Improvements on colour
histogram-based CBIR

Ole Andreas Flaaten Jonsgard

Master’s Thesis
Master of Technology in Media Technology
30 ECTS
Department of Computer Science and Media Technology
Gjavik University College, 2005

The MTech programme in Media Technology
is run in cooperation with the Royal Institute
of Technology (KTH) in Stockholm.

Institutt for

informatikk og medieteknikk
Hggskolen i Gjgvik

Postboks 191

2802 Gjegvik

Department of Computer Science
and Media Technology

Gjgvik University College

Box 191

N-2802 Gjevik

Norway

Improvements on colour histogram-based CBIR

Abstract

This thesis tries out a number of new image retrieval techniques with the aim of
improving the results of global colour histograms. It also looks at how to measure the
effectiveness of such methods. Instead of relying solely on ground-truth databases this
project suggests more use of questionnaires for this purpose. Although the CBIR
methods suggested did not improve on traditional colour histograms, the
questionnaire shows people are not necessarily in agreement with the results from the
ground truth sets.

Improvements on colour histogram-based CBIR

Sammendrag

Denne oppgaven praver ut en del nye metoder for innholdsbasert bildesgk, med det for
gye & forbedre resultatene fra rene fargehistogram-baserte metoder. Oppgaven ser ogsa
pa hvordan man kan male resultatene fra disse metodene. | stedet for & kun basere seg
pa sannhetssett-databaser foreslar denne oppgaven en mer utstrakt bruk av
spgrreundersgkelser. Selv om bildesgkmetodene som blir foreslatt ikke gav noe bedre
resultat enn rene fargehistogram, sa viste resultatene fra spgrreundersgkelsen at folk
ikke ngdvendigvis mener det samme som resultatene fra sannhetssett-databaser.

Improvements on colour histogram-based CBIR

Acknowledgements

First and foremost | would like to thank Dr. Ali Alsam, my guide for this project for his
help and suggestions. Secondly, Andrei Ouglov also deserves thanks for supplying the
gamut intersection-results for the questionnaire and suggesting the pixel randomizing
described in chapter 4.2. Last, but not by any means least, my fellow students and
friends must be thanked. Without them, the months spent on this project would surely
have been much more tedious.

Improvements on colour histogram-based CBIR

CBIR
AMP
MP
RGB
HSV
GCH
LCH
QBIC
cS
AVG
PHP
MPEG

Common abbreviations

Content Based Image Retrieval (2.1)
Average Match Percentile (4.1.1)
Match Percentile (4.1.1)

Red Green Blue-colour space (2.3.1)
Hue Saturation Value- colour space (2.3.2)
Global Colour Histogram (2.2.1)
Local Colour Histogram (2.2.3)
Query By Image Content [14]
Channel Splitting method (3.1.4)
Average squares method (3.1.5)
PHP Hypertext Preprocessor (3.2)
Motion Picture Experts Group (3.3)

Vi

Improvements on colour histogram-based CBIR

List of figures

Figure 1: A CBIR-system. 3
Figure 2: Two similar images and their histograms. 4
Figure 3: An empty 3-dimensional 8x8x8 RGB-histogram. 5
Figure 4: Two similar images with dissimilar colour distribution. 6
Figure 5: Additive mix of red, green and blue. 7
Figure 6: Changing the brightness of an image changes the RGB-histogram. 8
Figure 7: The HSV colour-space. 9
Figure 8: Image segmentation as proposed in [10]. 9
Figure 9: 2-dimensional representation of an 8x8x8 RGB-histogram. 11
Figure 10: Four part image segmentation. 12
Figure 11: The channel splitting method. 12
Figure 12: The average squares method. 13
Figure 13: Web interface of the CBIR system used. 14
Figure 14: Nine random images from the database. 15
Figure 15: Ratings from part one of the questionnaire. 20
Figure 16: Rankings from part one of the questionnaire. 21
Figure 17: Ratings from the second part of the questionnaire. 22
Figure 18: Rankings from the second part of the questionnaire. 23

vii

Improvements on colour histogram-based CBIR

viii

Improvements on colour histogram-based CBIR

Table of contents

Y 0 1 =T PSPPSRI iii
ST 110 =T oo L= To USROS iv
ACKNOWIEAGEMENTS ...ttt sttt ettt e et e e e e be e e %
ComMMON ADDIEVIATIONSeiiiii ittt e vi
Y o) i 0 U L= PSSR vii
TabIe Of CONTENTS e e e e e e e e st a e e e e e e e s enanens iX
S Va1 4 oo [N o] o [P P TP 1
S 2 7= ot (o o 18] T PSPPSR 1
1.2 RESEAICH QUESTIONSccitiiiiiieiiiie ittt ettt ettt sin e b e senee e 1
G T I 0T TS0 [0 1ol BT =T o | RO PPRPUPRRIN 1

2 Theory and related WOKKooiiiiiiie e e e e e nrees 3
2.1 Content based image retrieVal............cccvviiiiiiiiiiii e 3
A2 00| (o 0| gl 0 1) (0o | -1 1 0 RS STPR 3
2.2.1 Global colour hiStOgrams...........cceiiiiiee i 3
2.2.2 Comparing NISTOGramISccouiiiiiiiiiie et 5
2.2.3 Local colour NiStOgramS.........cuviiiiiiie e 5
224 Problems with colour histograms..........ccccccvvieeiiiiiee e, 7

2.3 ColoUr MOAEIS.......co e e e e e s e 7
231 The RGB COloUr MOEL......ccueiiiiiiiiiiciie s 7
2.3.2 The HSV colour MOEL.......ccoouiiiiiiiiiieiie et 8

2.4 Other image retrieval Methodsccooiiiiiiiiii e 9

3 RESOUICES. ...ttt ettt e st e e st e e st e e e e 11
I8 |V 1< 1 g To o KT =T PR 11
3.11 RGB HiSTOGIaMeieiiiiieiiie ettt 11
3.1.2 [LY 1151 0o] = o SRS 11
3.1.3 o Ul oF: Ut o LAV 1) (o] o PR PR 12
3.14 Channel splitting (R, G, B-histograms)ccccceevieriiiicniiiieeeniee e 12
3.15 AVErage COIOUI-SQUAIESccceiurieeeieiieeeitiee e e st e e e sreee e s snteee e e sreeeeesnneeees 13
3.1.6 (CF Lo U T =] 1T o] o [PPSR 13

3.2 TRE SYSTEIM .ttt bbbt 14
3.3 Theimage databasececiiiiiriiiiiii e 15
0 1=1 11 4 1=1) £ S SR 17
4.1 AMP-MEASUINBIMENTS ...t 17
411 S T=1 L1 | o S 17
4.1.2 RESUIES ..ottt 17
4.1.3 DISCUSSION ...ttt e e e e e e e e e et bbb e e e e e e e e e saabrreeeeaeeeeanes 18

4.2 QUESTIONNAITE ..uveiiieiee ettt e e e et e e e e e s s e s eab b b e e e e e e e e e s senbbbaeeeaeeesaanns 18
421 ST (0 o PRSP ROTR 18
4.2.2 RESUILS....eeeeiei e e e e e e e et ar e e e e e e e e aans 19
423 DISCUSSION ...ttt sttt st st e e ste e e snbe e e sbeeesnreeen 23

5 Conclusions and fULUIE WOTKc.cooiiiiiiie ettt 25
L A o T [V o] o 1T PR OPPPPPPPPR 25
5.2 FUINEE WOIKooitiiiiiie e et 26

Improvements on colour histogram-based CBIR

LSRN (L] Lo =TT
A Y o] o 1= [0 LD SR

Improvements on colour histogram-based CBIR

1 Introduction

1.1 Background

With the advent of digital photography an ever increasing number of digital images is
being produced. Businesses, the media, government agencies and even individuals all
need to organize their images somehow. Today, the most common way of doing this is
by textual descriptions and categorizing of images. This approach has some obvious
shortcomings. Different people might categorize or describe the same image differently,
leading to problems retrieving it again. It is also time consuming when dealing with
very large databases. Content based image retrieval (CBIR) is a way to get around these
problems.

Comparing two images and deciding if they are similar or not is a relatively easy thing
to do for a human. Getting a computer to do the same thing effectively is however a
different matter. Many different approaches to CBIR have been tried and many of these
have one thing in common, the use of colour histograms. This project suggests some
new, simple, methods to try and improve the results of standard colour histograms.

Another problem with CBIR research is how to measure a given method’s effectiveness.
One commonly used approach is by using specially compiled image databases with so
called ground truth-sets. This approach was also used in this thesis, but in addition a
number of people were asked to give their opinion about some of the methods in a
questionnaire.

1.2 Research questions

A number of different methods for CBIR already exist and many of these use colour
histograms in one form or another. The methods proposed in this thesis are no
exceptions as they use histograms as a basis and try to improve their performance. The
second question asked relates more to how one best can measure the performance of a
given CBIR-method. The research questions for this project are therefore:

1. Will the methods proposed in this project perform better than pure colour
histograms?

2. Will measuring the effectiveness of a given CBIR-method vyield different results
with average match percentile (AMP) calculations as opposed to asking people?

1.3 This document

This document opens with some general background information about CBIR and a
description of the research questions the project has attempted to answer. The next
chapter will contain some theory and a summary of related work. Chapter three will
contain a description of the CBIR system, as well as a summary of the different
CBIR-methods, used. A description of the experiments performed in the project follows
in chapter four which in turn is followed by a conclusion and list of future work in the
last chapter.

Improvements on colour histogram-based CBIR

Improvements on colour histogram-based CBIR

2 Theory and related work

2.1 Content based image retrieval

Query Database Result

Figure 1: A CBIR-system

In a content based image retrieval system querying can be done with a sketch or, most
commonly, by a query image (Fig. 1). A combination of the two and even textual
descriptions can also be used. The goal in each case is to find the images most
resembling the query. To achieve this, a number of different approaches have been
suggested. Due to the vast amount of different methods in existence one could write an
entire thesis describing these, as Schettini et al has done in their A survey of methods
for colour indexing and retrieval in image databases [5]. This chapter will mainly
concentrate on colour histogram-based such methods.

2.2 Colour histograms

2.2.1 Global colour histograms

For content based image retrieval to work, we have to find some features of the image
that can be used when comparing it with another. One of the features most popular for
image indexing and retrieval is colour. Comparing the colour distribution of two
images will often say something about their similarity.

Improvements on colour histogram-based CBIR

Figure 2: Two similar images and their similar colour histograms

Comparing all the colours in two images would however be very time consuming and
complex, and so a method of reducing the amount of information must be used. One
way of doing this is by quantizing the colour distribution into colour histograms. First
introduced by Swain and Ballard [1], and used by many others, this is probably one of
the more popular approaches to image retrieval today.

When computing a colour histogram for an image, the different colour axes are divided
into a number of so-called bins. A three dimensional 8x8x8 RGB histogram (Fig. 3)
would therefore contain a total of 512 such bins. When indexing the image, the colour
of each pixel is found, and the corresponding bin’s count is incremented by one. If the
colour was 123, 231, 213, the bin at coordinates [4, 8, 7] would have its value
incremented by one.

Improvements on colour histogram-based CBIR

Red

Figure 3: An empty 3-dimensional 8x8x8 RGB-histogram

2.2.2 Comparing histograms

When the images have been quantized into histograms, a method of comparing these is
needed. Some of the most popular histogram comparison metrics are the L1 (1) and L2
(2) norms defined as:

=510, -1,
2[Qi= 1] 0

L2=1/iZ:l(Qi -1;) @

Where Qi is the value of bin i in the query image and I; is the corresponding bin in the
database image. Based on experience from earlier projects as well as the findings of
Richard Russel and Pawan Sinha in their article Perceptually-based Comparison of
Image Similarity Metrics [6], the L1-norm is the metric of choice for this project.

