Slow Port Scanning with Bro

Roger Larsen

Master’s Thesis
Master of Science in Information Security
30 ECTS
Department of Computer Science and Media Technology
Gjovik University College 2013

Avdeling for

informatikk og medieteknikk
Hggskolen i Gjgvik
Postboks 191

2802 Gjgvik

Department of Computer Science
and Media Technology

Gjgvik University College

Box 191

N-2802 Gjgvik

Norway

Slow Port Scanning with Bro

Roger Larsen

2013/11/27

Slow Port Scanning with Bro

Abstract

Today’s society relies on computer networks. More and more data of vital importance are transmitted over
them each day. Because of that, networks have become an interesting target for attackers, from ordinary
criminals to foreign organizations and states. This has forced equipment providers and network adminis-
trators to make computer networks more robust. To this end, various countermeasures against cyber attacks
are performed. One of the most commonly used ones is application of Intrusion Detection Systems (IDS).
These systems are capable of classifying network traffic into several categories, according to the traffic fea-
tures determined in advance. The basic classification performed by them is the classification in two classes
— benign traffic and malicious traffic.

The classification methods that IDS implement are different, but classic pattern/signature matching and
statistical parametric decision making are used very often. According to the intrusion detection model,
IDS are classified into two categories: misuse detection systems and anomaly detection systems. Misuse
detection systems use a database of known attacks and report if they recognize signatures of known attacks
in the incoming traffic. Anomaly detection systems define profiles of normal host/network behavior and
report discrepancies from that.

This thesis concentrates on methods of detection of special kind of reconnaissance activity in computer
networks — so-called port scanning, which tries to determine what services are active on a target host. In
addition, the scans are considered slow — this means that the time delay between scanning two ports is
relatively long — from several minutes to several days. This kind of port scanning is in general harder to
detect by IDS. The IDS of particular interest in this context is Bro — an open-source system that detects
intrusions by semantic, highly stateful traffic analysis. This system also has advanced protocol detection
capabilities. It can be configured to be either misuse or anomaly detection system, even a combination of
both at the same time. As such, it has attracted much attention of the scientific community in the recent
years. The goal of the thesis is to develop a method for slow port scanning detection with Bro and com-
pare the capabilities of the new method with slow port scanning detection methods applied on other IDS,
especially in the presence of noise.

Our results shows that our modified version of scan.bro policy script, gave improved slow port scan-
ning detection capabilities in Bro.

Slow Port Scanning with Bro

Sammendrag (Abstract in Norwegian)

Dagens samfunn har i stor grad gjort seg avhengig av datamaskiner med nettverk og Internet forbindelse.
Dette har fgrt til en stor gkning av kriminell aktivitet mot disse datamaskinene, bade fra individuelle og godt
organiserte kriminelle samt statlig stgttede organisasjoner. Produsenter og administratorer av datautstyr ma
hele tiden oppdatere og passe pa at bade fysiske enheter og programvare er tilstrekkelig rustet for a sta
imot dette stadig gkende presset. Det finnes forskjellige lgsninger for a kontrollere nettverkstrafikk. Den
vanligste Igsningen er inntrengingsdeteksjons systemer (IDS). Disse systemene kan klassifisere datatrafikk.
Normalt klassifisere datatrafikk i normal trafikk og ugnsket trafikk.

Klassifiseringsmetodene IDS bruker er noe forskjellige. Den mest vanligste metoden er a bruke tidligere
kjente mgnster/signaturer av ugnsket datatrafikk. Denne metoden kalles signaturbasert deteksjon. Den an-
dre metoden er sakalt avviksmetoden. Her blir den normale datatrafikken brukt som en basisprofil og trafikk
som avviker etter gitte statistiske parameter blir definert som ugnsket.

Denne masteroppgaven fokuserer pa deteksjon av portskanning. Portskanning er en typisk aktivitet i
en tidlig fase av et angrep: rekognoseringsfasen. I denne rekognoseringsfasen er angriperen pa jakt etter
mulige angrepspunkter og evt. sarbarheter i datanettverket. Hvis angriperen minsker hastigheten mellom
hver port som blir forsgkt skannet, gjerne med flere minutter eller kanskje til og med timer, kalles dette
for sakte portskanning. Slike sakte portskanninger er vanskeligere a oppdage for inntrengingsdeteksjons
systemer. Vi vil i var masteroppgave fokusere pa Bro IDS. Bro er gratis (apen kildekode) og har kraftige
protokollanalysemekanismer samt et omfattende skriptsprak. Bro kan konfigureres til a fungere som bade
signaturbasert og avviksbasert IDS. Bro har fatt mye oppmerksomhet i forskningsmiljger verden over. Vi
har som mal i var masteroppgave a forbedre Bro sin deteksjon av sakte portskanning, sammenligne andre
inntrengingsdeteksjons systemer og vurdere evt. mengden av falske alarmer.

Vire resultater viser at vart modifiserte scan . bro skript forbedret Bro sin egenskap til a detektere sakte
portskanning.

il

Slow Port Scanning with Bro

Preface

The author is employed by Austevoll Kraftlag SA, LYSGLIMT dep. [1]. LYSGLIMT is the major broad-
band supplier in Austevoll municipal. LYSGLIMT have delivered triple play services (Internet,IPTV &
VoIP) since 2003. The author has over twenty years experience in running and maintaining ICT networks
for SMB sector. The author have managed LYSGLIMT’s core, distribution and access network for the last
eight years. This includes security, monitoring, email and DNS infrastructure. The authors formal back-
ground is engineer degree in electronics and computer from Narvik University College (1989).

Acknowledgments

I have been fortune to get much support and feedback during my master thesis. I would like to thank
Prof. Dr. Slobodan Petrovi¢ for his patient and supporting supervising. Thanks to my fellow students Aud
Gran and Ernst Kristian Henningsen for their support and unbiased feedback in our common journey for a
master’s degree. I have not made this as a remote part time student without you! I will also thank my friend
and phd student Gaute B Wangen for guiding me the right way in science methodology. A great thank to
Austevoll Kraftlag SA for giving me the chance to study and for their support and understanding.

Finally, but the greatest thanks to my family for their patience during my study.

iii

Slow Port Scanning with Bro

Contents

Abstract i
Sammendrag (Abstract in Norwegian) ii
Preface e iii
Contents iv
Listof Figures e viii
Listof Tables e ix
Glossary e e X
Abbreviations xi
1 Imtroduction e 1
L1 Topics . . . o o o o e 1

1.2 Keywords o e e e 1

1.3 Problemdescription 1

1.4 Justification, motivation and benefits 1

1.5 Research Questions e 2

1.6 Scope e e e 3

1.7 Thesisoutline e 3

1.8 Summary of contributions 3

2 TCP/P,Portscanningand IDS 4
2.1 TCP/IP, ports and SEIVICES o ittt e e e 4
2.1.1 TCP/AMPbackground 4

2.1.2 TCPflagsand theirusage 4

2.1.3 TCP/UDP ports and SEIVICES« v v v v v v e i e et e e e e 5

2.2 PortScanning e e e e e e 5
2.2.1 Whatis port scanning? e 6

2.2.2 Who performs port scanning? 6

223 Whydowescan ports? e e e 6

2.24 Port Scanning Categories e e 6

2.2.5 Port Scanning techniques 0oL Lo 7

22.6 Commonlyused TCPScans 8

227 SlowPortScanning 9

2.3 Intrusion Detection Systems (IDS) 10
2.3.1 Classifications of IDS’so 10

2.3.2 IDSDetection Models 10

2.3.3 EvaluatinganIDS 11

2.4 Common Network Intrusion Detection Systems (NIDS) 12

2.5 Snort NIDS . . . o o 12
2.5.1 SnortElements 12

252 SnortRules 12

2.5.3 PortScanDetection. e 12

2.6 Bro - Intrusion Detection System e 13

iv

Slow Port Scanning with Bro

2.6.1 BroNIDS e 14

2.6.2 Bro-Internal Architecture oL 14

2.63 BroLogFiles e 16

2.6.4 BroPolicy Scripts Structure 17

3 Previous Work 18
3.1 Intrusion Detection Systems 18
3.1.1 Network ScanningSurveys & Taxonomies 19

3.2 PortScan Detection e 19
3.3 Detecting Stealthy Port Scans oo 20
4 Choiceof Methods 22
4.1 Scientific Methodology e e e 22
4.2 Experimental Method 22
4.2.1 Reliabilityand Validity L 22

4.3 Improving Bro slow port scan detection capability 23
4.3.1 Strategy for improving Bro Script oo 23
432 Broversion e e e 24

44 BasicTestRegime 24
441 PortScanlInterval 24

442 PortRange e 24

443 Scans Attacks L L L 25
444 TestNetwork Environment 26

445 Scan Categoryo e 26

44.6 ScanRepetitions 26

447 Basic Test Regime Summarized 26

45 TestLab o e e e e 26
4.5.1 Operating Systems e e e 26
452 Network Equipment 27

453 TP Addresses e 27

4.5.4 Tuning Operating Systems & Interfaces 28

4.5.5 Practical Problems 28

45.6 TestLab Summarized e 28

4.6 Tools. L 28
4.6.1 SimulatingaScan Attack 28
4.6.2 Network Statistics e 29

4.63 Background Traffic 29

4.6.4 Injecting Background Traffic 30

4.6.5 Reference NIDS e 30

4.6.6 Tools Summarized 31

5 Slow Port ScanninginBro 32
5.1 Strategy for improving Bro slow port scan detection capability 32
52 Initialtestof Bro 32
5.2.1 Bro’s Port Scan detection=Scan.bro. 32

5.3 Increasing Log Level for scan.bro = Add Notices 32
5.3.1 The Notice Definition in original scan.bro 33

5.3.2 We need to generate more alerts in our analyzing process (more Notices) 33

5.3.3 Structure of Notice.log e 33

Slow Port Scanning with Bro

5.4 Variables that influence scan detection oL 34
5.4.1 Variables controls detection and reporting =48 34

5.5 TCPConnectionEventsinBro 36
5.5.1 Describing TCP ConnectioneventsinBro 36

5.6 Analyzing scan.bro script regarding Connection Events 37
5.6.1 Connection Endpoint State 37

5.6.2 Connection Record, History State 38

5.7 Modifying scan.bro 39

5.8 Summary e e 40

6 Experimental SetupandResults 41
6.1 LabSetup e e e e 41
6.1.1 Network Diagramof our TestLab 41

6.1.2 Equipment Details 41

6.2 BroinPractice 41
6.2.1 Getting Broupandrunningo 42

6.2.2 Logfile:notice.log 43

6.3 Simulating Scanning using NMAP 0oL 43

6.4 Injecting Traffic to Simulate Background Traffic 44
6.4.1 CAIDA Dataset Statistics v v it e 44

6.4.2 Preparing the CAIDA dataset 44

6.4.3 Statistics fromourtest L 46

6.5 SNOrt. 49

6.6 Results. 50

7 Discussion 51
7.1 TestLab Experience e e e 51
7.1.1 BroLogwithoutIPaddress 51

7.1.2 ErrormessagesfromBro Lo o L 52

7.1.3 Isolated network with Internetaccess 52

7.2 Evaluatingourresults e e e e 52
7.2.1 'We managed to detect two new scans with our improved script 52

7.2.2 Why did we not manage to detectan ACK Scan 52

7.2.3 Why did we not manage to detecta NULL Scan. 53

7.2.4 Other Commentstoour Results 53

7.3 SnortResults e 53
7.3.1 Limited slow port scan detectionin Snort 53

7.3.2 Slow port scan detection capabilitiesin Snort L. 53

8 Conclusion 55
9 Further Work e 57
Bibliography e 58
A TCPState Machine 67
B NMAP. . . . e 68
B.1 NMAP - 100 most used ports below 1024 L. 68
B.2 NMAP - Sample output, SYN Scan 71

C Bro 79
C.1 Error in scan.bro found by Dr. Slobodan Petrovi¢ (GUC) 79
C.2 Bro Configuration File: localbro, 80

vi

Slow Port Scanning with Bro

C.3 BroFileStructure e e e 82
C.4 Bro Script Scan.bro - Original Version from 28 Aug2012 84
C.5 Bro Script Scan.bro - Improved Version 94
C.6 Bro TCP Events - Built In Functiones 108
C.7 Bro - Content of Notice.log, Isolated Scan Session, Scan Detected 113
C.8 Bro - Content of Notice.log, Backscatter Scan Session, Scan Detected 114
C.9 Bro - Content of Notice.log, Backscatter Scan Session, Scan Not Detected 116
D CAIDA Dataset-About e 117
D.1 The CAIDA description of dataset 117
D.2 CAIDA Dataset - Approved ACCESS . . .« v v v v v e e e e e e e e e e e 119
E Snort Configuration e 123

vii

Slow Port Scanning with Bro

~N N L AW N =

10

11

12

List of Figures

TCP Header - Flags. [llustration is taken from: [2].
Normal TCP sequence (left) and SYN Scan (right). Ill. taken from [3].
Snort Elements. Illustration taken from [4].
Bro Internal Architecture. Illustration taken from [5].
TestLab Setup. o . e e e e
Graph showing bandwidth during scan attack in isolated traffic environment.
Focus on protocols. Statistics created by use of Argus: racount. Scan sequence during

isolated network environment.
Focus on address. Statistics created by use of Argus: racount. Scan sequence during iso-

lated network environment
Graph showing bandwidth during scan attack in background traffic environment.
Focus on protocols. Statistics created by use of Argus: racount. Scan sequence during

background network environment. L.
Focus on address. Statistics created by use of Argus: racount. Scan sequence during back-

ground network environment. oL e e e e e e
TCP State Machine. Illustration is taken from [2]

viii

41

48

Slow Port Scanning with Bro

0 N N L AW N~

10

11

12
13
14
15
16
17

18
19

List of Tables

Glossary e e e X
Abbreviations. L e e e xi
A typical TCP session. Table is taken from [6]. 8
Our different scans and possible responses. oL 9
Confusion matrixX. L e e 11
Definition of True Positive, False Positive, True Negative and False Negative. 11
Experimental Test Phase — Daily Checklist. 23
NMAP Service definition file. Top of file sorted descending using third column (Port fre-

QUENCY). « « v o e e e e e e e e e e e e e e e e e e 25
NMAP execution time for different scan attacks. 29

Interesting Constant Variables in Export area, original scan.bro. Role column; Detec-

tion(D), Reporting(R), Not Activated (N/A). Table 1 of 2. 35
Interesting Sets, Tables and Vector variables in Export area, original scan.bro. Role col-

umn; Detection(D), Reporting(R), Not Activated (N/A). 36
Connection Events generated by TCP Analyzer. 37
ConnectionRecord. 38
Connection Information (Conn::Info): the history record. 39
Test Lab Setup Details. Computer and Servers. 42
Test Lab Setup Details. Physical Network Infrastructure. 42
Statistics for CAIDA dataset equinix-chicago.dirA.20130815-134900.UTC. anon.pcap
[7]. e 45
Test results. Isolated and Background Traffic environment (identical results). 50
Our different scans and their efficiency according to NMAP [8]. 53

ix

Slow Port Scanning with Bro

Glossary
BDS License Berkeley Software Distribution License (Regents of the Univer-
sity of California, University of California, Berkeley, 1998)
Cloud Computing Cloud computing is referring to computing services on Internet.

National Institute of Standards and Technology, U.S. (NIDS),
have a publication where they define this term more in details

[9].

Cloud Services Services delivered by Cloud computing. Typical services; docu-
ment storage, applications etc.

GIT GIT is a distributed revision control and source code manage-
ment system initially developed by Linus Torvalds

Metadata blabla

Network TAP A network TAP is a passive or active network equipment that are
able to tap the network traffic without interfering it. It may also
be virtual.

Port Scanning A search for hosts and their open ports/services.

SYSLOG A standard for collecting system log local or remote on a Lin-

ux/BSD/Unix machine. RFC-5424. [10].
Vulnerability Scanning | A search for vulnerabilities/weakness on computer equip-
ment(s).

Table 1: Glossary

Slow Port Scanning with Bro

ASCII

API
BSD

CIDR
CLI
CVE
CPU
DoS
GUC
GUI
HTTP
TANA
ICT
IDS
IBR
IETF
IS

I1SO

1P
1Pv4
IPv6
ISP
NAT
NIDS
NISlab
NIST
P2P
RFC
SMTP
SYSLOG
TCP
TCP/IP
VoIP

Abbreviations

American Standard Code for Information Interchange. In plain
English; clear text.

Application Programming Interface

Berkeley Software Distribution. Regents of the University of
California, University of California

Classless Inter-Domain Routing

Command Line

Common Vulnerabilities and Exposures

Central Processing Unit

Denial of Service

Gjevik University College

Graphical User Interface

Hypertext Transfer Protocol

Internet Engineering Task Force

Information and Communication Technology
Intrusion Detection Systems

Internet Background Radiation

The Internet Engineering Task Force

Information Security

International Standard Organization

Internet Protocol

IP version 4

IP version 6

Internet Service Provider

Network Address Translation

Network Intrusion Detection Systems

Norwegian Information Security laboratory
National Institute of Standards and Technology, U.S.
Peer to Peer. Defined in RFC-5694.

Request For Comment. A de-facto standard defined by IETF.
Simple Mail Transfer Protocol

System Log

Transport Control Protocol

Transmit Control Protocol / Internet Protocol

Voice over Internet Protocol

Table 2: Abbreviations.

Xi

Slow Port Scanning with Bro

1 Introduction

"The Internet is a mirror of the population that uses it!"
— Vinton Cerf

This chapter is the introduction to the thesis. It presents the topics covered by the thesis; problem
descriptions, the justification and motivation. We identify our research questions and scope of the thesis.
Finally we list the outline of the thesis and summarize our contributions.

1.1 Topics

This thesis is a computer science research that focus on information security. We look closer on Intrusion
Detection Systems (IDS). An IDS is capable of categorizing computer traffic into two different classes; (i)
benign traffic or (ii) malicious traffic. They may be installed to work in either passive (monitoring) or active
(filtering) mode. In information security field the IDS is an important piece of equipment for controlling
traffic flow. This is especially important in highly trusted/secured area.

We will focus on Bro IDS [11]. Bro is open source software with powerful network analyzing capa-
bilities. Bro has a powerful script language and good port scanning detection capabilities. Bro has been
popular in research groups worldwide since its birth in 1999 [12].

We challenge Bro detection capabilities by using so called slow (stealthy) port scanning.

1.2 Keywords

Information Security, Intrusion Detection System, IDS, Bro, Slow Port Scanning.

1.3 Problem description

Port scanning in computer networks is analogue to window- and door handle rattling in our daily life. Peo-
ple often check if the door and/or window are actually locked by twisting the handle. Any burglar may
rattle windows and/or doors in hope for an easy access into a building. In computer networks port scanning
activity is the precursor for attacks [13] [14]. We classified port scanning into benign or malicious network
activity. Network administrators may use quick port scanning to check if their servers are alive. Applica-
tions may use quick port scanning to be able to connect to Internet. Malicious software use port scanning
in their eager to infect other networked hosts. Hackers/attackers use port scanning in their reconnaissance
phase where they search for open ports / services. The first two are benign, but the last two are malicious
port scanning [15-17].

Malicious port scanning has increased dramatically the last years [18-21]. We will in our master thesis
strive to improve the detection capabilities in a security system.

Normal port scanning is in general easy to detect by security systems. However, a more stealthy way of
port scanning is difficult to detect. This stealthy way of performing port scanning is done by slowing down
the port scan interval [22,23].

1.4 Justification, motivation and benefits

In this section we justify our efforts and describe our motivation and benefits with our research.

Slow Port Scanning with Bro

Information Security

Today, Internet plays a major role in our life, both personal and at work. We use all kinds of Internet
services throughout the day; reading news, checking weather forecast, communicating (email, chat, video
conference etc.), order holiday trips, saving our photos and perhaps buy our cars etc. Some companies have
even moved all their documents to Internet based services (so called cloud computing) [9].

The famous so-called Internet evangelist, Vinton Cerf [24,25], commented the human side of Internet
like the quote in start of this chapter: "The Internet is a mirror of the population that uses it!"

Where there is human activity - there is criminal activity. Internet is the fastest growing arena regarding
criminal activity, and the statistics are scary facts. The 2013 Internet Security Threat Report, Volume 18
states the following (not complete); (i) 42% increase in targeted attacks in 2012, (ii) 31% of all targeted
attacks aimed at businesses with less than 250 employees, (iii) web-based attacks increased 30%, (vi)
Spam volume continued to decrease, with 69% of all email being spam and (v) the number of phishing
sites spoofing social networking sites increased 125% [26-29].

Intrusion Detection Systems (IDS)
IDS’s are built to analyze computer network traffic and classify their input into (i) benign or (ii) malicious
traffic.

An analogue to this kind of systems is control mechanisms on our roads. We accept high flow of
all traffic on the big/main roads (cars, lorries, motorbikes etc.). Here we have traffic police that often
uses cameras to monitor traffic. However, when we want to access a private company or even a military
installation - we need to identify ourselves in an access control post. The first main road is similar to passive
(monitoring), but the latter is the active (filtering) operation.

Today, all kind of rapid/normal port scanning is in general easy to detect and intrusion detection systems
may easily be able to generate alerts. However, if this port scanning is slowed down regarding time (longer
time between ports scanned), it may be more difficult to detect. This kind of port scanning is called slow
or stealthy port scanning.

Bro IDS

Bro is an IDS initially developed by Vern Paxon in 1999 [30]. Bro is today developed by The Bro Project.
Bro is open source software licensed under BSD Licensing [31]

Bro is a stand-alone system for detecting network intruders in real-time by passively monitoring a network
link over which the intruder’s traffic transits. Bro can be configured to be both misuse and anomaly based
detection system. Bro is much more than an IDS, it is a powerful network analysis framework. Bro has since
1998 been embraced by research groups all around the world [12]. Bro strives to bridge the traditional gap
between academia and operations since its inception.

With the use of smart software like IDS, filtering and monitoring computer network traffic, we can
most likely detect and block unwanted traffic (attacks). The IDS we focus on in our thesis (Bro) is capable
of detecting unwanted traffic. With our improvement in Bro we may go one step further towards a better
system in the struggle against cyber criminals.

With this thesis, we try to add reflections, observations and experience, hoping that they are going to be
useful for the Bro research community.

1.5 Research Questions

Our main research question: Can we improve the detection rate regarding slow port scanning in Bro?. We
refer to this main research question in our text with the abbreviation RQ1.
In this thesis we seek answer to the following sub-questions:

Slow Port Scanning with Bro

RQ1.1 Will we be able to improve the slow port scan detect rate in Bro?

RQ1.2 What is the slow port scan detection rate in Bro?

1.6 Scope

Our focus in this thesis is Bro IDS and slow port scanning detection capabilities.

We will not use live traffic in our background traffic injection.

Performance measure regarding CPU, memory and bandwidth are not included in our work.
Our main focus regarding IP is version 4 (IPv4).

1.7 Thesis outline

We start this thesis with an introduction including problem description, justification, motivation, research
questions, scope, outline and our contributions.

In Chapter 2 we describe some important technical details to better understand our thesis.

In Chapter 3 we describe previous work closely related to our topics.

In Chapter 4 we describe our research methods in details.

Chapter 5 is our core work in this thesis. We describe our improvements in Bro.

In Chapter 6 we describe our experimental setup and results.

In Chapter 7 we discuss our results.

In Chapter 8 we conclude our findings and address our research questions.

In Chapter 9 we present some ideas for future work.

1.8 Summary of contributions

Our results regarding slow port scanning detection capabilities with Bro represent a useful contribution to
the IDS community in general and Bro user community in particular. We have not found any previous work
where Bro is challenged low port scanning

Slow Port Scanning with Bro

2 TCP/P, Port scanning and IDS

"The only truly secure system is one that is powered off,
cast in a block of concrete and sealed in a lead-lined
room with armed guards."

— Gene Spafford

In this chapter we explain more background details for better understanding. We cover TCP/IP, port
scanning and intrusion detection systems (IDS) in more details. Our research is quite detailed and a thor-
ough background regarding is crucial for better understanding.

2.1 TCP/IP, ports and services

In this section we explain briefly the TCP/IP protocol suite. We take a closer look into the TCP packet
header with a special insight into the flags field.

2.1.1 TCP/P background

TCP/IP is a protocol suite where its crucial precursors were initially developed in early 1960. Cerf, V.G.
and Kahn, R.E. published in 1974 the famous paper A Protocol for Packet Network Interconnection where
they describe the Transport Control Protocol (TCP) [32]. The last version of the TCP definition is found in
a so-called Request For Comment document (RFC). The RFC’s are documents created by different expert
groups. RFC’s may often be used as standards. RFC-793 [33] defines Transmission Control Protocol (TCP)
by Internet Engineering Task Force (IETF [34,35]).

Today, the TCP/IP protocol suite consists of many protocols. Typically well-known protocols that uses
TCP as the base engine are; HTTP (TCP port 80), SMTP (TCP port 25) and FTP (TCP port 21). There
has been an enormous evolution in communication protocols since this early stage. Still, there are several
protocols that are rather unchanged in many decades that continue to produce online services 24/7/365
throughout Internet. The basic protocols that originally were developed in 1970’s, were not built for secu-
rity, but with functionality as main focus. In order to increase the level of security, we typically add security
mechanisms such as IDS.

2.1.2 TCP flags and their usage

Fig. 1 shows the header of a TCP packet. The two fields; (i) reserved and (ii) flags are of most interest. The
flags field is used to control the TCP connection.

Originally the RFC-793 defined the reserved and the flag field both 6-bits long. Resent RFC’s have used
9 bits for the flag field at the expense of the reserved field (RFC-3168; (i) ECN flag (Explicit Congestion
Notification Echo) + (ii) CWR flag (Congestion Window Reduced) and RFC-3540; (iii) NS flag (Nonce
Sum). These new flags are used to control (or avoid) congestion. We will not include these three new flags
further in this section, TCP congestion is not in focus here.

Here we give the description of the flags in RFC-793:

e URG - Urgent flag

e ACK - Acknowledge flag
e PSH - Push flag

e RST — Reset flag

Slow Port Scanning with Bro

Source Port Destination Port

Sequence Number

Acknowledgement Number

Header

Length Reserved Flags Window Size

Checksum Urgent Pointer

ECE | CWR | URG | ACK | PSH | RST | SYN | FIN

Figure 1: TCP Header - Flags. [llustration is taken from: [2].

e SYN - Synchronize flag
e FIN - Finish flag

Sources: [2,33,36-38]

2.1.3 TCP/UDP ports and services

Internet Assigned Numbers Authority (IANA) [39] is an organization responsible for the global coor-
dination of the DNS Root, IP addressing, and other Internet protocol resources. This also includes the
coordination and documentation of known services versus known TCP and UDP ports in TCP/IP. [ANA
continuously updates the list of known services vs. known ports etc. in a document available online. This is
a huge list spanning over 22311 lines (7 Nov 2013); (i) header = 58 lines, (ii) service, port number, proto-
col, comment = 15893 lines, (iii) other known service names and description = 1283 lines, (iv) contributors
(names, companies and email addresses etc.) = 4978 lines [40].

This list is a recommendation for how networked TCP/IP equipment can interconnect. Examples of this
kind of naming and port standard is; (i) electronic mail (SMTP service on TCP port 25) and (ii) web (HTTP
service on TCP port 80). This list that IANA coordinates is most likely one of the building bricks that make
Internet worldwide a success in interconnecting matter.

The IPv4 TCP header’s source and destination port fields consist of 16 bits length - and thus are capable
of having 65536 different ports (0-65535). Port null ("0") is defined as reserved. This list shows how IANA
have divided these 65535 ports:

0 -1023 : System Ports — also known as the Well Known Ports (assigned by IANA)
1024 — 49151 : User Ports — also known as the Registered Ports (assigned by IANA).
49152 — 65535 : Dynamic Ports — also known as the Private or Ephemeral Ports (never assigned).

An example of service name and port mapping is shown in Appendix B.1. Sources: [6,41-43].

2.2 Port Scanning

In this section we describe port scanning.

Slow Port Scanning with Bro

2.2.1 What is port scanning?

Port scanning is a technique used to survey one or more network connected hosts for availability. Port
scanning is often called network scanning. We may scan a host for more specific services. Typically we may
check that one server responds on TCP port 80 (HTTP) to ensure that our Web service is up and running.
In our context, port scanning is in general considered malicious if not stated otherwise. Sources: [19,44].

2.2.2 Who performs port scanning?

Port scanning may be one of the most typical activities in a computer network. Port scanning is in general
performed by (i) network administrators and consultants, (ii) monitoring applications, (iii) non targeted
attackers, (iv) targeted attackers and (v) applications. Sources: [16, 19,44—46].

2.2.3 Why do we scan ports?

Network administrators perform port scanning in their local network/intranet for troubleshooting purpose.
They may also perform external scans against their own equipment to perform penetration testing. Consul-
tants do most port scanning as part of vulnerability and penetration testing (security audit). This process
may also include internal port scanning.

Monitoring applications normally includes frequent port scanning in the detection process. This makes
them detect new equipment.

Non targeted attackers are a category that includes; (i) malware that uses port scanning in their search
for vulnerabilities, (ii)) human individuals that do port scanning; just for fun (script kiddies) and/or are
learning new skills and do not know what they play with.

Targeted attackers are fully aware of what they do in their port scanning. They search for interesting
hosts/targets that may fulfill their needs. They most likely have a plan and often look for ways to earn
money.

Many applications use port scanning. This is typical part of the initialization phase where they explore
the environment on the actual computer (other services running?, ports open/closed?). Examples of ap-
plications that use port scanning; (i) VoIP applications (e.g. Skype™ [16]), online game applications and
other applications that use Peer-to-Peer functionality (P2P, RFC-5694 [47]).

Other categories may be faulty applications and/or servers that loose packets or struggle to manage to
respond a normal TCP session timeout. Sources: [16, 19,44-46].

2.2.4 Port Scanning Categories

Port scanning is divided into four main categories; (i) vertical, (ii) horizontal, (iii) strobe scan and (iv) block
scan.

Vertical Scan

A vertical scan targets several hosts for the same port/service. E.g. the attacker searches a whole network
subnet (e.g. 11.11.0.0/16) for the web service on TCP port 80 (HTTP).

Horizontal Scan

A horizontal scans targets one host for the availability of several ports/services. E.g. the attacker scan TCP
ports 1-1023 on a single IP address (e.g. 11.11.11.11).

Strobe Scan

A strobe scan use both the vertical and the horizontal scan method.

Block Scan

A block scan is a complete scan on all ports/services on many hosts (e.g. network 11.11.0.0/16 + TCP ports
1-65535).

Slow Port Scanning with Bro

Port scanning may be executed by one or more hosts. A port scan process using several hosts is called
a distributed scan. This kind of scan is typically performed by several hosts on different network (and IP
ranges). A distributed scan is also called a coordinated scan. It is very efficient and stealthy to use several
distributed/coordinated hosts to performing port scanning. To summarize;
— Single source port scan = One-to-One or One-to-Many
— Distributed port scan = Many-to-One or Many-to-Many

Sources: [44,48,49]

2.2.5 Port Scanning techniques

The simplest way of performing port scanning is to try to connect to every TCP port from 1 to 1023 on the
victim host by e.g. an Internet browser using the following in address

1| (http://<victim—IP—address >:<TCP—port >)

A normal TCP connection is done by using the sequence shown leftmost in fig. 2. We complete all three
sequences: SYN + SYN/ACK + ACK.

A SYN Scan is shown rightmost in fig. 2. This is not a complete sequence to establish a TCP session,
and are therefore called a SYN scan. This scan may not be logged or registered by security systems if this
is performed in a stealthy way (slowly).

Table 3 shows a TCP session and what TCP flags that normally are used when data are sent back and
forth between hosts.

SYN SYN
SYN/ACK SYN/ACK
ACK = no ACK - Host waits Z

...... >

Figure 2: Normal TCP sequence (left) and SYN Scan (right). I1l. taken from [3].

There exists a lot of scans. We categorize port scans into the following list:

e Open Scan

e Half Open Scan

e Stealth Scan

e FTP Bounce Scan

e Fragment Packet Scan
e UDP Scan

Port scanning may also be used in an exhausting/denial of service (DoS) attack. This is terrifying easy
to perform, but generates (of course) a lot of noise (alarms/logs etc.).

In our thesis we use scans that belongs to the category "Stealth Scan”, "Open Scan" and "Half Open
Scan".

Port scanning may also give the scanner much more information than the status of the actual port (open,
closed or filtered (behind a firewall) port). Port scanning may also unveil the vendor, the operating system,
the version of the application (that answers on the port) etc. This is important to know when evaluating our
assets and our approach to detecting more slow port scanners.

Sources: [50-52]

Slow Port Scanning with Bro

| Host 1 Host 2

1 | SYN

2 SYN/ACK
3 | ACK

4 | PSH

5 | PSH

6 | PSH

7 ACK

8 PSH

9 PSH

10 | ACK

11 | PSH

12 ACK

13 | FIN

14 FIN/ACK
15 PSH

16 PSH

17 | ACK

18 FIN

19 | FIN/ACK

Table 3: A typical TCP session. Table is taken from [6].

2.2.6 Commonly used TCP Scans

The following attacks are very often seen; (i) ACK, (ii) SYN, (ii) TCP Connect, (iv) FIN, (v) NULL and
(vi) XMAS [14,49]. We will now describe each of these scans. Note that we do not include any filtering
mechanism (e.g. firewall) in this section, we just follow the normal responses that RFC-739 defines.

ACK Scan

sends TCP packets with only the ACK flag set. This scan may get two outcomes as a result; (i) no response
(the port is open) or (ii) a RST packet (the port is closed).

SYN Scan

sends TCP packets with only the SYN flag set. This scan may get two outcomes as a result; (i) a TCP
packet with SYN + ACK flags set (the port is open) or (ii) a RST packet (the port is closed. This scan starts
a normal TCP session - but it does not finish the TCP session establishment with an ACK: it is only half
finished. See fig. 2.

TCP Connect Scan

scan is a the odd scan in this collection of scans. A TCP Scan use the connect () system call against its
victim. TCP Connect Scan do not use TCP flags. This kind of scan is often recognized and logged by
servers.

NULL Scan

sends TCP packets with no flag set. This scan may get two outcomes as a result; (i) no response (the port
is open) or (ii) a RST packet (the port is closed).

FIN Scan

sends TCP packets with only the FIN flag set. This scan may get two outcomes as a result; (i) no response
(the port is open) or (ii) a RST (the port is closed).

Slow Port Scanning with Bro

XMAS Scan

sends TCP packets with FIN, PSH and URG flags set (lighting the packet up like a Christmas three). This
scan may get two outcomes as a result; (i) no response (the port is open) or (ii) a RST (the port is closed).

We summarize the different scans and the possible outcomes in Table 4.

Scan TCP Packet Possible Response
Type Flags Set Port Open | Port Closed
ACK ACK none RST
SYN SYN SYN+ACK RST
TCP Connect
NULL none none RST
FIN FIN none RST
XMAS FIN+PSH+URG none RST

Table 4: Our different scans and possible responses.

Sources: [44,53]

Scanning ports in milliseconds

A vertical port scan can typically be executed within seconds, given proper conditions (soft- and hard-
ware). A normal port scan may not include the complete port range from 1-65535 but rather most common
used/well-known ports. An NMAP command without any other options than an IP address (e.g. nmap
192.168.1.146) managed to ping 1000 TCP ports in 5.02 seconds (using an outdated portable computer
with Linux). The command and output is listed below:

NMAP - Quick Port Scan: 1000 ports in 5.02 seconds
2013-10-07 20:56:33 root@piggy:~] # nmap 192.168.1.146

Starting Nmap 6.25 (http://nmap.org) at 2013-10-07 20:56 CEST
Nmap scan report for 192.168.1.146

Host is up (0.0031s latency).

Not shown: 999 filtered ports

PORT STATE SERVICE

80/tcp open http

MAC Address: 28:C6:8E:F5:8C:DO (Unknown)

Nmap done: 1 IP address (1 host up) scanned in 5.02 seconds
2013-10-07 20:56:46 root@piggy:~ 1 #

2.2.7 Slow Port Scanning

Slow port scanning is performed for a reason: to avoiding being detected by monitoring systems like NIDS.
Slow port scanning is the stealthy way of perform a port scan.

Detecting slow port scanning is in general just a question of counting unsuccessful TCP connections
over time. In addition to this we must record odd handshake behavior and non standardized protocol usage.
Slow port scanning may not be difficult to detect - it is more a question of security level versus man hours
and equipment expenses. Slow port scanning describes e.g. a port scan that from a victim and/or an IDS
point of view is executed slower than today’s normal performance of hardware and software. The slow
scanning can typically scan ports and/or hosts in an interval (frequency) of 1, 10, 60, 300 seconds or even
slower.

Slow Port Scanning with Bro

2.3 Intrusion Detection Systems (IDS)

In this section we defines what an IDS is. We describe detection models and classify them depending on
their usage area. We finally describe how we normally evaluates IDS.

An IDS tries to classify input data into two different categories; normal/benign or malicious/unwanted.
These IDS’s can either be special made hardware and software bundled together, or software that is capable
of running on industry standard operating systems and common computer hardware (server) (or even a mix
of these categories).

The term IDS is very general. We tend to use two different terms for these systems - depending on how
they are implemented/installed:

e Intrusion Detection Systems (IDS) — These intrusion systems are passively implemented and will trig-
ger and send alerts etc. to a monitoring system without interfering any services/processes.

e Intrusion Prevention Systems (IPS) — These intrusion systems are installed in a more active way. They
are in-line and may e.g. filter network traffic. In addition to triggering and sending alerts they may also
block network traffic that is classified as malicious/unwanted.

Sources: [4,49,54]

2.3.1 Classifications of IDS’s
IDS’s are all specially adapted/built for their tasks. We group IDS into the following classes:

Host-based

This IDS are tightly integrated into a host operating system and monitor system activity like execution of
applications, exchange of data, system and user events etc.

Network-based

This IDS analyses and classifies network traffic/data. These IDS are often called NIDS.

Application-based

This IDS are specially made for analyze logs, data exchange, system calls etc. for a specific application.

Target-based

This IDS is specialized to verify data communication integrity. They typically calculate check sums in data
traffic.

2.3.2 IDS Detection Models

IDS’s use two different detection models; (i) misuse and (ii) anomaly.

Misuse Detection

A misuse detection IDS uses previously known patterns/signatures in order to classify the malicious data
pattern. We need to experience the actual malicious attack/signature before we can create a pattern for the
IDS. This detection method makes us always a step behind any new attack pattern/signature.

Anomaly Detection

An anomaly detection IDS collects network statistics and defines the most normal network behavior as
a baseline. When this baseline is challenged in large degree (large deviation), the alarms go off. This
kind of IDS can produce large number of false positives, but are at the same time very efficient against
new/unknown network attacks.

10

Slow Port Scanning with Bro

2.3.3 Evaluating an IDS

Evaluating an IDS may initially seem as an easy task. It is all about counting alerts versus actual attack-

sfunwanted traffic pattern detected. Unfortunately, this is not the case, on the contrary. Many articles and
books have been written about evaluating IDS [6,55-60]

The following list describes some measurable characteristics for evaluating IDS:

- Coverage: What does this IDS cover? Known and unknown attacks? Malware? Port Scan? etc.

- Percentage of false alarms: What is the probability of any false alarm?

- Detection Rate: What is the detection rate for this IDS in a given case?
- Capacity: How high bandwidth and/or CPU load will the IDS manage?
- Resistance to Attacks: How resistant is the IDS against a direct attack?

- Other: Learning capabilities? Configuration complexity? Upgrade/update capabilities? Operating com-

plexity?

We will not perform any tests regarding traffic capacity (bandwidth), CPU, memory etc. in our thesis.

However, we want to measure the detection capability. We want to calculate the so-called detection rate for

our IDS.

Table 5 shows the so-called confusion matrix that gives us the four categories where the IDS will place

its decisions weather the data (network traffic) is classified as benign or malicious. Table 6 shows the

expression used in context to IDS.

Predicted Class
P n total
True False
Actual P’ | Positive Negative | P’
Class (TP) (FN)
False True
n’ | Positive Negative | N’
(FP) (TN)
total P N
Table 5: Confusion matrix.
Term Actual Intrusion | IDS Alarm
True Positive (TP) 1 1
True Negative (TN) 0 0
False Positive (FP) 0 1
False Negative (FN) 1 0

Table 6: Definition of True Positive, False Positive, True Negative and False Negative.

The most used evaluation metric is the True Positive Rate (TPR), also called the detection rate. The

TPR is calculated using the following formula:

_ _TP
TPR = 7557w

11

Slow Port Scanning with Bro

2.4 Common Network Intrusion Detection Systems (NIDS)

In this section we mention some well-known NIDS, both commercial and open source.

Most prominent network equipment producers have in general one or more NIDS to offer; (i) Cisco Sys-
tems (Cisco IPS), (ii) Juniper Network (Juniper Network IDP), (iii) CheckPoint Software Technologies
(Sentivist), (iv) Symantec Corporation (Symantec Network Security), (v) IBM, (vi) McAfee etc. to men-

tion some of them [54,61,62].
Popular open source alternatives are Snort, Suricata and Bro [63—65].

