
Behavior-based Classification of Botnet
Malware

Peter Ekstrand Berg

Master’s Thesis
Master of Science in Information Security

30 ECTS
Department of Computer Science and Media Technology

Gjøvik University College, 2011

Avdeling for
informatikk og medieteknikk
Høgskolen i Gjøvik
Postboks 191
2802 Gjøvik

Department of Computer Science
and Media Technology
Gjøvik University College
Box 191
N-2802 Gjøvik
Norway

Behavior-based Classification of Botnet Malware

Peter Ekstrand Berg

2011-07-01

Behavior-based Classification of Botnet Malware

Abstract

The rapid development of information technology has led to great advances in personal
computers. At the same time, it has also brought a lot of threats, where malware (ma-
licious software) is one of the most severe. According to Symantec, there was a 51 %
increase in added malware signatures from 2009 to 2010. To make matters even worse,
malware developers are becoming more sophisticated, creating hybrid malware with ob-
fuscation and mutation capabilities. These hybrids are often found in botnets, where
capabilities like self-propagation, stealth and remote-control are important. This thesis
will analyze malware behavior that employs obfuscation techniques in the context of bot-
nets. Through tools for reverse engineering, digital forensics and data mining, malware
behavior is analyzed to solve a two-class classification problem.

iii

Behavior-based Classification of Botnet Malware

Sammendrag

Den raske utviklingen innenfor informasjonsteknologi har ledet til store framsteg for per-
sonlige datamaskiner. Denne utviklingen har også ledet til mange trusler, hvor ondsinnet
programvare (skadevare) er en av de mest alvorlige. I følge Symantec så har økningen
av skadevaresignaturer økt 51 % fra 2009 til 2010. For å gjøre saken verre, så har skade-
vareutviklere blitt mer sofistikerte og de utvikler hybrider med obfuskerings- og mutas-
jonsegenskaper. Disse hybridene er ofte å finne i botnets, hvor de innehar viktige egens-
kaper som å operere ubemerket, infisering av nye datamaskiner og fjernstyring. Denne
masteroppgaven analyserer skadevare i botnets, og ved å benytte verktøy for “reverse
engineering”, digital etterforskning og “data mining”, blir skadevareoppførsel analysert
for å løse et klassifiseringsproblem.

v

Behavior-based Classification of Botnet Malware

Acknowledgments

I would like to thank my supervisor, Professor Katrin Franke, for her excellent guidance
throughout the preliminary project, where the initial scope of the thesis was defined, and
throughout the process of writing this thesis. Especially, in the field of data mining and
machine learning her mentoring has been valuable. Furthermore, I would also thank my
co-supervisor, Hai Thanh Nguyen, who helped me to improve the method’s performance
with his extensive knowledge in the field of feature selection. Finally, I would like thank
my opponent, Philip Clark, which has provided me with valuable comments to further
improve the quality of my thesis.

vii

Behavior-based Classification of Botnet Malware

Contents

Abstract . iii
Sammendrag . v
Acknowledgments . vii
Contents . ix
List of Abbreviations . xiii
1 Introduction . 1

1.1 Topic covered by the Thesis . 1
1.2 Keywords . 1
1.3 Problem Description . 1
1.4 Justification, Motivation and Benefits . 2
1.5 Research Questions and Hypotheses . 2
1.6 Methodology . 2
1.7 Contributions . 4
1.8 Thesis Outline . 4

2 Malware Detection and Malware Forensic Analysis 5
2.1 Digital Forensics Overview . 5

2.1.1 Branches of Digital Forensics . 5
2.1.2 Forensic Methodologies . 6

2.2 Malware Detection and Analysis Introduction 6
2.2.1 Malware Types . 6
2.2.2 Malware Detection . 7
2.2.3 Malware Analysis . 7

2.3 Obfuscation Techniques . 8
2.3.1 Packers and Cryptors . 8
2.3.2 Polymorphism and Metamorphism 9
2.3.3 Defeating Obfuscation . 12

2.4 Botnet Malware . 12
2.4.1 Botnet Life-Cycle . 12
2.4.2 Botnet Architecture . 13
2.4.3 Botnet Detection . 15

2.5 Static Malware Analysis . 16
2.5.1 Static Malware Forensics . 16
2.5.2 Windows Portable Executables . 17
2.5.3 Application Programming Interface Calls 18

2.6 Dynamic Malware Analysis . 20
2.6.1 Dynamic Malware Forensics . 20
2.6.2 Application Programming Interface Tracing 22
2.6.3 Virtual/Sandbox Environment . 23

3 Machine Learning and Data Mining . 25
3.1 Machine Learning and Data Mining Introduction 25

ix

Behavior-based Classification of Botnet Malware

3.1.1 Machine Learning . 25
3.1.2 Data Mining . 27
3.1.3 Applications . 28
3.1.4 Challenges . 28

3.2 Features and Feature Quality . 29
3.2.1 Feature Roles and Types . 29
3.2.2 Feature-Quality Measures . 30

3.3 Data-Preprocessing Methods . 32
3.3.1 Feature Discretization . 32
3.3.2 Missing/Unknown Feature Values 33
3.3.3 Feature Selection . 33

3.4 Classification vs Clustering . 34
3.4.1 Classification . 34
3.4.2 Clustering . 38
3.4.3 Main Differences . 39

4 New Computational Method for Static and Dynamic Analysis 41
4.1 deLink Framework . 41
4.2 Theoretical Method . 42

4.2.1 Preferences and Assumptions . 42
4.2.2 System Design . 42
4.2.3 Data Acquisition . 43
4.2.4 Feature Extraction . 44
4.2.5 Preprocessing . 47
4.2.6 Classification . 48
4.2.7 Evaluation . 48

4.3 System Implementation . 49
4.3.1 Tools, Libraries and Data Formats 50
4.3.2 Implementation Details . 54
4.3.3 Summary . 57

4.4 Method Discussions . 58
4.4.1 Acquiring Analysis Reports . 58
4.4.2 Implementation Challenges . 58

5 Experiments . 61
5.1 Experimental Environment . 61

5.1.1 System Setup . 61
5.1.2 Dataset . 62

5.2 Experiment Scenarios . 62
5.2.1 Proof-of-Concept . 63
5.2.2 Complete Feature Sets . 63
5.2.3 Reduced Feature Sets . 64

5.3 Experiment Results . 65
5.3.1 Proof-of-Concept . 65
5.3.2 Complete Feature Sets . 66
5.3.3 Reduced Feature Sets . 67

5.4 Experiment Discussions . 70
6 Implications, Discussions and Conclusions 73

x

Behavior-based Classification of Botnet Malware

6.1 Main Results and Findings . 73
6.2 Theoretical Considerations . 74
6.3 Practical Implications . 75
6.4 Recommendations for Further Research 76

Bibliography . 79
A Entity Features . 89

A.1 DLL Dependencies . 89
A.2 Registry Activities . 89
A.3 File Activities . 90
A.4 Process and Thread Activities . 91
A.5 Network Activity . 92

B UML Diagrams . 95
B.1 Parser . 95
B.2 Feature Extractor . 96
B.3 Evaluator . 96

C Proof-of-Concept Supplements . 97
C.1 Packers Identification . 97
C.2 ARFF Viewer . 97
C.3 Levenshtein Distance Attempt . 98
C.4 DLL Import In Code . 98
C.5 Clam AntiVirus Results . 98

D Classification Results . 103
D.1 Complete Feature Sets . 103
D.2 Reduced Feature Sets - CFS . 105
D.3 New Combined Feature Set - CFS . 108
D.4 Reduced Feature Sets - GeFSCFS . 109
D.5 New Combined Feature Set - GeFSCFS . 111
D.6 Complete Feature Sets - Unsupervised Discretization 112
D.7 Complete Feature Sets - Supervised Discretization 115

E Source Code . 119
E.1 deLink Integration . 119
E.2 Feature Extractor . 122
E.3 Evaluator . 164

xi

Behavior-based Classification of Botnet Malware

List of Abbreviations

API Application Programming Interface
ARFF Attribute-Relation File Format
C&C Command and Control
CFS Correlation-based Feature Selection
CPU Central Processesing Unit
DDoS Distributed Denial of Service
DLL Dynamic-Link Library
DNS Domain Name System
DOM Document Object Model
FN False Negative
FP False Positive
FTP File Transfer Protocol
GeFS Generic Feature Selection
GUI Graphical User Interface
HTTP Hypertext Transfer Protocol
IDE Integrated Development Environment
IP Internet Protocol
IRC Internet Relay Chat
ISP Internet Service Provider
JPEG Joint Photographic Experts Group
K-NN K-Nearest Neighbors
Malware Malicious Software
MD5 Message Digest Algorithm 5
MDL Minimum Description Length
NOP No Operation Performed
OEP Original Entry Point
P2P Peer-to-Peer
PE Portable Executable
RAT Remote Administration Tool
SHA1 Secure Hash Algorithm Version 1.0
SSL Secure Sockets Layer
SVM Support Vector Machines
TCP Transmission Control Protocol
TN True Negative
TP True Positive
UDP User Datagram Protocol
URL Uniform Resource Locator
VM Virtual Machine
XML Extensible Markup Language

xiii

Behavior-based Classification of Botnet Malware

1 Introduction

This chapter gives a brief introduction to the increasing threat of botnets and how it is
repelled with malware analysis techniques. It emphasizes on the problems involved and
states the research questions we are trying to solve. Additionally, the thesis’ methodology,
contributions and outline are presented before going further into the background theory,
in Chapter 2 and 3.

1.1 Topic covered by the Thesis

Over the past decade, the number of malicious software, or malware for short, has grown
rapidly. The 2010 Symantec Internet Security Threat Report [1] reported over 5 million
malware in circulation on the Internet. Today, malware does not fit into well-defined
categories anymore, since they are becoming multifaced and more modular. Botnets are
one of these outcomes, and it is a phenomenon where thousands of computers are com-
promised and remotely controlled as robots, or bots for short. These bots constitute a
serious threat as they can be exploited to gain access and/or cripple systems and critical
infrastructures worldwide.

One of the greatest challenges is that malware developers constantly find new ob-
fuscation techniques, and new malware variants of the same malware family arise. This
implies that virus code will be difficult to detect by commercial anti-virus applications. In
short, there are several methods to acquire this alteration. Encrypting parts of the mal-
ware code using different encryption for each infection makes the malware look different
for each time. Also, instead of encryption, malware developers are employing more ad-
vance mutation techniques to actually make the malware code completely different after
each infection [2]. Detecting this malware type requires a behavior analysis, either sacri-
ficing a host with appropriate monitoring capabilities or in more controlled environment.

1.2 Keywords

Malware Analysis, Botnets, Digital Forensics, Data Mining, Machine Learning

1.3 Problem Description

Botnets are heavily used for computer crime, where they utilize malware to remotely
initiate and control illegal activities. In this context the malware has several roles, such
as autonomously expanding the botnet by searching for vulnerabilities in new hosts, and
opening backdoors that enables the adversary to gain control over the new bot members.
As a result of employing obfuscation techniques, different malware behavior may occur
within the same botnet. This complicates the evidence acquisition and analysis for the
forensic investigators.

There are two general approaches to malware analysis, namely static analysis that
studies the malware without executing it, and dynamic analysis where the behavior of
the malware is observed. A digital forensic framework, called deLink, can detect static
malware traces and link these across several computers [3]. However, this framework
lacks the functionality to analyze the behavior of malware. This work will therefore

1

Behavior-based Classification of Botnet Malware

study a combined approach for static and dynamic malware analysis. It will focus on
which features are most relevant in order to detect the malware and their behaviors. The
findings will be integrated in deLink in order to increase the framework’s efficiency and
effectiveness.

1.4 Justification, Motivation and Benefits

As malware rapidly evolves and new botnets are forming, the need of a liable detection
system at the client side is crucial. Botnet malware may include scanning capabilities in
such a way that each infected host can further expand the botnet by exploiting unpat-
ched/unknown vulnerabilities in operating systems. Even with an installed and freshly
updated anti-virus software, the average user could remain unnoticed since malware
employ methods to stay undetected. The challenge with obfuscation techniques was pre-
sented in a Black Hat conference [4], where it was stated that detecting these types of
malware is very difficult in real-time or post-mortem analysis. Even though if the origi-
nal malware will be detected by anti-virus application, a different variant will evade the
common pattern matching technique because it yields a different pattern. It is further-
more important to gain knowledge about their behavior to develop accurate detection
schemes.

1.5 Research Questions and Hypotheses

In order to get a clear understanding of how botnet malware behave on an infected host,
and how they can be detected, this thesis is going to investigate the following questions:

1. Which features are adequate for static and dynamic malware analysis?

2. Can we obtain disjunct or overlapping feature spaces using these approaches?

3. In what manner will obfuscation techniques influence the feature sets and the in-
dividual feature parameters?

4. What type of analysis approach is better suited for analyzing botnet malware, when
comparing static analysis versus dynamic analysis?

1.6 Methodology

In order to find (i) adequate features for static and dynamic malware analysis, (ii) study
whether we can obtain disjunct or overlapping feature spaces, (iii) investigate how ob-
fuscation techniques influence the feature sets, (iv) and determine what type of analysis
approach is better suited for analyzing botnet malware, previous work in the field of
botnet and malware behavior analysis should be retrieved and studied. A starting point
for further research has been presented in Chapter 2, where state of the art approaches
for static and dynamic malware analysis are revisited. Furthermore, these surveys about
malware behavior [5, 6] and botnet detection [7, 8] are starting points for those who are
so far unfamiliar in the field of malware behavior.

Mainly there are two methods of collecting malware in a secure and controlled man-
ner, namely (1) using honeypots that simulates vulnerabilities that botnet malware tend
to exploit for propagation [9] and (2) manually downloading it from sites such as vxhea-
vens [10], packetstorm [11] or offensivecomputing [12]. In this thesis botnet malware
will be downloaded manually, since it is not guaranteed that one will capture botnet

2

Behavior-based Classification of Botnet Malware

malware with honeypots and it is not guaranteed to capture appropriate malware in
a limited time-period [9]. Especially, this thesis needs different malware samples from
several malware families. Also, a set of harmless (benign) software should be obtained
that have similar behavior-characteristics as botnet malware. This can be achieved with
portable software such as mail clients, BitTorrent clients, browsers and so on [13].

The reason for choosing several botnet malware variants within a malware family is
because they utilize different behaviors on the host, such as file modifications and net-
work activity. Additionally, the applied obfuscation techniques may also differ within the
same malware family. The malware set and benign software set will be used in a two-class
classification scheme, where the malware set will be noted as MW = {MW1, ...,MWn}

and the benign software will be noted as BSW = {BSW1, ..., BSWn}.
When dealing with malware, it is worthwhile to use an isolated experimental envi-

ronment, to be certain it does not propagate to other hosts. Since malware used in this
experiment is meant for Windows only, the experiment will utilize a Linux workstation
where the malware is going to be analyzed. Additionally, VMware Workstation [14] can
be employed if it is necessary for an analysis in a Windows environment. Even though the
virtual machine guest may get infected, it cannot traverse to the host and further propa-
gate. For static malware analysis, we will use tools that can extract the API calls perfor-
med by the malware without executing the malicious code, as for example [15, 16, 17].
These are called PE parsers and will only work with portable executable malware. On
the other hand, dynamic malware analysis will be done by a sandbox-environment esta-
blished via Anubis [18]. This sandbox requires PE formatted files, also.

After applying the static and dynamic analysis methods, it will be necessary to im-
plement a feature extraction component. This component shall be integrated with the
deLink framework by Flaglien [19, 3], and here the deLink framework will be used to
analyze individual files instead of disk images, because the PE analyzer and Anubis ope-
rates on single files. To accomplish this, the feature extraction component must support
ARFF format output (see Section 4.3.1) of the MW and BSW samples. This output is
then fed to the preprocessing component of the deLink framework by Flaglien.

Scenario Description

S1 Feature set from malware and benign software

S2 Reduced feature set from malware and benign software

Table 1: Two classification scenarios (S1 and S2). S1 uses the complete feature set, and
S2 uses a reduced feature set.

In order to answer the previously stated research questions, in Section 1.5, we have
planned two experiment scenarios. Table 1 provides the main outline of classification
scheme. In the first scenario (S1) we plan to use all of the extracted features from the
malware and benign software. Further, in the second scenario (S2) only the most “rele-
vant” features are used in order to improve the overall performance of the classification
scheme. Additionally, as an analysis of the classification result this thesis will analyze
each of the scenarios based on features extracted from static and dynamic malware ana-
lysis, as shown in Table 2. For example in the first scenario (S1), we analyze samples
using all of the extracted features. The first part (1) will only use static features FSa, the

3

Behavior-based Classification of Botnet Malware

second part (2) will only use dynamic features FDa, and in the third part (3) both static
and dynamic features are used.

Scenario S1 Scenario S2

FSa FDa FSr FDr FSa FDa FSr FDr

1 1 0 0 0 0 0 1 0

2 0 1 0 0 0 0 0 1

3 1 1 0 0 0 0 1 1

Table 2: Two scenarios (S1 and S2) and types of features are employed. Each of the
scenarios will use only static behavior features (1), dynamic behavior features (2), and
a combination of both (3). FSa is all of the static features and FDa is all of the dynamic
features. Accordingly, FSr and FDr are the reduced features sets.

1.7 Contributions

As implied in Burji et al. [20], more experimentation with obfuscated malware is ne-
cessary in order to come up with more powerful behavior analysis approaches, which
later can be applied in commercial anti-virus solutions and digital forensics applications.
The planned contribution in this thesis will work towards a combined approach of static
and dynamic malware analysis. By cross-comparing and studying these approaches, the
expected results will yield whether static or dynamic analysis, or a combination of the
two is best suited for this kind of detection. Thus, a strong focus on the features will be
necessary when doing the analysis. In addition to the cross-comparison, the results will
be integrated with the deLink framework [3].

1.8 Thesis Outline

This thesis is divided into several chapters, in a top-down approach, by first presenting
the theoretical background of the different disciplines involved, followed by the compu-
tational method and the obtained results.

• Chapter 2 presents the theoretical background and related work needed to get a
basic understanding of malware detection and malware forensic analysis. It will
discuss the areas of static and dynamic analysis of malware.

• Chapter 3 presents the theoretical building blocks of data mining and machine
learning methods, where it will focus on features, preprocessing and classification.

• Chapter 4 proposes the new computational method for solving a two-class classifi-
cation problem of malicious and benign executables. It consists of two major parts,
one presenting the theoretical method and one to the practical implementation.

• Chapter 5 describes the environment that was utilized for the experiments, where
two main scenarios are conducted in order to evaluate the method.

• Chapter 6 concludes the thesis by discussing the experiment results, theoretical
considerations and practical implications of the method. At the end, proposals for
further research is given.

4

Behavior-based Classification of Botnet Malware

2 Malware Detection and Malware Forensic Analysis

Malware detection and malware forensic analysis are two closely related topics that
concentrate on finding characteristics about malicious software. They differ in the way
that malware detection focus on detecting the malware’s characteristics on the infected
system. Malware forensic analysis employs malware analysis and reverse engineering
methods to further study these characteristics, and therefore gaining knowledge about
its behavior.

Our discussion about malware detection and malware forensic analysis will be in
the context of botnet malware, which often is a hybrid of different malware categories.
Also, these new threats employ techniques to stay undetected by anti-virus software. A
general introduction to digital forensics, malware detection and analysis is given to build
the foundation of methods in static and dynamic analysis later presented in this thesis.

2.1 Digital Forensics Overview

Digital forensics is a topic that involves principles and procedures to figure out what
happened, when and how it happened, and who was involved. These principles and pro-
cedures need to be complied in order to preserve and present the evidence in a forensic
manner, concerning an incident or crime. Moreover, the term digital forensic investiga-
tion is defined by Carrier and Spafford [21]:

“Digital forensic investigation is a process that uses science and technology to examine
digital objects and that develops and tests theories, which can be entered into a court
of law, to answer questions about events that occurred.”

In the rest of this section we will give a short overview in the field of digital forensics,
by first presenting the different branches of digital forensics that are interconnected to
methods later used in this thesis. Then important aspects with the forensic methodologies
are presented to give a clear idea of the challenges in a forensic investigation.

2.1.1 Branches of Digital Forensics

Today several branches of digital forensics exists. This is the result of a more narrow
focus into a specific digital domain. A few examples that are relevant to this thesis are
listed below:

• Computer forensics involves examining and analyzing data from a computer storage
media such as hard disks, memory sticks, diskettes, tapes etc [22].

• Network forensics relates to monitoring and analysis of network traffic with the
intent of information gathering, legal evidence or intrusion detection [23].

• Computational forensics involves utilizing computer power to perform and auto-
mate forensics analysis tasks. Here, machine learning and data mining plays an
important role [24].

• Malware forensics is the process of examining and analyzing suspicious or malicious
code, where the purpose is to learn the true purpose behind the piece of code [25].

5

Behavior-based Classification of Botnet Malware

A complete overview of the different sub-domains in digital forensics is given by Kit-
telsen et al. in [26]. Moreover, to analyze malware in an appropriate and controlled
manner, we need to focus on methods used in malware forensics. These methods have
different approaches, for example static and dynamic analysis, and have their strengths
and weaknesses. See Sections 2.5 and 2.6.

2.1.2 Forensic Methodologies

Digital investigators need guidelines to achieve the best outcome. This is vital in order
to get an overview over the different events surrounding the incident. Hence, various
forensic methodologies exist for each branch in the digital forensics domain. In the case
of a malware infection, it is necessary to examine and gain knowledge of the infected
system, its network surroundings and the malware itself [25].

There are different aspects related to the chosen methodology that is worthy of no-
tice. Forensic soundness is related to the process and documentation of collecting digital
evidence. In digital forensics this is challenging, because an investigator may alter impor-
tant data on a system when he/she collects evidence. This phenomenon is called order of
volatility and it states that it is impossible to capture all data from a running system [27].
Thus, the investigator needs to specify what data he/she thinks important and acquire
evidence in such a way that preserves the integrity.

Another issue, often done by malware or an attacker, is that critical evidence is des-
troyed by overwriting data, deleting logs or encrypting incriminating information. This
type of situation falls under the term evidence dynamics, which is any kind of influence
to the evidence that makes it challenging to prove the integrity and reliability of the
evidence [25].

2.2 Malware Detection and Analysis Introduction
This section will present background material related to the basics of malware detection
and analysis. A definition of malware is given by Preda et al. [28]:

“Malware is a program with malicious intent that has the potential to harm the ma-
chine on which it executes or the network over which it communicates.”

The following sections will present common categories of malware often found in
botnets. Then common methods used in malware detection will be discussed and finally
basic malware analysis approaches will be given.

2.2.1 Malware Types

Before we start our discussion of malware detection and analysis it is necessary to define
the different types of malware lurking in the wild. The following list will cover the most
common types of malware that are usually found in botnets as hybrids; a complete list
of malware types is given in [2, 29].

• Viruses are malware that infects other files and make them perform some unwanted
and harmful function. In other words, a virus copies itself into another file. When
the file is executed, the virus functions will also be executed.

• Worms are self-propagating malware. This category spreads through networks by
for example exploiting known vulnerabilities in commonly used operating systems.

• Trojan horses are programs with a disguised intent, by concealing a malicious pay-

6

Behavior-based Classification of Botnet Malware

load. Trojans may emulate the behavior of an arbitrary program such as an authen-
tication through a login shell and retrieve an user’s login credentials.

• Rootkits are software with the main purpose of staying concealed and undetected
by anti-virus software and end-users. This type of malware was originally intended
to provide root-account on UNIX-like systems.

• Backdoors are malware used to bypass authentication and/or security measures.
When a system has been compromised by one of the previous described types of
malware, a backdoor can be installed to allow easier access later on.

2.2.2 Malware Detection

This section describes the most common techniques that are applied in anti-virus appli-
cations. These methods have evolved to keep up with the more sophisticated malware
and their evasion methods. Besides the mentioned detection schemes below, a complete
list is given in [30, 2].

• String scanning is the most primitive approach to detect malware. It searches for
sequences of strings (bytes) that are typical for a specific malware. Anti-virus com-
panies organize these string sequences as signatures in databases and a local anti-
virus application must download the latest signature updates to have the latest
means for detecting new malware.

• Wildcards is a method that allows the scanner to skip bytes or a range of bytes,
for example skip bytes represented with the ‘?’ character. Malware with early-
generation obfuscation techniques can be detected with wildcards.

• Algorithmic scanning methods are techniques used when the standard algorithm
(such as string scanning) of the anti-virus cannot deal with a specific malware.
Under this category we find filtering techniques that only scans certain files that
are more exposed to infections, for example to apply boot virus signatures to boot
sectors. Another technique is decryptor detection that focuses on detecting the de-
cryption component in malware that applies encryption (see Section 2.3).

• Code emulation uses a virtual machine that simulates a CPU and memory manage-
ment system in order to execute the malicious executable. This technique mimics
the instruction set of the CPU by using virtual registers and flags. Additionally,
the functionality of the operating system must be emulated in such a way that it
supports system APIs, files etc. To detect malware with this method the emulator
analyzes each of the instructions that are run in the virtual machine.

• Heuristic analysis is useful when detecting new malware. This technique looks for
certain instructions/commands within an executable that are not found in “benign”
executables. However, its biggest disadvantage is that they often find false positives.

2.2.3 Malware Analysis

Malware analysis is techniques that enable us to study and obtain information about
a malware’s behavior [27]. These techniques are also known as reverse engineering of
malware. Commonly used approaches are static (code) analysis that studies the malware
without executing it, and dynamic (behavioral) analysis which study malware as they

7

Behavior-based Classification of Botnet Malware

execute. Even though both methods may accomplish the same goal of studying how
malware works, the tools and skills required are different [31].

Static analysis is done by analyzing the source code of the malware to study how it
functions. Typically, static analysis use reverse engineering tools such as disassemblers,
debuggers and compilers. After applying these tools on the malware executable, the in-
vestigator or malware analyst can study the source code to gain knowledge on how the
malware operates. For example how it infects systems and how it propagates. Additio-
nally, further static analysis methods are discussed in Section 2.5.

The easiest way of doing a dynamic analysis is to run the malware and see what hap-
pens. Note that this approach is not without problems, since you may end up destroying
all information on your system or letting the malware propagate if the sacrificed host is
connected to the Internet. A popular technique is to use a sandbox, which is a controlled
environment for running software. Moreover, different techniques in applying dynamic
analysis of malware is presented in Section 2.6.

2.3 Obfuscation Techniques
Malware in the wild is often protected with obfuscation (or armoring) techniques. These
techniques were first intended to protect the intellectual property of software developers,
however these techniques are commonly applied to malware code to make the disassem-
bly process more time-consuming. A definition of obfuscation in the context of malware
analysis is given by Madou et al. [32]:

“Code obfuscation makes it harder for a security analyst to understand the malicious
payload of a program.”

Obfuscating malware is not only used to block out the good guys such as virus resear-
chers, malware analysts and other security professionals, but also other malware writers
or hackers from examining the code [25]. For example in botnets (see Section 2.4), the
adversary wants to hide how he/she controls the infected computers in the botnet. This
is necessary to prevent others from hijacking these computers, to build their own botnets
or other forms of fraudulent activity such as phishing, spamming and click fraud.

The following section will discuss the most common utilities that obscures/protects
their malware code, namely packers and cryptors. Furthermore, two other popular me-
thods to evade anti-virus applications are presented, which are polymorphism and meta-
morphism.

2.3.1 Packers and Cryptors

Packers are programs designed to compress, and sometimes encrypt, the contents of an
executable file [33, 25]. Thus, in some literature, packers are referred to as compres-
sors. This obfuscation technique works by compressing the executable and obfuscating
its contents that ends in a new executable. Before the executable is loaded into memory
its content will pass through a decompression routine that extracts the program into
memory, see Figure 1.

Yan et al. [33] presents more specific information on how packers work. Modern exe-
cutable files in Windows are PE files (see Section 2.5.2) and packers are therefore desi-
gned towards this file format. Most PE packers require executables using dynamic linking
(see Section 2.5.3), however there are no restrictions to the programming language. This
implies that you can use “everything” from C++ to Assembly.

The first operation a packer is performing is parsing the internal structures of the PE

8

Behavior-based Classification of Botnet Malware

Executable Compression /
Obfuscation

Executable in
Memory

Packer
Decompression

Routine

Figure 1: Creation and execution of packed malware

file. Then PE headers, sections, import/export tables are reorganized into new structures.
Additionally, it attaches a piece (stub) of code that the executable invokes before the
original entry point (OEP). When executed, the stub will decompress the original data
and locate the OEP. Packers may utilize randomization during packing, which means that
it generates different variants every time the executable is packed.

Executable Executable in
Memory

Cryptor
Decryption

Routine

Cryptor

Figure 2: Creation and execution of cryptor protected malware

Cryptors are designed with the same purpose as packers, namely to conceal the
content of the binary. This obfuscation technique is also referred to as encryptors or pro-
tectors, since it applies an encryption algorithm on the executable, making the content
scrambled and undecipherable. As with packers, cryptors have a stub that contains the
decryption routine to the encrypted executable, which is loaded when the file is execu-
ted, see Figure 2. Also, cryptors may generate different encryption keys which will result
in different encrypted files [33].

