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Abstract

Keystream generators using irregular clocking are frequently used to generate the keystream in
a stream cipher. These generators are typically composed of two Linear Feedback Shift Registers
(LFSRs), where the clocking of the second LFSR is controlled by the output sequence from the
first LFSR.

Various attacks exist to cryptanalyse such generators. Among the more popular are correlation
attacks and algebraic attacks. When only the ciphertext is known, the usual approach is to use
correlation methods. These attacks are accomplished in two stages. First, the initial state of the
clocked LFSR is found, then the clock control sequence is reconstructed. Algebraic attacks, on the
other hand, have only been applied in the known-plaintext scenario to cryptanalyse irregularly
clocked generators.

The Linear Consistency Test (LCT) is an algebraic key recovery attack which uses some gues-
sed bits from the internal state of the generator to set up a set of equations used to determine
whether the initial guess was correct or not. In this thesis, an extension of the LCT attack is
implemented that successfully reconstructs the clock control sequence in the ciphertext only sce-
nario. Experiments show that this attack can handle low to moderate levels of noise, and it is
estimated to perform better than correlation attacks on irregularly clocked generators.
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Sammendrag

Nøkkelstrømgeneratorer med uregelmessig klokking blir ofte brukt for å generere nøkkelstrøm-
men i et flytchiffer. Disse generatorene er typisk bygd opp av to lineært tilbakekoblede skiftre-
gistre (LFSRer) hvor klokkingen av det andre LFSRet kontrolleres av utdatasekvensen fra det
første LFSRet.

Forskjellige typer angrep eksisterer for å knekke slike generatorer. Korrelasjonsangrep og al-
gebraiske angrep er metoder som er mye brukt. Når bare chifferteksten er kjent, er det vanlig
å bruke korrelasjonsangrep. Disse angrepene utføres i to trinn. Først blir starttilstanden til det
klokkede LFSRet funnet, deretter rekonstrueres klokkekontrollsekvensen. Algebraiske angrep de-
rimot, er bare blitt brukt i kjent klartekstscenariet i kryptoanalyse av uregelmessig klokkede ge-
neratorer.

Lineær Konsistenstest (LKT) er et algebraisk nøkkelgjenfinningsangrep som bruker kjente bit
fra den indre tilstanden til en generator til å sette opp et ligningssett som brukes for å bestemme
om den gjettede starttilstanden var riktig eller ikke. I denne oppgaven implementeres en utvi-
delse av LKT-angrepet som lykkes i å rekonstruere klokkekontrollsekvensen i bare-chiffertekst-
scenariet. Eksperimenter viser at dette angrepet kan håndtere lave til moderate støynivåer, og det
er estimert til å ha bedre ytelse enn korrelasjonsangrep på uregelmessig klokkede generatorer.
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1 Introduction

1.1 Topic covered

During the last three decades, the interest for stream cipher analysis has increased in the aca-
demic community. In a stream cipher, the plaintext bits are added modulo 2 to a keystream
sequence to yield the ciphertext. Pseudorandom number generators are commonly used to pro-
duce the keystream sequence in a stream cipher.

Linear Feedback Shift Registers (LFSRs) produce a sequence of bits from a shorter seed. Since,
if designed properly, the output sequence of an LFSR has statistical properties similar to those
of a truly random sequence, the LFSR would be a good candidate for a pseudorandom number
generator. But LFSRs are linear devices, and effective algorithms exist to recover the initial state
of the LFSR (the secret key in the cipher). Therefore, LFSRs should never be used by themselves
as keystream generators.

However, several techniques exist to destroy the linearity of LFSRs and thus make them ade-
quate for use in cryptography. One method is to use two LFSRs, where the output of the first
LFSR controls the clocking (stepping) of the second, and the output of the second LFSR is the
keystream. Such generators are known as irregularly clocked generators, and are the topic of this
thesis. The Binary Rate Multiplier (BRM) [2] is a typical representative of these schemes, and is
widely used in practice.

To cryptanalyse an irregularly clocked generator, different methods can be employed. Among
the more popular attacks are correlation attacks and algebraic attacks. The Linear Consistency
Test (LCT) is an example of an algebraic attack. The LCT is a key recovery attack which uses
algebraic methods and some guessed bits from the internal state of an irregularly clocked gene-
rator to determine the unknown bits of the key and to accept or recject the guessed initial state.
Correlation attacks, on the other hand, are based on the existence of statistical dependencies
between the output of one of the component LFSRs and the output of the generator, and consi-
der the distance between a pair of sequences to determine whether a guessed initial state is the
correct one.

This work discusses the possibility of using the Linear Consistency Test in the cryptanalysis
of irregularly clocked generators when only the ciphertext is known. Additionally, it attempts to
determine whether such an attack would perform better than correlation attacks on this type of
generator.

1.2 Keywords

Cryptanalysis, Linear Consistency Test, Correlation attack, Stream cipher, Irregularly clocked shift
registers
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1.3 Problem description

The Linear Consistency Test is a method of cryptanalysis that has been applied previously to
irregularly clocked shift registers [3].

The Linear Consistency Test was originally suggested by Zeng, Yang and Rao in [4], where it
was applied to the generators of Jennings [5] and Massey-Rueppel [6]. The attack has also been
applied to the E0 cipher used in Bluetooth [7].

The authors of [4] first prove a theorem on the consistency probability of a system of linear
algebraic equations, and then apply the theorem to disclose the key of the two pseudorandom
generators.

The LCT procedure is as follows: First, a candidate subkey is guessed. Then a system of
equations parametrized by this subkey is set up. If the candidate subkey coincides with the
subkey used in generating the captured sequence, then the set of equations will be consistent.
But if the candidate subkey is not the subkey used, then by the theorem of [4] the consistency
probability of the system will be very small when the captured sequence is long enough. The
consistency of the system of equations is tested for all possible choices of the candidate subkey,
and the right subkey is found whenever the system is found to be consistent. The system of
equations can be solved for example by means of the Gaussian algorithm.

Molland [3] developed an improved Linear Consistency Test. The method employs a low
weight cyclic equation rather than the Gaussian algorithm to test for consistency, and thus the
performance of the LCT attack is significantly improved. Molland [3], however, considered only
the case without noise, that is, it is assumed that the keystream sequence (the output of the
generator) is known to the cryptanalyst. This is a known plaintext attack, which is an unlikely
scenario in practice.

A more common situation is that only the ciphertext is known to the cryptanalyst. In this
case, the plaintext introduces noise in the system, and the input to the attack algorithm is a noisy
version of the output of the generator. The LCT has not previously been applied to irregularly
clocked generators in the ciphertext only scenario.

1.4 Justification, motivation and benefits

In the cryptanalysis of stream ciphers, a significant part of the research conducted assumes that
the plaintext itself is available and used as input to the attack algorithms. However, some re-
search has been carried out that considers correlation attacks in the ciphertext-only scenario
(see for example [8]). These attacks have a complexity of 2ls + 2lu (where ls is the length of the
clocking register and lu is the length of the clocked register). In other words, the performance is
dependent on the length of both registers.

In [3] it was proved that the performance of the Linear Consistency Test, in the known-
plaintext scenario, is dependent only on the length of the clocking register. Unfortunately, this
attack has not been implemented for the ciphertext-only scenario.

Since in practical applications it is more likely that only the ciphertext is available to the
attacker, if it turns out that a special implemntation of an essentially algebraic attack can perform
better than correlation attacks for irregularly clocked shift registers, then this kind of generators
must be considered less secure than previously believed.
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In this thesis, we examine whether the Linear Consistency Test can successfully recover the
secret key in the ciphertext-only scenario, and make an attempt at predicting the performance of
such an attack.

1.5 Research questions

Based on the previous discussion, several research questions were identified, that this thesis aims
to answer.

1. Can the Linear Consistency Test (LCT) be successful in revealing the key of an irregularly
clocking scheme based on the Binary Rate Multiplier (BRM) when only the ciphertext is
known?

2. Is the LCT efficient compared to other attacks on the BRM?

1.6 Contributions

This thesis investigates the feasibility of the Linear Consistency Test in the presence of noise. A
keystream generator based on the Binary Rate Multiplier scheme is studied. The Linear Consis-
tency Test has been applied to this type of generator previously, but only in the known-plaintext
scenario. In real life applications, however, the ciphertext-only attack is more realistic, since it
only requires a passive attacker. In such scenarios other methods, such as correlation attacks, are
commonly employed.

However, this thesis shows that essentially algebraic attacks, or more specifically the Linear
Consistency Test, can be successful in the ciphertext only scenario.

In [3], the performance of the LCT is proven to depend only on the clocking register (in the
known-plaintext scenario), whereas the performance of correlation attacks in the ciphertext-only
scenario depends on both registers. In this thesis, it will be shown that it is possible that the LCT
can perform better than correlation attacks in the ciphertext-only scenario.

A proof of concept is carried out in order to examine the feasibility of such an attack and to
estimate its performance.

3
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2 State of the art

2.1 Background

Stream ciphers play an important role in protecting communications in the high frequency do-
main (e.g. wireless networks and mobile communications), where speed and simplicity of imple-
mentation in hardware are important issues.

In a stream cipher, the plaintext is added modulo 2 to a keystream sequence to yeild the
ciphertext. Pseudorandom number generators are commonly used to produce the keystream
sequence in a stream cipher.

In this section, some background material on cryptography and the theory on which irregu-
larly clocked shift registers are built is summarized.

2.1.1 Cryptography

The field of cryptography can be classified into two main areas: symmetric-key cryptography and
public-key cryptography.

In symmetric-key cryptography the sender and the receiver share a common key that is used
for both encryption and decryption, and the common key is always kept secret. Examples of
symmetric-key cryptosystems include the Data Encryption Standard (DES), the Advanced En-
cryption Standard (AES) and RC4.

In public-key cryptography, on the other hand, different keys are used for encryption and
decryption. The key used to encrypt the message is made public, while the decryption key is
kept secret. The Diffie-Hellman and RSA algorithms are well-known and widely used examples
of public-key cryptosystems.

Symmetric-key cryptography is further classified into block ciphers and stream ciphers. In
block ciphers, the plaintext is divided into to blocks of size n, and each block is encrypted inde-
pendently.

In stream ciphers, the plaintext is encrypted bit-by-bit. The private key in the system is input
to an algorithm which creates a long pseudorandom sequence known as the keystream sequence.
These algorithms are commonly known as pseudorandom number generators (PRNGs). Encryp-
tion is performed by adding modulo 2 the sequence of plaintext bits to the keystream sequence
to produce the ciphertext.

2.1.2 Pseudorandom number generators

The history of stream ciphers started around 1918 with the development of the one-time-pad
cipher [9]. The encryption procedure is as follows: Each bit of the plaintext is added modulo 2
with a bit from a secret random key of the same length as the plaintext to form the ciphertext.
In 1949 Claude Shannon proved the one-time-pad to be perfectly secret, i.e. unbreakable [10].
A major drawback of the cipher, however, is that the key must be as long as the plaintext, which
makes key distribution and key management difficult [11].
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Thus, the stream cipher scheme evolved to address this problem. Rather than using a truly
random key of the same length as the plaintext, this scheme employs a shorter (secret) random
key as a seed to a pseudorandom number generator, which generates an infinite sequence that
appears to be random.

In [12], three requirements for cryptographically secure keystream generators are summari-
zed:

(1) The period of the keystream must be large enough to accommodate the length of
the transmitted message.

(2) The output bits must be easy to generate.
(3) The output bits must be hard to predict. Given the generator and the first n output

bits, a(0), a(1), ..., a(n− 1), it should be computationally infeasible to predict the
(n+ 1)th bit a(n) in the sequence with better than a 50-50 chance. That is, given
a portion of the output sequence, the cryptanalyst should not generate other bits
forward or backward.

Several methods exist for generating pseudorandom sequences, using for instance ( [12]) Li-
near congruence generators (LCGs), Nonlinear feedback shift registers (NLFSRs) or Linear feed-
back shift registers (LFSRs). The LFSR is the most commonly used basic component of keystream
generators, and will be described briefly in the following.

2.1.3 Linear Feedback Shift Registers

A feedback shift register (FSR) of length n consists of n flip-flops, or stages, and a feedback
function that expresses each new element of the ouput sequence as a function of the n previous
elements. Each stage can store one bit, and a clock controls the movement of data. At each clock
pulse, the contents of the stages are shifted one position. The key of the FSR is the initial contents
(the initial state) of the FSR.

A linear feedback shift register is an FSR that has a feedback function of the form a(t) =

c1a(t − 1) ⊕ c2a(t − 2) ⊕ ... ⊕ cn−1a(t − n + 1) ⊕ a(t − n), where a(t) is the output at time t,
and the ci are feedback coefficients with values in {0, 1}. That is, each output bit is expressed as
a linear combination of the previous elements. Any such recurrence relation can be represented
by a characteristic feedback polynomial f(x) = 1+ c1x+ ...+ cn−1x

n−1 + xn over GF(2) [13].
The authors of [13] further describe two important properties of polynomials over GF(2)

which determine the characteristics of the output sequence. A polynomial f(x) is irreducible if
the only polynomials which divide it are 1 and f(x) itself. An irreducible polynomial is called
primitive if f(x) divides xe + 1 where e = 2n−1 but f(x) does not divide xr + 1 for any r ∈ ⟨0, e⟩.