2.5 Snort NIDS

In this section we describe Snort NIDS. We start with a brief explanation of Snort architecture and continue
with rules and port scan detection mechanism.

Snort was released by Marin Roesch in 1998 [66]. Today Snort is a registered trademark under Sourcefire,
Inc. [63]. Snort is open source and has had an active community since its birth. Snort has become the de
facto standard in network intrusion detection systems (NIDS) [67-70].

2.5.1 Snort Elements

Snort is a so-called signature (or misuse) based NIDS. Snort consists of the following elements:

Packet Decoder (e.g. 1ibpcap)
e Pre-processors

e Detection Module

e Logging and Alerting Module

Snort elements are illustrated in fig. 3.

2.5.2 Snort Rules

Snort uses so-called rules in order to define the signatures of malicious patterns. These rules are placed in
rule files with one rule defined in one line.

<action > <protocol> <source—IP—address> <source—port> <direction> <dest—IP—address> <
dest—port> (<options >);

alert tcp any any —> any 80 (msg:"EXPLOIT ntpdx overflow"; dsize:>128; classtype:
attempted —admin; priority:10);

These rules are published by many communities in addition to commercial companies. Sourcefire offers
both community rules and commercial rules [63]. These rules can be quite complex and may include regular
expressions and several low lever inbuilt filters. Today, the number of Snort community rules = 2 753 and
the Snort commercial rules = 22 059 (VRT Certified Rules).

2.5.3 Port Scan Detection

Snort’s port scan detection mechanism is by the so-called preprocessor: sfportscan.
The following list show the possible configurable parameters for sfportscan found on Snort Web page:

preprocessor sfportscan: proto <protocols> \
scan_type <portscan|portsweep|decoy_portscan|distributed_portscan|all> \
sense_level <low|medium|high> \
watch_ip <IP or IP/CIDR> \
ignore_scanners <IP list> \

ignore_scanned <IP list> \

12

Slow Port Scanning with Bro

Incoming traffic

i

Packet
decoder

Data
' pre-processing

Pre-processors | ------

Detection
module

Logging and
alerting

Alerts/logs

Figure 3: Snort Elements. Illustration taken from [4].

logfile <path and filename> \
disabled

The sense_level is the parameter that we will tune in order to detect slow port scanning. The differetn
levels, low, medium and high are defined like this (quoted from Snort Web page):

low - “Low” alerts are only generated on error packets sent from the target host, and be-
cause of the nature of error responses, this setting should see very few false positives. However,
this setting will never trigger a Filtered Scan alert because of a lack of error responses. This
setting is based on a static time window of 60 seconds, after which this window is reset.

medium - “Medium” alerts track connection counts, and so will generate filtered scan
alerts. This setting may false positive on active hosts (NATSs, proxies, DNS caches, etc), so the
user may need to deploy the use of Ignore directives to properly tune this directive.

high - “High” alerts continuously track hosts on a network using a time window to evaluate
portscan statistics for that host. A "High" setting will catch some slow scans because of the
continuous monitoring, but is very sensitive to active hosts. This most definitely will require
the user to tune sfPortscan.

Sources: [66,70,71].

2.6 Bro - Intrusion Detection System

In this section we describe Bro IDS in more details.

13

Slow Port Scanning with Bro

Paxson published in 1998 a paper called "Bro: A System for Detecting Network Intruders in Real-
Time" [72]. This paper describes an intrusion detection system called Bro. Bro was intentionally a stand
alone system for detecting network intruders in real time. Bro is open source software, written in C and
is capable of deep & stateful packet inspection at very high speed. Bro has been embraced by research
communities in many academic institutions in the last decade [12].

2.6.1 Bro NIDS

Bro NIDS (Bro for short) was initially designed to be a powerful real-time network traffic analyzing tool.
Here is a list of The Bro Project’s design philosophy criteria [72]:

e Real-time network analyzing framework

e Separate packet collector mechanism from policy/analysis mechanism (avoid packet filter drops et.al)
e Neither anomaly or misuse/signature architecture - a network analyzing framework

e (Capable of analyzing high-performance networks in large scale

e A script language that helps operators avoid mistakes (because of its simplistic structure)

o Comprehensive log facilities (which makes forensics community pleased)

e Open interface to exchange data to other applications in real-time

e Open Source which makes this software available for free usage in general (BSD) [31]

e Powerful script engines for extensive customization

e Highly aware of the high possibility that Bro will be attacked

2.6.2 Bro - Internal Architecture

Bro internal architecture consists roughly of the following elements; (i) libpcap, (ii) an event engine and
(iii) a policy script interpreter. Fig. 4, illustrates Bro internal architecture [72].

In order to understand how Bro works we need to go into more details regarding its architecture. The
Bro architecture details are illustrated in fig. 4 [30]. We explain this fig. further in the following paragraphs.

Network

Bro needs a physical network connection to get a copy of the network traffic it will analyze. This is normally
done by the use of port mirroring functionality in switches/routers or a TAP device [73,74].

libpcap
In order to get traffic data from the physical network, a so-called Application Program Interface (API) is
needed. Bro uses 1ibpcap [75]. 1ibpcap is a C/C++ library for network traffic capture. This is the abstract

layer between the physical network medium and the operating system. With the use of 1ibpcap Bro filters
traffic that is sent to Bro Event Engine.

Event Engine

The filtered network data packages from libpcap are then fed into the next level; the Event engine.
This event engine tries to reassemble all the network traffic it gets to known events/patterns as high as
possible in the OSI ISO Model [76]. Typically the event engine finds connection attempts (transport-level),
FTP requests/replies, HTTP requests/replies (application-level) and login failed/success (application level)
[77,78].

The event engine performs several health checks and tries to reassemble the packets:

o Integrity checks (are the packet headers intact? are the IP packet headers correct regarding check sums?
etc.)

e If integrity checks # OK; write an error event + discard packet

e [If IP packets; Reassemble IP fragments into datagrams

e [f integrity checks = OK; look up the connection state with associated; (i) source IP address, (ii) desti-

14

Slow Port Scanning with Bro

Real-time natification

Palicy scri
cy seript Record to disk

e

Policy Script Interpreter

Ewent control Event stream

R

Event Engine

Tepdump filker Filtered packet stream

e

libpcap

Packet stream

Figure 4: Bro Internal Architecture. Illustration taken from [5].

nation IP address and (iii) TCP or UDP port numbers
Dispatch the packet to a connection handler (TCP or UDP) the further corresponding connection.

TCP connection handler

For every TCP package the connection handler performs the following actions;

Verify; (i) TCP header, (ii) TCP packets header checksum and (iii) TCP packets payload checksum
If verification above = OK; Are there any SYN/FIN/RST control bits/flags?

If flags above are present; set the actual connection state to the active control bit/flag.

Process other data acknowledgement in header (if any)

Process payload data (if any).

UDP connection handler

The UDP connection handler is similar to TCP but much simpler because it is connectionless (e.g. no

connection state). But — UDP sessions use different ports when starting a UDP packet stream then replying

this UDP stream. This states are called pseudo connection states.

Policy Script Interpreter

The policy script interpreter processes events from the event engine. For every event handled to the policy

script interpreter, it performs the following steps:

1.
2.

Look up the corresponding event handler’s (semi-)compiled code/script
Bind the value(s) of the event(s) to the argument of the handler

15

Slow Port Scanning with Bro

3. Interpret the actual event code/script

The policy script interpreter is in general an event handler. The result of this process can execute further
scripts/commands including; (i) generate new events, (ii) log events, (iii) invoke other event handlers.

Bro ships with a large number of readymade policy scripts for various types of analysis. When adding new
functionality to Bro it writes a new protocol analyzer to the event engine and/or a new event handler in the
policy script interpreter.

2.6.3 Bro Log Files

Bro is shipped with an interactive shell for management purpose: BroControl [79]. This application is able
to control and monitor the Bro installation. In a cluster and multi Bro installation case BroControl is crucial.
When using BroControl, Bro creates logs in the directory; $BROHOME/1log. The "working" directory is
$BROHOME/log/current but logs are frequently moved to $BROHOME/log/YYYY-MM-DD where YYYY,
MM and DD are the digital representations of year, month and day, respectively. These log files are in clear
text (ASCII) unless default configuration is changed [80].

When running from CLI, all log files are created in actual directory where we start Bro. The following
log files are always created (even without any traffic detected):
conn.log, loaded_scripts.log and notice_policy.log. These filenames reveal much of the ac-
tual log file content, but some more description is necessary:

conn.log — consists of the complete connection log during Bro’s run time. The file consists of twenty
columns (timestamp, connection ID (unique), source IP, dest IP, source port, dest port etc.).
loaded_scripts.log — shows Bro scripts (*.bro) that were loaded during Bro startup.
notice_policy.bro — shows the current Bro Notice policy.

Bro create several new log files during run time. This overview shows more general and internal log files
(incomplete list):

communication.log — logs for Bro’s internal communication between remote and central instances,
clusters etc.

conn-summary . log — generated when Bro is terminated. Post processing connection summaries
known_hosts.log — hosts that have performed complete TCP handshake

notice.log — notices that Bro rises

reporter.log — internal messages/warnings/errors for troubleshooting.

Bro also creates a lot of log files that are protocol/service specific (incomplete list):

dns.log — log over DNS queries

dpd.log — log over what port/service dependent dynamic protocol detection analysis that has been
activated

http.log — log over HTTP request and responses including metadata

software.log — reports known/recognized software detected from protocol analyzers

weird.log — notices that Bro has tagged as weird. Odd protocol behavior will be logged here.

Other (rather self explaining) protocol scripts are found in $BROHOME/share/bro/base/protocol/x*;
ftp, irc, modbus, smtp, socs, ssh, ssh, syslog. We most likely get log files created by each
of these scripts (depending on the criteria in the actual script).

Source: Bro 2.1 file structure ($BROHOME/share/bro/base/frameworks/*), see Appendix C.3 and
Bro web page [78, 81].

16

Slow Port Scanning with Bro

2.6.4 Bro Policy Scripts Structure

Currently Bro describes more than 260 different scripts on their Web pages (including Bro 2.2 beta release)

[82]. However, this includes every category of their scripts; (i) internal communication scripts, (ii) file &

protocol analyzing scripts, (iii) built in functions (BIF), (iv) notice & logging scripts and (v) policy scripts.
We focus in the following paragraphs on the scan.bro Bro policy script. This kind of scripts follows a

basic structure:

Header
The first lines describe the script. Lines with comments have an initial hash sign (#).

The next lines load scripts/modules that this script uses. This is done by the following syntax: @load
<module/script-name> (in our case: the Notice Framework is loaded):
@load base/frameworks/notice/main.

The last part of the header defines the script name of the actual script by the command module
<script-name> (in our case: (module Scan)).

Export Variables Declaration

In this section we declare what variables we want to export to Bro globally. We may redefine existing global
variables (redef statement) and add new global variables (global statement). We can also add constants
(const statement) that we then may use by other scripts. In the original scan.bro the export variables
declaration spanned over 183 lines.

General Script Code

In this section we find functions (large scripts) that include general programming statements like;
if{},while{},for{} etc. Local variables are also declared as needed (1local statement).

Event(s)

In this section we describe what action has to be taken when an event occurs/is triggered. These events may
use local and/or external functions and variables to evaluate what action to perform.

17

Slow Port Scanning with Bro

3 Previous Work

"If I have seen further it is by standing on the shoulders of giants."
— Isaac Newton

In this chapter we focus on previous work regarding IDS, port scanning in general and slow port scan-
ning in specific.

3.1 Intrusion Detection Systems

In this section we describe and discuss important research that define intrusion detection and are closly
related to our thesis topics.

Denning, D.E. published in 1987 an article called "An Intrusion-Detection Model" [83]. Dennings in-
troduce the term Intrusion Detection Expert System (IDES). This models goal is to detect, alert and block
security violation in real-time. The IDES model is suggested as an independent system that is able to moni-
tor other computer systems e.g. IDES is suggested as an framework that is highly adaptable/configurable in
order to fit most systems and organizations needs. The model have six main components; (i) Subjects (in-
dicators of activity on target system, user activity), (ii) Objects (resources managed by the system (system-
files, devices, commands etc.)), (iii) Audit records (Log of audited activity), (vi) Profiles (knowledge that
characterize different parts in system (statistics, automatic generated)), (v) Anomaly Records (generated
when abnormal behavior is detected), (vi) Activity Rule (pre defined actions to take when anomalies are de-
tected). The metrics used in monitoring is; (i) Event Counter, (ii) Interval Timer and (iii) Resource Measure.
The article is easy understandable with detailed examples on how an IDES model could be implemented
using different statistical and parametric approach.

The general challenge with this model is most likely the never ending story in intrusion detection:
systems/applications/network and users etc. are continuously changing behavior. This way there will be
many false positives to fight.

Anderson et.al. at SRI Int. published in 1995 a report called "Next-generation Intrusion Detection Ex-
pert System (NIDES)" [84]. NIDES is clearly built on ideas from IDES model by Dennings. This report de-
scribes in an IDS that was capable of anomaly detection in real-time. SRI Int. also built this software. They
include both known intrusion scenarios (misuse detection) and advanced statistics (anomaly detection) in
their model. This system logged extensively with both short term focus and long term focus (historical).
The system compared long term data with short term data in order to continuously adapt (learn) the level of
normal behavior (baseline). Critical voices thought this system was was to huge and complex (huge piles
of log data), but NIDES have most likely been a reference model for many IDS projects.

They focus more on practical approach than the IDES model. The operating and maintenance of this
kind of system is of course a crucial success factor, and their own experience and feedback after building
this system is clearly supporting this model.

Roesch published in 1999 an article called "Snort - Lightweight Intrusion Detection For Networks"
where he introduce Snort IDS. Roech calls his open source software "lightweight" because of its file size
(appr. 100kb), its easy configurable files and easy installation procedure. Snort main elements are; (i) ap
acket decoder, (ii) pre-processors, (iii) detection module/engine and (iv) a logging/alerting system. Snort
is based on a misuse detection model where signatures are placed in so called rule files. These rule files

18

Slow Port Scanning with Bro

are easily understandable in plain English. Snort can be used as an inline, passive and a packet capturing
NIDS.

Snort have been a popular NIDS after its birth. It is indeed not a "lightweight" anymore, and are now a
mature and powerful NIDS with a port scan detection module called sfportscan. Malmedal challenged this
module in his master thesis. We will also test out this module in this thesis.

Paxson published in 1998 an article called "Bro: A System for Detecting Network Intruders in Real-
Time" [72]. This article introduce a new open source NIDS. Paxson wanted to build a NIDS in order to
show how this could be done (the existing NIDS that did the same was commercial, closed code software).
Bro is a stand-alone system with real-time traffic analyzing functionality. It is designed with the following
goals; (i) high speed, large volume monitoring, (ii) no packet drops, (iii) real-time notification, (iv) mech-
anism separate from policy (for simplicity and flexibility), (v) extensible (module based in order to be in
production and parts may be updated), (vi) Avoid simple mistakes (easy understandable script language),
(vii) The monitor will be attacked (secure the IDS itself against attacks). Bro architecture is based on (i)
libpcap, (ii) event engine and (iii) a policy script interpreter. Bro comes with an impressive script lan-
guage with several ready made protocol analyzing scripts ready made. The scripts are compiled into C++
code. Bro uses both anomaly and misuse detection methods. Bro was developed and used in production at
ICSI [85] from 1996 to 1998, so they had a lot of experience and valuable knowledge put into this software.

Bro have been developed further since its official birth in 1999. Today we have version 2.2 that was
released in stable version 7 Nov 2013. The original adaption to Snort rules is no longer included in Bro.
We have explored Bro quite thoroughly throughout our thesis.

Sommer et.al. published in 2010 a paper called "Outside the Closed World: On Using Machine Learning
For Network Intrusion Detection” [86]. Sommer et.al. start this paper with the question; Why is not machine
learning (ML) techniques more used in NIDS?. They mention other areas where ML have great success;
(1) product recommendation systems (Amazon, NetFlix), (ii) optical character recognition systems, (iii)
natural language translation and (iv) spam detection. These mentioned areas are discussed regarding ML.
The diversity in computer network traffic is the challenge when applying ML in NIDS. They further suggest
focus points when applying ML based NIDS in a network; (i) understand the threat model (know your
network and its enemies), (ii) keep the scope narrow (what are the targets weakness), (iii) reducing the costs
(do proper planning including risk assessment regarding changing systems vs. your needs), (iv) evaluation
(always evaluate your NIDS performance). They conclude on the fact that there is a surprising imbalance
between research in ML and NIDS and actual deployed systems in production.

There are published a lot of articles regarding machine learning in NIDS. This paper clearly states the
challenges in applying ML in NIDS.

3.1.1 Network ScanningSurveys & Taxonomies

Barnett et.al. published in 2008 an article called "Towards a taxonomy of network scanning techniques"
[44]. This paper summarize and categorize known scanning techniques and illustrates some of them in
three dimensions figures. They also briefly describe some scan analyzing methods.

This paper is a nice approach to get an overview of known scanning categories techniques.

3.2 Port Scan Detection

We will in this section describe research that covers port scan detection.

Zhang et.al. published in 2008 a paper called Scan Attack Detection Based on Distributed Cooperative
Model [87]. They propose a distributed cooperative model for intrusion detection. This model consists of
five layers; (i) sensor, (ii) event generator, (iii) event detection agent, (iv) fusion center and (v) control

19

Slow Port Scanning with Bro

center. The model describes three different way of detecting an intrusion; (i) feature-based, (ii) scenario-
based and (iii) statistics-based. The fusion center analyzes the results from the three detection mechanisms
and may generate alerts up to the control center.

This article claims improved scan detection capabilities (also for slow port scanning). We have not
found any research supporting this. The model seems smart though, but we need a lot of sensors and
double analyzing units that can correlate the results. This way we will most likely get a better detection
rate.

Ertoz et al. published in 2004 a paper named The MINDS - Minnesota Intrusion Detection System [88].
This paper present a new IDS model using machine learning techniques. The MINDS is a data mining based
system for detecting malicious traffic/network intrusions. They use NetFlow to filter out traffic for further
analyzing. The detection mechanism consists of both anomaly and misuse/pattern matching techniques in
their detection model. The anomaly processing is based on an unsupervised learning technique. [13]

Ertoz et al. describe MINDS’s capability to detect stealth port scanning, but we have not found any
research supporting this.

Jung et.al. published in 2004 a paper called "Fast Portscan Detection Using Sequential Hypothesis
Testing" [89]. Initial they discuss the problem with anomaly NIDS and false positives. They further use
captured network traffic data and manage to find a connection with this data and the theory of sequential
hypothesis testing. This data is captured by using Bro. With their research they purpose a new algorithm:
TRW (Threshold Random Walk), an online detection algorithm that identifies malicious remote hosts. This
method was proved to be 4-5 times more efficient than previous methods.

Bro uses TRW algorithm in the version we test in our thesis.

3.3 Detecting Stealthy Port Scans

We will in this section look at previous work related to our focus on slow port scan.

Staniford et.al. published in 2002 a paper called "Practical automated detection of stealthy portscans"
[90]. This paper goes deep into how network scans are performed and show examples from logs. They look
at several previous work. They introduce SPICE (Stealthy Probing and Intrusion Correlating Engine),
which consists of two components; (i) an anomaly sensor and (ii) a correlator. They collect traffic pattern
that is defined as anomaly for later analysis. They use simulated annealing algorithm to cluster anomaly
network traffic pattern. They also have adapted SPICE into the Snort plugin SPADE (Statistical Packet
Anomaly Detection Engine). They show good results after their live tests (one of them over 3 months).

This paper have a very thorough introduction into network scans with some practical examples. We
lacked more details regarding their slow port scanning. E.g. how did they defined slow port scan?

Kim et.al. published in 2008 a paper: "A Slow Port Scan Attack Detection Mechanism Based on Fuzzy
Logic and A Stepwise Policy” [91]. This paper purpose a way of detecting slow port scanning by using fuzzy
logic and a stepwise policy. Kim et.al. have developed an Abnormal Traffic Control Framework (ATCF)
that consists of the following elements; (i) an intrusion detection module (with packet analyzing (PA) and
intrusion analysis (IA) module, (ii) an intrusion prevention module (with packet filtering (PF) and queuing
assignment (QA) module) and (iii) a control module. If anomaly traffic and/or an attack is detected, the PF
alerts the QA and blocks this traffic. A slow port scan is handled by using stepwise shaping; (i) if classified
as suspicious - bandwidth is reduced to minimum, (ii) if classified as attack - traffic is blocked. The decision
regarding a port scan is normal, suspicious or an attack is done by an fuzzy logic rule table.

This paper defines slow port scan when delaying packets this long as; (i) 1, (ii) 10 and (iii) 1000
milliseconds. We do agree that the last category (iii) is somewhat slow, the other not. Kim et.al. did not
include this last category (iii) in their test and we will therefore not follow this paper further.

20

Slow Port Scanning with Bro

Malmedal finished his master thesis in 2005 called "Using Netflows for slow portscan detection" [92].
Malmedal challenge Netflow, Snort and Network Flight Recorder (now CheckPoint IPS-1) regarding slow
port scanning. He sat up a network flow (netflow) analysis system using Argus [93], PostgreSQL [94],
php [95] and jgraph [96]. This netflow system stored all network data in a database for non real-time
analyzing. Network Flight Recorder is Cisco Corp.’s IDS/IPS (a commercial product). Malmedal chose
NMAP [51] to perform slow port scan using port range 0-1000 and scan interval 60 sec.

Malmedal’s thesis show (again) that slow port scanning is not easy to detect. Especially in this case
when scan interval is 60 sec.

Dabbagh et.al. published in 2011 an article called "Slow Port Scanning Detection” [14]. This article
purpose a way to detect slow TCP port scan. They collect all traffic data over a longer time window and
extract features of every TCP connection and/or connection attempt. They tested their software using three
different slow port scan intervals; (i) 0,4ms, (ii) 4 min and (iii) 6 min.

In addition to their slow port scanning detection method they have a valuable introduction covering
other articles. This down to earth counting of abnormal TCP connections may generate a great deal of false
positive in live network traffic. A lot of port scanning is performed by non malicious intentions (applications
and system administrators) [16, 19].

No previous work regarding Bro and slow port scanning

We did not manage to find any research where slow port scan and Bro was involved. On the other hand,
there are many books and papers about port scanning techniques in general, which can be very useful in
this research.

21

Slow Port Scanning with Bro

4 Choice of Methods

"Science is a method to keep yourself from kidding yourself."
— Edwin Land

In this chapter we describe our methods needed to answer our research question.

4.1 Scientific Methodology

In this section we describe the scientific method used in our thesis which seeks answer to the following sub
questions:

RQI1.1 Will we be able to improve the slow port scan detect rate in Bro?
RQ1.2 What is the slow port scan detection rate in Bro?

We need to modify and test Bro IDS several times to be able to answer RQI1.1 & RQ1.2. This tells
us that quantitative research method is necessary to answer our research questions. We directly compare
results of repetitive tests and apply statistical calculations where needed [6, 97].

4.2 Experimental Method

In this section we explain our details in order to fulfill RQ1. We chose to challenge Bro NIDS regarding
stealthy port scans. Bro is a very interesting NIDS with powerful script language and analyzing capabilities.
We have most likely improved Bro’s slow port scan capabilities and will compare our new script with the
original.

We did not find any previous research regarding Bro and slow port scanning. We did find a lot of work
that covered stealthy network scan detection. We also looked at Malmedal’s work from 2005 [92].

4.2.1 Reliability and Validity

We will in the following paragraphs describe our experimental test strategy. It is crucial to bear in mind the
meaning of these two terms: (i) reliability and (ii) validity. We may bring an average project up to a higher
level with the right focus in our scientific research. We will also list up our more technical decisions in our
test lab setup.

Reliability
Reliability in research is the focus on supporting our findings. Our findings must be; credible/trustworthy
(reliable) and able to reconstruct.

We have in our thesis ensured reliability by the following strategy:

e Quality Assurance routines (risk assessments; backup, checklists etc.)

e Comprehensive logging of all tests

e Open source software on both; (i) operating systems, (ii) IDS software and (iii) monitoring software
e Standard computer hardware

e Repetitive tests

o Well documented test results

e Common statistics tool used on both IDS.

The daily checklist for our test lab is given in Table 4.2.1.

22

Slow Port Scanning with Bro

Validity
Validity in research is the focus on how valid our findings are. We must ask ourselves; "Was our research
worth our efforts?", "Do we add valuable information with our research?"

We have in our thesis ensured validity by the following strategy:

e Literature study / Planning

e Scientific Research methods

e Open and frequent dialogue with our supervisor

e Open and frequent unfiltered discussions with our fellow students
e Critical thinking regarding our results

Sources: [6,97,98].
Experimental Test Phase - Daily Checklist

During our test phase we had to make sure that our experiments was executed as planned. The following
list show our checklist:

| Item Description

1 | Server OS | - Check system for general error messages (/var/log/messages) + root mail
2 - Time Sync (NTP Daemon running? Clock correct?)

3 - Disk Space OK (df -h)

4 - Running Processes (ps auxwww / dig)

5 - System health (grep *warning\lerror\Icritical’ /var/log/messages)

6 - Interfaces running OK? (netstat -i, ifconfig, PROMISC mode)

7 | Appl. - Test processes running? (Bro, Snort, NMAP, Tcpdump, Argus)

8 - Check when they started last started and look for possible error messages
9 | Admin - Backup Latex code, Logs and Argus files (Dropbox + JottaCloud)

9 - Document test results in Excel.

Table 7: Experimental Test Phase — Daily Checklist.

4.3 Improving Bro slow port scan detection capability

In this section we will describe our strategy and methods for improving slow port scanning detection in
Bro.

4.3.1 Strategy for improving Bro Script

We will in this section list our strategy for improving Bro slow port scan detection capabilities, and thus
detection rate.

Our strategy for improving scan.bro is given in the following list:

e Read up on Bro (search for available documentation online, in forums and in source code and in in-
stalled file structure)

e Learn Bro policy script language in general

e Understand the existing script code involved in slow port scan

e Debug actual script(s) above if necessary

e Avoid, if possible, unnecessary resource usage

e Comment inline for better understanding of code.

It is important to add comments in code. This is a good practice in order to let other developers/readers
understand thoughts and decision made.

23

Slow Port Scanning with Bro

4.3.2 Bro version

We had to decide for a experiment version of Bro to avoid any uncertainties/errors/unknown behavior
during our experimental phase. We chose Bro version 2.1-328 (timestamp 2013-02-05 01:34:29 -0500)
[99].

There existed several hints on Bro Web page regarding the version 2.2 was under development. This
started already in January 2013. Bro version 2.2 beta was released in 24 Sept 2013. Bro 2.2 version (stable)
was released 7 November 2.2

4.4 Basic Test Regime

In this section we describe, discuss and decide our basic test regime.

4.4.1 Port Scan Interval

Slow scanning is not a specific scientific term. We found no specific definition of slow port scanning. Bar-
nett et.al published in 2008 an article called "Towards a Taxonomy of Network Scanning Techniques" [44].
They use the term "very slowly" (with packets beeing sent with a gap of at least five minutes between them).
Treurniet published in 2011 an article called "A network activity classification schema and its application
to scan detection”. Treurniet defines in her research that slow port scanning is when the packet interval is
more than 60 seconds.

Today, we are used to move data between computers and servers within milliseconds, even between
computers with physically long distance between. We browse Internet and expect music, video and/or
large pictures to show up more or less instant. We will in our thesis not redefine the definition of slow port
scanning, but describe it as considerable slower as normal port scanning.

We adopted the use of 60 seconds scan interval as Malmedal used in his thesis [92]. This is a proper
stealthy port scan interval that we strongly think the majority of NIDS will struggle to detect.

4.4.2 Port Range

Malmedal chose to scan all TCP ports from 1 — 1000. We considered this a bit "overdoing". Our initial tests
with Bro showed alerts in log already from first packet above threshold. We chose to scan randomly the
100 most frequently used TCP ports in the port range 1-1023.

We started our tests with both Bro and Snort configured in the way that every port below 1024 was
handled equally. This created a lot of alerts/log when we injected background traffic. We ended up using
the initial configuration in both Bro and Snort. Our conclusion in this matter is that we just have to stand
on shoulders to the knowledge that both community developers have put into their NIDS.

Tuning NMAP

Our interesting ports are what IANA calls "System Ports" or "well known ports" [39]. These are the ports
below 1024. We chose to scan the 100 most used ports regarding NMAP’s file nmap-services [51].

Fig. 8 shows the top ten most used TCP ports according to NMAP’s previous experience. The complete
list of the 100 most used ports is available in Appendix B.1.

24

Slow Port Scanning with Bro

Service Port | Port Frequency | Description

http 80/tcp 0.484143 | # World Wide Web HTTP
telnet 23/tcp 0.221265

https 443/tcp 0.208669 | # secure http (SSL)

ftp 21/tcp 0.197667 | # File Transfer [Control]

ssh 22/tcp 0.182286 | # Secure Shell Login

smtp 25/tcp 0.131314 | # Simple Mail Transfer

pop3 110/tcp 0.077142 | # PostOffice V.3
microsoft-ds | 445/tcp 0.056944 | # SMB directly over IP
netbios-ssn 139/tcp 0.050809 | # NETBIOS Session Service
imap 143/tcp 0.050420 | # Interim Mail Access Protocol v2

Table 8: NMAP Service definition file. Top of file sorted descending using third column (Port frequency).

We asked Gordon "Fyodor" Lyon for more background knowledge regarding NMAP’s file
nmap-services and got the following answer:

On Fri, Oct 11, 2013 at 8:33 AM, Roger Larsen <roger.larsen®@hig.no> wrote:
> Dear Fyodor,

>

> T am writing my thesis on my research on slow port scanning and Bro IDS.

> I use your brilliant tool NMAP Security Scanner in order to scan slowly

> against a victim :-)

>

> I was hoping to use the option ‘‘--top-ports 100’ in order to get the 100 most
> used TCP ports in my scan.

> What is your source for determining the ‘‘port frequency’’ column in this file?

Hi Roger. We did some empirical scanning a few years back to generate the
frequencies. They’re not perfect, but they’re helpful IMHO.

Cheers,
Fyodor

Ports below 1024, an outdated focus?

We have in our thesis only focused on ports below 1024. IANA calls this port range for: System Ports (or
well known ports)IANA [40]. This list is a recommendation/guide for how TCP/IP interconnect can be
done. However, Internet traffic tends to use more and more ports above these ports. The original NMAP
file nmap-services includes two ports above 1023 in top ten list according to the term "Port Frequency"
index (see NMAP version 6.25) [51,100]. R. Pang published in 2008 his PhD dissertation called "Towards
understanding application semantics of network traffic". He have collected internet background radiation
statistics. In his statistics over most used TCP ports he have 50% of the top eight ports above 1023, the first
above is on fifth position [101].

4.4.3 Scans Attacks

We wanted to broaden our test regime instead of wasting time on scanning.
We decided to perform the following six well known port scan attacks; (i) ACK Scan, (ii) SYN Scan,
(iii) TCP Connect Scan, (iv) NULL Scan, (v) FIN Scan and (vi) XMAS Scan.

25

Slow Port Scanning with Bro

4.4.4 Test Network Environment

We could perform our experiments in our isolated lab and be fully satisfied about our result. However,
normal network environment is in general quite chaotic, and totally opposite of isolated [22, 48, 56]. We
wanted to challenge our NIDS in order to see how they managed network environment closer to normal. We
chose to apply two different network environments; (i) isolated (minimum of traffic) and (ii) background
(traffic injected).

4.4.5 Scan Category

We need to limit our test lab in order to manage the amount of computers. We chose to scan one victim
host with one attacker, e.g. we decided to use vertical scan technique.

4.4.6 Scan Repetitions

We need to support our research strategy regarding reliability. We therefore decided to repeat every test ten
times.

4.4.7 Basic Test Regime Summarized

e Port Scan Interval = 60 seconds

e Port Range = 1-1023, 100 most frequent "port frequency"”, randomly scanned (NMAP)

e Scan Attacks = (i) ACK, (ii) SYN, (iii) TCP Connect, (iv) NULL, (v) FIN and (vi) XMAS.
e Test Network Environments = (i) Isolated & (ii) Background Injected Traffic

e Scan Category = Vertical Scan

e Scan Repetition = 10 times, each test

4.5 Test Lab

In this section we describe, discuss and decide how we set up our test lab.

4.5.1 Operating Systems

The following paragraphs explains our choices regarding operating systems.

Bro Server

Bro support most Linux and BSD based systems, even Apple was supported in autumn 2013 (with some
comments) [102].

We have previously struggled installing Bro on Linux based operating systems. When first installing Bro
we tried Linux Mint 13 Maya [103]. We ended up using a lot of time in troubleshooting before we man-
age to get our Bro installation up and running. Our next installation of Bro was in a virtual environment
(VMWARE) with FreeBSD as operating system. This installation was done without any extra problem-
s/efforts. When we started to build up our lab we chose an old DELL computer to be the Bro server. We
installed FreeBSD 9.1 on this server. This installation of Bro (on FreeBSD) was also done without problem.

Attacker, Traffic Injection, Snort Server, Victim

All the four computers here were laptops. We used outdated laptops that we borrowed from LYSGLIMT,
Austevoll Kraftlag SA [1]. These computers are a bit outdated (slow responsive) when Microsoft Windows
is installed (the default at Austevoll Kraftlag SA). However, these computers are powerful enough when
using Linux based operating system.

Snort support most operating systems, both Linux- and BSD-based, Apple OS X and Microsoft Win-
dows [63]. The other applications supports both Linux, FreeBSD, and Apple OS X.

We tried to standardize on Linux Mint 13, but two of our old laptops was not happy with this choice.
We experienced very slow startup time and some features that did not work as expected. This ended up

26

Slow Port Scanning with Bro

with a re-installation of on the Snort Server and Attacker computer. We chose our second most favorite
operating system including a less resource demanding windows manager (Linux Debian 7 with XFCE
Desktop Environment) [104, 105].

After this re-installation of Snort Server and Attacker computer, we did not experience any practical
problems with the choices of operating systems during our tests.

The list of equipment details is found in 6.1.2.

Victim Computer

We wanted to simulate a server with a lot of ports and services running. This way we would get a lot traffic
including both open and closed ports during the NMAP scan process. Our initial tests showed that NMAP
used more time the more open ports it found. We must bear in mind that NMAP was not special built for
our experiment. NMAP use more time analyzing several ports than analyzing one port, this is clearly by
design. NMAP is a piece of software that tries to serve its master with best possible analyzing response.

We chose to use one active service on victim computer: the SSH service on TCP port 22 [106]. This
saved us time in every scan process and in the same time we were able to manage this computer.

4.5.2 Network Equipment

Our needs regarding network equipment was not very ambitious. We needed maximum 1 Mb/s traffic
bandwidth (when using background traffic injection). However, it is always good to have some power in
the network when we will take backup. The most common network equipment have for many years been
fast ethernet, which is 100Mb/s. This is enough for our test lab.

We decided to use network equipment with link speed 100Mb/s (fast ethernet). A stress test using
tcpreplay without bandwidth shaping parameter gave us a bandwidth speed over 70 Mb/s, so there were
plenty of overhead performance in our network.

Basic network environment

We had a wireless router and Internet connection for all lab equipment during all our tests. This choice
was mainly done for practical reasons. However, there are several operating system processes that most
likely will make more noise when an Internet access is unavailable. ARP protocol tend to send a lot of
broadcast messages, DNS and email services may also generate some noise. For instance, NMAP insists
on contacting DNS on every startup. The software update processes frequently "call home" and checks for
updated software. If an Internet connection is missing, these processes tends to increase their activity in
order to connect to Internet.

In our graphs describing the isolated network environment bandwidth, we found UDP, IPv6, ARP and
IGMP traffic.

4.5.3 IP Addresses

A common used network model is defining different network zones into; (i) trusted, (ii) untrusted, (iii)
DMZ, etc. These zones have typical different IP address ranges. We wanted to place our test lab computers
in trusted zone except the attacker and the background injecting computer.

We have changed our configuration regarding trusted and untrusted network so that the traffic the IDS’s
is are from an untrusted network. The setup is like this;

Trusted/local network = 192.168.1.0/25

Untrusted/external network is all that does not match the addresses above.

Each of our NIDS has two interfaces active; (i) local network for monitoring/management and (ii) TAP
interface. Our TAP interface IP addresses are set in IP range 10.10.10.0/24.

27

Slow Port Scanning with Bro

4.5.4 Tuning Operating Systems & Interfaces

We wanted to avoid other security mechanisms to influence our tests. We further wanted to follow known
good practice regarding IDS usage (and packet capturing).

We decided to apply the following configuration:
— The operating systems software firewalls were disabled.
— Both Bro & Snort TAP interfaces was set in promiscuous mode (PROMISC).

We found a lot of hints regarding further tuning of the TAP interface - however, we do not focus on
large packets and/or payload in our tests. We did not experience any problem situation where further tuning
of our TAP interface seemed necessary. Sources: [107-110]

4.5.5 Practical Problems

We did not suffer any technical challenges in our test lab. We managed once to fill up the hard disk drive
on Snort server. Thanks to our checklist - we discovered this quickly restarted our tests.

4.5.6 Test Lab Summarized

e Operating systems = FreeBSD, Linux Mint 13 and Linux Debian

e Network Equipment = Fast Ethernet (100 Mb/s)

e [P Addresses = Trusted: 192.168.1.0/25 (All computers except Attacker, Background Injector and TAP
interfaces). Untrusted (all except trusted)

e Tuning Operating Systems & Interfaces = Firewalls DISABLED, TAP interfaces in promiscuous mode
(PROMISC)

e Practical Problems = one (we filled up a hard disk drive, but restarted our tests)

4.6 Tools

In this section we describe, discuss and decide what tools we need during our tests.

4.6.1 Simulating a Scan Attack

In order to simulate slow port scanning we needed a powerful and flexible tool. We found Network Map-
per (NMAP or NMAP Security Scanner) suitable for this job. NMAP was originally written by Gordon
“Fyodor” Lyon (Fyodor) [111]. NMAP is open source software maintained by Fyodor. NMAP has been
widely used by network administrators since its birth in 1997 and is a major part of several books pub-
lished [51, 112]. Our strongest reference in our literature study did also used NMAP [92].

We used the following command (the dollar sign ($) represents the command prompt):

$nmap —dns—servers 94.143.64.11 —sS —top—ports 100 —PO —TO —scan—delay 60s —max—scan
—delay 61s 192.168.1.102 —packet—trace

NMAP options explained:

e --dns-servers = this option tells NMAP what DNS server to use. We got some error messaged without
using this option.

e -sS = what scan to perform. In this case; S = SYN Scan.

e --top-ports 100 = performs a scan using the top 100 most used TCP. ports(port frequency) iwth the file
nmap-services as the source.

e -PO = threat all hosts as online. This option avoided NMAP to perform a so-called discovery process.

e -TO = calm down scan process (slow and nice with one port at a time).

e --scan-delay 60s = scanning delay is minimum 60 seconds.

e --max-scan-delay 61s = scanning delay is maximum 61 seconds. The parameter -TO may get NMAP to
go much longer than 60 seconds.

28

Slow Port Scanning with Bro

e 192.168.1.102 = Victim Computer.
e --packet-trace = Packet trace. Shows all packets sent and received.

Our initial experience with NMAP gave us Table 9 regarding execution time of each scans.

Scan Start Time (s) | Execution Time (s)
ACK Scan 109 6624
SYN Scan 109 6634
TCP Connect Scan 109 6654
NULL Scan 109 6745
FIN Scan 109 6745
XMAS Scan 109 6745

Table 9: NMAP execution time for different scan attacks.

This seems first a bit weird. We do instruct NMAP to scan 100 ports in an 60 seconds interval.

In addition to this, NMAP is not starting to scan until 133 secs. have passed B.2. The first 133 secs.
NMAP is clearly getting familiar with its network environment.

However, as mentioned in Section 4.5.1, NMAP is an advanced software that use time analyzing its
response. This NMAP behavior is by design.

4.6.2 Network Statistics

We needed a neutral tool that could give us network statistics on both Bro and Snort servers. This is part of
our quality assurance (QA). We want to see that both servers get the same traffic data.

We chose Argus for this purpose. Argus is short for "Audit Record Generation and Usage System". Argus
is open source initial written by Carter Bullard (released as public domain in 1996) [93]. Argus has strong
references and is often used in partnership with IDS systems [92, 113, 114]. We have used Argus Version
3.0.6. Our strongest reference in our literature study also used Argus [92].We installed Argus on both Bro
and Snort server. Argus gives us a lot of information, but the most needed in our context is the following:

o TCP statistics
e Packets per seconds (bandwidth)
e Searchable traffic statistics (e.g. by time stamps)

4.6.3 Background Traffic

It is crucial to test our improved Bro script outside of an isolated network.

Testing our improved Bro scan.bro script with live traffic?

