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Summary

Moore’s law has, for almost half a century, described a trend in which the number of tran-
sistors in integrated circuits have been doubled every year. Properties, such as processing
speed, memory capacity and physical size of circuits, are strongly linked to Moore’s predic-
tion. Integrated circuits, such as microprocessors, therefore get smaller yet more and more
powerful. The combination of smaller size and larger capacity allow more and more func-
tionality to be included in small microprocessor devices, such as smart phones and smart
cards. This includes security related functions, such as confidentiality, integrity, availabil-
ity and non-repudiation. The use of microprocessor devices is said to make fraud more
difficult, however, research has found them susceptible to side-channel attacks. Sensitive
information can escape via side-channels such as power consumption or electromagnetic
radiation (EMR). When a microprocessor executes its program, power consumption (or re-
sulting EMR) can be used to reveal the content of program and/or data memory of the
microprocessor. The correlation between power consumption and microprocessor activity
has found many uses: to recover cryptographic keys, to reveal hidden hardware faults,
to create a covert channel or to reverse engineer the code executed. This is concerning,
considering the increasing demand for and dependability upon microprocessors in secure
applications.

This thesis contributes by building a more realistic model of the arsenal available to an
adversary engaged in reverse engineering microprocessor content through the electromag-
netic side-channel. This includes; (i) presenting a new attack, resembling wireless skim-
ming, (ii) a method for in-depth analysis of EMR and better understanding of what and
how much EMR is necessary to launch an attack, (iii) a new power model that better ex-
plains the underlying phenomena and (iv) a non-invasive method for reverse engineering
physical properties based on EMR.

The Wireless Covert Channel Attack (WCCA) contributes towards exploiting the elec-
tromagnetic side-channel in a new attack and attack scenario for microprocessor smart
cards. The attack brings together knowledge from different fields; electromagnetic side-
channels, covert channels and subversion. The scenario assumes that a highly skilled in-
sider is able to hide a small program (subversive code) on a microprocessor smart card in an
early stage of the products life cycle. During normal use of the smart card, the subversive
code intentionally manipulates the electromagnetic side-channel, creating a covert channel
that can potentially broadcast the cards internal secrets to a nearby receiver. The attack is
launched without possession of the card and is, therefore, unlikely to be detected by the
user. The feasibility of the attack has been demonstrated on modern, high-security cards
with all available security features activated, which demonstrates that attacks resembling
wireless skimming are feasible. This contribution highlights the importance of life-cycle
security focus for products used in secure applications.

Challenges faced by WCCA and other side-channel attacks are: What and how much of
the available EMR is necessary to launch an attack, and how do choices affect the efficiency
of the attack? This thesis recognizes reverse engineering microprocessor content as a pat-
tern recognition problem, and can therefore address these challenges as a feature selection
problem. A comparison of several multi-class feature selection methods by their perfor-
mance in a WCCA application is provided. Combining these results with the template
attack provides a method for in-depth analysis of the electromagnetic side-channel. This
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method was applied to data transfer on the microprocessor’s internal buses, which gave
new insight as to the underlying phenomena and revealed that commonly used power
models are not suitable to explain the level of detail achieved by Bayesian classification
(e.g. template attack).

This thesis provides the hypothesis that the classification results can be explained by
layout dependent phenomena (LDP) . LDP include; (i) inductance and capacitance of con-
ductors, (ii) inductance and capacitance between conductors, (iii) wireless transmission
characteristics (i.e. antenna properties) of conductors and other circuit elements and (iv)
complex combinations of these phenomena. Simulations and experiments are provided
that give new insight as to how capacitance between bus-wires (capacitive crosstalk) influ-
ence the energy dissipation and the resulting radiated electromagnetic field in any physical
implementation of a digital circuit (e.g. microprocessor). A new power model, based on
capacitive crosstalk, is proposed, which better explains the classification results achieved.
This can improved side-channel exploitation capabilities.

The new power model shows that energy dissipation (i.e. EMR) is a function of internal
physical structures of the microprocessor. It can therefore improve the performance of side-
channel attacks that rely upon a good power model to be successful (e.g. power analysis
attacks). A spinoff of this result is that if the microprocessor activity is known, it should be
possible to reverse engineer physical structures of the microprocessor. This thesis provides
a non-invasive method for determining the relative position of internal bus wires based on
known transition pattern and the influence of capacitive crosstalk on EMR. By including
other LDP it should be possible to reverse engineer other physical structures of the micro-
processor. This is, to the best of our knowledge, a new application area for electromagnetic
side-channel information and holds potential for future work.
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Chapter 1

Introduction

Is it secret, is it safe?

GANDALF

1.1 Problem Description/Motivation

An increasing number of systems rely upon tamper resistant microprocessor devices, such
as smart cards, for security related applications. It is well known that microprocessor de-
vices leak information about their activity through side-channels [14]. Side-channel at-
tacks exploit correlations between the internal sensitive information and unintentionally
externally available information such as time [9] and power consumption [10], optical [12],
acoustic [5] or electromagnetic radiation (EMR) [15]. These attacks can be invasive or non-
invasive such that no traces are left behind.

Side-channel attacks are not new, military and government organizations have suppos-
edly used them for a long time. In 1956, MI5s operation ENGULF used telephone taps
to record the sound from Hagelin cipher machines. The sound was used to calculate the
settings on the Hagelin machines [23]. The electromagnetic side-channel, when EMR is
correlated to sensitive information about a system itself or data handled by the system,
has even been given its own codeword; TEMPEST. Side-channel attacks were brought to
the public interest in 1985 when Van Eck [22] showed how to eavesdrop on video dis-
play units from a considerable distance via EMR. In 1996, Anderson and Kuh published,
”Tamper Resistance: A Cautionary Note” [3], which showed that trusting tamper resistant
devices can be problematic. That same year, Kocher [9] published his work on exploiting
differences in execution time (Timing Attacks). In 1999 Kocher et al. [10] published their
ground-breaking power analysis attacks. Simple Power Analysis (SPA) and Differential
Power Analysis (DPA) received some attention from, among others, the banking industry,
and countermeasures were publicly announced. Power analysis has since then received a
lot of attention, with many improved attacks and countermeasures. In 2007 S. Mangard et
al. gave out the book, Power Analysis Attack - Revealing the Secret of Smart Cards [14] which is
an excellent introduction to the topic, but also summarized development within the field.

In 2000, Quisquater and Samyde [15, 16] applied analysis techniques from SPA and
DPA to electromagnetic side-channels, thus introducing electromagnetic analysis (EMA).
Gandolfi et al. [8] showed, in 2001, that EMA was not only a theoretical possibility, as cryp-
tographic keys from DES, RSA and the alleged comp128 were successfully retrieved using
EMA. In recent years several papers have been published in an ongoing effort to systemat-
ically investigate electromagnetic side-channel attacks [1, 2, 6, 8, 11, 13, 15, 16, 17, 18]. The
experiments have been extended to some distance from the target, implying that physical
access to the target may not be necessary. It has been shown that EMA is at least as pow-
erful as power analysis, and that EMA could circumvent power analysis countermeasures
[1, 18]. In 2002, Chari et al. [6], presented the Template Attacks, which claims to be close to
the theoretical limits of information extraction. There are also papers that further devel-
oped these ideas [1, 2, 4, 19]. At USENIX 2002 [17], Quisquater and Samyde described an
automatic method to classify instructions, carried out by a simple CISC processor. A neu-
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ral network (Kohonen’s self organizing maps) was trained to automatically recognize, and
thus reverse engineer, executed code based on stored electromagnetic and power signa-
tures. In 2010, Rechberger et al. [7] presented a methodology to reverse engineer executed
code on a microprocessor, based on side-channel information only.

Due to the continuing reduction in transistor size (Moore’s law), microprocessor tech-
nology continues to shrink in size yet increase in power. This development has made pos-
sible devices such as smart phones and smart cards. However, as we become more depen-
dent upon these devices and use them increasingly for sensitive information, protecting the
device and the information it contains becomes ever more important. The importance of
understanding side-channel attacks is therefore higher then ever, as no perfect protection
exists. The number of problems are many and side-channel attacks are highly application
dependent. Each practical case needs to be studied as the results obtained two years ago
might be obsolete today. An ongoing effort to understand what is deducible from side-
channel information is desirable as vulnerabilities, previously found infeasible to exploit,
may be within the adversaries reach today.

1.2 Research Questions

Any acceleration of electric charges is accompanied by an electromagnetic field [20]. When
a microprocessor executes its program, EMR is therefore generated as a consequence of
accelerating electric charges associated with transistor transitions (i.e. the power consump-
tion). This work is concerned with the vulnerabilities in which the correlation between
EMR and sensitive information presents to a potential adversary. Better risk assessment
and security measures can be achieved when the arsenal available to an adversary is better
understood. This thesis is concerned with obtaining a better understanding of the origin
of EMR, how to capture and represent EMR as well as how EMR can be exploited from a
reverse engineering point of view. The overall goal can be stated as:

How can electromagnetic radiation be used to reverse engineer microproces-
sor content?

During research the main research question was divided into the following problems,
which are explained in further detail in chapter 3:

Q1.1: What is state-of-the-art regarding electromagnetic side-channel attacks?

Q1.2: Is it possible to demonstrate the correlations between microprocessor activity and
electromagnetic radiation without a large investment of resources?

Q2.1: Is it possible to launch an attack in a normal scenario on advanced smart cards?

Q3.1: How can relevant electromagnetic radiation be selected?

Q3.2: What is the performance of a given choice?

Q4.1: Can very similar microprocessor activities be distinguished?

Q4.2: What model can explain the classification results achieved?

Q5.1: Is it possible to reverse engineer the internal physical structure of a microprocessor
based on electromagnetic radiation?
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1.3 Ethical and Legal Considerations

A non-disclosure agreement was signed to get access to modern smart cards with state-of-
the-art security measures. Therefore, special consideration has been taken to ensure that
business-confidential information and the identity of vendors are not revealed. In addition,
a special focus has been devoted to making sure that classified TEMPEST information,
available through the Norwegian Armed Forces and NATO, has not been revealed. All
resources used for this thesis are unclassified research papers or textbooks.

Each time somebody publishes an article that reveals security vulnerabilities or intro-
duces a new attack, the following question pops up: ”are you not giving the recipe on how
to steal information to the wrong guys?”. The naive answer is yes, but in my opinion that
would be security through obscurity. To pretend there are no vulnerabilities, thus claiming
the system is secure is unethical. As an example, T. Tjøstheim wrote that [21]: Norwegian
online banks have supported secrecy, fearing that the discovery of vulnerabilities could have eco-
nomic consequences or cause a loss of reputation . The Norwegian online banks are not unique.
In light of this a better question is: ”Are we now obligated to publish findings that bring
vulnerabilities out in the open?” This will facilitate, and in some cases force, more secure
systems, and is far better than sticking ones head in the sand, hoping nobody discovers
any security vulnerabilities. The chances are, the bad guys know about the vulnerabilities
already.

1.4 Structure of the Thesis

The rest of the thesis is organized as follows: Chapter 2 presents necessary theory to un-
derstand the contributions of this thesis. This includes, basic knowledge of microprocessor
technology, the origin and nature of EMR, practical laboratory knowledge and analysis
techniques. Chapter 3 presents a summary of the work done for this thesis and shows the
relationship between research questions and published papers. Future work is also found
in chapter 3. Chapter 4 gives a summary of the contributions of this thesis. In chapter 5-11
the 7 research papers, constituting the main body of this thesis, are found. State-of-the-art
is not included, as this is found in each contributing paper.
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Chapter 2

Background

If we knew what it was we were
doing, it would not be called
research, would it?

ALBERT EINSTEIN

A microprocessor has a functional activity which is to transform a set of input bits to
a set of output bits. It is well known that the functional activity also generates electro-
magnetic radiation (EMR) as a function of the power consumption of the microprocessor
[13, 18, 29, 32]. This is concerning, from an information security point of view, if the EMR is
correlated to sensitive information about, or handled by the microprocessor. Compromise
of sensitive information is then at risk if an adversary is able to capture and analyze the
EMR, known as the electromagnetic side-channel.

Electromagnetic side-channel attacks can be modeled as seen in Figure 2.1. The micro-
processor executes it program using as set of basic operations (e.g. transfer, arithmetic,
logic and shift), usually controlled by a ”square wave” clock. A sequence of basic opera-
tions necessary to execute a program is called an execution sequence, o. The majority of the
power consumption, and associated EMR, during an execution sequence is related to the
number of gates that change state [20]. This is determined by what bit values are processed
and moved by the microprocessor. The EMR from each basic operation is, therefore, a func-
tion of the instruction (opcode and operand), the data, the address in memory and the prior
state (upstate) of the microprocessor. This relationship can be exploited by an adversary to
deduce the content of program or data memory, otherwise kept secret. The adversary may
have knowledge of, or even be able to, choose part of the execution sequence in order to
reveal specific details (e.g. run a known cryptographic algorithm for an unknown value of
the cryptographic key [17] or alternate the execution of two different instructions [10]). The
emitted electromagnetic signal, s, in Figure 2.1 will have a signal part and a noise part. The
signal part, sexp, is due to power consumption during gate transitions related to handling
sensitive information. The noise part snoise is due to power consumption during gate tran-
sitions irrelevant to handling the sensitive information. Any electronic device will also be
subject to electronic noise, nel [20].

Side-channel analysis requires interception of EMR subject to channel noise, nch, and
measurement noise, nm. Properties (features), x, of the intercepted signal are then extracted

Figure 2.1: Electromagnetic side-channel leakage from a microprocessor.
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and used to compute an estimate of the execution sequence, ô. The estimated execution
sequence, together with known or chosen memory content, can then be used to reveal
sensitive information, e.g. the content of program or data memory. This process can be
viewed as a pattern classification problem [9]. Based on properties, x, of the intercepted
EMR, predict the execution sequence which took place. Side-channel attacks have adapted
a range of different classification approaches, such as visual inspection [17], difference of
means or correlation coefficient [17], Bayesian classifier [8] or neural networks [30].

EMR only pose a security risk if sensitive information is correlated to EMR and the
adversary can intercept and extract the information. In order to understand how EMR
can reveal sensitive information, it is necessary to understand how basic microprocessor
operations and execution sequences are correlated to the power consumption. This is the
topic of section 2.1. Section 2.2 talks about how EMR is generated and how it is related to
power consumption. The measurement setup necessary to intercept EMR is introduced in
section 2.3 and section 2.4 introduce relevant analysis techniques.

2.1 Microprocessors

The purpose of this chapter is to get an understanding of how a microprocessor executes its
program and how this is related to the power consumption. This will help understand how
sensitive information handled by a microprocessor can be compromised through measure-
ments of the power consumption.

It is difficult and resource-demanding for an adversary to capture and analyze the
power consumption of the microprocessor every waking moment. In addition, it is likely
to be unnecessary as correlations between sensitive information and power consumption
probably are found at specific time instances. Detailed knowledge of the program and
how it is executed by the microprocessor, i.e. the execution sequence, is then important to
identify the time instance of relevant activity. The basic principles of a general micropro-
cessor are covered first, followed by a detailed explanation of how a microprocessor smart
card works. This introduction is based on the architecture of the Goldcard smart card,
containing Microchips PIC 16F84A microcontroller, as it is easily available without a non-
disclosure agreement and principles are easily generalized to more advanced cards used
in security sensitive applications (e.g. mobile phones, travel documents, electronic wallets,
credit cards and pay TV). Finally, an introduction to power consumption associated with
bit-level microprocessor activity is given.

2.1.1 General microprocessor

A microprocessor typically includes memory (program memory, data memory), Central
Processing Unit (CPU) , I/O and buses (data, program, control). The CPU is responsible
for controlling the operation of the device by fetching, decoding and executing instructions,
one by one. A set of instructions is called a program and is stored in program memory. Each
instruction consist of opcode and operand . The opcode specifies the instruction type and
the operands the operation of the instruction, e.g. memory location of data and where to
store the result. The CPU use a set of basic operations such as: Transfer, arithmetic, logic
and shift. Transfer is used to move data on buses between memory locations. Arithmetic,
logic and shift operations are done by the Arithmetic Logical Unit (ALU) of the CPU.
The ALU can perform arithmetic and boolean function between a working register and
memory locations. The execution of basic operations (i.e. execution sequence) is usually
controlled by a square wave clock. How fast the microprocessor can perform the tasks
instructed by the instructions, depend on the clock and if parallel activities can take place.
In traditional von Neumann architecture [23] data and program are fetched over the same
bus. In Harvard architecture [23] separate buses are used, allowing data and instructions to
be fetched simultaneously, thus increasing the speed of the microprocessor. This also makes
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Figure 2.2: Smart card - a complete computer.

it possible to have data and instructions of different lengths, allowing for more efficient use
of the program memory. This is important in resource limited devices, such as smart cards.

2.1.2 Smart Cards: Specific processor

Microprocessor smart cards are complete computers embedded in a small chip (Figure
2.2), and typically contain CPU, program and data memory (RAM, ROM, EEPROM) , I/O
interface and buses. They are typically used in security sensitive applications and some-
times have sensors, security logic and specialized coprocessors for handling cryptographic
algorithms [31]. The electrical connections are also shown in Figure 2.2. A smart card usu-
ally have 8 contacts. ISO 7816-2 specifies the designation and function of the contacts [31].
Two connectors are reserved for auxiliary contacts and one has gone out of use (NC). The
other connectors are I/O for serial communication, Vcc for power supply, CLK for clock
input, GND for ground and RST for reset input.

The Goldcard is a microprocessor smart card which contains an 8 bit Microchip PIC
16F84A special-purpose microprocessor (i.e. microcontroller), which handles clock speeds
up to 20 MHz. A simplified block diagram of PIC 16F84A is seen in Figure 2.3. The CPU
consists of a Control Unit (CU) , ALU and a working register (w-register). The program
memory can hold 1024 14bits instructions. 68 bytes of RAM and 64 bytes of EEPROM is
also available. A Harvard architecture with separate 8 bit data and 14 bit program bus
allows some parallel activities to take place. There are 35 instructions available grouped
into three basic categories: byte-oriented operations, bit-oriented operations and literal and
control operations. For details, see Microchips Reference Manual [22].

Microchip PIC 16F84A executes one instruction in four quadrature clock cycles (Q cy-
cles) , which have a period equal to the clock provided through theCLK connection (Figure
2.2). A two-stage pipeline is used to fetch the next instruction while the current instruction
is executed (Figure 2.4). The microprocessor executes one instruction in each instruction
cycle, except for program branches that require two cycles. Clock cycle 1 (Q1) is used to
decode the current instruction in CU’s instruction register. This may involve setting an
address on the 7 bit address bus to RAM, setting an 8 bit literal to the ALU or setting up
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Figure 2.3: Simplified block diagram of Microchip PIC 16F84A.

control lines to ensure correct processing as specified by the opcode. Q1 is also used to
increment the program counter, which points to the next instruction in program memory.
Clock cycle 2 (Q2) is the operand read cycle where data memory is read, e.g. transfer data
from RAM at the address provided by CU, to the ALU via the 8 bit data bus. Clock cycle 3
(Q3) is used to process data in the ALU as specified by the opcode (i.e. control signals set
by CU). This could be addition, subtraction, shift or logic operations. Finally, clock cycle
4 (Q4) is used as the destination write cycle. Results of ALU operations in Q3 are either
written to the working register or back to the memory location used in Q2. Q4 is also used
to move the next instruction from program memory to the CU’s instruction register. One
instruction cycle is then complete and the next cycle can start.

Such detailed knowledge of the execution sequence can be used to identify time in-
stances of basic microprocessor operations (e.g. transfer) of interest. An adversary inter-
ested in the opcode or memory location of instructions should focus on Q1. Correlation
between power consumption and one particular byte of data, may be strongest during the
read cycle (Q2) or the write cycle (Q4). Notice that in Q4 the parallel activities of moving
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Figure 2.4: Execution sequence and pipelining of microprocessor PIC 16F84A.

the next instruction into the CU will add to the noise snoise (Figure 2.1) and make analysis
harder. Correlations between power consumption and processing data (e.g. XOR of cryp-
tographic key) in ALU is expected to be strongest in Q3. This information should only be
used to initiate the analysis. There may well be correlations that do not follow these simple
guidelines. For other microprocessor technologies, the execution cycle itself can provide in-
formation, e.g. a Motorola microcontroller has 3 or 4 clock cycles in the instructions cycle,
depending on the opcode.

2.1.3 Power Consumption

The purpose of this chapter is to get an understanding of the power consumption asso-
ciated with basic microprocessor operation, in particular, bit-level transfer operations on
internal buses. This introduction is largely based on the book, Power Analysis Attacks [20]
in which further detail can be found.

Digital circuits, such as ASIC’s , FPGA’s and microprocessors, are built using logic cells.
Logic cells can be implementations of boolean function like inversion, NAND and XOR
and are referred to as combinational cells as their outputs are logical combination of the
inputs. Other types of logic cells are flip-flops and registers. These are called sequential
cells, and the output depend on the input, preceding inputs or on their initial state. Com-
binational cells and sequential cells are used to build functionality of higher complexity,
such as adders, counters and state machines. These building blocks are then used to build
systems (e.g. microprocessor). All logic cells are implemented using transistors. There
are many different types of transistors, however, the majority of cells use complementary
metal-oxide semiconductor (CMOS) technology [27].

A precise simulation of the power consumption of digital circuits can be obtained using
analog circuit simulators like PSpice [7] . This requires a netlist of all transistors, the con-
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Figure 2.5: CMOS inverter.

nections between them and parasitic elements. The precision of the simulation depends
on how accurate the parasitic elements are modeled. Simplifications are usually done to
reduce the complexity. The lumped-C model is common, where all parasitic elements are
lumped together as single capacitance at the output of a cell [20].

It is also possible to simulate the power consumption at a logic level. A netlist of logic
cells and the connection between them allows simulation of the transitions taking place
in the circuit. This can then be mapped to the power consumption by the circuit. Both
these methods require detailed knowledge to make the netlits, that may not be available to
an attacker. However, devices such as the microprocessor have components (buses, ALU,
memory) that behave in a predictable way (e.g. execution sequences and basic operations).
For an attacker it may be enough to map the power consumption to bit-level activities of
the device, and the absolute power consumption may not be relevant.

The CMOS inverter is often used to explain the power consumption in CMOS logic cell.
It is representative for other logic cells, because they are all based on the same principle of
pull-up and pull-down networks. The CMOS inverter uses two transistors; one p-channel
(Q1) and one n-channel (Q2) MOSFET [27] as seen in Figure 2.5.

There are 4 cases to consider. When the input is high (logic 1), Q1 is off and Q2 is
on. This connects the output to ground. If the output was previously high a current pulse
occurs as the output is discharged through Q2, resulting in a power consumption P10. If the
output was already low there is no discharge, but only a small static power consumption,
P00 . When the input is low, Q1 is on and Q2 is off. This connects the output to the power
supply. If the output was previously low a current pulse occurs as the output charges up
through Q1, resulting in a power consumption P01. If the output was already high there is a
small static power consumption, P11. In the case of a transition on the output of the inverter,
the power consumption will be much larger as a result of the added power associated with
charging up or discharging the output. This is called dynamic power consumption [20].
The results are summarized in table 2.1.

Notice that the static power consumption is very small and usually neglected, such that
P00 = P11 ≈ 0. According to [20], the leakage current is in the range of 1pA. Since the
majority of the power consumption occurs when there is a transition between logic one

Table 2.1: Relationship between power consumption and transitions for a CMOS inverter
[20].

Transition Power Consumption Type
0→ 0 P00 static
0→ 1 P01 static and dynamic
1→ 0 P10 static and dynamic
1→ 1 P11 static
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and zero, it can be argued that it is the number of changes in logic value that determines
the power consumption. It is also common to assume the dynamic power for discharge and
charging the output is equal, such that P01 = P10. This is the background for two common
power models: The Hamming Weight (HW) and Hamming Distance (HD) model.

HW is simply the number of bits set to one, and HD is the number of bits that are dif-
ferent. For two binary values X and Y , both with length l, Hamming distance is given by
HD(X,Y ) =

∑l
i=1Xi ⊕ Yi. The HD model can be used to describe the power consump-

tion when consecutive data are known. This is often the case for buses and registers of a
microprocessor. The HW model is used if no consecutive data is available and is there-
fore, in general, not very well suited for CMOS circuits. However, in [20] it is stated that
”..., in practice the HW of a data value is usually not completely unrelated to the power
consumption that is caused by the processing of this value.”

Another explanation can be illustrated by considering a parallel bus (e.g. the data bus
of a microprocessor), with 4 wires (w1, · · · , w4) transmitting data simultaneously. Current
is drawn by each bus wire during the rising and falling edge of each logic ”1”. The dynamic
power consumption will be proportional to how many wires conduct current, as illustrated
in Figure 2.6. On the right side of Figure 2.6 the ”square wave” signal has equal duration
to the bit interval (non-return to zero - NRZ) . The power consumption is then proportional
to the HD of the data. On the left side, the duration of the ”square wave” signal is shorter
than the bit interval (return to zero - RZ) . The power consumption is then proportional to
the HW of the data. Pre-charge bus is one type of RZ.

To summarize: The power consumed by basic microprocessor (CMOS based) operation
is proportional to bit values handled by the device, which is a function of the instruction
(opcode and operand), the data, the address in memory and the prior state (upstate) of the
microprocessor.

2.2 Electromagnetic Radiation

Electromagnetic radiation (EMR) is energy propagating through space. This energy has
both a wave-like and a particle-like behavior that depends on the wavelength. EMR of
different wavelengths are known by their more familiar names: radio waves, microwaves,

Figure 2.6: The power consumption of RZ signal types (left) is proportional to the HW of
the data. The power consumption of NRZ signal types (right) is proportional to the HD of
the data.
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infrared, visible light, ultraviolet radiation, X-rays and gamma rays. For the purpose of
this thesis the focus will be on EMR generated by electronic devices, e.g. microprocessor,
in the radio wave band. This chapter provides an introduction to the origin and properties
of EMR, in particular the expected radiation from digital circuits, such as the execution
sequence of a microprocessor.

2.2.1 Origin and Field Strength of Electromagnetic Radiation

The law of physics explained by Maxwell’s equations can be stated textually as follows
[14]: Accelerating electric charges give rise to electromagnetic waves. According to Maxwell, an
electric (E) field that changes in time, will produce a magnetic (H) field that changes in
time and vice versa. The interacting E- and H-fields form an electromagnetic wave that
can propagate through space at the speed of light (c). This wave is characterized by its
wavelength (λ) or frequency (f ) given by: c = λ · f . Changing fields are generated by
electric charges that undergo acceleration [14].

Accelerating charges are found in virtually any operating electronic circuitry. Any cir-
cuit element, conducting changing electric current, will act as an antenna and generate
EMR into the surrounding environment. An antenna is a transducer converting electric
current into EMR, characterized by properties such as: resonant frequency, gain, radiation
pattern, impedance, efficiency, bandwidth and polarization. These properties depend on
factors such as: amount of current, length/shape and material of the circuit element. In
addition, EMR will be influenced by filtering, reflection and interference from surrounding
material and circuit elements [35].

The field strength of the E- or H-field at a distance r from the source can be deter-
mined by the current carried by the antenna, the shape of the antenna and the radiation
impedance. By considering a very short wire (dipole) carrying a sinusoidal current I , it can
be shown that the spatially radiated wave (i.e. E- and H-field) at a point P(r, θ, φ) (polar
coordinates) in space can be written as [35]:
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Three basic terms can be extracted from 2.1:

The radiation term , representing the flow of energy away from the wire, proportional to
1/r.

The induction term , representing the energy stored in the field close to the wire, propor-
tional to 1/r2.

The quasi stationary term , also called the electrostatic term resulting from build up of
charges at the end of the wire, proportional to 1/r3.

These terms are equal at distance r = λ/2π. It is common to refer to distances, r < λ/2π
as the near field and distances r > λ/2π as the far field . It is also common to regard the
induction and the quasi stationary term negligible in the far field such that the field strength
is proportional to 1/r. In the near field, the quasi stationary term is usually ignored such
that the induction term dominates and the field strength is proportional to 1/r2. The rate of
decay of EMR (i.e. E- and H-fields) therefore depends on both the wavelength and distance
from the source. This relationship is shown in Table 2.2 for some harmonics of a clock speed
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Table 2.2: Relationship between frequency (f ), wavelength (λ) and near/far field border
(rb = λ/2π). The rate of decay is approximately 1/r for r > rb and 1/r2 for r < rb.

frequency (f) [MHz] Wavelength (λ) [m] Distance to near/far field border (rb) [m]
4 75 12
40 7,5 1,2

400 0,75 0,12
4000 0,075 0,012

of 4 MHz. Notice that when measuring up to a few hundred MHz, a probe positioned
closer than 12 cm will be in the near field for the entire frequency range. According to
Quisquater and Samyde, the E-field carries different information than the H-field, but fails
for low frequencies (below 10 MHz) [29].

2.2.2 Electromagnetic Spectrum from a Microprocessor

D. Agrawal et al. divide EMR from microprocessors into two broad categories: direct em-
anation and unintentional emanation [1]. In the following the unintentional emanation is
referred to as modulated emanation , as the term unintentional is misleading. Direct ema-
nation is also unintentional in the sense that it is an unwanted secondary effect of intended
microprocessor activity.

Direct Emanation: This is a result of intentional current flows within a microprocessor.
The CMOS inverter (Figure 2.5), is often used to explain such radiation [1, 13]. The
short burst of current pulses for transitions between logic ”1” and logic ”0”, have
sharp rising and falling edges due to the speed of modern microprocessors. This
leads to emanation over a wide frequency band.

Modulated Emanation This is a result of coupling effects between components in close
proximity within the microprocessor devices. Components close to each other may
interfere and result in compromising information modulated onto a carrier, e.g. har-
monics of the clock signal. The modulation can be AM or PM depending upon how
the coupling occurs, e.g. if the clock signal and circuitry handling sensitive informa-
tion draw upon the same limited power supply, the clock signal may be modulated
by the sensitive information.

Furthermore, EMR can be characterized by its frequency spectrum (amplitude and
phase as a function of frequency). The frequency spectrum can be found using Fourier
analysis [15]. Fourier analysis is a way to represent a time domain waveform as a sum
of sinusoidal signals of different frequencies. The contribution of each sinusoidal is de-
termined by its amplitude and phase. The magnitude of these sinusoidal plotted vs. fre-
quency, is commonly known as the frequency domain or frequency representation of a
signal. Fourier analysis and frequency spectrums are especially useful in signal process-
ing, and the transform has different names, depending upon the nature of the signal to be
transformed. Representing a continuous time signal, x(t), such as EMR, on a computer
requires sampling to create a discrete time waveform x(nT ), where n is an integer and T is
the sampling interval. In practical experiments, x(nT ) has a finite length of N samples and
can be considered a discrete signal of period N . The Discrete Fourier Transform (DFT) is
then appropriate to use. Even though there is a clear difference between the mathematical
transformation DFT and its implementation on a computer (Fast Fourier Transform - FFT),
these two terms are often used interchangeably [15].

The relationship between the current (i.e. power consumption) and the EMR can be
expressed by a transfer function h(t) [25]. Most physical systems are not linear by nature.
Finding the transfer function h(t) for a non-linear system is not trivial, if possible at all.
However, assuming that the system is linear time-invariant (LTI) , the frequency content of
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Figure 2.7: Estimated electromagnetic spectrum from microprocessor signals. Top: DFT of
a periodic 4 MHz clock signal. Bottom: DFT of a random data signal synchronized by a
4 MHz clock. 40 periods used for both signals and triangular pulses used to estimate the
current waveform.

the radiation will be the same as that of the current waveforms. This assumption can be
used to estimate the electromagnetic spectrum of some relatively simple direct emanations.
Intentional current flow within a microprocessor can be divided into two groups:

Periodic clock/control signals used to synchronize microprocessor activity.

Asynchronous or random activity , e.g. data signals.

According to [29] the periodic clock signal will result in narrow frequency bands at
harmonics of the clock frequency and the random data signal will result in broadband em-
anation. This can be illustrated with a simple example. Consider two signals: (i) a periodic
4 MHz clock signal (typical in smart cards) and (ii) a random data signal synchronized by
this clock. Since the majority of power consumption is associated with the transition be-
tween logic one and zero, the current waveform can be modeled as two triangular signals,
one for the transition from 0 → 1 and another for the transition from 1 → 0. The duration
of the triangle pulses is set equal to the rise and fall time specified in the data sheet for a 4
MHz smart card. Measurements of the current consumption associated with transitions in
a CMOS inverter confirm this approximation [20]. The DFT of 40 periods of each of these
two signals can then be calculated and the results are shown in Figure. 2.7.

The DFT of the periodic clock signal (top) show, as expected, frequency components
at harmonics of the clock signal. The DFT of the random data signal, synchronized by
the clock signal, still has strong narrow band components at harmonics of the clock, but
broadband EMR is present as well.

2.2.3 Differences between Power and Electromagnetic Radiation

Sensitive information handled by a microprocessor will influence both the power consump-
tion and the EMR. Investigation done by Rao and Rohatgi [32] shows that:
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... although the EM side-channel superficially resembles the power side-channel
in nature of information revealed, there are instances and situations where the
EM side-channel can carry much more useful information.

Without invasive measures, power analysis can only be applied globally, by measuring
the sum of all individual power consumptions in the microprocessor. This provides a 2-
dimensional power trace, power vs. time. With access to the device and a sufficiently small
probe, careful positioning of a single probe (using a stepping table) or multiple probes can
in addition, provide spacial information [29, 28]. A 3-dimensional map of the radiation (x,y
and EMR field strength) can then be built [29]. 4-dimensional information can be captured
by building these 3D pictures over time [28]. This can be used to compare and analyze
EMR from individual components within the microprocessor as done by Gandolfi et al. in
[13]. Documentation of the use of all three spacial axis (x, y, z) has not been found at this
time.

Even though the most efficient method to capture radiated signals is to place a probe
in the near field, as close as possible to the microprocessor [1], these signals can also be
captured from a greater distance. In addition, modulated signals, such as harmonics of
the clock signals, can potentially be picked up by an AM/PM receiver at considerable dis-
tances, 15 feet was reported in [1]. Using EMR, therefore opens up for remote measure-
ments, without physical access to the circuit. It is then possible to launch an attack without
the user being alerted.

In [32], Rao and Rohatgi show that EMR is at least as powerful as power analysis, and
that in some cases, even more information is available. They report some ”bad” instruc-
tions that leak much more information through EMR than power consumption. In [1],
Agrawal et al. show that EMR consists of multiple signal, often leaking different informa-
tion. Exploiting multiple side-channels (power and EMR) to improve side-channel attacks
was suggested by Agrawal et al. in [3].

2.3 Capturing Electromagnetic Radiation: Measurement Setups

The purpose of this chapter is to provide a basic description of measurement setups used to
capture EMR from microprocessor devices and the typical components involved. Results
from an early feasibility study are used as practical examples.

2.3.1 General Overview

A typical measurement setup (Figure 2.8) consists of: source, antenna, analogue prepro-
cessing, capturing device and digital post processing. The source, e.g. a microprocessor
smart card, should execute the intended program in a desired environment at a specific
time to generate EMR. Unwanted influence (i.e. noise) from internal or external sources
should be limited. The antenna have to capture either the E- or H-field in a specific fre-
quency range either remotely or from a precise location as close as possible to the device.
Analogue preprocessing can enhance the signal through filtering, amplification, mixing or
demodulation. Some analogue preprocessing is always found in oscilloscopes and spec-
trum analyzers. For weak signals it is recommended to use a sensitive radio receiver. Ac-
tive antennas can also be used to amplify the signal. Simple analysis can be done directly
on instruments, but analogue-to-digital (A/D) conversion by a capturing device makes it
possible to perform off-line digital post processing on computers with programs such as
MATLAB, Octave or LabVIEW. Notice that the signal can be sampled anywhere in the ana-
logue preprocessing chain.
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Figure 2.8: Schematics of the measurement setup.

2.3.2 The source

A number of test kits are available for different microprocessor architectures, such as At-
mel’s AVR [6] and Microchip’s PIC [21]. These evaluation kits provide an easy start-up as
they are relatively inexpensive and easily available. Only power is required, as the clock is
generated on the circuit board. Communication to a PC is usually provided through an RS-
232 or Ethernet connection. Programming and executing code on the device can be done
through standard SW-packages provided by vendors on-line (e.g. MPLABrIDE by Mi-
crochip [21]). Guidelines and help for beginners can also be found on-line. One drawback
with evaluation boards is a lot of circuitry surrounding the chip that may cause unwanted
disturbances.

