Høgskolen i Gjøviks rapportserie, 2006 nr. 9

Proceedings from Gjøvik Color Imaging Symposium 2005

Jon Yngve Hardeberg, Peter Nussbaum, Ali Alsam, Sven Erik Skarsbø and Ivar Farup (editors)

Institutt for Informatikk og Medieteknikk

Gjøvik 2006 ISSN 0806-3176

Contents

Preface	5
Green: Advances in Colour Management	7
Johansen: WebICC – Colour Management in Heatset	8
Nussbaum: Factors Affecting the Appearance of Print	9
Nurmi: Proof-to-print tolerances in contract proofing	10
Green: Making and Applying ICC Profiles with Matlab	11
<i>Rizzi</i> : Spatial Colour Imaging – From Retinex to ACE	12
Farup: Spatial Colour Gamut Mapping	13
Albregtsen: Texture Analysis – From Grayscale to Colour	14
Andersen: Colorimetric Characterisation of Digital Cameras	15
Ouglov: Gamut Intersection for Image Retrieval	16
Kolås: Colour Differences Introduced by Pixel Format Conversions	17
Marin: Robustness of Texture Parameters	18
Gerhardt: Spectral Reproduction by Vector Error Diffusion	19
Cheung: Effect of Spatial Structure on Visual Tolerance	20
Grønning: Implementing Colour Managed Workflow	21
Baarstad: High Resolution, High Speed Hyperspectral Cameras	22
Finlayson: Colour, Constancy, Invariance and the Chromagenic Constraint	24
Baraas: Ability of Red-Green Colour Deficient Observers to Judge Colours	25
Alsam: Calibrating Colour Cameras Using Metameric Black	27

Preface

For the third consecutive year Gjøvik University College and The Norwegian Color Research Laboratory organised an international symposium on colour imaging. Gjøvik Color Imaging Symposium 2005 took place November 30 and December 1, 2005, at Gjøvik University College in Gjøvik, Norway.

The first day of the conference focused mainly on applied colour management, whereas the second day was devoted to current topics in colour imaging research, such as advanced colour management, spatial colour imaging, colour vision and colour constancy.

In these proceedings you will find short abstracts of the presentations, as well as copies of the presentation foils for selected presentations. For more information about the conference, please refer to http://www.colorlab.no.

Gjøvik, September 2006

Prof. Jon Y. Hardeberg, Conference Chair

Advances in Colour Management

Phil Green

Colour management has moved from concept to everyday application over the last ten years or so. With increasing adoption of version 4 of the ICC profile specification, colour processing can give consistent, reliable and accurate results across a range of different media. This is an opportunity to consider the challenges for colour management in the forthcoming period.

Methods of modelling colour imaging devices are well-established, and can provide good levels of accuracy. With good modelling techniques, poor profile performance can be traced to two main areas:

- a lack of correspondence between methods of measurement and methods of viewing
- characterisation data which lends itself poorly to modelling.

Colorimetric accuracy alone does not give assurance of a good colour reproduction. Even where accurate colour matching is required, In particular, the smoothness of a transform has a significant effect on perceived image reproduction quality.

While the ICC profile format meets many of the current needs of the graphic arts, there are new challenges for colour management which arise from emerging needs in graphic arts and in other application areas.

In digital photography and digital motion picture, the output-referred PCS is less relevant to the optimum colour processing of scene originals.

Colour profiles have typically been used to define a static transform with a fixed rendering. However, Version 4 of the ICC profile specification permits colour transform possibilities over a continuum which ranges from static to dynamic. In the latter case, colour appearance transforms, gamut mapping, and image state changes can be configured dynamically at run time.

For home users, colour management appears over-complex. The need for different profiles for each media type imposes complex profile selection choices and may even require such users to have the capability to create their own profiles. They are also sometimes uncertain how profiles should be applied in a particular colour reproduction task.

With the move to more automated colour reproduction workflows, formats such as PDF/X acts as containers for both image data and metadata. The latter can include colour processing models and rendering choices. In order to support automated selection of output profiles, there is a need to provide additional metadata about the printing condition for which the profile is made. This will also aid users in the manual selection of profiles.

Biography

Phil Green worked in the printing industry for 13 years before joining the London College of Communication (then known as the London College of Printing) as a lecturer in 1986. He is Course Director of the Postgraduate Programme in Colour Imaging. He received an MSc from the University of Surrey in 1995 and a PhD from the Colour and Imaging Institute at the University of Derby in 2003. He is currently technical Secretary of the International Color Consortium.

WebICC – Colour Management in Heatset

Tom E. Johansen

Do the customers have to have knowledge of print media and the local print house to obtain colour control of their magazines when they colour convert to CMYK? Local, regional and European aspects of ICC use seen from a Norwegian heatset perspective.

Biography

Tom E. Johansen, project manager quality assurance at the Norwegian Institute of Graphic Media, is a printer by profession with a Bachelor from University of Oslo in media esthetics and media science. He has also been working with the KDI project the last three years, with special attention to JDF standardisation and colour management questions.

Factors Affecting the Appearance of Print

Peter Nussbaum

This study aims to investigate factors affecting the appearance of print. In particular it looks at factors from five categories: the digital input, the printing system, the print, the illumination under which the print is viewed and the viewing environment in which it is viewed. The key method underlying the work described here relies on identifying a range of factors in these categories and having alternative states for each factor, e.g., the substrate factor can be plain paper, glossy paper or newsprint. A reference state is then defined for each factor and alternative states are compared with the reference one factor at a time. The comparison is in terms of colour differences between patches of a test chart obtained in the reference and an alternative state. The results for factors are then viewed both individually and by grouping all factors of a given category together. Finally the results indicate the magnitude of the change that can be expected due to a given factor or category and this makes it possible to order factors in terms of the magnitude of visual difference they can cause when altered. Having such an ordered list is then of use both in improving printing systems and in dealing with customer service queries.

Biography

Peter Nussbaum obtained his MSc in imaging science from the Colour & Imaging Institute, University of Derby, GB in 2002. Currently he is in process to enrol as a PhD part time student at the Oslo University but located at Gjøvik University College in the field of colour science. The area of study will be Colour Image Quality Assessment. He is also a lecturer at Gjøvik University College within the Department of Computer Science and Media Technology where he is teaching digital image reproduction. Moreover he is a member of the Norwegian Colour Research Laboratory. Before joining Gjøvik University College in September 2000, Peter Nussbaum was an Application Engineer for Colour Management and consultant for GretagMacbeth, Switzerland. His professional memberships include IS&T, TAGA and IFRA Colour Management Working Group.

Proof-to-print tolerances in contract proofing

Olli Nurmi

In this study the acceptability of color differences between the proof and print were studied. Psychometric scaling techniques were used to build numerical scales for the perceived similarity of proof samples, as compared to reference prints in visual experiments. Approximately 30 graphic arts professionals took part in the visual experiments, in which they rank ordered and categorized proofs according to how we well their colors matched the reference print. The results of the categorization study allowed the limit of acceptable contract proof to be specified in the interval scale resulting from the analysis of the rank order data. The visual scaling results were further compared to deltaE color difference metrics measured from the Fogra Media wedge, in an effort to give an objective definition to acceptable contract proof. The results suggests that the average deltaE between contract proof and the prints, as measured from the media wedge, should be no higher approximately 4 to 5 deltaE.

Biography

Senior Research Scientist, VTT Information Technology, FIN

Olli is working in the research area of Media and Interner as Research Group Manager. Working within media logistics and colour imaging systems his group is developing new systems for integrated electronic and print media, digital printing and media conversion of information.

Olli graduated from Helsinki University of Technology. He is a member of the Graphic Arts Industry's Education Committee of National Board of Education and was also teaching in Espoo-Vantaa Institute of Technology.

Olli has about 50 publications, including original research papers in printing technology and paper technology, project reports, articles, TAGA Proceedings, etc. He has also about 30 presentations at conferences and seminars, such as IFRA, NATS, INSKO, VTT, HKK.

Making and Applying ICC Profiles with Matlab

Phil Green

Matlab's Image Processing Toolbox provides a wide range of functions which use ICC profiles. This session will focus on the mechanics of constructing, testing and applying ICC profiles using Matlab. We will look at the requirements of the data structure and the encoding of colour transforms using matrix, curves and LUTs.

We will review methods of evaluating the profiles for accuracy, invertibility and conformance to the ICC specification.

We will also explore methods of applying ICC profiles in Matlab, together with other functions in the Image Processing Toolbox and the Colour Engineering Toolbox.

Biography

Phil Green worked in the printing industry for 13 years before joining the London College of Communication (then known as the London College of Printing) as a lecturer in 1986. He is Course Director of the Postgraduate Programme in Colour Imaging. He received an MSc from the University of Surrey in 1995 and a PhD from the Colour and Imaging Institute at the University of Derby in 2003. He is currently technical Secretary of the International Color Consortium.