We may have tested Bro in live network traffic, but this is challenging to perform (if possible) when we
in general insist on being able to reconstruct and repeat the identical situation (reliability focus). This data
will also contain much sensitive data classified under the privacy law [115]. We may add several machines
in our test lab that uses several different applications in order to generate network background. This is not
difficult, but demand a lot of computer equipment (and space). This is outside our scope, but interesting.
We will perhaps perform this in another experiment.

Choosing a dataset

We initially planned to create our own dataset with network traffic data from our local ISP: LYSGLIMT (a
brand under Austevoll Kraftlag SA) [1]. In computer network traffic there exists a lot of different kind of
data. We will also in this situation be trapped This kind of data must be handled with care. This data will
also contain much sensitive data classified under the privacy law [115]. If we got permission and decided

29

Slow Port Scanning with Bro

to capture live network traffic, we had to sanitize/anonymize this data before using it in our tests.

After considering the workload regarding anonymizing/sanitizing process including learning new tools,
we started looking for ready made datasets. We needed a dataset created by professionals. Quality in dataset
are an important factor.

We manage to use dataset from Cooperative Association for Internet Data Analysis (CAIDA) [116].
CAIDA is located at the University of California’s San Diego Supercomputer Center. We chose to use a
dataset captured 15 Aug 2013 named quinix-chicago.dirA.20130815-134900.UTC. anon.pcap [7].

The dataset key facts; (i) the dataset was captured without packet loss, (ii) the dataset do not contain
any data/payload and (iii) the dataset is anonymized.

The CAIDA dataset is described in Appendix D.

Setting our parameters

Our experience with NMAP showed us that the scan process was not executed in 100 times 60 seconds
(6000 sec). See our NMAP scan experience in Table 9. We wanted this time window to be covered by
background traffic, and we decided to round upwards to 7000 sec.

Our other parameter we needed to set was the amount of data injected per time (bandwidth). Malmedal
used in his thesis 1 Mb/s and we decided to follow his settings.

In order to simulate a server or several computers behind one IP address using network address trans-
lating mechanisms (NAT [117]) we wanted to direct the background traffic against victim computer.

We wanted to simulate network traffic with the following parameters:

— Generate traffic during 7000 sec
— Generate 1 Mbps traffic
— Direct background traffic against victim computer (IP address = 192.168.1.102)

We later ended up tuning our traffic injection to 1.2 Mb/s. This was done because we now was closer to
the time windows of 7000 sec. The dataset chosen do not include any payload. In this manner the amount of
TCP packets is much larger than live traffic with this kind of bandwidth. We tried to find research statistics
regarding average TCP packets size without success.

4.6.4 Injecting Background Traffic

We needed a tool that could inject our dataset into our network. We decided to use tcpreplay to inject our
dataset. This tool was able to support our parameter criteria in Section 4.6.3. tcpreplay is a commonly
used tool for simulating and/or replaying network traffic with strong references [118-120].

Malmedal also used tcpreplay in his master thesis.

4.6.5 Reference NIDS

We wanted to include a reference IDS. Our choice was quite easy: Malmedal used Snort in his thesis.

We tuned Snort’s sfportscan in order to detect our scan interval (60 sec). Snort is a de facto choice
in open source NIDS. We did not activate/include any rules in our configuration. Our only focus was how
sfportscan would cope with our test scenarios.

We decided to use the following sfportscan configuration:

preprocessor sfportscan :\
proto { tcp } \
scan_type { all } \
memcap { 10000000 } \
logfile { /var/log/snort/sfportscan—alert.log } \
sense_level { high } \
detect_ack_scans

In order to get performance data we activated the perfmonitor preprocessor with this configuration:

30

B W =

Slow Port Scanning with Bro

preprocessor perfmonitor: \
time 60 \
file /var/log/snort/snort.stats \
pktcnt 10000

4.6.6 Tools Summarized

e Simulating a scan attack = NMAP ("Network Mapper")
o Network Statistics = Argus

e Background Traffic = CAIDA Dataset from 15 Aug 2013
e Injecting Background traffic = tcpreplay

e Reference NIDS = Snort

31

Slow Port Scanning with Bro

5 Slow Port Scanning in Bro

"Until some brilliant researcher comes up with a better technique,
scan detection will boil down to testing for X events

of interest across a Y-sized time window."

— Stephen Northcutt

In this chapter we explain our efforts towards improving slow port scanning capability in Bro. Initially,
we describe our strategy. We further explain Bro architecture in details and important configuration and log
files. We further go deeper into how we managed to improve Bro slow scan detection capability.

5.1 Strategy for improving Bro slow port scan detection capability

In this section we explain our strategy in improving Bro slow port scan detection capabilities, and thus
detection rate.

In order to detect slow port scans we may extend every time depending variable and in that manner
be able to find scanners over a large time window. In our isolated research we may just do this and be
satisfied with our results. However, in real world, unnecessary high use of CPU cycles and memory are
rarely acceptable.

5.2 Initial test of Bro

We will in this section describe our initial approach regarding Bro slow port scan detection capabilities.

5.2.1 Bro’s Port Scan detection = Scan.bro

When installing Bro 2.1, we do not get any ready made scan detection mechanism. We may of course
create a new scan script from scratch. However, we found a script called scan. bro in Bro’s download area
"bro-scripts" [121]. This script was rather old. We considered for a while building a brand new one,
but decided to use this as a base. This script has clearly evolved over many years with several authors. The
header states that they will rewrite the script. Due to 7 Sept 2013, this is still the case for Bro version 2.1.
Last official version of scan.bro is 3 Nov 2011. The scan. bro header is quoted below:

##! Scan detector ported from Bro 1.x.

#it!

##! This script has evolved over many years and is quite a mess right now. We
##! have adapted it to work with Bro 2.x, but eventually Bro 2.x will

##! get its own rewritten and generalized scan detector.

The scan.bro script is in total 621 lines with 10 events, 19 functions and several variable declarations
(constants, tables, sets, vectors, local variables).

Initial test with Bro using scan.bro

The original version of scan.bro contained a small error (see details in Appendix C.1).
The complete listing of the original scan.bro is found in Appendix C.4.

5.3 Increasing Log Level for scan.bro = Add Notices

We will in this section focus on increasing the log level when using scan.bro.

32

12
13
14
15
16
17
18

20
21

33
34
35
36
37
38

40

AN N AW N =

Slow Port Scanning with Bro

We need to increase the log level of Bro regarding scan detection. This is done because we want to know
every detail of how scan.bro is working. This may flood our log files, but in the early stage of analyzing
and understanding it is crucial to look closely/deep into every detail of this script.

Logging in Bro is done by notices. In order to generate new alerts (obtained from notices) we need to
understand Bro’s Notice Framework [122]. To increase the log level we need to modifying the local notice
policy in Bro. We need to add (redefine as Bro cals it) notices in scan.bro.

In the following list we shows what notices the original scan.bro have:

5.3.1 The Notice Definition in original scan.bro

In this section we list notices in the original scan. bro script. The notices are placed in the first part of our

scan.bro.

redef enum Notice :: Type += {
PortScan ,
AddressScan ,
BackscatterSeen ,
ScanSummary ,
PortScanSummary ,
LowPortScanSummary ,
ShutdownThresh ,
LowPortTrolling ,

b

We have removed the comments in order to save space and make this list more readable. The complete
scan.bro including comments is found in Appendix C.4.

The script code above gives the following notices a chance to appear in log file notice.log (given the
right conditions); (i) PortScan, (ii) AddressScan, (iii) BackscatterSeen, (iv) ScanSummary, (v) PortScan-
Summary, (vi) LowPortScanSummary, (vii) ShutdownThresh and (viii) LowPortTrolling.

5.3.2 We need to generate more alerts in our analyzing process (more Notices)

In analyzing phase, we add several notices to see more details. We wanted to see when events in scan.bro
script occurred/ was triggered. The notices that we created were the following:

redef enum Notice :: Type += {
ConnectionPartial ,
ConnectionAttempt ,
ConnectionHalfFinished ,
ConnectionRejected ,
ConnectionReset ,
ConnectionPending ,

}s

The script code above gives the following notices a chance to appear in log file notice.log (given the
right conditions); (i) ConnectionPartial, (ii) ConnectionAttempt, (iii) ConnectionHalfFinished, (iv) Con-
nectionRejected, (v) ConnectionReset and (vi) ConnectionPending.

These notices are not active in our final modified script, but commented (disabled). The original scan. bro
including comments is found in Appendix C.4, the modified scan.bro is found in Appendix C.5.

5.3.3 Structure of Notice.log

The notice.log file have the following structure:

#separator \x09
#set_separator
#empty_field (empty)
#unset_field —

#path notice

#open 2013—11—-13—-22—-42—14

33

e

o]

11
12

10] .

Slow Port Scanning with Bro

#fields ts uid id.orig_h id.orig_p id.resp_h id . resp_p
proto note msg sub src dst P n peer_descr
actions policy_items suppress_for dropperemote_location.country_code
remote_location.region remote_location.city remote_location.latitude
remote_location.longitude metric_index . host metric_index . str
metric_index .network

#types time string addr port addr port enum enum string string
addr addr port count string table [enum] table [count] interval

bool string string string doubledouble addr string subnet

#close 2013—11—-14—00—30—-00

non

We have removed the actual logs (shown with dots(".")), and show here above only the header and the tail
of this log file. We will now explain briefly how this file is formatted:

e The first five lines are fixed (defined by Bro developers)

e Line 6 (#open) show when this file was opened/created. The format including year, month, day, hour,
minutes and seconds.

e Line 7 (#fields) shows the field headers. This is a long line (428 characters). However, the 13 first are
the most interesting.

e Line 8 (#types) shows the field header variable types. E.g. time, string, addr, port etc.

e Line 12 (#close) show when this file was closed. This is most likely when Bro was stopped (or by other
cron script that may rotate logfiles).

Now we were able to start testing slow port scanning against scan. bro.
Appendix C.7 show an example of notice.log with notices, and not just heading and tail. More details
regarding this file format can be found on Bro Web page [123].

5.4 Variables that influence scan detection

In this section we will describe what variables we tuned in order to get scan.bro to detect slow port
scanning.

5.4.1 Variables controls detection and reporting = 48

We found 48 variables that directly influence the detection and/or reporting of alerts regarding scan attacks.
We only changed a few of these. A minor part of these variables are given in Table 10 (constants) and Table
11 (table of sets). The leftmost column refers to line number in the original scan.bro script. We denote
these variables in the third column, depending on their role; Detection role (D), Reporting role (R) and
Not Active (N/A). The rightmost column show if we changed these variables (denoted with "Yes"). These
variables are of most interest. If the variable is changed, the new parameter(s) is included in the second
column.

There are a close relationship between parameters that influences reporting capability and those that in-
fluence detection capability. If we activate a service for being detected, we need to ensure that this detection
is reported, and visa verse.

We will further now describe the variables we changed and why we did this.

Variable: suppress_UDP_scan_checks (boolean)

According to our plan, we only focus on TCP protocol. Analyzing UDP protocol is therefore suppressed
(suppress_UDP_scan_checks =T).

34

Slow Port Scanning with Bro

Variable: report_port_scan (vector of count)

The variable report_port_scan define when scan.bro send log alerts into notice.log. We added
several new report thresholds in order to increase logging. This report was original set to start on reporting
on 50. We changed it to report the following thresholds; 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 250, etc.
This was important because our demands for more log details.

| Constant Variables Role | Changed
35 | const suppress_UDP_scan_checks = T &redef; D Yes
37 | const activate_priv_port_check = T &redef; D
38 | const activate_landmine_check = F &redef; D
39 | const landmine_thresh_trigger = 5 &redef; N/A
41 | const landmine_address: set[addr] &redef; N/A
43 | const scan_summary_trigger = 25 &redef; R
44 | const port_summary_trigger = 20 &redef; R
45 | const lowport_summary_trigger = 10 &redef; R
48 | const shut_down_thresh = 100 &redef; R
52 | const analyze_services: set[port] &redef; D
53 | const analyze_all_services = T &redef; D
56 | const addr_scan_trigger = O &redef; D
61 | const ignore_scanners_threshold = 0 &redef; D
64 const report_peer_scan: vector of count = { 20, 100, R
1000, 10000, 50000, 100000, 250000, 500000, 1000000, }
&redef;
68 | const report_outbound_peer_scan: vector of count = { 100, R

1000, 10000, } &redef;
73 | const report_port_scan: vector of count = { 10, 20, 30, R Yes
40, 50, 60, 70, 80, 90, 100, 250, 1000, 5000, 10000,
25000, 65000, } &redef;

Table 10: Interesting Constant Variables in Export area, original scan . bro. Role column; Detection(D), Reporting(R),
Not Activated (N/A). Table 1 of 2.

Variable: distinct_ports (table of set)

The table distinct_ports collect host IP address and specific/distinct ports covering the whole port
range (port 1-65535). This table deletes entries set by minutes. The original scan.bro had 15 minutes set,
we changed it to collect scan attempts for 99 minutes. This may be a high number, but we do not focus on
this kind of unnecessary memory usage in our thesis. We are more focused on catching slow port scanners.

Variable: distinct_low_ports (table of set)

The table distinct_low_ports collect host IP address and specific/distinct ports covering only system
ports (port 1-1023). This table deletes entries set by minutes. The original scan.bro had 15 minutes set,
we changed it to collect scan attempts for 99 minutes. This may be a high number, but we do not focus on
this kind of unnecessary memory usage in our thesis. We are more focused on catching slow port scanners.

Variable: possible_scan_sources (table of set)

The table distinct_ports collect host IP address and specific/distinct ports classified as possible scan-
ners. If a host found in distinct_ports or distinct_low_ports is found as a possible port scanner, it
is placed in this table. This table deletes entries set by minutes. The original scan.bro had 15 minutes set,
we changed it to collect scan attempts for 99 minutes. This may be a high number, but we do not focus on
this kind of unnecessary memory usage in our thesis. We are more focused on catching slow port scanners.

35

Slow Port Scanning with Bro

The original parameter settings are found in the scan. bro script, Appendix C.4.

| Sets, Tables and Tables and Sets Role | Changed

163 | global pre_distinct_peers: table[addr] of set[addr]

164 &read_expire = 15 mins &redef; D

166 | global distinct_peers: table[addr] of set[addr]

167 &read_expire = 15 mins &expire_func=scan_summary &redef; D

169 | global distinct_ports: tableladdr] of set[port]

170 &read_expire = 99 mins &expire_func=port_summary &redef; D Yes

176 | global distinct_low_ports: tablel[addr] of set[port]

177 &read_expire = 99 mins &expire_func=lowport_summary D Yes
&redef;

185 | global possible_scan_sources: set[addr]

186 &expire_func=remove_possible_source &read_expire = 99 D Yes
mins;

Table 11: Interesting Sets, Tables and Vector variables in Export area, original scan.bro. Role column; Detection(D),
Reporting(R), Not Activated (N/A).

5.5 TCP Connection Events in Bro

In this section we describe Bro TCP connection events.

5.5.1 Describing TCP Connection events in Bro

We need to find out what connection events Bro TCP analyzer can offer.

The TCP analyzer in Bro (Bro::TCP), generates several events during analyzing. There exists seven-
teen events in total. The first ten are easy to use/implement without any second thoughts (normal events).
However, the last seven are very low level semantic and CPU exhaustive. We may use the low level events
of course, but not in normal situations. The Bro documentation uses the following description on these low
level TCP events; (i) "should be rarely used", (ii) "should be avoided in normal situations" [124, 125].

Normal TCP Connection Events

Table 12 shows the normal TCP connection events. The descriptions are extracted from Bro events.bif
file. We have tried to compress the text here without thwart the content.

Low Level TCP Connection Events

The following TCP connection events are very low level. We see that most of these events focus on TCP
flags:

1. connection_SYN_packet — generated for a SYN packet.

2. connection_first_ACK — generated for the first ACK packet seen for a TCP connection from its
originator.

connection_EQOF — generated at the end of reassembled TCP connections.

tcp_packet — generated for every TCP packet.

tcp_option — generated for each option found in a TCP header.

tcp_contents — generated for each chunk of reassembled TCP payload.

N kW

tcp_rexmit — TODO (quoted from script). NOTE; we have not found any explanation on this low
level event. In our context this is not important.

36

Slow Port Scanning with Bro

Event:

Description:

new_connection_contents

Generated when Bro starts to analyze a new TCP connection.

connection_attempt

Generated for an unsuccessful connection attempt.

W N —| H

connection_established

Generated when a SYN-ACK packet is seen in response to
a SYN packet during a TCP handshake. The final ACK of
the handshake in response to SYN-ACK may or may not oc-
cur later, one way to tell is to check the history field of
:bro:type:‘connection‘ to see if the originator sent an ACK, indi-
cated by "A’ in the history string.

partial_connection

Generated for a new active TCP connection if Bro did not see
the initial handshake.

connection_partial_close

Generated when a previously inactive endpoint attempts to close
a TCP connection via a normal FIN handshake or an abort RST
sequence. When the endpoint sent one of these packets, Bro
waits :bro:id: ‘tcp_partial_close_delay‘ prior to generating the
event, to give the other endpoint a chance to close the connection
normally.

connection_finished

Generated for a TCP connection that finished normally. The
event is raised when a regular FIN handshake from both end-
points was observed.

connection_half_finished

Generated when one endpoint of a TCP connection attempted to
gracefully close the connection, but the other endpoint is in the
TCP_INACTIVE state.

connection_rejected

Generated for a rejected TCP connection. This event is raised
when an originator attempted to setup a TCP connection but the
responder replied with a RST packet denying it.

connection_reset

Generated when an endpoint aborted a TCP connection. The
event is raised when one endpoint of an established TCP con-
nection aborted by sending a RST packet.

10

connection_pending

Generated for each still-open TCP connection when Bro termi-
nates.

Table 12: Connection Events generated by TCP Analyzer.

5.6 Analyzing scan.bro script regarding Connection Events

We will in this section go deeper into the scan. bro script in order to improve slow scan detection.

Now, with our change regarding timing and reporting in Section 5.4, we were able to detect slow

scanning. However, still only SYN & TCP Connect scan attacks.

We will now explain two important mechanisms that scan. bro make use of; (i) connection (endpoint)

states and (ii) the history field in connection records.

5.6.1 Connection Endpoint State

In this paragraph we describe the so-called endpoint states. These states tells us how the TCP endpoint (the

destination) of an actual TCP connection is responding.

These endpoint states is used in the original scan. bro. The following list shows important connection
states found in Bro file $BROHOME/share/base/init-bare.bro [126]. Source: [126].

const TCP_INACTIVE
const TCP_SYN_SENT
const TCP_SYN_ACK_SENT =

0;
1;
2;

##< Endpoint is still inactive.
##< Endpoint has sent SYN.
##< Endpoint has sent SYN/ACK.

37

—_

Slow Port Scanning with Bro

const TCP_PARTIAL = 3; ##<
const TCP_ESTABLISHED = 4; #i#<
const TCP_CLOSED = 5; ##<
const TCP_RESET = 6; #i#<

Endpoint has sent data but no initial SYN.

Endpoint has finished initial handshake regularly.

Endpoint has closed connection.
Endpoint has sent RST.

A typical use of these connection endpoint states looks like this:

if c$orig$state == TCP_CLOSED

5.6.2 Connection Record, History State

We will now explain another important variable: the history variable in the connection record. The complete
definition of the connection record is shown in Table 13. We found in Bro documentation (Web page) that

the history variable had information regarding the TCP flag. This was very interesting.

connection

Type: | Record

id: conn_id

orig: endpoint
resp: endpoint
start_time: time
duration: interval

service: set [string]

addl: string
hot: count
history: string
uid: string

tunnel: EncapsulatingConnVector
&optional

The connections identifying 4-tuple.

Statistics about originator side.

Statistics about responder side.

The timestamp of the connections first packet.

The duration of the conversation. Roughly speaking,
this is the interval between first and last data packet
(low-level TCP details may adjust it somewhat in am-
biguous cases).

The set of services the connection is using as deter-
mined by Bro’s dynamic protocol detection. Each en-
try is the label of an analyzer that confirmed that it
could parse the connection payload. While typically,
there will be at most one entry for each connection,
in principle it is possible that more than one protocol
analyzer is able to parse the same data. If so, all will
be recorded. Also note that the recorded services are
independent of any transport-level protocols.
Deprecated.

Deprecated.

State history of connections. See history in Conn::Info.
A globally unique connection identifier. For each con-
nection, Bro creates an ID that is very likely unique
across independent Bro runs. These IDs can thus be
used to tag and locate information associated with that
connection.

If the connection is tunneled, this field contains infor-
mation about the encapsulating “connection(s)” with
the outermost one starting at index zero. Its also al-
ways the first such encapsulation seen for the connec-
tion unless the tunnel_changed event is handled and
re-assigns this field to the new encapsulation.

this type also with UDP and ICMP flows.

A connection. This is Bro’s basic connection type describing IP- and transport-layer information about
the conversation. Note that Bro uses a liberal interpretation of “connection” and associates instances of

Table 13: Connection Record.

38

678
679
680
681
682
683
684
685
686
687
688
689
690
691

Slow Port Scanning with Bro

This history record is set by the TCP analyzing process, and tell us the state history of the actual
connection. The history record is a string containing letters that tells us the following about a TCP
packet; (i) flags state, (ii) payload, (iii) bad checksum and (iv) inconsistent TCP flag behavior. See Table
14details. Source: [127]

Conn::Info

Type: | Record

history | string &log &optional

Records the state history of connections as a string of letters. The meaning of those
letters is:

Letter Meaning

s —a SYN w/o the ACK bit set

h—a SYN+ACK (“handshake”)

a—apure ACK

d — packet with payload (“data’)

f — packet with FIN bit set

r — packet with RST bit set

¢ — packet with a bad checksum

i— inconsistent packet (e.g. SYN+RST bits both set)

If the event comes from the originator, the letter is in upper-case; if it comes from
the responder, its in lower-case. Multiple packets of the same type will only be noted
once (e.g. we only record one “d” in each direction, regardless of how many data
packets were seen.)

Table 14: Connection Information (Conn::Info): the history record.

5.7 Modifying scan.bro

We will in this section implement our findings from previous section and thus improve the slow port scan
capability in scan.bro.

Adding Event new_connection_contents

‘We manage to add one of the unused events found in Bro documentation. Note that we check both directions
(both c$orig$state and c$respS$state). This is done because Bro may be confused by the wrongly used TCP
flag. This way of checking both ways is also used in original scan.bro.

The improvement in adding event new_connection_contents was initial intended to detect FIN Scan
attacks. However, XMAS Scan attacks also use the FIN flag. We strongly believe that this modifications
was the strongest element in improving scan.bro regarding better detection of slow port scan.

event new_connection_contents(c: connection)

{

local is_reverse_scan = (c$resp$state == TCP_CLOSED);

if ((cS$orig$state == TCP_CLOSED || cS$resp$state == TCP_CLOSED) &&
("f" in c$history Il "F" in c$history))
{
Scan::check_scan(c, F, is_reverse_scan);
}

else if ((cSorig$state == TCP_CLOSED || c$resp$state == TCP_CLOSED) &&
("i" in c$history Il "I" in c$history))
{
Scan::check_scan(c, F, is_reverse_scan);
}

}

39

732
733
734
735
736
737
738
739
740
741
742
743
744

800
801
802
803
804
805
806
807
808
809
810
811
812

Slow Port Scanning with Bro

Modifying Event partial_connection

We modified event partial_connection in order to better detect partial TCP connection.

event partial_connection(c: connection)

{
local is_reverse_scan = (c$resp$state == TCP_PARTIAL);

if (cSorig$state == TCP_PARTIAL || cS$resp$state == TCP_PARTIAL)
{

Scan::check_scan(c, F, is_reverse_scan);

}

else

{

Scan::check_scan(c, T, is_reverse_scan);

}

Modifying Event connection_rejected

We modified event connection_rejected in order to better detect partial TCP connection, and both FIN
& XMAS Scan attacks.

event connection_rejected(c: connection)

{
local is_reverse_scan = c$orig$state == TCP_RESET;

if (cSorig$state == TCP_CLOSED || cS$resp$state == TCP_CLOSED)
{

Scan:: check_scan(c, F, F);

}

else

{

Scan::check_scan(c, F, is_reverse_scan);

}

5.8 Summary

We have in this chapter explained our process of improving Bro’s slow port scan detection capabilities.
We increased timeout for some variables, added an unused connection event and modified some other
connection events.

We strongly believe that we are able to detect the following scan attacks:
— FIN scan (checking for TCP packets that is answered with RST)
— XMAS & NULL scan (checking for inconsistent/odd use of TCP flags).

40

Slow Port Scanning with Bro

6 Experimental Setup and Results

"

"The true method of knowledge is experiment.
— William Blake

In this chapter we describe our experimental setup and what results it gave us. We apply methods
described in Chapter 4 with our improved Bro policy script found in Chapter 5.

6.1 Lab Setup

In this section we shows the details regarding our experimental test lab.

6.1.1 Network Diagram of our Test Lab

We have created an illustration showing our physical network connections. The thin lines and the thick
do not symbol any different capabilities. All lines are all at the same speed: 100 MB/s (fast ethernet). We
had this network connected to Internet with a wireless router which is not included in this illustration. Our
network diagram is presented in fig. 5.

6.1.2 Equipment Details

We have created a list of all equipment we used in our tests. This list is given in Table 15 and 16.

Attacker TAP TAP Target
. - A; - /\I)
I Ly
Traffic
Monitor Injection Bro Snort
(tcpreplay)

Figure 5: Test Lab Setup.

6.2 Bro in Practice

We will in this section describe how we got Bro IDS up and running. We will also describe where we find
alerts that Bro generates (log files).

41

Slow Port Scanning with Bro

Role Issue Details IP Address
Attacker Hardware: IBM ThinkPad T60
Operating System: | Linux Mint 13 Maya
Application: NMAP 6.25
Networking: wired interface ethO 192.168.1.200/24
Monitor Hardware: Apple Mac Mini
Operating System: | OS X 10.8
Application: telnet, ftp, ssh etc.
Networking: wired interface en0 192.168.1.140/24
Traffic Injecting | Hardware: DELL Latitude D530
Operating System: | Linux Debian 7.2 Xfce
Application: tcpreplay version: 3.4.3 (build 2375)
tcprewrite version: 3.4.3 (build 2375)
Networking: wired interface ethQ 192.168.1.201/24
Bro Server Hardware: Dell OptiPlex GX 260
Operating System: | FreeBSD 9.1
Application: Bro version: 2.1-328
Argus 3.06
Networking: wired interface rl0 192.168.1.123/24
wired interface 11 10.10.10.10/24
Snort Server Hardware: IBM ThinkPad T42
Operating System: | Linux Debian 7.2 Xfce
Application: Snort version: 2.9.5.5 GRE (Build 205)
Argus 3.06
Networking: wired interface ethO 192.168.1.141/24
wireless interface wlan1 (external USB) 10.10.10.77/24
Target Hardware: ASUS Aspire One
Operating System: | Linux Mint 13 Maya
Application: sshd
Networking: wired interface ethO 192.168.1.102/24
Table 15: Test Lab Setup Details. Computer and Servers.
Role Issue Details IP Address
TAP #1 Hardware: Alcatel OmniSwitch 6224
Operating System: | Alcatel OS
TAP #2 Hardware: NetGear ProSafe 5-ports switch GS105E

Operating System:

unknown

Router (Internet)

Hardware:

Cisco Linksys E4200

192.168.1.1/24

Operating System:

unknown

Switch

Hardware:

3Com 5-ports model: 3CSFUO5

Operating System:

unknown

Table 16: Test Lab Setup Details. Physical Network Infrastructure.

6.2.1 Getting Bro up and running

Bro is not a plug and play software. In general, no NIDS software works right "out of the box". This
is because of the complexity of the software and the great variations/uniqueness in every organizations
network environment. We may invest in an NIDS system that is ready installed with perhaps specially
tuned hardware and management software. However, this kind of so-called appliance box will also need

42

76
77
78
79

72
73

—_

Slow Port Scanning with Bro

a lot of initial tuning regarding the network environment it is installed into and of course the level of
logging (alarm thresholds). In addition, NIDS will need some attention for every change in the network
environment, which in our computerized world is more or less constant.

Local Site Policy

Bro was installed in directory: /usr/local/bro/ ($BROHOME). Bro’s complete directory structure can
be found in Appendix C.3. Bro need some basic input after initial installation is done. We need to update
the so-called "Local Site Policy"” [128]. This is placed in the configuration file: 1ocal.bro located in di-
rectory

/$BROHOME/share/bro/site/. This file tells Bro what scripts to load during startup, what the IP ad-
dresses of the local network is etc. We did the following change to local.bro file regarding our network

environment:

redef Site::local_nets = {

10.0.0.0/8, # Untrusted IP range
192.168.1.0/25, # Trusted IP range

1

Comments to configuration lines above:

Line #76 show us that this is a redefining (redef) of site variable Site: :local_net.

Line #77 is commented out (initial # most left in line) and will only work as informational purpose. We
may typical enter our untrusted IP address range here.

Line #78 tells Bro that IP address range 192.168.1.0./25 is local and trusted.

Line #79 ends the declaration of the variable mentioned above.

The complete 1local.bro is listed in Appendix C.2.

In order to use the script scan.bro, we copied scan.bro file into our Bro file structure. Bro’s policy
scripts are all placed in sub directories under directory:
$BROHOME/ share/bro/base/policy. We placed scan.bro in sub directory misc (complete path:
$BROHOME/share/bro/base/policy/misc). In order to tell Bro to use (load) the script scan.bro at
startup, we added the following line to file local.bro :

Other scripts
@load policy/misc/scan

We used the following command in order to run Bro with our configuration file local.bro:
$bro -i rll local.bro
The option "-i" instructs Bro what interface to listen to.

6.2.2 Logfile: notice.log

When we ran our tests, we always wanted these kind of results in the log file notice.log. This states that
Bro was able to detect the scan attack:

1384385400.480270 — — — — — — Scan::
LowPortScanSummary 192.168.1.200 scanned a total of 94 low ports —
192.168.1.200 - — 94 bro Notice : : ACTION_LOG 6
3600.000000 F — — — — — — — —

6.3 Simulating Scanning using NMAP

This section shows some output of the command we used when simulating a scan attack.
Source: [51]
The following list show the first 20 lines of the NMAP command output:

43

W N =

NN A

13
14
15
16

19

20

) —_

W

00~ N

10
11
12
13

Slow Port Scanning with Bro

Starting Nmap 6.25 (http://nmap.org) at 2013—11—19 09:25 CET

SENT (60.1111s) ARP who—has 192.168.1.102 tell 192.168.1.200

RCVD (60.1114s) ARP reply 192.168.1.102 is—at 00:23:5A:62:1B:35

NSOCK (60.1130s) nsi_new (IOD #1)

NSOCK (60.1130s) UDP connection requested to 95.143.64.11:53 (IOD #1) EID 8

NSOCK (60.1130s) Read request from IOD #1 [95.143.64.11:53] (timeout: —Ims) EID 18

NSOCK (60.11305) Write request for 44 bytes to IOD #1 EID 27 [95.143.64.11:53]:

............ 102.1.168.192.in—addr.arpa.....

NSOCK (60 1130s) Callback: CONNECT SUCCESS for EID 8 [95.143.64.11:53]

NSOCK (60.1130s) Callback: WRITE SUCCESS for EID 27 [95.143.64.11:53]

NSOCK (64.1150s) Write request for 44 bytes to IOD #1 EID 35 [95.143.64.11:53]:
— 102.1.168.192.in—addr.arpa.....

NSOCK (64.1150s) Callback: WRITE SUCCESS for EID 35 [95.143.64.11:53]

NSOCK (68 1170s) Write request for 44 bytes to IOD #1 EID 43 [95.143.64.11:53]:

............ 102.1.168.192.in—addr.arpa.....

NSOCK (68.1170s) Callback: WRITE SUCCESS for EID 43 [95.143.64.11:53]

NSOCK (73.1180s) nsi_delete (IOD #1)

NSOCK (73.1180s) msevent_cancel on event #18 (type READ)

SENT (133.2189s) TCP 192.168.1.200:42392 > 192.168.1.102:110 S ttl=57 id=58115 iplen=44
seq=4148668469 win=1024 <mss 1460>

RCVD (133.2191s) TCP 192.168.1.102:110 > 192.168.1.200:42392 RA ttl=64 id=0 iplen=40
seq=0 win=0

SENT (193.3190s) TCP 192.168.1.200:42392 > 192.168.1.102:23 S tt1=52 id=43087 iplen=44
seq=4148668469 win=1024 <mss 1460>

RCVD (193.3194s) TCP 192.168.1.102:23 > 192.168.1.200:42392 RA ttl=64 id=0 iplen=40 seq
=0 win=0

SENT (253.4191s) TCP 192.168.1.200:42392 > 192.168.1.102:995 S ttl=49 id=56741 iplen=44
seq=4148668469 win=1024 <mss 1460>

The following list show the last 13 lines of the NMAP command output:

SENT (6563.8193s) TCP 192.168.1.200:42392 > 192.168.1.102:888 S tt1=57 id=51731 iplen=44
seq=4148668469 win=1024 <mss 1460>

RCVD (6563.8198s) TCP 192.168.1.102:888 > 192.168.1.200:42392 RA ttl=64 id=0 iplen=40
seq=0 win=0

SENT (6623.9194s) TCP 192.168.1.200:42392 > 192.168.1.102:4 S ttl=47 id=4909 iplen=44
seq=4148668469 win=1024 <mss 1460>

RCVD (6623.9199s) TCP 192.168.1.102:4 > 192.168.1.200:42392 RA tt1=64 id=0 iplen=40 seq
=0 win=0

Nmap scan report for 192.168.1.102

Host is up (0.00034s latency).

Not shown: 99 closed ports

PORT STATE SERVICE

22/tcp open ssh

MAC Address: 00:23:5A:62:1B:35 (Compal Information (kunshan) CO.)

Nmap done: 1 IP address (1 host up) scanned in 6623.94 seconds
Nmap STOP: 2013—11—-19—11:15:24 ## S Scan ##

6.4 Injecting Traffic to Simulate Background Traffic

In this section we describe the CAIDA dataset. We will also show our actions in order to prepare the dataset
for our network environment.

6.4.1 CAIDA Dataset Statistics

The following table shows statistics regarding the CAIDA dataset:
equinix-chicago.dirA.20130815-134900.UTC. anon.pcap.

6.4.2 Preparing the CAIDA dataset

The dataset from CAIDA had to be prepared for our needs. The dataset is in PCAP fileformat [129]. In
order to manipulate the dataset we use the command line tool tcprewrite, which was included in the
installation of tcpreplay [118,130].

44

Slow Port Scanning with Bro

Description Number/Timestamp
Maximum capture length for interface 0: 65536
First timestamp: 1376574540.000000000
Last timestamp: 1376574599.999998000
Unknown encapsulation: 0
IPv4 bytes: 30210371534
IPv4 pkts: 34455742
IPv4 flows: 1432751
Unique IPv4 addresses: 766294
Unique IPv4 source addresses: 390990
Unique IPv4 destination addresses: 376431
Unique IPv4 TCP source ports: 61616
Unique IPv4 TCP destination ports: 61117
Unique IPv4 UDP source ports: 61855
Unique IPv4 UDP destination ports: 62080
Unique [Pv4 ICMP type/codes: 15
IPv6 pkts: 11233
IPv6 bytes: 2516917
non-IP protocols: 0
non-IP pkts: 0

Table 17: Statistics for CAIDA dataset equinix-chicago.dirA.20130815-134900.UTC. anon.pcap [7].

Preparing the dataset for ethernet network

The original dataset is captured using RAW format. The following command rewrites/converts this into
ethernet format:

tcprewrite —dIt=enet —enet—smac=00:11:22:33:44:55 —enet—dmac=66:77:88:99:aa:bb —
infile=equinix —chicago.dirA.20130815—134900.UTC. anon. pcap —outfile=equinix—chicago.
dirA.20130815—134900.UTC. anon_2 . pcap

The options used are explained in the listing below.
--dlt=str convert to the correct Layer 2 (in our case; enet (ethernet))
--enet-smac=str setthe source MAC address
--enet-dmac=str set the destination MAC address
--infile=str self explaining
--outfile=str self explaining

Preparing the dataset for our IP addresses

The original dataset is captured using a lot of other IP address than in our privat IP address environment.
The following command rewrites/converts the source and destination IP addresses. In this command we
also recalculates the layer 2 checksums:

tcprewrite —fixcsum —dstipmap=10.0.0.0/16:192.168.1.102/32 —infile=equinix—chicago.
dirA.20130815—134900.UTC. anon_ . pcap —outfile=equinix—chicago.dirA.20130815—134900.
UTC.anon_3 . pcap

Please find the options used explained in listing below.
--fixsum forces recalculation of [Pv4/TCP/UDP header checksum

--loop=num set the replay to loop. Will stop when Ctrl+C is pressed

45

Slow Port Scanning with Bro

--infile=str self explaining
--outfile=str self explaining

Replaying the dataset
We replayed the dataset using tcpreplay [118].

tcpreplay —i ethO -M 1.2 equinix—chicago.dirA.20130815—134900.UTC. anon_2 . pcap

Please find the options used explained in listing below.
-i set the traffic output interface
-M set the traffic output rate in Mbps

6.4.3 Statistics from our test

By using data collected from Argus, we are able to show nice bandwidth graphs. We have used the CLI
programs ragraph & racount Figure 9 shows the traffic during a scan where we have the isolated network.

First we use Argus’s ragraph with option proto in order to get protocol statistics. We used the fol-
lowing command ($ is representing the command prompt):

$racount -M proto -r argus.out_2013-10-15-0729 -t 2013/10/14.23:03-2013/10/15.00:58

Total Load

Total bits/sec

EalE S o o

CPEOEEFHEPHENNNNNOWWWW R &SRR
ONAMNBONAMDONENOONINDEONSDSED

23: 20 23: 40 00 00 0e: 20 0e: 40
Mon Oct 14 2013

B TotBytes
Figure 6: Graph showing bandwidth during scan attack in isolated traffic environment.

First we use the option proto in order to get protocol statistics. We used the following command ($ is

representing the command prompt):
$racount -M proto -r argus.out_2013-10-15-0729 -t 2013/10/14.23:03-2013/10/15.00:58

Secondly we use the option address in order to get IP address summary statistics. We used the follow-
ing command ($ is representing the command prompt):

$racount -M address -r argus.out_2013-10-15-0729 -t 2013/10/14.23:03-2013/10/15.00:58
Figure 9 shows the traffic during a scan test when we inject background traffic.

Tcpreplay: [118,131, 132].

46

Slow Port Scanning with Bro

racount records total_pkts src_pkts dst_pkts total_bytes src_bytes
sum 10416 3591 3081 510 580584 522617
Protocol Summary

icmp 2 2 2 0 496 496
igmp 110 275 275 0 16500 16500
tcp 117 260 137 123 18436 9029
udp 1624 1845 1692 153 464865 430345
udp 1 2 2 0 266 266
ip 46 83 83 0 9065 9065
ipvb-icm 41 69 69 0 5934 5934
udp 10 10 10 0 2322 2322
llc 16 17 17 0 1020 1020
arp 443 798 564 234 47880 33840

Figure 7: Focus on protocols. Statistics created by use of Argus: racount. Scan sequence during isolated network

environment.
racount records total_pkts src_pkts dst_pkts total_bytes src_bytes dst_bytes
sum 10416 3591 3081 510 580584 522617 57967
Address Summary
IPv4 Unicast src 0 dst 1
IPv4 Unicast This Network src 1 dst 0
IPv4 Unicast Private src 7 dst 6
IPv6 LinkLocal src 98 dst 0
IPv6é Multicast Link Local src 0 dst 98

Figure 8: Focus on address. Statistics created by use of Argus: racount. Scan sequence during isolated network

environment

The following output is generated from the same Argus statistics file found in figure 9. The output is
generated by use of the Argus client program racount.

First we use the option proto in order to get protocol statistics. We used the following command ($ is
representing the command prompt):

$racount -M proto -r argus.out_2013-10-27-1836

47

Slow Port Scanning with Bro

Total Load
15Kt

1.4 H
Al =l)
1.2H
11HM
l1.oM
8.3 M
.28 M
a7 M

8.6 M

Total bits/sec

8.5 M

a4 M

8.3 M

@.2H

8.1HM

0.0

17:40
Sun Oct 27 2013

W TotBytes

Figure 9: Graph showing bandwidth during scan attack in background traffic environment.

racount records total_pkts src_pkts dst_pkts total_bytes src_bytes dst_bytes

sum 3777976 14030799 14028193 2606 899631701 899422337 209364
Protocol Summary
ip 2448 3424 3424 0 242528 242528 0
icmp 21711 29199 29023 176 1751940 1741380 10560
igmp 112 280 280 0 16800 16800 0
tcp 3113420 12063564 12061320 2244 781150251 780982285 167966
udp 629786 1883376 1883257 119 113360942 113334124 26818
ipve 1890 2207 2207 0 170262 170262 0
ip 14 27 27 0 8667 8667 0
gre 3662 23852 23852 0 1431120 1431120 0
esp 4166 24002 24002 0 1440120 1440120 0
udp 4 6 6 0 666 666 0
ip 72 132 132 0 14353 14353 0
udp 3 3 3 0 432 432 0
llc 16 16 16 0 960 960 0
arp 318 476 409 67 28560 24540 4020

Figure 10: Focus on protocols. Statistics created by use of Argus: racount. Scan sequence during background network

environment.

