up.pdf
http://dx.doi.org/10.1109/ICONS.2010.34
http://dx.doi.org/10.1145/945445.945466
http://dx.doi.org/10.1145/1095809.1095814
http://dx.doi.org/10.1145/1133373.1133423
http://dx.doi.org/10.1145/1133373.1133423




Chapter 5

The Cost of Observation for Intrusion
Detection:

Performance Impact of Concurrent Host
Observation

Abstract

Intrusion detection relies on the ability to obtain reliable and trustworthy measure-
ments, while adversaries will inevitably target such monitoring and security systems to
prevent their detection. This has led to a number of proposals for using coprocessors as
protected monitoring instances. However, such coprocessors suffer from two problems,
namely the ability to perform measurements without relying on the host system and the
speed at which such measurements can be performed.

The availability of smart, high performance subsystems in commodity computer sys-
tems such as graphics processing units (GPU) strongly motivates an investigation into
novel ways of achieving the twin objectives of self-protected observation and monitoring
systems and sufficient measurement frequency. This, however, gives rise to performance
penalties imposed by memory synchronization particularly in non-uniform memory ar-
chitectures (NUMA) even for the case of direct memory access (DMA) transfers.

Based on prior work detailing a cost model for synchronizations of memory access
in such advanced architectures, we report an experimental validation of the cost model
using an IEEE 1394 DMA bus mastering environment, which provides full access to the
measurement target’s main memory and involves multiple bus bridges and concomi-
tant synchronization mechanisms. We observed more than 25% performance degrada-
tion, highlighting the need for efficient sampling strategies for both memory size and a
preference for quiescent data structures for monitoring executed by off-host devices.

5.1 Introduction

Despite the fact that the use of coprocessors for host intrusion detection (ID) has been pro-
posed years ago (cf. [19, 18]) they are currently not used in this domain. Even though their
practical applicability has been shown by [12]1, commercial host ID software is still being
installed on the host and executed by its CPUs.

In contrast to this, coprocessors are applied in the context of network ID (cf. [17, 4]).
The ease of accessing data from network traffic in contrast to data on a host system (i.e.,
the host’s main memory) and putting it under the audit of an auxiliary processor has con-
tributed its part to this development.

The use of graphics chipsets or PCI processing devices (cf. [10]) and GPUs in general (cf.
[16]) for host intrusion detection has been mentioned in previous work. While [10] mostly
deal with self-protection of the observing component itself, [16] introduce a model capable
of expressing the costs such observations can cause. That is, the authors pay special atten-
tion to concurrent memory accesses, particularly in a NUMA architecture as represented

1This included a proof of concept implementation called CoPilot.

67



5. THE COST OF OBSERVATION FOR INTRUSION DETECTION: PERFORMANCE IMPACT OF
CONCURRENT HOST OBSERVATION

by a standard multi-core (and especially multi-processor) system. The actual feasibility of
a GPU in order to perform host intrusion detection was the subject of [14].

Although the model proposed in [16] and utilized here is intended mainly for high-
speed interconnections such as these offered by GPUs and similar components, it is appli-
cable to all non-uniform concurrent memory access architectures. The read-only (observa-
tion) access to a state variable of a target process can cross several cascading memory hier-
archy layers with the ultimate shared resource in such architectures generally being main
memory. As snooping and cache coherence protocols allow the efficient but forced syn-
chronisation without the possibility of intervention on the part of software components,
this provides a mechanism for concurrent state observations that cannot be corrupted or
compromised. While [16] is concerned about observations executed by the GPU, similar
effects with regard to resource contention and ultimately performance degradation on the
host system can be caused by every memory access using DMA. Having in mind the limi-
tations revealed by [14] we thus propose another hardware-based approach in this paper:
That is, we exploited the ability of the IEEE 1394 technology in order to gain full access
to the main memory of a connected computer. In order to make the observation effects as
clear as possible, a workload generator produced alterations in a data structure of a pre-
defined size. As we measured the CPU cycles consumed by our generator in both cases –
with and without observation – we were able to quantify the loss of performance caused
by observations executed by a processor other than the CPU of the host system.

The results obtained are of prime importance for the design of smart host intrusion
detection algorithms running on off-host components. They provide central information
with regard to the correlation of factors such as observation frequency, size of the data
structure to be observed and the resulting performance degradation.

The remainder of this paper is structured as follows: In Section 5.2, we give an overview
of the IEEE 1394 serial bus interface and point out the reasons for its applicability in our
context. We also provide a historical insight into the main contributions regarding the
field of physical attacks using the IEEE 1394 technology. We then present a description of
our experimental setup that was used to obtain our results in Section 5.3 followed by a
presentation of the actual results in Section 5.4. The paper is closed with a conclusion in
Section 5.5 and a brief description of our future work in Section 5.6.

5.2 IEEE 1394

The IEEE 1394 interface, better known as FireWire, was initially developed by Apple Com-
puter, Inc. in the 1980’s [11]. Standardized by the Institute of Electrical and Electronics En-
gineers (IEEE) for the first time in 1995 (IEEE 1394-1995) [6], the latest changes have been
published in October 2008 [7]. Due to its high speed and low overhead, today FireWire
technology is mainly used for fast file transfer between external periphery such as mass
data storages (e.g., hard drives, secure digital (SD) memory cards, etc.) and a computer. In
contrast to the universal serial bus (USB), the FireWire standard allows for the communi-
cation between devices itself. Areas of application are here the communication between a
digital camera and a printer, for instance.

In January 2000, version 1.1 of the open host controller interface (OHCI) specification
was released by contributors from seven well-known computer companies, headed by Ap-
ple Computer, Inc. [1]. This interface is an implementation of the link layer protocol of the
1394 serial bus and empowers a broader variety of devices to take advantage of the IEEE
1394 interface. Furthermore, it is the OHCI that has features such as memory-mapping im-
plemented in hardware which allows for a communication between two FireWire devices
without the interaction of the operating system (OS) of either of them. Chapter 12 of the
OHCI specification defines: “When a block or quadlet read request or a block or quadlet write
request is received, the 1394 Open HCI chip handles the operation automatically without involving
software if the offset address in the request packet header meets a specific set of criteria...” [1]. For
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us, the relevant criterion to meet is the one that specifies that the address has to fall within
the physical range of the target memory space. This range is defined by lower and upper
bounds. While the offset is at address 48’h0 the address of the upper bound is either at
48’h000_FFFF_FFFF or stored in the field physUpperBoundOffset2. This of course implies a
security risk not only in theory but in practice as well, as we will see now.

5.2.1 Physical Attacks and Observations Using IEEE 1394

The properties of the IEEE 1394 technology noted above are also attractive in the secu-
rity context for both attacks and forensic purposes. Although not within the scope of the
present paper, we note that this use has ,e.g., been documented informally during the
MacHack 17 convention in 2002, where a proof of concept for overwriting screen mem-
ory between two Apple Macintosh computers was demonstrated [13]. This was further
elaborated by Dornseif et al. in 2004 using an Apple iPod for reading and writing to arbi-
trary memory locations in host systems without interacting with the target host operating
system [5].

As expected and demonstrated by Boileau (cf. [2]), this is fully independent of any
host operating system, although the device class must be known to the host system. This
can, however, be easily emulated by setting the appropriate status registers to a known
device and class, e.g., a mass storage device. Since all tools necessary for such an attack
are freely available, having physical access to an enabled FireWire port on a computer is
equal to having full access to its main memory. This includes use cases like changing the
password protection code stored in main memory of a screen-locked computer in such a
way that it accepts just any input. The intended lack of any access control mechanism or
authentication schema between the communicating devices makes this possible.

For the purposes of attacks, performance considerations are largely irrelevant. How-
ever, forensic applications will aim to maximize speed. Particularly for the case of forensic
memory capture, the fact that IEEE 1394 devices are typically coupled to main memory by
one or more bus bridges makes this susceptible to chip-set modifications as, e.g., proposed
and demonstrated by Rutkowska [15].

We note that the transitioning over multiple bus bridges is also affecting the measure-
ments observed in the present paper as this implies not only matching different memory,
bus, and device speeds, but also the use of multiple cache coherence and synchronization
protocols.

5.3 Experimental Setup

In this section, we give a description of the experimental setup that was used in order to
measure the impact, host memory observations executed from an off-host component can
have on the system being observed. The results will be presented in detail in Section 5.4.
The full project, containing the source code of our workload generator, as well as all results,
is available at http://sourceforge.net/projects/dmamemoryobserv.

We used two computers: one being the observer and the other one being the target.
Each of them provided a S400 FireWire interface.
Observer: Ubuntu Linux 10.04 64-bit, kernel version 2.6.32, 4GB RAM, Intel Core 2 Quad
(Q8200, 2.33GHz).

The establishment of the FireWire connection between the two computers, as well as
the access to the main memory and the data transfer, is accomplished by the open source
tools published by Boileau [3]. The underlying modules raw1394, IEEE1394, sbp2 (serial
bus protocol 2) and OHCI1394 are mandatory and usually distributed as part of the kernel
but can also be downloaded from the corresponding repository if not. For the observa-
tion of a certain amount of data at specific locations, we wrote a wrapper around Adam

2In order to stay within the range, the value stored here needs to be decremented by one.
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Boileau’s readWithExclusion() function which takes the corresponding addresses pointing
to the data as an argument.
Target: ARCH Linux 64-bit (a simple and lightweight Linux distribution), kernel version
2.6.33, 2GB RAM, Intel Core 2 Duo (E8400, 3.0GHz).

In our setup, the target’s only duty is to run a workload generator and to log the CPU
cycles that were consumed while executing it. The workload generator is a C++ console
program producing a synthetic workload by continuously writing to a data structure of a
pre-defined size. The idea behind this program corresponds to the basic statement of [16]:
A forced synchronization between different memory levels (i.e., a cache and the main mem-
ory) takes place, whenever two conditions are met: (1) The higher level holds an altered
copy [m]′ of the original but outdated data [m] which resides in the physical memory. (2)
[m] is accessed by another (co)processor. In this case, synchronizations must take place in
order to serve the accessing (co)processor with the latest data.

The basic pseudo code of our workload generator is shown in Listing 5.1. The parame-
ters of the main() function are:

• blockSize: The size (in bytes) of the data structure the workload generator works with.

• runs: The number of executions of the workload() function.

• iterations: The number of times the data structure is written during each execution of
the workload() function.

• ratio: The ratio (i.e., 1 ≥ ratio > 0) expressing the percentage of the data structure
that is actually being written.

• type: A string, being written to the log file, indicating whether the test ran under ob-
servation (o) or normal duty (nd).

Listing 5.1: Pseudo Code of the Workload Generator.
1 main ( blockSize , runs , i t e r a t i o n s , r a t i o , type )
2 {
3 log . wri te ( p r i n t I n f o ( ) ) ;
4 m = malloc ( b lockS ize ) ;
5 for ( i < runs )
6 {
7 s t a r t C y c l e s = r d t s c ( ) ;
8 workload (m, i t e r a t i o n s , r a t i o ) ;
9 endCycles = r d t s c ( ) ;

10 log . wri te ( endCycles − s t a r t C y c l e s ) ;
11 }
12 }
13
14 void workload (m, i t e r a t i o n s , r a t i o )
15 {
16 for ( i < i t e r a t i o n s )
17 for ( j < m. s i z e ( )∗ r a t i o )
18 m[ j ] = m[ j +1] + 1 ;
19 }

As mentioned in previous work, we propose the observation of relations among critical
components of the operating system and its security components. Therefore, we deal with
rather small data structures compared to intrusion detection systems which use a signature-
based approach. One example here is the observation of entries in the system-call-table,
which serves as an interface between user and kernel mode. By altering the function point-
ers of certain kernel functions or by falsifying their return values, an adversary can suc-
cessfully conceal the presence of malicious software. As the function names, as well as the
function numbers and pointers are rather small, we have decided to run our experiments
with a data structure between 8 and 64 bytes.

The number of computations (i.e., the execution of line 18 in Listing 5.1) can be adjusted
by the parameters runs, iterations and blockSize. By incrementing the number of runs by the
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same value the number of iterations gets decremented (i.e., runs += y; iterations -= y),
the number of computations would stay same. But it is important to understand the two
major side effects this would have: Experiments showed that (5 · 109) · blockSize results
in a reasonable runtime for the workload generator when the size of the data structure lies
between 8 and 64 bytes. That is, the runtime is high enough to obtain meaningful results
even when working with small data structures (i.e., 8 bytes) and low enough to allow an
execution of all tests withing one day when working with bigger ones (i.e., 64 bytes). By
setting parameter runs to 5 · 109 and thus, omitting the first for loop in the workload()

function, we would produce a log file containing 5 · 109 entries; too much data to work
with. The second effect is, that by omitting this for loop, the time between the two cycle
measurements would be very short and, therefore, less meaningful.