Advanced microprocessor smart cards are harder to get hold of. They are commonly
used in high-security applications and therefore, undergo stricter controls. Non-disclosure
agreements are often necessary to get access to the latest technology, however, simple cards
(e.g. gold card - PIC 16F84A) are available without such agreements. A smart card reader
is necessary to program and use the card. These readers come with the same challenges
as the microcontroller evaluation kits, concerning how to control unwanted disturbances
from the circuitry. One solution, provided by this thesis, is to customize a reader . If
the card is programmed in a traditional terminal, a customized reader only has to provide
power and clock signal (Figure 2.9), greatly reducing the number of sources of unwanted
disturbances.

When targeting real-world systems, measurement setup should focus on replicating
the system, its operation and the environment as closely as possible to its actual use. How-
ever, when the objective is to provide better understanding of the relationship between
microprocessor activity and EMR, it is more important to fully understand (and be able to
control) every minute activity that takes place. It is desirable, however unlikely, to control
the transition of individual transistor, but it is possible to control the microprocessor ac-
tivity at a bit-level (e.g. execution sequences). One of the major challenges is to minimize
influence from unwanted and irrelevant simultaneous activities, snoise in Figure 2.1. This
can be addressed through careful assembly programming. The execution sequence can be
manipulated to provide desired transition patterns (e.g. bus transfers) in most parts of
the microprocessor. Limitations are dictated by the control and flexibility allowed by the
instruction set.
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Figure 2.9: Customized smart card reader, circuit diagram and implementation.

All programs used in this thesis follow the same basic structure. The programs are writ-
ten in assembly language off-line, using vendors development kits, and loaded to smart
cards with a standard smart card terminal. When a programmed card is inserted into the
customized reader, power and clock signal are provided and the microprocessor automat-
ically executes from the beginning of the program. First, the I/O is toggled. This creates a
relatively strong radiation compared to EMR from internal activity, and is used as a trigger
point. The trigger point is essential for off-line alignment between captured EMR and the
executed code. Next, appropriate instructions are used to generate the desired activity, e.g.
transfer of a specific bit pattern on the data bus. The no operation (NOP) instruction is
frequently used as a buffer between activities. Careful choice of instructions often allows
the desired activity to take place in ”quite clock cycles”, Q2 and Q3 (Figure 2.4) in which
parallel activities are at a minimum.

Finally, the program is repeated indefinitely. This makes it possible to trigger an oscil-
loscope on the I/O toggle, and fine tune settings manually, e.g. optimize the oscilloscope’s
resolution to a specific point in the execution sequence. Running the program indefinitely
also facilitates capturing multiple observation, as long as the time between captures is kept
larger than the time it takes to execute the entire program. Repetitive activity is also easy
to study with an spectrum analyzer, which can be useful to identify carriers and potential
useful EMR [1].
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Test Code
;Main program
Start
;Trigger Turn I/O ON and OFF

1 movlw 80h ; Turn I/O ON
2 movwf PORTB ; by moving the value 80h onto port B
3 movlw 00h ; Turn I/O OFF
4 movwf PORTB ; by moving the value 00h onto port B

;10 NOP’s to create buffer from I/O disturbances
5 nop
.
.
.

14 nop
; Transition: a:0000 0000 - b: 0001 1111

15 movlw 00h ; a into W register
16 movwf DATA1 ; mov a from W to DATA1 register
17 movlw 1Fh ; (b-a) into W register
18 addwf DATA1,1 ; Q2 read a, Q4 write b=(a+(b-a))

; Transition: a:0000 0000 - b: 1000 1111
19 movlw 00h ; a into W register
20 movwf DATA1 ; mov a from W to DATA1 register
21 movlw 8Fh ; (b-a) into W register
22 addwf DATA1,1 ; Q2 read a, Q4 write b=(a+(b-a))

; Continue for other transition patterns
.
.
.

; Back to the start of the program
23 goto Start

Table 2.3: Example of test code for PIC 16F84A.

The code in Table 2.3 was used in [11] and illustrates some of the challenges faced when
designing test code to dictate microprocessor activity. The code is written for PIC 16F84A
found in Goldcard smart cards. The objective of the code is to create a transition between
value a and value b on the microprocessor’s internal 8 bit data bus and minimizing irrele-
vant activity. It is essential that the code is designed such that there is no data bus activity
taking place between value a and b, to ensure validity of the result. It is also essential that
the power consumption (i.e. EMR) is correlated with this bus activity and not dominated
by noise (e.g. other irrelevant microprocessor activities due to pipelining).

Code lines 1 − 4 toggles the smart cards I/O and provides a trigger-point for the os-
cilloscope. The following 10 NOP’s create a buffer between electromagnetic disturbances
caused by the relatively strong I/O toggle and the rest of the program. Code lines 15 − 18
are used to create a transition from bit pattern 00000000 to 00011111 (T 1

5 ). Code lines 15−17
are initialization, making sure value a is available in DATA1 register and value (b − a) is
found in the working register. Transition between value a and b is then made possible by
the ADDWF instruction of line 18. In clock cycle 2 (Q2) the value a is read over the data
bus, in clock cycle 3 (Q3), a is added to (b−a) found in the working register. The result, b, is
written back over the databus in clock cycle 4 (Q4), creating the desired transition without
unwanted data bus activity. The process can now be repeated for all other values of a and b,
as shown in code lines 19-22. Finally code line 23 repeats the program indefinitely. Notice
that if the results of processing the add operation in Q3 also make the result valid on the
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databus in Q3, the transition will be found one clock cycle earlier. This is easily detectable
by digital post processing.

2.3.3 The Antenna

An antenna (or probe) is a transducer that converts between electric currents and electro-
magnetic waves and vice versa. The antenna produces a signal (current or voltage) propor-
tional to the field strength of either the magnetic or the electric component of the incoming
wave. The choice of antenna will depend on factors such as; distance to the source, type of
radiation (E- or H-field), frequency range and signal strength. Antennas are designed for a
specific frequency range. They may work outside this range, but with significantly lower
sensitivity. When the frequency range is large, this implies that it may be necessary to use
more than one antenna to ensure best possible signal-to-noise ratio.

Published work on electromagnetic side-channel attacks [13, 29] often use small anten-
nas that can be accurately placed. Sometimes the approach is semi-invasive, as they remove
some capsulation to get the antenna as close as possible. The regions of the chip that radiate
the most can then be isolated (CPU, data buses and power lines), allowing 4 dimensional
(spatial and time) traces of the EMR to be made [13]. Many different types of antennas
used for this purpose have been tested; such as hard disk heads, integrated inductors and
magnetic loops. The design of the antenna will have an impact on sensitivity, frequency
range, bandwidth and linearity. According to Gandolfi et al. [13], a simple, hand-made an-
tenna (i.e. solenoids) can give adequate results (Figure 2.10). Such antennas are broadband,
but frequency selectivity can be enhanced at the expense of sensitivity. For EMR where the
spectrum is unknown, broadband antennas are preferable [13].

Commercial probes used in traditional EMC testing will also work well, but are usually
expensive. An example is the Probe set HZ-11 from Rohde & Schwarz seen in Figure 2.11.
This set provides 3 magnetic and 2 electric passive near field probes , covering from 100
kHz to 2 Ghz. The set also comes with an amplifier providing in excess of 30 dB gain. In
the far field other antennas are suitable, such as Rohde & Schwarz broadband directional
antenna (Ultralog HL562) or high sensitive active antenna (AM 524) seen in Figure 2.11 .

2.3.4 Analogue Preprocessing and Capturing Devices

The purpose of the capturing device is to take the analogue signal from the antenna, select
the desired frequency range, apply preprocessing (e.g. amplification, filtering, demodula-
tion/rectifying) and convert the signal into a digital representation that can be stored and

Figure 2.10: Solenoid probe.
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Figure 2.11: Rohde & Schwarz probe set for E and H near field emission (left). Rohde &
Schwarz far field antennas, HL 561 and AM 524 (right). Pictures reproduced with permis-
sion from Rohde & Schwarz.

analyzed on a computer. The EMR from a microprocessor is found in a wide frequency
range. It is therefore essential that the device can handle the frequency range of interest.
Some other key features are:

• Input Bandwidth : The bandwidth determine the maximum frequency component
that can be processed without distortion [20]. For modern oscilloscopes with band-
widths of several 100 MHz (GHz for high-end scopes) this is usually not a limiting
factor.

• Sampling rate : This determines how many times per second the analogue signal is
sampled and digitized. In order to avoid loss of information the sampling rate must
be at least twice as high as the highest frequency component of interest (Nyquist
sampling theorem [26]).

• Resolution : A fixed number of bits are used during quantization of each sample.
This is often 8 bit. Each sample must then be assigned to one of 256 values. This
introduces quantization noise, which can be a challenge if you are looking at minute
differences on a relatively strong signal.

• Memory : The size of the devices memory will limit the length of the observation that
can be captured. A trigger is therefore necessary, such that recording can be focused
around interesting activities and not wasted on idle time.

• Interface : For large-scale testing, being able to automatically change setting on the
instruments from a PC and automatically transfer data to a PC is essential, e.g. via an
ethernet connection.

• Trigger : This is used to synchronize data capture with the relevant microprocessor
activity. This can save valuable memory space, both in the instrument and on the PC,
and is important during analysis when multiple observations have to be aligned.

Two different capturing devices were used for this thesis; spectrum analyzer and oscil-
loscope.

2.3.5 Frequency Domain Measurements with Spectrum Analyzer

A spectrum analyzer provides a frequency domain presentation of data (frequency vs.
amplitude) by working as a tuned receiver. It will move through the specified frequency
range in steps determined by the resolution bandwidth (RBW) . For each step it will mea-
sure received power in the specified bandwidth. A smaller RBW will give better frequency

22



2.3 CAPTURING ELECTROMAGNETIC RADIATION: MEASUREMENT SETUPS

resolution, but will make the sweep time (the time it takes to sweep through the entire
range once) longer. The result is a discrete power density spectrum (PDS) for a given fre-
quency range. It is important to realize that all spectrum analyzers have a limited number
of measurement points to represent the PDS. For example, Advantest 3641 has only 701
measurement points per frequency range. A way around this, when better resolution is
needed, is to divide the frequency range into smaller sub-ranges and repeat the measure-
ments.

Due to the sweeping operation, spectrum analyzers are best suited for repetitive signals
and continuous EMR. Burst activity will not be detected unless the spectrum analyzer hap-
pens to measure in that particular frequency range when the burst occurs. The spectrum
analyzer can give valuable information about the frequency spectrum of microprocessor
activity, but is unable to pinpoint exactly what activity caused the various frequency com-
ponents, as the timing information (when activities takes place) is not preserved. However,
spectrum analyzers are useful for quickly detecting potential useful carriers and radiation
[1].

The information available from a spectrum analyzer can be illustrated by designing a
program with several periodic elements. Let a program executes one instruction (COM)

Figure 2.12: Top: EMR at harmonics of the clock as well as broadband radiation. Bottom:
Identifying periodicity of period T in the time domain as discretization with spacing 1/T
in the frequency domain. Tp is the time it takes to execute the entire program. Tl is the time
it takes to execute one instruction including the delay.
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followed by 10 no operation (NOP) instructions as a delay. Then the same instruction is
executed again, followed by another delay. This is repeated 20 times before a jump (JMP)
instruction repeats the program indefinitely. This program has several periodic elements,
such as the time it takes to execute the entire program (Tp) and the time it takes to execute
one instruction including the delay (Tl). Two PDS’s of this program running on a Motorola
microcontroller test kit is shown in Figure 2.12 . Measurements were taken with the Ad-
vantest 3641 spectrum analyzer, with the customized solenoid probe (Figure 2.10) directly
coupled. The top PDS show EMR at harmonics of the clock as well as broadband radia-
tion. This is in accordance with theory from section 2.2, since the EMR is generated by a
data signal (execution of a program). An important property of DFT is that: periodicity
with period T in time domain automatically implies discretization with spacing 1/T in the
frequency domain [26]. This can be seen in the bottom PDS as frequency spacings equal to
1/Tp and 1/Tl.

2.3.6 Time Domain Measurements with Oscilloscope

Oscilloscopes are by far the most common instrument to capture side-channel information.
They provide a time domain representation (time vs. amplitude) of the EMR by performing
A/D conversion [26]. When the signal is weak, the output from the antenna may be too low

Figure 2.13: Time domain measurements of repetitive program: COM and 10 NOP’s, JMP
instruction every 20th execution.
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Figure 2.14: Comparison of LDA, DEC, ADD and COM instruction.

for the dynamic range for direct connection to an oscilloscope. In such cases, amplification
is necessary, e.g. by using an active antenna or a sensitive receiver. A receiver was not used
in this thesis, but an introduction to such devices can be found in [19].

Figure 2.13 shows the time domain measurement of the same program used with the
spectrum analyzer. Most easily recognizable are clusters of peaks that periodically look
slightly different (top). Each cluster represents the execution of one COM instruction and
10 NOP’s (marked Tl). Every 20th cluster is different, as after 20 repetitions, there is a JMP
instruction to repeat the program indefinitely. The execution of the whole program, Tp, is
also visible and marked. Zooming in on one cluster gives us additional information (Fig
2.13). Each cluster is built up of a number of peaks, each representing one internal clock
cycle. Counting the number of peaks in one cluster reveals the 4 clock cycles for the COM
instruction and the 10 clock cycles for the 10 NOP’s requires to complete Tl.

It is also relatively easy to show that different instructions and even different operand
generate different EMR. Figure 2.14 shows the PDS of execution of each of the four instruc-
tions LDA, ADD, COM and DEC. LDA and ADD can easily be distinguished from COM
and DEC as they have different length execution cycles. It is more difficult to distinguish
LDA from ADD based on visual comparison alone. Notice that in other microprocessor
architectures (e.g. PIC) all instructions are executed using the same number of clock cycles.
The number of clock cycles alone is, therefore, not a good classification feature. Using the
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Figure 2.15: Each three-cycle instruction can easily be identified and the third peak (right
to left ) clearly depends on the argument (LDA 00-high, LDA FF-low).

amplitude of each clock cycle can provide additional information.
To illustrate the potential of using amplitude as a classification feature, Figure 2.15

shows 8 executions of the instruction LDA with alternating argument (FF and 00). Each
instruction is easily identified by three clock clock cycles. In addition, the third peak (from
right to left) of each instruction is clearly correlated to the operand being FF or 00. LDA 00
gives a high third peak and LDA FF gives a low third peak.

These examples, using Motorola test kit, show that it is relatively easy to find correla-
tions between EMR and the program running, instruction executed or even operand used,
by visual inspection alone. These visible differences and the fact that statistical tools can
extract much more information than the naked eye, form the foundation for some of the
analysis techniques described next.

2.4 Analysis/Application - Side-Channel Attacks

According to [20], passive non-invasive attacks on cryptographic devices (e.g. smart cards)
are referred to as side-channel attacks . Timing attacks [16] measuring execution time, power
analysis attacks [17] measuring power consumption and electromagnetic attacks [13, 29]
measuring EMR are the most important types of side-channel attacks. More generally, the
process of reverse engineering microprocessor content based on features of the intercepted
side-channel (e.g. EMR) can be viewed as pattern classification [9], in which a range of
tools are available. The purpose of this chapter is to introduce some of the relevant analysis
techniques in which the contribution of this thesis is based upon.
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2.4.1 Power Analysis

Attacks exploiting correlations between power consumption and internal sensitive infor-
mation handled by a device were first introduced by Kocher et al. in simple power analysis
(SPA) and differential power analysis (DPA) [17]. The principle behind SPA and DPA are
briefly outlined here, but for an extensive coverage see the textbook ”Power Analysis At-
tacks” by Mangard et al. [20] .

2.4.1.1 Simple Power Analysis (SPA)

SPA [17] relies on differences observed directly from the captured power traces. Usually,
these difference are visible for direct interpretation, however, simple statistics on single (or
a few) traces can also be used to express the immediate differences. SPA can identify rounds
(e.g. DES) and operations (e.g. RSA multiply and square) of cryptographic algorithms.
Instruction sequences may also be revealed by a closer look at the trace. Cryptographic
algorithms are vulnerable to SPA when the execution sequence depends on the secret key.
SPA is particularly useful when only a few traces are available or as a starting point for
other analysis techniques, by identify rounds (e.g. 16 rounds of DES [17]) or alignment etc
[20].

2.4.1.2 Differential Power Analysis (DPA)

If no apparent differences between traces are detectable, either by simple statistical proper-
ties or visually, there may still be statistical differences that can be detected by looking at a
large number of traces. This is exactly what DPA proposed by Kocher et al. [17] exploits.
They suggest using statistical properties of a large number of power traces to extract small
power variations correlated to secret parameters handled by the device. The secret param-
eter can, for example, be intermediate values in a cryptographic algorithm. With detailed
knowledge of the cryptographic algorithm it may be possible to deduce the secret key if a
sufficient number of the intermediate values are revealed. Therefore, repeating the attack
to reveal enough intermediate values can eventually expose the key. This attack has proved
itself in practice. Kocher et al. had in 1999 already used power analysis to extract keys from
almost 50 different products [17]. DPA can be divided into three phases:

Power Prediction: Predict the power consumption of a secret parameters activity perform-
ed by the microprocessor. This activity can e.g. be the output of the AES SubByte
function or the output of an S-box in DES. The predicted power consumption is based
on known plain text or known cipher text and all possible values of the secret param-
eter.

Power Measurements: Measure (i.e. sample) the ”real” power consumption of the secret
parameter-dependent activity for a large number (usually more than 1000) of encryp-
tion operations (known plain text or cipher text). Synchronization between the mi-
croprocessor activity and measurements is vital. Without such alignment, averaging
many traces would remove any dependencies.

Comparison Compare the measured power consumption with the predicted power con-
sumption for all variations of the secret parameter. When the predicted power con-
sumption is based on the correct secret parameter, it will be strongly correlated to the
”true” power consumption for all the measured power traces. Otherwise there will
be no (i.e. very small due to noise) correlation between the predicted and measured
power consumption.
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2.4.2 Template Attack - Classification Using Bayesian Methods

The Template attack was first presented by Chari et al. at CHES 2002 [8]. Principles from
signal detection and estimation, where extraction of a very weak signal is possible if the
receiver has a good characterization of the signal and the ambient noise, were motivations
for this attack. The template attack first builds fingerprints (templates) of relevant activity
on a microprocessor. The fingerprints contain information about what signal to expect and
noise characteristics for each activity. This information is based on captured side-channel
information from the device. The activity can for example be execution of a cryptographic
algorithm for different values of the secret key. When a trace from a device under attack is
received, it is compared to all the fingerprints. The goal is to classify the unknown trace to
one of the fingerprints and thus determine what activity took place. The Template Attack is
Bayesian Classification [9], where the noise is assumed to follow a Gaussian distribution.
Bayesian classification is used extensively in this thesis and is therefore explained in some
detail.

Consider a finite set of classes, {ω1, · · · , ωc}, e.g. execution of c different instructions
on a microprocessor. P (ωi) is the prior probability of class ωi occurring. Measurements
of any class, result in observations of d variables held in a d-dimensional vector ~x, e.g.
d samples with an oscilloscope of the electric field strength associated with execution of
a an instruction on a microprocessor. Let p(~x|ωi) be the a priori class conditional density
of ~x being observed given that class ωi was measured. Faced with an observation ~x of
unknown class, classification is interested in the probability of this observation belonging
to the different classes, ωi. This is expressed by the posteriori probability P (ωi|~x) which can
be calculated using Bayes rule :

P (ωi|~x) =
p(~x|ωi)P (ωi)

p(~x)
(2.2)

where p(~x) the total probability is given by p(~x) =
∑c
i=1 p(~x|ωi)P (ωi). Given measure-

ments ~x of unknown class, the question is: how to decide what class to assign ~x to? Gen-
erally a decision must be made based on the measurements ~x and a loss function , λij . Let
λij be the loss if the decision is ωi when the true class is ωj . In the following, a zero-one
loss function is used:

λij =
{

0 i = j
1 i 6= j

i, j = 1, · · · , c (2.3)

A correct decision gives no loss, and a wrong decision gives a unity loss. Bayes decision
rule can now be stated as: decide in favor of the class that minimizes the probability of
error. For the zero-one loss function this will be the class with the maximum a posteriori
probability P (ωi|~x).

Choose ωi if P (ωi|~x) ≥ P (ωj |~x) for all j ∈ 1, · · · , c (2.4)

A classifier is often represented by a discriminating function , gi(~x), i ∈ 1, · · · , c, where
gi(~x) is such that ωi is chosen if

gi(~x) ≥ gj(~x) for all j ∈ 1, · · · , c (2.5)

The discriminating functions divide the feature space into decision regions, separated by
decision boundaries [9]. It is often useful to realize that any monotonically increasing func-
tion can be applied to gi without affecting the classification result. For Bayes decision rule
(equation 2.4) this means that any of the following discriminating functions yield the same
result:

gi(~x) = P (ωi|~x) (2.6)
gi(~x) = p(~x|ωi)P (ωi) (2.7)
gi(~x) = ln p(~x|ωi) + ln P (ωi) (2.8)
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As seen in equation 2.8 the discriminating function gi for Bayes classifier is determined
by the prior probability P (ωi) and the prior conditional density function p(~x|ωi). P (ωi) is
usually known or easily calculated, however p(~x|ωi) must be estimated based on available
measurements of known class. This is called training the classifier. p(~x|ωi) will have a
signal part and a noise part. The Template Attack [8] assumes the noise to follow a multi-
variate Gaussian distributions , p(~x|ωi) ∼ N(Mi,Σi) for the noise, such that:

p(~x|ωi) =
1

√
2π

d|Σi|1/2
e−

1
2 (~x−Mi)

TΣ−1
i (~x−Mi) (2.9)

where Mi is the mean vector, Σi the covariance matrix and T denotes transposition. Using
the discriminating function from 2.8 and the Gaussian multivariate assumption 2.9 gives:

gi(~x) = −1
2

(~x−Mi)TΣ−1
i (~x−Mi)−

d

2
ln2π − 1

2
ln|Σi|+ lnP (ωi) (2.10)

Expressed as a quadratic function for the case of arbitrary covariance matrixes Σi gives:

gi(~x) = ~xTAi~x+ ~xTBi + Ci where (2.11)

Ai = −1
2

Σ−1
i

Bi = Σ−1
i Mi

Ci = −1
2
MT
i Σ−1

i Mi −
1
2
ln|Σi|+ lnP (ωi)

where xT and MT is the transposed of x and M respectively. The coefficients of the dis-
criminating function, Ai, Bi and Ci for the quadratic classifier can be pre-computed using
a set of training data with known class. Training data is obtained using an identical device
prior to the attack. In the Template Attack [8] maximum likelihood estimates (MLE) for
Mi and Σi are used, given by:

M̂MLE =
1
n

n∑
i=1

xi (2.12)

Σ̂MLE =
1
n

n∑
i=1

(xi − M̂)(xi − M̂)T (2.13)

The tuples (M̂MLE ,Σ̂MLE) are the templates for each activity of interest. Upon receiving
an observation of unknown activity, classification can be done according to equation 2.5.
Once the coefficient of the discriminating function (equation 2.11) has been estimated, the
real attack can be launched, but often the questions is: How good is the classifier? Usually
a limited set of data is available for both training and testing. By reserving a portion of
the data for testing (leave out k [9]), the accuracy can be found as the ratio of correct clas-
sification to the total number of classifications performed (based on a confusion matrix).
It is important not to use the same data for training and testing. The accuracy will vary,
depending on how the data is split. It is therefore common to randomly split data into
training and testing sets several times, and use average accuracy as the performance for
the classifier [9]. Classifying more than two classes is achieved in two ways, (i) pairwise
manner or (ii) Bayes method [9]. Both produce the same result, since classification is based
on maximizing the posteriori probability. Pairwise classification compares two classes and
compares the third class with the result of the first comparison etc. Bayes method calculates
the quadratic function for all classes and chooses the maximum result.
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2.4.3 Practical Considerations and Feature Selection

Any practical attack based on pattern recognition, must overcome two challenges:

1. How to deal with a large number of classes.

2. How to deal with a large number of variables in each observation.

The number of classes depend upon the attack scenario. Reverse engineering the ex-
ecuted instruction requires one class for each possible instruction, in the range of 30-150
depending on the size of the microprocessor’s instruction set. Recovering cryptographic
keys requires one class for every variation of the key. It is not feasible to build that many
templates. The ”Extend-and-prune” technique as described in [8] is an iterative approach
to this problem. Furthermore it is impractical to use all d variables of each trace, as d is
often in the order of 105. The size of the covariance matrix grows quadratic with d and
according to the Ugly Duckling Theorem it cannot be expected that more features results in
better classification [9]. Therefore, the challenge is to find a lower dimensional representa-
tion that still contains the relevant information, through subsets or mapping of the original
trace [12] .

Chari et al. [8] used pairwise difference between the mean observations to select vari-
ables with a large difference in amplitude. Rechberg and Oswald [33] suggests a ”sum of
differences” approach. Compressing the trace is described by Mangard et al. [20]. They
suggest two methods:

Maximum Extraction The power from a device, during one clock cycle, is represented by
the maximum peak within the clock cycle.

Integration The power is represented by integrating the power trace in a given time in-
terval (window). The window size is usually chosen equal or smaller than one clock
cycle. The integration in a time interval can be performed in different ways: (i) sum
of all points in the window, (ii) sum of absolute values or (iii) sum of squares.

Simulations conducted [20] show that the peaks of the power traces are the most relevant
points, therefore it is assumed that most of the side-channel information is preserved in
these compression techniques. Preprocessing can also be done to enhance the classification
accuracy. Rechberger and Oswald [33] show that using discrete Fourier transform (DFT)
on all traces reduces the number of relevant points needed and performance of the clas-
sification is improved. The template attack assumes that time instances having a great
variability are considered important to discriminate. Archambeau et al. [5] suggests us-
ing linear combinations of samples. Under the assumption that variability is important,
principle component analysis (PCA) is the optimal linear transformation. In spite of these
attempts, trial and error is still often the way to find the best number of points to include.
Open issues are therefore still [33]: How to select the relevant samples (variables) and how
many samples are needed to construct the attack?

2.4.4 Subversion

At CHES 2007, Pankaj Rohatgi from IBM T. J. Watson Research Center, talked about trust-
worthy hardware [34]. For devices with high levels of security requirements, he under-
lined the importance of considering the complete life cycle of the device. New challenges,
requirements and attack scenarios will be found during design, building/testing, deploy-
ment, maintenance and decommissioning the device.

One of these challenges is subversion, which according to Anderson et al. [4], is a
forgotten or ignored area of information security. Subversion is the attack preferred by
professional attackers and common security techniques are shown to be useless [4]. Myers
[24] describes subversion as :
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The subversion of computer systems is the covert and methodical undermining
of internal and external controls over a systems lifetime to allow unauthorized
and undetected access to system resources and/or information.

Myers [24] continues to characterize subversion as:

1. It can occur at any time during the life cycle of computer systems

2. It is under control of highly skilled individuals

3. It utilizes clandestine mechanisms called artifices deliberately constructed and in-
serted into a computer system to circumvent normal control or protection features

Anderson et al. [4] point out, ”...subversion threat touches the most fundamental aspect
of the security problem: proving the absence of a malicious artifice.” In order for subversion
to be successful, three factors must be present [4]:

Means - The adversary must possess the physical and intellectual means to develop sub-
version.

Motive - The adversary must have motivation for carrying out the attack.

Opportunity - The adversary must have access to the system at some point in its life cycle.

Several examples are mentioned in [4] that show that the subversion threat is real. With the
increasing use of and dependency on microprocessor devices (e.g. bank cards, cell phones)
it would be naive to think that subversion is not also relevant for small microprocessor
devices, such as smart cards.

As an example, when integrated circuits (IC) are part of high-security systems, it is
important to consider the entire life cycle, including outsourcing of production. Agrawal
et al. [2] approaches the problem of how to detect insertion of trojans when outsourcing
part of your manufacturing. They use side-channels to build signatures that can be used
to detect the introduction of ”extra” circuitry in IC’s. The method is yet impractical as it
requires that you pick a few of the produced IC to build fingerprints. The challenge then is
to ensure that the few IC’s you pick are not infested. The idea, however, is very interesting
as it takes side-channels that are normally considered a vulnerability and uses them as a
protective measure.
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Chapter 3

Summary of Work

I love deadlines. I like the
whooshing sound they make as
they fly by.

DOUGLAS ADAMS

This chapter presents a summary of the work done for this thesis. Figure 3.1 shows
the relationship between research questions and published papers. The chapter follows
the structure of Figure 3.1, starting with the main research question, followed by research
questions related to the following topics: survey and feasibility study, a new attack, in-
depth investigation and feature selection, understanding the phenomena and finally, a new
application. For each topic, the work involved and papers submitted are introduced. The
7 research papers that constitute the main contribution of this thesis are:

1. G.O. Dyrkolbotn and E. Snekkenes. A Wireless Covert Channel on Smart Cards
(shortpaper). In Proceedings of International Conference on Information and Communica-
tions Security (ICICS), Springer, Lecture Notes in Computer Science, pages 249-259,
2006, see chapter 5.

2. G.O. Dyrkolbotn. Analysis of the Wireless Covert Channel Attack: Carrier Fre-
quency Selection. In Proceedings of Annual Norwegian Computer Science Conference
(NIK), Tapir, pages 153-163, 2007, see chapter 6.

3. G.O. Dyrkolbotn and E. Snekkenes. Electromagnetic Side-Channel: A Comparison
of Multi-Class Feature Selection Methods. In Proceedings of Signal Processing, Pattern
Recognition and Application (SPPRA), ACTA Press, track 643-804, 2009, see chapter 7.

4. G.O. Dyrkolbotn and E. Snekkenes. Modified Template Attack: Detecting Address
Bus Signals of Equal Hamming Weight. In Proceeding of Annual Norwegian Informa-
tion Security Conference (NISK), Tapir, pages 43-56, 2009, see chapter 8.

5. G.O. Dyrkolbotn, K. Wold and E. Snekkenes. Security Implications of Crosstalk
in Switching CMOS Gates . In Proceedings of Information Security Conference (ISC),
Springer, Lecture Notes in Computer Science, pages 269-275, 2010, see chapter 9.

6. G.O. Dyrkolbotn. Non-Invasive Reverse Engineering of the Relative Position of
Bus Wires, In Proceeding of Annual Norwegian Information Security Conference (NISK),
Tapir, pages 104-109, 2010, see chapter 10.

7. G.O. Dyrkolbotn, K. Wold and E. Snekkenes. Layout Dependent Phenomena: A
New Side-Channel Power Model. In Journal of Computers. Academy Publisher, Vol-
ume 7, Number 4 of April 2012 (in press), see chapter 11.
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Figure 3.1: Relationship between research questions and published papers.

3.1 Main Research Question

When a microprocessor executes its program, electromagnetic radiation (EMR) is gener-
ated as a consequence of accelerating electric charges associated with transistor transitions
(i.e. the power consumption). From this arises the idea that all currents going through a mi-
croprocessor will leave a power or electromagnetic fingerprint, that can be used to identify
microprocessor activity. Let an electromagnetic fingerprint be a representation of the EMR
caused by a certain microprocessor activity. We are now concerned with how an adversary
can exploit this fingerprint to reverse engineer microprocessor content. The intent of this
thesis is to obtain a better understanding of the origin of EMR from microprocessors, how
to capture and represent EMR and how EMR can reveal information about microprocessor
content. This can be used to build a more realistic model of the arsenal available to an ad-
versary and facilitate better risk assessment and defensive measures. The overall goal can
be stated as:

How can electromagnetic radiation be used to reverse engineer microproces-
sor content?

This problem had to be split into a number of smaller tasks. A description of each of the
research questions and how they are related, follows.

3.2 Survey and Feasibility Study

Initially, a survey was conducted to answer the following research question:

Q1.1: What is state-of-the-art regarding electromagnetic side-channel attacks?

In the large amount of publications on side-channel attacks, relatively few papers make
a clear distinction between the power side-channel and the electromagnetic side-channel,
as the electromagnetic side-channel is often viewed only as an alternative method of mea-
suring the power consumption. However, the survey did reveal papers [1, 2, 4, 14, 17, 18,
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21, 22, 23, 24] published in an ongoing effort to systematically investigate electromagnetic
side-channel attacks. They point out some fundamental differences between the power
side-channel and the electromagnetic side-channel, i.e. spatial information and remote
capture. Spatial information makes it possible to carefully move a small probe across the
surface of a chip to map the radiation [22] or, several probes can be used to pinpoint the
location of EMR. Remote capture makes it possible to launch the attack from a distance
as shown in [1]. Capturing the electromagnetic side-channel can be done without invasive
measures and all analysis techniques for power analysis are still applicable. It has also been
claimed that for a stationary probe, electromagnetic analysis (EMA) is at least as power-
ful as the power analysis, and that EMA can circumvent power analysis countermeasures
[1, 24].

The survey left the impression that working with side-channel attacks required knowl-
edge of a broad variety of subjects such as, EMR, measurement techniques (e.g. concerning
antennas and instruments), microprocessor devices (e.g. smart cards), programming (e.g.
assembly), signal processing and statistics. It was therefore necessary, without a large in-
vestment of time and money, to address the following research question:

Q1.2: Is it possible to demonstrate the correlations between microprocessor activity and
electromagnetic radiation without a large investment of resources?

A series of experiments on a microcontroller test kit and a simple smart card were car-
ried out. Specially designed programs were executed on the devices. The resulting EMR
was captured with a hand-made solenoid probe, spectrum analyzer and oscilloscope. Vi-
sual inspection of captured traces was enough to recognize program cycle, instructions and
to some extent even operands. These experiments confirmed that it was possible to find
correlations between EMR and microprocessor activity, at a considerable distance (up to 10
meters for some smart cards), without expensive equipment and with reasonable time in-
vestment. During experimentation to demonstrate side-channel leakage, we realized that
through careful choice of executed code, the radiation could be manipulated to demon-
strate the correlations more clearly. In addition, it was apparent that the main focus of
current research was on EMR, from legitimate programs (e.g. specific implementations of
cryptographic algorithms). Attack scenarios required a ”lost” or ”stolen” card and experi-
ments were performed on simple cards of old technology. We came to the understanding
that current attacks appeared impractical outside a lab environment. The current model of
an adversaries arsenal was missing practical attacks on advanced smart cards launched in
normal scenarios. Research questions Q1.1 and Q1.2 did not result in any publication, but
were an important part of this thesis, as we needed a good platform from which to start.

3.3 A New Attack

An adversary looking to launch an attack on a system in use is faced with different chal-
lenges than in a ”lab scenario”, and may have to face state-of-the-art smart cards with sev-
eral security measures against side-channel attacks. In order to investigate what it would
take to launch an attack in a normal scenario, we asked the following research question:

Q2.1: Is it possible to launch an attack in a normal scenario on advanced smart cards?

Our approach is based upon deliberate manipulation of EMR, rather than exploiting un-
intentional EMR from legitimate activity. By combining knowledge from different fields;
electromagnetic side-channels, covert channels and subversion, we proposed a new attack:
The Wireless Covert Channel Attack (WCCA), published in our first paper [9]. The sce-
nario assumes that a highly skilled insider is able to hide a small program (subversive
code) on a microprocessor smart card in an early stage of the products life cycle. During
normal use of the smart card, the subversive code intentionally manipulates the electro-
magnetic side-channel, creating a covert channel that can potentially broadcast the cards
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internal secrets to a nearby receiver. The attack consists of three phases; (i) preparation, (ii)
implementation and (iii) exploitation.

(i) The preparation phase is used to build a library of characteristic EMR from instruc-
tions executed by the microprocessor smart card. WCCA uses the average power density
spectrum (PDS) obtained from a spectrum analyzer to characterize instructions. A symbol
alphabet and a carrier frequency for the channel is obtained from analysis of the recorded
PDS’s. Notice that WCCA only requires manipulation of internal activity on the card. Ma-
nipulation of the I/O interface would create a stronger signal, however, this would require
manipulation of both the terminal and the card, making WCCA harder to achieve and in-
creasing the risk of detection.