Secondly we use the option address in order to get IP address summary statistics. We used the follow-
ing command ($ is representing the command prompt):

$racount -M address -r argus.out_2013-10-27-1836

48

00N N AW =

Slow Port Scanning with Bro

racount records total_pkts src_pkts dst_pkts total_bytes
sum 3777976 14030799 14028193 2606 899631701

Address Summary
IPv4 Unicast src 89525 dst 128
IPv4 Unicast This Network src 29 dst 0
IPv4 Unicast Private src 241 dst 3
IPv4 Unicast Reserved src 30543 dst 119
IPv4 Multicast Reserved src 2887 dst 0
IPv4 Multicast Src Spec src 1784 dst 28
IPv6 Unspecified src 2448 dst 2446
IPv6 LinkLocal src 93 dst 0
IPv6 Multicast Link Local src 0 dst 95

Figure 11: Focus on address. Statistics created by use of Argus: racount. Scan sequence during background network

environment.

6.5 Snort

We will in this section show the output from pre-processor: sfportscan.
When Snort detected our slow port scanning, we got output in log file:

/var/log/snort/sfportscan.log.

The following list shows an example of this output:

Time: 11/18/13—12:55:13.860208

event_ref: 0

192.168.1.200 — 192.168.1.102 (portscan) TCP Portscan
Priority Count: 9

Connection Count: 10

IP Count: 1

Scanner IP Range: 192.168.1.200:192.168.1.200
Port/Proto Count: 10

Port/Proto Range: 24:1022

Time: 11/18/13—-13:06:13.867026

event_ref: 0

192.168.1.200 — 192.168.1.102 (portscan) TCP Portscan
Priority Count: 9

Connection Count: 10

IP Count: 1

Scanner IP Range: 192.168.1.200:192.168.1.200
Port/Proto Count: 10

Port/Proto Range: 17:880

Time: 11/18/13—13:17:13.873567

event_ref: 0

192.168.1.200 — 192.168.1.102 (portscan) TCP Portscan
Priority Count: 9

Connection Count: 10

IP Count: 1

Scanner IP Range: 192.168.1.200:192.168.1.200
Port/Proto Count: 10

Port/Proto Range: 3:1000

49

Slow Port Scanning with Bro

6.6 Results

We will in this section present our test results. We managed to get 10 rounds for each scan our two cases;
(1) isolated and (ii) background traffic injected.

We manage to improve Bro slow port scan detection capabilities by our modified scan.bro script. The
results are shown in Table 18.

Attack Bro - Original Script | Bro - Modified Script | Snort

ACK Scan Not Detected Not Detected Not Detected
SYN Scan Detected Detected Detected
TCP Connect Scan | Detected Detected Detected
NULL Scan Not Detected Not Detected Not Detected
FIN Scan Not Detected Detected Not Detected
XMAS Scan Not Detected Detected Not Detected

Table 18: Test results. Isolated and Background Traffic environment (identical results).

When using the original scan.bro script we managed to detect two of six scans. The TPR (True
Positive Rate (often called the detection rate)):

_ TP __ 2 _ 1 __
TPR= 7pipy =5 =3 = 0:33
When using our modified scan.bro script we managed to detect four of six scans. The TPR:

_ _ TP __ 4 _ 2 _

50

W N =

NN A

10

11

12

Slow Port Scanning with Bro

7 Discussion

"If you really struggle with a scientific problem: try talk to yourself!
This will most likely scare you, but also give you some new ideas."
— Roger Larsen

In this chapter we discuss our master thesis. We need to be our own critical thinker and ask all the
questions that begins with "Why".

We managed to improve the slow port scan detection capabilities in Bro by modifying scan. bro policy
script.

7.1 Test Lab Experience
In this section we discuss our test lab experience.

7.1.1 Bro Log without IP address

During background traffic injection, Bro produced log that misses an IP address. An example of this log
output is listed here:

#separator \x09
#set_separator N
#empty_field (empty)
#unset_field —

#path notice

#open 2013—11-24—09—-58—04

#fields ts uid id.orig_h id.orig_p id.resp_h id.resp_p
proto note msg sub src dst p n peer_descr
actions policy_items suppress_for dropperemote_location.country_code
remote_location.region remote_location.city remote_location. latitude
remote_location.longitude metric_index . host metric_index . str
metric_index .network
#types time string addr port addr port enum enum string string
addr addr port count string table [enum] table [count] interval
bool string string string doubledouble addr string subnet
1385283484.875938 — — — — — tcp Scan:: PortScan
has scanned 20 ports of :: — B — 179 20 bro
Notice : : ACTION_LOG 6 3600.000000 —
1385284075.140645 — — — — — tep Scan:: PortScan
has scanned 30 ports of :: — B — 60909 30 bro
Notice : : ACTION_LOG 6 3600.000000 —
1385284200.638245 — — — — — — Scan::
PortScanSummary :: scanned a total of 41 ports — N — — 41
bro Notice : : ACTION_LOG 6 3600.000000 F — —

#close 2013—11-24—10—10—-00

This output came for all tests were we injected background traffic, all six scans and both original and
modified scan.bro scripts. An output were our normal scan detection log is listed in Appendix C.8.

We used many hours in search for an answer to this empty log, without getting it. We found no spe-
cific tracks in the complete log file conn.log. There percentage of IP protocol (IPv6 [133]) is very low
in CAIDA datasetl7. There are 11233 IPv4 packets out of total 34455742 packets both IPv4 & IPv6.).
Calculated in % we get the number: 0,03%. Bro supports IPv6, but the log output did not reveal any use of
IPv6.

51

—_

Slow Port Scanning with Bro

In retrospect we should perhaps had disabled IPv6 support on all ethernet interfaces in our lab. Another
solution to this log output may also be error(s) in the scan.bro script and/or Bro software.

7.1.2 Error messages from Bro

We found no errors and only one warning message during our tests. This output came for all tests were we
injected background traffic, all six scans and both original and modified scan.bro scripts. The warning is
listed below:

1385332500.489219 warning in /usr/local/bro/share/bro/base/misc/find—checksum—offloading
.bro, line 42: Your interface is likely receiving invalid TCP checksums, most likely
from NIC checksum offloading.

This Bro warning message tells us that one or more TCP packets had "most likely" invalid TCP checksums.
We prepared our dataset for our network environment by using the tool tcprewrite (see Section 6.4). Was
this preparing process enough? Should we used other tools to double check our results? We have strong
references to tcpreplay package (were tcprewrite is included) [118-120]. In retrospect, we should
perhaps have used an other injecting tool (for reference) during our troubleshooting process.

7.1.3 Isolated network with Internet access

We defined our network environment as isolated during the experimental tests (when we did not inject
background traffic). We do not completely managed to reach the level of "isolation" with a router connected
to Internet in the same network in addition to other wireless clients.

Statistics in Chapter 6.4.3 shows the level of traffic in per definition "isolated". However, the amount of
this noise is quite small. We did not experience that our isolated network environment was challenged by
more than this amount of traffic we see in the graphs mentioned.

In retrospect, we should perhaps have considered a more isolated network that in larger degree supports
the term "isolated". This completely isolated network should perhaps have been without both Internet
access and other clients.

7.2 Evaluating our results

In this section we discuss our modifications of scan.bro.

7.2.1 We managed to detect two new scans with our improved script

We managed to add detection of both FIN and XMAS scan in our modification shown in Chapter 5.7. We
compare in our modification FIN flag against the endpoint response (TCP_RESET). XMAS scan is using
FIN flag in the TCP packet (in addition to other flags). We strongly believe that this is the reason for our
improved slow port scan detection capabilities in Bro.

7.2.2 Why did we not manage to detect an ACK Scan

We did not manage to detect an ACK Scan during our experimental tests. We had initially some script code
that we were sure could detect ACK scan, but it did not. This puzzled us a bit. Our explanation to this may
be that this TCP flag is a very commonly used flag.

Table 3 in Section 2.1.2 show an normal TCP session with respect to TCP flag usage. We see the ACK
flag is most frequent except PSH (push, which tells the receiver that it contains data/payload).

Appendix A show the so-called "TCP State Machine". This is an illustration that show all possible states
in TCP communication with the respect to TCP flag.

We have in Table 19 gathered and ranked our six scan attacks according to NMAP documentation
[8,51]. Bear in mind that this ranking is only in context with TCP port scanning. NMAP community have
implemented many scans that has their uniqueness.

52

Slow Port Scanning with Bro

Efficiency | Scan NMAP Comment
1 SYN high quality answer
2 TCP Connect high quality answer, may give logs on victim server
3 FIN, NULL, XMAS | medium quality answer (struggle to detect if ports are open or
closed)
4 ACK low quality answer (will never detect if ports are open or closed)

Table 19: Our different scans and their efficiency according to NMAP [8].

We conclude our lack of detecting ACK scans is because of this flag setting is very commonly seen.

7.2.3 Why did we not manage to detect a NULL Scan

We did not manage to detect a NULL scan in our modified script. We modified the scan.bro script and
compare the history variable for "i" (or "I", opposite direction checked) with the following code:

1| if ((c$orig$state == TCP_CLOSED || c$resp$state == TCP_CLOSED) && ("i" in c$history
Il "I" in c$history))

Bro documentation explain an "i" in history like this:

i - inconsistent packet (e.g. SYN+RST bits both set)
We could not find better/other explanation to this expression "inconsistent packet" in Bro documentation.
In our definition of "inconsistent packet" would both NULL & XMAS scan be detected using this script
code. However, there may be underlying definitions in Bro software why we did not manage to detect both
these scans. There may also be error(s) in Bro software and/or TCP analyzer script.

7.2.4 Other Comments to our Results
Our modified scan.bro is counting 893 lines (the original is 621 lines). We have decided not to remove
our extra comments and notices used during analyzing phase. These lines may come handy when further
analysis of this policy script take place.

We have in this thesis managed to improve the slow port scan detection capabilities in Bro. The old
scan.bro script was most likely outdated. We strongly believe that Bro have added more functionality
since the last version of scan.bro script was finalized ((3 Nov 2011).

7.3 Snort Results

We will in this section discuss our results in Snort IDS.

7.3.1 Limited slow port scan detection in Snort
We have used the open source IDS software Snort as our reference in our research. Our initial scan tests
with increasing scan intervals against Snort gave us the slow port scan limit: 65 sec. This was by using
Snort port scan detection preprocessor sfportscan configured as found in 6.5.

The same test with Bro indicated that this is only a matter of memory (resources). We tested at maximum
300 seconds scan interval and the scan was detected.

7.3.2 Slow port scan detection capabilities in Snort
We manage to detect the SYN and TCP Connect scan by Snort during all our experimental test. This was
both in isolated and background traffic environment. The sfportscan configuration was tuned to level
high, the most sensitive according to Snort documentation:

1| (sense_level { high })

53

Slow Port Scanning with Bro

In retrospect, we may have included Snort rules in our configuration to better detect slow port scanning.
However, we did not find documentation that stated this. The preprocessor sfportscan is the port scan
detection mechanism in Snort.

54

Slow Port Scanning with Bro

8 Conclusion

"I am extraordinarily patient,
provided I get my own way in the end."
— Margaret Thatcher

This thesis has shown that by modifying policy script scan.bro, we managed to improve slow port
scan detection capabilities in Bro.

We introduce and explain the challenge regarding slow port scanning in Chapter 1. We strongly believe
that this chapter explains the importance of detecting slow port scanning. Bro IDS is one of the systems
that are improving our resistance to these attacks. We introduced our research questions in Chapter 1. Our
Main Research Question (RQ1):

"Can we improve the detection rate regarding slow port scanning in Bro?
The main research question is answered by our sub-questions:

RQ1.1 Will we be able to improve the slow port scan detect rate in Bro?
RQ1.2 What is the slow port scan detection rate in Bro?

In Chapter 2 we describe some important technical details to better understand our thesis. We describe
TCP/IP, port scanning, general IDS systems (including Snort) and especially Bro IDS.

In Chapter 3 we describe and briefly discuss previous work closely related to our topics. We did not find
any previous research regarding Bro and slow port scanning. Malmedal does our most relevant research in
his thesis from 2005 [92]. He writes about slow port scanning and Netflows and is using Snort IDS.

In Chapter 4 we describe our research methods in details. We start this chapter focusing on reliabil-
ity and validity. We describes and discuss our decisions in details regarding; (i) strategy for improving
scan.bro, (ii) out experimental test lab, (iii) our choices during tests, (iv) our tools needed and (v) adding
background traffic by using a dataset. This is an important chapter that makes us prepared to perform our
tests in proper scientific manner.

Chapter 5 is our core work in this thesis. We describe more Bro details and our efforts in improving
slow port scan detection capabilities in Bro. We show here how we modified the scan.bro script.

In Chapter 6 we describe our experimental tests by applying our methods and improvements described
in Chapter 4 and Chapter 5 respectively. We describe our test lab in details, the initial startup phase getting
Bro up and running and how we simulated a scan attack using NMAP. We further show how we prepared
CAIDA dataset for our needs, and show some statistics of our test experiment using Argus. We describe
log output from Snort’s sfportscan and finally we present our test results.

In chapter 7 we discuss our results. We first discuss some practical experiences in our test lab before we
discussing our results in details. We are puzzled regarding Bro and connection history status "i" (inconsis-
tency TCP packet), this was not properly documented on Bro Web.

Finally we conclude our findings and address our research questions in this chapter and present our
ideas for future work in Chapter 9.

Addressing our Research Questions
RQ1.1 — Will we be able to improve the slow port scan detect rate in Bro?

Yes, we managed to improve Bro slow port scan detection capabilities and thus the detection rate.

55

Slow Port Scanning with Bro

RQ1.2 — What is the slow port scan detection rate in Bro?

We managed to improve Bro slow port scan detection capabilities for our six scan attacks with: 66%.

56

Slow Port Scanning with Bro

9 Further Work

“You are forgiven for your happiness and your successes
only if you generously consent to share them.”
— Albert Camus

This thesis has shown that by modifying Bro policy script scan. bro, we managed to improve the slow
port scan detection capabilities. Bro IDS is an interesting piece of software that most likely will be a source
for many research papers (and perhaps thesis) in near future.

Perform a new slow port scan test with latest version of Bro

We would like to perform the same test by using latest version of Bro. The stable version of Bro 2.2 was
finally released 7 Nov 2013.

Develop a Black Box solution based on Bro

We would like to create a "black box" to fulfill the needs The European Parliament Data Retention Directive
that the Norwegian government most likely will apply in Norway [134]. We think Bro will be a brilliant
software in this matter.

57

Slow Port Scanning with Bro

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

[12]

(13]

[14]

[15]

Bibliography

Austevoll Kraftlag SA. Om LYSGLIMT.
http://www.lysglimt.net. Visited 2013-05-13.

Shimeall, T., Faber, S., DeShon, M., & Kompanek, A. September 2010. SiLK - Analysis Handbook.
http://tools.netsa.cert.org/silk/analysis-handbook.pdf. Visited: 2013-11-07.

Dale R. "Zai" Fox, Ph.D. Syn attacks.
http://zaielacademic.net/security/syn_attacks.htm. Visited: 2013-10-18.

Petrovi¢, S. IMT-4741-Intrusion Detection and Prevention. Class Lectures. Presentations. Gjgvik
University College, 2010.

The Bro Project. Introduction.
http://www.bro.org/sphinx/intro/index.html. Visited: 2013-10-23.

Marchette, D. J. Sep 2011. Computer Intrusion Detection and Network Monitoring: A Statistical
Viewpoint (Information Science and Statistics). Springer.

CAIDA. The CAIDA UCSD Anonymized Internet Traces 2013 - 20130815-134900.
http://www.caida.org/data/passive/passive_2013_dataset.xml.

Lyon, G. F. Nmap - free security scanner for network exploration & security audits.
http://nmap.org,. Visited: 2013-10-19.

Mell, P. & Grance, T. The nist definition of cloud computing. Technical Report 800-145, National
Institute of Standards and Technology (NIST), Gaithersburg, MD, September 2011.

Gerhards, R. March 2009. The Syslog Protocol. RFC 5424 (Proposed Standard).

The Bro Project. The Bro Network Security Monitor.
http://bro.org/. Visited 2013-05-13.

The Bro Project. Bro Research.
http://www.bro.org/research/index.html. Visited 2013-05-13.

Chandola, V., Eilertson, E., Ertoz, L., Simon, G., & Kumar, V. January 2007. MINDS: Architecture
& Design. In Data Warehousing and Data Mining Techniques for Cyber Security, number 31 in
Advances in Information Security, 83—107. Springer US.

Dabbagh, M., Ghandour, A., Fawaz, K., Hajj, W., & Hajj, H. December 2011. Slow port scanning
detection. In 2011 7th International Conference on Information Assurance and Security (IAS), 228
-233.

Barford, P. & Yegneswaran, V. 2007. An inside look at botnets. In Malware Detection, Christodor-
escu, M., Jha, S., Maughan, D., Song, D., & Wang, C., eds, volume 27 of Advances in Information
Security, 171-191. Springer US. http://dx.doi.org/10.1007/978-0-387-44599-1_8.

58

http://www.lysglimt.net
http://tools.netsa.cert.org/silk/analysis-handbook.pdf
http://zaielacademic.net/security/syn_attacks.htm
http://www.bro.org/sphinx/intro/index.html
http://www.caida.org/data/passive/passive_2013_dataset.xml
 http://nmap.org
http://bro.org/
http://www.bro.org/research/index.html

Slow Port Scanning with Bro

[16] Bonfiglio, D., Mellia, M., Meo, M., Rossi, D., & Tofanelli, P. August 2007. Revealing skype traffic:
when randomness plays with you. SIGCOMM Comput. Commun. Rev., 37(4), 37-48.

[17] Zeidanloo, H., Shooshtari, M., Amoli, P., Safari, M., & Zamani, M. 2010. A taxonomy of botnet
detection techniques. In Computer Science and Information Technology (ICCSIT), 2010 3rd IEEE
International Conference on, volume 2, 158 —162.

[18] Brownlee, N. 2012. One-way traffic monitoring with iatmon. In Passive and Active Measurement,
Taft, N. & Ricciato, F., eds, volume 7192 of Lecture Notes in Computer Science, 179—188. Springer
Berlin Heidelberg.

[19] Allman, M., Paxson, V., & Terrell, J. 2007. A brief history of scanning. In Proceedings of the
7th ACM SIGCOMM conference on Internet measurement, IMC 07, 77-82, New York, NY, USA.
ACM.

[20] Treurniet, J. 2011. A network activity classification schema and its application to scan detection.
Networking, IEEE/ACM Transactions on, 19(5), 1396-1404.

[21] Glatz, E. & Dimitropoulos, X. 2012. Classifying internet one-way traffic. In Proceedings of the
2012 ACM Conference on Internet Measurement Conference, IMC *12, 37-50, New York, NY, USA.
ACM.

[22] Pang, R., Yegneswaran, V., Barford, P., Paxson, V., & Peterson, L. 2004. Characteristics of in-
ternet background radiation. In Proceedings of the 4th ACM SIGCOMM Conference on Internet
Measurement, IMC *04, 27-40, New York, NY, USA. ACM.

[23] Bayer, U., Habibi, 1., Balzarotti, D., Kirda, E., & Kruegel, C. 2009. A view on current malware
behaviors. In USENIX workshop on large-scale exploits and emergent threats (LEET).

[24] Cerf, Vinton G. ICANN. About Vinton G Cerf.
http://www.icann.org/en/groups/board/cerf.htm, May 2013.

[25] Ribeiro, J. February 2007. Cerf: Internet is a reflection of society. Infoworld, Inc.
http://www.infoworld.com/d/

security-central/cerf-internet-reflection-society-625.

[26] Hyman, P. March 2013. Cybercrime: it’s serious, but exactly how serious? Commun. ACM, 56(3),
18-20.

[27] Clough, J. 2010. Principles of cybercrime. Cambridge University Press, Cambridge, UK.

[28] Symantec Corp. May 2013. 2013 Internet Security Threat Report, Volume 18.

http://www.symantec.com/security_response/publications/threatreport. jsp,.

[29] Verizon RISK Team. 2013. The 2013 Data Breach Investigations Report.
http://www.verizonenterprise.com/DBIR/2013/. Accessed: 2013-09-05.

[30] Paxson, V. 1999. Bro: a System for Detecting Network Intruders in Real-Time. Computer Networks,
31(23-24), 2435-2463.

[31] Open Source Initiative OSI. March 2010. The BSD License.
http://www.opensource.org/licenses/bsd-1license.php.

59

http://www.icann.org/en/groups/board/cerf.htm
http://www.infoworld.com/d/security-central/cerf-internet-reflection-society-625
http://www.infoworld.com/d/security-central/cerf-internet-reflection-society-625
http://www.symantec.com/security_response/publications/threatreport.jsp
http://www.verizonenterprise.com/DBIR/2013/
http://www.opensource.org/licenses/bsd-license.php

Slow Port Scanning with Bro

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

(40]

(41]

[42]

[43]

[44]

[45]

[40]

[47]

(48]

Cerf, V. & Kahn, R. 1974. A Protocol for Packet Network Intercommunication. /EEE Transactions
on Communications, 22(5), 637-648.

Postel, J. September 1981. Transmission Control Protocol. RFC 793 (INTERNET STANDARD).
Updated by RFCs 1122, 3168, 6093, 6528.

Alvestrand, H. October 2004. A Mission Statement for the IETF. RFC 3935 (Best Current Practice).

October 2004. About the IETF.
http://www.ietf.org/about/,.

Ramakrishnan, K., Floyd, S., & Black, D. September 2001. The Addition of Explicit Congestion
Notification (ECN) to IP. RFC 3168 (Proposed Standard). Updated by RFCs 4301, 6040.

Spring, N., Wetherall, D., & Ely, D. June 2003. Robust Explicit Congestion Notification (ECN)
Signaling with Nonces. RFC 3540 (Experimental).

Das, T. & Sivalingam, K. 2013. Tcp improvements for data center networks. In Communication
Systems and Networks (COMSNETS), 2013 Fifth International Conference on, 1-10.

Cotton, M., Eggert, L., Touch, J., Westerlund, M., & Cheshire, S. August 2011. Internet Assigned
Numbers Authority (IANA) Procedures for the Management of the Service Name and Transport
Protocol Port Number Registry. RFC 6335 (Best Current Practice).

TANA. nov 2013. Service Name and Transport Protocol Port Number Registry.
http://www.iana.org/assignments/service-names-port-numbers/

service-names-port-numbers.xhtml.

Messer, J. 2013. Secrets of Network Cartography: A Comprehensive Guide to nmap.
http://www.networkuptime.com/nmap/index.shtml.

Guang, C. april 2007. Tcp analysis based on flags.
http://www.nordu.net/development/2nd-cnnw/tcp-analysis-based-on-flags.pdf.
Visited: 2013-10-18.

Weaver, N., Sommer, R., & Paxson, V. 2009. Detecting forged tcp reset packets. In NDSS. Lawrence
Berkeley National Laboratory (LBNL), International Computer Science Institute (ICST).

Barnett, R. J. & Irwin, B. 2008. Towards a taxonomy of network scanning techniques. In Proceed-
ings of the 2008 annual research conference of the South African Institute of Computer Scientists
and Information Technologists on IT research in developing countries: riding the wave of technol-

ogy, SAICSIT ’08, 1-7, New York, NY, USA. ACM.
Larsen, R. Fast-flux Service Networks in botnet malware. Visited: 2013-10-18, November 2010.

Wolthusen, S. IMT 4651 Applied Information Security. Class Lectures. Presentations. Gjgvik Uni-
versity College, 2010.

Camarillo, G. & IAB. November 2009. Peer-to-Peer (P2P) Architecture: Definition, Taxonomies,
Examples and Applicability. RFC 5694 (Informational).

Yegneswaran, V., Barford, P., & Ullrich, J. June 2003. Internet intrusions: global characteristics and
prevalence. SIGMETRICS Perform. Eval. Rev., 31(1), 138-147.

60

 http://www.ietf.org/about/
http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
http://www.networkuptime.com/nmap/index.shtml
http://www.nordu.net/development/2nd-cnnw/tcp-analysis-based-on-flags.pdf

Slow Port Scanning with Bro

[49] Bhuyan, M. H., Bhattacharyya, D., & Kalita, J. 2011. Surveying port scans and their detection
methodologies. The Computer Journal, 54(10), 1565-1581.

[50] de Vivo, M., Carrasco, E., Isern, G., & de Vivo, G. O. April 1999. A review of port scanning
techniques. SIGCOMM Comput. Commun. Rev., 29(2), 41-48.

[51] Lyon, G. F. 2009. Nmap Network Scanning: The Official Nmap Project Guide to Network Discovery
and Security Scanning. Insecure, USA.

[52] Orebaugh, A. & Pinkard, B. 2011. Nmap in the Enterprise: Your Guide to Network Scanning.
Elsevier Science.

[53] Gadge, J. & Patil, A. 2008. Port scan detection. In Networks, 2008. ICON 2008. 16th IEEE
International Conference on, 1-6.

[54] Scarfone, K. & Mell, P. Guide to Intrusion Detection and Prevention Systems (IDPS). Technical
Report 800-94, National Institute of Standards and Technology (NIST), Gaithersburg, MD, februar
2007.

[55] November 2000. Testing intrusion detection systems: a critique of the 1998 and 1999 darpa intrusion
detection system evaluations as performed by lincoln laboratory. ACM Trans. Inf. Syst. Secur., 3(4),
262-294.

[56] Wang, X., Kordas, A., Hu, L., Gaedke, M., & Smith, D. 2013. Administrative evaluation of in-
trusion detection system. In Proceedings of the 2nd annual conference on Research in information
technology, RIIT *13, 47-52, New York, NY, USA. ACM.

[57] Antonatos, S., Anagnostakis, K. G., & Markatos, E. P. January 2004. Generating realistic workloads
for network intrusion detection systems. SIGSOFT Softw. Eng. Notes, 29(1), 207-215.

[58] Wilkison, M. Intrusion Detection FAQ: How to Evaluate Network Intrusion Detection Systems?
http://www.sans.org/security-resources/idfaq/eval_ids.php

. Visited: 2013-11-14.

[59] Fink, G., O’Donoghue, K. F., Chappell, B. L., & Turner, T. G. 2002. A metrics-based approach to
intrusion detection system evaluation for distributed real-time systems. In Proceedings of the 16th
International Parallel and Distributed Processing Symposium, IPDPS °02, 17—, Washington, DC,
USA. IEEE Computer Society.

[60] Alessandri, D. 2000. Using rule-based activity descriptions to evaluate intrusion-detection systems.
In Recent Advances in Intrusion Detection, Debar, H., Mé, L., & Wu, S., eds, volume 1907 of Lecture
Notes in Computer Science, 183—196. Springer Berlin Heidelberg.

[61] Srivastava, R. & Richhariya, V. 2013. Survey of Current Network Intrusion Detection Techniques.
Journal of Information Engineering and Applications, 3(6), 27-33.

[62] Kibirkstis, A. November 2009. Intrusion detection faq: What are the top selling ids/ips and what
differentiates them from each other?
http://www.sans.org/security-resources/idfaq/top-selling-ids-ips.php
. Visited: 2013-11-14.

[63] Sourcefire, Inc. 2013. About Snort.
URL http://www.snort.org/snort. Visited 2013-11-11.

61

http://www.sans.org/security-resources/idfaq/eval_ids.php
http://www.sans.org/security-resources/idfaq/top-selling-ids-ips.php
http://www.snort.org/snort

Slow Port Scanning with Bro

[64]

[65]

[66]

[67]

[68]

[69]

[70]

(71]

[72]

[73]

[74]

[75]

[76]

[77]

(78]

[79]

(80]

2013. About Suricata.
http://suricata-ids.org/. Visited: 2013-11-11.

Larsen, R. BRO - an Intrusion Detection System. Visited: 2013-10-18, September 2011.

Roesch, M. 1999. Snort - lightweight intrusion detection for networks. In Proceedings of the 13th
USENIX conference on System administration, LISA *99, 229-238, Berkeley, CA, USA. USENIX
Association.

Catania, C. A. & Garino, C. G. September 2012. Automatic network intrusion detection: Current
techniques and open issues. Comput. Electr. Eng., 38(5), 1062—-1072.

Meier, M., Schmerl, S., & Koenig, H. 2005. Improving the efficiency of misuse detection. In
Proceedings of the Second international conference on Detection of Intrusions and Malware, and
Vulnerability Assessment, DIMVA’05, 188-205, Berlin, Heidelberg. Springer-Verlag.

Chabchoub, Y., Fricker, C., & Robert, P. oct. 2012. Improving the detection of on-line vertical port
scan in ip traffic. In Risk and Security of Internet and Systems (CRiSIS), 2012 7th International
Conference on, 1 —6.

Koziol, J. 2003. Intrusion Detection with Snort. Sams.

Sourcefire, Inc. 2013. About Snort Preprocessors.
http://manual.snort.org/nodel7.html,. Visited 2013-11-26.

Paxson, V. 1998. Bro: A system for detecting network intruders in real-time. In Proceedings of the
7th Conference on USENIX Security Symposium - Volume 7, SSYM’98, 3-3, Berkeley, CA, USA.
USENIX Association.

Zhang, J. & Moore, A. May 2007. Traffic trace artifacts due to monitoring via port mirroring. In
End-to-End Monitoring Techniques and Services, 2007. E2EMON °07. Workshop on, 1 -8.

Risso, F. & Degioanni, L. 2001. An architecture for high performance network analysis. In Com-
puters and Communications, 2001. Proceedings. Sixth IEEE Symposium on, 686 —693.

The TCPdump Team. September 2013. Tcpdump/libpcap public repository.
http://www.tcpdump.org/index.html. Visited 2013-10-18.

Day, J. D. & Zimmermann, H. 1983. The OSI reference model. Proceedings of the IEEE, 71(12),
1334-1340.

The Bro Project. Bro Workshop 2011.
http://www.bro.org/bro-workshop-2011/.

The Bro Project. Bro base/event.bif.bro.
http://www.bro.org/sphinx/scripts/base/event.bif .html
. Visited 2013-09-19.

The Bro Project. BroControl.
http://www.bro.org/documentation/broctl.broctl.html
. Visited 2013-10-18.

The Bro Project. Customizing Bro’s Logging.
http://www.bro.org/sphinx/logging.html. Visited 2013-10-13.

62

http://suricata-ids.org/
 http://manual.snort.org/node17.html
http://www.tcpdump.org/index.html
http://www.bro.org/bro-workshop-2011/
http://www.bro.org/sphinx/scripts/base/event.bif.html
http://www.bro.org/documentation/broctl.broctl.html
http://www.bro.org/sphinx/logging.html

Slow Port Scanning with Bro

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

(90]

[91]

[92]

(93]

[94]

[95]

[96]

[97]

(98]

The Bro Project. Bro Downloads Archive.
http://bro.org/downloads/archive/. Visited 2013-10-13.

The Bro Project. All Bro Scrips. Visited: 2013-10-19.

Denning, D. 1987. An intrusion-detection model. Software Engineering, IEEE Transactions on,
SE-13(2), 222-232.

Anderson, D., Lunt, T., Javitz, H., Tamaru, A., & Valdes, A. 1995. Next-generation intrusion
detection expert system (nides): A summary.

The International Computer Science Institute (ICSI), University of California at Berkeley.
http://www.icsi.berkeley.edu/icsi/about,.

Sommer, R. & Paxson, V. 2010. Outside the closed world: On using machine learning for network
intrusion detection. In Proceedings of the 2010 IEEE Symposium on Security and Privacy, SP 10,
305-316, Washington, DC, USA. IEEE Computer Society.

Zhang, W., Teng, S., & Fu, X. 2008. Scan attack detection based on distributed cooperative model. In
12th International Conference on Computer Supported Cooperative Work in Design, 2008. CSCWD
2008, 743-748.

Ertoz, L., Eilertson, E., Lazarevic, A., Tan, P., Srivastava, J., Kumar, V., Dokas, P. 2004. The MINDS
- minnesota intrusion detection system. In Next Generation Data Mining. MIT Press.

Jung, J., Paxson, V., Berger, A. W., & Balakrishnan, H. May 2004. Fast Portscan Detection Using
Sequential Hypothesis Testing. In IEEE Symposium on Security and Privacy 2004, Oakland, CA.

Staniford, S., Hoagland, J. A., & McAlerney, J. M. 2002. Practical automated detection of stealthy
portscans. Journal of Computer Security, 10(1), 105-136.

Kim, J. & Lee, J.-H. july 2008. A slow port scan attack detection mechanism based on fuzzy logic
and a stepwise policy. In 2008 IET 4th International Conference on Intelligent Environments, 1-5.

Malmedal, B. 2005. Using netflows for slow portscan detection.

QoSient, LLC.. ARGUS - Auditing Network Activity.
http://qosient.com/argus/index.shtml. Visited: 2013-09-16.

The PostgreSQL Global Development Group. About PostgreSQL.
http://www.postgresql.org/about/,.

The PHP Group. About PHP.
http://usl.php.net/,.

JGraph Ltd. About JGraph.
http://www. jgraph.com/company.html,.

Paul D. Leedy, J. E. O. 2010. Practical Research: Planning and Design. Pearson Education Inc., 9
edition.
Volden, F. August 2010. Lecture notes. imt4421 - scientific methodology - 2010 - 5 ects.

http://english.hig.no/content/view/full/21608/language/eng-US.

63

http://bro.org/downloads/archive/
 http://www.icsi.berkeley.edu/icsi/about
http://qosient.com/argus/index.shtml
 http://www.postgresql.org/about/
 http://us1.php.net/
 http://www.jgraph.com/company.html
http://english.hig.no/content/view/full/21608/language/eng-US

Slow Port Scanning with Bro

[99] Bejtlich, R. Bro Change Log.
http://www.bro.org/download/CHANGES .bro.txt,. Visited: 2013-11-24.

[100] Lyon, G. F. Nmap network scanning: Download. Visited: 2013-10-19.

[101] Pang, R. Towards understanding application semantics of network traffic. PhD thesis, Princeton,
NIJ, USA, 2008. AAI3305770.

[102] The Bro Project. Bro Installation Prerequisites.
http://bro.org/sphinx/install/install.html#prerequisites,. Visited: 2013-11-13.

[103] Linux mint 13 xfce.
http://linuxmint.com/rel_maya_xfce.php,. Visited: 2013-11-17.

[104] Software in the Public Interest, Inc. Linux debian.
http://www.debian.org/intro/about. Visited: 2013-11-17.

[105] Xfce Development Team. Xfce Desktop Environment.
http://www.xfce.org/. Visited: 2013-11-19.

[106] About OpenSSH.
http://www.openssh.com/,. Visited: 2013-11-24.

[107] The Bro Project. September 2013. Installation and configuration.
http://www.bro.org/documentation/faq.html#installation-and-configuration.
Visited 2013-09-27.

[108] Braun, L., Didebulidze, A., Kammenhuber, N., & Carle, G. 2010. Comparing and improving cur-
rent packet capturing solutions based on commodity hardware. In Proceedings of the 10th ACM
SIGCOMM conference on Internet measurement, IMC 10, 206-217, New York, NY, USA. ACM.

[109] Burks, D. September 2013. When is full packet capture NOT full packet capture?
http://securityonion.blogspot.no/2011/10/when-is-full-packet-capture-not-full.
html. Visited: 2013-05-17.

[110] Currid, A. May 2004. TCP Offload to the Rescue. Queue, 2(3), 58-65.

[111] Gordon "Fyodor" Lyon. sep 2013. About Gordon "Fyodor" Lyon.
http://insecure.org/fyodor/. Last visited:2013-09-26.

[112] Pale, P. 2012. Nmap 6: Network Exploration and Security Auditing Cookbook. Packt open source.
Packt Publishing, Limited.

[113] Bejtlich, R. 2004. The Tao of network security monitoring: beyond intrusion detection. Addison-
Wesley.

[114] Pallis, G. A comparative study of in-band and out-of-band VOIP protocols in layer 3 and layer 2.5
environments. 2010.

[115] Lovdata. Lov om behandling av personopplysninger (personopplysningsloven) / Personal Data Act
2000-04.
http://www.lovdata.no/all/h1-20000414-031.html, September 2013.

64

 http://www.bro.org/download/CHANGES.bro.txt
 http://bro.org/sphinx/install/install.html#prerequisites
 http://linuxmint.com/rel_maya_xfce.php
 http://www.debian.org/intro/about
 http://www.xfce.org/
 http://www.openssh.com/
http://www.bro.org/documentation/faq.html#installation-and-configuration
http://securityonion.blogspot.no/2011/10/when-is-full-packet-capture-not-full.html
http://securityonion.blogspot.no/2011/10/when-is-full-packet-capture-not-full.html
http://insecure.org/fyodor//
http://www.lovdata.no/all/hl-20000414-031.html

Slow Port Scanning with Bro

[116] CAIDA. The Cooperative Association for Internet Data Analysis (CAIDA).
http://www.caida.org/home/about/.

[117] Srisuresh, P. & Egevang, K. January 2001. Traditional IP Network Address Translator (Traditional
NAT). RFC 3022 (Informational).

[118] Turner, A. & Bing, M. November 2013. Tcpreplay.

[119] Hillestad, O. I., Libak, B., & Perkis, A. 2005. Performance evaluation of multimedia services
over ip networks. In Multimedia and Expo, 2005. ICME 2005. IEEE International Conference on,
1464-1467.

[120] Khan, Z. A., Javaid, N., Arshad, M. H., Bibi, A., & Qasim, B. 2012. Performance evaluation of
widely used portknoking algorithms. In High Performance Computing and Communication 2012
IEEE 9th International Conference on Embedded Software and Systems (HPCC-ICESS), 2012 IEEE
14th International Conference on, 903-907.

[121] The Bro Project. September 2013. The Bro Script; SCAN.BRO.
https://github.com/bro/bro-scripts. Visited 2013-09-16.

[122] The Bro Project. Bro - Notice Framework.
http://www.bro.org/sphinx-git/frameworks/notice.html. Visited 2013-11-13.

[123] The Bro Project. Bro - Notice.log (base/frameworks/notice/main.bro).
http://www.bro.org/sphinx/scripts/base/frameworks/notice/main.html,. Visited:
2013-11-07.

[124] The Bro Project. Protocol Connection Tracking and Logging Events.
http://www.bro.org/sphinx-git/scripts/proto-analyzers.html#bro-tcp
. Visited 2013-05-13.

[125] The Bro Project. Protocol Connection Tracking and Logging - Conn::Info Script.
http://www.bro.org/sphinx/_downloads/mainl4.bro
. Visited 2013-09-19.

[126] The Bro Project. Bro - base/init-bare.bro.
http://www.bro.org/sphinx-git/scripts/base/init-bare.html. Visited: 2013-10-23.

[127] The Bro Project. base/protocols/conn/main.bro - Conn::info. Visited: 2013-10-23.

[128] The Bro Project. Local Site Policy.
http://www.bro.org/sphinx/scripts/site/local.html. Visited: 2013-10-18.

[129] The TCPdump Team. Pcap next generation dump file format.
http://www.tcpdump.org/pcap/pcap.html. Visited 2013-11-11.

[130] Turner, A. & Bing, M. November 2013. Tcprewrite.

[131] Botta, A., Dainotti, A., & Pescapé, A. October 2012. A tool for the generation of realistic network
workload for emerging networking scenarios. Comput. Netw., 56(15), 3531-3547.

[132] Deri, L., Netikos, Via, & La Figuretta, L. 2004. Improving passive packet capture:beyond device
polling. In In Proceedings of SANE 2004.

65

http://www.caida.org/home/about/
https://github.com/bro/bro-scripts
http://www.bro.org/sphinx-git/frameworks/notice.html
 http://www.bro.org/sphinx/scripts/base/frameworks/notice/main.html
http://www.bro.org/sphinx-git/scripts/proto-analyzers.html#bro-tcp
http://www.bro.org/sphinx/_downloads/main14.bro
http://www.bro.org/sphinx-git/scripts/base/init-bare.html
http://www.bro.org/sphinx/scripts/site/local.html
http://www.tcpdump.org/pcap/pcap.html

Slow Port Scanning with Bro

[133] Deering, S. & Hinden, R. December 1998. Internet Protocol, Version 6 (IPv6) Specification. RFC
2460 (Draft Standard). Updated by RFCs 5095, 5722, 5871, 6437, 6564, 6935, 6946.

[134] The Europe Parliament. March 2006. Directive 2006/24/ec of the european parliament and of the
council. Electronic. Visited: 2013-09-05.

