
Object Retrieval and Student Behavior
Using Tags in a Learning Context

Christian Hochlin

Master’s Thesis
Master of Science in Media Technology

30 ECTS
Department of Computer Science and Media Technology

Gjøvik University College, 2011

Avdeling for
informatikk og medieteknikk
Høgskolen i Gjøvik
Postboks 191
2802 Gjøvik

Department of Computer Science
and Media Technology
Gjøvik University College
Box 191
N-2802 Gjøvik
Norway

Object Retrieval and Student Behavior Using Tags in a Learning Context

Abstract

Learning objects are reusable digital resources used in education. They are expensive to
create and it is hard to maintain a sufficient amount of metadata in them. This impedes
the ability to locate learning objects for reuse.

Computer supported learning, and its branch called e-learning, aims to engage the
students in their own education. This can be beneficially used to create metadata in
learning objects, by engaging students to tag their own learning objects.

This thesis examines how students use a system designed for annotating learning
objects, and discovers that students are not willing to tag. Interviews were conduc-
ted, which discover that a tagging system needs to be introduced as an integral part
of the course to induce participation, as well as properly communicate the benefits for
the students themselves. The used system, implemented in the Learning Object Reposit-
ory DSpace, is evaluated to determine how well it is suited for implementation of social
technologies like tagging in a production environment. The thesis also investigates how
well the tags produced can be used to retrieve related objects by testing a new algorithm.
Promising results were observed with a test set, but the algorithm could not be tested
with real tags from this study, as the tag set was too small.

iii

Object Retrieval and Student Behavior Using Tags in a Learning Context

Acknowledgments

This Master’s thesis is the final work produced during my study at the Faculty of Com-
puter Science and Media Technology at Gjøvik University College.

I want to thank my supervisor Rune Hjelsvold for his guidance and input throughout
the time spent working on this thesis. I would also like to thank my classmates and friends
who kept me company, both off- and online, during what could have been a lonely time
working on this thesis. Lastly, thanks to Jan A. Audestad, who made his learning objects
available for my study, as well as the students who participated and especially those who
agreed to be interviewed.

Christian Hochlin, 1. July 2011

v

Object Retrieval and Student Behavior Using Tags in a Learning Context

Contents

Abstract . iii
Acknowledgments . v
Contents . vii
List of Figures . ix
List of Tables . xi
1 Introduction . 1

1.1 Topic . 1
1.2 Keywords . 2
1.3 Problem Description . 2
1.4 Justification, Motivation and Benefits . 2
1.5 Research Questions . 3

2 Related Work . 5
2.1 Learning Objects . 5
2.2 Folksonomies . 6
2.3 Tagging in a Learning Context . 7
2.4 Ranking Algorithms . 8
2.5 Summary . 10
2.6 Research Questions Revisited . 10

3 System Description . 13
3.1 DSpace . 13

4 System Creation . 21
4.1 Tagging and Rating . 21
4.2 Retrieval Algorithm . 31
4.3 Extended Algorithm . 33

5 Experiment Planning . 35
5.1 Informing Students . 35
5.2 Interviews . 35
5.3 Retrieval Algorithm . 36

6 Results and Analysis . 39
6.1 Tagging Behavior . 39
6.2 Interviews . 44
6.3 Retrieval Algorithms . 46
6.4 Social Technologies in DSpace . 51

7 Conclusion and Future Work . 53
7.1 How can we Integrate Tags in a Learning Environment? 53
7.2 Student Supplied Tags for Retrieval . 53
7.3 Challenges Related to Retrieval . 54
7.4 How can Social Technologies be Implemented in DSpace? 55
7.5 Future Work . 55

Bibliography . 57

vii

Object Retrieval and Student Behavior Using Tags in a Learning Context

A Data . 61
A.1 Student Available Texts . 61
A.2 Data Logs . 62
A.3 Tags Applied . 66

B Source Code . 67
B.1 DSpace . 67
B.2 Retrieval Algorithms . 106

viii

Object Retrieval and Student Behavior Using Tags in a Learning Context

List of Figures

1 Granularity of Learning Objects[30] . 6
2 Tagging Motivations[34] . 7
3 Simple Set Graph . 9
4 Visible Elements of the DRI Document . 14
5 The Manakin Pipeline . 15
6 The Aspect Chain . 16
7 Sample Transformer Java Code . 17
8 Sitemap Structure . 18
9 DSpace Relationship Chart . 19
10 DSpace Architecture[41] . 20
11 Tagging Interface, Concept . 23
12 Tagging Interface, Final Appearance . 24
13 Aspect Architecture . 26
14 Aspect Components in DSpace Architecture 32
15 A Simple Set . 32
16 The Matrix for the Simple Set . 33
17 Algorithm Pseudocode . 34
18 Composite Image Showing Variety of Motifs 37
19 Aggregate views Divided by Category . 40
20 Item Views Versus Tags Applied . 42
21 Site Accesses Filtered by IP . 42
22 Site Accesses, March–May . 43
23 Peculiar Behavior, HITS . 46
24 Source Image 1 . 47
25 Results Without Dynamic Weighting . 47
26 Low Scoring Relevant Image . 48
27 Source Image 2 . 49
28 Top Hits, Vector Space . 49
29 Top Hits, HITS . 50
30 Weighting Differences . 50

ix

Object Retrieval and Student Behavior Using Tags in a Learning Context

List of Tables

1 Aspect Tagging Components . 27
2 Aspect Logging Components . 28
3 Aspect Rating Components . 29
4 Aspect Utility Components . 29
5 Aspect Navigation Components . 29
6 Aspect List Components . 30
7 Aspect Item View Components . 30
8 Aspect Statistics Components . 31
9 Logged User Statistics . 39
10 Object Statistics . 40
11 Tags Applied . 48
12 Converging Values . 48

xi

Object Retrieval and Student Behavior Using Tags in a Learning Context

1 Introduction

Increasing amounts of information today, including education, has been moved to the
digital world. With the advent of The Internet, e-learning became more widespread. E-
learning can be defined as ”all forms of electronic supported learning and teaching”[1].

A branch of e-learning, Computer-Supported Collaborative Learning (CSCL) has also
gained more attention. To some extent, it has emerged in reaction to previous attempts
to use technology in education[2]. It has also been called e-learning 2.0, for its adoption
of social concepts, akin to the colloquially named Web 2.0[3]. Much of the learning ma-
terial has been made available online, available for students regardless of location. This
has made distance education a viable alternative, with 63% of U.S. institutions reporting
distance education as a critical part of their long term strategy[4]. As Web 2.0 changed
the way we use the web, going from merely being spectators to actively take part as
participants, collaborative learning regards education not as a one way-communication
platform, where the teacher teaches and the students learn. A part of the philosophy is
that knowledge is created in the community, by engaging the students[5, p. 37]. There
are numerous ways the students can participate, e.g. commenting, rating and tagging
learning objects. One problem is that few Learning Management Systems (LMS) facilit-
ates interaction with the learning objects. A Learning Management System is a collec-
tion of tools to support learning. The tools are integrated in a common environment,
with access to shared data, presented in a web-based interface. Examples of Learning
Management Systems are Fronter[6] and It’s learning[7], which are the two most used
systems in Norway[8]. In addition to Learning Management Systems, Learning Object
Repositories (LOR’s) are used in education. They are used for storing learning objects
and their metadata[9].

P. Ramsden states that ”Access to the learner’s perspective on the activities of teaching
and learning is essential for understanding educational phenomena - and for improving
education”[10, p. 35]. Albeit an old quote, it is a good summarization of the ideas behind
the trends in e-learning today.

In this chapter, we will present the topics covered in this thesis as well as the problem
description, our motivation for researching these topics and the research questions.

1.1 Topic

At the heart of all forms of E-learning are learning objects. Learning objects can be
defined as

”any digital resource that can be reused to support learning”[11].

An important part of the research on learning objects focuses on the reusability of objects
used for learning purposes[12], and a lot of research exists on how to ensure the reusab-
ility of learning objects. Many of the approaches rely on the learning objects having well
formed and extensive metadata to accomplish this[13][14].

Metadata is generally defined as data about data[15], and is descriptive informa-
tion about a resource. The ”made in ...”-label on clothes, as well as the Dewey Decimal

1

Object Retrieval and Student Behavior Using Tags in a Learning Context

System[16], used for classifying books in a library, are examples of metadata used in
the real world. In the digital world, there are numerous standards specifying which
metadata an object should contain, like Dublin Core[17] for generic resources and the
ID3-format[18] for mp3-files. The most widespread standard for metadata in learning
objects is the IEEE LOM-standard[19], which specifies a set of fields to fill out for each
learning object. Metadata is used in many ways, including resource discovery, organiza-
tion and for facilitating interoperability[20].

Most Learning Object Repositories use either Dublin Core or IEEE LOM as their metadata
scheme. A number of software packages exist that can be used as the basis for an insti-
tution’s repository, including Fedora[21] and DSpace[22].

Tagging is the act of assigning a personally determined keyword to a resource. It
can be described as a special kind of metadata, as the tags are often used to describe
the content of the resource, even though it differs from what we perceive as regular
metadata by being less structured. An advantage of tagging is quicker retrieval of related
content[23].

A folksonomy is a set of terms the users tag content with. A portmanteau of ”folk”
and ”taxonomy”, coined by Thomas Vander Wal, folksonomies allow people to connect
items by ”placing hooks”, to provide meaning in their own understanding[24]. Despite
its chaotic nature, with no inherent structure or relationship between tags, it is accessible
to users and enables them to organize content without investing a significant amount of
time or effort[25].

The main goals of the thesis are to investigate how students use a tagging system
in a real-world scenario, and how the students’ tags can be utilized to locate related
resources.

1.2 Keywords

Tagging, Learning Object, Folksonomy, Metadata, DSpace

1.3 Problem Description

Learning objects are expensive to create[26], partly because creating them is a time-
consuming process[27]. The practice of adding enough formal metadata—like dublin
core-fields, or the IEEE LOM—is not widely adopted among professors, so reuse of learn-
ing objects is hard to achieve within a faculty or school. Lack of metadata in learning
objects defeats some of the purpose, as an important part of the definition of learn-
ing objects is that they should be reusable. With distance education on the rise, there
is generally less face to face communication between teachers and students, especially
concerning distance students. Social media and communication with fellow students are
a valuable asset, but this is not made easy by current Learning Management Systems, as
they do not natively support ”Web 2.0”-concepts like tagging.

1.4 Justification, Motivation and Benefits

As we have observed, a growing trend is to let students participate in the education and
encourage them to be more involved in the courses. By utilizing this trend, students can
be encouraged to participate by tagging their own learning objects.

The ability to tag learning objects may be valuable for both professors and students.
For motivational purposes: As people may feel a stronger sense of belonging when they

2

Object Retrieval and Student Behavior Using Tags in a Learning Context

can be a part of—and not just observers of—the course material, and for informational
purposes: How well received a particular learning object is among the majority of stu-
dents. It could also give them the ability to organize content in a personal way[25], and
discover related content. Professors could benefit by having a direct channel to gather
feedback from students on their learning objects[28], and being able to discover related
learning objects to use in the courses. By reviewing tags, they can get an indication of
how well students understand the content of the learning objects, and what they feel is
important.

Just as letting students tag their learning objects can solve the metadata problem, stu-
dent created metadata can solve the problem of little reuse of learning objects. Student
created metadata is relatively cheap to produce, as the task of producing it is distributed
among a large number of users rather than maintained by a small group.

A method to facilitate easier reuse of the learning objects would save money and free
up time and resources. This is a method that will provide additional metadata to learning
objects without needing to spend extra time on their creation. The beneficiaries of this
would include the schools currently struggling with lacking metadata in their learning
objects, as well as students.

This thesis will assess how student tags can be used as metadata for retrieval, and how
students themselves value the addition of tagging as an educational tool. To gather tags,
the students will use a real system for annotating learning objects. Most research in this
area investigates how student supplied tags are distributed, compared to another form
of metadata. As far as we are aware, few studies focus on how the students themselves
value the addition of tagging to learning objects. In [28], J. Fan did a preliminary study
on the subject, but with no definite results.

To assess how students use a real system, a prototype of such a system needs to be
created as tagging is not included in any Learning Management Systems or Learning
Object Repositories as of now.

1.5 Research Questions

RQ1 How can we integrate tags in a learning environment?

This research question will try to understand how we can integrate tags into a learning
environment in a way that will take advantage of the students’ behavior.

RQ2 How can student supplied tags be used to retrieve related learning objects?

Tags can be used as complementary metadata[28], but will they work as well as regu-
lar metadata for retrieving related resources? Related resources means resources with
subject matter that overlaps with what the original resource conveys. Technical aspects
regarding the usage of tags as metadata used by retrieval algorithms will be answered in
this question.

RQ3 What are the challenges of retrieving related learning objects based on stu-
dent tags?

3

Object Retrieval and Student Behavior Using Tags in a Learning Context

This question will be answered by outlining the challenges encountered while developing
the system, the retrieval algorithm and during the user testing phase.

RQ4 How can social technologies be implemented in DSpace?

This question aims to answer how well suited the Learning Object Repository DSpace is
to incorporate social technologies, such as tagging and rating, from a technical point of
view. DSpace was chosen as the LOR of choice, as Gjøvik University College (GUC) is
looking into putting it to use.

4

Object Retrieval and Student Behavior Using Tags in a Learning Context

2 Related Work

2.1 Learning Objects

The definition of a learning object is the source of much disagreement. The IEEE’s defin-
ition is ”any entity, digital or non-digital, that may be used for learning, education or
training”[19]. This definition is considered by many to be too wide, as it can include
everything that has ever existed. Wiley[11] tries to narrow the definition down, and
states that a learning object is ”any digital resource that can be reused to support learn-
ing”. This is the definition adopted in this thesis. Others argue that this definition is
also too wide. Parrish[29] says ”Instead of trying to define learning objects as entities
or particular artifacts, it may be more useful to view learning objects as a process or
strategy[. . .]. Construed this way, what is designated as an object is contingent on the
learning object system being discussed, avoicing[sic] fruitless disagreement and confu-
sion.”

The details of how to define a learning object can be discussed at length, but the
majority of definitions agree that a learning object should be used to support learning,
and be reusable.

A popular metaphor to explain the use of learning objects is by comparing them with
LEGOTM-blocks. This succeeds in communicating the basic idea, namely that learning
object are small pieces that can be assembled into different structures. Wiley argued in
[11] that this metaphor is faulty, as some ideas that are true for LEGO are not necessarily
true for learning objects. Any LEGO-block can be combined with any other LEGO-block
and they can be assembled easily in any manner, which is not true for learning objects.
He further proposed to compare learning objects to atoms, as they share a larger set
of properties with learning objects. Primarily, not every atom can be combined with any
other atom, and they can only be assembled in certain structures, depending on their own
internal structure. This metaphor is much closer to how real learning objects behave.

Tags are used to organize and retrieve related content. Giving students access to mul-
tiple learning objects regarding the same topic, that may offer different interpretations,
can turn out to be a major educational benefit[29]. This can also show the professors
related objects that are reusable.

Several studies focus on the reuse of learning objects. Figure 1, adopted from [30],
shows learning objects of different granularity. Granularity is by some recognized as the
central component in how reusable a learning object is. Some state that reusability re-
quires the LO to be in a fine-grain form, because raw media elements are often much
easier to reuse than aggregate assemblies[30]. The metrics they used for measuring re-
use in this study have been adapted from object oriented engineering techniques. They
applied these metrics to fine-grained learning objects, and discovered that the reusability
is generally high for fine-grained objects. They did not compare this to coarser learning
objects in this study.

X. Ochoa and E. Duval in [12] measured the reuse of learning objects, based on the
granularity of the objects. They used empirical data collected from three freely available

5

Object Retrieval and Student Behavior Using Tags in a Learning Context

Figure 1: Granularity of Learning Objects[30]

sources, and their goal was to check if granularity was an important factor in the reusab-
ility of a learning object. They had access to usage statistics of the learning objects, such
as reuse percentage. They found that even without proper facilitation, people reused
about 20% of the learning objects, regardless of granularity. The most important discov-
ery made was that objects with granularity immediately lower than the object being built
was easier to reuse than objects of much lower granularity. For example, when building a
course, it is easier to reuse whole lessons than individual images or text paragraphs. The
Ochoa et al.-study has shown that it is possible to reuse objects, regardless of granularity.

To facilitate reuse, metadata is regarded as important. The IEEE have their own stand-
ard, the IEEE LOM, as mentioned in section 1.1. The creators of ARIADNE, a European
Educational Content Management System, regard metadata as extremely important for
the proper management of any resource[14].

2.2 Folksonomies

Mathes, in [25], examined user-generated metadata (tags) in Flickr and Del.icio.us. He
identified limitations and advantages regarding folksonomies as a categorization tool.
Ambiguity and lack of synonym control are the two major limitations identified. There is
no way to systematically classify the terms, as different users use the terms differently.
When no context is supplied one word can encompass numerous meanings and we have
no way of knowing which meaning the tagger had in mind. Synonym control is also
hard to do in a system with potential for large collections of keywords with different
meanings. Apple would, for instance, be a synonym for Macintosh if the tagger meant
the company, but not if he referred to the fruit.

Limpens, Gandon and Buffa in [31] identifies four issues regarding the use of folkso-
nomies, which resemble the limitations identified by Mathes.

”(1) the ambiguity of tags, for one tag may refer to several concepts ; (2)

6

Object Retrieval and Student Behavior Using Tags in a Learning Context

the variability of the spelling, for several tags may refer to the same concept;
(3) the lack of explicit representations of the knowledge contained in folkso-
nomies; (4) the difficulties to deal with tags from different languages.”

One aspect folksonomies excel in is representing the users own vocabulary. Folkso-
nomies can be seen as the digital equivalent of desire lines[32]. Desire lines are the
foot-worn paths that sometimes appear in a landscape over time, that show where the
pedestrians walk, rather than where the landscape architect planned for the pathways
to be situated. In the same vein, folksonomies represent the users’ needs, rather than
the system designer’s intentions. Furthermore, Mathes argued that the most important
reasons why folksonomies work are the low entry cost for the users and that the context
of use is not just personal organization but communication and sharing as well. Some
of the areas of further research identified in this article deals with analyzing tags quant-
itatively, as well as a qualitative user behavior analysis. Mathes hypothesized that the
distribution of tags will follow a power law scenario, where the frequently used tags are
more likely to be used by others, due to higher visibility. Later studies have shown results
that support this hypothesis[33].

M. Ames and M. Naaman have studied the incentives for tagging in Flickr, a web-
based photo-sharing system, and ZoneTag, a cameraphone photo capture and annotation
tool that uploads images to Flickr[34]. The main part of their study involved interviews
with users of the two systems. They found several motivations for why people annotated
their photos, which is shown in figure 2, from [34]. A majority of their participants were
motivated to tag by organization for the general public, with self-organization and social
communication in second place.

Figure 2: Tagging Motivations[34]

Bao et al.[35] observed two ways to benefit web searching using tags.

(1) Tags can be used as summaries of the web pages they are assigned to.

(2) The number of tags assigned to a web page indicates its popularity. This is also
supported and elaborated on in a previous study by Xu et al.[36]

2.3 Tagging in a Learning Context

In [37], S. Bateman et al. compared students’, experts’ and text mined tags. They noticed
a surprising correlation between student tags and the keywords created by text mining.

7

Object Retrieval and Student Behavior Using Tags in a Learning Context

Only 50% of the expert tags were found in the student tags, but as much as 68% of text
mined tags occurred in the body of student tags.

[23] investigated the role of social networks in computer science education. They ob-
served that as learning has evolved from taking place in the physical world to computer-
supported learning systems, substituting the social part of learning when dealing with
digital learning is important. They looked at existing social software applications, and
discussed the potential for employing these applications in education. They stated that
an advantage of tagging is quicker retrieval of related content, and if users are from the
same network and share similar interests—as students often do—it is easier and more
reliable to apply recommendation algorithms.

J. Fan[28] studied how student tags can be utilized as metadata in learning objects.
Findings include that student tags can be used as complementary metadata to keywords
created by lecturers, that students tend to favor tags describing key aspects of the learn-
ing objects and that the tags fit into these metadata elements in Dublin Core and IEEE
LOM:

”1. In Dublin Core, tags can be used to describe description, subject;
2. In IEEE LOM, tags can be used as 1.4 Description, 1.5 Keywords, 9

Classification;”[28]

2.4 Ranking Algorithms

There are numerous algorithms designed for ranking objects based on similarity. A typical
process ranking algorithms use when queried are:

• Assign weights to terms in a collection of documents and the query

• Compare the weighted terms present in the document collection to the terms in the
query

• Rank the results

This process is used by a number of algorithms, including the vector space scoring
model.

2.4.1 Vector Space Scoring

The vector space model represents documents as vectors in a common vector space. This
is the base for a host of information retrieval methods, including document clustering,
classification and computing score based on queries.[38]

The idea is to assign a weight, w, to each term present in a document, d, compute
a score based on these weights, and use the score to determine how relevant d is to a
given query, q.

This is achieved by computing the inverse document frequency idft of a term. N rep-
resents the total number of documents in the collection.

idft = log N
dft

The idf of a rare term will be high, and a common term will have a low idf. This
ensures that documents containing rare terms will be weighted higher when a query
contains the rare term. The final weight of each term is computed by multiplying the
inverse document frequency with the number of occurrences of the term in d. Each
document is then treated as a vector comprised of these weights.

8

Object Retrieval and Student Behavior Using Tags in a Learning Context

2.4.2 HITS

The HITS-algorithm[39],developed by Jon Kleinberg, is used to classify pages into Hubs
and Authorities. Hubs are documents which link to many high quality documents. Author-
ities are documents which are linked to by many high quality Hubs. When a user queries
a search engine, Authorities are the truly relevant results for the given query, and the
Hubs are used to identify the Authorities and point the user in the right direction. Every
document is assigned two values, a hub weight, and an authority weight. The hub weight
is increased if the document points to other documents with a high authority weight. The
authority weight is increased if the document is pointed to by documents with a high hub
weight.

The algorithm starts out with a set of documents with the highest occurrence of the
search phrase, called RQ, root query. These documents are typically not heavily inter-
linked, so the next step is to extend the set to include all documents linked to by any
document in RQ. All pages are now organized into a matrix, Aij, and each entry is either
set to one or zero, depending on if there is a link from i to j.

Figure 3: Simple Set Graph

Figure 3 shows the graph to a simple set. Its corresponding matrix looks like this:

RQ =

 0 0 1
0 0 1
0 0 0

Now we have to assign a weight to each document. For this example, we set the initial
hub weight vector to

u =

 1
1
1

The easiest way to apply the weighting to the documents is to transpose the matrix and
multiply the result with the weight vector.

R ′
Q =

 0 0 0
0 0 0
1 1 0

Multiplying the transposed matrix with the initial weight vector creates the authority

weight vector, u.

v =

 0 0 0
0 0 0
1 1 0

 ·

 1
1
1

 =

 0
0
2

9

Object Retrieval and Student Behavior Using Tags in a Learning Context

We can then get the new hub weight by multiplying v with the original matrix RQ.

u =

 0 0 1
0 0 1
0 0 0

 ·

 0
0
2

 =

 2
2
0

As this algorithm is developed primarily for use in search engines it must be modified

to be useful in a tagging environment. Wu et al.[40] proposed a modified version of the
algorithm to recommend documents based on tags. The algorithm works by starting from
a small root of documents which includes the documents tagged with the keyword in
question. Then the document set is expanded to include all documents that are associated
with any tags contained in the root set. The documents are then weighted based on a set
of metrics to determine relevance to the source tag.

2.5 Summary

A learning object is a digital resource that can be reused. Learning objects can be com-
pared to atoms, as they cannot be freely put together, but have to be assembled in struc-
tures depending on their internal structure. This makes it important to be able to locate
related objects, as a premise for reusing learning objects is that they are related to the
goal of the new learning object. Having fine-grained learning objects in order to be able
to reuse them has also been regarded as important, but some studies show that it is not
necessarily a requirement.

Metadata is also regarded as important for managing resources. Folksonomies are a
form of metadata created by the users. It is limited in some aspects to more controlled
forms of metadata, but excel in others, notably the low accessibility barrier to participate,
as well as the inherent social functions. Studies have shown that there is a need for social
functions in digital education, and the utilization of tags in an educational context may
improve the retrieval of related content.