(ii) The implementation phase is used to design and hide the subversive code needed
to create the covert channel. The microprocessor executing the code is generally a M-ary
bandpass digital system with multiple carrier frequencies, modulated with binary data.
WCCA was demonstrated as a binary single-carrier system. A cheap narrow band AM re-
ceiver (ICOM IR-20) was used to intercept the covert channel. Three different subversive
codes were designed to illustrate the potential. The first code demonstrates energy leak-
age from the microprocessor, by generating three audible tones detectable with the AM
receiver. The second code demonstrates information leakage by broadcasting an SOS sig-
nal. The third code demonstrates the potential compromise of sensitive information, by
broadcasting memory content. It was beyond the scope of this work to investigate how
the subversive code could be hidden on microprocessor smart cards, however, third-party
compilers and library files with more relaxed security policies were mentioned as a poten-
tial loophole.

(iii) The exploitation phase is used to intercept the broadcast channel with a receiver
during normal operation of the card, thus getting access to sensitive information. The suc-
cess will depend on factors such as: How many cards are effected (e.g. entire generations
or only a few)? How well is the subversive code hidden (i.e. probability of revealing it-
self)? Properties of the covert channel (e.g. such as range, capacity, coding schemes, error
correction). How long must the channel be active and what is the quality of the receiver
(e.g. sensitivity and size)?

Experiments were carried out on modern smart cards1 and confirmed the feasibility
of the attack even with security features against side-channel attacks activated. The secu-
rity features limited the range, but did not prevent the attack. WCCA showed that it is
feasible to get access to sensitive information in an attack resembling wireless skimming
, during normal use of advanced smart cards. The attack also underlined the necessity
for considering security during the entire life cycle of the whole system. Testing WCCA
in a normal operating scenario is left for future work, but the performance of the covert
channel was investigated in the second paper [7]. Using theory from binary communica-
tion systems, implementation choices such as carrier frequency selection was compared in
terms of probability of error (i.e. misinterpretation of symbol 0 and 1). During this work
the idea for a customized receiver for WCCA emerged. This idea was not pursued, but is
outlined in future work.

3.4 Feature Selection

Experimental results [9, 7] clearly showed that EMR is found in a wide frequency range,
from DC up to 1 GHz. Obvious questions are: What is the best carrier frequency to use?
How can more of the available energy (i.e. EMR) be exploited? This is expressed by the
following research questions:

Q3.1: How can relevant electromagnetic radiation be selected?

Q3.2: What is the performance of a given choice?
1Identity withheld due to a non-disclosure agreement, see 1.3
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Results from [7] showed that channel performance could easily be improved by increas-
ing the symbol alphabet and using more than one carrier frequency. It was also found that
expressing WCCA as a multi-class pattern recognition problem would be beneficial. The
problem could then be stated as: How to detect and identify a set of classes (i.e. a set of
activities on the microprocessor) based on a set of variables (i.e. the energy on selected
carrier frequencies) of the intercepted EMR. Challenges are then typical for pattern recog-
nition systems and are also found in other side-channel attacks (e.g. the template attack
[4]), where open issues include [3]: How to select the relevant samples (variables) and
how many samples are needed to construct the attack? These challenges are addressed in
the third paper: ”A Comparison of Multi-class Feature Selection Methods” [10], in which
WCCA was used to perform an application specific comparison between different feature
selection methods, in multi-class cases. Three groups of methods were compared:

Variable ranking methods: These methods use a score function to rank individual vari-
ables [15]. Due to their simplicity, this group of methods are a good starting point.
Examples are single variable classifier, difference of means (DOM) and Mahalanobis
distance. DOM was used in the original DPA attack [16]. A drawback with variable
ranking methods is that correlations between variables are disregarded.

Variable subset selection methods: These methods try to take into consideration corre-
lations between variables by selecting subsets of variables that work well together.
Greedy forward selection is one such method.

Feature construction methods: These methods provide different mappings of the raw data.
Examples are principal component analysis, Linear discriminant analysis, clustering
and fourier transform.

The objective of feature selection can be threefold [15], (i) improving the prediction per-
formance, (ii) faster and more cost-effective classifiers and (iii) better understanding of the
underlying processes. The main focus in [10] was on improving the prediction perfor-
mance. Alternative classifiers to Bayes were not studied. However, combining knowledge
from WCCA with pattern recognition [10], also gave us new insight into underlying pro-
cesses of side-channels, as well as a good foundation for future in-depth investigations of
side-channel phenomena in general.

3.5 Understanding the Phenomena

An article by Quisquater and Samyde [23] demonstrates how to automatically reverse en-
gineer software code, based on power and electromagnetic signatures. In that article, it is
stated that data/addresses of equal Hamming Weight (HW), such as 55 and AA cannot be
distinguished without using localization principles (i.e. positioning of tiny probes to iden-
tify the location of the radiation). Such signals are by HD/HW power models assumed
to consume equal amounts of power and thus create identical EMR fingerprints. A recent
methods, the Template Attack [4], has overcome this limitation. This encouraged us to ap-
ply our feature selection method in a template attack to investigate how minute a detail
could be distinguished through classification. By focusing on similar/comparable activ-
ities, assuming that approximately equal power consumption results in similar/identical
EMR fingerprints, the following research question was addressed:

Q4.1: Can very similar microprocessor activities be distinguished?

This research question is the focus of the forth paper [11]. A microprocessor was made
to execute signals, that by HW model consume equal amount of power. The signals chosen
were parallel address bus activity of the PIC 16F84A, the microprocessor found in Gold
card smart cards. EMR was captured with a high-end oscilloscope (10 GS/s sampling rate)
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using a broadband E near field probe positioned as close to the microprocessor as possi-
ble, without decapsulation. The analysis method used was, in principle, Bayesian classifier
with a Gaussian assumption on the noise distribution, as described in the template attack
[4]. However, a lot of work was put into improving how appropriate features (interesting
point) of the EMR traces are chosen. This was based on results from [10] and involved a
score function for selecting the relevant time-domain window, Welch non-parametric esti-
mation of PDS and finally greedy forward selection (GFS2). This reduced EMR traces with
30000 variables to 5 features in the final classification. Using this modified template at-
tack, we were able to distinguish parallel address bus activities of equal HW [11]. During
this work, a method for improving classification accuracy based on multiple observations
(Majority Voting), was suggested, but was left for future work.

The modifications to the template attack provided us with a method for in-depth inves-
tigations of the electromagnetic side-channel. A variety of microprocessor activities, such
as data transfer on the microprocessor’s internal data bus and instruction bus were studied
in addition to the address bus. The classification results that we achieved can not be ex-
plained by commonly used power models (HW/HD models [19]), therefore leading to the
following research question:

Q4.2: What model can explain the classification results achieved?

In two papers [12, 13] we put forward the hypothesis that the classification results
achieved can be explained by layout dependent phenomena (LDP). LDP are parasitic el-
ements such as; inductance and capacitance of conductors, inductance and capacitance
between conductors, wireless transmission characteristics (i.e. antenna properties) of con-
ductors and other circuit elements and complex combinations of these phenomena. In par-
ticular, the coupling capacitance is well studied within sub-micron VLSI design [6, 20, 25].
When transistor technology gets smaller, capacitive crosstalk becomes such a major con-
tributor to the power consumption and delays of on-chip buses, that it can no longer be
ignored. These effects may be known to the security community [5, 19] but have received
little attention.

A new power model, taking into consideration capacitive crosstalk, is suggested in [12]
and [13] (preproceedings for [12] are included in appendix A). This model is generalized to
n wires and an expression to calculate the analytic power consumption is derived. PSPICE
is used to compare analytic and simulated power consumption. Simulation results con-
firmed that the dissipated energy from CMOS switching gates depend not only on the HD,
but also on the direction of switching activity on nearby data lines. This increases the num-
ber of possible energy levels and, therefore, allows us to explain why signals with the same
number of transitions sometimes can be distinguished. Finally, a case study on EMR from
smart cards is conducted in order to test the practicality of our theory and simulations. The
results support that exploitation of microprocessor side-channels can be improved if one
has access to details regarding the physical layout of the microprocessor, e.g. the capaci-
tance between bus wires.

3.6 New Application

The new power model and the work of paper [12] and [13] show that EMR is a function of
microprocessor activity, power consumption and LDP (i.e. internal physical structures). We
have shown that with knowledge of microprocessor activity and LDP and captured EMR,
we can predict the power consumption better than previous power models. However, it
should also be possible to solve this equation for any of the other variables. Therefore,

2Notice that for static phenomena, in which the feature selection algorithm is executed once, GFS performs
best. A dynamic phenomena, with repeated execution of the feature selection algorithm, would favor algorithms
with short processing time [10]. Only static phenomena have been studied in this thesis.
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given knowledge of microprocessor activity, power consumption and captured EMR, it
should be possible to predict internal physical structures of the microprocessor. This spinoff
of the work in [12] and [13] is, to the best of our knowledge, a new application area for side-
channel information and led us to the following research question:

Q5.1: Is it possible to reverse engineer the internal physical structure of a microprocessor
based on electromagnetic radiation?

As an example of the potential, in [8] we provided a noninvasive technique for estab-
lishing the relative position of microprocessor bus wires. This technique relies on the influ-
ence capacitive crosstalk has on the electromagnetic side-channel. This work can easily be
extended by including more LDP. This may provide even more precise results when classi-
fying microprocessor activity or have the potential to reveal additional physical structures
of the microprocessor. This opens up for potential research in the future.

3.7 Future Work

In the following, topics for potential future work are described.

3.7.1 Customized WCCA Receiver

The feasibility of WCCA was demonstrated in [9] using a cheap narrow band AM receiver.
The covert channel can be improved significantly by customizing a receiver for the pur-
pose. In traditional communications system design, the carrier frequencies and waveforms
are part of the design strategy. In WCCA, these parameters cannot be changed, as they are a
product of unwanted leakage from microprocessors. A customized receiver for WCCA has
to exploit whatever energy is available when the microprocessor executes a program. Two
different approaches look interesting: (i) A harmonic receiver, in which a mixer with a har-
monic signal (e.g. the clock signal of the microprocessor) could merge the energy of several
harmonic carriers together. This is based on the assumption that merging several carriers
together will give a stronger signal and preserve the information. (ii) Adapting the prin-
ciple from multiple-input and multiple-output (MIMO) systems (e.g. IEEE 802.11n) could
be used to select several carriers. Each carrier could be subject to different demodulation
schemes.

Both receivers could use M-ary signalling and coding schemes. Implementing the re-
ceiver as an SW radio makes adaptive carrier selection possible, in which the receiver un-
dergoes a training phase on the targeted microprocessor architecture prior to launching the
attack. The universal software radio peripheral (USRP) may be a suitable platform to use.

Another unresolved issue with WCCA is the maximum range of the channel. From
what distance is it possible to launch WCCA? Is it possible to design a subversive code that
it detectable from orbiting satellites? Finally, no real-world testing has so far been carried
out with WCCA.

3.7.2 Systematic In-depth Investigations of EMR

The results in [11] serve as a good platform for systematic, in-depth investigations of EMR
from microprocessors. The classification method can be automated and used to compare
EMR from a large number of microprocessors for a large frequency range. EMR from sev-
eral microprocessors of the same and different architecture could be compared to check
the reliability and validity of classifier training. It is likely that a classifier trained for PIC
architecture cannot be used for AVR architecture. However, it is important to find out if
a classifier trained for one PIC 16F84A can be used to attack any PIC 16F84A processor.
Different choices of classifiers, other than Bayesian, could be compared. Extensive testing
of bus transitions could be carried out, based on collecting thousand of observations of all
transition patterns (65536 in total) on an 8 bit bus.
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3.7.3 Majority Voting

The template attack is, in theory, capable of classifying microprocessor activity based on
a single observation. In [11] we show that the classification error rate is, however, often
large when a single observation is used. In many scenarios multiple observations of the
same phenomena are available. A program may reuse some values over and over again
(e.g. user name, password, PIN code or cryptographic key). A specific program (or part
of program) may be used several times or maybe a subversive code or trojan can force
repetitive execution. Given multiple observations of the same activity, different approaches
can be used to reduce the probability of error. Two alternatives are evident: (i) data fusion
first, classification second or (ii) classification first, data fusion second. Data fusion first
has to combine all observations into a single observation, often by averaging, such that
classification is done on a single observation. The other approach is to classify all individual
observations first and then fuse the results into a single decision afterwards.

Some preliminary results with alternative two indicate that, given multiple observa-
tions, simply deciding in favor of the class with the majority of the classification decisions
(votes), offers improved recognition performance over averaging before classification. This
method, which we called Majority Voting, was never published, but a short introduction to
the problem is given in appendix B as a motivation for future work.

3.7.4 Improved Power Model

In [12, 13] we present a new power model, taking into consideration capacitive crosstalk.
Simulations and theoretical results in [12] support that LDP (e.g. capacitance) must be con-
sidered when analyzing security implications of electromagnetic side-channels. It remains
to apply the new power model in actual side-channel attacks (e.g. DPA). Improving the
model by including more LDP is also left for future work. Suggested phenomena to start
with are: variations in coupling and load capacitance, inductance, effect of bends in circuit
paths and multi layer capacitance (3-dimentional). The work can also be extended to study
larger sized buses (e.g. 16 or 32 bit).

3.7.5 Reverse Engineering

The non-invasive method to reverse engineer the relative position of microprocessor bus
wires in [8] has not been tested experimentally. We also believe that by considering other
LDP it should be possible to reveal other physical structures of the microprocessor, such as
memory, masking schemes and dual-rail logic.
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Chapter 4

Summary of Contributions

The greatest enemy of knowledge
is not ignorance, it is the illusion
of knowledge

STEPHEN HAWKING

This thesis contributes to build a more realistic model of the arsenal available to an
adversary engaged in reverse engineering microprocessor content by the electromagnetic
side-channel. Contributions in four areas can be identified:

• Wireless Covert Channel Attack: Contribution towards exploiting the electromag-
netic side-channel in a new attack and attack scenario for microprocessor smart cards
which highlights the importance of life-cycle security measures.

• Feature Selection: Contribution towards better understanding of what and how much
of the available electromagnetic radiation is necessary to launch an attack. This re-
sults in a method for in-depth analysis of the electromagnetic side-channel.

• A New Power Model: Contribution towards better understanding of underlying
phenomena by considering layout dependent phenomena. This can improved side-
channel exploitation capabilities.

• Reverse Engineering Physical Properties: Contribution toward an alternative appli-
cation of the electromagnetic side-channel as a consequence of the new power model.

4.1 Wireless Covert Channel Attack

The relationship between EMR and microprocessor activity can be exploited by an adver-
sary to deduce content of program or data memory [3, 11, 14], otherwise kept secret. In
side-channel attacks, the adversary may have knowledge of, or even be able to, choose part
of the execution sequence in order to reveal specific details. By choosing inputs to legiti-
mate programs (e.g. chosen plain text to a cryptographic algorithm) the adversary can use
side-channel attacks to reveal sensitive information (e.g. cryptographic keys).

One of the contributions of this thesis is a new attack and attack scenario for micropro-
cessor smart cards, the Wireless Covert Channel Attack (WCCA) [4, 6]. WCCA was a result
of investigation as to what it would take to launch an attack on advanced smart cards, in a
normal user scenario. The suggested attack resembles wireless skimming and has the po-
tential to broadcast any sensitive information from the microprocessor to a remote receiver.
Instead of relying on EMR from chosen input to legitimate programs, subversive code is
used to manipulate the EMR. Subversive code is understood as malicious code hidden by
a professional (i.e. highly skilled) adversary. The subversive code can search for sensitive
information and broadcast it to a nearby receiver by manipulation of the electromagnetic
side-channel.

The scenario is based on subversion, which, according to Anderson et al. [2], is a for-
gotten aspect of information security. The scenario assumes that a highly skilled insider
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can hide malicious code on smart cards prior to their distribution to customers. We pro-
pose that this can be done through the use of third-party compilers and library functions.
Commercial interests in not revealing the source code of such programs and possibly less
stringent security requirements than the developed SW, may be the loophole needed by the
adversary. If successful, the security challenge for large-scale users, e.g. the banking indus-
try and pay-tv, will be to prove the absence of malicious code. This is, by far, a trivial task
[2]. A similar challenge has since been addressed by Agrawal et al. [1] in an attempt to use
side-channel information to detect the introduction of ”extra” circuitry when outsourcing
production of integrated circuits. In addition, Agrawal et al. [1] and P. Rohatgi [15], high-
light the importance of considering security during the entire life-cycle of a high-security
product. This is the same conclusion recommended in WCCA, two years earlier. Counter-
measures should limit the opportunities to insert malicious code as well as limit the ability
to place a receiver in the vicinity of a terminal during the entire life-cycle of a system.

The idea of deliberate manipulation of EMR from a device is not new and has, for exam-
ple, been suggested by Kuhn and Aderson [12]. The application to microprocessor smart
cards is, however, new and an important attribute is that no manipulation of the terminal is
necessary. The attack is solely based on internal microprocessor activity of the card. Using
I/O towards the terminal, would give higher S/N ratio, but at the cost of having to manip-
ulate two units, making the attack more complicated and increasing the risk of detection.
The attack is also tailored to the microprocessor architecture rather than the application.

The feasibility of the attack has been demonstrated on modern, high-security cards1

with all available security features activated [6] [4]. It is worth mentioning that one of the
security features actually activated a strong carrier frequency usable for the covert channel,
with energy levels far above levels detected prior to activation. This should serve as a
wake-up call to implementer of security features: addressing one problem may introduce
a new weakness.

WCCA may be ahead of its time since cheaper and easier attacks exists. We believe this
may change as the magnetic strip is phased out and necessary technology gets cheaper. The
relevance of wireless skimming will most likely increase as new, on-line applications of the
microprocessor smart card makes it easier to infect microprocessor cards with malicious
code through traditional trojans. The popularity of smart-phones and tablet computers
(e.g. iPad) may be areas of special concern, as they are already vulnerable to trojans and
contain an increasing amount of sensitive information. These developments encourage
further research on the topic.

4.2 Feature Selection

A challenge faced by WCCA and other side-channel attacks is: What and how much of the
available EMR is necessary to launch an attack and how do choices affect the efficiency of
the attack? These are also open issues in other side-channel attacks, such as the template
attack [3].

This thesis recognizes side-channel attacks (i.e. reverse engineering microprocessor
content) as a pattern recognition problem, and can therefore address these challenges as
a feature selection problem. This thesis provides a comparison of several multi-class fea-
ture selection methods by their performance in a WCCA application [7]. The performance
is based on: (i) the number of variables needed, (ii) the amount of time required and (iii)
the error rate achieved. Combining these results with the Bayesian classification (e.g. tem-
plate attack [3]) provided a method for in-depth analysis of side-channel phenomena. The
method has been used to investigate the level of detail that can be distinguished by EMR
from a microprocessor smart card [8]. The results revealed that commonly used power
models are not suitable to explain the level of detail achieved by classification (e.g. tem-
plate attack).

1Identity withheld due to a non-disclosure agreement, see 1.3
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4.3 A New Power Model

Even though power simulations at analog level are mentioned as ”the most precise way
to simulate power consumption on digital circuits” [13], they receive little attention in the
security community. Simplifications are commonly applied, such as lumping together all
intrinsic capacitances to a single capacitance to ground. These simplifications make com-
monly used power models (i.e. HD/HW model [13]) unable to explain the level of details
obtained when reverse engineering microprocessor activity by classification [8].

This thesis contributes [9] towards better understanding of phenomena enabling side-
channel attacks, by considering layout dependent phenomena (LDP), such as; inductance
and capacitance of conductors, inductance and capacitance between conductors, wireless
transmission characteristics (i.e. antenna properties) of conductors and other circuit ele-
ments and complex combinations of these phenomena.

An important contribution is a new power model that shows how capacitive crosstalk
can explain why it sometimes is possible to distinguish transition patterns of an equal num-
ber of transitions [9]. Simulations and experiments in [9] and [10] show that capacitive
crosstalk has a significant effect on gate energy dissipation and that LDP must be con-
sidered when analyzing security implications of electromagnetic side-channels. The DPA
attack [11] rely upon a good power model to be successful. The new power model that we
suggest could, therefore, improve the DPA attack.

4.4 Reverse Engineering Physical Properties

The new power model presented in [9] shows that energy dissipation (i.e. EMR) is a func-
tion of internal physical structures (i.e. LDP) of the microprocessor. With knowledge of
internal physical structure, better power models can be built and reverse engineering mi-
croprocessor activity (e.g. breaking a cryptographic implementation) can be performed
more precisely.

This thesis contributes towards an alternative area of application for the electromagnetic
side-channel. The hypothesis is that if the microprocessor activity is known, it is possible to
reverse engineer internal physical structures of the microprocessor by measuring the effect
they have on the power consumption and thus the EMR. In particular, in [5] a non-invasive
method to reverse engineer the relative position of microprocessor bus lines is presented.
This method takes advantage of the new power model [9], i.e. the influence of capacitive
crosstalk on the energy dissipation when the transition pattern is known.

We believe that by considering other LDP it should be possible to reverse engineer other
physical structures of the microprocessor, such as memory, masking schemes or dual-rail
logic.
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Chapter 5

A Wireless Covert Channel on Smart Cards1

Abstract

Microprocessor devices, such as smart cards, are used more and more to store and pro-
tect secret information. This development has its advantages, but microprocessor devices
are susceptible to various attacks. Much attention has been devoted to side-channel at-
tacks, exploiting unintentional correlation between internal secret information, such as
cryptographic keys, and the various side-channels. We present a wireless covert channel
attack (WCCA) that intentionally correlates secret information with the electromagnetic
side-channel. WCCA exploits subversive code hidden on all cards during manufacture, to
launch an attack, without physical access, when infected cards are used. Experiments on
modern smart cards confirm that an insider with the opportunity to hide subversive code
can potentially broadcast the card’s internal secrets to a nearby receiver. Security features
against side-channel attacks will limit the range but not prevent the attack.

5.1 Introduction

Since the birth of modern side-channel attack in the 90’s there has been an explosion of
proposed attacks exploiting side-channels to reveal secret information within a smart card.
Current research focuses on exploiting unintended correlations between secret information
(cryptographic key) and the side-channel, tailoring a specific implementation of a crypto-
graphic algorithm. These attacks often require a ”lost or stolen” card and experimental
results are often obtained on simple cards of older technology, not on modern smart cards
equipped with countermeasures.

By combining the efforts of different fields, electromagnetic side-channel attacks , covert
channels and subversion, we propose a new attack: wireless covert channel attack (WCCA).
We believe that hiding subversive code on cards during manufacture can manipulate the
energy leakage from a smart card to create a covert broadcast channel. The channel is
activated when the cards are used in a normal scenario and will give us access to secret
information remotely (i.e. wireless), without the need for physical access to the target. The
attack is tailored the microprocessor architecture rather than the actual cryptographic algo-
rithm and experiments confirm that the attack will work on modern smart cards equipped
with countermeasures against side-channel attacks.

This article will explain how to collect and analyze electromagnetic emanation from
smart cards to build signatures of individual instruction executed by the microprocessor.
These signatures will form a symbol alphabet for a covert communication channel. Sub-
versive code hidden on the smart card will create the covert channel and use it to broadcast
secret information to a nearby receiver. Practical result obtained on modern smart cards2

equipped with counter measures will be shown.

1G.O. Dyrkolbotn and E. Snekkenes. In Proceedings of International Conference on Information and Communica-
tions Security (ICICS), Springer, Lecture Notes in Computer Science, pages 249-259, 2006.

2Identity withheld due to a non-disclosure agreement, see 1.3
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5.2 Previous Work

The basis for side-channel attacks has been available for a long time. It is possible to use the
second law of thermodynamics to show that energy must escape from devices in one way
or another(e.g. heat) [8]. The laws of physics explain that it is impossible for any operating
device not to leak energy. The goal of side-channel attacks is to look for dependencies
between this unavoidable energy leakage and the device’s secret parameters.

Exploiting this leakage is not new. Military and government organizations have sup-
posedly used them for a long time, with public interest beginning much later. In 1985
Van Eck [19] published the article on how to eavesdrop video display units via radiation
from a considerable distance that attracted much attention. In 1996 Anderson and Kuhn
published their work, ”Tamper Resistance - A Cautionary Note” [5], which showed that trust-
ing tamper resistant devices can be problematic. That same year Kocher [9] published his
work on exploiting differences in execution time (Timing Attacks). This work was soon
followed up and in 1999 Kocher et al. [10] introduced some powerful attacks through mea-
surement of a device’s power consumption. Simple Power Analysis (SPA) and Differential
Power Analysis (DPA) received some attention from, among others, the banking industry,
and countermeasures were publicly announced. In 2000, Quisquater and Samyde [14, 15]
applied the analysis technique from SPA and DPA to electromagnetic side-channels, thus
introducing electromagnetic analysis (EMA).

In recent years several papers have been published in an ongoing effort to systemati-
cally investigate electromagnetic side-channel attacks[6, 2, 3, 1, 4]. The experiments have
been extended to some distance from the target, implying that physical access to the target
may not be necessary. It has been shown that EMA is at least as powerful as power anal-
ysis, and that EMA could circumvent power analysis countermeasures [3, 17]. At USENIX
2002 [16], Quisquater and Samyde described an automatic method to classify instructions,
carried out by a simple CISC processor. The power and electromagnetic signature of in-
structions were captured and then used to train a neural network. The neural network
could automatically recognize, and thus reverse engineer, executed code based on stored
electromagnetic and power signatures.

Common for previous attacks is that they exploit unintentional correlations between the
side-channel and secret information, often a cryptographic key. Taking a more aggressive
approach would be to manipulate the side-channel. It is not difficult to imagine a situa-
tion were the code on the smart card is manipulated to give specific results for the neural
network of Quisquater and Samyde [16].

Covert communication was first introduced by Lampson in 1973 and was then defined
as

A communication channel is covert if it is neither designed nor intended to
transfer information at all

An example can be found in an encrypted packet switched network. An adversary can
monitor the packet flow, but can not read the encrypted content of each packet. A covert
channel can be created if the following is decided beforehand.

• Packet sent from address A to B - interpret as logic 0

• Packet sent from address A to C - interpret as logic 1

This traffic will appear as regular packet switch traffic (at least to the untrained eye) and
hopefully not raise any suspicions, e.g. it is covert.

Another example of a covert channel can be the running time of a program. This means
that the timing attack of Kocher [9] can be seen as exploiting an unintentional covert chan-
nel. Unintentional in the way that the secret information was not intentionally correlated
with the timing information. Similarly, other side-channel attacks can also be seen as ex-
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ploiting unintentional covert channels. Side-channels also fit Lampsons definition from
1973 as stated above.

Kuhn and Andersson [11] talk about attacking a system with malicious code that will
use a computer’s RF emission to transmit stolen information. The possibility to plant a
virus to infiltrate a bank or certificate authority and broadcast key material over an impro-
vised radio channel is mentioned. Practical results are shown with hidden messages in a
recovered video signal. This can also be categorized as a covert channel where the elec-
tromagnetic side-channel has been deliberately manipulated. This approach will be used
in WCCA. We introduce the term wireless covert channel as a hidden electromagnetic com-
munication channel, detectable outside the system, as a result of intentional manipulation of valid
system parameters.

Creating a wireless covert channel can be viewed as subversion , described by Myers
[12] as

The subversion of computer systems is the covert and methodical undermining
of internal and external controls over a systems lifetime to allow unauthorized
and undetected access to system resources and/or information.

In the next chapter the wireless covert channel attack (WCCA) is presented.

5.3 Wireless Covert Channel Attack

The wireless Covert Channel Attack (WCCA) relies on a highly skilled insider to under-
mine the security mechanisms by hiding subversive code in the smart card’s software (SW).
This is done during an early stage (design or implementation) of its life cycle (figure 5.1)
and will affect all cards produced. These infected cards may be used in the banking in-
dustry as credit cards, loaded with personal information (cryptographic key, PIN code,
account number etc.) when issued to a customer. The adversary is interested in retrieving
the secret, personal information and has an accomplice involved at the use stage of the life
cycle. This will be somebody with access to a smart card terminal, a store owner or main-
tenance personnel. When a manipulated card is inserted into any terminal the subversive
code exploits characteristic electromagnetic emanation (signatures) from the microproces-
sor, during execution of instructions, to broadcasting secret information over a wireless
covert channel.

The success of this attack is ensured by the large number of cards infected. If a whole
generation of smart cards to the banking industry is infected, there will be enough cards
randomly used in the adversaries rigged locations to make the attack worth the effort.

WCCA can be divided into a preparation phase, an implementation phase and an ex-
ploitation phase.

5.3.1 Preparation Phase

The preparation phase is used to build a library of characteristic electromagnetic emana-
tion from instructions executed by the microprocessor. WCCA uses the average power
spectrum density (PSD) obtained from a spectrum analyzer to characterize an instruction.

For every instruction of interest, a smart card is prepared with a test code. The card
inserted into a customized smart card reader will automatically start executing the test
code. A homemade coil attached to a spectrum analyzer captures and records the resulting
electromagnetic emanation. The average PSD is stored on a computer for further analysis.
The test code is written in assembly language and executes one instruction in a loop. The
instruction is repeated several times within the loop to reduce the effect of any unwanted
instructions, such as ”goto”. A small homemade coil is placed on top of the smart card
reader, as close as possible to the microprocessor, without any decapsulation. Using a
spectrum analyzer, no synchronization between the executed code and the instrument is
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Figure 5.1: Scenario: The adversary hides subversive code during an early stage. Later,
secret information is loaded to the card. When the card is used, the subversive code is
activated and broadcasts secret information to the accomplice.

needed. Each instruction was measured several times in random order to enhance the
reliability of the data. The signature of an instruction is the mean of all these repetitions.

5.3.2 Implementation Phase

The implementation phase is used to design and hide the subversive code needed to create
the covert channel. A symbol alphabet for the channel, as well as a carrier frequency, is
obtained from analysis of the recorded signatures. The smart card executing the subversive
code can be considered a bandpass digital system [13], where a carrier is modulated with
binary data. In this work we restrict the discussion to a binary system, and leave M-ary
bandpass digital systems for future work.

For two possible messages, m1 and m2, two possible waveforms s1(t) or s2(t) are trans-
mitted in a bit interval, Tb. The waveforms s1(t) and s2(t) cannot be chosen freely, but are a
result of emitted energy when executing instructions on the smart card. Since the receiver
makes the decision based on received energy, it is natural to look for frequencies where the
emitted energy can be controlled by execution of different instructions.

In order to demonstrate the feasibility of the attack a low cost narrow band receiver was
chosen. The approach chosen is therefore to look for one carrier frequency, fc, with a large
difference in emitted energy between execution of two instructions. Exploiting the energy
emitted in a larger band is subject to work in progress.

Using the recorded signatures, a carrier frequency is easily found. Let diff(i,j) be the
spectral difference between signature i and j. Diff(i,j) is calculated by taking the magnitude
of the difference at each sample of signature i and j. Calculating diff(i,j) for all combinations
of instructions and sorting all the individual sample differences , there will be two signa-
tures i=A and j=B, where the diff(A,B) for one sample is largest. The frequency where this
occurs is chosen as the carrier frequency, fc.

The emitted energy level at carrier frequency fc can now be controlled by designing a
subversive code that transmits secret information using

• Instruction A - logic 0 - small energy emission at fc
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• Instruction B - logic 1 - large energy emission at fc

Once the subversive code is designed, the task is to make sure it is hidden on every
card produced, undetectable. It is beyond the scope of this article to describe this in detail.
However assuming that third party compilers and library functions have less stringent
security requirements than the developed SW, together with commercial interest in not
revealing the source code of compilers and library files, could be the loophole exploited by
the adversary.

5.3.3 Exploitation Phase

The success of the attack relies on the adversary or his accomplice placing a receiver in
the vicinity where infected cards are used. The subversive code will be executed during
normal use and secret information broadcasted to the receiver.

The range of the covert channel will have a great impact on how difficult this will be.
Given a range of several meters, the receiver can be placed somewhere in the room and
maybe in an adjacent room. It may also be possible to carry a concealed receiver and stand
nearby or be in the line behind the victim. If the range is in order of cm, the probe of the
receiver must be placed close to the terminal. This may be possible if the accomplice is the
store owner or maintenance personnel with access to the terminal.

The receiver can be optimized to cost, range, channel capacity, probability of error, size
etc, but even a cheap commercial receiver used in this experiments gives promising results.
Due to the relative long exposure time, when the card is used in a terminal (up to 30 sec)
the bit rate does not need to be high. Assuming that the covert channel use only 1% of the
processor time reduces the risk of detection, and still gives 0.3 sec for the attack. Sending
1024 bits in 0.3 sec requires a channel capacity of only 3.5 kbits/s.

5.4 Experiment

The experiments have been carried out on a modern smart card with several security fea-
tures against side-channel attacks. The identity of the card and the details about the secu-
rity features are withheld due to a Non Disclosure Agreement (NDA).

In the preparation phase, the electromagnetic signature of 25 instructions were col-
lected. None of the instructions activated the I/O interface of the smart card. Signatures
were collected with and without security features against side-channel attacks activated.
Spectrum analyzer Advantest 3641 was used. Measurements were done from DC to 60
MHz, with 100 averages, providing signatures of 4206 samples. Typical signatures can be
seen in figure 5.2.

The object of the implementation phase is to analyze the 25 signatures collected and
to identify frequencies where the emitted energy can be controlled by toggling between
two instructions. Therefore, the spectral difference diff(i,j) is of more importance than the
shape of the signature, this is shown in figure 5.3. The maximum amplitude difference for
all combinations of instructions, when security features are activated, has been plotted in
figure 5.4.

These are potential carrier frequencies for the covert channel and the corresponding
instructions are used to create the subversive code. As an example, using instruction A
and B at frequency fc=11.5 MHz provides an amplitude difference of 10.5 dB. It may be
interesting to notice that the peaks around 53 to 57 MHz are introduced by one of the
security features.

Three different subversive codes have been designed to test the covert channel and
serves to illustrate the potential. It is assumed that the highly skilled insider will be able
to create more sophisticated codes. The first code was designed to demonstrate that sub-
versive code can manipulate the energy emitted and that the channel is detectable by a
receiver. For this purpose two instructions are executed n times alternately, to create a
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Figure 5.2: Average power spectrum density as signatures of instructions. Instructions
executed on card with and without security features activated.
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Figure 5.3: Individual signatures of two instruction is shown above. In a covert channel
context the spectral difference between them, shown in the lower figure, illustrates our
ability to manipulate the emitted energy for various frequencies.
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Figure 5.4: The largest spectral difference for all combinations of instructions, illustrates
the overall covert channel potential.

pulse train with fundamental frequency dependent on n. With 1µs execution time of each
instruction, choosing n = 500, 250 and 125 results in a fundamental frequency of 1,2 and
4 kHz respectively. This is in the audible range and serves well for a demonstration with
an AM receiver. The second code was designed to demonstrate that messages can be trans-
mitted. A short or a long audible tone is used to send morse code (SOS) to the receiver. The
third code broadcasts the memory contents of a smart card in an attempt to demonstrate
how secret information can be compromised.

Using the ICOM IR-20 receiver with the extendable rod antenna, the audible tones and
the morse code are easily detected. On a simple card the tone has been detected 10 meter
from the terminal. The modern card is detectable within 1 meter even with security fea-
tures activated. The covert channel is also detectable on the peaks introduced by one of
the security features at 53-57 MHz. The same procedure as with morse code can be used
to broadcast the memory content of a smart card to the AM receiver. This is a low rate
transmission and work is in progress to improve the transmission rate.

5.5 Analysis

The feasibility of the attack has been confirmed through the use of a cheap AM receiver.
An important issue left is the rate of information leakage from the smart card, the channel
capacity of the covert channel.

The source rate, R, how fast the smart card (source) can transmit information, is given
by [7]:

R =
H

T
bits/sec (5.1)

where H is the average information (entropy) of the source , given by Shannon [18], and T
is the time required to send each message. For a binary system with equal probability of
sending zero and one, the entropy is H=1. Since each message, m1 or m2, is represented
with the waveform resulting from execution of instructions, the execution speed of the
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microprocessor will set a lower limit on T. Assume a microprocessor architecture that re-
quires multiple of 4 clock cycles per instruction. Choosing two, single cycle, instructions
with clock frequency of 4 MHz gives T = 1µs.