2.2.3 Local colour histograms

One feature of colour histograms that can be both an advantage and a disadvantage is
their lack of spatial information. This can be an advantage as a given image’s global
histogram will remain the same when rotated or flipped. This does however also mean
that two perceptually very different images with similar colour distribution will be

Improvements on colour histogram-based CBIR

deemed similar by a colour histogram-based retrieval system as illustrated in figure 4.
To alleviate this problem several methods of introducing some spatial information have
been suggested.

Figure 4: Two perceptually different images with equal colour distribution

The simplest and most obvious way of introducing such spatial information is the
method used by Gong and others [11] . They divided the images into nine equal parts
and calculated a histogram for each of these. This gives some spatial sensitivity, but
increases the computing power and storage needed. One also looses the insensitivity to
rotation we have in global colour histograms. The four part-method described in
chapter 3.1.3 of this thesis is a variation of this method.

Shengjiu Wang [13] proposes a rotation-insensitive variant of LCH he calls the Harbin
approach in his paper A Robust CBIR Approach Using Local Color Histograms. This
method also divides the images into a number of equally sized regions and computes
their LCH. The difference from Gongs approach lies in the method for comparing the
images. His Harbin approach uses a system of weighted bipartite graphs to calculate
the minimum cost distance between two images. With this method each part of one
image is compared to all the parts of the comparison image. This makes the method
less sensitive to rotation compared to Gong and others’ method described above.

An approach to LCH not using equally sized regions of the image was proposed by Lu,
Phillips and Harman [7]. They propose a system where two histograms are created, one
for the foreground and another for the background. This was meant to alleviate the
problems of background masking. Background masking occurs when an image for
instance contains a small car on green lawn. The green lawn would take up more of the
image area, and green would be weighted heavily in global colour histograms. This
could be a disadvantage if what the user wanted to find was more images containing
the small car in the foreground. Defined as the minimum rectangle containing the most
important objects of an image, the foreground would be found automatically by
determining vertical and horizontal pixel value transitions or set manually by the user.

Improvements on colour histogram-based CBIR

2.2.4 Problems with colour histograms

The lack of spatial information is, as mentioned above, one problem of GCHs. This is
however not the only problem associated with colour histograms. One other common
problem is that of inter-bin similarity.

When quantizing images, every pixel will be placed in a given histogram bin, according
to its colour. Inevitably, this will lead to colours that are perceptually very similar being
placed in neighbouring bins. This can in turn lead to the difference between two
histograms being very much larger than the perceptual difference between the actual
images. To get around this problem a weighted version of the L2-metric described in
section 2.2.2 of this document was suggested by Flickner, Sawhney et al in the
documentation for IBM’s QBIC project [14].

Another problem with colour histograms is deciding how many bins to use. A low
number of bins decreases the storage space and time needed for indexing and retrieval,
but also reduces the effectiveness. In his doctorate thesis Jeff Berens [2] found the ideal
number of bins for, amongst others, the RGB colour space to be around 8x8x8 (512).
More bins than this provided only a very small increase in effectiveness at the cost of a
large decrease in speed. For this reason, the global histograms used in this thesis are
8x8x8 in size.

2.3 Colour models

A number of different ways of describing colours exists. In this thesis the RGB and HSV
colour models were used, and therefore described here.

2.3.1 The RGB colour model

The RGB model uses three primary colours, red, green and blue, in an additive fashion
to be able to reproduce other colours. As this is the basis of most computer displays
today, this model has the advantage of being easy to extract. In a true-colour image
each pixel will have has a red, green and blue value ranging from O to 255 giving a total
of 16777216 different colours.

Figure 5: Additive mixing of red, green and blue [8]

Improvements on colour histogram-based CBIR

One disadvantage with the RGB model is its behaviour when the illumination in an
image changes. The distribution of rgb-values will change proportionally with the
illumination, thus giving a very different histogram as shown in fig. 6.

To address some of the problems with the RGB colour space and region based image
query, Syeda-Mahmood [19] proposed to partition it into 220 categories of
perceptually similar colours.

21 ' —
= Havigator Histogram
Chanrel: |RGE [F+

| Entire Image

flean: 102,63 Lewel:
StdDev: 52,03 Count:
Median: 7% Prercentile:
Pimels: 35304 Cache Lewel: 1
LinkiHed-1 i@ 11 (Laver 1, RGR[1E] - = _

- —

EEL_J

Mean: 168,14 Level:
Std Diew: d4.76 Count:
Mediam: 148 Percentile:

Pinels: 35304 Cache Level: 1

Figure 6: Changing the brightness in an RGB-image changes the histogram.

2.3.2 The HSV colour model

HSV defines a colour by its hue, saturation and value rather than by primary colours.
The hue indicates a given colour’s colour-type and ranges from O to 255. Saturation
defines the vibrancy of the colour and ranges from O to 100% as does the hue. The
latter describes the brightness of the colour.

Introduced in 1978 by Alvy Ray Smith, this model was based on how an artist mixes the
colours on his palette. This is also a perceptually relevant colour model, meaning it
describes colours similarly to how humans perceive them. This perceptual relevance
might make it a better choice than RGB for image retrieval.

Improvements on colour histogram-based CBIR

Calculating HSV is done by a non-linear transformation of RGB, making an HSV-based
method slower than the same method using RGB. [9]

Figure 7: The HSV colour space [9]

2.4 Other image retrieval methods

Stricker and Orengo [14] proposed an alternative to colour histograms in 1995 with
their colour moments. Instead of quantizing the images into histograms they use three
features they call moments. These are the average colour of the image, the standard
deviation of each colour channel and lastly the third root of each channel. This was
shown to produce somewhat better results than simple GCH. Another plus with this
method is the increase in speed as each image is described by only nine numbers (as
opposed to the 512 numbers in an 8x8x8 RGB histogram). The average colour
squares-method (3.1.5) in this thesis uses one of these moments, the average colour.

In 1996 Stricker and Dimai [10] introduced a method where they divided images into
five partially overlapping regions (fig. 8) and calculated the colour moments of each.
The centre region was given more weight than the others as this was where the most
important information of a given image was thought to be. In addition, the pixels
within each region are weighted according to how close they are to the region’s centre.

Figure 8: Image segmentation proposed by Stricker and Dimai [10]

Improvements on colour histogram-based CBIR

Blobworld was the nhame given to a system developed by Carson and others in 1999.
[16]. In this system each image is divided into regions, called blobs, which roughly
correspond to an object. Colour and texture descriptors for each such blob is stored in a
tree-structure and one or two of these are used for querying. Using this approach, they
achieved better results than simple colour histograms.

Another approach that divides the image into regions based on its visual content was
proposed by Omhover, Detyniecki and Bouchon-Meunier in 2004 [17]. Their system,
called STRICT, uses a number of fuzzy similarity measures and allows the user to select
an aggregate of these when running a query. Their methods have shown encouraging
results compared to global colour histograms, but still require some work according to
the authors themselves.

The method proposed by Smith and Chang [18] in their 1995 paper Single colour
extraction and image query also identifies regions of colours in images. This system
allows the user to query for all images containing for instance a yellow disc surrounded
by blue (the sun). To achieve this, they quantize the images into a 166-bin HSV
histogram and sub-sample them to approximately 196x196 pixels, keeping the correct
aspect ratio. This quantized image is then colorized with a 5x5 median filter to reduce
the small details and spot interference that complicates region identification. The
image is then returned to an indexed RGB colour space and regions identified for all of
the colours in the image. For a region to be deemed significant it has to pass several
thresholds like size and contribution. Although the paper does not show any test results
to show the effectiveness of the method, they conclude that it is a useful tool for image
retrieval systems.

10

Improvements on colour histogram-based CBIR

3 Resources

In this project a total of seven different methods of image indexing and retrieval was
used, three existing, two new and two combination methods. To perform the
experiments described in the next chapter a large heterogeneous image database was
also needed.

3.1 Methods used

3.1.1 RGB Histogram

As mentioned earlier, colour histograms is one of the most common methods of image
retrieval. The RGB histogram uses, as the name suggests, the RGB colour model
described in chapter two.

In this project an 8x8x8-bin histogram was used to quantize the images giving a total of
512 different bins.

Count.
58]
4% |
3]
28]
1%] l

1 | 1 1 k 1) 1 1 11 1 bl ||.Jl|1 1 lad
oo 037 076 155 174 233 V2 331 S0 427 ded 525 Bed /23 eBE YEL VED Binz

Figure 9: An 8x8x8 RGB-histogram represented two-dimensionally. Note that the numbers
along the x-axis are bin-coordinates from [0,0,0] to [7,7,7].

3.1.2 HSV Histogram

This method is identical to the RGB histogram in that it quantizes the images into
8x8x8 bins. The difference lies only in the choice of colour model. For more
information on HSV, see section 2.3.2 of this thesis.

11

Improvements on colour histogram-based CBIR

3.1.3 Four part-division

: W

Figure 10: An image divided by the four part division-method.

When using simple colour histograms no spatial information about the image is
recorded. The histograms simply give a measure of how frequently a range of colours
appear in the image, but not where. One simple method of adding some spatial
information is dividing the image into four parts and then creating colour histograms
from each of these. In this method each region of the query image is compared only to
its corresponding region in the database images. The difference for each region is
computed with the L1-metric described in 2.2.2 and the results are added together.

3.1.4 Channel splitting (R, G, B-histograms)

Figure 11: An image divided into its red, green and blue components

12

Improvements on colour histogram-based CBIR

Shortened CS, the first of the two new methods proposed here is the channel splitting
method. This method simply splits the image into its red, green and blue components,
divides these into a number of columns and quantizes each column into colour
histograms. This gives a total of 3x10x8 histogram-bins which are compared with the
L1 metric to compute the similarity of the images.

In this project the images are divided into 10 columns and 8 colour bins. The method is
tested both by itself and on the 100 best results from the RGB histogram-method.

3.1.5 Average colour-squares

Figure 12: An image and its 10x10 average colour squares.

This is the only method not directly using colour histograms. Instead each image is
divided into a number of squares. The average colour of each square is then computed
and used for comparison. Colour comparison is done by computing the vector distance
[22] between corresponding RGB colour-vectors, and not by using the L1 metric.

For this project, this method was only used to try and improve the 100 best results from
an RGB histogram query. This was done using both 5x5 and 10x10 average squares.

3.1.6 Gamut intersection

This method is proposed by Ali Alsam (the guide for this project) and Andrei Ouglov in
an article submitted to the 13t colour imaging conference in Arizona in November
2005 [20]. Their method uses only the colour gamut distribution in an image. The
colour gamut information is first projected onto two orthogonal planes. These
projection images are then treated with a fillhole algorithm and median filter to aid in
their comparing. The paper also suggests a comparison metric specific to this method.
Put simply, the difference between two images is calculated as the difference between
their projection images

When tested on the same MPEG7-database as used in this project, this method was
shown to perform equal to or better than colour-histograms. For this reason, the
method was chosen to be used in the questionnaire of this project.

13

Improvements on colour histogram-based CBIR

3.2 The system

7 Jhtep:) frediaweb hig.ano/~obej /chromacbhiv. php?fsb =801 -ref _addi.jpg - Opera o [=] S|

1 FEile Edit Wew Mavigation Bookmerks $ai Chat Tools Window Heb - @ X
W . €. = @ wp € @@ - O

Rewind Back Show Reload Hame Nz

o v W= o= v ke S0 A beplimadiawebihiar| = | G Ganale sesech - [100% |~

Selrehilde: L

F.e=uiltal

] i ! ! - Forakiell:
b : .
Eerskiell O Eorskjell 7680 Forskiel. 0 2314 0436460520

BOl-ref addd ipz El2 addd jmz BOl-ref addd ipg

Bl addd s

Foralejell: Forakiell:
A084 X HA94558 Slbl 46T3E0E2TH

Fotelkiell 10142

U] Mewpaga BRSO

Forakigll: 10414

E -

[1

Figure 13: The web interface of the CBIR system.