If a polynomial is irreducible, the length of the output sequence does not depend on the
initial state (except for the all-zero state). That is, all possible initial states except the all-zero
state produce output sequences of the same length. If it is also primitive, the period of any output
sequence of the LFSR is 2L − 1 (maximum period), where L is the length of the LFSR. In order to
be adequate for use in cryptography, the characteristic polynomial must be both irreducible and
primitive.
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Figure 1: Stream cipher with an irregularly clocked generator

2.1.4 Irregularly clocked generators

To cryptanalyse an LFSR, if the feedback polynomial is not known, the Berlekamp-Massey al-
gorithm can be applied to some consecutive 2n bits of the intercepted sequence generated by
the LFSR [14], where n is the length of the LFSR. The algorithm takes as input the sequence,
and outputs the characteristic polynomial, the length and the initial state of the shortest LFSR
capable of generating the input sequence. The linear complexity (LC) of the intercepted sequence
is defined as the length of such a minimum LFSR.

But if the linear complexity is very high, the algorithm cannot be applied because the com-
putational complexity of the Berlekamp-Massey algorithm is quadratic in the length of the LFSR.
Thus, we should attempt to increase the linear complexity, while preserving good statistical pro-
perties of the sequence.

Several techniques exist to accomplish this [15]. One possibility is to use several LFSRs in
parallel. Then the keystream is generated as a non-linear function of the outputs of the com-
ponent LFSRs. These generators are called non-linear combination generators. Another possibility
is to generate the keystream as some non-linear function of the stages of a single LFSR. Such
generators are called non-linear filter generators.

Irregularly clocked generators on the other hand, introduce non-linearity by having the output
of one LFSR control the clocking of a second LFSR, as illustrated in Figure 1. Examples of such
generators are the Binary Rate Multiplier [2] and the Shrinking Generator [16]. The Alternating
Step Generator [17] is another type of irregularly clocked generators that consists of three LFSRs
instead of two. In this project, the Binary Rate Multiplier will be considered.

The Binary Rate Multiplier consists of two shift registers, which in this thesis are referred to
as LFSRs and LFSRu. LFSRs is an m-length shift register with a primitive feedback polynomial
generating a sequence of period M = 2m − 1 and LFSRu is an n-length shift register generating
a sequence of period N = 2n − 1. At time t, both LFSRs and LFSRu are clocked. Then LFSRu is
clocked further at times, where at is the integer represented by the contents of k fixed stages of
LFSRs. The output of the system is the output of LFSRu after both registers have been clocked
once and LFSRu has been clocked a further at times. [2] further shows that the linear complexity
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Figure 2: Overview of LILI keystream generators [1].

of the system is nM and the period of the generated sequence is MN if certain conditions are
met.

2.2 The LILI-128 Keystream Generator

In [1], the LILI-128 Keystream generator, which is an implementation of the general BRM scheme,
is described. The components of the generator can be grouped into two subsystems - the clock-
control subsystem and the data-generation subsystem, as illustrated in Figure 2. Here, LFSRc

corresponds to LFSRs and LFSRd to LFSRu in the general model.
LFSRc is a regularly clocked LFSR of length 39. The feedback polynomial of LFSRc is the

primitive polynomial:

x39 + x35 + x33 + x31 + x17 + x15 + x14 + x2 + 1

Since the polynomial is primitive, LFSRc produces a maximum-length sequence of period Pc =

239 − 1.
A function fc determines how many times the data generating register LFSRd should be

clocked before output is taken from the system. At time t, the contents of stages 12 and 20
of LFSRc are input to the function. The output of the function is an integer c(t) in the range
[1, 4], and the function is given by

fc(x12, x20) = 2(x12) + x20 + 1

The data-generation subsystem consists of the register LFSRd of length 89 and a function
fd. The integer sequence c described above controls the clocking of LFSRd, hence LFSRd is
irregularly clocked. The contents of a fixed set of 10 stages of LFSRd are input to a Boolean
function fd, and the output of this function is the keystream bit z(t). When z(t) is produced,
both LFSRs are clocked and the process is repeated to yield the keystream bit z(t+1).

The feedback polynomial of LFSRd is the primitive polynomial

x89 + x83 + x80 + x55 + x53 + x42 + x39 + x+ 1

and LFSRd produces a maximum-length sequence of period Pd = 289−1 (a Mersenne Prime).
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The period of the keystream z(t) is Pz = (239−1)(289−1) ≈ 2128 and the linear complexity is
conjectured to be at least 268 [1]. The authors of [1] further examine the security of LILI-128 and
conclude that LILI-128 is a secure cipher based on the conjecture that the complexity of divide
and conquer attacks on LILI are at least 2112 operations. However, in [18] it is demonstrated that
an attack with a significantly lower complexity is possible on LILI-128.

2.3 Attacks on stream ciphers

In this section two types of attacks on LFSRs are briefly explained; algebraic attacks and correla-
tion attacks.

2.3.1 Algebraic attacks on LFSRs

In [13], general algebraic attacks on LFSRs are described. Two different scenarios are considered:

1. The cryptanalyst knows 2n consecutive bits of the keystream sequence and aims to find the
feedback function.

2. The cryptanalyst knows at least 2n bits of the sequence, but the bits are not necessarily
consecutive. The goal is to find the initial state of the LFSR as well as the feedback function.

When 2n consecutive bits are known

This method assumes that we know a subsequence sr, sr+1, ..., sr+2n−1 of the keystream se-
quence, where n is the linear complexity of the sequence.

A linear shift register is defined as a shift register where the feedback function can be written
in the form f(s0, s1, ..., sn−1) = c0s0 + c1s1 + ...+ cn−1sn−1. Here, the si’s are the stages of the
register and n the length of the register. Furthermore, each feedback coefficient ci is 0 or 1 and
all addition is over GF(2) [13].

Thus, each bit is a linear combination of previous bits, and the output bit st+n of the register
is given by the recurrence relation st+n =

∑n−1
i=0 cist+i. This recurrence relation can be written

as a matrix equation s = Sc where

s = sr+n =

⎛⎜⎜⎜⎝
sr+n

sr+n+1

...
sr+2n−1

⎞⎟⎟⎟⎠ , c =

⎛⎜⎜⎜⎝
c0
c1
...

cn−1

⎞⎟⎟⎟⎠
and S = (sij) is the n by n matrix with sij = sr+i+j−2 i.e.:

S =

⎛⎜⎜⎜⎝
sr sr+1 ⋅ ⋅ ⋅ sr+n−1

sr+1 sr+2 ⋅ ⋅ ⋅ sr+n

...
...

...
sr+n−1 sr+n ⋅ ⋅ ⋅ sr+2n−2

⎞⎟⎟⎟⎠
[13] shows that S is non-singular and has an inverse, and thus the feedback constants are

determined by calculating c = S−1s.

When 2n non-consecutive bits of the sequence are known

From the keystream sequence, for instance 1?101??0?1??0?11???0?10, 2n consecutive positions
are selected for which the maximum number of entries is known. Then, every possibility for

9



Linear Consistency Test (LCT) in cryptanalysis of irregularly clocked LFSRs in the presence of noise

filling the remaining positions are tried in turn. For each guess, the method outlined above is
applied. Then the resulting feedback function is used to generate the first terms of the sequence.
If this sequence disagrees with the original sequence, the guess is eliminated. The number of
possibilities to try is obviously 2m, where m is the number of question marks in the selected
subsequence.

An alternative method in this case is to guess the feedback constants and use the known
bits of the sequence to find the initial state. Then a sequence is generated from each guess of
the feedback function and the corresponding initial state, and if this sequence differs from the
original sequence in the known bits, the guessed feedback constants are eliminated.

Since both methods require approximately the same amount of time per trial, the method
requiring fewer trials is usually chosen [13].

2.3.2 Correlation attacks

In a keystream generator consisting of multiple LFSRs, the output sequence of one of the com-
ponent LFSRs (the target LFSR) can be correlated to the output of the generator. If x1, x2, ...

denotes the bits of the LFSR output sequence and z1, z2, ... the keystream bits, then there is a
correlation if P(xi = zi) ∕= 0.5, and it may be possible to restore the initial state of the target
LFSR independently of the initial states of the other LFSRs by means of a correlation attack.

The correlation between the output sequence of the target LFSR and the keystream sequence
can be calculated by the formula [19]

N−1∑
t=0

(−1)zt+xtmod2

, where the sum is defined over real numbers. This correlation can be compared to the correlation
between the keystream and another sequence r that is independent of z.

The first correlation attack on stream ciphers was proposed by [20]. The attack is performed
by an exhaustive search on the initial state of each component LFSR, and an initial state is
accepted if the magnitude of the correlation exceeds a certain decision threshold. The number
of trials for each LFSR is 2Li−1 , thus the complexity of the attack is n × 2Li−1 where n is the
number of component LFSRs. The attack as described here is a known plaintext attack, but when
there exists redundancy in the plaintext, a similar ciphertext only attack is also possible [19,20].
The attack proposed by [20] applies only to combination generators, but variants of this original
attack can be applied to other keystream generators [19].

As stated earlier, in the algorithm proposed by [20], exhaustive search is used. Later, more
efficient correlation alrgorithms were developed that required output sequences of larger length,
these attacks are known as Fast correlation attacks [18,21–24].

The algorithms for fast correlation attacks typically consist of two phases. In the first phase,
suitable parity check equations are generated from the LFSR feedback polynomial. In the second
phase, these equations are input to a decoding algorithm to restore the initial state of the LFSR.

The common approach in proposed correlation attacks is to see the problem of restoring the
LFSR initial state as a decoding problem. [22] describes the model for such an attack as follows.
The set of all possible output sequences of the target LFSR is regarded as a linear [N, l] block code,
denoted C, where l is the degree of the feedback polynomial of the LFSR and N is the sequence
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length. The LFSR sequence x (which is regarded as a codeword from C) is transmitted over a
binary symmetric channel with an error probability p, and the observed sequence z is regarded
as the received channel output. The correlation probability is defined by 1 − p = P(xi = zi).
Thus, the problem of restoring the LFSR’s initial state x1, x2, ..., xl is redefined as the problem of
finding the length N codeword from C that was transmitted. This problem is solved by decoding
the code C.

[23] presents a fast correlation algorithm with reduced memory requirements compared to
previous algorithms, and derives theoretical estimates on the computational complexity. Rather
than decoding the [N, l] associated with the target LFSR, where l is the degree of the feedback
polynomial, [23] associates with the target LFSR another linear code [n2, k]. Here, k < l and
the codeword is considered to have passed through another channel with a ’double’ noise level
p2. [23] shows that if the length n2 of the new code is at least ⌈k/C(p2)⌉ (where C(p2) is the
capacity of the code) the decoding of this code will recover the first k bits of the initial state of
the target LFSR.

2.4 Attacks on irregularly clocked generators

The previous section described general attacks on LFSRs and LFSR based generators. In this
section, the focus is on attacks on irregularly clocked generators.

For these generators, when only the ciphertext is known, correlation attacks are typically
applied, whereas when the plaintext is known, algebraic or correlation attacks can be applied.

This section will begin with a short explanation of correlation attacks, followed by a more
detailed description of the Linear Consistency Test as implemented by [3].

2.4.1 Correlation attacks

The ciphertext-only attack introduced by [20], mentioned above, is based on the Hamming dis-
tance measure, and thus the attack is applicable for regularly (but not irregularly) clocked LFSRs.
Based on the work of [20], [25] introduced a generalized correlation attack employing the Leven-
shtein distance (also known as the edit distance) rather than the Hamming distance. Thus, the
attack is aimed at generators consisting of irregularly clocked LFSRs. This ciphertext-only attack
determines a set of candidate initial states for the clocked LFSR, arranged in order of increasing
value of the edit distance between the ciphertext and the LFSR sequence, with the smallest dis-
tance corresponding to the most likely solution. However, the attack is only applicable when the
combining function is memoryless and zero-order correlation immune (which means that the
output of the generator is correlated to at least one input). The attack was extended in [26] to
arbitrary mth-order correlation immune functions with memory.

While [25] determines the candidate initial states for the clocked LFSR, [8] also considers
reconstruction of the initial state of the clocking LFSR. The attack proposed by [8] is a ciphertext
only attack, which reconstructs the clock control sequence by means of a directed depth-first like
search through the edit distance matrix. The complete attack consists of two phases [8]:

1. Reconstruction of candidate initial states (LFSRu)

2. Clock control sequence reconstruction (LFSRs)
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Figure 3: The general model for irregularly clocked keystream generators [3].

In the first phase, a set of candidates for the initial state of LFSRu is determined. This phase
corresponds to the attack of [25] described above.

In the second phase, a candidate initial state for LFSRu is fixed, and candidates for the initial
state of LFSRs are determined. Together, the candidate for LFSRu and the set of candidates
for LFSRs could generate the intercepted sequence. First, the edit distance matrix is filled with
the values of the edit distance together with four associated vectors. Then the candidate clock
control sequences are reconstructed by searching for optimal paths and suboptimal paths through
the matrix using a special depth-first like search algorithm. Here, the optimal paths through
the matrix are those corresponding to the clock control sequences when the noise level is 0.
In addition, suboptimal paths must be reconstructed, since with noise in the system, the clock
control sequences corresponding to the optimal paths do not necessarily generate the captured
output sequence. The suboptimal paths to be reconstructed are those whose weight-difference
from the optimal ones does not overcome a certain discrepancy D depending on the noise level.