66

Slow Port Scanning with Bro

A TCP State Machine

1
MO SERVICE , :
snd RST, delere TCB 1
» CLOSED i
- 1
. 'y 1
passive OPEN CLOSE 1
create TCB delete TCB :
CLOSE ;
delete TCB 1
1
rev RST rov RST i
® - X 1
> LISTEM + I
active OPEN :
1
rey STM SEND create TCB snd 5YM .
snd STN,ACK snd STN Y :
+ I 1
SYN RCVD | SYMN SENT :
-
snd 57, ACK 1
rev STN :
i
CLOSE :
snd FIN :
i
rev ACK rev SYN.ACK .
x snd ACK i
| ESTABLISHED |- 1
]
1
1
CLOSE rey FIN i
b snd FIN snd ACK. !
FINWAIT | | | CLOSEWAIT :
1
rev FIN :
rev ACK of FIN snd ACK _CLOSE i
X Y snd FIN 1
1
y CLOSING Y :
FINWWAIT 2 LAST ACK :
1
rev ACK of FIM rov ACK of FIN :
- =x delete TCE 1
rev FIN v 1
snd ACK, y .
»| TIMEDWAIT > CLOSED - - =!
Timeout=2*Max.Session Length
rev FINLACK delete TCB
snd ACK

Figure 12: TCP State Machine. Illustration is taken from [2]

67

0NN N AW =

o3 o o o 3 3 o o 3 o o o 3 3 o W 3R

Slow Port Scanning with Bro

B NMAP

B.1 NMAP - 100 most used ports below 1024

We show here the modified NMAP file nmap-services file. All lines defining ports over 1023 are not
included. The list below are sorted descending with third column (open-frequency) as source.

THIS FILE IS GENERATED AUTOMATICALLY FROM A MASTER — DO NOT EDIT.
EDIT /nmap—private—dev/nmap—services—all IN SVN INSTEAD.

Well known service port numbers —«— mode: fundamental; —«—

From the Nmap Security Scanner (http://nmap.org)

$Id: nmap—services 30210 2012—11—-07 21:34:43Z fyodor $
Derived from IANA data and our own research

This collection of service data is (C) 1996—2011 by Insecure .Com
LLC. It is distributed under the Nmap Open Source license as
provided in the COPYING file of the source distribution or at
http://nmap.org/data/COPYING . Note that this license

requires you to license your own work under a compatable open source
license. If you wish to embed Nmap technology into proprietary
software , we sell alternative licenses (contact sales@insecure.com).
Dozens of software vendors already license Nmap technology such as
host discovery, port scanning, OS detection, and version detection.
For more details , see http://nmap.org/book/man—legal. html

Fields in this file are: Service name, portnum/protocol, open—frequency, optional
comments

#

http 80/tcp 0.484143 # World Wide Web HTTP

telnet 23/tcp 0.221265

https 443/tcp 0.208669 # secure http (SSL)

ftp 21/tcp 0.197667 # File Transfer [Control]

ssh 22/tcp 0.182286 # Secure Shell Login

smtp 25/tcp 0.131314 # Simple Mail Transfer

pop3 110/tcp 0.077142 # PostOffice V.3

microsoft—ds 445/tcp 0.056944 # SMB directly over IP

netbios—ssn 139/tcp 0.050809 # NETBIOS Session Service

imap 143/tcp 0.050420 # Interim Mail Access Protocol v2

domain 53/tcp 0.048463 # Domain Name Server

msrpc 135/tcp 0.047798 # Microsoft RPC services

rpcbind 111/tcp 0.030034 # portmapper, rpcbind

pop3s 995/tcp 0.029921 # POP3 protocol over TLS/SSL

imaps 993/tcp 0.027199 # imap4 protocol over TLS/SSL

submission 587/tcp 0.019721

smux 199/tcp 0.015945 # SNMP Unix Multiplexer

smtps 465/tcp 0.013888 # smtp protocol over TLS/SSL (was ssmtp)

afp 548/tcp 0.012395 # AFP over TCP

ident 113/tcp 0.012370 # ident, tap, Authentication Service

hosts2—ns 81/tcp 0.012056 # HOSTS2 Name Server

shell 514/tcp 0.011078 # BSD rshd (8)

bgp 179/tcp 0.010538 # Border Gateway Protocol

rtsp 554/tcp 0.008104 # Real Time Stream Control Protocol

rsftp 26/tcp 0.007991 # RSFTP

printer 515/tcp 0.007214 # spooler (lpd)

Idp 646/tcp 0.006549 # Label Distribution

ipp 631/tcp 0.006160 # Internet Printing Protocol — for one implementation see
http://www. cups.org (Common UNIX Printing System)

kerberos—sec 88/tcp 0.006072 # Kerberos (v5)

finger 79/tcp 0.006022

68

106
107
108
109
110
111
112
113
114
115
116
117
118

Slow Port Scanning with Bro

pop3pw 106/tcp 0.005934 # Eudora compatible PW changer

login 513/tcp 0.005595 # BSD rlogind (8)

ftps 990/tcp 0.005570 # ftp protocol, control, over TLS/SSL

svrloc 427/tcp 0.005382 # Server Location

klogin 543/tcp 0.005282 # Kerberos (v4/v5)

kshell 544/tcp 0.005269 # krcmd Kerberos (v4/vS5)

news 144/tcp 0.004981 # NewS window system

echo 7/tcp 0.004855

ldap 389/tcp 0.004717 # Lightweight Directory Access Protocol

snpp 444/tcp 0.004466 # Simple Network Paging Protocol

daytime 13/tcp 0.003927

discard 9/tcp 0.003764 # sink null

rsync 873/tcp 0.003400 # Rsync server (http://rsync.samba.org)

nntp 119/tcp 0.003262 # Network News Transfer Protocol

time 37/tcp 0.003161 # timserver

cadlock 1000/tcp 0.003149

xfer 82/tcp 0.002923 # XFER Utility

chargen 19/tcp 0.002559 # ttytst source Character Generator

unknown 255/tcp 0.002409

qotd 17/tcp 0.002346 # Quote of the Day

ccproxy—http 808/tcp 0.002296 # CCProxy HTTP/Gopher/FTP (over HTTP) proxy

newacct 100/tcp 0.002133 # [unauthorized use]

Idapssl 636/tcp 0.002083 # LDAP over SSL

tcpmux 1/tcp 0.001995 # TCP Port Service Multiplexer [rfc —1078]

apple—xsrvr—admin 625/tcp 0.001869 # Apple Mac Xserver admin

asip—webadmin 311/tcp 0.001857 # appleshare ip webadmin

http—mgmt 280/tcp 0.001844

unknown 254/tcp 0.001832

iss—realsecure 902/tcp 0.001468 # ISS RealSecure Sensor

qsc 787/tcp 0.001455

compressnet 3/tcp 0.001242 # Compression Process

http—rpc—epmap 593/tcp 0.001242 # HTTP RPC Ep Map

exp2 1022/tcp 0.001217 # RFC3692—style Experiment 2 (%) [RFC4727]

kpasswd5 464/tcp 0.001192 # Kerberos (v5)

retrospect 497/tcp 0.001179

priv—mail 24/tcp 0.001154 # any private mail system

timbuktu 407/tcp 0.001129

isakmp 500/tcp 0.001129

ftp—data 20/tcp 0.001079 # File Transfer [Default Data]

bgmp 264/tcp 0.001029

dsp 33/tcp 0.001016 # Display Support Protocol

garcon 999/tcp 0.000966

netvenuechat 1023/tcp 0.000953 # Nortel NetVenue Notification, Chat, Intercom

rsh—spx 222/tcp 0.000941 # Berkeley rshd with SPX auth

accessbuilder 888/tcp 0.000928 # or Audio CD Database

snews 563/tcp 0.000916

telnets 992/tcp 0.000903 # telnet protocol over TLS/SSL

exec 512/tcp 0.000841 # BSD rexecd (8)

nameserver 42/tcp 0.000803 # Host Name Server

snmp 161/tcp 0.000790

odmr 366/tcp 0.000715

mit—ml—dev 85/tcp 0.000690 # MIT ML Device

windows—icfw 1002/tcp 0.000690 # Windows Internet Connection Firewall or Internet
Locator Server for NetMeeting.

tacacs 49/tcp 0.000665 # Login Host Protocol (TACACS)

dnsix 90/tcp 0.000652 # DNSIX Securit Attribute Token Map

unknown 340/tcp 0.000627

cmip—man 163/tcp 0.000590 # CMIP/TCP Manager

iso—tp0 146/tcp 0.000577

rrp 648/tcp 0.000577 # Registry Registrar Protocol (RRP)

samba—swat 901/tcp 0.000552 # Samba SWAT tool. Also wused by ISS RealSecure.

mit—ml—dev 83/tcp 0.000539 # MIT ML Device

unknown 30/tcp 0.000527

apex—mesh 912/tcp 0.000527 # APEX relay—relay service

unknown 6/tcp 0.000502

uucp—rlogin 541/tcp 0.000489

unknown 4/tcp 0.000477

69

Slow Port Scanning with Bro

119| unknown 306/tcp 0.000464

120| unknown 880/tcp 0.000464

121| omginitialrefs 900/tcp 0.000452 # OMG Initial Refs

1221 914c—g 211/tcp 0.000427 # Texas Instruments 914C/G Terminal

70

~N NN R W=

\O o0

11
12

13
14

16

18

19

20

2

—_

22

23

24

25

26

27

28

29

30

3

—

32

33

34

35

Slow Port Scanning with Bro

B.2 NMAP - Sample output, SYN Scan

We used the following command (the dollar sign ($) represents the command prompt):

$nmap —dns—servers 94.143.64.11 —sS —top—ports 100 —P0 —TO —scan—delay 60s —max—scan
—delay 61s 192.168.1.102 —packet—trace

Starting Nmap 6.25 (http://nmap.org) at 2013—11—19 09:25 CET

SENT (60.1111s) ARP who—has 192.168.1.102 tell 192.168.1.200

RCVD (60.1114s) ARP reply 192.168.1.102 is—at 00:23:5A:62:1B:35

NSOCK (60.1130s) nsi_new (IOD #1)

NSOCK (60.1130s) UDP connection requested to 95.143.64.11:53 (IOD #1) EID 8

NSOCK (60.1130s) Read request from IOD #1 [95.143.64.11:53] (timeout: —Ims) EID 18

NSOCK (60.1130s) Write request for 44 bytes to IOD #1 EID 27 [95.143.64.11:53]:
e 102.1.168.192.in—addr.arpa.....

NSOCK (60.1130s) Callback: CONNECT SUCCESS for EID 8 [95.143.64.11:53]

NSOCK (60.1130s) Callback: WRITE SUCCESS for EID 27 [95.143.64.11:53]

NSOCK (64.1150s) Write request for 44 bytes to IOD #1 EID 35 [95.143.64.11:53]:
e 102.1.168.192.in—addr.arpa.....

NSOCK (64.1150s) Callback: WRITE SUCCESS for EID 35 [95.143.64.11:53]

NSOCK (68.1170s) Write request for 44 bytes to IOD #1 EID 43 [95.143.64.11:53]:
e 102.1.168.192.in—addr.arpa.....

NSOCK (68.1170s) Callback: WRITE SUCCESS for EID 43 [95.143.64.11:53]

NSOCK (73.1180s) nsi_delete (IOD #1)

NSOCK (73.1180s) msevent_cancel on event #18 (type READ)

SENT (133.2189s) TCP 192.168.1.200:42392 > 192.168.1.102:110 S tt1=57 id=58115 iplen=44
seq=4148668469 win=1024 <mss 1460>

RCVD (133.2191s) TCP 192.168.1.102:110 > 192.168.1.200:42392 RA ttl=64 id=0 iplen=40
seq=0 win=0

SENT (193.3190s) TCP 192.168.1.200:42392 > 192.168.1.102:23 S ttl=52 id=43087 iplen=44
seq=4148668469 win=1024 <mss 1460>

RCVD (193.3194s) TCP 192.168.1.102:23 > 192.168.1.200:42392 RA tt1=64 id=0 iplen=40 seq
=0 win=0

SENT (253.4191s) TCP 192.168.1.200:42392 > 192.168.1.102:995 S tt1=49 id=56741 iplen=44
seq=4148668469 win=1024 <mss 1460>

RCVD (253.4195s) TCP 192.168.1.102:995 > 192.168.1.200:42392 RA ttl=64 id=0 iplen=40
seq=0 win=0

SENT (313.5192s) TCP 192.168.1.200:42392 > 192.168.1.102:443 S tt1=45 id=39187 iplen=44
seq=4148668469 win=1024 <mss 1460>

RCVD (313.5196s) TCP 192.168.1.102:443 > 192.168.1.200:42392 RA ttl=64 id=0 iplen=40
seq=0 win=0

SENT (373.6193s) TCP 192.168.1.200:42392 > 192.168.1.102:53 S tt1=58 id=54611 iplen=44
seq=4148668469 win=1024 <mss 1460>

RCVD (373.6196s) TCP 192.168.1.102:53 > 192.168.1.200:42392 RA ttl=64 id=0 iplen=40 seq
=0 win=0

SENT (433.7194s) TCP 192.168.1.200:42392 > 192.168.1.102:199 S tt1=58 id=48291 iplen=44
seq=4148668469 win=1024 <mss 1460>

RCVD (433.7197s) TCP 192.168.1.102:199 > 192.168.1.200:42392 RA ttl=64 id=0 iplen=40
seq=0 win=0

SENT (493.8176s) TCP 192.168.1.200:42392 > 192.168.1.102:22 S tt1=48 id=21024 iplen=44
seq=4148668469 win=1024 <mss 1460>

RCVD (493.8179s) TCP 192.168.1.102:22 > 192.168.1.200:42392 SA ttl=64 id=0 iplen=44 seq
=3912834382 win=14600 <mss 1460>

SENT (553.9177s) TCP 192.168.1.200:42392 > 192.168.1.102:993 S tt1=49 id=40736 iplen=44
seq=4148668469 win=1024 <mss 1460>

RCVD (553.9179s) TCP 192.168.1.102:993 > 192.168.1.200:42392 RA ttl=64 id=0 iplen=40
seq=0 win=0

SENT (614.0178s) TCP 192.168.1.200:42392 > 192.168.1.102:445 S tt1=59 id=63215 iplen=44
seq=4148668469 win=1024 <mss 1460>

RCVD (614.0180s) TCP 192.168.1.102:445 > 192.168.1.200:42392 RA ttl=64 id=0 iplen=40
seq=0 win=0

SENT (674.1179s) TCP 192.168.1.200:42392 > 192.168.1.102:587 S ttl=41 id=56201 iplen=44
seq=4148668469 win=1024 <mss 1460>

RCVD (674.1182s) TCP 192.168.1.102:587 > 192.168.1.200:42392 RA ttl=64 id=0 iplen=40
seq=0 win=0

SENT (734.2180s) TCP 192.168.1.200:42403 > 192.168.1.102:110 S tt1=50 id=36408 iplen=44
seq=4131891509 win=1024 <mss 1460>

71

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

Slow Port Scanning with Bro

RCVD (734.2184s) TCP 192.168.1.102:110 > 192.168.1.200:42403 RA ttl=64 id=0 iplen=40
seq=0 win=0
SENT (794.3181s) TCP 192.168.1.200:42392 > 192.168.1.102:143 S ttl=45 id=25647 iplen=44
seq=4148668469 win=1024 <mss 1460>
RCVD (794.3184s) TCP 192.168.1.102:143 > 192.168.1.200:42392 RA ttl1=64 id=0 iplen=40
seq=0 win=0
SENT (854.4182s) TCP 192.168.1.200:42392 > 192.168.1.102:135 S tt1=54 id=7395 iplen=44
seq=4148668469 win=1024 <mss 1460>
RCVD (854.4185s) TCP 192.168.1.102:135 > 192.168.1.200:42392 RA tt1=64 id=0 iplen=40
seq=0 win=0
SENT (914.5182s) TCP 192.168.1.200:42392 > 192.168.1.102:111 S tt1=38 id=10926 iplen=44
seq=4148668469 win=1024 <mss 1460>
RCVD (914.5185s) TCP 192.168.1.102:111 > 192.168.1.200:42392 RA ttl=64 id=0 iplen=40
seq=0 win=0
SENT (974.6183s) TCP 192.168.1.200:42392 > 192.168.1.102:21 S tt1=57 id=16525 iplen=44
seq=4148668469 win=1024 <mss 1460>
RCVD (974.6186s) TCP 192.168.1.102:21 > 192.168.1.200:42392 RA ttl=64 id=0 iplen=40 seq
=0 win=0
SENT (1034.7185s) TCP 192.168.1.200:42392 > 192.168.1.102:139 S ttl=54 id=18237 iplen=44
seq=4148668469 win=1024 <mss 1460>
RCVD (1034.7188s) TCP 192.168.1.102:139 > 192.168.1.200:42392 RA ttl=64 id=0 iplen=40
seq=0 win=0
SENT (1094.8186s) TCP 192.168.1.200:42392 > 192.168.1.102:80 S tt1=56 id=11017 iplen=44
seq=4148668469 win=1024 <mss 1460>
RCVD (1094.8188s) TCP 192.168.1.102:80 > 192.168.1.200:42392 RA tt1=64 id=0 iplen=40
seq=0 win=0
SENT (1154.9187s) TCP 192.168.1.200:42392 > 192.168.1.102:113 S tt1=52 id=19553 iplen=44
seq=4148668469 win=1024 <mss 1460>
RCVD (1154.9189s) TCP 192.168.1.102:113 > 192.168.1.200:42392 RA ttl1=64 id=0 iplen=40
seq=0 win=0
SENT (1215.0188s) TCP 192.168.1.200:42392 > 192.168.1.102:25 S ttl=52 id=53356 iplen=44
seq=4148668469 win=1024 <mss 1460>
RCVD (1215.0190s) TCP 192.168.1.102:25 > 192.168.1.200:42392 RA ttl=64 id=0 iplen=40
seq=0 win=0
SENT (1275.1189s) TCP 192.168.1.200:42392 > 192.168.1.102:554 S tt1=58 id=12992 iplen=44
seq=4148668469 win=1024 <mss 1460>
RCVD (1275.1191s) TCP 192.168.1.102:554 > 192.168.1.200:42392 RA ttl1=64 id=0 iplen=40
seq=0 win=0
SENT (1335.2190s) TCP 192.168.1.200:42392 > 192.168.1.102:444 S tt1=50 id=11616 iplen=44
seq=4148668469 win=1024 <mss 1460>
RCVD (1335.2192s) TCP 192.168.1.102:444 > 192.168.1.200:42392 RA tt1=64 id=0 iplen=40
seq=0 win=0
SENT (1395.2910s) TCP 192.168.1.200:42404 > 192.168.1.102:110 S tt1=59 id=36192 iplen=44
seq=4115114549 win=1024 <mss 1460>
RCVD (1395.2913s) TCP 192.168.1.102:110 > 192.168.1.200:42404 RA ttl=64 id=0 iplen=40
seq=0 win=0
SENT (1455.3911s) TCP 192.168.1.200:42392 > 192.168.1.102:311 S tt1=58 id=54338 iplen=44
seq=4148668469 win=1024 <mss 1460>
RCVD (1455.3915s) TCP 192.168.1.102:311 > 192.168.1.200:42392 RA ttl=64 id=0 iplen=40
seq=0 win=0
SENT (1515.4912s) TCP 192.168.1.200:42392 > 192.168.1.102:83 S tt1=48 id=64467 iplen=44
seq=4148668469 win=1024 <mss 1460>
RCVD (1515.4917s) TCP 192.168.1.102:83 > 192.168.1.200:42392 RA ttl1=64 id=0 iplen=40
seq=0 win=0
SENT (1575.5913s) TCP 192.168.1.200:42392 > 192.168.1.102:161 S tt1=53 id=31053 iplen=44
seq=4148668469 win=1024 <mss 1460>
RCVD (1575.5916s) TCP 192.168.1.102:161 > 192.168.1.200:42392 RA tt1=64 id=0 iplen=40
seq=0 win=0
SENT (1635.6914s) TCP 192.168.1.200:42392 > 192.168.1.102:3 S tt1=42 id=36322 iplen=44
seq=4148668469 win=1024 <mss 1460>
RCVD (1635.6917s) TCP 192.168.1.102:3 > 192.168.1.200:42392 RA ttl=64 id=0 iplen=40 seq
=0 win=0
SENT (1695.7915s) TCP 192.168.1.200:42392 > 192.168.1.102:1002 S ttl=46 id=56268 iplen
=44 seq=4148668469 win=1024 <mss 1460>
RCVD (1695.7919s) TCP 192.168.1.102:1002 > 192.168.1.200:42392 RA ttl=64 id=0 iplen=40
seq=0 win=0

72

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

Slow Port Scanning with Bro

SENT (1755.8916s) TCP 192.168.1.200:42392 > 192.168.1.102:512 S tt1=38 id=36946 iplen=44
seq=4148668469 win=1024 <mss 1460>
RCVD (1755.8918s) TCP 192.168.1.102:512 > 192.168.1.200:42392 RA ttl=64 id=0 iplen=40
seq=0 win=0
SENT (1815.9917s) TCP 192.168.1.200:42392 > 192.168.1.102:24 S tt1=49 id=18134 iplen=44
seq=4148668469 win=1024 <mss 1460>
RCVD (1815.9919s) TCP 192.168.1.102:24 > 192.168.1.200:42392 RA ttl=64 id=0 iplen=40
seq=0 win=0
SENT (1876.0918s) TCP 192.168.1.200:42392 > 192.168.1.102:407 S tt1=39 id=33167 iplen=44
seq=4148668469 win=1024 <mss 1460>
RCVD (1876.0920s) TCP 192.168.1.102:407 > 192.168.1.200:42392 RA ttl=64 id=0 iplen=40
seq=0 win=0
SENT (1936.1919s) TCP 192.168.1.200:42392 > 192.168.1.102:625 S tt1=48 id=31324 iplen=44
seq=4148668469 win=1024 <mss 1460>
RCVD (1936.1921s) TCP 192.168.1.102:625 > 192.168.1.200:42392 RA ttl=64 id=0 iplen=40
seq=0 win=0
SENT (1996.2920s) TCP 192.168.1.200:42392 > 192.168.1.102:88 S ttl=54 id=10998 iplen=44
seq=4148668469 win=1024 <mss 1460>
RCVD (1996.2922s) TCP 192.168.1.102:88 > 192.168.1.200:42392 RA ttl=64 id=0 iplen=40
seq=0 win=0
SENT (2056.3921s) TCP 192.168.1.200:42405 > 192.168.1.102:110 S tt1=58 id=63205 iplen=44
seq=4098337589 win=1024 <mss 1460>
RCVD (2056.3923s) TCP 192.168.1.102:110 > 192.168.1.200:42405 RA ttl1=64 id=0 iplen=40
seq=0 win=0
SENT (2116.4922s) TCP 192.168.1.200:42392 > 192.168.1.102:79 S tt1=55 id=13380 iplen=44
seq=4148668469 win=1024 <mss 1460>
RCVD (2116.4927s) TCP 192.168.1.102:79 > 192.168.1.200:42392 RA ttl=64 id=0 iplen=40
seq=0 win=0
SENT (2176.5923s) TCP 192.168.1.200:42392 > 192.168.1.102:9 S tt1=49 id=22035 iplen=44
seq=4148668469 win=1024 <mss 1460>
RCVD (2176.5925s) TCP 192.168.1.102:9 > 192.168.1.200:42392 RA ttl=64 id=0 iplen=40 seq
=0 win=0
SENT (2236.6924s) TCP 192.168.1.200:42392 > 192.168.1.102:514 S ttl=54 id=26554 iplen=44
seq=4148668469 win=1024 <mss 1460>
RCVD (2236.6926s) TCP 192.168.1.102:514 > 192.168.1.200:42392 RA ttl=64 id=0 iplen=40
seq=0 win=0
SENT (2296.7925s) TCP 192.168.1.200:42392 > 192.168.1.102:264 S tt1=52 id=58861 iplen=44
seq=4148668469 win=1024 <mss 1460>
RCVD (2296.7927s) TCP 192.168.1.102:264 > 192.168.1.200:42392 RA ttl=64 id=0 iplen=40
seq=0 win=0
SENT (2356.8816s) TCP 192.168.1.200:42392 > 192.168.1.102:163 S tt1=48 id=57669 iplen=44
seq=4148668469 win=1024 <mss 1460>
RCVD (2356.8818s) TCP 192.168.1.102:163 > 192.168.1.200:42392 RA ttl=64 id=0 iplen=40
seq=0 win=0
SENT (2416.9817s) TCP 192.168.1.200:42392 > 192.168.1.102:1022 S tt1=56 id=22550 iplen
=44 seq=4148668469 win=1024 <mss 1460>
RCVD (2416.9819s) TCP 192.168.1.102:1022 > 192.168.1.200:42392 RA ttl=64 id=0 iplen=40
seq=0 win=0
SENT (2477.0818s) TCP 192.168.1.200:42392 > 192.168.1.102:13 S tt1=50 id=42303 iplen=44
seq=4148668469 win=1024 <mss 1460>
RCVD (2477.0820s) TCP 192.168.1.102:13 > 192.168.1.200:42392 RA ttl=64 id=0 iplen=40
seq=0 win=0
SENT (2537.1819s) TCP 192.168.1.200:42392 > 192.168.1.102:1 S tt1=53 id=46234 iplen=44
s€q=4148668469 win=1024 <mss 1460>
RCVD (2537.1821s) TCP 192.168.1.102:1 > 192.168.1.200:42392 RA tt1=64 id=0 iplen=40 seq
=0 win=0
SENT (2597.2820s) TCP 192.168.1.200:42392 > 192.168.1.102:992 S tt1=58 id=2956 iplen=44
seq=4148668469 win=1024 <mss 1460>
RCVD (2597.2825s) TCP 192.168.1.102:992 > 192.168.1.200:42392 RA ttl=64 id=0 iplen=40
seq=0 win=0
SENT (2657.3821s) TCP 192.168.1.200:42392 > 192.168.1.102:500 S tt1=40 id=6402 iplen=44
seq=4148668469 win=1024 <mss 1460>
RCVD (2657.3826s) TCP 192.168.1.102:500 > 192.168.1.200:42392 RA ttl=64 id=0 iplen=40
seq=0 win=0
SENT (2717.4822s) TCP 192.168.1.200:42406 > 192.168.1.102:110 S tt1=47 id=3933 iplen=44
seq=4081560629 win=1024 <mss 1460>

73

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

Slow Port Scanning with Bro

RCVD (2717.4824s) TCP 192.168.1.102:110 > 192.168.1.200:42406 RA ttl=64 id=0 iplen=40
seq=0 win=0
SENT (2777.5823s) TCP 192.168.1.200:42392 > 192.168.1.102:515 S tt1=40 id=47943 iplen=44
seq=4148668469 win=1024 <mss 1460>
RCVD (2777.5825s) TCP 192.168.1.102:515 > 192.168.1.200:42392 RA ttl=64 id=0 iplen=40
seq=0 win=0
SENT (2837.6824s) TCP 192.168.1.200:42392 > 192.168.1.102:646 S ttl=45 id=21001 iplen=44
seq=4148668469 win=1024 <mss 1460>
RCVD (2837.6829s) TCP 192.168.1.102:646 > 192.168.1.200:42392 RA tt1=64 id=0 iplen=40
seq=0 win=0
SENT (2897.7825s) TCP 192.168.1.200:42392 > 192.168.1.102:33 S tt1=37 id=5374 iplen=44
seq=4148668469 win=1024 <mss 1460>
RCVD (2897.7827s) TCP 192.168.1.102:33 > 192.168.1.200:42392 RA ttl=64 id=0 iplen=40
seq=0 win=0
SENT (2957.8826s) TCP 192.168.1.200:42392 > 192.168.1.102:119 S tt1=48 id=16382 iplen=44
seq=4148668469 win=1024 <mss 1460>
RCVD (2957.8828s) TCP 192.168.1.102:119 > 192.168.1.200:42392 RA ttl=64 id=0 iplen=40
seq=0 win=0
SENT (3017.9827s) TCP 192.168.1.200:42392 > 192.168.1.102:211 S tt1=42 id=61034 iplen=44
seq=4148668469 win=1024 <mss 1460>
RCVD (3017.9829s) TCP 192.168.1.102:211 > 192.168.1.200:42392 RA ttl=64 id=0 iplen=40
seq=0 win=0
SENT (3078.0828s) TCP 192.168.1.200:42392 > 192.168.1.102:366 S ttl=44 id=12459 iplen=44
seq=4148668469 win=1024 <mss 1460>
RCVD (3078.0830s) TCP 192.168.1.102:366 > 192.168.1.200:42392 RA tt1=64 id=0 iplen=40
seq=0 win=0
SENT (3138.1829s) TCP 192.168.1.200:42392 > 192.168.1.102:880 S tt1=49 id=21945 iplen=44
seq=4148668469 win=1024 <mss 1460>
RCVD (3138.1831s) TCP 192.168.1.102:880 > 192.168.1.200:42392 RA ttl=64 id=0 iplen=40
seq=0 win=0
SENT (3198.2830s) TCP 192.168.1.200:42392 > 192.168.1.102:17 S tt1=48 id=2667 iplen=44
seq=4148668469 win=1024 <mss 1460>
RCVD (3198.2832s) TCP 192.168.1.102:17 > 192.168.1.200:42392 RA ttl=64 id=0 iplen=40
seq=0 win=0
SENT (3258.3831s) TCP 192.168.1.200:42392 > 192.168.1.102:636 S tt1=39 id=19972 iplen=44
seq=4148668469 win=1024 <mss 1460>
RCVD (3258.3833s) TCP 192.168.1.102:636 > 192.168.1.200:42392 RA ttl=64 id=0 iplen=40
seq=0 win=0
SENT (3318.4832s) TCP 192.168.1.200:42392 > 192.168.1.102:255 S ttl=54 id=37020 iplen=44
seq=4148668469 win=1024 <mss 1460>
RCVD (3318.4834s) TCP 192.168.1.102:255 > 192.168.1.200:42392 RA tt1=64 id=0 iplen=40
seq=0 win=0
SENT (3378.5835s) TCP 192.168.1.200:42407 > 192.168.1.102:110 S ttl=44 id=44436 iplen=44
seq=4064783669 win=1024 <mss 1460>
RCVD (3378.5837s) TCP 192.168.1.102:110 > 192.168.1.200:42407 RA ttl=64 id=0 iplen=40
seq=0 win=0
SENT (3438.6836s) TCP 192.168.1.200:42392 > 192.168.1.102:427 S tt1=37 id=1005 iplen=44
seq=4148668469 win=1024 <mss 1460>
RCVD (3438.6838s) TCP 192.168.1.102:427 > 192.168.1.200:42392 RA ttl=64 id=0 iplen=40
seq=0 win=0
SENT (3498.7837s) TCP 192.168.1.200:42392 > 192.168.1.102:7 S ttl=58 id=3379 iplen=44
seq=4148668469 win=1024 <mss 1460>
RCVD (3498.7839s) TCP 192.168.1.102:7 > 192.168.1.200:42392 RA tt1=64 id=0 iplen=40 seq
=0 win=0
SENT (3558.8835s) TCP 192.168.1.200:42392 > 192.168.1.102:464 S ttl=44 i1d=27922 iplen=44
seq=4148668469 win=1024 <mss 1460>
RCVD (3558.8840s) TCP 192.168.1.102:464 > 192.168.1.200:42392 RA ttl1=64 id=0 iplen=40
seq=0 win=0
SENT (3618.9839s) TCP 192.168.1.200:42392 > 192.168.1.102:20 S tt1=42 id=40335 iplen=44
seq=4148668469 win=1024 <mss 1460>
RCVD (3618.9841s) TCP 192.168.1.102:20 > 192.168.1.200:42392 RA ttl=64 id=0 iplen=40
seq=0 win=0
SENT (3679.0840s) TCP 192.168.1.200:42392 > 192.168.1.102:593 S ttl=41 id=31500 iplen=44
seq=4148668469 win=1024 <mss 1460>
RCVD (3679.0842s) TCP 192.168.1.102:593 > 192.168.1.200:42392 RA ttl=64 id=0 iplen=40
seq=0 win=0

74

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

Slow Port Scanning with Bro

SENT (3739.1841s) TCP 192.168.1.200:42392 > 192.168.1.102:543 S ttl=51 id=33430 iplen=44
seq=4148668469 win=1024 <mss 1460>
RCVD (3739.1843s) TCP 192.168.1.102:543 > 192.168.1.200:42392 RA ttl=64 id=0 iplen=40
seq=0 win=0
SENT (3799.2842s) TCP 192.168.1.200:42392 > 192.168.1.102:544 S tt1=39 id=5739 iplen=44
seq=4148668469 win=1024 <mss 1460>
RCVD (3799.2844s) TCP 192.168.1.102:544 > 192.168.1.200:42392 RA ttl=64 id=0 iplen=40
seq=0 win=0
SENT (3859.3843s) TCP 192.168.1.200:42392 > 192.168.1.102:513 S ttl=54 id=35475 iplen=44
seq=4148668469 win=1024 <mss 1460>
RCVD (3859.3845s) TCP 192.168.1.102:513 > 192.168.1.200:42392 RA ttl=64 id=0 iplen=40
seq=0 win=0
SENT (3919.4844s) TCP 192.168.1.200:42392 > 192.168.1.102:563 S tt1=47 id=36758 iplen=44
seq=4148668469 win=1024 <mss 1460>
RCVD (3919.4846s) TCP 192.168.1.102:563 > 192.168.1.200:42392 RA ttl=64 id=0 iplen=40
seq=0 win=0
SENT (3979.5845s) TCP 192.168.1.200:42392 > 192.168.1.102:901 S tt1=53 id=30526 iplen=44
seq=4148668469 win=1024 <mss 1460>
RCVD (3979.5847s) TCP 192.168.1.102:901 > 192.168.1.200:42392 RA ttl=64 id=0 iplen=40
seq=0 win=0
SENT (4039.6816s) TCP 192.168.1.200:42408 > 192.168.1.102:110 S tt1=38 id=19777 iplen=44
seq=4048006709 win=1024 <mss 1460>
RCVD (4039.6819s) TCP 192.168.1.102:110 > 192.168.1.200:42408 RA ttl=64 id=0 iplen=40
seq=0 win=0
SENT (4099.7817s) TCP 192.168.1.200:42392 > 192.168.1.102:179 S tt1=43 id=6754 iplen=44
seq=4148668469 win=1024 <mss 1460>
RCVD (4099.7817s) TCP 192.168.1.102:179 > 192.168.1.200:42392 RA ttl=64 id=0 iplen=40
seq=0 win=0
SENT (4159.8818s) TCP 192.168.1.200:42392 > 192.168.1.102:648 S ttl=54 id=4347 iplen=44
seq=4148668469 win=1024 <mss 1460>
RCVD (4159.8818s) TCP 192.168.1.102:648 > 192.168.1.200:42392 RA ttl=64 id=0 iplen=40
seq=0 win=0
SENT (4219.9819s) TCP 192.168.1.200:42392 > 192.168.1.102:548 S ttl=51 id=36149 iplen=44
seq=4148668469 win=1024 <mss 1460>
RCVD (4219.9819s) TCP 192.168.1.102:548 > 192.168.1.200:42392 RA ttl=64 id=0 iplen=40
seq=0 win=0
SENT (4280.0820s) TCP 192.168.1.200:42392 > 192.168.1.102:787 S tt1=38 id=25964 iplen=44
seq=4148668469 win=1024 <mss 1460>
RCVD (4280.0820s) TCP 192.168.1.102:787 > 192.168.1.200:42392 RA ttl=64 id=0 iplen=40
seq=0 win=0
SENT (4340.1821s) TCP 192.168.1.200:42392 > 192.168.1.102:999 S tt1=53 id=13640 iplen=44
seq=4148668469 win=1024 <mss 1460>
RCVD (4340.1821s) TCP 192.168.1.102:999 > 192.168.1.200:42392 RA ttl=64 id=0 iplen=40
seq=0 win=0
SENT (4400.2822s) TCP 192.168.1.200:42392 > 192.168.1.102:37 S ttl=44 id=13782 iplen=44
seq=4148668469 win=1024 <mss 1460>
RCVD (4400.2822s) TCP 192.168.1.102:37 > 192.168.1.200:42392 RA ttl=64 id=0 iplen=40
seq=0 win=0
SENT (4460.3823s) TCP 192.168.1.200:42392 > 192.168.1.102:30 S ttl=43 id=22354 iplen=44
seq=4148668469 win=1024 <mss 1460>
RCVD (4460.3823s) TCP 192.168.1.102:30 > 192.168.1.200:42392 RA ttl1=64 id=0 iplen=40
seq=0 win=0
SENT (4520.4824s) TCP 192.168.1.200:42392 > 192.168.1.102:340 S tt1=42 id=55526 iplen=44
seq=4148668469 win=1024 <mss 1460>
RCVD (4520.4824s) TCP 192.168.1.102:340 > 192.168.1.200:42392 RA ttl=64 id=0 iplen=40
seq=0 win=0
SENT (4580.5825s) TCP 192.168.1.200:42392 > 192.168.1.102:42 S ttl=44 id=45682 iplen=44
seq=4148668469 win=1024 <mss 1460>
RCVD (4580.5825s) TCP 192.168.1.102:42 > 192.168.1.200:42392 RA ttl=64 id=0 iplen=40
seq=0 win=0
SENT (4640.6826s) TCP 192.168.1.200:42392 > 192.168.1.102:19 S tt1=43 id=37072 iplen=44
seq=4148668469 win=1024 <mss 1460>
RCVD (4640.6826s) TCP 192.168.1.102:19 > 192.168.1.200:42392 RA ttl=64 id=0 iplen=40
seq=0 win=0
SENT (4700.7827s) TCP 192.168.1.200:42409 > 192.168.1.102:110 S tt1=40 id=42772 iplen=44
seq=4031229749 win=1024 <mss 1460>

75

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

Slow Port Scanning with Bro

RCVD (4700.7827s) TCP 192.168.1.102:110 > 192.168.1.200:42409 RA ttl=64 id=0 iplen=40
seq=0 win=0
SENT (4760.8818s) TCP 192.168.1.200:42392 > 192.168.1.102:82 S ttl=55 id=52829 iplen=44
seq=4148668469 win=1024 <mss 1460>
RCVD (4760.8818s) TCP 192.168.1.102:82 > 192.168.1.200:42392 RA ttl1=64 id=0 iplen=40
seq=0 win=0
SENT (4820.9819s) TCP 192.168.1.200:42392 > 192.168.1.102:900 S tt1=58 id=65408 iplen=44
seq=4148668469 win=1024 <mss 1460>
RCVD (4820.9819s) TCP 192.168.1.102:900 > 192.168.1.200:42392 RA ttl1=64 id=0 iplen=40
seq=0 win=0
SENT (4881.0820s) TCP 192.168.1.200:42392 > 192.168.1.102:541 S tt1=49 id=49879 iplen=44
seq=4148668469 win=1024 <mss 1460>
RCVD (4881.0820s) TCP 192.168.1.102:541 > 192.168.1.200:42392 RA ttl=64 id=0 iplen=40
seq=0 win=0
SENT (4941.1821s) TCP 192.168.1.200:42392 > 192.168.1.102:26 S tt1=39 id=41678 iplen=44
seq=4148668469 win=1024 <mss 1460>
RCVD (4941.1821s) TCP 192.168.1.102:26 > 192.168.1.200:42392 RA ttl=64 id=0 iplen=40
seq=0 win=0
SENT (5001.2822s) TCP 192.168.1.200:42392 > 192.168.1.102:100 S ttl1=56 id=32398 iplen=44
seq=4148668469 win=1024 <mss 1460>
RCVD (5001.2822s) TCP 192.168.1.102:100 > 192.168.1.200:42392 RA ttl=64 id=0 iplen=40
seq=0 win=0
SENT (5061.3823s) TCP 192.168.1.200:42392 > 192.168.1.102:1023 S ttl1=55 id=46206 iplen
=44 seq=4148668469 win=1024 <mss 1460>
RCVD (5061.3823s) TCP 192.168.1.102:1023 > 192.168.1.200:42392 RA ttl=64 id=0 iplen=40
seq=0 win=0
SENT (5121.4824s) TCP 192.168.1.200:42392 > 192.168.1.102:254 S tt1=55 id=58957 iplen=44
seq=4148668469 win=1024 <mss 1460>
RCVD (5121.4824s) TCP 192.168.1.102:254 > 192.168.1.200:42392 RA ttl=64 id=0 iplen=40
seq=0 win=0
SENT (5181.5825s) TCP 192.168.1.200:42392 > 192.168.1.102:873 S tt1=42 id=32460 iplen=44
seq=4148668469 win=1024 <mss 1460>
RCVD (5181.5825s) TCP 192.168.1.102:873 > 192.168.1.200:42392 RA ttl=64 id=0 iplen=40
seq=0 win=0
SENT (5241.6826s) TCP 192.168.1.200:42392 > 192.168.1.102:49 S tt1=57 id=37512 iplen=44
seq=4148668469 win=1024 <mss 1460>
RCVD (5241.6826s) TCP 192.168.1.102:49 > 192.168.1.200:42392 RA ttl1=64 id=0 iplen=40
seq=0 win=0
SENT (5301.7827s) TCP 192.168.1.200:42392 > 192.168.1.102:144 S tt1=58 id=56000 iplen=44
seq=4148668469 win=1024 <mss 1460>
RCVD (5301.7827s) TCP 192.168.1.102:144 > 192.168.1.200:42392 RA tt1=64 id=0 iplen=40
seq=0 win=0
SENT (5361.8174s) TCP 192.168.1.200:42410 > 192.168.1.102:110 S ttl=44 id=52209 iplen=44
seq=4282884149 win=1024 <mss 1460>
RCVD (5361.8179s) TCP 192.168.1.102:110 > 192.168.1.200:42410 RA ttl=64 id=0 iplen=40
seq=0 win=0
SENT (5421.9175s) TCP 192.168.1.200:42392 > 192.168.1.102:990 S tt1=59 id=14753 iplen=44
seq=4148668469 win=1024 <mss 1460>
RCVD (5421.9180s) TCP 192.168.1.102:990 > 192.168.1.200:42392 RA ttl=64 id=0 iplen=40
seq=0 win=0
SENT (5482.0176s) TCP 192.168.1.200:42392 > 192.168.1.102:85 S tt1=59 id=39579 iplen=44
seq=4148668469 win=1024 <mss 1460>
RCVD (5482.0181s) TCP 192.168.1.102:85 > 192.168.1.200:42392 RA tt1=64 id=0 iplen=40
seq=0 win=0
SENT (5542.1177s) TCP 192.168.1.200:42392 > 192.168.1.102:465 S tt1=42 id=49722 iplen=44
seq=4148668469 win=1024 <mss 1460>
RCVD (5542.1182s) TCP 192.168.1.102:465 > 192.168.1.200:42392 RA tt1=64 id=0 iplen=40
seq=0 win=0
SENT (5602.2178s) TCP 192.168.1.200:42392 > 192.168.1.102:389 S tt1=50 id=60110 iplen=44
seq=4148668469 win=1024 <mss 1460>
RCVD (5602.2183s) TCP 192.168.1.102:389 > 192.168.1.200:42392 RA ttl=64 id=0 iplen=40
seq=0 win=0
SENT (5662.3179s) TCP 192.168.1.200:42392 > 192.168.1.102:631 S ttl=51 id=15321 iplen=44
seq=4148668469 win=1024 <mss 1460>
RCVD (5662.3184s) TCP 192.168.1.102:631 > 192.168.1.200:42392 RA ttl=64 id=0 iplen=40
seq=0 win=0