The parameter ratio relates to the equation for calculating the interference ratio for a
given amount of data presented in previous work (Equation 5.1 in this paper). According
to [16], the performance loss due to observation depends not only on the amount of data
being observed but also on its composition. That is, read-only data cannot be written,
therefore, does not need to be synchronized and thus, will not cause resource contention.

I =


min, for r = 1 ∨ x = 0,

max, for x = 1,

undef, for x = 1 ∧ w = 0,
w·x
1−r · [t], for r < 1 ∧ 0 < x < 1

(5.1)

In Equation 5.1, r stands for the ratio of read-only and w for the ratio of writable data
(r + w = 1). x expresses how much of the processing timespan [t] is actually used for
writing data.

The special cases lead to a minimal (I = 0) and maximal (I = 1) interference rate
respectively, while the case of spending all time (x = 1) on writing data when there is no
writable data available (w = 0) is undefined.

It is clear to see that the interference ratio I becomes smaller by decreasing the amount
of writable data (w) being written (x). And in our setup, this can be done by defining a
stress ratio between 0 and 1 which is expressed by the parameter ratio, determining the
percentage of the workload that is actually being written.

Before every individual test, we log its characteristic, e.g., whether or not the target
process ran under normal duty (nd) or was under observation (o). This information is
passed by the parameter type. In order to get reliable results regarding the execution time
of each run, we made use of Intel’s Read Time-Stamp Counter instruction rdtsc [9]. This
assembler command is available since the first Pentium model range and returns the value
of a 64-bit model specific register that is incremented every CPU cycle [8]. Furthermore,
we disabled the multi-core support and the Intel SpeedStep feature to make sure that our
program is carried out by one core only and to keep the maximum CPU clock rate static.

The full experiment included three different cases, characterized by different parame-
ters. Each case C1−3 comprised four test tuples T1−4 and each test tuple consisted of two
tests t1−2. The parameters for each case are given by the signature of the main() function in
Listing 5.1: While the parameters runs (10,000) and iterations (0.5mio) stayed the same for
all tests making the results comparable, blockSize (8, 16, 32, 64), ratio (0.5, 1.0) and type (o,
nd) were adjusted in compliance to the following conditions:
For all cases C1−3:

• The test tuples within the same case are executed with a different blockSize: T1 = 8,
T2 = 16, T3 = 32 and T4 = 64

• The tests within the same test tuple are executed with a different type but inherit the
blockSize from the corresponding test tuple. Therefore, they are executed with the
same blockSize but with a different type.
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• Only one instance of the workload generator executing the tests is running on the
target, except for C2: here, two instances of the workload generator are started, exe-
cuting the exact same tests in parallel.

• The stress ratio for all tests is 1.0 except for the tests within C3: here, it is set to 0.5.

The lower bound of the parameter blockSize was set to 8, in order to assure a reasonable
runtime in conjunction with the agreed on values for the parameters runs and iterations.
All subsequent values are multiples of 8, allowing for an easy comparison of the overall
results.

As can be seen, all three cases consist of four experiments where each experiment is
conducted with and without concurrent observation. With respect to the conditions above,
in the first case, we had only one instance of the workload generator running on the target.
For the second case, we started two instances in parallel and observed both at the same
time. In either one of them, all bytes allocated were actually written (ratio = 1.0). In case
three, we again used one instance only but the stress ratio was set to 0.5. In this case
only 50% of the allocated data were altered. Once a case was initialized (i.e., all tests were
configured and ready for execution), we dumped the full main memory of the target and
searched through it, looking for the addresses pointing to our workload. According to the
blockSize assigned, we then started the observation of the corresponding amount of data
whenever parameter type = o.

5.4 Results

Based on the case conditions introduced in Section 5.3, we obtained meaningful results
which allow a direct performance comparison with regard to the CPU cycle consumption
of a given process with and without observation. By continuously observing only the actual
synthetic workload (i.e., only that amount of data – defined by the parameter blockSize– that
is actual being worked with) we forced an immediate synchronizations between the caches
and the main memory and, therefore, caused a resource contention.

Our results can be seen as a benchmark. As with any other benchmark, it is of prime
importance that the results being compared with each other originate from identical ex-
perimental setups. Furthermore, the development of CPUs with intrinsic power saving
features such as lowering the clock rate or turning off (parts of) certain caches attributes to
the fact that reproducing the exact results will most likely be impossible, even if the exper-
iments are carried out by an identical hardware setup. That is, in contrast to, for instance,
the Intel SpeedStep feature, which can be seen as a “global” property, future developments
will be more fine grained (i.e., instead of a per-socket-feature, a per-core or per-ALU fea-
ture will be in place), not allowing any adjustment from the outside. As a result of this, the
number of outliers will increase causing a higher standard deviation.

Our results show several clear and generalizable trends and distinctive technical fea-
tures, expressed by six characteristic values for each test:

• Process runtime: This is the time, measured in minutes, executing an individual test
took.

• Measurements: During each observation, we measured the number of measurements
per minute.

• Mean Value: As mentioned before, each test returned 10,000 measurements of the
consumed CPU cycles. In order to make a statement regarding the average consump-
tion, we calculated the mean value.

• Standard Deviation: The standard deviation gives an idea about the level of hetero-
geneity of all 10,000 measurements per test.
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• Outliers: A high standard deviation can be an indicator for both a very heteroge-
neous sample space and a reasonable number of outliers. A closer look into the dis-
tribution of our measurements revealed the existence of outliers.

• Performance Degradation: The most interesting statement is the one regarding the
difference between the CPU cycles consumed by the workload generator with and
without observation. This performance degradation is expressed in percentages.

Before we present the three generalizable trends according to the characteristic values
from above, we want to describe the results of one sample case, namely the one where we
observed one process only, with a stress ratio of 1.0. Since the results of all other cases
are of a similar character, the in detail presented example shows the effects of observations
carried out by a coprocessor very clear.

5.4.1 Sample Results:
Observing One Process with a Stress Ratio of 1.0

As mentioned before, one case consisted of eight tests, where each two tests of one tuple
are characterized by working on a data structure of the same size but are of a different type.
Table 5.1 shows the conditioned results obtained from all tests within case one (one process
instance, ratio = 1.0). Column one (runtime in minutes) represents the runtime of each test.
The figures in the second column (measurements per minute) stand for the frequency with
which the observation of the data structure – characterized by the size shown in column
three (size) – was executed. The zeros in the second column indicate that this test ran with-
out observation (parameter type = nd). Column four (performance degradation) depicts the
percentage values of the difference between two tests of the same test tuple, based on the
averaged CPU cycles shown in column five (mean value). The number of outliers, stated
in column six, will be discussed shortly. They are closely related to the standard deviation
shown in column seven.

The high standard deviations shown in the last column of Table 5.1 are due to the fact
that our data is distinguished by a number of very clear outliers. Using the results that
lead to the values shown in the first row of Table 5.1, we created a histogram that clearly
reveals the outliers. Figure 5.1 sharply uncovers that 98.19% of all values lie within the
range of 53mio - 54mio CPU cycles. Further investigation showed that the outliers appear
almost periodically which strengthens our suspicion that these exceptionally high values
are caused by processes belonging to the operating systems running on the target, demand-
ing for processor time. Table 5.2 depicts the normalized results of the first test. That is, we
eliminated all outliers in order to show that the actual result set is quite homogeneous. The
still notably higher standard deviation of the normalized results for the last test tuple is due
to a higher degree of heterogeneity in the corresponding result set, which increases with

Table 5.1: All conditioned results obtained from observing one process with a stress ratio
of 1.0.

Runtime
in min

Measm.
min Size

Perf.
Degr.

Mean
Value Outlier Std.

Div.

3.07 0 8 0.77% 54.99mio 180 36.24%

3.08 130,768 55.41mio 183 36.26%

4.97 0 16 1.28% 88.90mio 294 28.48%

5.02 69,887 90.04mio 298 28.30%

8.15 0 32 1.48% 146.04mio 480 21.94%

8.25 34,076 148.20mio 491 21.84%

15.57 0 64 16.39% 279.41mio 928 15.63%

18.12 16,881 325.19mio 1,085 14.34%
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Figure 5.1: Histogram of all results from the first test (corresponding to row one in Table
5.1).

Table 5.2: Normalized conditioned results for observing one process with a stress ratio of
1.0.

Performance
Degradation

Mean
Value

Standard
Deviation

0.72% 52.29mio 0.04%

52.67mio 0.10%

1.27% 84.50mio 0.02%

85.57mio 0.02%

1.44% 138.85mio 0.02%

140.85mio 0.18%

16.36% 265.45mio 1.47%

308.94mio 1.26%

the amount of data being processed by the observer. According to the characteristic val-
ues in Table 5.1 and 5.2, we derived three generalizable trends described in the following
subsections.

5.4.2 Observing Frequency vs. Size of the Data Structure

As mentioned earlier, the size of the data structure we observed was set to either 8, 16, 32 or
64 bytes by the parameter blockSize. While the amount of data being subject to observation
rises, the frequency with which the data can be observed decreases almost proportionally:
While we were able to observe 8 bytes with an average frequency of 195,201 measurements
per minute, twice the amount of data (16 bytes) could only be observed with roughly half of
the frequency (105,126 measurements per minute). This behavior is depicted in Figure 5.2.
The explanation for this effect is rather straightforward: Observing data from a coprocessor
implies the task of copying the concerned data from the host towards a memory closer to
the coprocessor. Transferring small chunks of data is just faster than transferring bigger
ones. And as we have only one DMA channel between our target and the observer, a new
observation can only start after the previous one has finished.

For interpreting Figure 5.2 correctly, it is important to know that the lines connecting
the measuring points have just been added in order to emphasize the trend and to facilitate
the readability. The impression that the frequency degradation is almost linear is deceitful.

5.4.3 Performance Degradation

Even though the details of Figure 5.3 may mislead to a slightly different conclusion, the
averages calculated from all values (depicted by the solid gray line) clearly show: The
larger the data structure we observe, the bigger the resource contention on the host being
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Figure 5.2: Measurement frequency for different data structure sizes.
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Figure 5.3: Performance degradation according to the size of the observed data structure.

subject to observation. The percentaged values shown in Figure 5.3 are the averages cal-
culated from the performance degradation with and without outliers. The message this
figure sends out is clear: Observations have a significant performance impact on the host.
While the measurements for the case of observing one or two processes with a stress ratio
of 1.0 (i.e., the workload generator works on 100% of the initialized data) confirm this mes-
sage, the curve describing the case of observing one process with a stress ratio of 0.5 seems
to contradict it. That is, while executing the tests with a data structure of 64 bytes and a
stress ratio of 0.5, the performance impact decreased drastically. This effect is most likely
the result of system-based algorithms dealing with the assembling of cache lines, working
sets, etc. by using techniques such as pre-fetching. Since our way of measuring the perfor-
mance impact is an end-to-end approach, the explanation of such effects is out of scope. We
leave aside the exact diagnosis of intrinsic impacts caused by protocol overheads or diverse
bridges and controllers our signal passes, as well as the performance boost a process can
experience when the executing processor benefits from a good locality of reference within
the data it demands. Therefore, we measure what is important in practice: the degree of
performance degradation including all side effects.

The downside of this approach is that we can only speculate regarding the causes of
certain effects. Special equipment as used by chip vendors would have been necessary
in order to further investigate on these effects. The important remark here: The results
stay the same, even if one would be in the position of giving a detailed description on the
internal behavior.
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Figure 5.4: Increasing number of outliers.

5.4.4 Increasing Number of Outliers

In Section 5.4.1 we already presented a closer look into the outlier effect and used the results
of our first test (row one in Table 5.1) to show that besides the easily identifiable outliers,
our result set is heterogeneous. Figure 5.4 now depicts the growth of the number of outliers
with regard to the size of the data structure the workload generator works with. Three
major characteristics are important to point out: The first one is that our observation causes
the number of outliers to increase. While for the cases where we observed smaller data
structures the difference was marginal, the gap rose when we increased them. Interesting
to know here is the fact that the number of outliers has only a very small influence on the
performance degradation3 as one can see by comparing the corresponding values shown
in Tables 5.1 and 5.2. The second important point regards to the growth of the absolute
appearances of outliers. That is, the more data we work with, the more outliers appear.
And last but not least, one can see that working with only half the data initialized caused
roughly half the amount of outliers. Even though the outliers are clearly to identify in all
cases and thus can be eliminated for statistical purposes, they are an intrinsic element of
the workload process running on the target. The avoidance of such effects may be desirable
but due to several reasons (e.g., multi-tasking on one processor) not always possible.