Spatial Colour Imaging – From Retinex to ACE

Alessandro Rizzi

What gives us the final sensation of colour is not only the colour signal. The appearance of colour in real scenes can vary widely according to several factors. The two major of them are illuminant and context. These two factors seem to "pull" our vision system in two different directions. From one side colour constancy mechanisms make the object colour more stable under the changes of light sources spectral composition while, from the other side the effect of the context makes the object colour depending on the scene spatial composition and consequently less stable in itself.

These two apparently contradicting phenomena are based on the same principle: the spatial recomputation of the colour signal. It produces the final overall appearance of the scene content.

So far, several algorithms have tried to simulate this visual normalisation mechanism. Their two main basic macro behaviours are Gray World and White Patch, which are considered alternatives. Considering them separately, they produce two different normalisation mechanisms. Lightness Constancy and Colour Constancy. Gray World approach goes in the Lightness Constancy direction: it centres the histogram dynamic, working in the same way as a camera exposure control. White Patch approach goes in the Colour Constancy direction, searching for the lightest patch to use as a sort of illuminant reference.

Retinex algorithm basically belongs to the White Patch family due to its reset mechanism. Searching a way to merge these two components, we developed a chromatic correction algorithm, called Automatic Colour Equalisation (ACE), which is based on both. It maintains the main Retinex idea that colour sensation derives from a local comparison of the spectral lightness values across the image. We present the common ground of the two algorithms, their differences and their results.

Biography

He took the degree in Computer Science at University of Milano and received a PhD in Information Engineering at University of Brescia (Italy). He taught Information Systems and Computer Graphics at University of Brescia and at Politecnico di Milano. Now he is assistant professor at University of Milano teaching Multimedia and Human-Computer Interaction. Since 1990 he is researching in the field of digital imaging and vision. His main research topic is colour perception.

Spatial Colour Gamut Mapping

Ivar Farup, Alessandro Rizzi and Carlo Gatta

A colour gamut of a device is the set of all colours reproducible by the given device. Similarly, the colour gamut of an image, is the set of all colours present in that image. Upon reproduction of colour images, one usually encounters colours in the image that are not within the colour gamut of the reproduction device, thus the need for colour gamut mapping. Conventional colour gamut mapping algorithms operates as mappings in colour space, thus not taking the image content into account.

We have investigated various techniques for performing spatial colour gamut mapping, including multi-level recursive techniques, as well as techniques based upon the Retinex and ACE models. The results are promising, and show that spatial gamut mapping algorithms preserve local contrast better than conventional gamut mapping algorithms.

Biography

Ivar Farup received a M.Sc. in theoretical physics from NTNU, Trondheim, Norway, in 1994, and a Ph.D. in applied mathematics from UiO, Oslo, 2000. He is currently with Gjøvik University College, mainly focusing on colour science and colour imaging.

Texture Analysis – From Grayscale to Colour

Fritz Albregtsen

Statistical texture analysis methods extract a number of pre-defined often ad hoc features, resulting in a very large number of possible feature combinations. Several sophisticated schemes have been developed to select a suboptimal feature set of lower dimensionality, often using resubstitution (leave-one-out) techniques instead of separate training and test data sets to estimate the texture classification error. Still, this leads to too optimistic results.

It is well known that the number of training samples affects the feature selection and the error estimation. However, the effect of the number of feature candidates analysed is not much discussed. In simulation experiments it turns out that the number of feature candidates is critical for small data sets. It is also found that to avoid biased error estimates, feature selection should be performed for each cycle of the leave-one-out procedure.

The most common statistical texture analysis methods have been developed for gray level images. Now, most images that are candidates for statistical texture analysis are actually colour images. In some applications, colour and texture are treated as separate entities. However, during the last decade, a variety of colour-texture descriptors have been proposed, exploiting both the intra- and inter-channel textural information. One of the consequences is a potential explosion in the dimensionality of the feature vectors used.

The Local Binary Pattern approach is an example of this. Ojala et al. (1996) proposed a binary version of the Wang and He (1990) texture spectrum approach, thresholding each 3×3 neighbourhood by the centre pixel value. Binomial position weights are then put on the eight binary pixel values, so that a weighted summation gives a unique local binary pattern (LBP) index to each such binary pattern. There are $2^8 = 256$ possible LBP values within a 3×3 neighbourhood. In the Opponent Colour extension, the LBP operator is applied on each channel and each channel pair, giving 2304 or 4608 features, depending on whether a contrast measure is used! The approach is simple, but is colour texture really that complex?

About a decade ago, high dimensionality problems would have been solved by neural nets, doing a recomputation of the network coefficients together with a pruning of the net and its input. Today, there is again the notion that high dimensionality is not a problem, as Support Vector Machines and Genetic Algorithms are available, and the minimum complexity principle used in most natural sciences seems to be forgotten by many practitioners.

Using a matrix description of textural parameters where neighbouring cells have a meaningful relation (neighbouring graylevels, interpixel distances, runlengths, etc), we have extracted low dimensional feature vectors from high dimensional matrices, based on class distance and class difference matrices. It turns out that such class distance matrices contain localised areas of consistently high values. The same approach can be used if chromaticity is added to the texture description, giving adaptive low dimensional feature vectors.

Colorimetric Characterisation of Digital Cameras Preserving Hue Planes

Casper Andersen and Jon Yngve Hardeberg

In this paper we present a colorimetric characterisation method for digital colour cameras, based on hue plane and white point preservation. The present implementation of the method incorporates a series of 3 by 3 matrices, each responsible for the transformation of a subset of camera RGB values to colorimetric values. The method is compared to a choice of other common characterisation methods based on least squares fitting. These other methods are an unconstrained 3 by 3 matrix, a white point preserving 3 by 3 matrix, a second order and a third order polynomial. The methods have been evaluated on real camera signals coming from an Imacon Ixpress professional digital CCD camera, under flash light. The Gretag MacBeth Color Checker and the Color Checker DC charts have been used as test set, and training set, alternately. The method is evaluated in combination with a noise susceptibility estimation of the training set samples that reduces the amount of test samples needed in the characterisation. The noise estimation is based on a geometric analysis in camera chromaticity space.

Biography

Casper Find Andersen; M.Sc. 1993 from the Danish Technical University DTU. Specialised in Computational Fluid Dynamics and descriptive geometry. Employed by DTU as research assistant specialising in colour theory and colour management until 1998. From 1998 to 2001 senior researcher at r&d department Phase One dealing with colour management and image manipulation. From 2001 working as teacher, consultant and researcher at the Graphic Arts Institute of Denmark. At the moment working on a phd-project about "characterisation of digital colour cameras" with Prof. Jon Yngve Hardeberg, Gjøvik University College, Norway, as de facto supervisor.

Gamut Intersection for Image Retrieval

Andrei Ouglov

Colour is agreed to be one of the most important and widely used features in image indexing and retrieval. Colour histograms are the most dominate technique for image indexing based the image colour content. Colour histogram relies on both the colour gamut and density information. In this paper we propose a new method that retains and improves upon the advantages of colour histograms while not requiring quantisation hence keeping the number of colour combinations intact. The method is based on describing the shape of the colour gamut rather than the colour density information. To achieve that, the introduced method projects the image colour data onto two orthogonal planes resulting in two 0 1 binary images which we use as our image descriptors. The most important motivation for choosing the projection planes , is that the planes should be orthogonal to ensure that the projects are linearly independent and that both planes should contain the grey-axis since the colour distributions are elongated along this axis, as it is shown in the paper by applying PCA on the MPEG7 image database. Our experiments performed on MPEG7 image database show that the Gamut intersection approach performs favourably or equally good for almost all the test images when compared with histogram.

Biography

Andrei Ouglov received his B. Eng. and M. Eng. degrees in Electrical Engineering and Information and Communication Technology in 2001 and 2003 from Narvik University College and Agder University College, Norway. In 2003 he joined Gjovik University College where he is currently focusing on the colour image processing and engaged in research on image indexing and retrieval.

Colour Differences Introduced by Pixel Format Conversions

Øyvind Kolås

Pixel format conversions introduce errors, and occur in many imaging workflows. Errors are due to a combination of unaligned quantisations and non linear transforms between colour models. This poster documents average colour differences for all conversions possible within a set of pixel formats.

Robustness of Texture Parameters for Colour Texture Analysis

Ambroise Marin, Audrey Minghelli-Roman, Jon Y. Hardeberg, Pierre Gouton

Texture analysis is a large field of investigation in pattern recognition area. Several articles compare texture parameters using blind classification algorithms [5]. Considering that all these parameters should be used out of laboratory with non perfect texture pictures, it is interesting to quantify the impact of perturbation on these parameters. Hence, as a first step, a method for comparison of texture parameters to perturbations is presented. Three texture characterisation parameters are considered, the cooccurrence [2] matrices, the auto-correlation [3] matrix and the local-extrema function [4] [7]. The behaviour of these three texture characterisation parameters will be investigated when perturbations such as Gaussian noise, salt and pepper noise or rescaling are applied to original texture. To achieve the comparison of texture" was selected. Perturbations were applied to this set of textures and then a k-NN classification was performed to determine relative perturbation sensitivity.