In order to test the different CBIR-methods mentioned above it was necessary to have a
CBIR-system. For this project, a system was implemented using PHP and MySq| to give
aweb interface, and because the author of this thesis had some of the framework of the
system already created for an earlier project. Despite this, this was easily the most
time-consuming part of the project.

The system is built around one central PHP-class called BildeTing. This class contains
all the functions for creating and comparing histograms etc. and can be found in
appendix A. Functions in this class were called from a series of scripts to index the
images using the various methods. The actual retrieval was also done by a series of
scripts calling on functions in the BildeTing class. Examples of these scripts can be
found in appendix B.

14

Improvements on colour histogram-based CBIR

All histograms and other feature-vectors created for the project was stored in a MySql
database. At the end of the project, this database contained a total of 15 tables and 66.2
megabytes of data. It is also important to note that all images were resized to 200x200
pixels before being quantized. Had this not been done, one would have had to
normalize all the feature vectors during calculation for them to be comparable to one
and other.

3.3 The image database

Testing and measuring the effectiveness of a CBIR-method obviously requires a large
number of images. For this project, the MPEG-7 image database was chosen. This
database has been used by a number of other projects, making it easier to compare
their results to the results achieved here. It contains 5466 heterogeneous images from
various sources ranging from video frame sequences of television shows to a large
number of photographs. 386 of these images are arranged in so called ground-truth
sets ranging in size from 2 to 32 images each. By using the query images of these
ground-truth sets it is thus possible to calculate the effectiveness of a given
CBIR-method. Exactly how this is done is described in more detail in section 4.1.1. This
database has also been used by a number of other projects [2, 20], making it easier to
compare their results to the results achieved here.

Figure 14: Nine of the 5466 images in the MPEG7-database.

15

Improvements on colour histogram-based CBIR

16

Improvements on colour histogram-based CBIR

4 Experiments

To test the effectiveness of the different CBIR-methods mentioned in the previous
chapter two different approaches have been used. Firstly, all the methods have been
tested on 15 ground-truth sets and had their average match percentile (AMP)
calculated. Secondly a questionnaire was created and distributed to college students to
see how they ranked the different methods.

4.1 AMP-measurements

4.1.1 Setup
The match percentile MP of a given image is defined as:

MP = (N =R)/(N —1)[2]

Where N is the number of images in the database and R is the rank of the returned
image. This is calculated for each image and the results averaged. Calculating the rank
of a given image is done as follows. All images in a 15 image ground-truth set returned
among the top 15 results of a search is given the rank of 1. If an image is returned as
number 16 it receives a rank of 2, 17 is ranked 3rd and so on. A score of 100% indicates a
perfect match, meaning all images in a 15 image set were returned amongst the top 15
results.

In this project 15 of the ground-truth sets were used to calculate the AMP for each
method. The complete ground-truth sets used can be found in appendix D. A search
was performed, using all the methods described in chapter tree, with the first image of
the ground-truth sets used as the query images. The 20 first retrieved images were then
reviewed and the AMP calculated.

4.1.2 Results

d5

¢ ¢ 5 8_adds de ¢
100,000 % 100,000 % 03,333 % 86,663 % 1o0,000% 100,000% 100,000%
100,000% 1oo,000% 1oo,000% 100,000% 00,008 % 100,000% oo,008% 08,866 %
HSV 8x8x8 100,000 % 00,008 % 100,000% 06,000 % 00,008 % 1o0,000% 100,000% 100,000%
100,000% 100,000% 1o0,000% 100,000% 00,008 % 100,000% o0,008% oo,000%
C510x8 86,5864 % 20,000 % 00,000 % 46,5861 % 99,390 % 100,000% 100,000% 100,000%
1o00,000% 100000% 100,000% 100,000% 00,008 % 100,000% 00,008 % 89,777 %
RGECS 100,000 % £3,331% 1oo,000% 8,665 % 73,328 % 1oo,000% 100,000% 100,000%
1o0,000% 1oo000% 1o0,000% 100,000% 00,008% 100,000% 00,008 % 04,221 %
4Part 100,000 % 86,663% 1oo000% 100,000% 8o,000% 1oo,000% 1oo,000% 100,000%
100,000% 1oo000% 100,000% 100,000% 00,008 % 100,000% 00,008 % 07,777 %
avgRGE oxg 00,008 % 86,658 % 00,004 % 50,008 % 70,003 % 1oo,000% 1oo,000% 1o0000%
100,000% 1oo,000% 100,000% 100,000% 00,008 % 1o0,000% 00,008 % 93,7768 %
avgRGE 1ox10 00,008 % 50,008 % 03,332 % 46,656 % 0,001 % 1o0,000% 100,000% 100,000 %
100,000% 100,000% 100,000% 100,000% 00,008 % 100,000 % 00,008 % 00,665 %

Table 1: The average match percentile results.

The best AMP results were achieved by the HSV histogram method with a score of
99.9%. RGB histograms came in a close second with 98.6%. A slightly surprising third
was the 4-part method. Of the new methods proposed in this thesis, the RGB+CS came
out best with 94.2%, followed by RGB+AVG 5x5 and 10x10 with 93.7% and 90.6%
respectively. The CS-method alone came out worst with 89.7%, the only below 90%.

17

Improvements on colour histogram-based CBIR

Looking at the results of individual GT-sets, the results are not always this clear. The
CS method does for instance produce better results on one image than simple RGB
histograms whilst performing poorer on others. HSV histograms do however perform
consistently better than or equal to RGB. It is also interesting to note that all the
methods produce the same AMP score on ten of the 15 images.

4.1.3 Discussion

From the results discussed above, it seems clear that the best method (of those tested)
for image indexing and retrieval on this particular database is HSV histograms, with
RGB histograms coming in a close second. The most unexpected results came from the
4-part method. This failed to do better than simple global histograms in total, and
actually performed better than these on only one of the 15 query images. It is however
worth noting that this method only performed worse on two sets, the only sets where
none of the methods received a perfect score.

None of the new methods introduced by this thesis produce consistently better results
than the RGB or HSV histograms. Although the CS method gives a better score than
RGB on one of the images, it does quite a lot worse on several others. The combined
methods which were meant to improve the performance of RGB histograms do quite
the opposite. All three of these perform consistently worse than the simple global RGB
and HSV histograms.

The fact that all the methods gave the same, perfect or near perfect, results on 10 of the
15 sets also shows some of the problems with these kinds of measurements. The images
in these sets seem to be a sequence of video frames, and are very similar in appearance.
As well as being very dissimilar in colour to all the other images in the database. As the
different methods obviously do not perform equally well, it becomes necessary to find
other methods of measuring their performance. For instance a questionnaire as
described in chapter 4.2.

Because the database also contained single frames that appeared to be from the same
sequences, but not part of the ground-truth sets, not all of these 10 sets gave a result of
100% as they would otherwise have done.

4.2 Questionnaire

4.2.1 Setup

The AMP gives a good indication of a given method'’s effectiveness. A weakness with
such calculations however is its inability to say anything about the similarity of the first
non-ground truth set images returned to the query image. There is only one way of
measuring this, by asking people. In order to do this, a questionnaire was created. To
show people the results from all the methods and ground-truth sets would require a lot
of time and was unrealistic for a project of this size. Consequently three methods were
chosen: RGB histogram, RGB+AVG and a colour gamut distribution method [20]. The
results for the third method were provided by Andrei Ouglov, one of the authors of the
article in which it was proposed.

18

Improvements on colour histogram-based CBIR

The participants were shown the results from a search on the same ground-truth set for
each of the methods. The ground truth set was chosen at random from the 15 being
used in the AMP-calculations discussed in 4.1. The subjects were then asked to first
rate the results of each method from 1 to 5 (very bad, bad, mediocre, good, very good)
and second to rank them from 1 to 3. In the second part of the questionnaire the same
results were shown again, but this time the pixels of each image were randomized.
These results were rated and ranked in the same manner as the first three.

The purpose of randomizing the pixels in the second part of the questionnaire was to
see how the participants ranked the different methods based solely on colour
distribution and not on actual image content and how these results differed from those
of the first part.

4.2.2 Results

As mentioned in the previous section, the questionnaire was web-based. The url was
mailed to all students at Gjgvik College as well as friends of the author. A total of 180
people answered, but due to a large amount of incomplete answers the final number of
results was 106. The participants ranged in age from 20 to 44 and consisted of 65 males
and 41 females. No information was collected about the background of the participants,
but judging by who the url was sent to it is probably safe to assume that they have some
college-education and are in the process of aquiring more.

19

Improvements on colour histogram-based CBIR

Bin Frequency % R.GB histogram
i 1 1% 100 %
= 4
= 3 3% | £ oel
9 25 24 % % 40 % ¢
p 61 5B% | £ BE]
5 16 15 % i z 3 4 g
oum 106 i
Avarage: 3,0
Bin Freguency % G anrt
1 2 =% | WET
o 11 10 % E 60 % +
3 33 91% | g @Eq
4 38 z6% | 5 G4 = 0 W
c 22 21 % i TS 5
Sum 108
3,0
Bin Freguency % RGB + AVG
100 %
1 =2 2 96 e
o 11 10% E 60 % T
E % B’ 4[' ‘°J; T
3 51 4 g omad []
4 36 34 % A
c & 6% R
Sum 108
a3

Figure 15: Ratings from part 1 of the questionnaire.

When looking at the first set of ratings (fig. 15), we see that the simple RGB histogram
comes out top with 73% of the participants rating it as good or very good. 58% rate it as
good and 15% very good (4 on a scale from 1 to 5). Similar numbers for the RGB+AVG
and gamut methods are 40% and 56% respectively. Note also that the gamut method
has the largest percentage of very good ratings with 21%. The RGB+AVG method
stands out as being the most average method with a total of 48% giving it this rating.

The average ratings of this first set shows that RGB histograms come out best with an
average 3.8, closely followed by Gamut and AVG+RGB with 3.6 and 3.3 respectively.

20

Improvements on colour histogram-based CBIR

R GE histogram
1 2 3
Ranking
100 % Ganmant
=80 %
E 60 %
B0 %
£ 0%
0%
1 2 3
Ramking
AVG + RGEB

—_

Frequerncy
EEZEE
#hoed et el B

Bin Freguency %
1 49 46%
2 37 35%
3 20 10%
S 106 100k
1,7

Bin Freguency %
1 51 48 %
z zq =29 %
3 71 =0
Sl 108 100k
1,8

Bin Freguency %
1 g G %
z 48 45 %
3 53 Go%
Sl 108 100k
2,5

Ranking

Figure 16: Rankings from part 1 of the questionnaire.

After rating each method individually, the test subjects were then asked to rank the
three methods from one to three. Looking at these rankings we see that RGB
histograms and the gamut method are ranked quite evenly. Although the gamut
method gets a slightly higher number of 1st places, 48% vs. 46%, the RGB histogram
gets a slightly better average ranking of 1.7 versus the 1.8 of gamut. When taking the
number of 2nd places into account, the RGB histogram steals the lead with 81% 2nd or
better versus gamut’s 71%. The AVG+RGB method comes out as the clear looser with
50% ranking it third and only 5% giving it the first place.