5.5 Conclusion

We have shown that memory observation as may arise in concurrent observation for intru-
sion detection and prevention, implies a non-negligible cost – particularly when executed
over a shared memory or non-uniform memory architecture. Validating a model for such
NUMA architectures, this paper has shown that data structure size and the fraction of write
activities is clearly having effects that cannot be fully masked by even advanced processor
and memory architectures.

Memory observations executed by a coprocessor imply costs (i.e., performance degra-
dation) on the side of the host being observed. And in this work we were able to quantify
these costs for a given hardware. [16] explain that the reasons for this loss of performance
can be found in the memory architecture of today’s computers: Data most recently used
by a processor is copied to a memory level which is much smaller than the systems main
memory but also much faster. The probability that data used at time t0 is needed at time
t1 makes this approach very efficient. Whenever the copied data gets altered, synchroniza-
tion between the different memory levels involved (i.e., in most architectures L1-cache,
L2-cache and main memory) does not take place immediately. Instead a coherence proto-
col is implemented, triggering the synchronization according to a set of rules. One of these

3Because of this, we were able to average the values for the performance degradation shown in Figure 5.3.
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rules is that synchronization must take place when another processor is about to access
data residing in the main memory that is marked as dirty. That means that there exists an
altered copy of this data in a higher memory level. In order to fulfill the requirement of
serving every processor with the most current data, synchronization is indispensable. And
since the accessing speed of the different memory levels differ potentially by one or more
orders of magnitude, each synchronization results in a loss of performance. A cost model
for expressing the worst case with regard to the performance degradation such synchro-
nizations can cause has been presented in previous work. Its practical and quantitative
validation was missing until now.

The results obtained from our experiments fully validate the theoretical statements pro-
posed previously. We implemented a workload generator and executed it on a lightweight
Linux operation system (i.e., ARCH Linux) in order to see the effects as clearly as possi-
ble. The actual observation was realized using a high-speed bus-mastering DMA channel
established between a second computer and the target system. This corresponds to the
prerequisite of [16] to have the observation executed by another processor than the one
operating the host system (i.e., a coprocessor). By running tests for three different cases
(eight tests per case) where each test was distinguished by the parameters with which it
has been executed, we clearly unveiled the performance impact. With the cases executed in
our test environment (cf. Section 5.3), we experienced a performance degradation of more
than 25% for the case where we observed two instances of our workload generator running
in parallel and working on a data structure of 64 bytes each.

The size of the data structure being observed is not the prime factor leading to a well-
founded assumption of whether or not the loss of performance is expected to be rather
high or low. That is, the composition of the data structure plays a vital role: As already
mentioned, synchronizations take place, when altered cached data needs to be written back
to the main memory. If the cached data is either read-only or writable but not being written,
its value will never change and thus, synchronizations are not needed. Together with this
statement, an equation capable of calculating the inference rate was published (cf. Equation
5.1), basically saying that the observation of read-only data is cheap in comparison to the
observation of writable data, that is actually being written. By setting the stress ratio for
one case to 0.5, we achieved that the workload generator worked on only 50% of the data
initialized.

It can clearly be seen that the results validate the equation presented in previous work,
as – compared to the cases with a stress ratio of 1.0 – the performance impact on the target
was significantly lower as shown in Table 5.3. Here, we juxtaposed the percentaged per-
formance degradations for the case of observing one instance of the workload generator
working on 50% and 100% of its workload. Just as in Figure 5.3 the percentages shown in

Table 5.3: Comparison of performance degradations depending on the amount of data
actually being written.

Size Performance Degradation

ratio = 0.5 ratio = 1.0

8 0.30% 0.75%

16 0.23% 1.27%

32 1.25% 1.46%

64 0.21% 16.37%

Table 5.3 are the averages obtained from calculating the performance degradation with and
without inclusion of outliers. It is clear to see that the performance degradation is much
lower when not 100% of the data being observed is altered (tested with 50% and 100% in
our case).

We have shown that memory observation executed by a coprocessor does not come for
free. In fact, depending on the size and composition of the data structures being subject
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to observation, the performance degradation varies: Bigger data structures and a higher
appearance of data being written result in a more serious loss of performance.

With regard to future work, the results represented in this paper are essential. They
prove that an observation strategy according to the busy-wait approach would result in
a tremendous loss of performance and is, therefore, not desirable. This is especially true
when we consider that the results presented in this work were obtained using the com-
paratively slow S400 FireWire technology (400Mbit/s), whose interface is bound to the in-
put/output controller hub (southbridge) while the host’s main memory is connected to the
memory controller hub (northbridge). This resulted in signal latency and caused the max-
imum measurement frequency to be rather low. The maximum measurement frequency
that could have been achieved by using a highly parallel and multi-threaded multi-core
GPU – connected to the northbridge – would have been much higher. Thus, causing an
even bigger performance degradation when following the busy-wait approach is likely.

5.6 Future Work

The results reported in the present work were obtained from a single observer and target
tuple. In order to rule out anomalies arising from this particular configuration, ongoing
experiments are being conducted with further platforms.

In our experimental setup we took advantage of the FireWire S400 technology which
served as an easy to use approach to observe the data structures on the target. This was
done with a maximum of 195,201 measurements per minute. Besides the bandwidth limi-
tation as such (400Mbit/s), the fact that our signal had to pass two south- and northbridges
(target and observer) accounts for the relatively low observation frequency. In our future
work, we will overcome the limitations revealed by [14] and use the GPU (up to 16GB/s) for
our purposes. By doing so, the measurement frequency will benefit from a higher band-
width due to the fact that this coprocessor is directly connected to the same integrated
memory controller the main memory is coupled with.

By designing smart algorithms which are capable of exploiting the parallel design of
modern graphics cards, we will propose an observation model that takes advantage of the
maximum available observation frequency if necessary but usually tries to work as efficient
as possible. That is, keeping the frequency as low as possible while still guarantying a
reasonable probability that a subversion is detected while taking place.
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Chapter 6

Using Control-Flow Techniques
in a Security Context

A Survey on Common Prototypes
and their Common Weakness

Abstract

Practical approaches using control-flow techniques in order to detect changes in the
control-flow of a program have been subject of many scientific works.

This work focuses on three common tools making use of control- and data-flow anal-
ysis in order to detect alternations and reveals their common weakness in terms of the
ability to react directly to a dynamic change in control-flow. With a general focus on
static analysis of binaries or source code, dynamic changes in the executive flow cannot
be detected. In order to emphasize this shortcoming of static analysis, we present an ap-
proach for dynamically changing a program’s control-flow and validate it by depicting
a proof of concept.

6.1 Introduction

Analyzing the flow of control and data within a program is a well-known technique in-
trinsic to the field of compiler construction. While program optimization is one of its main
fields of application, the field of security with regard to information technology (IT) has
chronicled the appearance of control- and data-flow analysis years ago. The appearance
of subversion techniques concealing their malicious intents by altering the program flow
contributed its part to this development. Nowadays, buffer overflow attacks are the widest
spread representative of exploiting the deviation of control-flow. Here, software vulnera-
bilities are used in order to inject and execute defective code. Thus, detecting such attacks is
possible and practical approaches able of countering them have been presented by various
authors.

We took a closer look at three common prototypes which make use of flow analyzing
techniques in order to detect a change in the executive flow of a program. The result of
the investigation is subject of this work and reveals that all of them follow a static concept.
That is, they are unable to react to dynamic changes in control-flow.

To this extent, we developed a C++ program making use of a Linux system call mostly
utilized to implement breakpoint debugging in order to take advantage of a characteristic
of the late binding technique, which is commonly used for loading dynamic link libraries
(DLL). In a testing environment, this proof of concept was able to change the control-flow
of a target program while staying undetected by major anti-virus suits.

The remainder of this work is structured as follows: Section 6.2 presents a short his-
tory on control- and data-flow techniques in general before Section 6.3 goes into detail by
outlining the major features of control-flow (6.3.1) and data-flow (6.3.2) analysis. The brief
presentation of the three selected common prototypes is subject of Section 6.4. Section 6.5
depicts our prototype by describing the approach as such, as well as showing some pseudo
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code. The paper is closed with a conclusion in Section 6.6 and an outlook into the future
work in Section 6.7.

6.2 Related Work

Control-flow analysis is not new at all. Under the name of “boolean matrices” it was al-
ready mentioned in papers published in the second third of the 20th century with the ear-
liest one being from Lefschetz, published in 1930 [10]. The idea behind this special kind of
matrices evolved from the need to have the data of flow diagrams available in such a way
that it could be handled by machines. Likewise to today’s ambitions, this data was used for
program analysis with regard to internal consistency and the identification of subroutines
[15].

Extensive research has been done in this field with regard to the applicability of control-
flow analysis in a security related context. In general, the control-flow of a given program
is studied in order to tell apart normal from abnormal behavior; to say this with the words
of Forrest et al.: “The problem of protecting computer systems can be viewed generally as
the problem of learning to distinguish self from other.” [5]. With respect to this, Wespi et
al. (cf. [19]) proposed a technique for creating patterns that can be used to model normal
behavior of a given process. These models represent the self and can be used for intrusion
detection under the assumption that the other can be identified by a behavior different from
what was used to train the model.

Enforcing control-flow for security reasons is – amongst others – the subject of [14] and
[17]. While the former present a binary rewriting approach in order to augment existing
programs, the latter present an architectural mechanism in which the processor tracks the
information flows in question and, therefore, is capable of detecting dangerous uses of
spurious values.

Abadi et al. claim that the enforcement of control-flow integrity (CFI) “...cannot be sub-
verted or circumvented even though it applies to the inner workings.” [1]. In their paper,
they show the practical prove that CFI enforcement is capable of ensuring that runtime
execution of a given program proceeds along a given control-flow graph1 (CFG).

While for intrusion detection purposes both techniques are used, control-flow and data-
flow analysis, [11] shows how the gap between them can be bridged. They present practical
results on how data-flow analysis can be used in order to leverage the results from control-
flow analysis.

In [13] the authors demonstrate that static analysis for intrusion detection is no longer
a sufficient technique for identifying malware. They use binary code obfuscation in order
to circumvent detection by semantics-based malware scanners.

6.3 Flow Analysis

Flow analysis comes in all kind of flavors – with and without relevance to information
security. In this section, we focus on the two different techniques of control-flow and data-
flow analysis. While both techniques were initially used for optimization reasons (and still
are), they are nowadays also used in the field of intrusion and malware detection.

As we will see, the two presented analyzing techniques are not mutually exclusive as
one can be used as a preprocessor for the other.

6.3.1 Control-Flow Analysis

From a very abstract point of view, a program is nothing else than a series of instructions
that can be addressed. The decision as to which instruction is to be executed next depends

1A software called “Vulcan” [16] was used to gain the control-flow graphs.

82



6.3 FLOW ANALYSIS

i = 0
j = 1
k = i + j

x = k - l
x != 0?

y = i/x
z = y++

r = y
p = t – a
z = r
z != 0?

1

2 3

4

Control Flow Graph
01 i = 0
02 j = 1
03 k = i + j 
04 x = k - l
05 if x != 0 goto 08
06 y = i/x
07 z = y++
08 r = y
09 p = t – a
10 z = r
11 if z != 0 goto 04

Program Code

Start

Exit

Figure 6.1: Example of a control-flow graph.

on the result of what is currently happening. By analyzing the source code of a program
or its binary, all instructions can be identified and a CFG containing all possible flows of
control can be retrieved. A CFG contains nodes and edges. Each node represents what
is called a basic block: a maximum set of instructions without any possibility to merge or
fork.

There is an edge between two nodes if the last instruction of a basic block leads to the
start of another basic block. A simple version of a CFG is shown in Figure 6.1. As in a CFG
there is usually more than one possible path leading from the start of the program to its
final exit, an automated way of analyzing this structure is needed. This is the subject of
control-flow analysis.

6.3.2 Data-Flow Analysis

As the name already suggests, data-flow analysis is rather concerned with the data that
flows within a program than its control. With respect to information security, the mean-
ingfulness of CFGs has been proven in theory and practice and its analysis is known to be
effective. Data-flow analysis on the other hand is a discipline whose history started in 1977
when Hecht published his book on Flow Analysis of Computer Programs [8].

Data-flow relates to the arguments of system calls and to the actual data (i.e., variables)
that a specific program deals with. With respect to information security, monitoring the
system call arguments in contrast to analyzing CFGs of a given program, comes with the
advantage that malicious behavior can be detected even in cases where the actual control-
flow stays unmodified.

Generally data-flow analysis is concerned with the question of the lifetime of variables.
As the states of all variables may never be known and since the input of one basic block
is the output of its predecessor, data-flow analysis is done by approximating the values of
variables coming into a specific basic block. The calculation is then done by feeding these
values into iterative algorithms such as the round robin algorithm in order to find so-called
fix points. That is, values for the incoming variables that satisfy the function f : X → X .