2.6 Research Questions Revisited

This thesis will map the behavior of students using a prototype tagging system, to try to
answer how the implementation process can be approached.

Retrieval of related learning objects is the first step for facilitating reuse. In addition,
it may help students by supplying related learning objects for further study. We will
investigate how student supplied tags can be used for this purpose, by employing an
algorithm to relate learning objects and interviewing students about their perceived use
of the system.

To answer research question 1, we will use the developed system to analyze the stu-
dents’ behavior while tagging. This, as well as in-depth interviews, will help us under-
stand factors which are important when introducing tags as part of a learning environ-
ment.

Research question 2 will be answered by analyzing which tags students are using, and
determine how these can be used efficiently in the creation and tuning of an algorithm
designed to use tags to search for relevant literature.

Research question 3 addresses the challenges regarding using student tags as metadata
for retrieval and will be answered by identifying issues raised while working, as well as
concerns raised by students.

Research question 4 will answer how well suited DSpace is to be used as a devel-

10

Object Retrieval and Student Behavior Using Tags in a Learning Context

opment platform for social technologies and will be answered using our experiences
developing the prototype tagging system used in the study.

Answers to these questions will help build a base for further research related to in-
cluding social technologies in an educational environment.

11

Object Retrieval and Student Behavior Using Tags in a Learning Context

3 System Description

The system created is a plug-in in the open source software package known as DSpace[41].
A plug-in which modifies or adds functionality to a DSpace installation is called an Aspect.
To understand how and why design choices were made, some background knowledge on
the design of DSpace is needed. The version of DSpace used in this thesis is version 1.6.2.

3.1 DSpace

DSpace is used as a management tool for digital content, often employed as a Learning
Object Repository in educational facilities. Due to its open source nature, developers
are able to extend on the basic functionality offered out of the box to fit their needs.
The content is structured in a hierarchy, starting with Communities as the top level. Each
Community contains one or more Collections. The objects are placed inside the Collections.
Compared to the structure of an educational facility, a Community can be compared
to the various faculties present in a school. As faculties contain a number of courses,
Communities contain a number of Collections. Every item can resemble the learning
objects associated with a course. This is one way to map content to closely resemble an
existing system.

The classic user interface is called JSPUI, and is based on JSP-pages and servlets.
A new approach has been included in later versions of DSpace, starting with version
1.5, which is called Manakin[42]. Manakin is based on Apache Cocoon[43], which is a
framework relying heavily on pipelines, components and separation of concerns. These
concepts will be addressed in later chapters. The development process when customizing
these two interfaces are very different from each other. This thesis will focus on Manakin,
as it is the newest and more robust of the two.

Manakin is built with modularity in mind, so all core parts are separated into different
Aspects.

ArtifactBrowser

This aspect deals with every functionality regarding the navigation of the submitted
items, i.e. browsing, searching and viewing.

Eperson

The Eperson-aspect is responsible for the user. Registration, login and logout are parts
this aspect deals with.

Submission

The third core aspect deals with the submission of new items.

Administrative

The administrative-aspect manages all administrative tasks, e.g. letting only authorized
users view an item.

13

Object Retrieval and Student Behavior Using Tags in a Learning Context

General

The last aspect is a collection of java-classes with general functionality, used by the other
core aspects.

A custom aspect is implemented the same way as the core modules. This means that,
conceptually, there is no difference between a user made aspect and the core functional-
ity.

3.1.1 DRI

The DRI, Digital Repository Interface, document is an XML document that describes an
abstract representation of a repository page, and contains no styling information. It has
three main elements, <body>, <options> and <meta>. The contents of the <body>-
and <options>-tag are the visible parts of the final html-page. The body-tag roughly
translates to the content one can see in the editorial area, and can contain structural
elements, such as lists and HTML forms. The options-tag are what constitutes the navig-
ational menu on the right hand side of a stock install of Dspace, and contains structural
elements. Figure 4 shows these two parts and their location on the page. If a user is

Figure 4: Visible Elements of the DRI Document

interested in viewing an item, the information about the item must be visible. Thus, the
aspect Artifactbrowser will be invoked, and add data about the item in the <body>-area.

The meta-tag contains two parts, metadata connected to the current user, and the
page’s metadata.

The Eperson-aspect will add its data about the user in the <meta>-area. Other inform-
ation added under the <meta>-tag is the port and name of the server running DSpace.

14

Object Retrieval and Student Behavior Using Tags in a Learning Context

3.1.2 Pipeline

Figure 5 illustrates how DSpace manages the pipeline in Manakin.

Figure 5: The Manakin Pipeline

Links to DSpace objects have links that look like:

http://dspaceserver.com/handle/123456789/17

This is the request that is sent to DSpace. DSpace will then create an empty DRI docu-
ment, and send it to the first aspect. The aspect itself will determine if it needs to add
content to the DRI document. The aspect named Eperson deals with the user. In this ex-
ample, it will add data about the user to the DRI document. The aspect that deals with
items, Artifactbrowser, will add data about the item requested. Some aspects will not add
data, as they may be unrelated to the current activity.

When every aspect have made their changes to the DRI document, a theme is applied
to the completed DRI, which transforms it to HTML ready to be presented to the user.

As mentioned above, Cocoon and, by extension Dspace, practices a strong sense of
separation of concerns. This means that the content processing and presentation are
handled by two very different parts, Aspects and Themes respectively.

3.1.3 Aspects

Aspects are used to change, add or remove content from the DRI document. A typical
pipeline in DSpace starts with a request (a URL). A DRI document is then created, which
gets passed to all active aspects in order.

The Aspects are chained together in an aspect chain, shown in Figure 6. Each time

15

Object Retrieval and Student Behavior Using Tags in a Learning Context

a user requests a page, the DRI document will be sent through the aspect chain, and
each Aspect can make its own changes to the document. This assures that if an Aspect
is removed no dead links will remain as all links are created on each page by the aspect
itself. If an aspect introduces a new navigational menu entry, as well as a link to this new
page, it is the aspect itself that handles both adding the new link to the menu and to the
items. If the aspect is removed at a later date the aspect chain will skip the aspect and
the links will never appear.

Figure 6: The Aspect Chain

Each aspect determines by itself if the request is relevant. If it is, the aspect is allowed
to make its changes to the DRI document. This repeats itself for every aspect, where
each subsequent aspect uses the DRI generated by the previous aspect. When all the
aspects have made their changes, the DRI is passed to the Theme. If a user browses
to the previously mentioned URL http://dspaceserver.com/handle/123456789/17, the
sitemap of each aspect determines if this is a url the aspect needs to add content to. For
an aspect that handles new submissions, this url will not be relevant, as it points to an
already existing item.

3.1.4 The Sitemap

At the heart of both Cocoon and Manakin is a file called a sitemap. Every aspect uses
its own sitemap which specifies how the aspect should behave. Sitemaps contain three
major component pipelines: Generators, Transformers and Serializers.

16

Object Retrieval and Student Behavior Using Tags in a Learning Context

Generators

Generators are typically the start of a pipeline, which generates the information stream
that is to be used by other components, e.g. from an HTTP request or static XML file.
When a generator is passed a DRI document, it generates an information stream which
the transformers are able to manipulate.

Transformers

Transformers process, add or remove content from the information stream. This includes
adding content to the pages the users browse. A Transformer is usually written like
this:

<map:transform type="SomeTransformer"/>

Here, SomeTransformer references a Java-file which contains the code to be executed.
Figure 7 shows a snippet of how such a Java file looks. The part shown is used to set the
heading of a division to the same as the item, or its identifier if the name is omitted.

Figure 7: Sample Transformer Java Code
Division division = body.addDivision("item-view","primary");

String title = getItemTitle(item);

if (title != null)

division.setHead(title);

else

division.setHead(item.getHandle());

Serializers

Serializers serialize the content into HTML, XML or DRI for further processing by subse-
quent sitemaps.

The structure of a sitemap is shown in figure 8.
In addition to the three major components shown in figure 8, there are a number of

other components that are important.

Matcher

A Matcher matches a request pattern to a resource. A request pattern is the url the user
requests from the server. If a Matcher in a sitemap matches the request, the block inside
the Matcher is executed. This is the regular way an aspect makes changes to a page, by
putting a Transformer inside.

<map:match pattern="handle/*/*">

<!-- Matches the url http://siteroot/handle/*/* -->

<map:transform type="SomeTransformer"/>

</map:match>

This particular Matcher will match a request sent by the user to view an item:

http://dspaceserver.com/handle/123456789/17

This is because * is used as a wildcard. Because this matches, the content inside the
Matcher is executed.

17

Object Retrieval and Student Behavior Using Tags in a Learning Context

Figure 8: Sitemap Structure
<map:sitemap>

<map:components>

<!-- Components that are to be used

in the pipeline are specified here -->

</map:components>

<map:pipelines>

<map:pipeline>

<!-- Most aspects only need one pipeline -->

<map:generator />

<map:transformer />

<map:serializer />

</map:pipeline>

</map:pipelines>

</map:sitemap>

Action

Unlike Transformers, Actions do not modify the information stream generated from a DRI
document in any way, but can be used to modify runtime parameters and process logic
that does not need to be displayed. Logging can be done using Actions, as displaying data
is not needed when logging user activity. Actions are usually paired with a Matcher.

<map:match pattern="handle/*/*">

<map:act type="SomeAction" />

<map:transform type="SomeTransformer"/>

</map:match>

Much like the Transformer, the Action is also usually a reference to a Java file with the
appropriate code.

In Cocoon the components of the sitemap treat SAX-events[44], but in Manakin they
are used to manipulate the DRI.

3.1.5 Architecture

DSpace is made up of objects and managers, with which the aforementioned components—
transformers, matchers and actions—interact with. Figure 9 shows the relationship between
these components.

The resulting HTML of a page which is used for viewing items in a Collection uses a
transformer to add information. This transformer is called ItemViewer and handles every
task related to showing this particular page. Both of these steps are specific to Manakin.
The transformer creates objects based on the needed parts, in this case EPerson and Item.
There are also objects for e.g. Communities and Collections. These objects are using a
database manager to fetch information about itself. This manager provides an abstraction
layer between the database and the objects attempting to access it. There are managers
for most tasks, for example AccountManager and AuthorizeManager, which manages
user accounts and authorizing users for access to items respectively.

The DSpace components are divided into three layers, each managing a separate set

18

Object Retrieval and Student Behavior Using Tags in a Learning Context

Figure 9: DSpace Relationship Chart

of tasks. Figure 10, from [41] shows these layers and their components.

The storage layer

This is responsible for the physical storage of objects and metadata. This includes the
database manager, named DatabaseManager.

The business logic layer

This manages most of the logic in DSpace. AuthorizeManager and AccountManager are
included in the business logic layer.

The application layer

This is comprised of components whose task it is to handle communication with the
outside world. The web user interface is a part of the application layer.

3.1.6 Themes

Themes are used to modify the look and feel of a Dspace installation. A theme contains
a sitemap, a folder for static content, like images, supporting files, e.g. CSS-stylesheets
and Javascript-files, as well as XSL-files for transforming content. A Theme’s task can be
split into four steps. When a theme receives the DRI-document from the aspect chain,
it 1) adds metadata concerning the theme, e.g. its name and location. 2) transforms
it to XHTML, usually using a common DRI-to-XHTML.xsl-file supplied by DSpace. 3)
localizes the page by inserting the correct language strings. When a transformer needs
to output text on the screen, instead of hardcoding the strings into the Java-code they
are referenced from an XML-document which can contain the same strings in a number

19

Object Retrieval and Student Behavior Using Tags in a Learning Context

Figure 10: DSpace Architecture[41]

of languages. This step selects the correct strings to insert in place of the references
generated in the DRI. 4) sends the complete page to the user’s browser. A useful feature
of themes is that different themes can be applied to different parts of the repository.
Every Community or Collection can have their own theme applied, and this cascades
downwards so individual items in that particular Collection will have the same theme.
Different themes can also use reuse elements from other themes. This is called compound
themes, where one theme is the main theme and several sub-themes use the main theme’s
resources, and override them as needed.

20

Object Retrieval and Student Behavior Using Tags in a Learning Context

4 System Creation

The system created in this thesis has two parts. The first part is the implementation of
the tagging- and rating interface, and the second is the development of the algorithm to
relate objects based on the tags applied by students using the first part.

4.1 Tagging and Rating

This part adds the ability for users to tag objects present in DSpace, as well as rating
them with a number between one and five.

The system was made as a DSpace aspect for Manakin. The aspect is composed of a
sitemap which controls what the aspect does, as well as a number of Java-classes which
contain the code. It adds a tagging- and rating interface to every item entry, as well as
the possibility of browsing tags and items with a particular tag. The relevant actions a
user can carry out are also logged, to be accessible for reviewing and analyzing.

4.1.1 Requirements

Some requirements had to be fulfilled when creating this system. A number of elements
that needed to be considered for this system to be usable were identified:

• Tagging

• The tagging interface

• Anonymous tagging

• Public/private tagging

• Administration of tags

• Rating

• Anonymous rating

• Rating range

• Logging

• Important events

Participation

An important facet of the aspect is how to get students to participate. We hypothesize that
the participation rate is governed in part by the accessibility threshold. This threshold is
based on two parts, which can be defined as follows:

Access The extent to which a system is removed from the most direct route to the
content.

Usage The amount of work a user must do from having discovered the system to a tag
is applied.

21

Object Retrieval and Student Behavior Using Tags in a Learning Context

As DSpace is not in use at GUC during this study, users will have to access the sys-
tem through an indirect route. All learning objects are currently available only through
Fronter, so the most direct route by which we can reach the students is links on the
course’s Fronter-page. Access is now relevant, as the route students have to use to access
the system is not the most direct route. Students will have to deviate from their regular
workflow to be able to tag the lectures. This is mainly a problem during this thesis. An
institution using DSpace as their primary method of storing learning objects will already
have this as their most direct route to the content. Methods for minimizing the impact of
Access is discussed in Chapter 5.

Usage encompasses two parts. The effort a user must put in when first discovering
the site, to his being able to use the site’s full functionality, i.e. the registration process.
The second part is the effort expended continuously when tagging. The second part is
important to simplify. A cumbersome registration process—although not desirable—can
be forgiven, as it is a one-time effort and need not be repeated. If the process of tagging
objects is perceived as more trouble than it is worth, participation rates will most likely
drop.

Usage can be directly influenced in the design process, and decisions related to this is
discussed in the relevant sections in this chapter.

LDAP Integration

LDAP is used by GUC to let professors and students log in to all services provided by
the school with a single user name and password. Integrating DSpace with LDAP aids
the project by providing a number of benefits. It further closes the gap between this
experimental system and the regular services, making it feel more as a part of GUC. It
also helps by removing the registration process in DSpace, as students already have an
account.

DSpace supports LDAP integration, so integrating them posed no significant problems.
As most of DSpace, the log in-method is modular as well, so the process of integrating
LDAP into DSpace consisted of replacing the regular ”username and password”-module
with a pre-existing LDAP-module, and specifying the parameters of the school’s LDAP
server in a config-file.

Tagging

When creating the tagging system, some choices regarding the implementation were
made.

The tagging interface

This is the most important part, as it is the main interface the users will interact with.
Figure 11 shows an early design. This design included positioning the tag-part closer

to the link to the item, as well as using a tag cloud to visualize the popularity of certain
tags in an efficient and user-friendly manner.

Unfortunately, due to limitations in DSpace, we were forced to rethink the design. As
mentioned in Section 3.1, DSpace relies heavily on separation of concerns. This means
that the presentation part is left to the theme, and there are few ways to influence how
text is represented on the aspect level. Tag Clouds had to be abandoned because of the
difficulty in changing the font size of single words in DSpace.

Additionally, since the aspects add data in succession, there are no ways to insert the
tag section between two already existing sections, where both sections are created by a

22

Object Retrieval and Student Behavior Using Tags in a Learning Context

Figure 11: Tagging Interface, Concept

single aspect.
Figure 12 shows the final appearance of the tagging interface. Tag Clouds have been

removed and replaced by a usage counter in parentheses.
The main issues are visibility and position. The tagging interface needs to be visible,

but it should not dominate the view. We especially need it to be visible during the course
of the experiment as we need users to tag items. Putting the tagging-division above
everything else was discarded quickly, as it is not the most important part of an item.
Putting it on top would make it seem more important than the actual contents of the item.
We decided to position it below the content DSpace adds by itself. To compensate for the
position change, the font size of the header was increased. Its visibility is consequently
increased, and thus its perceived importance.

Anonymous tagging

Allowing anonymous tagging brings some problems and some benefits with it. The prob-
lems can be summed up in one sentence: Lack of control. We will have a harder time
controlling the behavior of the users, as we cannot restrict each user to only tag an item
once with the same tag. This means that a malicious user can ”spam” the system by ap-
plying the same tag multiple times. The user will also have lack of control, as there is no
way the user can delete a tag he applied while anonymous.

The pros of anonymous tagging is that the threshold to participate is much lower
when one does not have to log in. This is important for this study, as lowering the
threshold may cause a higher rate of participation. This reduces the impact of Usage,

23

Object Retrieval and Student Behavior Using Tags in a Learning Context

Figure 12: Tagging Interface, Final Appearance

one of the parts governing participation mentioned in 4.1.1, to its bare minimum. An-
onymous tagging makes the system usable at once when users first discover it, allowing
them to skip both the registration process and the login.

Public/private tagging

Another issue was to decide how accessible the tags should be. Should everyone see their
own tags only, or should all tags be visible publicly? We chose to let all tags be public, to
allow tagging for both social and personal reasons, according to the tagging motivations
described in Figure 2 in Chapter 2.

Tag administration

Administrators should be able to review and delete unwanted tags. This is especially
important when dealing with anonymous tagging. Every user should also be able to
delete their own tags. Deleted tags should also be preserved, as they can provide insight
into the behavior of students.

Rating

The idea behind providing the user the ability to rate is that the content creators can
receive immediate feedback on how well received the object is. This kind of continu-
ous feedback during a semester can be valuable by making the professor able to assess
with greater precision how their class responds to the teaching material. There are some
considerations to keep in mind when introducing rating in the system:

24

Object Retrieval and Student Behavior Using Tags in a Learning Context

Publicly available average rating

Choosing to make the average rating public will have some implications. Students can
be influenced by watching the average rating when they are rating the objects for them-
selves. On the other hand, the rating exists partly to give students an indication of how
his fellow students perceive the quality of the object. Since this thesis is interested in how
students behave in a real world situation, we chose to make the average rating publicly
available.

Anonymous rating

As with tagging, anonymous rating has pros and cons, which is very similar to the pros
and cons of anonymous tagging. A user can rate an object numerous times, to increase
or decrease the average rating. It will on the other hand lower the threshold to rate, and
may allow the users to rate the objects more truthfully, when they know it is anonymous.

Rating range

Selecting too large a range will end up overwhelming the user, which hurts the participa-
tion rate, while too narrow a range will hinder diversity in the ratings, and will ultimately
have a negative effect on the data available for analysis. We settled on a range closely
mirroring the grading range in school, from one to five, resembling the five pass grades
in higher education, A-E. The grades were converted to numerics, as we decided to make
the average rating publicly available. Average ratings can have decimals, which is hard
to represent with letters. Rating an object with a letter and seeing a numeric average
would not feel consistent.

Logging

The cornerstone of the system is its ability to log how it is used.

Important events

The most significant decision regarding logging was which events should be deemed
important enough to log. Every action associated with the system the user performs
should be logged, but some may be possible to infer from other data. We decided to not
log when users log in and out, as this can be approximated by analyzing their movements,
e.g. entering items and tags, tagging items and rating them.

These actions were decided to be logged:

• A user visits an item’s page

• A user tags an item

• A user deletes his tag

• A user clicks on a tag, bringing up a list of all items tagged with said tag

• A user rates an item

Additionally, every action has a timestamp, to determine when the action occurred.

4.1.2 Implementation

The Dspace Aspect was developed based on the requirements outlined in this chapter.

Architecture

The architecture of the aspect was designed to follow the convention of core DSpace com-
ponents. They are divided into the application layer, which handles the presentation of

25

Object Retrieval and Student Behavior Using Tags in a Learning Context

data, and the business logic layer, which handles all logic. DSpace employs a set of com-
ponents called managers to act as a wrapper for tasks associated with a common topic.
The AuthorizeManager handles all tasks connected with authorizing checks in DSpace.
DSpace also uses objects representing entities, like a person or an item in a collection.

The created aspect’s code is structured in the same manner, shown in Figure 13. The
storage layer is not represented, as the aspect uses the existing Database manager in
DSpace for all database transactions.

Figure 13: Aspect Architecture

The Aspect contains a sitemap to control the behavior, as well as a number of Java-
classes. The Java-classes can be divided into five groups.

Transformers

These classes are responsible for how the components are displayed. This includes adding
the tagging- and rating interfaces discussed above to an item’s page, new navigational
choices to the sidebar and additional pages which enables the user to browse aspect-
specific pages.

Transformers are primarily used by the application layer.

Actions

These are responsible for functionality behind the scenes. Logging user activity is the
most used action, and happens every time a user enters an item or a tag. Adding and
deletion of tags are also actions. When a user adds or deletes a tag, they are redirected
to a pseudo-URL, which starts an action and redirects them back to the previous page.
This simulates an Ajax-approach. Using Ajax in the tagging process was considered, but
decided against. Ajax relies on a fully rendered HTML-page to work, because it needs to
manipulate the DOM in some way to show results (e.g. remove a tag). In Manakin, the
HTML is only created at theme level—we work with DRI before that—so to implement
Ajax would be on a per-theme-basis and would require too much time consuming work
at this point in time.

Tag Clouds were removed because of the same issue. Without heavily modifying the
core of DSpace there are no ways to change the presentation of an arbitrary word using
the DSpace API. This means that the most used words cannot be styled on an aspect
level.

Actions are in use at the business logic layer.

Objects

Objects are classes possible to instantiate as an object representing a specific entity. The
aspect includes objects representing a tag and a log entry. Objects are used in the business

26

Object Retrieval and Student Behavior Using Tags in a Learning Context

logic layer.

Managers

Managers are classes containing all methods that handles functionality for a specific area.
Managers in the aspect include a tag manager and a rating manager. Managers are used
in the business logic layer.

Utility classes

Utility classes are used to provide functionality outside of the scope of the regular man-
agers. Utility classes are used in the business logic layer.

4.1.3 Business Logic Layer
Tagging

Table 1 shows the Java classes associated with the tagging functionality of the business
logic layer.

Tagging

Class Name Type

DeleteTag.java Action
AddTags.java Action
Tag.java Object
TagManager.java Manager

Table 1: Aspect Tagging Components

The tagging is implemented with actions to add and delete tags, plus a tag manager
to manage the Tag-objects fetched from the Database.

Methods

The tag manager implements a public method to add tags from a CSV-string, and a
number of methods to fetch Tag-objects based on different criteria, including fetching
all tags from an item, fetching a tag based on its ID and fetching all tags applied by a
specific person. The tag manager utilizes core DSpace components, including EPerson
and Item for fetching tags based on users and items, as well as extensive use of the
database manager to communicate with the database.

The tag object includes a method to populate the object based on an ID, and a method
to retrieve a list of all items the tag has been applied to.

The actions are using TagManager to add or delete tags.

Tag administration

A logged in user has some advantages compared to an anonymous user. An authenticated
user can delete applied tags and see extended statistics about their own tagging behavior.
Administrators should be able to delete every tag, to prevent abuse of the system. DSpace
includes a way to easily check if a user is an administrator, via the AuthorizeManager-
class in DSpace. The method deleteTag in TagManager uses AuthorizeManager to check
whether the user is an administrator in DSpace before deleting the tag.

27

Object Retrieval and Student Behavior Using Tags in a Learning Context

Logging

Table 2 shows the Java classes associated with the logging functionality of the business
logic layer. Logging is the action which handles users viewing tags and items. It instanti-

Logging

Class Name Type

Logging.java Action
LogItem.java Object
TagLog.java Manager

Table 2: Aspect Logging Components

ates TagLog, which is the manager class used for all logging.

Methods

TagLog has one general purpose method to log events, called logEvent, which uses a
numeric constant for each event. This makes it easy to include additional events to log
without modifying the database. It also has methods to return every log entry—in the
form of a LogItem-object—for each action. Some methods for extracting statistics are
also included.

Anonymous tagging

To prevent spamming, a timestamp and IP address is included on every action. This
means that numerous consecutive actions from the same IP within a short time frame
can be tracked and removed.