21

Improvements on colour histogram-based CBIR

Bml Frequencyl iﬁ% I R GE histogram randomizexd
2 & 6% | ZH@ET
3 38 36% | & RET
4 35 337 Dt) X p 3
g 286 zo R :
Surm 106 il
37
Bin Frequency % Gamt randomized
L 4 4% | LR T
z 20 10 % %33%--
3 41 39% I 204 4
; et m W m
g 17 16% ! : Ha:.ng E ?
Surm 106
323
Bin _ Freguency % RGB + AVG randomized
: 5 2817
2 ? T Eel
% Jo 28 % g B _..
4 43 41 % 1 2 3 4 5
g oz 21 % Fating
Sum 106
37

Figure 17: Ratings from part two of the questionnaire.

In the second set of results the participants were asked to rate, the images were exactly
the same as in the previous set, but with all the pixels randomly repositioned. This does
give some different results than the first set. Most notably RGB histograms and
RGB+AVG are tied for first place, both having an average rating of 3.7. The gamut
method falls down to a clear third with its 3.3 average. Looking closely at the numbers
we see that the RGB+AVG method has the highest percentage of good and very good
ratings with 62% total. Gamut is clearly worst with 62% average or lower.

22

Improvements on colour histogram-based CBIR

Bin Frequency % 50 4 PGB histogram randomized
i o A% 2 a0y
2 35 34% | damy
3 11 10% | £ o
S 106 100 % 1 2 3
1,5 Ramking
Bin Freq Hency % Gamant randomized
1 10 18 %
11 10% | oW
3 TE‘ 7= % E— EE i L-__—_,_.J
Surn 108 100% | & 1 5 R
2,5 Ranking

Bin Fregquency 2 anee AVG + RGB randomized
1 34 32% | zaow
@ 61 5EH% | £ s
3 11 1o% | B
Sum 106 100 % | z 3
158 Ranking

Figure 18: Rankings from part two of the questionnaire.

The rankings of the randomized results are quite clear. The RGB histogram comes out
1st with 59% giving it this ranking. AVG+RGB comes in a clear second with 61% ranking
it as such and the gamut method gets a quite convincing 72% of the third places.

In addition to the rating and rankings, the people answering the questionnaire were
invited to give any comments they might have. A total of 25 participants chose to leave
their comments. These varied in length from one to 167 words and ranged from
expressing excitement about CBIR to misgivings about the layout of the questionnaire.

4.2.3 Discussion

When looking at the first part of the questionnaire results we see that people clearly
rated the AVG+RGB method worse than the two other methods. This mirrors the
results of the AMP-calculations in 4.1.2. When it comes to deciding a winner things get
slightly more unclear. The gamut-method, which has been shown to perform
favourably to or equally well as colour histograms, gets a slightly higher percentage of
very good-ratings, but the RGB histograms comes out top with its higher combined
percentage of good and very good and consequently higher average rating. The same
can be seen in the rankings of this first portion. The gamut-method gets the highest

23

Improvements on colour histogram-based CBIR

percentage of 1st places as well as 10% more 3 placed than the RGB histogram.
AVG+RGB again comes out a clear third.

From this first part of the results then, we can conclude that AVG+RGB does not
perform better than traditional colour histograms in the opinion of the test subjects.
This is not at all unexpected. What was more unexpected however was the rating of the
gamut intersection method. Although it got the most very good-ratings and 1st place
rankings, it also received more average and below rankings as well as 3rd places than
the RGB histogram-method. This may be explained to some extent by the relative
darkness of some of the non-ground truth images returned. These dark images were
from the same basketball game as the ground truth set (the ground truth set used can
be foun on page 13 of appendix D), but showed the entire stadium as opposed to
close-ups of the game. If the subject only glanced at the images they may not have
noticed this. It is also important to note that the subjects of this test were only shown
the results from one search. With a different query image the results may have been
different, although both the gamut and colour histogram methods had a 100% match
percentile on this set.

The second part of the questionnaire was intended to see whether or not people’s
opinion of the search results would change when the images had their pixels
randomized. As can be seen from the results described in 4.2.2, they did. The
histogram and RGB+AVG-methods are now tied for first place when looking at the
average rating. RGB+AVG actually gets more good and very good ratings than the pure
histogram method. Gamut intersection now comes in a clear number three.

These results are not unexpected and can be probably be explained by looking at how
the different methods work. As explained in chapter 3, the RGB+AVG method first uses
RGB histograms to retrieve images. The first 100 of these are then sorted again using
the average squares method. Because of this, chances are good the randomized images
will look similar to those returned by just the RGB histogram method. The last images
returned by the gamut intersection method appear much darker than the rest, and this
is probably the reason why it was ranked last.

One potential source of errors with the results of this experiment is how the
questionnaire itself was constructed. 4 of the 25 people who left comments said it was
difficult to compare the different methods without viewing all the results at the same
time. Two people also commented that the last three methods, the randomized results,
were very difficult to compare, something that could help explain the difference in the
results from the first part. The fact that people were only shown the result of one search
could also be a problem. The reason they were not shown more was a simple question
of attention span. The fact that 74 people started but failed to complete the
questionnaire might indicate it was more than long enough as it was. In addition, one
person commented (using 167 words) that he felt the questionnaire was to time
consuming.

24

Improvements on colour histogram-based CBIR

5 Conclusions and future work

5.1 Conclusions

One of the goals of this project, as described in section 1.2, were to see if any of the new
methods introduced here could improve on the effectiveness of simple global colour
histograms. Although the new methods sadly did not perform better, this goal was
nonetheless achieved. Through both AMP measurements and a questionnaire it was
shown that neither the average squares- or the channel splitting-methods produced
any better results than global colour histograms.

As mentioned in chapter 4.1.3, the ground-truth sets in this database all seem to be
made up of sequences of video frames. This means that the images in each set are very
similar in colour distribution and could be one of the reasons why the pure histogram
methods showed such good results. In a real world system like a newspaper’s image
database, the results might be very different. This is a problem with all ground-truth
databases. The ground-truth sets need to be put together by a person, and as such are a
result of their subjective feelings on what constitutes image similarity. Whichever
method one chooses to measure the performance of ones CBIR-methods it is important
to note that this is a field where it is difficult to find absolute truths. Some methods may
be very good at retrieving certain types of images, but perform poorly on others.

The second goal of this thesis was also answered. The results of the questionnaire
yielded slightly different results than those of the AMP-measurements. The standard
RGB-histograms came out on top in all of the tests, despite the gamut intersection
method’s better results on ground truth-testing. It is too early to say anything
conclusive on the basis of the results achieved here, but it could indicate that ground
truth testing is not the best way of measuring a given CBIR-method’s effectiveness. The
results of the randomized images-part of the questionnaire did differ quite a bit from
the first part. Whether or not this is actually a useful method to compare cbir-results
needs more work to be determined. After all, people are usually most interested in the
actual content of the image, rather than its colour distribution.

25

Improvements on colour histogram-based CBIR

5.2 Further work

On the methods proposed in this thesis, further work and testing is needed for them to
be effective, but they have shown some promise.

An area that certainly warrants further research is that of measuring CBIR
performance. This is an area where there has not been a lot of previous work. The focus
of most papers found by the author of this thesis seems to be on suggesting new and
clever methods for image retrieval, not on how best to judge their effectiveness. Using
ground truth databases can be a good indicator, but it seems worthwhile to also ask
people their opinion. One interesting project could be devising a standardized
questionnaire or method for this. This could be used in conjunction with ground-truth
testing and would allow for a more balanced view of a method’s effectiveness.

Another area in the field of CBIR where more work is needed is creating consumer
applications that use the technology already available. None of the large search engines
use content based retrieval when this thesis is written, and only a handful of
applications exists. One of these is the open source-project imgSeek [21], but this is still
early in development.

26

Improvements on colour histogram-based CBIR

6 References

[1]] M. J. Swain and D.H. Ballard. Color indexing. In International Journal of
Computer Vision, Vol. 7(1), pp 11-32, 1991

[2] Jeff Berens. Image Indexing using Compressed Colour Histograms. Thesis
submitted for the Degree of Doctor of Philosophy in the School of information
Systems, University of East Anglia, Norwich

[3] Greg Pass and Ramin Zabih. Comparing Images Using Joint Histograms. ACM
Journal of Multimedia Systems, Vol. 7(3), pp. 234-240, May 1999

[4] Marcus Stricker and Alexander Dimai. Spectral Covariance and Fuzzy Regions
for Image Indexing. In Machine Vision and Applications, vol. 10, pp 66-73, 1997

[5] R. Schettini, G. Ciocca, S Zuffi. A survey of methods for colour image indexing
and retrieval in image databases. Color Imaging Science: Exploiting Digital
Media, (R. Luo, L. MacDonald eds.), J. Wiley, 2001.

[6] R. Russel, P Sinha. Perceptually based Comparison of Image Similarity Metrics.
MIT Al Memo 2001-014. Massachusetts Institute of Technology, 2001

[7] Guojun Lu. Multimedia database management systems, chapter 6, pp 131-177,
Artech House, 1999

[8] Wikipedia article on the RGB colour model. http://en.wikipedia.org/wiki/RGB, ,
last visited june 29t 2005.

[9] Wikipedia article on HSV. http://en.wikipedia.org/wiki/HSV_color_space, last
visited June 29t 2005.

[10] Markus Stricker and Alexander Dimai. Color indexing with weak spatial
constraints. SPIE conference, Feb. 96, San Jose.

[11] Gong Y, Chuan C.H, Xiaoyi G. Image indexing and and retrieval using color
histograms, Multimedia Tools and Applications, vol.2 pp. 133-156, 1996

[12] Lu, G. J. Phillips and S. Rahman. Techinques to Improve Color Based Image
Retrieval Performance. Proceedings of International Symposium on Audio, Video,
Image Processing and Intelligent Applications, Baden Baden, Germany. pp 57-61.
August 17-21 1998

[13] Shengjiu Wang, A Robust CBIR Approach Using Local Color Histograms,
Technical Report TR 01-03, Departement of computing science, University of
Alberta, Canada. October 2001.

[14] M. Flickner, H. Sawhney, W. Niblack, J. Ashley, Q. Huang, B. Dom, M. Gorkani, J.
Hafner, D. Lee, D. Petkovic, D. Steele, and P. Yanker. Query by image and video
content the gbic system. IEEE Computer, 28(9):23—32, 1995.

[15] Markus Stricker and Markus Orengo, Similarity of color images, SPIE 95, San
Jose. 1995

[16] Chad Carson, Megan Thomas, Serge Belongie, Joseph M. Hellerstein and Jitendra
Malik, Blobworld: A System For Region-Based Image Indexing and Retrieval,
International Conference on Visual Information Systems '99. 1999.

[17] J.F. Omhover, M. Detyniecki and B. Bouchon-Meunier, A Region Similarity Based
Image Retrieval System, The 10t International conference on Information
Processing and Management of Uncertainty in Knowledge-Based Systems Perugia,
Italy 2004.

27

http://en.wikipedia.org/wiki/RGB
http://en.wikipedia.org/wiki/HSV_color_space

Improvements on colour histogram-based CBIR

[18] John R. Smith and Shih-Fu Chang, Single Color Extraction and Image Query,
Proceedings of the I.E.E.E. International Conference on Image Processing
(ICIP-95), Washington DC, October 1995

[19] Tanveer Fathima Syeda-Mahmood, Data and Model-Driven Selection Using
Colour Regions, MIT Al memo no. 1270, Massachusetts Institute of Technology,
1992.

[20] Ali Alsam and Andrei Ouglov, Gamut Intersection For Image Indexing,
submitted to the 13th color imaging conference, Scotsdale Arizona, November 7t -
11th 2005.

[21] Homepage of the imgSeek project, http://imgseek.python-hosting.com/, last
visited june 30th 2005.