Using data-flow analysis for anomaly detection is the subject of [2]. In their work, the
authors present an algorithm that can be layered on top of existing programs that rely
on control-flow techniques for being invulnerable against attacks such as non-control-flow
hijacking attacks where, for instance, configuration data or user input is used in order to
exploit vulnerabilities of certain applications.

Figure 6.2 shows a sample data-flow graph (DFG). For a better comparability between
CFG and DFG, the DFG is based on the same synthetic program code as the CFG shown in
Figure 6.1.

83



6. USING CONTROL-FLOW TECHNIQUES IN A SECURITY CONTEXT
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Figure 6.2: Example of a data-flow graph.

6.4 Common Prototypes Using Flow Analyzing Techniques in a
Security Context

In this section, we present three common software prototypes which use flow analyzing
techniques for security purposes.

6.4.1 Binary Executable Structurizer

In [18] a “lightweight assembler structural representation tool” called BEST (Binary Exe-
cutable Structurizer) is introduced. It incorporates the use of control- and data-flow analyz-
ing techniques to analyze the executive flow of a program. As the name already suggests,
BEST does not rely on the source code of the programs in question as it works with the
program binaries. Besides the recovery of the control- and data-flow, the tool also repre-
sents the assembler of a binary in a “vulnerability-mining-oriented intermediate language”
called PANDA. In contrast to plain assembler, a PANDA representation of assembler code
is easier to assess and thus, facilitates further security analysis. Since PANDA’s basic con-
trol structures, as well as mathematical and logical operations are taken from the C pro-
gramming language, a program represented in PANDA looks much like a C program with
some embedded assembler syntax.

In order to retrieve the flow graphs from a binary, BEST relies on third party programs,
namely IDA Pro (cf. [9]) and Objdump (cf. [6]). Based on the output of these tools (either
one or the other is used), the BEST algorithms start working. Besides the PANDA code,
BEST also outputs a control-flow graph and a control tree graph (shows the nesting rela-
tionship of control structures). With the PANA code available, security professionals can
then assess the binary in question in order to unveil security flaws.

6.4.2 Control-Flow Security Analysis Approach

In [4] a control-flow security model (CFSM) which allows program execution to dynami-
cally follow the statically declared security properties specified as a control-flow constraint
specification (CFCS) is introduced. This approach counters, for instance, buffer overflow
attacks, which have the intention of diverting program execution by jumping to previously
injected malicious code. Thus, illegally altering the execution flow of programs in order to
control the software behavior. The proposed model includes the formal definition for pro-
gram semantics and security properties for control-flow. With the CFSM applied to source
code or binaries, execution paths violating the predefined CFCSs can be identified and pre-
vented. This is done by ensuring two security properties which regard to data memory
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CONTEXT

Table 6.1: Characteristics of the presented flow analyzing tools.

Tool
Name

Uses
CFG

Uses
DFG

Operates
Statically

Reads
Binary

3rd Party
Tools

BEST ! ! ! ! !

CDSM ! % ! ! %

SAFE ! % ! ! !

that is not executable and code memory that is not writable. In the latter case, observations
due to loading dynamic link libraries are excluded.

The control-flow graph needed to define the CFSM is retrieved applying a two step
approach starting with a conservative CGF based on the analysis of function calls and the
branch jumps of basic blocks, followed by a static analysis to refine and improve the former
outcome. The overall result is a graphical control-flow security model annotated with the
corresponding control-flow constraints.

6.4.3 Static Analyzer for Executables

In addition to an architecture that is resilient to common obfuscation transformations and
capable of detecting malicious patterns in x86 executable binaries, [3] also introduce the
proof of their concept by implementing SAFE, a static analyzer for executables. The heart
of SAFE – namely the detection component – takes two arguments. One is an annotated
control-flow graph of the executable and the other is a generalization of malicious code
(i.e., a representation of obfuscated strains of a virus). The CFG itself is the result of the
annotation module, which uses preloaded pattern definitions to annotate the plain CFG
gained from a combinational use of the third party tools IDA Pro (cf. [9]) and CodeSurfer
(cf. [7]). While Norton AntiVirus, McAfee VirusScan, and Command AntiVirus were not
able to detect any of the four obfuscated2 viruses during the practical experiments, SAFE
was able to identify 100% of them and thus, has a false rate of zero.

6.4.4 Review of the Presented Prototypes

In the preceding subsections, we gave a survey of three common prototypes which are
using flow analyzing techniques in a security related context. While BEST and the CFSM
approach are from 2010 and 2009, respectively, SAFE was presented in 2003. Table 6.1 gives
an overview over five main characteristics of the tools presented in Section 6.4. All of them
use control-flow techniques while only BEST combines control- and data-flow. Also, all
tools perform a static analysis on binary executables. Only the CFSM approach waives 3rd

party tools while both BEST and SAFE depend on the quality of the outcome of tools such
as IDA Pro (cf. [9]), CoderSurfer (cf. [7]) or Objdump (cf. [6]).

BEST is not a fully automated tool. Its result is a “vulnerability-mining-oriented inter-
mediate language” [18] of the binary in question, which serves the purpose of easing the
process of program code understanding. Thus, reacting automatically to ongoing security
breaches is not possible.

The CFSM approach is able to detect any exploit that alters the execution paths of the
binary in question. While the approach presented is a reasonable method in order to detect
buffer overflow attacks, it comes with one major restriction: Alterations made directly or
indirectly due to loading dynamic link libraries cannot be detected. SAFE, which is able
to detect obfuscated viruses with a much higher rate of reliability than Norton AntiVirus,
McAfee VirusScan, and Command AntiVirus relies on both the quality of the output of 3rd

party tools and the completeness of the pattern definitions. All three approaches have one
drawback in common: They are not designed to instantly react to changes in the execu-
tional flow caused by dynamically loaded code.

2Obfuscation technique: code transposition
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6.5 Example of Dynamically Altering Control-Flow

In this section, we will present our approach which is capable of dynamically altering the
execution flow of arbitrary executables3 using late binding techniques for loading dynamic
link libraries. The according proof of concept is implemented as three C++ files. Listing 6.1
depicts the target program which is the subject of our attack4.

Listing 6.1: Pseudo Code of the Target Program.
1 main ( )
2 {
3 i n t r e t = 0 ;
4 char ∗dllName = " myDll " ;
5 void ∗handle = dlopen ( dllName ) ;
6 i n t (∗ i sVal idUser ) ( ) = dlsym ( handle , " i sVal idUser " ) ;
7
8 r e t = isVal idUser ( ) ;
9 }

Listing 6.2: Pseudo Code of the DLL.
1 extern i n t i sVal idUser ( )
2 {
3 i f ( userId >= 1000) {
4 return 1 ;
5 }
6 doAdminStuff ( ) ;
7 return 0 ;
8 }
9

10 void doAdminStuff ( )
11 {
12 . . .
13 }

In line 6 (Lst. 6.1), we create a function pointer pointing to a function named isValidUser(),
implemented in a dynamic link library. This function is called in line 8. In line 3 of our
DLL, shown in Listing 6.2, the userID of the current user is checked. Only if it is lower than
1,000 a function named doAdminStuff() is executed. The original control-flow is depicted
as solid-lined arrows in Figure 6.3.

main
lines 3-8

DLL
line 3

DLL
line 6

DLL
line 10ff

Start

Exit

Exit

Figure 6.3: CFG of the target program (Lst. 6.1) and its DLL (Lst. 6.2).

3While our proof of concept presented here regards to the Linux operating system, we also have an equivalent
version running on Windows.

4In the field of offline computer games, software that implements such features in order to alter game specific
values (e.g., health, energy, ammunition, etc.) is called a trainer.
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Listing 6.3: Pseudo Code the Program Executing the Exploit.
1 main ( i n t argc , char ∗argc [ ] )
2 {
3 i n t pid = argc [ 0 ] ;
4 long oldPointer = argc [ 1 ] ;
5 long newPointer = argc [ 2 ] ;
6
7 ptrace (PTRACE_ATTACH, pid , NULL, NULL) ;
8 ptrace (PTRACE_POKEDATA, pid , oldPointer , newPointer ) ;
9 ptrace (PTRACE_DETACH, pid , NULL, NULL) ;

10 }

The exploit code is shown in Listing 6.3. It is started with three parameters, namely the
process id, the address of the function to be attacked (oldPointer) and the address of the
new function (newPointer). oldPointer is the address the function pointer (*isValidUser)()
which points to the address of the variable on the heap and newPointer is the address of
the new function (doAdminStuff()). In order to achieve our goal of altering the control-
flow dynamically, we make use of the ptrace() system call, that “...provides a means by
which a parent process may observe and control the execution of another process, and
examine and change its core image and registers.” [12]. This method is mainly used for
implementing breakpoint debugging and system call tracing. In line 7 we start tracing the
target process. As a result of this, we are from now on the parent of the target. While
the output of the ps() command reflects this change in ownership, issuing the getppid()

command would reveal the original parent. Before we are undoing the reparenting effect
in line 9, we perform the actual attack in line 8: Here, we overwrite the address of the old
function with the address of the function we want to execute instead. With this being done,
we dynamically changed the control-flow. The function call in line 8 of Listing 6.1 does not
point to line 1 of Listing 6.2 anymore, thus, the check of the user id in line 3 is circumvented.
Instead function doAdminStuff() is executed directly. The altered control-flow is depicted
as a dashed-lined arrow in Figure 6.3, completely bypassing basic block 2. This attack
works and stays undetected because it takes advantage of a specific characteristic of the
late binding technique. When late binding is used, the affected variables are stored on
the heap. They stay writable since they receive their actual value during runtime. Our
approach exploits this fact and uses a system call intended for debugging purposes in order
to overwrite the value of a specific variable stored on the heap.

Being able to detect such attacks is a matter of distinguishing “self from other” [5].

6.6 Conclusion

We reviewed three common practical tools which make use of control-flow graphs in a
security related context. Specific to all of them is the fact that they operate statically and
thus, are unable to react to dynamically undertaken changes of control-flow. To this extend,
we have presented a proof of concept taking advantage of a Linux system call, mainly
used for debugging purposes, and a characteristic of the late binding technique, where the
corresponding variables are placed on the heap. We showed pseudo source code of our
exploit and pointed out that altering the control-flow of a program which makes use of the
late binding technique (e.g., loading of DLLs) is possible. Countering such an attack is not
an easy task since it does not use any vulnerability. Therefore, counter measurements are
fronted with the problem of telling apart legal alterations of the value of variables stored in
the heap and illegal ones – the subject of anomaly detection.

6.7 Future Work

Our future work will be twofold. We will be concerned with developing a proof of concept
which will perform observation tasks on variables on the heap. In compliance with a pre-
defined security policy, any changes on values ultimately resulting in a change of executive
flow will be brought to the attention of the user who will be given the ability to allow or
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block the action. In addition to that, we will concentrate on a novel concept allowing for
automatically made decisions regarding the degree to which an alteration of control-flow
regards to self oder other (i.e., is legal of illegal).
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Chapter 7

Towards Concurrent Data Sampling using
GPU Coprocessing

Abstract

Host intrusion detection systems operating on the host under observation itself are
limited by an adversary’s ability to subvert all data collection and the detection and miti-
gation mechanisms themselves. Although coprocessor architectures have been proposed
to avoid this security mechanism integrity problem, they either involve the application
of non-standard hardware or rely on host-bound application programming interfaces
(API). This is why, so far, they are only used in the field of network intrusion detection.

In this paper, we present our results concerning a concurrent host memory sam-
pling mechanism based on direct memory access (DMA) and demonstrate that it is pos-
sible to de-couple GPU kernel execution, thereby providing temporary isolation from the
host and allowing data sampling actions to be taken without interruption. We present
a security analysis of our approach and detail a proof of concept implementation of
the autonomous concurrent monitoring and sampling system, thus, validating that self-
sufficient data sampling using a commodity coprocessor (i.e. a GPU) is indeed possible.

7.1 Introduction

The reliable detection of attacks, particularly subversion attempts, often requires sensor
placement on the host. Even moderately sophisticated attackers will however target host-
based audit data collection and security controls (i.e. preventive and detective safeguards)
as one of the primary stages of any attack. As a result, a successful subversion attempt will
invalidate audit data and have the ability to obfuscate corresponding evidence after a very
short interval. Both detection and possible mitigation actions therefore depend on identi-
fying an attack within a small window of opportunity and must be sufficiently trustworthy
to ensure that they have not themselves become the initial target of an adversary.

While a number of mechanisms have been proposed to achieve this objective (cf. Section
7.2 for a brief summary), these often impose additional requirements on the hardware and
software architecture (cf. Petroni et al. [15] using a single-board computer on a PCI add-in
card).