The complete attack has a time complexity of 2Ls + 2Lu .

2.4.2 LCT in cryptanalysis of irregularly clocked LFSRs

Molland [3] and Molland and Helleseth [27] describe an attack on clock-controlled generators
applying the linear consistency test. Here, z is the output from the complete system, u is the
stream produced by the data generator LFSRu and s the stream produced by the clock control
generator LFSRs. The bit stream s is sent through a function D() that outputs the sequence c,
which is used to clock LFSRu. When c is applied to the output u, u is irregularly decimated,
yielding the keystream z. This is illustrated in figure 3.

The goal of the attack in [3, 27] is to find the correct initial state for the clocking register
LFSRs. When this initial state is determined, other attacks can be used to determine the initial
state of the data generator.

First, the initial state sI of LFSRs is guessed. From this initial state, the clock control se-
quence ĉ is generated. Using ĉ and z, û∗ = (.., ∗, zi, ..., zj, ...∗, ..., zk, ..., ∗, ...) can be found,
where zi, zj and zk are keystream bits and the stars are deleted bits. û∗ is a guess for the
position that the bits in z had in u. Using an equation h(x) determined from the feedback
polynomial of LFSRu, m entries are found in the stream û∗ where this equation is defined.
For example, if the equation is uk + uk+6 + uk+8 = 0, m=4 and the first guess for u is
(∗, z0, z1, z2, ∗, z3, ∗, z4, ∗, z5, z6, ∗, z7, z8, z9, ∗, z10, ∗, z11, ∗, z12, z13, ∗, z14, z15, z16
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, ∗, z17, ∗, z18) (the example from [3]), a set of equations over z is found by choosing 4 values of
k that yield only non-deleted bits from the first guess for u:

k= 1: z0 + z4 + z5 = 0
k=10: z6 + z10 + z11 = 0
k=12: z7 + z11 + z12 = 0
k=21: z13 + z17 + z18 = 0
If all of these equations hold, the guess for the initial state is output as the correct initial state

of LFSRs. If not, a new guess for sI is made and the steps are repeated.
Thus, [3] derives a low weight cyclic equation h(x) from the feedback polynomial of LFSRu

that will hold for all bit streams generated by LFSRu. Then the resulting set of equations is
evaluated to decide whether to reject or accept the guess for sI. [4], on the other hand, uses the
Gaussian algorithm to reject or accept the initial state.

A modified version of Wagner’s General birthday algorithm [28] is used to determine h(x).
Also, [3] devises an efficient algorithm that can calculate each guess of u* using only a few opera-
tions, by reusing most of u* from one guess to another. This results in a significant improvement
of the computational complexity of the complete attack.
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3 Attack scenario - the proof of concept

In this thesis we are going to conduct a proof of concept of an attack scenario where the LCT is
used in the presence of noise. Provided that such an attack is indeed possible, the next step is to
find out whether it is efficient compared with other attacks.

In this chapter, some aspects of the Linear Consistency Test relevant for the forthcoming
experimental work are discussed. Then, an extension of the LCT is presented that we believe
will be successful in the presence of noise. The experimental work in the next chapter is built on
this method. But first, the generator that will be used in the examples throughout the thesis is
introduced.

3.1 The generator

The generator we are going to use in the experiments, is based on the BRM scheme. Because we
are going to perform a proof of concept, for simplicity small shift registers are used.

In figure 4, LFSRs is the clocking register, which produces a sequence s of period Ps. LFSRu

is the clocked register, which produces a sequence u of period Pu. The feedback polynomials are
fs = 1 + x + x4 of LFSRs and fu = 1 + x3 + x4 of LFSRu. The polynomials are chosen to be
irreducible and primitive.

With initial state Is = 0011 of LFSRs and Iu = 0110 of LFSRu, the sequences generated are
s = 100011110101100 and u = 101111000100110 (see figure 5). Decimating the sequence u with
s, yields z = 011100011.. of period Pz = 15× 15 = 225 as output of the generator.

Figure 4: LFSRs with fs(x) = 1 + x + x4 and LFSRu with fu(x) = 1 + x3 + x4
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LFSRs

0 0 1 1

1 0 0 1
0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0
1 1 0 0
1 1 1 0
1 1 1 1
0 1 1 1
1 0 1 1
0 1 0 1
1 0 1 0
1 1 0 1
0 1 1 0
0 0 1 1

LFSRu

0 1 1 0

1 0 1 1
0 1 0 1
1 0 1 0
1 1 0 1
1 1 1 0
1 1 1 1
0 1 1 1
0 0 1 1
0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0
1 0 0 1
1 1 0 0
0 1 1 0

Figure 5: Generation of the s and u sequences.

Suppose that the cryptanalyst knows the sequence z as well as the feedback polynomials
fs(x) and fu(x), and guesses Isguessed

= 0011 for the initial state of LFSRs. Then he can re-
construct parts of the sequence u. By means of the sequence sguessed = 100011110101100 he
reconstructs uguessed as x50111x60x70x80x911x101 and creates the following system of equa-
tions using fu(x):

x3 + x4 + x5 = 0

x2 + x3 = 0

x1 + x2 = 1

x1 + x5 = 1

x5 = 1

(3.1)

Since this system has full rank, it can be solved and yield the initial state x1x2x3x4 of LFSRu.

3.2 The Linear Consistency Test without noise

The LCT says that given enough output bits, the probability is high that the resulting system of
equations is either contradictory (i.e. inconsistent) or can be solved to yield the correct initial
state of LFSRu.

If the number of equations in the system is too low, many false consistency alarms will occur,
i.e. the system will be consistent for several initial states of LFSRs none of which is the correct
one. This problem is solved by increasing the number of equations, and thus utilising a greater
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portion of the intercepted sequence. [4] claims that the number of equations should exceed
significantly the number of unknowns plus the length of LFSRs. Since the number of equations
in the system is greater than the number of unknowns, we are dealing with an overdefined (or
overdetermined) system.

[4] further shows (in the proof of Theorem 1) that the system is consistent if and only if the
right hand side of the system of equations is contained in the subspace spanned by the column
vectors of the A matrix (denoted L(A)). Hence, rather than solving the system of equations using
Gauss elimination, the correct Is can be determined by setting up a sufficiently large number of
equations, generating the set L(A) corresponding to the A matrix, and searching for the right
hand side of the system (b) in the set L(A). If, for a given guessed Is the b vector is found in
L(A), and the number of equations is large enough, this guessed Is is indeed the correct Is.

The example below illustrates the consistency check using the registers described above (both
of length 4), with the number of equations set to 11.

Here, the intercepted sequence is generated by Is = 0011 and Iu = 0110, and a guess of 0011
for Is yields the following system of equations:

Ax = b (3.2)

where

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

v1 v2 v3 v4 v5 v6 v7 v8 v9
0 0 1 1 1 0 0 0 0
0 1 1 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,b =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
1
1
1
1
0
0
0
0
1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
L(A) is the set of all linear combinations of the column vectors from A, that is

L(A) = (v1, v2, ..., vn, v1+v2, ..., v1+vn, v1+v2+v3, ..., ..., v1+v2+ ...+vn−1+vn). Since b here
equals v2 + v3 + v5 + v6 + v8, b is indeed in the set L(A), and the consistency check will output
the system as consistent for Is = 0011. When the number of equations (neq) is 11, Is = 0011 is
the only initial state for which the system is consistent, but for neq < 11 more than one Is yield
consistent systems (i.e. false consistency alarms). For example, when the number of equations is
10, 2 guesses for Is (0011 and 0110) yield consistent systems. This illustrates that the number of
equations must exceed some limit.

Several tests were run in order to investigate how many equations are needed to avoid or
reduce the number of false consistency alarms for registers of different lengths.

3.2.1 Test 1

For the selected combinations of registers in Table 1, the intercepted sequences are generated
with the given Is and Iu. For each choice of the neq variable, all possible guesses for Is are
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polynomials and initial states neq % yielding consistent system
8 10 / 15

fs = 1+ x+ x4, fu = 1+ x3 + x4, 9 5 / 15
Is = 0011, Iu = 0110 10 2 / 15

11 1 / 15
8 8 / 15

fs = 1+ x+ x4, fu = 1+ x3 + x4, 9 7 / 15
Is = 0001, Iu = 0001 10 5 / 15

11 2 / 15
12 1 / 15
11 62 / 127

fs = 1+ x4 + x7, fu = 1+ x6 + x7, 12 55 / 127
Is = 0000001, Iu = 0000001 13 47 / 127

14 29 / 127
15 20 / 127
16 9 / 127
17 4 / 127
18 4 / 127
19 2 / 127
20 1 / 127
16 64 / 127

fs = 1+ x4 + x7, fu = 1+ x+ x4 + x9 + x10, 17 48 / 127
Is = 0000001, Iu = 0000000001 18 32 / 127

19 20 / 127
20 9 / 127
21 6 / 127
22 4 / 127
23 3 / 127
24 1 / 127

Table 1: Percentage of guesses for Is yielding a consistent system for different number of equations.

tried and the resulting systems are checked for consistency. The last column shows the number
of guessed Is yielding a consistent system.

3.2.2 Test 2

In this test, for a given guess for Is a new equation is added to the system if the condition
neq < (nvar+ lens +delta) is true, whereas in the previous test all the guesses were tried with
a fixed value of neq.

With this test, we want to investigate the condition of Theorem 1 mentioned in [4], namely
that the number of equations should exceed the number of variables plus the length of LFSRs

significantly in order to make the number of false consistency alarms as small as possible.
The results for registers of different lengths are summarized in tables 2 and 3.
As Table 2 shows, when Is = 1110 and delta = 0, 2 different guessed Is’s yield consistent

systems. When we increase delta to 1, however, only the guess 1110 yields a consistent system.
In Table 2, all tests are performed with Iu = 0001, and in Table 3 with Iu = 0101010.
Subsequently, Test 2 was performed for all 15 × 15 = 225 combinations of Is and Iu (not
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Is delta guessed Is neq nvar consistent system?
0001 0 0001 15 11 yes

0010 14 10 no
0011 14 10 no
⋅ ⋅ ⋅

1111 12 8 no
Total: 1 / 15

0010 0 0001 14 10 no
0010 14 10 yes
0011 14 10 no
⋅ ⋅ ⋅

1111 12 8 no
Total: 1 / 15

1110 0 0001 14 10 no
0010 14 10 yes
⋅ ⋅ ⋅

1110 17 13 yes
1111 12 8 no

Total: 2 / 15
1110 1 0001 16 11 no

0010 16 11 no
⋅ ⋅ ⋅

1110 19 14 yes
1111 15 10 no

Total: 1 / 15

Table 2: The sufficient magnitude of delta such that the consistency test returns consistent=true only for
the correct guess for Is. fs = 1 + x + x4, fu = 1 + x3 + x4. The table shows only results for Iu = 0001 for
selected values of Is.
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Is delta guessed Is neq nvar consistent system?
0000001 0 0000001 27 20 yes

Total: 1 / 127
0000011 0 0000011 27 20 yes

1000001 28 21 yes
Total: 2 / 127

0000011 1 0000011 30 22 yes
Total: 1 / 127

0000111 0 0000111 26 19 yes
0001011 24 17 yes
1111100 26 19 yes
1111111 25 18 yes

Total: 4 / 127
0000111 1 0000111 32 24 yes

0001011 26 18 yes
Total: 2 / 127

0000111 2 0000111 35 26 yes
Total: 1 / 127

0010110 0 0010110 24 17 yes
1111000 27 20 yes
1111110 26 19 yes

Total: 3 / 127
0010110 1 0010110 26 18 yes

1111000 29 21 yes
1111110 28 20 yes

Total: 3 / 127
0010110 2 0010110 28 19 yes

Total: 1 / 127

Table 3: The sufficient magnitude of delta such that the consistency test returns consistent=true only for
the correct guess for Is. fs = 1 + x4 + x7, fu = 1 + x6 + x7. The table shows only results for Iu = 0101010

for selected values of Is.
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including the all zero states). This was repeated 5 times with delta between 0 and 4. For all
possible combinations of Is, Iu and delta (where delta ∈ [0, 4]), the correct guess for Is is
indeed in the set of the guesses that yield a consistent system, as expected. The results are
summarized in Table 4. The table shows only the combinations of Is and Iu for which the number
of consistent systems is greater than 1 for delta = 0, as well as displaying the results for these
same combinations with increasing values of delta.

This result supports the condition given in [4].

Is Iu delta # consistent
0001 0100 0 2/15

1 2/15
2 1/15

0001 1000 0 2/15
1 1/15

0001 1010 0 2/15
1 1/15

0001 1100 0 2/15
1 1/15

0010 0010 0 2/15
1 1/15

0010 0100 0 2/15
1 1/15

0010 0101 0 2/15
1 1/15

0010 0110 0 2/15
1 1/15

0010 1000 0 2/15
1 2/15
2 1/15

0011 1101 0 2/15
1 1/15

0011 1110 0 2/15
1 1/15

0100 0100 0 2/15
1 2/15
2 1/15

0101 0110 0 2/15
1 2/15
2 1/15

0110 1010 0 2/15
1 2/15
2 1/15

0110 1101 0 2/15
1 1/15

0111 0011 0 2/15
1 1/15
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1000 1001 0 2/15
1 1/15

1000 1110 0 2/15
1 1/15

1001 0011 0 2/15
1 1/15

1010 0101 0 3/15
1 2/15
2 1/15

1010 1011 0 2/15
1 1/15

1011 1001 0 2/15
1 1/15

1100 0111 0 2/15
1 1/15

1101 1010 0 2/15
1 1/15

1101 1101 0 2/15
1 1/15

1110 0001 0 2/15
1 1/15

1111 0110 0 2/15
1 1/15

Table 4: The sufficient magnitude of delta such that the consis-
tency test returns consistent=true only for the correct guess for Is,
for all combinations of initial states of LFSRs and LFSRu. The table
only shows combinations of Is and Iu for which the number of
consistent systems are greater than 1 for delta=0. fs = 1+ x+ x4,
fu = 1+ x3 + x4.