Unfortunately, few packer/cryptor applications have a native unpacking/decryption
ability. There are however, scripts that are targeted towards specific versions of pa-
ckers [25]. Note that these scripts may not behave as promised, either failing in un-
packing the packed executable or infect the system with malware. With proper tools for
disassembly and debugging you may do this operation manually, since there are forums
on the web that specializes in reverse engineering, such as [34].

2.3.2 Polymorphism and Metamorphism

Advanced packers may utilize a polymorphic or metamorphic engine to make the static
analysis even more challenging [33]. However, malware may contain this type of en-
gine, in addition to what is implemented in the packer application, with the purpose of
changing the appearance of the malware after an infection [35].

Malware that employs polymorphism1 will take many forms by applying encryption
1In Greek poly means many and morhi means form.

9

Behavior-based Classification of Botnet Malware

on the malware body and mutate the decryptor from instance to instance. It is the mu-
tation engine’s job to generate new decryption and encryption routines during infec-
tions [2, 29]. Figure 3 illustrates the process where the malware applies the new decryp-
tion routine with the encrypted code onto the targeted file. The malware body is constant
from generation to generation, where D is the decryptor, M the malware body, and G
the current generation.

D M D1 M File1 D2 M File2 Dn M Filen

G1 G2 Gn

Figure 3: Polymorphic malware instances

Furthermore, metamorphic malware is malware that applies mutation to the mal-
ware body and do not use encryption. This will result in instances that never look like
its predecessors [36]. A great advantage compared to polymorphic malware is that the
malware body is not encrypted, because when the malware body is encrypted it must
eventually be decrypted and loaded into memory. Advanced detection methods can wait
for the malware to decrypt itself and then detect it [35]. Figure 4 illustrates this, and
there are no constant data between the generations.

M M1 File1 M2 File2 Mn Filen

G1 G2 Gn

Figure 4: Metamorphic malware instances

Whether the malware is polymorphic or metamorphic its functionality will remain
the same [37, 35]. The mutation engine in polymorphic or metamorphic malware ap-
plies similar obfuscation techniques, however with polymorphism they are applied on
the decryptor and with metamorphism they are applied on the malware body. There
exists several malware generation kits on the Web that utilize metamorphic engines such
as Second Generation virus generator (G2), Next Generation Virus Creation Kit (NGVCK),
Virus Creation Lab for Win32 (VCL32) and Mass Code Generator (MPCGEN) 2.

The next sections will give a brief introduction to the common obfuscation techniques
applied in polymorphism and metamorphism. A complete list is given in the technical
report by Konstantiou [38].

Dead-Code Insertion

Dead-code insertion (or garbage/junk code) is the simplest form of obfuscation. This is
an effective method for changing the malware’s appearance by adding ineffective ins-
tructions, however, its original behavior will remain the same [39]. A simple example is
given by Vinon et al. in [36] where we have a malware signature 5150 5B8D 4B38 50E8

2Available at VX Heavens [10].

10

Behavior-based Classification of Botnet Malware

0000 0000 5B83 C31C. Table 3 shows an assembly code with inserted No Operation
Performed (NOP) instructions.

Hex Opcodes Assembly
51 push
90 nop
50 push eax
5B pop ebx
8D 4B 38 lea ecx,[ebx+38h]
50 push eax
90 nop
E8 00000000 call 0h
5B pop ebx
83 C3 1C add ebx, 1Ch

Table 3: Dead-code insertion example [36]

Thus, the new signature will be 5190 505B 8D4B 3850 90E8 0000 0000 5B83 C31C
and will fool the most primitive signature-based anti-virus applications. NOP instruction
will, as the name implies, do nothing, and are easily defeated by modern anti-virus ap-
plications since they are designed to remove these instructions before further analysis.

Register Renaming

A different technique is register renaming (or register reassignment) that switches regis-
ters from generation to generation [39]. Replacing registers with an equivalent requires
that no register dependencies in control flow are affected [36].

Code Transposition

Another technique is code transposition which is done by inserting jump instructions
and/or unconditional branches in such a way that the original control flow of the pro-
gram is maintained. A known malware that uses this technique is Win95/Zperm and
is illustrated in Figure 5. This malware inserts and removes jump instructions within its
code, where each jump will point to a new instruction of the malware [40]. Detecting this
malware with signature-based detection is virtually impossible, since it never generates
a constant body anywhere, not even in memory.

Figure 5: Code transposition example in Zperm [40]

11

Behavior-based Classification of Botnet Malware

Instruction Substitution

Instruction substitution is a technique that replaces a set of instructions with another
set of instructions that are semantically equivalent [36]. To detect malware employing
this obfuscation technique it is common to collect different variants of a malware and
perform similarity analysis.

2.3.3 Defeating Obfuscation

The digital investigator needs to take care of the applied obfuscation methods to fully
explore a suspicious program [25]. To deal with packers, several underground utilities
exist, which can only deal with a specific packer. However, these utilities are not guaran-
teed to work and may not be the best tool for forensic analysis where the findings need
to be validated.

For the most skilled malware analysts manual unpacking is the preferred approach [33].
They employ debuggers to analyze the different layers of obfuscation. For example a cryp-
tors encryption and decryption algorithms, where they are able to manually restore the
original file. Unfortunately, this is a time-consuming process which requires knowledge
in the field of kernel and assembly programming.

Moreover, dumping the process from memory is another approach. This requires that
you execute the suspicious file in an isolated environment and employ tools such as
LordPE [41] or ProcDump [42]. Then you need a disassembler to examine the executable.
However, not all forms of obfuscation will be defeated with this approach, since there
exists “anti-dump” protection for packers [25].

2.4 Botnet Malware

The rise of botnets have become one of the most critical threats to computing assets
and infrastructures [43]. A botnet can be exploited for several activities such as distri-
buted denial-of-service (DDoS) attacks, spam, phising and identity theft. The following
definition is based on Gu et al. [44]:

“A botnet is a network of compromised computers which is controlled from a central
location.”

Moreover, a botnet is the joining of many different threats, since the compromised
computers (bots) can propagate their malicious code like worms, hide from anti-virus
software like rootkits, initiate attacks and operate as a command and control (C&C)
server [7]. A C&C server is the main controlling entity of a botnet, which is operated by
the adversary (botmaster).

This thesis will utilize botnet malware in the experiments, which implies that back-
ground information is required to give some pointers to suitable features for the analysis.
The following sections will present the typical botnet’s life-cycle, architectures and de-
tection methods.

2.4.1 Botnet Life-Cycle

A typical botnet can be created and maintained in five phases [45, 8, 46]; these phases
consists of (1) initial infection, (2) secondary injection, (3) connection, (4) malicious
command and control, (5) update and maintenance. This five phased life-cycle is shown
Figure 6.

During the initial infection a computer can be infected by different means, such as

12

Behavior-based Classification of Botnet Malware

Botnet

(1) Initial infection (2) Secondary injection

Vulnerable host

(3) Connection

(4) Malicious command and control

(5) Maintenance and update

C&C Servers

Botmaster

(4) Malcious command and control

(5) Maintenance and update

Figure 6: Basic botnet life-cycle

being exploited through vulnerability. This can be done by bots, since most bots include
a scanning capability in such a way that each bot can further expand the botnet. One
approach to this is to first use scanning tools to check for open ports, then use these ac-
quired ports for a further vulnerability scan. A list of known vulnerabilities that common
bots like Agobot and SDBot use, are given in by Schiller et al. [45]. Also, there are other
methods to provide system access like backdoors left by Trojans, installing malicious
software from a web page or from an infected email attachment. During the secondary
injection phase the infected hosts will execute a script and download the image of the
bot binary from a web location (HTTP, FTP or P2P). Furthermore, this bot binary will
disable/avoid the system’s anti-virus software and open necessary ports so it is able to
communicate to the C&C servers.

The next phase, which is the connection phase, the bot binary establishes a C&C chan-
nel and the host will be connected to a C&C server. It is in this step the host turns into
a bot and joins the botmaster’s army. This implies that the bot is ready for the malicious
command and control phase and it will listen to the C&C channel for orders from the
botmaster. Thus, the C&C channel enables the botmaster to issue commands remotely to
do various malicious activities.

Finally, the maintenance and update phase will maintain the bots by for example up-
grade the bot binary. Botmasters need to update their bots for several reasons such as to
avoid anti-virus software or to add further functionality to the botnet. Server migration is
also done when updating the bot binary, which moves the bots to a different C&C server.
This method is very useful for the botmasters to keep their botnet alive.

2.4.2 Botnet Architecture

A method to define the characteristics of a botnet is to look at how the bots are commu-
nicating with the C&C server. By using these communication channels (C&C channels)
the bots can be commanded, maintained and updated [45, 8]. To issue commands to the
botnet army, the C&C server(s) can either push commands onto the bots or the bots can
pull commands from the C&C server(s) [45, 9]. Common C&C architectures are based

13

Behavior-based Classification of Botnet Malware

on IRC, HTTP and P2P, which are presented below.

IRC-based Architecture

The first botnets were based on an Internet Relay Chat (IRC) architecture, and this is still
the common architecture of botnets. The IRC protocol was originally used for online-
chat. Thus, it is easy for the botmaster to create IRC servers. The administration of bots
can be done effectively, where commands can either be pushed or pulled [47].

When initializing a bot, it tries to contact the IRC server by using an address in the
executable binary. Since the possibility of black-listing is high when using IP-addresses
the bot master needs to use other methods. Hence, using a DNS name (domain name)
instead will allow the bot master to keep hold of the botnet if the current associated
IP-address is black-listed.

Botmaster C&C Server

Bots

Victim

Figure 7: Basic centralized botnet architecture

Web-based Architecture

Web-based architecture uses either HTTP or FTP for C&C channel. These application
layer protocols are not as popular as the previously described IRC protocol. However,
it does not mean that they are less effective. There are primarily two methods to set
up web-based architecture, which are echo-based and command-based [45]. The echo-
based technique requires that the bot announces that it exists to the C&C server. On the
other hand, command-based works differently in such a way that the botmaster utilizes
a Graphical User Interface (GUI) to issue commands to his army of bots.

Furthermore, to increase availability on C&C servers botmasters employ a fast-flux
service [46], which associates the DNS with a new IP-address as often as every 3 mi-
nutes [48]. Thus, the botmaster assures the availability whether the current IP-address
gets blacklisted or not by the ISP.

P2P-based Architecture

The weaknesses in common architectures are that they are centralized (see Figure 7).
This means that if the C&C server is taken down, the botnet will be eliminated. In a
peer-to-peer (P2P) architecture there is no centralized server, since all nodes act as bot
server and client. Thus, if a single node is taken offline the gaps in the network will be
unrecognizable and the network continues to function within the control of the botmas-
ter [49].

14

Behavior-based Classification of Botnet Malware

2.4.3 Botnet Detection

Over the past years common bot malware has been collected and their behavior and cha-
racteristics has been analyzed. These findings have been applied in anti-virus software
as signatures. However, other detection methods should be considered, since obfuscation
techniques will make this type of detection challenging (see Section 2.3). Common cha-
racteristics related to bot malware are network activity, because the bot needs some sort
of interaction with C&C server(s). Typical characteristics of bot malware is listed in [45]:

• Opens specific ports

• Establishes many unexpected network connections

• Downloads and executes files

• Creates new processes with a familiar name

• Disables anti-virus software

Features (characteristics) that are used for botnet detection varies. Until now research
focus on features extracted from network traffic. The survey done by Feily et al. [8] des-
cribes features used in intrusion detection schemes that detect certain anomalies based
on traffic activity such as latency, volume and traffic on unusual ports. This can be fur-
ther more specific by analyzing parameters from protocols like P2P, IRC, HTTP, DNS, TCP
etc. Unfortunately, most of the detection schemes for botnets are best suited for offline
analysis. This is necessary since machine learning and data mining approaches are com-
putational demanding methods when dealing with high volume of collected data [50].

Gu et al. [51, 52, 44] have developed three systems for botnet detection. BotHun-
ter [51] is a system that tracks communication flows from internal to external hosts.
Features that are fed into their correlation engine are extracted from outbound scan pat-
terns, which are typically observed when bots search for vulnerabilities to propagate to
vulnerable hosts. Outbound connection failure for abnormally high connection rates are
interesting to analyze since many IP and DNS addresses may be blacklisted or taken
down. Also, payloads are analyzed for anomalies by extracting 1-gram3 features from
the packet payload building a feature vector of 256 bit-values.

BotSniffer [52] and BotMiner [44] are two systems that exploit the fact that bots wi-
thin the same botnet will have the same behavior. The main difference between the ap-
proaches is that BotSniffer only works for botnets that are IRC-based or HTTP-based. The
features extracted are based on message responses between bot and botmaster, and acti-
vity responses initialized from the bots when performing a distributed activity. BotMiner
on the other hand, is architecture independent that clusters features extracted from TCP
and UDP flows, such as connection time, IP addresses, ports etc. Additionally, the system
employs the anomaly module from BotHunter that generates reports based on anomaly
activity. By applying hierarchical clustering, they obtained great detection accuracy on
different botnets.

Masud et al. [53] employed a similar approach as previously described, where they
analyzed the correlation between network traffic and execution time of applications.
From the obtained data they extracted packet-level and flow-level features used for a

3N-gram is a subsequence of length N from a given sequence, e.g., characters within a text.

15

Behavior-based Classification of Botnet Malware

further classification analysis. A different approach by Strayer et al. [54] presented a
method suitable for real-time analysis of traffic data. Their detection approach analyzes
packet-flow characteristics such as bandwidth, packet timing and burst duration to de-
cide whether this activity belongs to a botnet or not. Seewald and Gansterer [55] em-
ployed a passive framework and features are collected from three different levels; by
analyzing single packets, network traffic and TCP/IP traffic. By applying Sammon map-
ping [56], they discovered that communication activity of spambots are similar.

2.5 Static Malware Analysis
This section presents background material on typical techniques that are applied in sta-
tic malware analysis, specifically what type of malware characteristics or features they
utilize. Malin et al [25] defined static analysis as:

“Static analysis is the process of analyzing executable binary code without actually
executing the file.”

In the days when we had primitive malware it was an easy task to discover and
analyze malware. The major reason for this was that the malware developers were not
concerned about stealth and obfuscation techniques. Thus, the malware’s functionality
was easily observable and an in-depth analysis of the code would be unnecessary.

Moreover, many static analysis systems have been designed for portable executables
and the common approach is to use application programming interface (API) calls to
describe the behavior of the malware. Thus, the following sections will give a short in-
troduction to portable executables in Windows and describe approaches using API calls.

2.5.1 Static Malware Forensics

When an investigator tries to gain knowledge about a specific type of malware using
static analysis, he/she could use a set of tools to disassemble and debug the sample.
According to Malin et al. [25], there is a general approach when analyzing a malware or
a suspicious executable:

1. First identify and write down the system details where the malicious/suspicious
file was obtained. This includes information such as operating system version, ins-
talled service pack and patches. Furthermore, the investigators can analyze more
in-depth by studying system activities related to network, processes and users, since
malware may infect these areas in order to perform their malicious activities.

2. Cryptographic hash values of the executable is a valuable method that creates an
unique identifier during the analysis. Malware may remove itself from the current
location or change when it is executed. Thus, with the unique identifier you can de-
tect the executable if it moved itself to another location or has changed. Examples
of cryptographic hashes are Message-Digest 5 (MD5) and Secure Hash Algorithm
Version 1.0 (SHA1).

3. A comparison of the obtained file to other malware is an important step in the
file identification process. This will answer whether the executable is benign or
malicious. Web pages such as vxheavens [10] and offensivecomputing [12] allow
you to search for malware based on MD5 hashes. However, only one MD5 or SHA1
hash may not be appropriate in this situation, because the hash sums will change

16

Behavior-based Classification of Botnet Malware

with a single bit difference. This problem can be solved by fuzzy hashing or Context
Triggered Piecewise Hashing [57], that computes a series of checksums for a file.

4. Identification and classification focus on identifying the file type to determine its
nature, what operating system and architecture it was meant for. To determine
the file type you cannot trust a file’s extension. For example an executable may be
camouflaged as a JPEG-file. To perform this identification task manually you need
to open the file in a hexadecimal viewer/editor and inspect the first 20 bytes of the
file, which will reveal the file signature.

5. Scanning and examine the suspicious file with an anti-virus application is the next
step. By utilizing several anti-virus applications (locally and online) we can deter-
mine whether the file has a known signature. Fortunately, there are free anti-virus
applications available such as Clam AntiVirus, Avast Antivirus, and Grisoft AVG [58].

6. Extract and analyze the suspicious file by searching for plain text strings/charac-
ters may reveal valuable information. This step may identify program functionality,
file names, nicknames, URLs, IP addresses, e-mail addresses etc. Additionally, file
metadata and symbolic information are valuable information to investigate in this
step. Note that malware developers are aware of this approach and may plant de-
coys or applying obfuscation techniques to make this challenging. Thus, the type of
obfuscation technique(s) applied must be identified.

7. When an executable is linked dynamically it will have dependencies in order to
run correctly. To identify these dependencies it is necessary to disassemble the mal-
ware. Using tools that dump Dynamic Link Library (DLL) dependencies, such as
pefile [59], reveals the suspicious file’s behavior to a certain degree.

This manual approach is quite common when we are dealing with a single malware
instance, however it will be a time-consuming process if we are dealing with a large
amount of malware samples.

2.5.2 Windows Portable Executables

Malware directed towards the Windows platform are often using the portable execu-
table (PE) file format. The term portable means in this context that the file is executable
on every Windows platform [60, 61], which is an advantage for the malware writers.
Furthermore, this format contains a data structure that encapsulates elements such as
dynamic library references, API import/export tables, and resource management data.

PE files consists of various sections and headers that describes the section data, import
table, export table etc. A PE file starts with a MS-DOS header structure. When analyzing
this section manually there are two elements worth noticing, namely the DOS executable
file signature (e_magic) and offset field (e_lfanew) to the PE header. The second section,
MS-DOS stub contains mainly a compatibility notification, which implies that the execu-
table will for example print an error message if it is run in a non-Windows environment.

The PE header contains the specifics of the PE file, and for the digital investigator
there is valuable information stored in this section [25]:

• Target platform/processor

• Time and date the file was created/compiled

17

Behavior-based Classification of Botnet Malware

MS-DOS Header
(IMAGE_DOS_HEADER)

MS-DOS Stub

PE Header
(IMAGE_NT_HEADERS)
(IMAGE_FILE_HEADER)

(IMAGE_OPTIONAL_HEADER)

Data Directory
(IMAGE_DATA_DIRECTORY)

Section Table
(IMAGE_SECTION_HEADER)

Figure 8: The Portable Executable File Format

• Whether symbols and debugging has been stripped from the file

• File characteristics

Moreover, DLL dependencies can be extracted from the import table in the data direc-
tory. This table describes required libraries necessary for the file to run successfully. On
the other hand, the export table describes functionality that can be exported and utilized
from other programs. There are several open source tools to retrieve this type of infor-
mation from the PE file. This thesis will use pefile [59] which is a python module that can
access almost all the sections. Thus, it is a powerful tool for static analysis of malware.

A weakness with common PE parsers, like pefile, is that they can be fooled by obfusca-
tion techniques. The simplest method of doing this is by compressing (packers), however
the report generated by pefile will print warnings if the MS-DOS Header and PE Header
are not formatted properly.

The last structure, which is the section table, contains different entries or section hea-
ders. Here we find the file’s original entry point (OEP) which is the point where the
file execution starts. Additionally, each of the section headers contains name, size, and
description of the respective section.

2.5.3 Application Programming Interface Calls

How an executable is linked may be valuable to the investigation [25]. It is the linker’s
job to assemble any required libraries to the compiled source code (object file) that is
required for running the executable, see Figure 9. There are mainly two methods to
link an executable; static and dynamic linking. An executable with static linking is self-
contained, meaning that the executable contains all necessary libraries and code to run
successfully. On the other hand, with dynamic linking, the executable is dependent on
shared libraries to run. Typically, these dependencies are often DLLs that are imported
from the host operating system when the executable runs.

18

Behavior-based Classification of Botnet Malware

Object File

DLL

Executable

DLL

Linker

Figure 9: Linking of executables

Windows Application Programming Interface (API) calls are function calls to DLLs
that provides functionality you otherwise would have to implement yourself. Thus, pro-
grammers (good or bad) use the Windows API to access resources such as processes,
network information, registry etc. Also, exploiting functionality in DLLs will make the
executable smaller in size, which is an advantage for malware during propagation in
the context of required transmission time. Furthermore, API calls can be used to extract
information that describes behavior of executables.

Schultz et al. [62] developed a framework for detection of new malicious executables.
Their framework can automatically find patterns in the dataset to detect new malware,
and it supports different methods for feature extraction and different data mining clas-
sifiers. They used system resource information, strings and byte sequences that were
extracted from the malicious executables using GNU BIN-Utils [63]. The first approach
used three different types of features. The first feature vector consisted of boolean values
describing if the executable used a specific DLL or not. The second feature vector des-
cribed whether API calls to the different DLLs were called or not. And the third feature
vector stored integers of how many API calls were done within each DLL. Furthermore,
the two other methods were based on extracting plain-text strings and byte sequences
from the data set, where each string and byte sequence was used as a feature. Experimen-
tal results showed that detection rate was highest (97 %) with naive-Bayes classification
using strings as features.

An approach for detecting obfuscated malware was done by Sung et al. [64], where
they developed a signature-based detection system (SAVE). SAVE uses PE code as input
and feeds the executables to a PE parser which extracts API calling sequences that are
mapped to a global 32-bit integer number, where the 16 most significant bits represent a
DLL module and the last 16 the specific API calls. This detection system was later used by
Xu et al. [65]. They assumed that malware contained a sequence of malicious API calls.
To test their system against polymorphic variants they manually modified the code by
modifying data segment, control flow, and inserting dead code (see Section 2.3). Results
showed that the detection scheme was accurate and efficient.

Ye et al. [16] developed an Intelligent Malware Detection System (IMDS) for detec-
ting polymorphic and metamorphic malware. This was done by analyzing PE files [60,
61], where each API call represented a feature, and the classification was done by an

19

Behavior-based Classification of Botnet Malware

Objective-Oriented Association (OOA) mining algorithm [66]. When analyzing unknown
malware this approach had a detection rate of 92 %. A similar approach was done by
Sami et al. [15], where they used every DLL as a feature. Each element of the feature
vector corresponded to a DLL library, and the value of each element was equal to the
number of API calls. They got the best results using a Random forest [67] classifier, with
a detection rate of 99.7 %.

A virus prevention model was presented by Wang et al. in [17], where they also
extracted features from PE files. Compared to [16, 15], they used a different approach
to feature extraction. A tree structure was used to represent the PE file and its DLL call
dependencies, and these dependencies were further used as features. Furthermore, a
support vector machine (SVM) classifier [68] was used which yielded a detection rate
of 99 %. Zou et al. [69] also used SVM, however more specific features where chosen
such as behavior features on registry, files, memory, processes, network etc. The results
showed that the system yielded highest classification accuracy with approximately 1100
API calls.

Wang et al. [70] developed a malware detection system that was based on analyzing
representative characteristics and systematic description of the suspicious behaviors of
malware. They defined suspicious behavior as a sequence of API calls. Different types
of suspicious behavior were defined such as searching files to infect, modifying file at-
tributes, modifying registry etc. Bayes algorithm [68] was used to detect the flow of
suspicious behavior with a detection precision of 94 %.

2.6 Dynamic Malware Analysis

This section will present background material regarding the techniques that are applied
in dynamic malware analysis. As with the section on static analysis we focus on what
type of malware characteristics or features the methods utilize in the analysis. Malin et
al. [25] defined dynamic malware analysis as:

“Dynamic or behavioral analysis involves executing the code and monitoring its beha-
vior, interaction, and effect on the host system.”

When executing a suspicious executable it is crucial with an isolated environment to
make sure of no propagation opportunities if the executable turns out to be malware. The
simplest method to achieve this is to sacrifice a host without any network connection and
see what happens. With additional tools to monitor system activity it is possible to get
a clear understanding of the suspicious executable’s behavior. This analysis approach is
also immune to the previous mentioned obfuscation techniques, since the suspicious file
is executed [71].

Important aspects when analyzing a suspicious executable with this approach is to
identify the nature and purpose of the executable, how it interacts with the host sys-
tem and network, how and to what extent it compromises the system or network. The
following sections will present manual dynamic analysis in more detail. Furthermore,
performing analysis in sandbox environments and advanced methods in tracing API calls
will be discussed.

2.6.1 Dynamic Malware Forensics

When employing dynamic analysis methods on malware or suspicious executables you
have a wide set of tools available. For dynamic analysis the most relevant tools include

20

Behavior-based Classification of Botnet Malware

monitoring capabilities. Malin et al. [25] have given the following steps for dynamic
analysis of suspicious executables:

1. Sacrificing a physical host for analyzing malware may not be an efficient approach.
Instead, the analyst should consider using a virtualized host such as VMware [14].
By using VMware to create virtual machines you can easily restore the virtual ma-
chine to its previous state by using snapshots [72]. Additionally, monitoring tools
for file integrity is a valuable technique to study changes to the file system, regis-
try and configuration files4. Installation monitors are tools that serve as a loading
mechanism that tracks all changes done by a suspicious executable.

2. Learning how malicious executables interacts with a system are crucial in order to
identify how damaging the malware is. This step involves setting up your environ-
ment for both passive monitoring and active monitoring. Passive monitoring applies
file integrity and installation monitors to compare snapshots before and after an in-
fection. Active monitoring tracks activities in real-time for processes, files, registry,
network and API calls. Note that there is a wide variety of tools available and the
most common are listed in [25, 30].

3. When the environment is deployed you need to take a snapshot of the current state
before executing the malicious file. There are different techniques in executing the
malware and the choice may depend on the type of tools that are utilized in the
previous step. For example, using an installation monitor to capture changes to the
host system when it is executed, or tracing the calls and requests of the malware
using an API monitor (see Section 2.6.2). Moreover, it is important to monitor the
network activity for investigational purposes. In the context of botnet malware it
will connect to the C&C server(s) and may lead the investigators to the botmaster.
Wireshark [73] is a popular tool for this purpose.

Virtual Machine

File
Integrity
Checker

Local
Network
Monitor

Process
Monitor

Registry
Monitor

File
Monitor

Installation
Monitor

Malware API
Monitor

Figure 10: Dynamic analysis system setup

The system setup for dynamic analysis is shown in Figure 10. Note that additional vir-
tual machines can be added to serve as additional network monitors such as a network

4Configuration files are typically stored as .ini files in Windows.

21

Behavior-based Classification of Botnet Malware

sniffer, intrusion detection and honeypot. This approach to dynamic analysis is very ge-
neric and will suit investigation of suspicious executables dealing with a small amount of
malware, however, with a large number of files other analysis approaches are preferable.

2.6.2 Application Programming Interface Tracing

Tracing API calls and/or system calls are an extension to what has been presented in
Section 2.5.3, where the main difference here is that the function calls are retrieved while
the executable is running, hence a dynamic analysis approach. This feat is achieved by
intercepting the called functions from the running executable to the operating system.
For example in Linux we have a built-in tool called strace. This information will serve
well for the analyst related to system/network activity.

Christodorescu et al. [74] developed a prototype based on extracting malicious beha-
vior from malware. They built a graph-representation of the malware behavior that was
based on system calls and their dependencies. This information was used to compute
the difference between malicious and benign software. Hu et al. [75] had a similar ap-
proach to malware detection, where they employed an API tracer to extract features from
six predefined classes of malicious behavior. These classes were related to file, window,
process, register, network and service. A 35-dimensional feature vector where used and
experiments showed that the number of captured features influenced the detection rate.
Six features or more gave the best detection rate. Furthermore, this work was continued
by Ding et al. [76] where they extended the framework by applying a statistical detection
model and a mixture of expert model. Results showed that the statistical detection model
yielded the highest detection rate.

Medusa is another system employing API tracing, which was developed by Nair et
al. [77]. It generates signatures based on entire malware classes (families), where prin-
ciple component analysis [68] was used to get the critical API calls from each malware
family. Then statistical measures were utilized to distinguish the malware families from
one another. However, because of a small dataset the classifier was not accurate enough,
which implies that samples were assigned to the wrong family. A similar approach was
done by Park et al. [78], however, they used samples from different malware families
instead of using malware generator kits. Their classification scheme was based on in-
tercepting system calls during malware execution using Ether [79], and built a graph
that represented this behavior. For classification they calculated the similarity between
graphs of different malicious and benign software. Experiment results showed that some
malware families had two distinct types of behavior.

Ahmed et al. [80] also used an API tracer to retrieve statistical features from spatial
and temporal information available in the API calls. Furthermore, for the classification
task they used a Markov chain [81] and got a detection accuracy of 97 %.

22

Behavior-based Classification of Botnet Malware

2.6.3 Virtual/Sandbox Environment

Analyzing malware by executing them in a closed and secure environment could yield
other behavioral information than that from a static analysis. Sandboxes is a technique,
first popularized by Java [82], that will set constraints to memory space with low privi-
leges and limit access to services. Furthermore, the main advantage with sandboxes is
that the analyst has full control over the memory space and can control the execution
step by step [6]. Compared to virtual machines, sandboxes have restricted resources,
since virtual machines can emulate any hardware or software resources. A common flaw
with both approaches is that they can be detected by an executing malware [83].