Furthermore, detection mechanisms operating on the host under observation itself gen-
erally suffer from two intrinsic flaws of such a host/observer combination. First, they are
fairly easy to attack, since any software running next to the detection mechanism is suscep-
tible to rather simple exploitations and can in turn be used to subvert the observer as such.
Second, their results are vulnerable to straightforward man-in-the-middle attacks as the
communication infrastructure and services used for this purpose are also host-dependent.

Detection mechanisms executed by coprocessors can generally perform limited tasks at
a higher speed and, can also benefit from self-protection, as presented by [13]. The gain in
speed is due to a smaller instruction set, a special (often parallel) architecture, and lower
overhead. With respect to the gain in security, a narrow-enough programming interface
between such a peripheral device and the host can already reduce the number of possible
attack vectors, and can thereby intrinsically safeguard any software executed on it.
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In this paper, we propose the use of a commodity coprocessor (i.e. the GPU) in order
to operate a data sampling mechanism concurrently and asynchronously to the host. This
insulates the data sampling and removes any further overhead from the host system. By
leaving the standard GPU programming model (cf. Section 7.5) aside and further utilizing
the fact that GPU subsystems are provided with a fast DMA pathway to the host’s main
memory, we developed a mechanism which allows the execution of code on a GPU without
the host being actively involved.

By presenting a proof of concept implementation of an autonomous kernel, able to op-
erate solely on the GPU while having unrestricted access to the host’s physical memory,
we validate that self-sufficient data sampling is indeed possible. The scope of such physi-
cal data observation leaves aside OS-level abstraction and is therefore suitable for, e.g., the
observation of critical invariants as can be found in function tables. By outsourcing a self-
sufficient data sampling mechanism to a commodity coprocessor, we fulfilled a condition
for more reliable attack detection. With an autonomously operating off-host observation
and data acquisition component, we counter drawbacks of current coprocessor approaches
and make progress towards a concurrent detection of host event signatures using GPU
coprocessing.

The remainder of this paper is structured as follows: We briefly review related work
for concurrent realizations of security architectures in Section 7.2 before detailing our own
ideas in Section 7.3. A security analysis is presented in Section 7.4, followed by an explana-
tion of the key to operating GPU kernels autonomously and our mechanism to achieve this
in Section 7.5. We close this work with conclusions and an overview of ongoing and future
work in Section 7.6.

7.2 Related Work

The problem in providing a trustworthy monitoring mechanism for host security is closely
linked to the need to ensure complete isolation of the security mechanism from untrustwor-
thy processes, as found in the reference monitor design principles [2]. As the achievable
assurance is, however, often limited by the scope of functional requirements, approaches
such as the separation kernel proposed by Rushby [17] have attempted to provide such iso-
lation through a suitable combination of hardware and software. With respect to current
trusted computing group (TCG) architectures, Bratus et al. [3] make clear that trusted plat-
form modules (TPM) only guarantee system integrity at load-time, leaving the detection of
run-time vulnerabilities to additional mechanisms.

The application of parallel coprocessors for intrusion detection purposes is currently
limited to the network level. Here, the pioneering works of Jacob and Brodley [11] and
Vasiliadis et al. [23] are those with the most practical relevance. The former implemented a
prototype called PixelSnort which ported the string-matching portion of SNORT, an “open
source network intrusion prevention and detection system,”1 onto a GPU, outperforming
the traditional SNORT by 40%. In contrast to the present paper, Jacob and Brodley did not
address the performance impact data sampling can have, and report similar CPU overhead
for both SNORT and PixelSnort. Vasiliadis et al. took advantage of NVIDIA’s compute uni-
fied device architecture (CUDA) technology and showed the potentials of existing pattern
and string matching algorithms when ported to a modern GPU by using the correspond-
ing runtime and development framework. Their prototype, called GNORT, achieved an
improvement of data throughput of 100% with respect to the traditional SNORT system.
A performance improvement to the GPU version of the Aho-Corasick algorithm was pre-
sented in 2010 by Tumeo et al. [22]. By taking into account the architectural constraints of
a modern NVIDIA GPU, a speed-up of 6.67 compared to the original CPU implementation
found in SNORT was achieved.

1www.snort.org
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Huang et al. [10] propose a GPU-based multi-pattern matching algorithm derived from
the idea of Wu-Manber [26], and report the execution performance as compared to the ac-
tual Wu-Manber algorithm, using the open graphics library (GL) API to control the commu-
nication between CPU and GPU. While using host APIs may be an option when performing
network intrusion detection, it poses risks on the reliance of a detection mechanism when
applied in the field of host intrusion detection.

In 2004, Petroni et al. [15] presented a proof of concept implementation of a coprocessor-
based kernel runtime integrity monitor called Copilot. They used a single-board computer
on a PCI add-in card in order to establish a link between the host to be observed (i.e. target)
and the observing host. The lowest performance penalty on the system under observation
is reported to be less than 1%, applying a sampling interval of 30 seconds. Given such an
interval, rootkits tampering with process tables in particular may not be detected in time.

Besides Williams and Spafford [25], who presented a coprocessing intrusion detection
system called CuPIDS that used a dedicated symmetric multi-processor (SMP) rather than
a real coprocessor in 2007, the current research in the field of coprocessors for intrusion de-
tection either concerns itself with the use of GPUs for assessing network traffic or proposes
the application of uncommon hardware for host intrusion detection.

With regard to this, the use of graphics chipsets [13] and GPUs in general (i.e. com-
modity coprocessors) [19] is the subject of our previous work and was presented in 2010.
While the former is also concerned with the self-protection of the coprocessor itself, the lat-
ter introduces a cost model capable of expressing the performance impact of observations
in concurrent non-uniform memory architectures (NUMA). The practical validation of this
model was reported in the same year and is the subject of [20]. The constraints with regard
to modern GPUs and their off-the-shelf feasibility for use in asynchronous observations
and host intrusion detection are the subject of [16].

Besides their use for intrusion detection purposes, GPUs have been applied in various
other security-related domains. For instance, Cook et al. [4] and Harrison and Waldron
[9] implemented symmetric key ciphers on the GPU. Both authors could not, however,
report a performance advantage in favor of the GPU over the corresponding CPU imple-
mentation, and criticize a high CPU utilization partly caused by the runtime frameworks.
Additionally, modern GPUs are used in the field of digital forensics. Here, Marziale et al.
[12] presented an approach in which the GPU was taked with file carving (i.e., finding files
by a set of predefined header and footer definitions), an reported an incrase in performance
in all test scenarios.

7.3 Details

As already briefly mentioned in the two previous sections, current data sampling approaches
show at least one of the following two shortcomings: Strong host dependence and use of
non-standard hardware.

The present work does not claim to present a finalized general data sampling approach,
but rather to form the basis for future work geared towards a novel and fully-fledged sys-
tem. This ground work is important, as it is the common position that a kernel “(...) cannot
be initiated as a stand-alone application, and strongly depends on the process that invokes
it.” [24]. This is true for cases where the GPU is configured and programmed using host-
side APIs, which makes sense in many non-security and even non-host security-related use
cases.

In order for a data sampling mechanism to be as tamper resistant as possible, a high
level of independence from the host is inevitable. In cases where the mechanism is imple-
mented within the very same host system it is supposed to protect, autarky is non-existant,
whereas solutions employing auxiliary hardware can take advantage of a very high level
of independence if used correctly. As host security, in particular, needs to be convenient
and effective at the same time, approaches in which non-standard hardware is involved
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(cf. [15]) are problematic. Therefore, using commodity coprocessors such as the GPU in
order to fulfill the afore-mentioned twin objectives seems promising. For instance, a detec-
tion mechanism running concurrently on a coprocessor is able to reliably observe the host
and to autonomously process the data in question without the need to wait for a time-slice
to be assigned to it by the host under attack. In contrast to this, intrusion detection mech-
anisms running on the host itself can easily be exploited through host OS vulnerabilities,
even when assigned to a dedicated CPU processor (cf. [25]).

How data of active processes can be retrieved by a coprocessor and the degree of per-
formance degradation on the part of the affected processes has been subject of previous
work (cf. [20]).

Since we circumvented the technical restrictions described in [16], concurrent and au-
tonomous host data sampling using modern GPUs is now possible and permits continuous
observation of critical data structures.

In order to keep the level of independence of a sampling mechanism as high as possible,
logical host connections must be avoided. To this extent, configuring and programming the
device tasked with executing the mechanism in its native language is necessary. As prac-
tically shown by Petroni et al. [15] and documented by Smith [21], coprocessors can fulfill
this requirement but usually come along as non-standard peripheral hardware. In contras,
the present work proposes the use of modern standard GPUs for executing a sampling
mechanism in an autonomous and concurrent manner. Compared to other coprocessors,
which are either not commodity hardware (e.g. field programmable gate array: FPGA),
or are limited in terms of programmability and applicability (e.g. arithmetic logic unit:
ALU), modern GPUs are considered to be standard hardware, computationally powerful,
and programmable beyond their graphics scope.

We take advantage of the GPU’s capability to communicate with the host system’s mem-
ory by applying the direct memory access technology, which avoids any abstraction from
layers such as the host’s operating system. The sampling logic functions continuously and
in total ignorance of the CPU utilization, as it is started as non-preemptive GPU kernel,
being executed by dedicated shaders. This allows the commonly workload-lacking GPU
to pursue its normal duty in parallel. Implementing the sampling mechanism as a non-
preemptive kernel makes a controlling service obsolete, thus, reducing overhead and elim-
inating the need for logical host connections, while consuming a predefined maximum
amount of GPU processing power.

The actual challenge of this approach comes from the fact that the even modern GPUs
are not developed to be used as independent auditors, even though they fulfill a range of
properties to operate as such (cf. [16]). While the application of GPUs for non-graphics
computations is common in non-security and even non-host-security environments, the
degree of independence needed for a GPU to be useful in host-related use cases cannot
be achieved when using current programming frameworks. Nevertheless, enabling such
a high-performance and almost omnipresent coprocessor to perform host-security related
operations can be highly profitable. In the present work, we focus on two aspects: First, we
analyze the security of our approach based on known attacks against GPUs and the tech-
niques used to access and copy host data in Section 7.4. Second, we present the technical
details of a proof of concept implementation of a concurrent and autonomous GPU kernel
in Section 7.5.

7.4 Security Analysis

Our security mechanism, i.e., the sampling mechanism presented in Section 7.5, is executed
concurrently and asynchronously on a GPU.

We are aware of the general problem of bootstrapping trust in commodity computers.
This problem is thoroughly discussed by Parno et al. [14]. The authors present a sur-
vey of related work covering existing approaches and techniques to validate the integrity
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of local and remote computers. This includes “mechanisms for securely collecting and
storing information about the execution environment”. The computation of cryptographic
hashes over software binaries including all referenced libraries at a point in time where the
software has not yet booted up is one example. As the trust put into the CPU is mostly
very limited, additional hardware is often used to secure an information system’s startup.
Commonly, on-board modules such as trusted platform modules are applied to approve
a system’s integrity, despite the fact that these modules are intrinsically not as immune to
physical attacks as, for instance, secure coprocessors such as the IBM 4758. The fact that
even BIOSs are threatened has recently been brought up again by Symantec researcher Ge
[6] who details the functionality of a virus known as “Trojan.Mebromi that can add mali-
cious components into Award BIOS”. While the task of reflashing a GPU’s BIOS is similar
to reflashing the system BIOS, compromising the proposed observation mechanism from
the inside seems possible, but, to the best of our knowledge, such an attack is yet to be
validated.

Since GPU software (e.g. driver, BIOS, etc.) is complex and tuned for performance
rather than security, the inference can be made that it contains undiscovered vulnerabili-
ties. As soon as GPUs are within the focus of cyber criminals, software vendors will have to
react accordingly. A prominent example showing that this threat is real is a browser exploit
based on the WebGL (web graphics library) technology. When applied, frozen desktops
(OSX), full system crashes (Windows XP) and reset GPUs (Windows 7) are known conse-
quences [5]. The current workaround to this denial of service attack is the deactivation of
WebGL. With respect to the proposed security mechanism, a first solution could be to oper-
ate it on a separate GPU, which would also be a good idea in order to guarantee maximum
performance for both graphics computations and host observations.

In general, any off-host device (or mechanism in the broadest sense) profits from the
fact that host vulnerabilities (e.g. host OS vulnerabilities) have only a very limited effect on
them. For instance, the GPU runs properly even on infected host systems as it has its own
basic input/output system (BIOS), a firmware, several processors, and physical memory,
and thus does not rely on the CPU. Nevertheless, possible attacks against such a device
exist and are subject to the remainder of this section.