3.2.3 The number of equations and delta

Test 1 and Test 2 described above verify that in order for the consistency test not to give false
alarms (i.e. a wrongly guessed initial state is reported as the correct one) sufficiently many
equations must be created.

It can be seen from tables 2-4 that the required magnitude of delta depends on the initial
states used to genereate the kestream sequence, and that the required number of equations
depends both on the register lengths and the initial states.

3.3 The Linear Consistency Test with noise

Continuing the example from the previous section, we are going to add noise to the intercep-
ted sequence and investigate whether the Linear Consistency Test can be successful also in this
situation.

Consider the first 7 equations of the system in Equation 3.2:
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x3 + x4 + x5 = 0

x2 + x3 = 0

x1 + x2 = 1

x1 + x5 = 1

x5 = 1

x6 = 1

0 = 0

(3.3)

Obviously, this system of equations is consistent. However, if we change the value of the 2nd
bit of the intercepted sequence z from 1 to 0, yielding noisyZ = 0011000111 and uguessed =

x50011x60x70x80x911x101, the first 7 equations are:

x3 + x4 + x5 = 0

x2 + x3 = 0

x1 + x2 = 0

x1 + x5 = 1

x5 = 1

x6 = 0

0+ 1 = 0

(3.4)

The last equation clearly shows that this system is not consistent, and thus the LCT will reject
the guess of 0011 for Is. But, provided that the intercepted sequence is long enough, we can start
building equations from a position farther to the right in the sequence, such that the altered 2nd
position will not appear in the system of equations. For example, starting from the 8th position
of uguessed, we get the following system:

x7 = 0

x6 = 1

x6 + x8 = 0

(x7 = 0)

x7 + x9 = 0

x8 = 1

(x8 = 1)

x9 + x10 = 0

x9 = 0

(3.5)
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Positions: 44,22,148,9,196,155,142,132,189,75,78,57
nIterations nConsistent

11 0
21 0
31 0
38 0
39 1
40 2
41 3

Table 5: The number of iterations for which the LCT test yields consistent=true for selected numbers of
iterations. fs = 1 + x + x4, fu = 1 + x3 + x4. NoiseLevel=0.05. Guessed Is equals actual Is (0011).

which is, indeed, consistent. 1

Bringing this idea further, suppose that n arbitrary bits of z are altered, yielding a system with
a noise level of n/l, where l is the length of z. For example, if l = 40 and we set the noise level
to 0.05, noisyZ differs from z in two bits. The bits to be altered are chosen randomly.

Suppose also that we run the LCT an odd number of times with the same guess for Is (denoted
nIterations). For each iteration, the starting position (k) of the equations is increased by one,
starting with k = 0 in the first iteration. With k = 0 the equations are created starting from the
first bit of uguessed, and the example above where we started on the 8th bit would correspond
to k = 7. For each iteration, the result will be either ”consistent=false” or ”consistent=true”, and
the number of consistent iterations is denoted by nConsistent.

Our conjecture is that when nIterations is sufficiently high, a majority function can de-
termine whether the guess for Is is indeed correct. For example, when nIterations = 5, if
three or more of the iterations yield consistent systems (nConsistent >= 3), we conclude
that the guess for Is is correct, and if less than three of the iterations yield consistent systems
(nConsistent < 3), we conclude that the guess for Is is wrong.

Preliminary experimentation shows that (with nIterations = 11, delta = 2 and noiseLevel =

0.05) when the guessed Is is different from the actual Is, the LCT seems to always yield
nConsistent = 0, irrespective of the combination of positions selected to be noisy. This result
looks promising.

However, when the guessed Is is the correct one, nConsistent varies between 0 and
nIterations, inclusive (examples are given in Table 5 and Table 6). Thus, for some combina-
tions of noise positions, nConsistent = 0 even if the guessed Is is the correct one, even for
larger values of nIterations. Then, how can we distinguish between a wrong guess for Is and a
correct guess?

On the other hand, when we increase nIterations sufficiently (e.g. nIterations = 79,
nIterations = 99, nIterations = 199 etc for registers of length 4), it seems that the num-
ber of combinations yielding nConsistent = 0 decreases when the guessed Is is the correct
one.

1Since two of the equations (in parentheses) are duplicates of earlier equations, these are discarded and 2 additional
equations are produced.
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Positions: 88,43,74,148,195,176,19,41,95,61,39,124
nIterations nConsistent

11 9
21 9
31 9
38 11
39 11
40 11
41 11

Table 6: The number of iterations for which the LCT test yields consistent=true for selected numbers of
iterations. fs = 1 + x + x4, fu = 1 + x3 + x4. NoiseLevel=0.05. Guessed Is equals actual Is (0011).

These observations lead to the following hypotheses:

H1 When nIterations exceeds a certain level, the probability for a correct guess for Is to yield
nConsistent = 0 is very low.

H2 Even when nIterations is high, the probability that a wrong guess for Is yields
nConsistent = 0 is close to 1.

To be able to investigate these hypotheses further, we select a random sample of noise position
combinations and run consistency tests for each of these combinations for a given noise level for
two cases (corresponding to H1 and H2):

1. When the guessed Is equals the actual Is

2. When the guessed Is is different from the actual Is

Then, given that the selected sample of combinations is representative of all possible noise
position combinations, we can, for each noise level, find the lower bound for the value of
nIterations for which the number of combinations yielding nConsistent = 0 is 0 (or a value
close to 0) when the guessed Is equals the actual Is. Denote this value by lowestNIterations. If,
for this lowestNIterations value, the probability that nConsistent = 0 is close to 1 when the
guessed Is is different from the actual Is, we may conclude that the LCT is indeed successful for
the given noise level. The experimental setup is explained more thoroughly in the next chapter.

3.3.1 Computational complexity

The discussion in the previous section addressed the first research question. In this section, the
second research question is investigated.

In [3] it was proved that the LCT attack (without noise) has a maximum complexity of O(2l1),
where l1 is the length of LFSRs, for the BRM model. Thus, the runtime is independent of the
length of LFSRu. Assuming the most efficient LCT implementation, the complexity of the LCT
with noise is given as c × 2l1 for a given noise level and register length, where c is a constant.
This is obvious, since in the scenario with noise the LCT attack is run c times.

The magnitude of c can be found for small register lengths (see the results in Section 4.4)
since it corresponds to the lowestNIterations variable. By investigating how this variable
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changes as the register lengths are increased, it might be possible to estimate c for larger re-
gisters and make a generalization on the runtime complexity of the attack.

However, in order for this argumentation to hold, it must be possible to modify the algorithm
of [3] (see 2.4.2) such that for each iteration of the algorithm, the starting point of the equations
is shifted one position to the right. Just like the attack scenario described in this thesis, the
equations of [3] are built from uguessed. But rather than using the feedback polynomial of
LFSRu, a low weight equation h(x) determined from this polynomial is used to create the set of
equations.

Consider what will happen when the input to the algorithm of [3] is a noisy keystream se-
quence, and our guess for Is is correct. If some of the equations from the generated set of equa-
tions contain some noisy bits, then, by the argumentation in 3.3, the set of equations might not
be consistent. Further, we anticipate that by shifting the starting position of the equations, the
next set of equations might contain no noisy bits, and the set of equations will be consistent.
This corresponds to the situation in 3.3, so intuitively, it would be possible to replace the LCT
implementation of the attack in this thesis with the faster LCT attack of [3].

Unlike the LCT attack, the runtime of correlation attacks is dependent on the length of both
registers. The ciphertext only clock reconstruction correlation attack of [8] (see 2.4.1) is perfor-
med in two phases, and has a complexity of O(2Ls + 2Lu).

Thus, if the c constant discussed above grows linearly with the register lengths (or sub-
linearly), we can conclude that the LCT attack with noise performs better than the ciphertext only
correlation attacks when the length of LFSRs is sufficiently shorter than the length of LFSRu

2.
The hypothesis to be investigated in order to answer the second research question (see Section
1.5) is stated as follows:

H3 The growth of the c constant is linear (or sub-linear) with increasing register lengths

The growth of the c constant can be estimated by running the experiment outlined in the
previous section (case 1) with generators of different register lengths, and finding the best fitting
function to describe the relationship between the x’s (register length) and the y’s (the number
of iterations of the LCT test).

2This is often the case in practical implementations, cf. the LILI-128 keystream generator [1]
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4 Experimental work

The aim of the experimental work is to give an answer to the hypotheses (H1, H2 and H3) stated
in the previous section, which in turn will answer the research questions (see Section 1.5).

The generator used in the experiments was described in Figure 4. In addition to this length 4
generator with feedback polynomials fs(x) = 1+x+x4 and fu(x) = 1+x3+x4, generators with
registers of length 7 and 12 are also used. Table 7 gives an overview of these generators.

In order to describe the experimental setup, the pseudocode together with an example is
provided. Subsequently, the choice of parameter values for the experiment is discussed and the
results are presented. An analysis of the results follows in the next chapter.

4.1 Case 1 - Pseudocode and example

For the experiments described in this section a random sample consisting of a number of noise
position combinations is selected, and for each of the combinations consistency tests are run with
guessed Is equal to the actual Is.

For example, for noise level 0.05, let the length of the intercepted sequence be 225 bits,
then ⌈225 × 0.05⌉ = 12 of the bits from the output of the generator (z) are altered to yield the
noisy sequence noisyZ. The indices of the positions to be altered are chosen pseudorandomly,
and one such combination of noise positions (e.g. positions 1, 23, 56, 89, 2, 19, 17, 221, 90,
40, 51 and 111) is called a noise position combination, or simply a combination. Then, for each
combination, the bits of the z sequence are altered (a 0 is changed to 1, and a 1 is changed to 0)
according to the given noise positions to yield the sequence noisyZ. The number of combinations
is determined by the nCombinations variable.

The maxNIterations variable determines the total number of times the consistency check
is going to be run for each combination. The nIterations variable is incremented from 0 to
maxNIterations, and for each increment the starting position of the equations (as explained
in Section 3.3) is shifted one position to the right in the decimated sequence. For each value of
nIterations, we count the number of consistency checks yielding consistent=true. For example,
when nIterations = 11 and the number of consistency checks yielding consistent=true equals
7, then nConsistent = 7 (out of 11).

In the case 1 experiments, we are interested in the combinations that yields nConsistent = 0,
and we want to know how large nIterations must be in order for the number (or percentage)

fs(x) fu(x) register lengths
1+ x+ x4 1+ x3 + x4 4
1+ x4 + x7 1+ x6 + x7 7

1+ x+ x4 + x6 + x12 1+ x2 + x3 + x9 + x12 12

Table 7: Feedback polynomials of the generators used in the experimental work.
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of combinations yielding nConsistent = 0 to be close to 0, when the initial state of LFSRs is
guessed correctly. The graphs presenting the results later in this chapter show this percentage as
nIterations increases, and we are especially interested in the lowest value of nIterations for
which this percentage is below a certain threshold (denoted by lowestNIterations).

4.1.1 An example experiment

When the experiment (see Algorithm 1) is run with the parameters in Table 8 and with the com-
binations (chosen by the algorithm) from Table 9, the output reported in Table 10 is obtained.

The table is split in 11 smaller tables, each showing the results for each combination in the
given iteration.

For example, when iteration 1 is finished (nIterations = 1), 1 consistency check has been
run for each of the combinations. For comb 0 this check yielded consistent=true, for comb 1 the
check yielded consistent=false etc. Here, nConsistent = 0 for two of the combinations (comb
0 and comb 1), thus the result for nIterations = 1 is nNConsistent0 = 2.

Further, when iteration 2 is finished (nIterations = 2), a total of 2 consistency checks has
been run for each of the combinations, and since the consistency check for comb 0 in iteration 2
yielded consistent=true, nConsistent is increased to 2 for comb 0.

Observe that in iteration 8 the consistency check for comb 2 yields consistent=true, such that
for nIterations = 8, the value of the nNConsistent0 variable is decreased to 1. Thus, 20% of
the combinations yield nConsistent = 0. In the graphs in Section 4.4, this percentage is shown
in the y-axis, while the corresponding value of nIterations is shown in the x-axis.

4.1.2 Pseudocode

The code that produced the results of Table 10 is shown as pseudocode in Algorithm 1. Since
the inner loop (lines 13-23) is run maxIterations times, some data needed here is generated
during preprocessing (lines 4-8) and stored in the combinations array:

∙ the decimation vector for the given combination (in the LctNoise object initialized in line 6)

∙ the nConsistent variable (in the Combination object initialized in line 8)

The results for each iteration is stored in Result objects in the results array. The Result object
has an nNConsistent0 member variable to keep track of the number of combinations yielding
nConsistent = 0 when the given iteration is finished (see Table 10). This variable is updated in
line 22.