Keywords: Texture, Colour, Cooccurrence, Auto-correlation, oriented local extrema

References

[1] Cocquerez J.P., Phillip S., "Analyse d'images, filtrage et segmentation", Masson, 457pp.,

[2] Haralick R.M, Shapiro L.G, "Survey, Image segmentation technique", computer Vision, Graphics and image processing, 29, pp 100–132, 1985

[3] Gagalowicz A. "Vers un modèle de textures", PhD Thesis, Université Pierre et Marie Curie, Paris VI, France, 1983.

[4] Mavromatis S., Boi J.M., Bulot R., Sequeira J., "Texture analysis using directional local extrema", International Conference on Computer Vision and Graphic), Zakopane, Poland, 25–29 Sept, 2002.

[5] Mona Sharma and Sameer Singh, "Evaluation of texture methods for image analysis", In R. Linggard, editor, Proceedings of the 7th Australian and New Zealand Intelligent Information Systems Conference, pages 117–121, Perth, Western Australia, 2001.

[6] Gotlieb C.C., Kreyszig HE, "Texture descriptors based on cooccurrence matrices", Computer Vision, Graphics and Image processing, 51, pp 70–86, 1990.

[7] Bonnevay S., "Texture feature extraction with the help of regional extremality coding", Recpad, March 1998, Lisbon, Portugal

Biography

Ambroise Marin obtained his master degree in computer science at Burgundy university in 2004. He is currently a PhD student from the LE2I and the Norwegian color research laboratory. His PhD thesis is about multispectral imagery and artificial vision.

Spectral Reproduction by Vector Error Diffusion

Jeremie Gerhardt

In the context of spectral colour reproduction, the goal is typically to reproduce a given target, i.e. a multispectral image, so that the spectral reflectance of every pixel is reproduced as accurately as possible.

To achieve this using ink-jet print technology, a multi-ink (N>4) system is needed, first to increase the spectral gamut of the device and secondly to allow to find a colorant combinations close to the reflectance to reproduce. The limitation on total ink coverage reduces the possibility of spectral reproduction and a larger choice of colorants deals with this problem.

This paper demonstrates the feasibility of vector error diffusion for spectral colour reproduction using a multi-channel printing device. Using a simplified 7-channel spectral printer model we demonstrate that spectral Vector Error Diffusion is able to produce a good spectral match, implicitly solves the problem of printer model inversion, and achieves reduced noise (stochastic moiré) compared to when using standard channel-independent error diffusion.

Biography

Jérémie received his Bachelor degree in Electronic in 2000 and his Master degree in Image Processing in 2002 from University Pierre and Marie Curie in France. His master thesis project was on wide format ink-jet printing with the use of diluted inks, this project was made part time in the printing company Océ PLT in Créteil. He started his PhD in the field of spectral colour reproduction last September at Gjøvik University College in the Norwegian Research Color Laboratory, he is involved as a PhD student from Ecole Nationale Supérieure des Télécommunications in Paris. He took part in the second European Conference CGIV 2004 in Aachen and the AIC 2005 in Granada.

Effect of Spatial Structure on Visual Tolerance

Vien Cheung

It is known that the reflectance spectra of both natural and man-made surfaces may be represented efficiently using linear models. A key question, however, is how many basis functions of a linear model are necessary for a given accuracy of representation. Many studies have been carried out to estimate the minimum number of basis functions for spectral reproduction. The question is ill-posed, however, since it is understood that the number of basis functions required depends to a great extent on the intended application of the linear model. However, in one study it was shown that more than six basis functions were required so that the worst colour difference in the set of spectra was less than 1.0 CIELAB unit and therefore it is reasonable to assume that, for many applications where relatively large patches of spatially uniform colour are present, six of basis functions will be required since CIELAB colour differences of unity or more in such circumstances are known to be noticeable. However, the magnitude of colour difference that would be visible in a complex or natural image is not so well established. A recent psychophysical study demonstrated that although five basis functions produced on average unit error in CIELAB space, original natural images were psychophysically indistinguishable from their linear-model approximations only if there were at least 8 basis functions. The aim of this study is to psychophysically investigate the effect of spatial structure on the number of basis functions required to reproduce spectral images.

Biography

Vien Cheung graduated from The Hong Kong Polytechnic University (Hong Kong) in 1999 with a BSc degree in Textile Chemistry, and obtained an MSc degree in Colour Imaging at University of Derby (UK) in 2000. She then moved to the Institute of Textiles and Clothing at The Hong Kong Polytechnic University, for a research assistantship, to work on a project investigating digital camera fidelity for colour management. In 2004 Vien completed her PhD research under the supervision of Professor Stephen Westland at University of Leeds (UK), and since then has worked as a Research Fellow at School of Design in University of Leeds.

Implementing Colour Managed Workflow in a Professional Printing Lab

Håkon Grønning

An open standard for colour management is well defined by the International Color Consortium. One of its components is the ICC profile format, and is supported by most vendors of platforms for image and graphics colour workflow. The ICC standard is also adapted as an international standard, ISO 15076. However, even if this standard is widely supported, the understanding and proper use of a colour managed workflow is still a very complex issue for most end users.

In this paper we focus on implementing colour managed workflow in a professional printing lab based on ICC profiles.

As the actual printing lab had a tight schedule for finishing output prints for its customers, it was most important not to disturb the production too heavily. The work was planed and divided into a few separate tasks to meet this constraint. The company itself was most interested in the output profiles for their Epson printers, therefore we decided first to build output profiles for two paper qualities for each of their Epson 6400 and Epson 9600 printers. Next we should make profiles for the two CRTs in their dual monitor setup. The lab gets images as digital files as well as doing in house scanning of film and reflex originals. The last optional step was to profile theirs scanners. The order of the tasks was chosen because the only disturbance in the production in the first task was printing the TC 9.18 test chart four times. Then the rest of the profiling could be done at our colour lab. The strategy was that if the new printer profiles could help to achieve better prints, it would increase the confidence to our work. Then it would be easier to argue for the need for the rest of the tasks.

The paper describes the results that were achieved. Further we also discus the need for education of the users. It seems to be very important that the user understand the principles of an ICC colour managed workflow. The user must have a certain level of insight to be motivated to take the necessary steps to really achieve that colour managed workflow.

We conclude that educating the users in the workflow chain definitely is as important as the calibration and profiling of the different hardware devices.

Biography

Håkon Grønning received his sivilingeniør (M.Sc.) degree in telecommunications and signal processing from the Norwegian Institute of Technology in Trondheim, Norway in 1981. He obtained his Ph.D. in image processing / compression, also from the Norwegian Institute of Technology, in 1996. Since then he has worked at Sør-Trøndelag University College in Trondheim as an Associate Professor. He teaches subjects in the field of digital signal processing, from general, fundamental topics to magnetic resonance imaging. Signal processing in general and image processing in particular has always been his main interests. During the last years his growing interest for colour imaging science has resulted in a few colour science projects. (http://www.iet.hist.no/ hakon/)

High Resolution, High Speed Hyperspectral Cameras for Laboratory, Industrial and Airborne Applications

Ivar Baarstad

Hyperspectral imaging can be defined as the combination of imaging and spectrometry. Norsk Elektro Optikk AS (NEO) has over the last years developed a series of compact, high performance imaging spectrometer systems (hyperspectral cameras).

The instrument concept is based on the results of the HISS definition study (Hyperspectral Imager for Small Satellites), performed by NEO for ESA in 1996–97.

The development is currently (2003–2006) partly funded by the French and Norwegian Ministries of Defence, within the context of the EUCLID-project HYPOLAC (Hyperspectral Polarimetric Active and Passive Imaging). This project is undertaken by a French–Norwegian consortium consisting of NEO, Thales Research and Technology, Thales Optronique SA and the Fresnel Institute – University of Marseille. Within the HYPOLAC project, high resolution hyperspectral data from the developed imaging spectrometer has been used in order to select the appropriate wavelengths for a laser based active polarimetric multispectral camera. Additionally, the receiver unit of the active instrument has been built around the imaging spectrometer developed by NEO.