76

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235
236

Slow Port Scanning with Bro

SENT (5722.4180s) TCP 192.168.1.200:42392 > 192.168.1.102:902 S tt1=53 id=46450 iplen=44
seq=4148668469 win=1024 <mss 1460>
RCVD (5722.4185s) TCP 192.168.1.102:902 > 192.168.1.200:42392 RA ttl=64 id=0 iplen=40
seq=0 win=0
SENT (5782.5181s) TCP 192.168.1.200:42392 > 192.168.1.102:280 S tt1=49 id=58846 iplen=44
seq=4148668469 win=1024 <mss 1460>
RCVD (5782.5186s) TCP 192.168.1.102:280 > 192.168.1.200:42392 RA ttl=64 id=0 iplen=40
seq=0 win=0
SENT (5842.6182s) TCP 192.168.1.200:42392 > 192.168.1.102:912 S tt1=52 id=65034 iplen=44
seq=4148668469 win=1024 <mss 1460>
RCVD (5842.6187s) TCP 192.168.1.102:912 > 192.168.1.200:42392 RA ttl=64 id=0 iplen=40
seq=0 win=0
SENT (5902.7183s) TCP 192.168.1.200:42392 > 192.168.1.102:81 S tt1=37 id=10218 iplen=44
seq=4148668469 win=1024 <mss 1460>
RCVD (5902.7188s) TCP 192.168.1.102:81 > 192.168.1.200:42392 RA ttl=64 id=0 iplen=40
seq=0 win=0
SENT (5962.8184s) TCP 192.168.1.200:42392 > 192.168.1.102:6 S ttl=56 id=3811 iplen=44
seq=4148668469 win=1024 <mss 1460>
RCVD (5962.8188s) TCP 192.168.1.102:6 > 192.168.1.200:42392 RA ttl=64 id=0 iplen=40 seq
=0 win=0
SENT (6022.9185s) TCP 192.168.1.200:42411 > 192.168.1.102:110 S tt1=48 id=60083 iplen=44
seq=4266107189 win=1024 <mss 1460>
RCVD (6022.9189s) TCP 192.168.1.102:110 > 192.168.1.200:42411 RA ttl=64 id=0 iplen=40
seq=0 win=0
SENT (6083.0186s) TCP 192.168.1.200:42392 > 192.168.1.102:306 S tt1=48 id=32114 iplen=44
seq=4148668469 win=1024 <mss 1460>
RCVD (6083.0190s) TCP 192.168.1.102:306 > 192.168.1.200:42392 RA ttl=64 id=0 iplen=40
seq=0 win=0
SENT (6143.1187s) TCP 192.168.1.200:42392 > 192.168.1.102:497 S tt1=40 id=52835 iplen=44
seq=4148668469 win=1024 <mss 1460>
RCVD (6143.1191s) TCP 192.168.1.102:497 > 192.168.1.200:42392 RA ttl=64 id=0 iplen=40
seq=0 win=0
SENT (6203.2188s) TCP 192.168.1.200:42392 > 192.168.1.102:90 S ttl=45 id=14040 iplen=44
seq=4148668469 win=1024 <mss 1460>
RCVD (6203.2192s) TCP 192.168.1.102:90 > 192.168.1.200:42392 RA ttl1=64 id=0 iplen=40
seq=0 win=0
SENT (6263.3188s) TCP 192.168.1.200:42392 > 192.168.1.102:222 S ttl=44 id=24645 iplen=44
seq=4148668469 win=1024 <mss 1460>
RCVD (6263.3193s) TCP 192.168.1.102:222 > 192.168.1.200:42392 RA ttl=64 id=0 iplen=40
seq=0 win=0
SENT (6323.4189s) TCP 192.168.1.200:42392 > 192.168.1.102:106 S tt1=59 id=56892 iplen=44
seq=4148668469 win=1024 <mss 1460>
RCVD (6323.4194s) TCP 192.168.1.102:106 > 192.168.1.200:42392 RA ttl=64 id=0 iplen=40
seq=0 win=0
SENT (6383.5190s) TCP 192.168.1.200:42392 > 192.168.1.102:1000 S ttl=41 id=50151 iplen
=44 seq=4148668469 win=1024 <mss 1460>
RCVD (6383.5195s) TCP 192.168.1.102:1000 > 192.168.1.200:42392 RA ttl=64 id=0 iplen=40
seq=0 win=0
SENT (6443.6191s) TCP 192.168.1.200:42392 > 192.168.1.102:808 S tt1=57 id=60440 iplen=44
seq=4148668469 win=1024 <mss 1460>
RCVD (6443.6196s) TCP 192.168.1.102:808 > 192.168.1.200:42392 RA ttl=64 id=0 iplen=40
seq=0 win=0
SENT (6503.7192s) TCP 192.168.1.200:42392 > 192.168.1.102:146 S tt1=54 id=29299 iplen=44
seq=4148668469 win=1024 <mss 1460>
RCVD (6503.7197s) TCP 192.168.1.102:146 > 192.168.1.200:42392 RA ttl=64 id=0 iplen=40
seq=0 win=0
SENT (6563.8193s) TCP 192.168.1.200:42392 > 192.168.1.102:888 S tt1=57 id=51731 iplen=44
seq=4148668469 win=1024 <mss 1460>
RCVD (6563.8198s) TCP 192.168.1.102:888 > 192.168.1.200:42392 RA ttl=64 id=0 iplen=40
seq=0 win=0
SENT (6623.9194s) TCP 192.168.1.200:42392 > 192.168.1.102:4 S tt1=47 id=4909 iplen=44
seq=4148668469 win=1024 <mss 1460>
RCVD (6623.9199s) TCP 192.168.1.102:4 > 192.168.1.200:42392 RA ttl=64 id=0 iplen=40 seq
=0 win=0
Nmap scan report for 192.168.1.102
Host is up (0.00034s latency).
Not shown: 99 closed ports

71

Slow Port Scanning with Bro

237|PORT STATE SERVICE
238| 22/tcp open ssh

239| MAC Address:
240

241|Nmap done: 1 IP address (1 host up) scanned in 6623.94

00:23:5A:62:1B:35 (Compal Information (kunshan) CO.)

seconds

78

Slow Port Scanning with Bro

C Bro

C.1 Error in scan.bro found by Dr. Slobodan Petrovi¢ (GUC)

Dr. Slobodan Petrovi¢ (GUC) found an error in the original scan.bro script. In line number 490 the
variable "n" was most likely suppose to be "m".
The following listing show line 490 in the original scan.bro from 28 Aug 2012:

490’ $identifier=fmt("%s—%d", orig, n),

The following listing show line 490 after the change was applied scan.bro:

490’ $identifier=fmt("%s—%d", orig, m),

79

00 AN N AW =

AR R B WL WLWWLWLWUWUWWIRNNRNRDNNLDNDNDNDED = == === ===
W= OOV NPREWNN—=OOHOIANNEREWN—=OOOINWNEAEWN—=OO

44

Slow Port Scanning with Bro

C.2 Bro Configuration File: local.bro

##! Local site policy. Customize as appropriate.
#4#!
##! This file will not be overwritten when upgrading or reinstalling!

This script logs which scripts were loaded during each run.
@load misc/loaded—scripts

Apply the default tuning scripts for common tuning settings.
@load tuning/defaults

Generate notices when vulnerable versions of software are discovered.

The default is to only monitor software found in the address space defined
as "local". Refer to the software framework’s documentation for more

information.

@load frameworks/software/vulnerable

Example vulnerable software. This needs to be updated and maintained over
time as new vulnerabilities are discovered.
redef Software::vulnerable_versions += {
["Flash"] = [$major=10,$minor=2,$minor2=153,%addl="1"],
["Java"] = [$major=1,$minor=6,$minor2=0,$addl="22"],
1

Detect software changing (e.g. attacker installing hacked SSHD).
@load frameworks/software/version—changes

This adds signatures to detect cleartext forward and reverse windows shells.
@load—sigs frameworks/signatures/detect—windows—shells

Uncomment the following line to begin receiving (by default hourly) emails
containing all of your notices.
redef Notice:: policy += { [$action = Notice :: ACTION_ALARM, $priority = 0] };

Load all of the scripts that detect software in various protocols.
@load protocols/ftp/software

@load protocols/smtp/software

@load protocols/ssh/software

@load protocols/http/software

The detect—webapps script could possibly cause performance trouble when
running on live traffic. Enable it cautiously.

#@load protocols/http/detect—webapps

This script detects DNS results pointing toward your Site::local_nets
where the name is not part of your local DNS zone and is being hosted
externally. Requires that the Site::local_zones variable is defined.
@load protocols/dns/detect—external —names

Script to detect various activity in FTP sessions.
@load protocols/ftp/detect

Scripts that do asset tracking.
@load protocols/conn/known—hosts
@load protocols/conn/known—services
@load protocols/ssl/known—certs

This script enables SSL/TLS certificate validation.
@load protocols/ssl/validate —certs

If you have libGeolIP support built in, do some geographic detections and
logging for SSH traffic.

@load protocols/ssh/geo—data

Detect hosts doing SSH bruteforce attacks.

@load protocols/ssh/detect—bruteforcing

Detect logins using "interesting" hostnames.

@load protocols/ssh/interesting —hostnames

80

66
67
68
69
70
71
72
73
74
75
76
71
78

Slow Port Scanning with Bro

Detect MDS sums in Team Cymru’s Malware Hash
@load protocols/http/detect—MHR
Detect SQL injection attacks.
@load protocols/http/detect—sqli

Other scripts
@load policy/misc/scan
@load policy/misc/scan4

redef Site::local_nets = {

10.0.0.0/8, # Untrusted IP range
192.168.1.0/25, # Trusted IP range

1

Registry .

81

Slow Port Scanning with Bro

C.3 Bro File Structure

Bro file structure is listed below. We start from /usr/local/bro:

2013-10-17 09:54:58 root@bigbro:/usr/local/bro] # tree -d

|-- bin

|-- etc
|-- include
[-- 1ib
| | -- broctl
| | -- BroControl
| ¢-- plugins
‘-- ruby
¢-- Broccoli
-- logs
|-- YYYY-MM-DD
¢-- current -> /usr/local/bro/spool/bro
-- share
|-- bro
| |-- base
| | -- frameworks
| | -- cluster
| ¢-- nodes
|-- communication
|-- control
|-- dpd
|-- input

| ¢-- readers

|-- intel

|-- logging

| | -- postprocessors
| ‘-- writers

| -- metrics

| |-- actions

| ‘-- extend-email
| -- packet-filter

| -- reporter

|-- signatures

| -- software

-- tunnels

-- protocols

| -- conn

|-- dns

|
|
|
|
|
|
|
|
|
|
|
| | -- notice
|
|
|
|
|
|
|
|
|
|
|
|

[-- ftp

82

Slow Port Scanning with Bro

|[-- http
|-- irc
| -- modbus
[-- smtp

|-- ssh
|-- ssl

[3

I
I
I
I
I |-- socks
I
I
| -- syslog
‘-- utils
-- broctl
-- policy
| -- frameworks
| | -- communication
|-- control
|-- dpd
|-- intel
| -- metrics
| -- signatures
‘-- software
integration
| -- barnyard2

‘-- collective-intel

protocols
|-- conn
|-- dns
[-- ftp
|-- http

| -- modbus
[-- smtp
|-- ssh

‘-- ssl

I
I
I
I
|
|
|
|
I
I
I
I
|
(.
(I
(.
(I
(I
(.
N
I
(.
I |-- misc
N
(.
(I
(N
I
I
I
I
(I
| ‘-- tuning
| ¢-- defaults
‘-- site
-- broctl

‘-- scripts

| -- helpers

‘-~ postprocessors
-- spool

|-- bro

| -- installed-scripts-do-not-touch

| |-- auto
| ‘-- site
|-- scripts

[4

-- tmp

83

00 AN N AW =

—_—
— O \O

12

Slow Port Scanning with Bro

C.4 Bro Script Scan.bro - Original Version from 28 Aug 2012

##! Scan detector ported from Bro 1.x.

#4#!

##! This script has evolved over many years and is quite a mess right
##! have adapted it to work with Bro 2.x, but eventually Bro 2.x will
##! get its own rewritten and generalized scan detector.

@load base/frameworks/notice/main
module Scan;

export {
redef enum Notice:: Type += {

The source has scanned a number of ports.
PortScan ,
The source has scanned a number of addresses.
AddressScan ,
Apparent flooding backscatter seen from source.
BackscatterSeen ,

Summary of scanning activity .

ScanSummary ,

Summary of distinct ports per scanner.
PortScanSummary ,

Summary of distinct low ports per scanner.
LowPortScanSummary ,

Source reached :bro:id: ‘Scan::shut_down_thresh ¢
ShutdownThresh ,

Source touched privileged ports.
LowPortTrolling ,

1

Whether to consider UDP "connections" for scan detection.
Can lead to false positives due to UDP fanout from some P2P apps.
const suppress_UDP_scan_checks = F &redef;

const activate_priv_port_check = T &redef;
const activate_landmine_check = F &redef;
const landmine_thresh_trigger = 5 &redef;

const landmine_address: set[addr] &redef;

const scan_summary_trigger = 25 &redef;
const port_summary_trigger = 20 &redef;
const lowport_summary_trigger = 10 &redef;

Raise ShutdownThresh after this many failed attempts
const shut_down_thresh = 100 &redef;

Which services should be analyzed when detecting scanning
(not consulted if analyze_all_services is set).

const analyze_services: set[port] &redef;

const analyze_all_services = T &redef;

Track address scaners only if at least these many hosts contacted.

const addr_scan_trigger = 0 &redef;

Ignore address scanners for further scan detection after
scanning this many hosts.

0 disables.

const ignore_scanners_threshold = 0 &redef;

Report a scan of peers at each of these points.

const report_peer_scan: vector of count = {
20, 100, 1000, 10000, 50000, 100000, 250000, 500000, 1000000,

84

now. We

109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132

Slow Port Scanning with Bro

} &redef;

const report_outbound_peer_scan: vector of count = {
100, 1000, 10000,

} &redef;

Report a scan of ports at each of these points.
const report_port_scan: vector of count = {

50, 250, 1000, 5000, 10000, 25000, 65000,
} &redef;

Once a source has scanned this many different ports

(to however many

different remote hosts), start tracking its per—destination access.

const possible_port_scan_thresh = 20 &redef;

Threshold for scanning privileged ports.
const priv_scan_trigger = 5 &redef;

{

attempted

const troll_skip_service = {
25/tcp, 21/tcp, 22/tcp, 20/tcp, 80/tcp,
} &redef;
const report_accounts_tried: vector of count = {
20, 100, 1000, 10000, 100000, 1000000,
} &redef;
const report_remote_accounts_tried: vector of count =
100, 500,
} &redef;
Report a successful password guessing if the source
at least this many.
const password_guessing_success_threshhold = 20 &redef;

const skip_accounts_tried: set[addr] &redef;
const addl_web = {

81/tcp, 443/tcp, 8000/tcp, 8001/tcp, 8080/tcp, }
&redef ;

const skip_services = { 113/tcp, } &redef;

const skip_outbound_services = { 21/tcp, addl_web, }
&redef;
const skip_scan_sources = {
255.255.255.255, # who knows why we see these, but we do
} &redef;
const skip_scan_nets: set[subnet] = {} &redef;

List of well known local server/ports to exclude for scanning

purposes.

const skip_dest_server_ports: set[addr, port] = {} &redef;

Reverse (SYN—ack) scans seen from these ports are considered
to reflect possible SYN—flooding backscatter , and not true

(stealth) scans.
const backscatter_ports = {

80/tcp, 8080/tcp, 53/tcp, 53/udp, 179/tcp, 6666/tcp,
} &redef;

const report_backscatter: vector of count = {
20,
} &redef;

global check_scan:
function(c: connection, established: bool, reverse:

85

6667/tcp ,

bool): bool;

133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199

Slow Port Scanning with Bro

}

The following tables are defined here so that we can redef
the expire timeouts.

FIXME: should we allow redef of attributes on IDs which
are not exported?

I o H

How many different hosts connected to with a possible

backscatter signature.

global distinct_backscatter_peers: table[addr] of table[addr] of count
&read_expire = 15 min;

Expire functions that trigger summaries.
global scan_summary :

function(t: table[addr] of set[addr], orig: addr): interval;
global port_summary:

function(t: table[addr] of set[port], orig: addr): interval;
global lowport_summary :

function(t: table[addr] of set[port], orig: addr): interval;

Indexed by scanner address, yields # distinct peers scanned.

pre_distinct_peers tracks until addr_scan_trigger hosts first.

global pre_distinct_peers: table[addr] of set[addr]
&read_expire = 15 mins &redef;

global distinct_peers: table[addr] of set[addr]

&read_expire = 15 mins &expire_func=scan_summary &redef;
global distinct_ports: table[addr] of set[port]

&read_expire = 15 mins &expire_func=port_summary &redef;
global distinct_low_ports: table[addr] of set[port]

&read_expire = 15 mins &expire_func=lowport_summary &redef;

Indexed by scanner address, yields a table with scanned hosts
(and ports).
global scan_triples: table[addr] of table[addr] of set[port];

global remove_possible_source:

function(s: set[addr], idx: addr): interval;
global possible_scan_sources: set[addr]
&expire_func=remove_possible_source &read_expire = 15 mins;

Indexed by source address, yields user name & password tried.
global accounts_tried: table[addr] of set[string , string]
&read_expire = 1 days;

global ignored_scanners: set[addr] &create_expire = 1 day &redef;

These tables track whether a threshold has been reached.
More precisely , the counter is the next index of threshold vector.
global shut_down_thresh_reached: table[addr] of bool &default=F;
global rb_idx: table[addr] of count
&default=1 &read_expire = | days &redef;
global rps_idx: table[addr] of count
&default=1 &read_expire = 1| days &redef;
global rops_idx: table[addr] of count
&default=1 &read_expire = 1 days &redef;
global rpts_idx: table[addr,addr] of count
&default=1 &read_expire = 1 days &redef;
global rat_idx: table[addr] of count
&default=1 &read_expire = 1 days &redef;
global rrat_idx: table[addr] of count
&default=1 &read_expire = 1 days &redef;

global thresh_check: function(v: vector of count, idx: table[addr] of count,

orig: addr, n: count): bool;

global thresh_check_2: function(v: vector of count,

idx: table[addr,addr] of count, orig: addr,
resp: addr, n: count): bool;

86

200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266

Slow Port Scanning with Bro

function scan_summary(t: table[addr] of set[addr], orig: addr):

{

local num_distinct_peers = orig in t ? It[orig]l : O;

if (num_distinct_peers >= scan_summary_trigger)
NOTICE ([$note=ScanSummary, $src=orig, $n=num_distinct_peers
$identifier=fmt("%s", orig),
$msg=fmt("%s scanned a total of %d hosts",
orig , num_distinct_peers)]);

return 0 secs;

}
function port_summary(t: table[addr] of set[port], orig: addr):
{

local num_distinct_ports = orig in t ? [t[orig]l : O;

if (num_distinct_ports >= port_summary_trigger)

interval

B

interval

NOTICE ([$note=PortScanSummary , $src=orig, $n=num_distinct_ports ,

$identifier=fmt("%s", orig),
$msg=fmt("%s scanned a total of %d ports",
orig , num_distinct_ports)]);

return 0 secs;

}

function lowport_summary(t: table[addr] of set[port], orig: addr): interval
{
local num_distinct_lowports = orig in t ? It[orig]l : O;

if (num_distinct_lowports >= lowport_summary_trigger)
NOTICE ([$note=LowPortScanSummary , $src=orig,
$n=num_distinct_lowports ,
$identifier=fmt("%s", orig),
$msg=fmt("%s scanned a total of %d low ports",
orig , num_distinct_lowports)]);

return 0 secs;

}

function clear_addr(a: addr)
{
delete distinct_peers[a];
delete distinct_ports[a];
delete distinct_low_ports[a];
delete scan_triples[a];
delete possible_scan_sources[a];
delete distinct_backscatter_peers[a];
delete pre_distinct_peers[a];
delete rb_idx[a];
delete rps_idx[a];
delete rops_idx[a];
delete rat_idx[a];
delete rrat_idx([a];
delete shut_down_thresh_reached[a];
delete ignored_scanners[al];

}

function ignore_addr(a: addr)
{
clear_addr(a);
add ignored_scanners[a];

}

function check_scan(c: connection, established: bool, reverse:

{

87

bool): bool

267
268
269
270
271
272
273
274
275
276
2717
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313

324
325
326
327
328
329
330
331
332
333

Slow Port Scanning with Bro

local id = c$id;

local service = "ftp—data" in c$service ? 20/tcp
: (reverse ? id$orig_p : id$resp_p);
local rev_service = reverse ? id$resp_p : idSorig_p;
local orig = reverse ? id$resp_h : id$orig_h;
local resp = reverse ? id$orig_h : id$resp_h;
local outbound = Site::is_local_addr(orig);

The following works better than using get_conn_transport_proto ()
because ¢ might not correspond to an active connection (which
causes the function to fail).
if (suppress_UDP_scan_checks &&
service >= 0/udp && service <= 65535/udp)
return F;

if (service in skip_services && ! outbound)
return F;

if (outbound && service in skip_outbound_services)
return F;

if (orig in skip_scan_sources)
return F;

if (orig in skip_scan_nets)
return F;

Don’t include well known server/ports for scanning purposes.
if (! outbound && [resp, service] in skip_dest_server_ports)
return F;

if (orig in ignored_scanners)
return F;

if (! established &&
not established , service not expressly allowed

not known peer set
(orig !in distinct_peers ||l resp !in distinct_peers[orig]) &&

want to consider service for scan detection
(analyze_all_services Il service in analyze_services))
{
if (reverse &% rev_service in backscatter_ports &&
reverse , non—priv backscatter port
service >= 1024/tcp)
{
if (orig !in distinct_backscatter_peers)
{
local empty_bs_table:
table [addr] of count &default=0;
distinct_backscatter_peers[orig] =
empty_bs_table;
}

if (++distinct_backscatter_peers[orig][resp] <= 2 &&
The test is <= 2 because we get two check_scan ()
calls , once on connection attempt and once on
tear —down.
distinct_backscatter_peers[orig][resp] == 1 &&

Looks like backscatter, and it’s not scanning
a privileged port.

thresh_check (report_backscatter , rb_idx, orig,

88

Slow Port Scanning with Bro

334 I distinct_backscatter_peers[orig]l)

335)

336 {

337 NOTICE ([$note=BackscatterSeen , $src=orig,

338 $p=rev_service ,

339 $identifier=fmt("%s", orig),

340 $msg=fmt("backscatter seen from %s (%d hosts; %s)",
341 orig, ldistinct_backscatter_peers[orig]l, rev_service)]);
342 }

343

344 if (ignore_scanners_threshold > 0 &&

345 | distinct_backscatter_peers[orig]l >

346 ignore_scanners_threshold)

347 ignore_addr(orig);

348 }

349

350 else

351 { # done with backscatter check

352 local ignore = F;

353

354 if (orig !in distinct_peers && addr_scan_trigger > 0)
355 {

356 if (orig !in pre_distinct_peers)

357 pre_distinct_peers[orig] = set();

358

359 add pre_distinct_peers[orig][resp];

360 if (Ipre_distinct_peers[orig]l < addr_scan_trigger)
361 ignore = T;

362 }

363

364 if (! ignore)

365 { # XXXXX

366

367 if (orig !in distinct_peers)

368 distinct_peers[orig] = set() &mergeable;

369

370 if (resp !in distinct_peers[orig])

371 add distinct_peers[orig][resp];

372

373 local n = |distinct_peers[orig]l;

374

375 # Check for threshold if not outbound.

376 if (! shut_down_thresh_reached[orig] &&

377 n >= shut_down_thresh &&

378 ! outbound && orig !in Site::neighbor_nets)
379 {

380 shut_down_thresh_reached[orig] = T;

381 local msg = fmt("shutdown threshold reached for %s", orig);
382 NOTICE ([$note=ShutdownThresh , $src=orig,

383 $identifier=fmt("%s", orig),

384 $p=service , $msg=msg]) ;

385 }

386

387 else

388 {

389 local address_scan = F;

390 if (outbound &&

391 # inside host scanning out?

392 thresh_check (report_outbound_peer_scan, rops_idx, orig, n))
393 address_scan = T;

394

395 if (! outbound &&

396 thresh_check (report_peer_scan, rps_idx, orig, n))
397 address_scan = T;

398

399 if (address_scan)

400 NOTICE ([$note=AddressScan ,

89

401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467

Slow Port Scanning with Bro

$src=orig, $p=service ,

$n=n,

$identifier=fmt("%s—%d", orig, n),

$msg=fmt("%s has scanned %d hosts (%s)",
orig, n, service)]);

if (address_scan &&
ignore_scanners_threshold > 0 &&
n > ignore_scanners_threshold)

ignore_addr(orig);
}
}
}o# XXXX
}

if (established)
Don’t consider established connections for port scanning,
it’s too easy to be mislead by FTP—like applications that
legitimately gobble their way through the port space.
return F;

Coarse search for port—scanning candidates: those that have made
connections (attempts) to possible_port_scan_thresh or more
distinct ports.
if (orig !in distinct_ports |l service !in distinct_ports[orig])
{
if (orig !in distinct_ports)
distinct_ports[orig] = set() &mergeable;

if (service !in distinct_ports[orig])
add distinct_ports[orig][service];

if (ldistinct_ports[orig]l >= possible_port_scan_thresh &&
orig !in scan_triples)
{
scan_triples[orig] = table () &mergeable;
add possible_scan_sources[orig];
}
}

Check for low ports.
if (activate_priv_port_check && ! outbound && service < 1024/tcp &&
service !in troll_skip_service)
{
if (orig !in distinct_low_ports ||
service !in distinct_low_ports[orig])
{
if (orig !in distinct_low_ports)
distinct_low_ports[orig] = set() &mergeable;

add distinct_low_ports[orig][service];

if (Idistinct_low_ports[orig]l == priv_scan_trigger &&
orig !in Site::neighbor_nets)
{
local svrc_msg = fmt("low port trolling %s %s", orig, service);

NOTICE ([$note=LowPortTrolling , $src=orig,
$identifier=fmt("%s", orig),
$p=service , $msg=svrc_msg]);

}

if (ignore_scanners_threshold > 0 &&
I distinct_low_ports[orig]l >
ignore_scanners_threshold)
ignore_addr(orig);
}
}

90

468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534

Slow Port Scanning with Bro

For sources that have been identified as possible scan sources,
keep track of per—host scanning.
if (orig in possible_scan_sources)
{
if (orig !in scan_triples)
scan_triples[orig] = table () &mergeable;

if (resp !lin scan_triples[orig])
scan_triples[orig][resp] = set() &mergeable;

if (service !in scan_triples[orig][resp])

{

add scan_triples[orig][resp][service];

if (thresh_check_2(report_port_scan, rpts_idx,
orig, resp,
Iscan_triples[orig][resp]l))
{
local m = Iscan_triples[orig][resp]l;
NOTICE ([$note=PortScan , $n=m, $src=orig,
$p=service ,
$identifier=fmt("%s—%d", orig, n),
$msg=fmt("%s has scanned %d ports of %s",
orig , m, resp)]);

}
}
}

return T;

}
Hook into the catch&release dropping. When an address gets restored , we reset
the source to allow dropping it again.
event Drop::address_restored(a: addr)

{

clear_addr(a);

}
event Drop::address_cleared (a: addr)

{

clear_addr(a);

}
When removing a possible scan source, we automatically delete its scanned
hosts and ports. But we do not want the deletion propagated, because every
peer calls the expire_function on its own (and thus applies the delete
operation on its own table).
function remove_possible_source(s: set[addr], idx: addr): interval

{

suspend_state_updates () ;

delete scan_triples[idx];

resume_state_updates () ;

return 0 secs;

}
To recognize whether a certain threshhold vector (e.g. report_peer_scans)
has been transgressed, a global variable containing the next vector index
(idx) must be incremented. This cumbersome mechanism is necessary because
values naturally don’t increment by one (e.g. replayed table merges).
function thresh_check(v: vector of count, idx: table[addr] of count,

orig: addr, n: count): bool

{

if (ignore_scanners_threshold > 0 && n > ignore_scanners_threshold)

{

91

535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
5717
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601

Slow Port Scanning with Bro

ignore_addr(orig);
return F;

}

if (idx[orig] <= Ivl && n >= v[idx[orig]])
{
++idx [orig];
return T;
}
else
return F;

}

Same as above, except the index has a different type signature.
function thresh_check_2(v: vector of count, idx: table[addr, addr] of count,
orig: addr, resp: addr, n: count): bool
{

if (ignore_scanners_threshold > 0 && n > ignore_scanners_threshold)

{
ignore_addr (orig);
return F;

}

if (idx[orig,resp] <= Ivl && n >= v[idx[orig, resp]])
{
++idx [orig ,resp];
return T;

}

else
return F;

}

event connection_established (c: connection)

{
local is_reverse_scan = (c$orig$state == TCP_INACTIVE) ;
Scan::check_scan(c, T, is_reverse_scan);

}

event partial_connection(c: connection)

{

Scan::check_scan(c, T, F);

}

event connection_attempt(c: connection)

{
Scan::check_scan(c, F, c$orig$state == TCP_INACTIVE) ;

}

event connection_half_finished (c: connection)

{

Half connections never were "established", so do scan—checking here.
Scan::check_scan(c, F, F);
}

event connection_rejected(c: connection)

{
local is_reverse_scan = c$orig$state == TCP_RESET;

Scan::check_scan(c, F, is_reverse_scan);

}

event connection_reset(c: connection)
{
if (c$orig$state == TCP_INACTIVE || cS$resp$state == TCP_INACTIVE)
We never heard from one side — that looks like a scan.
Scan::check_scan(c, c$orig$size + cSresp$size > 0,
c$orig$state == TCP_INACTIVE) ;

92

602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621

Slow Port Scanning with Bro

}

event connection_pending(c: connection)
{
if (cSorig$state == TCP_PARTIAL && c$resp$state == TCP_INACTIVE)
Scan::check_scan(c, F, F);

}

Report the remaining entries in the tables.
event bro_done ()
{
for (orig in distinct_peers)
scan_summary (distinct_peers , orig);

for (orig in distinct_ports)
port_summary (distinct_ports , orig);

for (orig in distinct_low_ports)
lowport_summary (distinct_low_ports , orig);

}

93

00 AN N AW =

AR R B WL WLWWLWLWUWUWWIRNNRNRDNNLDNDNDNDED = == === ===
W= OOV NPREWNN—=OOHOIANNEREWN—=OOOINWNEAEWN—=OO

44

Slow Port Scanning with Bro

C.5 Bro Script Scan.bro - Improved Version

##! Scan detector ported from Bro 1.x.

#i#!

##! This script has evolved over many years

##! by several contributors in Bro community.

##! Robin Sommer did most likely the main job porting it from 1.x to 2.x
#4#!

##! 2013—11—-07 — Roger Larsen added FIN & XMAS scan detection capabilities
##! and tuned variables for better slow port scan detection.

@load base/frameworks/notice/main
module Scan;
export {

redef enum Notice :: Type += {
The source has scanned a number of ports.

PortScan ,

The source has scanned a number of addresses.
AddressScan ,

Apparent flooding backscatter seen from source.
BackscatterSeen ,

Summary of scanning activity.

ScanSummary ,

Summary of distinct ports per scanner.
PortScanSummary ,

##

SlowPortScanSummary ,

Summary of distinct low ports per scanner.
LowPortScanSummary ,

Source reached :bro:id: ‘Scan::shut_down_thresh *
ShutdownThresh ,

Source touched privileged ports.
LowPortTrolling ,

RL_> added the following lines
ConnectionPartial ,

ConnectionAttempt ,
ConnectionHalfFinished ,
ConnectionRejected ,

ConnectionReset ,

ConnectionPending ,

H M H H H W

}s

Whether to consider UDP "connections" for scan detection.
Can lead to false positives due to UDP fanout from some P2P apps.
const suppress_UDP_scan_checks = T &redef;

const activate_priv_port_check = T &redef;
const activate_landmine_check = F &redef;
const landmine_thresh_trigger = 5 &redef;

const landmine_address: set[addr] &redef;
const scan_summary_trigger = 25 &redef;
const port_summary_trigger = 20 &redef;

const lowport_summary_trigger = 10 &redef;

Raise ShutdownThresh after this many failed attempts
const shut_down_thresh = 100 &redef;

Which services should be analyzed when detecting scanning
(not consulted if analyze_all_services is set).
const analyze_services: set[port] &redef;

const analyze_all_services = T &redef;

Track address scanners only if at least these many hosts contacted.

94

Slow Port Scanning with Bro

66 const addr_scan_trigger = 0 &redef;

67

68 # Ignore address scanners for further scan detection after

69 # scanning this many hosts.

70 # 0 disables.

71 const ignore_scanners_threshold = 0 &redef;

72

73 # Report a scan of peers at each of these points.

74 const report_peer_scan: vector of count = {

75 10, 20, 100, 1000, 10000, 50000, 100000, 250000, 500000, 1000000,
76 } &redef;

77

78 #

79 const report_outbound_peer_scan: vector of count = {

80 10, 100, 1000, 10000,

81 } &redef;

82

83

84 # Report a scan of ports at each of these points.

85 const report_port_scan: vector of count = {

86 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 250, 1000, 5000, 10000, 25000, 65000,
87 } &redef;

88

89 # Once a source has scanned this many different ports (to however many
90 # different remote hosts), start tracking its per—destination access.
91 const possible_port_scan_thresh = 10 &redef;

92

93 # Threshold for scanning privileged ports.

94 const priv_scan_trigger = 5 &redef;

95 const troll_skip_service = {

96 25/tcp, 21/tep, 22/tcp, 20/tcp, 80/tcp,

97 } &redef;

98

99 const report_accounts_tried: vector of count = {

100 10, 20, 100, 1000, 10000, 100000, 1000000,

101 } &redef;

102

103 const report_remote_accounts_tried: vector of count = {

104 10, 100, 500,

105 } &redef;

106

107 # Report a successful password guessing if the source attempted
108 # at least this many.

109 const password_guessing_success_threshhold = 20 &redef;

110

111 const skip_accounts_tried: set[addr] &redef;

112

113 const addl_web = {

114 81/tcp, 443/tcp, 8000/tcp, 8001/tcp, 8080/tcp, }

115 &redef;

116

117 const skip_services = { 113/tcp, } &redef;

118 const skip_outbound_services = { 21/tcp, addl_web, }

119 &redef;

120

121 const skip_scan_sources = {

122 255.255.255.255, # who knows why we see these, but we do
123 } &redef;

124

125 const skip_scan_nets: set[subnet] = {} &redef;

126

127 # List of well known local server/ports to exclude for scanning
128 # purposes.

129 const skip_dest_server_ports: set[addr, port] = {} &redef;

130

131 # Reverse (SYN—ack) scans seen from these ports are considered
132 # to reflect possible SYN—flooding backscatter , and not true

95

133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199

Slow Port Scanning with Bro

(stealth) scans.
const backscatter_ports = {

80/tcp, 8080/tcp, 53/tcp, 53/udp, 179/tcp, 6666/tcp, 6667/tcp,
} &redef;

const report_backscatter: vector of count = {
20,
} &redef;

global check_scan:
function(c: connection, established: bool, reverse: bool): bool;

The following tables are defined here so that we can redef
the expire timeouts.

FIXME: should we allow redef of attributes on IDs which
are not exported?

$ oH ¥ W

How many different hosts connected to with a possible

backscatter signature.

global distinct_backscatter_peers: table[addr] of table[addr] of count
&read_expire = 15 min;

Expire functions that trigger summaries.
global scan_summary:

function(t: table[addr] of set[addr], orig: addr): interval;
global port_summary:

function(t: table[addr] of set[port], orig: addr): interval;
global slow_port_summary :
function(t: table[addr] of set[port], orig: addr): interval;
global lowport_summary :

function(t: table[addr] of set[port], orig: addr): interval;

Indexed by scanner address, yields # distinct peers scanned.

pre_distinct_peers tracks until addr_scan_trigger hosts first.

global pre_distinct_peers: table[addr] of set[addr]
&read_expire = 15 mins &redef;

global distinct_peers: table[addr] of set[addr]
&read_expire = 15 mins &expire_func=scan_summary &redef;

global distinct_ports: table[addr] of set[port]

&read_expire = 99 mins &expire_func=port_summary &redef;
RL_> slow port scanning in focus
global slow_distinct_ports: table[addr] of set[port]
&read_expire = 99 mins &expire_func=slow_port_summary &redef;

global distinct_low_ports: table[addr] of set[port]
&read_expire = 99 mins &expire_func=lowport_summary &redef;

Indexed by scanner address, yields a table with scanned hosts
(and ports).
global scan_triples: table[addr] of table[addr] of set[port];

global remove_possible_source:
function(s: set[addr], idx: addr): interval;

global possible_scan_sources: set[addr]
&expire_func=remove_possible_source &read_expire = 99 mins;

Indexed by source address, yields user name & password tried.
global accounts_tried: table[addr] of set[string , string]
&read_expire = 1 days;

global ignored_scanners: set[addr] &create_expire = 1 day &redef;

These tables track whether a threshold has been reached.
More precisely , the counter is the next index of threshold vector.

96

Slow Port Scanning with Bro

200 global shut_down_thresh_reached: table[addr] of bool &default=F;
201 # report backscatter idx

202 global rb_idx: table[addr] of count

203 &default=1 &read_expire = 1 days &redef;

204 # report peer scan idx

205 global rps_idx: table[addr] of count

206 &default=1 &read_expire = 1 days &redef;

207 # report outbound peer scan idx

208 global rops_idx: table[addr] of count

209 &default=1 &read_expire = 1 days &redef;

210 # report port scan idx

211 global rpts_idx: table[addr,addr] of count

212 &default=1 &read_expire = 1 days &redef;

213 # report ?7??