The source rate can now be calculated using (5.1) to find R = 1 Mbit/s. A more realistic
value can be obtained by realizing that the subversive code must read the next value and
decide if it is a zero or a one, before sending it. By analyzing the flow chart of the testcode,
designed to read and broadcast the memory contents of a smart card, an average of 37
clock cycles (T = 9.25 µs) is required to send each message. The source rate is then R =
1/9.25 µs ≈ 108 kbit/s. This assumes that microprocessor is 100 % devoted to the covert
channel during transmission.

The source rate , R, is important when designing a communication channel. Shannon
[18] has shown that, for the case of signal plus white gaussian noise, it is theoretically
possible to have the probability of error approach zero for a channel capacity of C bits/sec,
as long as R < C. The equation for C is then

C = B log2(1 +
S

N
) (5.2)

where B is the channel bandwidth in hertz (Hz) and S/N is the signal-to-noise power ratio
(watts/watts) at the input to the receiver.

Using the recorded signature we can estimate B and S/N. B should be the lowest band-
width in the communication chain. In our experiment this is the receiver with B=15 kHz.
Using the amplitude difference in dB from diff(i,j) as the value for S/N can be justified
since one of the instructions is close to the noise floor. The experiment suggested a pair of
instructions with 10.5 dB difference. With a receiver bandwidth of 15 kHz this gives C=32
kb/s. This is an upper limit for error free communication that may be approached using
efficient coding. Different coding schemes are subject to future work, but even a transmis-
sion rate of one tenth of C will be sufficient. A key of 1024 bits is transmitted in 32 ms at 3,2
kb/s. Assuming 1 % processor load for the covert channel requires the card to be turned
on for 32 seconds, which is not unreasonable in a bank terminal.

The results above are believed to be moderate, as many improvements are possible.
One obvious improvement would be to use a receiver with larger bandwidth. Work is in
progress to calculate the potential channel capacity given a customized receiver.

5.6 Conclusion and Future Work

This article presents a new attack on smart cards. The wireless covert channel attack
(WCCA) combines theory from subversion and covert channels with side-channel attack.

Experiments have shown that by manipulating the energy leakage from a smart card we
can create a covert channel that will give us access to secret information when the card is
used and that the attack will work on modern smart cards equipped with countermeasures
against side-channel attacks. It has been estimated that transmitting secret information at
a rate of 108 kb/s is possible from the tested card.

Work in progress include designing a receiver to match this transmission rate. This
will include M-ary systems, coding schemes and exploiting energy differences in a larger
frequency range.
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Chapter 6

Analysis of the Wireless Covert Channel
Attack: Carrier Frequency Selection1

Abstract

The wireless covert channel attack (WCCA) was suggested to see what it would take to
make attacks on smart cards feasible outside a lab environment. Subversive code hidden
on the card during manufacturing would manipulate the emitted electromagnetic energy
during normal operation. Experiments on modern smart cards confirmed that the attack is
feasible and that remote access of secret information resembling wireless skimming is pos-
sible. The performance of the channel however, has not previously been analyzed. In this
article the performance of WCCA in terms of probability of error is presented. This allows
a comparison of different choices of carrier frequency. The data collection necessary is also
improved to allow pattern recognition techniques to be employed. This approach looks
very promising when selecting multiple carrier frequencies to improve the performance of
the covert channel.

6.1 Introduction

Combining the efforts of different fields, electromagnetic side-channel attacks, covert chan-
nels and subversion, the wireless covert channel attack (WCCA), by Dyrkolbotn and Snekk-
enes [3] has been suggested. WCCA exploits subversive code hidden on all cards during
manufacture, to launch an attack, without physical access, when infected cards are used.
Experiments on modern smart cards confirmed that an insider with the opportunity to hide
subversive code could potentially broadcast the card’s internal secrets to a nearby receiver.
However, except for a few estimates of the channel capacity, the performance of the covert
channel has not been investigated. Performance in terms of probability of error (i.e. mis-
interpretation of symbol 0 and 1) on the communication channel can be used to compare
implementation choices such as what carrier frequency to choose. The measurements used
in [3] is average power density spectrums (PDS) of the emitted power from smart cards,
obtained with a spectrum analyzer. Information about the actual waveform, as a function
of time, is not available. The maximum signal to noise ratio, within a receivers bandwidth,
is used to calculate Shannon’s channel capacity in [3]. The probability of error however,
is decided by the actual waveform transmitted. Even though the waveform as a function
of time is not available, using theory from binary communication systems, we will show
how to estimate the probability of error for WCCA based on the average power density
spectrums of the received waveform. The probability of error will then be used to evalu-
ate the method of choosing the carrier frequency. We will also show the potential of using
pattern recognition techniques to choose multiple carrier frequencies. This requires data to
be captured as several individual PDS rather than one average PDS. Methods for choosing
the optimal carrier frequencies (lowest possible probability of error) is work in progress.

1G.O. Dyrkolbotn. In Proceedings of Annual Norwegian Computer Science Conference (NIK), Tapir, pages 153-163,
2007.
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In section two, the wireless covert channel attack (WCCA) is introduced. WCCA is
modeled as a binary system and necessary equations to calculate the probability of error is
presented. In section three, pattern recognition is introduced along with the revised exper-
iment allowing this approach. In section 4 the results are presented. Finally a conclusion
and future work is found.

6.2 The Wireless Covert Channel Attack

The wireless Covert Channel Attack (WCCA) by Dyrkolbotn and Snekkenes [3] relies on a
highly skilled insider to undermine the security mechanisms by hiding subversive code in
the smart card’s software (SW). This is done during an early stage (design or compile) of
its life cycle (figure 6.1) and will affect all cards produced.

Figure 6.1: Scenario: The adversary hides subversive code on smart cards during an early
stage the cards life cycle. Later, secret information is loaded to the card. When the in-
fected card is used, the subversive code is activated and broadcasts secret information to
the accomplice, over a covert communication channel.

These infected cards may be used e.g. in the banking industry as credit cards, loaded
with personal information (cryptographic key, PIN code, account number etc.) when issued
to a customer. The adversary is interested in retrieving the secret, personal information and
has an accomplice involved at the use stage of the life cycle. The accomplice is typically
somebody with access to a smart card terminal, e.g. a store owner or maintenance person-
nel. When a manipulated card is inserted into any terminal, by the owner, the subversive
code exploits characteristic electromagnetic emanation (signatures) from the microproces-
sor, during execution of instructions, to broadcast secret information over a wireless covert
channel. The success of this attack is ensured by the large number of cards infected. If a
whole generation of smart cards to the banking industry is infected, there will be enough
cards randomly used in the rigged locations to make the attack worth the effort. Exper-
iments in [3] have shown that by manipulating the energy leakage from a smart card a
covert channel can be created that will give access to secret information when the card is
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used and that the attack will work on modern smart cards equipped with countermeasures
against side-channel attacks.

The importance of considering the complete life cycle of a trustworthy device, with
high level of security requirements, was also brought to the attention by Pankaj Rohatgi,
[6] in an invited talk at CHES 2007. Work has also been done on detecting tampering with
a product during manufacturing. Agrawal et al. [1] approaches the problem of how to
detect insertion of trojans when outsourcing part of your manufacturing. This work looks
promising as a countermeasure to prevent the hiding of the subversive code necessary in
WCCA.

6.2.1 Optimal Digital Receiver

WCCA can be modeled as a binary communication system. A basic binary system, as
explained by Peebles [4], is shown figure 6.2. A message m is sent in each symbol interval,
Tb. This message m can have of 2 possible values, m = m1 if a binary 0 is transmitted and
m = m2 if a binary 1 is transmitted. The probability of sending each message is P1 and
P2. The waveform actually transmitted is denoted s(t) and s(t) = s1(t) if m = m1 and
s(t) = s2(t) if m = m2. The input to the receiver, r(t), is assumed to be the sum of s(t) and
an added noise n(t). Based on measurements of r(t) the receiver must make a decision on
which message m1 or m2 that is received in each symbol interval.

Figure 6.2: Basic Binary System

An optimal digital receiver, according to [4], is one that makes this decision based on
maximizing the a posteriori probabilities and in this way minimized the probability of
error. The decision rule can be written as:

if

∫ Tb

0

r(t)[s2(t)− s1(t)]dt > VT choose m2 (6.1)

(6.2)

otherwise choose m1, where the threshold value VT is given by

VT =
E2 + E1

2
+
N0

2
(
P1

P2
) (6.3)

N0 is the white noise power density andE1 andE2 the energies of s1 and s2 at the receiver’s
input, given by

Ei =
∫ Tb

0

s2
i (t)dt , i = 1, 2 (6.4)

It is assumed that the receiver knows the form of s1 and s2 (coherent). The correlation
receiver or matched filter are two possible implementation of the optimum digital system.
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6.2.2 Waveform and carrier frequency selection

When designing WCCA, the waveform s(t), and a carrier frequency, fc, must be wisely
chosen. Usually these parameters are design choices and depends on the communication
system implemented. In WCCA the only design freedom is which activity (i.e instruction)
that is activated on the microprocessor. The challenge is therefore to select two instructions,
that will result in suitable waveforms s1(t) and s2(t) and choose the best possible carrier
frequency for the given waveforms.The choice made in [3] was to look for one carrier fre-
quency where the energy emitted could be turned on and off, by executing two different
instructions.

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60
−140

−130

−120

−110

−100

−90

−80

−70

Frequency [MHz]

A
m

pl
itu

de
 [d

B
m

]

Figure 6.3: The electromagnetic signature of one instruction executed indefinite, repre-
sented as the average power density spectrum. 4206 sample points from DC to 60 MHz

Fundamental for choosing the instructions and the carrier frequency are recorded sig-
natures of the electromagnetic energy emitted from the microprocessor. A signature, as
defined in [3], is the average power spectrum densities (PDS) recorded from DC to 60 MHz
when executing individual instructions, with fixed argument, in infinite loops, see figure
6.3. Averaging is done by the spectrum analyzer and variance of the individual amplitudes
is therefore not available. Therefore, the carrier frequency of the covert channel in [3] is cho-
sen as the frequency with maximum average amplitude difference between two signatures
(distance of means). An exhaustive search is necessary to find which pair of instructions
returns the largest distance of means. These two instructions form the symbol alphabet of
the communication channel. For further detail refer to the WCCA article [3].

The obvious question know is: How to evaluate and compare the performance of the
chosen symbol alphabet and carrier frequency? A common method in other communica-
tion system is to calculate the probability of error for the channel.

6.2.3 Performance - Probability of error

For the decision rule in equation 6.1, it can be shown that the probability of error for P1 =
P2 = 0.5 can be written as:

Pe =
1
2
erfc{

√
E1 + E2 − 2γ

√
E1E2

4N0
} (6.5)
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where γ is the correlation between s1 and s2 and is given by:

γ =
1√
E1E2

∫ Tb

0

s1(t)s2(t)dt (6.6)

Calculating the probability of error using equation 6.5 requires that values for E1, E2, γ
and N0 can be obtained from the available PDS. Values for Ei and N0 are found by taking
the average of all amplitudes of the PDS within the receivers bandwidth. The waveforms
are assumed to be uncorrelated such that γ = 0; The probability of error by this method is
denoted Peopt.

Further simplifications can be made by observing that choosing the carrier frequency
according to the distance of mean method, usually finds a frequency where the PDS of
s1(t) has a large peak and the PDS of s2(t) has a very low peak (close to noise). This
basically turns the energy emitted at that frequency on and off. This is also the basic idea
of Amplitude Shift Keying (ASK) , also known as on-off keying. The probability of error
for ASK is given by:

Pe =
1
2
erfc(

√
E1

2N0
) =

1
2
erfc(

√
ε

2
) (6.7)

where ε is the average energy per bit divided by 2 times the channel noise density. The
probability of error by this method is denoted Peask. Probability of error is usually plotted
vs. ε for better comparison between systems.

The average PDS in [3] was good enough to show the feasibility of the attack and to
find a carrier frequency by calculating the difference of means. A less naive approach, will
require to take the variance of the individual amplitudes into consideration. This calls for
a revised experiment and opens up for pattern recognition techniques, as explained next.

6.3 Pattern Recognition Approach

Pattern recognition is described by Duda et al. [2] as:

The act of taking in raw data and making an action based on the ”category” of
the pattern

The design cycle for pattern recognition presented in [2] is illustrated in Figure 6.4. Each
step in the design cycle, for the revised experiment, is introduced next.

6.3.1 Collect data

Instead of measuring the average PDS as in WCCA [3], several single traces are measured.
The amplitude of each sample will then vary due to added noise in the channel. Even
though an accurate noise model may be important, the first approach assumes gaussian
distributed noise and that the noise at different samples are independent. Each sample
can then be considered as a random variable with gaussian distribution X ∼ N(µ, σ2). The
signatures used in the WCCA attack are simply the mean, µ, of all the single traces collected
in this experiment. The activity considered is, as in WCCA, the execution of individual
instructions, with fixed argument, in infinite loops. Terminology from pattern recognition
has been adapted. The classes, ωi, correspond to different activities on the microprocessor
that we would like to classify. For this experiment 5 different instructions, and noise were
measured.
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Figure 6.4: The design cycle of a pattern recognition system as described by Duda et al. [2]

class ω1 : bcf 03h, 5 switch to bank 1
class ω2 : goto empty loop
class ω3 : movlw 0xaa move binary 10101010 into w
class ω4 : nop no operation
class ω5 : sublw 0xaa subtract w from binary 10101010, store result in w
class ω6 : noise no activity (power off)

Each sample (i.e. frequency) of the measured traces is considered as a feature, such that
each class ωi is represented by d = 3006 features in a column vector Xi = {xi1, xi2, ..., xid}.
A total of n = 440 measurements was collected of each class. Each measurement resulted
in a trace of 3006 features from DC to 60 MHz, as can be seen in figure 6.5. Comparing this
trace to a trace from the original WCCA (figure 6.3), notice that the noise floor is about 20
dB higher and only 3006 samples are available. This is a limitation of the spectrum analyzer
used recently (Rhode and Schwarz FSL-6)

6.3.2 Choose Features

A feature is the carrier frequency for the covert channel. How to choose the carrier fre-
quency depends on the optimization criteria. Maximizing the range should look for the
best signal to noise ratio, but this does not necessarily give the lowest probability of error.
A large number of distance measures exist, see [5]. For the one dimensional case (one car-
rier frequency), considered here, it is computational feasible to calculate the performance
of all 3006 possibilities. First the carrier frequency will be chosen by the, naive difference
of means, approach of WCCA. The result will be compared to results from an exhaustive
search for the lowest probability of error.

For the pattern recognition case, it is straight forward to extend to more than two in-
structions (M-ary symbol alphabet) and more than one carrier frequency. This comes at a
complexity cost. The curse of dimensionality quickly becomes a reality and smarter meth-
ods for feature selection must be designed. This is work in progress.
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Figure 6.5: One trace of class 1 (bcf), represented by 3006 features. Each feature is the
amplitude in dBm of frequencies from DC to 60 MHz

6.3.3 Choose Model

The model used is simply: Activity on a microprocessor can be classified based on energy
emitted on a small finite set of frequencies. For the special case of WCCA this can be states
as: Execution of two different instructions on a microprocessor can be classified based on
the energy emitted on one frequency.

6.3.4 Train Classifier

In this approach Bayes classifier is used. Fundamental for the classification and the cal-
culation of the decision boundaries are the a priori probabilities P (ωi) and the conditional
densities p(x|ωi). The process of estimating P (ωi) and p(x|ωi), based on available data, is
called training.

Bayes principle minimizes the probability of error by choosing the maximum a poste-
riori probability P (ωi|x), related to a posteriori probability and density function by Bayes
rule [2]. The case considered in this article is two classes and one feature. With 0/1 loss
function (i.e wrong decision weighted zero, right decision weighted one) the decision rule
can be written as:

if p(x|ω1)P (ω1) > p(x|ω2)P (ω2) choose ω1 (6.8)

otherwise choose ω2. Assuming the distribution of observations X to be gaussian, X ∼
N(µ, σ2) and a priori probabilities to be equal, P(ω1)=P(ω2), the decision rule reduces to:

if
(x− µ1)2

2σ2
1

− (x− µ2)2

2σ2
2

< log
σ2

σ1
choose ω1 (6.9)

otherwise choose ω2.
This is equivalent to, choosing ω1 if h(x) < 0 and ω2 otherwise, where h(x) is given by:
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h(x) = ax2 + bx+ c where
a = σ2

2 − σ2
1 second order (quadratic) term

b = 2(µ2σ
2
1 − µ1σ

2
2) first order (linear) term

c = σ2
2µ

2
1 − σ2

1µ
2
2 − 2σ2

1σ
2
2 log σ2

σ1
constant

(6.10)

The roots of h(x) = 0 defines our decision boundary between decision regions. Two roots
means that the decision regions are not simply connected.

The goal of training is to take collected data of known classes and calculate a decision
boundary that can be used on future measurements of unknown classes. Since only 440
traces are available, 220 traces are randomly taken out to be used for testing. Based on the
remaining 220 data sets, the mean, µ and the variance σ2 are estimated, using maximum
likelihood estimators. Then the constants a, b and c of h(x) are calculated according to
(6.10) and stored. The decision boundary , and A posteriori densities P (ω1|x) and P (ω3|x)
for class 1 and 3, and feature 1070 (i.e carrier frequency 21,3 MHz), using this method are
shown in figure 6.6.

Figure 6.6: A posteriori probability densities for classes 1 and 3. Gaussian distribution as-
sumed and maximum likelihood estimator used to estimate parameters. The decision line
that minimizes the probability of error is located at the interception between the densities

6.3.5 Evaluate Classifier

For each trace reserved for testing, the set of amplitudes for the chosen feature (i.e carrier
frequency) is used to calculate h(x), using a, b and c from training. The trace is then clas-
sified according to h(x) > 0 or h(x) < 0. Since the correct class of every trace is known,
the probability of error is simple the ratio of wrong classifications to the total number of
test traces. The random split of available data does influence the result a little bit. The final
probability of error, denoted PeBayes is therefore the mean of repeating the splits, training
and testings 10 times.

66



6.4 RESULTS

6.4 Results

6.4.1 WCCA Approach

First the carrier frequency is chosen according to the difference of means method suggested
by [3]. The largest difference between any of the signatures was found between the goto
instruction (class 2) and the nop instruction (class 4). The difference was 10,4 dB for carrier
frequency fc = 23, 3 MHz. Since the resolution of the PDS’s are about 19 kHz, a narrow-
band receiver with bandwidth of 15 kHz would receive one carrier frequency at the time.
Under this assumption, using equation 6.5 and 6.7 gives the following results:

s1(t) s2(t) fc [MHz] Peopt Peask
goto nop 23,3 0.0078 0.0103

The probability of error for 50 carrier frequencies is shown in figure 6.7. The two curves
indicate what probability of error that can be expected. The horizontal line indicates the
probability of error of the carrier frequency, fc = 23, 3 MHz, chosen by the maximum
difference of means method. The result shows, not surprising, that the method to choose
carrier frequency in WCCA is not optimal in terms of low probability of error. Several of
the 49 carrier frequencies ranked after 23,3 MHz return a lower probability of error. The
lowest probability of error in Figure 6.7 is Peopt = 10−9.

Figure 6.7: The probability of error calculated for the 50 carrier frequencies, using equation
6.7 for ASK approach, equation 6.5 for the optimal digital receiver approach. The horizontal
line indicates the probability of error for the carrier frequency suggested by difference of
means method

6.4.2 Pattern Recognition approach

The results in figure 6.7 clearly show that the approach in WCCA to choose the carrier
frequency is not optimal in terms of probability of error. In the one dimensional case (i.e.
one carrier frequency), it is computational feasible to run through all the possible carrier
frequencies to choose the one returning the lowest probability of error. Doing this actually
returns 9 frequencies with PeBayes = 0 and 21 with PeBayes < 0.001, all perform better than
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the frequency chosen by the WCCA method, which returned PeBayes = 0.0023. The perfect
classification by 9 features is probably due to a limited test set of 220 traces.

Feature 1404 (i.e. carrier frequency fc = 28, 0 MHz) is an excellent example of the
difference between the two approaches. The amplitude difference between any classes for
feature 1404 is less than 2 dB. The WCCA approach is looking at the amplitude difference
of two classes in dB and will therefore dismiss feature 1404 as to low. It turn out though
that there is a very small variance of the amplitude at feature 1404 such that for a limited
set of 220 traces return PeBayes = 0.

6.4.2.1 Higher dimensions

An obvious improvement of the attack would be to exploit more of the available energy
by taking advantage of more than one carrier frequency and use a symbol alphabet larger
than 2 instructions.

WCCA only uses one out of 3006 carrier frequencies. It should be possible to achieve
better performance by utilizing more of the available energy emitted from the card. It is
therefore natural to look at what happens if more than one carrier frequency is used. Pat-
tern classification easily extends to several features. Figure 6.8 shows how two dimensions
can be used to reduce Pe. Classifying classes 2 and 3 based on feature 1170 alone gives
PeBayes = 0.2. Using feature 1170 together with 1019 gives PeBayes = 0.02. However,
unless careful choices are made, the classification can be made worse by increasing the di-
mensionality. The question is therefore: What is the best way of choosing features? There
is no trivial answer to this question and the challenge is work in progress.

Figure 6.8: Two dimensional classification performs better if features are carefully chosen

Finally it is possible to extend the symbol alphabet. For a classifier this is straight for-
ward. Preliminary results with Bayes classifier, using 5 instructions can be seen in the table
below.

The results show that the probability of error can be made very small, by using enough
carrier frequencies, if you select them correctly. As mentioned before, this is work in
progress.
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5 Instructions
Feature 1404 1804 1153 1136 1019 1170 1604 1203

Number of features: d 1 2 3 4 5 6 7 8
Performance: d features 0,239 0,110 0,051 0,019 0,007 0,003 0,002 0,001

Table 6.1: Classifying 5 instructions based on an increasing number of features (i.e carrier
frequencies)

6.5 Conclusion and Future Work

The wireless covert channel attack relies on proper choices of instructions and carrier fre-
quency to implement a covert communication channel. The performance of the choices
made, can be evaluated in terms of probability of error. Theory from a basic binary sys-
tem has been used to calculate the probability of error, based on available average power
density functions. The Results show that it is possible to achieve probability of error as
low as 10−6. It is also obvious, if not surprising, that just looking at the distance of means,
without taking the variance into consideration is far from optimal. That said, when only
one carrier frequency is used, it is feasible to do an exhaustive search for the optimal fre-
quency. The performance of the channel can easily be improved, at the cost of complexity,
by increasing the symbol alphabet and using more than one carrier frequency. A pattern
recognition approach, as illustrated by Bayes classifier in this article, looks like a promising
tool to explore this improvement. Work is already in progress on how to optimally (i.e.
minimizing probability of error) choose the number of instructions to use and the number
of carrier frequencies to use.
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Chapter 7

Electromagnetic Side-Channel: A Comparison
of Multi-class Feature Selection Methods1

Abstract

When a microprocessor executes its program, electromagnetic signals are generated as a
consequence of the power consumption associated with transistor transition. The inter-
cepted electromagnetic signal can be used to reveal the contents of program and/or data
memory of the microprocessor, exploited in a variety of attacks [12] [1] [2] [7]. Common
for these approaches is the need to map an unknown intercepted signal (trace) to a known
set of activities on the microprocessor, often based on thousand of available variables. It
is unlikely that all variables contain relevant information and a large number of variables
requires a lot of computational resources (storage and execution time). It is therefore of
interest to reduce the number of variables by selecting lower dimensional subsets or map-
ping.

This article gives an introduction to feature selection methods as well as suggestions
as to how to handle a multi-class case. We use the wireless covert channel attack [7] to
perform an application specific comparison between a selection of these methods. The
different methods are compared by classification error and computational cost. Our results
suggest use of the Greedy Forward Selection method, if preprocessing time is of no concern.
Otherwise, ranking based methods give fair results. Experimental results also show that,
in a wireless covert channel application, it is possible to classify microprocessor activity
(i.e instruction executed), with a very low probability of error, given the energy emitted
on only a few selected carrier frequencies. Implementation of a M-ary, multi carrier covert
channel with a reasonable error rate is therefore feasible.

7.1 Introduction

It is well known that microprocessors leak information about their activity through side-
channels (timing, power, electromagnetic) and in cryptanalysis, this has been exploited in
several attacks [12] [11] [4]. The Wireless Covert Channel Attack (WCCA) [7] has shown
that in manipulating the electromagnetic emanation, an adversary can construct a covert
broadcast channel. This channel can be used by the adversary to broadcast information (i.e
secrets) from the microprocessor. The attack relies on the ability to detect chosen activity
on a microprocessor by its corresponding electromagnetic signal. Analysis of the WCCA
has shown that the energy received by a small number of narrow band receivers is enough
to identify the activity on a microprocessor [6]. Expressed as a pattern recognition problem
this can be stated as: The adversary wants to detect and identify a set of classes (i.e. a set of
activities on the microprocessor) based on a set of variables (i.e. the energy on selected car-
rier frequencies) of the intercepted electromagnetic emanation. Challenges that arise are
typical for pattern recognition systems: How do we select the variables (carrier frequen-
cies)? How many variables do we included in the classification process? Other attacks,

1G.O. Dyrkolbotn and E. Snekkenes. In Proceedings of Signal Processing, Pattern Recognition and Application
(SPPRA), ACTA Press, track 643-804, 2009.
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such as the template attack [4], are also based on pattern classification techniques, and face
similar problems. Open issues include [3]: How to select the relevant samples (variables)
and how many samples are needed to construct the attack? These challenges are the fo-
cus of feature selection techniques. According to [9], the objective of feature selection is
three-fold:

Improving the prediction performance of a classifier, providing faster and more cost-
effective classifiers, and providing a better understanding of the underlying process that
generated the data.

Assume that during microprocessor activity, the electromagnetic emanation is mea-
sured to form a p-dimensional trace, ~x = {x1, · · · , xp}, where p is the number of variables
measured. Some of the p variables of ~x may not contain relevant information about the
underlying phenomenon. Therefore, the challenge is to find a lower dimensional repre-
sentation ~y = {y1, · · · , yq} where q < p, that still contains the relevant information. The
selected variables can, according to [8], be a subset or a mapping of the original p variables
of the trace. The selected variables are often referred to as features of the trace. Comparing
the effectiveness of the different feature selection methods can be based on: (i) The number
of variables needed, (ii) The amount of time required or (iii) The error rate achieved. Choice
is highly application dependent.

As a further motivation for feature selection techniques, consider the following com-
plexity considerations: The computational resources (e.g computational time) needed to
choose q ⊂ p variables depends on the method used. The simplest (smallest complexity)
method is to choose q variable by random from p. The computational cost of this method
is constant, O(1). The most expensive (largest complexity) method is an exhaustive search
of all combinations of q out of p variables. The number of combinations is given by the bi-
nomial coefficient:

(
p
q

)
= p!

(p−q)!q! . Since the number of variables, q, to include is unknown,
all subset sizes q = {1 · · · , p}must be evaluated. The number of combinations is given by:∑p
q=1

(
p
q

)
= 2p. Even a small number of (say 100) variables cumulates to approximately

1, 3 · 1030 combinations. With thousands (3006 in this paper) variables it become infeasi-
ble to perform an exhaustive search of 2p combinations. All combinations up to 10 out
of 3006 alone reaches approximately 1, 6 · 1028 combinations that must be evaluated. The
computational cost of an exhaustive search is bound by O(2p). It is therefore important
to find methods with a reasonable tradeoff between computational cost and classification
accuracy.

This article compares the multi-class classification error and computational cost of dif-
ferent feature selection methods, applied to the Wireless Covert Channel Attack [7]. The
introduction to different feature selection methods and the evaluation method used are,
however, general and could easily be applied elsewhere (i.e side-channel attacks).The phe-
nomenon studied is electromagnetic emanation from microprocessors as they execute spe-
cific programs, and involves classification of several microprocessor activities based on up
to 10 out of thousands of variables.

The following methods are compared: (i) Single Variable Classifier, (ii) Difference of
Means, (iii) Variance, (iv) Mahalalobis Distance, (v) Greedy Forward Selection (GFS), (vi)
GFS with preprocessing filters (bins, harmonics, hybrid), (vii) Principal Component Anal-
ysis and (viii) Fischer’s Linear Discriminant.

Section 7.2 presents a model of the phenomenon and the experimental setup. Section
7.3 presents the different feature selection methods. In section 7.4, the results are compared
and discussed. Finally, a conclusion is drawn and future work outlined in section 7.5.

7.2 The Phenomenon

A microprocessor typically includes; memory (program memory, data memory), CPU , I/O
and busses. A microprocessor has a functional activity which is to transform a set of input
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Operation Sequence Estimated Operation Seq.
with error

o ô Hd

add add 0
jmp sub 1
goto nop 1

D: Hamming Distance, Hd 2

Table 7.1: Hamming distance of true operation sequence o and estimated operation se-
quence ô.

bits to a set of output bits. The functional activity is determined by its program, the con-
tents of data memory and internal states. The CPU is responsible for fetching, decoding
and executing the instructions, one by one. Each instruction is typically executed using a
set of basic operations (e.g transfer, arithmetic, logic and shift). This is usually controlled by
a ”square wave” clock. The sequence of basic operations necessary to execute the program
is called the execution sequence, ~o = {o1, o2, · · · , oN}. It is well known that the majority of
the power consumed during the execution sequence depends on the number of gates that
change state. This is related to what bit values are processed and moved on various busses.
The power consumed by each operation is, therefore, a function of the instruction (opcode
and operand), the data, the address in memory and the prior state (upstate) of the micro-
processor. This relationship can be exploited by an adversary to deduce the contents of
program or data memory, otherwise kept secret. The adversary may have knowledge of, or
even be able to, chose part of the operation sequence in order to reveal specific details (e.g
run a known cryptographic algorithm for an unknown value of the cryptographic key or
alternate the execution of two different instructions [7]). The intercepted signal (trace) will
have a signal part and a noise part. Properties (features) of the trace, x, are then extracted
and used to compute an estimate of the execution sequence, ô. The estimated operation
sequence, together with known or chosen memory contents, can then be used to reveal the
contents of program or data memory that the adversary is targeting. If o is the actual but
unknown execution sequence and ô is the estimated execution sequence, this can be stated
as a pattern recognition problem:

Based on properties, x, of the intercepted electromagnetic emanation, compute ô such
that the distance D(g, x, o, ô) between o and ô is minimum for a given classifier g and the
properties x.

Hamming distance (Hd) is used to express the distance D between the true execution
sequence o and the estimated execution sequence ô. Hamming distance is an expression
of the number of estimated steps (i.e instructions) in the sequence that are different, i.e.
an expression of how many instructions that were estimated incorrectly. Let instructions
estimated correctly be labeled 0 and instructions estimated incorrectly labeled 1. Table 7.1
shows an example of an operation sequence with three instructions.

The Wireless Covert Channel Attack (see [7] for details) manipulates the electromag-
netic emanation from microprocessors by executing different instructions in loops. In its
simplest form, two instructions (i.e classes) are used with a single carrier frequency (vari-
able/feature). In [6] is it stated that in a pattern recognition context, it is straight forward to
extend to M-ary symbol alphabet (multi class) and multiple carrier frequencies (features).
Choosing multiple features comes at a complexity cost. The curse of dimensionality quickly
becomes a reality and smarter methods for feature selection must be designed. This makes
WCCA a good case for feature selection methods and is therefore used in this article.

This choice restricts the operation sequence to instructions with fixed argument. The
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objective for the classifier is therefore to recognize the instruction executed. This means
that the classifier either estimated o correctly (Hd = 0) or falsely (Hd = 1). When done
for a large set of test data, the classifiers accuracy can be calculated as the ratio of correct
classification to the total number of classification.

7.2.1 Experimental Setup

Data used to compare the different feature selection methods were collected the following
way: A program was executed on a smart card microprocessor (Goldcard, PIC 16F84A), the
program executed the same instruction with fixed argument 100 times followed by a ”goto”
instruction to repeat the program indefinitely, a large number of consecutive instructions
(limited by the program memory) reduces the effect of the ”goto” instruction.
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Figure 7.1: Unprocessed data: One measurement of instruction BCF. 3006 datapoints from
DC to 60 Mhz, each representing the emitted power in dBm.

The resulting electromagnetic emanation was measured with a transducer and a spec-
trum analyzer (FSL-6) from DC to 60 MHz with 10 kHz resolution bandwidth (RBW). This
results in a power density spectrum consisting of 3006 power measurements in dBm, as
can be seen in figure 7.1. A sweep time on the spectrum analyzer of 0, 6smeans that during
each of the 3006 power measurements, approximately 200 executions of each instruction is
carried out. Harmonics of the 4 MHz clock used on the microprocessor are clearly visible.
The fundamental frequency at 4 MHz is buried in the noise, probably due to low sensitivity
of the transducer at lower frequencies. Several peaks are visible between these harmonics
in the 20− 30Mhz region. This is emanation related to the program executed.

Five different instructions were used, as shown in table 7.2, each measured 440 times.
In some application domains, e.g side-channel attacks, one could argue that this number
should be larger. In a covert channel context, however, 5 classes are sufficient to evalu-
ate the relative performance of the feature selection methods and confirm that a symbol
alphabet greater than two (multi-class) is feasible, while keeping a low error rate.

The available data (i.e traces) can be expressed as: Xijk, where i = {1, · · · , 5} is the
instruction (i.e c = 5 classes), j = {1, · · · , 3006} is the frequency f , also called the variable,
and k = {1, · · · , 440} is the measurement number. The frequency is given by f = (j −
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Instruction 1 (ω1): bcf 03h,5
Instruction 2 (ω2): goto
Instruction 3 (ω3): movlw 0xaa
Instruction 4 (ω4): nop
Instruction 5 (ω5): sublw 0xaa

Table 7.2: A sample of the instruction executed by the microprocessor

Figure 7.2: Feature Selection techniques can be divided into three groups: variable ranking,
subset selection or feature construction.

1) ∗ 60·106

3005 . The data, Xijk therefore consist of 440 · 5 = 2200, p-dimensional (p = 3006)
individual observation traces ~x, as seen in figure 7.1.

7.2.2 Classification

All the feature selection methods presented in this article are tested with Bayesian quadratic
classifier [5]. The average classification accuracy, ācc, of 100 random split of the data set
with k = 0.5 (50% for training and 50% for testing) is used. Probability of error , Pe = 1−ācc
is used for plotting and comparison.

7.3 Feature Selection Methods

Feature selection techniques can, according to [9], be organized as illustrated in figure 7.2.
An explanation of each group and the methods used in this paper follows.

7.3.1 Variable Ranking Methods

Variable ranking methods use a score function S (e.g distance measure) to rank individual
variables [9]. This is computational efficient, since p variables only requires p computa-
tions. The individual scores for each variable are sorted and q < p extremities are selected.
The drawback is that correlations between variables are disregarded. The method may
therefore ignore low scoring variable that work excellent together or include high scoring
variables, with negligible contribution, due to high correlation with already selected vari-
ables. The simplicity of ranking based methods will, however, make them a good starting
point.
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7.3.1.1 Single Variable Classifier:

Single Variable Classifier (SVC) ranks individual variables by their performance (i.e. error
rate, Pe) with a given classifier (e.g. Bayes). The score function for variable j, given a
classifier with discriminating function g, can be written as:

S(j) = Pe(g, j) (7.1)

The q variables with the lowest probability of error, Pe(g, j), are selected.

7.3.1.2 Difference of Mean:

Difference of Mean (DOM) is a very simple method also used in early DPA attacks [12]
and WCCA [7]. The mean of all observations k, for class i and variable j is given by:
µij = 1

n

∑n
k=1Xijk. The score function for variable j between class m and n can be written

as:

Smn(j) = abs(µmj − µnj) (7.2)

For c=2 classes, there is only one score, S12, for each variable. A simple sort will reveal
the highest scoring variables. For c > 2 there are c(c − 1)/2 scores for each variable that
must be combined into a single score. Two approaches have been used in this paper: Mean
Difference of Means that calculates the mean of the c(c-1)/2 distance scores, and MaxMin
Difference of Means, that finds the minimum of the c(c-1)/2 scores and selects the q vari-
able with the largest minimum distance. This ensures a minimum distance between any
classes.