The unique hyperspectral camera concept has also demonstrated significant potential for use in civilian airborne, laboratory and industrial applications of imaging spectrometry. Four different versions of the instrument have been realized so far, with the following main specifications:

Module	VNIR-640	VNIR-1600	SWIR-1.7	SWIR-2.5
Detector	Si CCD	Si CCD	InGaAs	CdHgTe
	640*480	1600*1200	320*256	320*256
Spectral range	0.4-1µm	0.4-1µm	0.9-1.7µm	0.8-2.5µm
Spatial pixels	640	1600	320	320
FOV across track	18.4°	17°	14°	14°
Pixel FOV across track/	~0.5mrad/	~0.2mrad/	0.75mrad/	~0.75mrad/
along track	0.5mrad	0.4mrad	0.75mrad	0.75mrad
Spectral sampling	5nm/10nm*	3.7nm	5nm	5nm
# spectral bands	128/64	160	160	256
Digitization	12bit	12bit	12bit	14bit
Frame rate to HD	500/850fps*	>120fps	>100fps	>100fps

The instrument design is flexible, and the specifications can be tailored to individual users and applications. All instruments employ the pushbroom scanning principle, acquiring one spatial line of the scene at a time. The unique and compact mirror based fore optics minimises spherical and chromatic aberrations. A slit defines the instantaneous field of view, and a transmission grating disperses the light spectrally before it is focused by a lens system onto the focal plane array detector. The lens system has been carefully optimised for minimisation and equalisation of the point spread function across the FOV and spectral range, as well as for minimisation of distortions such as spectral keystone and smile effect. The high performance demonstrated in the optical simulations has been verified experimentally.

All instruments are being calibrated spectrally and radiometrically, using several narrow band sources and a calibrated integrating sphere in order to produce absolute radiance spectra (in W/m^2 nm sr) for each pixel in the image.

The VNIR and SWIR-1.7 modules have been integrated into an aircraft, where GPS and inertial navigation system data are logged continuously to provide geometric correction and georeferencing of the images. Airborne images have been acquired for several military and civilian research institutions in 2003, 2004 and 2005.

The VNIR-640 module, being capable of continuous acquisition of more than 850fps with a window of 640 spatial pixels by 64 spectral bands, can be adapted to various industrial applications. As an example, when mounted ~ 1 m above a conveyer belt, a belt speed of ~ 1 m/s is feasible with 1mm spatial resolution and 64 bands. One such system has been delivered to the Norwegian Institute for Fish Research (Fiskeriforskning) for development of an on-line quality control system in the fish fillet industry.

A tripod mountable rotation stage has been designed, providing synchronous operation of the spectrometer with the scanning platform. This setup can be used to acquire lab or field measurements of stationary scenes, and has been employed for data acquisition for several different users and applications.

The key features of the instrument concept will be presented, along with sample images and results from applications such as target detection, agriculture and quality control.

Colour, Constancy, Invariance and the Chromagenic Constraint

Graham Finlayson

In this talk I will take a wide ranging view of colour constancy. In a simple sense colour constancy comprises both the estimation of the prevailing light and the removal of colour bias due to the light (the colour cast in images). This problem is introduced and I show how light colour can be estimated using the tools of probability theory. However, despite deriving an 'optimal' solution, current colour constancy algorithms do not always work very well.

I then show how a restricted constancy problem is easier to solve. Namely, it is easy to find a single 'grey-scale' image that is independent of the light colour. Moreover, this grey scale can be used to better understand the illumination in images. Specifically, by looking for edges in colour images that do not appear in the invariant grey scale we can find and then remove shadows from images. This said, we still cannot uniquely estimate and remove the colour cast.

In the last part of the talk we show that a special 'chromagenic' camera that takes 6 as oppose to 3 measurements of a scene is able to more easily and more accurately solve for colour constancy. Moreover, we speculate that this multispectral view of constancy computation may play could plausibly play a role in our own vision.

Ability of Red-Green Colour Deficient Observers to Judge Natural and Munsell Surface Colours under Different Illuminants

Rigmor Baraas

In man, normal trichromatic vision is based on three different types of retinal cone pigments with peak spectral sensitivities lying close to 420, 530 and 560 nm, termed the short-wavelength (S), the medium-wavelength (M), and the long-wavelength (L) cone pigments respectively. The L and the M pigments are genetically coded for on the X-chromosome, and about 8% of the male population are missing either the L or the M pigment and are therefore red green colour deficient. They are classified in terms of the pigment that is absent; protan deficiencies relate to a missing L pigment and deutan deficiencies relates to a missing M pigment. About 2% of the male population has only two pigments; the S- and either the M- or the L- pigment, these individuals are dichromatic. A further 6% of the male population is anomalous trichromats. These individuals have three pigments; the S- pigment and two narrowly separated pigments either in the medium-wavelength (M) region or in the long-wavelength (L) region.

A variety of studies have shown that normal trichromatic observers can make reliable surfacecolour judgements under changing illumination with coloured geometric Mondrian-like patterns (Arend et al. 1991; Foster et al. 2001), and with natural scenes (Amano et al. 2003, 2004) presented on a CRT display. Protanopes are also able to judge surface colour under different illuminants with Mondrians, but they have proved to be less colour constant than normal trichromats when the patterns are made up of Munsell spectra (Munsell Color Corporation, 1976), or natural spectra drawn at random from a range of hyperspectral images of urban and rural scenes (Nascimento et al., 2002). Protanopes ability to judge surface colour under different illuminants, however, is more accurate with Mondrians of natural spectra (Baraas et al., 2004). How well do other red-green colour deficient observers judge surface colour under different illuminants, and will their performance improve with surfaces drawn from natural scenes?

Stimuli were simulations of Mondrian-like coloured patterns, presented on a computercontrolled monitor. The DeMarco-Pokorny-Smith cone fundamentals for anomalous trichromats (DeMarco et al., 1992) were used to calibrate a colour monitor for deuteranomalous and protanomalous observers, and the Smith- Pokorny cone fundamentals (Smith and Pokorny, 1975) were used for dichromatic and normal trichromatic observers. The patterns consisted of 49 abutting 1.0-deg-square uniform surfaces with spectral reflectances drawn at random from natural scenes or, as a control, from the Munsell set. The illuminants were drawn from the daylight locus. In each trial, two images of a pattern were presented in sequence, each for 1 s, with no interval: in the first image, the correlated colour temperature of the illuminant was 25000 K or 4000 K, in the second, it was 6700 K. The spectral reflectance of the central square in the second image changed randomly from trial to trial. Observers reported whether there was an illuminant change or a surface reflectance change. Nine deuteranomalous, five protanomalous, five deuteranopes, five protanopes, and nine normal trichromatic observers participated in the study.

Anomalous trichromats ability to judge surface colours was no different from that of normal trichromats with the two illuminant changes tested here. The ability of both protanopes and deuteranopes, however, was poorer than that of normal trichromats.

Normal trichromats and deuteranopes ability to judge surface colours was the same with Munsell and natural spectra regardless of illuminant change. Anomalous trichromats, however, performed better with natural spectra than with Munsell spectra for the 4000 K to 6700 K illuminant change, but not for the 25000 K to 6700 K illuminant change.

References

Amano K, Foster D H, Nascimento S M C, 2003, Invest. Ophthalmol. Vis. Sci. 44, E-Abstract 3194.

Amano K, Foster D H, Nascimento S M C, 2004, Perception 33S, 65.

Arend L, Reeves A, Schirillo J, Goldstein R, 1991, J. Opt. Soc.Am. A 8, 661–672.

Baraas R C, Foster D H, Amano K, Nascimento S M C, 2004, Vis. Neurosci. 21, 347–351.

DeMarco P, Pokorny J, Smith VC, 1992, J. Opt. Soc. Am. A, 9, 1465–1476.

Foster D H, et al., 2001, Proc. Natl Acad. Sci., USA 98, 8151-8156.

Nascimento, S.M.C., Ferreira, F.P., Foster D.H., 2002, J. Opt.Soc. Am. A 19, 1484–1490.

Smith VC, Pokorny J, 1975, Vision Res., 15, 161–171.

Calibrating Colour Cameras Using Metameric Black

Ali Alsam

Spectral calibration of digital cameras based on the spectral data of commercially available calibration charts is an ill-conditioned problem which has an infinite number of solutions. To improve upon the estimate, different constraints are commonly employed. Traditionally such constraints include: non-negativity, smoothness, uni-modality and that the estimated sensors results in as good as possible response fit.

In this work, we introduce a novel method to solve a general ill-conditioned linear system with special focus on the solution of spectral calibration. We introduce a new constraint based on metamerism where we show that: Given two metamers which integrate to the same sensor response, the difference between them is in the null-space of the sensor. This approach allows us to robustly estimate the sensor's null-space. Having done that, we derive projection operators to solve for the range of the unknown sensor. Our new approach has a number of advantages over standard techniques: It involves no minimisation which means that the solution is robust to outliers and is not dominated by larger response values and it offers the ability to evaluate the goodness of the solution where it is possible to show that the solution is optimal, given the data, if the calculated range is one dimensional.