214 global rat_idx: table[addr] of count

215 &default=1 &read_expire = 1 days &redef;

216 # report 7?7

217 global rrat_idx: table[addr] of count

218 &default=1 &read_expire = 1 days &redef;

219] }

220

221| global thresh_check: function(v: vector of count, idx: table[addr] of count,
222 orig: addr, n: count): bool;

223| global thresh_check_2: function(v: vector of count,

224 idx: table[addr,addr] of count, orig: addr,
225 resp: addr, n: count): bool;

226

227| function scan_summary(t: table[addr] of set[addr], orig: addr): interval
228 {

229 local num_distinct_peers = orig in t ? It[orig]l : O;

230

231 if (num_distinct_peers >= scan_summary_trigger)

232 {

233 NOTICE ([$note=ScanSummary , $src=orig, $n=num_distinct_peers ,
234 $identifier=fmt("%s", orig),

235 $msg=fmt("%s scanned a total of %d hosts",

236 orig , num_distinct_peers)]);

237 # RL_> Added print line

238 print fmt("Notice ScanSummary: %s scanned a total of %d hosts",
239 orig, num_distinct_peers);

240 }

241 return 0 secs;

242 }

243

244| function port_summary(t: table[addr] of set[port], orig: addr): interval
245 {

246 local num_distinct_ports = orig in t ? |t[orig]l : O;

247

248 # RL_>

249 # slow_distinct_ports[orig] = t[orig];

250

251 if (num_distinct_ports >= port_summary_trigger)

252 {

253 NOTICE ([$note=PortScanSummary , $src=orig, $n=num_distinct_ports ,
254 $identifier=fmt("%s", orig),

255 $msg=fmt("%s scanned a total of %d ports",

256 orig , num_distinct_ports)]);

257 # RL_> Added print line

258 print fmt("Notice PortScanSummary: %s scanned a total of %d ports",
259 orig,, num_distinct_ports);

260 }

261 return 0 secs;

262 }

263

264 | # function slow_port_summary(t: table[addr] of set[port], orig: addr): interval
265 # {

266| # local num_distinct_ports = orig in t ? It[orig]l : O;

97

267
268
269
270
271
272
273
274
275
276
2717
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313

331
332
333

Slow Port Scanning with Bro

RL_>
slow_distinct_ports[orig] = t[orig];
if (num_distinct_ports >= port_summary_trigger)
{
NOTICE ([$note=SlowPortScanSummary , $src=orig, $n=num_distinct_ports ,
$identifier=fmt("%s", orig),
$msg=fmt("%s scanned a total of %d ports slowly",
orig, num_distinct_ports)]);
RL_> Added print line
print fmt("Notice slow_port_summary: %s scanned a total of %d ports",
orig , num_distinct_ports);
}
return 0 secs;
}
function lowport_summary(t: table[addr] of set[port], orig: addr): interval
{
local num_distinct_lowports = orig in t ? [t[orig]l 0;

if (num_distinct_lowports >= lowport_summary_trigger)

{
NOTICE ([$note=LowPortScanSummary ,
$n=num_distinct_lowports ,
$identifier=fmt("%s", orig),
$msg=fmt("%s scanned a total

orig ,

RL_> Added print line

$src=orig,

of %d low ports",

num_distinct_lowports)]);

print fmt("Notice LowPortScanSummary: %s scanned a total of %d low ports",

orig ,

}

return 0 secs;

}

function clear_addr(a:

{
delete distinct_peers[a];
delete distinct_ports[a];

addr)

delete slow_distinct_ports[a];
delete distinct_low_ports[a];
delete scan_triples[a];

delete possible_scan_sources[a];
delete distinct_backscatter_peers[a];
delete pre_distinct_peers[a];
delete rb_idx[a];

delete rps_idx[a];

delete rops_idx[a];

delete rat_idx[a];

delete rrat_idx[a];

delete shut_down_thresh_reached[a];
delete ignored_scanners[al];

RL_> Added print line

print fmt("Function clear_addr");

}

function ignore_addr(a: addr)
clear_addr(a);

add ignored_scanners[a];
RL_> Added print line

print fmt("Function ignore_addr");

}

function check_scan(c: connection ,
{
local id = c$id;

established:

num_distinct_lowports);

bool, reverse: bool): bool

98

334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
371
378
379
380

391
392
393
394
395
396
397
398
399
400

Slow Port Scanning with Bro

local service = "ftp—data" in c$service ? 20/tcp
(reverse ? id$orig_p : id$resp_p);

local rev_service = reverse ? id$resp_p : id$orig_p;

local orig = reverse ? id$resp_h : idS$orig_h;

local resp = reverse ? id$orig_h : idS$resp_h;

local outbound = Site::is_local_addr(orig);

The following works better than using get_conn_transport_proto ()
because ¢ might not correspond to an active connection (which
causes the function to fail).
if (suppress_UDP_scan_checks &&
service >= 0/udp && service <= 65535/udp)
return F;

if (service in skip_services &% ! outbound)
return F;

if (outbound && service in skip_outbound_services)
return F;

if (orig in skip_scan_sources)
return F;

if (orig in skip_scan_nets)
return F;

Don’t include well known server/ports for scanning purposes.
if (! outbound && [resp, service] in skip_dest_server_ports)
return F;

if (orig in ignored_scanners)
return F;

if (! established &&
not established , service not expressly allowed

not known peer set
(orig !in distinct_peers |l resp l!in distinct_peers[orig]) &&

want to consider service for scan detection
(analyze_all_services |l service in analyze_services))
{
RL_> Check if connections are from us, known and/or defined backscattered
if (reverse && rev_service in backscatter_ports &&
reverse , non—priv backscatter port
service >= 1024/tcp)
{
if (orig !in distinct_backscatter_peers)
{
RL_> This code empty bs table for actual orig_h
local empty_bs_table:
table [addr] of count &default=0;
distinct_backscatter_peers[orig] =
empty_bs_table;
}

if (++distinct_backscatter_peers[orig][resp] <= 2 &&
The test is <= 2 because we get two check_scan ()
calls , once on connection attempt and once on
tear —down.
distinct_backscatter_peers[orig][resp] == 1 &&

Looks like backscatter, and it’s not scanning
a privileged port.

thresh_check (report_backscatter , rb_idx, orig,

99

Slow Port Scanning with Bro

401 | distinct_backscatter_peers[orig]l)

402)

403 {

404 NOTICE ([$note=BackscatterSeen , $src=orig,

405 $p=rev_service ,

406 $identifier=fmt("%s", orig),

407 $msg=fmt (" backscatter seen from %s (%d hosts; %s)",

408 orig, ldistinct_backscatter_peers[orig]l, rev_service)]);

409 # RL_> Added print line

410 print fmt("%s — Notice BackscatterSeen: backscatter seen from %s (%d
hosts; %s)",

411 strftime ("%y—9%a—%d_9H.%M.%S" ,c$start_time), orig, |

distinct_backscatter_peers[orig]l, rev_service);

412 }

413

414 if (ignore_scanners_threshold > 0 &&

415 I distinct_backscatter_peers[orig]l >

416 ignore_scanners_threshold)

417 {

418 ignore_addr(orig);

419 # RL_> Added print line

420 print fmt("%s — ignore_scanners_threshold && distinct_backscatter_peers
> ignore_scanners_threshold",

421 strftime ("%y—9%a—%d_9H.%M.%S" ,c$start_time));

422 }

423 }

424

425 else

426 { # done with backscatter check

427 local ignore = F;

428 # RL_> check if addr is new && higher than addr_scan_trigger

429 if (orig !in distinct_peers && addr_scan_trigger > 0)

430 {

431 if (orig !in pre_distinct_peers)

432 # why this extra definition here?

433 # pre_distinct_peers[orig] = set();

434 add pre_distinct_peers[orig][resp];

435

436 if (Ipre_distinct_peers[orig]l < addr_scan_trigger)

437 ignore = T;

438 }

439

440 if (! ignore)

441 { # XXXXX

442 if (orig !in distinct_peers)

443 distinct_peers[orig] = set() &mergeable;

444

445 if (resp !in distinct_peers[orig])

446 add distinct_peers[orig][resp];

447

448 local n = |distinct_peers[orig]l;

449

450 # Check for shut_down_thresh_reached if not outbound.

451 if (! shut_down_thresh_reached[orig] &&

452 n >= shut_down_thresh &&

453 ! outbound &&

454 orig !in Site::neighbor_nets)

455 {

456 shut_down_thresh_reached[orig] = T;

457 local msg = fmt("shutdown threshold reached for %s", orig);

458 NOTICE ([$note=ShutdownThresh, $src=orig,

459 $identifier=fmt("%s", orig),

460 $p=service , $msg=msg]);

461 # RL_> Added print line

462 print fmt("%s ShutdownThresh: for host %s", c$start_time , orig);

463 }

464

100

465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487

488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530

Slow Port Scanning with Bro

else
{
local address_scan = F;
if (outbound &&
inside host scanning out?
thresh_check (report_outbound_peer_scan, rops_idx, orig, n))
address_scan = T;

if (! outbound &&
thresh_check (report_peer_scan, rps_idx, orig, n))
address_scan = T;

if (address_scan)

{
NOTICE ([$note=AddressScan ,
$src=orig, $p=service ,
$n=n,
$identifier=fmt("%s—%d", orig, n),
$msg=fmt("%s has scanned %d hosts (%s)",
orig, n, service)]);
RL_> Added print line
print fmt("%s Notice AddressScan: %s has scanned %d hosts (%s)",
strftime ("%y—%m—%d_9H.9%M.%S" ,c$start_time), orig, n, service
)5
}
RL_> Ignore this scanner address after X hosts scanned?
RL_> Perhaps enough alarms sendt/rised.
if (address_scan &&
ignore_scanners_threshold > 0 &&
n > ignore_scanners_threshold)
ignore_addr(orig);

)
}o# XXXX

}

if (established)
Don’t consider established connections for port scanning,
it’s too easy to be mislead by FTP—like applications that
legitimately gobble their way through the port space.
return F;

Coarse search for port—scanning candidates: those that have made
connections (attempts) to possible_port_scan_thresh or more
distinct ports.
if (orig !in distinct_ports |l service !in distinct_ports[orig])
orig !in slow_distinct_ports |l service !in slow_distinct_ports[orig]
{
if (orig !in distinct_ports)
distinct_ports[orig] = set() &mergeable;

if (service !in distinct_ports[orig])
add distinct_ports[orig][service];

if (orig !in slow_distinct_ports)

slow_distinct_ports[orig] = set() &mergeable;
if (service !in slow_distinct_ports[orig])

add slow_distinct_ports[orig][service];

if (Idistinct_ports[orig]l >= possible_port_scan_thresh &&
orig !in scan_triples)
{
scan_triples[orig] = table () &mergeable;
add possible_scan_sources[orig];
}

if (Islow_distinct_ports[orig]l >= possible_port_scan_thresh &&

101

531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596

Slow Port Scanning with Bro

orig !in scan_triples)

{

scan_triples[orig] = table () &mergeable;
add possible_scan_sources[orig];

}

}

Check for low ports.
if (activate_priv_port_check && ! outbound && service < 1024/tcp &&
service !in troll_skip_service)
{
if (orig !in distinct_low_ports Il
service !in distinct_low_ports[orig])
{
if (orig !in distinct_low_ports)
distinct_low_ports[orig] = set() &mergeable;

add distinct_low_ports[orig][service];

if (Idistinct_low_ports[orig]l == priv_scan_trigger &&
orig !in Site::neighbor_nets)
{
local svrc_msg = fmt("low port trolling %s %s", orig, service);

NOTICE ([$note=LowPortTrolling , $src=orig,
$identifier=fmt("%s", orig),
$p=service , $msg=svrc_msg]);
RL_> Added print line
print fmt("%s — Notice LowPortTrolling: %s",
strftime ("%y—9%an—%d_9H.%M.%S" ,c$start_time), orig);
}

if (ignore_scanners_threshold > 0 &&
I distinct_low_ports[orig]l >
ignore_scanners_threshold)
ignore_addr(orig);

}

For sources that have been identified as possible scan sources,
keep track of per—host scanning.
if (orig in possible_scan_sources)
{
if (orig !in scan_triples)
scan_triples[orig] = table () &mergeable;

if (resp !in scan_triples[orig])
scan_triples[orig][resp] = set() &mergeable;

if (service !in scan_triples[orig][resp])

{

add scan_triples[orig][resp][service];

if (thresh_check_2(report_port_scan, rpts_idx,
orig , resp,
I'scan_triples[orig][resp]l))

{
local m = |scan_triples[orig][resp]l;
local rpts_idx_number = rpts_idx;

NOTICE ([$note=PortScan , $n=m, $src=orig,
$p=service ,
$identifier=fmt("%s—%d", orig, m),
$msg=fmt("%s has scanned %d ports of %s",
orig,, m, resp)]);
RL_> Added print line
print fmt("%s — Notice PortScan: %s has scanned %d ports of %s.
rpts_idx = %s",

102

597

598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662

Slow Port Scanning with Bro

strftime ("%y—9%a—%d_9%H.%M.%S" ,c$start_time), orig, m, resp,
rpts_idx_number);

return T;

Hook into the catch&release dropping. When an address gets restored , we reset
the source to allow dropping it again.
event Drop::address_restored(a: addr)

clear_addr(a);
RL_> Added print line
print fmt("Event: drop address_restored");

}

event Drop::address_cleared (a: addr)

clear_addr(a);
RL_> Added print line
print fmt("Event: drop address_cleared");

}

When removing a possible scan source, we automatically delete its scanned
hosts and ports. But we do not want the deletion propagated, because every
peer calls the expire_function on its own (and thus applies the delete
operation on its own table).
function remove_possible_source(s: set[addr], idx: addr): interval

{

suspend_state_updates () ;

delete scan_triples[idx];

resume_state_updates () ;

RL_> Added print line

print fmt("Function: remove_possible_source");

return 0 secs;

}

To recognize whether a certain threshhold vector (e.g. report_peer_scans)
has been transgressed , a global variable containing the next vector index
(idx) must be incremented. This cumbersome mechanism is necessary because
values naturally don’t increment by one (e.g. replayed table merges).
function thresh_check(v: vector of count, idx: table[addr] of count,

orig: addr, n: count): bool

{

RL_> Should we ignore this scanner because of enough alarms rised?
if (ignore_scanners_threshold > 0 && n > ignore_scanners_threshold)
{
ignore_addr (orig);
return F;

}

RL_> Check if we will rise an scan alarm vs report_thesholds.
if (idx[orig] <= Ivl && n >= v[idx[orig]])
{
RL_> Increment number of count for this address
++idx[orig];

return T;
}
else
return F;
}

Same as above, except the index has a different type signature.

103

663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693

694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710

711
712
713
714
715
716
717
718
719
720
721
722
723
724

725
726

Slow Port Scanning with Bro

function thresh_check_2(v: vector of count, idx: table[addr,addr] of count,

orig: addr, resp: addr, n: count): bool

{

if (ignore_scanners_threshold > 0 && n > ignore_scanners_threshold)
{
ignore_addr (orig);
return F;

}

if (idx[orig,resp] <= Ivl && n >= v[idx[orig, resp]])
{
++idx [orig ,resp];
return T;
}
else
return F;

}

event connection_established (c: connection)

H o H

H*

{
local is_reverse_scan = (c$orig$state == TCP_INACTIVE) ;

Scan::check_scan(c, T, is_reverse_scan);
}
RL_> Added notice
NOTICE ([$note=ConnectionPartial , $src=c$id$orig_h,
$p=cS$idS$resp_p ,
$msg=fmt ("Event: %s have establiskjed a connection on host %s, port %d",
c$idSorig_h, c$id$resp_h, c$id$resp_p)1);
print fmt("%s — Event: %s have establiskjed a connection on host %s, port %d",
strftime ("%y—%m—%d_9H.%M.%S" , c$start_time), c$id$orig_h, c$idSresp_h,
c$idSresp_p);
1

event new_connection_contents (c: connection)

oM o

3+

¥ W

B3

{
local is_reverse_scan = (c$resp$state == TCP_CLOSED);
if ((cSorig$state == TCP_CLOSED || c$resp$state == TCP_CLOSED) &&
("f" in cS$history Il "F" in cS$history))
{
Scan::check_scan(c, F, is_reverse_scan);

}
RL_> Added notice

NOTICE ([$note=ConnectionPartial , $src=c$id$orig_h,
$p=cS$id$resp_p ,
$msg=fmt("Event: %s have FIN scanned host %s, port %d",
c$idSorig_h, c$id$resp_h, c$idSresp_p)]);
print fmt("%s — Event: %s have FIN scanned host %s, port %d",
strftime ("%y—9%m—%d_9H.%M.%S" ,c$start_time), c$id$orig_h, c$idSresp_h,
c$idSresp_p);
1
else if ((cS$orig$state == TCP_CLOSED || c$resp$state == TCP_CLOSED) &&
("i" in c$history Il "I" in cS$history))
{
Scan::check_scan(c, F, is_reverse_scan);
}
}
RL_> Added notice
NOTICE ([$note=ConnectionPartial , $src=c$id$orig_h,
$p=c$idSresp_p ,
$msg=fmt("Event: %s have FIN scanned host %s, port %d",
cidorig_h, c$idSresp_h, c$id$resp_p)]);
print fmt("%s — Event: %s have FIN scanned host %s, port %d",
strftime ("%y—%m—%d_9%H.9%M.%S" ,c$start_time), c$id$orig_h, c$id$resp_h,
cidresp_p):
}

104

727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763

764
765

766

767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790

Slow Port Scanning with Bro

event partial_connection(c: connection)

{
#RL_> line added
local is_reverse_scan = (c$resp$state == TCP_PARTIAL);

if (cSorig$state == TCP_PARTIAL || c$resp$state == TCP_PARTIAL)
{

Scan::check_scan(c, F, is_reverse_scan);

}

else

{

Scan::check_scan(c, T, is_reverse_scan);

}

}
RL_> orginal line under
Scan::check_scan(c, T, F);
RL_> Added notice
NOTICE ([$note=ConnectionPartial , $src=c$id$orig_h,
$p=c$idSresp_p ,
$msg=fmt("%s have performed an partial connection on port %s",
cidorig_h, c$idSresp_p)1);
RL_> Added print line
print fmt("Event: partial_connection");
1
RL_> Roger’s #######H##HHHHHHHHHHHHHHHHHHHHHHHHHBHHHHHHHRS
if (c$orig$state == TCP_RESET Il c$resp$state == TCP_RESET)
{
local is_reverse_scan = (c$resp$state == TCP_RESET);
Scan :: check_scan(c, T, F);
RL_> Added notice
NOTICE ([$note=ConnectionPartial , $src=c$id$orig_h,
$p=c$id$resp_p,
$msg=fmt (" Event: %s may be performing BLABLABLABLA scan to host %s, port
Yd ",
cidorig_h, c$idSresp_h, c$id$resp_p)]);
print fmt("%s — Event: %s may be performing BLABLABLABLA scan to host %s,
port %d",
strftime ("%y—%m—%d_9H.%M.%S" , c$start_time), c$id$orig_h, c$idSresp_h,
c$idSresp_p);
1
}

event connection_attempt(c: connection)
{
local is_conn_attempt = (c$orig$state == TCP_INACTIVE) ;
Scan::check_scan(c, F, is_conn_attempt);
}
RL_> Added notice

NOTICE ([$note=ConnectionAttempt, $src=c$idSorig_h,
$p=cS$idS$resp_p ,
$msg=fmt("%s have attempted connection on by port %s",
c$idSorig_h, c$idS$resp_p)1):
RL_> Added print line
print fmt("Event: connection_attempt");
}

event connection_half_finished(c: connection)

{

Half connections never were "established", so do scan—checking here.
Scan::check_scan(c, F, F);
}
RL_> Added notice
NOTICE ([$note=ConnectionHalfFinished , $src=c$id$orig_h ,

105

791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820

821

822
823
824
825
826
827
828
829

830
831
832
833
834
835
836
837
838
839
840
841
842
843
844

845
846
847
848
849
850
851
852
853

Slow Port Scanning with Bro

B3

$p=c$idS$resp_p,
$msg=fmt("%s have been half finished on by port %s",
c$idSorig_h, c$id$resp_p)]):

RL_> Added print line
print fmt("Event: connection_half_finished");
}

event connection_rejected(c: connection)

H*

{
local is_reverse_scan = c$orig$state == TCP_RESET;

if (c$orig$state == TCP_CLOSED || c$resp$state == TCP_CLOSED)
{
Scan::check_scan(c, F, F);

}

else
Scan::check_scan(c, F, is_reverse_scan);

}

RL_> Added notice

NOTICE ([$note=ConnectionRejected , $src=c$id$orig_h,
$p=cS$idS$resp_p ,
$msg=fmt("%s have been rejected on by port %s",
c$idSorig_h, c$idSresp_p)1);

RL_> Added print line
print fmt("%s — Event: connection_REJECTED: %s have been rejected by %s port %s

n
5

strftime ("%y—%a-%d_9%H.9%M.%S " , c$start_time), c$id$orig_h, c$id$resp_h,
cidresp_p);

}

1

RL_> Added notice

NOTICE ([$note=ConnectionReset , $src=c$id$orig_h,
$p=c$idSresp_p ,
$msg=fmt("%s have too many TCP flags set — possible FIN scan on port %s
cidorig_h, c$idSresp_p)1);
RL_> Added print line
print fmt("%s — Event: %s possible FIN scan on port %s",
strftime ("%y—%m—%d_9%H.%M.%S" , c$start_time), c$idSorig_h, c$idSresp_p);
}
}

event connection_reset (c: connection)

I 3 o H

™

{
if (c$orig$state == TCP_INACTIVE || cS$resp$state == TCP_INACTIVE)
{
We never heard from one side — that looks like a scan.
RL_> — should the expresion under with > have had paranthesis ????
Scan::check_scan(c, c$orig$size + c$resp$size > 0, c$orig$state == TCP_INACTIVE)

}

RL_> Added notice
NOTICE ([$note=ConnectionReset , $src=c$id$orig_h,
$p=c$idSresp_p ,
$msg=fmt("%s have been reset on by port %s",
c$idSorig_h, c$idSresp_p)]);

RL_> Added print line

106

854

855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873

874

875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892

Slow Port Scanning with Bro

print fmt("%s — Event: connection_RESET: Endpoint %s send RST on behalf of
port %s",
strftime ("%y—%m—%d_9H.%M.%S" ,c$start_time), c$idSorig_h, c$idSresp_p);

event connection_pending(c: connection)

{
if (c$orig$state == TCP_PARTIAL && c$resp$state == TCP_INACTIVE)

{
Scan:: check_scan(c, F, F);
}
}
|
RL_> Added notice
NOTICE ([$note=ConnectionPending , $src=c$id$orig_h,
$p=c$idS$resp_p ,
$msg=fmt("%s are pending connection to %s port %s",
cidorig_h, cidresp_h, cidresp_p)]);
RL_> Added print line
print fmt("%s — Event: connection_pending: %s are pending connection to %s
port %s",
strftime ("%y—%a%d_9%H.9%M.%S " , c$start_time), c$id$orig_h, c$id$resp_h,
cidresp_p);
}
}

Report the remaining entries in the tables.
event bro_done ()
{
for (orig in distinct_peers)
scan_summary (distinct_peers , orig);

for (orig in distinct_ports)
port_summary (distinct_ports , orig);

for (orig in distinct_ports)
slow_port_summary (distinct_ports , orig);

for (orig in distinct_low_ports)
lowport_summary (distinct_low_ports , orig);

}

107

0NN kW

10
11
12

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

35
36
37
38
39
40
41
4
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

Slow Port Scanning with Bro

C.6 Bro TCP Events - Built In Functiones

This file was automatically generated by bifcl from /da/www/ git/modules/master/bro/src
/analyzer/protocol/tcp/events.bif (plugin mode).

Generated when reassembly starts for a TCP connection. This event is raised
at the moment when Bro’s TCP analyzer enables stream reassembly for a
connection.

#i#

c: The connection.

##

.. bro:see:: connection_EOF connection_SYN_packet connection_attempt

connection_established connection_external connection_finished

connection_first_ACK connection_half_finished connection_partial_close
#t connection_pending connection_rejected connection_reset connection_reused
connection_state_remove connection_status_update connection_timeout

scheduled_analyzer_applied new_connection partial_connection

export {

global new_connection_contents: event(c: connection);

Generated for an unsuccessful connection attempt. This event is raised when
an originator unsuccessfully attempted to establish a connection.

"Unsuccessful" is defined as at least :bro:id:‘tcp_attempt_delay ° seconds
having elapsed since the originator first sent a connection establishment
packet to the destination without seeing a reply.

##

c: The connection.

##

.. bro:see:: connection_EOF connection_SYN_packet connection_established

connection_external connection_finished connection_first_ ACK

connection_half_finished connection_partial_close connection_pending

connection_rejected connection_reset connection_reused connection_state_remove
#t connection_status_update connection_timeout scheduled_analyzer_applied

new_connection new_connection_contents partial_connection

global connection_attempt: event(c: connection);

Generated when a SYN-ACK packet is seen in response to a SYN packet during
a TCP handshake. The final ACK of the handshake in response to SYN-ACK may
or may not occur later , one way to tell is to check the shistory* field of
:bro:type: ‘connection ° to see if the originator sent an ACK, indicated by

A’ in the history string.

#i#

c: The connection.

#i#

.. bro:see:: connection_EOF connection_SYN_packet connection_attempt

connection_external connection_finished connection_first_ ACK

connection_half_finished connection_partial_close connection_pending

connection_rejected connection_reset connection_reused connection_state_remove
connection_status_update connection_timeout scheduled_analyzer_applied

#t new_connection new_connection_contents partial_connection

global connection_established: event(c: connection);

Generated for a new active TCP connection if Bro did not see the initial
handshake. This event is raised when Bro has observed traffic from each
endpoint, but the activity did not begin with the usual connection

establishment.

#i#

c: The connection.

#1#

.. bro:see:: connection_EOF connection_SYN_packet connection_attempt

connection_established connection_external connection_finished

connection_first_ACK connection_half_finished connection_partial_close
connection_pending connection_rejected connection_reset connection_reused

108

65
66
67
68
69
70
71
72
73
74
75
76
77

79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131

Slow Port Scanning with Bro

connection_state_remove connection_status_update connection_timeout
scheduled_analyzer_applied new_connection new_connection_contents
##

global partial_connection: event(c: connection);

Generated when a previously inactive endpoint attempts to close a TCP
connection via a normal FIN handshake or an abort RST sequence. When the
endpoint sent one of these packets, Bro waits

:bro:id: ‘tcp_partial_close_delay ° prior to generating the event, to give
the other endpoint a chance to close the connection normally.

##

c: The connection.

#i#

.. bro:see:: connection_EOF connection_SYN_packet connection_attempt

connection_established connection_external connection_finished

connection_first_ACK connection_half_finished connection_pending

connection_rejected connection_reset connection_reused connection_state_remove
connection_status_update connection_timeout scheduled_analyzer_applied
new_connection new_connection_contents partial_connection

global connection_partial_close: event(c: connection);

Generated for a TCP connection that finished normally. The event is raised

when a regular FIN handshake from both endpoints was observed.

##

c: The connection.

#i#

.. bro:see:: connection_EOF connection_SYN_packet connection_attempt

connection_established connection_external connection_first_ ACK

#it connection_half_finished connection_partial_close connection_pending

connection_rejected connection_reset connection_reused connection_state_remove
connection_status_update connection_timeout scheduled_analyzer_applied

new_connection new_connection_contents partial_connection

global connection_finished: event(c: connection);

Generated when one endpoint of a TCP connection attempted to gracefully close
the connection, but the other endpoint is in the TCP_INACTIVE state. This can
happen due to split routing, in which Bro only sees one side of a connection.
#i#

c: The connection.

##

.. bro:see:: connection_EOF connection_SYN_packet connection_attempt

connection_established connection_external connection_finished

connection_first_ACK connection_partial_close connection_pending

connection_rejected connection_reset connection_reused connection_state_remove
connection_status_update connection_timeout scheduled_analyzer_applied

new_connection new_connection_contents partial_connection

global connection_half_finished: event(c: connection);

Generated for a rejected TCP connection. This event is raised when an

originator attempted to setup a TCP connection but the responder replied

with a RST packet denying it.

##

.. bro:see:: connection_EOF connection_SYN_packet connection_attempt

connection_established connection_external connection_finished

connection_first_ACK connection_half_finished connection_partial_close

connection_pending connection_reset connection_reused connection_state_remove
connection_status_update connection_timeout scheduled_analyzer_applied

new_connection new_connection_contents partial_connection

##

c: The connection.

##

.. note::

#i#

109

132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198

Slow Port Scanning with Bro

#it If the responder does not respond at all, :bro:id:‘connection_attempt * is
#t raised instead. If the responder initially accepts the connection but
aborts it later , Bro first generates :bro:id:‘connection_established *
and then :bro:id:‘connection_reset *

global connection_rejected: event(c: connection);

Generated when an endpoint aborted a TCP connection. The event is raised
when one endpoint of an established TCP connection aborted by sending a RST
packet.

##

c: The connection.

##

.. bro:see:: connection_EOF connection_SYN_packet connection_attempt

connection_established connection_external connection_finished

connection_first_ACK connection_half_finished connection_partial_close
connection_pending connection_rejected connection_reused

connection_state_remove connection_status_update connection_timeout

scheduled_analyzer_applied new_connection new_connection_contents

partial_connection

global connection_reset: event(c: connection);

Generated for each still —open TCP connection when Bro terminates.

#i#

c: The connection.

##

.. bro:see:: connection_EOF connection_SYN_packet connection_attempt

connection_established connection_external connection_finished

connection_first_ACK connection_half_finished connection_partial_close
#it connection_rejected connection_reset connection_reused connection_state_remove
connection_status_update connection_timeout scheduled_analyzer_applied
new_connection new_connection_contents partial_connection bro_done
global connection_pending: event(c: connection);

Generated for a SYN packet. Bro raises this event for every SYN packet seen

by its TCP analyzer.

#i#

c: The connection.

#i#

pkt: Information extracted from the SYN packet.

##

.. bro:see:: connection_EOF connection_attempt connection_established

connection_external connection_finished connection_first_ACK

connection_half_finished connection_partial_close connection_pending

connection_rejected connection_reset connection_reused connection_state_remove
connection_status_update connection_timeout scheduled_analyzer_applied
new_connection new_connection_contents partial_connection

##

.. note::

##

#it This event has quite low—level semantics and can potentially be expensive
to generate. It should only be used if one really needs the specific

#t information passed into the handler via the ‘‘pkt‘‘ argument. If not,

handling one of the other ‘‘connection_x‘‘ events is typically the

#t better approach.

global connection_SYN_packet: event(c: connection , pkt: SYN_packet);

Generated for the first ACK packet seen for a TCP connection from
its soriginator *.

##

c: The connection.

##

.. bro:see:: connection_EOF connection_SYN_packet connection_attempt
connection_established connection_external connection_finished

110

199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252

253
254
255
256
257
258
259
260
261
262
263
264

Slow Port Scanning with Bro

#it
#i#t
#
#t
##
#it
##
#it

connection_half_finished connection_partial_close connection_pending
connection_rejected connection_reset connection_reused connection_state_remove
connection_status_update connection_timeout scheduled_analyzer_applied
new_connection new_connection_contents partial_connection

note ::

This event has quite low—level semantics and should be used only rarely.

global connection_first_ ACK: event(c: connection);

Generated at the end of reassembled TCP connections. The TCP reassembler

raised the event once for each endpoint of a connection when it finished

reassembling the corresponding side of the communication.

##

c: The connection.

##

is_orig: True if the event is raised for the originator side.

##

bro:see:: connection_SYN_packet connection_attempt connection_established
connection_external connection_finished connection_first_ ACK

connection_half_finished connection_partial_close connection_pending

connection_rejected connection_reset connection_reused connection_state_remove
connection_status_update connection_timeout scheduled_analyzer_applied

new_connection new_connection_contents partial_connection

global connection_EOF: event(c: connection , is_orig: bool);

Generated for every TCP packet. This is a very low—level and expensive event

that should be avoided when at all possible. It’s usually infeasible to

handle when processing even medium volumes of traffic in real—time. It’s

slightly better than :bro:id: ‘new_packet‘ because it affects only TCP, but

not much. That said, if you work from a trace and want to do some

packet—level analysis, it may come in handy.

##

c: The connection the packet is part of.

##

is_orig: True if the packet was sent by the connection’s originator.

#i#

flags: A string with the packet’s TCP flags. In the string, each character

corresponds to one set flag, as follows: “‘S*‘ — SYN; “‘F‘‘ — FIN;

‘‘R** — RST; ‘A — ACK; ‘‘P‘‘ —> PUSH.

#it

seq: The packet’s TCP sequence number.

#i#

ack: The packet’s ACK number.

##

len: The length of the TCP payload, as specified in the packet header.

##

payload: The raw TCP payload. Note that this may be shorter than xlenx if

the packet was not fully captured.

#i#

#it bro:see:: new_packet packet_contents tcp_option tcp_contents tcp_rexmit

global tcp_packet: event(c: connection , is_orig: bool , flags: string , seq: count ,
ack: count , len: count , payload: string);

Generated for each option found in a TCP header. Like many of the *‘tcp_x*°

events, this is a very low—level event and potentially expensive as it may

be raised very often.

##

c: The connection the packet is part of.

##

is_orig: True if the packet was sent by the connection’s originator.

##

opt: The numerical option number, as found in the TCP header.

##

111

265
266
267
268
269
270
271
272
273
274
275
276
2717
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303

304
305
306
307

308
309
310
311

Slow Port Scanning with Bro

optlen: The length of the options value.

#i#t

.. bro:see:: tcp_packet tcp_contents tcp_rexmit

#it

.. note:: There is currently no way to get the actual option value, if any.

global tcp_option: event(c: connection , is_orig: bool , opt: count , optlen: count);

Generated for each chunk of reassembled TCP payload. When content delivery is
enabled for a TCP connection (via :bro:id: ‘tcp_content_delivery_ports_orig *,
:bro:id:‘tcp_content_delivery_ports_resp °,

:bro:id: ‘tcp_content_deliver_all_orig *,

:bro:id:‘tcp_content_deliver_all_resp ‘), this event is raised for each chunk
of in—order payload reconstructed from the packet stream. Note that this

event is potentially expensive if many connections carry significant amounts
of data as then all that data needs to be passed on to the scripting layer.

##

c: The connection the payload is part of.

##

is_orig: True if the packet was sent by the connection’s originator.

##

seq: The sequence number corresponding to the first byte of the payload

#i# chunk.

##

contents: The raw payload, which will be non—empty.

##

.. bro:see:: tcp_packet tcp_option tcp_rexmit

tcp_content_delivery_ports_orig tcp_content_delivery_ports_resp

tcp_content_deliver_all_resp tcp_content_deliver_all_orig

#i#

.. note::

#i#

#it The payload received by this event is the same that is also passed into

application—layer protocol analyzers internally. Subsequent invocations of

this event for the same connection receive non—overlapping in—order chunks

of its TCP payload stream. It is however undefined what size each chunk

#it has; while Bro passes the data on as soon as possible, specifics depend on

network—level effects such as latency, acknowledgements, reordering , etc.

global tcp_contents: event(c: connection , is_orig: bool , seq: count , contents: string
)

TODO.

global tcp_rexmit: event(c: connection , is_orig: bool , seq: count , len: count |,

data_in_flight: count , window: count);

} # end of export section
module GLOBAL;

112

~N NN R W=

10

11

13

14

15

17

18

20

Slow Port Scanning with Bro

C.7 Bro - Content of Notice.log, Isolated Scan Session, Scan Detected

#separator \x09
#set_separator s

#empty_field (empty)

#unset_field —

#path notice

#open 2013—11—-13—-22—-42—14

#fields ts uid id.orig_h id.orig_p
proto note msg sub src dst P
actions policy_items suppress_for

remote_location.region
remote_location.longitude
metric_index .network

remote_location.city

metric_index . host

remote_location .

id . resp_h id.resp_p
n peer_descr

dropperemote_location.country_code

latitude
metric_index . str

#types time string addr port addr port enum enum string string
addr addr port count string table [enum] table [count] interval
bool string string string doubledouble addr string subnet
1384378934.244646 — — — — — tcp Scan ::
LowPortTrolling low port trolling 192.168.1.200 23/tcp — 192.168.1.200 —
23 — bro Notice : : ACTION_LOG 3600.000000 F —
1384380497.798781 — — — — — tep Scan:: PortScan
192.168.1.200 has scanned 20 ports of 192.168.1.102 — 192.168.1.200 —
880 20 bro Notice : : ACTION_LOG 6 3600.000000 F
1384381158.797887 — — — — — tep Scan:: PortScan
192.168.1.200 has scanned 30 ports of 192.168.1.102 — 192.168.1.200 —
9 30 bro Notice : : ACTION_LOG 6 3600.000000 F
1384381819.897154 — — — - — tcp Scan:: PortScan
192.168.1.200 has scanned 40 ports of 192.168.1.102 — 192.168.1.200 —
81 40 bro Notice : : ACTION_LOG 6 3600.000000 F
1384382480.796665 — — — — — tcp Scan:: PortScan
192.168.1.200 has scanned 50 ports of 192.168.1.102 — 192.168.1.200 —
636 50 bro Notice : : ACTION_LOG 6 3600.000000 F
1384383141.523044 — — — — — tep Scan:: PortScan
192.168.1.200 has scanned 60 ports of 192.168.1.102 — 192.168.1.200 —
19 60 bro Notice : : ACTION_LOG 6 3600.000000 F
1384383802.623654 — — — — — tep Scan:: PortScan
192.168.1.200 has scanned 70 ports of 192.168.1.102 — 192.168.1.200 —
106 70 bro Notice : : ACTION_LOG 6 3600.000000 F
1384384463.724233 — — — — — tcp Scan:: PortScan
192.168.1.200 has scanned 80 ports of 192.168.1.102 — 192.168.1.200 —
515 80 bro Notice : : ACTION_LOG 6 3600.000000 F
1384385124.824800 — — — — — tep Scan:: PortScan
192.168.1.200 has scanned 90 ports of 192.168.1.102 — 192.168.1.200 —
497 90 bro Notice : : ACTION_LOG 6 3600.000000 F
1384385400.480270 — — — - — — Scan ::
PortScanSummary 192.168.1.200 scanned a total of 99 ports —
192.168.1.200 — — 99 bro Notice : : ACTION_LOG 6
3600.000000 F — — — — — — — —
1384385400.480270 — - — - Scan ::

LowPortScanSummary

192.168.1.200 —

3600.000000 F —
#close 2013—11-14—00—30—-00

94

bro

192.168.1.200 scanned a total
Notice :: ACTION_LOG 6

of 94 low ports

113

~N NN R W=

11

12

14

15

16

18

19

20
21

22

23
24

Slow Port Scanning with Bro

C.8 Bro - Content of Notice.log, Backscatter Scan Session, Scan Detected

#separator \x09
#set_separator s
#empty_field (empty)
#unset_field —

#path notice

#open 2013—11-24—06—27—13

#fields ts uid id.orig_h id.orig_p id . resp_h id.resp_p
proto note msg sub src dst P n peer_descr
actions policy_items suppress_for dropped remote_location.country_code
remote_location.region remote_location.city remote_location.latitude
remote_location.longitude metric_index . host metric_index . str
metric_index .network

#types time string addr port addr port enum enum string string
addr addr port count string table [enum] table [count] interval

bool string string string double
double addr string subnet

1385270833.858184 — — — — — tep Scan::
LowPortTrolling low port trolling 192.168.1.200 993/tcp — 192.168.1.200 —

993 — bro Notice : : ACTION_LOG
6 3600.000000 F — — — — — — —

1385272333.877256 — — — — — tep Scan:: PortScan

192.168.1.200 has scanned 20 ports of 192.168.1.102 — 192.168.1.200 —
548 20 bro Notice : : ACTION_LOG 6 3600.000000 F

1385272993.885218 — — — — — tep Scan :: PortScan

192.168.1.200 has scanned 30 ports of 192.168.1.102 — 192.168.1.200 —
280 30 bro Notice : : ACTION_LOG 6 3600.000000 F

1385273653.893155 — — — — — tep Scan:: PortScan

192.168.1.200 has scanned 40 ports of 192.168.1.102 — 192.168.1.200 —
306 40 bro Notice : : ACTION_LOG 6 3600.000000 F

1385274313.901415 — — — — — tep Scan:: PortScan

192.168.1.200 has scanned 50 ports of 192.168.1.102 — 192.168.1.200 —
497 50 bro Notice : : ACTION_LOG 6 3600.000000 F

1385274973.909370 — — — — — tep Scan:: PortScan

192.168.1.200 has scanned 60 ports of 192.168.1.102 — 192.168.1.200 —
311 60 bro Notice : : ACTION_LOG 6 3600.000000 F

1385275633.917111 — — — - — tcp Scan:: PortScan

192.168.1.200 has scanned 70 ports of 192.168.1.102 — 192.168.1.200 —
82 70 bro Notice : : ACTION_LOG 6 3600.000000 F
1385276293.924452 — — — — — tep Scan:: PortScan
192.168.1.200 has scanned 80 ports of 192.168.1.102 — 192.168.1.200 —
636 80 bro Notice : : ACTION_LOG 6 3600.000000 F
1385276585.194419 — — — — — tep Scan:: PortScan
has scanned 20 ports of :: — e - 179 20 bro
Notice : : ACTION_LOG 6 3600.000000
F — — — — — — — —
1385276953.931942 — — — — — tep Scan:: PortScan
192.168.1.200 has scanned 90 ports of 192.168.1.102 — 192.168.1.200 —
100 90 bro Notice : : ACTION_LOG 6 3600.000000 F
1385277175.605353 — — — — — tep Scan:: PortScan
has scanned 30 ports of :: — B — 60909 30 bro
Notice : : ACTION_LOG 6 3600.000000
F — — — — — — — —

1385277300.635201 — — — — — — Scan ::
PortScanSummary :: scanned a total of 41 ports — N — — 41

bro Notice :: ACTION_LOG 6 3600.000000 F — —

114

Slow Port Scanning with Bro

1385277300.635201 - — - — — — Scan ::
PortScanSummary 192.168.1.200 scanned a total of 98 ports —
192.168.1.200 — — 98 bro Notice : : ACTION_LOG 6
3600.000000 F — - — — - — - -

1385277300.635201 — — — — — — Scan ::
LowPortScanSummary 192.168.1.200 scanned a total of 94 low ports —
192.168.1.200 — — 94 bro Notice : : ACTION_LOG 6
3600.000000 F — — — - - — - -

#close 2013—11-24—08—15-00

115

~N NN R W=

\O

11

Slow Port Scanning with Bro

C.9 Bro - Content of Notice.log, Backscatter Scan Session, Scan Not Detected

#separator \x09
#set_separator s
#empty_field (empty)
#unset_field —

#path notice

#open 2013—11-24—09—-58—04

#fields ts uid id.orig_h id.orig_p id . resp_h id.resp_p
proto note msg sub src dst P n peer_descr
actions policy_items suppress_for dropperemote_location.country_code
remote_location.region remote_location.city remote_location.latitude
remote_location.longitude metric_index . host metric_index . str
metric_index .network

#types time string addr port addr port enum enum string string
addr addr port count string table [enum] table [count] interval

bool string string string doubledouble addr string subnet

1385283484.875938 — — — — — tcp Scan:: PortScan

has scanned 20 ports of :: — B — 179 20 bro
Notice : : ACTION_LOG 6 3600.000000 —
1385284075.140645 — — — — — tep Scan:: PortScan
has scanned 30 ports of :: — B — 60909 30 bro
Notice : : ACTION_LOG 6 3600.000000 —

1385284200.638245 — — — — — — Scan ::
PortScanSummary :: scanned a total of 41 ports — N — —

bro Notice : : ACTION_LOG 6 3600.000000 F — —

#close 2013—11-24—10—10—-00

41

116

Slow Port Scanning with Bro

D CAIDA Dataset - About

D.1 The CAIDA description of dataset

The following is from the file README-2013 on CAIDA website. Our dataset did not suffer from packet
loss. We have removed some information regarding other datasets having lost packets.