7.3.1.3 Variance:

Assume that variables with a small variance within each class are less likely to overlap than
those variables with a larger variance. Under this assumption, selecting variables with a
small variance could serve as a ranking method. The variance of variable j for class i is
given by σ2

ij = 1
n−1

∑n
k=1(Xijk − µij)2. The score function for variable j is chosen as the

mean of the variance σ2
ij for all c classes, given by:

S(j) =
1
c

c∑
i=1

σ2
ij (7.3)

The q variables with the lowest mean variance, minS(j) are selected.

7.3.1.4 Mahalanobis:

Intuitively, it makes sense to take into consideration both the between-class distance and
the within-class distance (spread). This is referred to as one-dimensional Mahalanobis dis-
tance, or Fischer’s criteria [9]. The score function, Smn(j), for variable j between class m
and n can be written as:

Smn(j) =
(µmj − µnj)2

σ2
mj + σ2

nj

(7.4)

As with difference of means this gives c(c − 1)/2 scores for each variable. Two multi-
class approaches, as described with difference of mean, will be used, Mean Mahalanobis
Distance and MaxMin Mahalanobis Distance.
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7.3.2 Variable Subset Selection Methods

Another group of methods is variable subset selection [9]. It can easily be shown that vari-
ables which are useless by themselves, can be useful when used together with other vari-
ables [9]. Therefore, the idea is to select subsets of variables that work well together, rather
than looking at their individual performance. The methods can be divided into wrappers,
filters or embedded methods [9]. Wrappers selects subsets of variables and uses a classifier
to evaluate the performance of each subset selection. Filters are similar, but are used as
a pre-processing step independent of the choice of classifier. Embedded methods selects
the subsets as part of the training process. An exhaustive search is generally necessary to
guaranty optimal selection, but is usually considered infeasible. In this article, one wrapper
(Greedy Forward Selection, GFS) will be used. In addition, knowledge of the phenomenon
will be used to suggest a few filters. These filters will be used as a preprocessing step to
GFS and other methods explained later.

7.3.2.1 Greedy Forward Selection:

Greedy Forward Selection (GFS) is a semi-exhaustive search for the variable subset that
gives the highest classification accuracy [9]. The method is optimal if local minimum equal
global minimum. The classification accuracy is first calculated for all variables individually
as in SVC. The variable with the highest accuracy is selected. In each iteration thereafter,
the variable that, used together with previously selected variables, most increases the clas-
sification accuracy is selected. The method is greedy, as it never looks back and reevaluates
variables already selected. In each iteration one more variable is added. For p variables,
this method requires p calculations in the first round, p-1 in the second round, etc. The
total number of calculation when selecting q variables is: p+(p−q+1)

2 · q. For p = 3006 and
e.g q = 10 variables, this requires 30015 iterations. Notice that GFS is not able to distin-
guish between variables after zero probability of error has been reached, because adding
any variable will not improve the score.

7.3.2.2 Preprocessing filter - Bins:

One observation or trace, ~x consists of p variables. This can be thought of as p non-
overlapping intervals (bins) with one variable in each bin. Reducing the number of vari-
ables can be achieved by reducing the number of bins to q < p, while increasing the size at
the same time. Each bin will then contain more than one variable. E.g. with p = 3006, using
167 bins will result in 18 variables in each bin, equivalent to approximately 320 kHz band-
width. Each bin can then be represented by the integrated power of all variables within
the bin, thus reducing the number of variables to q. This method has been evaluate as a
preprocessing step to the GFS method.

7.3.2.3 Harmonics Preprocessing Filter:

Assume that the waveform generated by the power consumption of a microprocessor goes
through a Linear Time-Invariant (LTI) system before appearing as electromagnetic emana-
tion outside the microprocessor device. A LTI system may affect the amplitude and the
phase of the waveform, while the frequency contents will remain unchanged [13].

Due to the aperiodic nature of the signals found in a microprocessor, it is well known
that the expected frequency spectrum will be continuous [13]. However, observations show
that the majority of the energy is concentrated in the harmonics of the fundamental fre-
quency of these signals. Since a clock signal is used to synchronize the activity of a micro-
processor device, the fundamental frequency of the clock will also be the fundamental fre-
quency of these signals as well. Most of the power will therefore be found at the harmonic
frequencies of the microprocessors clock signal. Therefore, under the LTI assumption, we
expect to find the majority of the emitted power in the harmonics of the clock frequency
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as well. Another dominant frequency component is the instruction execution cycle. There-
fore, it is expected to find power concentration around the harmonics of this cycle as well.

A simple preprocessing filter could therefore be to select only the samples at the har-
monics of either the clock frequency or the instruction execution cycle. In this experiment,
the clock frequency is 4 MHz. One instruction is executed in 4 clock cycles, therefore, har-
monics of the instruction execution cycle are found every 1 MHz. Both 4 MHz and 1 MHz
harmonics have been evaluated as a preprocessing step to the GFS method.

7.3.2.4 Hybrid:

The bins and the harmonics methods both have limitations. The bin method risks getting
the harmonics on the boarder of two bins, splitting relevant power into two different bins.
The harmonics method ignores the possibility of relevant power emission to be found in a
window around the harmonics, rather than exactly at one sample. Both these problems can
be addressed by selecting non-overlapping bins centered at the harmonics. This method is
called the hybrid method. In this paper, a bin size of 7 variables is used. The power of the
harmonics and +/ − 3 variables (approximate 120 kHz bandwidth) are integrated to form
the new variables. This has been done for both the 4 MHz and the 1 MHz harmonics. A
reduction from 3006 variables to 14 and 59 variables respectively, is achieved by the hybrid
method. The hybrid filter can be implemented as a comb-filter. The performance of both
hybrids were evaluated as a preprocessing step to the GFS method.

7.3.3 Feature Construction Methods

Finally, if reducing the dimensionality of the data is not necessary for storing or processing
purposes, different mappings of the raw data can be used. Dimension reduction tech-
niques, also called feature construction [9], can be divided into two major types: linear and
non-linear. Examples of such techniques include: clustering, principal component analysis,
linear discriminant analysis, fourier transforms and wavelets. In this paper the two classi-
cal linear transformations, Principal Component Analysis (PCA) and Linear Discriminant
Analysis (LDA) have been tried. A description of PCA and LDA can be found in numerous
textbooks, such as [10] and [5].

7.4 Comparison and Discussion

Recall the three objectives of feature selection as stated by [9]: (i) Improve the prediction
performance of a classifier (ii) Faster/more cost effective classifiers (iii) Better understand-
ing of the phenomenon. In this paper, 6 variable ranking methods and 6 variations (with
and without preprocessing filters) of Greedy Forward Selection subset method have been
used to select 10 out of 3006 variables. In addition, two construction techniques (PCA and
LDA) have been tested. Classification of 5 classes where achieved using Bayes quadratic
classifier with features selected by the various methods. The classification error (from con-
fusion matrix) using features selected by the ranking methods are shown in figure 7.3 and
the subset methods are shown in figure 7.4. The best ranking and subset methods and the
construction methods are compared in figure 7.5. The probability of error is plotted as a
function of the number of features selected. The frequency corresponding to each feature
is found in table 7.3. This would be the carrier frequencies used by the covert channel.
The execution time, as a function of the number of features selected, is shown in figure 7.6
for ranking based methods, and in figure 7.7 for subset based methods. All ranking based
methods depend on the number of variables, p, but not on how many variables are selected
q. The execution time of the subset methods depends on both the number of variables p
and the number of variables selected q. Execution times were obtained using Matlab on a
2, 33 GHz, 2 GB RAM, windows PC.
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Figure 7.3: Error performance of ranking based feature selection methods

Figure 7.4: Error performance of subset based feature selection methods

7.4.1 Faster/more cost effective classifiers

As seen in figure 7.3, of the ranking based methods, Single Variables Classifier (SVC) gives
the best performance, except when using 3-6 variables where it is outperformed slightly by
Mean Difference of Means (DOM). Using 9 variables selected by SVC achieves zero prob-
ability of error (Pe = 0). SVC is, however, more than 1000 times slower than the other
ranking methods including DOM, which is the fastest ranking method used (figure 7.6 and
7.7). Looking at the probability of error (figure 7.5), ranking methods are generally out-
performed by subset selection methods, since the latter also looks for correlations between
variables.
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Figure 7.5: Comparing the error performance of ranking based, subset based and construc-
tion based feature selection methods

Figure 7.6: Execution time of ranking based feature selection methods

The GFS subset method gives the lowest probability of error of any ranking and subset
method, regardless of the number of variables, as it should under the assumption that local
minimum is global minimum. Pe = 0 can be achieved using seven variables (q=7) (figure
7.4). This comes at an increase in execution time from 18 minutes (SVC) to almost 5 hours
(GFS), the highest of any method. The execution time with GFS can be greatly improved
by using a preprocessing filter. The best filter tested is the 1 MHz hybrid filter (i.e. 1 MHz
comb filter, BW 120 kHz). GFS on the output of this filter achieves Pe = 0 using 8 variables,
but cuts the execution time from 5 hours down to about 4 minutes.
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Figure 7.7: Execution time of subset based feature selection methods

Method Feature
1 2 3 4 5 6 7 8 9 10

Single Variable Classifier 28,0 36,0 32,0 23,0 24,0 22,7 20,3 23,3 25,3 22,3
Mean - Difference of Means 23,7 22,7 20,3 25,3 23,3 22,3 21,3 26,7 24,3 21,7

Maxmin - Difference of Means 20,3 22,7 23,3 25,3 21,3 29,3 28,7 24,7 20,7 23,7
Minimum - Mean Variance 28,0 52,0 44,0 60,0 24,0 32,0 20,0 36,0 40,0 16,0

Mean Mahalanobis 28,0 24,0 32,0 36,0 20,0 52,0 44,0 23,0 16,0 21,0
Maxmin Mahalanobis 28,0 36,0 24,0 16,0 21,0 23,0 52,0 44,0 60,0 19,0

Greedy Forward Selection (GFS) 28,0 25,3 23,0 24,3 36,0 20,7 19,3 NA NA NA
GFS preprocessed - bins (320 kHz) 24,8 22,2 19,7 20,3 28,6 18,7 26,7 20,6 23,2 2,7

GFS preprocessed - 1MHz harmonics 20,0 22,0 21,0 19,0 30,0 32,0 23,0 10,0 18,0 31,0
GFS preprocessed - 4MHz harmonics 20,0 32,0 12,0 24,0 44,0 52,0 8,0 16,0 48,0 36,0

GFS preprocessed - 1 MHz Hybrid 28,0 25,0 23,0 22,0 32,0 24,0 40,0 37,0 8,0 2,0
GFS preprocessed - 4 MHz Hybrid 28,0 36,0 24,0 32,0 40,0 20,0 16,0 56,0 8,0 44,0

Table 7.3: s

elected features correspond to.]The table shows what frequency [MHz] selected features corresponds too.

7.4.2 Better understanding of the phenomenon

The bin filter, with 320 kHz bandwidth, also performs well, but the 4 MHz filters and 1
MHz harmonics filter all have poor performances. This performance difference between
the different filters has indicated a few thing about the underlying phenomenon. Har-
monics of the clock frequency and the instruction execution cycle are often selected. The
harmonics of the clock frequency alone is not enough for accurate classification. A single
variable at the harmonics (i.e. smallest possible bins size, determined by the measurement
setup) is too small, a certain bandwidth around the harmonics is necessary. This may be
explained by measurement error due to clock jitter or that relevant information is spread
over larger frequency ranges (i.e not associate with single narrow band carriers). In either
case a bandwidth or bin size that includes relevant information, is essential.

Counter-measures exists that aim to eliminate information carried by the clock har-
monics. Therefore, it is worth mentioning that the DOM method does not select a single
harmonics but still gives fair results, with a classification error about Pe = 1 · 10−3 with 10
variables. DOM is also one of the quickest methods tested.
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7.4.3 Improve the prediction performance of the classifier

Finally, the two construction techniques were tested. Results from using PCA and LDA
show that the classification accuracy can be significantly improved by using linear com-
binations of variables. Fischer LDA, used with the 1 MHz hybrid filter, achieves Pe = 0.
PCA has excellent performance for q < 5, but does not improve further for q > 5. The
experiment used in this article is not designed well enough to draw any conclusion about
the best way to improve the prediction performance. With the available data, it is possible
to achieve ”perfect” classification. This can be achieved using 9 variables selected by the
SVC method, 7 variables using GFS method or by using Fischer’s LDA. The perfect clas-
sification accuracy could be due to limited data set and an improved experiment should
therefore be carried out.

7.5 Conclusion and Future Work

In this paper we have introduced feature selection methods and compared a selection of
them by their performance in a wireless covert channel application.

Experimental results show that, in a wireless covert channel application, it is possible to
classify several microprocessor activities (i.e instruction executed), with a very low proba-
bility of error, given the energy emitted on only a few selected carrier frequencies. Imple-
mentation of a M-ary, multi carrier covert channel with a reasonable error rate is therefore
feasible.

During the design phase of a classifier, 5 hours of processing time to select which fea-
tures to use, is often not a problem. In that case, the Greedy Forward Selection Method
would be the best choice. If time is of the essence, ranking based methods such as Sin-
gle Variable Classifier or even Mean Distance of Means, give fair results. Using domain
knowledge to build a good preprocessing filter, such as the suggested 1 MHz comb filter,
significantly reduces the execution time with a small reduction in performance, compen-
sated by using a few more variables. The error performance achieved with construction
techniques, such as PCA and LDA, is encouraging for future work. The results also sug-
gest that harmonics of the clock and instruction cycle are important for classification, but
that classification can be done without harmonics as well.

Finally, we believe that the results in this article serve as a good platform for future,
in-depth investigations of the phenomenon. Further work should include an experiment
looking at real time date (time domain data) collected from several microprocessors with a
larger number of microprocessor activities over a larger frequency range.
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Chapter 8

Modified Template Attack: Detecting Address
Bus Signals of Equal Hamming Weight1

Abstract

Side-channel attacks usually target implementations of cryptographic algorithms on smart
cards or FPGA’s, but can also be used to recognize other microprocessor activities, such
as program, instruction or argument executed. One particular article by Quisquater and
Samyde [18] demonstrates how to automatically reverse engineer software code, based on
power and electromagnetic signatures. In their article, it is stated that data/addresses of
equal Hamming Weight (HW), such as 55 and AA cannot be distinguished without using
localization principles (i.e positioning of tiny probes to identify the location of the emana-
tion). Recent methods, such as the Template Attack [7] has overcome this limitation. This
is achieved by building precise noise models using identical devices, prior to the attack.
Key bytes or intermediate values of cryptographic algorithms, i.e data transfers , can be
distinguished, using a Bayesian classifier, even for byte values of equal HW [7].

In this article we present experimental results, validating that the Template Attack can
distinguish very similar micro processor activities. Using a modified Template Attack on
electromagnetic emanation from smart cards, we are able to distinguish parallel address
bus activities of equal HW. We also present an alternative method to select the application
specific features necessary (i.e points of interest).

8.1 Introduction

When a microprocessor executes its program, electromagnetic signals are generated as a
consequence of the power consumption associated with transistor transition. The inter-
cepted electromagnetic signal can be used to reveal the contents of program and/or data
memory of the microprocessor. The relationship between electromagnetic emanation (or
power) and microprocessor activity is used in side-channel attacks to break cryptographic
algorithms [14, 3, 10, 15]. The side-channel information has also been used to reveal hid-
den hardware faults (trojans) on integrated circuits [4], to control the emanation through
subversive software in the Wireless Covert Channel Attack [9] and to to reverse engineer
the code executed by microprocessors [18].

The model used in these attacks are often based on the Hamming Weight (HW) or the
Hamming Distance (HD) of the code or data handled [15]. HW is simply the number of
bits set to one, and HD is the number of bits that are different. For two binary values
X and Y , both with length l, hamming distance is given by HD(X,Y ) =

∑l
i=1Xi ⊕ Yi.

Consider a parallel bus (e.g the address, data or control bus of a microprocessor), with
n wires (w1, · · · , wn) transmitting data simultaneously. There will be emanation associate
with each rising and falling edge on each bus wire, as seen in figure 8.1. If the ”square
wave” has equal duration to the bit interval, it is called non-return to zero (NRZ) and the
emanation is related to the hamming distance of the data. If the duration of the square

1G.O. Dyrkolbotn and E. Snekkenes. In Proceeding of Annual Norwegian Information Security Conference (NISK),
Tapir, pages 43-56, 2009.

85



8. MODIFIED TEMPLATE ATTACK

wave is smaller than the bit interval, it is called return to zero (RZ) and the emanation is
related to the Hamming Weight (HW) of the data. Pre-charge bus is one type of RZ.

Figure 8.1: Expected emanation from a parallel bus. The emanation from RZ signal types
(left) is proportional to the HW of the data. The emanation from NRZ signal types (right)
is proportional to the HD of the data.

This figure illustrates the simplest of all models. All transition lines are synchronized
and the waveforms on all bus lines are identical. It is easy to see that, given this model,
the emanation is proportional to the number of transitions. This makes it straight forward
to identify data with different HW (RZ case) or HD (NRZ case). It is also clear that data
of equal HW (RZ case) or equal HD (NRZ case) give the same emanation. This is in ac-
cordance with the statements in [18] that, ”Two consecutive addresses with the same HW
generate two identical power peaks”. The data/address, such as b10101010 and b01010101,
should therefore be impossible to distinguish, without using localization principles with
extremely small probes.

Results claimed by the Template Attack contradicts this. S. Chari et.al [7] claim that
they are able to distinguish signals of equal HW. This means that there are phenomenon,
not covered by the simple HW-model, that influence the electromagnetic emanation and
make it possible to distinguish very similar microprocessor activities, such as data of equal
HW (RZ) or HD (NRZ). It is beyond the scope of this article to study such phenomenon.
Using a more general models not constrained to synchronous transition lines and identical
waveforms is work in progress.

It looks like the results in [7] are obtained using the data bus or even loading from
EEPROM. We are interested in applying a Template Attack to see if we can obtain similar
results on activities expected to have a smaller signature, e.g the address bus. We have,
therefore, conducted an experiment to validate that the Template Attack can distinguish
very similar microprocessor activities. The experiment looks at electromagnetic emanation
from address bus activity (as opposed to data bus activity usually targeted) on a micropro-
cessor in a smart card. The results, presented in this article, support that data of equal HW
(i.e address bus values) can be classified. The probability of error using a single observation
is, however, large. In certain scenarios this can be improved by considering more than one
electromagnetic trace. This is future work. This paper is organized as follows: Section 8.2
presents necessary theories concerning the workings of microprocessor, side-channel at-
tack and the Template Attack in particular. Section 8.3 presents the experimental setup and
data collection. Section 8.4 presents a method for analyzing the data. Finally a conclusion
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is drawn and future work outlined in section 8.5.

8.2 Microprocessors

A microprocessor typically includes memory (program memory, data memory), CPU , I/O
and busses. A microprocessor has a functional activity which is to transform a set of input
traces to a set of output traces. The functional activity is determined by the program, a
set of instructions stored in program memory, and the contents of data memory. The CPU
is responsible for fetching, decoding and executing the instructions, one by one. This is
usually controlled by a ”square wave” clock. E.g. the PIC 16F84A microprocessor executes
instructions during 4 clock cycles as shown in figure 8.2 (a few exceptions exists). Pipelin-
ing is used to fetch the next instruction while the current instruction is executed. In clock
cycle 1 (Q1) the current instruction is decoded at the same time as the program counter
is incremented. In Q2, data is read if applicable. In Q3, data is processed according to
the current instruction. Finally, in Q4, any results are stored at the same time as the next
instruction is moved into an instruction register.

It is well known [15] that the majority of the power consumed during the execution
sequence depends on the number of gates that change state. This is related to the current
state, which bit values are processed and which bit values are moved on various busses.
The power consumed by each operation is therefore a function of the instruction (opcode
and operand), the data, the address in memory and the prior state (upstate) of the micro
processor. This relationship has long been exploited in side-channel attacks.

Figure 8.2: Execution cycles and pipelining of microprocessor PIC 16F84A.
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8.2.1 Side-Channel Attacks

It is possible to use the second law of thermodynamics to show that energy must escape
from devices in one way or another (e.g. heat) [11]. The laws of physics explain that it is
impossible for any operating device not to leak energy. The goal of side-channel attacks is
to look for dependencies between this unavoidable energy leakage and the device’s secret
parameters.

Exploiting this leakage is not new. Military and government organizations have sup-
posedly used them for a long time, with public interest beginning much later. In 1996
Kocher [13] published his work on exploiting differences in execution time (Timing At-
tacks). This work was soon followed up and in 1999 Kocher et al. [14] introduced some
powerful attacks through measurement of a device’s power consumption. Simple Power
Analysis (SPA) and Differential Power Analysis (DPA) received some attention from, amo-
ng others, the banking industry, and countermeasures were publicly announced. In 2000,
Quisquater and Samyde [16, 17] applied the analysis technique from SPA and DPA to elec-
tromagnetic side-channels, thus introducing electromagnetic analysis (EMA).

In recent years several papers have been published in an ongoing effort to systemati-
cally investigate electromagnetic side-channel attacks [3, 7, 2, 1, 5]. The experiments have
been extended to some distance from the target, implying that physical access to the tar-
get may not be necessary. It has been shown that EMA is at least as powerful as power
analysis, and that EMA could circumvent power analysis countermeasures [3, 19].

At USENIX 2002 [18], Quisquater and Samyde described an automatic method to clas-
sify instructions, carried out by a simple CISC processor. The power and electromagnetic
signature of instructions were captured and then used to train a neural network (Koho-
nen’s self organizing maps). The neural network could automatically recognize, and thus
reverse engineer, executed code based on stored electromagnetic and power signatures in
93 % of the cases. The signatures were shown to be a function of the address in memory,
data handled and address where the result is stored. A limitation of the approach was that
data/address of the same HW were impossible to distinguish. E.g. in [18] it is shown that
the same instruction executed from address 55 and AA will give identical signatures. The
Template Attack by S.Chari et.al [7] overcomes this limitation by using Bayesian classifica-
tion methods. This is described next.

8.2.2 Template Attack - Classification Using Bayesian Methods

The Template Attack is nothing but Bayesian Classification, where the noise is assumed to
follow a Gaussian distribution. Therefore a thorough description of Bayesian classification
is given. As with all classifiers, feature selection is important. This is explained later during
the analysis of the captured data.

Consider a finite set of classes, {ω1, · · · , ωc}, e.g. execution of c different instructions on
a microprocessor. Measurements of any class, results in observations of d variables held
in a d-dimensional vector ~x. P (ωi) is the prior probability of class ωi being observed. Let
p(~x|ωi) be the a priori class conditional density of ~x being observed given that class ωi was
measured. Faced with an observation ~x of unknown class, classification is interested in the
probability of this observation belonging to the different classes, ωi. This is expressed by
the posteriori probability P (ωi|~x) which can be calculated using Bayes rule (equation 8.1):

P (ωi|~x) =
p(~x|ωi)P (ωi)

p(~x)
(8.1)

where p(~x) the total probability is given by p(~x) =
∑c
i=1 p(~x|ωi)P (ωi).

Given features ~x of unknown class, the question is how to decide what class to assign ~x
to. Generally a decision must be made based on the features ~x and a loss function, λij . Let
λij be the loss if the decision is ωi when the true class is ωj . In the following, a zero-one loss
function will be used, where a correct decision gives no loss, and a wrong decision gives a
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unity loss, equation 8.2.

λij =
{

0 i = j
1 i 6= j

i, j = 1, · · · , c (8.2)

Bayes decision rule can be stated as: decide in favor of the class that minimize the
probability of error. For the zero-one loss function this will be the class with the maximum
a posteriori probability P (ωi|~x).

Choose ωi if P (ωi|~x) ≥ P (ωj |~x) for all j ∈ 1, · · · , c (8.3)

A classifier is often represented by a discriminating function, gi(~x), i ∈ 1, · · · , c. gi(~x) is
such that we choose ωi if

gi(~x) ≥ gj(~x) for all j ∈ 1, · · · , c (8.4)

The discriminating functions divide the feature space into decision regions, separated by
decision boundaries. It is often useful to realize that any monotonically increasing function
f can be applied to gi without affecting the classification result. For Bayes decision rule
(equation 8.3) this means that any of the following discriminating function yield the same
result:

gi(~x) = P (ωi|~x) (8.5)
gi(~x) = p(~x|ωi)P (ωi) (8.6)
gi(~x) = ln p(~x|ωi) + ln P (ωi) (8.7)

As seen in equation 8.7 the discriminating function gi for Bayes classifier is determined
by the prior probability P (ωi) and the prior conditional density function p(~x|ωi). P (ωi) is
usually known or easily calculated, however p(~x|ωi) must be estimated based on available
measurements of known class (training the classifier). If a multivariate Gaussian distribu-
tion can be assumed, as the Template Attack [7] does, then, p(~x|ωi) ∼ N(Mi,Σi):

p(~x|ωi) =
1

√
2π

d|Σi|1/2
e−

1
2 (~x−Mi)

TΣ−1
i (~x−Mi) (8.8)

where Mi is the mean vector, Σi the covariance matrix and T denotes transposition. Using
the discriminating function from 8.7 and the Gaussian multivariate assumption 8.8 we get:

gi(~x) = −1
2

(~x−Mi)TΣ−1
i (~x−Mi)−

d

2
ln2π − 1

2
ln|Σi|+ lnP (ωi) (8.9)

Expressed as a quadratic function for the case of arbitrary covariance matrixes Σi we get:

gi(~x) = ~xTAi~x+ ~xTBi + Ci where (8.10)

Ai = −1
2

Σ−1
i

Bi = Σ−1
i Mi

Ci = −1
2
MT
i Σ−1

i Mi −
1
2
ln|Σi|+ lnP (ωi)

where xT and MT is the transposed of x and M respectively. The coefficients of the dis-
criminating function, Ai, Bi and Ci for the quadratic classifier can be pre-computed using
a set of training data with known class. Training data is obtained using an identical device
prior to the attack. In the Template Attack [7] maximum likelihood estimates (mle) for Mi

and Σi are used, given by:

M̂mle =
1
n

n∑
i=1

xi (8.11)
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Σ̂mle =
1
n

n∑
i=1

(xi − M̂)(xi − M̂)T (8.12)

The tuples (M̂mle,Σ̂mle) are the templates for each activity of interest. Upon receiving
an observation of unknown activity, classification can be done according to equation 8.4.

Once the coefficient of the discriminating function (equation 8.10) has been estimated,
the real attack can be lauched, but often the questions is: How good is the classifier? Usu-
ally a limited set of data is available for both training and testing. By reserving a portion
of the data for testing (leave out k), the accuracy can be found as the ratio of correct clas-
sification to the total number of classifications performed (based on a confusion matrix). It
is important not to use the same data for training and testing. The accuracy will vary, de-
pending on how the data was split. It is therefore common to randomly split the data into
training and testing sets several times, and use the average accuracy as the performance
for the classifier. Classifying more than two classes can be done in two ways, Pairwise
manner or Bayes method [8]. Both produces the same result, since classification is based
on maximizing the posteriori probability. Pairwise classification compares two classes and
compares the third class with the result of the first comparison etc. Bayes method calculates
the quadratic function for all classes and chooses the maximum result.

8.3 The Experiment

The objective of the experiment is to validate that the Template Attack can detect small
changes on a parallel bus, such as signals of equal HW. In order to do so, a large amount of
data is necessary for training and testing of the classifier.

A smart card (i.e PIC 16F84A microprocessor, 4 MHz clock) executing a test code was
place in a screened enclosure. The emanation was captured using an broadband E near-
field probe positioned as close to the microprocessor as possible, without decapsulation.
Expecting small changes in rise/fall time to manifest itself at high frequencies, a digital
oscilloscope was used at 10 Gs/s sampling rate.

The main challenge in this experiment was to design the test code to isolate activity on
a parallel bus, with limited interference from other activities. Looking at the pipelining
in figure 8.2, two options are evident, a read operation exiting the data bus in clock cycle
Q2 or a move operation exciting the address bus in Q4, as explained in 2.1. Since the
main objective of the experiment is to investigate if we can detect and classify very similar
microprocessor activities, it makes sense to choose activity expected to give the smallest
signature, such as the address bus, rather than the data bus.

Designing the test code presents a couple of challenges. First, how do we reduce em-
anation from other components? The address bus is used during the move operation in
Q4, simultaneously with the write operation. The write operation can be eliminated by us-
ing the NOP instruction, which has no activity during this operation. The move operation
moves the next instruction into the instruction register from a given memory location, ac-
tivating both the address bus and the program bus. If the instruction is the same each time
(e.g. only NOP’s) there is no change on the program bus. The emanation in the move oper-
ation is therefore only associated with the memory location (i.e value on the address bus)
of the instruction. Secondly, how do we create a test pattern for the address bus? Deciding
the value of the address bus is much less flexible than on the data bus. On the data bus a
simple move instruction can decide the value directly, but on the address bus the value is a
function of where in memory the next instruction is found. The test code designed for this
experiment executes 128 NOP’s in a loop. The values on the 13 bit address bus (disregard-
ing the 5 MSB, as they never change) will increment from b0000 1010 to b1000 1001, giving
sufficient combinations to evaluate our hypothesis. A ”trigger” toggles the I/O pin on the
smart card. This is used to synchronize the oscilloscope and the microprocessor, enabling
alignment of the executed code with the measured data. Figure 8.3 shows three consecutive
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NOP’s, each 1 µs, separated by vertical lines. Emanation from 8 edges are clearly visible in
each NOP, 2 for each of the 4 clock cycles.

Figure 8.3: Three consecutive NOP’s, each 1 µs. The 8 edges of 4 clock cycles in each NOP
are clearly visible

A total of 1000 traces (observations), each recording one execution of the loop, were
collected. The next section presents a method for analyzing the data. During this, when
the word instructions is used, it refers to the address where the instruction is found (i.e
value on the address bus).

8.4 Analysis

In order to perform the Template Attack on the recorded data, it is necessary to select which
variables (i.e data points) to use. Each observation of one executed NOP contains 10000
variables, such that the trace in figure 8.3 consists of 30000 variables. The relevant variables
for classification are sometimes referred to as points of interest [7] [20] and other times
features when pattern classification terms [8] are used. The features will be a subset and/or
a transformation of the available variables in each trace. The selected features are then used
to train (calculate the the templates) the classifier and evaluate its expected performance in
a real attack.

8.4.1 Feature Selection

It is unlikely that all variables (i.e. data points) contain relevant information, and a large
number of variables requires a lot of computational resources (storage and execution time).
It is therefore of interest to reduce the number of variables used by a classifier. In the
original attack [7] selection was based on calculating the difference of mean traces. Later
other suggestions have been made, such as ranking by sum of mean differences [20] or
Principal Component Analysis (PCA) [6]. There has also been attempts using a fourier
transform prior to selection appropriate variables [20]. These methods are usually ”best
practice” as the optimal algorithm is highly application dependent. Our suggestion tries to
eliminate some of the choices by basing the selection on calculated scores.
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Figure 8.4: The distance, dl118,119, l = 0.7−2.3·10−6 sec., between NOP number 118 (HW=7)
and NOP number 119 (HW=1)

8.4.1.1 Select a Time Domain Window

The objective is to identify a time domain window that contains relevant emanation, suit-
able to classify instructions (i.e values on the address bus) and remove emanation that
contribute negative to the classification. A distance measure is used on ”easy” instructions
(i.e one with low HW and one with high HW, expected to have strong emanation), to eval-
uate the different window selections. Windows that look promising (i.e high score) in the
”easy” case are used for all other cases. Available data within a window l can be expressed
as: X l

ij ,where i = {1, · · · , 128} is the instruction (i.e NOP at different memory locations)
and j = {1, · · · , 1000} is the observation number. The objective of a score function S is to
find samples in the time domain window where the distance between observations of the
same instruction is short and the distance between observation of different instructions is
long. There are many score functions that have this property. The following simple score
function between instruction a and b is used:

Sla,b,i,j,k =
|X l

ai −X l
bj |

|X l
ai −X l

ak|
(8.13)

This score function is used to calculate the distance between instruction a and b expressed
by:

dla,b =
1
n

∑
i,j,k=V

Sla,b,i,j,k (8.14)

where V is a list of n random triplets (i.e permutations) drawn from the available obser-
vations, i, j and k = {1, · · · , 1000} and i 6= k. We used n = 1000 in this experiment. In
our case the emanation is expected to be found in clock cycle Q4 of the fetch cycle. The
execution of each NOP is defined to start at the peak of the rising edge of clock cycle Q1
and continue for 1 µs (i.e 10000 samples). The distance, dl118,119, between NOP number 118
(address b01111111, HW=7) and 119 (b10000000 ,HW=1) is shown in figure 8.4. With HD=8
between the two addresses this is considered one of the ”easy” cases.
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Figure 8.5: Frequency domain representation of Q4 (i.e. first half), using Welch spectral
estimation method.

It is clear from figure 8.4 that the highest distance is obtained in the first half of Q4 (i.e
rising edge of the clock) during the fetch operation of the instruction. This is the clock cycle
where the instruction is transferred to the instruction register. This corresponds to what we
expect and these differences are therefore likely to be caused by the differences in data on
the address bus. The window identified (first half of Q4) will be used for further analysis.

8.4.1.2 Calculate a Frequency Domain Representation

While the selection of a time domain window is done purely to save computational and
storage resources, it has been shown [20] that a transformation into the frequency domain
can affect the classification accuracy. In this work a frequency domain representation is
obtained using Welch non-parametric estimation method. Welch is the average of overlap-
ping periodograms. The time domain window previously chosen is 1024 samples wide.
Welch was used with a 512 sample window with 75 % overlap. The frequency representa-
tion therefore consists of 257 samples (i.e DC to fs/2), where fs = 10Gs/s, as seen in figure
8.5. A subset of the variables in the frequency representation is used as features necessary
to train and test a classifier. The features are selected using Greedy Forward Selection (GFS)
explained next.

8.4.1.3 Greedy Forward Selection

Greedy Forward Selection (GFS) is a semi-exhaustive search for the variable subset that
gives the highest classification accuracy [12], where variables in this case are the samples
in the frequency domain representation (figure 8.5). GFS is optimal if local minimum equal
global minimum. The classification accuracy is first calculated for all variables individu-
ally and the variable with the highest accuracy is selected. In each iteration thereafter, the
variable that, together with previously selected variables, most increases the classification
accuracy is added. The method is greedy as it never looks back and reevaluates variables
already selected. In each iteration one more variable is added. For p variables, this method
requires p calculations in the first round, p-1 in the second round, etc. The total number of
calculation when selecting q variables is: p+(p−q+1)

2 · q.
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Figure 8.6: Probability of error when classifying address bus values of increasing HD (left)
and equal HW (right).

8.4.2 Train and Evaluate the Classifier

Given 1000 observations of each address bus value, 200 observation will be used to train
Bayes quadratic classifier [8] and the remaining 800 will be used for testing the classifier.
The probability of error, Pe is calculated from the confusion matrix [8]. Since the classi-
fication accuracy depends on how the observations are split, the average of 100 random
permutations of 200 training observations and 800 test observations is used.

A number of different address bus values were compared to evaluate the difficulty in
distinguishing them. This includes both addresses of equal HW and addresses of increas-
ing HD. The results, surprisingly, show that the probability of error can be made as low
as desired, given a large enough number of features included (over 100). This is probably
a result of ”over fitting” the classifier [8], but some work remains to investigate this. The
conservative result using only 5 features is presented here (see figure 8.6). One standard
deviation is plotted as a confidence interval.

The results confirmed that difficulty in distinguishing activity is linked to the HD of the
addresses in question. In the left figure it is clear that for HD > 1 it is easy to classify the
addresses, with Pe = 0. One exception is HD = 1 with Pe = 0, 40. The relationship be-
tween HD and difficulty in distinguishing activity becomes even clearer when we calculate
the distance dla,b (equation 8.14), based on the frequency representation. Figure 8.7 clearly
shown that the distance, dla,b is proportional to the HD between the two addresses a and b.

The right of figure 8.6 shows that classifying addresses of equal HW have a probability
of error varying roughly between 0.25 < Pe < 0.5. The importance of this result is that
there is a probabilistic, however small, favor in selecting the correct address.