In the inner for loop (lines 13-23), a system of equations is created for a given noisyZ, with
k as starting point. When the equations are created, the system is checked for consistency. If the
system is consistent, the nConsistent of the given combination is updated (line 18). To prepare
for the next iteration, the amat and cvec variables (in which the system of equations is stored)
in the LctNoise object are reset. Then, if nConsistent = 0 for this combination, the number of
combinations yielding nConsistent = 0 is increased by one for the given iteration (line 22).

4.2 Case 2

Rather than running consistency test with guessed Is equal to the actual Is, as was done in the
previous section, for the case 2 experiments the guessed Is is different from the actual Is. Thus,
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noiseLevel 0.05
nCombinations 5
maxNIterations 11

lengthZ 225
delta 0
sPoly 1+ x+ x4

uPoly 1+ x3 + x4

initS 0011
initU 0110

guessedInitS 0011

Table 8: Parameters of the example experiment

combination noise positions
0 19 39 41 43 61 74 88 95 124 148 176 195
1 6 57 72 74 109 120 123 144 147 154 196 205
2 2 19 25 42 98 119 145 151 163 173 175 221
3 16 50 67 85 86 91 96 141 155 179 201 215
4 27 28 42 62 82 108 115 151 152 168 197 207

Table 9: Noise positions of the example experiment

Algorithm 1 ExperimentLctNoise ( )
1: s← GENERATESEQUENCE(sPoly, initS)
2: u← GENERATESEQUENCE(uPoly, initU)
3: for j← 0, nCombinations do
4: z← DECIMATESEQUENCE(s, u)
5: noisyZ← ADDNOISE(z, noiseLevel)
6: lct← CREATELCTNOISE(sPoly, uPoly, guessedInitS, noisyZ, delta)
7: lct.CREATEDECIMATIONVECTOR( )
8: combinations[j]← CREATECOMBINATION(lct)
9: end for

10: for k← 0,maxIterations do
11: results[k]← CREATERESULT(k+1, nCombinations)
12: for i← 0, nCombinations do
13: comb← combinations[i]
14: lct← comb.lct
15: lct.CREATEEQUATIONS(k)
16: consistent← lct.ISCONSISTENT( )
17: if consistent then
18: comb.nConsistent← comb.nConsistent+ 1
19: end if
20: lct.CLEARAMATCVEC( )
21: if comb.nConsistent = 0 then
22: results[k].nNConsistent0← results[k].nNConsistent0+ 1
23: end if
24: end for
25: end for
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Iteration 1, result.nNConsistent0 = 2
comb 0 comb 1 comb 2 comb 3 comb 4

comb.nConsistent 1 0 0 1 1
Iteration 2, result.nNConsistent0 = 2

comb 0 comb 1 comb 2 comb 3 comb 4
comb.nConsistent 2 0 0 2 2
Iteration 3, result.nNConsistent0 = 2

comb 0 comb 1 comb 2 comb 3 comb 4
comb.nConsistent 3 0 0 3 3
Iteration 4, result.nNConsistent0 = 2

comb 0 comb 1 comb 2 comb 3 comb 4
comb.nConsistent 4 0 0 4 4
Iteration 5, result.nNConsistent0 = 2

comb 0 comb 1 comb 2 comb 3 comb 4
comb.nConsistent 5 0 0 5 5
Iteration 6, result.nNConsistent0 = 2

comb 0 comb 1 comb 2 comb 3 comb 4
comb.nConsistent 6 0 0 6 6
Iteration 7, result.nNConsistent0 = 2

comb 0 comb 1 comb 2 comb 3 comb 4
comb.nConsistent 7 0 0 7 7
Iteration 8, result.nNConsistent0 = 1

comb 0 comb 1 comb 2 comb 3 comb 4
comb.nConsistent 8 0 1 8 8
Iteration 9, result.nNConsistent0 = 1

comb 0 comb 1 comb 2 comb 3 comb 4
comb.nConsistent 9 0 2 9 9
Iteration 10, result.nNConsistent0 =

comb 0 comb 1 comb 2 comb 3 comb 4
comb.nConsistent 10 0 3 10 10
Iteration 11, result.nNConsistent0 = 1

comb 0 comb 1 comb 2 comb 3 comb 4
comb.nConsistent 11 0 4 11 11

Table 10: Result of ExperimentLctNoise with maxNIterations=11, noiseLevel=0.05, delta=0 and
nComb=5. The table shows the accumulated number of iterations for which the LCT yields consistent=true
(denoted by nConsistent) for each of the five combinations.
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the pseudocode of Algorithm 1 is still employed, but it is executed 14 times rather than 1 time
for the length 4 registers, each time with a new guess for Is.

After the execution of the code of Algorithm 1 2n − 2 times, where n is the length of LFSRs,
the nNConsistent0 variable is totalized over all initial states. As before, the case 2 graphs of
section 4.4 show the percentage out of all combinations for which nConsistent = 0. Thus, the
case 2 experiments aim to answer H2 in section 3.3.

4.3 Discussion of parameter choices

4.3.1 Choice of initial states, delta and the number of combinations

The delta value, discussed previously, determines how many equations are created. Thus, it has
a large impact on the runtime of the experiment (and the attack itself), and consequently, delta
should be kept small.

Table 4 suggests the value of delta for different combinations of Is and Iu. For the expe-
riments with the length = 4 registers, a Is/Iu combination that yields 1/15 consistent for
delta = 0 is chosen (these are the Is/Iu combinations that are not shown in the table). One
such combination is Is = 0011 / Iu = 0110.

Similarly, for the length = 7 registers, table 3 shows that Is = 0000001 / Iu = 0101010 is an
initial state combination that yields 1/127 consistent for delta = 0. So for the experiments with
the length = 7 registers, this combination of initial states is chosen.

In order to get more accurate results, the number of noise position combinations in the sample
should be high. For the length = 4 registers, nCombinations = 1000 is feasible. However,
nCombinations = 1000 for the length = 7 experiments is not feasible due to limited computa-
tional resources. Thus, for the length = 7 experiments, nCombinations is set to 100.

It was also considered to run the experiments for all combinations of Is/Iu (or a sample
consisting of some number of randomly selected combinations). However, experimentation re-
vealed that varying the initial state combination had little impact on the results. Thus, for sim-
plicity, only one combination of initial states was used for each of the generators.

4.3.2 Choosing a threshold

From a cryptanalyst’s point of view, it is better to believe that our guess is correct when in reality
it is not, than to believe that our guess is wrong when in reality it is not. The reason is that if we
believe our guess is correct, we would normally be able employ the guessed key in deciphering
and see from the resulting plaintext whether the key believed to be correct was indeed the correct
one. On the other hand, if we believe that our guess is wrong, we may miss the correct key.

According to this reasoning, we should make sure that the probability that the LCT yields
”wrong guess” when the guess was indeed correct is very low. That is, in finding an adequate
trade-off for the value of nIterations, we should make sure that the probability for
nConsistent = 0 for case 1 is very low, while we can accept a greater deviation from 1 for
the probability for nConsistent = 0 for case 2. So in order to decide the lowestNIterations

value for different noise levels, we set the threshold for the case 1 percentages to 1%.
For instance, it can be seen from the results in the next section that for noise level 0.20

and the length 7 registers, if we demand that nConsistent = 0 be less than or equal to 1%
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for case 1, then nIterations must be (at least) 4139. That means that we must accept that
nConsistent = 0 is 91.41% for case 2.

4.4 Results

The figures (6-15) show the percentage of combinations for which nConsistent = 0 (y-axis)
for different values of nIterations (x-axis). In the experiments, noise levels in the range 0.05-
0.25 are employed, and one sample consists of 1000 randomly selected combinations of noise
positions for the length=4 registers, and 100 for the length=7 registers. For each noise level
(0.05, 0.10, 0.15, 0.20 and 0.25) a new sample of 1000 (100) combinations is selected. Note
that the scale of the x-axis is not the same for all graphs.

4.4.1 nConsistent = 0 when guessed Is equals actual Is (case 1)

In the experiments reported in this section, the consistency tests are run with guessed Is equal
to the actual Is. This suggests that low percentages should be observed for the nConsistent = 0

variable, at least when the level of noise is low.
The charts are displayed in figures 6-10.

4.4.2 nConsistent = 0 when guessed Is is different from actual Is (case 2)

Here, the consistency tests are run with guessed Is different from the actual Is. This suggests
that high percentages should be observed for the nConsistent = 0 variable.

In the experiments, the numbers are totalized over all possible values for the guess of Is

(except for the all zero state and the actual Is). Hence, for registers of length 4, 14 different
guesses are employed, and for registers of length 7, 126 different guesses are employed.

The charts are displayed in figures 11-15.
It should be observed that, in order to be able to obtain the results for case 2, which was quite

time consuming for higher noise levels and register lengths, it should be observed that the length
of the intercepted sequence for case 2 in many cases was chosen to be significantly shorter than
for the corresponding case 1 experiment. However, this should have no impact on the results
since the number of bits that were altered up to the magnitude of lowestNIterations would be
approximately the same in both cases. For completeness, the length of the intercepted sequence
(lenZ) and the number of bits altered for each noise level, register combination and delta used
in the experiments are given in tables 16 and 17.

4.4.3 Trade-off between a high case 2 percentage and low case 1 percentage

Tables 11 and 12 show the lowestNIterations value for different noise levels for the length 4 re-
gisters with delta=0. According to Section 4.3.2, the tables show the lowest value of nIterations
for which the case 1 percentage is equal to or less than 1%, and the corresponding case 1 and case
2 percentages. It should be noted that when this value is found, only odd values of nIterations
are considered.

4.4.4 Increasing delta

As Table 11 shows, the results for the length = 4 registers with delta = 0 are quite bad, in terms
of the case 2 percentages.

A low value of delta means fewer equations (compared with a higher value of delta),
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Figure 6: Case 1: fs(x) = 1 + x + x4 and fu(x) = 1 + x3 + x4. Noise level=0.05, nComb=1000, delta=0.

Figure 7: Case 1: fs(x) = 1 + x + x4 and fu(x) = 1 + x3 + x4. Noise level=0.10, nComb=1000, delta=0.
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Figure 8: Case 1: fs(x) = 1 + x + x4 and fu(x) = 1 + x3 + x4. Noise level=0.15, nComb=1000, delta=0.

Figure 9: Case 1: fs(x) = 1 + x + x4 and fu(x) = 1 + x3 + x4. Noise level=0.20, nComb=1000, delta=0.
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Figure 10: Case 1: fs(x) = 1 + x + x4 and fu(x) = 1 + x3 + x4. Noise level=0.25, nComb=1000, delta=0.

Figure 11: Case 2: fs(x) = 1 + x + x4 and fu(x) = 1 + x3 + x4. Noise level=0.05, nComb=1000, delta=0.

35



Linear Consistency Test (LCT) in cryptanalysis of irregularly clocked LFSRs in the presence of noise

Figure 12: Case 2: fs(x) = 1 + x + x4 and fu(x) = 1 + x3 + x4. Noise level=0.10, nComb=1000, delta=0.

Figure 13: Case 2: fs(x) = 1 + x + x4 and fu(x) = 1 + x3 + x4. Noise level=0.15, nComb=1000, delta=0.
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Figure 14: Case 2: fs(x) = 1 + x + x4 and fu(x) = 1 + x3 + x4. Noise level=0.20, nComb=1000, delta=0.

Figure 15: Case 2: fs(x) = 1 + x + x4 and fu(x) = 1 + x3 + x4. Noise level=0.25, nComb=1000, delta=0.
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noiseLevel lowestNIterations nConsistent = 0, case 1 nConsistent = 0, case 2
0.05 69 1.0% 87.74%
0.10 131 1.0% 73.18%
0.15 235 1.0% 54.11%
0.20 423 0.9% 35.94%
0.25 697 1.0% 18.9%

Table 11: Trade-off between nConsistent = 0 for case 1 and nConsistent = 0 for case 2. fs = 1+ x+ x4,
fu = 1 + x3 + x4. Delta=0.

noiseLevel lowestNIterations nConsistent = 0, case 1 nConsistent = 0, case 2
0.05 135 1% 98.84%
0.10 483 1% 98.33%
0.15 1625 1% 95.56%
0.20 4139 0% 91.41%
0.25 - - -

Table 12: Trade-off between nConsistent = 0 for case 1 and nConsistent = 0 for case 2. fs = 1+ x4 + x7,
fu = 1 + x6 + x7. Delta=0.

hence fewer restrictions on the system of equations, which would result in a greater number
of consistent systems. This applies when the guess is correct (with noise) as well as when the
guess is wrong. Thus, by increasing delta slightly, higher percentages for case 2 are expected.

The results obtained for delta = 0 and the length = 4 registers show that not only the choice
of initial states from which the keystream sequence is generated has an impact on the magnitude
of delta; the presence of noise enforces even more equations to be created and thus the use of a
higher value of delta in order to obtain good results.

The subsequent section shows the results with delta = 1 and delta = 2.