Appendix: Program and Foils from Selected Presentations

- 1. Program
- 2. Green: Advances in Colour Management
- 3. Johansen: WebICC Colour Management in Heatset
- 4. Nussbaum: Factors Affecting the Appearance of Print
- 5. Nurmi: Proof-to-print tolerances in contract proofing
- 6. Green: Making and Applying ICC Profiles with Matlab
- 7. Rizzi: Spatial Colour Imaging From Retinex to ACE
- 8. Farup: Spatial Colour Gamut Mapping
- 9. Finlayson: Colour, Constancy, Invariance and the Chromagenic Constraint
- 10. Alsam: Calibrating Colour Cameras Using Metameric Black

Gjøvik Color Imaging Symposium 2005

2 CSKOILEZ

Novemb The Nor	ber 30 wegia	- Dec n Colo	ember 1, 2005 or Research Laboratory		CE ON THE
Gjøvik l	Jnivers	sity C	ollege		
Day 1 (30.11): Col	or management		
09:00	- 09:30	к102	Registration, with coffee and sandwiches		
Session 1:	Introdu	ction			
09:30 09:35	- 09:35 - 10:20	K102 K102	Advances in colour management	Jon Y. Hardeberg Phil Green	Gjøvik University College London College of Communications
Session 2: 2A 10:30	Introdu - 12:00	ctory to A012	utorials and workshops (Parallel tracks) Color Management Workshop 1	Peter Nussbaum &	Giøvik University College,
2B 10.30	- 12.00	A 007	Color Phenomenology tutorial and	Casper F. Andersen	Graphic Arts Inst. of Denmark
2C 10:30	- 12:00	Δ204	demonstrations	Andrei Qualov and	Giøvik University College
10.50	12.00	A204		Jeremie Gerhardt	Gjøvik University College
Session 3	- 13:00 Granhic	Arts	Lunch		
13:00	- 13:30	K102	WebICC - Color Management in Heatset	Tom E. Johansen	Norwegian Institute of Graphic
14:00 14:30	- 14:30 - 15:00	K102 K102	Factors affecting the appearance of print Proof-to-print tolerances in contract proofing	Peter Nussbaum Olli Nurmi	Gjøvik University College VTT Media Technology, Finland
15:00	- 15:30		Coffee break (with preview of tomorrow's	posters)	
Session 4:	Advance	ed tuto	rials (Parallel tracks)	Datas Nucebours	Circuite University College
4A 15:30 4B 15:30	- 16:30	A012 K102	Color Management Workshop 2 Spectral device characterization	Peter Nussbaum Ali Alsam	Gjøvik University College
4C 15:30	- 16:30	A204	Gamut visualization and mapping using ICC3D	Ivar Farup and Arne	Gjøvik University College
19:00 20:00	- 19:45 - 23:00		Visit to Gjøvik Olympic Mountain Hall (http Dinner at Belvedere Restaurant (http://w	ww.belvedere.as/)	.no/)
Day 2 (1.12):	Curr	ent topics in color imaging rese	earch	
Session 5	Advance	ad Colo	r Management		
08:30	- 09:15	K102	Making, editing and applying ICC profiles with Matlab	Phil Green	London College of Communications
09:15	- 09:45		Coffee break		
Session 6:	Spatial	Color I	maging		
09:45	- 10:30	K102	Spatial Color Imaging - from Retinex to ACE	Alessandro Rizzi	University of Milano, Crema
11:00	- 11:45	K102 K102	Texture analysis - from grayscale to color	Fritz Albregtsen	University of Oslo
Session 7: 11:45	Posters - 13:30	and in A006	teractive presentations Posters and lunch buffet		
				Conner Andresse	Creatia Arta Instituta of
			cameras preserving hue planes	Casper Andersen	Denmark
			Content based image retrieval by gamut intersection	Andrei Ouglov	Gjøvik University College
			Investigating color errors due to conversion between different image representations	Øyvind Kolås	Gjøvik University College
			Robustness of texture parameters for color texture analysis	Jon Y. Hardeberg	Gjøvik University College
			Spectral reproduction by vector error diffusion	Jeremie Gerhardt	Gjøvik University College
			Effect of spatial structure on visual tolerance	Vien Cheung Håkon Grønning	University of Leeds Sør-Trøndelag University
			professional printing lab	Hakon orbining	College, Trondheim, Norway
			High resolution, high speed hyperspectral cameras for laboratory, industrial and airborne	Ivar Baarstad	Norsk Elektro Optikk A/S, Lørenskog, Norway
Session 8: 13:30	- 14:15	sion ar K102	Id Color Constancy Computational colour constancy	Graham Finlayson	University of East Anglia, UK
14:15	- 14:45	K102	Ability of red-green colour deficient observers to judge natural and Munsell surface colors under different illuminants	Rigmor Baraas	Buskerud University College, Kongsberg, Norway
14:45	- 15:30	K102	Calibrating color cameras using metameric black	Ali Alsam	Gjøvik University College
Final proara	am (28.11				
Conference	venue: C	ijøvik U	niversity College, Gjøvik, Norway, K102 (A buildi	ing)	
Conference Conference	chair: Pro	ofessor e: 1. Y.	Jon Y. Hardeberg Hardeberg, P. Nussbaum, A. Alsam, S. E. Skars	bø, I. Farup	

For more information and registration, see http://www.colorlab.no or http://www.hig.no

	ΔE_{avg}	ΔE_{max}	Source
Basic	8.70		Johnson, Luo, Li, Xin and Rhodes
Basic	7.41	15.52	Rolleston and Bala
Y-N modified	4.98		Johnson, Luo, Li, Xin and Rhodes
Cellular	2.85	8.76	Rolleston and Bala
Cellular spectral Y-N modified	2.62	8.71	Rolleston and Bala

	2nd order ∆E_{avg}	3rd order ∆E_{avg}	Source
Proofing systems	2.14	1.25	Johnson, Luo, Li, Xin and Rhodes
Digital printers	3.22	2.17	Johnson, Luo, Li, Xin and Rhodes
News presses		2.32	Green
ccuracy of the characte	erization model t in the training	in predicti set.	ng CIELAB

IT and interpolation errors			The second	
	ΔE_{avg}	∆E _{max}	Source	
Trilinear	0.75	3.14	Singh	
Prism	0.97	7.74	Singh	
Pyramid	1.38	8.70	Singh	
Tetrahedral	1.37	9.44	Singh	
Max error for 17-point lattice, trilinear interpolation		17.20		
Max error for 33-point lattice, trilinear interpolation		8.86		

ound-off		COLOUR IMAGING ORGUP
ound-on		
	ΔE_{avg}	
Round CIELAB to nearest 8-bit integer	0.857	
Round CIELAB to 8-bit integer floor	1.722	
	@ Dhill Casar 2001	

/hite point		COLOURI	IMAGING GROU
The D50 illuminant 'white point' va	ries widely		
	x	Y	Z
Calculated at double precision according to CIE 15.3 (and 15.2)	0.9641986 5576090	1.00	0.8251164 8322104
Specified by CIE 15.2 (and ICC)	0.9642	1.00	0.8249
Specified by CIE 15.3	0.9642	1.00	0.8251
16-bit fractional approximation of CIE 15.2	0.9642028 8085938	1.00	0.8248901 3671875
Calculated by summation of ISO 13655 weightings	0.96423	1.02	0.82522
Specified by ISO 13655	0.96422	1.00	0.82521

					(201 (NUR 18	AGING (NOUP CO		
ICC Characterization	International	Color MAKING CO DEVICES AN	Consortiu NOR SEAMLESS B D DOCUMENTS	I M ETWEEN Data R	AD AD		RESOURCES	ORMATION MEMO	SEARCH ICC : GO		
Data Registry	ICC News Release ICC Specifications Technical Notes ICC Resource Center	CMYK Characterization data Registered CMYK characterization data sets for standard printing processes are Inited below:							Got a question about ICC Profiles or colour management? Ask Phil		
Reference name links to detailed page which includes process definition and	ICC Slide Presentation ICC Logos Information on Profiles ICC White Papers Color Management Links Member List ICC Working Groups FAQ	Instalion Loarstraints and east set have been registered by the Polleving organizations: CATS CAT					November 7 2005 What is an ICC Profile? Wow can I tell if my system is V4 compatible?				
source of data.				Process	Media	Screen	TVI	Backing	Designation	Reference	Products that support
Where available,	Click here to view the ICC web site in French	Offset	Gloss or matt coated, 105 g/m2	69 l/cm		black	Japan Color 2001 Coated	30200103	V4 profiles		
detail page links to actual characterization		Offset	Gloss or matt coated, 115 g/m2	60 Varn	13%	black	OFCOM 1.2	FOGRA11			
		Offset	Gloss or matt coated, 115 g/m2	60 ∜cm	13%	vhite	OFCOM 1.2	FOGRA15			
		Offset	Gloss or matt coated, 115 g/m2	60 l/am	13%	vhite	OFCOM 1.2 Altona	FOGRA27			
uata anu prome.		Offset	Gloss or matt coated, 115 g/m2	60 ⊮om		white	Japan Color 2003	JCW2003			
		Offset	Gloss or matt coated, 115 g/m2	70 I√cm	14%	black	OFCOM 1.2	FOGRA 19			

Gjøvik Color Imaging Symposium 2005 November 30th 2005

Factors Affecting the Appearance of Print

Peter Nussbaum

colorlab.no

The Norwegian Color Research Laboratory

Outline

- Introduction
- Experimental method
- Data analysis
- Results
- Further research

Experimental methods: **Resources**

Printer

- Substrates
- Computer for controlling printer
- Tele-spectroradiometer
- Viewing booth
- Application for data analysis

Experimental methods

Digital test chart

- 24 colour patches in RGB colour space.
- Memory colours: skin, grass and sky.
- Pastel colours
- Colours from the RGB-cube's surface give information about the print's colour gamut.
- The last row contains a grey scale colours which will show how tone rendering is affected by various factors.