In 2007, Rutkowska [18] presented three possible attacks against physical memory ac-
quisition for forensic analysis by altering the address mapping scheme for PCI devices. To
achieve this, an additional entry is added to the corresponding northbridge memory map,
redirecting any request from the respective PCI device. Since the GPU is also connected
to the northbridge, a similar attack against the proposed sampling mechanism might be
possible.

Any signal between host and off-host coprocessor must inevitably pass several con-
trollers which increases the risk of sophisticated man-in-the-middle attacks. If such a con-
troller was to be re-flashed during a subversion attempt aimed at serving the invader as an
additional pathway to the GPU’s memory system, eavesdropping on the detection mech-
anism or even communicating with it would be possible. To this extent, Gonzalez [8] pre-
sented a customized PCI Ethernet card, transparently eavesdropping any packet sent or
received on the target machine.

Instead of redirecting accesses, it may also be possible for an attacker to slow down
the GPU to a degree that allows him to finalize his attack before detection. This could be
achieved by synthetically generating traffic on the system bus used or directly on the GPU.

Instead of loading data onto the GPU’s RAM, an attacker could also load the GPU’s
RAM into the host system. As modern GPUs come with large amounts of (often unused)
memory, it is possible to use the graphics card’s memory as swap space for the host [7].
Documented for a benign application, this technique could possibly be used to run a denial-
of-service attack against our detection mechanism, in such a sense that the attacker maps
the full device RAM into the host. As this would also cause the system to freeze, the at-
tacker would have to find the trade-off point where the GPU is still able to perform its
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normal duty while unable to perform security tasks at reasonable speed or at all.
The above shows, that countering off-host intrusion detection is theoretically possible,

emphasizing the need for self-protection. As designing a tamper-proof computing envi-
ronment is the ultimate goal, the present paper describes an off-host approach, able to
eliminate obvious and straightforward attack vectors while at the same time reacting more
quickly to malicious activities while they are ongoing.

7.5 Autonomous Sampling using a Commodity Coprocessor

We will now present our proof of concept implementation of an autonomously running
kernel, or, in other words, a kernel that keeps executing even after the initializing host
application is terminated. The implementation shows that properly configured kernels are
able to read data from arbitrary host memory locations and are able to perform simple
calculations on this data.

Since most of the limitations revealed by [16] are not intrinsic to GPUs but to their run-
time frameworks, we circumvented the major disabilities by waiving of any such frame-
work and implemented our application using an intermediate language (IL) provided by
AMD called AMD IL [1]. For preparing the device, we applied tools provided by the Stream
SDK2.

Figure 7.1 shows a sequence diagram of our implementation. As current GPU frame-
works cannot be intuitively utilized for building applications that act as autonomous host
auditors due to the constraints identified by [16], prerequisites such as device initializa-
tion or context creation are done manually in our implementation. For this purpose, we
developed a C++ client application called Host Init that takes care of such things.

For steps (1)-(6), we make use of the compute abstraction layer (CAL) in order to tune
the device for our purposes and check that all parameters are adjusted to our needs. This
includes, for instance, compiling the actual kernel (cf. Listing 7.1 for an extract) into an
object specific to the interfaces provided and the device used. In order to validate that
the kernel operates even after Host Init has terminated, we allocated some shared memory
which is accessible by all components of our proof of concept. As our host was running
a Linux distribution, we took advantage of the shm_open() command in order to open a

Host InitGPU

(1) Initialize Device

(2) Send Acknowledgement
(3) Compile

(4) Link

(5) Deploy

(6) Send Module Handle

(7) Allocate I/O Buffer

(8a) Post Memory Addresses

(9) Send Acknowledgement

(10) Initialize I/O Buffer

(11a) Start Kernel

(12) Read I-Buffer

(13) Compute

Synchron Message

Asynchronous Message

Synchron Answer

Internal Procedure Call

Host Valid

(8b) Send Memory Addresses

(11b) Read O-Buffer

(14) Write O-Buffer

Figure 7.1: The sequence diagram of the proof of concept implementation of our asyn-
chronous and concurrent sampling mechanism.

2www.amd.com/stream
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shared memory object which can be operated on by the GPU, Host Init, and Host Valid
similarly. Inside this object, two buffers (i.e. two two-dimensional arrays) were created:
one for input and one for output. Once we have completed step (7), the addresses of both
buffers are posted to the GPU in step (8a). Additionally, these addresses are sent to another
host application called Host Valid in step (8b). Once this is done after step (9), we initialize
the buffers in step (10). The handle received in step (6) is now used to start the kernel in
step (11a). It is important to know, as is implied by the broken arrow, this is done asyn-
chronously. At this point in time, Host Init is about to exit. Before it does so, it triggers
the Host Valid application to start reading from the output buffer in step (11b). Each GPU
thread executing the kernel repeats step (12) and (13) several times in a row before writing
the result to the output buffer in step (14). Host Valid’s only purpose is to validate that
our kernel is functioning correctly, even though its initializing component has terminated,
which prooves that our kernel is running entirely on the GPU and without the use of any
host-side API.

We now present a shortened version of the source code of our kernel. The full kernel
code can be requested from the author. Listing 7.1 presents a simple while-loop taken from
our autonomous kernel, representing reading from, calculating, and writing to different
buffers. It corresponds to steps (12) through (14) of Figure 7.1 and, in fact, serves as a
symbolic placeholder for a matching algorithm.

Listing 7.1:
Extract form the GPU kernel written in AMD IL.

1 whileloop
2 ge r18 . x___ , r16 . x , l 0 . x
3 b r e a k _ l o g i c a l n z r18 . x
4 mov r12 . x___ , v0 . x
5 iadd r12 . x___ , r12 . x , l 1 . x
6 iadd r16 . x___ , r16 . x , l 1 . x
7 endloop
8 mov o0 , r12 . x

The calculations within the kernel are performed several times in a row before the result is
written to the output. By assuring a longer runtime of the kernel, we give Host Init enough
time to exit before Host Valid signals a change of the output buffer’s value, proving that
the kernel was running while Host Init was already terminated. These eight lines of code
are executed independently from the host and validate that properly configured kernels
can be used to perform an off-host host observation. While our implementation shows
the general feasibility of such a task, enriching our kernel to the extent at which it can
actually perform security-related tasks is just a matter of good programming skills. First
performance tests revealed a maximum transfer rate between our kernel and the allocated
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Figure 7.2: Logical memory architecture of our shared memory object.
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shared memory of about 1GB/sec. In our scenario, we used an Intel Core 2 Quad (Q8200,
2.33GHz) host system with 4 GB of physical memory and a Club3D HD4650 graphics card
with 512MB GDDR23 memory. We utilized the full resource width of 8,192 items, where
each item contained 2 Bytes, bound by x and y coordinates. Thus, one line contained 16KB.
By configuring the kernel function to address a batch of 1,024 lines, we kept the overhead
as low as possible, and were able to copy a domain of 16MB at a time. Figure 7.2 depicts
the logical memory architecture.

Not taking advantage of the full resource width causes a higher overhead, which natu-
rally results in a lower transfer rate. For instance, 30MB/sec. were achieved when reducing
the domain to 256Byte (i.e. resource width of 128 and only one line).

7.6 Conclusion and Future Work

While commercial host intrusion detection systems are still being installed and executed on
the host under observation itself, we propose a detection mechanism utilizing current com-
modity off-the-shelf hardware. With concurrency and asynchronism being two features of
a modern GPU, in the current work, we presented a sampling mechanism to operate on
such hardware. To this extent, in Section 7.5 a proof of concept of an autonomous running
kernel able to access arbitrary memory addresses within the host’s physical memory was
detailed.

In Section 7.4, a security analysis was presented, showing that even an off-host host
intrusion detection system needs to be capable of performing self-protection in order to
succeed. We note, however, that the focus of the present paper is not on optimal general
intrusion detection, and are conducting further work for both signature and anomaly de-
tection in this framework beyond the scope of the present paper. Furthermore, in addition
to increasing the sophistication of the observation mechanism in order to be used in real-
life scenarios, its startup integrity and runtime security are within the focus of our future
work. This includes assessing existing threats as well as designing new ones (cf. Section
7.4) in combination with possible remediation approaches.
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Chapter 8

A Model for Partially Asynchronous
Observation of Malicious Behavior

Abstract

For a non-trivial attack to be successful in compromising a target, multiple causally
related operations must be performed. Detecting such potentially unknown sequences
is the core problem in intrusion detection.

In this paper, we focus on the problem of observing attacks over non-uniform, par-
tially asynchronous event sets. We hence propose charactering attacks as partially or-
dered sets, and we show how these can be detected asynchronously, as will typically be
the case in a modern computing architecture. By extending a naïve model incorporat-
ing subsets of known causal dependencies, enhanced observation strategies minimizing
the number and cost of observations can be derived. This incorporation of knowledge
regarding constraints on attack causality into observations allows for notable enhance-
ments in the efficiency of detection. We also provide a simple example of an application
of the model for the case of an intrusion detection system on a co-processor observing
a host, although the model is intended for arbitrary non-uniform architectures and con-
current operations.

8.1 Introduction

The security of any host intrusion detection system (IDS) is limited by the ability of an ad-
versary to compromise the IDS itself. The IDS must therefore be able to detect and mitigate
attacks before itself becomes compromised. Recent advances in computer architecture with
large numbers of (partially asynchronous) processing units have, moreover, made the con-
ventional notion of an IDS questionable: While detection algorithms operate on a snapshot
of observations, attacks may be ongoing in parallel to the detection and mitigation efforts.

Although it is possible to force synchronization of events (mainly memory access) in
a host system, this is highly undesirable, raising the necessity of performing observations
asynchronously or minimizing the need for them. Previous work has sought to character-
ize the effects of non-uniform memory architectures (NUMA) by such observations, but
has not been concerned with characterizing the observations further. In this paper, we seek
to describe a model of general attack characteristics which can be used to optimize obser-
vation strategy. To demonstrate this, we describe a naïve model of causal but equiproba-
ble asynchronous events, observed by way of memory access forcing point-wise synchro-
nization, and we expand this model into an explicit causality model where event sets are
constituted from partially ordered sets. These sets are also assigned arbitrary probability
distributions, demonstrating a significant gain in efficiency.

The remainder of this paper is structured as follows: Section 8.2 briefly reviews the re-
lated work, before we start with the actual contribution of this paper in Section 8.3, where
we detail our naïve model and our causality model. In order to present the practical rele-
vance, especially of the latter model, we show the application of both models in Section 8.4
before we end the paper with a conclusion and an outlook in terms of current and future
work in Section 8.5.
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8. A MODEL FOR PARTIALLY ASYNCHRONOUS OBSERVATION OF MALICIOUS BEHAVIOR

8.2 Related Work

Lee et al. propose an algebraic model for describing causality interfaces between actors,
capable of, for instance, revealing causality loops, given that each actor is defined using a
Turing-complete language. Schwarz [12] focuses on causality in distributed computations
and presents a corresponding notion which is applicable in distributed, asynchronous sys-
tems. While not aimed at information security, his work covers some of the most important
properties needed by an observer in order to reliably obtain the status of a distributed com-
putation. That is, for instance, taking into account that “every cause precedes its effect”.

Lamport’s happened before relation1 [8], written as→, provides an intuitive definition for
the case of partial orderings in distributed (as well as in asynchronous) systems; this can
also, however, be extended to total orderings. Even though Tarafdar and Garg [15] describe
the happened before relation as “the best possible approximation of real time order that one can
make in a message-passing distributed system without external channels”, they also claim that it
is the wrong model for expressing and describing potential causality. To this extent, they
propose to use the potentially caused relation, written as

p
↪→.

A related modeling approach to the one proposed here was described for security pro-
tocols by Backes et al. [2]. It relies on a finite graph (referred to as a causal graph) to ex-
press causality between events. Whilst [2] is only applicable to cryptographic protocols,
it demonstrates the utility of relying on causality as an abstraction when reasoning over
security properties. While many IDSs incorporate fixed causal models, such as rule sets,
graphs, or automata, the more general case has not been fully explored for this application.
However, King et al. [6] described a causality-based intrusion detection system (CIDS) in-
corporating network- and host-based alerts, reasoning about their severity by interpreting
the causal dependency between network events (i.e., packets) and host events (i.e., systems
calls). As a result of this, CIDS is able to reduce the number of false-positives, giving each
alarm more significance. Subsequent work [7] extended this approach in conjunction with
existing IDSs to provide causal relations for suspicious host- and network-based states and
events.

Ning et al. [10] propose the correlation of IDS alerts in order to construct attack scenar-
ios. They tested their formal framework using the DARPA dataset from 2000 and report a
significant reduction of the false alert rate. In contrast to [10], we do not rely on alerts gen-
erated by third-party applications as we focus on low-level data elements being the subject
of an subversion attempt rather than services. Also, our definition of an attack (scenario) is
more finely-grained (i.e., [10] correlate several service attacks while we correlate several data
element attacks).