4.4.5 Results for delta = 1 and delta = 2

Figures 16-25 and Table 13 show the results for the length = 4 registers width delta = 2. As
the table shows, the results for case 2 are much better with delta = 2 than with delta = 0.
Tables 14 and 15 show the results for delta = 1 with register lengths 4 and 7, respectively. The
corresponding graphs can be found in the appendix.

noiseLevel lowestNIterations nConsistent = 0, case 1 nConsistent = 0, case 2
0.05 117 1.0% 99.76%
0.10 293 0.9% 98.46%
0.15 749 0.6% 95.89%
0.20 1607 1.0% 93.04%
0.25 4507 1.0% 82.48%

Table 13: Trade-off between nConsistent = 0 for case 1 and nConsistent = 0 for case 2. fs = 1+ x+ x4,
fu = 1 + x3 + x4. Delta=2.
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Figure 16: Case 1: fs(x) = 1 + x + x4 and fu(x) = 1 + x3 + x4. Noise level=0.05, nComb=1000, delta=2.

Figure 17: Case 1: fs(x) = 1 + x + x4 and fu(x) = 1 + x3 + x4. Noise level=0.10, nComb=1000, delta=2.
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Figure 18: Case 1: fs(x) = 1 + x + x4 and fu(x) = 1 + x3 + x4. Noise level=0.15, nComb=1000, delta=2.

Figure 19: Case 1: fs(x) = 1 + x + x4 and fu(x) = 1 + x3 + x4. Noise level=0.20, nComb=1000, delta=2.
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Figure 20: Case 1: fs(x) = 1 + x + x4 and fu(x) = 1 + x3 + x4. Noise level=0.25, nComb=1000, delta=2.

Figure 21: Case 2: fs(x) = 1 + x + x4 and fu(x) = 1 + x3 + x4. Noise level=0.05, nComb=1000, delta=2.
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Figure 22: Case 2: fs(x) = 1 + x + x4 and fu(x) = 1 + x3 + x4. Noise level=0.10, nComb=1000, delta=2.

Figure 23: Case 2: fs(x) = 1 + x + x4 and fu(x) = 1 + x3 + x4. Noise level=0.15, nComb=1000, delta=2.
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Figure 24: Case 2: fs(x) = 1 + x + x4 and fu(x) = 1 + x3 + x4. Noise level=0.20, nComb=1000, delta=2.

Figure 25: Case 2: fs(x) = 1 + x + x4 and fu(x) = 1 + x3 + x4. Noise level=0.25. nComb=1000, delta=2.

43



Linear Consistency Test (LCT) in cryptanalysis of irregularly clocked LFSRs in the presence of noise

noiseLevel lowestNIterations nConsistent = 0, case 1 nConsistent = 0, case 2
0.05 85 1.0% 92.04%
0.10 193 1.0 % 82.67%
0.15 355 1.0% 71.89%
0.20 799 1.0% 50.11%
0.25 1549 0.9% 28.69%

Table 14: Trade-off between nConsistent = 0 for case 1 and nConsistent = 0 for case 2. fs = 1+ x+ x4,
fu = 1 + x3 + x4. Delta=1.

noiseLevel lowestNIterations nConsistent = 0, case 1 nConsistent = 0, case 2
0.05 183 1% 99.84%
0.10 659 1% 99.52%
0.15 2617 1% 98.29%
0.20 - - -
0.25 - - -

Table 15: Trade-off between nConsistent = 0 for case 1 and nConsistent = 0 for case 2. fs = 1+ x4 + x7,
fu = 1 + x6 + x7. Delta=1.

length=4 register length=7 register
delta/noise 0 1 2 0 1

0.05 225/12 225/12 225/12 500/25 250/13
0.10 1000/100 500/50 1000/100 1500/150 1000/100
0.15 1500/225 1000/150 1500/225 2040/306 2041/307
0.20 3000/600 1500/300 3000/600 2859/572 -
0.25 9000/2250 2000/500 15000/3750 - -

Table 16: Experiment parameters: lenZ/number of altered bits. Case 1.

length=4 register length=7 register
delta/noise 0 1 2 0 1

0.05 225/12 199/10 225/12 299/15 309/16
0.10 225/23 225/23 1000/100 599/60 739/74
0.15 225/34 500/75 1000/150 2019/303 2041/307
0.20 600/120 1200/240 3000/600 2866/574 -
0.25 900/225 2000/500 8000/2000 - -

Table 17: Experiment parameters: lenZ/number of altered bits. Case 2.
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lowestNIterations
length/noise 0.05 0.10 0.15

4 69 131 235
7 135 483 1625

12 259 619 2463

Table 18: Number of iterations needed such that the probability that a correct guess for Is yields 0 consistent
iterations is ≤ 1%. Delta=0.

lowestNIterations
length/noise 0.05 0.10 0.15

4 85 193 355
7 183 659 2617

12 221 799 3815

Table 19: Number of iterations needed such that the probability that a correct guess for Is yields 0 consistent
iterations is ≤ 1%. Delta=1.

4.4.6 Computational complexity

As explained in Section 3.3.1, in order to determine the growth of the c constant the results from
the case 1 experiments could be used. However, this experiment was only run for register lengths
4 and 7. To be able to judge the growth of the c constant at least 3 (and preferably as many as
possible) generators of increasing register lengths will be needed. Fortunately, for case 1 it was
also possible to get results for length=12. Tables 18 and 19 show the results from the previous
sections for register lengths 4 and 7, and additional results for length 12. It should be noted,
however, that for length 12 nCombinations was set to 10, so the results may be less accurate
than for length 4 (nCombinations = 1000) and length 7 (nCombinations = 100). The results
are further analysed in the next chapter.
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5 Analysis

In Section 3.3, hypotheses H1, H2 and H3 were stated as follows:

H1 When nIterations exceeds a certain level, the probability for a correct guess for Is to yield
nConsistent = 0 is very low.

H2 Even when nIterations is high, the probability that a wrong guess for Is yields
nConsistent = 0 is close to 1.

H3 The growth of the c constant is linear (or sub-linear) with increasing register lengths

In this chapter, analysis is performed to decide whether these hypotheses can be accepted or
not.

5.1 Hypothesis 1

From the data of Section 4.4, it is observed that H1 is fulfilled, since, for all levels of noise, deltas
and registers considered, sooner or later the percentage of combinations yielding nConsistent =

0 for a correct guess reaches 0, and it seems that the percentage stays 0 for subsequent values of
nIterations.

5.2 Hypothesis 2

For H2, it is not just as obvious whether the hypothesis can be accepted or not.
Tables 20 and 21 provide an overview of the results for nConsistent = 0. Table 20 shows

the lowest value of nIterations (denoted lowestNIterations) for which 1% or less of the
combinations yield nConsistent = 0, for different noise levels, delta and register lengths. Table
21 shows the case 2 percentages corresponding to the lowestNIterations values in table 20.
This part of the analysis will mainly be concerned with the Case 2 table and aims at answering
the H2 hypothesis.

From Table 21, visualized in Figure 26 several observations are made:

length=4 register length=7 register
delta/noise 0 1 2 0 1

0.05 69 85 117 135 183
0.10 131 193 293 483 659
0.15 235 355 749 1625 2617
0.20 423 799 1607 4139 -
0.25 697 1549 4507 - -

Table 20: lowestNIterations for different noise levels, delta and register lengths
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length=4 register length=7 register
delta/noise 0 1 2 0 1

0.05 87.74% 92.04% 99.76% 98.84% 99.84%
0.10 73.18% 82.67% 98.46% 98.33% 99.52%
0.15 54.11% 71.89% 95.89% 95.56% 98.29%
0.20 35.94% 50.11% 93.04% 91.41% -
0.25 18.90% 28.69% 82.48% - -

Table 21: Case 2 when nIterations = lowestNIterations for different levels of noise and delta/register
lengths

Figure 26: Case 2 when nIterations = lowestNIterations for different levels of noise and delta/register
lengths
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∙ The percentage depends on delta - the tendency is that an increase in delta yields an increase
in the percentage.

∙ The percentages are high (above 95%) for noise levels 0.05-0.15 for length=7. For length=4,
only when delta=2 and the noise level is <= 0.15 the case 2 percentages exceed 95%.

∙ The percentages are (very) low for delta=0 and delta=1 for length=4 and noise levels >
0.15.

∙ For the length 4 registers, the percentages decrease rapidly for delta = 0 and delta = 1 as
the level of noise increases, whereas for delta = 2 the percentages decrease slowly. For the
length 7 registers we see the same pattern, but it is not equally obvious since, for technical
reasons, no results were obtained for noise levels 0.20 and 0.25 for delta = 1 and 0.25 for
delta = 0.

In order to obtain a good case 2 percentage, thus, delta should not be too low. But obviously,
since a higher delta leads to a higher lowestNIterations (see Table 20), an increase in delta

would lead to an increase in the runtime. But since the complexity of the LCT is only dependent
on the length of the clocking register LFSRs, which in a stream cipher is often significantly
less than the length of the clocked register LFSRu, an increase in the runtime will be accepted
provided that the gain in terms of improved case 2 percentages is significant. The runtime is
further analysed in the next section, and will not be considered further here.

An interesting question is why the percentages for the length 4 registers with delta = 0 and
delta = 1 are low, while this is not the case for the length 7 registers. Would similar results be
obtained if we used another combination of polynomials of length 4? One possible explanation
is that since fewer equations are created for the length 4 generator (remembering that a new
equation is added as long as neq < (nvar+lens+delta)), an increase by 1 in the delta variable
have a greater impact for small register lengths than for larger register lengths. However, this
question must be investigated further in order to justify any conclusions.

Based on the previous discussion, let delta = 2 for the length=4 registers, and delta = 0 for
the length=7 registers. With these assumptions, we accept H2 for noise levels <= 0.20 for the
length=4 and the length=7 registers.

5.3 Hypothesis 3

In this section, an attempt is made on estimating the computational complexity of our method
based on the results from Section 4.4.6. The results are reproduced in tables 22 and 23. These
tables additionally have three lines showing the correlation coefficient r for exponential, linear
and logarithmic1 regression. Each coefficient is calculated from the register lengths in the first
column (x values) and lowestNIterations from the column of the coefficient(y values). Values
close to 1 indicate that there is a strong correlation between the length of the registers and
lowestNIterations.

The correlation coefficients corresponding to the best approximations are emphasised in the
tables, and show that only for noise level 0.05 and delta 0 a linear approximation seems to be the

1Natural logarithm (base e)
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lowestNIterations
length/noise 0.05 0.10 0.15

4 69 131 235
7 135 483 1625

12 259 619 2463
r (exp) 0.98848399 0.86895996 0.87742192

r (linear) 0.99951629 0.92355683 0.95954188
r (log) 0.98288327 0.97149029 0.99140005

Table 22: lowestNIterations for different noise levels and register lengths. The correlation coefficients (r) in
each column are obtained from lowestNIterations of the same column (y values) and the register lengths
(x values). Delta=0.

lowestNIterations
length/noise 0.05 0.10 0.15

4 85 193 355
7 183 659 2617

12 221 799 3815
r (exp) 0.88725536 0.8568663 0.8684501

r (linear) 0.92385722 0.90283035 0.94953065
r (log) 0.97167589 0.95815625 0.98643855

Table 23: lowestNIterations for different noise levels and register lengths. The correlation coefficients (r) in
each column are obtained from lowestNIterations of the same column (y values) and the register lengths
(x values). Delta=1.

best fit, whereas for all other combinations of delta and noise level a logarithmic approximation
fits best. However, since the number of samples is so small (only 3), the exact approximation
function for each noise level and delta cannot be determined with sufficient confidence. But
the fact that 5 out of 6 situations yields a logarithmic curve as the best approximation strongly
indicates that the growth of lowestNIterations, and thus the c constant, is less than linear.

As an illustration of the complexity of the LCT with noise attack versus the complexity of
a correlation attack, consider a generator of the BRM scheme with lengths = X ∈ [4, 89] and
lengthu = 89. Let noiselevel = 0.15 and delta = 1. The complexity of the LCT attack is given
by c×2X where c = a+b× ln(89) assuming a logarithmic function and c = a×89+b assuming
a linear function for the estimate of nIterations. Using the length of LFSRu (and not the length
of LFSRs) in the estimation of nIterations ensures that the c constant is not underestimated.
Table 24 shows the values of a and b obtained in the regression analysis. The complexity of the
correlation attack is given by 2X + 289. In table 25 the number of operations for a correlation
attack and the LCT attack is calculated for different values of the length of LFSRs with the length
of LFSRu fixed to 89.

The table shows that, assuming a logarithmic function, the LCT performs better than the cor-
relation attack for all lengths of LFSRs less than 76. Correspondingly, assuming a linear function,
the LCT performs better than the correlation attack for lens < 74. Also, it should be noted that
for smaller register lengths, such as lens = 39, the LCT performs several orders of magnitude
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a b
log -3855,5541 3155,11631

linear 412,816326 -902,59183

Table 24: Parameters a and b for logarithmic and linear regression.

len u len s log linear correlation
89 4 222739,1631 573408,9789 6,1897E+26
89 7 1808902,183 4587271,832 6,1897E+26
89 12 58004392,04 146792698,6 6,1897E+26
89 20 14850107528 37578930844 6,1897E+26
89 30 1,52065E+13 3,84808E+13 6,1897E+26
89 39 7,78574E+15 1,97022E+16 6,1897E+26
89 40 1,55715E+16 3,94044E+16 6,1897E+26
89 50 1,59452E+19 4,03501E+19 6,1897E+26
89 60 1,63279E+22 4,13185E+22 6,1897E+26
89 70 1,67197E+25 4,23101E+25 6,18971E+26
89 71 3,34395E+25 8,46202E+25 6,18972E+26
89 72 6,6879E+25 1,6924E+26 6,18975E+26
89 73 1,33758E+26 3,38481E+26 6,18979E+26
89 74 2,67516E+26 6,76962E+26 6,18989E+26
89 75 5,35032E+26 1,35392E+27 6,19008E+26
89 76 1,07006E+27 2,70785E+27 6,19046E+26
89 80 1,7121E+28 4,33256E+28 6,20179E+26
89 90 1,75319E+31 4,43654E+31 1,85691E+27

Table 25: Computational complexity. LCT with noise versus correlation attack.
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better than the correlation attack.
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6 Conclusion and Future work

The literature study demonstrated that a significant part of the research concerned with crypta-
nalysis of stream ciphers assumes that the plaintext is available and used as input to the attack
algorithms. The exceptions include some correlation attacks that can handle moderate levels
of noise. However, these attacks have a time complexity of 2ls + 2lu , thus their complexity is
dependent on the length of both registers.