Logging solution

The events are saved in a database table. There are both advantages and disadvantages
to this approach. The overhead cost of logging to a database are large compared to text
file logging. On the other hand, the flexibility offered by using SQL on the log largely
outweighs the initial cost, especially on a relatively small scale project as this, with few
users. SQL-queries are a fast and efficient way to extract only the useful data for a par-
ticular task.

DSpace ships with a logging utility, called Apache log4j. The benefits of using the
already well-documented and widely used log4j is that less work has to be done up
front, as it already is complete and functional. The logs produced may also be reusable
by other applications as the format used is well-known and parsable by other software.
As mentioned above, we need the logging to be routed to the database. Alas, configuring
log4j to log to the database would force all logging, including much data which is un-
needed, to be inserted in the database. This would cause a lot of clutter and unnecessary
data inserted in the database, so a custom logging class was made to circumvent this
issue.

Rating

Table 3 shows the Java classes associated with the rating functionality of the business
logic layer.

As the tagging, the rating is implemented as an action to add or change the rating
which uses the RatingManager to manage the ratings. There is no rate-object, as a rating

28

Object Retrieval and Student Behavior Using Tags in a Learning Context

Rating

Class Name Type

Rate.java Action
RatingManager.java Manager

Table 3: Aspect Rating Components

is only a value, with no additional information.

Methods

RatingManager has a method to add a rating to an item, and methods for retrieving the
average rating from an item as well as the rating from a single person.

Utility

Table 4 shows the Java classes associated with the utility functionality of the business
logic layer.

Utility

Class Name Type

HiGHandleUtil.java Utility

Table 4: Aspect Utility Components

The HiGHandleUtil-class is a variation of the handleUtil-class shipped with DSpace
which fetches items, communities and collections based on the URL or the handle of the
object. As the original handleUtil-class can only retrieve objects from the core of DSpace,
an extension was needed to retrieve Tags based on the URL.

4.1.4 Application Layer
Navigation

Table 5 shows the Java classes associated with the navigation functionality of the applic-
ation layer.

Navigation

Class Name Type

Navigation.java Transformer

Table 5: Aspect Navigation Components

The transformer Navigation adds some new navigational choices to the sidebar using
the transformer-API in DSpace. The new navigational choices are:

(1) A tag browser, where the user can browse all currently applied tags, and discover
which items are tagged with the tag.

(2) An item browser, as a convenient shortcut to browse all items in DSpace, regardless
of which Collection it belongs to.

29

Object Retrieval and Student Behavior Using Tags in a Learning Context

(3) A logged in user gets access to a list of his own tags.

Lists

Table 6 shows the Java classes associated with the List functionality of the application
layer.

Lists

Class Name Type

BrowseOwnTags.java Transformer
BrowseSingleTag.java Transformer
BrowseTags.java Transformer
Overview.java Transformer

Table 6: Aspect List Components

These classes are represented as separate pages, which are invoked by the Sitemap
depending on the URL passed to it. Their function is to provide lists for the users.

BrowseOwnTags Creates a list of all tags applied by the user. Menu item only visible
when logged in.

BrowseTags Browse a list of all tags applied across all items in DSpace.

BrowseSingleTag Creates a list of all items tagged with the chosen tag. This is not a
navigational choice selectable from the sidebar, but are invoked when a user clicks on
a tag either inside an item, or from the list of all tags.

Overview Browse a list of all items in DSpace. This is a convenience method during this
study, when the number of documents is small.

Item View

Table 7 shows the Java classes associated with the Item View functionality of the applic-
ation layer.

Item View

Class Name Type

ItemViewer.java Transformer

Table 7: Aspect Item View Components

ItemViewer is the transformer which adds the tagging and rating interface to every
item. This creates the interface seen in Figure 12.

Statistics

Table 8 shows the Java classes associated with the Statistics functionality of the applica-
tion layer.

Statistics is a page not accessible to the general public, with statistics from the log
presented in CSV-format to make it easy to import into spreadsheets or other software.
Only some statistics are presented on this page, as much information is just as convenient
to extract directly from the database with simple queries.

30

Object Retrieval and Student Behavior Using Tags in a Learning Context

Item View

Class Name Type

Statistics.java Transformer

Table 8: Aspect Statistics Components

Component Relationship

Figure 14 shows how the created aspect fits into the DSpace architecture. The parts
above the dotted line are independent of Manakin, and can theoretically be used by the
JSPUI too. The parts below the dotted line are Manakin-specific. Not every part of the
aspect has been included in this figure, but the most significant parts are present. The
lower part is the completed HTML the user sees. When viewing an item, both Mana-
kin’s own ItemViewer-transformer is used, as well as the custom ItemViewer, which adds
tagging and rating functionality. This is determined by the sitemaps in each Aspect, us-
ing Matchers to match the URL. The regular ItemViewer creates items which accesses
the DatabaseManager. The custom ItemViewer accesses the TagManager by creating Tag-
objects, which in turn uses the DatabaseManager to fetch information about the tags,
and returns them as Tag-objects.

When a user is viewing a list of all tags, no pre-existing transformers are used, as that
particular page did not exist before the new aspect was introduced. Only the BrowseTags-
transformer is used.

4.2 Retrieval Algorithm

The algorithm is based on a modified version of the HITS-algorithm, as mentioned in
section 2.4.2. The modified HITS-algorithm identifies relevant documents when filtering
by a tag. As this thesis is investigating how to retrieve relevant documents based on other
documents, this algorithm had to be extended. The second part uses the results from the
modified HITS to do this.

4.2.1 Modified HITS-Algorithm

The algorithm proposed by Wu et al. had to be modified further to better fit this thesis’
intention. As anonymous tagging was allowed during the course of this research, we had
to remove the user-aspect of the algorithm, thus reinventing the way hubs are used. Wu
et al. qualifies experts (users to trust), based on their hub score. We are dealing with
students that may be anonymous, so we used tags with high hub score to increase the
weight of documents tagged with these ”valuable” tags. This de-emphasizes the users
and places more weight on the actual tags. We hypothesize that this will shift focus from
who tagged it, to how it was tagged. ”Valuable” tags are tags which are reused on a lot
of documents. These tags have been deemed important by the users, and will thus be
considered as more valuable than tags which are used less.

This was developed simultaneously with the students’ tagging of their learning ob-
jects, and as a result, the number of documents tagged were low during the development
of this algorithm. We were using a test set to test the algorithm.

The algorithm starts with a Root Document (Rd). It then creates a set of documents
(T), which are all documents tagged with the same tags as Rd. It then expands, to include

31

Object Retrieval and Student Behavior Using Tags in a Learning Context

Figure 14: Aspect Components in DSpace Architecture

all documents tagged with the tags present in T , creating Text. A matrix Aij is created
based on Text and all tags. The matrix indicates if there is a link from node i to node j.
All documents and tags are represented on both axes, because the matrix needs to be of
equal dimensions for transposing purposes.

Figure 15: A Simple Set

An example would be to apply the algorithm to a simple set containing two tags and
two documents, shown in figure 15. The first document has one tag, and the second has
two tags, with one common tag among them.

The matrix for the simple set is shown in figure 16. Take notice of the tag cluster
and document cluster. These parts will always be zero. Because a tag cannot be used to
tag another tag, the tags in the tag cluster will have no links to each other. Similarly,
documents have no links going from them, as only tags can ”link” to documents.

The documents have no outgoing links, so the rows of all documents are always zero.
The two last rows are tags, and, in this example, the first tag is used on document 1,

32

Object Retrieval and Student Behavior Using Tags in a Learning Context

Figure 16: The Matrix for the Simple Set

and the second tag is used in both document 1 and 2. Because tags only have outgoing
links, and documents only have incoming links, they are ordered naturally into hubs and
authorities respectively.

We will then compute the authority weight in the same manner as the original HITS
algorithm, explained in Section 2.4.2. This is done by transposing the matrix Text, then
multiplying with a weight vector. This creates v, which shows the relevance of the doc-
uments in the set. Furthermore, calculating the new hub weight is done by multiplying
the original matrix Text with v:

u shows which tags are deemed important. This can be used as a new weight, to fur-
ther emphasize the documents containing the important tags. This example demonstrates
how the modified HITS ranks authorities and hubs. Note that documents are always zero
in the hub-list u, and tags are always zero in the authority-list v.

As this algorithm only applies to tags, we have developed a second part to retrieve
documents based on other documents.

4.3 Extended Algorithm

When a user chooses to find related documents when browsing a particular document,
we need to run the algorithm mentioned above on all tags applied to the document, and
apply a similarity measurement to identify the highest ranked documents, based on their
cumulative authority weight.

A challenge we encountered is how to assign weight to the tags correctly. Some tags
describe the central concepts of a document better than others. Consider a document on
computer security. This document has two tags: ”Malware” and ”Virus”. The first tag is
addressing a broader concept of the document, while the latter is an example of a tag
addressing a narrower part of the content. This introduces the concept of granularity, as
mentioned in section 2.1, only this time it is the granularity of the tags used which is
in focus. An important part of locating relevant resources is identifying other documents
that address the same central concepts. By using tags to do this, we need to attempt to
classify tags based on granularity, and give more weight to the tags of coarse granularity.

Developing such a system is outside of the scope of this thesis, but is further discussed
in section 7.5.

The completed algorithm’s pseudocode is shown in figure 17.

33

Object Retrieval and Student Behavior Using Tags in a Learning Context

Figure 17: Algorithm Pseudocode
Matrix authorityWeight;

For(Tag t in Document)

{

documentCollection = Find all documents tagged with t;

tagCollection += Find all tags used on documentCollection;

Matrix matrix = createMatrix(documentCollection, tagCollection);

Matrix matrixT = matrix.transpose();

for(i iterations)

{

authorityWeight += MatrixT*hubWeight;

hubWeight = matrix*authorityWeight;

}

}

The resulting matrix is an n-by-1 matrix, with the values representing relative relev-
ance to the parent document. The higher valued documents are more relevant. The last
step is to apply a cutoff for values under a certain score.

Modifying the weight matrix changes which documents will get a higher weight.
Modifying the weight of the tags contained in the Root Document to be greater than the
remaining documents in Text will skew the results in the original batch of documents’
favor, as they are assumed to be more relevant.

A cutoff value will remove all documents with less than a given score. This cuts down
on the number of less relevant documents that are returned.

34

Object Retrieval and Student Behavior Using Tags in a Learning Context

5 Experiment Planning

This study needed the participation of a group of students. Initially, we had planned on
using two classes to participate in the project. Due to unforeseen difficulties, the students
were not available when needed. A third class, following a course in network security on
the master’s level, joined the project.

The system that was created was made available for the students at http://matuku.
hig.no. All learning objects related to the course were added as entries. Three types of
learning objects were used in this course: Chapters from a book in pdf-format, audio
recordings of each lecture, as well as photographs of the blackboard. These learning
objects were added to DSpace, following this naming convention:

Course - Lecture no. - Type of Learning object

Type is either the name of the lecture, the name of the lecture with ”(audio)” appended
or ”Blackboard” for the blackboard images.

5.1 Informing Students

The project was presented to the class during the second lecture of the course. The class
consisted of 29 students, where a part of the group were following the course as distance
students. To inform the distance students of the experiment, a web site (located at http:
//www.stud.hig.no/~091213/) was created with information on what the experiment
entailed, which was spread by an update to the fronter room and sent by mail to all the
participants in the course. With help from a student in the course, information about the
website and experiment was spread via a student created Skype-group. Both the content
of the web page, and the sent e-mail can be found in appendix A.

The day before the presentation all test data and logs were wiped, so as not to inter-
fere with and get mixed up with the real data.

5.2 Interviews

During the course of the experiment, it became apparent that user participation was
lower than expected. This could result in difficulties when extracting meaningful inform-
ation from the data, as the data set was small.

This meant an approach based on quantitative data had to be extended by the in-
clusion of interviews with the participants, which would enable us to harvest qualitative
data.

Some questions were prepared, which served primarily as guidelines for the conver-
sation. The questions were meant to direct the interviewee in a certain direction, and
follow-up questions were asked to extract additional information when necessary.

The set of base questions asked is as follows:

When did you usually tag?

The goal of this question is to understand the process people go through when choosing
a time for tagging. We know when they tagged by going through the logs, but not why
they chose that specific time.

35

http://matuku.hig.no
http://matuku.hig.no
http://www.stud.hig.no/~091213/
http://www.stud.hig.no/~091213/

Object Retrieval and Student Behavior Using Tags in a Learning Context

Why did you choose the tags you chose?

The goal of this question is to try to understand what factors are present when students
are choosing tags for course material. We know of, from the study conducted by M. Ames
and M. Naaman mentioned in Section 2.2, users’ incentives for tagging photos. This
question will hopefully show if the incentives for students tagging their learning objects
mirror those of other, currently existing, systems.

How much time did you spend tagging?

This question should reveal some information about the users’ behavior while tagging.

Any reason you only tagged lecture notes, and not blackboard images and audio?

This question concerns the fact that no one tagged blackboard images and audio. We
want to find out why the students were hesitant about tagging these objects.

Any comments about your experiences using tags in this way?

This question will give the interviewee room to voice concerns or ideas he might have
gotten while using this system.

Any comments about your experiences working with the system (DSpace)?

Similar to the above question, this question should give us feedback on the technical
aspects of the solution used.

Would you choose to use such a system if it was included as a standard part of the courses?

While the previous questions may make the interviewee think about the system in a
”perfect world”, this question is designed to make the interviewee contemplate how he
would have made the system appealing to use, based on it being used in a real life setting.

These interviews were conducted during the middle of May, after the last lecture in
the course, but before the exam, with four participants. All interviews were recorded,
and later transcribed.

5.3 Retrieval Algorithm

5.3.1 Test Set

As the amount of tags applied by the students in this study were relatively small, a sub-
stitute set was utilized to get satisfying results when testing the algorithm. The set used
to test is the ImageCLEF dataset[45], available from the imageCLEF website[46]. This
is a large collection of still images, complete with annotations. The collection is primar-
ily used in image retrieval research, but made available free of charge to the general
public, without copyright restrictions. All images contained in figures regarding the re-
trieval algorithm are taken from this set. The content of the images range from pictures
of buildings, through nature photographs, to photographs of people. Figure 18 shows the
variation of motifs across the collection.

About 1400 images were used as a calibration set, roughly 7% of the complete set.
The annotations are a full text description of the contents of each image. Every image is
described in the same manner.

Most common stop words were removed from the annotations, although no stemming
was done.

36

Object Retrieval and Student Behavior Using Tags in a Learning Context

Figure 18: Composite Image Showing Variety of Motifs

5.3.2 Comparing with a Plain Algorithm

To assess its usability, we compared it with a plain algorithm based on Vector Space
Scoring, mentioned in section 2.4.1. Each document is assigned a vector of weights based
on the tags they contain in a similar manner to how the original vector space scoring uses
terms. By viewing each document, as well as the source document as such a vector, we
can compute the distance between the source document and each additional document
using cosine similarity measurement. The source document is viewed as the query vector
−→
Q . This distance indicates how closely related the document is to the original document.

The weight of each tag is larger if a larger number of people have used the tag on the
same document. The tag is assigned lower weight if it is common among a large number
of the documents, by multiplying the tag frequency, tf (originally term frequency) with
the inverse document frequency, idf.

37

Object Retrieval and Student Behavior Using Tags in a Learning Context

6 Results and Analysis

This thesis has data associated with the students and their behavior when using a tagging
system for learning purposes to analyze. This is, as mentioned in Section 4.1.3, stored in
a database. This is a powerful tool which makes us able to extract highly relevant data
in an efficient manner.

The second part to analyze is the performance of the created algorithm based in part
on HITS. The algorithm’s precision was measured by a human user comparing the results
with the results gathered from a simple retrieval algorithm.

We will also identify challenges encountered when using DSpace to implement social
technologies.

6.1 Tagging Behavior

The tagging activity was generally low throughout the experiment. With a few excep-
tions, all tags described the actual content of each object. Popular tags include ”asym-
metric”, ”kerberos” and ”authentication”, all of which are topics covered in the objects
they were applied to.

Other non-descriptive tags that were used were ”basic lecture” and ”introduction”. It
is worth noting that some students attempted an SQL-injection. This is discussed further
in section 6.1.3.

6.1.1 Data

All numbers presented have been cleaned up by removing logged crawlers and our own
movements on the site.

People

Table 9 shows statistics harvested from the log about user activity. Of the 29 students par-
ticipating, a maximum of eight participants have tagged objects. There are eight unique
IP addresses that have been used to tag learning objects. Two of these IP addresses be-
longs to the same person. Both IP addresses have only been used to tag by a logged in
user. One of the IP addresses can also be disregarded as a legitimate user, as the only tag
applied by this IP is the SQL-injection attempt mentioned above. An action is defined as

of students 29
of unique IPs having accessed DSpace 58

of unique IPs having tagged 8
of logged in users having tagged 3
Suspected number of active users 6
Number of IPs with a single visit 22

IPs with more than 7 actions 14

Table 9: Logged User Statistics

one of the following:

39

Object Retrieval and Student Behavior Using Tags in a Learning Context

Delete a tag Access an object
Access a tag Rate an object

Objects

Table 10 shows statistics about objects available in the system. Even though the set of
learning objects contained lecture notes, audio recordings and blackboard pictures, only
the lecture notes were tagged by students, with 14.2 being the average number of tags
applied to each lecture note. The blackboard images from Lecture 8 and 10 was not made
available to us until after the analysis was finished, and as such is not represented in the
set of learning objects.

of Learning Objects 28
of Lecture notes 10

of Audio recordings 10
of Blackboard pictures 8

Unique tags applied 119
Tags applied overall 142

Average tags applied, Lecture notes 14.2
Average tags applied, Audio 0

Average tags applied, Blackboard 0

Table 10: Object Statistics

As we can see from the Table 10, 23 of the tags are reused, but only three tags are re-
used on other documents (”mac”, ”identification” and ”authentication”). The rest are tags
applied by other users on the same documents. This small reuse of tags across documents
are investigated, through the in-depth interviews conducted, in Section 6.2. Some tags
are reused, but not recognized as such, due to differences in spelling. Two tags, written
’diffie-hellmann protocol” and ”diffie hellmann protocol” respectively, is obviously refer-
encing the same concept, but as folksonomies have no structure between tags and no
synonym control, these tags are not recognized as identical by the system. Figure 19

Figure 19: Aggregate views Divided by Category

shows the views by category, where the lecture notes, audio recordings and blackboard
images are the categories. The difference between these categories is that lecture notes
were available before the lecture, while recordings and images were uploaded after the
lectures, usually one day later. The lecture notes had a much higher amount of views
than images and audio combined.

40

Object Retrieval and Student Behavior Using Tags in a Learning Context

6.1.2 Behavior of a Non-Tagger

By studying the actions the users took in a single session, we are able to outline their
behavior.

Most of the non-tagger IP addresses were one-time visitors. Often the visitors were
checking out the lecture notes for the next lecture, or a previous audio recording. Some
users went through every lecture, possibly to save them locally, which would explain why
they never returned. One non-tagger did rate some of the learning objects. When users
entered a tag, they always returned to the previous object.

Most users that accessed and stayed on the site for an extended amount of time were
acting like casual browsers, seemingly with no clear goal in mind.

6.1.3 Behavior of a Tagger

Not surprisingly, a majority of the most active IP addresses are the same IP addresses that
tagged learning objects. The difference between non-taggers and taggers lie in that the
latter group actually tagged the learning objects. The browsing patterns of those tagging
closely resemble how non-taggers behave, browsing different items and going back and
forth between them.

The logs show three different kinds of behavior when tagging.
The first is a systematic approach, where the tagger clearly has assembled a list of

tags prior to accessing the site, because he utilizes the ability to apply multiple tags at
once, using a comma separated list. A typical usage scenario is to access DSpace, locate
the relevant lecture, spend a couple of minutes filling out the tagging form, and then
rating the item.

The next user approach is one who most likely tags while he is reading. His tags are
applied one at a time, with a space of everything from a couple of minutes to half an
hour between each tag.

The last user type is accessing an item, applying some tags, and then browsing to
other items before coming back and applying more tags.

Those who logged in usually did so before they started tagging. If a logged in user
made a typographical error, he deleted the erroneous tag, and applied a correct version.

As mentioned above, some students attempted an SQL-injection. This was attempted
by applying the tag ”\’;select * from *”. The injection in itself was not destructive, but if
successful could be used to create harmful injections. Taking into consideration that the
course is teaching network security, one can conclude that this is most likely an attempt
with no malicious intent. Since the created aspect is using the database manager supplied
with DSpace, such attempts are pre-empted.

6.1.4 Comparison of Views and Tagging Activity

As touched upon in Chapter 4, the participation rate is governed partly by how accessible
the system is.

We were interested in figuring out if students did not tag as much because the system
was too inconvenient to locate compared to accessing the learning objects directly from
Fronter, or if people would not tag for other reasons. By comparing the activity in the
system with the frequency of tagging, we can get an indication of this. Figure 20 shows a
temporal comparison of number of views and number of tags during the month of March.
The thin vertical bars are points of interest, where activity spikes can be found. POI1 is
the date we presented the system for the students, and the date of a lecture. Unsurpris-

41

Object Retrieval and Student Behavior Using Tags in a Learning Context

Figure 20: Item Views Versus Tags Applied

ingly, the activity spiked the same day and fell rapidly when the weekend approached.
The second POI is the day the reminder e-mail was sent. Both tagging activity and

views increased, largely due to the mail reaching the distance students too, whereas the
presentation was only heard by the students on campus.

The lectures had an intermission during this and the next week, so there are no activ-
ity on Wednesday 9th and 16th (the day the lectures takes place).

In POI3, we see a shift in behavior. All visits and tagging are done the day before
the lecture. This is expected behavior, and indicates that students tag while reading the
material.

The increased activity the 28th to 30th is interesting. The students following the
course had a delivery deadline in another course just prior to that date, which may
indicate that when the students have less work on their mind, secondary activities get
more attention.

Even though the class only consists of 29 students, the activity spike in POI2 show
almost 50 views. This is due to the fact that the view values are aggregates of the views
all documents received on a particular day. This means that a user viewing two items is
counted twice.

Figure 21: Site Accesses Filtered by IP

Figure 21 shows the item views from the same period of time filtered by IP. IPs are only

42

Object Retrieval and Student Behavior Using Tags in a Learning Context

counted once every day, so this is a much closer approximation to unique visitors each
day. This figure evens out the large spikes shown in Figure 20. The large spikes serves
as an indication that users are browsing through multiple items when first accessing
DSpace.

The visits to DSpace decreased as the exam period approached, as shown in Figure
22.

Figure 22: Site Accesses, March–May

6.1.5 Rating

The rating was not much used. Only 15 ratings were registered, where half of the ratings
were made by a single person. This data is insufficient to draw any conclusions regarding
rating behavior.

6.1.6 Indications Based on the Data

The small amount of data collected in this study may influence the precision of the
results. Any conclusions drawn from this can only be indications.

The usage patterns show some indications of possible use in further studies and de-
velopment of a tagging system.

As we can see from Figure 21, the actual usage of DSpace is low, with a maximum of
five unique visitors in a day. This is an indication that the problem of low participation
is related to the accessibility of DSpace, as opposed to coming from problems with the
actual system. This is a subject explored in greater depth in Section 6.2.

The activity spike the 28th, probably caused by a dip in workload in other areas,
paired with a spike in activity after the e-mail was sent, may indicate that the few stu-
dents who chose to participate were not properly invested in tagging their learning ob-
jects, as tagging only happened when other activities were done or the students were
reminded of the system’s existence. This is also supported by the steady decrease in
activity as the exams approached. In other words, tagging was not of high priority for
the students. Reasons for this is elaborated on in Section 6.2.

The fact that none of the blackboard images and audio files were tagged is an indic-
ation of the different needs for on-campus students and distance students. The lecture
notes were available prior to the lectures taking place. Images and audio were uploaded
at a later date, and is of little use to the students who have already attended the lecture.
Distance students could have more use for these types of learning objects, but we cannot
know if they would tag them, as none of the distance students participated. We do know
that the on-campus students did not tag or use the images and recordings as much, as
shown by the number of views for each category in Figure 19, Section 6.1.1.