Rieck et al. [84] used a sandbox environment for automatic classification of malware.
A commercial sandbox was used, called CWSandbox that was developed by Williems et
al. [71], that generates a detailed report based on the malware’s run-time observations.
CWSandbox executes the file in a controlled environment and monitors function calls
towards the Windows API by using API hooking and DLL injection. API hooking is a
technique to access the API functions, and it does this by intercepting the calls to a
function. If this is done properly, the malware cannot detect whether the function call
has been intercepted or not. Furthermore, DLL code injection is a technique that is used
to run code within the address space of a process forcing it to load a DLL, and here load
a DLL with the API hooking functionality.

sandbox

sandbox.dll

sandbox.dll

Malware

Malware child

Executes

Executes

Communication

Communication

Figure 11: Sandbox with API hooking and DLL injection capabilities

By applying this sandbox for malware analysis it will report on activities related to file
creation/modification, changes in registry, DLLs loaded before execution, virtual memory
areas accessed, processes created and network information. Rieck et al. used operations
reported by CWSandbox as features, and used these to train a SVM classifier. During an
experiment with 3000 previously undetected malware executables the classifier assigned
70 % of the malware with a correct label. A later framework was proposed by Rieck et al.
in [85], where it was used to automatically identify novel classes of malware by applying
hierarchical clustering [68] based on their behavior. By further applying nearest proto-
type classification [86] of unknown malware, it can assign malware to known classes of
behavior.

Another sandbox that has been used for classification and clustering is Anubis [87].
The main difference compared to CWSandbox is that it utilizes a PC emulator instead

23

Behavior-based Classification of Botnet Malware

of virtual machines. Thus, Anubis will simulate a personal computer (processor, graphic
card, hard disks etc.) in software and will not execute instructions directly on the real
processor as in the case with CWSandbox. Bayer et al. [88] used Anubis to analyze a large
collection of malware and applied hierarchical clustering to identify subsets of malware
with similar behavior. Features were extracted from behavioral profiles that described
the runtime activity of the malware such as system calls and their dependencies and
network activities. Firdausi et al. [89] also used Anubis and they extracted features from
the generated XML-reports.

Bailey et al. [90] implemented an automated malware classification system that exe-
cuted the malware in a virtualized environment (VMware [14]) and used the state changes
of the infection such as file modification, processes creation, and network connections as
features. Additionally, they applied single-linkage hierarchical clustering with good re-
sults. Another approach for measuring the similarity of malware behavior was done by
Apel et al. [91]. CWSandbox was also applied for this approach, however the focus in this
experiment was to apply various distance measures and study their influence in a hierar-
chical clustering structure. Moreover, they evaluated, among others, a distance measure
used for malware classification by Bailey et al. [90], the edit distance and normalized
compress distance. Nevertheless, the best results were acquired when they applied the
manhattan distance.

A recent paper by Burji [20] presented a case study of dynamic malware analysis
of the Nugache worm, which is often used in botnets. Besides dynamic analysis, they
combined static malware analysis tools such as IDA Pro [92] for analysis of information
such as API calls and DLL file references. This retrieved information was later used as part
of a feature set that also included URL references and registry entries. No classification
task was documented in this paper only the generation of decision rules using the BLEM2
machine learning tools [93].

24

Behavior-based Classification of Botnet Malware

3 Machine Learning and Data Mining

So far, different methods in machine learning and data mining have been discussed in
a malware analysis perspective. These methods prove to be valuable tools when dealing
with large datasets that contain both malicious and benign software. Here we want to
find some common characteristics in order to distinguish benign from malicious software.
In this chapter we will take a closer look at several important aspects in machine learning
and data mining such as features and feature quality, preprocessing methods, and the
differences between classification and clustering.

3.1 Machine Learning and Data Mining Introduction

Machine learning and data mining are two fields that are closely related. Machine lear-
ning is a scientific sub-field of artificial intelligence, with a broad area of applications
such as data analysis, knowledge discovery, game playing etc. A common property within
these areas is the focus of learning to recognize complex patterns; only then the system
can make clever decisions based on the analyzed data [94]. The following definition of
machine learning is based on Sergios Theodoridis and Konstantinos Koutroumbas [95]:

“Machine learning is the scientific discipline whose goal is the classification of objects
into a number of categories or classes.”

On the other hand, data mining is an interactive and iterative process that applies
machine learning methods in order to achieve their goal. Often data mining is associated
with knowledge discovery which is concerned with finding and structuring information
from large datasets (e.g., databases). Data mining is defined by Hand et al. [96] as:

“Data mining is the analysis of (often large) observational data sets to find unsuspec-
ted relationships and to summarize the data in novel ways that are both understan-
dable and useful to the data owner.”

In the rest of this section we will give a general introduction to machine learning and
data mining, by discussing common methods, areas of application and challenges.

3.1.1 Machine Learning

Machine learning is, as mentioned above, part of the artificial intelligence field, where
the major concern is to “learn” from a specific type of data. How a machine learns in this
context is divided into two categories, namely supervised learning and unsupervised lear-
ning. In supervised learning we have a label associated with each observed object and it
is the algorithm’s job to assign a label to each object based on some measurement on the
object’s characteristics. On the other hand, with unsupervised learning we do not have
any labels. In this case the algorithm will group objects based on their similarities [94].

Algorithms that are based on supervised or unsupervised learning operates on a data-
set which is built from characteristics of observed objects. These object characteristics are
represented as features1 which play an important part when choosing for example the

1In some literature referred to as attributes or properties.

25

Behavior-based Classification of Botnet Malware

type of machine learning algorithm [68]. The process of measuring an object’s features
is called feature extraction. These features which are retrieved by the feature extractor
are stored in feature vectors, making up a feature set2. In fact, choosing good features
which are later represented as a feature set, will have a positive impact on the learning
outcome. Furthermore, what is a good feature? This depends of what you want to disco-
ver from the learning task. For example, in the context of malware detection you want to
extract features that distinguish benign from malicious software. Methods for measuring
feature quality is elaborated in Section 3.2.

Classification is part of the supervised learning category, meaning that a supervising
variable provides a class label for each classification problem. The classifier is then trai-
ned to use the feature vectors from the feature extractor to assign objects to a suitable
class. A typical classification problem is done by first comparing the object to all the
predefined classes with a distance measure and assigns the object to the nearest class.
Thus, it is probable this assignment is incorrect and a similarity measure to a reference
object for that class will be done to validate this. Additionally, when classifying an object
based on continuous features, the classifier needs to map these continuous features from
feature space to class space, where the values are discrete. This mapping function may
be given in advance or learned from the data, which is possible since the data consists of
training samples which describe previous solved past problems (training data). Common
classifiers are decision trees, naive-Bayes classifiers, Bayes networks, decision rules, nea-
rest neighbor classifiers, linear discriminant functions, logistic regression, support vector
machines and artificial neural networks [68].

When the learning procedure does not have a supervising variable, meaning that only
the object’s features are given, we apply unsupervised learning procedures. Clustering
is one of the methods of unsupervised learning and by far the most popular one. The
main task of the clustering algorithm is to form subsets/clusters based on the similarity
of object features, and hence aiming to find some structure in a set of unlabeled data.
Additionally, the number of clusters can be predefined as background knowledge or can
be determined by the learning algorithm. Common learning algorithms for clustering are
hierarchical clustering and partitional clustering [95].

Another supervised procedure is regression, where the purpose is to find some func-
tional description of data. This often involves predicting values for new input and this is
the task for the regressional predictor. In regression we have a set of objects, which have
several independent and observable features (which are either discrete or continuous).
The regressional predictor maps values with a continuous function from feature space
to prediction values. As with classification, this function can be predefined or learned
from previously solved problems. The most common regressional predictors are regres-
sion trees, linear regression, locally weighted regression, support vector machines (for
regression) and artificial neural networks [68].

A typical machine learning process is shown in Figure 12. This process consists of five
phases, where the first phase deals with data acquisition, meaning that we collect the
data that is going to be analyzed (e.g., using a honeypot). The second and third phase
deals with monitoring the data samples and extract relevant features (e.g., using a sand-
box). When these phases are done we can utilize the collected features in the learning
and classification procedure. Finally, the last phase is the evaluation of the classifier.

2In some literature referred to as feature space.

26

Behavior-based Classification of Botnet Malware

Data
Acquisition

Behavior
Monitoring

Feature
Extraction

Learning &
Classification Evaluation

Figure 12: Machine learning process example

3.1.2 Data Mining

Data mining is a discipline which is an intersection of different fields such as statistics,
machine learning, data management and databases [96]. Often data mining is associated
with knowledge discovery which is an interactive and iterative process used to find and
structure information from large data sets [94].

There are two terms in data mining that is worthy of noticing; namely, descriptive
modeling and predictive modeling. A descriptive model presents the most important as-
pects of the data, which is mainly a summary of the data that enables us to gain further
knowledge. An example that falls in this category is cluster analysis that groups data
objects based on their feature similarities, see Section 3.4. On the other hand, predictive
models are designed to predict or forecast the outcome of a data mining process based
on previously known characteristics of the observed data. Typical examples of predictive
modeling are classification algorithms that assign a class label to an observed object ba-
sed on feature measurements, and regression that predicts values of new input to the
algorithm.

Problem
Understanding

Data
Understanding

Data
Preperation

Evaluation

Deployment

Data Modeling

Figure 13: Data mining process example

Figure 13 shows a popular data mining process called Cross Industry Standard Process
for Data Mining (CRISP-DM) [97, 94]. The following list will give a short description of
the 6 different phases of the process:

• Problem understanding focuses on project objectives to further convert this know-
ledge into a data mining problem.

• Data understanding starts with collection of initial data. This is done to gain initial
knowledge about the data that is going to be analyzed.

• Data preparation is the phase where you construct the dataset from the collected

27

Behavior-based Classification of Botnet Malware

data. This phase will include aspects such as feature extraction and feature selec-
tion.

• Modeling starts with selecting various modeling methods. Some methods require
certain representation of the data set (e.g. discrete features values). Thus, it may
be necessary to take a step back to the data-preprocessing phase.

• Evaluation phase focus on evaluating the previous used model. Dependending on
the objectives, the different evaluation criteria may be related to performance, ac-
curacy etc.

• Deployment is the last phase where the model is implemented and utilized.

Compared to the machine learning example presented in the previous section shows
that the approaches are clearly similar. However, as stated by Witten and Frank [98], the
process of data mining is a more practical approach. Therefore, simply put, data mining
employs learning in a practical manner.

3.1.3 Applications

There are several application areas which use machine learning and data mining in some
various form. For example companies or institutions that possess huge volumes of data
and want to gain knowledge from this information [98, 94]. The marketing and sales
domain is perhaps the most popular area that has been utilizing data mining and focusing
on predictive modeling. Data mining can here be used to predict groups of people that are
suitable for specific services. For example in the context of cellular phone services, where
the companies try to find suitable groups of people that they offer a type of subscription
that would be beneficial for both parts.

Another domain for machine learning is when you need to come up with the correct
diagnosis. This relates to fields such as medicine, where records from previous patients,
that is treated from a similar disease, can be used to induce knowledge [94]. This infor-
mation can further be used to give a diagnosis to new patients. A different field which
employs diagnosis is the preventative maintenance of industrial equipment. This is a field
where engineers and technicians have decades of experience, which means that they can
give a diagnosis when faults arises, or even better predict when faults may arise due to
for example wear rate and how long a certain part has been used.

Furthermore, in the context of malware detection and analysis, data mining and ma-
chine learning are valuable tools. As described in Chapter 2, data collected from mal-
ware activity such as malicious network traffic and host-related activity can for example
be used to analyze whether your system has been infected and/or is under attack by a
known or a new threat.

3.1.4 Challenges

When employing machine learning and data mining methods there are different chal-
lenges to be aware of. Jain et al. [81] presents two common pitfalls which will influence
the chosen machine learning algorithm’s performance; namely the curse of dimensionality
and overfitting.

The curse of dimensionality is a situation where the number of features is too large
relative to the number of data samples. Two possible solutions for this problem are to
acquire more samples and dimension reduction. Acquiring more samples may not be

28

Behavior-based Classification of Botnet Malware

possible, so the only option is to apply techniques for dimension reduction (see Section
3.3). Be aware that this approach may lead to loss of discrimination and thus may be less
accurate. On the other hand, overfitting3 may occur when a classifier is too optimized on
the training data4, by for example describing insignificant relationships of the data (e.g.,
random errors or noise). A solution for this problem is to always use an independent test
set for evaluation. Thus, this dataset should not be part of the classifier’s training.

Additionally, when evaluating classifiers there is an aspect worthy of notice. The no
free lunch theorem [68] states that there are no context-independent or usage-independent
cause to favor one classification algorithm over another. This means that if we have the
situation where one algorithm seems to outperform another, it is because the specific
machine learning problem and not the superior characteristics of the algorithm.

3.2 Features and Feature Quality
Whether you are planning to use machine learning algorithms based on supervised or
unsupervised learning you must focus on the characteristics of the observed objects/-
samples. These characteristics are represented as features and will influence the out-
come of the machine learning task. The following definition is based on Wittend and
Frank [98]:

“The value of a feature for a particular instance is a measurement of the quantity to
which the feature refers.”

After the feature extraction phase it is necessary to proceed with one of the most cru-
cial tasks in machine learning. This task relates to the quality evaluation of the features.
To be able to perform a quality evaluation there exists several measures that estimates
the feature’s usefulness in the classification task [94].

The following sections will give an introduction to the typical feature types and roles.
Later, various feature quality measures will be discussed.

3.2.1 Feature Roles and Types

Features can have different roles in a dataset. A role that has been mentioned previously
is label. This role is used in supervised learning to describe what group a specific feature
belongs with. For example in malware detection and analysis a label distinguishes mali-
cious and benign executables. Thus, labels can be predicted with classifiers for samples
that have not yet been assigned with a label. Also, there are roles that are used as an
unique identifier (ID) for the concerned samples. An example here is hash sum (e.g.,
MD5) which is often used in malware detection and analysis (see Section 2.5).

Other roles are weight (or feature weighting), where a high weight is assigned to
the most relevant features and improves the classification scheme, since you can discard
features below a specified threshold. Finally, features that do not have a specified role
are used to describe the analyzed sample. For these features we can, for example, store
activities done by the malware on a system.

Other feature characteristics that are worth noticing is feature types. The number of
feature types supported in a classification scheme depends on which type of tools you
are using (e.g., Weka [99]). There are in general 3 different feature types that are used:

• Nominal which is used for discrete values or for a value set with few options (e.g.,
yes/no).

3In some literature called overtraining.
4In some literature referred to as learning data.

29

Behavior-based Classification of Botnet Malware

• Numeric which is used for continuous values.

• String which is used to hold a list of characters of arbitrary size.

It is worth noticing that certain classification or clustering algorithms require that the
features are converted to a specific type. This is often required since the algorithms are
designed for a particular type of input. Converting to another feature type is commonly
done in a preprocessing step and are further discussed in Section 3.3.

3.2.2 Feature-Quality Measures

Feature-quality measures are an important step in machine learning. Here we wish to
evaluate how useful a feature is, for example, to predict the label of a target sample in
the context of classification. It is the learning algorithm’s task to search the hypothesis
space5 to evaluate the quality of each feature for the specific learning problem [94]. The
three types of quality measures that are going to be presented in this thesis is impurity
functions, information gain and minimum description length, which are described below.

Impurity Functions

One of the basic measures for evaluating the feature quality in classification problems are
impurity measures. In general, impurity measures define how well classes are separated.
Suppose the number of classes Ck is n, so we have k = 1, 2, ..., n. Then the impurity
measure is a function of the probabilities P1, P2, ..., Pn. An impurity measure is a function
ϕ which satisfies P(Ck) ≥ 0 and

∑
n

P(Ck) = 1, with following properties [94]:

1. ϕ achieves single maximum, when P(Ck) = 1/n.

2. ϕ achieves minimum, when P(Ck) = 1, P(Cl) = 0, l = 1, 2, ..., n, and l 6= k.

3. ϕ is a symmetric function of P1, P2, ..., Pn.

Given the function ϕ and feature Fj, the impurity measure i(fj) is as follows:

i(fj) = ϕ(P(C1), ..., P(Cn)) (3.1)

Furthermore, to estimate the quality of (discrete) features q(fj), the decrease of im-
purity is subtracted from the impurity measure:

q(fj) = i(fj) −

n∑
m=1

P(Vm)ϕ(P(C1|Vm), ..., P(Cn|Vm)) (3.2)

Here the features have a set of possible values Vj = v1, v2, ..., vn. The prior proba-
bilities of classes P(C), feature values P(Vj), and conditional probabilities P(C|Vj) are
estimated from the distribution of training samples.

Entropy and Information Gain

In machine learning, most measures are based on information content, which can be
used to determine the outcome of the hypothesis space of a classifier [94]. The amount of
information6 (I) used to determine the outcome (Xj) is defined as the negative logarithm
of its probability:

I(Xj) = −log2P(Xj) (3.3)

5A set of all possible hypothesis/model outcomes.
6In this context amount of bits.

30

Behavior-based Classification of Botnet Malware

From this equation we can derive the entropy (H) by calculating the average amount
of information needed to determine the outcome:

H(X) = −

m∑
j

P(Xj)log2P(Xj) (3.4)

Information gain (IG) is a basic feature quality measure that uses the entropy as an
impurity function. This measure is defined as the amount of information, gained from a
feature, used to determine the class. Before we give a definition of the information gain,
some notations need to be introduced:

• n is the number of training samples.

• n(Ck) is the number of training samples from class Ck.

• n(Vj) is the number of training samples with jth value of the given feature f.

• n(Ck, Vj) is the number of training samples from class Ck and with jth value of f.

Then the definition of information gain can be defined as:

IG(f) = −
∑
k

n(Ck)

n
log

n(Ck)

n
−
∑
j

n(Vj)

n
(
∑
k

n(Ck, Vj)

n(Vj)
log

n(Ck, Vj)

n(Vj)
) (3.5)

Minimum Description Length

The minimum description length, or MDL principle, is based on the idea that any regula-
rity in a dataset may be used to compress it [100, 98]. Here, a compression means that
there are a minimal number of symbols used to describe the dataset. Hence, the more
regularity found in a dataset, the more we can compress the dataset.

MDL is often described in the context of data transmission through a communication
channel [94], where both sender and receiver know the number of values m of a spe-
cific feature f and the number of classes m. Furthermore, the sender and receiver also
know the values of a feature f for each training sample. However, the sender is the one
who knows the correct class of each sample, where the task is to send the shortest pos-
sible message with the classes of all samples to the receiver. To send this message with
the features and corresponding classes, the feature f is used in such a way that classes
are coded separately for each value of the feature. This requires that each value of the
feature correspond to a different class distribution. Hence, the receiver can decode the
classification from each feature value.

Since we know the class distribution of each feature value, it is now possible to eva-
luate its significance in the classification task. Henceforth, the different possible distribu-
tions of n samples over m is: (

n+m− 1

m− 1

)
(3.6)

Furthermore, the amount of information (in bits) is given by the logarithm of all pos-
sible classifications of n training samples added to the logarithm of possible distributions
(Equation 3.6):

MDLprior = log

(
n

n(C1), ..., n(Cm)

)
+ log

(
n+m− 1

m− 1

)
(3.7)

31

Behavior-based Classification of Botnet Malware

Then the estimate of information necessary to coding the classes, is given by the
values of the feature f, is the sum of all feature values:

MDLpost(f) =
∑
j

log

(
n(Vj)

n(C1, Vj), ..., n(Cm, Vj)

)
+ log

(
n+m− 1

m− 1

)
(3.8)

The quality MDL(f) of a feature is defined as the compressivity of feature as shown
in the equation below:

MDL(f) =
MDLprior −MDLpost(f)

n
(3.9)

3.3 Data-Preprocessing Methods

Different machine learning algorithms requires different input to function optimally. For
example some machine learning algorithms only work with binary, discrete or continuous
feature values. Others may give an unsatisfactory result when dealing with a high dimen-
sioned feature space. Fortunately, there exist many preprocessing methods that take care
of the mentioned challenges. The following definition of data preprocessing is based on
Pyle [101] and Kotsiantis et al. [102]:

“Data preprocessing deals with approaches for preparing the features before they are
applied to a machine learning algorithm.”

In the following sections we will discuss the basic feature conversations such as dis-
cretization of continuous features, and discrete to continuous features. Also, challenges
related to how we deal with missing or unknown feature values will be presented, follo-
wed by approaches for reducing the amount of features.

3.3.1 Feature Discretization

There are machine learning algorithms that are designed for only using discrete features
as input. Hence, if our dataset consists of continuous features we must employ a discreti-
zation scheme either beforehand, or during the training. In short, discretization of conti-
nuous features means that the feature values are split into a finite number of intervals
that are treated as discrete feature values [98]. The main challenge with discretization of
continuous features is information loss for each feature. This situation arises since spe-
cific feature values from the same interval cannot be discriminated any more, or values
falls between two intervals. Thus, there are two important aspects for the discretization
algorithm to handle:

• Optimal numbers of intervals

• Optimal boundaries for each interval

Methods for feature discretization are many, both unsupervised and supervised va-
riants exist. When applying unsupervised discretization, there are three implementations
which are often used. These are equal-interval binning, equal-frequency binning and
proportional k-interval discretization [98]:

• Equal-interval binning splits the whole range of feature values into intervals of
equal size. This may result in very uneven distribution, where some intervals contain
many instances, and others none.

32

Behavior-based Classification of Botnet Malware

• Equal-frequency binning applies intervals that contain equal number of feature
values. This variant may cause bad boundaries for example when two classes are
related to two separated intervals and we have an uneven set of feature values used
to distinguish between two classes.

• Proportional k-interval discretization utilizes equal-frequency binning with naive-
Bayes (see Section 3.4), where the number of intervals is chosen in a data-dependent
form.

Additionally, supervised discretization takes the classes into account when setting the
intervals. Here there are two general variants that are often used, namely buttom-up and
top-down methods [94, 102].

• In the bottom-up variant, the discretization algorithm starts with as many intervals
as there are training samples, an iteratively merge neighboring intervals based on
the most similar class probability distributions. This process stops when the quality
q(f) of the discretized features f stops increasing, or we have two intervals left.

• When using the top-down variant the discretization process starts with a single
interval, and for each step this is split into smaller intervals. The interval is split at
the point where the quality q(f) is maximized. This process stops when the quality
q(f) of the discretized features f stops increasing

There are different methods to control the discretization processes of continuous fea-
tures, where any quality measure can be used (see Section 3.2.2). A good candidate for
this task is MDL that do not overestimate features with multiple values [94].

3.3.2 Missing/Unknown Feature Values

Often when we extract features from a raw dataset it is quite common to find missing
feature values. In malware analysis context this situation may occur when the malware
sample is protected by obfuscation techniques where we are not capable of extracting
certain values. The most usual way of dealing with this issue is either to ignore them or
to replace them with a specific scheme. Common schemes of replacing missing values
are replacing the missing values with zeros or calculate its value based on probability
distribution of feature values [95].

3.3.3 Feature Selection

When dealing with a high-dimensional feature set, not all the extracted features may
be of relevance for the phenomena of interest, for example classification task. We may
end up in common pitfalls, namely the curse of dimensionality and overfitting (see Sec-
tion 3.1.4). Feature selection will allow a more efficient machine learning procedure by
selecting an optimal subset of features [94]. This is necessary if the feature set consists
of too many features that are irrelevant, correlated, or redundant which may reduce the
classifiers performance.

There are two general approaches for feature selection. The first is to make an inde-
pendent analysis based on the characteristics of the data. This approach is called filtering,
where the feature set is filtered to yield the most promising feature subset. The other
approach, wrapper method, tries to find the optimal subset using a machine learning al-
gorithm with an internal cross-validation. Here the algorithm is wrapped into the feature

33

Behavior-based Classification of Botnet Malware

selection procedure [98]. Thus, this is a more advanced and slower method compared to
the filtering approach.

Correlation-Based Feature Selection

Correlation-based feature selection (CFS) is a filtering approach that evaluates subsets of
features based on the assumption that “...useful feature subsets contain features that are
predictive of the class but uncorrelated with one another” [103].

When a feature set is applied to CFS they will first be discretized if they are conti-
nuous. Then a heuristic measure of the “merit” is computed that use a feature subset
from from pair-wise feature correlation. Furthermore, heuristic search [95] is applied to
traverse the feature (sub)sets, that yields the subset with the highest merit. The compu-
tation of the merit is shown in Equation 3.10.

MeritSk
=

krcf√
k+ k(k− 1)rff

(3.10)

Here the equation gives the merit of the feature subset S that consists of k features.
rcf is the average value of all feature-classification correlations, and rff is the average
value of all feature-feature correlations.

Moreover, the CFS algorithm has been improved in a generic feature-selection al-
gorithm (GeFS) by Nguyen et al. [104, 105], by introducing a minimal-redundancy-
relevance (mRMR) measure [106]. Here, the CFS optimization problem is transformed
into a polynomial mixed 0-1 fractional programming problem. By further introducing
additional variables, a new mixed 0-1 linear programming problem is obtained. This in-
cludes a number of constraints and variables that are linear in the number of features
that can be solved by a branch-and-bound algorithm [94]. Thus, the GeFS algorithm is
capable of removing both irrelevant and redundant features.

3.4 Classification vs Clustering

In Section 3.1 a brief introduction of the two terms classification and clustering was gi-
ven. This thesis will compare several classifiers in different scenarios and therefore this
section will emphasize more on the classification part. First, a detailed description of
classification with chosen algorithms is discussed. Next, a short introduction to hierar-
chical and partitional clustering is given. Finally, main differences between classification
and clustering are discussed.

3.4.1 Classification

Classification is in the supervised learning category, where we have a label associated
with each sample, and it is the classifier’s job to assign the correct label to each sample
based on the sample’s features. An example of the different phases during classification
is shown in Figure 14. In general, during the training phase the classifier is fed with
training samples that are labeled. Here the classifier learns the discriminative differences
between samples with a specific label from samples with another label. This knowledge
is used in the classification phase, where the classifier is fed with unlabeled samples.
Now the classifier predicts the label to the sample based on some feature measurements.
There exists many classification algorithms and the ones applied in the experiments are
presented below.

34

Behavior-based Classification of Botnet Malware

Preprocessing Feature
Measurement Classification

Preprocessing
Feature

Extraction/
Selection

LearningTraining
Data

Testing
Data

(1) Training Phase

(2) Classification Phase

Figure 14: Different phases during classification

Naive-Bayes

The naive-Bayes classifier is based on Bayes decision theory (Bayes formula) that des-
cribes how to calculate the inverse probabilities [95]. It states that by knowing the condi-
tional probability of the feature vector V given the class Ck (P(V |Ck)) you can calculate
the conditional probability of class Ck given the feature vector V (P(Ck|V)) if you know
prior/unconditional probabilities P(V) and P(Ck).

P(Ck|V) =
P(V |Ck)P(Ck)

P(V)
(3.11)

From this equation we can derive the naive-Bayes classifier7. This equation is derived
with the assumption that there is conditional independence between features with res-
pect to the class. Before providing the naive-Bayes we need to know how to estimate the
unconditional probabilities P(Ck) and conditional probabilities P(Ck|vi):

P(Ck) =
n(Ck) + 1

n+m
(3.12)

P(Ck|vi) =
n(Ck, vi) + λP(Ck)

n(vi) + λ
(3.13)

Both the unconditional probabilities P(Ck) and conditional class probabilities P(Ck|vi)

are estimated by the learning algorithm for each feature value vi of feature f. Further-
more, k = 1...m, n(Ck) is the number of training samples from class Ck, n is the total
number of training samples, m the number of classes, and λ is a m-estimator used to
estimate the conditional class probabilities [94]. Henceforth, the naive-Bayes is stated
as:

P(Ck|V) = P(Ck)

a∏
i=1

P(Ck|vi)

P(Ck)
(3.14)

Training in naive-Bayes is therefore reduced to calculating the unconditional and
conditional probabilities. Naive-Bayes’ strengths is that it performs well where there are
no or weak dependencies between features. Thus, it will not give any good results in the
case when strong dependencies between features exist. Another strength is that all of its
probability estimations are reliable, which means that overfitting will not likely occur.

7The derivation of Bayes formula is provided in Kononenko and Kukar [94].

35

Behavior-based Classification of Botnet Malware

K-Nearest Neighbors

K-nearest neighbors (K-NN) algorithm is the simplest classifier in the nearest neighbors
category, where it stores a part or all of the training samples which are later used to
predict the class label when a new sample is presented to the algorithm [95]. Thus,
given an unknown feature vector and distance measure:

• Identify the k nearest neighbors from the n training samples. This operation is
done regardless of the class label. In general, an odd number is chosen for k when
dealing with a two class problem.

• Identify the number of feature vectors ki using the k samples that belongs to class
C = C1, ..., Cm, where k =

∑
i

ki.

• Assign the feature vector to the class C with the maximum number ki of samples.

An example of K-NN is given in Figure 15, where the previously applied training
samples are a two class problem where the green dots symbolizes benign executables
and the red dots malware. The blue dot is the unknown sample. If k = 3, which is
shown as the first circle, the unknown sample is classified as a malware because this type
of training sample has more training samples within the specified distance. However, a
different classification arises when k = 5 (dotted circle). Now the unknown sample will
be classified as a benign executable since this type is overrepresented.