Alert correlation as such is the subject of Cuppens and Miège [5], and Benferhat et al.
[3]. Both works focus on the reduction of alerts generated by an IDS. In this context, our
work could be seen as the mechanism which generates such alerts, not based on malicious
network traffic but on a set of critical host-based data elements.

The recognition of an intruder’s intent is discussed by Cuppens et al. [4] and Wu et
al. [16]. The former focus on the reduction of alerts presented to a network administrator,
while we focus on the reduction of observation frequency as such, keeping the detection
probability as high as possible. The latter apply the Dynamic Bayesian Network approach
to model uncertainty, while we apply the noisy-or model to incorporate noise (i.e., un-
certainty), and we focus on a manageable amount of host-side elements rather than large
amounts of intrusive data.

Very recently, Albanese et al. [1] published their work presenting a scalable analysis of
attack scenarios. They analyze network infrastructure in order to reveal the dependency
of available services. Based on the importance and dependency of network components
and services, a dependency graph is constructed which is used later on for constructing
(probabilistic) attack graphs. In contrast to [1], who rely on known vulnerabilities (i.e.,

1Also used by [12].
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known exploits) rendering it impossible to detect yet unknown attacks, we focus on loosely
coupled data elements which may be attacked during even unknown subversion attempts.
Furthermore, as our model does not focus on the analysis of vast amounts of data, we
do not need algorithms that “can process between 25 and 30 thousands [sig!] alerts per
second” [1].

8.3 Observing Partially Ordered Attack Sets

Section 8.3.1 shows a naïve model capturing the worst-case scenario in terms of observation
frequency and performance degradation due to coprocessor-triggered host observations
when studying modeling outcomes. In contrast to this, Section 8.3.2 presents an explicit
causality model. Here, we apply partially tailored versions of well-known models in or-
der to incorporate our assumptions. This results in only a moderate decrease of detection
probability whilst at the same time reducing the performance impact.

We focus our attention on a finite POASET (i.e., partially ordered attack sets) of shared
host-side data elements. We assume an attacker needs to inevitably tamper with all dei ∈
POASET ; i = 1, ..., n in order to complete his malicious intentions, which may either target
the host system as such or the in previous publications (cf. [9] and [13]) proposed off-host
host observation mechanism. Formally, we define αj = {dei, ..., dem} ⊆ POASET ; 1 ≤
m ≤ n to be attack sets, where each αj consists of at least one dei. No further assumptions
other than partial ordering are made for the events constituting attacks.

In practice, the exact content of the POASET depends on parameters such as observa-
tion goal (e.g. privilege escalation) and type of system. Despite this, in order to achieve
his malicious goal, an attacker must tamper with the full POASET and is thus confronted
with the problem that some of the concerned data elements depend on others. Therefore,
he must build attack sets which have to be tampered with in order. This fact highly lim-
its an attacker’s possibilities when choosing his course of action, and it leaves room for
causality-based observations (cf. Section 8.3.2).

Table 8.1 details the different assumptions made for each model, with respect to the
performance degradation caused on the host when applying it.

8.3.1 The Naïve Model

The naïve model makes no explicit assumptions regarding certain data elements and their
likelihood of becoming the subject of an attack, nor does it assume any causal dependency
between attack sets. It presents the worst-case scenario in terms of observation frequency
and performance degradation and validates the assumption that modeling causal depen-
dency between data elements is likely to reduce the loss of performance.

While the set of all attack sets A =
⋃k

j=1 αj forms a partial order fulfilling the happened
before relation [8], each αj itself does not represent an order of any kind. The happened

Description of Assumption Naïve Model Causality Model

Uses the happened before relation→ ! %

Uses the potentially caused relation
p
↪→ % !

Causal dependency between attack sets % !

Uniform distribution of attack probabilities ! %

Maximum detection probability ! %

Maximum performance degradation on the host ! %

High false-positives rate ! %

Observation succeeds always ! %

An observation attempt can be suppressed % !

Legitimate changes of value can happen % !

Table 8.1: Comparison of assumptions incorporated into each model.

103



8. A MODEL FOR PARTIALLY ASYNCHRONOUS OBSERVATION OF MALICIOUS BEHAVIOR

before relation defines – among other – that if αj is attacked before αj+1: αj → αj+1 and if
αj → αj+1 and αj+1 → αj+2: αj → αj+2. Obviously,→ is transitive.

In other words, an attacker may freely decide in which order he wants to alter the data
elements within each attack set αj . This gives him

∑
k
j=1 |αj |! possibilities to do so, presum-

ing that he alters each data element only once. He must, however, finish the attack against
αj before he can attack αj+1.

This confronts the observer with two extreme cases where α1 ≡ POASET and where
|αj | = 1. We deduce from the former that an attacker has |POASET |! possibilities to
complete his attack while the latter extreme represents full serialization. Since any attack
will be composed of loosely coupled attack sets, and because of the constraint that these sets
have to be executed in order, any detection mechanism faces the problem of the inability to
be one step ahead of the attacker. That is, the full POASET has to be observed according
to the busy-wait approach and at maximum observation speed, which is not efficient due
to the performance degradation this causes on the host-side [14]. This fact already implies
that any reasonable assumption made with respect to a causal dependency between attack
sets is likely to reduce the impact on the host-side, as target-oriented observations can be
performed (cf. Section 8.3.2).

As shown before, an attacker can freely choose the order in which he alters the data
elements within attack sets, while at the same time being restricted by the happened be-
fore relation with regard to the execution of data elements belonging to different attack
sets. Once the attack sequence is determined, the probability that a specific dei within the
targeted αj will be attacked (assuming uniform distribution) is:

P (dei|αj) =
1

|αj |
(8.1)

The existence of attack sets clearly limits an attacker’s alternatives for achieving any ma-
licious goal. If the number of attack sets and their composition would be visible to an
observer, targeted and ordered observations would be possible. Unfortunately, the exis-
tence of these sets is not visible to anybody but the attacker himself. Without any further
assumptions being made, an observer is therefore always confronted with the problem of
observing all data elements of the POASET with equal frequency. As no assumptions
about causal dependency between attack sequences have been made, each data element
is equally likely to be subject of an attack at point in time t0; i.e., the starting point of an
attack:

P (dei|t0) =
1

|POASET |
(8.2)

We note that this is of particular interest for multiple concurrent scheduling entities (as is
the case in multi-core, multi-processor architectures) and denote AP = {ap1, ..., apN} to
be the set of entities (processors) used by the attacker. In the worst case, from a security
point of view, an attacker can utilize all processors to capacity by assigning each proces-
sor a new data element to work with as soon as the work with the former data element
has been finished. Following this schema, rather than having several processors alter one
data element in parallel, limits the need of inter processor communication, reduces forced
synchronizations, and is therefore faster.

For simplicity, we assume that each alteration targeted at each data element requires an
equivalent amount of processor cycles and that attacking a data element costs as much as
observing it. Hence, the abstract2 time the attacker needs to accomplish his goal is given by
the maximum number of data elements to be processed by a single processor:

tattack =

⌈
|POASET |
|AP |

⌉
(8.3)

2The concrete time depends on the actual processor speed.
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As one data element cannot be split over several processors, the result is mapped to the
smallest subsequent integer (i.e., ceiling).
Alterations of data elements can be detected if the observation mechanism is able to ob-
serve dei before and after it has been attacked, and the data read during both observations
differ3. While, due to our assumptions, an analogous equation accounts for the time needed
to observe all data elements (i.e., tobservation), we are interested in gaining the maximum
probability of detecting an ongoing attack. The probability to do so is 1 if we are able to
observe the set of all data elements within the POASET in less than the time the attacker
needs to alter one data element dei ∈ POASET . This correlation can be expressed by
writing:

tobservation <

⌈
tattack

|POASET |

⌉
(8.4)

Clearly, Equation 8.4 is a simple model leaving aside any causal dependency between
data elements and assuming uniform distribution of attack probabilities. Also, employ-
ing this model would cause a high false positive rate, as even legitimate changes to any
dei ∈ POASET would be treated as an attack. Furthermore, since data elements cannot
be spread over processors, altering one data element exclusively and altering up to |AP |
independent elements in parallel consumes the same amount of time.

With no further assumptions made, the likelihood of being attacked is the same for all
data elements within the POASET . We have therefore shown that, for maximum detec-
tion probability, an observer mechanism must be much faster than the processors used for
attack. This is neither a surprise nor a problem in reality: Coprocessors such as modern
GPUs are able to operate much faster than modern CPUs. Hence, the problem is not the
speed as such but the performance degradation high-speed bulk observations cause on the
host-side.

We define the performance degradation D to be maximum (i.e., 1) if Equation 8.4 is
fulfilled:

P (D = 1|tobservation <
⌈

tattack
|POASET |

⌉
) = 1 (8.5)

Below, we present the causality model, incorporating resilient assumptions regarding the
success probability of an observation, as well as possible causal dependencies between
attack sets. This reduces performance degradation whilst maintaining acceptable detection
probability.

8.3.2 The Causality Model

In the previous section, we have associated each data element dei ∈ POASET to have the
same probability of being the first attack target (cf. Equation 8.2) . Also, we have assumed
that an observer has no knowledge about the sequence according to which an attacker will
aim at a specific dei, nor that he knows anything about the correlation between different
data elements.

For the causality model, we allow further assumptions to be made but limit our atten-
tion to causality chains, despite the fact that more complex relations between sets of data
elements may be possible. As we do not know the exact course of any attack, our assump-
tions are probabilistic in type.

The discussion up to this point has tacitly assumed that costs are equal for each event
observation. However, this is not desirable for a NUMA architecture with different mem-
ory pathways, where each of them possibly has a different priority. As one result, not every
attempt to observe a data element is assumed to be successful. This is intrinsic to our co-
processor/host combination (i.e., a NUMA architecture) which imposes different priorities
to concurrent memory accesses depending on the source of them.

3For simplicity, we assume that the observation results are not stored.
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We distinguish between two sets of memory pathways, being H , the ones triggered by
the host itself, and C, the ones triggered by a coprocessor. Each memory pathway hs ∈ H
and ct ∈ C, respectively, is associated with a priority (i.e., ps and pt). With respect to an
operation on dei, H and C form a partial order over the happened before relation, such
that ps ≥ pt ⇒ hs → ct. Whenever this relation is true for any two competing memory
pathways hs and ct, we regard the observation as failed. For simplicity, we postulate that
the set of memory pathways follows a binomial distribution. Therefore, assuming host-
triggered events to have a higher priority, the probability of a successful observation can
be expressed as follows: Let p = |C|

|C
⋃

H| . Then:

x̂i = B(x|p, n) =
(
n

x

)
px(1− p)n−x (8.6)

where x denotes the number of possibly conflicting memory pathways, p, the ratio between
coprocessor and host-triggered events targeting a certain data element, and n, the number
of successive observation tries.

Thus, x̂i gives us the probability that exactly x memory pathways can successfully ob-
serve data element dei without being overridden by a host-triggered memory pathway.
While parameter x serves as a lower bound, we are in fact interested in the probability
that at least x memory pathways can be used unrestrictedly. This is obtained by applying
Equation 8.6 to all values w = x, ..., n:

X̂i =
∑

n
w=x

(
n

w

)
pw(1− p)n−w (8.7)

The smaller X̂i is, the lower the probability that we can detect a change in value at dei
while an attack is ongoing, as this is the probability that we can observe a given data ele-
ment without being suppressed by memory pathways triggered by the host. We refer to X̂i

as noise (i.e., λi) and make use of the noisy-or model [11] in order to deal with the possibil-
ity that an observation attempt is not successful. In addition to another memory pathway
suppressing our observation, we have to incorporate a second uncertainty: The probability
that we observe a benign change in value at dei which we cannot distinguish from a mali-
cious one. With respect to the noisy-or model, we speak of this factor as a global confidence
probability, denoted as λ0 4.