43

Object Retrieval and Student Behavior Using Tags in a Learning Context

Knowing there are different approaches to tagging, this can help us create a tagging
interface which caters to everyone. We need a way to add tags in batches, while simul-
taneously supporting single tag adding, as different students add tags in different ways.

The type of tags students are using are generally content descriptors. This type of
metadata fits into the Subject-element in Dublin Core, General:Keyword-element in IEEE
LOM, and to a lesser extent Description in Dublin Core, and General:Description in the
IEEE LOM, corresponding to the results found by J. Fan’s study, mentioned in Chapter
2. Knowledge that tags tend to fit into these categories can help in the development of
an algorithm, as the type of metadata is known. Features from existing algorithms using
this kind of metadata can be incorporated into an educational content retrieval algorithm
using tags, for more efficient retrieval.

6.2 Interviews

As the participation rate during the study were low, perceived indications from the study
were explored further using information gathered in qualitative interviews conducted
with students from the class.

When did you usually tag?

The interviewees were unanimous regarding this question. Everyone tagged straight after
having read the documents.

Why did you choose the tags you chose?

The four different motivations for tagging, mentioned in Section 2.2, were organization
and communication for ourselves and others. It seems like most people use tags as an
extension of their study habits, and mostly for their own benefit. Unlike the study by
Ames and Naaman, in which they concluded that most tags are applied for social motiv-
ations, tagging in our study focused more on the topic and the benefit the tagger himself
can reap by tagging. One student actually did not like that he could see other people’s
tags before he finished tagging his own, as he did not want to be influenced by other
students’ choices. Other liked seeing existing tags, and took it as confirmation that they
weren’t missing much of the key points when their tags coincided with the rest. Everyone
handled each document as a separate entity, and did not think about reusing tags across
multiple documents. This may come from the fact that most of the lecture notes’ themes
did not overlap much.

How much time did you spend tagging?

No one spent a long time contemplating which tags to use. The average time spent was
about five minutes per learning object. The difference was in how long it took students
to apply them. Some tagged on-the-fly while reading, while others compiled a list of tags
after having finished reading the document.

Any reason you only tagged lecture notes, and not blackboard images and audio?

All of the students interviewed were on-campus students. No one had used the black-
board images and sound clips yet, as they felt that kind of learning objects were tailored
towards the distance students. Most told us that they listened to the audio as part of the
preparation for the exam.

44

Object Retrieval and Student Behavior Using Tags in a Learning Context

Any comments about your experiences using tags in this way?

Some found it helpful, as it served as an extra tool for them to use while studying. It
worked especially well for parts with little space devoted to them, parts that were still
important. Tagging these concepts helped emphasize their importance, and thus make
them easier to remember. Others were more ambivalent, as they didn’t understand how
tagging would benefit them.

Getting used to tagging lectures on the bachelor level was brought up as a way of
priming students to utilize tagging. Introducing a new concept as late as the master’s
level, and make it work successfully, is more difficult than introducing it to first year
students. The change in study routines was a hurdle to overcome, as the students were
used to study in their own manner.

Any comments about your experiences working with the system (DSpace)?

There were two major concerns related to the DSpace aspect. It would have been more ef-
fective if it was integrated with Fronter, their usual environment. As it is now, it is harder
to reach, as it is a separate system. Those who tagged most had bookmarked the site,
and used that bookmark to access DSpace. Others accessed DSpace from Fronter. Most
agreed that it would be beneficial for the project to have the tagging more accessible.

None of the interviewees had any trouble using the system, but concerns regarding
non-technologically minded users were voiced. The system uses comma separated values
to enter multiple tags at once, which —for technical users who are used to working with
CSV— pose no usability problem. For other students it may represent a hurdle compared
to a more graphic approach, with icons for adding additional tags.

A suggestion made was the inclusion of the ability to tag parts of a learning object,
instead of having to apply every tag to the whole learning object.

Would you choose to use such a system if it was included as a standard part of the courses?

Everyone agreed that if tagging was implemented for the entirety of courses, they would
need to understand the benefits this brings to consider actively participating. If the be-
nefits were not properly communicated, they would see no reason to continue tagging.
They likened it to the course evaluations—which are accessible for every course—but
few they knew bothered completing, because there was no perceived reward for doing
it.

A possible reason for the low participation was brought up during one of the inter-
views. A lot of students did not work on the course on a regular basis, but resorted to
start reading the course material close to the exam.

6.2.1 Indications Based on the Interviews

Some reasons for the low participation observed earlier were brought up during the in-
terviews. Unfamiliarity with tagging as a concept in an educational setting, and students
not working consistently through the year were cited as reasons participation was low.
Another concern was the lack of integration with familiar tools already in use.

This seems to agree with the indications observed in Section 6.1.6, that the parti-
cipation does not stem from DSpace itself, but rather caused by the accessibility to the
system, and student motivation.

The interviews confirms the assumption that students view blackboard images and
audio recordings as tools primarily used by distance students, although some on-campus

45

Object Retrieval and Student Behavior Using Tags in a Learning Context

students use them as repetition material before the exam.
Suggestions for improving the tagging interface were made by the students. A differ-

ent way to enter more than one tag was suggested, using a button to add more tag fields.
This could be implemented, but using comma separated values or other efficient forms
of batch tag input should not be removed, as our data shows that students are using it.
A more interesting suggestion was the ability to tag parts of a learning object. This is
explored further in Section 7.5.

The most important information gathered from the interviews was that none of the
students had any reason to continue tagging if this became a standard part of the courses.
Getting students to tag is dependent on the students realizing its usefulness to them. The
prototype system developed in this study lacks functionality to make it feel usable for the
students, as they cannot utilize their tags to accomplish any tasks. Students should be
able to understand how they can benefit using such a system quickly.

6.3 Retrieval Algorithms

The retrieval algorithm tested is a modified version of the HITS-algorithm. For testing,
we compared its performance to the performance of a simple vector space algorithm.

6.3.1 Assigning Weights

The algorithms were initially tested without tweaking the initial weighting. With a de-
fault weighting matrix comprised of only ones the HITS can display some peculiar beha-
vior, as exemplified in Figure 23. The source image had 923 as its ID and, as displayed
below, did not score highest on a test designed to find images with similar keywords as
itself. Please note that the score is assigned on a per query basis and can only be used to

Figure 23: Peculiar Behavior, HITS

rank documents internally in a query. The score document 923 received in this query can
be a very low score in another query, where the values may peak at 2000.

This is due to the way HITS handles score. There are two parts which differ in im-
portance. First we have the source document whose tags should be given the highest
importance. Next is the documents in the extended set. These documents share some
common tags with the source document. When a plain weight vector is utilized, both

46

Object Retrieval and Student Behavior Using Tags in a Learning Context

these parts are given equal importance by HITS. This means that the number of tags
a document has will have a much greater impact than desired on the final ranking, as
its score will increase equally for every tag applied to it when no specific weighting is
applied.

A correct weighting is an important part of retrieving the correct data. We experi-
mented with adding ”dynamic weighting” which divides the weighting into two groups
corresponding to tags from the source document and other tags respectively. Overall,
the results improved when this type of weighting was introduced. The source image,
mentioned above with ID 923, is shown in figure 24. Without dynamic weighting the
returned images were a mix of relevant and not relevant images. Figure 25 shows some
of the results without dynamic weighting. All these results received a higher score than
the source image, which scored as the 19th most relevant image.

Figure 24: Source Image 1

Figure 25: Results Without Dynamic Weighting

When dynamic weighting was applied the top results were more relevant. The picture
of people painting a room was pushed down from one of the top 15 to below the 30
most relevant, situating itself as the 33rd most relevant image. Even so, this is a curious
incident as a lot of images with a lower score would be deemed more relevant by a human
observer. When analyzing which tags are applied to the picture of painters compared to
a more relevant but lower scoring image we understand how this happens.

The picture of workers painting a room has 37 tags, whereas the image of the girl
in Figure 26 only has 24. Using the initial weighting, all tags are given some weight.

47

Object Retrieval and Student Behavior Using Tags in a Learning Context

Figure 26: Low Scoring Relevant Image

Table 11 shows a list of all tags each image has in common with the source image in
Figure 24. Even though the image of a girl has more relevant tags, this is not taken into

Painters (37 tags total) Girl (24 tags total)
wearing blue red godchild dark-skinned dark-haired
white arequipa peru wearing red blue

background

Table 11: Tags Applied

account as all tags belonging to the source image are equally weighted in this example.
The presence of many tags can outweigh an image with fewer tags.

6.3.2 Iterations

To diminish this factor, we can utilize the iterative nature of the HITS-algorithm. When
the HITS computes a new hub weight, we can use that as the new weighting. This new
hub weight will typically assign high weight to tags which are frequently used, and less
weight to tags found in only a few documents. Not many iterations are necessary as the
importance of each tag is determined early. The difference between the weight of two
arbitrary tags shows signs of converging during the second iteration. One iteration is
deemed sufficient to produce a refined weighting scheme, as the extra precision gained
from additional iterations is minimal compared to the performance hit on the system.
Table 12 shows how the weight values of two tags converge in subsequent iterations.
After four iterations the difference converges at 1.6, and subsequent iterations will not
change this as long as the weights are normalized.

Iteration 0 1 2 4

Tag 1 Tag 2 Tag 1 Tag 2 Tag 1 Tag 2 Tag 1 Tag 2

Weight 2 2 16 11 27 18 32 20

Difference (w1

w2
) 1 1.45 1.5 1.6

Table 12: Converging Values

48

Object Retrieval and Student Behavior Using Tags in a Learning Context

Using this approach, an image with many relevant tags can still score higher than the
source image if the source image has few tags. This is because the extra set of tags carry
more weight when the source image has few tags to base the retrieval on.

6.3.3 Comparison

To assess the performance of the modified HITS-algorithm, we compared its results to a
plain Vector Space Algorithm. Figure 27 shows the source image we used.

Figure 27: Source Image 2

This image had a collection of tags with most of the stop words eliminated. The list
of tags is as follows:

isla del pescado salar de
uyuni cactuses rocky hill dry
grass during sunset bolivia

At first glance, a weakness in using a ”single word”-keyword approach is apparent. Some
of these tags would be a better descriptor if they were merged with their neighbors.

The vector space algorithm’s top hits are shown in Figure 28. The modified HITS’ top

Figure 28: Top Hits, Vector Space

hits are in Figure 29.
These results are without any iterations to refine the weight-matrix of the HITS.
The algorithms do not agree on which images are most relevant. All four images are

represented in the top ten of both algorithms, but they do not agree on the order of
relevance.

49

Object Retrieval and Student Behavior Using Tags in a Learning Context

Figure 29: Top Hits, HITS

To understand why this happens, we need to outline the difference between how
Vector Space and HITS handles the tags. Vector Space only considers the tags present in
the source document. It assigns less weight to common words and more weight if tags
are assigned multiple times to the document. HITS, on the other hand, considers all tags
present in the extended set but as of now does not put more weight on tags which are
present multiple times in a document. This is no problem in this study, as the used set
rarely uses the same tag twice on a document. As stated above, dynamic weighting puts
more weight on the tags present in the source document but considers the other tags as
well. Because of this we observe a trend in the documents returned by HITS. They are
consistently tagged with a larger amount of tags than the documents returned by Vector
Space. The images returned as top results by HITS have 17 and 15 tags respectively,
while the top hits of Vector Space have 8 and 13 tags respectively.

Vector Space has drastically lower execution time on its queries compared to HITS.
The average execution time is 1000 ms for Vector Space, and 10,000 ms for HITS. This
may be influenced by the fact that the HITS algorithm is not optimized at all. The HITS
does more processing on the collection when queried, so a fully optimized HITS would be
slower compared to a fully optimized Vector Space algorithm, although not by as much
as the present implementation.

On some occasions, the Vector Space fails. Figure 30 shows a girl at the left. The
tags assigned to this image include ”volcano”, which is not a very important part of
the image. The tag only has 13 occurrences across the entire set, so the Vector Space
algorithm assigns great importance to it and shows the image following image in the
figure as a good match.

Figure 30: Weighting Differences

50

Object Retrieval and Student Behavior Using Tags in a Learning Context

6.3.4 Testing with the Set of Student Tags

None of the algorithms worked when testing the student tags because of the small over-
lap of tags between the documents and the small size of the tag set. Only three tags
were used in more than one document. Both algorithms generate a set of documents by
using tags in common with the source document. When no other documents have tags
in common with the source document, the basis for relating documents is non-existent.
This means that this study is unable to test the algorithm performance with a set of user
generated tags.

6.3.5 Summary

The modified HITS works differently from the Vector Space algorithm. Vector Space will
only consider tags present in the source document. HITS assigns weight to tags in related
documents as well. When the weight is refined with multiple iterations, HITS assigns
higher weight to popular tags which is the opposite of how Vector Space handles popular
tags. When handling user generated tags instead of keywords this may be a good thing,
as indicated by the studies done by Bao et al. and Xu et al., referenced in Chapter 2.

Both algorithms return relevant results. Both algorithms often have the same images
in their top ten, but in different order. This is due to the differences in behavior observed.
The HITS algorithm is not optimized so the execution time is too slow to be of immediate
practical use.

For relating documents to a source document, the Vector Space algorithm outper-
forms the HITS algorithm in execution time because of its simplicity. The full potential
of HITS is best shown when the starting point is a single tag or a small collection of tags.
Vector Space will only return a list of documents the tag is assigned to while HITS pro-
duces a more refined weighting scheme based on several factors, including correlation
among tags. If a tag tends to be used alongside the source tag this will be reflected in the
weighting scheme of HITS when it is queried with a single tag.

A way to distinguish relevant tags in related documents from the irrelevant tags would
be a valued addition for both algorithms. This is discussed in more depth in Section 7.5.

6.4 Social Technologies in DSpace

When creating the DSpace Aspect, some challenges to using DSpace with social techno-
logies were identified. In this section, we will evaluate the recognized advantages and
disadvantages of developing for DSpace, and how they pertain to the inclusion of social
technologies.

6.4.1 Aspect Integration with DSpace

Aspects are designed to be integrated efficiently in DSpace. This is evidenced by how
consistent an additional aspect is with the core system. Every aspect has access to the
same functionality the core parts use, as opposed to only a limited subset of functions.
This makes the creation of Aspects flexible, as well as easy to utilize already existing
parts, most notably the database manager.

6.4.2 Database

When adding tagging and similar technologies additional information needs to be stored
in DSpace. The most convenient location is in the database, as it is easy to utilize the
database manager in DSpace to retrieve information. This makes it unnecessary to create

51

Object Retrieval and Student Behavior Using Tags in a Learning Context

custom wrappers for each database implementation used at different institutions, as the
DSpace database manager handles it. The inconvenient part is the difficulty in adding
additional tables to the DSpace database. There is no functionality provided by DSpace
when activating an Aspect to create a set of tables. This breaks with the philosophy in
DSpace that an Aspect should not be seen when deactivated. The only way to add tables
is by creating them either directly in the database or through the database manager
in DSpace with a custom SQL query. This impedes the reuse of an Aspect in different
institutions, as the tables cannot be created automatically when the Aspect is activated.
They need some form of user interaction besides activating the Aspect.

6.4.3 Ajax

Ajax is a trademark technology of the social web. Asynchronous calls usually require a
fully built DOM. The DOM in DSpace is only built at the theme level. A fully functional
social technology package built on Ajax in DSpace would require both a custom theme
and an aspect. This means that each institution interested in using such a package would
need a person skilled in technologies such as XSL and Javascript to modify their institu-
tions theme to include the Ajax-functionality required by the Aspect. This is due to the
separation of concerns inherited from Cocoon. This also limits other presentational op-
tions, e.g. the separate styling of arbitrary words which is the basis for tag clouds. This
must also be solved by using a combination of themes and aspects.

There is limited support for Ajax in the API, which seems to support asynchronous
submission of forms only. The documentation is lacking in this regard as the only mention
of Ajax is one method which enables it for forms, without elaborating on how it is used.

6.4.4 Logging

The extensive logging employed in this study is unnecessary for a production environ-
ment. DSpace ships with a useful logging utility which is adequate for normal logging
duties, as well as a set of classes to process the logs.

52

Object Retrieval and Student Behavior Using Tags in a Learning Context

7 Conclusion and Future Work

This thesis has analyzed how students in a real life scenario respond to the introduc-
tion of tagging. This was done to investigate if student generated tags are feasible tools
for retrieving learning objects related to each other. The modified version of the HITS al-
gorithm, first proposed by Wu et al., is employed as the chosen algorithm to locate related
objects. The algorithm is also compared to a plain algorithm to measure its effectiveness.

The conclusions are presented under the pertinent research questions below.

7.1 How can we Integrate Tags in a Learning Environment?

This research question tries to understand how we can integrate tags into a learning
environment in a way that will take advantage of the students’ behavior.

The first issue is the students’ behavior when studying. For some students, tagging is
merely an extension of their usual routine while studying. For other students, however,
to adopt tagging poses a significant structural change to their study routines. To integrate
tagging successfully for this type of student an early introduction to the concept, before
they start developing their study routines, may prove effective.

Integrating the tagging system with the learning management systems currently in use
at an institution will make it easier and faster for students to use, as they will not need
to learn a different system. The goal is to put the tagging as close as possible to where
students usually find their learning objects. If the system used for tagging is significantly
different or harder to reach, fewer students are likely to use it. Combining tagging with
a personalization approach could potentially create a more tailored learning experience
for the students.

Our proposal on how to efficiently integrate tagging in a learning environment is
to introduce tagging early, preferably to first year students. Integration with systems
currently in use will help make students feel familiar when using the system, as well as
an easy-to-use user interface, which also is powerful enough to facilitate different kinds
of user input, e.g. adding single tags, batch tags (CSV or other methods), and ways for
less technically inclined to add multiple tags using the user interface. Personalization
could help highlight relevant learning objects for users, which makes them more likely to
tag them. For example highlighting audio recordings and blackboard images for distance
students, but not for on-campus students.

For student participation, the most important part is to create the system in a way
that highlights their own benefits of using the system. Possible uses for tagging should
be easily understandable for students, as motivation for use was the hardest part for
students participating in the study to understand.

7.2 How can Student Supplied Tags be used to Retrieve Related
Learning Objects?

Students are usually using academically centered tags, which describe the content. Not
many tags are used for organizational purposes. This tendency to use academically
centered tags, can make locating topically related objects easier, as most tags describe

53

Object Retrieval and Student Behavior Using Tags in a Learning Context

the content. Our study is small, and this disposition towards such tags may prove to be
false in a larger study, although J. Fan’s study seems to agree with our findings.

As mentioned by S. Bateman et al., student tags in their study had a surprisingly high
correlation with text mined keywords. The original HITS algorithm uses automatically
generated keywords. This makes us feel confident that the modified HITS algorithm will
work well by using student tags to locate relevant objects.

Tags such as ”basic lecture” can also be helpful, as they are not possible to generate
with text mining. They may contribute by locating not only objects with the same subject
matter, but also objects of the equivalent complexity.

The HITS algorithm can be used as a retrieval mechanism, but is too slow to be used
efficiently at the moment. Its behavior differs from a plain Vector Space algorithm, so
using the algorithm for a different purpose than Vector Space could prove to be effective.
HITS is more effective than Vector Space when retrieving objects based on a single tag,
while they are comparable when the origin is a document.

7.3 What are the Challenges of Retrieving Related Learning Objects
based on Student Tags?

Some challenges were identified during the work on this thesis, which can be summed
up as either technical in nature, or related to general challenges.

7.3.1 Technical Challenges

As mentioned in Section 2.2, there are challenges related to tags. Especially that tags can
be homographs and synonyms. There is no disambiguation at work in the created system,
which should be implemented. We discovered some tags which clearly referenced the
same concept, but differed in spelling. This caused these tags to be treated as different
concepts in the system. A relevant document may be lost due to such differences in
spelling. One approach is to collapse similar tag terms into a unified term representing
the specific concept.

Integrating the tagging system in a learning management system currently in use can
be regarded as a challenge as there are a large number of learning management systems
in use at various institutions. Some are easier than others to modify.

Granularity can be a challenge when the learning object contains a number of dif-
ferent topics. Tagging will then link the whole document to that tag, even though that
specific tag only applies to a small part of the learning object. A way to determine how
narrow or broad the scope of a tag is, or a way to link a tag to a part of a learning object
would be a helpful feature. This was brought up during the student interviews, where
one suggestion was to be able to tag parts of a learning object.

7.3.2 General Challenges

How much related material that exists is a valid concern. A retrieval algorithm is de-
pendent on a diverse selection of learning objects, and a tag set with tags overlapping on
multiple learning objects. Only one course was included in the study, so the amount of
related material was insufficient to correctly determine the scope of this challenge.

The most important challenge is how to motivate students to tag. We have shown
that there is an indication that students need to know exactly how they can benefit from
using the system to concern themselves with it.

54

Object Retrieval and Student Behavior Using Tags in a Learning Context

7.4 How can Social Technologies be Implemented in DSpace?

This question aims to answer how well suited the Learning Object Repository DSpace is
to incorporate social technologies, such as tagging and rating, from a technical point of
view.

DSpace is very well suited for extension. It includes a powerful API, giving developers
much freedom when developing Aspects and Themes. DSpace is also open-source, which
further extends the customization possibilities. Due to this, it is possible to implement
social technologies in DSpace very well.

Knowledge of Java, XML and familiarity with relational database design and SQL
are required for developing Aspects. All classes present in an aspect is written in Java.
Sitemaps are an integral part of both Aspects and Themes and is based on XML, and
every Aspect that needs additional information stored needs to use databases. Themes
require the developer to be familiar with XML, XSL, Javascript, HTML and CSS. XML for
the Sitemap and DRI, and XSL for being able to transform the DRI to HTML.

The developer of such a system must have good command of various technologies.
A complete addition of social technologies in DSpace, though, requires effort beyond
developing a simple Aspect or Theme. The aim would be to develop it as a system which
could be distributed to a number of institutions interested in adding social technologies
in their education and enabling them to install it with relative ease.

The limitations in DSpace makes it hard to create such a system as a complete pack-
age and allowing institutions to install it with little to no knowledge of the mentioned
technologies. The limited methods of creating extra tables present in the DSpace API
necessitates manual creation of the needed tables.

If Ajax is desired, a custom theme is required. The theme should be introduced along-
side the existing theme of the institution’s DSpace installation. This can be solved using
compound themes, where one theme uses another theme’s resources. Some manual cus-
tomization of the theme is still needed.

The need for a Theme to utilize Ajax may disappear in subsequent versions of DSpace,
as we have seen indications of initial support for Ajax-integration on the aspect level in
the current DSpace version.

Dspace Aspects and Themes is usually easy to install, which is an advantage. The in-
clusion of more complex functionality makes it harder to distribute as an easily installed
stand-alone package, but is still a viable solution if an institution desires to include social
technologies in their education.

7.5 Future Work

This section outlines topics that need more work in future studies.

7.5.1 Student Reactions

A study on what factors are important for students to get them to utilize tagging in their
education. This can include topics such as:

• Are distance students and on-campus students motivated by different reasons from
each other?

• Can tighter integration with existing Learning Management Systems aid participa-
tion?

55

Object Retrieval and Student Behavior Using Tags in a Learning Context

A study on how tags are received by first year students should be done. It is, by itself,
a rather small study, but could be integrated as part of a larger study.

How do students take advantage of other students’ tags in a tagging scenario? This
can be important to understand when developing a system designed for students.

If given the option, would students use private tags—tags only they can see—differently
than public tags? Private tags may be easier to use as organizational tags than public tags
are.

7.5.2 Technical Studies

Further research on the granularity of tags in learning objects may prove interesting.
Research on different ways to classify tags based on their granularity and relationship
with other tags. Proposed ways include:

• Mapping the relationship between tags into an ontology.

• Meta-tagging, which can be described as tagging tags.

• Synonym control.

Test if methods such as these would improve the locating of relevant objects.
Further studies on how effective HITS is on retrieving related resources. Indications

show it works as well as a plain algorithm, although in a different way, but an optimized
version is not tested on a real set of data yet. Further investigations on how this difference
can be utilized in a beneficial manner is an interesting topic.

Completing a working version of the tagging system for DSpace and investigating
how cumbersome the distribution process is made by Tag Clouds, Ajax and other visual
indicators dependent on both themes and aspects is an approach to further facilitate
social technologies in DSpace.

56

Object Retrieval and Student Behavior Using Tags in a Learning Context

Bibliography

[1] Tavangarian, D., Leypold, M. E., Nölting, K., Röser, M., & Voigt, D. December 2004.
Is e-Learning the Solution for Individual Learning? Electronic Journal of e-Learning,
2(2).