Digital RGB test image

Experimental methods:

Potential factors

Factors and their alter	mative states:			
Factors	Alternative	Alternative	Alternative	
	state	state	state	
Digital input				
Printer setting	Visual calibration	mis-calibr. 1	mis-calibr. 2	
		extr. magenta	extr. blue	
Printer driver setting PPD	Color Control	Image color matching	Black Finish	
Application used for printing	Adobe Photoshop	MS PowerPoint	MS Word	
Application printing menu Individual ICC		Standard OKI ICC	Newspaper ICC	
Printing system				
Various printing system	C7400 Oki Scottland	C7400 Oki Cll		
Substrate properties	"out of the tray"	Silk 250g	Carton 250g	
Print				
Printers repeatability	2. Week	3. Week	4. Week	
MTS in dark condition	2. Week	3. Week	4. Week	
MTS in day light condition 2. Week		3. Week	4. Week	

Requires both new prints and new measurements

Experimental methods:

Potential factors

Factors and their alternative states:

Factors	Alternative	Alternative	Alternative	Alternative
	state	state	state	state
Viewing				
Geometry vertical	60°	30°		
Geometry horizontal	45°			
Background	white	black		
Surround	Ambient light on			
Illumination conditions				
Light source	CWF 4150K	A 2856K	normal office	real daylight
			light condition	
Intensity	75 %	50 %	25 %	

Requires only new measurements One factor at the time only has been changed

Experimental methods:

Colour measurement

The aim of the present project has been achieved on the basis of data gathered in an experiment involving colour measurement.

Repeatability of the measuring instrument

- I Short-term repeatability performance of the measuring instrument has a mean ΔE^*_{ab} of 0,05 and 95th percentile of 0,11.
- Repeatability of the reference measuring set-up
 The mean repeatability error was AE* of 0.4 and
 - I The mean repeatability error was $\Delta E^{*}_{\ ab}$ of 0,4 and 95th percentile of 0,83.

Data analysis:

Measurement data

- From measured spectral radiance data X, Y and Z tristimulus values have been calculated (observer angle 2°).
- L*a*b* values have been computed from each set with the reference white from the calibration tile.
- CIE94 colour-difference calculated between reference and alternative states.
- Arithmetic mean, maximum and 95th percentile indicate the resulting colour difference distribution.

CIECAM97s

Colour Appearance Model CAM takes the intensity of illumination and light source into account.

- I CIECAM97s applied to predict XYZ values for factors:
 - I Light source conditions
 - I Intensity conditions
 - I Background
- Firstly the forward model has been used to predict Jab from XYZ and then the reverse model to predict XYZ from Jab under the reference conditions.

Perceptibility threshold

- Considering the colour difference in relationship to perceptibility threshold, which indicates the colour difference area where differences are just noticeable (JND).
- Perceptibility threshold in complex images.
- Perceptibility threshold for single colours.
 Due to the nature of the targets content and texture.
- High percentile correlates better with the perceptibility threshold than by mean colour differences (Uroz et al. (2002).

Results

Relative gamut volumes

RANKING	%
Background black	224
Office light condition	117
Printer driver "Color Control"	105
Opaque reference	100
Mis-calibration	99
Individual ICC profile	72
Printer system CII	71
Recycling paper	39

Alternative states ordered by relative gamut volumes.

Effect of changes to factors considered in terms of their relative colour gamut.

Correlation between substrates Transparent Opaque actors Factors List of factors printer light source ordered in terms of their impact on liaht source print ubstrate Screen appearance. intensity TS lig ntensity substrate

Results:

Implementation of the results

Application for printer manufacturer

- Check list for technical support
- Recommendation for customers
- Training
- Printer quality control

Further research:

Further research areas

- More then one factor at the time could be changed simultaneously.
- Further data analysis to investigate alternative states and their impact on memory colours and tone reproduction curve.
- More research on alternative states (e.g. printer driver).
- Help desk system (artificial intelligence system).
- Extension to other media (e.g. factors affecting the appearance of display, digital projector).

Summary

- Evaluating the magnitude of visual differences in prints caused by changes in various factors and ordered in a list in terms of the size of their potential impact on print appearance.
- The colour differences were compared to perceptibility thresholds both in complex images and for single colours.
- Factor "Printing system" affect most the print appearance whereas the factor "Surround" condition did not cause any change.
- Illustrates the impact of the factors in terms of variation in colour gamut.
- Basis for developing more robust printing solutions and for troubleshooting current printing system.

VIT

•*colour vision was tested with the Ishihara test.

VTT TECHNICAL R	COTES 95% CO	nfidence	intervals	and rank	rs (coated paper)
2.0	Kuva	7-arvo	95% LV	Järiestvs	
	ABC018	1 34	0.17	1	
	ABC022	1.20	0.18	2	
	ABC008	1.07	0.15	3	
	ABC021	0.90	0.16	4	
	ABC006	0.82	0.17	5	
	ABC007	0.73	0.15	6	
	ABC026	0.49	0.17	7	
	ABC024	0.44	0.16	8	
	ABC017	0.35	0.15	9	
	ABC020	0.29	0.16	10	
	ABC011	0.21	0.16	11	
	ABC004	0.02	0.16	12	
	ABC019	-0,02	0,14	13	
	ABC013	-0,06	0,15	14	
	ABC016	-0.09	0.16	15	
	ABC005	-0,18	0,16	16	
	ABC003	-0,19	0,15	17	
	ABC025	-0,32	0,16	18	
	ABC014	-0,32	0,16	19	
	ABC015	-0,50	0,17	20	
	ABC010	-0,77	0,16	21	
	ABC002	-0,78	0,15	22	
	ABC009	-0,84	0,15	23	
	ABC001	-1,08	0,15	24	
	ABC023	-1,13	0,17	25	_/
	ABC012	-1,58	0,17	26	

COLOUR MACINE GROUP

Making and using ICC profiles with Matlab

Support for ICC profiles in Matlab Reading and writing profiles Shaper/matrix profiles Interpolation and table look-up LUT-based profiles

> Phil Green Colour Imaging Group, LCC

COLOUR MACHINE OF COLOUR OF COLOUR MACHINE OF COLOUR ACHINE OF COLOUR ACHINE OF COLOUR ACHINE OF COLOU

COLOUR MAGINE GROUP

Color Consortiun

COLOUR MAGING GROUP **General support for ICC profiles Reading ICC profiles** Output of iccread Matlab Image Processing Toobox support for ICC profiles P=iccread('ProPhoto.icm') P=ICCREAD(profilename) • Reads an icc profile and stores the result as a structure in p Header: [1x1 struct] TagTable: {12x3 cell} Copyright: [1x63 char] C = MAKECFORM('icc', SRC_PROFILE, DEST_PROFILE) Creates a colour transformation using the source and Description: [1x1 struct] MediaWhitePoint: [0.9642 1 0.8249] DeviceMfgDesc: [1x1 struct] destination profile specified B = APPLYCFORM(A, C) DeviceModelDesc: [1x1 struct] · Converts the color values in A using the colour MatTRC: [1x1 struct] transformation specified in C PrivateTags: {'mmod' [1x40 uint8]} Filename: 'ProPhoto.icm' P_NEW = ICCWRITE(P, newprofilename) Writes the structure P to an ICC profile with the filename specified Internationa ^r Color Consortium

Reading ICC profiles	COLOUR IMAGING GROUP
Output of iccread: Tag Table	
P=iccread('ProPhoto.icm'); P.TagTable	
'cprt' [276] [72] 'desc' [348] [131] 'wtpt' [480] [20] 'rTRC' [500] [14] 'gTRC' [500] [14] 'bTRC' [500] [14] 'rXYZ' [516] [20] 'gXYZ' [536] [20] 'bXYZ' [556] [20] 'dmdd' [688] [209] 'mmod' [900] [40]	International
© Phil Green 2004	Color Consortium

Write profile

COLOUR MACINE GROUP

% update filename and write profile newfilename='fred0010.icc'; P.Filename=newfilename; iccwrite(P,newfilename);

COLOURY MACHINE GROUP Writing ICC profiles with Profiler Colour Engineering Toobox ICC Profiler function Load iccprofilestructure % % add fields to profile structure in Mprofile as required % MAKEPROFILE (mProfile, profilename) uses C++ wrapper for lcms library accepts LUT grid in nx3 structure accepts private tag for storing parameter information accepts profile structure from iccread

Outline

- pixel colorimetry
- + HVS adaptational properties
- + color in context and appearance
- + application for tone reproduction
- + Conclusion and perspectives

Color depends on context color is subject to several computations that depend on context

	D65 Verivide CAC-60D	D65 Hunt's book	C.I.E. illuminant F	C.I.E illuminant D65 (Lightscape)	
,	Ret and a second s				
A					
	Osram FQ830	Osram FQ860	C.I.E. illuminant A	C.I.E illuminant A (Lightscape)	
	Osram FQ830	Osram FQ860	C.I.E. illuminant A	CLE Illuminant A (Lightscape)	
,	Osram FQ830	Osram FQ960	C.LE. Illuminant A	CLE illuminant A (Liphtscape)	

Which is the best ?