Figure 15: K-NN example

A distance measure needs to be specified in order to decide whether a training sample
falls within a specified k neighbor. The Euclidean distance [94] is a common distance mea-
sure used in a K-NN classifier. Let us consider two samples where each is characterized
by a feature vector u = u1, ..., uj for the first sample, and v = v1, ..., vj for the second
sample. Then the Euclidean distance can be defined as:

d(u, v) = |u− v| =
√

(u1 − v1)2 + ...+ (uj − vj)2 (3.15)

This classifier is quite effective if we have a large amount of training samples. This
however, leads us to one of its weaknesses which are the calculation complexity, because
the distance measure needs to be calculated between the unknown sample and all of the
training samples. Its other weakness is setting the k parameter, which often requires a
bit of tweaking before an optimal result is acquired [94].

36

Behavior-based Classification of Botnet Malware

C4.5

The C4.5 algorithm is in the category of decision trees. First of all, a decision tree consists
of nodes that reflects the sample’s features, where its edges are represented as feature
values and its leaves correspond to the class labels. For example in a malware detection
scheme we have two leaves that correspond to malicious and benign software.

One issue with decision trees is selecting the best features for representing nodes,
which is often called splitting criteria. This is often done by a feature quality measure
(see Section 3.2.2). The feature with highest quality will be selected as the root node and
its feature values will be used as edges to connect with the next level. This is repeated
until a stopping criterion will be met, for example no “good” features left [98].

C4.5 classifier is the successor of ID3, and uses the gain ratio as a splitting criteria.
The gain ratio (GR) is defined as the information gain (IG) that is normalized with the
feature entropy:

GR(f) =
IG(f)

−
∑
j

n(Vj)
n
log

n(Vj)
n

(3.16)

Here, n is the number of training samples, n(Vj) is the number of training samples
with the jth value of the given feature f. The C4.5 employs pruning, which means that the
tree is reduced in size because of often unreliable lower levels [94]. This characteristic
is one of the C4.5 strengths that avoids overfitting, since “unrealiable” features are left
out. Also, because of the splitting criterion, it performs well when the dataset consists of
a few highly relevant features. On the other hand, the gain ratio evaluates the quality
independently of the features. Hence, with many dependencies between the features the
C4.5 will not perform well [107, 108].

Support Vector Machines

Support vector machines (SVM) are one of the most successful approaches for solving
classification tasks. A reason for its success is that it utilizes all of the available features,
regardless of their relevance [68]. Thus, it is suitable for large datasets which contains a
large amount of features, which may be of less importance.

The following example will describe the SVM for a linearly separable two-class pro-
blem, see Figure 16. Our goal is to first design an optimal hyperplane which is equally
distant from the nearest examples from both classes. Furthermore, the training samples
that are nearest the hyperplane are called support vectors, and the distance between the
hyperplane and its support vectors is called the margin. Thus, the optimal hyperplane is
selected based on the maximum margin.

Now let xi, i = 1, ..., n be the feature vectors of the training set, X. These features
belong to either of the red or green class. Additionally, w is the direction of the hyper-
plane, w0 is its exact position in space, and J(w,w0) the cost function. For every feature
xi we denote its corresponding class label by yi (+1 for red and -1 for green). When the
classes are clearly separable, the classification problem can be stated as:

minimize J(w,w0) ≡
1

2
||w||2 (3.17)

subject to yi(w
Txi +w0) ≥ 1, i = 1, ..., n (3.18)

It is worth noticing that the main strength of the SVM classifier is that it is capable of
transforming the feature space to a more complex one. This is useful if classes cannot be

37

Behavior-based Classification of Botnet Malware

Figure 16: SVM example

separated with a simple linear hyperplane. Kernel functions [68] are utilized for the impli-
cit feature space transformation and there exists several to choose from. However, there
are no practical method for choosing the best kernel function for a specific dataset [68].
Also, employing a SVM classifier is computational intensive process.

Bayes Network

A Bayes network, is a generalization of naive-Bayes. It is a directed acyclic graph, where
the nodes correspond to the features or class labels. In this approach each node is as-
sociated with a set of conditional probabilities with respect to the values of the parent
features. This means that a node is conditional independent of its non-successors. The
conditional probability of each node can be denoted as P(Vi|Ai). Here Vi is the feature
associated with the specific node, and Ai is the node’s set of parents [95].

When the Bayes network topology is not predefined by an expert that can provide
knowledge about the dependencies, it is necessary to build it based on an optimization
criterion. The underlying principle in the optimization criterion is the minimum descrip-
tion length (see Section 3.2). Thus, the task of the learning algorithm is to find a topology
that minimizes the MDL for a given dataset. When the topology has been decided, the
conditional probabilities are estimated from the available training samples [94].

Classifiers based on Bayes network have several strengths. First, they work well on
small and incomplete datasets, since it takes into account all available data. Also, when
dealing with a lot of features it avoids the curse of dimensionality when estimating the
conditional probabilities by only considering the node’s parents. This means that the
estimations are done in iterations top to bottom. The main weakness of Bayes network is
that it cannot handle continuous features, so they must be discretized first [109].

3.4.2 Clustering

Clustering falls under the category of unsupervised learning, where the learning algo-
rithm’s task is to group samples into clusters based on unlabeled features. This allows
us to find similarities and differences among samples and to derive useful conclusions
about them [94, 95]. Similar to classification, there are specific steps when applying a
clustering scheme. Here, six basic steps are needed:

38

Behavior-based Classification of Botnet Malware

In order to prepare the features for the clustering algorithm we need to perform some
(1) preprocessing, for example, converting to a supported feature type. Also, by applying
(2) feature selection techniques it will ensure that the chosen features are highly relevant
for the task of interest. A (3) proximity measure is applied in order to decide how similar
(or dissimilar) two feature vectors are. Additionally, defining what type of clusters that
are most sensible for the underlying dataset is stated by a (4) clustering criterion. Next
step involves applying the (5) clustering algorithm, for example, hierarchical or partitio-
nal clustering algorithm. Finally, the clustering outcome is (6) validated and evaluated to
verify its correctness.

Hierarchical Clustering

There are two types of hierarchical algorithms, namely, bottom-up (agglomerative) and
top-down (divisive). A standard representation of hierarchical clustering is with a den-
drogram (Figure 17 (b)), which is a binary tree where the leaves correspond to each
individual sample and the root corresponds to all the samples. When a button-up algo-
rithm is executed it starts with the individual samples and iteratively merges the most
similar ones. On the other hand, top-down algorithms starts with all samples in one
cluster and iterative splits them into smaller clusters [68].

Partitional Clustering

In partitional clustering, samples are grouped into partitions, see Figure 17 (a). Depen-
ding on the specific algorithm, for example, K-means clustering [98], the number of
clusters needs to be specified beforehand. This is the general disadvantage with partitio-
nal clustering, since the number of clusters will influence the clustering outcome. Thus,
it may be necessary to apply the same clustering algorithm several times and evaluate
the results to find the best number of clusters that suit the specific task best.

(a)

x1 x2 x3 x4 x5

(b)

Figure 17: (a) Partitional clustering, (b) Hierarchical clustering

3.4.3 Main Differences

The main differences between classification and clustering, is the availability of back-
ground information. In classification, the labels are known in advance, which is not the

39

Behavior-based Classification of Botnet Malware

case with clustering. Also, the goal of classification is to build a model, which is based on
training samples, that predicts the class labels of the test samples only given its features.
Clustering does not have a training phase, and the goal is to group samples based on a
clustering criterion into different clusters.

40

Behavior-based Classification of Botnet Malware

4 New Computational Method for Static and Dynamic
Analysis

Up to now, we have discussed methods regarding malware detection and analysis in
Chapter 2, where we emphasized on static and dynamic malware analysis approaches.
Here we studied the different behavior-characteristics that were utilized in order to ana-
lyze and detect malware in an effective manner. Furthermore, the theoretical building
blocks of data mining and machine learning techniques were presented in Chapter 3.

This chapter presents the system components of the new computational method for
static and dynamic analysis. The method will deploy the system as an extension of deLink
framework by implementing components that also can be utilized independently of the
framework. Furthermore, this chapter includes a brief introduction to an overall system
description of deLink, followed by the theoretical building blocks and practical system
implementation of the method.

4.1 deLink Framework

The deLink framework by Flaglien et al. [19, 3] aims to identify malware evidence across
multiple computers. It uses clustering to identify common patterns and correlating data.
The main components in deLink are; (i) a data collection component that collects in-
formation from a computer’s file system, (ii) an examination component for processing
the acquired data and extracting a set of features based on important characteristics of
malware, and (iii) the link mining component that use unsupervised clustering to group
files with similar characteristics.

Figure 18: Processing steps in deLink [3]

Figure 18 shows deLink’s main processing steps. From each machine a disk image is
acquired (1) and the file metadata is extracted (2). This information is used to build

41

Behavior-based Classification of Botnet Malware

a feature file. However, since a disk image will contain a portion of uninteresting files,
for example, known and unaltered system/program files, a hash filtering scheme (3) is
applied for data reduction. Additional features are extracted (4) by using string searches,
such as IP addresses, e-mail addresses and URLs. The final steps (5-8) are necessary to
combine all the created feature files, preprocessing the features and analyze the result
with link mining.

There are, however, some weaknesses with Flaglien’s approach. Using string searches
to collect IP addresses, e-mail addresses and URLs from executables will not work in si-
tuations where these features are not represented as strings, or where obfuscation tech-
niques are applied, for example packers and encryption. In general, extracting strings
from an executable are not very robust as features because they can be easily chan-
ged [62]. Also, you must be aware that hackers and malware developers often embed
decoy strings in their code to throw digital investigators off track. Instances of false e-mail
addresses and domain names are common [25]. Additionally, no method for feature se-
lection was applied to select the most relevant features. Thus, we do not know the weight
of significance and the quality of the features.

4.2 Theoretical Method

The theoretical method consists of the basic principles and main elements of the com-
putational method. This method follows a typical machine learning process, where it
includes malware forensic approaches for malware analysis. Therefore, it gives an ove-
rall understanding of the applied principles and possibilities of improvements in future
research.

4.2.1 Preferences and Assumptions

Based on the theoretical background, related to malware detection, malware analysis
and machine learning techniques, the following preferences and assumptions are stated:

1. The collected executables must be of portable executable (PE) format and able to
run on a Windows-based system.

2. The collected executables must be deployed in such a way that it can be analyzed
using the chosen dynamic and static analysis methods.

3. Dynamic and static analysis of the dataset must, in worst case, yield parts of the
executables behavior if obfuscation techniques are applied.

4.2.2 System Design

The main system components are designed in such a way that it fits in a general machine
learning process. Figure 19 shows the main components of the method, and is further
discussed below:

• Data Acquisition applies static and dynamic analysis tools in order to gain know-
ledge about the suspicious dataset. These tools generate reports that are stored
before further processing.

• Feature Extraction utilizes the generated static and dynamic reports by extracting
appropriate features and build a static and dynamic feature set. Also, a combination
of these two is built.

42

Behavior-based Classification of Botnet Malware

Data
Acquisition

Pre-
Processing Classification EvaluationFeature

Extraction

Figure 19: Method’s system design

• Preprocessing involves feature preparations by ensuring that the feature type is sup-
ported by the classifier and removing “unimportant” features to improve the classi-
fier’s performance.

• Classification will use the preprocessed feature sets by applying different classifica-
tion algorithms. The reason for applying several classifiers is to find what type of
classifier that is most suitable for the extracted feature sets.

• Evaluation involves validation of the classification results. This is done by compa-
ring the applied classifiers with measures such as detection rate and accuracy.

4.2.3 Data Acquisition

The data acquisition consists of two steps. First, malware and benign software need to
be download and stored as our dataset. In order to acquire an appropriate dataset this
thesis will manually download malicious and benign samples. This is done to be sure
that the analyzed malware is utilized in a known botnet and that we are able to acquire
a suitable dataset in a limited time. Furthermore, to appropriately test the classifiers,
benign executables should share some similar behavior when they are analyzed with
static and dynamic analysis tools, for example some network-related activities.

Static
Analysis

Dataset

Dynamic
Analysis

Local
Host

Online
Sandbox

Figure 20: Static and dynamic analysis design

The second step involves analyzing the executables in our dataset, and for this task
static and dynamic analysis tools need to be utilized. The static analysis tool will analyze
the dataset without executing the files and therefore avoids to infect the system, see
Section 2.5. Here the PE format need to be exploited by using a PE parser (e.g., pefile),
that enables us to retrieve information from the different sections and store this in a

43

Behavior-based Classification of Botnet Malware

static report. The reason for choosing this static analysis approach is that behavior-based
characteristics of the files are available without going to a lower abstraction level that
requires an analysis of the assembly code. Hence, this approach will not be vulnerable
to obfuscation techniques that are applied to the code to confuse the investigator or the
disassembler, and have given good results when applied in malware detectors in recent
research (see Section 2.5.3).

Additionally, a sandbox (e.g., Anubis) is applied to run the executables in a controlled
manner utilizing an isolated environment, see Section 2.6. This ensures that executables,
with malicious intent, do not have any propagation opportunities. The sandbox needs to
emulate a computer instead of a virtual machine that operates by executing instructions
directly on the real processor. This will ensure that the malware cannot escape from the
emulated environment, and the malware cannot detect its presence as easily as with for
example VMWare [5, 14]. The purpose of utilizing a sandbox is that the malware will
be loaded into memory and executed, to retrieve its system interactions in a controlled
manner. Thus, in addition to defeat polymorphism and metamorphism, it will unpack and
decrypt malware that is protected by packers and cryptors when it is loaded into memory
before execution. Recent research shows that analyzing malware with sandboxes have
given satisfying results (see Section 2.6.3).

When utilizing a sandbox the executable’s actions need to be monitored and logged,
to further produce a dynamic report. All actions stored in the dynamic report will reflect
the executable’s behavior when it is run on an actual system. The reason for looking at
the behavior-based characteristics is to study the behavior of malware and check whether
the behavior of malware and benign software can be used to solve a two-class classifica-
tion scheme. By using benign software with similar system dependencies related to files,
registry, and network activities; the chance for a high false positive rate should be lower
compared to only utilizing simple benign executables (e.g., Notepad). Especially, when
the classifier is presented with executables such as browsers, mail clients, network tools
etc.

4.2.4 Feature Extraction

During feature extraction, the features describing the executables’ behavior need to be
extracted from the static and dynamic reports. Moreover, three feature sets need to be
built in order to study whether static, dynamic, or a combination of the two, is best suited
for a two-class classification problem. Tables 4 and 5 summarize the extracted features
from both static and dynamic analysis. It is important to notice that dynamic features are
categorized by entities, where each entity consists of a set of features.

Feature Value Description

DLL import Boolean(s) Reflects imported DLL in the PE-header
of an executable

Funtion calls String(s) Reflects all functions called within a
DLL

Table 4: Static features used in method

The static feature set needs to be built to handle several DLL names and function call

44

Behavior-based Classification of Botnet Malware

names in order to represent the behavior of each sample.

feature_setstatic =

{
dll_name1, ..., dll_namen
dll_funtion_name1, ..., dll_function_namen

Here the dll_name represents the imported DLL used in a sample and the dll_function_name
represent the names of the functions called within a DLL. This implies that the dll_function_name
holds several feature values:

dll_function_name =
(
function1, ..., functionn

)
Similarly, a dynamic feature set needs to be constructed from the extracted entities in

the dynamic reports. Here each sample is represented with multiple entities:

feature_setdynamic =
(
entity1, ..., entityn

)
Here each entity need to hold a set of features:

entity =

feature1
feature2
...
featuren

Since dynamic reports may contain multiple entities of similar type, for example crea-
ted file, it is needed to store multiple feature values for each feature:

feature =
(
value1, ..., valuen

)
The third feature that we need to build is the combined feature set. This is needed to

ensure that both the static and dynamic features are combined into one feature set:

feature_setcombined = feature_setstatic ∪ feature_setdynamic

DLL Dependencies

DLL dependencies are the type of system libraries the executable requires in order to
execute. Since the executables satisfy the portable executable standard, the required
libraries will be available on a Windows-based system. However, the type of libraries
applied is dependent on the type of Windows version the executable is designed for. Both
the static and dynamic analysis tools are able to retrieve type of libraries the executable
is dependent on, where the PE parser also extracts the different function calls that are
used within each library.

Registry Activities

Retrieving features reflecting the registry activity is needed to reveal configuration set-
tings applied by the executables. This type of activity is especially relevant for malware
that makes sure that they will run after a reboot by adding autorun keys and values to
the Windows registry [110]. Additionally, malware can use the registry to make sure that
certain services will be disabled/enabled and to open ports. For example disable the anti-
virus service and enabling remote login. Thus, typical registry mechanisms that malware
exploits need to be retrieved by the sandbox, see entities 2-4 in Table 5.

45

Behavior-based Classification of Botnet Malware

Entity Description

1 Loaded DLL Features extracted from information about
loaded DLL dependencies

2 Created registry key Features holding information about crea-
ted registry keys

3 Modified registry key Features related to registry modifications

4 Read registry value Features extracted from information about
read registry values

5 Created file Features corresponding to name of created
files

6 Modified file Features corresponding to modifications
done to existing files

7 Deleted file Features related to deleted files by the exe-
cutable

8 Read file Features describing files read by the execu-
table

9 Memory mapped file Features describing memory mapped files,
e.g. DLL usage

10 Driver communication Features reflecting communication to a
system driver

11 Control communication Features that correspond to file system
control operations

12 Thread status Features related to creation of threads and
their status

13 Remote thread created Features extracted hold information about
processes created by threads

14 Process created Features that reflect process creation and
its purpose

15 Socket Features extracted from information about
network socket connections

16 DNS query Features corresponding to DNS queries to
domain names

17 SMTP conversation Features extracting from e-mail using
SMTP

18 HTTP conversation Features reflecting properties in a HTTP
conversation

19 TCP conversation Features reflecting properties in a TCP
transmission

20 UDP conversation Features reflecting properties in a UDP
transmission

Table 5: Dynamic features used in method, where Entities consist of a set of features. A
complete list is given in Appendix A.

46

Behavior-based Classification of Botnet Malware

File Activities

File activities are a common operation done by executables. A typical example is with ins-
tallers1 that store temporary installation data when the executable is running. Malware
utilizes file activities for many reasons, for example primitive actions to stay undetected
by an average user. Malware tends to copy itself to different directories, often system di-
rectories, where its filename is changed to something that does not seem suspicious. Also,
the malware may hide its tracks by deleting itself from the directory it was launched. See
entities 5-9 in Table 5.

Process and Thread Activities

A process represents an instance of the executable when it is running, and each pro-
cess can be made up of several executing threads that perform specific tasks. Retrieving
features from these activities are important, because it is from these components all
communication to system drivers and libraries are initiated, see entities 10-14 in Table
5. Events typically observed from malware are that they spawn additional processes with
similar or identical names to running system processes.

Network Activities

Features describing network activities related to protocols such as HTTP, SMTP, TCP and
UDP, need to be retrieved in order to observe what actions the executable is performing
to other hosts on the network or Internet, see entities 15-20 Table 5. Malware that is
utilized in a botnet, to expand the botnet, communicate with a C&C server, or launch
attacks, may be logged by the sandbox and found in the dynamic reports.

As described in Section 2.4, a newly infected bot will announce that it exists by trying
to connect to the C&C server. Since embedded IP-addresses tend to be blacklisted, a
series of DNS queries will be performed to resolve the correct IP-address. Furthermore,
bot malware may be propagated by searching for hosts with known vulnerabilities. Port
scanning is part of this activity, which is often done by exploiting weaknesses in TCP
and/or UDP protocol at the victim to reveal open ports [111, 45].

Note that whether these activities are retrieved and later used as features really de-
pends on several aspects. The amount of time the sandbox uses to analyze the executable
sets a limit on how much network activity is logged. Also, C&C servers might have been
taken offline and therefore not available to the specific bot anymore.

4.2.5 Preprocessing

Preprocessing is needed in order to prepare the constructed feature sets before classi-
fication algorithms are applied. The first aspect which needs to be addressed is when
the feature sets consist of missing feature values. Commonly these are either ignored
or replaced, but this is dependent on implementation details and what type of machine
learning algorithm we are dealing with [94]. Therefore it is necessary to study the dif-
ferent classifiers employed in the method, to make sure of how they deal with missing
values. For example, in Weka [99], the implemented machine learning algorithms expect
that missing values is stated as ′? ′.

Furthermore, limitations regarding supported feature types need to be addressed,
because some classifiers support only discrete features, while others support both conti-
nuous and discrete features. In this thesis only Bayes network (see Section 3.4) requires

1Executable used to install software.

47

Behavior-based Classification of Botnet Malware

discrete features and therefore discretization of the feature set is needed for that particu-
lar algorithm. Perhaps the most important aspect in preprocessing is that the feature sets
are high-dimensional, which may lead to a poor or deceptive classification result (see
Section 3.3.3). Thus, it is needed to study whether the most appropriate features from
the feature sets can be selected without excluding important behavior-related features
from the feature set.

4.2.6 Classification

In order to check whether the three prepared feature sets contain appropriate behavior
characteristics to solve a two-class classification problem, it is necessary to apply classifi-
cation algorithms (see Section 3.4.1). Five classification algorithms are compared in this
thesis:

• Naive-Bayes: calculates the conditional probability of a class given the feature, and
assumes there are no conditional dependencies between the features in the feature
set.

• K-nearest neighbors: assigns a class label to an unknown sample based on the majo-
rity of the neighbors’ class label. Here the nearest neighbors are predefined before
running the algorithm.

• C4.5: is a decision tree algorithm, where features are assigned to nodes, and the
leaves correspond to the class labels.

• Support vector machines: assigns a label to an unlabeled sample based on an optimal
created hyperplane, where the training samples nearest to the hyperplane is called
support vectors.

• Bayes network: is a directed acyclic graph, where it calculates the conditional pro-
bability of a class given the feature, which is based on conditional probabilities
from the connected nodes in the graph.

4.2.7 Evaluation

In order to compare the different classifiers it is necessary to evaluate their performance.
In this thesis we deal with limited data for training and testing. Thus, the general ap-
proach of splitting the dataset into two parts, two-thirds for training and one-third for
testing, will in general be a bad idea. The main reason for this, is that the samples for
training (or testing) might not be representative [98]. Simply put, we may not end up
with the right proportion of each class in the training and testing set. The worst case
scenario would be if one of the classes is missing from the training set.

An alternate method is cross-validation, were it is needed to decide on a fixed number
of folds (partitions of the data). Here, the training set is randomly divided intom disjoint
sets (folds) of equal size n/m, where n is the total classes in the dataset. Moreover, the
classifiers are trainingm times, and each time a different test set is chosen. The estimated
performance will be the mean of these m errors [68]. For example, a threefold cross-
validation, where two-thirds are applied in training and one-third are applied for testing.
This procedure is repeated three times, in such a way that every sample has been used
exactly once for testing.

48

Behavior-based Classification of Botnet Malware

Cross-validation will yield variables that need to be applied to calculate the classifiers
performance. The following variables will be needed to calculate the detection rate and
accuracy:

• True positives (TP) is the number of executables that are correctly classified as ma-
licious software.

• True negatives (TN) is the number of executables that are correctly classified as
benign software.

• False positives (FP) is the number of benign executables that are classified as mali-
cious software.

• False negatives (FN) is the number of malicious executables that are classified as
benign software.

Using these variables we can now define the equations for the detection rate and the
accuracy. These are defined below:

DetectionRate =
TP

TP + FN
(4.1)

Accuracy =
TP + TN

TP + TN+ FP + FN
(4.2)

Using both detection rate and accuracy is necessary since detection rate alone will
give an imprecise impression of the performance, which does not include true negatives
and false positives. This means in practice that you will get a 100 % detection rate if you
classify all malicious and benign software as malware. According to the formula this is
correct, however, not an ideal condition in regards to false positives.

4.3 System Implementation

In this section the system implementation of the different steps of the theoretical method
will be presented. The system has been mainly implemented in Java and Python. A sim-
plified flow chart, Figure 21, has been made to present the different components with
their belonging operations.

deLink Feature
Extractor

1

Dataset
Data

Acquisition
2

Feature
Extraction

3

Classification or
clustering?

Clustering
6

Classification
5

Evaluation
7

Pre-
Processing

4

Figure 21: System overview flow chart

From Figure 21, the feature extractor from the deLink framework (1) is represented
as its own component, mainly because it requires disk images in order to extract file

49

Behavior-based Classification of Botnet Malware

metadata, apply hash filtering, and store an ARFF output (see Section 4.3.1) for further
processing. Data Acquisition (2) will acquire analysis reports from each of the executables
in the dataset. When all analysis reports are retrieved, the features are extracted in the
Feature Extractor step (3). Next step is Preprocessing (4), which is necessary in order to
prepare the feature sets for either Classification (5) or Clustering (6). The classification
or clustering step depends on whether the deLink Feature Extractor is used or not, since it
is designed for clustering file metadata from a set of disk images. Finally, the evaluation
of the result is done in the Evaluation step (7).

Anubis
Sandbox

(Dynamic)

pefile
(Static)

Acquire
analysis
reports

Build static
feature set

Build dynamic
feature set

Build combined
feature set

Pre-
processing

Feature
selection

Compare
classifiersDataset

Feature
selection?

Data Acquisition
Feature

Extraction Preprocessing
Classification &

Evaluation

Evaluation

Figure 22: Static and dynamic analysis flow chart

In Figure 22 a more detailed flow chart of the static and dynamic analysis extension
is shown. It is divided into four processing steps, which is included in the overall system
that was previously presented above. A more detailed view of the Data Acquisition step
shows that the executables are analyzed by the sandbox Anubis and the PE parser pefile.
The analysis reports are then used to build three different feature sets in the Feature Ex-
traction step. The first feature set consists of static features from pefile, and the second,
dynamic features from Anubis. Static and dynamic features are then combined to esta-
blish the third feature set. Further, in the Preprocessing step, the features can optionally
be reduced by applying feature selection. Finally, in the Classification and Evaluation, five
different classifiers are applied and their results are compared and evaluated.

The rest of this section starts with a description of the different tools and libraries ne-
cessary to implement the system. Then the main system components are described which
include implementation details about analysis report acquisition, feature extraction and
building of feature sets, preprocessing, classification and evaluation. Finally, challenges
and benefits of the method and implementation are discussed in the last section.

4.3.1 Tools, Libraries and Data Formats

In order to implement a system capable of static and dynamic malware analysis, there
are tools and libraries that play a central role for the system. Hence, it is important
to present them, with their advantages and limitations. These tools are related to the
components shown in Figure 21, especially Data Acquisition, Preprocessing, Classification
and Evaluation.

50

Behavior-based Classification of Botnet Malware

Anubis

Anubis is an online sandbox for analyzing the behavior of PE executables, especially ana-
lysis of malware [87, 88]. When an analysis is finished, the sandbox generates a report
file that contains the performed actions from the executable. Thus, it is capable of cap-
turing the dynamic behavior of executables. The generated dynamic report is available
in different formats, such as HTML, PDF and XML. In this thesis the reports generated in
XML have been utilized, since this simplifies the text-parsing during the feature extrac-
tion (see Section 4.3.2).

Moreover, the generated reports contain detailed information about:

• Modifications made to the Windows registry.

• Modifications made to the file system.

• Spawned processes by the executable.

• Interactions made to services/processes.

• Logs of all generated network traffic.

Anubis runs the uploaded executables in an emulated environment. This means that
it simulates a personal computer in software and will not execute instructions directly
on the real processor. Additionally, the sandbox focuses on the security aspects of the
executables behavior, which makes it a great tool for malware analysis. An example of
an Anubis analysis summary is given in Figure 23. Here the different behavior categories
are given a risk in order to state whether the executable constitutes a threat.

Figure 23: Anubis summery of a SpyBot variant.

Furthermore, this thesis utilizes a python script which is provided on the Anubis web-
site2 in order to upload the malware samples automatically instead of manually uploa-
ding one by one via the website. However, this script lacks the capability of automatically
retrieving the dynamic analysis reports.

pefile

pefile is a Python module that is designed to work with PE files [59]. The module can
access almost all the information in the PE header, including all the sections’ information
and data (see Section 2.5.2). Some of the modules capabilities are listed below:

2http://anubis.iseclab.org/Resources/submit_to_anubis.py

51

http://anubis.iseclab.org/Resources/submit_to_anubis.py

Behavior-based Classification of Botnet Malware

• Modifying and writing back to the PE executable.

• PE header inspection.

• Analysis of the different sections.

• Retrieving data.

• Print warnings for suspicious/malformed values, e.g., packed executables.

This module is used in the implementation for static analysis of the executables, where
it stores static analysis reports for all the PE executables. An example of some of the
information retrieved by pefile is shown in Figure 24.