The CAIDA Anonymized Internet Traces 2013 Dataset

Overview

This dataset contains anonymized passive traffic traces from CAIDA’s passive
monitors in 2013. It contains traffic traces from the ’equinix-chicago’ and

’equinix-sanjose’ high-speed monitors.

Dataset Contents

trace files (*.pcap.gz): compressed pcap (tcpdump) format traces

time files (*.times.gz): contains original nanosecond-precision timestamps.
The nanosecond timestamps in each *.times.gz line up exactly with the
packets in the corresponding pcap file (containing timestamps truncated

to microsecond precision).

stats files (*.pcap.stats): statistics on the trace, produced by crl_stats
(part of the CoralReef suite of tools).

- file md5.md5: contains md5 checksums for all files

Creation process

Raw traces were taken on Endace DAG cards with ’dagconvert’ (part of Endace dagtools):
dagconvert -s SNAPLEN -v -V -d DAG_DEVICE -t DURATION -r 2g -T dag:erf -o RAW_TRACE

Raw traces were stripped of payload with:
crl_to_dag -14 -Cipfilter=’1=1’ -o STRIPPED_TRACE RAW_TRACE

Payload-stripped traces were anonymized and split in 1-minute chunks with:
crl_to_pcap -r -Canon=KEYFILE -Cai -Ci=60 -o ANON_TRACE STRIPPED_TRACE

This resulted in pcap files that only include layer 3 (IPv4 and IPv6) and layer 4
(eg. TCP,UDP,ICMP) headers, with no packet payload.

Traces are named using the following format: {monitor}.{direction}.{start-time}.anon.pcap.gz

117

Slow Port Scanning with Bro

* monitor: equinix-chicago / equinix-sanjose
* direction: dirA / dirB
* start-time: time trace began, format: yyyymmdd-hhmmss.UTC

MD5 checksums were kept with the trace files, and files were checked against
these checksums whenever data was transferred between physical media.

At different stages of the traffic capturing process packet loss can occur, at the end of
this README we try to summarize the different types of losses we detected during various

stages.

Due to the way the monitoring equipment is set up to do time-synchronization
we don’t know how well-aligned timestamps between directions of a single link are.

Acceptable Use Agreement

The AUA that you accepted when you were given access to these datas is included

in pdf format as a separate file in the same directory as this README file.

Attribution

When referencing this dataset (as required by the AUA), please use:
The CAIDA UCSD Anonymized Internet Traces 2013 - [dates used],
http://www.caida.org/data/passive/passive_2013_dataset.xml

Users are encouraged to include the following attribution in the
acknowledgments section of their document:
Support for CAIDA’s Internet Traces is provided by the National Science
Foundation, the US Department of Homeland Security, and
CAIDA Members.

More Information

The equinix-chicago 0C192 monitor setup:
http://www.caida.org/data/passive/monitors/equinix-chicago.xml

The Day in the Life of the Internet project:
http://www.caida.org/projects/ditl/

The CoralReef Software Suite:

118

Slow Port Scanning with Bro

http://www.caida.org/tools/measurement/coralreef/

Metadata

This section provides some more detailed information on various traces, specifically
on packet loss.
pkts_captured: Total number of packets that was captured by hardware
pkts_lost_hw: Number of packets the capturing hardware reported to have
lost. ’>=’ indicates that the loss between 2 packets in the traces was more
then the loss counter can accomodate (65535 packets).
pkts_lost_stripping: Number of packets removed from traces as result of payload stripping step
pkts_lost_anon: Number of packets lost from traces as result of anonymization step

Note that these numbers are the packet loss we can measure.

Event log:

D.2 CAIDA Dataset - Approved Access

Fra: Paul Hick [mailto:pphick@caida.org]

Sendt: 20. september 2013 22:36

Til: roger.larsen@hig.no

Kopi: passive-data-access@caida.org

Emne: Re: [passive-data-access] Passive Data Request: Roger Larsen (Gj?vik University College)
Hello Roger Larsen,

Thank you for requesting anonymized Internet trace data from CAIDA.

Your request has been approved

A username and temporary password has been assigned to you.

Your username is your email-address: roger.larsen@hig.no

Your temporary password is : thasheij
The procedure for accessing the CAIDA data is as follows:

1.) You can use the temporary password to log in to

119

Slow Port Scanning with Bro

https://data.caida.org/cgi-bin/chpw
You will be prompted to change your password to a permanent one at that time.

2.) You can use your username and new, permanent password to download datasets from

https://data.caida.org/datasets/passive-2013/ (Anonymized
2013 Internet Traces)

https://data.caida.org/datasets/passive-2012/ (Anonymized
2012 Internet Traces)

https://data.caida.org/datasets/passive-2011/ (Anonymized

2011 Internet Traces)
We’ve had several people experience difficulties retrieving the data using web browsers. Our gues

For more information on usage of CAIDA data see the CAIDA data usage
FAQ:
http://www.caida.org/data/data-usage-faq.xml

We rely on you to comply with the Acceptable Use Policies for this data, and report all publicat:
http://www.caida.org/data/publications/bydataset/index.xml
unless you ask that your publication not be included on our website.

We have subscribed you to our passive-data-announce@caida.org mailinglist that we use for announc

=== Anonymized 2013 Internet Traces ===

More information about the ’Anonymized 2013 Internet Traces’ can be found at:
http://www.caida.org/data/passive/passive_2013_dataset.xml
https://data.caida.org/datasets/passive-2013/README-2013

The README file includes information about packet loss and other notes on a per-trace basis.

=== Anonymized 2012 Internet Traces ===

More information about the ’Anonymized 2012 Internet Traces’ can be found at:
http://www.caida.org/data/passive/passive_2012_dataset.xml
https://data.caida.org/datasets/passive-2012/README-2012

The README file includes information about packet loss and other notes on a per-trace basis.

=== Anonymized 2011 Internet Traces ===

More information about the ’Anonymized 2011 Internet Traces’ can be found at:
http://www.caida.org/data/passive/passive_2011_dataset.xml

https://data.caida.org/datasets/passive-2011/README-2011

The README file includes information about packet loss and other notes on a per-trace basis.

120

Slow Port Scanning with Bro

We urge researchers to consider the data carefully and be sure that their use in research is cons
Best Regards,

Paul Hick

Data Administrator

Cooperative Association for Internet Data Analysis
San Diego Supercomputer Center

University of California San Diego

9500 Gilman Drive, La Jolla, CA 92093-0505

Phone: (858) 822-3674

URL : http://www.caida.org/ pphick

Email: pphick@caida.org

On Thu, 2013-09-19 at 12:06 -0700, roger.larsen@hig.no wrote:
stk sk ok o ok ok sk ok ok o ok sk sk ok o ok sk sk ok e sk sk ok o sk sk sk ok ke ok sk sk ok o ok ok

This message was generated by the CAIDA formhandler in response to a

submission, detailed below.
sk ok s ok sk o ok sk ok ok ok ok s ok sk ok ok ok ok 3 ok sk ok ok ok ok ok sk sk ok ok ok ok

A Passive Data Request form was submitted by roger.larsen@hig.no on
Thursday, September 19, 2013 at 12:06:25

Here is a summary of the submission. Event logged as follows:

> —mee- [1957] 12:06:25 09/19/2013 :: roger.larsen®hig.no submitted
> from Roger Larsen (roger.larsen®hig.no) from Gjvik University
> College

DETAILS:

Status: academic researcher/student,

A\

First Name: Roger

Last Name: Larsen

Institution: Gjvik University College

Address: Gjvik University College

Postboks 191

2802 Gjvik, Norway

Phone Number: +47 95237640

Email: roger.larsen@hig.no

Position: student,

Advisor’s Name (if student): Slobodan Petrovic Project URL:

Usage: I present writing a master thesis regarding Bro IDS and port

V V V V V V V V V V V V V V

scanning. I want to inject computer network traffic to test my

121

Slow Port Scanning with Bro

V V V V V V V V V V V

vV V V V V

scripts. Thanks

Datasets: passive-2013,passive-2012,passive-2011
PhD students:

MS students: 1

Other students:

AUP: RL

Temporary password: (removed)

Already have password:

Subscribe to data-announce: yes

Errors that occured during submission:
+ No errors detected.

122

03O\ N AW~

Slow Port Scanning with Bro

E Snort Configuration

#

VRT Rule Packages Snort.conf

#

For more information visit us at:

http://www. snort.org Snort Website

http://vrt—blog. snort.org/ Sourcefire VRT Blog

#

Mailing list Contact: snort—sigs@lists .sourceforge . net

False Positive reports: fp@sourcefire .com

Snort bugs: bugs@snort.org

#

Compatible with Snort Versions:

VERSIONS : 2.9.5.5

#

Snort build options:

OPTIONS : —enable—gre —enable—mpls —enable—targetbased —enable —ppm —enable—
perfprofiling —enable—zlib —enable—active —response —enable—normalizer —enable—
reload —enable—react —enable—flexresp3

#

Additional information:

This configuration file enables active response, to run snort in

test mode —T you are required to supply an interface —i <interface >

or test mode will fail to fully validate the configuration and

exit with a FATAL error

H#

#H#HH R R R HHH R

This file contains a sample snort configuration.
You should take the following steps to create your own custom configuration:

3+

1) Set the network variables.

2) Configure the decoder

3) Configure the base detection engine

4) Configure dynamic loaded libraries

5) Configure preprocessors

6) Configure output plugins

7) Customize your rule set

8) Customize preprocessor and decoder rule set
9) Customize shared object rule set

LR g g e g
##H SRR HHH R R
Step #1: Set the network variables. For more information, see README. variables
##H SRR R R R R

Setup the network addresses you are protecting
ipvar HOME NET 192.168.1.0/25

" "

Set up the external network addresses. Leave as "any" in most situations
ipvar EXTERNAL_NET !$HOME _NET

List of DNS servers on your network
ipvar DNS_SERVERS $HOME_NET

List of SMTP servers on your network
ipvar SMTP_SERVERS $HOME_NET

List of web servers on your network
ipvar HTTP_SERVERS $HOME NET

123

58
59
60
61
62
63
64
65
66
67
68
69
70

72
73
74
75

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120

Slow Port Scanning with Bro

List of sql servers on your network
ipvar SQL_SERVERS $HOME_NET

List of telnet servers on your network
ipvar TELNET SERVERS $HOME_NET

List of ssh servers on your network
ipvar SSH_SERVERS $HOME_NET

List of ftp servers on your network
ipvar FTP_SERVERS $HOME_NET

List of sip servers on your network
ipvar SIP_SERVERS $HOME NET

List of ports you run web servers on
portvar HTTP_PORTS
[36,80,81,82,83,84,85,86,87,88,89,90,311,383,591,593,631,801,818,901,972,1220,1414,174

List of ports you want to look for SHELLCODE on.
portvar SHELLCODE_PORTS !80

List of ports you might see oracle attacks on
portvar ORACLE_PORTS 1024:

List of ports you want to look for SSH connections on:
portvar SSH_PORTS 22

List of ports you run ftp servers on
portvar FTP_PORTS [21,2100,3535]

List of ports you run SIP servers on
portvar SIP_PORTS [5060,5061,5600]

List of file data ports for file inspection
portvar FILE_DATA_PORTS [$HTTP_PORTS,110,143]

List of GTP ports for GTP preprocessor
portvar GTP_PORTS [2123,2152,3386]

other variables , these should not be modified
ipvar AIM_SERVERS
[64.12.24.0/23,64.12.28.0/23,64.12.161.0/24,64.12.163.0/24,64.12.200.0/24,205.188.3.0

Path to your rules files (this can be a relative path)

Note for Windows users: You are advised to make this an absolute path,
such as: <c:\snort\rules

var RULE_PATH ./ rules

var SO_RULE_PATH ../ so_rules

var PREPROC_RULE_PATH ../ preproc_rules

If you are using reputation preprocessor set these

Currently there is a bug with relative paths, they are relative to where snort is
not relative to snort.conf like the above variables

This is completely inconsistent with how other vars work, BUG 89986

Set the absolute path appropriately

var WHITE_LIST_PATH ./ rules
var BLACK_LIST_PATH ./ rules

HHH SRR R R HH R
Step #2: Configure the decoder. For more information, see README. decode
L g g s e g

Stop generic decode events:

124

1,1830,2301,2381.

24,205.188.5.0/2

Slow Port Scanning with Bro

121| config disable_decode_alerts
122
123|# Stop Alerts on experimental TCP options
124| config disable_tcpopt_experimental_alerts
125
126| # Stop Alerts on obsolete TCP options
127| config disable_tcpopt_obsolete_alerts
128
129/ # Stop Alerts on T/TCP alerts

130| config disable_tcpopt_ttcp_alerts
131
132| # Stop Alerts on all other TCPOption type events:
133| config disable_tcpopt_alerts

134
135|# Stop Alerts on invalid ip options
136| config disable_ipopt_alerts

137
138/ # Alert if value in length field (IP, TCP, UDP) is greater th elength of the packet
139|# config enable_decode_oversized_alerts

140
141| # Same as above, but drop packet if in Inline mode (requires
enable_decode_oversized_alerts)

142| # config enable_decode_oversized_drops

143
144\ # Configure IP / TCP checksum mode
145| config checksum_mode: all

146

147\ # Configure maximum number of flowbit references. For more information, see README.
flowbits

148| # config flowbits_size: 64

149

150| # Configure ports to ignore
151| # config ignore_ports: tcp 21 6667:6671 1356
152| # config ignore_ports: udp 1:17 53

153

154| # Configure active response for non inline operation. For more information, see REAMDE.
active

155|# config response: ethO attempts 2

156

157/ # Configure DAQ related options for inline operation. For more information, see README.
daq

158 #

159/ # config daq: <type>

160| # config daq_dir: <dir>

161| # config daq_mode: <mode>

162| # config daq_var: <var>

163| #

164| # <type> ::= pcap | afpacket | dump | nfq | ipq | ipfw

165| # <mode> ::= read—file | passive | inline

166| # <var> ::= arbitrary <name>=<value passed to DAQ

167| # <dir> ::= path as to where to look for DAQ module so’s

168

169| # Configure specific UID and GID to run snort as after dropping privs. For more
information see snort —h command line options

170| #

171| # config set_gid:

172| # config set_uid:

173
174| # Configure default snaplen. Snort defaults to MIU of in use interface. For more
information see README

175| #

176/ # config snaplen:

177| #

178
179| # Configure default bpf_file to use for filtering what traffic reaches snort. For more
information see snort —h command line options (—F)

180| #

125

181
182
183
184

185
186
187
188
189
190

191
192
193
194
195
196
197

198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244

Slow Port Scanning with Bro

config bpf_file:

#

Configure default log directory for snort to log to. For more information see snort —
h command line options (—1)

#

config logdir:

L e L

Step #3: Configure the base detection engine. For more information, see README.
decode

##HH R R R R H R

Configure PCRE match limitations
config pcre_match_limit: 3500
config pcre_match_limit_recursion: 1500

Configure the detection engine See the Snort Manual, Configuring Snort — Includes —
Config
config detection: search—method ac—split search—optimize max—pattern—len 20

Configure the event queue. For more information, see README.event_queue
config event_queue: max_queue 8 log 5 order_events content_length

L s e s
Configure GTP if it is to be used.

For more information, see README.GTP

HHHHHHUHHH AR H B H AR H AR H AR AR SRR R R

config enable_gtp

L g e
Per packet and rule latency enforcement

For more information see README.ppm

#HHH SRR R HH

Per Packet latency configuration
#config ppm: max—pkt—time 250, \
fastpath —expensive —packets , \
pkt—log

Per Rule latency configuration
#config ppm: max—rule—time 200, \
threshold 3, \
suspend—expensive—rules , \
suspend—timeout 20, \
rule—log alert

H* o H

H#HHHHHHH AR
Configure Perf Profiling for debugging

For more information see README. PerfProfiling

HHH

#config profile_rules: print all, sort avg_ticks
#config profile_preprocs: print all, sort avg_ticks

L g g e
Configure protocol aware flushing

For more information see README.stream5

HHH SRR R R H
config paf_max: 16000

##HHHHH R R

Step #4: Configure dynamic loaded libraries.

For more information, see Snort Manual, Configuring Snort — Dynamic Modules
##H SRR R HHH R

126

245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273

274
275

276
271
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293

294
295

296

297

298
299
300
301
302

Slow Port Scanning with Bro

path to dynamic preprocessor libraries
dynamicpreprocessor directory /usr/local/lib/snort_dynamicpreprocessor/

path to base preprocessor engine
dynamicengine /usr/local/lib/snort_dynamicengine/libsf_engine.so

path to dynamic rules libraries
dynamicdetection directory /usr/local/lib/snort_dynamicrules

##HHHHHHHH A

Step #5: Configure preprocessors

For more information, see the Snort Manual, Configuring Snort — Preprocessors
##H SRR R R H R R

GTP Control Channle Preprocessor. For more information, see README.GTP
preprocessor gtp: ports { 2123 3386 2152 }

Inline packet normalization. For more information, see README.normalize
Does nothing in IDS mode

preprocessor normalize_ip4

preprocessor normalize_tcp: ips ecn stream

preprocessor normalize_icmp4

preprocessor normalize_ip6

preprocessor normalize_icmp6

Target—based IP defragmentation. For more inforation, see README. frag3
preprocessor frag3_global: max_frags 65536

preprocessor frag3_engine: policy windows detect_anomalies overlap_limit 10
min_fragment_length 100 timeout 180

Target—Based stateful inspection/stream reassembly. For more inforation, see README.
stream35

stream5_globale RL tuned

preprocessor stream5_global: track_tcp yes, \
track_udp no, \
track_icmp no, \
max_tcp 262144, \
max_udp 131072, \
max_active_responses 2, \
min_response_seconds 5

preprocessor stream5_tcp: \
policy windows, \
detect_anomalies , \
require_3whs 180, \
overlap_limit 10, \
small_segments 3 bytes 150, \
timeout 180, \
ports client 21 22 23 25 42 53 70 79 109 110 111 113 119 135 136 137 139 143 \
161 445 513 514 587 593 691 1433 1521 1741 2100 3306 6070 6665 6666 6667 6668
6669 \
7000 8181 32770 32771 32772 32773 32774 32775 32776 32777 32778 32779, \
ports both 36 80 81 82 83 84 85 86 87 88 89 90 110 311 383 443 465 563 591 593 631
636 801 818 901 972 989 992 993 994 995 1220 1414 1741 1830 2301 2381 2809 3037
3057 3128 3443 3702 4000 4343 4848 5250 6080 6988 7907 7000 7001 7144 7145 7510
7802 7777 7779 \
7801 7900 7901 7902 7903 7904 7905 7906 7908 7909 7910 7911 7912 7913 7914 7915
7916 \
7917 7918 7919 7920 8000 8008 8014 8028 8080 8085 8088 8090 8118 8123 8180 8181
8222 8243 8280 8300 8500 8800 8888 8899 9000 9060 9080 9090 9091 9443 9999
10000 11371 34443 34444 41080 50000 50002 55555

preprocessor stream5_udp: timeout 180

127

303
304

305
306
307
308
309
310
311

312

313
314

315
316
317
318
319
320
321
322
323
324

325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345

346

347
348
349
350
351

352

353
354

Slow Port Scanning with Bro

performance statistics. For more information, see the Snort Manual, Configuring Snort
— Preprocessors — Performance Monitor
RL tuned
preprocessor perfmonitor: \
time 60 \

file /var/log/snort/snort.stats \
pktcnt 10000

HTTP normalization and anomaly detection. For more information, see README.
http_inspect
preprocessor http_inspect: global iis_unicode_map unicode.map 1252 compress_depth 65535
decompress_depth 65535 max_gzip_mem 104857600
preprocessor http_inspect_server: server default \
http_methods { GET POST PUT SEARCH MKCOL COPY MOVE LOCK UNLOCK NOTIFY POLL BCOPY
BDELETE BMOVE LINK UNLINK OPTIONS HEAD DELETE TRACE TRACK CONNECT SOURCE
SUBSCRIBE UNSUBSCRIBE PROPFIND PROPPATCH BPROPFIND BPROPPATCH RPC_CONNECT
PROXY_SUCCESS BITS_POST CCM_POST SMS_POST RPC_IN_DATA RPC_OUT_DATA RPC_ECHO_DATA
JEA
chunk_length 500000 \
server_flow_depth 0 \
client_flow_depth 0 \
post_depth 65495 \
oversize_dir_length 500 \
max_header_length 750 \
max_headers 100 \
max_spaces 200 \
small_chunk_length { 10 5 } \
ports { 36 80 81 82 83 84 85 86 87 88 89 90 311 383 591 593 631 801 818 901 972 1220
1414 1741 1830 2301 2381 2809 3037 3057 3128 3443 3702 4000 4343 4848 5250 6080
6988 7000 7001 7144 7145 7510 7777 7779 8000 8008 8014 8028 8080 8085 8088 8090
8118 8123 8180 8181 8222 8243 8280 8300 8500 8800 8888 8899 9000 9060 9080 9090
9091 9443 9999 10000 11371 34443 34444 41080 50000 50002 55555 } \
non_rfc_char { 0x00 0x01 0x02 0x03 0x04 0x05 0x06 0x07 } \
enable_cookie \
extended_response_inspection \
inspect_gzip \
normalize_utf \
unlimited_decompress \
normalize_javascript \
apache_whitespace no \
ascii no \
bare_byte no \
directory no \
double_decode no \
iis_backslash no \
iis_delimiter no \
iis_unicode no \
multi_slash no \
utf_8 no \
u_encode yes \
webroot no

ONCRPC normalization and anomaly detection. For more information, see the Snort
Manual, Configuring Snort — Preprocessors — RPC Decode

preprocessor rpc_decode: 111 32770 32771 32772 32773 32774 32775 32776 32777 32778 32779
no_alert_multiple_requests no_alert_large_fragments no_alert_incomplete

Back Orifice detection.
preprocessor bo

FTP / Telnet normalization and anomaly detection. For more information, see README.
ftptelnet

preprocessor ftp_telnet: global inspection_type stateful encrypted_traffic no
check_encrypted

preprocessor ftp_telnet_protocol: telnet \
ayt_attack_thresh 20 \

128

355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372

373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413

414

415

416

Slow Port Scanning with Bro

normalize ports { 23 } \
detect_anomalies
preprocessor ftp_telnet_protocol: ftp server default \
def_max_param_len 100 \
ports { 21 2100 3535 } \
telnet_cmds yes \
ignore_telnet_erase_cmds yes \

ftp_cmds { ABOR ACCT ADAT ALLO APPE AUTH CCC CDUP } \
ftp_cmds { CEL CLNT CMD CONF CWD DELE ENC EPRT } \
ftp_cmds { EPSV ESTA ESTP FEAT HELP LANG LIST LPRT } \
ftp_cmds { LPSV MACB MAIL MDIM MIC MKD MLSD MLST } \
ftp_cmds { MODE NLST NOOP OPTS PASS PASV PBSZ PORT } \
ftp_cmds { PROT PWD QUIT REIN REST RETR RMD RNFR } \
ftp_cmds { RNTO SDUP SITE SIZE SMNT STAT STOR STOU } \
ftp_cmds { STRU SYST TEST TYPE USER XCUP XCRC XCWD } \
{

ftp_cmds XMAS XMD5 XMKD XPWD XRCP XRMD XRSQ XSEM } \
ftp_cmds { XSEN XSHA1 XSHA256 } \
alt_max_param_len 0 { ABOR CCC CDUP ESTA FEAT LPSV NOOP PASV PWD QUIT REIN STOU SYST
XCUP XPWD } \
alt_max_param_len 200 { ALLO APPE CMD HELP NLST RETR RNFR STOR STOU XMKD } \
alt_max_param_len 256 { CWD RNTO } \
alt_max_param_len 400 { PORT } \
alt_max_param_len 512 { SIZE } \
chk_str_fmt { ACCT ADAT ALLO APPE AUTH CEL CLNT CMD } \
chk_str_fmt { CONF CWD DELE ENC EPRT EPSV ESTP HELP } \
chk_str_fmt { LANG LIST LPRT MACB MAIL MDIM MIC MKD } \
chk_str_fmt { MLSD MLST MODE NLST OPTS PASS PBSZ PORT } \
chk_str_fmt { PROT REST RETR RMD RNFR RNTO SDUP SITE } \
chk_str_fmt { SIZE SMNT STAT STOR STRU TEST TYPE USER } \
chk_str_fmt { XCRC XCWD XMAS XMD5 XMKD XRCP XRMD XRSQ } \
chk_str_fmt { XSEM XSEN XSHA1 XSHA256 } \
cmd_validity ALLO
cmd_validity EPSV
cmd_validity MACB
cmd_validity MDIM
cmd_validity MODE
cmd_validity PORT
cmd_validity PROT char CSEP > \
cmd_validity STRU char FRPO [string] > \
cmd_validity TYPE < { char AE [char NTC] | char I | char L [number] } >
preprocessor ftp_telnet_protocol: ftp client default \
max_resp_len 256 \
bounce yes \
ignore_telnet_erase_cmds yes \
telnet_cmds yes

int [char R int] > \

[{ char 12 | char A char L char L }] > \
string > \

[date nnnnnnnnnnnnnn[.n[n[n]]]] string > \
char ASBCZ > \

<
<
<
<
<
< host_port > \
<

<

SMTP normalization and anomaly detection. For more information, see README.SMTP
preprocessor smtp: ports { 25 465 587 691 } \
inspection_type stateful \
b64_decode_depth 0 \
qp_decode_depth 0 \
bitenc_decode_depth 0 \
uu_decode_depth 0 \
log_mailfrom \
log_rcptto \
log_filename \
log_email_hdrs \
normalize cmds \
normalize_cmds { ATRN AUTH BDAT CHUNKING DATA DEBUG EHLO EMAL ESAM ESND ESOM ETRN
EVFY } \
normalize_cmds { EXPN HELO HELP IDENT MAIL NOOP ONEX QUEU QUIT RCPT RSET SAML SEND
SOML } \
normalize_cmds { STARTTLS TICK TIME TURN TURNME VERB VRFY X—ADAT X-—DRCP X—ERCP X—
EXCH50 } \
normalize_cmds

{ X—EXPS X-LINK2STATE XADR XAUTH XCIR XEXCH50 XGEN XLICENSE XQUE XSTA
XTRN XUSR } \

129

417
418
419
420
421
422
423

424

425

426

427

428

429
430
431
432
433
434
435
436
437
438
439
440
441
442

443
444
445
446
447
448
449
450
451
452
453
454
455

456
457
458
459
460
461
462
463
464
465
466

467
468
469
470
471
472

Slow Port Scanning with Bro

max_command_line_len 512 \

max_header_line_len 1000 \

max_response_line_len 512 \

alt_max_command_line_len 260 { MAIL } \

alt_max_command_line_len 300 { RCPT } \

alt_max_command_line_len 500 { HELP HELO ETRN EHLO } \

alt_max_command_line_len 255 { EXPN VRFY ATRN SIZE BDAT DEBUG EMAL ESAM ESND ESOM
EVFY IDENT NOOP RSET } \

alt_max_command_line_len 246 { SEND SAML SOML AUTH TURN ETRN DATA RSET QUIT ONEX
QUEU STARTTLS TICK TIME TURNME VERB X—EXPS X—LINK2STATE XADR XAUTH XCIR XEXCHS50
XGEN XLICENSE XQUE XSTA XTRN XUSR } \

valid_cmds { ATRN AUTH BDAT CHUNKING DATA DEBUG EHLO EMAL ESAM ESND ESOM ETRN EVFY }

\

valid_cmds { EXPN HELO HELP IDENT MAIL NOOP ONEX QUEU QUIT RCPT RSET SAML SEND SOML
P\

valid_cmds { STARTTLS TICK TIME TURN TURNME VERB VRFY X—ADAT X-DRCP X-—ERCP X—EXCHS50
JE

valid_cmds { X—EXPS X-LINK2STATE XADR XAUTH XCIR XEXCHS50 XGEN XLICENSE XQUE XSTA
XTRN XUSR } \

xlink2state { enabled }

Portscan detection. For more information, see README. sfportscan
preprocessor sfportscan: proto { all } memcap { 10000000 } sense_level { low }
RL tuned
preprocessor sfportscan :\
proto { tcp } \
scan_type { all } \
memcap { 10000000 } \
logfile { /var/log/snort/sfportscan—alert.log } \
sense_level { high } \
detect_ack_scans

ARP spoof detection. For more information, see the Snort Manual — Configuring Snort —
Preprocessors — ARP Spoof Preprocessor

preprocessor arpspoof

preprocessor arpspoof_detect_host: 192.168.40.1 f0:0f:00:f0:0f:00

SSH anomaly detection. For more information, see README. ssh
preprocessor ssh: server_ports { 22 } \
autodetect \
max_client_bytes 19600 \
max_encrypted_packets 20 \
max_server_version_len 100 \
enable_respoverflow enable_sshlcrc32 \
enable_srvoverflow enable_protomismatch

SMB / DCERPC normalization and anomaly detection. For more information, see README.
dcerpc?2
preprocessor dcerpc2: memcap 102400, events [co]
preprocessor dcerpc2_server: default, policy WinXP, \
detect [smb [139,445], tcp 135, udp 135, rpc—over—http—server 593], \
autodetect [tcp 1025:, udp 1025:, rpc—over—http—server 1025:], \
smb_max_chain 3, smb_invalid_shares ["C$", "D$", "ADMINS$"]

DNS anomaly detection. For more information, see README. dns
preprocessor dns: ports { 53 } enable_rdata_overflow

SSL anomaly detection and traffic bypass. For more information, see README. ssl

preprocessor ssl: ports { 443 465 563 636 989 992 993 994 995 7801 7802 7900 7901 7902
7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919
7920 }, trustservers , noinspect_encrypted

SDF sensitive data preprocessor. For more information see README. sensitive_data
preprocessor sensitive_data: alert_threshold 25

SIP Session Initiation Protocol preprocessor. For more information see README. sip
preprocessor sip: max_sessions 40000, \

130

Slow Port Scanning with Bro

473 ports { 5060 5061 5600 }, \

474 methods { invite \
475 cancel \
476 ack \

477 bye \

478 register \
479 options \
480 refer \
481 subscribe \
482 update \
483 join \
484 info \

485 message \
486 notify \
487 benotify \
488 do \

489 qauth \
490 sprack \
491 publish \
492 service \
493 unsubscribe \
494 prack }, \

495 max_uri_len 512, \

496 max_call_id_len 80, \

497 max_requestName_len 20, \
498 max_from_len 256, \

499 max_to_len 256, \

500 max_via_len 1024, \

501 max_contact_len 512, \
502 max_content_len 2048
503

504 # IMAP preprocessor. For more information see README.imap
505| preprocessor imap: \

506 ports { 143 } \

507 b64_decode_depth 0 \

508 qp_decode_depth 0 \

509 bitenc_decode_depth 0 \

510 uu_decode_depth 0

511
512| # POP preprocessor. For more information see README. pop
513| preprocessor pop: \

514 ports { 110 } \

515 b64_decode_depth 0 \

516 gp_decode_depth 0 \

517 bitenc_decode_depth 0 \

518 uu_decode_depth 0

519
520(# Modbus preprocessor. For more information see README.modbus
521| preprocessor modbus: ports { 502 }

522
523| # DNP3 preprocessor. For more information see README. dnp3
524| preprocessor dnp3: ports { 20000 } \

525 memcap 262144 \

526 check_crc

527
528| # Reputation preprocessor. For more information see README.reputation
529| preprocessor reputation: \

530 memcap 500, \

531 priority whitelist , \

532 nested_ip inner, \

533 whitelist $WHITE_LIST PATH/ white_list.rules , \
534 blacklist $BLACK_LIST PATH/black_list.rules
535

536 | ###H#HH R

537\ # Step #6: Configure output plugins

538| # For more information, see Snort Manual, Configuring Snort — Output Modules
539 | ###HH### IR

131

540
541
542
543

544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
571
578
579
580
581
582
583
584

585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

Slow Port Scanning with Bro

unified2

Recommended for most installs

output unified2: filename merged.log, limit 128, nostamp, mpls_event_types,
vlan_event_types

output unified2: filename snort.log, limit 128

Additional configuration for specific types of installs
output alert_unified2: filename snort.alert, limit 128, nostamp
output log_unified2: filename snort.log, limit 128, nostamp

syslog
output alert_syslog: LOG_AUTH LOG_ALERT

pcap
output log_tcpdump: tcpdump.log

metadata reference data. do not modify these lines
include classification.config
include reference.config

##H SRR HHH R R

Step #7: Customize your rule set

For more information, see Snort Manual, Writing Snort Rules
#

NOTE: All categories are enabled in this conf file

##H SRR R HHH R

site specific rules
include $RULE_PATH/local.rules

H#HHHHHHH R R
Step #8: Customize your preprocessor and decoder alerts
For more information, see README. decoder_preproc_rules
L s i g g i

decoder and preprocessor event rules

include $PREPROC_RULE_PATH/preprocessor.rules

include $PREPROC_RULE_PATH/decoder.rules

include $PREPROC_RULE PATH/sensitive —data.rules

##H SRR R R HH R R

Step #9: Customize your Shared Object Snort Rules

For more information, see http://vrt—blog.snort.org/2009/01/using—vrt—certified —shared
—object—rules . html

##HHHHH R

dynamic library rules

include $SO_RULE PATH/bad—traffic .rules
include $SO_RULE_PATH/chat.rules
include $SO_RULE_PATH/dos.rules

include $SO_RULE_PATH/exploit.rules
include $SO_RULE_PATH/icmp. rules
include $SO_RULE_PATH/imap. rules
include $SO_RULE _PATH/misc.rules
include $SO_RULE PATH/multimedia.rules
include $SO_RULE_PATH/netbios.rules
include $SO_RULE_PATH/nntp.rules
include $SO_RULE_PATH/p2p.rules

include $SO_RULE_PATH/smtp. rules
include $SO_RULE_PATH/snmp. rules
include $SO_RULE_PATH/specific —threats.rules
include $SO _RULE PATH/web—activex .rules
include $SO_RULE_PATH/web—client.rules

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
include $SO _RULE PATH/web—iis . rules

132

605
606
607
608
609
610
611
612
613
614
615
616

Slow Port Scanning with Bro

include $SO_RULE_PATH/web—misc.rules

Event thresholding or suppression commands.

include threshold.conf

2013—11—-27 13:16:56 root@snorty:~
2013—11—-27 13:16:58 root@snorty:~
2013—11—-27 13:16:58 root@snorty:~
2013—11—-27 13:16:58 root@snorty:~
2013—11—-27 13:16:58 root@snorty :~
2013—11-27 13:16:59 root@snorty:~
2013—11—-27 13:16:59 root@snorty :~
2013—11-27 13:16:59 root@snorty:~

H o H H O H HH

See

threshold.conf

133

	Abstract
	Sammendrag (Abstract in Norwegian)
	Preface
	Contents
	List of Figures
	List of Tables
	Glossary
	Abbreviations
	Introduction
	Topics
	Keywords
	Problem description
	Justification, motivation and benefits
	Research Questions
	Scope
	Thesis outline
	Summary of contributions

	TCP/IP, Port scanning and IDS
	TCP/IP, ports and services
	TCP/IP background
	TCP flags and their usage
	TCP/UDP ports and services

	Port Scanning
	What is port scanning?
	Who performs port scanning?
	Why do we scan ports?
	Port Scanning Categories
	Port Scanning techniques
	Commonly used TCP Scans
	Slow Port Scanning

	Intrusion Detection Systems (IDS)
	Classifications of IDS's
	IDS Detection Models
	Evaluating an IDS

	Common Network Intrusion Detection Systems (NIDS)
	Snort NIDS
	Snort Elements
	Snort Rules
	Port Scan Detection

	Bro - Intrusion Detection System
	Bro NIDS
	Bro - Internal Architecture
	Bro Log Files
	Bro Policy Scripts Structure

	Previous Work
	Intrusion Detection Systems
	Network ScanningSurveys & Taxonomies

	Port Scan Detection
	Detecting Stealthy Port Scans

	Choice of Methods
	Scientific Methodology
	Experimental Method
	Reliability and Validity

	Improving Bro slow port scan detection capability
	Strategy for improving Bro Script
	Bro version

	Basic Test Regime
	Port Scan Interval
	Port Range
	Scans Attacks
	Test Network Environment
	Scan Category
	Scan Repetitions
	Basic Test Regime Summarized

	Test Lab
	Operating Systems
	Network Equipment
	IP Addresses
	Tuning Operating Systems & Interfaces
	Practical Problems
	Test Lab Summarized

	Tools
	Simulating a Scan Attack
	Network Statistics
	Background Traffic
	Injecting Background Traffic
	Reference NIDS
	Tools Summarized

	Slow Port Scanning in Bro
	Strategy for improving Bro slow port scan detection capability
	Initial test of Bro
	Bro's Port Scan detection = Scan.bro

	Increasing Log Level for scan.bro = Add Notices
	The Notice Definition in original scan.bro
	We need to generate more alerts in our analyzing process (more Notices)
	Structure of Notice.log

	Variables that influence scan detection
	Variables controls detection and reporting = 48

	TCP Connection Events in Bro
	Describing TCP Connection events in Bro

	Analyzing scan.bro script regarding Connection Events
	Connection Endpoint State
	Connection Record, History State

	Modifying scan.bro
	Summary

	Experimental Setup and Results
	Lab Setup
	Network Diagram of our Test Lab
	Equipment Details

	Bro in Practice
	Getting Bro up and running
	Logfile: notice.log

	Simulating Scanning using NMAP
	Injecting Traffic to Simulate Background Traffic
	CAIDA Dataset Statistics
	Preparing the CAIDA dataset
	Statistics from our test

	Snort
	Results

	Discussion
	Test Lab Experience
	Bro Log without IP address
	Error messages from Bro
	Isolated network with Internet access

	Evaluating our results
	We managed to detect two new scans with our improved script
	Why did we not manage to detect an ACK Scan
	Why did we not manage to detect a NULL Scan
	Other Comments to our Results

	Snort Results
	Limited slow port scan detection in Snort
	Slow port scan detection capabilities in Snort

	Conclusion
	Further Work
	Bibliography
	TCP State Machine
	NMAP
	NMAP - 100 most used ports below 1024
	NMAP - Sample output, SYN Scan

	Bro
	Error in scan.bro found by Dr. Slobodan Petrovic (GUC)
	Bro Configuration File: local.bro
	Bro File Structure
	Bro Script Scan.bro - Original Version from 28 Aug 2012
	Bro Script Scan.bro - Improved Version
	Bro TCP Events - Built In Functiones
	Bro - Content of Notice.log, Isolated Scan Session, Scan Detected
	Bro - Content of Notice.log, Backscatter Scan Session, Scan Detected
	Bro - Content of Notice.log, Backscatter Scan Session, Scan Not Detected

	CAIDA Dataset - About
	The CAIDA description of dataset
	CAIDA Dataset - Approved Access

	Snort Configuration