[22] Wikipedia article on vectors, http://en.wikipedia.org/wiki/Vector_(spatial), last
visited june 30t 2005.

28

http://imgseek.python-hosting.com/
http://en.wikipedia.org/wiki/Vector_(spatial)

Improvements on colour histogram-based CBIR

7 Appendixes

Appendix A: PHP-code for the BildeTing class.

Appendix B: PHP-code for one of the retrieval and indexing scripts.
Appendix C: All questionnaire results.

Appendix D: Ground-truth sets.

29

Appendix A

PHP-code for the BildeTing class.

Appendix A 03.06.2005 14:17
1 <?php
2 class bildeTing
3 {
4 //klassevaribler
5 var $s_dbhost = 'localhost'; //databasehost
6 var $s_dbuser = 'olej'; //brukernavn
7 var $s_dbpw = 'Gunnar'; //passord
var $s_dbname = 'olej'; //databasenavn

O

C

20

27

30
31
32
33
34
35
36
37
38

40

47

Y OV OY OY Oy OV OY Oy OY OY U1 Ul
OO ~JoOUl b WNE O WO -

~J
C

/**/

/* histogram(bildeurl, antall bgtter) */
/* Returns a $binCount”3 RGB histogram */
/**/
function histogram($bildeUrl, $binCount)
{
mysql_connect ($this->s_dbhost, $this->s_dbuser, $this->s_dbpw)
|| die(mysgl_error());
@mysgl_select_db ($this->s_dbname)
|| die("Unable to select database");

$im = imagecreatefromijpeqg ($bildeUrl)
or die("oisann, klarte ikke & lage bilde nei");
SorgSize = getImageSize ($bildeUrl);

$smallIm = $Sthis->reSize ($SbildeUrl, 200, 200);
//$smallIm = $im;
SbinDiv = 256 / $binCount;
Shistogram = array(array(array()));
for ($x = 0; $x < imagesx($smalllm); Sx++)
{
for ($y = 0; Sy < imagesy ($smalllm); Sy++)
{
//Finner fargen til den aktuelle pixelen
Srgb = imageColorAt ($smalllm, $x, $Vy);
//Deler fargen i R, G og B-komponenter
Sr = (Srgb >> 16) & OxFF;
$g = ($rgb >> 8) & OxFF;
Sb = Srgb & OxFF;

//Finner bgttekoordinatene ved & heltallsdividere pa $binDiv (som er 256

delt
// pa antall bgtter)
$SrBotte = bcdiv($Sr, $binDiv, 0);
$gBotte = bcdiv ($g, $binDiv, 0);
$bBotte = bcdiv($b, $binDiv, 0);
//Legger til en i det aktuelle bgttekoordinatet.
Shistogram[$rBotte] [$SgBotte] [$SbBotte]++;
}//for
}//for
return $histogram;
}//function histogram

/**/

/* statVerdier (bildeurl) */
/* Calculates the colour modes of the R-channel x/
/**/
function statVerdier (SbildeURL)
{

S$sum = 0;

$sum2 = 0;

S$sum3 = 0;

$statArray = array();

mysql_connect ($this->s_dbhost, $this->s_dbuser, $this->s_dbpw)
|| die(mysgl_error());

@mysgl_select_db ($this->s_dbname)
|| die("Unable to select database");

SsmallIm = Sthis->reSize (SbildeURL);

Page 1 of 9

Appendix A 03.06.2005 14:17
71 //Middelverdi.
72 for ($x = 0; $x < imagesx($smalllm); Sx++)
73 {
74 for (Sy = 0; Sy < imagesy ($smalllm); Sy++)
75 {
76 Srgb = imageColorAt ($smalllm, $x, Sy);
77 Sfarge = ($rgb >> 16) & OxFF;
78 $sum += $farge;
79 }//for
80 }//for
81
82 Sn = 160%120;
83 $middel = (1/$n) * S$sum;
84
85
86 //Varians og skjevhet
87 for ($x = 0; $x < imagesx($smalllm); Sx++)
88 {
89 for ($y = 0; Sy < imagesy ($smalllm); Sy++)
90 {
91 Srgb = imageColorAt ($smalllm, $x, Sy);
92 $farge = ($rgb >> 16) & OxFF;
93 $Ssum2 += pow (($farge - $middel), 2);
94 $sum3 += pow (($farge - $middel), 3);
95 }//for
96 }//for
97
98 Svarians = pow (((1/%n) * $sum2), 0.5);
99 if ($sum3 <0)
100 {
101 $skjevhet = —-pow(((1/%n) * abs($sum3)), 1/3);
102 }
103 else
104 {
105 $skjevhet = pow(((1/$n) * $sum3), 1/3);
106 }
107
108 // Legger inn i databasen
109 $insertQuery = "INSERT INTO oleaStat (filnavn, middelverdi, varians, skjevhet)
VALUES ('S$bildeURL', 'S$Smiddel', 'S$Svarians', 'S$skjevhet')";
110 mysql_query ($insertQuery);
111
112 $statArray[0] = $middel;
113 $statArray[l] = $varians;
114 $statArray[2] = $skjevhet;
115
116 return $statArray;
117
118 }//function statVerdier
119
120
121 /**/
122 /* gatekryssAvstandsBeregning (hl, h2) x/
123 /* Returns the Ll-difference between the histograms */
124 /* hl and h2 */
125 /**/
126 function gatekryssAvstandsBeregning ($Shl, $h2)
127 {
128 Sforskjell = 0;
129 for($i = 0; $i < count ($hl); S$i++)
130 {
131 Sforskjell += abs($hl[$i] - Sh2[$i]);
132 }
133 return $forskjell;
134 }
135
136
1’37 /**/
138 /* L2 (hl, h2) */
139 /* Returns the L2-difference between the histograms */
140 /* hl and h2 */

Page 2 of 9

Appendix A 03.06.2005 14:17

141 /**/
142 function L2 ($hl, $h2)

143 {

144 Sforskjell = 0;

145 for($i = 0; $i < count ($hl); S$i++)

146 {

147 //print "
 HER ER JEG!!!!!
";

148 Sforskjell += pow((Sh1[$i] - $h2[Si]), 2);

149 }

150 return sqgrt ($forskjell);

151 }

152

153

1E4 /**/
155 /* reSize (bildeurl, hgyde, bredde) */
156 /* Returns a copy of $bildeUrl with $x height and $y width */
1E7 /**/
158 function reSize($bildeUrl, x, Svy)

159 {

160 $imr = imagecreatefromjpeg($SbildeUrl)

161 or die("oisann, klarte ikke & lage bilde 1 resize nei");

162 SorgSize = getImageSize ($bildeUrl);

163 $smalllm = imagecreatetruecolor ($x, $vy);

164 imagecopyresized($smalllm, $imr, 0, O, 0, 0, $x, Sy, SorgSize[0], SorgSize[l]);
165 return S$smalllm;

166 }

167

168

161} /**/
170 /* rgb_to_hsv(array(r, g, b) */
171 /* Converts RGB to HSV */
172 /**/
173 function rgb_to_hsv ($Srgb)

174 {

175 for ($c=0; $c<3; S$c++)

176 {

177 Srgb[$c] = $rgb[$c] / 255;

178 }

179

180 Shsv = array (0, 0, 0);

181 Smax = max ($rgb);

182 Smin = min($rgb);

183

184 Shsv[2] = Smax;

185 Shsv[l] = (Smax) ? ((Smax - Smin) / $max) : O;

186

187 if (!S$hsv([1l])

188 {

189 Shsv[0] = null;

190 }

191 else

192 {

193 $delta = S$max - Smin;

194 if ($rgb[0] == Smax)

195 {

196 S$hsv[0] = (Srgb[l] - $rgb[2]) / $delta;

197 }

198 else if ($rgb[l] == S$max)

199 {

200 $hsv[0] = 2 + ($rgb[2] - Srgb[0]) / $delta;

201 }

202 else

203 {

204 $hsv[0] = 4 + ($rgb[0] - Srgb[l]) / $delta;

205 }

206

207 Shsv[0] *= 60;

208 if (Shsv[0] < 0)

209 {

210 Shsv[0] += 360;

211 }

Page 3 of 9

Appendix A 03.06.2005 14:17

2 }

3 ksort (Shsv) ;

4 Shsv[1l] = $hsv[1] * 100;
5 Shsv[2] = S$hsv[2] * 100;
6

for($i = 0; $i < count (Shsv); S$i++)
{

~J

Shsv[$i] = round($Shsv[$i]);

O

}

return S$Shsv;

C

1 }// function rgb_to_hsv

2

3 /**/
4 /* rgb_to_chroma (array(r, g, Db) */
5 /* Converts RGB to 2d opponent chromaticity space */
6

/**/

~J

function rgb_to_chroma ($rgb)

{

O

Scrhoma = array();
SR = $rgb[0];
$G = Srgb[1];
$B Srgb[2];

C

if ($R==$G && $G==$B && $B==0)
{

oY U W N

$litenr = 0;
$liteng = 0;
$litenb = 0;

~J

O

}

else

{

C

S$litenr = round((SR / (SR+$G+SB)) * 100)
$liteng = round(($G / (SR+S$G+$B)) * 100)
$litenb = round(($B / ($R+$G+$B)) * 100);

’
’

oY U W N

Schroma[0] = $litenr-$liteng;
Schroma[l] = $litenr+$liteng-(2*$litenb);

~J

O

return S$Schroma;
}// function rgb_to_chroma ()

C

OO DDA AEDNEDNWOWWWWWWWWWNNNRONRNONRONNNDN R R R R R

NDNDNMNDNDNDNDNNNNDNNDNDNDNDNDNNDNDNNDNDNDNDNDNNDNDNNDNDNDNDNDNNDNDNNDNDNDNDNDNDNDNNDNDNDNDNDNNDNDNNDDNDDN

1

2

’:3 /**/
54 /* histogram(bildeurl, antall bgtter) */
55 /* Returns a $hBinCount*$svBinCount”2 HSV histogram */
’:6 /**/
57 function hsvHist ($bildeUrl, $hRBinCount, S$svBinCount)
58 {
59 $im = imagecreatefromijpeqg ($bildeUrl)

60 or die("oisann, klarte ikke & lage bilde nei");

61 SorgSize = getImageSize ($bildeUrl);

62

63 $smallIm = $Sthis->reSize ($SbildeUrl, 200, 200);

64 $hBinDiv = 360 / $hBinCount; //5, 10 eller potens av 2

65 $svBinDiv = 100 / $svBinCount; // potens av 5

66

67 Shistogram = array(array(array()));

68 SrgbArr = array();

69
70 for ($x = 0; $x < imagesx($smalllm); Sx++)
71 {
72 for ($y = 0; Sy < imagesy ($smalllm); Sy++)
73 {
74 //Finner fargen til den aktuelle pixelen
75 Srgb = imageColorAt ($smalllm, $x, Sy);
76 //Deler fargen i R, G og B-komponenter
77 SrgbArr[0] = ($rgb >> 16) & OxFF;
78 SrgbArr[l] = ($rgb >> 8) & OxFF;
79 SrgbArr[2] = Srgb & OxFF;
80 //gjgr om til HSV
81 Shsv = $this->rgb_to_hsv ($SrgbArr);
82 //Finner bgttekoordinatene ved & heltallsdividere pa $hBinDiv og

Page 4 of 9

Appendix A 03.06.2005 14:17

$svBinDiv

3 $hBotte = bcdiv(Shsv[0], $hBinDiv, 0);

4 $sBotte = bcdiv($Shsv[1l], $svBinDiv, 0);

5 $vBotte = bcdiv($Shsv[2], $svBinDiv, 0);

6 //Legger til en i det aktuelle bgttekoordinatet.