This confirms that addresses of equal HW can be distinguished as Pe < 0.5 and there-
fore invalidates the statement of Quisquater and Samyde [18] and validates the result of
the Template Attack [7]. It may not be accurate to classify the correct address using only
one observation, however, under certain circumstances, this can be compensated for by
using more than one observation. A classification algorithm using majority voting for this
purpose is work in progress.
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Figure 8.7: Distance, dla,b based on frequency domain representation is clearly proportional
to the HD.

8.4.3 Discussions

The template attack [7], as confirmed in this paper, has the potential to identify any micro-
processor activity, even very similar bus values (i.e equal HW). Even though these attacks
currently are not practical outside a lab environment, the potential is concerning consid-
ering the increasing demand and dependability on microprocessors in secure applications
(e.g. smart cards in bank/store terminals). As an example, look at how the use of smart
cards is encouraged to prevent skimming of credit cards. However, solving the skimming
problem by using microprocessors, opens up for other more sophisticated attacks, such as
template attacks. The electromagnetic emanation from the microprocessors in smart cards
is detectable at some distance (1-2 meters, possibly more, in our experience). Wireless skim-
ming is therefore a possibility, as physical access is no longer necessary.

The implication of this is that the vicinity of a smart card terminal, not only the terminal
itself, should be tamper resistant. It should not be possible to place antennas and receivers,
necessary for wireless skimming, in the vicinity of the terminal. We therefore suggest
that security measures, such as tamper resistance, shielding and restrictive installation-,
maintenance-, operating-procedures, are considered. These measures should be consid-
ered during the entire life cycle of a system (e.g. terminal and smart cards) [9], even for
smaller facilities in local stores. We have recently seen examples that the store owner facil-
itates tampering of terminals to allow skimming. The proposed countermeasures should
therefore be strong enough to discourage such behavior.

The classification errors show that with a single observation it is difficult to identify
the correct activity (sometimes close to guessing). It is therefore essential that security
measures strive to refuse the attacker multiple observations.

In our work and the original template attack [7] the noise is assumed to follow a gaus-
sian distribution. The noise consists of channel noise, measurement noise and noise due to
transistor transitions not related to the phenomena of interest. In a real world application,
without the ability to influence the code executed, the noise caused by unrelated transi-
tion may be difficult to predict and may not necessarily follow a gaussian distribution as
assumed.

Selecting the relevant features and how many features to use is still a major challenge.
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The implication of poor choices has both a complexity and an accuracy implications. Fi-
nally, further studies should be done to evaluate the reliability of our method and results.
This could be done by repeating our experiment using many identical microprocessors and
a set of microprocessors of different architecture. Several variations of the the test program
should also be used to investigate the influence of unrelated microprocessor activity.

8.5 Conclusion and Future work

Quisquater and Samyde stated in [18] that data/addresses of equal Hamming Weight (HW)
cannot be distinguished, without using minute physical probes pointed at individual cir-
cuit elements. We have confirmed that using the Template Attack [7] this statement is not
correct. Using the electromagnetic side-channel from a smart card, we are able to classify
parallel address bus activities of equal HW. Using only a single observation, this can be
done with probability of error, in certain cases as low as Pe = 0.3. One of the main chal-
lenges with the Template Attack is how to choose which features (interesting points) to
use. We have suggested selecting feature in the frequency domain, using Greedy Forward
Selection method. Future work include improving the classification accuracy by consider-
ing more than one observation of each activity. We are already working on a more general
model that is able to explain why signals of equal HW can be distinguished.
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Chapter 9

Security Implications of Crosstalk in Switching
CMOS Gates1

Abstract

The energy dissipation associated with switching in CMOS logic gates can be used to clas-
sify the microprocessors activity. It is relatively easy to classify activity by the number
of transitions, i.e. Hamming Distance (HD). In this paper we consider layout dependent
phenomena, such as capacitive crosstalk to derive a more precise power model. We show
that for an 8 bit data bus, crosstalk may improve detection performance from 2.5 bits (HD
based detector) to theoretical 5.7 bits and simulated 5.0 bits (crosstalk based detector) of
information per sample. Thus we have shown that a layout specific phenomenon (capac-
itance) must be considered when analyzing security implications of power and electro-
magnetic side-channels. A small case study has also been carried out that support our
simulations/theoretical results.

9.1 Introduction

When a microprocessor executes its program, power consumption (or resulting electro-
magnetic emanation) can be used to reveal the contents of program and/or data memory
of the microprocessor. The correlation between power consumption and microprocessor
activity is well known and has found many uses [1, 2, 5, 8, 11].

In a side-channel attack a common power model, used to simulate the power consump-
tion, is the Hamming Distance (HD) model, as it is simple and generic [9]. The model
assumes the power consumption to be proportional to the number of transitions taking
place. If this assumption was correct, signals transmitted on a parallel bus (e.g. intermedi-
ate values of the cryptographic algorithm) with the same HD should have equal power con-
sumption and therefore be indistinguishable. This is not always the case, as demonstrated
by the template attack [2, 6]. The phenomena behind this may be known in the security
community, but has received little attention. One paper by Chen et al. [3] investigates the
effect of the coupling capacitance on masking schemes without a detailed examination of
the phenomena. In their book ”Power Analysis Attacks”, Mangard et.al. [9] mention power
simulation at analog level as ”the most precise way to simulate the power consumption of
digital circuits...”. Parasitic elements, such as parasitic capacitances between the wires and
unwanted capacitances in the transistors are mentioned. However, it is also stated that it
is very common to make simplifications by lumping together extrinsic and intrinsic capac-
itances into a single capacitance to ground. This will in fact make the model incapable of
explaining the results we are addressing in this paper.

Parasitic couplings, and the coupling capacitance in particular, is however a great con-
cern within sub-micron VLSI design [4, 10, 12]. Parasitic couplings between interconnects,
such as on-chip buses, influence both the power consumption and maximum obtainable
speed [4]. Moll et al. [10] did a detailed analysis of the energy dissipation from two metal

1G.O. Dyrkolbotn, K. Wold and E. Snekkenes. In Proceedings of Information Security Conference (ISC), Springer,
Lecture Notes in Computer Science, pages 269-275, 2010.
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lines running close together and show that ”coupling capacitance is very different from the
capacitance to ground because it depends on the switching activity... ”. Duan et al. [4] show
that for 3 adjacent lines, transition patterns can be divided into 5 crosstalk classes based on
the influence of the coupling capacitances. The focus in VLSI design, such as [10, 4], is on
power consumption and delays, not on security.

In this paper we look at the security implication of capacitive crosstalk in switching
CMOS gates. We put forward the hypothesis that layout dependent phenomena, such as
parasitic coupling between wires, can explain why it sometimes is possible to distinguish
transition patterns with the same HD. We present a new power model that takes into ac-
count capacitive coupling between parallel wires. Theory and PSPICE simulations are used
to evaluate how the new power model effects our ability to classify activity in a micropro-
cessor. We use the ability to extract entropy as our classifier performance indicator and
show that a detector capable of detecting energy levels due to crosstalk can extract more
information than a detector based on HD only.

This paper is organized as follows: Section 9.2 presents the hypothesis of layout de-
pendent phenomena. Section 9.3 presents our model and necessary theory to calculate the
energy dissipation. Section 9.4 is an analytic analysis of security implications. Section 9.5
presents simulation results. Finally a conclusion is drawn in section 9.6.

9.2 Layout Dependent Phenomena

In a physical implementation of any circuit (e.g. CMOS based microprocessor) a num-
ber of phenomena will influence the energy dissipation and the resulting radiated elec-
tromagnetic field. These phenomena includes inductance and capacitance of conductors,
inductance and capacitance between conductors, wireless transmission characteristics (i.e
antenna properties) of conductors and other circuit elements and complex combinations of
these phenomena. These phenomena apply to any transistors and wires in a circuit, but
we choose to look at a portion of wires running in parallel as we expect them to be rela-
tively good antennas and therefor a good source for side-channel information. We believe,
complex combinations of layout dependent phenomena may be the key to identify minute
differences in microprocessor activity. In the following we will assume that the coupling
capacitance is the dominating factor and show how this can explain why some signals with
the same HD can be distinguished. This will show the potential effect of layout dependent
phenomena on classifying microprocessor activity. Our work can easily be extended by
including other layout dependent phenomena if a more precise result is needed.

9.3 Theoretical Considerations

A model of a parallel bus driven by CMOS inverters with only coupling and load capaci-
tances is shown in Fig. 9.1. This is a generalization of the model for two lines used by Moll
et al. [10] and includes a model of the CMOS inverter.

It can be shown that the total energy dissipation, ET from an n wire bus, can be written
as:

ET =
n∑
j=1

VDD

∫
ipjdt−

n∑
j=1

∫
Vj(ipj − inj)dt (9.1)

For PSPICE simulation the following assumptions are used:

• The load capacitances for data bus lines are identical (Cj = CL for j = {1, 2, · · · , n })

• Coupling capacitances are only found between adjacent line and are identical
(Cj,j+1 = CC for j = {1, 2, · · · , n− 1})
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Figure 9.1: Simplified model, assuming load and coupling capacitances to be dominant

In order to compare the simulated energy dissipation (ÊT ) with analytic values (ET ),
a different expression than (9.1) is needed. If the contributions from the load (CL) and
coupling capacitance (CC) are dominant to the dissipated energy, thenET can be expressed
in the following power model:

ET =
1
2
CLV

2
DD(k + αλ) = E0(k + αλ) (9.2)

where E0 = 1
2CLV

2
DD, VDD is the power supply voltage, k is the number of transitions

on the data bus (k = 0, 1, 2, . . .), λ = CC/CL and α is the crosstalk index indicating the
coupling capacitance induced crosstalk, similar to the crosstalk classes in [4]. For a n line
bus the crosstalk index α is the sum of the crosstalk influence of each line:

α =
n∑
j=1

αj (9.3)

Let δj ∈ {0,±1} be the normalized voltage change on line j, then δj,k = δj − δk, and

αj =
{

0 no transition line j
|δj,j−1 + δj,j+1| otherwise

(9.4)

It can be shown that αj = {0, 1, 2} for lines with only one adjacent line (edges), and
αj = {0, 1, 2, 3, 4} for lines with two adjacent lines. In the next section we will use (9.2) and
(9.3) to analyze which transition patterns that can be distinguished.

9.4 Security Implications

How will the new power model (9.2) effect our ability to classify activity in a microproces-
sor, such as data transfer on a parallel bus?

Let A be the set of possible transitions on an n bit parallel bus. A model of the en-
ergy dissipation should ideally be able to distinguish all |A| = 4n transitions. This may
not be possible, either because of simplifications of the model or physical properties such
that multiple transitions patterns indeed uses the same amount of energy. A model can
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only distinguish transition patterns by the distinct energy levels explained by the model.
A model that assumes energy dissipation proportional to the number of transition, can
therefor only distinguish transition pattern into subsets Ak, k = {0, · · · , n} being subsets
of A that has k transitions. The number of transition patterns in each subset is given by:
|Ak| = 2n

(
n
k

)
. Using the new power model (9.2), each subset Ak can be split into a number

of new energy levels, giving a number of smaller subsetsAαk , where α is the crosstalk index
of (9.3). For an 8 bit bus, taking into consideration the coupling capacitance increases the
number of energy levels from 9 in the HD model to 93 in the crosstalk model, e.g. the 14336
transitions patterns with 5 transitions, previously indistinguishable, can now be split into
18 energy levels.

Finally, we have only shown how to split the subset Ak into smaller subsets Aαk by con-
sidering the effect of the coupling capacitance (i.e α). This idea can easily be generalized,
such that Ak is split into subsets Aβk , where |Ak| > |Aβk |, and β is the influence of other
layout dependent phenomena, such as variations in coupling and load capacitance and
inductance.

9.4.1 Classification Performance

For the purpose of comparing alternative detectors we will assume uniform random tran-
sition, thus for a 8 bit bus we would like the detector to extract 16 bits. We will use the
ability to extract entropy as our classifier performance indicator. The entropy (i.e bits of in-
formation) extracted by a detector, when there are r energy levels, can be calculated using:

H(x) = −
r∑
i=1

p(xi)log p(xi) (9.5)

In the following we have assumed a 8 bit bus width, thus there are 48 = 65536 possible
transitions. Call the detector that can extract 16 bits of information a level detector. If
we assume that one only has bus activity when initial and final state are different, and
that 0 → 1 and 1 → 0 can be distinguished, an observation will give us the following
entropy: −(1/2log1/2 + 1/4log1/4 + 1/4log1/4) = 3/2 bits as we cannot distinguish 0→ 0
from 1→ 1. The theoretical optimum for an 8 bit bus with a ’transition detector’ would be
8 ·3/2 bits = 12 bits. The entropy extracted by a HD detector is found using (9.5) with r = 9
and p(xi) = |Ai−1|/65536 giving an entropy of 2.5 bits. The entropy extracted by a crosstalk
detector is found using (9.5) with r = 93 and p(xi) = |Aαi−1|/65536 giving an entropy of 5.7
bits. The difference between the ideal value of a level detector and the entropy extracted by
other detectors, represent the amount of guessing needed when classifying an observation.
By considering the coupling capacitance and not only HD, we extract more information out
of each observation, therefore reducing the amount of ”guessing” needed for classification.
In the next section we present simulations validating the effect of the coupling capacitance.

9.5 Simulations

The simulations are performed in PSPICE with CL = 400fF , CC = 250fF , Vdd = 3V and
a rise- and fall-time of 200ps of the input voltages (same as [10]). The inverter drivers are
equal and balanced. Equation (9.1) is used in PSPICE to find the simulated energy dissipa-
tion ÊT . Having first validated our simulations against the results of [4, 10] simulations for
all possible subsets Aαk were carried out. The results for k = 5 can be seen i Table 9.1.

The simulated energy levels ÊT are similar to the analytic values ET (9.2). The re-
sults confirm that energy consumption is proportional to the number of transitions and the
crosstalk index, α. The crosstalk index depends on switching activity on adjacent lines and
position, edge (one adjacent wire) or middle (two adjacent wires). A theoretical crosstalk
detector capable of separating all 93 energy levels can extract 5.7 bits of information. It is
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Table 9.1: Analytic (ET ) and simulated (ÊT ) dissipated energy when considering crosstalk
for bus with 8 lines. k=5 is the number of transitions (Hamming Distance) and α is the
crosstalk index

Transition pattern k α ET [pJ] ÊT [pJ]
0000 0000→ 0001 1111 5 1 10,1 10.4
0000 0000→ 1000 1111 5 2 11,3 11.5
0000 0000→ 0010 1111 5 3 12,4 12.6
0000 0000→ 1001 0111 5 4 13,5 13.8
0000 0000→ 0101 0111 5 5 14,6 14.9
0000 0000→ 1010 1011 5 6 15,8 16.0
0000 0010→ 0111 0001 5 7 16,9 16.8
0000 0010→ 1011 0001 5 8 18,0 17.9
0000 0010→ 0101 1001 5 9 19,1 19.3
0000 0010→ 1010 1001 5 10 20,2 20.4
0000 0010→ 0110 0101 5 11 21,4 21.3
0000 0010→ 1010 0101 5 12 22,5 22.5
0000 0010→ 0101 0101 5 13 23,6 23.5
0000 1010→ 1000 0101 5 14 24,8 24.5
0000 1010→ 0100 0101 5 15 25,9 25.6
0001 0100→ 0100 1010 5 16 27,0 27.0
0000 1010→ 0001 0101 5 17 28,1 27.9
0001 0100→ 0010 1010 5 18 29,3 29.1

Table 9.2: Comparing the ability to extract information of different detectors for an 8 wire
bus

type of detector Entropy (information)
[bits]

Level detector 16,0
Optimum transition detector 12,0
Crosstalk detector (theoretical) 5,7
Crosstalk detector (simulated) 5,0
HD detector 2,5

expected that a practical crosstalk detector will extract less information, due to some sub-
sets having almost equal energy levels. A random loss of 20% of the subsets will still on
average have an entropy of 5.0. This still gives an information gain of 2.5 bits compared to
the HD detector. The performance of the detectors are summarized in Table 9.2. We also
have experimental data, suggesting that the average classification error gets reduced as α
distance (∆α = |αi − αj |) increases. This supports our simulation/theoretical results, but
details are omitted due to limited space2.

9.6 Conclusion

It is known that one can distinguish bus activity generated from signal transitions having
different HD. In this paper we put forward the hypothesis that layout dependent phenom-
ena, such as inductance and capacitance in and between conductors and radiation proper-
ties of circuit elements, can explain why it sometimes is possible to distinguish transition
patterns with the same HD. Our simulations show that capacitive crosstalk has a signifi-
cant effect on gate energy dissipation. Our results confirm that the dissipated energy from
CMOS switching gates depend not only on the HD, but also on the direction of switching

2Details are published in [7], see subsection 11.5.3
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activity on nearby data lines. Where as a HD based detector can provide about 2.5 bits of
information per sample, a crosstalk based detector will yield about 5.7 bits (theoretical) or
5.0 bits (simulated) of information per sample - in all cases for an 8 bit bus. Thus we have
shown that a layout specific phenomenon (capacitance) must be considered when analyz-
ing security implications of electromagnetic side-channels.
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Chapter 10

Non-Invasive Reverse Engineering of the
Relative Position of Bus Wires1

Abstract

Exploitation of microprocessor side-channels can be improved if one has access to details
regarding the physical layout of the microprocessor. It has been shown that the capacitance
between bus wires influence the signals at the electromagnetic side-channel. This paper
provides a non-invasive technique for establishing the relative position of microprocessor
bus wires. Thus, used in combination with signal analysis techniques, our results may
improve side-channel exploitation capabilities.

10.1 Introduction

An increasing number of systems rely upon tamper resistant devices, such as smart cards.
It is important to realize that these cards are not tamper proof, but provide speed bumps for
the dedicated adversary. Given enough resources, these cards can be reverse engineered
using state of the art semi-conductor test equipment [10]. Due to the high cost of such
equipment, a number of low cost techniques have been suggested [1]: Differential fault
analysis, chip rewriting attacks, memory remanence attacks and protocol failure. Finally
there is a large group of attacks based on side-channel information, such as power and elec-
tromagnetic emission analysis, that are powerful and surprisingly low cost. Many of these
attacks (e.g DPA attacks [6]) rely upon good power models to be successful. Detailed in-
formation about the internal structure of a microprocessor allows for better power models
and therefore more efficient attacks [7].

In any physical implementation of a circuit (e.g CMOS based microprocessor) many
phenomena will influences the energy dissipation and the resulting radiated electromag-
netic field. These phenomena includes inductance and capacitance of conductors, induc-
tance and capacitance between conductors, wireless transmission characteristics (i.e an-
tenna properties) of conductors and other circuit elements and complex combinations of
these phenomena [5]. In [5] we have shown through simulations and measurement that
capacitive crosstalk has a significant effect on the energy dissipation. When capacitive
crosstalk is part of a power model, it is possible to extract more information (in terms of
entropy) about microprocessor activity than when using simpler power models. The pro-
posed power model in [5] assumes that the relative position of bus wires are known.

In this paper we provides a non-intrusive technique for establishing the relative position
of microprocessor bus wires. With this information, the crosstalk power model, combined
with signal analysis techniques, may improve the efficiency of side-channel attacks. For
future work, it would be interesting to see if layout dependent phenomena [5] has the po-
tential to reverse engineer other physical structures of a micro processor, such as memory,
masking schemes and dual-rail logic.

1G.O. Dyrkolbotn. In Proceeding of Annual Norwegian Information Security Conference (NISK), Tapir, pages 104-
109, 2010.
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This paper is organized as follows: Section 10.2 presents necessary theory about cross-
talk in switching CMOS gates. Section 10.3 presents our non-invasive black box reverse
engineering method. Section 10.4 contains conclusion and future work.

10.2 Crosstalk in Switching CMOS gates

Crosstalk can be defined as the coupling of energy between two conductors. Inductive
coupling is caused by mutual inductance, L, (i.e magnetic field) and capacitive coupling
is caused by mutual capacitance, C, (i.e electric field) between two wires. Especially the
coupling capacitance is a great concern in sub-micron VLSI design [3, 8, 9]. As CMOS
technology gets smaller the speed and power consumption is increasingly influenced by
parasitic effects, such as capacitive crosstalk [3]. These phenomena may also be known in
the security community, but has received little attention. Other than our own article [5],
we have found one article by Chen et al. [2] that studies the effect of the coupling capac-
itance on masking schemes and the book ”Power Analysis Attacks”, Mangard et.al. [7],
mentions power simulation at analog level as ”the most precise way to simulate the power
consumption of digital circuits...”. However, a very common simplification, lumping to-
gether coupling capacitance and capacitance to ground into a single capacitance to ground
removes any crosstalk influence. In [5] we present theory and simulations on some security
implications of capacitive crosstalk in CMOS driven data busses.

Assume that the load (CL) and coupling capacitance (CC) are dominant to the dissi-
pated energy (ET ) from a n bit bus. Then it is shown in [5] that the total dissipated energy
can be expressed by:

ET =
1
2
CLV

2
DD(k + αλ) = E0(k + αλ) (10.1)

where E0 = 1
2CLV

2
DD, VDD is the power supply voltage, k is the number of transitions

on the data bus (k = 0, 1, 2, . . .), λ = CC/CL and α is the crosstalk index indicating the
coupling capacitance induced crosstalk. In the proposed method we will use transition
patterns with known crosstalk indexes to establish the relative position of microprocessor
bus wires. For further detail and how to calculate the crosstalk index α we refer to [5].

10.3 Non-Invasive Black Box Reverse Engineering Method

The goal is to reverse engineer/determine the relative position of physical wires of a bus
by analyzing electromagnetic emanation, without any invasive actions. Consider a bus of
n wires. Let ω1ω2, · · · , ωn−1ωn be the physical layout of the bus and b1b2, · · · , bn−1bn be
the logic bit values used by the micro processor during execution of a program (e.g data
transfer a bus).

The objective of the following method is to find a mapping b→ ω between the logic bit
value bi to the physical wire ωk that it invokes. The mapping may be straight forward, such
that ω1 = b1, ω2 = b2, · · · , ωn = bn, however there are cases where the mapping is different.
The physical layout of the bus could be altered due to design (i.e routing) choices. The logic
value could also be masked before driving the bus wires, such as CODEC’s, scramblers or
encryption. In this paper we will consider the case were the physical layout is different
from the logic order of the bits.

Our method exploits the effect of coupling capacitance on the energy dissipation during
bit transitions. Notice from (10.1) that the total energy dissipation from the bus, ET , is
proportional to α (for the same number of transitions). The smaller α is the less energy is
dissipated. If all neighboring wires up to a point k (ω1ω2, · · · , ωk) have the same transition
and all other wires have no transitions, it can be shown [5] that the crosstalk index is always
one (α = 1). It turns out that, given an equal number of transitions, these transition patterns
represent the minimum possible dissipated energy, and all other transitions patterns will
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Table 10.1: For a given number of transitions, these transition patterns uses the least
amount of energy (α = 1), compared to any other transition patterns. U denotes a tran-
sition from 0→ 1, 0 no transition

ω1 ω2 ω3 ω4 ω5 ω6 ω7 ω8 ω1 ω2 ω3 ω4 ω5 ω6 ω7 ω8

U 0 0 0 0 0 0 0 0 0 0 0 0 0 0 U
U U 0 0 0 0 0 0 0 0 0 0 0 0 U U
U U U 0 0 0 0 0 0 0 0 0 0 U U U
U U U U 0 0 0 0 0 0 0 0 U U U U
U U U U U 0 0 0 0 0 0 U U U U U
U U U U U U 0 0 0 0 U U U U U U
U U U U U U U 0 0 U U U U U U U

have α > 1 and thus dissipate more energy. Two exceptions exist: No transitions and
transitions on all wires, in which α can be zero. For an n = 8 bit bus, the minimum energy
transition patterns (α = 1) are shown in table 10.1 (U is a positive transition (0 → 1) and
0 is no transition). If the positive transition was substituted for a negative transition (D:
1 → 0) the result would be same. Also notice that it is not possible to distinguish between
mirror images of the layout, as e.g. transition pattern 00UUUUUU and UUUUUU00 both
have α = 1. Therefore ω1ω2, · · · , ωn−1ωn and ωnωn−1, · · · , ω2ω1 will be indistinguishable.

10.3.1 The Method

The proposed method takes advantage of the patterns of table 10.1, such that finding phys-
ical neighbors reduces to finding the test pattern that dissipates the least amount of energy.
The method requires n− 1 steps to determine the physical layout of an n bit bus. The first
step finds the two edges ω1 and ωn. The next steps successively finds one more neighbor,
from one side, until all wires are covered. In the following these steps are explained for an
n = 8 bit bus, but the method applies to any sized bus n. In each step it is necessary to
measure the microprocessors energy dissipation as each transition pattern is transferred on
the bus. Making sure the microprocessor carries out the correct activity, that the appropri-
ate emanation is captures and how to calculate the dissipated energy is not a topic in this
article. Some help on these issues can be found in [4].

10.3.1.1 Step 1: Find the Edge Wires, ω1 and ω8:

The transition pattern necessary to detect the edges, ω1 and ω8 can be seen in table 10.2. The
transition patterns are designed to produce a single transition (0 → 1) on each wire. The
two test patterns that cause a transition in either ω1 or ω8 will have α = 1 (10.1). The other
6 patterns will cause a transition on wires with two neighbors and therefore have α = 2
(10.1). A mapping for the two edge wires, ω1 and ω8, is therefore found by detecting the
two transition patterns that dissipate the least amount of energy. As an example: assume
that transition on b2 (test pattern 7) and b5 (test pattern 4) were found to dissipate the least
amount of energy, then the two edges would be mapped by: ω1 = b5 and ω8 = b2.

10.3.1.2 Step 2: Find wire ω2

We choose to detect wires from ω1 and up, but is it also possible to detect wires from ω8

and down. The transition pattern necessary to detect the next wire, ω2, given ω1 = b5 and
ω8 = b2 can be seen in table 10.3. The transition patterns are designed to produce two
transition. One transition is always kept on the edge wire, ω1 = b5 found in step 1. The
other transition is on each of the remaining unknown wires. The other edge wire (ω8) is
therefore excluded. Both transitions must be in the same direction, e.g. 0 → 1. According
to the result in table 10.1, the transition pattern that creates a transition next to ω1 will have
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Table 10.2: Test patterns necessary to determine edge wires ω1 and ω8. The two test patterns
that cause a transition in either ω1 or ω8 will have α = 1 and thus dissipate less energy than
the other 6 patterns

Pattern b1 b2 b3 b4 b5 b6 b7 b8
1 0 0 0 0 0 0 0 U
2 0 0 0 0 0 0 U 0
3 0 0 0 0 0 U 0 0
4 0 0 0 0 U 0 0 0
5 0 0 0 U 0 0 0 0
6 0 0 U 0 0 0 0 0
7 0 U 0 0 0 0 0 0
8 U 0 0 0 0 0 0 0

Table 10.3: Test patterns necessary to determine wire ω2. The test patterns that cause a
transition in ω1 and ω2 will have α = 1 (see table 10.1) and thus dissipate less energy than
the other 5 patterns

Pattern b1 b2 b3 b4 b5 b6 b7 b8
1 0 0 0 0 U 0 0 U
2 0 0 0 0 U 0 U 0
3 0 0 0 0 U U 0 0
4 0 0 0 U U 0 0 0
5 0 0 U 0 U 0 0 0
6 U 0 0 0 U 0 0 0

Table 10.4: Mapping between physical layout ω and logic value b for our example. 7 steps
necessary to map all 8 wires

ω1 ω2 ω3 ω4 ω5 ω6 ω7 ω8

start ? ? ? ? ? ? ? ?
step1 b5 ? ? ? ? ? ? b2
step2 b5 b4 ? ? ? ? ? b2
step3 b5 b4 b3 ? ? ? ? b2
step4 b5 b4 b3 b1 ? ? ? b2
step5 b5 b4 b3 b1 b8 ? ? b2
step6 b5 b4 b3 b1 b8 b7 ? b2
step7 b5 b4 b3 b1 b8 b7 b6 b2

α = 1. All other test patterns will have a larger energy dissipation (α > 1). Locating
ω2 is again done by detecting the transition pattern with the lowest energy dissipation.
Continuing the example: if test pattern 4 is found to dissipate the least amount of energy,
then the next wire is mapped by: ω2 = b4.

10.3.1.3 Step j: Find wire ωj

The transition pattern necessary to detect the next wires are found much the same way
until all wires are located. Transition patterns for wire ωj must have transitions an all
known wires ω1, · · · , ωj−1, but not ω8. All transitions must be in the same direction. The
lowest energy dissipation corresponding to α = 1 will again reveal the mapping of wire ωj .

Table 10.4 shows all steps when continuing our example. E.g step 3, using 3 transitions
reveals ω3 = b3, step 4, using 4 transitions reveals ω4 = b1, etc. Finally after n− 1 = 7 steps
the mapping is complete and the relative position of the physical bus wires are known.
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10.4 Conclusion and Future Work

In this article we have presented a non-invasive method to reverse engineer the relative
position of microprocessor bus wires. The method takes advantage of the influence of ca-
pacitive crosstalk on energy dissipation from bus wires. In each step of the method, a set
of transition patterns are design, such that one by one wire is mapped from logic value
to physical location. In each step the transition pattern dissipation the least amount of
energy reveal the next wire on the bus. This method is non-invasive assuming that the en-
ergy dissipation can be found by capturing the electromagnetic emanation from the device.
Knowing the relative position of bus wires is a prerequisite for our crosstalk power model
of [5], that combined with with signal analysis techniques may improve side-channel ex-
ploitation capabilities. We believe that by considering other layout dependent phenomena
its should be possible to reveal other physical structures of the microprocessor, such as
memory, masking schemes and dual-rail logic. This is future work.
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Chapter 11

Layout Dependent Phenomena: A New
Side-channel Power Model1

Abstract

The energy dissipation associated with switching in CMOS logic gates can be used to clas-
sify the microprocessors activity. In VLSI design layout dependent phenomena, such as
capacitive crosstalk, becomes a major contributor to the power consumption and delays of
on-chip busses, as transistor technology get smaller. These effects may be known to the
security community but have received little attention.

In a recent paper we have presented a new power model, taking into consideration ca-
pacitive crosstalk. We have shown that capacitive crosstalk has a significant effect on gate
energy dissipation. Our results confirm that the dissipated energy from CMOS switching
gates depend not only on the hamming distance (HD), but also on the direction of switch-
ing activity on nearby data lines. We show that for an 8 bit data bus, crosstalk may improve
detection performance from 2.5 bits (HD based detector) to theoretical 5.7 bits and simu-
lated 5.0 bits (crosstalk based detector) of information per sample.

In this paper we elaborate on the theory and simulations of layout dependent phenom-
ena and how they must be considered when analyzing security implications of power and
electromagnetic side-channels. We have also added a small case study, i.e the electromag-
netic side-channel of a smart card, that support our simulations/theoretical results.

11.1 Introduction

When a microprocessor executes its program, power consumption (or resulting electro-
magnetic emanation) can be used to reveal the contents of program and/or data memory
of the microprocessor. The correlation between power consumption and microprocessor
activity has found many uses: to recover cryptographic keys [11, 3, 12, 1, 10], to reveal hid-
den hardware faults (trojans) on integrated circuits [2], to control the emanation through
subversive software in the Wireless Covert Channel Attack [7] and to reverse engineer the
code executed by microprocessors [14].

In side-channel attacks, a common power model used to simulate the power consump-
tion is the Hamming Distance (HD) model, as it is simple and generic [12]. The model
assumes the power consumption to be proportional to the number of transitions taking
place. If this assumption was appropriate, signals transmitted on a parallel bus (e.g. in-
termediate values of the cryptographic algorithm) with the same HD should have equal
power consumption and therefore be indistinguishable. This is not always the case, e.g. if
Bayes classifier is used, as suggested by the template attack [3]. It has also been demon-
strated in [8] that signals with the same number of transitions can be classified using a
modified template attack.

The phenomena behind this may be known in the security community, but has received
little attention. One paper by Z. Chen, S. Haider and P. Schaumont [4], investigates the
effect of the coupling capacitance on masking schemes without a detailed examination of

1G.O. Dyrkolbotn, K. Wold and E. Snekkenes. Submitted to Journal of Computers
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11. LAYOUT DEPENDENT PHENOMENA: A NEW SIDE-CHANNEL POWER MODEL

the phenomena. In their book ”Power Analysis Attacks”, S. Mangard, E. Oswald and T.
Popp [12] mention power simulation at analog level as ”the most precise way to simulate
the power consumption of digital circuits...”. Parasitic elements, such as capacitances be-
tween the wires and unwanted capacitances in the transistors are mentioned. However, it
is also stated that it is very common to make simplifications by lumping together extrinsic
and intrinsic capacitances into a single capacitance to ground. This will, in fact, make the
model incapable of explaining the results we are addressing in this paper.

Parasitic couplings, and the coupling capacitance in particular are, however, a great
concern within sub-micron VLSI design [5, 13, 15]. CMOS technology is currently being
pushed into deep sub-micron range. As the number of transistors increase, the need for
on-chip wiring increases as well and must be scaled accordingly. Parasitic couplings be-
tween interconnects, such as on-chip buses, must be taken seriously as they influence both
the power consumption and maximum obtainable speed [5]. F. Moll, M. Roca and E. Isern
[13] did a detailed analysis of the energy dissipation from two metal lines running close to-
gether. The lines were driven by CMOS inverters and transitions in one or two wires were
studied. The effect of coupling capacitance between the two lines on the power consump-
tion was shown analytically and simulated in HSPICE. The main result was that if two bus
lines have transitions in the same or opposite direction at the same time, the total energy
is either lower or higher than if the two transitions are treated independently. This is due
to the coupling capacitance. C. Duan, V.H.C. Calle and S.P. Khatri [5] focus on crosstalk
avoidance codes that aim to reduce the effect of the coupling capacitances by avoiding spe-
cific data transition patterns. Their model considers coupling capacitance, CC , between
three adjacent lines. They show that 3 bit transition patterns can be divided into 5 crosstalk
classes based on the influence of the coupling capacitances, CC . The energy consumption
therefore depends on which crosstalk class the transition pattern belong to, as seen in Table
11.1 reprinted from [5].

Table 11.1: Classes of crosstalk from [5]. Ceff is the efficient capacitance, CL the load
capacitance and λ = CC/CL

Class Ceff Transition pattern
0C CL 000→ 111
1C CL(1 + λ) 011→ 000
2C CL(1 + 2λ) 010→ 000
3C CL(1 + 3λ) 010→ 100
4C CL(1 + 4λ) 010→ 101

The focus within VLSI design, such as [5] and [13] is on power consumption and delays
caused by the coupling capacitance. They do not considered security implications, such as
the ability to use the variation in energy consumption to classify transition patterns. How-
ever, correlations between data and energy consumption are exactly what side-channel
attacks, such as DPA and Template attack, rely upon.

In this paper we elaborate on the hypothesis put forward in [9] that layout dependent
phenomena, such as capacitive coupling between wires, can explain why it sometimes is
possible to distinguish transition patterns with the same HD. We extend the theory and
simulations of how the new power model, that takes into account capacitive crosstalk, af-
fect our ability to classify activity in a microprocessor.

We look at the total dissipated energy from a parallel data bus driven by CMOS in-
verters. Our model is a generalization of [13], with inverters consisting of two MOSFET
transistors, a load capacitance CL connected to each inverter output and a coupling ca-
pacitance CC connected between each bus line. Our model is generalized to n lines and
simulations in PSPICE are done with eight bus lines.

The purpose of our simulation is to show that when the dissipated energy depends on
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Figure 11.1: Model of layout dependent phenomena

the direction of change of nearby data lines, and not only the number of transitions taking
place, the number of possible energy levels dissipating from the bus will increase, thus
allowing classification of a larger number of transition patterns. Our hypothesis is that
this can be used to explain why some signal with the same HD can be distinguished. Our
model can easily take into consideration other layout dependent phenomena, potentially
offering an explanation to classification of an even larger set of transition patterns. We will
use the ability to extract entropy as our classifier performance indicator and show that a
detector capable of detecting energy levels due to crosstalk can extract more information
than a detector based on HD only.