[IMAGE_IMPORT_DESCRIPTOR]

0x9414 0x0 OriginalFirstThunk: 0x0

0x9414 0x0 Characteristics: 0x0

0x9418 0x4 TimeDateStamp: 0x0

0x941C 0x8 ForwarderChain: 0x0

0x9420 0xC Name: 0x15CA8

0x9424 0x10 FirstThunk: 0x15428

ADVAPI32.DLL.GetUserNameA Hint[0]

ADVAPI32.DLL.RegDeleteValueA Hint[0]

ADVAPI32.DLL.RegCreateKeyA Hint[0]

ADVAPI32.DLL.RegCreateKeyExA Hint[0]

ADVAPI32.DLL.RegCloseKey Hint[0]

ADVAPI32.DLL.RegOpenKeyA Hint[0]

ADVAPI32.DLL.RegQueryValueExA Hint[0]

ADVAPI32.DLL.RegSetValueExA Hint[0]

Figure 24: pefile output example

Here, parts of the information from the data directory is shown, where imported API
calls for the ADVAPI32 DLL is printed. This DLL provides functionality to the registry, shut-
down/restart of the system, spawning processes, and managing the user accounts [112].
Hint is a table that suffices for the entire import section [113]. Hence, this information
is highly relevant in order to analyze behavior initiated by malware on a system.

ARFF

Before describing the data mining tools and libraries, we need to present the file format
which is used to build the different feature sets and later used in the preprocessing and
classification steps. Attribute-Relation File Format (ARFF) is a file format, stored in ASCII
text, that describes a list of instances that share a set of features [99]. In this context the
instances represent each of the executables after extracting the features from the analysis
reports generated by Anubis and pefile. An example is given in Figure 25.

An ARFF-file is divided into two parts, namely the header, which includes the name
of the @relation a listing of attribute statements. The second part is the @data section
where all of the instances are declared. The different attribute formats supported are:

• Numeric - continuous or integer values

• Nominal - discrete or a set of predefined values

52

Behavior-based Classification of Botnet Malware

%Example of feature set from static analysis

@RELATION static

@ATTRIBUTE ADVAPI32 \{true,false\}

@ATTRIBUTE ADVAPI32_count NUMERIC

@ATTRIBUTE ADVAPI32_functions STRING

@ATTRIBUTE class \{malware,benign\}

@DATA

false,0,?,benign

true,1,`RegCloseKey',malware

true,2,` ``RegQueryValueExA'' ``RegSetValueExA'' ',benign

Figure 25: ARFF example

• String - text representation

• Date - combined date and time “yyyy-MM-dd’T’HH:mm:ss”

Weka

The Waikato Environment for Knowledge Analysis (Weka) is an open source machine
learning toolkit, that includes both algorithms for classification, clustering and various
preprocessing techniques [99, 98]. Furthermore, Weka enables us to quickly try out dif-
ferent machine learning algorithms on the feature sets that were generated from the
feature extraction step. Weka consists of four user interfaces, however, we will only uti-
lize the Explorer for initial prototype testing, see Figure 26.

Figure 26: Weka Explorer example

Otherwise, we import the necessary libraries from weka.jar3 for preprocessing, classi-
fication and evaluation. This approach avoids manually using the Explorer. Furthermore,

3Available in the install folder of Weka.

53

Behavior-based Classification of Botnet Malware

the different preprocessing, classification and evaluation methods and their parameters
are described in Section 4.3.2.

4.3.2 Implementation Details

The main aim of this section is to present further implementation details in order to
describe how each step is performed. It will be presented as shown in Figure 22, des-
cribing each step with a simple pseudocode. When dealing with machine learning tools
it is often necessary to choose certain parameters before running the algorithms. These
parameters will also be described in this section. Furthermore, the complete source code
of the method can be found in Appendix E.

Acquire Analysis Reports

In order to acquire analysis reports existing tools will be employed for both Anubis and
pefile. For Anubis an uploading tool in python exists. This enables us to upload samples
to the sandbox without using the interface given at the website. However, these tools
are not fully automated. In order to automate the acquisition of analysis reports, several
operations are necessary, as shown in Code 1.

Code 1 Acquire Analysis Reports

for all samples in dataset do
upload samples to Anubis
store sample identifiers

end for
for all sample identifiers do

map sample identifier to dynamic analysis report
while dynamic analysis report is not ready do

sleep for 5 seconds
end while
store dynamic analysis report

end for
for all samples in dataset do

analyze samples with pefile
store static analysis reports

end for

This was implemented in python, where all samples are uploaded first to Anubis and
for each uploaded sample an identifier is stored. This identifier is later used to retrieve
the dynamic analysis report. Otherwise, you must do this manually from the website.
The last operation done in this step is done by pefile, which is utilized to retrieve static
analysis reports.

Feature Extraction

The feature extraction step required a great deal of development from scratch. This step
is shown in Code 2 and is implemented in Java. The first operation starts with loading
the static and dynamic analysis reports into two arrays. Then each static analysis report
is parsed with a text-parser, that store all encountered DLL names and their function
calls. These are found in the static report describing the image import descriptor, which
lies in the image data directory of a PE executable, see Figure 27. Note that an executable
will have several image import descriptors for each DLL that is imported by the execu-
table. These features are stored in a static feature set, which use an identifier based on

54

Behavior-based Classification of Botnet Malware

Characteristics

TimeDateStamp

ForwarderChain

Imported DLL Name

FirstThunk

USER32.DLL

GetMessage

TranslateMessage

ISWindows

IMAGE_IMPORT_DISCRIPTOR

Figure 27: Image data directory of a PE executable

the report name. In situations where multiple function calls are present for a retrieved
DLL, they are concatenated and stored in a single string for each DLL, where they are
separated by a quotation mark (“).

Code 2 Feature Extraction
load static analysis reports
load dynamic analysis reports
for all static analysis reports do

parse reports with a text-parser
while parsing do

store DLL names and their function calls
end while
add to static feature set with report name as identifier

end for
for all dynamic analysis reports do

parse reports with a XML-parser
for all encountered entities do

store all variable names and content
end for
add to dynamic feature set with report name as identifier

end for
build combined feature set by matching identifiers
store feature sets as ARFF-files

A similar operation is done with the dynamic analysis reports. However, here we
need to employ a XML-parser in order to retrieve the features. This is solved with the
DOM (Document Object Model) library that represents the XML in a hierarchy structure.
All encountered entities are analyzed to store the variable names and its contents. This
information is further used as features and stored in a dynamic feature set. As with the
static feature set, we also use an identifier based on the report name for each dynamic
report.

Building the dynamic feature set also exploits string concatenation. This is necessary
since each sample may be represented by multiple entities of same type (e.g., loaded
DLL) that will have multiple feature values representing a specific feature (e.g., DLL
name). Therefore, these values are concatenated into a single string where the values
are separated by quotation marks (“).

In order to build a combined feature set of both static and dynamic features, we
match the identifiers from the static and dynamic feature set. Obviously, this operation

55

Behavior-based Classification of Botnet Malware

cannot be initiated before the static and dynamic feature sets have been created. The last
operation done in this step is storing these feature sets as three ARFF-files. This is done
by employing ArffSaver which is a package in the Weka library.

Feature Selection

Feature selection will be an optional step in this computational method. The applied
feature selection algorithms chosen are correlation-based feature selection and the im-
proved version by Nguyen et al. [104, 105]. They will be applied in order to remove
features with no relationship to the class label. Before applying this step it is necessary
to utilize the StringToWordVector package as described below.

Preprocessing

In the next step, preprocessing techniques are applied to prepare the data to improve
the result in the later classification step. This is also implemented in Java, where we use
two packages found in the Weka library, namely StringToWordVector to separate multiple
features stored in a single string, and Discretization to convert the features into discrete
values if the Bayes network is utilized for classification. These operations are shown in
Code 3.

Code 3 Preprocessing

for all feature sets do
apply StringToWordVector
if classifier is Bayes network then

apply Discretization
end if

end for

Parameter Description

-R first-last Specifies to act on the whole range of features

-W 10000 Keeps up to 10000 features

-tokenizer “WordTokeni-
zer -delimiters ””

Specifies to split a string based on words that are
separated by ””

Table 6: Parameters for StringToWordVector

Moreover, when using these packages, different parameters can be set. These may
influence the classification result if they are not set carefully. In Table 6, the adjusted pa-
rameters for StringToWordVector is given, otherwise default parameters were chosen for
both of the packages. It is worth noticing that StringToWordVector separates the concate-
nated strings and converts all the retrieved values to nominal features. This is done by
counting the presence of the value in each entity.

Classification and Evaluation

In the final step we applied five different classification methods in order to find out which
type of algorithm is most suitable for the different feature sets. To evaluate the different
algorithms 10-fold cross-validation (see Section 4.2.7) is being computed. This step is
implemented and automated in Java by using these packages for classification:

56

Behavior-based Classification of Botnet Malware

• NaiveBayes - Naive-Bayes classifier

• IBk - K-NN classifier

• J48 - C4.5 classifier

• LibSVM [114] - SVM classifier

• BayesNet - Bayes network classifier

Code 4 Classification and Evaluation
for all classifiers do

prepare feature sets with preprocessing
train classifier
cross-validation of classifier
calculate detection rate and accuracy

end for

Here, Code 4 shows the pseudocode for this approach. Each classifier is trained, with
default parameters, after the feature set is prepared by the preprocessing step. Then
they are evaluated by 10-fold cross-validation. The confusion matrix (CM) is computed
during the evaluation and is used to retrieve true positives (TP), false negatives (FN), false
positives (FP), and true negatives (TN).

CM =

(
TP FN
FP TN

)
Using these values we now can calculate the detection rate and accuracy for each

classifier.

4.3.3 Summary

The system implementation of the computational method includes several system com-
ponents, libraries and tools. The following items have its base from the main components
shown in Figure 19 and the enumerated operations stem from the system implementa-
tion in Figure 22.

• Data Acquisition

1. Acquire analysis reports

• Feature Extraction

2. Build static feature set

3. Build dynamic feature set

4. Build combined feature set

• Preprocessing

5. Feature selection

6. Preprocessing

• Classification

7. Run classification algorithms

• Evaluation

8. Compare classifiers

9. Evaluation

57

Behavior-based Classification of Botnet Malware

4.4 Method Discussions

The proposed computational method and the system implementation, presented in this
chapter, have its strengths and limitations. It is therefore important to discuss the dif-
ferent aspects of the method and the current implementation.

4.4.1 Acquiring Analysis Reports

The method employs pefile which is used to dump information from the different sections
of the PE header and store this in a static report. Also, Anubis sandbox is applied, which
is an online sandbox that analyzes the behavior of the uploaded executables. When the
sandbox has completed the analysis, due to terminated processes or a time limit, a dy-
namic report is generated and made available for download. pefile will not execute the
files during analysis, and therefore, if acting carefully, a malware infection is avoided.
Similarly, a malware infection is avoided when employing Anubis, since you hand over
the analysis problem to a different system, and can therefore avoid sacrificing your own
host, or spending time configuring a virtual machine that needs to be re-initialized for
each analyzed sample.

The greatest limitation with pefile, and PE parsers in general, is that they do not
provide as advanced functionality as disassemblers and debuggers (e.g., IDA Pro [92]).
Thus, analysis of control-flow will not be possible. However, disassemblers and debuggers
are vulnerable to obfuscation techniques, such as polymorphism and metamorphism.
This issue is avoided by pefile, since it does not analyze the assembly code. However, it
is vulnerable to packers and cryptors that compresses and/or encrypts parts of the PE
header. Another important aspect is that pefile will not detect loaded DLL’s in code. In
the example in Appendix C.4, the DLL is loaded with LoadLibrary function. However,
Kernel32.dll which has implemented the LoadLibrary function is detected by pefile.

One of the limitations with Anubis, and other sandboxes, is that they only analyze one
state of the executable. This implies that only certain behavior will be logged in the dyna-
mic report. Another factor that limits the logged behavior is time constraints on Anubis.
By default, Anubis only executes an unknown executable in approximately four minutes.
Furthermore, privacy is an important issue for companies that deals with analysis of
suspicious files and zero-day malware4, since they are often bound by non-disclosure
agreements to other parties. Although Anubis supports secure uploading through SSL5

and do not reveal any sensitive information in the published analysis reports, we cannot
be sure what type of information is stored for Anubis’ operators. Thus, if privacy is an
issue, a local sandbox should be preferable compared to the online sandbox utilized in
the proposed proof-of-concept.

4.4.2 Implementation Challenges

When Anubis is utilized for dynamic analysis, the system will place uploaded samples
in a queuing system where the samples uploaded through the web-interface has higher
priority. Also, there are other and more prioritized users that are able to upload large
datasets using the upload code from the website. Since the regular user is passed in
the queue, the analysis can take several days if you are unlucky. Thus, testing the report
retrieval script was a time-consuming process. However, as a backup solution it is possible
to retrieve the results at a later stage by registering on the website and check if all the

4No signature currently exists.
5Secure Sockets Layer

58

Behavior-based Classification of Botnet Malware

samples are analyzed. Then it is possible to download the reports manually or re-run the
upload script, since no analysis is required when identical samples have been analyzed
before6.

By employing preprocessing techniques from the Weka libraries we encountered se-
veral issues. The first issue was related to the separation of the concatenated strings that
contained multiple features. Here, the default setting included too many splitting criteria
and was limited to 1000 features. This setting was modified to split on quotation marks
and changing the limit to 10000 features. Moreover, an issue was detected when adding
the class label as the first attribute in Weka, because there is a known bug7 when dealing
with string attributes. String and nominal values are stored as numbers, which are em-
ployed as indexes to an array of possible attribute values. However, the first string value
is assigned to index 0 and internally stored as 0. The problem is that the ARFF reader
of Weka interprets internal value 0 as no output. This implies, in practice, that the first
class label (e.g., malicious) is not visible in the generated ARFF file. In our case this was
solved by putting the class labels as the last attribute in the ARFF file.

One important aspect when either using the Weka’s graphical user interface or using
its libraries in your own implementation, is that the program tends to crash due to lack
of memory heap space. Especially when utilizing large feature sets is this relevant. It is
worth noticing that less memory heap space was required when importing the classifica-
tion algorithms in the Java implementation. This is the case because the feature sets are
not loaded entirely into memory compared to when you are using Weka’s graphical user
interface.

6Comparing MD5 hashes.
7http://old.nabble.com/Sparse-Instances---String-attributes-td26310509.html

59

http://old.nabble.com/Sparse-Instances---String-attributes-td26310509.html

Behavior-based Classification of Botnet Malware

5 Experiments

The previous chapter described the design and implementation of the computational
method, whereas this chapter is devoted to the experiments that were conducted using
the presented method. First the experimental environment and the applied dataset are
given, followed by a description of how the different scenarios were executed to test the
two-class classification scheme. Finally, the main experiment results are provided and
discussed in order to study what type of analysis approach is best suited for a two-class
problem.

5.1 Experimental Environment

For the experiments, we must use methods to ensure an isolated environment. This is
necessary since we are dealing with malware and do not want the malware to propagate
to other hosts. To deal with this issue we utilized a Linux workstation and analyzed
malware meant for Windows only. Additionally, a virtualized environment was installed
in case for a further analysis in a Windows environment was needed.

5.1.1 System Setup

The system utilities were installed and configured in the Linux environment where the
computational method was implemented. As for the Linux distribution, we installed
Ubuntu [115] which is based on the stable and popular Debian Linux distribution. Also,
for running virtual machines (VM) we utilized VMware [14]. The complete system setup
is given below:

• Processor: 2 cores @ 2,5 GHz

• Memory: 2048 MB

• Hard disk: 160 GB

• Operating system: Ubuntu 10.10 Desktop

• VM environment: VMware Workstation 7.1.0 build-261024

• VM host: Windows XP SP2

Furthermore, the following tools, libraries and integrated development environment
were utilized in order to develop the computational method complying with Chapter 4:

1. pefile (1.2.10) [59]

2. Anubis sandbox [87]

3. Weka and Weka API (3.6.4 Stable) [99]

4. Python (2.6.6) [116]

5. Eclipse IDE (Helios build-20100617-1415) [117]

61

Behavior-based Classification of Botnet Malware

Using these tools are straightforward, since pefile and Anubis sandbox have scripts that
can be imported in order to make the static and dynamic analysis of the whole dataset
an automated procedure. Furthermore, the Weka API can be imported as a jar-file in the
development environment Eclipse. By downloading a python extension for Eclipse it is
possible to do all the implementation using a single development environment.

5.1.2 Dataset

For the experiment an appropriate dataset is required. The botnet malware was manually
downloaded from websites such as vxheavens [10], packetstorm [11] and offensivecom-
puting [12]. Furthermore, benign software was downloaded from websites such as pen-
driveapps [118]. A total of 143 samples were used in the experiments, whereas 93 were
labeled as malicious and 50 were labeled benign.

Malware

The malware samples used in the experiments are various versions from three large mal-
ware families. These are found in botnets where one of their tasks is to establish and
maintain a connection with the botmaster’s C&C server and await further commands.
The reason for choosing samples from three malware families is that we wish to study
whether we can implement a two-class classification scheme based on the datasets’ be-
havior. Also, malware versions within a family will utilize different behavior on the host
and the applied obfuscation techniques may differ.

• SpyBot [119] is a worm that propagates through P2P-sharing and IRC. This worm
can also infect hosts that are already compromised by common backdoors. In bot-
nets, various versions of SpyBot have been used for C&C related activities and
launching DDoS attacks.

• Torpig [120] also known as Sinowal or Anserin, is a Trojan that logs keystrokes
and activity to certain bank websites. The Trojan employs domain flux in order to
communicate with its main C&C servers [121].

• SdBot [122] also known as Randex or Agent, is a backdoor that connects to an IRC
channel using its own IRC client. From here an adversary can remotely control the
infected host to for example perform DDoS attacks against a third party and try to
infect other users connected to other IRC channels.

Benign Software

A set of benign samples with “similar” behavior-characteristics as botnet malware have
been used in the experiments. Here, different portable software such as mail clients,
browsers, network tools, instant message clients and BitTorrent clients [118] have been
used.

5.2 Experiment Scenarios

In this section the experiment scenarios will be presented. There will be two main clas-
sification scenarios; where the first scenario (1) applies the complete feature sets for
classification, and the second scenario (2) applies feature selection methods before clas-
sification to select the most appropriate features based on some quality measure.

Furthermore, during the experiments we assume that (i) the dataset only contains
portable executables, (ii) the dataset can be analyzed with the chosen static and dyna-

62

Behavior-based Classification of Botnet Malware

mic analysis tools, and (iii) analysis of the dataset must yield parts of the executables
behavior-characteristics if obfuscation methods are utilized. The next sections describe
the different scenarios in more detail, including a proof-of-concept scenario.

5.2.1 Proof-of-Concept

The proof-of-concept experiment was executed to verify whether the implementation of
the computational method worked properly and to check if the two-class classification
scheme was able to distinguish between malicious and benign software. The scenario
was executed in the following manner:

• Before the static and dynamic analysis were initiated, we first manually downloa-
ded the botnet malware and benign software samples used in our experimental
dataset. The dataset, consisting of 143 samples, was analyzed locally by pefile and
online by Anubis. The static reports and dynamic reports were retrieved, and stored
in separate folders to make the feature extraction component more efficient.

• The features were retrieved by utilizing the implemented text and XML-parser, and
structured into two feature sets, a static and dynamic feature set (see Section 4.2).
A combined feature set was built by matching the report identifiers. These feature
sets were stored as ARFF-files.

• Each ARFF-file was opened in the Weka Explorer to further prepare the features for
the classification task by applying preprocessing techniques. First, the concatenated
strings that represent DLL function names and entities were separated by utilizing
StringToWordVector. Then, unsupervised discretization was applied.

• After preprocessing, Bayes network was executed as the classification algorithm
in Weka Explorer, and this was utilized with default parameters. The reason for
choosing this classifier was that it takes into account all available features and
their dependencies. For evaluation, a 10 fold cross-validation was utilized to ensure
a reliable result.

5.2.2 Complete Feature Sets

This experiment was based on a further extension of the computational method, shown
in Appendix B. We have avoided using Weka Explorer for preprocessing and classification.
Instead, Weka API was imported in the Java implementation. This automates the process
of executing several classifiers and requires less memory heap space. This experiment
was performed in the following steps:

• We employed the already retrieved static and dynamic reports from the proof-of-
concept experiment (see Section 5.2.1).

• Static, dynamic and a combined feature set were built of the extracted features
from the static and dynamic reports. StringToWordVector was applied before the
feature sets were stored as ARFF-files.

• Five different classification algorithms were executed in order to study the type
of classifier appropriate to handle the large amount of features extracted from the
static and dynamic reports. The different classifiers that were executed are:

63

Behavior-based Classification of Botnet Malware

– Naive-Bayes

– K-nearest neighbors (K-NN)

– C4.5

– Support vector machines (SVM)

– Bayes network

Note that Bayes network requires discretized features. Therefore, we applied unsuper-
vised discretization (as recommended by the Weka manual [123]) before the classifier
was executed. All classifiers were evaluated by utilizing 10 fold cross-validation.

5.2.3 Reduced Feature Sets

The final experiment scenario was based on applying feature selection techniques in
order to choose the most appropriate features to improve the classification results. This
also reduced the computational resources required for classification. The scenario was
executed in the following manner:

• We employed the already retrieved static and dynamic reports from the proof-of-
concept experiment (see Section 5.2.1).

• The already created ARFF-files, representing the static, dynamic and combined fea-
ture set, were reused from the complete feature sets experiment (see Section 5.2.2).

• Two feature selection algorithms were applied, where their procedure included
different steps.

– Corrolation-based feature selection (CFS) was executed via Weka Explorer
using default parameters and the result stored as new ARFF-files.

– Generic feature selection (GeFSCFS) was executed by including these steps:

∗ Computed the correlation coefficient (merit, see Section 3.3.3) for all the
features.

∗ Features with no or minimal relationship to the class label were removed
from the ARFF-files.

∗ The GeFSCFS algorithm was executed and the algorithm’s output yielded
the selected features.

∗ ARFF-files were manually modified and stored.

• Five different classification algorithms were executed in order to study whether
the feature selection improved the classification results. The different classifiers
that were executed are:

– Naive-Bayes

– K-nearest neighbors (K-NN)

– C4.5

– Support vector machines (SVM)

– Bayes network

Similar to the previous experiment, we applied unsupervised discretization to Bayes
network only. All classifiers were evaluated by utilizing 10 fold cross-validation.

64

Behavior-based Classification of Botnet Malware

5.3 Experiment Results

Next, the experiment results will be presented. It will look at the results given by the
proof-of-concept, complete feature sets and reduced feature sets scenarios to evaluate
what type of feature set is suitable for analysis of malware behavior. The feature sets are
studied by comparing the results from a set of classifiers.

5.3.1 Proof-of-Concept

An initial observation was done on the retrieved analysis reports during the data acqui-
sition steps. In the static reports, from pefile, we observed that a few variants within one
malware family did not import as many DLLs compared to the others. By using PEiD1 we
found out that packers were employed on these executables, see example of the SpyBot
variants in Appendix C, where variants have been packed with Themida2.

Similarly, by studying the dynamic reports, from Anubis sandbox, we discovered that
variants within same malware family yielded different behavior. For example, not all
malware samples produced any network-related behavior, even though this is a common
type of activity when botnet malware is executing. The causes of this result may be
many. Different preconditions may not have been met when executing the malware, for
example that it tries to connect to a C&C server at a specific time, either time of day
or spent executing time (e.g., one hour). This is a limitation with Anubis since it only
executes the malware in a limited time for behavioral analysis.

After the feature extraction step we acquired three ARFF-files, and by opening them
in Weka Explorer we could observe, before applying any preprocessing methods, that
the static feature set had 86 features, the dynamic feature set had 75 features, and the
combined feature set had 118. Furthermore, the concatenated strings were separated by
StringToWordVector, which resulted with:

• Static feature set of 1814 features

• Dynamic feature set of 5494 features

• Combined feature set of 7347 features

The reason for the combined features set is smaller than the sum of static and dynamic
features is because of DLL name conflicts, meaning that features with identical names
were created from the dynamic and static reports3. This was solved by integrating the
DLL name into the function name in the static feature set (e.g., Kernel32.CreateFileA).

Feature Set Detection Rate Accuracy

Static 98.92 % 87.41 %

Dynamic 94.62 % 88.11 %

Combined 97.85 % 86.71 %

Table 7: Proof-of-Concept with Bayes network

Discretization (unsupervised) was applied through Weka Explorer, before the Bayes
network classifier was trained and executed. The results are given in Table 7, and here

1Detects common packers, cryptors and compilers in PE files http://www.peid.info/.
2http://www.oreans.com/themida.php
3Weka do not support features with identical names.

65

http://www.peid.info/
http://www.oreans.com/themida.php

Behavior-based Classification of Botnet Malware

we can see that the best detection rate was given by the static feature set, followed by
the combined and dynamic feature set.

The static feature set is the least complex of the two since it does not have as strong
feature dependencies compared to the other two. The dynamic feature set is built up
with entities, where each entity contains from one to multiple features defining a specific
behavior. On the other hand, the dynamic feature set gave the best accuracy score, mostly
because it did not yield as many false positives as the others.

Furthermore, the combined feature set gained higher detection rate by including both
static and dynamic features compared to the dynamic feature set. However, this feature
set gave the highest false positive rate and false negative rate compared to the others,
which reflect its accuracy score.

5.3.2 Complete Feature Sets

Here we avoided utilizing Weka Explorer for preprocessing by importing the necessary
libraries in the Java code. We verified that we came up with the same number of fea-
tures by comparing with the feature sets in the proof-of-concept scenario. Additionally,
we imported the necessary libraries for the five classifiers in the Java code. To ensure that
the same parameters were used we verified the results by running the same classifiers
with the same feature sets in Weka Explorer. The rest of this section discusses the results
achieved from the different feature sets. See Appendix D for raw output from the imple-
mentation, that contain additional information such as the amount of true positives, true
negatives, false positives and false negatives.

Static Feature Set

The results from the static feature set are given in Table 8, where C4.5, SVM and Bayes
network achieved the best detection rate of 98.92 %. The C4.5 got the highest accuracy
score compared to the others, due to the lowest false postive rate. Since the static feature
set do not contain many dependent features, only a dependency between DLL name and
its function calls, it is suitable for the C4.5 algorithm’s feature-quality measure (gain
ratio) that operates independently of the features (see Section 3.4.1).

Classifier Detection Rate Accuracy

Naive-Bayes 95.70 % 87.13 %

K-NN 96.77 % 90.21 %

C4.5 98.92 % 90.91 %

SVM 98.92 % 84.63 %

Bayes Network 98.92 % 87.41 %

Table 8: Classification results from complete feature set using static features

Dynamic Feature Set

The dynamic feature set is, as mentioned previously, complex with respect to the amount
of features and their dependencies. This is reflected in the Table 9, where Bayes network
classifier got the best detection rate of 94.62 %, followed by the SVM classifier of 93.55 %.
Both classifiers are able to handle feature sets with many dependencies. This is the case,
since Bayes network calculates the conditional propabilities of the dependent features

66

Behavior-based Classification of Botnet Malware

to decide the sample class. SVM, on the other hand, transforms the feature set in such
a way that the samples can be separated by a hyperplane. However, the SVM classifier
got the weakest accuracy score of all classifiers, because of high false negative and false
positive rate (see Appendix D).

Classifier Detection Rate Accuracy

Naive-Bayes 83.87 % 86.71 %

K-NN 86.02 % 87.41 %

C4.5 84.94 % 84.62 %

SVM 93.55 % 83.21 %

Bayes Network 94.62 % 88.11 %

Table 9: Classification results from complete feature set using dynamic features

Combined Feature Set

The results from the combined feature set is shown in Table 10, and as with the dy-
namic feature set, the Bayes network and SVM classifier got the highest detection rate
of 97.85 %. By combining static and dynamic features the detection rate was improved
from only using dynamic features, however, the accuracy score dropped for the Bayes
network and remained the same for the SVM classifier. Moreover, the best accuracy score
was achieved by the naive-Bayes of 91.61 %, followed by the K-NN classifier of 89.51 %.

Classifier Detection Rate Accuracy

Naive-Bayes 89.24 % 91.61 %

K-NN 95.70 % 89.51 %

C4.5 88.17 % 86.01 %

SVM 97.85 % 83.21 %

Bayes Network 97.85 % 86.71 %

Table 10: Classification results from complete feature set using combined features

Summary

When averaging the results using the complete feature sets we can see that the Bayes
network and SVM classifier yielded the overall best detection rate, see Figure 28. On the
other hand, these also suffered from the poorest accuracy score. The last three classifiers
also performed well, where the K-NN achieved the highest accuracy score, followed by
the naive-Bayes.

5.3.3 Reduced Feature Sets

Here, two feature selection algorithms were applied, namely, CFS and GeFSCFS. Weka
Explorer was utilized in order to retrieve the reduced feature set using CFS, while the
GeFSCFS needed additional implementation steps. The features’ merit (correlation coef-
ficient) were computed by using the merit calculation available in the Weka source code4.

4weka-src.jar

67

Behavior-based Classification of Botnet Malware

Naive-Bayes K-NN C4.5 SVM Bayes Network
50

60

70

80

90

100

Detection Rate
AccuracyP

er
ce

nt

Figure 28: Averaged result from complete feature sets

Before running the GeFSCFS, we removed the features with no relationship5 to the class
label in the static feature set, and we removed features with minimal relationship6 to the
class label for the dynamic and combined feature set. This was done because of the vast
amount of features and to reduce the computational complexity when running GeFSCFS.