7 Shistogram[$hBotte] [$sBotte] [$SvBotte]++;

8 }//for

9 }//for

0 return $histogram;

1 }//function hsvHist

2

3

4 /**/
5 /* chromaHist (bildeurl, antall bgtter) */
6 /* Returns a ShBinCount”3 2D-oppoenent chroma histogram */

~J

/**/

function chromaHist ($bildeUrl, S$BinCount)
{
$im = imagecreatefromijpeqg ($bildeUrl)
or die("oisann, klarte ikke & lage bilde nei");
SorgSize = getImageSize ($bildeUrl);

$smallIm = $Sthis->reSize ($SbildeUrl, 200, 200);
$BinDiv = 100 / $BinCount; // potens av 2

oUW O W o

~J

Shistogram = array(array());
SrgbArr = array();

for ($x = 0; $x < imagesx ($smalllm); Sx++)
{
for ($y = 0; Sy < imagesy ($smalllm); Sy++)
{
//Finner fargen til den aktuelle pixelen
Srgb = imageColorAt ($smalllm, $x, $Vy);
//Deler fargen i R, G og B-komponenter
SrgbArr[0] = ($rgb >> 16) & OxFF;
SrgbArr[l] = ($rgb >> 8) & OxFF;
SrgbArr[2] = Srgb & OxFF;
//gjer om til chroma
Schroma = $this->rgb_to_chroma ($rgbArr);
//Finner bgttekoordinatene ved & heltallsdividere pa $hBinDiv og
$svBinDiv

oUW O W o

WWWWWWWWwWwWwWwWwWwWwWwWwWwwWwWwwwwwdddNpMDMNDMNDMNDMNDMNDMNDMNDMNDNDDNDDNDDNDDND
~J

NNMNNNRFREFRPRFRPRPRPRPRPRPRPRPRPRPRPRPRPRPOOOOOOOO OO WWWWLWWWWWIWWOo o o o 0 o

N = O W o

323 $rgBotte = bcdiv ($chroma[0], $BinDiv, O0);

324 SbyBotte = bcdiv ($chroma[l], $BinDiv, 0);

325 //Legger til en i det aktuelle bgttekoordinatet.

326 Shistogram[$rgBotte] [SbyBotte]++;

327 }//for

328 }//for

329 return $histogram;

330 }//function chromaHist

331

332

3’33 /**/
334 /* fourPartDiv (bildeurl) */
335 /* Divides $bildeUrl in to 4 equal squares and returns these */
3'%6 /**/
337 function fourPartDiv (SbildeUrl)

338 {

339 //print $bildeUrl;

340 /*$srcIm = imagecreatefromjpeqg (SbildeUrl)

341 or die("oisann, klarte ikke & lage bilde nei");

342 SorgSize = getlImageSize ($bildeUrl);*/

343 $srcIm = $this->reSize ($bildeUrl, 200, 200);

344 StrgtIm = Array();

345 Swidth = 100;

346 $height = 100;

347

348 for ($i=0; $i<4;S$i++)

349 {

350 StrgtIm[$i] = imagecreatetruecolor ($width, S$height);

351 }

Page 5 of 9

Appendix A

03.06.2005 14:

17

oY U1 b W N

~J

oy O Oy O O O O O O
O

o O
C

[e)}

O C

[e)}
oY U W N

o o) O
O 0 J

[e)}

C

oY U W N

~N 0 00
~J

O

C

WWWWWWWWWWWWWWWWWWWWwWWWwwWwWwwWwwwwwww

o0 0O O
w N

w
[e0]
iy

385

w W W
O WO ¢ W W W W WWOo O o
J oYU WN P O WO Jo

W O -

S B B W WWWWWWWWWWWWW
o O W O
= C

TSN
o O
N

w

404
405
406
407
408

410
411
412
413
414
415
416
417
418
419
420
421

imagecopy ($trgtIm[0], $srcIm, 0, 0, 0, 0, S$width, S$height);

imagecopy ($trgtIm[1l], $srcIm, 0, 0, $width, 0, $width, S$height);
imagecopy ($trgtIm[2], $srcIm, 0, 0, 0, S$height, $width, S$height);
imagecopy ($trgtIm[3], $srcIm, 0, 0, S$width, S$height, S$width, S$height);

return $trgtlIm;
}//function fourPartDiv

/**/

/* fourPartHist (imagearray, bincount) */
/* returns $binCount”3 RGB-histograms for all images in S$imArr */
/**/
function fourPartHist ($imArr, S$binCount)
{

SbinDiv = 256 / $binCount;

ShistArr = array(array(array(array())));

SpixCount = imagesx ($imArr[0]) * imagesy ($imArr[0]);

for ($i=0;$i<count ($imArr);S$i++)
{
for ($x = 0; $x < imagesx ($imArr[$i]); S$x++)
{
for (Sy = 0; Sy < imagesy ($imArr[$i]); S$Sy++)
{
//Finner fargen til den aktuelle pixelen
Srgb = imageColorAt ($imArr([$i], $x, Sy);
//Deler fargen i R, G og B-komponenter
$r = (Srgb >> 16) & OxFF;
Sg ($rgb >> 8) & OxFF;
Sb = Srgb & OxFF;
//Finner bgttekoordinatene ved & heltallsdividere pa $binDiv (som er
256 delt
// pa antall bgtter)
$rBotte = bcdiv($Sr, $binDiv, 0);
$SgBotte bcdiv($g, $binDiv, 0);
$bBotte = bcdiv($b, $binDiv, 0);
//Legger til en i det aktuelle bgttekoordinatet.
ShistArr([$i] [SrBotte] [$gBotte] [$bBotte]++;
}//for
}//for
}//for
return S$histArr;
}//function fourPartHist

/**/

/* sepChanHist (bildeurl, Xbincount, cbincount) */
/* returns an $xBins*$cBins channelsplit-histogram */
/**/
function sepChanHist ($bildeUrl, $xBins, $cBins)

{
$smallIm = Sthis->reSize ($SbildeUrl, 200, 200);

SpixArr = array(array(array()));
$xbinDiv = imagesx($smalllm) / $xBins;
ScbhinDiv = 256 / $cBins;

for ($x = 0; $x < imagesx($smalllm); Sx++)
{
for ($y = 0; Sy < imagesy ($smalllm); Sy++)
{
//Finner fargen til den aktuelle pixelen
Srgb = imageColorAt ($smalllm, x, Svy);
//Deler fargen i R, G og B-komponenter
$r = (Srgb >> 16) & OxFF;
Sg = ($rgb >> 8) & OxFF;
Sb = Srgb & OxFF;
SpixArr[0] [bediv ($x, $xbinDiv, 0)][bcdiv($r, $cbinDiv, 0)]1++;
SpixArr[l] [bediv ($x, $xbinDiv, 0)][bcdiv($g, $cbinDiv, 0)]1++;
SpixArr[2] [bediv ($x, $xbinDiv, 0)][bcdiv ($b, $cbinDiv, 0)]1++;

Page 6 of 9

Appendix A 03.06.2005 14:17

422 }//for

423 }//for

424

425 return $pixArr;

426

427 }//function sepChanHist

428

429

43\J /**/

431 /* tenPartDiv (bildeurl, division count) */

432 /* Divides $bildeUrl in to $divCount equal squares */

4’2]3 /**/

434 function tenPartDiv ($bildeUrl, S$divCount)

435 {

436 $srcIm = $this->reSize ($bildeUrl, 200, 200);

437 StrgtIm = Array();

438 Swidth = 200/$divCount;

439 Sheight = 200/$divCount;

440

441 for ($i=0; $i<$divCount* S$divCount; $i++)

442 {

443 StrgtIm[$i] = imagecreatetruecolor ($width, S$height);

444 }

445 $3=0;

446 for ($x=0; $x<200; S$x+=Swidth)

4477 {

448 for (Sy=0; $y<200; S$y+=Sheight)

449 {

450 imagecopy ($trgtIm[$j], $srcIm, 0,0, $x, Sy, Swidth, S$height);

451 Sg++;

452 }

453 }

454 return $trgtlIm;

455 }//function tenPartDiv

456

4E3 /**/

458 /* avgColor (image array) */

459 /* returns the average RGB-colour of all the images in $imArr */

46u /**/

461 function avgColor ($imArr)

462 {

463 SavgArr = array(array());

465

466 for ($i=0; $i <count ($SimArr); $i++)

467 {

468 StempArr = array(array());

469 $3 = 0;

470 for ($x=0; $x<imagesx (SimArr[$i]); Sx++)

471 {

472 for ($y=0;$y<imagesy (SimArr[$i]);Sy++)

473 {

474 Srgb = imageColorAt ($imArr[$i], $x, Sy);

475 Sr = (Srgb >> 16) & OxFF;

476 $Sg = (Srgb >> 8) & OxFF;

477 Sb = Srgb & OxFF;

478 StempArr[0] [$]] = S$r;

479 StempArr[1][$3] = S$g;

480 StempArr[2]1[$7] = S$b;

481 $I++;

482 }

483 }

484 SavgArr[$1]1[0] = round(array_sum(StempArr[0]) / (imagesx (SimArr[$i]) *
imagesy ($imArr[$i])), 0);

485 SavgArr[$i]1[1] = round(array_sum(StempArr([1l]) / (imagesx(SimArr[$i]) *
imagesy ($imArr[$i])), 0);

486 SavgArr[$i]1[2] = round(array_sum(StempArr([2]) / (imagesx (SimArr[$i]) *
imagesy ($imArr[$i])), 0);

487 }

488 return $avgArr;

489 }// function avgColor

Page 7 of 9

Appendix A 03.06.2005 14:17

e

C

e

function avgHist ($bildeUrl, $divCount)
{

O O

$imArr = S$this->tenPartDiv ($bildeUrl, $divCount);
SavgArr = $this->avgColor ($imArr);
return $avgArr;

}// function avgHist

Nej
oY U1 W N

O O
O 00 J

O O

/**/

Nej

00 /* arrMerge (arrayl, array2, weightl, weight2) */
501 /* merges two arrays with weighting */
502 /**/
503 function arrMerge ($arrl, S$arr2, Sweightl, S$weight2)

504 {

505 StmpArrl = array();

506 StmpArr2 = array();

507

508 foreach ($Sarrl as S$Svaluel)

509 array_push ($tmpArrl, S$valuel*Sweightl);

510 foreach (S$Sarr2 as S$Svalue2)

511 array_push ($tmpArr2, S$value2*Sweight?2);

512

513 SretArr = array_merge (StmpArrl, S$tmpArr2);

514 return SretArr;

515 }

516

517

518 /**/
519 /* imRandomize (bildeurl) */
520 /* Randomly rearranges all the pixels in $bildeUrl */
521 /**/
522 function imRandomize (SbildeUrl)

523 {

524 $smallIm = $Sthis->reSize ($SbildeUrl, 200, 200);

525 SreturnIm = imagecreatetruecolor (200,200);

526 SimArr = array();

527 $i = 0;

528 for ($x = 0; $x < imagesx ($smalllm); Sx++)

529 {

530 for (Sy = 0; Sy < imagesy($smalllm); Sy++)

531 {

532 //Finner fargen til den aktuelle pixelen

533 $imArr[$i] = imageColorAt ($smalllm, x, Sy);

534 Si++;

535 }

536 }

537 shuffle ($imArr) ;

538 $3=0;

539 for ($x = 0; $x < imagesx ($smalllm); Sx++)

540 {

541 for ($y = 0; Sy < imagesy ($smalllm); Sy++)

542 {

543 imagesetpixel ($returnIm, $x, Sy, $imArr([$jl);

544 Si++;

545 }

546 }

547 return Sreturnlm;

548 }// function imRandomize

549

550

5’:1 /**/
552 /* avgCompare (arrayl, array2) */
553 /* Computes the vector distance between two colour arrays */
5’:4 /**/
555 function avgCompare (Sarrl, S$Sarr2)

556 {

557 StotDiff = 0;

558 Sthreshold = 10;

559 $simCount = 0;

560 StotCount = count (Sarrl)/3;

Page 8 of 9

Appendix A 03.06.2005 14:17

561 Sk = 0;
for($i = 0; $i < count (Sarrl); $i+=3)
{
//print "
 HER ER JEG!!!!!
";
Srdiff = abs(Sarrl[$i] - Sarr2[$i]);
$Sgdiff = abs(Sarrl[$i+l] - $Sarr2[$i+l]);
Shbdiff = abs($Sarrl[$i+2] - Sarr2[$i+2]);
SvLengthl = sqgrt (pow ($Sarrl[$i], 2) + pow(Sarrl[$i+l], 2) + pow($Sarrl([$i+2],
2));
570 SvLength2 = sqgrt (pow ($Sarr2[$i], 2) + pow(Sarr2[$i+l], 2) + pow($Sarr2[$i+2],
2));

$vMax = max ($vLengthl, $vLength?2);
SvDiff[$k] = sqgrt(pow($rdiff, 2) + pow($gdiff, 2) + pow($bdiff, 2));
StotDiff += $vDiff[$k];
Sk++;

}

return StotDiff;

}//function avgcompare
}//class bildeTing

Page 9 of 9

Appendix B

PHP-code for one indexing- and one retrieval-script.