In this thesis, an essentially algebraic attack - the Linear Consistency Test - is shown to be
successful with low to moderate levels of noise in the intercepted sequence. The advantage of
such an attack, compared to the existing correlation attacks, is that it could be implemented with
a significantly lower runtime complexity, as demonstrated in Section 5.3.

A proof of concept of the attack scenario was conducted. The method proposed is an extension
of the LCT attack. In the original LCT attack, the consistency test is run once for each guess for
the initial state of LFSRs with the plaintext as input. The proposed method takes as input a noisy
version of the plaintext (i.e. the ciphertext). Then, the consistency test is run multiple times
for each guess for the initial state of LFSRs, with a new starting point of the equations for each
repetition. If the initial state was guessed wrongly, experimental results show that the probability
is high (above 90%) that none of the iterations are reported as consistent. On the other hand,
if the initial state was guessed correctly, the results show that the probability is very low (1%
or less) that none of the iterations are reported as consistent. This applies to noise levels in the
range 0 to 0.20.

However, as the results show, it is not clear how many equations are needed in the cipher-
text only scenario in order to reduce the number of false consistency alarms. In the scenario
without noise, as shown in Section 3.2, it was shown that for our chosen registers of length
4, when the number of equations exceeds the number of unknowns + the length of LFSRs +
2, no false consistency alarms occured. 1 However, when noise is introduced, false consistency
alarms cannot be avoided entirely simply because of the impact of the noise. This is reflected
in the probability explained above. As we increase the number of equations (i.e. increase the
delta variable), this probability will increase and approach 100% when the initial state is gues-
sed wrongly. This is confirmed especially by the results for the registers of length 4, for example
for delta = 0 the results were very bad for noise levels above 0.10, but by increasing delta by
2, very good results were obtained even for noise level 0.20.

The same pattern can be observed for our registers of length 7, but in this case the results
were good enough with delta = 0. Thus, a possibility for future research would be to determine
how many equations are needed given the feedback polynomials.

Molland [3] improved the Linear Consistency Test for irregularly clocked generators in the
scenario without noise in terms of runtime complexity. It was shown that the complexity of the

1This could be verified because it was possible to test all combinations of initial states of the registers.
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LCT attack could be reduced to 2ls . In Section 3.3.1 it is argued that if the attack of Molland could
be extended by the method proposed in this thesis, the resulting ciphertext only attack would
have a runtime complexity of c×2ls , where c is the number of repetitions of the consistency test
in order to be able to distinguish a correctly guessed initial state from a wrongly guessed initial
state. It is shown that, with this assumption, when the length of LFSRs is sufficiently shorter
than the length of LFSRu, which is common in practical implementations, the time complexity
of the esentially algebraic LCT attack is orders of magnitude less than that of correlation attacks.
It should be noted that this is an estimation, and further research is needed in order to verify or
disprove this, for example by implementing the LCT attack of Molland extended by the method
proposed in this thesis, and run experiments for longer register lengths.

54



Linear Consistency Test (LCT) in cryptanalysis of irregularly clocked LFSRs in the presence of noise

Bibliography

[1] Dawson, E., Clark, A., Golic, J., Millan, W., Penna, L., & Simpson, L. 2000. The lili-128
keystream generator.

[2] Chambers, W. G. & Jennings, S. M. Nov 1984. Linear equivalence of certain brm shift-
register sequences. Electronics Letters, 20(24), 1018–1019.

[3] Molland, H. 2004. Improved linear consistency attack on irregular clocked keystream
generators. In Roy and Meier [29], 109–126.

[4] Zeng, K., Yang, C. H., & Rao, T. R. N. 1989. On the linear consistency test (lct) in crypta-
nalysis with applications. In CRYPTO 89: Proceedings on Advances in cryptology, 164–174,
New York, NY, USA. Springer-Verlag New York, Inc.

[5] Jennings, S. M. A Special Class of Binary Sequences. PhD thesis, University of London, 1980.

[6] Massey, J. L. & Rueppel, R. A. 1984. Linear ciphers and random sequence generators with
multiple clocks. In EUROCRYPT, 74–87.

[7] Fluhrer, S. R. & Lucks, S. 2001. Analysis of the e0 encryption system. In Revised Papers from
the 8th Annual International Workshop on Selected Areas in Cryptography, SAC ’01, 38–48,
London, UK. Springer-Verlag.

[8] Petrovic, S. & Fuster, A. September 2004. Clock control sequence reconstruction in noisy
generators with irregular clocking. In Proceedings of the 3rd IASTED International Confe-
rence on Communication Systems and Networks, 231–236, Malaga (Spain).

[9] Vernam, G. S. January 1926. Cipher printing telegraph systems for secret wire and radio
telegraphic communications. Transactions of the American Institute of Electrical Engineers,
XLV, 295 –301.

[10] Shannon, C. E. 1949. Communication theory of secrecy systems. Bell Systems Technical
Journal, 28, 656–715.

[11] Menezes, A. J., van Oorschot, P. C., & Vanstone, S. A. Stream ciphers. In Handbook of
applied cryptography [15], chapter 6, 191–222.

[12] Zeng, K., Yang, C.-H., Wei, D.-Y., & Rao, T. R. N. 1991. Pseudorandom bit generators in
stream-cipher cryptography. Computer, 24(2), 8–17.

[13] Beker, H. & Piper, F. Linear shift registers. In Cipher Systems - The Protection of Communi-
cations [30], chapter 5, 175–215.

55



Linear Consistency Test (LCT) in cryptanalysis of irregularly clocked LFSRs in the presence of noise

[14] Massey, J. January 1969. Shift-register synthesis and bch decoding. Information Theory,
IEEE Transactions on, 15(1), 122 – 127.

[15] Menezes, A. J., van Oorschot, P. C., & Vanstone, S. A. 1997. Handbook of applied crypto-
graphy. CRC Press.

[16] Coppersmith, D., Krawczyk, H., & Mansour, Y. 1994. The shrinking generator. In Pro-
ceedings of the 13th Annual International Cryptology Conference on Advances in Cryptology,
CRYPTO ’93, 22–39, London, UK. Springer-Verlag.

[17] Günther, C. 1988. Alternating step generators controlled by de bruijn sequences. In
Advances in Cryptology - EUROCRYPT 87, Chaum, D. & Price, W., eds, volume 304 of Lecture
Notes in Computer Science, 5–14. Springer Berlin / Heidelberg.

[18] Jönsson, F. & Johansson, T. 2002. A fast correlation attack on lili-128. Inf. Process. Lett.,
81(3), 127–132.

[19] Canteaut, A. 2005. Correlation attack. In Encyclopedia of Cryptography and Security,
Tilborg, H. C. v., ed. Springer, Secaucus, NJ, USA.

[20] Siegenthaler, T. January 1985. Decrypting a class of stream ciphers using ciphertext only.
Computers, IEEE Transactions on, C-34(1), 81 –85.

[21] Meier, W. & Staffelbach, O. January 1989. Fast correlation attacks on certain stream
ciphers. J. Cryptol., 1, 159–176.

[22] Johansson, T. & Jönsson, F. 1999. Improved fast correlation attacks on stream ciphers via
convolutional codes. In EUROCRYPT, 347–362.

[23] Chepyzhov, V., Johansson, T., & Smeets, B. 2001. A simple algorithm for fast correlation
attacks on stream ciphers. In Fast Software Encryption, Goos, G., Hartmanis, J., van Leeu-
wen, J., & Schneier, B., eds, volume 1978 of Lecture Notes in Computer Science, 124–135.
Springer Berlin / Heidelberg.

[24] Palit, S., Roy, B., & De, A. 2003. A fast correlation attack for lfsr-based stream ciphers.
In Applied Cryptography and Network Security, Zhou, J., Yung, M., & Han, Y., eds, volume
2846 of Lecture Notes in Computer Science, 331–342. Springer Berlin / Heidelberg.

[25] Golic, J. D. & Mihaljevic, M. J. 1991. A generalized correlation attack on a class of stream
ciphers based on the levenshtein distance. Journal of Cryptology, 3, 201–212.

[26] Golic, J. & Petrovic, S. April 1996. Correlation attacks on clock-controlled shift registers in
keystream generators. Computers, IEEE Transactions on, 45(4), 482 –486.

[27] Molland, H. & Helleseth, T. 2004. An improved correlation attack against irregular clocked
and filtered keystream generators. In CRYPTO, Franklin, M. K., ed, volume 3152 of Lecture
Notes in Computer Science, 373–389. Springer.

56



Linear Consistency Test (LCT) in cryptanalysis of irregularly clocked LFSRs in the presence of noise

[28] Wagner, D. 2002. A generalized birthday problem. In CRYPTO 02: Proceedings of the 22nd
Annual International Cryptology Conference on Advances in Cryptology, Yung, M., ed, volume
2442 of Lecture Notes in Computer Science, 288–304, London, UK. Springer-Verlag.

[29] Roy, B. K. & Meier, W., eds. Fast Software Encryption, 11th International Workshop, FSE
2004, Delhi, India, February 5-7, 2004, Revised Papers, volume 3017 of Lecture Notes in
Computer Science. Springer, 2004.

[30] Beker, H. & Piper, F. 1982. Cipher Systems - The Protection of Communications. Northwood
Publications.

57





Linear Consistency Test (LCT) in cryptanalysis of irregularly clocked LFSRs in the presence of noise

A Implementation details

This chapter includes the source code of the most important classes and methods of the attack.
Some of the code is intentionally left out, such as the class that implements the shift registers
(class Lfsr). Moreover, code presented earlier in the thesis (such as ExperimentLctNoise) is not
repeated here.

A.1 LctNoise.cs

A.1.1 Method CreateDecimationVector()

This method creates the decimation vector, which is stored in the c array of the LctNoise class.
The decimation vector corresponds to uguessed in Section 3.1. The elements of the c array are
structs of type Cell, with member variables val and varidx. Table 26 shows the contents of the
c array when CreateDecimationVector is run for the sample introduced in Section 3.1.

Thus, the values of c[i].val which are different from 2 are obtained from the intercepted
sequence (the output from the generator with or without noise), and the position of these values
in the c array are determined by the decimating sequence s. So the val part of the c array
contains the u sequence, except for some unknown values, denoted by ’2’.

When the system of equations is to be created (see Section A.1.2), a value of 2 in c[i].val

indicates that a new variable should be created, and the index of the variable is stored in the
corresponding c[i].varidx.

Listing A.1: Method LctNoise.CreateDecimationVector. Code provided by Slobodan Petrović.
1 pub l i c void CreateDecimat ionVector ()
2 {
3 i n t j = 0;
4
5 //LFSR implementation where the content s of the r e g i s t e r i s s to red in a c i r c u l a r

b u f f e r
6 L f s r r1 = new L f s r (256 , nConsR1 , nTapsR1 , r1seq . GetLength (0) − 1 , r1seq , r1fdb ,

r1 taps ) ;
7
8 f o r ( i n t i = 1; i <= lenA ; i++)
9 {

10 i n t fdb = r1 . S h i f t (0) ;
11 b[ i ] = r1 . GetBuf () [ r1 . GetTaps () [ 1 ] ] ;
12 ncc = 0;
13 fo r ( i n t n = 1; n <= nTapsR1 ; n++)
14 {
15 ncc += r1 . GetBuf () [ r1 . GetTaps () [1]] ∗ ( i n t )Math . Pow(2 , nTapsR1 − n) ;
16 }
17 j += ncc + 1;
18 c [ j + r2fdb [nConsR2 ] ] . va l = a[ i ] ;
19 }
20
21 lenDecVec = j ;
22 }

59



Linear Consistency Test (LCT) in cryptanalysis of irregularly clocked LFSRs in the presence of noise

i c[i].val c[i].varidx uguessed

0 - -
1 2 4
2 2 3
3 2 2
4 2 1
5 2 0 x5
6 0 0 0
7 1 0 1
8 1 0 1
9 1 0 1

10 2 0 x6
11 0 0 0
12 2 0 x7

Table 26: Example contents of the decimation vector (c array of the LctNoise class), illustrating the rela-
tionship between c array and uguessed from Section 3.1.

A.1.2 Method CreateEquations(int k)

The method creates a system of equations from the decimation vector, using the feedback poly-
nomial of the clocked register LFSRu (denoted by r2 in the implementation). Let the system of
equations be defined by

Ax = b

Then, the coefficient matrix A is stored in the two dimensional array amat and the b vector is
stored in the array cvec (members of LctNoise.cs).