Static Feature Set

When employing the CFS algorithm the static feature set was reduced from 1814 to
11 features, while the GeFSCFS reduced the feature set to 7 features. By studying the
selected features we noticed that the feature selection algorithms chose three shared
features, while the rest were different. The classification results using the reduced static
feature set, from both feature selection algorithms, is shown in Table 11. All classifiers
using the reduced feature set retrieved from the CFS got a detection rate of 97.85 %,
where the naive-Bayes classifier got the best accuracy score of 94.4 %. The classification
results from the GeFSCFS algorithm also gave good results. Here, the C4.5 got the best
detection rate of 98.98 %.

Classifier CFS GeFSCFS

Detection Rate Accuracy Detection Rate Accuracy

Naive-Bayes 97.85 % 94.40 % 96.77 % 91.61 %

K-NN 97.85 % 93.71 % 96.77 % 92.31 %

C4.5 97.85 % 93.31 % 98.92 % 90.91 %

SVM 97.85 % 91.61 % 96.77 % 90.91 %

Bayes Network 97.85 % 91.61 % 96.77 % 90.91 %

Table 11: Classification results from reduced feature set using static features

Dynamic Feature Set

In this scenario, the CFS reduced the dynamic feature set from 5494 to 19 features, and
theGeFSCFS reduced the feature set to 5 features. As with the static feature set, we found

5Correlation coefficient higher than 0.
6Correlation coefficient higher than 0.1.

68

Behavior-based Classification of Botnet Malware

that all the five features from GeFSCFS were shared in the feature set retrieved from CFS.
The best detection rate was given by the K-NN classifier of 91.4 % by using the reduced
feature set from the CFS (see Table 12). However, we achieved the highest accuracy
score using Bayes network and naive-Bayes of 91.61 %, with the reduced feature set from
GeFSCFS. Compared to the complete feature set, we achieved a more even detection rate
and accuracy since we reduced the feature set into a less complex one with absent/weak
feature dependencies.

Classifier CFS GeFSCFS

Detection Rate Accuracy Detection Rate Accuracy

Naive-Bayes 88.17 % 91.61 % 88.17 % 91.61 %

K-NN 91.40 % 90.91 % 88.17 % 87.41 %

C4.5 86.02 % 90.21 % 87.10 % 87.41 %

SVM 86.02 % 90.21 % 87.10 % 88.81 %

Bayes Network 87.10 % 90.91 % 88.17 % 91.61 %

Table 12: Classification results from reduced feature set using dynamic features

Combined Feature Set

Here, the CFS algorithm reduced the combined feature set from 7347 features to 29
features, while the GeFSCFS algorithm reduced the feature set to 48 features, and these
reduced feature sets shared 17 features. In Table 13 the classification results are given,
and similar to the results from the reduced feature set of the static and dynamic feature
set, we obtained a more even detection rate and accuracy score from the tested classifiers.
The highest detection rate of 97.85 % was achieved from the reduced feature set from
GeFSCFS using the K-NN classifier. Moreover, the highest accuracy score of 95.10 % was
achieved from both reduced feature sets. This was the naive-Bayes classifier that used
the reduced feature set from the CFS, and Bayes network classifier from the GeFSCFS.

Classifier CFS GeFSCFS

Detection Rate Accuracy Detection Rate Accuracy

Naive-Bayes 92.47 % 95.10 % 91.40 % 94.41 %

K-NN 97.85 % 94.51 % 97.85 % 95.10 %

C4.5 92.47 % 92.01 % 91.40 % 90.91 %

SVM 89.24 % 92.31 % 91.40 % 93.71 %

Bayes Network 91.40 % 94.41 % 92.47 % 95.10 %

Table 13: Classification results from reduced feature set using combined features

Another experiment was conducted using combined feature sets; instead of applying
the feature selection algorithms on the complete feature set, we merged the reduced
feature sets using static and dynamic features. This implies that the combined feature set
from CFS consists of 30 features, and the combined feature set from GeFSCFS consists
of 12 features. Furthermore, the results (see Table 14) shows that the overall results

69

Behavior-based Classification of Botnet Malware

from the GeFSCFS are better compared to CFS. The highest detection rate (96.77 %) and
accuracy (94.41 %) is achieved by the GeFSCFS utilizing Bayes network classifier.

Classifier CFS GeFSCFS

Detection Rate Accuracy Detection Rate Accuracy

Naive-Bayes 91.40 % 94.41 % 93.55 % 92.31 %

K-NN 96.77 % 92.31 % 96.77 % 92.31 %

C4.5 94.62 % 90.21 % 95.70 % 93.71 %

SVM 93.55 % 90.21 % 96.77 % 91.71 %

Bayes Network 92.47 % 95.10 % 96.77 % 94.41 %

Table 14: Classification results from reduced feature set by merging the reduced feature
set from static and dynamic features

Summary

Figure 29 shows the averaged results from the reduced feature sets. Compared to the
averaged results from the complete feature sets, we achieved a more even detection rate
and accuracy score between the tested classifiers. The main reason for this is due to the
greatly reduced feature sets that made the feature dependencies less complex. Overall,
the feature sets retrieved from CFS gave best results using the K-NN classifiers and C4.5.
The retrieved feature sets from GeFSCFS gave best results using the C4.5, SVM and Bayes
network classifiers.

Naive-Bayes K-NN C4.5 SVM Bayes Network
50

60

70

80

90

100

Detection Rate (CFS)
Detection Rate (GeFS)
Accuracy (CFS)
Accuracy (GeFS)

P
er

ce
nt

Figure 29: Averaged result from reduced feature sets

Furthermore, the feature selection algorithms yielded different result when choosing
the most appropriate features. Table 15 shows the number of features selected by the
two feature selection algorithms, where GeFSCFS chose the smallest number of features
for the static and dynamic feature set, except for the first combined feature set.

5.4 Experiment Discussions

The experiments conducted in this chapter tested whether an executable’s behavior can
be used in a two-class classification scheme in order to distinguish between malicious
and benign executables. The results clearly shows that the constructed feature sets based

70

Behavior-based Classification of Botnet Malware

Feature Set Full-set CFS GeFSCFS

Static 1814 11 7

Dynamic 5494 19 5

Combined I 7347 29 48

Combined II 7347 30 12

Table 15: Selected features with CFS and GeFSCFS

on behavior characteristics obtained from static and dynamic analysis methods can be
utilized to distinguish malicious software from benign software, even when using a data-
set of only 143 samples. From the results where we utilized the complete feature sets, we
got the best results using the static feature set, see Table 16. However, it is worth noticing
that the result differences between the different feature sets were small, and static ana-
lysis only gives a limited view of the expected behavior compared to dynamic analysis.
Thus, the combined approach should be best suited for detecting botnet malware.

Feature Set Average Detection Rate Average Accuracy

Full-set CFS GeFSCFS Full-set CFS GeFSCFS

Static 97.84 % 97.85 % 97.20 % 88.05 % 92.92 % 91.33 %
Dynamic 88.60 % 87.74 % 87.74 % 86.01 % 90,77 % 89,37 %
Combined I 93.76 % 92.69 % 92.90 % 87.41 % 93.67 % 93.85 %
Combined II 93.76 % 93.73 % 95.91 % 87.41 % 92.45 % 92.83 %

Table 16: Averaged result using the different feature sets

All malware used in the experiments originate from three malware families, where
different variants were collected. Since these are commonly used for botnet related ac-
tivities, they will optimize the tested classifiers to be able to solve a two-class problem
for this particular behavior. This implies that the performance of the trained classifiers
will decrease when they are presented with unknown malware that does not yield any
botnet type of behavior. Additionally, the benign samples used in the experiments were
portable executables that yielded behavior related to network activity, and therefore the
classifier will be optimized for this type of benign behavior. However, the same situa-
tion as with the collected malware samples will arise, namely that the performance will
decrease (more false positives) if benign samples with unknown behavior are presen-
ted to the classifier. Thus, by increasing the dataset with additional malware and benign
software, the classifier will be trained to handle a wide spectrum of different behavior
amongst malware and benign executables.

Other affecting factors for our results were the varying complexity in the different
feature sets. Here, the static feature set contained the least amount of features, and had
weak dependencies between the features. Contrary to the static feature set, the dynamic
feature set had approximately three times more features and a strong feature dependency
within each entity (set of features). By joining the static and dynamic features into a com-
bined feature set we got an overall result that was better than only using the dynamic

71

Behavior-based Classification of Botnet Malware

features, however not as good as by only using static features. The averaged classifica-
tion results showed that Bayes network had the best detection rate, where it showed its
strengths with the highest accuracy score in the dynamic feature set. However, the best
averaged accuracy score was given by the K-NN.

Although our results were improved by applying feature selection, we observed that
the algorithm removed at most 99.99 % of the features from the feature sets. Both CFS
and GeFSCFS try to find the features with the highest correlation to the class label and
excluding the rest. The selected static features were related to DLL dependencies such
as GUI (comctl32.dll) and dialog functions (comdlg32.dll), and the selected dynamic fea-
tures reflected DLL dependencies and registry activities. Similar to the static features,
comctl32.dll was represented and the registry activites described values holding paths to
shell folders and temporary Internet files. Hence, it is inadequate to keep a minimal sub-
set of features if a malware analyst or investigator wants to perform a thorough analysis
of an executable, because too much information is left out.

Our experiments showed that CFS gave the best result on the the static and dynamic
feature set, whereas theGeFSCFS proved better on the combined feature sets. One impor-
tant factor to consider is the reliability of the results from the selected features. Nguyen
et al. [124] compared the reliability of the selected features of GeFSCFS and feature
selection methods employing heuristic search (such as CFS). The reliability in feature
selection was defined using the steadiness of the classifier’s performance and consistency
in the search algorithm. In this technical report, the GeFSCFS proved to be superior by
obtaining 100 % consistency in search for relevant features and 99.87 % steadiness for
the classifier’s performance. Hence, for our results, this means that it is more likely that
the results from GeFSCFS is more reliable compared to CFS.

An important aspect of keeping the behavior-related feature values was proven when
we implemented a dimensionality reduction scheme using Levenshtein distance [125],
see Appendix C.3. Here, we merged multiple entities of the same type into one. This
operation was done for each sample using its dynamic features to build a reduced feature
space, consisting of 75 features. By transforming string values to integers we lost the
behavior-related information, which also was reflected in the poor classification results.

Even by using a small dataset with limited malicious and benign behavior, and further
representing each sample with a lot of features, the possibility of overfitting was limited
by applying 10-fold cross-validation to evaluate our classifiers. This implies that the sys-
tem chose a random training set of 90 % and 10 % for testing, where this procedure is
repeated 10 times and the results are averaged.

Overall, the computational method showed that it is quite capable of solving a two-
class problem, and hence detect botnet malware with satisfying results. It is worth to
notice that the method yielded a better detection rate than Clam AntiVirus [126]. This
popular and free anti-virus gave only a detection rate of 60.22 % on our dataset (see
Appendix C.5). An interesting factor we recorded was that the “simpler” classifiers such
as naive-Bayes and K-NN gave an averaged accuracy that were better compared to all the
other classifiers. This support the no free lunch theorem, where we cannot assume that a
classifier outperforms another based on the classifier’s characteristics. Also, it is impor-
tant to notice that all the classifiers were utilized with default parameters, which means
that we could end up with different results if these were optimized for each particular
feature set.

72

Behavior-based Classification of Botnet Malware

6 Implications, Discussions and Conclusions

In Chapter 4 we presented the new computational method that was integrated with the
deLink framework to solve a two-class problem of malicious and benign executables.
Next, in Chapter 5, experiments were conducted to test the efficiency and effectiveness
of the designed method. In this part of the thesis, the main results and findings will
be discussed in regard to the stated research questions. Furthermore, theoretical and
practical implications are presented, and recommendations for further research are given
at the end of this chapter.

6.1 Main Results and Findings

The studies conducted in this thesis have addressed the importance of static and dyna-
mic malware analysis by focusing on the executable’s behavior. In particular, we have
developed a computational method where we involved several disciplines. Methods for
static and dynamic malware analysis were employed to acquire analysis reports from the
collected dataset of malicious and benign executables. Data mining techniques and espe-
cially machine learning algorithms for preprocessing, feature selection and classification
were required to develop a two-class classification scheme. Additionally, as part of the
implementation, the method was integrated with deLink framework, to make it capable
of analyzing behavior of malware.

An important part of this thesis has been the focus of the features used to describe
the executable’s behavior. In Chapter 1 we stated our research questions, where we first
wanted to discover what features were the most adequate for static and dynamic analysis.
Our static features were chosen based on previous studies and their results, using a PE
parser (pefile) to acquire the dynamic-link library (DLL) and its function calls. From
this information we get a good indication of the executable’s behavior by studying the
properties of the imported library and the called functions. Furthermore, all dynamic
features where collected from an online sandbox (Anubis), where all activities registered
were used as features. For example, activities related to registry, files, processes and
network traffic were used to build a high-multidimensional feature set.

The second research question studied whether our created feature sets were disjunct
or overlapping. By studying our constructed feature sets we found an overlap regarding
utilized DLLs. Although, the DLL information found in the static features are more exten-
sive, due to function calls, we complemented the dynamic feature set by constructing a
combined feature set using the function calls from the static feature set. Our experiments
showed that we got better results by combining the static and dynamic feature sets, com-
pared to only using the dynamic feature set. Nevertheless, the static feature set proved
to produce the overall best results.

How obfuscation techniques influenced the extracted features and their individual
feature values was analyzed in order to discuss aspects related to the third research
question. Obfuscation methods are frequently applied to fool static analysis methods.
However, the PE parser utilized in this thesis did not analyze the executables on the

73

Behavior-based Classification of Botnet Malware

assembly code level, and hence avoiding obfuscations such as polymorphism and meta-
morphism (see Section 2.3). Still, we experienced that packers influenced the amount of
DLLs and function calls detected by the PE parser. In cases where packers were applied,
the amount of DLLs was reduced to a minimum, and therefore we did not obtain a com-
plete overview of the packed malware’s behavior. Furthermore, obfuscation influences
were not observed during the dynamic analysis and the malware did not detect the pre-
sence of the sandbox.

The fourth research question was related to what type of analysis approach is best
suited for analysis of botnet malware. As mentioned, when we compared several classi-
fiers on three different feature sets, we found that the best results were obtained by using
the static feature set, followed by the combined and dynamic feature set. This was also
the case when we applied feature selection algorithms to reduce the feature set’s com-
plexity and keep the features with the strongest relationship to the class label. However,
it is important to remember that both analysis approaches have their limitations when
obtaining behavior characteristics. Static analysis can easily be deceived by obfuscation
techniques, and dynamic analysis will analyze only a single execution trace in a limited
time period. In addition, it is known that some malware can detect if it is applied in a dy-
namic analysis scheme (e.g., virtual/emulated machine). Although static analysis yielded
the best result in the experiments, it will give a limited view of on the expected behavior
compared to the dynamic analysis. Thus, the combined approach should be best suited
for detecting botnet malware.

6.2 Theoretical Considerations

This thesis has combined techniques from the disciplines of malware analysis and ma-
chine learning to develop the proposed computational method. It includes several proces-
sing steps that include algorithms for data acquisition, feature extraction, preprocessing,
classification and evaluation. The current situation for a malware analyst or forensic in-
vestigator is to manually analyze a suspicious file with a wide variety of tools in order
to study its behavior and decide whether the file is malicious or benign. They can be-
nefit from the computational method to automate several analysis steps, by utilizing a
collected set of labeled samples to train a classifier, and decide whether the suspicious
executable is malicious or benign by solving a two-class problem based on the suspicious
executable’s behavior.

In contrary to most anti-virus applications that heavily depend on large databases of
signatures, the computational method focused on the behavior related to a malware in-
fection such as application programming interface (API) and system calls. Hence, not as
vulnerable to obfuscation techniques compared to signature-based detection. The most
primitive signature-based detection will fail to detect a slightly modified malware, since
this result in a complete different signature. Therefore, behavior-based detection is a
viable approach to detect new malware with similar recorded behavior. It can be conclu-
ded from the experiments that malware behavior can be obtained (in an automatic man-
ner) by utilizing static and dynamic analysis techniques, where each sample in the data-
set is analyzed to generate a static and dynamic analysis report. Based on the acquired
reports, behavior-based features are extracted to build feature sets later used for training
the compared classifiers.

Data preprocessing is an important task in order to prepare the features in such a way

74

Behavior-based Classification of Botnet Malware

that they can be interpreted correctly by the classification algorithms. This is a crucial
factor that will influence the results, since the classification algorithms may only support
certain feature types such as continuous, discrete or string features. Furthermore, the
experiments reflected our complex feature sets by studying the classifiers ability to ac-
curately label the malicious and benign executables. Therefore, to increase the accuracy,
and reduce the computational complexity, we utilized the features with the strongest
relationship to the class label by the means of correlation-based feature selection. For
an investigator a reduced feature set will improve the efficiency of the analysis by re-
ducing the overall computational time (overhead). Especially, when dealing with a large
collection of suspicious files.

Choosing the most optimal classifier for the dataset and extracted features plays a
significant role for the system’s outcome. By comparing a set of classifiers, malware ana-
lysts or forensic investigators have the opportunity to select the classifier that suits their
specific requirements in terms of runtime efficiency, accuracy and detection rate. There-
fore, the proposed method utilized a set of classifiers to study their performance when
dealing with behavior-based features. After successfully applying naive-Bayes, k-nearest
neighbors, C4.5, support vector machines and Bayes network as classifiers for compa-
rison, the experiments demonstrated that Bayes network and support vector machines
were preferable when dealing with complex feature sets, since they are able to handle
feature dependencies. Still, simpler classifiers such as naive-Bayes, K-NN and C4.5 yiel-
ded a satisfying result, and further gave an overall better result after feature selection.
This was anticipated since the features were reduced to a minimum and therefore redu-
cing the feature dependencies.

To summarize, the computational method proposed in this thesis shows that it is a
valuable tool for analyzing malware, and especially malware found in botnets. We have
shown that the behavior of malware and benign software can be obtained, preprocessed
and further used to train classifiers in order to reveal the true purpose of a suspicious
file. As a complementary component to anti-virus software, this method can improve the
system security by detecting malicious behavior with a satisfying false positive rate.

6.3 Practical Implications

The implementation of the computational method does have its practical benefits and
limitations. First, the method and experiments were developed and executed based on
the computational resources and time available. The performance of the implementa-
tion can be improved by two factors; either utilizing a more powerful computer system,
or optimize the implementation in terms of programming language and tweaking of al-
gorithms. Other practical issues should also be considered when deploying the method
in larger scale such as malware analysis tools and machine learning algorithms that in-
fluence the overall system performance.

Conducting experiments using an online sandbox and PE parser also have its advan-
tages and drawbacks. With Anubis sandbox the malware analyst or investigator is not
required to spend resources on establishing an analysis environment. Instead, all suspi-
cious files can be uploaded to the sandbox with simple automatic means. By comparing a
hash sum of the submitted files to previous analyzed files, the sandbox saves computatio-
nal resources by avoiding analyzing identical files twice. The main drawback encountered
when the method employed automatic file uploading and report acquisition, was related

75

Behavior-based Classification of Botnet Malware

to the sandbox’s queuing system that prioritizes privileged users. Therefore, if a large
dataset is uploaded during an active period, you may end up waiting for the result for
many days. Furthermore, utilizing pefile avoids common pitfalls in static analysis such as
obfuscation methods related to polymorphism and metamorphism by obtaining informa-
tion from the different sections of the PE header (see Section 2.5.2). However, its main
disadvantage is that it is unable to know in what context the system/function call has
been used, compared to disassemblers.

The feature set holds comprehensive information about the behavior of each execu-
table, and by applying these to different machine learning algorithms, a certain level of
computational power is required. This aspect needs to be kept in mind if the method is
going to be deployed in a different environment with for example restricted resources.
Lack of memory was an issue during classification and feature selection. However, by
using libraries in the implementation (e.g., Weka API), we avoided loading the entire
feature set into memory before the classification task was initialized.

Utilizing a dataset consisting of only botnet malware in the experiment scenarios may
yield a different result compared to using a larger dataset with great malware variety,
for example a large variety of viruses, worms, backdoors, Trojans horses and rootkits
from different malware families. Similarly, a larger dataset of benign executables may in-
fluence the outcome of the method, since those applied in the experiments were mainly
network-related software. Hence, a different classification algorithm may prove to be bet-
ter for a certain feature set, in terms of detection rate and accuracy, than those compared
in this thesis.

Moreover, Remote Administration Tools (RATs) [127] share similar characteristics as
botnet malware and are used for both good and malicious purposes. These types of tools
have not been included in the method’s dataset. However, their behavior should be de-
tectable by the method, since the main difference between benign (legal) and malicious
RATs is that the benign versions often require user interaction in order to install the RAT-
server on the remote computer. The malicious RATs (e.g., NetBus, Back Orifice etc.) are
typically deployed by Trojan horses where the malicious payload is applied with a prede-
fined configuration. This implies that the malicious RATs will yield a different behavior,
since it automatically deploys itself and awaits incoming connection from a client.

6.4 Recommendations for Further Research

This section will present possible extensions related to the proposed computational me-
thod given in this thesis. First, a larger dataset needs to be acquired in order to increase
the system’s accuracy and detection rate. By using a larger dataset we have the option to
use another approach than cross-validation, such as splitting the dataset into a training,
testing and validation set.

The acquired malware should behave differently compared to the botnet malware
used in the experiments, for example by acquiring a large dataset that contains viruses,
worms, Trojan horses, rootkits, backdoors etc. This can be achieved by utilizing honey-
pots that simulates common weaknesses found in operating systems and their running
services, and store the malicious executable in a secure manner. Furthermore, collec-
ting benign executables would require different acquisition approaches such as manually
downloading from arbitrary websites, or obtaining benign executables from system fol-
ders of Windows. A third option would be to utilize a web-crawler that is developed to

76

Behavior-based Classification of Botnet Malware

automatically download executables from websites.
All classifiers compared in this thesis were utilized with default parameters, and since

the main focus in this thesis was related to behavior-based features, further research
should perform additional experiments in order to identify an optimal classifier by adjus-
ting the different parameters. Additionally, The two-class problem could be extended to a
multi-class problem by labeling malicious samples based on malware family or functiona-
lity. If a honeypot is being used to acquire samples it would be necessary to use anti-virus
software in order to label the samples, since the honeypot’s function is to collect the
malware that tries to infect the system. This functionality could also be automated and
integrated with the data acquisition component for acquiring static and dynamic reports.

Alternative methods for feature representation are an interesting area that should be
studied further. Especially the complex representation of the dynamic features, where we
used 5494 features to represent one sample. Here, another solution could be to apply fea-
ture selection in order to remove redundant features, for example, features that describe
similar behavior. In the static reports produced by pefile there is a lot of information that
describes the specific executable. Therefore, further research should look for additional
features that can be used to improve the classification results.

Furthermore, choosing an alternative tool for dynamic analysis could be a good idea,
since the queuing system for Anubis will not prioritize uploaded files through their script
if you do not have extra privileges. Hence, obtaining dynamic reports can take several
days if you are uploading samples during days with heavy activity. A solution would be
to utilize a local sandbox, such as Truman [128], that implements a server that simulates
the Internet and use virtual machines to obtain the malware behavior. Here it would be
possible to tweak the total execution time and analysis properties in such a way that a
delayed or triggered activity will be obtained after the analysis.

The computational method is meant to ease the task for a malware analyst or foren-
sic investigator to get an accurate classification whether the executable is malicious or
benign. It is therefore necessary in further work to make the method automatic. This
implies that the feature selection component needs to be fully integrated with the rest of
the system. When this is done and a large dataset is acquired, it would be interesting to
test the method against other anti-virus applications.

77

Behavior-based Classification of Botnet Malware

Bibliography

[1] Fossi, M., Turner, D., Johnson, E., Mack, T., Adams, T., Blackbird, J., Entwisle, S.,
Graveland, B., McKinney, D., Mulcahy, J., & Wueest, C. Symantec global internet
security, threat report, trends for 2009. Technical report, 2010.

[2] Aycock, J. 2006. Computer Viruses and Malware. Springer.

[3] Flaglien, A. O., Franke, K., & Aarnes, A. 2011. Cross evidence malware identifica-
tion in digital forensic with delink. In Seventh Annual IFIP WG 11.9 International
Conference on Digital Forensics.

[4] Hosmer, C. 2008. Polymorphic & metamorphic malware. Black Hat.

[5] Bayer, U., Habibi, I., Balzarotti, D., Kirda, E., & Kruegel, C. 2009. A view on
current malware behaviors. In Proceedings of the 2nd USENIX conference on Large-
scale exploits and emergent threats: botnets, spyware, worms, and more, LEET’09,
8–8, Berkeley, CA, USA. USENIX Association.

[6] Jacob, G., Debar, H., & Filiol, E. 2008. Behavioral detection of malware: from a
survey towards an established taxonomy. Journal in Computer Virology, 4, 251–
266. 10.1007/s11416-008-0086-0.

[7] Jahanian, F., Bailey, M., & Cooke, E. 2009. A survey of botnet technology and de-
fenses. Conference For Homeland Security, Cybersecurity Applications & Technology,
299–304.

[8] Feily, M., Shahrestani, A., & Ramadass, S. 2009. A survey of botnet and bot-
net detection. In SECURWARE ’09: Proceedings of the 2009 Third International
Conference on Emerging Security Information, Systems and Technologies, 268–273,
Washington, DC, USA. IEEE Computer Society.

[9] Provos, N. & Holz, T. 2007. Virtual Honeypots: From Botnet Tracking to Intrusion
Detection. Addison Wesley Professional.

[10] Vx heavens. http://vx.netlux.org/ Last visited: 01.01.2011.

[11] Packet storm. http://packetstormsecurity.org/ Last visited: 01.01.2011.

[12] Offensive computing. http://www.offensivecomputing.net/ Last visited:
01.01.2011.

[13] List of portable software. http://en.wikipedia.org/wiki/List_of_portable_
software Last visited: 06.01.2011.

[14] Vmware workstation. http://www.vmware.com/products/workstation/ Last vi-
sited: 01.02.2011.

79

http://vx.netlux.org/
http://packetstormsecurity.org/
http://www.offensivecomputing.net/
http://en.wikipedia.org/wiki/List_of_portable_software
http://en.wikipedia.org/wiki/List_of_portable_software
http://www.vmware.com/products/workstation/

Behavior-based Classification of Botnet Malware

[15] Sami, A., Yadegari, B., Rahimi, H., Peiravian, N., Hashemi, S., & Hamze, A. 2010.
Malware detection based on mining api calls. In Proceedings of the 2010 ACM
Symposium on Applied Computing, SAC ’10, 1020–1025, New York, NY, USA. ACM.

[16] Ye, Y., Wang, D., Li, T., Ye, D., & Jiang, Q. 2008. An intelligent pe-malware
detection system based on association mining. Journal in Computer Virology, 4,
323–334. 10.1007/s11416-008-0082-4.

[17] Wang, T.-Y., Wu, C.-H., & Hsieh, C.-C. 2008. A virus prevention model based on
static analysis and data mining methods. In Computer and Information Technology
Workshops, 2008. CIT Workshops 2008. IEEE 8th International Conference on, 288
–293.

[18] Bayer, U., Habibi, I., Balzarotti, D., Kirda, E., & Kruegel, C. 2009. Insights into
current malware behavior. 2nd USENIX Workshop on Large-Scale Exploits and
Emergent Threats.

[19] Flaglien, A. O. Cross-computer malware detection in digital forensics. Master’s
thesis, Gjøvik University College, 2010.

[20] Burji, S., Liszka, K., & Chan, C. jul. 2010. Malware analysis using reverse engi-
neering and data mining tools. 619 –624.

[21] Carrier, B. D. & Spafford, E. H. 2004. An event-based digital forensic investigation
framework. In In Proceedings of the 2004 Digital Forensic Research Workshop.

[22] Phillips, A., Nelson, B., Enfinger, F., & Steuart, C. 2010. Guide To Computer Foren-
sics And Investigations, Third Edition. Course Technology.

[23] Palmer, G. 2001. A road map for digital forensic research. DFRWS 2001, 27–30.

[24] Franke, K. & Srihari, S. 2008. Computational forensics: An overview. In Compu-
tational Forensics, Srihari, S. & Franke, K., eds, volume 5158 of Lecture Notes in
Computer Science, 1–10. Springer Berlin / Heidelberg.

[25] Malin, C. H., Casey, E., & Aguilina, J. M. 2008. Malware Forensics: Investigating
and Analyzing Malicious Code. Syngress.

[26] Kittilsen, J., Franke, K., & Hammerli, B. Digital forensics ontology framework.
Technical report, Norwegian Information Security Laboratory, 2010.

[27] Farmer, D. & Venema, W. 2005. Forensic Discovery. Addison-Wesley.

[28] Preda, M. D., Christodorescu, M., Jha, S., & Debray, S. September 2008. A
semantics-based approach to malware detection. ACM Trans. Program. Lang. Syst.,
30, 25:1–25:54.

[29] Skoudis, E. & Zeltser, L. 2003. Malware: Fighting Malicious Code. Prentice Hall.