Since we are interested in the causal dependency between attack sets, we make use of
the potentially causes relation

p
↪→, proposed by Tarafdar and Garg [15] who describe it as a

relation capable of expressing the connection of two events not sharing a local clock while
at the same time having the possibility of one causing the other. In our case, we say that
Om

j and Om
j+1 are two observations of malicious changes that fulfill the happened before

relation (i.e., Om
j → Om

j+1). Furthermore, if the changes observed have the potential to

cause other data elements to change in value, then {Om
j → Om

j+1}
p
↪→ Om

j+2 and if {Om
j →

Om
j+1}

p
↪→ Om

j+2 and {Om
j+2 → Om

j+3}
p
↪→ Om

j+4, then {Om
j → Om

j+1}
p
↪→ Om

j+4. Just as in its
original form, our version of the potentially caused relation is transitive.
The probability that a change in value of a subset of the POASET is malicious can be
written as:

P (Om
j |dei, ..., den) = 1− ((1− λ0)

∏
n
i=1(1− λi)) (8.8)

Here, Om
j is a random variable with the probability that an observation of a change in

dei, i = p, ..., n is malicious. λ0 is the confidence probability, i.e., 1 − λ0 is the likelihood
that a benign event causes a malicious change in value. λi is a noise parameter which
is associated with the data being subject to observation. In cases where we have causal

4λi ∈ [0; 1]; 0 ≤ i ≤ n
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dependency between data elements, we simply take the result from Equation 8.8 as a noise-
parameter, define a global confidence probability, and apply the noise model as before for
the purposes of this model.

Ôm
k = P (Om

k |Om
j → Om

l ) = 1− ((1− λ0)
∏

l
j=1(1− λj)) (8.9)

Equation 8.9 implies that {Om
j → Om

l }
p
↪→ Ôm

k and gives us a probabilistic answer to the
question of how likely it is to see Ôm

k after we have seen the attack sequence Om
j → Om

l .
With this probability, we can start a targeted observation of the data elements included in
observation Om

k and thus, have the ability to adjust the observation frequency for each set
of data elements being observed according to the causalities assumed.

Clearly, prior to applying the causality model proposed above, a thorough analysis of
concerned data elements, their relation to each other, and possible attack types they could
be used for, is mandatory. Once this has been accomplished, the model is capable of giving
the probability with which certain observation results cause another one. Thus, this model
not only allows an observation mechanism to be tuned and therefore, to gain in efficiency,
but also provides limited predictive ability.

8.4 Practical Application of Proposed Models

The following provides a highly simplified instantiation of the model proposed in the pre-
ceding section, again divided into the naïve and causality models. We assume our set of
data elements comprises 12 elements: POASET = {de1, ..., de12}.

We also assume without loss of generality that an attacker has decided to perform an
attack A having four attack sets α1,...,4 containing the following data elements:
α1 = {de2, de5, de6, de10, de12}; α2 = {de1, de8}; α3 = {de4, de7, de11}, and α4 = {de3, de9}.

8.4.1 Application of the Naïve Model

If the observation mechanism was to be aware of the above defined attack sets, the proba-
bility that, e.g., de5 will be attacked is P (de5|α1) =

1
5 (cf. Equation 8.1 ). . Without further

assumptions or information, we assume events to be equiprobable:
P (dei|t0) = 1

12 , i ∈ |POASET | (cf. Equation 8.2 )
Assuming no relation between all data elements within thePOASET and being confronted
with an attacker employing 4 processors AP = {ap1, ..., ap4}, at least one processor needs
to process tattack = 12

3 = 4 data elements, which consumes the corresponding abstract time
(cf. Equation 8.3 ). In order to achieve the maximum detection probability, an observation
of the full POASET has to be finished in less than the time the attacker needs to attack
one single data element: tobservation < 4

12 = 1
3 (cf. Equation 8.4 ). While achieving this

would result in a detection probability of 1, presupposing that the POASET is complete,
it would also cause the maximum performance degradation on the host-side due to forced
synchronisations: P (D = 1|tobservation < 1

3 ) = 1 (cf. Equation 8.5)

8.4.2 Application of the Causality Model

We will now apply the probability model introduced in Section 8.3.2 in order to show that
observing all dei ∈ POASET with equal frequency is not necessary. First, we define one
host-triggered and one coprocessor-triggered set of memory pathways5 for each of the 12
data elements used in the example. Next, we need the probability that at least two copro-
cessor triggered memory pathways (parameter x in Equation 8.6) can be employed subse-
quently. Ideally, the first two memory pathways selected (parameter n) are of this type, as
this implies a failure rate f of only 1 (i.e., n

x ). The more tries we need in order to select two

5For a better understanding, one can think of these pathways as sets of threads.
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x 2 2 2 x 2 2 2 x 2 2 2 x 2 2 2
n 2 4 8 n 2 4 8 n 2 4 8 n 2 4 8

C1 10 C2 8 C3 10 C4 4
H1 5 H2 4 H3 10 H4 8
x̂1 0.44 0.30 0.02 x̂2 0.33 0.30 0.02 x̂3 0.25 0.38 0.11 x̂4 0.11 0.30 0.27
X̂1 0.44 0.88 0.99 X̂2 0.33 0.88 0.99 X̂3 0.25 0.69 0.96 X̂4 0.11 0.41 0.80
f1 1 2 4 f2 1 2 4 f3 1 2 4 f4 1 2 4

C5 13 C6 40 C7 5 C8 60
H5 12 H6 6 H7 10 H8 7
x̂5 0.27 0.37 0.09 x̂6 0.76 0.08 0.00 x̂7 0.11 0.30 0.27 x̂8 0.80 0.05 0.00
X̂5 0.27 0.71 0.97 X̂6 0.76 0.99 0.99 X̂7 0.11 0.41 0.80 X̂8 0.80 0.99 0.99
f5 1 2 4 f6 1 2 4 f7 1 2 4 f8 1 2 4

C9 16 C10 2 C11 12 C12 6
H9 2 H10 18 H11 23 H12 40
x̂9 0.79 0.06 0.00 x̂10 0.01 0.05 0.15 x̂11 0.12 0.30 0.27 x̂12 0.02 0.08 0.21
X̂9 0.79 0.99 0.99 X̂10 0.01 0.05 0.18 X̂11 0.12 0.42 0.82 X̂12 0.02 0.09 0.28
f9 1 2 4 f10 1 2 4 f11 1 2 4 f12 1 2 4

Table 8.2: Complete table of results when applying Equations 8.6 and 8.7 from Section 8.3.2
to the 12 sets of memory pathways from Section 8.4; one host and one coprocessor set for
each of the 12 data elements.
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Figure 8.1: The results for x̂i, X̂i and fri, i = 1, ..., 12

.

coprocessor triggered memory pathways, the higher the failure rate. Table 8.2 shows the
results for x̂i, X̂i and fi, i = 1, ..., 12, where the success factor n is set to 2, 4 and 8, respec-
tively. Table 8.2 reveals the connection between failure rate and success probability. That is,
the more errors we allow, the higher the probability that we get two coprocessor triggered
memory pathways. Correspondingly, minimizing the failure rate results in a lower success
probability. The correlation between success probability, the coprocessor/host memory
pathway ratio (i.e., |Ci|

|Hi| ) and the failure rate is depicted in Figure 8.1. As we ordered the
results according to the memory pathway ratio, it is clear to see that we can overcome
the failure rate problem by assigning more coprocessor triggered memory pathways to each
data element (i.e., success probability of up to 80% with a failure rate of 1 and a coproces-
sor/host memory pathway ratio of 8.57 : 1). Given the success probabilities, we can now
apply Equations 8.8 and 8.9 .

We then have to define our observation sets Oj , j = 1, ..., g. Ideally, we are not only
able to define as many observation sets as the attacker has defined attack sets, but we also
have them including the same data elements. While this may not be possible in general, we
assume the following observation sets, gained from analyzing selected data elements: O1 =
{de1, de2, de5, de6, de8, de10, de12}, O2 = {de4, de7}, and O3 = {de3, de9, de11}. From our
analysis we know that data elements de3, de9 and de11 (i.e., O3) show a causal dependency
to all other data elements. Therefore, we are interested in the strength of this connection.
We start by calculating the probability that a change in value withinO1 andO2 is malicious
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(cf. Equation 8.8 ). We express the confidence in the preceding analysis by setting the
global parameter λ0 to be 70% for Om

1 , 60% for Om
2 , and 65% for Om

3 . Furthermore, we use
the success probabilities from Table 8.2 (success factor n = 2) as λi (i.e., λi ≡ X̂i). This
associates the probability of successfully performing an observation with the probability
that the observation result is correct:

P (Om
1 |O1) = 1− ((1− 0.70)

∏
i∈O1

(1− λi)) = 0.99

P (Om
2 |O2) = 1− ((1− 0.60)

∏
i∈O2(1− λi)) = 0.68

Since we are interested in the probability that Om
1 and Om

2 cause Om
3 (i.e., {Om

1 → Om
2 }

p
↪→

Om
3 ) we now apply Equation 8.9 as follows:

Ôm
3 = P (Om

3 |Om
1 → Om

2 ) = 1− ((1− 0.65)
∏

j∈Om
1

⋃
Om

2
(1− λj)) = 0.99

This result is to be interpreted as follows: We have made resilient assumptions based on
thorough analysis and thus, were able to form observation sets. We paid respect to the
existing chance that our observation triggered by a coprocessor will not succeed due to
host-triggered memory pathways of higher priority and subsequently used the resulting
confident values as noise parameters of the noisy-or model.

Supposing the reasonability of our assumptions, we are 99% confident that a malicious
change in value within the data elements covered by O3 is potentially caused by malicious
changes in value of the data elements observed by O1 and O2. In other words, once we
have observed Om

1 and Om
2 , we can instantly lock O3 and thus, will counter the subversion

attack while it is ongoing with a probability of 99%.
With this result given, it is no longer necessary to observe all dei ∈ POASET with equal

frequency which automatically influences the performance degradation positively. At the
same time, there is a negligible loss in terms of detection rate (i.e., Ôm

3 = 0.99), compared
to the busy-wait approach proposed in Section 8.3.1.

8.5 Conclusion and Future Work

We no longer have to be one step behind the attacker. Therefore, we are not interested
in observing a full set of data elements without reasoning about what an attacker may
do next. To this extent, we presented a model that focuses its observation on subsets of
a partial order over host-side data elements. By associating each subset with a potential
to cause the next action and applying two slightly tailored well-known models, we gain
the following advantages: First, we are able to reduce the performance degradation on the
host-side due to less interference. Second, we are able to jump at least one step ahead of
the attacker, locking data elements likely to be attacked soon.

Our future work will be concentrated on implementing a proof of concept of the pro-
posed models. We will focus on the access times of file system parts such as /etc/passwd

and /etc/shadow and correlate the data with the frequency of, for instance, root logins. This
first example is based on the assumption that after user specific data has been modified, a
rising number of root logins will be the result.
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Nomenclature

AES Advanced Encryption Standard

AIDE Advanced Intrusion Detection Environment

ALU Arithmetic Logic Unit

AMD Advanced Micro Devices

API Application Programming Interface

ASCC Automatic Sequence Controlled Calculator

ASIC Application Specific Integrated Circuit

ATI ATI Technologies Inc.

ATPS Adaptive Threat Prevention System

BIOS Basic Input/Output System

BPSPM Balanced Pattern Set Partition Method

CAD Computer Aided Design

Cg C for Graphics, a GPU programming language

CPU Central Processing Unit

CUDA Compute Unified Device Architecture

DFA Deterministic Finite Automaton

DLL Dynamic Link Library

DpCAM Decoded Partial Content-Addressable Memory

DRAM Dynamic Random Access Memory

DSP Digital Signal Processor

EDIF Electronic Design Interchange Format

EDVAC Electronic Discrete Variable Automatic Computer

ENIAC Electronic Numerical Integrator And Computer

FPGA Field Programmable Gate Array

FPU Floating Point Unit

Gbit/s Gigabit Per Second

GFlops Giga Floating Point Operations Per Second

113



NOMENCLATURE

GHz Gigahertz

GL Graphics Library

GNU GNU’s Not Unix, a free software project.

GPGPU General Purpose Computation on Graphics Processing Unit

GPU Graphics Processing Unit

HDD Hard Disk Drive

IA-32 Intel Architecture 32-Bit

IBM International Business Machines

IDS Intrusion Detection System

IO Input/Output

ISA Instruction Set Architecture

kbit/s Kilobit Per Second

KMP Knuth-Morris-Pratt, a string matching algorithm.

LKM Loadable Kernel Module

Mbit/s Megabit Per Second

MHz Megahertz

MIMD Multiple Instruction, Multiple Data

NFA Nondeterministic Finite Automaton

NIDS Network Intrusion Detection System

NUMA Non-Uniform Memory Architecture

OHCI Open Host Controller Interface

OS Operating System

PCI Peripheral Component Interconnect

PCIe Peripheral Component Interconnect Express

Ph.D. Philosophiae Doctor, Doctor of Philosophy

PHmem Perfect Hashing Memory

RAM Random Access Memory

SHA-1 Secure Hash Algorithm 1

SIMT Single Instruction, Multiple Thread

SISD Single Instruction, Single Data

SMP Symmetric Multiprocessing

TPM Trusted Platform Module

UDP User Datagram Protocol

UMA Uniform Memory Architecture

x86 A Processor Instruction Architecture
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