- a unique measure is missing
- the available measures depend on the approach of the tone reproduction
- work towards a unified test framework should be done

Spatial gamut mapping

Conclusions and perspectives

- $\boldsymbol{\cdot}$ limits of the pixel colorimetry
- towards appearance
- local <u>and</u> global adaptations
- Retinex and ACE as synthetic "observers"

Thanks

rizzi@dti.unimi.it

Gjøvik, 1st December 2005	Spatial Colour Gamut Mapping
Traditional Colour Gamut	Mapping – Objectives (Hunt 1995)
Spectral: Spectral power distribut Exact: Chromaticities, relative lur Colorimetric: Chromaticities and Equivalent: Apparent chromaticit Corresponding: Apparent chroma Preferred: Apparent match should	tions ninances and absolute luminances relative luminances ies and relative and absolute luminances aticities and relative luminances l be sacrificed to achieve a more pleasing result
Ivar Farup, Alessandro Rizzi and Carlo Gatta	8

Gjøvik, 1st December 2005

Spatial Colour Gamut Mapping

Traditional Gamut Mapping – Reproduction of Contrast (1)

11

Clipping

Ivar Farup, Alessandro Rizzi and Carlo Gatta

13

Spatial Colour Gamut Mapping

The Idea of Spatial Gamut Mapping

Colour Constancy Type Observations

- Colour constancy: overall colour casts 'removed' by the human visual system
- Land: *Ratio* between colours that is important for the appearance (retinex)McCann: Better if all colours are changed in the same direction than if the
- colours are changed independently.
- ACE by Rizzi et al.: The closer pixels are more important for the perceived lightness of a pixel
- Similar results in colour appearance and image colour appearance (Fairchild et al.)

Ivar Farup, Alessandro Rizzi and Carlo Gatta

Gjøvik, 1st December 2005	Spatial Colour Gamut Mapping	Gjøvik, 1st December 2005	Spatial Colour Gamut Mapping
Solution		Further improvement:	Perceptual Gamut Mapping
 Bilateral filtering: the mapping of the individ the mapping of the region and its position in c Local in both colour space and image plane sin Promising results reduces the problems (and the local contrast) 	ual pixel is dependent on both olour space nultaneously	 Instead of using the multilevel a perceived ratios using, e.g., ACE (o McCann patent: Retinex for spatial Combine multilevel and perceptual Again: promising results 	upproach to keep local ratios, calculated r Retinex or iCAM or) gamut mapping gamut mapping using ACE at each step
Ivar Farup, Alessandro Rizzi and Carlo Gatta	21	Ivar Farup, Alessandro Rizzi and Carlo Gatta	22

Gjøvik, 1st December 2005	Spatial Colour Gamut Mapping			
Conclusion				
 New spatial gamut mapping technique Improved reproduction of contrast, particularly at high freq Ideas for further improvement 	quencies			
Ivar Farup, Alessandro Rizzi and Carlo Gatta	23			

GCIS - 01/12-2005 - 2

UNIVERSITY OF OSLO UNIVERSITY OF OSLO Many are called ... - but few should be chosen · The number of training samples affects the • Statistical texture analysis methods extract a large feature selection and the error estimation. number of pre-defined - often ad hoc -features. The effect of the number of feature candidates • This gives a much larger number of combinations. analyzed is not much discussed. Several sophisticated schemes developed to select The number of feature candidates is critical for a suboptimal feature set of lower dimensionality. small data sets. Resubstitution instead of separate training and test • · Feature selection should be performed for each data sets to estimate the texture classification error. cycle of the leave-one-out procedure. Still, this leads to optimistically biased results. GCIS - 01/12-2005 - 3 GCIS - 01/12-2005 - 4 Department of Informatics Department of Informatics

UNIVERSITY OF OSLO

ent of Informatics

GCIS - 01/12-2005 - 6

UNIVERSITY OF OSLO

• In our visual system, color is treated at a lower spatial frequency than intensity.

Color and texture

- This is exploited in image compression and in image sensors.
- Several CBIR systems use
 - texture descriptors (e.g. Gabor filters) and
 - color histograms (e.g. Cb Cr)
- True color texture analysis use both intrachannel and inter-channel textural information
 - Wavelet correlation signatures
 - Color wavelet covarianceChromaticity moments
 - Opponent color LBP

ent of Infor

GCIS - 01/12-2005 - 23

UNIVERSITY OF OSLO

nt of Info

Local Binary Pattern

- Ojala et al. (1996) proposed a binary version of the Wang and He (1990) texture spectrum approach, thresholding each 3 x 3 neighborhood by the center pixel value.
- Binomial position weights are then put on the eight binary pixel values, so that a weighted summation gives a unique local binary pattern (LBP) index to each such binary pattern.
- There are 2⁸ = 256 possible LBP values within a 3 x 3 neighborhood.

GCIS = 01/12-2005 - 24

Colour, constancy, invariance and the Chromagenic Constraint

Graham D. Finlayson School of Computing Sciences University of East Anglia

Overview

- 1. Digital Photography
- 2. Colour Constancy
- 3. Invariance
- 4. Shadow Removal
- 5. Chromagenic Camera
- 6. The Human Vision system (Chromagenic?)

White Balance/colour constancy

Estimate colour cast and remove

When does constancy fail?

- When there are few surface colours
 - A pink image is evidence of a pink surface under a white light
- When there are multiple lights
 E.g. Sun and Shadow (yellow and blue light)
- When a calibration is assumed and the calibration is incorrect
- Can anything be done?

3. Pixel constancy (and shadow removal)

Pixel Invariants (pixel constancy)

- Intensity is a one dimensional variable (light is brighter or dimmer)
- Light colour (for photographers) is also 1 dimensional)
 - A colour temperature is specified: 2500K, 5000K, 10000K is repsectively reddish, whitish and bluish
- It is thus plausible that given 3 measurements we might find one quantity that is independent of light intensity and colour
Pixel Invariants (pixel constancy)

- Theoretically, the sensitivities of a camera might be designed so they filter out light variation [Brainard]
- In practice these sensors just measure noise
 Under strong assumptions about image formation (dimensionality of light and surface), pixel invariants exist [Yuille]
 Again doesn't work in practice
- The key to useful pixel invariance is looking at non linear aspects of image formation

Let us rederive the chromaticity transform in Log space

So what have we learned

- If we project orthogonal to translational direction of intensity change then we arrive at an intensity invariant
- What if illumination change was equally simple?
 What if as we change light colour the chromaticty coordinates always translated in the same direction?
- Then projecting orthogonal to this direction of variation would suffice to remove light colour

Experiment

- For many coloured surfaces and a single light
 Calculate logR-logG and logB-logG
 - Remember these are already intensity invariants
- Now repeat for many different colours of light
- Examine how the log chromaticities change with light colour
- If the variation is linear with fixed direction there exists a light colour invariant

Differences of log differences are light colour independent

When does an intrinsic invariant exist

- Narrow-band sensors + Planckian Light (or Planckian-like light) - [Finlayson et al. Colour Invariance at a pixel. BMVC 2000]
- Broad-band sensors + Planckian Light + constraint on surfaces

 Brill+Finlayson. Illuminant Invariance from a single reflected light. CRA 20021
- Empirically, for all typical colour cameras

Note that almost all lights are Planckian in terms of how they Integrate to form RGBS

Lightness Algorithms & Shadow Removal Calculate Edges log R then log G then log B ind+rem e shadow Edges by looking at Re-integrate the thresholded edge map to give Log RGB image. Then exponentiate

Reintegration Details

- Involves solving a PDE: Poisson Equation. These can be solved efficiently:

 Fourier methods [Chellapa '91, Weiss, '01, Borenstein '99]
 Gauss Siedel Iteration, Multigrid methods e.g. [Press et al. '93]
- Care must be taken at the Boundary
 We use Neumann Conditions [Blake '85] (much less artifacts than
 Dirichlet)
- Large regions are masked by shadow edges