[30] Szor, P. 2005. The Art of Computer Virus Research and Defense. Addison Wesley.

[31] Distler, D. 2007. Malware analysis: An introduction. SANS Institute Reading Room.

80

Behavior-based Classification of Botnet Malware

[32] Madou, M., van Put, L., & de Bosschere, K. 0-0 2006. Understanding obfusca-
ted code. In Program Comprehension, 2006. ICPC 2006. 14th IEEE International
Conference on, 268 –274.

[33] Yan, W., Zhang, Z., & Ansari, N. 2008. Revealing packed malware. Security
Privacy, IEEE, 6(5), 65 –69.

[34] Tuts 4 you. http://tuts4you.com/download.php Last visited: 06.03.2011.

[35] Konstantinou, E. & Wolthusen, S. 2008. Metamorphic virus: Analysis and detec-
tion.

[36] Vinod, P., Laxmi, V., & Gaur, M. S. 2009. Survey on malware detection methods.
In Hack.in 2009, 74–79.

[37] You, I. & Yim, K. 2010. Malware obfuscation techniques: A brief survey. In
Broadband, Wireless Computing, Communication and Applications (BWCCA), 2010
International Conference on, 297 –300.

[38] Konstantinou, E. Metamorphic virus: Analysis and detection. Technical report,
RHUL-MA-2008-02, 2008.

[39] Wong, W. & Stamp, M. 2006. Hunting for metamorphic engines. Journal in
Computer Virology, 2, 211–229. 10.1007/s11416-006-0028-7.

[40] Szor, P. & Ferrie, P. 2001. Hunting for metamorphic. Virus Bulletin Conference.

[41] y0da. 2009. Lordpe. http://www.woodmann.com/collaborative/tools/index.
php/LordPE Last visited: 06.03.2011.

[42] Russinovich, M. 2011. Procdump. http://technet.microsoft.com/en-us/

sysinternals/dd996900 Last visited: 06.03.2011.

[43] Austin, T. 2011. Botnets increased rampantly during 2010, worse to come - dam-
balla report. http://www.damballa.com/knowledge/Feb2011report.php Last
visited: 24.02.2011.

[44] Gu, G., Perdisci, R., Zhang, J., & Lee, W. 2008. Botminer: clustering analysis
of network traffic for protocol- and structure-independent botnet detection. In
Proceedings of the 17th conference on Security symposium, 139–154, Berkeley, CA,
USA. USENIX Association.

[45] Schiller, C. A., Binkley, J., Harley, D., Evron, G., Bradlay, T., Willems, C., & Cross,
M. 2007. Botnets - The Killer Web App. Syngress.

[46] Zhu, Z., Lu, G., Chen, Y., Fu, Z., Roberts, P., & Han, K. 282008-aug.1 2008. Botnet
research survey. In Computer Software and Applications, 2008. COMPSAC ’08. 32nd
Annual IEEE International, 967 –972.

[47] Abu Rajab, M., Zarfoss, J., Monrose, F., & Terzis, A. 2006. A multifaceted ap-
proach to understanding the botnet phenomenon. In Proceedings of the 6th ACM
SIGCOMM conference on Internet measurement, IMC ’06, 41–52, New York, NY,
USA. ACM.

81

http://tuts4you.com/download.php
http://www.woodmann.com/collaborative/tools/index.php/LordPE
http://www.woodmann.com/collaborative/tools/index.php/LordPE
http://technet.microsoft.com/en-us/sysinternals/dd996900
http://technet.microsoft.com/en-us/sysinternals/dd996900
http://www.damballa.com/knowledge/Feb2011report.php

Behavior-based Classification of Botnet Malware

[48] Project, T. H. 2007. Know your enemy: Fast-flux service networks. http://www.
honeynet.org/book/export/html/130 Last visited: 25.02.2011.

[49] Grizzard, J. B., Sharma, V., Nunnery, C., Kang, B. B., & Dagon, D. 2007. Peer-to-
peer botnets: overview and case study. In Proceedings of the first conference on First
Workshop on Hot Topics in Understanding Botnets, 1–1, Berkeley, CA, USA. USENIX
Association.

[50] Wu, S. X. & Banzhaf, W. January 2010. Review: The use of computational intelli-
gence in intrusion detection systems: A review. Appl. Soft Comput., 10, 1–35.

[51] Gu, G., Porras, P., Yegneswaran, V., Fong, M., & Lee, W. August 2007. BotHunter:
Detecting malware infection through ids-driven dialog correlation. In Proceedings
of the 16th USENIX Security Symposium (Security’07).

[52] Gu, G., Zhang, J., & Lee, W. February 2008. BotSniffer: Detecting botnet command
and control channels in network traffic. In Proceedings of the 15th Annual Network
and Distributed System Security Symposium (NDSS’08).

[53] Masud, M., Al-khateeb, T., Khan, L., Thuraisingham, B., & Hamlen, K. 2008. Flow-
based identification of botnet traffic by mining multiple log files. In Distributed
Framework and Applications, 2008. DFmA 2008. First International Conference on,
200 –206.

[54] Strayer, W., Lapsely, D., Walsh, R., & Livadas, C. 2008. Botnet detection based
on network behavior. In Botnet Detection, Lee, W., Wang, C., & Dagon, D., eds,
volume 36 of Advances in Information Security, 1–24. Springer US.

[55] Seewald, A. K. & Gansterer, W. N. 2010. On the detection and identification of
botnets. Computers & Security, 29(1), 45 – 58.

[56] Sammon, J.W., J. May 1969. A nonlinear mapping for data structure analysis.
Computers, IEEE Transactions on, C-18(5), 401 – 409.

[57] Kornblum, J. 2006. Identifying almost identical files using context triggered pie-
cewise hashing. Digital Investigation, 3(Supplement 1), 91 – 97. The Proceedings
of the 6th Annual Digital Forensic Research Workshop (DFRWS ’06).

[58] Freebyte’s guide to free anti-virus software. http://www.freebyte.com/

antivirus/ Last visited: 06.03.2011.

[59] Carrera, E. pefile. http://code.google.com/p/pefile/ Last visited:
01.03.2011.

[60] Pietrek, M. 2002. An in-depth look into the win32 portable executable file format.
MSDN Magazine.

[61] Pietrek, M. 2002. An in-depth look into the win32 portable executable file format,
part 2. MSDN Magazine.

[62] Schultz, M., Eskin, E., Zadok, F., & Stolfo, S. 2001. Data mining methods for
detection of new malicious executables. In Security and Privacy, 2001. S P 2001.
Proceedings. 2001 IEEE Symposium on, 38 –49.

82

http://www.honeynet.org/book/export/html/130
http://www.honeynet.org/book/export/html/130
http://www.freebyte.com/antivirus/
http://www.freebyte.com/antivirus/
http://code.google.com/p/pefile/

Behavior-based Classification of Botnet Malware

[63] Gnu bin-utils. http://www.gnu.org/software/binutils/ Last visited:
05.01.2011.

[64] Sung, A., Xu, J., Chavez, P., & Mukkamala, S. 2004. Static analyzer of vicious exe-
cutables (save). In Computer Security Applications Conference, 2004. 20th Annual,
326 – 334.

[65] Xu, J.-Y., Sung, A., Chavez, P., & Mukkamala, S. 2004. Polymorphic malicious
executable scanner by api sequence analysis. In Hybrid Intelligent Systems, 2004.
HIS ’04. Fourth International Conference on, 378 – 383.

[66] Shen, Y.-D., Zhang, Z., & Yang, Q. 2002. Objective-oriented utility-based associa-
tion mining. In Data Mining, 2002. ICDM 2002. Proceedings. 2002 IEEE Interna-
tional Conference on, 426 – 433.

[67] Breiman, L. 2001. Random forests. Machine Learning, 45, 5–32.
10.1023/A:1010933404324.

[68] Duda, R. O., Hart, P. E., & Stork, D. G. 2001. Pattern Classification. Wiley.

[69] song Zou, M., sheng Han, L., wen Liu, Q., & Liu, M. 2009. Behavior-based ma-
licious executables detection by multi-class svm. In Information, Computing and
Telecommunication, 2009. YC-ICT ’09. IEEE Youth Conference on, 331 –334.

[70] Wang, C., Pang, J., Zhao, R., Fu, W., & Liu, X. 2009. Malware detection based on
suspicious behavior identification. In Education Technology and Computer Science,
2009. ETCS ’09. First International Workshop on, volume 2, 198 –202.

[71] Willems, C., Holz, T., & Freiling, F. 2007. Toward automated dynamic malware
analysis using cwsandbox. Security Privacy, IEEE, 5(2), 32 –39.

[72] Kendall, K. & McMillan, C. 2007. Practical malware analysis. Black Hat.

[73] Wireshark - go deep. http://www.wireshark.org/ Last visited: 06.03.2011.

[74] Christodorescu, M., Jha, S., & Kruegel, C. 2007. Mining specifications of mali-
cious behavior. In Proceedings of the the 6th joint meeting of the European software
engineering conference and the ACM SIGSOFT symposium on The foundations of
software engineering, ESEC-FSE ’07, 5–14, New York, NY, USA. ACM.

[75] Hu, Y., Chen, L., Xu, M., Zheng, N., & Guo, Y. 2008. Unknown malicious exe-
cutables detection based on run-time behavior. In Fuzzy Systems and Knowledge
Discovery, 2008. FSKD ’08. Fifth International Conference on, volume 4, 391 –395.

[76] Ding, J., Jin, J., Bouvry, P., Hu, Y., & Guan, H. May 2009. Behavior-based proactive
detection of unknown malicious codes. In Internet Monitoring and Protection,
2009. ICIMP ’09. Fourth International Conference on, 72 –77.

[77] Nair, V. P., Jain, H., Golecha, Y. K., Gaur, M. S., & Laxmi, V. 2010. Medusa:
Metamorphic malware dynamic analysis usingsignature from api. In Proceedings
of the 3rd international conference on Security of information and networks, SIN
’10, 263–269, New York, NY, USA. ACM.

83

http://www.gnu.org/software/binutils/
http://www.wireshark.org/

Behavior-based Classification of Botnet Malware

[78] Park, Y., Reeves, D., Mulukutla, V., & Sundaravel, B. 2010. Fast malware clas-
sification by automated behavioral graph matching. In Proceedings of the Sixth
Annual Workshop on Cyber Security and Information Intelligence Research, CSIIRW
’10, 45:1–45:4, New York, NY, USA. ACM.

[79] Dinaburg, A., Royal, P., Sharif, M., & Lee, W. 2008. Ether: malware analysis via
hardware virtualization extensions. In Proceedings of the 15th ACM conference on
Computer and communications security, CCS ’08, 51–62, New York, NY, USA. ACM.

[80] Ahmed, F., Hameed, H., Shafiq, M. Z., & Farooq, M. 2009. Using spatio-temporal
information in api calls with machine learning algorithms for malware detection.
In Proceedings of the 2nd ACM workshop on Security and artificial intelligence, AISec
’09, 55–62, New York, NY, USA. ACM.

[81] Jain, A., Duin, R., & Mao, J. January 2000. Statistical pattern recognition: a
review. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 22(1), 4
–37.

[82] Gong, L. 1997. Java security: present and near future. Micro, IEEE, 17(3), 14 –19.

[83] Carpenter, M., Liston, T., & Skoudis, E. 2007. Hiding virtualization from attackers
and malware. Security Privacy, IEEE, 5(3), 62 –65.

[84] Rieck, K., Holz, T., Willems, C., Dussel, P., & Laskov, P. 2008. Learning and clas-
sification of malware behavior. In Detection of Intrusions and Malware, and Vul-
nerability Assessment, Zamboni, D., ed, volume 5137 of Lecture Notes in Computer
Science, 108–125. Springer Berlin / Heidelberg.

[85] Rieck, K., Trinius, P., Willems, C., & Holz, T. Automatic analysis of malware beha-
vior using machine learning. Technical report, 2009.

[86] Fernandez, F. & Isasi, P. 2008. Nearest prototype classification of noisy data.
Artificial Intelligence Review, 30, 53–66. 10.1007/s10462-009-9116-7.

[87] Bayer, U., Moser, A., Kruegel, C., & Kirda, E. 2006. Dynamic analysis of malicious
code. Journal in Computer Virology, 2, 67–77. 10.1007/s11416-006-0012-2.

[88] Bayer, U., Comapretti, P. M., Hlauschek, C., Kruegel, C., & Kirda, E. 2009. Scalable,
behavior-based malware clustering. 1–18.

[89] Firdausi, I., Lim, C., Erwin, A., & Nugroho, A. 2010. Analysis of machine learning
techniques used in behavior-based malware detection. In Advances in Compu-
ting, Control and Telecommunication Technologies (ACT), 2010 Second Internatio-
nal Conference on, 201 –203.

[90] Bailey, M., Oberheide, J., Andersen, J., Mao, Z. M., Jahanian, F., & Nazario, J.
2007. Automated classification and analysis of internet malware. In Procee-
dings of the 10th international conference on Recent advances in intrusion detection,
RAID’07, 178–197, Berlin, Heidelberg. Springer-Verlag.

[91] Apel, M., Bockermann, C., & Meier, M. 2009. Measuring similarity of malware
behavior. In Local Computer Networks, 2009. LCN 2009. IEEE 34th Conference on,
891 –898.

84

Behavior-based Classification of Botnet Malware

[92] Ida pro - the multi-processor, multi-os, interactive disassembler, by datarescue.
http://www.www.datarescue.com/ Last visited: 09.01.2011.

[93] Chan, C.-C. & Sengottiyan, S. 2003. Blem2: learning bayes’ rules from examples
using rough sets. In Fuzzy Information Processing Society, 2003. NAFIPS 2003.
22nd International Conference of the North American, 187 – 190.

[94] Kononenko, I. & Kukar, M. 2007. Machine Learning and Data Mining - Introduction
to Principles and Algorithms. Horwood.

[95] Theodoridis, S. & Koutroumbas, K. 2009. Pattern Recognition - Fourth Edition.
Elsevier.

[96] Hand, D., Mannila, H., & Smyth, P. 2001. Principles of Data Mining. MIT Press.

[97] Cross industry standard process for data mining. http://www.crisp-dm.org/

Process/index.htm Last visited: 22.03.2011.

[98] Witten, I. H. & Frank, E. 2005. Data Mining - Practical Machine Learning Tools and
Techniques. Elsevier.

[99] Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., & Witten, I. H.
November 2009. The weka data mining software: an update. SIGKDD Explor.
Newsl., 11, 10–18.

[100] Ince, K. & Klawonn, F. 2010. Attribute value selection considering the mini-
mum description length approach and feature granularity. In Proceedings of the
Computational intelligence for knowledge-based systems design, and 13th internatio-
nal conference on Information processing and management of uncertainty, IPMU’10,
250–259, Berlin, Heidelberg. Springer-Verlag.

[101] Pyle, D. 1999. Data Preparation for Data Mining. Morgan Kaufmann Publishers.

[102] Kotsiantis, S. B., Kanellopoulos, D., & Pintelas, P. E. 2006. Data preprocessing
for supervised learning. INTERNATIONAL JOURNAL OF COMPUTER SCIENCE, VO-
LUME 1, 1–7.

[103] Hall, M. A. Correlation-based Feature Selection for Machine Learning. PhD thesis,
1999.

[104] Nguyen, H., Franke, K., & Petrovic, S. 2010. Improving effectiveness of intrusion
detection by correlation feature selection. Availability, Reliability and Security,
International Conference on, 0, 17–24.

[105] Nguyen, H. T., Franke, K., & Petrovic, S. 2010. Towards a generic feature-selection
measure for intrusion detection. Pattern Recognition, International Conference on,
0, 1529–1532.

[106] Peng, H., Long, F., & Ding, C. aug. 2005. Feature selection based on mutual infor-
mation criteria of max-dependency, max-relevance, and min-redundancy. Pattern
Analysis and Machine Intelligence, IEEE Transactions on, 27(8), 1226 –1238.

85

http://www.www.datarescue.com/
http://www.crisp-dm.org/Process/index.htm
http://www.crisp-dm.org/Process/index.htm

Behavior-based Classification of Botnet Malware

[107] Kohavi, R. & Quinlan, J. R. Data mining tasks and methods: Classification: decision-
tree discovery, 267–276. Oxford University Press, Inc., New York, NY, USA, 2002.

[108] Rokach, L. & Maimon, O. nov. 2005. Top-down induction of decision trees clas-
sifiers - a survey. Systems, Man, and Cybernetics, Part C: Applications and Reviews,
IEEE Transactions on, 35(4), 476 – 487.

[109] Uusitalo, L. 2007. Advantages and challenges of bayesian networks in environ-
mental modelling. Ecological Modelling, 203(3-4), 312 – 318.

[110] Top 10 malware registry launchpoints. http://www.f-secure.com/weblog/

archives/00001207.html Last visited: 05.05.2011.

[111] Skoudis, E. & Liston, T. 2006. Counter Hack Reloaded: A Step-by-Step Guide to
Computer Attacks and Effective Defenses (2nd Edition). Prentice Hall.

[112] Appendix b: Standard .exe files and associated dlls. http://technet.microsoft.
com/en-us/library/cc768380.aspx Last visited: 22.04.2011.

[113] Microsoft portable executable and common object file format specification.
http://msdn.microsoft.com/en-us/windows/hardware/gg463119 Last visited:
04.03.2011.

[114] Chang, C.-C. & Lin, C.-J. LIBSVM: a library for support vector machines, 2001.
Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.

[115] Ubuntu. http://www.ubuntu.com/ Last visited: 10.05.2011.

[116] Python programming language. http://www.python.org/ Last visited:
10.05.2011.

[117] The eclipse foundation. http://www.eclipse.org/ Last visited: 10.05.2011.

[118] pendriveapps. http://www.pendriveapps.com/ Last visited: 05.05.2011.

[119] Knowles, D. W32.spybot.worm. http://www.symantec.com/security_

response/writeup.jsp?docid=2003-053013-5943-99 Last visited: 09.02.2011.

[120] O’Connor, J. Trojan.anserin. http://www.symantec.com/security_response/

writeup.jsp?docid=2005-112315-0608-99 Last visited: 09.02.2011.

[121] Stone-Gross, B., Cova, M., Cavallaro, L., Gilbert, B., Szydlowski, M., Kemmerer,
R., Kruegel, C., & Vigna, G. 2009. Your botnet is my botnet: analysis of a botnet
takeover. In Proceedings of the 16th ACM conference on Computer and communica-
tions security, CCS ’09, 635–647, New York, NY, USA. ACM.

[122] Sevcenco, S. Backdoor.sdbot. http://www.symantec.com/security_response/

writeup.jsp?docid=2002-051312-3628-99 Last visited: 09.02.2011.

[123] Bouckaert, R. Bayesian Network Classifiers in Weka, 2004.

[124] Nguyen, H. T., Franke, K., & Petrovic, S. Reliability in feature-selection process for
intrusion detection. Technical report, Norwegian Information Security Laboratory,
2011.

86

http://www.f-secure.com/weblog/archives/00001207.html
http://www.f-secure.com/weblog/archives/00001207.html
http://technet.microsoft.com/en-us/library/cc768380.aspx
http://technet.microsoft.com/en-us/library/cc768380.aspx
http://msdn.microsoft.com/en-us/windows/hardware/gg463119
http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.ubuntu.com/
http://www.python.org/
http://www.eclipse.org/
http://www.pendriveapps.com/
http://www.symantec.com/security_response/writeup.jsp?docid=2003-053013-5943-99
http://www.symantec.com/security_response/writeup.jsp?docid=2003-053013-5943-99
http://www.symantec.com/security_response/writeup.jsp?docid=2005-112315-0608-99
http://www.symantec.com/security_response/writeup.jsp?docid=2005-112315-0608-99
http://www.symantec.com/security_response/writeup.jsp?docid=2002-051312-3628-99
http://www.symantec.com/security_response/writeup.jsp?docid=2002-051312-3628-99

Behavior-based Classification of Botnet Malware

[125] Navarro, G. March 2001. A guided tour to approximate string matching. ACM
Comput. Surv., 33, 31–88.

[126] Clam antivirus. http://www.clamav.net/lang/en/ Last visited: 15.06.2011.

[127] Chen, Z., Wei, P., & Delis, A. 2008. Catching remote administration trojans (rats).
Software: Practice and Experience, 38(7), 667–703.

[128] Stewart, J. Behavioural malware analysis using sandnets. Computer Fraud &
Security, 2006.

87

http://www.clamav.net/lang/en/

Behavior-based Classification of Botnet Malware

A Entity Features

A.1 DLL Dependencies

Feature Type Description

base_address String Base addresses of DLLs

base_name String DLL name (e.g., kernel32.dll)

full_name String Full path of DLL (e.g., C:\WINDOWS \sys-
tem32\kernel32.dll)

is_load_time_dependency String Load-time or run-time dependent

size String Size of DLL

Table 17: Features in loaded_dll entity

A.2 Registry Activities

Feature Type Description

name String Name of created registry key

Table 18: Feature in reg_key_created entity

Feature Type Description

count String Number of registry keys modified

description String Description of key modified (e.g., inter-
net_settings)

key String Key modified

value_data String Full value data name

value_name String Value data name

Table 19: Features in reg_value_modified entity

89

Behavior-based Classification of Botnet Malware

Feature Type Description

count String Number of registry keys read

key String Key read

value_data String Full value data name

value_name String Value data name

Table 20: Features in reg_value_read entity

A.3 File Activities

Feature Type Description

name String Name of created file

Table 21: Feature in file_created entity

Feature Type Description

description String Description of operation done to file

name String Name of modified file

Table 22: Feature in file_modified entity

Feature Type Description

description String Description of operation done to file

name String Name of deleted file

Table 23: Feature in file_deleted entity

Feature Type Description

name String Name of read file

Table 24: Feature in file_read entity

90

Behavior-based Classification of Botnet Malware

Feature Type Description

file_name String Memory mapped file, may reflect DLL usage

Table 25: Feature in subject_object_created entity

Feature Type Description

control_code String Reflects operations done by driver

count String Number of times driver was used

file String Driver name

Table 26: Feature in device_control_communication entity

Feature Type Description

control_code String Operation done by file system control (e.g.,
inter-process)

count String Number of operations that were done

file String File used in operation

Table 27: Feature in fs_control_communication entity

A.4 Process and Thread Activities

Feature Type Description

number_of_threads String Number of threads created

time String Time thread was alive

Table 28: Feature in thread_status entity

Feature Type Description

process String Process created by thread

Table 29: Feature in remote_thread_created entity

91

Behavior-based Classification of Botnet Malware

Feature Type Description

cmd_line String Command for executing process

description String Description of executed process (e.g., pro-
cess_spawn)

exe_name String Name of process

Table 30: Feature in process_created entity

A.5 Network Activity

Feature Type Description

close_time String Date and time when socket was closed

create_time String Date and time when socket was opened

created_by_thread String Describes which thread that created the so-
cket

foreign_ip String Foreign IP address

foreign_port String Foreign port

is_listening String Reflects whether socket waits for incoming
connections

local_ip String Local IP address

local_port String Local port

Table 31: Feature in socket entity

Feature Type Description

name String Name of domain name server (e.g., hig.no)

result String IP address of resolved DNS

successful String Reflects whether the query was successful

type String Type of DNS query (e.g., mail exchanger reco-
der, MX)

Table 32: Feature in dns_query entity

92

Behavior-based Classification of Botnet Malware

Feature Type Description

content String Content of conversation

description String Description of SMTP activity (e.g., spambot)

dest_ip String Destination IP address

dest_port String Destination port

recipient String Mail address of recipient

sender String Mail address of sender

server_reply String Server reply

src_ip String Source IP address

src_port String Source port

subject String Subject of mail

Table 33: Feature in smtp_conversation entity

Feature Type Description

dest_ip String Destination IP address

dest_port String Destination port

hostname String Hostname in conversation (e.g., micro-
soft.com)

src_ip String Source IP address

src_port String Source port

Table 34: Feature in http_conversation entity

Feature Type Description

dest_ip String Destination IP address

dest_port String Destination port

org_bytes_sent String Amount of bytes sent

res_bytes_sent String Amount of bytes received

src_ip String Source IP address

src_port String Source port

state String State of TCP connection

Table 35: Feature in tcp_conversation entity

93

Behavior-based Classification of Botnet Malware

Feature Type Description

dest_ip String Destination IP address

dest_port String Destination port

org_bytes_sent String Amount of bytes sent

res_bytes_sent String Amount of bytes received

src_ip String Source IP address

src_port String Source port

state String State of UDP connection

Table 36: Feature in udp_conversation entity

94

Behavior-based Classification of Botnet Malware

B UML Diagrams

B.1 Parser

Comment: This is the implementation part which is responsible of parsing the XML-files
and txt-files that are retrieved from pefile and Anubis.

Parser

- DYNAMIC_PATH:String
- STATIC_PATH:String
- pe_samples:PE[]
- xml_samples:XML[]

+ open_file()
+ parse_xml()
+ parse_pe()
+ get_pe_samples():PE[]
+ get_xml_samlpes():XML[]

PE

- sample_id:String
- dll:DLL[]

+ get_sample_id():String
+ add_DLL()
+ get_DLL():DLL[]

XML

- sample_id:String
- dll_dependencies:DLLDependency[]
- registry_activities:RegistryActivity[]
- file_activities:FileActivity[]
- process_activities:ProcessActivity[]
- network_activities:NetworkActivity[]
- service_activities:ServiceActivity[]

+ get_sample_id():String
+ analyze_document()
+ get_dll():DLLDependency[]
+ get_registry():RegistryActivity[]
+ get_file():FileActivity[]
+ get_process():ProcessActivity[]
+ get_network():NetworkActivity[]

DLL

- dll_type:String
- dll_function:String

+ get_dll_type():String
+ get_dll_function():String

DLLDependency RegistryActivity

FileActivity

ProcessActivity

NetworkActivity

Figure 30: UML diagram of the Parser

95

Behavior-based Classification of Botnet Malware

B.2 Feature Extractor

Comment: This part is responsible of extracting features and building three feature sets.
These are stored as individual ARFF-files.

Parser

- DYNAMIC_PATH:String
- STATIC_PATH:String
- pe_samples:PE[]
- xml_samples:XML[]

+ open_file()
+ parse_xml()
+ parse_pe()
+ get_pe_samples():PE[]
+ get_xml_samlpes():XML[]

FeatureExtractor

- feature_dynamic:FeatureDynamic[]
- feature_static:FeaureStatic[]
- feature_combo:FeatuerCombo[]
- loaded_static:boolean
- loaded_dynamic:boolean
- parser:Parser
- arff:ARFF

+ extract_static_features()
+ extract_dynamic_features()
+ combine_features()
+ generate_arff()

FeatureDynamic

- sample_id:String
- label:String
- dynamic:DynamicString[]

+ get_sample_id():String
+ get_label():String
+ add_dynamic_feature()
+ get_dynamic():DynamicString[]

FeatureStatic

- sample_id:String
- label:String
- static_dll:StaticDLL[]

+ get_sample_id():String
+ get_label():String
+ add_static_feature()
+ get_static_dll():StaticDLL[]

ARFF

- data:Instances
- fstatic:FeatureStatic[]
- fdynamic:FeatureDynamic[]
- fcombo:FeatureCombo[]

+ generate_arff_static()
+ generate_arff_dynamic()
+ generate_arff_combo()
+ contains_string():boolean
+ find_string():int
+ write_to_file()

FeatureCombo

- sample_id:String
- label:String
- static_dll:StaticDLL[]
- dynamic:DynamicString[]

+ get_sample_id():String
+ get_label():String
+ get_static_dll():StaticDLL[]
+ get_dynamic():DynamicString[]
+ get_dynamic():DynamicString[]

Figure 31: UML diagram of the Feature Extractor

B.3 Evaluator

Comment: The Evaluator is responsible of loading a set of ARFF-files and use these to
evaluate five classifiers; Naive-Bayes, K-NN, C4.5, SVM and Bayes Network.

OpenARFF

- ARFF_PATH:String

+ get_instances():DynamicInstances[]

Evaluator

-dyn_inst:DynamicInstances[]

+ EvaluateClassifiers()
+ NaiveBayesEvaluation():Evaluation
+ BayesNetworkEvaluation(): Evaluation
+ KNNEvaluation():Evaluation
+ SVMEValuation():Evaluation
+ C45Evaluation():Evaluation
- get_discretized_instances():Instances
- print_results()

Figure 32: UML diagram of the Evaluator

96

Behavior-based Classification of Botnet Malware

C Proof-of-Concept Supplements

C.1 Packers Identification

Figure 33: PEiD results for SpyBot variants

C.2 ARFF Viewer

Figure 34: ARFF viewer displaying concatenated strings in dynamic feature set before
preprocessing

97

Behavior-based Classification of Botnet Malware

C.3 Levenshtein Distance Attempt

The Levenshtein distance was used to merge the entities in this manner:

Sample =

Entitya1

= {value1, ..., valuen}
Entitya2

= {value1, ..., valuen}
...

Entityan
= {value1, ..., valuen}

Here we have entities of the same type, namely Entitya. Applying Levenshtein dis-

tance between the two value1’s will return an integer of how similar they are to each
other. This information can be used to create an generic entity:

Entityageneric
=
(
value1generic

, ..., valuengeneric

)
This will serve as an intra-distance measure, where we store the sum of the Leven-

shtein Distances for the generic value. Unfortunately the results were poor with Bayes
Network and 10-fold cross-validation:

• True positive rate = 68%

• False positive rate = 16%

Note that the system was not completely implemented at this point and it tried to
classify the malware based on malware-family class labels. Thus, it only retrieved these
metrics.