[2] Stahl, G., Koschmann, T., & Suthers, D. Computer-supported collaborative learning:
An Historical Perspective, 409–426. Cambridge University Press, Cambridge, UK,
2006.

[3] Karrer, T. 2007. Understanding E-Learning 2.0.

[4] Allen, I. E. & Seaman, J. 2010. Class Differences - Online Education in
the United States. http://sloanconsortium.org/publications/survey/pdf/

class_differences.pdf. [Online; accessed 11-December-2010].

[5] Stahl, G. 2004. Building Collaborative Knowing. In What We Know About
CSCL, Dillenbourg, P., Strijbos, J.-W., Kirschner, P., & Martens, R., eds, volume 3
of Computer-Supported Collaborative Learning, chapter 3, 53–85. Springer Nether-
lands, Dordrecht.

[6] Fronter AS. 2011. Fronter - Platform. http://com.fronter.info/mnu1.shtml.
[Online; accessed 12-June-2011].

[7] itslearning. 2011. Learning Platform - itslearning. http://www.itslearning.eu/.
[Online; accessed 12-June-2011].

[8] Utdanningsdirektoratet. Digitale læringsplattformer – en mulig katalysator for di-
gital kompetanse i grunnopplæringen. http://www.udir.no/upload/Rapporter/
LMS.pdf. [Online; accessed 15-December-2010] - In Norwegian.

[9] Neven, F. & Duval, E. 2002. Reusable learning objects: a survey of lom-based
repositories. In Proceedings of the tenth ACM international conference on Multimedia,
MULTIMEDIA ’02, 291–294, New York, NY, USA. ACM.

[10] Ramsden, P. 1988. Improving Learning: New Perspectives. Nichols Pub Co.

[11] Wiley, D. A. 2002. Connecting learning objects to instructional design theory: A
definition, a metaphor, and a taxonomy. The Instructional Use of Learning Objects.

[12] Ochoa, X. & Duval, E. 2008. Measuring Learning Object Reuse. In Times of Con-
vergence. Technologies Across Learning Contexts, Dillenbourg, P. & Specht, M., eds,
volume 5192 of Lecture Notes in Computer Science, chapter 36, 322–325. Springer
Berlin / Heidelberg, Berlin, Heidelberg.

[13] Skaar, L. A., Heiberg, T., & Kongsli, V. 2003. Reuse learning objects through LOM
and XML. In Companion of the 18th annual ACM SIGPLAN conference on Object-
oriented programming, systems, languages, and applications, OOPSLA ’03, 78–79,
New York, NY, USA. ACM.

57

http://sloanconsortium.org/publications/survey/pdf/class_differences.pdf
http://sloanconsortium.org/publications/survey/pdf/class_differences.pdf
http://com.fronter.info/mnu1.shtml
http://www.itslearning.eu/
http://www.udir.no/upload/Rapporter/LMS.pdf
http://www.udir.no/upload/Rapporter/LMS.pdf

Object Retrieval and Student Behavior Using Tags in a Learning Context

[14] Duval, E., Forte, E., Cardinaels, K., Verhoeven, B., Van Durm, R., Hendrikx, K.,
Forte, M. W., Ebel, N., Macowicz, M., Warkentyne, K., & Haenni, F. May 2001. The
Ariadne knowledge pool system. Commun. ACM, 44(5), 72–78.

[15] Bargmeyer, B. E. & Gillman, D. W. 2000. Metadata Standards and Metadata Regis-
tries: An Overview. In International Conference on Establishment Surveys II.

[16] Introduction to Dewey Decimal Classification. http://www.oclc.org/dewey/

versions/ddc22print/intro.pdf. [Online; accessed 12-December-2010].

[17] Weibel, S. L. & Koch, T. The dublin core metadata initiative: Mission, current activ-
ities, and future directions. Technical report, 2000.

[18] M. Nilsson. 2000. id3v2.4.0-structure - ID3.org. http://www.id3.org/id3v2.4.

0-structure. [Online; accessed 12-June-2011].

[19] Institute of Electrical and Electronics Engineers (IEEE). Draft Standard for Learning
Object Metadata. Technical report, 2002.

[20] Press, N. 2004. Understanding Metadata. National Information Standards Organ-
ization Press.

[21] Payette, S. & Lagoze, C. 1998. Flexible and extensible digital object and reposit-
ory architecture (fedora). In Research and Advanced Technology for Digital Librar-
ies, volume 1513 of Lecture Notes in Computer Science, 517–517. Springer Berlin
Heidelberg.

[22] Smith, M., Barton, M., Bass, M., Branschofsky, M., McClellan, G., Stuve, D., Tansley,
R., & Walker, J. H. 2003. Dspace: An open source dynamic digital repository.

[23] Liccardi, I., Ounnas, A., Pau, R., Massey, E., Kinnunen, P., Lewthwaite, S., Midy,
M. A., & Sarkar, C. December 2007. The role of social networks in students’ learning
experiences. SIGCSE Bull., 39, 224–237.

[24] Wal, T. V. 2007. Folksonomy coinage and definition. http://www.vanderwal.net/
folksonomy.html. [Online; accessed 12-December-2010].

[25] Mathes, A. 2004. Folksonomies - cooperative classification and communication
through shared metadata.

[26] Boyle, T. 2003. Design principles for authoring dynamic, reusable learning objects.
Australian Journal of Educational Technology, 19, 46–58.

[27] Wilhelm, P. & Wilde, R. February 2005. Developing a University Course for Online
Delivery Based on Learning Objects: From Ideals to Compromises. Open Learning,
20(1), 65–81.

[28] Fan, J. Utilizing Students’ Inputs to Create and Manage Learning Object Metadata
in Educational System. Master’s thesis, Gjøvik University College, Norway, 2010.

[29] Parrish, P. March 2004. The trouble with learning objects. Educational Technology
Research and Development, 52(1), 49–67.

58

http://www.oclc.org/dewey/versions/ddc22print/intro.pdf
http://www.oclc.org/dewey/versions/ddc22print/intro.pdf
http://www.id3.org/id3v2.4.0-structure
http://www.id3.org/id3v2.4.0-structure
http://www.vanderwal.net/folksonomy.html
http://www.vanderwal.net/folksonomy.html

Object Retrieval and Student Behavior Using Tags in a Learning Context

[30] Noor, S. F., Yusof, N., & Hashim, S. Z. November 2009. A Metrics Suite for Meas-
uring Reusability of Learning Objects. 961–963.

[31] Limpens, F., Gandon, F., & Buffa, M. September 2008. Bridging ontologies and
folksonomies to leverage knowledge sharing on the social web: A brief survey. In
2008 23rd IEEE/ACM International Conference on Automated Software Engineering -
Workshops, 13–18. IEEE.

[32] Merholz, P. 2004. Metadata for the Masses. http://www.adaptivepath.com/

publications/essays/archives/000361.php. [Online; accessed 12-June-2011].

[33] Hotho, A., Jäschke, R., Schmitz, C., & Stumme, G. Information Retrieval in Folk-
sonomies: Search and Ranking, volume 4011 of Lecture Notes in Computer Science,
chapter Chapter 31, 411–426–426. Springer-Verlag, Berlin/Heidelberg, 2006.

[34] Ames, M. & Naaman, M. 2007. Why we tag: motivations for annotation in mobile
and online media. In Proceedings of the SIGCHI conference on Human factors in
computing systems, CHI ’07, 971–980, New York, NY, USA. ACM.

[35] Bao, S., Xue, G., Wu, X., Yu, Y., Fei, B., & Su, Z. 2007. Optimizing web search using
social annotations. In Proceedings of the 16th international conference on World Wide
Web, 501–510, New York, NY, USA. ACM.

[36] Xu, Z., Fu, Y., Mao, J., & Su, D. 2006. Towards the semantic web: Collaborat-
ive tag suggestions. In Proceedings of Collaborative Web Tagging Workshop at 15th
International World Wide Web Conference.

[37] Bateman, S., Brooks, C., Mccalla, G., & Brusilovsky, P. 2007. Applying Collaborative
Tagging to E-Learning. In Proceedings of the 16th International World Wide Web
Conference (WWW2007).

[38] Manning, C. D., Raghavan, P., & Schtze, H. 2008. Introduction to Information
Retrieval. Cambridge University Press, New York, NY, USA.

[39] Kleinberg, J. M. September 1999. Authoritative sources in a hyperlinked environ-
ment. J. ACM, 46(5), 604–632.

[40] Wu, H., Zubair, M., & Maly, K. 2006. Harvesting social knowledge from folkso-
nomies. In Proceedings of the seventeenth conference on Hypertext and hypermedia,
HYPERTEXT ’06, 111–114, New York, NY, USA. ACM.

[41] The DuraSpace Foundation. 2010. DSpace Manual. http://www.dspace.org/1_

6_0Documentation/DSpace-Manual.pdf. [Online; accessed 22-February-2011].

[42] The DuraSpace Foundation. 2010. DSpace Manual. https://wiki.duraspace.

org/display/DSPACE/Manakin. [Online; accessed 22-February-2011].

[43] The Apache Software Foundation. 2008. Overview of Apache Cocoon. http://

cocoon.apache.org/2.1/overview.html. [Online; accessed 22-February-2011].

[44] The Apache Software Foundation. 2008. Apache Cocoon Pipelines. http://

cocoon.apache.org/3.0/reference/html/pipelines.html. [Online; accessed
22-February-2011].

59

http://www.adaptivepath.com/publications/essays/archives/000361.php
http://www.adaptivepath.com/publications/essays/archives/000361.php
http://www.dspace.org/1_6_0Documentation/DSpace-Manual.pdf
http://www.dspace.org/1_6_0Documentation/DSpace-Manual.pdf
https://wiki.duraspace.org/display/DSPACE/Manakin
https://wiki.duraspace.org/display/DSPACE/Manakin
http://cocoon.apache.org/2.1/overview.html
http://cocoon.apache.org/2.1/overview.html
http://cocoon.apache.org/3.0/reference/html/pipelines.html
http://cocoon.apache.org/3.0/reference/html/pipelines.html

Object Retrieval and Student Behavior Using Tags in a Learning Context

[45] Grubinger, Michael, C. P. D. M. H. & Thomas, D. 2006. The IAPR Benchmark: A New
Evaluation Resource for Visual Information Systems. In International Conference on
Language Resources and Evaluation.

[46] ImageCLEF. 2010. ImageCLEF Dataset. http://www.imageclef.org/photodata.
[Online; accessed 6-April-2011].

60

http://www.imageclef.org/photodata

Object Retrieval and Student Behavior Using Tags in a Learning Context

A Data

A.1 Student Available Texts

This is a collection of the texts students received as information about the project.

A.1.1 The Web Site

Permanently available at http://hochlin.com/skole/gjovik/imt4901
The text on the page is as follows:
My name is Christian Hochlin and I’m currently doing my master’s thesis in media

technology. My thesis is about how to utilize social media in education. This includes
researching how tags and ratings can be use to improve education, both for professors
and students.

What I need you to do

The lecture slides are made available in a LOR (Learning Object Repository) called
Dspace. It is possible to tag each learning object with your own tags, as well as rat-
ing them with a grade ranging from 1 to 5. All activity on the site will be logged, partly
for uncovering usage patterns. What keywords would you use to describe the content of
a learning object? These are the kinds of keywords I’m interested in. A way to determ-
ine what keywords you should use is to use the same words you would use in a Google
search to retrieve the learning object. Other keywords one can use are personal ones,
describing the lecture, like ”interesting”, ”difficult” etc.

How can you benefit?

Have you ever wished you were able to give more direct feedback on specific elements in
the course than what is possible during course evaluation? Such continuous rating and
tagging allows the professors to form an impression of how well-received the syllabus is
during the course, instead of only relying on the end evaluation. This makes it possible to
experience changes while still doing the course, instead of just helping next years class.

There are studies which indicate the fact that students who tag their learning objects
will learn the subject matter in a more efficient way, by processing it in a different,
subconscious manner[1], and it allows people to connect items, by ”placing hooks”, to
provide their meaning in their own understanding.[2]

For the technically inclined: You will be some of the first to use a new system which
maybe will be used by the whole school the coming years.

[1] Bateman, S., Brooks, C., Mccalla, G., & Brusilovsky, P. 2007. Applying Collabor-
ative Tagging to E-Learning. In Proceedings of the 16th International World Wide Web
Conference (WWW2007).

[2] Wal, T. V. 2007. Folksonomy coinage and definition. http://www.vanderwal.
net/folksonomy.html

61

http://hochlin.com/skole/gjovik/imt4901
http://www.vanderwal.net/folksonomy.html
http://www.vanderwal.net/folksonomy.html

Object Retrieval and Student Behavior Using Tags in a Learning Context

A.1.2 The Mail

This e-mail was sent to all students following the course at March 10. 2011, and its
content was subsequently made available in a private Skype group the class had created.

Topic: To students following IMT4581: Network Security
From: christian.hochlin@hig.no
Date: Thu, March 10, 2011 10:35
To: IMT4581v11@hig.no
Hi all
You are now able to tag your lecture slides, audio and blackboard pictures as part of

a master’s thesis. Please visit http://www.stud.hig.no/ 091213/index.php?lang=en for
a short introduction to the project, and directions on how to participate. Distance stu-
dents are especially encouraged to participate, as this project may benefit future distance
students.

Some more information I forgot to mention when presenting this in last week’s lec-
ture:

It is now possible to log in with your GuC-username and password. This enables you
to delete tags you added by mistake.

In addition to adding tags, you can rate the quality of the slides using a grade between
1 and 5. This can give the professor an indication on what the class as a whole thinks of
the lecture slides.

Available lecture slides: http://matuku.hig.no/overview
If you have any questions about this, do not hesitate to contact me.
Your participation is appreciated :)
Regards,
Christian Hochlin

A.2 Data Logs

This section contains the data taken from the DSpace logs.

62

Object Retrieval and Student Behavior Using Tags in a Learning Context

A.2.1 View Count per Item

Views Item

70 lecture 1
54 lecture 2
37 lecture 3
20 lecture 4
21 Lecture 5
23 lecture 6
23 lecture 7
20 lecture 8
17 lecture 9
18 lecture 10
16 lecture 1 audio
25 lecture 1 img
18 lecture 2 audio
14 lecture 2 img
4 lecture 3 audio
7 lecture 3 img
2 lecture 4 audio
4 lecture 4 img
3 lecture 5 audio
9 lecture 5 img
8 lecture 6 audio
4 lecture 6 img
6 lecture 7 audio
3 lecture 7 img
5 lecture 8 audio
3 lecture 9 img
5 lecture 9 audio
3 lecture 10 audio

63

Object Retrieval and Student Behavior Using Tags in a Learning Context

64

Object Retrieval and Student Behavior Using Tags in a Learning Context

A.2.2 Item Views

This table shows item views per date.

Date Views

2/3 17
3/3 1
4/3 1
8/3 2
9/3 1

10/3 44
11/3 1
12/3 3
13/3 2
14/3 4
15/3 2
16/3 6
17/3 4
22/3 13
23/3 3
25/3 6
28/3 18
29/3 37
30/3 28
31/3 5
5/4 1
6/4 6
7/4 1

11/4 7
12/4 14
13/4 19
16/4 11
17/4 5
18/4 11
19/4 8
20/4 1
22/4 1
24/4 1
27/4 3
28/4 5
30/4 6
1/5 8
3/5 19
4/5 7
5/5 1

10/5 4
11/5 9
13/5 1
15/5 2
16/5 1
19/5 7
26/5 1
27/5 4
28/5 1
29/5 2
30/5 4
31/5 5
2/6 1
3/6 3

65

Object Retrieval and Student Behavior Using Tags in a Learning Context

A.3 Tags Applied

This is a list of all tags applied, sorted on date.

Date Tag Count

2/3 7
10/3 20
22/3 10
28/3 10
29/3 18
30/3 29
12/4 29
3/5 13

10/5 10
27/5 4

66

Object Retrieval and Student Behavior Using Tags in a Learning Context

B Source Code

Imports are omitted from all source code.

B.1 DSpace

B.1.1 SQL

SQL for table creation

CREATE TABLE tag(id SERIAL NOT NULL, tag VARCHAR(32) UNIQUE,

PRIMARY KEY(id))

CREATE TABLE tagUse(id SERIAL, itemID INTEGER, tagID INTEGER,

userID INTEGER, time TIMESTAMP, visibility INTEGER,

deleted INTEGER, ip VARCHAR(32), PRIMARY KEY(id));

CREATE TABLE actions(actionid SERIAL NOT NULL, userid INTEGER,

tagid INTEGER, itemid INTEGER, time TIMESTAMP, action INTEGER,

ip VARCHAR(32), PRIMARY KEY(actionid));

CREATE TABLE rating(id SERIAL NOT NULL, rating INTEGER,

item INTEGER, person INTEGER, ip VARCHAR(32),

time TIMESTAMP, PRIMARY KEY(id));

B.1.2 Sitemap

<?xml version="1.0" encoding="UTF-8"?>

<map:sitemap xmlns:map="http://apache.org/cocoon/sitemap/1.0">

<map:components>

<map:transformers>

<map:transformer name="Navigation" src="no.hig.xmlui.aspect.overview.Navigation"/>

<map:transformer name="Overview" src="no.hig.xmlui.aspect.overview.Overview"/>

<map:transformer name="ItemViewer" src="no.hig.xmlui.aspect.overview.ItemViewer"/>

<map:transformer name="BrowseSingleTag"

src="no.hig.xmlui.aspect.overview.BrowseSingleTag" />

<map:transformer name="BrowseOwnTags"

src="no.hig.xmlui.aspect.overview.BrowseOwnTags" />

<map:transformer name="BrowseTags" src="no.hig.xmlui.aspect.overview.BrowseTags" />

<map:transformer name="Statistics" src="no.hig.xmlui.aspect.overview.Statistics" />

</map:transformers>

<map:matchers default="wildcard">

<map:matcher name="HandleTypeMatcher"

67

Object Retrieval and Student Behavior Using Tags in a Learning Context

src="org.dspace.app.xmlui.aspect.general.HandleTypeMatcher"/>

<map:matcher name="HandleAuthorizedMatcher"

src="org.dspace.app.xmlui.aspect.general.HandleAuthorizedMatcher"/>

</map:matchers>

<map:actions>

<map:action name="DeleteTag" src="no.hig.xmlui.aspect.overview.DeleteTag"/>

<map:action name="AddTags" src="no.hig.xmlui.aspect.overview.AddTags" />

<map:action name="Log" src="no.hig.xmlui.aspect.overview.Logging" />

<map:action name="Rate" src="no.hig.xmlui.aspect.overview.Rate" />

</map:actions>

</map:components>

<map:pipelines>

<map:pipeline>

<map:generate/>

<!-- Add to every page -->

<map:transform type="Navigation"/>

<map:match pattern="addTags">

<map:act type="AddTags">

<map:redirect-to uri="{url}" permanent="yes" global="true" />

<!-- User agent won't cache redirected page if not permanent is set -->

</map:act>

</map:match>

<map:match pattern="tagbrowser">

<map:transform type="BrowseTags"/>

</map:match>

<map:match pattern="overview">

<map:transform type="Overview"/>

</map:match>

68

Object Retrieval and Student Behavior Using Tags in a Learning Context

<map:match pattern="tagstatistics">

<map:transform type="Statistics"/>

</map:match>

<map:match pattern="tagbrowser/*">

<map:act type="Log">

<map:parameter name="eventType" value="viewtag"/>

</map:act>

<map:transform type="BrowseSingleTag"/>

</map:match>

<map:match pattern="owntags">

<map:transform type="BrowseOwnTags"/>

</map:match>

<!-- Add data to an item -->

<map:match pattern="handle/*/*">

<map:match type="HandleAuthorizedMatcher" pattern="READ">

<map:match type="HandleTypeMatcher" pattern="item">

<map:act type="Log">

<map:parameter name="eventType" value="viewitem"/>

</map:act>

<map:transform type="ItemViewer"/>

</map:match>

</map:match>

</map:match>

<!-- Delete a tag -->

<map:match pattern="deletetag/*">

<map:act type="DeleteTag">

<map:redirect-to uri="{url}"

permanent="yes" global="true" />

<!-- User agent won't cache redirected page if not permanent is set -->

</map:act>

</map:match>

<!-- Rate item -->

<map:match pattern="rate">

69

Object Retrieval and Student Behavior Using Tags in a Learning Context

<map:act type="Rate">

<map:redirect-to uri="{url}"

permanent="yes" global="true" />

<!-- User agent won't cache redirected page if not permanent is set -->

</map:act>

</map:match>

<map:serialize type="xml"/>

</map:pipeline>

</map:pipelines>

</map:sitemap>

B.1.3 AddTags

package no.hig.xmlui.aspect.overview;

/**

* A method to add user generated tags to the database.

*

* @author Christian Hochlin

*

*/

public class AddTags extends AbstractAction {

public Map act(Redirector redirector, SourceResolver resolver, Map objectModel,

String source, Parameters parameters) throws Exception, SQLException

{

Request request = ObjectModelHelper.getRequest(objectModel);

Context context = ContextUtil.obtainContext(objectModel);

String ip = request.getRemoteAddr();

Boolean proceed = false;

String tags, item;

if (request.getParameter("tags") != null

&& request.getParameter("itemhandle") != null)

{

tags = request.getParameter("tags");

item = request.getParameter("itemhandle");

TagManager tagManager = new TagManager(context);

EPerson eperson = context.getCurrentUser();

70

Object Retrieval and Student Behavior Using Tags in a Learning Context

int personid;

if(eperson == null)

{

personid = 0;

}

else

{

personid = eperson.getID();

}

tagManager.addTagsFromCSVString(personid,

Integer.parseInt(item), tags, ip);

}

else

//Something wasn't filled out. Abort

{

}

//Takes care of redirecting

String fromPage = request.getHeader("Referer");

Map sitemapParams = new HashMap();

sitemapParams.put("url", fromPage);

return sitemapParams;

}

}

B.1.4 BrowseOwnTags

package no.hig.xmlui.aspect.overview;

/**

*

* Transformer that lets users browse their own tags.