Appendix B 30.06.2005 13:31

<html>
<head>
<link rel="stylesheet"” type="text/css" href='"grl.css" />
</head>
<body>

<?php
/ /
/* CBIR-script for RGB-histograms */
/ /

require
require

../classes/dbClass.php”;
../classes/bildeTing.php;
$dbObj = new db;
$dbObj->koble_til();

$btObj = new bildeTing;

$sb = $ GET["sb"];

$sokDir = "/mediasbildedb/mpeg_dataset/";
$sokBilde = $sokDir.$sb;

$query = "SELECT * FROM Histogram™;
$query?2 “"SELECT Hist FROM Histogram WHERE Filnavn = ""_$sokBilde.""";
$result = array();

$gRes2
$q0bj2
$gArr2

$dbObj->query($query2);
mysql_fetch_object($gRes2);
explode("|", $q0bj2->Hist);

$gRes = $dbObj->query($query);

//This is where the search itself is performed.
while ($90bj = mysql_fetch_object($gRes))
{

$gArr = explode("|", $gObj->Hist);

$svarLl
$svarlL2

= $btObj->gatekryssAvstandsBeregning($gArr, $gArr2);
= $btObj->L2($gArr, $gArr2);

$resultL1[$q0bj->Filnavn]
$resultL2[$g0bj->Filnavn]

$svarll;
$svarl?2;

}

print (“<center>");

print ("Sgkebilde:
");

print ("
%);
print ($sokBilde."
%);

print ("</center>%);

asort($resultLl);
asort($resultlL2);

print ("
Resultat:
7);
$keysLl = array_keys($resultlLl);
$keyslL2 = array_keys($resultlL2);

print "<table class="search"><tr><th class="meny" colspan="2"> L1: </th><th
class="meny" colspan="2"> L2: </th></tr>";

for($i = 0; $i < 20; $i++)
{

$tmp = explode($sokDir, $keysL1[$i]);

$tmpll = explode($sokDir, $keysL1[$i+1]);

$tmp2 = explode($sokDir, $keysL2[$i]);

$tmp21 = explode($sokDir, $keysL2[$i+1]);

print ("<tr><td class="'search">");

print ("
%);
print ("Forskjell:

" $resultL1[$keysL1[$i]]-"
7);

print ("" .$tmp[1]. "</td>");

print (*<td class="search”>");

print ("
");

Page 1 of 2

Appendix B

30.06.2005 13:31

print ("Forskjell:

" _$resultLl[$keysL1[$i+1]]-"
7);

print ("".$tmpll[1]. "</td>");

print ("<td class="search">");

print ("
%);
print ("Forskjell:

" $resultL2[$keysL2[$i]]-"
7);

print ("" . $tmp2[1]. "</td>");

print (*<td class="search”>");

print ("
");
print ("Forskjell:

" _$resultlL2[$keysL2[$i+1]]-"
7);

print ("".$tmp21[1]. "</td></tr>");

Si++;

?>
</body>
</html>
<?php
Y falalaiale /
/* This is the script for creating RGB-histograms */
/***/
require "._/classes/dbClass.php”;
require "../classes/bildeTing.php”;
$dbObj = new db;
$dbObj->koble_til();
$btObj = new bildeTing;
$startTime = time();
$sokBotter = 8;
$bildeDir = "/mediasbildedb/mpeg_dataset/";
if ($handle = opendir($bildeDir))
while (false == ($file = readdir($handle)))
if (Bfile 1= " && $File 1= "_ ")
{
//echo "$file\n";
$histStr = "°;
$fullFile = $bildeDir.$file;
$hist = $btObj->histogram($fullFile, $sokBotter);
for ($r = 0; $r < $sokBotter; $r++)
for ($g = 0; $g < $sokBotter; $g++)
for ($b = 0; $b < $sokBotter; $b++)
{
//legger verdien av bgtten til histStr
$histStr.=$hist[$r][$g]1[$b];
//Hvis det ikke er siste bgtten, legg til en |
if (1($r == $b && $b == $g && $g == ($sokBotter - 1)))
$histStr.="|";
3
¥
) 3
$dbObj->query(""INSERT INTO Histogram (Filnavn, Hist) VALUES ("$fullFile”,
"$histStr*)");
3
echo "-";
X)
closedir($handle);
$endTime = timeQ);
$elapsedTime = $endTime - $startTime;
print ("Tid brukt: "_$elapsedTime." sekunder\n™);
3
?>

Page 2 of 2

Appendix C

All results of the questionnaire described in chapter 4.2.

bral bra2 bra3 bra5 braé bra7 ranki rank2 rank3 rank4 rank5 rank6é sex age comments

1 4 5 3 5 3 3 2 1 3 1 2 3k 26

2 3 3 3 4 4 4 2 3 1 1 2 3k 25

4 5 4 5 5 5 5 2 3 1 1 1 1im 29 synes alle sokene ga imponerende resultater jeg. God jobb :]

5 4 3 5 3 3 3 2 3 1 2 2 2m 25

6 5 4 4 3 3 3 2 3 1 1 2 3k 27

8 4 3 2 4 5 4 1 2 3 2 1 3k 27

9 4 3 4 3 4 3 2 3 1 2 1 3m 35

10 4 3 3 4 4 2 1 3 2 2 1 3m 40

1 4 3 4 4 3 4 3 2 1 2 1 3m 26 Eventuelle kommentarer her.

14 4 3 4 2 2 2 1 3 2 1 2 3M 25

15 5 4 5 5 5 5 2 3 1 1 2 3m 22

20 4 3 4 3 4 2 1 2 3 2 1 3m 25 Halla Ole A

17 4 2 4 3 1 2 3 2 1 2 1 3m 24

19 3 3 4 3 4 4 2 3 1 3 2 1k 23
Min rangering av metodene kan du egentlig se fullstendig bort fra. De forste treffene er etter hva jeg kan se temmelig like,
uavhengig av metode, de store forskjellene kommer farst pa de siste 10 treffene...og et urelevant bilde er urelevant uansett om det
er bilde av en elefant eller en mus. Siden metodene resulterer i sa like resultater burde dette veert presentert pa en annen mate for
av vi som svarer pa en slik undersokelse skal ha mulighet for & vurdere forskjellene. Det blir for mye jobb og ga frem og tilbake
mellom metode 1, 2 og 3 og scrolle opp og ned. Dersom du kunne presentere tre metoder pa hver side...med bilden:
rader...sa ville det veert mye enklere & sammenligne. Du har uansett valgt en spennende oppgave, og jeg ser frem ti
presentasjonen - men slik denne sparreundersokelsen er lagt opp er mitt svar verdilost, da jeg ikke har mulighet

23 4 4 4 3 3 3 1 2 3 1 2 3m 24 resultatene fra hverandre nar de presenteres pa denne maten.

24 5 3 3 3 3 2 1 2 3 1 2 3k 23

26 4 4 5 5 5 4 3 2 1 1 2 3m 25 Det kan jo aldri bli perfekt da, hvis du skal fa en del treff... Hva med & utvide sgkebasen din med et sgk i google-bi

27 3 4 5 3 4 3 3 2 1 2 1 3m 25

29 4 4 4 4 4 3 3 2 1 2 1 3m 27

33 4 4 5 5 4 4 2 3 1 1 2 3m 24

34 3 3 3 4 4 4 2 3 1 2 3 1k 28

35 4 3 5 5 4 5 2 3 1 1 2 im 26

36 3 2 2 4 3 2 1 3 2 1 2 3K 23
Pa den siste sa sokte den etter soy, og fant stay. Jeg synes den gjorde det veldig bra, den fant jo bare staybilder... ;) Likte at de

38 5 4 5 5 5 4 2 3 1 1 2 3m 21 stoybildene med storst forskjell i luminans og farge fra sekebildet havnet ti
Dette var et spennede prosjekt. Gleder meg til & hare om resultatet. Kanskje du kan revosjonere bildesgk:) Rangeringen min ser du

39 3 4 5 3 4 5 3 2 1 3 2 1k 23 jo over, jeg mener at nr 3 og 6 gav likest visuelle resultater.

44 4 3 3 3 4 2 1 2 3 1 2 3m 26

48 4 5 4 5 5 4 2 1 3 1 2 3m 21
Dette er en meget god idé, og det er et fremskritt hvis dette systemet «foredles: ved sok etter et spesielt uttrykk i et

50 4 3 4 3 4 2 1 3 2 2 1 3K 24 bilde man leter ettel

52 5 4 3 4 4 4 2 1 3 1 2 3m 25 Er litt usikker pa om du far noe godt svar ut av denne testen.

53 3 3 2 3 3 3 2 2 2 2 1 2k 23

57 3 2 3 2 2 1 1 3 2 1 2 3k 20

59 4 4 4 5 5 5 3 2 1 1 2 3k 24

60 4 4 4 3 3 4 1 3 2 2 1 3k 24

61 3 3 3 3 4 4 2 3 1 3 2 im 21

62 4 4 5 5 5 3 2 3 1 1 2 3m 20

66 4 3 4 3 3 3 2 3 1 1 2 3m 29

67 4 3 4 3 3 2 1 3 2 1 2 3m 24 spennende

69 4 3 4 4 4 3 2 3 1 2 1 3m 24

70 5 5 5 4 4 3 2 3 1 1 2 3m 21 spennende prosjekt!

! 4 3 4 3 4 3 2 2 1 2 1 3K 29

72 4 4 5 4 3 3 2 3 1 1 2 3k 25

75 3 2 2 4 3 2 1 3 2 1 2 3m 24

76 4 3 4 5 5 5 2 3 1 1 2 3k 22

77 4 3 4 5 4 3 1 3 2 1 2 3m 22 Dette er en teknologi jeg har ventet lenge pa. Bra jobba.

78 3 3 4 4 3 5 2 3 1 2 3 1k 25

80 3 2 4 2 3 4 2 3 1 3 2 1k 21

81 4 4 5 5 5 5 2 3 1 1 2 3K 41

82 5 4 5 4 3 3 2 3 1 1 2 3k 20 litt vanskelig & sammenligne hvilke sgk som var best nar man ikke sa de samtidig

83 3 2 2 2 2 1 1 2 3 1 2 3m 21

84 4 3 3 5 5 4 1 3 2 2 1 3m 23

86 3 3 4 4 4 3 1 3 2 2 1 3m 23

91 4 4 4 3 4 4 2 3 1 3 2 im 25 interessant!