The number of equations created (neq) is determined by the condition while((neq < (nvar+

r1fdb[nConsR1] + delta))&&(neq < (m − 1))). Here, nvar stores the number of unknowns,
r1fdb[nConsR1] the degree of the feedback polynomial and m the number of rows in the matrix.
delta is a parameter that is to be set when running an experiment, in order to be able to increase
the number of equations created.

The argument k determines the starting point of the first equation - that is, when k = 0, the
equations are created starting from c[5] (see Table 26 and Section A.1.1). Similarly, when k > 0,
the starting point is c[k+ 5].

Listing A.2: Method LctNoise.CreateEquations
1 pub l i c void CreateEquat ions ( i n t k )
2 {
3 i n t j ;
4
5 neq = 0;
6 nvar = r2fdb [nConsR2 ] ; i n t i = nvar ; // set i = nvar = degree of feedback

polynomial
7 i n t numneg ; i n t sum;
8
9 // to avoid a l a rge number of ( unused ) va r i ab l e s , only the v a r i a b l e s needed are

crea ted
10 i f (k > 0)
11 {
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12 i = k + r2fdb [nConsR2 ] ;
13 nvar = 0;
14 fo r ( i n t r=i ; r > k ; r−−)
15 {
16 i f ( c [ r ] . va l == 2)
17 {
18 nvar++;
19 c [ r ] . var idx = nvar ;
20 }
21 }
22 }
23
24 while (( neq < ( nvar + r1fdb [nConsR1] + de l t a ) ) && ( neq < (m − 1) ) )
25 {
26
27 i++;
28 i f ( i >= lenDecVec )
29 {
30 Console . Wri teLine ( "ERROR: i >= lenDecVec " ) ;
31 Console . Wri teLine ( " i ={0}, lenDecVec={1} " , i , lenDecVec ) ;
32 throw new Except ion ( "ERROR: i >= lenDecVec " ) ;
33 }
34
35 i f ( c [ i ] . va l == 2) //A new v a r i a b l e i s to be added to the system
36 {
37 nvar++;
38 c [ i ] . var idx = nvar ;
39 pos [1] = −c [ i ] . var idx ;
40 }
41 else
42 {
43 pos [1] = c [ i ] . va l ;
44 }
45 fo r ( j = 1; j <= nConsR2 ; j++)
46 {
47 i f ( c [ i − r2fdb [ j ] ] . var idx > 0)
48 {
49 pos [1 + j ] = −c [ i − r2fdb [ j ] ] . var idx ;
50 }
51 else
52 {
53 pos [1 + j ] = c [ i − r2fdb [ j ] ] . va l ;
54 }
55 }
56 numneg = 0;
57 fo r ( j = 1; j <= nConsR2 + 1; j++)
58 {
59 i f ( pos [ j ] < 0) numneg++;
60 }
61
62 sum = 0;
63
64 i n t [] equat ion = new i n t [ nvar + 1] ;
65
66 fo r ( j = 1; j <= nConsR2 + 1; j++)
67 {
68 i f ( pos [ j ] < 0) equat ion [Math . Abs ( pos [ j ] ) ] = 1;
69 else sum =̂ pos [ j ] ;
70 }
71
72 //Add a new equat ion to the system i f not added prev iou s l y
73 i f ( AddEquation ( neq + 1 , equation , sum) )
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74 {
75 neq++;
76 }
77 }
78 }

The method LctNoise.AddEquation (Listing A.3) checks whether the equation (in equation

and sum) already exists in the matrix in one of the rows above row. If not, the equation is added
to amat and the sum to cvec. The method returns true if the equation was added.

Listing A.3: Method LctNoise.AddEquation
1 p r i v a t e bool AddEquation ( i n t row , i n t [] equation , i n t sum)
2 {
3
4 bool e x i s t s = f a l s e ;
5 f o r ( i n t i = 1; ( i <= neq ) && ! e x i s t s ; i++)
6 {
7 e x i s t s = true ;
8
9 i f ( cvec [ i ] != sum) e x i s t s = f a l s e ;

10
11 i f ( e x i s t s )
12 {
13 fo r ( i n t j = 1; j <= nvar ; j++)
14 {
15 i f (amat[ i ][ j ] != equat ion [ j ]) e x i s t s = f a l s e ;
16 }
17 }
18 }
19
20 i f ( ! e x i s t s )
21 {
22 fo r ( i n t j = 1; j < equat ion . GetLength (0) ; j++)
23 {
24 amat[row ][ j ] = equat ion [ j ] ;
25 }
26 cvec [row] = sum;
27 }
28
29 re turn ! e x i s t s ;
30 }

A.1.3 Method IsConsistent()

The method checks whether the system of equations in amat and cvec is consistent, and returns
true if it is. As explained in Section 3.2, the system is consistent if and only if the right hand
side of the system of equations (that is, cvec in the implementation) is contained in the subspace
spanned by the column vectors of the A matrix (amat). Thus, to check the system for consistency,
the IsInLa method of class Matrix is invoked. This method is further explained in the next
section.

Listing A.4: Method LctNoise.IsConsistent
1 pub l i c bool I s C o n s i s t e n t ()
2 {
3 Matrix mAmat = new Matrix (GetAmat () ) ;
4
5 bool c o n s i s t e n t = mAmat . I s InLa ( GetCvec () ) ;
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6
7 re turn c o n s i s t e n t ;
8 }

A.2 Matrix.cs

A.2.1 Method IsInLa(int[] vector)

The method checks whether vector is contained in the set L(A), that is, in the set of all linear
combinations of the column vectors from the matrix. The positions variable determines the
columns to combine, i.e. positions=7 (0...0111 binary) means that the 3 last columns of the
matrix should be combined to yield the sum vn−2 + vn−1 + vn (where the v’s are the numbered
column vectors of the matrix).

The equality between some linear combination (actualLinearComb) and vector is che-
cked bit by bit starting from vector[0] - such that if vector[i] does not equal the i’th bit of
actualLinearComb, this linear combination is discarded and a new one is checked starting
from vector[0]. If all bits match, i.e. vector equals actualLinearComb, then vector is in L(A)

and the method returns true. On the other hand, if vector does not equal any linear combination,
the method returns false.

The equality check between vector[i] and the i’th bit (denoted by current) of
actualLinearComb is performed as follows:

1. Compute the bitwise AND between row i of the matrix and positions. Store the result in the
and variable.

2. Compute the sum of and by counting the number of 1’s in and. Set current = 1 if odd
number of 1’s, current = 0 otherwise.

3. Compare current to vector[i].

In order for the method to be efficient, the computation of the number of 1’s in the binary form
of a decimal number uses the optimized algorithm in http://blogs.media-tips.com/bernard.opic/
2007/09/03/compter-le-nombre-de-1-dans-la-forme-binaire-d-un-nombre/ (last visited
2011/04/26).

Listing A.5: Method Matrix.IsInLa
1 pub l i c bool I s InLa ( i n t [] vec to r )
2 {
3 i n t max = ( i n t ) Math . Pow(2 , GetN () ) ;
4
5 // conver t each row of the matr ix to a decimal number
6 i n t [] matrixDec = GetDecimalMatrix () ;
7
8 i n t m = GetM() ;
9

10 // fo r each decimal number in [1 , 2̂ numCols>
11 fo r ( i n t p o s i t i o n s = 1; p o s i t i o n s < max; p o s i t i o n s++)
12 {
13 i n t i = −1;
14 i n t cur ren t = 0;
15 i n t and ;
16
17 // fo r each matr ix row ( i )
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18 do
19 {
20 i++;
21 and = matrixDec [ i ] & p o s i t i o n s ;
22
23 //compute the number of 1 ’ s in the binary form of ’ and ’
24 i n t c = 0;
25 while (and != 0)
26 {
27 c += ( i n t ) (and & 1L) ;
28 and >>= 1;
29 }
30
31 cur ren t = c % 2; //1 i f odd number of 1 ’ s , 0 otherwise
32
33 // cont inue as long as the corresponding b i t s of the l i n e a r combination

and vec to r are equal
34 } while ( cur ren t == vec to r [ i ] && i < (m − 1) ) ;
35
36
37 i f ( i == (m − 1) && cur ren t == vec to r [ i ] )
38 {
39 re turn t rue ; // vec to r i s found in L(A)
40 }
41 }
42
43 // vec to r i s not found in L(A)
44 re turn f a l s e ;
45 }
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B Graphs

B.1 Length=4 registers
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Figure 27: Case 1: fs(x) = 1 + x + x4 and fu(x) = 1 + x3 + x4. Noise level=0.05, nComb=1000, delta=1.

Figure 28: Case 2: fs(x) = 1 + x + x4 and fu(x) = 1 + x3 + x4. Noise level=0.05, nComb=1000, delta=1.
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Figure 29: Case 1: fs(x) = 1 + x + x4 and fu(x) = 1 + x3 + x4. Noise level=0.10, nComb=1000, delta=1.

Figure 30: Case 2: fs(x) = 1 + x + x4 and fu(x) = 1 + x3 + x4. Noise level=0.10, nComb=1000, delta=1.

67



Linear Consistency Test (LCT) in cryptanalysis of irregularly clocked LFSRs in the presence of noise

Figure 31: Case 1: fs(x) = 1 + x + x4 and fu(x) = 1 + x3 + x4. Noise level=0.15, nComb=1000, delta=1.

Figure 32: Case 2: fs(x) = 1 + x + x4 and fu(x) = 1 + x3 + x4. Noise level=0.15, nComb=1000, delta=1.
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Figure 33: Case 1: fs(x) = 1 + x + x4 and fu(x) = 1 + x3 + x4. Noise level=0.20, nComb=1000, delta=1.

Figure 34: Case 2: fs(x) = 1 + x + x4 and fu(x) = 1 + x3 + x4. Noise level=0.20, nComb=1000, delta=1.
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Figure 35: Case 1: fs(x) = 1 + x + x4 and fu(x) = 1 + x3 + x4. Noise level=0.25, nComb=1000, delta=1.

Figure 36: Case 2: fs(x) = 1 + x + x4 and fu(x) = 1 + x3 + x4. Noise level=0.25, nComb=1000, delta=1.
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B.2 Length=7 registers
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Figure 37: Case 1: fs = 1 + x4 + x7, fu = 1 + x6 + x7. Noise level=0.05, nComb=100, delta=0.

Figure 38: Case 2: fs = 1 + x4 + x7, fu = 1 + x6 + x7. Noise level=0.05, nComb=100, delta=0.
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Figure 39: Case 1: fs = 1 + x4 + x7, fu = 1 + x6 + x7. Noise level=0.10, nComb=100, delta=0.

Figure 40: Case 2: fs = 1 + x4 + x7, fu = 1 + x6 + x7. Noise level=0.10, nComb=100, delta=0.
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Figure 41: Case 1: fs = 1 + x4 + x7, fu = 1 + x6 + x7. Noise level=0.15, nComb=100, delta=0.

Figure 42: Case 2: fs = 1 + x4 + x7, fu = 1 + x6 + x7. Noise level=0.15, nComb=100, delta=0.
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Figure 43: Case 1: fs = 1 + x4 + x7, fu = 1 + x6 + x7. Noise level=0.20, nComb=50, delta=0.

Figure 44: Case 2: fs = 1 + x4 + x7, fu = 1 + x6 + x7. Noise level=0.20, nComb=50, delta=0.
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Figure 45: Case 1: fs = 1 + x4 + x7, fu = 1 + x6 + x7. Noise level=0.05, nComb=100, delta=1.

Figure 46: Case 2: fs = 1 + x4 + x7, fu = 1 + x6 + x7. Noise level=0.05, nComb=100, delta=1.
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Figure 47: Case 1: fs = 1 + x4 + x7, fu = 1 + x6 + x7. Noise level=0.10, nComb=100, delta=1.

Figure 48: Case 2: fs = 1 + x4 + x7, fu = 1 + x6 + x7. Noise level=0.10, nComb=100, delta=1.
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Figure 49: Case 1: fs = 1 + x4 + x7, fu = 1 + x6 + x7. Noise level=0.15, nComb=100, delta=1.

Figure 50: Case 2: fs = 1 + x4 + x7, fu = 1 + x6 + x7. Noise level=0.15, nComb=100, delta=1.
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B.3 Length=12 registers
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Figure 51: Case 1: fs = 1+x+x4+x6+x12, fu = 1+x2+x3+x9+x12. Noise=0.05, nComb=10, delta=0.

Figure 52: Case 1: fs = 1+x+x4+x6+x12, fu = 1+x2+x3+x9+x12. Noise=0.10, nComb=10, delta=0.
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Figure 53: Case 1: fs = 1+x+x4+x6+x12, fu = 1+x2+x3+x9+x12. Noise=0.15, nComb=10, delta=0.

Figure 54: Case 1: fs = 1+x+x4+x6+x12, fu = 1+x2+x3+x9+x12. Noise=0.05, nComb=10, delta=1.
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Figure 55: Case 1: fs = 1+x+x4+x6+x12, fu = 1+x2+x3+x9+x12. Noise=0.10, nComb=10, delta=1.

Figure 56: Case 1: fs = 1+x+x4+x6+x12, fu = 1+x2+x3+x9+x12. Noise=0.15, nComb=10, delta=1.
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