*

* @author Christian Hochlin

*

*/

public class BrowseOwnTags extends AbstractDSpaceTransformer {

public void addPageMeta(PageMeta pageMeta) throws SAXException,

WingException, UIException, SQLException, IOException,

AuthorizeException

71

Object Retrieval and Student Behavior Using Tags in a Learning Context

{

}

public void addBody(Body body) throws SAXException, WingException,

UIException, SQLException, IOException, AuthorizeException

{

EPerson eperson = context.getCurrentUser();

TagManager tm = new TagManager(context);

ArrayList<Tag> tags = tm.getItemTagsByOwner(eperson);

for(Tag tag : tags)

{

Division d = body.addDivision("tag"+tag.getId());

Para p = d.addPara();

p.addXref(contextPath+"/tagbrowser/"

+tag.getId(),tag.getTagName());

p.addContent(" used "+tag.getCount()+" time(s)");

}

}

}

B.1.5 BrowseSingleTag

package no.hig.xmlui.aspect.overview;

/**

* Transformer that lets users browse items tagged with a tag

*

* @author Christian Hochlin

*

*/

public class BrowseSingleTag extends AbstractDSpaceTransformer {

public void addPageMeta(PageMeta pageMeta) throws SAXException,

WingException, UIException, SQLException, IOException,

AuthorizeException

{

}

public void addBody(Body body) throws SAXException, WingException,

UIException, SQLException, IOException, AuthorizeException

{

Tag tag = HiGHandleUtil.getTag(objectModel);

Division division = body.addDivision("item-tags",null);

72

Object Retrieval and Student Behavior Using Tags in a Learning Context

if(tag.getId() == -1)

{

division.setHead("No Tags");

division.addPara("This is a list of all items without tags");

}

else

{

division.setHead(tag.getTagName());

division.addPara("This is a list of all items tagged with "

+tag.getTagName().toUpperCase());

}

ArrayList<Item> items = tag.getTaggedItems(context);

Division div = body.addDivision("temp");

List list = div.addList("list");

for(Item item : items)

{

list.addItemXref("/handle/"+item.getHandle(), item.getName());

}

}

}

B.1.6 BrowseTags

package no.hig.xmlui.aspect.overview;

/**

* Transformer that lets users browse a list of all tags

* @author Christian Hochlin

*

*/

public class BrowseTags extends AbstractDSpaceTransformer {

public void addPageMeta(PageMeta pageMeta) throws SAXException,

WingException, UIException, SQLException, IOException,

AuthorizeException

{

}

public void addBody(Body body) throws SAXException, WingException,

UIException, SQLException, IOException, AuthorizeException

{

Division division = body.addDivision("item-tags",null);

division.setHead("Browse tags");

TagManager tm = new TagManager(context);

73

Object Retrieval and Student Behavior Using Tags in a Learning Context

ArrayList<Tag> tags = tm.getTags();

if(tags.get(0).getId() == -1) //If no tags exist

{

division.addPara("Nothing here");

}

else

{

division.addPara("This is a list of all tags used");

Division div = body.addDivision("temp");

List list = div.addList("list");

for(Tag tag : tags)

{

list.addItemXref(contextPath+"tagbrowser/"

+tag.getId(),tag.getTagName());

}

}

}

}

B.1.7 DeleteTag

package no.hig.xmlui.aspect.overview;

/**

* Action to delete tags

* @author Christian Hochlin

*

*/

public class DeleteTag extends AbstractAction {

public Map act(Redirector redirector, SourceResolver resolver, Map objectModel,

String source, Parameters parameters) throws Exception, SQLException

{

Request request = ObjectModelHelper.getRequest(objectModel);

Context context = ContextUtil.obtainContext(objectModel);

String ip = request.getRemoteAddr();

String uri = request.getSitemapURI();

int id = Integer.parseInt(uri.split("/")[1]);

EPerson loggedin = context.getCurrentUser();

TagManager tm = new TagManager(context);

//Takes care of redirecting

String fromPage = request.getHeader("Referer");

74

Object Retrieval and Student Behavior Using Tags in a Learning Context

Map sitemapParams = new HashMap();

sitemapParams.put("url", fromPage);

Item item;

DSpaceObject dso = getObjectFromUri(fromPage, context);

if (dso instanceof Item)

{

item = (Item) dso;

try

{

//Deletes the tag, if EPerson has the rights to do so.

tm.deleteTag(item.getID(), loggedin.getID(), id, ip);

}

catch(SQLException e)

{

}

}

return sitemapParams;

}

//A modified version of handleutil

private DSpaceObject getObjectFromUri(String uri, Context context)

throws SQLException

{

final String HANDLE_PREFIX = "http://matuku.hig.no/handle/";

if (!uri.startsWith(HANDLE_PREFIX))

// Dosn't start with the prefix then no match

return null;

String handle = uri.substring(HANDLE_PREFIX.length());

int firstSlash = handle.indexOf('/');

if (firstSlash < 0)

// If there is no first slash then no match

return null;

int secondSlash = handle.indexOf('/', firstSlash + 1);

if (secondSlash < 0)

// A trailing slash is not nesssary if there is nothing after

// the handle.

secondSlash = handle.length();

handle = handle.substring(0, secondSlash);

75

Object Retrieval and Student Behavior Using Tags in a Learning Context

return HandleManager.resolveToObject(context, handle);

}

}

B.1.8 HiGHandleUtil

package no.hig.xmlui.aspect.overview;

/**

* A modified version of handleUtil, that works with tags

*

* @author Christian Hochlin

*

*/

public class HiGHandleUtil {

public static final int TAG = 1;

public static Tag getTag(Map objectModel) throws SQLException

{

final String HANDLE_PREFIX = "tagbrowser/";

Request request = ObjectModelHelper.getRequest(objectModel);

String uri = request.getSitemapURI();

if (!uri.startsWith(HANDLE_PREFIX))

// Doesn't start with the prefix then no match

return null;

String handle = uri.substring(HANDLE_PREFIX.length());

Context context = ContextUtil.obtainContext(objectModel);

return (Tag)resolveToObject(context, handle, TAG);

}

private static Object resolveToObject(Context context, String handle, int type)

throws SQLException

{

Object o = new Object();

switch (type)

{

case TAG:

TagManager tm = new TagManager(context);

o = tm.getTagFromID(Integer.parseInt(handle));

76

Object Retrieval and Student Behavior Using Tags in a Learning Context

break;

default:

}

return o;

}

}

B.1.9 ItemViewer

package no.hig.xmlui.aspect.overview;

/**

* This class adds an interface for viewing tags and adding new tags to an item's page.

*

* @author Christian Hochlin

*

*/

//TODO Internationalize text

public class ItemViewer extends AbstractDSpaceTransformer {

private static final Message T_dspace_home =

message("xmlui.general.dspace_home");

private Item _item;

private EPerson _person;

public void addPageMeta(PageMeta pageMeta) throws SAXException,

WingException, UIException, SQLException, IOException,

AuthorizeException

{

}

public void addBody(Body body) throws SAXException, WingException,

UIException, SQLException, IOException, AuthorizeException

{

DSpaceObject dso = HandleUtil.obtainHandle(objectModel);

if (!(dso instanceof Item))

return;

Item item = (Item) dso;

_item = item;

Division division = body.addDivision("item-tags",null);

77

Object Retrieval and Student Behavior Using Tags in a Learning Context

division.setHead("Tags");

division.addPara("These are user generated tags for the current item "

+"(number of occurrences in parentheses)");

addTags(division);

EPerson eperson = context.getCurrentUser();

_person = eperson;

division.addPara("Even when a tag you want to add exists,"

+" don't hesitate to add it anyway.");

Division addTagsDiv = division.addInteractiveDivision(

"input-new-tag", "/addTags", "get");

List list = addTagsDiv.addList("addTag",List.TYPE_FORM);

Hidden itemHandle = addTagsDiv.addHidden("itemhandle");

itemHandle.setValue(item.getID());

//Not good practice according to dspace

//(revealing internal IDs)

list.addLabel("Add your own tags (comma separated)");

list.addItem().addText("tags");

Button button = list.addItem().addButton("button");

button.setValue("Submit");

Division rating = body.addDivision("rating");

rating.setHead("Rate this learning object");

double avgRating = RatingManager.getAverageRating(context, _item.getID());

if(avgRating != 0)

{

rating.addPara("This object has an average rating of "+avgRating);

}

Division ratingDiv = rating.addInteractiveDivision("input-new-rating",

"/rate", "post");

Hidden itemHandleRating = ratingDiv.addHidden("itemhandle");

itemHandleRating.setValue(item.getID());

Para ratingPara = ratingDiv.addPara();

Radio r = ratingPara.addRadio("rating");

if(_person != null)

{

78

Object Retrieval and Student Behavior Using Tags in a Learning Context

int personrating = RatingManager.getRatingForPerson(context,

_person.getID(), _item.getID());

addRating(r, personrating);

}

else

{

r.addOption("1", "1 - Bad");

r.addOption("2", "2");

r.addOption("3", "3");

r.addOption("4", "4");

r.addOption("5", "5 - Great");

}

Button buttonRating = ratingPara.addButton("submitRating");

buttonRating.setValue("Submit");

if(_person != null)

{

addUserTags(division);

}

}

/**

* Method to have the previously rated value selected when logged in

* users enter the item.

* @param r

* @param rating

* @throws WingException

*/

private void addRating(Radio r, int rating) throws WingException

{

//Huff

switch (rating)

{

case 1:

r.addOption(true,"1", "1 - Bad");

r.addOption("2", "2");

r.addOption("3", "3");

r.addOption("4", "4");

r.addOption("5", "5 - Great");

break;

case 2:

r.addOption("1", "1 - Bad");

r.addOption(true,"2", "2");

r.addOption("3", "3");

r.addOption("4", "4");

r.addOption("5", "5 - Great");

79

Object Retrieval and Student Behavior Using Tags in a Learning Context

break;

case 3:

r.addOption("1", "1 - Bad");

r.addOption("2", "2");

r.addOption(true,"3", "3");

r.addOption("4", "4");

r.addOption("5", "5 - Great");

break;

case 4:

r.addOption("1", "1 - Bad");

r.addOption("2", "2");

r.addOption("3", "3");

r.addOption(true,"4", "4");

r.addOption("5", "5 - Great");

break;

case 5:

r.addOption("1", "1 - Bad");

r.addOption("2", "2");

r.addOption("3", "3");

r.addOption("4", "4");

r.addOption(true,"5", "5 - Great");

break;

default:

r.addOption("1", "1 - Bad");

r.addOption("2", "2");

r.addOption("3", "3");

r.addOption("4", "4");

r.addOption("5", "5 - Great");

}

}

/**

* Fetches tags the current user has used to tag the current item from

* the TagManager-class

*

* @param Division d

* @throws WingException

*/

private void addUserTags(Division d) throws WingException, SQLException

{

TagManager tagManager = new TagManager(context);

ArrayList<Tag> tags = tagManager.getItemTagsByOwner(_item, _person);

if(tags.size() > 0)

{

80

Object Retrieval and Student Behavior Using Tags in a Learning Context

Division owntags = d.addDivision("own-tags");

owntags.addPara("Your own tags:");

Para tagList = owntags.addPara();

for(Tag tag : tags)

{

if(tag.getId() != -1)

{

tagList.addXref("/tagbrowser/"+tag.getId(),

tag.getTagName());

tagList.addFigure(

"/themes/Reference/images/confidence/3-circleslash.gif",

"/deletetag/"+tag.getId(),"primary");

}

else

{

tagList.addContent("No tags");

}

}

}

}

/**

* Fetches tags related to the current item from the TagManager-class

*

* @param Division d

* @throws WingException

*/

private void addTags(Division d) throws WingException, SQLException

{

TagManager tagManager = new TagManager(context);

ArrayList<Tag> tags = tagManager.getItemTags(_item);

Para container = d.addPara();

for(Tag tag : tags)

{

container.addXref("/tagbrowser/"+tag.getId(),

tag.getTagName()+"("+tag.getCount()+")");

if(AuthorizeManager.isAdmin(context))

{

container.addFigure(

"/themes/Reference/images/confidence/3-circleslash.gif",

"/deletetag/"+tag.getId(),"primary");

}

81

Object Retrieval and Student Behavior Using Tags in a Learning Context

}

}

}

B.1.10 Logging

package no.hig.xmlui.aspect.overview;

/**

* Action to log events. Invoked from Sitemap

*

* @author Christian Hochlin

*

*/

public class Logging extends AbstractAction {

public Map act(Redirector redirector, SourceResolver resolver, Map objectModel,

String source, Parameters parameters) throws Exception, SQLException

{

Request request = ObjectModelHelper.getRequest(objectModel);

Context context = ContextUtil.obtainContext(objectModel);

String ip = request.getRemoteAddr();

String type = parameters.getParameter("eventType");

EPerson person = context.getCurrentUser();

int personID = 0;

if(person != null)

{

personID = person.getID();

}

if(type.equals("viewtag"))

{

Tag tag = HiGHandleUtil.getTag(objectModel);

TagLog.logEvent(context, TagLog.ENTER_TAG, personID ,

tag.getId(), ip);

}

else if(type.equals("viewitem"))

{

DSpaceObject dso = HandleUtil.obtainHandle(objectModel);

if ((dso instanceof Item))

{

Item item = (Item) dso;

TagLog.logEvent(context, TagLog.ENTER_ITEM,

personID , item.getID(), ip);

82

Object Retrieval and Student Behavior Using Tags in a Learning Context

}

}

return null;

}

}

B.1.11 LogItem

package no.hig.xmlui.aspect.overview;

/**

* Represents an item in the log

*

* @author Christian Hochlin

*

*/

public class LogItem {

private int _id;

private int _user;

private int _tag;

private int _item;

private Date _date;

private int _action;

private String _ip;

private long _count;

public ArrayList<String> ipList;

public LogItem(int id, int user, int tag, int item,

Date date, int action, String ip)

{

_id = id;

_user = user;

_tag = tag;

_item = item;

_date = date;

_action = action;

_ip = ip;

}

public LogItem(Date date, long count)

{

_date = date;

_count = count;

ipList = new ArrayList<String>();

}

83

Object Retrieval and Student Behavior Using Tags in a Learning Context

public void addIP(String ip)

{

if(!ipList.contains(ip))

{

ipList.add(ip);

_count++;

}

}

public String dumpTemporalCSV()

{

int month = _date.getMonth() + 1;

String info = _date.getDate()+"/"+month+","+_count;

return info;

}

public String dumpInfo(Context context) throws SQLException

{

String info = "user: ";

EPerson person;

Tag tag;

Item item;

if(_user != 0)

{

person = EPerson.find(context, _user);

info += person.getFullName()+", ";

}

else

{

info += "Anonymous, ";

}

if(_tag != 0)

{

if(_tag == -1)

{

info += "no tag, ";

}

else

{

tag = Tag.find(context, _tag);

info += tag.getTagName()+", ";

}

}

84

Object Retrieval and Student Behavior Using Tags in a Learning Context

if(_item != 0)

{

item = Item.find(context, _item);

info += item.getName()+", ";

}

int month = _date.getMonth() + 1;

return info+"date: "+_date.getDate()+"."+month

+" - "+_date.getHours()+":"+_date.getMinutes();

}

}

B.1.12 Navigation

package no.hig.xmlui.aspect.overview;

/**

* Adds GUC-specific menu options

*

* @author Christian Hochlin

*/

public class Navigation extends AbstractDSpaceTransformer

{

public void addOptions(Options options) throws SAXException, WingException,

UIException, SQLException, IOException, AuthorizeException

{

List test = options.addList("hig");

test.setHead("HiG");

test.addItemXref(contextPath + "/tagbrowser","Tag Browser");

test.addItemXref(contextPath+"/overview", "Item Browser");

if(eperson != null)

{

test.addItemXref(contextPath + "/owntags", "Your tags");

if(eperson.getID() == 9)

{

test.addItemXref(contextPath+"/tagstatistics", "Stats");

}

}

}

}

B.1.13 Overview

package no.hig.xmlui.aspect.overview;

85

Object Retrieval and Student Behavior Using Tags in a Learning Context

/**

* A list of all the submitted papers. More convenient to navigate

* to them from here, than going into each community.

*

* @author Christian Hochlin

*/

public class Overview extends AbstractDSpaceTransformer {

Item item;

private static final Message T_dspace_home =

message("xmlui.general.dspace_home");

private static final Message T_heading =

message("no.hig.xmlui.aspect.overview.header");

public void addPageMeta(PageMeta pageMeta) throws SAXException,

WingException, UIException, SQLException, IOException,

AuthorizeException

{

pageMeta.addMetadata("title").addContent("Overview");

pageMeta.addTrailLink(contextPath + "/",T_dspace_home);

pageMeta.addTrail().addContent("Overview");

}

public void addBody(Body body) throws SAXException, WingException,

UIException, SQLException, IOException, AuthorizeException

{

Division div = body.addDivision("header");

div.setHead("Item Browser");

Request request = ObjectModelHelper.getRequest(objectModel);

String t = "This is a list of all available items";

div.addPara(t);

Collection[] collections = Collection.findAll(context);

for(Collection collection : collections)

{

if(collection.countItems() != 0)

{

ItemIterator items = collection.getAllItems();

List list = div.addList(

"list"+collection.getID());

list.setHead(collection.getName());

Item item;

do

86

Object Retrieval and Student Behavior Using Tags in a Learning Context

{

item = items.next();

list.addItemXref(contextPath+"handle/"

+item.getHandle(), item.getName());

}

while(items.hasNext());

}

}

}

private void displayItems(Division div, ItemIterator items)

throws SQLException, WingException

{

Item item = items.next();

while(items.hasNext())

{

div.addPara(item.getName());

}

}

}

B.1.14 Rate

package no.hig.xmlui.aspect.overview;

/**

* Action to rate an item.

* @author Christian Hochlin

*

*/

public class Rate extends AbstractAction {

public Map act(Redirector redirector, SourceResolver resolver, Map objectModel,

String source, Parameters parameters) throws Exception, SQLException

{

Request request = ObjectModelHelper.getRequest(objectModel);

Context context = ContextUtil.obtainContext(objectModel);

String ip = request.getRemoteAddr();

int rating = Integer.parseInt(request.getParameter("rating"));

int itemid = Integer.parseInt(request.getParameter("itemhandle"));

EPerson loggedin = context.getCurrentUser();

87

Object Retrieval and Student Behavior Using Tags in a Learning Context

if(loggedin == null)

{

RatingManager.rateItem(context, rating, itemid, ip);

TagLog.logEvent(context, TagLog.RATE_ITEM, 0 , itemid, ip);

}

else

{

RatingManager.rateItem(context, rating, itemid,

loggedin.getID(), ip);

TagLog.logEvent(context, TagLog.RATE_ITEM,

loggedin.getID() , itemid, ip);

}

//Takes care of redirecting

String fromPage = request.getHeader("Referer");

Map sitemapParams = new HashMap();

sitemapParams.put("url", fromPage);

return sitemapParams;

}

}

B.1.15 RatingManager

package no.hig.xmlui.aspect.overview;

/**

* Manager to manage adding and retrieving of ratings

*

* @author Christian Hochlin

*

*/

public class RatingManager {

public RatingManager()

{

}

public static void rateItem(Context c, int rating, int itemid,

int personid, String ip) throws SQLException

{

if(rating > 0 && rating < 6)

{

if(personid != 0)

{

TableRow tr = DatabaseManager.querySingle(c,

88

Object Retrieval and Student Behavior Using Tags in a Learning Context

"SELECT id FROM rating WHERE person = ?"

+"AND item = ?", personid, itemid);

if(tr == null)//If person hasn't rated yet

{

DatabaseManager.updateQuery(c,

"INSERT INTO rating(rating, item, " +

"person, ip, time) VALUES(?,?,?,?, now())",

rating, itemid, personid, ip);

}

else

{

DatabaseManager.updateQuery(c,

"UPDATE rating SET rating=?"

+" WHERE id = ?", rating, tr.getIntColumn("id"));

}

}

else

{

DatabaseManager.updateQuery(c,

"INSERT INTO rating(rating, item,"+

"person, ip, time) VALUES(?,?,?,?, now())",

rating, itemid, personid, ip);

}

}

}

public static void rateItem(Context c, int rating, int itemid, String ip)

throws SQLException

{

rateItem(c,rating, itemid, 0, ip);

}

public static int getRatingForPerson(Context c, int personid, int itemid)

throws SQLException

{

TableRow tr = DatabaseManager.querySingle(c, "SELECT id FROM rating

WHERE person = ? AND item = ?", personid, itemid);

if(tr == null)//If person hasn't rated yet

{

return 0;

89

Object Retrieval and Student Behavior Using Tags in a Learning Context

}

else

{

return DatabaseManager.querySingle(c, "SELECT rating FROM rating

WHERE item = ? AND person = ? ", itemid, personid)

.getIntColumn("rating");

}

}

public static double getAverageRating(Context c, int itemid) throws SQLException

{

long count = DatabaseManager.querySingle(c, "select count(id) AS no

FROM rating WHERE item = ?", itemid).getLongColumn("no");

TableRowIterator it = DatabaseManager.query(c, "SELECT rating

FROM rating WHERE item = ?", itemid);

int sum = 0;

do

{

if(it.hasNext())

{

TableRow row = it.next();

int rating = row.getIntColumn("rating");

sum += rating;

}

}

while(it.hasNext());

if(sum != 0)

{

double b = (double)sum/(double)count;

DecimalFormat twoDForm = new DecimalFormat("#.##");

return Double.valueOf(twoDForm.format(b));

}

else

{

return 0;

90

Object Retrieval and Student Behavior Using Tags in a Learning Context

}

}

}

B.1.16 Statistics

package no.hig.xmlui.aspect.overview;

/**

* "hidden" page to extract statistics

* @author Christian Hochlin

*

*/

public class Statistics extends AbstractDSpaceTransformer {

public void addPageMeta(PageMeta pageMeta) throws SAXException,

WingException, UIException, SQLException, IOException,

AuthorizeException

{

}

public void addBody(Body body) throws SAXException, WingException,

UIException, SQLException, IOException, AuthorizeException

{

EPerson eperson = context.getCurrentUser();

if(eperson != null && eperson.getID() == 9)

{

TagLog tl = new TagLog();

Division info = body.addDivision("info");

info.addPara("Tiden er en time feil");

Division itemStats = body.addDivision("itemstats");

itemStats.setHead("Item Statistics");

Division userStats = body.addDivision("userstats");

userStats.setHead("User Statistics");

Division tagStats = body.addDivision("tagstats");

tagStats.setHead("Tag Statistics");

Division itemsEntered = itemStats.addDivision("itemsEntered");

itemsEntered.setHead("Items entered");

itemsEntered.addPara("Last five entries:");

ArrayList<LogItem> itemsEnteredList =

tl.getLogItems(context, TagLog.ENTER_ITEM, 5);

for(LogItem listItem : itemsEnteredList)

91

Object Retrieval and Student Behavior Using Tags in a Learning Context

{

itemsEntered.addPara(listItem.dumpInfo(context));

}

Division tagsEntered = tagStats.addDivision("tagsEntered");

tagsEntered.setHead("Tags Entered");

tagsEntered.addPara("Last five entries");

ArrayList<LogItem> TagsEnteredList =

tl.getLogItems(context, TagLog.ENTER_TAG, 5);

for(LogItem listItem : TagsEnteredList)

{

tagsEntered.addPara(listItem.dumpInfo(context));

}

ArrayList<LogItem> list =

tl.getTemporalData(context, TagLog.ENTER_ITEM);

Division links = body.addDivision("links");

String text = "Entered items temporal\n";

for(LogItem l : list)

{

text += l.dumpTemporalCSV()+"\n";

}

links.addPara(text);

ArrayList<LogItem> list2 = tl.getTemporalTagUsage(context);

text = "Temporal Tag usage \n";

for(LogItem l : list2)

{

text += l.dumpTemporalCSV()+"\n";

}

links.addPara(text);

ArrayList<LogItem> list3 =

tl.getTemporalVisitsByIP(context, TagLog.ENTER_ITEM);

text = "Temporal Tag usage by IP \n";

for(LogItem l : list3)

92

Object Retrieval and Student Behavior Using Tags in a Learning Context

{

text += l.dumpTemporalCSV()+"\n";

}

links.addPara(text);

}

}

}

B.1.17 Tag

package no.hig.xmlui.aspect.overview;

/**

* A class that represents a tag

*

* @author Christian Hochlin

*

*/

public class Tag {

private int id; //-1 is "no tag"

private String tag;

private int count;

public Tag(String tagName, int tagID)

{

id = tagID;

tag = tagName;

count = 1;

}

public static Tag find(Context context, int id) throws SQLException

{

TableRow tr = DatabaseManager.querySingle(context, "SELECT tag "

+"FROM tag WHERE id = ?", id);

return new Tag(tr.getStringColumn("tag"), id);

}

public Tag(String tagName, int tagID, int count)

{

id = tagID;

tag = tagName;

this.count = count;

}

public String getTagName()

{

return tag;

}

93

Object Retrieval and Student Behavior Using Tags in a Learning Context

public int getCount()

{

return count;

}

public void setCount(int i)

{

count = i;

}

public int getId()

{

return id;

}

public ArrayList<Item> getTaggedItems(Context context) throws SQLException

{

TableRowIterator iterator;

if(id == -1)

{

iterator = DatabaseManager.query(context,

"SELECT item_id FROM item "+

"WHERE item_id NOT IN (SELECT itemid FROM taguse)");

}

else

{

iterator = DatabaseManager.query(context,

"SELECT Distinct(item_id) FROM taguse, tag, item " +

"WHERE" +

" item.item_id = taguse.itemid " +

" AND taguse.tagid = tag.id" +

" AND taguse.deleted = 0" +

" AND tag.id = "+id);

}

ArrayList<Item> items = new ArrayList<Item>();

do

{

TableRow row = iterator.next();

items.add(Item.find(context, row.getIntColumn("item_id")));

}

while(iterator.hasNext());

94

Object Retrieval and Student Behavior Using Tags in a Learning Context

return items;

}

}

B.1.18 TagLog

package no.hig.xmlui.aspect.overview;

/**

* Manager for the log.