Finally, in order to probe the practicality of our theory and simulations, we have in-
cluded a small case study, in which the objective is to see if analysis of electromagnetic
side-channel information also supports the division into crosstalk energy levels.

This paper is organized as follows: Section 11.2 presents the hypothesis of layout de-
pendent phenomena. Section 11.3 presents our model and necessary theory to calculate the
energy dissipation. Section 11.4 is an analytic analysis of security implications. Section 11.5
presents simulation results and the case study. Finally, a conclusion is drawn in Section
11.6.

11.2 Layout Dependent Phenomena

In a physical implementation of any circuit (e.g. CMOS based microprocessor) a num-
ber of phenomena will influence the energy dissipation and the resulting radiated elec-
tromagnetic field. These phenomena include inductance and capacitance of conductors,
inductance and capacitance between conductors, wireless transmission characteristics (i.e
antenna properties) of conductors and other circuit elements and complex combinations of
these phenomena. These phenomena apply to any transistors and wires in a circuit, but
we choose to look at a portion of wires running parallel, as we expect them to be relatively
good antennas and therefore a good source for side-channel information. This is illustrated
in the model of a parallel bus, driven by CMOS inverters, seen in Fig. 11.1.
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11.2.1 Inductance and Capacitance of Conductors

Any conductor, Wj , carrying an electric current will have an associated distributed resis-
tance Rj , inductance Lj , conductance Gj and capacitance Cj , expressed as a characteris-
tic impedance, Z0j . The characteristic impedance is often modeled as an infinite series of
lumped components. The inductance Lj and capacitanceCj will both block high frequency
signals and act as a low pass filter. Small variations in the length and width of conductors
result in small variations in the inductance. Small variations in the area and distance to
ground plane result in small variations in the capacitance. There will therefore be small
variations in how signals on different conductors (e.g. bus lines) are filtered.

11.2.2 Inductance and Capacitance between Conductors

Crosstalk can be defined as the coupling of energy between two conductors. Inductive
coupling is caused by mutual inductance, Lj,j+1, (i.e magnetic field) and capacitive cou-
pling is caused by mutual capacitance, Cj,j+1, (i.e electric field) between wire j and j + 1.
These couplings occur along the entire length of the conductor, but are also modeled as
lumped components (Fig. 11.1). The interaction of magnetic and electric fields will effec-
tively change the characteristic impedance, Z0j , associated with the conductor. This inter-
action is layout dependent (e.g. distance and length of wires) and will effect both delays
and energy dissipation. An important property of crosstalk is its dependency on the activ-
ity on the wires. F. Moll, M. Roca and E. Isern [13] state that, ”coupling capacitance is very
different from the capacitance to ground because it depends on the switching activity... ”.
If two lines are low and rise at the same time, the mutual capacitance coupling, Cj,j+1, does
not have to be charged. However, if one line remains low and the other rises, Cj,j+1 must
be charged, resulting in increased rise time and power consumption.

11.2.3 Wireless Transmission Characteristics

Any circuit element in the microprocessor, conducting electric current, can be considered
an antenna. An antenna is a transducer converting electric current into electromagnetic
waves, characterized by properties such as: resonant frequency, gain, radiation pattern,
impedance, efficiency, bandwidth and polarization. These properties depend on factors
such as: amount of current, length/shape and material of the circuit element. In addition,
the electromagnetic waves will be influenced by filtering, reflection and interference from
surrounding material and circuit elements. The relationship between the current (i.e power
consumption) and the electromagnetic wave can be expressed by a transfer function h(t)
(Fig. 11.1). Predicting h(t) is not trivial, if possible at all, as most physical systems are not
linear by nature. This is left for future work, but it is a fair assumption that relatively long
bus lines are good antennas.

11.2.4 Complex Combinations of Factors

Finally, complex combinations of layout dependent phenomena may be the key to identify
minute differences in microprocessor activity, e.g. the radiation efficiency of bus lines com-
bined with data and layout dependencies of the line characteristics due to crosstalk suggest
that the emanation detected will have data and layout dependent variations in power con-
sumption and delay. In the following, we will assume that the coupling capacitance is the
dominating factor, and show how this can explain why some signals with the same HD
can be distinguished. This will show the potential effect of layout dependent phenomena
on classifying microprocessor activity. Our work can easily be extended by including other
layout dependent phenomena if a more precise model is needed.
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Figure 11.2: Simplified model, assuming load and coupling capacitances to be dominant

11.3 Theoretical Considerations

By limiting the model to only coupling and load capacitances, the model in Fig. 11.1 can be
simplified as seen in Fig. 11.2. This is a generalization of the model for two lines used in
[13] and includes a model of the CMOS inverter.

In order to run simulations in PSPICE, we need an expression for the total energy dissi-
pation,ET . The energy dissipation for wire j in the p and n type transistor can be expressed
as:

Epj =
∫

(VDD − Vj)ipjdt (11.1)

Enj =
∫
Vjinjdt (11.2)

The overall energy dissipation for an n wire bus is then given by:

ET =
n∑
j=1

(Epj + Enj) (11.3)

Combining and rearranging (11.1), (11.2) and (11.3) the overall energy dissipation can be
written as:

ET =
n∑
j=1

VDD

∫
ipjdt−

n∑
j=1

∫
Vj(ipj − inj)dt (11.4)

Using Kirchhoff’s circuit laws and the current voltage relationship i(t) = C dV (t)
dt , the terms

(ipj − inj) can be written as:

ipj − inj = (Cj + Cj,j+1 + Cj−1,j + Ccj)
dVj
dt

−Ccj
dVij
dt
− Cj,j+1

dVj+1

dt
− Cj−1,j

dVj−1

dt
(11.5)

Notice that the results in [13] are easily found from (11.4) and (11.5) by setting n = 2
(two adjacent lines). Equation (11.4) is used in PSPICE to simulate the total energy dissipa-
tion, ÊT , with the following assumptions:
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• The transitions on the data bus are concurrent in time. It has been shown [13] that the
effect of the coupling capacitance is maximum when transitions occur simultaneously
on all bus lines.

• The load capacitances for data bus lines are identical (Cj = CL for j = {1, 2, · · · , n})

• Coupling capacitances are only found between adjacent line and are identical
(Cj,j+1 = CC for j = {1, 2, · · · , n− 1})

These assumptions are not unrealistic in real bus architecture on a device. If, however,
the transitions are shifted in time with more than the rise time of signal, the effect of the
coupling capacitance is reduced and the transitions can be regarded as single transitions
[13].

In order to compare the simulated energy dissipation (ÊT ) with analytic values (ET ),
different expressions than (11.4) and (11.5) are needed.

It is only when the individual line has a transition, that it is subject to capacitive cross-
talk. Quantifying this crosstalk influence has to take into consideration voltage changes
on the line itself and one (edges) or two adjacent lines. Let δj ∈ {0,±1} be the normalized
voltage change on line j, then the voltage change between two lines j and k is δj,k = δj−δk.
The crosstalk influence αj on line j can then be defined as:

αj =
{

0 no transition line j
|δj,j−1 + δj,j+1| otherwise

(11.6)

It can be shown that αj = {0, 1, 2} for lines with only one adjacent line (edges), and αj =
{0, 1, 2, 3, 4} for lines with two adjacent lines. Let the total crosstalk influence for an n line
bus be called a crosstalk index α, defined as the sum of the crosstalk influence of each line:

α =
n∑
j=1

αj (11.7)

(11.8)

If the contributions from the load (CL) and coupling capacitance (CC) are dominant to
the dissipated energy, then ET can be expressed by the following power model [9]:

ET =
1
2
CLV

2
DD(k + αλ) = E0(k + αλ) (11.9)

where E0 = 1
2CLV

2
DD, VDD is the power supply voltage, k is the number of transitions

on the data bus, λ = CC/CL and α is the crosstalk index of (11.7) indicating the coupling
capacitance induced crosstalk, similar to the crosstalk classes in [5].

In the next section we will use (11.9) to analyze which transition patterns that can be
distinguished.

11.4 Security Implications

The relationship between energy dissipation, number of transitions, crosstalk index, load
capacitance and coupling capacitance in (11.9) can be used to analyze delays and energy
dissipation of sub-micron VLSI design [5, 13, 15]. However, we are interested in the security
implications of layout dependent phenomena, and in this paper the coupling capacitance
in particular. How will a power model (11.9) that includes coupling capacitance effect our
ability to predict the energy dissipation of activity in a microprocessor, such as data transfer
on a parallel bus?

Let A be the set of possible transitions on an n bit parallel bus. Since ”no transition”
can be both 0 → 0 and 1 → 1 there are |A| = 4n possible transition patterns for an n-bit
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bus. Assuming that each transition pattern’s energy dissipation is unique, a model should
ideally predict a total of |A| = 4n energy levels. This may not be possible for at least
two reasons: (1) Such model is too complicated. (2) The assumption is incorrect, physical
properties are such that multiple transition patterns indeed use the same amount of energy.

Classification by energy dissipation can only distinguish transition patterns by the dis-
tinct energy levels explained by the model. A model that assumes energy dissipation pro-
portional to the number of transition, can therefor only distinguish transition pattern into
subsets Ak, k = {0, · · · , n} being subsets of A that has k transitions. The number of transi-
tion patterns in each subset is given by: |Ak| = 2n

(
n
k

)
. The total number of possible tran-

sitions on an 8 wire bus (|A| = 65536) can be divided into 9 subsets, A0, A1, · · · , A8 based
on the number of transitions, k. The energy dissipation, ET (using (11.9) with α = 0),
associated with each subset |Ak| can be seen in Table 11.2. A model that assumes energy
dissipation proportional to the number of transition, can only classify transition pattern by
the energy level of these 9 subsets. In Table 11.2 there are e.g. 14336 transition patterns with
energy level 3E0 that are indistinguishable by the number of transitions alone.

Using the new power model (11.9), taking into consideration the coupling capacitor,
each subset Ak can be split into a number of new energy levels. This gives a number of
smaller subsets Aαk , |Ak| > |Aαk | and

∑
∀α∈qk |A

α
k | = |Ak|, where α is the crosstalk index of

(11.7) and qk is the set of possible values of α for k transitions.
Computing |Aαk | for a fixed number of bus lines n can be done by constructing a table

of (2k)2 elements corresponding to all possible transition patterns. For each of these, first
compute the crosstalk index α (11.7), then the energy dissipation ET (11.9). |Aαk | can then
be computed by counting the table entries for each tuple {k, α}. Notice that for a finite n,
there are restrictions on the sets qk of possible values of α. As the number of transitions
increase, all energy levels are not possible. This applies to 6,7 and 8 transitions for an 8 bit
bus.

The results for an 8 bit bus can be seen in Table 11.2. The results show that taking into
consideration the coupling capacitance increases the number of energy levels from 9 in the
HD model to 93 in the crosstalk model, e.g. the 14336 transition patterns with 3 transitions
previously indistinguishable can now be split into 10 energy levels. The largest increase in
energy levels is found for 6 transitions with 21 new energy levels. Note that energy level
α = 20 does not exist.

Also notice that given an ideal classifier, there is no confusion between subsets of the
same k as they all have unique energy levels. There may, however, be confusion between
subsets of different k. The extent of this confusion is architecture dependent, expressed
by λ, e.g. subset A6

2 has the same energy level as A2
3 if λ = 1/4, in case they should be

treated as one subset. It is easy to show that confusion between transition A (energy ETA,
kA transitions and crosstalk index αA) and B (energy ETB , kB transitions and crosstalk
index αB) happens when:

λAB =
kB − kA
αA − αB

(11.10)

λAB values that are close to the real λ = CC/CL indicate subsets that will be difficult to
distinguish.

Finally, we have only shown how to split the subset Ak into smaller subsets Aαk by con-
sidering the effect of the coupling capacitance (i.e α). This idea can easily be generalized,
such that Ak is split into subsets Aβk , where |Ak| > |Aβk |, and β is the influence of other lay-
out dependent phenomena. Examples of phenomena for future work include: variations in
coupling and load capacitance, coupling capacitance between line j and j + 2, inductance,
effect of bends in circuit paths and multi layer capacitance (3-dimentional). We believe
that the key to identify minute differences in microprocessor activity is to combine several
layout dependent phenomena, β1, · · · , βm, such that:

|Ak| > |Aβ1
k | > |A

β1+β2
k | > · · · > |A

∑m
i=1 βi

k | (11.11)
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Table 11.2: The Table shows the number of transition patterns, without (|Ak|) and with
(|Aαk |) crosstalk influence, belonging to a certain energy level, ET . k is the number of tran-
sitions (Hamming Distance) and α is the crosstalk index

k ET [pJ] |Ak| α ET [pJ] |Aαk | k ET [pJ] |Ak| α ET [pJ] |Aαk |
0 0 256 0 0 256 6 6E0 7168 1 E0(6 + λ) 16
1 E0 2048 1 E0(1 + λ) 512 2 E0(6 + 2λ) 88

2 E0(1 + 2λ) 1536 3 E0(6 + 3λ) 160
2 2E0 7168 1 E0(2 + 1λ) 256 4 E0(6 + 4λ) 320

2 E0(2 + 2λ) 896 5 E0(6 + 5λ) 80
3 E0(2 + 3λ) 2560 6 E0(6 + 6λ) 360
4 E0(2 + 4λ) 2560 7 E0(6 + 7λ) 640
5 E0(2 + 5λ) 256 8 E0(6 + 8λ) 960
6 E0(2 + 6λ) 640 9 E0(6 + 9λ) 160

3 3E0 14336 1 E0(3 + 1λ) 128 10 E0(6 + 10λ) 560
2 E0(3 + 2λ) 512 11 E0(6 + 11λ) 960
3 E0(3 + 3λ) 2048 12 E0(6 + 12λ) 960
4 E0(3 + 4λ) 2560 13 E0(6 + 13λ) 160
5 E0(3 + 5λ) 3328 14 E0(6 + 14λ) 400
6 E0(3 + 6λ) 1792 15 E0(6 + 15λ) 640
7 E0(3 + 7λ) 2048 16 E0(6 + 16λ) 320
8 E0(3 + 8λ) 1536 17 E0(6 + 17λ) 80
9 E0(3 + 9λ) 128 18 E0(6 + 18λ) 120
10 E0(3 + 10λ) 256 19 E0(6 + 19λ) 160

4 4E0 17920 1 E0(4 + λ) 64 21 E0(6 + 21λ) 16
2 E0(4 + 2λ) 288 22 E0(6 + 22λ) 8
3 E0(4 + 3λ) 1152 7 7E0 2048 1 E0(7 + λ) 8
4 E0(4 + 4λ) 1728 2 E0(7 + 2λ) 48
5 E0(4 + 5λ) 2496 5 E0(7 + 5λ) 48
6 E0(4 + 6λ) 1824 6 E0(7 + 6λ) 240
7 E0(4 + 7λ) 2816 9 E0(7 + 9λ) 120
8 E0(4 + 8λ) 2304 10 E0(7 + 10λ) 480
9 E0(4 + 9λ) 2496 13 E0(7 + 13λ) 160
10 E0(4 + 10λ) 864 14 E0(7 + 14λ) 480
11 E0(4 + 11λ) 1152 17 E0(7 + 17λ) 120
12 E0(4 + 12λ) 576 18 E0(7 + 18λ) 240
13 E0(4 + 13λ) 64 21 E0(7 + 21λ) 48
14 E0(4 + 14λ) 96 22 E0(7 + 22λ) 48

5 5E0 14336 1 E0(5 + λ) 32 25 E0(7 + 25λ) 8
2 E0(5 + 2λ) 160 8 8E0 256 0 E0(8) 2
3 E0(5 + 3λ) 512 4 E0(8 + 4λ) 14
4 E0(5 + 4λ) 896 8 E0(8 + 8λ) 42
5 E0(5 + 5λ) 896 12 E0(8 + 12λ) 70
6 E0(5 + 6λ) 1024 16 E0(8 + 16λ) 70
7 E0(5 + 7λ) 1536 20 E0(8 + 20λ) 42
8 E0(5 + 8λ) 1920 24 E0(8 + 24λ) 14
9 E0(5 + 9λ) 1728 28 E0(8 + 28λ) 2
10 E0(5 + 10λ) 1088
11 E0(5 + 11λ) 1536
12 E0(5 + 12λ) 1152
13 E0(5 + 13λ) 896
14 E0(5 + 14λ) 256
15 E0(5 + 15λ) 512
16 E0(5 + 16λ) 128
17 E0(5 + 17λ) 32
18 E0(5 + 18λ) 32

11.4.1 Classification Performance

Table 11.2 shows that, taking into consideration the coupling capacitance, we are able to
increase the number of subsets (or energy levels) Ak to Aαk . For the purpose of comparing
alternative detectors we will assume uniform random transition. Thus for an 8 bit bus we
would like the detector to extract 16 bits of information, i.e. high or low (2 bits of infor-
mation) for each of the 8 wires. We will use the ability to extract entropy as our classifier
performance indicator. The entropy (i.e bits of information) for a detector, when there are
r energy levels, can be calculated using:

H(x) = −
r∑
i=1

p(xi)log p(xi) (11.12)

In the following, we have assumed an 8 bit bus width, thus there are 48 = 65536 possible
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transitions. Call the detector that can extract 16 bits of information a level detector. If we
assume that one only has bus activity when initial and final state are different, and that
0 → 1 and 1 → 0 can be distinguished, an observation will give us the following entropy:
−(1/2log1/2 + 1/4log1/4 + 1/4log1/4) = 3/2 bits as we cannot distinguish 0 → 0 from
1 → 1, but 0 → 0, 0 → 1, 1 → 0 can be distinguished. Thus, each observation will give
us 3/2 bits per line. The theoretical optimum for an 8 bit bus with a ’transition detector’
would be 8 · 3/2 bits = 12 bits, assuming all observable transitions are distinguishable. In
other words, by observing transitions rather than levels, we loose 4 bits (1/2 bit per line)
compared to the setting where we would observe the states.

Using the results of Table 11.2, we can now calculate the entropy extracted by a detector
that can distinguish HD only (Ak) and a detector that can distinguish energy levels due to
crosstalk (Aαk ).

The entropy extracted by a HD detector is found using (11.12) with 9 energy levels
(r = 9) and p(xi) = |Ai−1|/65536 (|Ai−1| from column 3 and 9 Table 11.2) giving an entropy
of 2.5 bits. The entropy extracted by a crosstalk detector is found using (11.12) with 93
energy levels (r = 93) and p(xi) = |Aαi−1|/65536 (|Aαi−1| from column 6 and 12 Table 11.2)
giving an entropy of 5.7 bits.

The difference between the ideal value of a level detector and the entropy extracted by
other detectors, represent the amount of guessing needed for classifying an observation. By
considering the coupling capacitance and not only HD, we extract more information out of
each observation, therefore reducing the amount of ”guessing” needed for classification. In
the next section we present simulations validating the effect of the coupling capacitance.

11.5 Simulations

The simulations are performed in PSPICE with CL = 400fF , CC = 250fF , Vdd = 3V
and a rise- and fall-time of 200ps of the input voltages (same as [13]). The inverter drivers
are equal and balanced. Equation (11.4) is used in PSPICE to find the simulated energy
dissipation ÊT .

11.5.1 Model Validation

Simulations were initially carried out and compared with the results of [5, 13] as a model
validation. The results are shown in Table 11.3 and 11.4. Transition pattern refers to tran-
sitions in the output voltage Vj (Fig. 11.2) and also shows the number of bus lines used.
Column 2 is the number of transitions k followed by the crosstalk index α. Theoretical
energy, ET , is calculated from (11.9) and simulated energy, ÊT is from PSPICE simulations.

The simulations for two lines are consistent with [13]. For two wires, as seen in Table
11.3, it is clear that the energy dissipation for two simultaneous transitions is either lower
or higher than if treated as two single transitions, depending on the direction of the tran-
sitions, as expected. This means that introducing the coupling capacitance it is possible to
explain a difference in the energy dissipation for transition patters 00 ↔ 11 from 01 ↔ 10.
Without this difference in energy dissipation the two transition patterns should not be dis-
tinguishable.

Simulations of three lines confirms the difference in energy dissipation of the 5 crosstalk
classes (Table 11.1) introduced in [5]. Notice that only the transition pattern with the same
number of transitions (first and last, second and fourth) can be used to evaluate the effect
of the coupling capacitance.

The small differences between analytic and simulated energy dissipation can be ex-
plained by simplifications in deriving (11.9) (e.g. omitting leakage currents, such as short-
circuit and sub-threshold currents). Having validated our model, all the following simula-
tions are done on an 8 bit bus.
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Table 11.3: Dissipated energy when considering crosstalk for 2 adjacent wires

Transition Transitions Crosstalk Theoretical Simulated
pattern k α ET [pJ] ÊT [pJ]
00→ 01 1 1 2.9 2.7
00→ 10 1 1 2.9 2.7
00→ 11 2 0 3.6 3.5
01→ 10 2 4 8.1 8.0

Table 11.4: Dissipated energy when considering crosstalk for bus with 3 lines

Transition Transitions Crosstalk Theoretical Simulated
pattern k α ET [pJ] ÊT [pJ]

000→ 111 3 0 5,4 5.4
000→ 011 2 1 4,7 4.4
000→ 010 1 2 4,1 3.9
010→ 100 2 5 9,2 9.5
010→ 101 3 8 14,4 14.2

11.5.2 Results and Discussion

Simulation results for 8 lines are shown in Table 11.5. The table is not exhaustive, but
includes results for all possible subsets Aαk .

The simulated energy levels ÊT are similar to the analytic values ET . The results con-
firm that energy consumption is proportional to the number of transitions and the crosstalk
index, α. The crosstalk index depends on switching activity on adjacent lines and position,
edge (one adjacent wire) or middle (two adjacent wires). As seen in Table 11.5, the re-
sults also confirm that there is no confusion between energy levels for subsets of an equal
number of transitions. However, there may be some confusion between some of the 93 sub-
groups, e.g. the energy dissipation of subset A6

2 and A4
3 are almost equal. This is expected

as λAB = 0, 5 is close to λ = 0, 63 used in this experiment. Other examples can be found
and this reduces the number of subsets depending on how accurate our detector is. A the-
oretical crosstalk detector capable of separating all 93 energy levels can extract 5.7 bits of
information. It is therefore expected that a practical crosstalk detector will extract less in-
formation, due to some subset having almost equal energy levels. Which of the simulated
energy levels that should be considered indistinguishable will depend on the accuracy of
the detector and the number of observations available. A random loss of 20% of the sub-
sets will still, on average, have an entropy of 5.0. Even with this loss due to similar energy
levels, the information gain is still 2.5 bits compared to the HD detector. The performance
of the detectors are summarized in Table 11.6:

11.5.3 Case Study and Future Work

In order to probe the practicality of our theory and simulations, we have collected a small
set of experimental data. The objective was to see if analysis of electromagnetic side-
channel information also supports the division into crosstalk energy levels of Table 11.2
and 11.5.

When classifying two transition patterns by their energy dissipation, we expect a lower
probability of error (Pe) when the difference in energy level is large and lower Pe as the
difference in energy levels decreases. When the energy dissipation of two transition pat-
terns are equal, we don’t expect to be able to do any better than flipping a coin. Transition
patterns with different number of transitions have a relatively large difference in energy
dissipation and are therefore fairly easy to distinguish, as shown in [8].
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Table 11.5: Analytic (ET ) and simulated (ÊT ) dissipated energy when considering crosstalk
for bus with 8 lines. k is the number of transitions (Hamming Distance) and α is the
crosstalk index

Transition pattern k α ET [pJ] ÊT [pJ] Transition pattern k α ET [pJ] ÊT [pJ]
0000 0000→ 0000 0001 1 1 2,9 2.9 0000 0000→ 0011 1111 6 1 11,9 12.3
0000 0000→ 0000 0010 1 2 4,1 4.1 0000 0000→ 1001 1111 6 2 13,1 13.4
0000 0000→ 0000 0011 2 1 4,7 4.8 0000 0000→ 0101 1111 6 3 14,2 14.5
0000 0000→ 1000 0001 2 2 5,9 5.9 0000 0000→ 1010 1111 6 4 15,3 15.7
0000 0000→ 0000 0101 2 3 7,0 7.0 0000 0001→ 0011 1110 6 5 16,4 16.7
0000 0000→ 0000 1010 2 4 8,1 8.1 0000 0001→ 1001 1110 6 6 17,6 17.9
0000 0010→ 0000 0001 2 5 9,2 9.3 0000 0001→ 0101 1110 6 7 18,7 19.0
0000 0100→ 0000 0010 2 6 10,4 10.1 0000 0001→ 1010 1110 6 8 19,8 20.0
0000 0000→ 0000 0111 3 1 6,5 6.7 0000 0010→ 0011 1101 6 9 20,9 20.8
0000 0000→ 1000 0011 3 2 7,7 7.8 0000 0010→ 1001 1101 6 10 22,1 21.9
0000 0000→ 0000 1011 3 3 8,8 8.9 0000 0010→ 0101 1101 6 11 23,2 23.0
0000 0000→ 1000 1001 3 4 9,9 10.0 0000 0010→ 1010 1101 6 12 24,3 24.1
0000 0000→ 0001 0101 3 5 11,0 11.1 0000 0101→ 0011 1010 6 13 25,4 25.5
0000 0000→ 0010 1010 3 6 12,2 12.3 0000 0101→ 1001 1010 6 14 26,6 26.5
0000 0010→ 0000 1001 3 7 13,3 13.3 0000 0101→ 0101 1010 6 15 27,7 27.7
0000 0100→ 0001 0010 3 8 14,4 14.4 0000 0101→ 1010 1010 6 16 28,8 28.9
0000 0010→ 0000 0101 3 9 15,5 15.4 0000 1010→ 0011 0101 6 17 29,9 29.7
0000 0100→ 0000 1010 3 10 16,7 16.6 0000 1010→ 1001 0101 6 18 31,1 30.9
0000 0000→ 0000 1111 4 1 8,3 8.6 0000 1010→ 0101 0101 6 19 32,2 32.0
0000 0000→ 1000 0111 4 2 9,5 9.6 0010 1010→ 0001 0101 6 21 34,4 34.0
0000 0000→ 0001 0111 4 3 10,6 10.8 0101 0100→ 0010 1010 6 22 35,6 35.2
0000 0000→ 1000 1011 4 4 11,7 11.9 0000 0000→ 0111 1111 7 1 13,7 14.2
0000 0000→ 0010 1011 4 5 12,8 13.0 0000 0000→ 1011 1111 7 2 14,9 15.3
0000 0000→ 1001 0101 4 6 14,0 14.2 0000 0001→ 0111 1110 7 5 18,2 18.5
0000 0000→ 0101 0101 4 7 15,1 15.3 0000 0001→ 1011 1110 7 6 19,4 19.7
0000 0010→ 1001 0001 4 8 16,2 16.0 0000 0010→ 0111 1101 7 9 22,7 22.7
0000 0100→ 1001 0010 4 9 17,3 17.5 0000 0010→ 1011 1101 7 10 23,9 23.8
0000 0010→ 1000 0101 4 10 18,5 18.3 0000 0101→ 0111 1010 7 13 27,2 27.4
0000 0010→ 0100 0101 4 11 19,6 19.4 0000 0101→ 1011 1010 7 14 28,4 28.5
0000 0100→ 0100 1010 4 12 20,7 20.7 0000 1010→ 0111 0101 7 17 31,7 31.6
0000 1010→ 0000 0101 4 13 21,8 21.5 0000 1010→ 1011 0101 7 18 32,9 32.6
0001 0100→ 0000 1010 4 14 23,0 22.7 0001 0101→ 0110 1010 7 21 36,2 36.2
0000 0000→ 0001 1111 5 1 10,1 10.4 0001 0101→ 1010 1010 7 22 37,4 37.3
0000 0000→ 1000 1111 5 2 11,3 11.5 0010 1010→ 0101 0101 7 25 40,7 40.5
0000 0000→ 0010 1111 5 3 12,4 12.6 0000 0000→ 1111 1111 8 0 14,4 14.9
0000 0000→ 1001 0111 5 4 13,5 13.8 0000 0001→ 1111 1110 8 4 18,9 19.3
0000 0000→ 0101 0111 5 5 14,6 14.9 0000 0010→ 1111 1101 8 8 23,4 23.4
0000 0000→ 1010 1011 5 6 15,8 16.0 0000 0101→ 1111 1010 8 12 27,9 28.1
0000 0010→ 0111 0001 5 7 16,9 16.8 0000 1010→ 1111 0101 8 16 32,4 32.3
0000 0010→ 1011 0001 5 8 18,0 17.9 0001 0101→ 1110 1010 8 20 36,9 36.9
0000 0010→ 0101 1001 5 9 19,1 19.3 0010 1010→ 1101 0101 8 24 41,4 41.1
0000 0010→ 1010 1001 5 10 20,2 20.4 0101 0101→ 1010 1010 8 28 45,9 45.6
0000 0010→ 0110 0101 5 11 21,4 21.3
0000 0010→ 1010 0101 5 12 22,5 22.5
0000 0010→ 0101 0101 5 13 23,6 23.5
0000 1010→ 1000 0101 5 14 24,8 24.5
0000 1010→ 0100 0101 5 15 25,9 25.6
0001 0100→ 0100 1010 5 16 27,0 27.0
0000 1010→ 0001 0101 5 17 28,1 27.9
0001 0100→ 0010 1010 5 18 29,3 29.1

Table 11.6: Comparing the ability to extract information of different detectors for an 8 wire
bus

Type of detector Entropy (information)
[bits]

Level detector 16,0
Optimum transition detector 12,0
Crosstalk detector (theoretical) 5,7
Crosstalk detector (simulated) 5,0
HD detector 2,5

In the following consider two transition patternsA (crosstalk index αA) andB (crosstalk
index αB) of an equal number of transitions. Let α-distance, ∆α = |αA − αB |, be the dif-
ference in crosstalk index between transition patterns A and B. According to our model

123



11. LAYOUT DEPENDENT PHENOMENA: A NEW SIDE-CHANNEL POWER MODEL

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
0

0.1

0.2

0.3

0.4

0.5

0.6

Difference in energy level (α−distance)

A
ve

ra
ge

 c
la

ss
ifi

ca
tio

n 
er

ro
r

Figure 11.3: Average classification error as a function of difference in energy level (ex-
pressed as α distance, ∆α)

(11.9), patterns with ∆α = 0 dissipate the same amount of energy and are therefore as-
sumed to be indistinguishable with an expected classification error, Pe = 0, 5 (guessing),
e.g. 00000000 → 00011111 and 00000000 → 11111000 both belonging to A1

5 (Table 11.2).
Patterns with ∆α > 0 are assumed to be distinguishable with Pe < 0, 5 and Pe is ex-
pected to decrease as ∆α increases, e.g it is expected to be easier (lower Pe) to classify
00000000 → 00011111 from 00010100 → 00101010 (∆α = 17), than 00000000 → 00011111
from 00000000→ 01010111 (∆α = 4) (Table 11.5), simply because ∆α = 17 indicate a larger
difference in energy levels than ∆α = 4.

The following experiment was designed to validate the expected relationship between
difference in energy levels, ∆α, and classification error, Pe. The experiment was designed
to look at transition patterns with 5 transitions (8 bit bus), giving us 18 possible crosstalk
indexes (Table 11.2). A program was designed to execute on a smart card (i.e PIC 16F84A
microprocessor), such that transition patterns for each of the 18 crosstalk indexes was trans-
ferred on the internal data bus. A total of 1000 traces (observations) of the electromagnetic
emanation, for each of the 18 transition patterns, were collected. A 10 Gs/s oscilloscope
with a broadband E near-field probe was used. The probe was positioned as close to the
microprocessor as possible, without any decapsulation.

Classification between all pairs of transition patterns was done according to the Mod-
ified Template Attack [8]. This includes feature selection, training and evaluating the per-
formance of a quadratic Bayes classifier (for details refer to [8]). The probability of error,
Pe, was found from the confusion matrix [6]. Since the classification accuracy depends on
how the observations are split, the average of 100 random permutations of 200 training
observations and 800 test observations was used. Finally, the average classification error as
a function of α distance (∆α) was calculated and plotted in Fig. 11.3.

The results (Fig. 11.3) show that transition patterns belonging to equal energy levels
(∆α = 0) have Pe = 0, 5. This is equal to guessing as expected. When the difference in
energy level increase (larger ∆α) the results suggest that the average classification error
decrease. This supports our simulation/theoretical results. We hypothesize that the dis-
crepancy between our simulation/theoretical results for alpha distance 4 is a consequence
of statistical uncertainty/noise in the experimental data. Currently, we cannot offer any
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explanation for why classification error seems to increase from alpha distance 11/13.

11.6 Conclusion

It is known that one can distinguish bus activity generated from signal transitions having
different HD. In this paper we elaborate on the theory and simulations on the hypoth-
esis from [9] that layout dependent phenomena, such as inductance and capacitance in
and between conductors and radiation properties of circuit elements, can explain why it
sometimes is possible to distinguish transition patterns with the same HD. Our simula-
tions show that capacitive crosstalk has a significant effect on gate energy dissipation, and
confirm that the dissipated energy from CMOS switching gates depend not only on the HD,
but also on the direction of switching activity on nearby data lines. For an 8 bit bus, this
increases the number of possible energy levels from 9 (HD) to 93 (crosstalk), and therefore
allows us to explain why signals with the same HD sometimes can be distinguished. Where
as an HD based detector can provide about 2.5 bits of information per sample, a crosstalk
based detector will yield about 5.7 bits (theoretical) or 5.0 bits (simulated) of information
per sample - in all cases for an 8 bit bus.

In this paper we have also shown that experimental data, i.e the electromagnetic side-
channel of a smart card, suggest that the average classification error gets reduced as α
distance (i.e difference in energy level due to capacitive crosstalk) increases. This support
our simulations/theoretical results that layout specific phenomena (e.g. capacitance) must
be considered when analyzing security implications of electromagnetic side-channels.
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Appendix A

Preproceedings: Security Implications of
Crosstalk in Switching CMOS Gates1

Abstract

The energy dissipation associated with switching in CMOS logic gates can be used to clas-
sify the microprocessors activity. It is relatively easy to classify activity by the number of
transitions, i.e. Hamming Distance (HD). In this article we consider layout dependent phe-
nomena, such as capacitive crosstalk to derive a more precise power model. We show that
for an 8 bit data bus, crosstalk may improve detection performance from 2.5 bits (HD based
detector) to theoretical 5.7 bits and simulated 5.0 bits (crosstalk based detector) of informa-
tion per sample. Thus we have shown that a layout specific phenomenon (capacitance)
must be considered when analyzing security implications of power and electromagnetic
side-channels. A small case study is also included that support our simulations/theoretical
results.

A.1 Introduction

When a microprocessor executes its program, power consumption (or resulting electro-
magnetic emanation) can be used to reveal the contents of program and/or data memory
of the microprocessor. The correlation between power consumption and microprocessor
activity has found many uses: to recover cryptographic keys [10, 3, 11, 1, 9], to reveal hid-
den hardware faults (trojans) on integrated circuits [2], to control the emanation through
subversive software in the Wireless Covert Channel Attack [7] and to reverse engineer the
code executed by microprocessors [13].

In side-channel attacks, a common power model used to simulate the power consump-
tion is the Hamming Distance (HD) model, as it is simple and generic [11]. The model
assumes the power consumption to be proportional to the number of transitions taking
place. If this assumption was correct, signals transmitted on a parallel bus (e.g. interme-
diate values of the cryptographic algorithm) with the same HD should have equal power
consumption and therefore be indistinguishable. This is not always the case, e.g. if Bayes
classifier is used, as suggested by the template attack [3]. It has also been demonstrated
in [8] that signals with the same number of transitions can be classified using a modified
template attack.

The phenomena behind this may be known in the security community, but has received
little attention. One article by Chen et al. [4], studies the effect of the coupling capac-
itance on masking schemes without a detailed examination of the phenomena. In their
book ”Power Analysis Attacks”, Mangard et.al. [11] mention power simulation at analog
level as ”the most precise way to simulate the power consumption of digital circuits...”.
Parasitic elements, such as parasitic capacitances between the wires and unwanted capaci-
tances in the transistors are mentioned. However, it is also stated that it is very common to
make simplifications by lumping together extrinsic and intrinsic capacitances into a single

1G.O. Dyrkolbotn, K. Wold and E. Snekkenes. Preproceedings presented at Information Security Conference
(ISC), 2010.
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capacitance to ground. This will, in fact, make the model incapable of explaining the results
we are addressing in this article.