 Apply an iterative diffusion process to infill local edges
 The diffusion enforces integrability at each step
- Observation: reintegration within all shadow or non shadow regions should be perfect (Poisson reintegration propagates error)
 Recently proposed path based re-integration delivers superior results [Fredembach and Finlayson, '05]

The Chromagenic Approach

The basic idea

- Take a second picture through a coloured filter
- Compute colour constancy with 2 images (filtered+unfiltered)

Unfortuately, Multi-light constancy is hard

- There is a substantial literature on the 2 (or generally N) light constancy problem
- Dzmura and Iverson (series of papers in JOSA, 1993) have shown that only poor constancy is possible
 - Why? Because the new measurements are not independent!
- Chomagenic approach is based on 2 new ideas
 1) filtered RGBs are not independent
 - 2) a filter can be chosen so the redundancy correlates strongly with light colour

When does a filtered images help

Theorem:

assuming 3 dimensional reflectance and 3 dimensional illumination then and RGB plus filtered RGB image will nearly always uniquely identify the viewing illuminant

(the best map taking RGBs to filtered counterparts changes with and depends on illumination)

Chromagenic Colour Constancy

- Preprocessing: calculate the best Ti for a large set of training lights and surfaces
 T based on good data
- 2. Given pairs of RGBs (filtered and unfiltered)
 - Test each Ti in turn
 - Choose the one that works best
- 3. In principle constancy becomes possible in 'deficient scenes'
 - Because Ts not determined based on image data

Choosing a good filter

- A neutral density filter would give the same transform for all lights
 - Very poor choice
- A good (chromagenic) filter
 - Induces different Ts for different lights
 - But, each Ti accurately maps RGBs to filtered counterparts

5. Experiments Chromagenic vs other methods

Experiments: the Simon Fraser protocol

How to evaluate performance

How good is colour constancy?

- 1 = great performance: the correct answer
- 2-3 = acceptable performance: for digital photography
- 4-5 = ok, so long as images do not have strong reference colors (e.g. faces)
- >5 = may not acceptable (>7 not acceptable)

Statistical Testing

	MxRGB	GW	DBGW	LPGM	CbyC	CanC
MxRGB		+	-	-	-	-
GW	-		-	-	-	-
DBGW	+	+		-		-
LPGM	+	+			-	-
CbyC	+	+	+	+		
CanCG	+	+	+	+		

Results summary

- Chromagenic works as well as the best known algorithms
- But, is much simpler
- Results have been corroborated on real images
 However,
 - The approach does have significant outliers
 - Can we engineer a stable soln?
 - Or combine with conventional approach?

Relevance to human vision

- We have good colour constancy
- If chromagenic is a good solution would we expect nature to have evolved a similar soln?
- Remarkably it is plausible we are chromagenic!
- Completely new observation

The Macula

- The Macula Lutea is a small central region of the Retina (Fovea)
- characteristically yellow pigmentation

Purpose of the Macula

- The macula lutea is thought to act as a short wavelength filter, additional to that provided by the lens [Rodieck, 1973]
- As the fovea is the most essential part of the retina for human vision, protective mechanisms for avoiding bright light and especially ultraviolet irradiation damage are essential

But, how big is the effect of the Macular pigment?

- When matching small field colours vs large field it is recommended that different matching functions are used
- The CIE recommends two different standards called the 2-degree and 10 degree observers
- In some matching experiments the Macular pigment (or Maxwell's spot) is visible to observers

How could the visual system take two pictures?

- The chromagenic approach requires filtered and unfiltered RGBs
 - But though there is the macular pigment we see one picture
- But, the visual system fixates at around 3 locations per second
 In principle the different fixation points allow the visual system is allow the visual system.
- In principle the different fixation points allow the visual system to build a pair of images
 Initial experiments indicate good chromagenic
- constancy is plausible using 2 and 10 degree matching curves

Conclusions

- 1. Colour image processing is the main technical challenge in digital photgraphy
- 2. There is a quest for good colour constancy
- 3. Colour constancy is hard and invariance is easy
- 4. Invariance supports automated shadow removal
- Chromagenic is a new approach to colour vision
 improved constancy
- 6. Plausible the human vision system is Chromagenic

Calibrating Color Cameras Using Metameric Blacks

Ali Alsam and Reiner Lenz Gjøvik University College Norway Linköping University Sweden

Outline

- The camera, light and colour,
- The camera calibration experiment,
- Camera calibration is an ill-posed problem,
- Metamerism is device dependent,
- · Different devices result in different metamers,
- · Estimating metamers without sensor calibration,

- Metamer based camera calibration,
- Results.

Summary

• We have learned that colour formation can be described using a linear system of the form:

where A contains the spectral data and b is a vector of responses.

• The linear system is rank deficient, i.e. (A^TA)⁻¹ doesn't exists.

• To solve the problem regularization methods such as the Truncated Singular Value Decomposition and Tikhonov regularization are normally used. For Ax=bthis means: $x = (\hat{A}^T \hat{A})^{-1} \hat{A}^T b$

where

$$A = \sum_{i=1}^{n} u_i \sigma_i v_i$$
 and $\hat{A} = \sum_{i=1}^{r} u_i \sigma_i v_i$

16

Tikhonov Regularization

• Or using Tikhonov regularization:

$$x = \left(A^T A + \lambda^2 I\right)^{-1} A^T x$$

• Regularization is needed because we are trying to estimate a point *x* in the ill defined space of *A*.

17

13

15

Vision Science For Solving Ill-posed Linear Systems

- Metamerism offers the means to divide the space of A into two parts: one which is orthogonal to the sensor and another which is in its range.
- 1. A definition of metamerism,
- 2. The use of metamerism to solve ill-posed inverse problems.

Metamerism

• Two or more colour signals which integrate to the same device response are known as metamers, i.e. if:

$$b = a_1^T x = a_2^T x$$

19

and

$$a_1 \neq a_2$$

Then a_1 and a_2 are metamers.

Different devices result in different metamers

- Horn proved that two sets of sensors result in the same metamers *if and only if* they are within a linear transform from each other.
- The question which we asked ourselves is: given the metamers of a device, is it possible to estimate the sensors? The answer is yes.

The chicken and egg

- To calculate the sensor we would like a set of metamers but to get the metamers we need a sensor.
- We show that it is possible to calculate metamers without sensor knowledge [Alsam and Finlayson 2005].
- Having calculated the metamers, we show that it is possible to estimate the sensor without minimisation.

25

27

Linear systems and convexity

• The colour formation equation is linear:

$$b = a^T x$$

• Linear systems are homogenous:

$$\lambda b_1 = \lambda a_1^T x$$
 subject to $0 \le \lambda \le 1$

26

$$(1-\lambda)b_2 = (1-\lambda)a_2^T x$$
 subject to $0 \le \lambda \le 1$

Calculating the black space of an unknown sensor

• Let us consider two metamers a_1 and a_2 :

$$b = a_1^T x = a_2^T x$$

hence

$$(a_1 - a_2)^T x = 0$$

In other words: the difference between two metamers is in the null space of the unknown senor.

31

$$\lambda = \frac{b_m - b_1}{b_2 - b_1}$$

where: $b_1 \leq b_m \leq b_2$

• We have $a_n = \lambda a_1 + (1 - \lambda)a_2$

<image>

Experiment

- A Nikon D70,
- The calibration target used was the Esser chart with 264 colour patches and 22 greyscale,
- The images where captured in the Nikon D70 raw format and the data was checked for linearity,
- The spectral data was measured under a daylight simulator using a Minolta CS-1000 spectroradiometer.

40

42

• The recovered sensor set was used to estimate the absolute error for the red, green and blue channels.

Absolute error based on the training set method Abs-Error TSVD Red Green Blue Mean 1.34 1.00 0.96

TSVD	Red	Green	Blue
Mean	1.34	1.00	0.96
Median	0.94	0.62	0.75
Max	8.40	8.08	6.61
TR	Red	Green	Blue
Mean	1.82	1.26	1.53
Median	1.35	0.83	1.07
Max	8.92	5.75	6.13
MB	Red	Green	Blue
Mean	1.31	0.95	0.67
Median	0.82	0.66	0.51
Max	8.63	6.73	4.39

Absolute error based on the test set.										
metho	d A	Abs-Error								
TSVD	Red	Green	Blue							
Mean	2.64	2.58	2.74							
Media	n 1.66	2.34	2.04							
Max	9.21	8.34	8.84							
TR	Red	Green	Blue							
Mean	2.07	2.49	2.80							
Media	n 1.54	1.45	1.77							
Max	8.09	8.61	10.49							
MB	Red	Green	Blue							
Mean	1.87	1.36	0.94							
Media	n 1.44	0.95	0.79							
Max	7.01	4.74	2.97	43						

 Our experiments indicate that the method is more robust to noise than TSVD and Tikhonov regularization with improvements of up to a 100% depending on the noise statistics and data dimesnionality.