*

* @author Christian Hochlin

*

*/

public class TagLog {

public static final int DELETE_TAG = 1;

public static final int ENTER_ITEM = 2;

public static final int ENTER_TAG = 3;

public static final int RATE_ITEM = 6;

private static String stmt = "INSERT INTO actions(userid, tagid, itemid,

time, action, ip) VALUES (?, ?, ?, now(), ?, ?)";

private final String selectstmt = "SELECT * FROM actions

WHERE action = ? ORDER BY time DESC";

public static void logEvent(Context context, int action, int user,

int itemOrTag, String ip) throws SQLException

{

int item = 0;

int tag = 0;

if(action == ENTER_TAG)

{

tag = itemOrTag;

}

else if(action == ENTER_ITEM || action == RATE_ITEM)

{

item = itemOrTag;

}

DatabaseManager.updateQuery(context, stmt, user, tag, item, action, ip);

}

public ArrayList<LogItem> getTemporalVisitsByIP(Context context, int action)

throws SQLException

95

Object Retrieval and Student Behavior Using Tags in a Learning Context

{

TableRowIterator it;

String selectstmt = "SELECT date_trunc('day',time) as date, ip

FROM actions WHERE action = ? ORDER BY time ASC";

it = DatabaseManager.query(context, selectstmt, action);

ArrayList<LogItem> list = new ArrayList<LogItem>();

Date currDate = new Date();

currDate.setDate(34);

int x = -1;

do

{

if(it.hasNext())

{

TableRow row = it.next();

Date nowDate = row.getDateColumn("date");

String ip = row.getStringColumn("ip");

//Hvis det er samme dato, sjekk ip

if(currDate.equals(nowDate))

{

//Hvis ip for den datoen eksisterer,

//increaser den ikke count

LogItem i = list.get(x);

i.addIP(ip);

list.add(x, i);

}else{

//Lag nytt logitem, og gi den en i count

x++;

currDate = nowDate;

LogItem item = new LogItem(nowDate,1);

item.addIP(ip);

list.add(x,item);

}

}

}

while(it.hasNext());

return list;

}

public ArrayList<LogItem> getTemporalTagUsage(Context context)

throws SQLException

{

96

Object Retrieval and Student Behavior Using Tags in a Learning Context

TableRowIterator it;

String selectstmt = "SELECT date_trunc('day', time) as date,

COUNT(*) as antall FROM taguse GROUP BY date_trunc('day', time)

ORDER BY date ASC";

it = DatabaseManager.query(context, selectstmt);

ArrayList<LogItem> list = new ArrayList<LogItem>();

do

{

if(it.hasNext())

{

TableRow row = it.next();

list.add(

new LogItem(row.getDateColumn("date"),

row.getLongColumn("antall"))

);

}

}

while(it.hasNext());

return list;

}

public ArrayList<LogItem> getTemporalData(Context context, int action)

throws SQLException

{

TableRowIterator it;

String selectstmt = "SELECT date_trunc('day', time) as date,

COUNT(*) as antall FROM actions WHERE action = ?

GROUP BY date_trunc('day', time)

ORDER BY date ASC";

it = DatabaseManager.query(context, selectstmt, action);

ArrayList<LogItem> list = new ArrayList<LogItem>();

do

{

if(it.hasNext())

{

TableRow row = it.next();

list.add(

97

Object Retrieval and Student Behavior Using Tags in a Learning Context

new LogItem(row.getDateColumn("date"),

row.getLongColumn("antall"))

);

}

}

while(it.hasNext());

return list;

}

public static void logEvent(Context context, int action, int user,

int item, int tag, String ip) throws SQLException

{

DatabaseManager.updateQuery(context, stmt, user, tag, item, action, ip);

}

public static void logEvent(Context context, int action, int user, String ip)

throws SQLException

{

DatabaseManager.updateQuery(context, stmt, user, 0, 0, action, ip);

}

public ArrayList<LogItem> getLogItems(Context context, int action, int limit)

throws SQLException

{

TableRowIterator it;

if(limit == 0)

{

it = DatabaseManager.query(context, selectstmt, action);

}

else

{

String selectstmt = "SELECT * FROM actions WHERE action = ?

ORDER BY time DESC LIMIT "+limit;

it = DatabaseManager.query(context, selectstmt, action);

}

return iteratorToList(it);

}

98

Object Retrieval and Student Behavior Using Tags in a Learning Context

public ArrayList<LogItem> getLogItems(Context context, int action)

throws SQLException

{

return getLogItems(context, action, 0);

}

private ArrayList<LogItem> iteratorToList(TableRowIterator it)

throws SQLException

{

ArrayList<LogItem> list = new ArrayList<LogItem>();

do

{

if(it.hasNext())

{

TableRow row = it.next();

list.add(new LogItem(

row.getIntColumn("actionid"),

row.getIntColumn("userid"),

row.getIntColumn("tagid"),

row.getIntColumn("itemid"),

row.getDateColumn("time"),

row.getIntColumn("action"),

row.getStringColumn("ip")

));

}

else

{

list.add(new LogItem(0,0,0,0, new Date(), 0, ""));

}

}

while(it.hasNext());

return list;

}

}

B.1.19 TagManager

package no.hig.xmlui.aspect.overview;

/**

99

Object Retrieval and Student Behavior Using Tags in a Learning Context

* This class manages everything that has to do with tags in this Dspace aspect

*

* @author Christian Hochlin

*/

public class TagManager {

private Context _context;

public TagManager(Context c)

{

_context = c;

}

/**

* Adds tags to the item from a string of comma separated values.

*

*

* @param Eperson user

* @param String itemID

* @param String tags

* @throws WingException

*

*/

public void addTagsFromCSVString(int user, int itemID, String tags, String ip)

throws SQLException, WingException

{

String[] tagArray = tags.split(",");

for(String tag : tagArray)

{

insertTag(user, itemID, tag.trim(), ip);

}

}

/**

*

* Fetches all tags.

* @return ArrayList<Tag>

*/

public ArrayList<Tag> getTags() throws SQLException

{

TableRowIterator iterator = DatabaseManager.query(_context,

100

Object Retrieval and Student Behavior Using Tags in a Learning Context

"SELECT tag.id, tag.tag FROM taguse, tag " +

"WHERE " +

" tag.id = taguse.tagid" +

" AND taguse.deleted = 0");

return iteratorToList(iterator);

}

/**

* Fetches a tag by its ID

*

* @param int id

* @return Tag

*/

public Tag getTagFromID(int id) throws SQLException

{

if(id == -1)

{

return new Tag("No_Tag", -1, 1);

}

else if(id == 0)

{

return new Tag("", -1,1);

}

else

{

TableRow tr = DatabaseManager.querySingle(_context,

"SELECT tag.id,tag.tag, count(taguse.tagid) FROM taguse, tag " +

"WHERE tag.id = ? AND tag.id = taguse.tagid " +

"GROUP BY tag.id, tag.tag", id);

if(tr == null)

{

return new Tag("", -1,1);

}

else

{

return new Tag(tr.getStringColumn("tag"),

tr.getIntColumn("id"),

(int)tr.getLongColumn("count"));

}

}

}

/**

101

Object Retrieval and Student Behavior Using Tags in a Learning Context

* Fetches tags related to the item from the database

*

* @param item

* @return ArrayList<Tag>

*/

public ArrayList<Tag> getItemTags(Item item) throws SQLException

{

TableRowIterator iterator = DatabaseManager.query(_context,

"SELECT tag.id, tag.tag FROM taguse, tag, item " +

"WHERE " +

" taguse.itemid = "+item.getID() +

" AND item.item_id = taguse.itemid" +

" AND tag.id = taguse.tagid" +

" AND taguse.deleted = 0");

return iteratorToList(iterator);

}

/**

* Fetches tags the user has tagged an item with

*

* @param item

* @return Tag[]

*/

public ArrayList<Tag> getItemTagsByOwner(Item item, EPerson person) throws SQLException

{

TableRowIterator iterator = DatabaseManager.query(_context,

"SELECT tag.id, tag.tag FROM taguse, tag, item, eperson " +

"WHERE " +

"taguse.userid = "+person.getID()+

" AND taguse.itemid = "+item.getID() +

" AND taguse.userid = eperson.eperson_id" +

" AND item.item_id = taguse.itemid " +

" AND taguse.tagid = tag.id" +

" AND taguse.deleted = 0");

return iteratorToList(iterator);

}

public ArrayList<Tag> getItemTagsByOwner(EPerson person) throws SQLException

{

TableRowIterator iterator = DatabaseManager.query(_context,

"SELECT tag.id, tag.tag FROM taguse, tag, eperson " +

102

Object Retrieval and Student Behavior Using Tags in a Learning Context

"WHERE " +

"taguse.userid = "+person.getID()+

" AND taguse.userid = eperson.eperson_id" +

" AND taguse.tagid = tag.id" +

" AND taguse.deleted = 0");

return iteratorToList(iterator);

}

/**

* Method to create a list based on an iterator.

* How Tag objects are made, may change in the future,

* so I'm keeping all related code in one place.

*

* @param TableRowIterator

* @return ArrayList<Tag>

*/

private ArrayList<Tag> iteratorToList(TableRowIterator it) throws SQLException

{

HashMap<String, Tag> hm = new HashMap();

ArrayList<Tag> list = new ArrayList<Tag>();

do

{

//Need to have an easy way to identify unique tags for our tag cloud.

//Hashmaps work better than lists for this

if(it.hasNext())

{

TableRow row = it.next();

String key = row.getStringColumn("tag");

Tag tag = new Tag(key, row.getIntColumn("id"));

if(hm.containsKey(key))

{

int count = hm.get(key).getCount();

tag.setCount(count + 1);

}

hm.put(key, tag);

}

else

{

hm.put("No Tag", new Tag("No Tag",-1));

}

}

while(it.hasNext());

103

Object Retrieval and Student Behavior Using Tags in a Learning Context

Object[] c = hm.values().toArray();

for(int x = 0;x < c.length;x++)

{

list.add((Tag) c[x]);

}

return list;

}

/**

* Adds a tag to the database

*

*/

private void insertTag(int person, int item, String tag, String ip)

{

int isPublic = isPublic(tag);

int tagID = 0;

tag = tag.toLowerCase();

try

{

//Sjekker om tagen allerede eksisterer.

//trusting UNIQUE in DB throws an error,

//preventing the remaining statements from completing

TableRow tr = DatabaseManager.querySingle(_context,

"SELECT id FROM tag WHERE tag = ?", tag);

if(tr == null)

{

DatabaseManager.updateQuery(_context,

"INSERT INTO tag(tag) VALUES (?)", tag);

TableRowIterator it = DatabaseManager.query(_context,

"SELECT currval('tag_id_seq') AS id");

tagID = (int)it.next().getLongColumn("id");

}

else

{

tagID = tr.getIntColumn("id");

}

TableRow tr2 = DatabaseManager.querySingle(_context,

104

Object Retrieval and Student Behavior Using Tags in a Learning Context

"SELECT tagid FROM taguse " +

"WHERE tagid = ? AND itemid = ? AND userid = ?" +

" AND deleted = 1", tagID, item, person);

if(tr2 != null)

{

//Tag is already there. Undelete it.

DatabaseManager.updateQuery(_context,

"UPDATE tagUse SET deleted=0" +

" WHERE itemid = ? AND tagid = ?" +

" AND userid = ?", item, tagID, person);

}

else

{

//Tag doesn't exist. Create it.

DatabaseManager.updateQuery(_context,

"INSERT INTO tagUse(itemid,tagid,userid,time,

visibility, deleted, ip)" +

" VALUES (?, ?, ?, now(), ?, 0, ?)", item,

tagID, person, isPublic, ip);

}

}catch(SQLException e)

{

}

}

/**

* Method to determine if a tag is public or not.

*

* @return true, false

*/

private int isPublic(String tag)

{

return tag.startsWith("*") ? 0 : 1;

}

/**

*

* Deletes a tag, checking if the current user id allowed to delete the tag.

*

*/

public void deleteTag(int itemID, int personID, int tagID, String ip)

throws SQLException

{

105

Object Retrieval and Student Behavior Using Tags in a Learning Context

if(AuthorizeManager.isAdmin(_context))

{

DatabaseManager.updateQuery(_context,

"UPDATE tagUse SET deleted=1" +

" WHERE itemid = ? AND tagid = ?", itemID, tagID);

}

else

{

DatabaseManager.updateQuery(_context,

"UPDATE tagUse SET deleted=1" +

" WHERE itemid = ? AND tagid = ? AND userid = ?",

itemID, tagID, personID);

}

TagLog.logEvent(_context, TagLog.DELETE_TAG, personID, itemID, tagID, ip);

}

}

B.2 Retrieval Algorithms

B.2.1 HITS

package HITS;

public class ModifiedHITS {

private HashMap<Integer, Document> dokumenter;

private HashMap<Integer, Tag> tagger;

public static int HIGH_WEIGHT = 5;

public static int LOW_WEIGHT = 1;

public static int MEDIUM_WEIGHT = 3;

private Matrix hubWeight;

private Matrix authWeight;

private ArrayList<Integer> sourceTags;

private ArrayList<Integer> extTags;

private int iterateTimes = 2;

public ModifiedHITS(HashMap<Integer, Document> docs, HashMap<Integer, Tag> tags)

{

106

Object Retrieval and Student Behavior Using Tags in a Learning Context

dokumenter = docs;

tagger = tags;

authWeight = new Matrix(docs.size(), 1);

hubWeight = new Matrix(tags.size(), 1);

}

public HashMap<Integer, Integer> findRelatedDocuments(int id)

{

Document d = dokumenter.get(id);

HashMap<Integer, Integer> result = new HashMap<Integer, Integer>();

sourceTags = new ArrayList<Integer>();

//Preload sourceTags-array with IDs

for(int x = 0;x < d.getNumberOfTags();x++)

{

sourceTags.add(d.getTag(x).getId());

}

for(int x = 0;x < d.getNumberOfTags();x++)

{

//For hver tag i dokumentet

Matrix weight = getAuthorityVector(d.getTag(x));

result = addWeightVector(weight, result);

}

return result;

}

/**

* Adds the supplied weight to an existing hashmap of weights.

* @param weight

* @param target

* @return

*/

private HashMap<Integer, Integer> addWeightVector(Matrix weight,

HashMap<Integer, Integer> target)

{

for(int x = 0;x < weight.documentSize;x++)

{

107

Object Retrieval and Student Behavior Using Tags in a Learning Context

int docID = weight.getRowID(x);

int newValue = weight.getValue(x, 0);

if(target.containsKey(docID))

{

int value = target.get(docID);

value += newValue;

target.put(docID, value);

}

else

{

target.put(docID, newValue);

}

}

return target;

}

/**

* This method generates a list of tag IDs for use when weighting, based on a given set.

* @return ArrayList<Integer>

*/

private ArrayList<Integer> generateListOfTagsByID(HashMap<Integer, Document> set)

{

ArrayList<Integer> tagList = new ArrayList<Integer>();

Iterator it = set.entrySet().iterator();

while (it.hasNext()) {

Map.Entry<Integer,Document> pairs = (Map.Entry<Integer, Document>)it.next();

Document dok = pairs.getValue();

//Preload sourceTags-array with IDs

for(int x = 0;x < dok.getNumberOfTags();x++)

{

if(!tagList.contains(dok.getTag(x).getId()))

tagList.add(dok.getTag(x).getId());

}

}

return tagList;

}

/**

* Gets the authority vector from the supplied tag

108

Object Retrieval and Student Behavior Using Tags in a Learning Context

* @param tag

* @return

*/

private Matrix getAuthorityVector(Tag tag)

{

//Get Root set based on given tag

HashMap<Integer, Document> set1 = getListOfDocumentsWith(tag);

HashMap<Integer, Document> extendedSet = new HashMap<Integer, Document>();

//Set of all tags related to documents in extendedSet

ArrayList<Integer> tagSet = new ArrayList<Integer>();

//Iterate over each document in set 1

//to get all related tags and documents

Iterator it = set1.entrySet().iterator();

while (it.hasNext()) {

Map.Entry<Integer,Document> pairs =

(Map.Entry<Integer, Document>)it.next();

Document dok = pairs.getValue();

//Processing documents

for(int x = 0;x < dok.getNumberOfTags();x++)

{

//Checks if tag already exists

if(!tagSet.contains(dok.getTag(x).getId()))

tagSet.add(dok.getTag(x).getId());

//Add all documents related to current tag

extendedSet =

getListOfDocumentsWith(dok.getTag(x), extendedSet);

}

}

Matrix matrix = createMatrix(extendedSet, tagSet);

Matrix initWeight = createInitialWeightVector(extendedSet, tagSet);

Matrix result = iterativeWeightComputation(matrix, initWeight);

return result;

109

Object Retrieval and Student Behavior Using Tags in a Learning Context

}

/**

* Creates the initial weight vector.

*

* @return Matrix

*/

private Matrix createInitialWeightVector(HashMap<Integer, Document> extendedSet,

ArrayList<Integer> tagSet)

{

//Create initial weight array

Matrix initWeight = new Matrix(extendedSet.size() + tagSet.size(), 1);

initWeight.setDocumentSize(extendedSet.size());

initWeight.setTagSize(tagSet.size());

int[] lowWeightRow = {LOW_WEIGHT};

int[] highWeightRow = {HIGH_WEIGHT};

int[] zeroWeightRow = {0};

Iterator it2 = extendedSet.entrySet().iterator();

while (it2.hasNext()) {

Map.Entry<Integer,Document> pairs = (Map.Entry<Integer, Document>)it2.next();

Document dok = pairs.getValue();

initWeight.addRow(lowWeightRow, Matrix.DOCUMENT, dok.getId());

}

//Add differing weight for tags in different "sets"

for(int tagID : tagSet)

{

if(tagID == 9)

{

//Quick fix for a "tag" which wasn't possible

//to remove from all the documents in the blacklist

initWeight.addRow(zeroWeightRow, Matrix.TAG, tagID);

}

else if(sourceTags.contains(tagID))

{

//Give greatest weight to this tag

initWeight.addRow(highWeightRow, Matrix.TAG, tagID);

}

else

{

110

Object Retrieval and Student Behavior Using Tags in a Learning Context

//Give this low weight

initWeight.addRow(lowWeightRow, Matrix.TAG, tagID);

}

}

return initWeight;

}

/**

* Computes the hub and Authority weights

* @param matrix

* @return

*/

private Matrix iterativeWeightComputation(Matrix matrix, Matrix weight)

{

Matrix result = new Matrix(weight);

hubWeight = new Matrix(weight);

for(int x = 0;x < iterateTimes;x++)

{

Matrix matrixT = matrix.transpose();

result = matrixT.multiplyBy(hubWeight);

result.normalize();

hubWeight = new Matrix(result.getRows(), 1);

hubWeight.setDocumentSize(result.documentSize);

hubWeight.setTagSize(result.tagSize);

hubWeight = matrix.multiplyBy(result);

hubWeight.normalize();

}

return result;

}

111

Object Retrieval and Student Behavior Using Tags in a Learning Context

/**

* Creates a HITS matrix based on the supplied tags and documents

* @param docSet

* @param tagSet

* @return

*/

private Matrix createMatrix(HashMap<Integer, Document> docSet,

ArrayList<Integer> tagSet)

{

//Lag ny matrise i korrekt str

int size = docSet.size() + tagSet.size();

Matrix matrix = new Matrix(size, docSet.size(), tagSet.size());

//Fill document cluster

matrix.fillDocumentCluster(docSet);

//Fill tag Cluster

for (int tagId : tagSet){

int[] row = new int[size];

Arrays.fill(row, 0);

int x = 0;

Iterator it1 = docSet.entrySet().iterator();

//iterate horizontally

while (it1.hasNext()) {

Map.Entry<Integer,Document> pairs2 =

(Map.Entry<Integer, Document>)it1.next();

Document dok = pairs2.getValue();

if(dok.hasTagById(tagId))

{

row[x] = 1;

}

x++;

}

matrix.addRow(row,Matrix.TAG,tagId);

}

return matrix;

}

112

Object Retrieval and Student Behavior Using Tags in a Learning Context

/**

* Gets all documents containing the given tag and appends

* them to the supplied list.

*

* @param tag, list

* @return Array of document IDs

*/

private HashMap<Integer, Document> getListOfDocumentsWith(Tag tag,

HashMap<Integer, Document> map)

{

Iterator it = dokumenter.entrySet().iterator();

//iterer horisontalt

int count = 0;

while (it.hasNext()) {

Map.Entry<Integer,Document> pairs =

(Map.Entry<Integer, Document>)it.next();

Document dok = pairs.getValue();

int x = 0;

while(x<dok.getNumberOfTags())

{

if(tag.getId() == dok.getTag(x).getId())

{

//If it doesn't exist, add the document

if(!map.containsKey(dok.getId()))

{

count++;

map.put(dok.getId(), dok);

}

break;

}

else

{

x++;

}

}

}

return map;

113

Object Retrieval and Student Behavior Using Tags in a Learning Context

}

/**

* Gets all documents containing the given tag.

*

* @param tag

* @return Map of documents with their id as key

*/

private HashMap<Integer, Document> getListOfDocumentsWith(Tag tag)

{

HashMap<Integer, Document> map = new HashMap<Integer, Document>();

return getListOfDocumentsWith(tag, map);

}

}

B.2.2 Matrix

Custom class to represent a matrix, with some convenience methods for use by hits

package HITS;

public class Matrix {

private int[][] matrix;

private int rows;

private int columns;

private int lastInsertedRow;

private int lastInsertedColumn;

public int documentSize;

public int tagSize;

public int[] documentID;

public int[] tagID;

public static final int DOCUMENT = 1;

public static final int TAG = 2;

/**

* Clone constructor

* @param Matrix

*/

public Matrix(Matrix m) {

matrix = new int[m.getRows()][m.getColumns()];

for(int x = 0;x < m.getRows();x++)

{

114

Object Retrieval and Student Behavior Using Tags in a Learning Context

for(int y = 0;y < m.getColumns();y++)

{

matrix[x][y] = m.getValue(x, y);

}

}

this.rows = m.rows;

this.columns = m.columns;

this.lastInsertedColumn = m.lastInsertedColumn;

this.lastInsertedRow = m.lastInsertedRow;

this.documentSize = m.documentSize;

this.tagSize = m.tagSize;

documentID = new int[m.documentSize];

tagID = new int[m.tagSize];

for(int x = 0;x < m.tagSize;x++)

{

tagID[x] = m.tagID[x];

}

for(int y = 0;y < m.documentSize;y++)

{

documentID[y] = m.documentID[y];

}

}

/**

* Normalizes the hub and authority-values.