Parasitic couplings, and the coupling capacitance in particular are, however, a great
concern within sub-micron VLSI design [5, 12, 14]. CMOS technology is currently being
pushed into deep sub-micron range. As the number of transistors increase, the need for
on-chip wiring increases as well and must be scaled accordingly. Parasitic couplings be-
tween interconnects, such as on-chip buses, must be taken seriously as they influence both
the power consumption and maximum obtainable speed [5]. In [12], Moll et al. did a de-
tailed analysis of the energy dissipation from two metal lines running close together. The
lines were driven by CMOS inverters and transitions in one or two wires were studied.
The effect of coupling capacitance between the two lines on the power consumption was
shown analytically and simulated in HSPICE. The main result was that if two bus lines
have transitions in the same or opposite direction at the same time, the total energy is ei-
ther lower or higher than if the two transitions are treated independently. This is due to
the coupling capacitance. Duan et al. [5] focus on crosstalk avoidance codes that aim to
reduce the effect of the coupling capacitances by avoiding specific data transition patterns.
Their model considers coupling capacitance, CC , between three adjacent lines. They show
that 3 bit transition patterns can be divided into 5 crosstalk classes based on the influence
of the coupling capacitances, CC . The energy consumption therefore depends on which
crosstalk class the transition pattern belong to. The focus of Moll et al. [12] and Duan et
al. [5] are both on power consumption and delays caused by the coupling capacitance.
They have not considered security implications, such as the ability to use the variation in
energy consumption to classify transition patterns. Correlations between data and energy
consumption are exactly what side-channel attacks, such as DPA and Template attack, rely
upon.

We put forward the hypothesis that layout dependent phenomena, such as parasitic
coupling between wires, can explain why it sometimes is possible to distinguish transition
patterns with the same HD. In this article we present theory and simulations on some
security implications of capacitive crosstalk in CMOS driven data busses. How will the
coupling capacitance affect our ability to classify activity in a microprocessor, such as data
transfer on a parallel bus? We look at the total dissipated energy from a parallel data bus
driven by CMOS inverters. Our model is a generalization of Moll et al’s [12], with inverters
consisting of two MOSFET transistors, a load capacitance CL connected to each inverter
output and a coupling capacitance CC connected between each bus line. Our model is
generalized to n lines and simulations in PSPICE are done with eight bus lines.

The purpose of our simulation is to show that when the dissipated energy depends on
the direction of change of nearby data lines, and not only the number of transitions taking
place, the number of possible energy levels dissipating from the bus will increase, thus
allowing classification of a larger number of transition patterns. Our hypothesis is that
this can be used to explain why some signal with the same HD can be distinguished. Our
model can easily take into consideration other layout dependent phenomena, potentially
offering an explanation to classification of an even larger set of transition patterns. We will
use the ability to extract entropy as our classifier performance indicator and show that a
detector capable of detecting energy levels due to crosstalk can extract more information
than a detector based on HD only.

This paper is organized as follows: Section A.2 presents the hypothesis of layout de-
pendent phenomena. Section A.3 presents our model and necessary theory to calculate the
energy dissipation. Section A.4 is an analytic analysis of security implications. Section A.5
presents simulation results. Finally, a conclusion is drawn in section A.6.
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Figure A.1: Model of layout dependent phenomena

A.2 Layout Dependent Phenomena

In a physical implementation of any circuit (e.g. CMOS based microprocessor) a num-
ber of phenomena will influence the energy dissipation and the resulting radiated elec-
tromagnetic field. These phenomena include inductance and capacitance of conductors,
inductance and capacitance between conductors, wireless transmission characteristics (i.e
antenna properties) of conductors and other circuit elements and complex combinations of
these phenomena. These phenomena apply to any transistors and wires in a circuit, but
we choose to look at a portion of wires running parallel, as we expect them to be relatively
good antennas and therefore a good source for side-channel information. This is illustrated
in the model of a parallel bus, driven by CMOS inverters, seen in Fig. A.1.

A.2.1 Inductance and Capacitance of Conductors

Any conductor, Wj , carrying an electric current will have an associated distributed resis-
tance Rj , inductance Lj , conductance Gj and capacitance Cj , expressed as a characteris-
tic impedance, Z0j . The characteristic impedance is often modeled as an infinite series of
lumped components. The inductance Lj and capacitanceCj will both block high frequency
signals and act as a low pass filter. Small variations in the length and width of conductors
result in small variations in the inductance. Small variations in the area and distance to
ground plane result in small variations in the capacitance. There will therefore be small
variations in how signals on different conductors (e.g. bus lines) are filtered.

A.2.2 Inductance and Capacitance between Conductors

Crosstalk can be defined as the coupling of energy between two conductors. Inductive
coupling is caused by mutual inductance, Lj,j+1, (i.e magnetic field) and capacitive cou-
pling is caused by mutual capacitance, Cj,j+1, (i.e electric field) between wire j and j + 1.
These couplings occur along the entire length of the conductor, but are also modeled as
lumped components (Fig. A.1). The interaction of magnetic and electric fields will effec-
tively change the characteristic impedance, Z0j , associated with the conductor. This inter-
action is layout dependent (e.g. distance and length of wires) and will effect both delays
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and energy dissipation. An important property of crosstalk is its dependency on the ac-
tivity on the wires. Moll et al. [12] state that, ”coupling capacitance is very different from
the capacitance to ground because it depends on the switching activity... ”. If two lines are
low and rise at the same time, the mutual capacitance coupling, Cj,j+1, does not have to
be charged. However, if one line remains low and the other rises, Cj,j+1 must be charged,
resulting in increased rise time and power consumption.

A.2.3 Wireless Transmission Characteristics

Any circuit element in the microprocessor, conducting electric current, can be considered
an antenna. An antenna is a transducer converting electric current into electromagnetic
waves, characterized by properties such as: resonant frequency, gain, radiation pattern,
impedance, efficiency, bandwidth and polarization. These properties depend on factors
such as: amount of current, length/shape and material of the circuit element. In addition,
the electromagnetic waves will be influenced by filtering, reflection and interference from
surrounding material and circuit elements. The relationship between the current (i.e power
consumption) and the electromagnetic wave can be expressed by a transfer function h(t)
(see Fig. A.1). Predicting h(t) is not trivial, if possible at all, as most physical systems are
not linear by nature. This is left for future work, but it is a fair assumption that relatively
long bus lines are good antennas.

A.2.4 Complex Combinations of Factors

Finally, complex combinations of layout dependent phenomena may be the key to identify
minute differences in microprocessor activity, e.g. the radiation efficiency of bus lines com-
bined with data and layout dependencies of the line characteristics due to crosstalk suggest
that the emanation detected will have data and layout dependent variations in power con-
sumption and delay. In the following, we will assume that the coupling capacitance is the
dominating factor, and show how this can explain why some signals with the same HD
can be distinguished. This will show the potential effect of layout dependent phenomena
on classifying microprocessor activity. Our work can easily be extended by including more
layout dependent phenomena if a more precise result is needed.

A.3 Theoretical Considerations

By limiting the model to only coupling and load capacitances, the model in Fig. A.1 can be
simplified as seen in Fig. A.2. This is a generalization of the model for two lines used by
Moll et al. [12] and includes a model of the CMOS inverter.

In order to run simulations in PSPICE, we need an expression for the total energy dissi-
pation,ET . The energy dissipation for wire j in the p and n type transistor can be expressed
as:

Epj =
∫

(VDD − Vj)ipjdt (A.1)

Enj =
∫
Vjinjdt (A.2)

The overall energy dissipation for an n wire bus is then given by:

ET =
n∑
j=1

(Epj + Enj) (A.3)
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Figure A.2: Simplified model, assuming load and coupling capacitances to be dominant

Combining and rearranging (A.1), (A.2) and (A.3) the overall energy dissipation can be
written as:

ET =
n∑
j=1

VDD

∫
ipjdt−

n∑
j=1

∫
Vj(ipj − inj)dt (A.4)

Using Kirchhoff’s circuit laws and the current voltage relationship i(t) = C dV (t)
dt , the terms

(ipj − inj) can be written as:

ipj − inj = (Cj + Cj,j+1 + Cj−1,j + Ccj)
dVj
dt
− Ccj

dVij
dt
− Cj,j+1

dVj+1

dt
− Cj−1,j

dVj−1

dt
(A.5)

Notice that the results in [12] are easily found from (A.5) and (A.4) by setting n = 2 (two
adjacent lines). Equation (A.4) is used in PSPICE to simulate the total energy dissipation,
ÊT , with the following assumptions:

• The transitions on the data bus are concurrent in time. Moll et al [12] showed that the
effect of the coupling capacitance is maximum when all transitions are synchronized.

• The load capacitances for data bus lines are identical (Cj = CL for j = {1, 2, · · · , n})

• Coupling capacitances are only found between adjacent line and are identical
(Cj,j+1 = CC for j = {1, 2, · · · , n− 1})

These assumptions are not unrealistic in real bus architecture on a device. If, however,
the transitions are shifted in time with more than the rise time of signal, the effect of the
coupling capacitance is reduced and the transitions can be regarded as single transitions.

In order to compare the simulated energy dissipation (ÊT ) with analytic values (ET ),
simpler expressions than (A.4) and (A.5) are needed. If the contributions from the load
(CL) and coupling capacitance (CC) are dominant to the dissipated energy, then ET can be
expressed by the more intuitive equations:

ET =
1
2
CLV

2
DD(k + αλ) = E0(k + αλ) (A.6)

where E0 = 1
2CLV

2
DD, VDD is the power supply voltage, k is the number of transitions

on the data bus (k = 0, 1, 2, . . .), λ = CC/CL and α is the crosstalk index indicating the
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coupling capacitance induced crosstalk, similar to the crosstalk classes in [5]. For an n line
bus the crosstalk index α is the sum of the crosstalk influence of each line:

α = Σnj=1αj (A.7)
(A.8)

Let δj ∈ {0,±1} be the normalized voltage change on line j, then δj,k = δj − δk, and

αj =
{

0 no transition line j
|δj,j−1 + δj,j+1| otherwise

(A.9)

It can be shown that αj = {0, 1, 2} for lines with only one adjacent line (edges), and
αj = {0, 1, 2, 3, 4} for lines with two adjacent lines. In the next section we will use (A.6)
and (A.7) to analyze which transition patterns that can be distinguished.

A.4 Security Implications

The relationship between energy dissipation, number of transitions, the crosstalk index,
load capacitance and coupling capacitance in (A.6) can be used to analyze delays and en-
ergy dissipation of sub-micron VLSI design [5, 12, 14]. However, we are interested in the
security implications of layout dependent phenomena, and in this article the coupling ca-
pacitance in particular. How will the coupling capacitance effect our ability to classify
activity in a microprocessor, such as data transfer on a parallel bus?

Let A be the set of possible transitions on an n bit parallel bus. Let U be the number of
positive transitions and D the number of negative transitions. Since ”no transition” can be
both 0→ 0 and 1→ 1 there are |A| = 4n possible transition patterns for an n-bit bus. Given
an unknown observation of the energy dissipation, the objective is to assign the observation
to one of the possible transition patterns (classes), e.g. by using the template attack [3]. A
model of the energy dissipation should ideally be able to explain all |A| = 4n classes. This
may not be possible, either because of simplifications to the model or physical properties
such that multiple transition patterns indeed use the same amount of energy.

Let Ak, k = {0, · · · , n} be the subset of A that has k = U + D transitions. The number
of transition patterns in each subset given by:

|Ak| = 2n
(
n

k

)
(A.10)

The total number of possible transitions on an 8 wire bus (|A| = 65536) can be divided into
9 subsets, A0, A1, · · · , A8 based on the number of transitions, k. The energy dissipation,
ET (using (A.6) with α = 0), associated with each subset without crosstalk influence and
|Ak| can be seen in Table A.1. A model that assumes energy dissipation proportional to
the number of transition, can only classify transition pattern by the energy level of these 9
subsets. In Table A.1 there are e.g. 14336 transition patterns with energy level 3E0 that are
indistinguishable by the number of transitions alone.

Taking into consideration the coupling capacitor of the model in Fig. A.2 and us-
ing (A.6), each subset Ak can be split into a number of new energy levels, depending
on the crosstalk influence. This gives a number of smaller subsets Aαk , |Ak| > |Aαk | and∑
allα |Aαk | = |Ak|, where α is the crosstalk index of (A.7). Computing |Aαk | for a fixed num-

ber of bus lines n can be done by constructing a table of (2k)2 elements corresponding to
all possible transition patterns. For each of these, first compute the crosstalk index α (A.7),
then the energy dissipation ET (A.6). |Aαk | can then be computed by counting the table en-
tries for each tuple {k, α}. This has been done for an 8 bit bus in Table A.1. The results show
that taking into consideration the coupling capacitance increases the number of energy lev-
els from 9 in the HD model to 93 in the crosstalk model, e.g. the 14336 transition patterns
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Table A.1: The Table shows the number of transition patterns, without (|Ak|) and with
(|Aαk |) crosstalk influence, belonging to a certain energy level, ET . k is the number of tran-
sitions (Hamming Distance) and α is the crosstalk index

k ET [pJ] |Ak| α ET [pJ] |Aαk | k ET [pJ] |Ak| α ET [pJ] |Aαk |
0 0 256 0 0 256 6 6E0 7168 1 E0(6 + λ) 16
1 E0 2048 1 E0(1 + λ) 512 2 E0(6 + 2λ) 88

2 E0(1 + 2λ) 1536 3 E0(6 + 3λ) 160
2 2E0 7168 1 E0(2 + 1λ) 256 4 E0(6 + 4λ) 320

2 E0(2 + 2λ) 896 5 E0(6 + 5λ) 80
3 E0(2 + 3λ) 2560 6 E0(6 + 6λ) 360
4 E0(2 + 4λ) 2560 7 E0(6 + 7λ) 640
5 E0(2 + 5λ) 256 8 E0(6 + 8λ) 960
6 E0(2 + 6λ) 640 9 E0(6 + 9λ) 160

3 3E0 14336 1 E0(3 + 1λ) 128 10 E0(6 + 10λ) 560
2 E0(3 + 2λ) 512 11 E0(6 + 11λ) 960
3 E0(3 + 3λ) 2048 12 E0(6 + 12λ) 960
4 E0(3 + 4λ) 2560 13 E0(6 + 13λ) 160
5 E0(3 + 5λ) 3328 14 E0(6 + 14λ) 400
6 E0(3 + 6λ) 1792 15 E0(6 + 15λ) 640
7 E0(3 + 7λ) 2048 16 E0(6 + 16λ) 320
8 E0(3 + 8λ) 1536 17 E0(6 + 17λ) 80
9 E0(3 + 9λ) 128 18 E0(6 + 18λ) 120

10 E0(3 + 10λ) 256 19 E0(6 + 19λ) 160
4 4E0 17920 1 E0(4 + λ) 64 21 E0(6 + 21λ) 16

2 E0(4 + 2λ) 288 22 E0(6 + 22λ) 8
3 E0(4 + 3λ) 1152 7 7E0 2048 1 E0(7 + λ) 8
4 E0(4 + 4λ) 1728 2 E0(7 + 2λ) 48
5 E0(4 + 5λ) 2496 5 E0(7 + 5λ) 48
6 E0(4 + 6λ) 1824 6 E0(7 + 6λ) 240
7 E0(4 + 7λ) 2816 9 E0(7 + 9λ) 120
8 E0(4 + 8λ) 2304 10 E0(7 + 10λ) 480
9 E0(4 + 9λ) 2496 13 E0(7 + 13λ) 160

10 E0(4 + 10λ) 864 14 E0(7 + 14λ) 480
11 E0(4 + 11λ) 1152 17 E0(7 + 17λ) 120
12 E0(4 + 12λ) 576 18 E0(7 + 18λ) 240
13 E0(4 + 13λ) 64 21 E0(7 + 21λ) 48
14 E0(4 + 14λ) 96 22 E0(7 + 22λ) 48

5 5E0 14336 1 E0(5 + λ) 32 25 E0(7 + 25λ) 8
2 E0(5 + 2λ) 160 8 8E0 256 0 E0(8) 2
3 E0(5 + 3λ) 512 4 E0(8 + 4λ) 14
4 E0(5 + 4λ) 896 8 E0(8 + 8λ) 42
5 E0(5 + 5λ) 896 12 E0(8 + 12λ) 70
6 E0(5 + 6λ) 1024 16 E0(8 + 16λ) 70
7 E0(5 + 7λ) 1536 20 E0(8 + 20λ) 42
8 E0(5 + 8λ) 1920 24 E0(8 + 24λ) 14
9 E0(5 + 9λ) 1728 28 E0(8 + 28λ) 2

10 E0(5 + 10λ) 1088
11 E0(5 + 11λ) 1536
12 E0(5 + 12λ) 1152
13 E0(5 + 13λ) 896
14 E0(5 + 14λ) 256
15 E0(5 + 15λ) 512
16 E0(5 + 16λ) 128
17 E0(5 + 17λ) 32
18 E0(5 + 18λ) 32

with 3 transitions previously indistinguishable can now be split into 10 energy levels. The
largest increase in energy levels is found for 6 transitions with 21 new energy levels. No-
tice that for a finite n, there are restrictions on the values of α as the number of transitions
increase, i.e all energy levels are not possible. This applies to 6,7 and 8 transitions for an 8
bit bus.

Also notice that given an ideal classifier, there is no confusion between subsets of the
same k as they all have unique energy levels. There may, however, be confusion between
subsets of different k. The extent of this confusion is architecture dependent, expressed
by λ, e.g. subset A6

2 have the same energy level as A2
3 if λ = 1/4, in case they should be

treated as one subset. It is easy to show that confusion between transition A (energy ETA,
kA transitions and crosstalk index αA) and B (energy ETB , kB transitions and crosstalk
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index αB) happens when:

λAB =
kB − kA
αA − αB

(A.11)

λAB values that are close to the real λ = CC/CL indicate subsets that will be difficult to
distinguish.

Finally, we have only shown how to split the subset Ak into smaller subsets Aαk by con-
sidering the effect of the coupling capacitance (i.e α). This idea can easily be generalized,
such that Ak is split into subsets Aβk , where |Ak| > |Aβk |, and β is the influence of other lay-
out dependent phenomena. Examples of phenomena for future work include: variations in
coupling and load capacitance, coupling capacitance between line j and j + 2, inductance,
effect of bends in circuit paths and multi layer capacitance (3-dimentional).

A.4.1 Classification Performance

Table A.1 shows that, taking into consideration the coupling capacitance, we are able to
increase the number of subsets (or energy levels) Ak to Aαk . For the purpose of comparing
alternative detectors we will assume uniform random transition. Thus for an 8 bit bus we
would like the detector to extract 16 bits. We will use the ability to extract entropy as our
classifier performance indicator. The entropy (i.e bits of information) for a detector, when
there are r energy levels, can be calculated using:

H(x) = −
r∑
i=1

p(xi)log p(xi) (A.12)

In the following, we have assumed an 8 bit bus width, thus there are 48 = 65536 possible
transitions. Call the detector that can extract 16 bits of information a level detector. If we
assume that one only has bus activity when initial and final state are different, and that
0 → 1 and 1 → 0 can be distinguished, an observation will give us the following entropy:
−(1/2log1/2 + 1/4log1/4 + 1/4log1/4) = 3/2 bits as we cannot distinguish 0 → 0 from
1 → 1, but 0 → 0,0 → 1, 1 → 0 can be distinguished. Thus, each observation will give
us 3/2 bits per line. The theoretical optimum for an 8 bit bus with a ’transition detector’
would be 8 · 3/2 bits = 12 bits, assuming all observable transitions are distinguishable. In
other words, by observing transitions rather than levels, we loose 4 bits (1/2 bit per line)
compared to the setting where we would observe the states.

Using the results of Table A.1, we can now calculate the entropy of a detector that can
distinguish HD only (Ak) and a detector that can distinguish energy levels due to crosstalk
(Aαk ).

The entropy of an HD detector is found using (A.12) with r = 9 and p(xi) = |Ai−1|/65536
giving an entropy of 2.5 bits. The entropy of a crosstalk detector is found using (A.12) with
r = 93 and p(xi) = |Aαi−1|/65536 giving an entropy of 5.7 bits.

The difference between the ideal value of a level detector and the entropy of other de-
tectors, represent the amount of guessing needed for classifying an observation. By consid-
ering the coupling capacitance and not only HD, we extract more information out of each
observation, therefore reducing the amount of ”guessing” needed for classification. In the
next section we present simulations validating the effect of the coupling capacitance.

A.5 Simulations

The simulations are performed in PSPICE with CL = 400fF , CC = 250fF , Vdd = 3V and
a rise- and fall-time of 200ps of the input voltages (same as [12]). The inverter drivers are
equal and balanced. Equation (A.4) and (A.5) are used in PSPICE to find the simulated
energy dissipation ÊT .
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Table A.2: Dissipated energy when considering crosstalk for 2 adjacent wires

Transition Transitions Crosstalk Theoretical Simulated
pattern k α ET [pJ] ÊT [pJ]
00→ 01 1 1 2.9 2.7
00→ 10 1 1 2.9 2.7
00→ 11 2 0 3.6 3.5
01→ 10 2 4 8.1 8.0

A.5.1 Model Validation

Simulations were initially carried out and compared with the results of [5, 12] as a model
validation. For two wires, as seen in Table A.2, it is clear that the energy dissipation for two
simultaneous transitions is either lower or higher than if treated as two single transitions,
depending on the direction of the transitions, as expected. The small differences between
analytic and simulated energy dissipation can be explained by simplifications in deriving
(A.6) (e.g. omitting leakage currents, such as short-circuit and sub-threshold currents).
Having validated our model, all the following simulations are done on an 8 bit bus.

A.5.2 Results and Discussion

Simulation results for 8 lines are shown in Table A.3. The table is not exhaustive, but in-
cludes results for all possible subsets Aαk .

The simulated energy levels ÊT are similar to the analytic values. The results confirm
that energy consumption is proportional to the number of transitions and the crosstalk
index, α. The crosstalk index depends on switching activity on adjacent lines and posi-
tion, edge (one adjacent wire) or middle (two adjacent wires). As seen in Table A.3, the
results also confirm that there is no confusion between energy levels for subsets of an equal
number of transitions. However, there may be some confusion between some of the 93
subgroups, e.g. the energy dissipation of subset A6

2 and A4
3 are almost equal. This is ex-

pected as λAB = 0, 5 is close to λ = 0, 63 used in this experiment. Other examples can be
found and this reduces the number of subsets depending on how accurate our detector is.
As seen earlier, a theoretical crosstalk detector capable of separating all 93 energy levels
will have an entropy of 5.7. It is therefore expected that a practical crosstalk detector will
have a smaller entropy. It is difficult to decide which of the simulated energy levels should
be merged together, as this will depend on the accuracy of the detector and the number of
observations available. A random loss of 20% of the subsets will still, on average, have an
entropy of 5.0. Even with this loss due to similar energy levels, the information gain is still
2.5 bits compared to the HD detector. The performance of the detectors are summarized in
Table A.4:

A.5.3 Case Study and Future Work

In order to probe the practicality of our theory and simulations, we have collected a small
set of experimental data. The objective was to see if analysis of electromagnetic side-
channel information also supports the division into crosstalk energy levels of Table A.1
and A.3.

A total of 1000 traces (observations) of each of the 18 crosstalk indexes for transitions
pattern with Hamming Distance 5 where collected. The target was a smart card (i.e PIC
16F84A microprocessor). The electromagnetic emanation was captured using a broadband
E near-field probe positioned as close to the microprocessor as possible, without any de-
capsulation.

Analysis was done according to the Modified Template Attack [8], and includes feature
selection, training and evaluating the performance of a quadratic Bayes classifier (for de-
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Table A.3: Analytic (ET ) and simulated (ÊT ) dissipated energy when considering crosstalk
for bus with 8 lines. k is the number of transitions (Hamming Distance) and α is the
crosstalk index

Transition pattern k α ET [pJ] ÊT [pJ] Transition pattern k α ET [pJ] ÊT [pJ]
0000 0000→ 0000 0001 1 1 2,9 2.9 0000 0000→ 0011 1111 6 1 11,9 12.3
0000 0000→ 0000 0010 1 2 4,1 4.1 0000 0000→ 1001 1111 6 2 13,1 13.4
0000 0000→ 0000 0011 2 1 4,7 4.8 0000 0000→ 0101 1111 6 3 14,2 14.5
0000 0000→ 1000 0001 2 2 5,9 5.9 0000 0000→ 1010 1111 6 4 15,3 15.7
0000 0000→ 0000 0101 2 3 7,0 7.0 0000 0001→ 0011 1110 6 5 16,4 16.7
0000 0000→ 0000 1010 2 4 8,1 8.1 0000 0001→ 1001 1110 6 6 17,6 17.9
0000 0010→ 0000 0001 2 5 9,2 9.3 0000 0001→ 0101 1110 6 7 18,7 19.0
0000 0100→ 0000 0010 2 6 10,4 10.1 0000 0001→ 1010 1110 6 8 19,8 20.0
0000 0000→ 0000 0111 3 1 6,5 6.7 0000 0010→ 0011 1101 6 9 20,9 20.8
0000 0000→ 1000 0011 3 2 7,7 7.8 0000 0010→ 1001 1101 6 10 22,1 21.9
0000 0000→ 0000 1011 3 3 8,8 8.9 0000 0010→ 0101 1101 6 11 23,2 23.0
0000 0000→ 1000 1001 3 4 9,9 10.0 0000 0010→ 1010 1101 6 12 24,3 24.1
0000 0000→ 0001 0101 3 5 11,0 11.1 0000 0101→ 0011 1010 6 13 25,4 25.5
0000 0000→ 0010 1010 3 6 12,2 12.3 0000 0101→ 1001 1010 6 14 26,6 26.5
0000 0010→ 0000 1001 3 7 13,3 13.3 0000 0101→ 0101 1010 6 15 27,7 27.7
0000 0100→ 0001 0010 3 8 14,4 14.4 0000 0101→ 1010 1010 6 16 28,8 28.9
0000 0010→ 0000 0101 3 9 15,5 15.4 0000 1010→ 0011 0101 6 17 29,9 29.7
0000 0100→ 0000 1010 3 10 16,7 16.6 0000 1010→ 1001 0101 6 18 31,1 30.9
0000 0000→ 0000 1111 4 1 8,3 8.6 0000 1010→ 0101 0101 6 19 32,2 32.0
0000 0000→ 1000 0111 4 2 9,5 9.6 0010 1010→ 0001 0101 6 21 34,4 34.0
0000 0000→ 0001 0111 4 3 10,6 10.8 0101 0100→ 0010 1010 6 22 35,6 35.2
0000 0000→ 1000 1011 4 4 11,7 11.9 0000 0000→ 0111 1111 7 1 13,7 14.2
0000 0000→ 0010 1011 4 5 12,8 13.0 0000 0000→ 1011 1111 7 2 14,9 15.3
0000 0000→ 1001 0101 4 6 14,0 14.2 0000 0001→ 0111 1110 7 5 18,2 18.5
0000 0000→ 0101 0101 4 7 15,1 15.3 0000 0001→ 1011 1110 7 6 19,4 19.7
0000 0010→ 1001 0001 4 8 16,2 16.0 0000 0010→ 0111 1101 7 9 22,7 22.7
0000 0100→ 1001 0010 4 9 17,3 17.5 0000 0010→ 1011 1101 7 10 23,9 23.8
0000 0010→ 1000 0101 4 10 18,5 18.3 0000 0101→ 0111 1010 7 13 27,2 27.4
0000 0010→ 0100 0101 4 11 19,6 19.4 0000 0101→ 1011 1010 7 14 28,4 28.5
0000 0100→ 0100 1010 4 12 20,7 20.7 0000 1010→ 0111 0101 7 17 31,7 31.6
0000 1010→ 0000 0101 4 13 21,8 21.5 0000 1010→ 1011 0101 7 18 32,9 32.6
0001 0100→ 0000 1010 4 14 23,0 22.7 0001 0101→ 0110 1010 7 21 36,2 36.2
0000 0000→ 0001 1111 5 1 10,1 10.4 0001 0101→ 1010 1010 7 22 37,4 37.3
0000 0000→ 1000 1111 5 2 11,3 11.5 0010 1010→ 0101 0101 7 25 40,7 40.5
0000 0000→ 0010 1111 5 3 12,4 12.6 0000 0000→ 1111 1111 8 0 14,4 14.9
0000 0000→ 1001 0111 5 4 13,5 13.8 0000 0001→ 1111 1110 8 4 18,9 19.3
0000 0000→ 0101 0111 5 5 14,6 14.9 0000 0010→ 1111 1101 8 8 23,4 23.4
0000 0000→ 1010 1011 5 6 15,8 16.0 0000 0101→ 1111 1010 8 12 27,9 28.1
0000 0010→ 0111 0001 5 7 16,9 16.8 0000 1010→ 1111 0101 8 16 32,4 32.3
0000 0010→ 1011 0001 5 8 18,0 17.9 0001 0101→ 1110 1010 8 20 36,9 36.9
0000 0010→ 0101 1001 5 9 19,1 19.3 0010 1010→ 1101 0101 8 24 41,4 41.1
0000 0010→ 1010 1001 5 10 20,2 20.4 0101 0101→ 1010 1010 8 28 45,9 45.6
0000 0010→ 0110 0101 5 11 21,4 21.3
0000 0010→ 1010 0101 5 12 22,5 22.5
0000 0010→ 0101 0101 5 13 23,6 23.5
0000 1010→ 1000 0101 5 14 24,8 24.5
0000 1010→ 0100 0101 5 15 25,9 25.6
0001 0100→ 0100 1010 5 16 27,0 27.0
0000 1010→ 0001 0101 5 17 28,1 27.9
0001 0100→ 0010 1010 5 18 29,3 29.1

Table A.4: Comparing the performance of different detectors for an 8 wire bus

type of detector Entropy (information)
[bits]

Level detector 16,0
Optimum transition detector 12,0
Crosstalk detector (theoretical) 5,7
Crosstalk detector (simulated) 5,0
HD detector 2,5
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Figure A.3: Average classification error as a function of α distance, ∆α

tails refer to [8]). The probability of error, Pe, was found from the confusion matrix [6]. The
classification accuracy depends on how the observations are split, therefore, the average of
100 random permutations of 200 training observations and 800 test observations was used.
Finally, the average classification error as a function of α distance (∆α = |αi − αj |) was
calculated.

Figure A.3 is a plot of our experimental data, suggesting that the average classification
error gets reduced as alpha distance increases. This supports our simulation/theoretical
results. We hypothesize that the discrepancy between our simulation/theoretical results for
alpha distance 4 is a consequence of statistical uncertainty/noise in the experimental data.
Currently, we cannot offer any explanation for why classification error seems to increase
from alpha distance 11/13.

A.6 Conclusion

It is known that one can distinguish bus activity generated from signal transitions having
different HD. In this article we put forward the hypothesis that layout dependent phenom-
ena, such as inductance and capacitance in and between conductors and radiation proper-
ties of circuit elements, can explain why it sometimes is possible to distinguish transition
patterns with the same HD. In this article we provide a general model for layout dependent
phenomena and study some security implications of the capacitive crosstalk between par-
allel wires. Our simulations show that capacitive crosstalk has a significant effect on gate
energy dissipation. Our results confirm that the dissipated energy from CMOS switching
gates depend not only on the HD, but also on the direction of switching activity on nearby
data lines. For an 8 bit bus, this increases the number of possible energy levels from 9
(HD) to 93 (crosstalk), and therefore allows us to explain why signals with the same HD
sometimes can be distinguished. Where as an HD based detector can provide about 2.5
bits of information per sample, a crosstalk based detector will yield about 5.7 bits (theoret-
ical) or 5.0 bits (simulated) of information per sample - in all cases for an 8 bit bus. Thus
we have shown that a layout specific phenomenon (capacitance) must be considered when
analyzing security implications of electromagnetic side-channels.
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Appendix B

Majority Voting

In some scenarios, it may be possible to observe and measure the same activity more than
once. A program may reuse some values over and over again (e.g. User name, password,
PIN code or cryptographic key). A specific program (or part of program) may be used
several times or maybe a subversive code or trojan can force repetitive execution. If more
than one observation of the same activity is indeed available, several approaches can be
used to reduce the probability of error. Two alternatives are evident: data fusion first or
classification first. Data fusion first has to combine all observations into a single observa-
tion. A simple and commonly used method is simply to calculate the average observation.
Regardless of the fusion method, classification is done using a single observation.

The other approach is to classify all individual observations first and then fuse the data
into a single decision afterwards. We suggest Majority Voting, that simply decides in favor
of the class with the majority of the classification decisions (votes). Majority Voting consist
of the following three steps.

1. Collect n observations of the same phenomenon

2. Classify each observation individually

3. Decide in favor of the class with the majority of the classification decisions (votes)

This algorithm can be considered a binomial experiment (also known as Bernouilli Pro-
cess) [3], and the probability of error can be reduced as much as desired, given enough
observations. The properties of a binomial experiment are:

• The experiment consists of a fixed number of trials, n

• Each trial has two possible outcomes (success or failure)

• The probability of success, p, and failure, 1-p, is constant

• Each trial is independent of other trials

The probability of r successes in n trials is then given by:

P [r|n, p] =
(
n

r

)
pr(1− p)n−r (B.1)

Assuming that n independent observations of an activity are classified into two classes
with a probability of error Pe = 1 − p, the properties of a binomial experiment holds. If
more than two classes are to be classified, the method can easily extend to c classes using
pairwise classifications [1]. The classification error for majority voting is given by the cu-
mulative probability Pe,majority = P (r < n/2|n, p). An interesting questions is then: How
many observations are necessary to get the classification error, Pe,majority , below a given
threshold, t? For a fixed probability of success p, this means finding the smallest number of
experiment that satisfy, Pe,majority < t. The minimum number of observations n needed,
as a function of the probability of error Pe, is shown in figure B.1.
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Figure B.1: The smallest number of observations, n, as a function of the probability of error
Pe that satisfy: P [r < n/2|n, p] < t for t = 0, 05.

Majority voting applied on the experimental data confirms the relationship in figure
B.1. As an example of the improvement, consider classifying two instructions, both with
HW=4. Based on a single observation the probability of error is, Pe = 0.29 [2]. Using ma-
jority voting with 20 observations reduces the probability of error to, Pe,majority = 0.01.
Finally a comparison with classifying the mean of n observation indicate that majority vot-
ing achieves the same error rate with significantly less observations (less than half in some
cases). This is crucial when a limited number of observations are available. Quantification
of this advantage is subject to future work.
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Nomenclature

A/D Analogue-to-Digital

ALU Arithmetic Logical Unit

ASIC Application-Specific Integrated Circuit

ASK Amplitude Shift Keying

CMOS Complementary Metal-Oxide Semiconductor

CPU Central Processing Unit

CU Control Unit

DFT Discrete Fourier Transform

DOM Difference Of Mean

DPA Differential Power Analysis

E-field Electric field

EEPROM Electrically Erasable Programmable Read-Only Memory

EMA Electromagnetic Analysis

EMR Electromagnetic Radiation

FFT Fast Fourier Transform

FPGA Field-Programmable Gate Array

GFS Greedy Forward Selection

H-field Magnetic field

HD Hamming Distance

HW Hamming Weight

IC Integrated Circuit

LDA Linear Discriminant Analysis

LDP Layout Dependent Phenomena

LTI Linear Time-Invariant

MIMO Multiple-Input and Multiple-Output

MLE Maximum Likelihood Estimates

MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor
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NISlab Norwegian Information Security laboratory

NOP NO Operation

NRZ Non-Return to Zero

PCA Principal Component Analysis

PDS Power Density Spectrum

Q cycles Quadrature clock cycles

RAM Random Access Memory

RBW Resolution BandWidth

ROM Read-Only Memory

RZ Return to Zero

SPA Simple Power Analysis

SVC Single Variable Classifier

USRP Universal Software Radio Peripheral

WCCA Wireless Covert Channel Attack
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Capturing device, 21
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interface, 22
memeory, 22
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Electromagnetic radiation, 13
direct emanation, 15
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Fast fourier transform
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methods, 75
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Gaussian distribution
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