92 4 3 3 4 4 3 1 3 2 1 2 3k 35

93

94

96

97

98
100
101
102
104
108
109
110
i1
112
113
114
115
117
122
124

125
128
130
131
132
133
135
137
138
140
141
144
147
149
150
151
153
154
160
163

168
169
170

171
175

176
177
178
180
183
184
185
186

PO BROOOWANBOABDOADDSS

AL WARABRRRAROWOWOREARW®OASD

[NEN

~

rPLOWAROBWON

TR WWARBENDEOWWWOEDWAEWOS

N I N N N A N L EARANN

W

ww

A R

TRARWOPROWRREWRRYNW®WOSOO

AN SNAOELONWODWAW®®WO

- w

~

AREBNOOWN

AROPPLOPUWROWWWAWSS =LA

WONTNRWARWERERWONWSOA

ENES

~

AROOOWON

WEROBRONOBRLAOBRBRRORRO DO

PONOAWROWWARBWAEBNNOW

N

~

ARrOOOBON

WRORWE LT WAWONRNNWN A= WO

WONABENWAWONWAWAORNDOA

www

N

W WO OGN

WH W AN AN SN a0 a 0N

[NI R N S X S SIS SN

N

LW W W

MONWORNWON2ANWORONNPNNN W

WROPONONWNORN 2NN WNWND W

(SRS

N w

WP WD W

SWAN AW OO WWWW =W

L LWL ON S ONWW =W W= W N

[R R N}

[N R A I RS O SN O O R

MW= 2NN = WN =N - = oo

[N

[Y SR

I R L L L AR Ol SRR S N

B I N L L SR NS SR A NS AY V]

N

N

WD = =W N

WM WWWWNWWWNWWWWWWW -

WWW WANWRWWRPAWW= =2 NN WD

S WWN =W

3X*33X3**3%X33333XxXF*%

AX33Z23333*333%333%33

=3 X

33

333*%333

22 Ikke alltid lett & se s& mye forskjell pa sekene. Spesielt
23

25

23

23

23

23

25

22

25

22

23 dette var vanskelig og uoversiktlig & svare pa. muligens fordi jg aldri har gjort noe sant for...
22

24

20

24

44

21

22

22 VELDIG vanskelig & sl

lene av sand ble veldig like for meg.

Idene i metode 4,5,6.

35 Litt vanskelig & bestemme det beste resultatet ut fra bildene i metode 4, 5 eller 6, men gjorde ihvertfall et forsek.
36 Spennende saker

25

24

26 Jeg synes den med oksen var finest!

22

26

20

20

43

29 det siste aner jeg ikke hva du er ute etter

23

27

30

23

22

23 Skikkelig toft & se at den velger bildene som er like. Aldri sett noe lignende.
23

22

23

42 Hei! Har gjennomfert testen din. Flott tiltak selv om det kanskje ikke er det jeg kommer
25
24

& bruke mest tid pa. Lykke ti

Smart mate & soke etter bilder. Blir noen merkelige bilder ut i fra sokebildet, skjenner ikke hvordan de kan dukke opp, har jo ikke
20 noe tilfelles med sekebildet :) Tror du er pa god vei til & lage noe bra, lykke i
25

Fungerer relativt brukbart men har noen ekstremverdier som edelegger helhetsinntrykket. Bor kanskje fokusere mer pa
24 menstergjenkjenning i tillegg til det som na ser ut som fargegjenkjenning.
25
24
23
32
24
22
30

Bin _ Frequency % Cum %) Bin _ Frequency % Cum %
1 T 1% 1% RGB histogram 1 T 1% 1% RGB histogram randomized
2 3 3% 4 %| V.Aoonxo 2 6 6% 7% > 100 %
3 25 24% 27% 8 80 % 3 38 36% 42 % 2 80%
H 61 s8% 5% § 60% 4 35 33% 75% 3 80%
5 16 15% 100% § 40 o\o 5 26 25% 100%| & 599
Sum 106 [mm % Sum 106 L g9
Average: 3,8 ° o 3 4 3,7 1 2 3 4
Rating Rating
Bin _ Frequency % Cum % Bin Frequency % Cum %
1 > 2% > % RGB + AVG 1 2 2% 2% RGB + AVG randomized
2 1 10% 12 % 100 % 2 9 8% 10 % 100 %
3 80 % & 80
3 51 48% 60% & ° 3 30 28% 39% c °
60 % o 60 %
4 36 34% 949 S 40 o\o 4 43 41% 79% 3 40 %
5 6 6% 100 % m. 20 o\o 5 22 21% 100%| © 209
Sum 106 =5 o\o Sum 106 L o0%
o
3,3 > 3 4 3,7 1 2 3 4
Rating Rating
Bin Frequency % Cum % Bin _ Frequency % Cum %
1 2 2% 2% Gamut 1 2 4% 4% Gamut randomized
2 11 10% 12% > Aoo“\o 2 20 19% 23 %| > 100 %
3 33 31% 43% g 80% 3 49 39% 61% & 80%
4 38 36% 79% 3 mm “ 4 24 23% 84% 3 80%
5 22 21% 100%| § 20 Qo 5 17 16% 100% 8§ 20 %
Sum 106 w 0 QM Sum 106 L 5o
3,6 2 3 4 3,3 1 2 3 4
Rating Rating

Bin Frequency

%

Bin Frequency % i i
1 49 46% RGB histogram 1 59 56% 6 RGB histogram randomized
2 37 35% . 100% 2 36 34% B
3 20 19% e 80 o\o 3 11 10% § 4
Sum 106 100 % g 60% Sum 106 100%| T »
7 g 40% 5 m
’ T 20 % ’
- 0 o\o
o 1 2 3
2 3 -
Rankin
Ranking anking
Bin Frequency % Bin _ Frequency %)
1 5 5% AVG + RGB 1 34 32% AVG + RGB randomized
2 48 45% > 100% 2 61 58%
o 80 % >
3 53 50% H 60 o\M 3 1 10% m
Sum 106 100 % 2 40% Sum 106 _100% &
2,5 £ 20% 18] &
0%
2 3 1 2 3
Ranking Ranking
Bin Frequency % Bin _ Frequency %)
1 51 48 % G 1 19 18% Gamut randomized
2 24 23% 100 % amut 2 1 10%
3 31 20% W. 80 % 3 76 72% nnvv.
Sum 106 100 % g 60 % Sum 106 100%| &
1,8 T 40 % > o
’ S 200 B2 0w
ol 20 % = o
0% 1 2 3
2 3 Ranking

Ranking

Appendix D

All ground-truth sets used in the project.

Appendix D: Ground truth sets

i0301 adds.ipg i0302_adds.ijpg i0303_adds.ipg i0304_adds.ipg

g

i0305_adds. jpg i0306_adds, jpg i0307_adds.jpg i0308_adds,jpg

i0309_adds.ipg i0310_adds.ijpg 0311 adds.ipg

1/15

Appendix D: Ground truth sets

i0314 adds.ipg

i0315_adds.ipg

i0315_adds,jpg

i0320_adds.ipg

i0321_adds.ijpg

032z _adds.ipg

0319 _adds.jpg

2/15

Appendix D: Ground truth sets

i0330_adds.jpg

i0331_addS.ipg 0332 _addS.ipg i0333_adds.ijpg

3/15

Appendix D: Ground truth sets

i0338_adds.jpg

0342 _addS.jpg

i0339_addS.jpg

i0343_addS.ipg

i0344_adds,jpg

0341 _adds.jpg

4/15

Appendix D: Ground truth sets

i0353_adds,jpg

i0354_adds.jpg

i0355_adds.jpg

0352 adds.ijpg

5/15

Appendix D: Ground truth sets

i0356_adds.jpg i0357_adds,jpg i0353_adds.jpg i0359_adds,jpg

i0360_adds.jpg 0361 _adds.jpg

i0363_adds.jpg

i0364_adds.ijpg i0365_adds.jpg i0366_adds.jpg

6/15

Appendix D: Ground truth sets

i0374_addS.jpg

i0375_adds.jpg i0376_addS.jpg 0377 _addS.ipg

7115

Appendix D: Ground truth sets

i0378_adds.jpg i0373_adds,jpg i0350_adds.jpg i0351_adds.jpg

i0382_adds.jpg i0383_adds.jpg i0384_adds.jpg i0385_adds.jpg

i0386_adds.ijpg i0387_adds.ijpg 0385 _adds.ijpg

8/15

Appendix D: Ground truth sets

i0339_adds,jpg i0320_adds,jpg 0321 _adds.jpg

i0393_adds.ipg 0394 adds.ipg 0395 _adds.ipg i0396_adds.jpg

i0397_adds,jpg i0395_adds,jpg 0329 _addS,jpg

9/15

Appendix D: Ground truth sets

i0401 _adds,jpg

0404 _adds.jpg

i04058_adds.ipg i0409_adds.jpg

i0402_adds,jpg

i0410_adds.ijpg

i0403_adds,jpg

0407 _adds.jpg

10/15

Appendix D: Ground truth sets

a01-ref _add4.jpg &02 _add4.jpg f03_add4.ipg &a04 add4.jpg

&05_add4.jpg A06_add4.jpg £07_add4.jpg &a08_add4.jpg

803 _add4.jpg A410_add4.jpg f811 addd4.ipg 812 add4.ipg

T

@13 _add4.jpg f14_add4.ipg f815_add4.ipg

11/15

Appendix D: Ground truth sets

BO1-ref_add4.jpg BOZ_add4.ipg BO3_add4.jpg BO4_add4.ipg

BOS_add4.ipg BO&_add4.ipg BO?_add4.jpg

BO9_add4.jpg B10_add4.jpg Bi11l_add4.jpg Bi1z_add4.jpg

B13 add4.jpg Bil4 addd4.jpg B15 addd4.jpg

12/15

Appendix D: Ground truth sets

C04_add4.ipg

ol fI.I
b he
E=s ; |

C05_add4.ipg

C12_add4.jpg

C13_add4.ipg C14_add4.ijpg Z15_add4.jpg

13/15

Appendix D: Ground truth sets

013_add4.ijpg

D14 _add4.jpg

015_add4.jpg

012 _add4.ipg

14/15

Appendix D: Ground truth sets

E01-ref_add4.jpg E0Z_add4.ipg E03_add4.jpg E04_add4.ipg

E0S_add4.ipg E06_add4.ipg EO07 _add4.jpg E0S_add4.ipg

E09_add4.jpg E10_add4.jpg Ei1l_add4.jpg Ei1z_add4.jpg

el |

E13 add4.jpg El4 addd4.jpg E15 add4.jpg

15/15

	Jonsgård - Improvements on colour histogram based CBIR.PDF
	Masteroppg-OAFJ-final.pdf
	Abstract
	Sammendrag
	Acknowledgements
	Common abbreviations
	List of figures
	Table of contents
	Introduction
	Background
	Research questions
	This document

	Theory and related work
	Content based image retrieval
	Colour histograms
	Global colour histograms
	Comparing histograms
	Local colour histograms
	Problems with colour histograms

	Colour models
	The RGB colour model
	The HSV colour model

	Other image retrieval methods

	Resources
	Methods used
	RGB Histogram
	HSV Histogram
	Four part-division
	Channel splitting (R, G, B-histograms)
	Average colour-squares
	Gamut intersection

	The system
	The image database

	Experiments
	AMP-measurements
	Setup
	Results
	Discussion

	Questionnaire
	Setup
	Results
	Discussion

	Conclusions and future work
	Conclusions
	Further work

	References
	Appendixes