* Should only be used on weight-matrices

*/

public void normalize()

{

if(columns > 1)

throw new RuntimeException("Not a weight Matrix");

int x = 0;

double authSum = 0;

double hubSum = 0;

while(x < documentSize)

{

authSum += this.getValue(x, 0);

115

Object Retrieval and Student Behavior Using Tags in a Learning Context

x++;

}

while(x < tagSize + documentSize)

{

hubSum += this.getValue(x, 0);

x++;

}

hubSum = Math.sqrt(hubSum);

authSum = Math.sqrt(authSum);

x = 0;

while(x < documentSize)

{

double value = (this.getValue(x, 0)/authSum)*10;

this.insertValue(x, 0, (int) value);

x++;

}

while(x < tagSize + documentSize)

{

double value = (this.getValue(x, 0)/hubSum)*10;

this.insertValue(x, 0, (int)value);

x++;

}

}

/**

* Creates a n-by-n matrix, and sets number of documents and tags

* @param n

* @param documents

* @param tags

*/

public Matrix(int n, int documents, int tags)

{

this(n,n);

tagSize = tags;

documentSize = documents;

documentID = new int[documents];

tagID = new int[tags];

}

public Matrix(int n, int m)

116

Object Retrieval and Student Behavior Using Tags in a Learning Context

{

lastInsertedRow = 0;

lastInsertedColumn = 0;

//Creates an n-by-m matrix of zeros

matrix = new int[n][m];

this.rows = n;

this.columns = m;

for(int x = 0;x < n;x++)

{

for(int y = 0;y<m;y++)

{

this.matrix[x][y] = 0;

}

}

}

/**

* Convenience method to fill the document part with zeros

*/

public void fillDocumentCluster(HashMap<Integer, Document> docs)

{

if(docs.size() != documentSize)

throw new RuntimeException("Document sizes do not match");

Iterator it = docs.entrySet().iterator();

while (it.hasNext()) {

Map.Entry<Integer,Document> pairs =

(Map.Entry<Integer, Document>)it.next();

Document dok = pairs.getValue();

int[] row = new int[columns];

Arrays.fill(row, 0);

addRow(row, DOCUMENT, dok.getId());

}

}

public void setTagSize(int t)

{

tagSize = t;

tagID = new int[t];

}

public void setDocumentSize(int d)

{

documentSize = d;

documentID = new int[d];

117

Object Retrieval and Student Behavior Using Tags in a Learning Context

}

public int[] HubWeight(int size)

{

if(columns != 1)

throw new RuntimeException("Invalid matrix size");

int initPos = rows - size;

int[] hubWeight = new int[size];

for(int x = 0;x < size;x++)

{

hubWeight[x] = matrix[initPos + x][0];

}

return hubWeight;

}

public int[] AuthorityWeight(int size)

{

if(columns != 1)

throw new RuntimeException("Invalid matrix size");

int[] authorityWeight = new int[size];

for(int x = 0;x < size;x++)

{

authorityWeight[x] = matrix[x][0];

}

return authorityWeight;

}

public int getRows()

{

return rows;

}

public int getColumns()

{

return columns;

}

public int getValue(int row,int column)

{

return matrix[row][column];

}

118

Object Retrieval and Student Behavior Using Tags in a Learning Context

public void insertValue(int row, int column, int value)

{

matrix[row][column] = value;

}

private void incrementLastInsertedRow()

{

if(lastInsertedRow >= rows)

throw new IndexOutOfBoundsException("Can't add more rows.");

lastInsertedRow++;

}

private void incrementLastInsertedColumn()

{

if(lastInsertedRow >= columns)

throw new IndexOutOfBoundsException("Can't add more columns.");

lastInsertedColumn++;

}

public int getRowID(int row)

{

if(row >= documentSize)

{

System.out.println(row);

return tagID[row-documentSize];

}

else if(row < documentSize)

{

return documentID[row];

}

else

throw new IndexOutOfBoundsException("Position out of bounds");

}

private void setTagID(int position, int id)

{

tagID[position-documentSize] = id;

}

private void setDocumentID(int position, int id)

{

documentID[position] = id;

119

Object Retrieval and Student Behavior Using Tags in a Learning Context

}

public void addRow(int[] row, int type, int typeID)

{

addRow(lastInsertedRow, row, type, typeID);

incrementLastInsertedRow();

}

public void addRow(int position, int[] row, int type, int typeID)

{

//Preserves the id related to each row

if(type == TAG)

{

setTagID(position, typeID);

}

else if(type == DOCUMENT)

{

setDocumentID(position, typeID);

}

else

{

throw new IllegalArgumentException(

"Type needs to refer to either tag or document");

}

//If the row differs from the matrix size

if(columns != row.length)

throw new IllegalArgumentException(

"The supplied length of the row is not "+

"compatible with the matrix size");

//If position is out of bounds

if(position < 0 || position > rows -1)

throw new IndexOutOfBoundsException("Position out of bounds");

for(int x = 0;x < columns;x++)

{

matrix[position][x] = row[x];

}

}

public Matrix transpose()

{

120

Object Retrieval and Student Behavior Using Tags in a Learning Context

Matrix transposedMatrix = new Matrix(columns,rows);

for(int x = 0;x < columns;x++)

{

for(int y = 0;y < rows;y++)

{

transposedMatrix.insertValue(x, y, getValue(y,x));

}

}

return transposedMatrix;

}

public Matrix multiplyBy(Matrix matrix)

{

if(matrix.getRows() != getColumns())

throw new RuntimeException("Invalid matrix sizes");

Matrix newMatrix = new Matrix(matrix);

for(int x = 0;x < getRows();x++)

{

for(int y = 0;y < matrix.getColumns();y++)

{

int value = 0;

for(int z = 0;z < getColumns();z++)

{

value += getValue(x,z) * matrix.getValue(z,y);

}

newMatrix.insertValue(x, y, value);

}

}

return newMatrix;

}

public String toString()

{

for(int x = 0;x < rows;x++)

{

String s = getRowID(x)+"";

if(s.length() == 1)

121

Object Retrieval and Student Behavior Using Tags in a Learning Context

{

System.out.print(getRowID(x)+" ");

}

else if(s.length() == 2)

{

System.out.print(getRowID(x)+" ");

}

else

{

System.out.print(getRowID(x)+" ");

}

for(int y = 0;y<columns;y++)

{

System.out.print(this.matrix[x][y]+" ");

}

System.out.println(" ");

}

return "";

}

}

B.2.3 Vector Space

package plain;

public class VectorScoring {

private VectorWrapper vw;

private HashMap<Integer, Document> docList;

public VectorScoring(HashMap<String, Tag> tagList, HashMap<Integer, Document> docList)

{

vw = new VectorWrapper(tagList, docList.size());

this.docList = docList;

}

public HashMap<Document, Double> getRelevantDocuments(Document d)

{

Vector<Double> queryVector = vw.createWeightVector(d);

122

Object Retrieval and Student Behavior Using Tags in a Learning Context

HashMap<Document, Double> scoreMap = new HashMap<Document, Double>();

Set<Map.Entry<Integer, Document>> postingSet = docList.entrySet();

for (Map.Entry<Integer, Document> entry : postingSet) {

Document doc = entry.getValue();

double score = computeScore(queryVector,

vw.createWeightVector(doc));

scoreMap.put(doc, score);

}

return scoreMap;

}

private double computeScore(Vector<Double> query, Vector<Double> D)

{

double value = 0.0;

double qAbs = getAbsoluteValue(query);

double tAbs = getAbsoluteValue(D);

for(int x = 0;x < query.size();x++)

{

value += query.get(x)*D.get(x);

}

double r = tAbs*qAbs;

return value/r;

}

private double getAbsoluteValue(Vector<Double> v)

{

double qAbs = 0.0;

for(Double t : v)

{

qAbs += t*t;

}

return Math.sqrt(qAbs);

}

}

B.2.4 Vector Wrapper

Convenience class to create a vector for Vector Space

package plain;

public class VectorWrapper {

private HashMap<String, Tag> tagList;

private int collectionSize;

123

Object Retrieval and Student Behavior Using Tags in a Learning Context

public VectorWrapper(HashMap<String, Tag> tagList, int collectionSize)

{

this.tagList = tagList;

this.collectionSize = collectionSize;

}

/**

* Create a vector with weights, based on the supplied Document d

* @param d

* @return Vector<Double>

*/

public Vector<Double> createWeightVector(Document d)

{

Vector<Double> queryVector = new Vector<Double>();

queryVector.ensureCapacity(collectionSize);

Set<Map.Entry<String, Tag>> postingSet = tagList.entrySet();

for (Map.Entry<String, Tag> entry : postingSet) {

Tag tag = entry.getValue();

//W = tf * log (N/df)

double N = (double)collectionSize;

double termFrequency = (double)d.getTagFrequency(tag.getId());

double documentFrequency = (double)tag.getCount();

double weight = termFrequency*Math.log10(N/documentFrequency);

queryVector.add(weight);

}

return queryVector;

}

}

B.2.5 Document

package reading;

/**

* Class representing a Document

*

* @author Christian Hochlin

*

*/

124

Object Retrieval and Student Behavior Using Tags in a Learning Context

public class Document implements Serializable {

private int id;

private String name;

private ArrayList<Tag> tags;

private HashMap<Integer, Integer> tagFrequency;

public int getTagFrequency(int id)

{

if(tagFrequency.get(id) == null)

{

return 0;

}

else

{

return tagFrequency.get(id);

}

}

public Document(int id, String name)

{

this.id = id;

this.name = name;

tags = new ArrayList<Tag>();

tagFrequency = new HashMap<Integer, Integer>();

}

public boolean hasTagById(int tagid)

{

for(Tag tagIterate : tags)

{

if(tagIterate.getId() == tagid)

{

return true;

}

}

return false;

}

public boolean hasTag(Tag tag)

{

return hasTagById(tag.getId());

}

public void addTag(Tag tag)

{

125

Object Retrieval and Student Behavior Using Tags in a Learning Context

if(hasTag(tag))

{

int count = tagFrequency.get(tag.getId());

count++;

//If exists, increase count

tagFrequency.put(tag.getId(), count);

}

else

{

tags.add(tag);

tagFrequency.put(tag.getId(), 1);

}

}

public int getId()

{

return id;

}

public String getName()

{

return name;

}

public ArrayList<Tag> getTags()

{

return tags;

}

public Tag getTag(int pos)

{

return tags.get(pos);

}

public int getNumberOfTags()

{

return tags.size();

}

}

B.2.6 Tag

package reading;

/**

* Class representing a tag

*

126

Object Retrieval and Student Behavior Using Tags in a Learning Context

* @author Christian Hochlin

*

*/

public class Tag implements Serializable {

private int id;

private String name;

private boolean added;

//Documents containing tag

private int count;

public Tag(int id, String name)

{

this.id = id;

this.name = name;

this.count = 1;

}

public void increaseCount()

{

count++;

}

public int getCount()

{

return count;

}

public String getName()

{

return name;

}

public int getId()

{

return id;

}

public void setAdded(boolean newValue)

{

added = newValue;

}

public boolean isAdded()

{

return added;

}

}

127

Object Retrieval and Student Behavior Using Tags in a Learning Context

B.2.7 Index

package reading;

/**

* Keeps an index of all terms. Generates new ones if an index doesn't exist.

*

* @author Christian Hochlin

*/

public class Index {

public static final String DBPATH = "test";

public static final String ANN_PATH = DBPATH + "/annotations_complete_eng";

public static final String SEPERATOR_REGEXP = "\\s++|\\.|\\,|\\;|\\:|\\'|\\\"|\\`|\\'";

//List of stop words

private static final Set<String> BLACKLIST = new HashSet<String>(

Arrays.asList(new String[] { "a", "about", "above", "above", "across", "after", "afterwards"

, "again", "against", "all", "almost", "alone", "along", "already", "also","although"

,"always","am","among", "amongst", "amoungst", "amount", "an", "and", "another", "any"

,"anyhow","anyone","anything","anyway", "anywhere", "are", "around", "as", "at", "back"

,"be","became", "because","become","becomes", "becoming", "been", "before", "beforehand"

, "behind", "being", "below", "beside", "besides", "between", "beyond", "bill", "both"

, "bottom","but", "by", "call", "can", "cannot", "cant", "co", "con", "could", "couldnt"

, "cry", "de", "describe", "detail", "do", "done", "down", "due", "during", "each", "eg"

, "eight", "either", "eleven","else", "elsewhere", "empty", "enough", "etc", "even", "ever"

, "every", "everyone", "everything", "everywhere", "except", "few", "fifteen", "fify", "fill"

, "find", "fire", "first", "five", "for", "former", "formerly", "forty", "found", "four", "from"

, "front", "full", "further", "get", "give", "go", "had", "has", "hasnt", "have", "he", "hence"

, "her", "here", "hereafter", "hereby", "herein", "hereupon", "hers", "herself", "him", "himself"

, "his", "how", "however", "hundred", "ie", "if", "in", "inc", "indeed", "interest", "into"

, "is", "it", "its", "itself", "keep", "last", "latter", "latterly", "least", "less", "ltd"

, "made", "many", "may", "me", "meanwhile", "might", "mill", "mine", "more", "moreover"

, "most", "mostly", "move", "much", "must", "my", "myself", "name", "namely", "neither"

, "never", "nevertheless", "next", "nine", "no", "nobody", "none", "noone", "nor", "not"

, "nothing", "now", "nowhere", "of", "off", "often", "on", "once", "one", "only", "onto"

, "or", "other", "others", "otherwise", "our", "ours", "ourselves", "out", "over", "own"

,"part", "per", "perhaps", "please", "put", "rather", "re", "same", "see", "seem", "seemed"

, "seeming", "seems", "serious", "several", "she", "should", "show", "side", "since"

, "sincere", "six", "sixty", "so", "some", "somehow", "someone", "something", "sometime"

, "sometimes", "somewhere", "still", "such", "system", "take", "ten", "than", "that"

, "the", "their", "them", "themselves", "then", "thence", "there", "thereafter", "thereby"

, "therefore", "therein", "thereupon", "these", "they", "thickv", "thin", "third", "this"

, "those", "though", "three", "through", "throughout", "thru", "thus", "to", "together"

, "too", "top", "toward", "towards", "twelve", "twenty", "two", "un", "under", "until"

, "up", "upon", "us", "very", "via", "was", "we", "well", "were", "what", "whatever"

128

Object Retrieval and Student Behavior Using Tags in a Learning Context

, "when", "whence", "whenever", "where", "whereafter", "whereas", "whereby", "wherein"

, "whereupon", "wherever", "whether", "which", "while", "whither", "who", "whoever"

, "whole", "whom", "whose", "why", "will", "with", "within", "without", "would", "yet"

, "you", "your", "yours", "yourself", "yourselves", "the"}));

protected HashMap<String, Tag> tagList;

protected HashMap<Integer, Document> docList;

protected ArrayList<String[]> entries; // [location, content]

public void printIndex() {

Set<Map.Entry<String, Tag>> postingSet = tagList.entrySet();

for (Map.Entry<String, Tag> entry : postingSet) {

System.out.println(entry.getValue().getName());

}

}

public Index() {

tagList = new HashMap<String, Tag>();

docList = new HashMap<Integer, Document>();

if (!indexExists()) {

DirReader leser = new DirReader();

entries = leser.harvestFileContent(ANN_PATH, true);

generateIndex();

saveIndex();

} else {

loadIndex();

}

}

public HashMap<String, Tag> getTagList()

{

return this.tagList;

}

public HashMap<Integer, Document> getDocumentList()

{

return this.docList;

}

private void generateIndex() {

129

Object Retrieval and Student Behavior Using Tags in a Learning Context

int index = 0;

int innerIndex = 0;

for (String[] text : entries) {

String[] words1 = text[1].toLowerCase().split(

SEPERATOR_REGEXP);

Document doc = new Document(index, text[0]);

docList.put(index, doc);

for (String word : words1) {

if (!BLACKLIST.contains(word)) {

if (!tagList.containsKey(word)) {

Tag tag = new Tag(innerIndex, word);

tagList.put(word, tag);

doc.addTag(tag);

innerIndex++;

//Increase innerindex when new tags are added,

//to push id up one.

}

else

{

Tag t = tagList.get(word);

//Increases count of tag only on first occurrence.

//jmf bilde 14 i lecture 3, indexing

if(!doc.hasTagById(t.getId()))

{

t.increaseCount();

tagList.put(word, t);

doc.addTag(tagList.get(word));

}

else

{

//Increase count when tag already exists

doc.addTag(tagList.get(word));

}

}

}

}

++index;

}

130

Object Retrieval and Student Behavior Using Tags in a Learning Context

}

private boolean indexExists() {

return new File("index.dat").exists()

&& new File("indexTags.dat").exists();

}

@SuppressWarnings("unchecked")

private void loadIndex() {

FileInputStream fis = null;

ObjectInputStream in = null;

try {

fis = new FileInputStream("indexTags.dat");

in = new ObjectInputStream(fis);

tagList = (HashMap<String, Tag>) in.readObject();

in.close();

fis = new FileInputStream("index.dat");

in = new ObjectInputStream(fis);

docList = (HashMap<Integer, Document>) in.readObject();

in.close();

} catch (IOException ex) {

ex.printStackTrace();

} catch (ClassNotFoundException ex) {

ex.printStackTrace();

}

}

private void saveIndex() {

try {

FileOutputStream fout = new FileOutputStream("index.dat");

ObjectOutputStream oos = new ObjectOutputStream(fout);

oos.writeObject(docList);

oos.close();

FileOutputStream fout2 = new FileOutputStream("indexTags.dat");

ObjectOutputStream oos2 = new ObjectOutputStream(fout2);

oos2.writeObject(tagList);

oos2.close();

} catch (Exception e) {

e.printStackTrace();

}

131

Object Retrieval and Student Behavior Using Tags in a Learning Context

}

}

B.2.8 Reader

A class for reading data from the test set.

package reading;

public class DirReader {

public static final int ANN_ARR_DOCNO = 0;

public static final int ANN_ARR_TEXTDATA = 1;

public static final int ANN_ARR_IMAGEFILE = 2;

public static final String ANN_ENCODING = "ISO-8859-15";

public static final String ANN_FILE_POSTFIX = ".eng";

public static final String ANN_FILE_PREFIX = "annotations";

public static final String IMAGE_FILE_POSTFIX = ".jpg";

public static final String IMAGE_FILE_PREFIX = "images";

protected ArrayList<String[]> textArray;

protected HashMap<String, String> textMap;

ArrayList<String[]> array;

Document d;

public DirReader() {

textArray = new ArrayList<String[]>();

array = new ArrayList<String[]>();

}

/**

* Reads a directory, and returns all content from files.

*

* @param directory

* The directory to access.

* @param recursive

* Indicates if the method should traverse all sub-directories.

*

* @return An ArrayList<String> with the content of each file as entries.

132

Object Retrieval and Student Behavior Using Tags in a Learning Context

*/

public ArrayList<String[]> harvestFileContent(String directory,

boolean recursive) {

File myDir = new File(directory);

File[] files = null;

if (myDir.exists() && myDir.isDirectory()) {

files = myDir.listFiles();

readDir(files, recursive);

} else {

System.out.println("Directory location not valid");

}

return textArray;

}

/**

* Creates an Image from a path, and passes it to the Histogram-class to

* create histogram

*

* @param subPath

* , string in the form of "00/25"

*

*

*/

private void processImage(String subPath) {

String path = Index.DBPATH + "/" + subPath;

BufferedImage image = null;

try {

File file = new File(path);

image = ImageIO.read(file);

} catch (IOException e) {

System.out.println("Could not read image: " + path);

e.printStackTrace();

}

}

private void readDir(File[] files, boolean recursive) {

133

Object Retrieval and Student Behavior Using Tags in a Learning Context

for (File file : files) {

// Read all files in the list that are not

//directories and has the right prefix.

if (file.exists() && file.isFile()

&& file.getName().endsWith(ANN_FILE_POSTFIX)) {

String[] annotation = parseXml(file);

processImage(annotation[ANN_ARR_IMAGEFILE]);

textArray.add(annotation);

}

// Otherwise descend into the next directory.

else if (file.exists() && file.isDirectory() && recursive) {

File[] subDir = file.listFiles();

readDir(subDir, true);

}

}

}

private String[] parseXml(File xmlAsText) {

String[] ret = null;

XMLInputFactory inputFactory = XMLInputFactory.newInstance();

try {

FileInputStream inputStream = new FileInputStream(xmlAsText);

XMLStreamReader reader = inputFactory.createXMLStreamReader(

inputStream, ANN_ENCODING);

ret = new String[3];

StringBuilder data = new StringBuilder();

int event = 0;

while (reader.hasNext()) {

event = reader.next();

if (event == XMLStreamConstants.START_ELEMENT) {

String elementName = reader.getName().toString();

if (elementName.equalsIgnoreCase("DOCNO")) {

ret[ANN_ARR_DOCNO] = reader.getElementText();

} else if (elementName.equalsIgnoreCase("TITLE")) {

data.append(reader.getElementText());

} else if (elementName.equalsIgnoreCase("DESCRIPTION")

134

Object Retrieval and Student Behavior Using Tags in a Learning Context

|| elementName.equalsIgnoreCase("LOCATION")

|| elementName.equalsIgnoreCase("NOTES")) {

data.append(" " + reader.getElementText());

} else if (elementName.equalsIgnoreCase("IMAGE")) {

ret[ANN_ARR_IMAGEFILE] = reader.getElementText();

}

}

}

ret[ANN_ARR_TEXTDATA] = data.toString();

} catch (FileNotFoundException e) {

System.out.println("Something went wrong, file not found.");

e.printStackTrace();

} catch (XMLStreamException e) {

System.out.println("Problem reading the XML file: "

+ xmlAsText.getName());

e.printStackTrace();

}

return ret;

}

private String readFile(File file) {

String textInFile = null;

StringBuffer contents = new StringBuffer();

BufferedReader reader = null;

try {

reader = new BufferedReader(new FileReader(file));

while ((textInFile = reader.readLine()) != null) {

contents.append(textInFile);

}

} catch (FileNotFoundException e) {

e.printStackTrace();

} catch (IOException e) {

e.printStackTrace();

} finally {

try {

if (reader != null) {

reader.close();

}

135

Object Retrieval and Student Behavior Using Tags in a Learning Context

} catch (IOException e) {

e.printStackTrace();

}

}

return contents.toString();

}

}

B.2.9 Main

The main Method of the application

package HITS;

public class main {

/**

* @param args

* @throws FileNotFoundException

*/

static HashMap<String, Tag> tagger;

static HashMap<Integer, Document> dokumenter;

public static void main(String[] args) throws FileNotFoundException {

reading.Index indexer = new reading.Index();

tagger = indexer.getTagList();

dokumenter = indexer.getDocumentList();

HashMap<Integer, Tag> tags = new HashMap<Integer, Tag>();

int x = 0;

Set<Map.Entry<String, Tag>> postingSet = tagger.entrySet();

for (Map.Entry<String, Tag> entry : postingSet) {

tags.put(x, entry.getValue());

x++;

}

//int dokumentid = 1200; pingviner til Kim

int dokumentid = 632;//Kaktuser

Document d = dokumenter.get(dokumentid);

System.out.println(d.getName());

for(Tag t : d.getTags())

{

136

Object Retrieval and Student Behavior Using Tags in a Learning Context

System.out.println(t.getId()+" "+t.getName());

}

long start = System.currentTimeMillis();

VectorScoring vs = new VectorScoring(tagger, dokumenter);

HashMap<Document, Double> scores =

vs.getRelevantDocuments(dokumenter.get(dokumentid));

ModifiedHITS mHITS = new ModifiedHITS(dokumenter, tags);

//HashMap<Integer, Integer> scores =

// mHITS.findRelatedDocuments(dokumentid);

Map<Document, Double> map = sortByValue(scores);

long end = System.currentTimeMillis();

Set<Map.Entry<Document, Double>> scoreSet = map.entrySet();

for (Map.Entry<Document, Double> entry : scoreSet) {

System.out.println(entry.getKey().getName()+

" - Score: "+entry.getValue());

}

System.out.println("Execution time was "+(end-start)+" ms.");

}

static Map sortByValue(Map map) {

List list = new LinkedList(map.entrySet());

Collections.sort(list, new Comparator() {

public int compare(Object o1, Object o2) {

return ((Comparable) ((Map.Entry) (o1)).getValue())

.compareTo(((Map.Entry) (o2)).getValue());

}

});

Map result = new LinkedHashMap();

for (Iterator it = list.iterator(); it.hasNext();) {

Map.Entry entry = (Map.Entry)it.next();

result.put(entry.getKey(), entry.getValue());

}

return result;

}

public static void readFile() throws FileNotFoundException

{

137

Object Retrieval and Student Behavior Using Tags in a Learning Context

File fFile = new File("tagliste.txt");

Scanner scanner = new Scanner(new FileReader(fFile));

try {

//first use a Scanner to get each line

while (scanner.hasNextLine()){

processLine(scanner.nextLine());

}

}

finally {

//ensure the underlying stream is always closed

//this only has any effect if the item passed to the Scanner

//constructor implements Closeable (which it does in this case).

scanner.close();

}

}

public static void processLine(String aLine){

//use a second Scanner to parse the content of each line

Scanner scanner = new Scanner(aLine);

scanner.useDelimiter(",");

if (scanner.hasNext()){

String document = scanner.next();

String tag = scanner.next();

dokumenter.get(Integer.parseInt(document))

.addTag(tagger.get(Integer.parseInt(tag)));

}

else {

}

//no need to call scanner.close(), since the source is a String

}

}

138

	Abstract
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Introduction
	Topic
	Keywords
	Problem Description
	Justification, Motivation and Benefits
	Research Questions

	Related Work
	Learning Objects
	Folksonomies
	Tagging in a Learning Context
	Ranking Algorithms
	Summary
	Research Questions Revisited

	System Description
	DSpace

	System Creation
	Tagging and Rating
	Retrieval Algorithm
	Extended Algorithm

	Experiment Planning
	Informing Students
	Interviews
	Retrieval Algorithm

	Results and Analysis
	Tagging Behavior
	Interviews
	Retrieval Algorithms
	Social Technologies in DSpace

	Conclusion and Future Work
	How can we Integrate Tags in a Learning Environment?
	Student Supplied Tags for Retrieval
	Challenges Related to Retrieval
	How can Social Technologies be Implemented in DSpace?
	Future Work

	Bibliography
	Data
	Student Available Texts
	Data Logs
	Tags Applied

	Source Code
	DSpace
	Retrieval Algorithms