C.4 DLL Import In Code

// example code f o r loading DLL ’ s in code withouth using DLL
// −r e f e r en c e s def ined in p r o j e c t .

#inc lude " s tda f x . h "
#inc lude " windows . h "

i n t _tmain (i n t argc , _TCHAR∗ argv [])
{

HMODULE mod;
FARPROC fn ;
DWORD erno ;

// t r y i n g to load DLL
mod=LoadLibrary (L "<<PATH>>\\t e s t . d l l ") ;
i f (!mod)
{

erno=GetLas tEr ror () ;
p r i n t f (" Load l i b ra ry e r ro r : %x\n " , HRESULT_FROM_WIN32(erno)) ;
e x i t (1) ;

}
// po in te r to DLL
fn=GetProcAddress (mod, " t e s t ") ;
i f (! fn)
{

p r i n t f (" GetProcAddress e r ro r : %x\n " ,HRESULT_FROM_WIN32(GetLas tEr ror ())) ;
e x i t (1) ;

}
// response from func t ion
p r i n t f (" Response from DLL : %d\n " , fn ()) ;
re turn 0;

}

C.5 Clam AntiVirus Results

peter@peter-A8J:~$ clamscan /home/peter/all/
LibClamAV Warning: ***

98

Behavior-based Classification of Botnet Malware

LibClamAV Warning: *** This version of the ClamAV engine is outdated. ***
LibClamAV Warning: *** DON’T PANIC! Read http://www.clamav.net/support/faq ***
LibClamAV Warning: ***
LibClamAV Warning: ***
LibClamAV Warning: *** This version of the ClamAV engine is outdated. ***
LibClamAV Warning: *** DON’T PANIC! Read http://www.clamav.net/support/faq ***
LibClamAV Warning: ***
/home/peter/all/Halite.exe: OK
/home/peter/all/MACAddressView.exe: OK
/home/peter/all/Trojan-PSW.Win32.Sinowal.e: Trojan.Spy.Sinowal-24 FOUND
/home/peter/all/Nassau.exe: OK
/home/peter/all/Trojan-PSW.Win32.Sinowal.ce: OK
/home/peter/all/ozSync.exe: OK
/home/peter/all/Backdoor.Win32.Agent.abfh: OK
/home/peter/all/PAGEANT.EXE: OK
/home/peter/all/Trojan-PSW.Win32.Sinowal.at: OK
/home/peter/all/pn.exe: OK
/home/peter/all/Backdoor.Win32.Agent.acfx: Trojan.Agent-179822 FOUND
/home/peter/all/Backdoor.Win32.Agent.adnh: OK
/home/peter/all/whoistd.exe: OK
/home/peter/all/P2P-Worm.Win32.SpyBot.peo: OK
/home/peter/all/angry_ipscan.exe: OK
/home/peter/all/nPOPuk.exe: OK
/home/peter/all/P2P-Worm.Win32.SpyBot.gz: Worm.Puce.D FOUND
/home/peter/all/P2P-Worm.Win32.SpyBot.t: Trojan.Spybot.gen-2 FOUND
/home/peter/all/Backdoor.Win32.Agent.abka: Trojan.Agent-66928 FOUND
/home/peter/all/FTPWanderer.exe: OK
/home/peter/all/GetMyIp.exe: OK
/home/peter/all/VBPing.exe: OK
/home/peter/all/HydraIRC.exe: OK
/home/peter/all/Trojan-PSW.Win32.Sinowal.jc: OK
/home/peter/all/P2P-Worm.Win32.SpyBot.ew: Trojan.Spybot.gen-2 FOUND
/home/peter/all/Webdeling.exe: OK
/home/peter/all/Backdoor.Win32.Agent.aawp: OK
/home/peter/all/Backdoor.Win32.Agent.abv: Adware.Stud-1 FOUND
/home/peter/all/Backdoor.Win32.Agent.adei: OK
/home/peter/all/Backdoor.Win32.Agent.aao: Trojan.Hupigon-9116 FOUND
/home/peter/all/Trojan-PSW.Win32.Sinowal.b: Trojan.Spy.Sinowal-24 FOUND
/home/peter/all/P2P-Worm.Win32.SpyBot.gen: Trojan.Spybot.gen-2 FOUND
/home/peter/all/eMule.exe: OK
/home/peter/all/Trojan-PSW.Win32.Sinowal.l: Trojan.Spy.Sinowal-25 FOUND
/home/peter/all/Backdoor.Win32.Agent.abcf: OK
/home/peter/all/WinSCP.exe: OK
/home/peter/all/P2P-Worm.Win32.SpyBot.pbw: Trojan.SdBot-13167 FOUND
/home/peter/all/Trojan-PSW.Win32.Sinowal.cc: OK
/home/peter/all/Backdoor.Win32.Agent.adjs: OK

99

Behavior-based Classification of Botnet Malware

/home/peter/all/megairc.exe: OK
/home/peter/all/Trojan-PSW.Win32.Sinowal.cl: OK
/home/peter/all/P2P-Worm.Win32.SpyBot.eu: Trojan.Spybot.gen-2 FOUND
/home/peter/all/Trojan-PSW.Win32.Sinowal.k: Trojan.Spy.Sinowal-26 FOUND
/home/peter/all/MacMakeUp.exe: OK
/home/peter/all/0irc.exe: OK
/home/peter/all/P2P-Worm.Win32.SpyBot.paz: OK
/home/peter/all/Trojan-PSW.Win32.Sinowal.n: Trojan.Spy.Sinowal-25 FOUND
/home/peter/all/LANMessenger.exe: OK
/home/peter/all/Trojan-PSW.Win32.Sinowal.ih: OK
/home/peter/all/Trojan-PSW.Win32.Sinowal.av: Trojan.Spy.Sinowal-26 FOUND
/home/peter/all/Tcpview.exe: OK
/home/peter/all/P2P-Worm.Win32.SpyBot.pdy: OK
/home/peter/all/Trojan-PSW.Win32.Sinowal.m: Trojan.Spy.Sinowal-46 FOUND
/home/peter/all/PUTTYGEN.EXE: OK
/home/peter/all/DropUpLoad.exe: OK
/home/peter/all/P2P-Worm.Win32.SpyBot.n: Trojan.Spybot.gen-2 FOUND
/home/peter/all/eToolz.exe: OK
/home/peter/all/Backdoor.Win32.Agent.achf: OK
/home/peter/all/Trojan-PSW.Win32.Sinowal.ci: OK
/home/peter/all/PLINK.EXE: OK
/home/peter/all/Trojan-PSW.Win32.Sinowal.aq: Trojan.Spy.Sinowal-44 FOUND
/home/peter/all/nPOP.exe: OK
/home/peter/all/NetRouteView.exe: OK
/home/peter/all/Trojan-PSW.Win32.Sinowal.br: Trojan.Spy.Sinowal-26 FOUND
/home/peter/all/PortableWackGet.exe: OK
/home/peter/all/popcorn.exe: OK
/home/peter/all/netscan.exe: OK
/home/peter/all/P2P-Worm.Win32.SpyBot.k: Trojan.Spybot.gen-2 FOUND
/home/peter/all/P2P-Worm.Win32.SpyBot.pdv: OK
/home/peter/all/P2P-Worm.Win32.SpyBot.gi: Trojan.Spybot.gen-3 FOUND
/home/peter/all/P2P-Worm.Win32.SpyBot.ped: OK
/home/peter/all/Backdoor.Win32.Agent.aahl: OK
/home/peter/all/Backdoor.Win32.Agent.aal: OK
/home/peter/all/nPOPuk_win98.exe: OK
/home/peter/all/Backdoor.Win32.Agent.aaa: Trojan.Agent-131839 FOUND
/home/peter/all/Backdoor.Win32.Agent.adjv: Trojan.Delf-8261 FOUND
/home/peter/all/Trojan-PSW.Win32.Sinowal.au: OK
/home/peter/all/Backdoor.Win32.Agent.adbl: Trojan.Vundo-10901 FOUND
/home/peter/all/ipscan.exe: OK
/home/peter/all/PSFTP.EXE: OK
/home/peter/all/DbxConv.exe: OK
/home/peter/all/P2P-Worm.Win32.SpyBot.bn: Trojan.Spybot.gen-3 FOUND
/home/peter/all/Backdoor.Win32.Agent.adhy: OK
/home/peter/all/Trojan-PSW.Win32.Sinowal.je: OK
/home/peter/all/Backdoor.Win32.Agent.aagp: Trojan.Agent-192978 FOUND

100

Behavior-based Classification of Botnet Malware

/home/peter/all/Backdoor.Win32.Agent.acnz: OK
/home/peter/all/Trojan-PSW.Win32.Sinowal.i: Trojan.Spy.Sinowal-25 FOUND
/home/peter/all/Trojan-PSW.Win32.Sinowal.bf: Trojan.Spy.Sinowal-26 FOUND
/home/peter/all/Backdoor.Win32.Agent.adow: Trojan.Dropper-18605 FOUND
/home/peter/all/Backdoor.Win32.Agent.aap: Trojan.Agent-115740 FOUND
/home/peter/all/hfs.exe: OK
/home/peter/all/Trojan-PSW.Win32.Sinowal.bb: Trojan.Spy.Sinowal-26 FOUND
/home/peter/all/Trojan-PSW.Win32.Sinowal.ay: OK
/home/peter/all/P2P-Worm.Win32.SpyBot.pgf: Trojan.Spybot-116 FOUND
/home/peter/all/smsniff.exe: OK
/home/peter/all/Backdoor.Win32.Agent.adne: Trojan.Dropper-18605 FOUND
/home/peter/all/Backdoor.Win32.Agent.aama: Trojan.Agent-192978 FOUND
/home/peter/all/PSCP.EXE: OK
/home/peter/all/Backdoor.Win32.Agent.abck: OK
/home/peter/all/Trojan-PSW.Win32.Sinowal.j: Trojan.Spy.Sinowal-25 FOUND
/home/peter/all/FollowMeIPLite.exe: OK
/home/peter/all/Backdoor.Win32.Agent.adb: Trojan.Agent-9071 FOUND
/home/peter/all/Backdoor.Win32.Agent.adqc: OK
/home/peter/all/P2P-Worm.Win32.SpyBot.pda: Trojan.SdBot-13168 FOUND
/home/peter/all/P2P-Worm.Win32.SpyBot.b: Trojan.Spybot.gen-2 FOUND
/home/peter/all/Trojan-PSW.Win32.Sinowal.h: Trojan.Spy.Sinowal-25 FOUND
/home/peter/all/Trojan-PSW.Win32.Sinowal.bk: OK
/home/peter/all/Backdoor.Win32.Agent.ab: Trojan.Agent-605 FOUND
/home/peter/all/P2P-Worm.Win32.SpyBot.pdu: OK
/home/peter/all/Trojan-PSW.Win32.Sinowal.cj: OK
/home/peter/all/P2P-Worm.Win32.SpyBot.pdj: Trojan.SdBot-13167 FOUND
/home/peter/all/Tcpvcon.exe: OK
/home/peter/all/P2P-Worm.Win32.SpyBot.a: Trojan.Spybot.gen-2 FOUND
/home/peter/all/P2P-Worm.Win32.SpyBot.m: Trojan.Spybot.gen-2 FOUND
/home/peter/all/P2P-Worm.Win32.SpyBot.ak: OK
/home/peter/all/avant.exe: OK
/home/peter/all/Trojan-PSW.Win32.Sinowal.ar: Trojan.Spy.Sinowal-44 FOUND
/home/peter/all/P2P-Worm.Win32.SpyBot.hw: Trojan.Spybot.gen-2 FOUND
/home/peter/all/ipnetinfo.exe: OK
/home/peter/all/NetworkStuff.exe: OK
/home/peter/all/Fact200.exe: OK
/home/peter/all/P2P-Worm.Win32.SpyBot.o: Trojan.Spybot.gen-2 FOUND
/home/peter/all/Backdoor.Win32.Agent.acnq: OK
/home/peter/all/Trojan-PSW.Win32.Sinowal.ae: Trojan.Spy.Sinowal-40 FOUND
/home/peter/all/RouterPassView.exe: OK
/home/peter/all/Trojan-PSW.Win32.Sinowal.o: Trojan.Spy.Sinowal-25 FOUND
/home/peter/all/Trojan-PSW.Win32.Sinowal.aa: Trojan.Spy.Sinowal-33 FOUND
/home/peter/all/Backdoor.Win32.Agent.adfc: OK
/home/peter/all/connectionmonitoring.exe: OK
/home/peter/all/qm.exe: OK
/home/peter/all/Backdoor.Win32.Agent.adf: Trojan.Agent-526 FOUND

101

Behavior-based Classification of Botnet Malware

/home/peter/all/PUTTY.EXE: OK
/home/peter/all/Backdoor.Win32.Agent.acrv: OK
/home/peter/all/Trojan-PSW.Win32.Sinowal.af: Trojan.Spy.Sinowal-26 FOUND
/home/peter/all/IPInfoOffline.exe: OK
/home/peter/all/Trojan-PSW.Win32.Sinowal.bd: Trojan.Spy.Sinowal-33 FOUND
/home/peter/all/Backdoor.Win32.Agent.acly: Trojan.Agent-92729 FOUND
/home/peter/all/P2P-Worm.Win32.SpyBot.pdl: OK
/home/peter/all/DNSBench.exe: OK
/home/peter/all/P2P-Worm.Win32.SpyBot.pdp: OK
/home/peter/all/Trojan-PSW.Win32.Sinowal.cn: Trojan.Spy.Sinowal-26 FOUND
/home/peter/all/PixaMSN.exe: OK
/home/peter/all/Backdoor.Win32.Agent.aaua: Trojan.Dropper-18605 FOUND

----------- SCAN SUMMARY -----------
Known viruses: 972002
Engine version: 0.96.5
Scanned directories: 1
Scanned files: 143
Infected files: 56
Data scanned: 62.20 MB
Data read: 55.05 MB (ratio 1.13:1)
Time: 32.904 sec (0 m 32 s)

102

Behavior-based Classification of Botnet Malware

D Classification Results

D.1 Complete Feature Sets

out_combo.arff with Naive Bayes
True positives: 83.0, True positive rate: 0.916083916083916
False negatives: 10.0, False negative rate: 0.08391608391608392
False positives: 2.0, False positive rate: 0.06361079780434618
True negatives: 48.0, True negative rate: 0.9363892021956538
Detection rate: 0.8924731182795699, Accuracy: 0.916083916083916
Precision: 0.9244131122427268, Recall: 0.916083916083916

out_combo.arff with K-NN
True positives: 89.0, True positive rate: 0.8951048951048951
False negatives: 4.0, False negative rate: 0.1048951048951049
False positives: 11.0, False positive rate: 0.15811564779306717
True negatives: 39.0, True negative rate: 0.8418843522069329
Detection rate: 0.956989247311828, Accuracy: 0.8951048951048951
Precision: 0.8959359245405756, Recall: 0.8951048951048951

out_combo.arff with C4.5
True positives: 82.0, True positive rate: 0.8601398601398601
False negatives: 11.0, False negative rate: 0.13986013986013987
False positives: 9.0, False positive rate: 0.15841943003233325
True negatives: 41.0, True negative rate: 0.8415805699676667
Detection rate: 0.8817204301075269, Accuracy: 0.8601398601398601
Precision: 0.8617152078690541, Recall: 0.8601398601398601

out_combo.arff with SVM
True positives: 91.0, True positive rate: 0.8321678321678322
False negatives: 2.0, False negative rate: 0.16783216783216784
False positives: 22.0, False positive rate: 0.2936732085119182
True negatives: 28.0, True negative rate: 0.7063267914880818
Detection rate: 0.978494623655914, Accuracy: 0.8321678321678322
Precision: 0.850073230604204, Recall: 0.8321678321678322

out_combo.arff with Bayes Network
True positives: 91.0, True positive rate: 0.8671328671328671
False negatives: 2.0, False negative rate: 0.13286713286713286
False positives: 17.0, False positive rate: 0.22863824347695316
True negatives: 33.0, True negative rate: 0.771361756523047
Detection rate: 0.978494623655914, Accuracy: 0.8671328671328671
Precision: 0.8776501276501276, Recall: 0.8671328671328671

103

Behavior-based Classification of Botnet Malware

out_dynamic.arff with Naive Bayes
True positives: 78.0, True positive rate: 0.8671328671328671
False negatives: 15.0, False negative rate: 0.13286713286713286
False positives: 4.0, False positive rate: 0.1084231897135123
True negatives: 46.0, True negative rate: 0.8915768102864877
Detection rate: 0.8387096774193549, Accuracy: 0.8671328671328671
Precision: 0.8822960326358966, Recall: 0.8671328671328671

out_dynamic.arff with K-NN
True positives: 80.0, True positive rate: 0.8741258741258742
False negatives: 13.0, False negative rate: 0.1258741258741259
False positives: 5.0, False positive rate: 0.11391082036243326
True negatives: 45.0, True negative rate: 0.8860891796375668
Detection rate: 0.8602150537634409, Accuracy: 0.8741258741258742
Precision: 0.8833742322586137, Recall: 0.8741258741258742

out_dynamic.arff with C4.5
True positives: 79.0, True positive rate: 0.8461538461538461
False negatives: 14.0, False negative rate: 0.15384615384615385
False positives: 8.0, False positive rate: 0.1566914805624483
True negatives: 42.0, True negative rate: 0.8433085194375517
Detection rate: 0.8494623655913979, Accuracy: 0.8461538461538461
Precision: 0.8527851458885942, Recall: 0.8461538461538461

out_dynamic.arff with SVM
True positives: 87.0, True positive rate: 0.8321678321678322
False negatives: 6.0, False negative rate: 0.16783216783216784
False positives: 18.0, False positive rate: 0.25668396120009024
True negatives: 32.0, True negative rate: 0.7433160387999098
Detection rate: 0.9354838709677419, Accuracy: 0.8321678321678322
Precision: 0.8333035385666965, Recall: 0.8321678321678322

out_dynamic.arff with Bayes Network
True positives: 88.0, True positive rate: 0.8811188811188811
False negatives: 5.0, False negative rate: 0.11888111888111888
False positives: 12.0, False positive rate: 0.17488232197909617
True negatives: 38.0, True negative rate: 0.8251176780209039
Detection rate: 0.946236559139785, Accuracy: 0.8811188811188811
Precision: 0.8813010245568386, Recall: 0.8811188811188811

out_static.arff with Naive Bayes
True positives: 89.0, True positive rate: 0.8741258741258742
False negatives: 4.0, False negative rate: 0.1258741258741259
False positives: 14.0, False positive rate: 0.1971366268140462
True negatives: 36.0, True negative rate: 0.8028633731859538

104

Behavior-based Classification of Botnet Malware

Detection rate: 0.956989247311828, Accuracy: 0.8741258741258742
Precision: 0.8766379251816144, Recall: 0.8741258741258742

out_static.arff with K-NN
True positives: 90.0, True positive rate: 0.9020979020979021
False negatives: 3.0, False negative rate: 0.0979020979020979
False positives: 11.0, False positive rate: 0.15435596661403114
True negatives: 39.0, True negative rate: 0.8456440333859689
Detection rate: 0.967741935483871, Accuracy: 0.9020979020979021
Precision: 0.9041948150859044, Recall: 0.9020979020979021

out_static.arff with C4.5
True positives: 92.0, True positive rate: 0.9090909090909091
False negatives: 1.0, False negative rate: 0.09090909090909091
False positives: 12.0, False positive rate: 0.1598435972629521
True negatives: 38.0, True negative rate: 0.840156402737048
Detection rate: 0.989247311827957, Accuracy: 0.9090909090909091
Precision: 0.9159942621481082, Recall: 0.9090909090909091

out_static.arff with SVM
True positives: 92.0, True positive rate: 0.8461538461538461
False negatives: 1.0, False negative rate: 0.15384615384615385
False positives: 21.0, False positive rate: 0.27690653432588913
True negatives: 29.0, True negative rate: 0.7230934656741108
Detection rate: 0.989247311827957, Accuracy: 0.8461538461538461
Precision: 0.8674835488994781, Recall: 0.8461538461538461

out_static.arff with Bayes Network
True positives: 92.0, True positive rate: 0.8741258741258742
False negatives: 1.0, False negative rate: 0.1258741258741259
False positives: 17.0, False positive rate: 0.22487856229791714
True negatives: 33.0, True negative rate: 0.7751214377020829
Detection rate: 0.989247311827957, Accuracy: 0.8741258741258742
Precision: 0.8882854867744238, Recall: 0.8741258741258742

D.2 Reduced Feature Sets - CFS

out_combo_cs.arff with Naive Bayes
True positives: 86.0, True positive rate: 0.951048951048951
False negatives: 7.0, False negative rate: 0.04895104895104895
False positives: 0.0, False positive rate: 0.026317768253252126
True negatives: 50.0, True negative rate: 0.973682231746748
Detection rate: 0.9247311827956989, Accuracy: 0.951048951048951
Precision: 0.9570604833762728, Recall: 0.951048951048951

out_combo_cs.arff with K-NN
True positives: 91.0, True positive rate: 0.9440559440559441

105

Behavior-based Classification of Botnet Malware

False negatives: 2.0, False negative rate: 0.055944055944055944
False positives: 6.0, False positive rate: 0.08556132040003009
True negatives: 44.0, True negative rate: 0.9144386795999698
Detection rate: 0.978494623655914, Accuracy: 0.9440559440559441
Precision: 0.9445699974610777, Recall: 0.9440559440559441

out_combo_cs.arff with C4.5
True positives: 86.0, True positive rate: 0.9300699300699301
False negatives: 7.0, False negative rate: 0.06993006993006994
False positives: 3.0, False positive rate: 0.06533874727423114
True negatives: 47.0, True negative rate: 0.9346612527257688
Detection rate: 0.9247311827956989, Accuracy: 0.9300699300699301
Precision: 0.9327530563485621, Recall: 0.9300699300699301

out_combo_cs.arff with SVM
True positives: 83.0, True positive rate: 0.9230769230769231
False negatives: 10.0, False negative rate: 0.07692307692307693
False positives: 1.0, False positive rate: 0.050603804797353186
True negatives: 49.0, True negative rate: 0.9493961952026467
Detection rate: 0.8924731182795699, Accuracy: 0.9230769230769231
Precision: 0.9329949711305644, Recall: 0.9230769230769231

out_combo_cs.arff with Bayes Network
True positives: 85.0, True positive rate: 0.9440559440559441
False negatives: 8.0, False negative rate: 0.055944055944055944
False positives: 0.0, False positive rate: 0.030077449432288145
True negatives: 50.0, True negative rate: 0.9699225505677118
Detection rate: 0.9139784946236559, Accuracy: 0.9440559440559441
Precision: 0.951772365565469, Recall: 0.9440559440559441

out_dynamic_cs.arff with Naive Bayes
True positives: 82.0, True positive rate: 0.916083916083916
False negatives: 11.0, False negative rate: 0.08391608391608392
False positives: 1.0, False positive rate: 0.0543634859763892
True negatives: 49.0, True negative rate: 0.9456365140236107
Detection rate: 0.8817204301075269, Accuracy: 0.916083916083916
Precision: 0.9280618979414161, Recall: 0.916083916083916

out_dynamic_cs.arff with K-NN
True positives: 85.0, True positive rate: 0.9090909090909091
False negatives: 8.0, False negative rate: 0.09090909090909091
False positives: 5.0, False positive rate: 0.09511241446725319
True negatives: 45.0, True negative rate: 0.9048875855327468
Detection rate: 0.9139784946236559, Accuracy: 0.9090909090909091
Precision: 0.9110920526014865, Recall: 0.9090909090909091

106

Behavior-based Classification of Botnet Malware

out_dynamic_cs.arff with C4.5
True positives: 80.0, True positive rate: 0.9020979020979021
False negatives: 13.0, False negative rate: 0.09790209790209789
False positives: 1.0, False positive rate: 0.06188284833446123
True negatives: 49.0, True negative rate: 0.9381171516655388
Detection rate: 0.8602150537634409, Accuracy: 0.9020979020979021
Precision: 0.9186572089797895, Recall: 0.9020979020979021

out_dynamic_cs.arff with SVM
True positives: 80.0, True positive rate: 0.9020979020979021
False negatives: 13.0, False negative rate: 0.09790209790209789
False positives: 1.0, False positive rate: 0.06188284833446123
True negatives: 49.0, True negative rate: 0.9381171516655388
Detection rate: 0.8602150537634409, Accuracy: 0.9020979020979021
Precision: 0.9186572089797895, Recall: 0.9020979020979021

out_dynamic_cs.arff with Bayes Network
True positives: 81.0, True positive rate: 0.9090909090909091
False negatives: 12.0, False negative rate: 0.09090909090909091
False positives: 1.0, False positive rate: 0.05812316715542521
True negatives: 49.0, True negative rate: 0.9418768328445748
Detection rate: 0.8709677419354839, Accuracy: 0.9090909090909091
Precision: 0.9232852313620007, Recall: 0.9090909090909091

out_static_cs.arff with Naive Bayes
True positives: 91.0, True positive rate: 0.9440559440559441
False negatives: 2.0, False negative rate: 0.055944055944055944
False positives: 6.0, False positive rate: 0.08556132040003009
True negatives: 44.0, True negative rate: 0.9144386795999698
Detection rate: 0.978494623655914, Accuracy: 0.9440559440559441
Precision: 0.9445699974610777, Recall: 0.9440559440559441

out_static_cs.arff with K-NN
True positives: 91.0, True positive rate: 0.9370629370629371
False negatives: 2.0, False negative rate: 0.06293706293706294
False positives: 7.0, False positive rate: 0.0985683134070231
True negatives: 43.0, True negative rate: 0.9014316865929769
Detection rate: 0.978494623655914, Accuracy: 0.9370629370629371
Precision: 0.938006438006438, Recall: 0.9370629370629371

out_static_cs.arff with C4.5
True positives: 91.0, True positive rate: 0.9230769230769231
False negatives: 2.0, False negative rate: 0.07692307692307693
False positives: 9.0, False positive rate: 0.12458229942100908
True negatives: 41.0, True negative rate: 0.8754177005789908
Detection rate: 0.978494623655914, Accuracy: 0.9230769230769231

107

Behavior-based Classification of Botnet Malware

Precision: 0.9252057245080502, Recall: 0.9230769230769231

out_static_cs.arff with SVM
True positives: 91.0, True positive rate: 0.916083916083916
False negatives: 2.0, False negative rate: 0.08391608391608392
False positives: 10.0, False positive rate: 0.1375892924280021
True negatives: 40.0, True negative rate: 0.8624107075719979
Detection rate: 0.978494623655914, Accuracy: 0.916083916083916
Precision: 0.9189589288599189, Recall: 0.916083916083916

out_static_cs.arff with Bayes Network
True positives: 91.0, True positive rate: 0.916083916083916
False negatives: 2.0, False negative rate: 0.08391608391608392
False positives: 10.0, False positive rate: 0.1375892924280021
True negatives: 40.0, True negative rate: 0.8624107075719979
Detection rate: 0.978494623655914, Accuracy: 0.916083916083916
Precision: 0.9189589288599189, Recall: 0.916083916083916

D.3 New Combined Feature Set - CFS

out_combined_merged with Naive Bayes
True positives: 85.0, True positive rate: 0.9440559440559441
False negatives: 8.0, False negative rate: 0.055944055944055944
False positives: 0.0, False positive rate: 0.030077449432288145
True negatives: 50.0, True negative rate: 0.9699225505677118
Detection rate: 0.9139784946236559, Accuracy: 0.9440559440559441
Precision: 0.951772365565469, Recall: 0.9440559440559441

out_combined_merged with K-NN
True positives: 90.0, True positive rate: 0.9230769230769231
False negatives: 3.0, False negative rate: 0.07692307692307693
False positives: 8.0, False positive rate: 0.11533498759305211
True negatives: 42.0, True negative rate: 0.8846650124069478
Detection rate: 0.967741935483871, Accuracy: 0.9230769230769231
Precision: 0.9236002093144952, Recall: 0.9230769230769231

out_combined_merged with C4.5
True positives: 88.0, True positive rate: 0.9020979020979021
False negatives: 5.0, False negative rate: 0.0979020979020979
False positives: 9.0, False positive rate: 0.13586134295811714
True negatives: 41.0, True negative rate: 0.8641386570418828
Detection rate: 0.946236559139785, Accuracy: 0.9020979020979021
Precision: 0.9016528070763838, Recall: 0.9020979020979021

out_combined_merged with SVM
True positives: 87.0, True positive rate: 0.9230769230769231
False negatives: 6.0, False negative rate: 0.07692307692307693

108

Behavior-based Classification of Botnet Malware

False positives: 5.0, False positive rate: 0.08759305210918115
True negatives: 45.0, True negative rate: 0.9124069478908188
Detection rate: 0.9354838709677419, Accuracy: 0.9230769230769231
Precision: 0.9235195750541019, Recall: 0.9230769230769231

out_combined_merged with Bayes Network
True positives: 86.0, True positive rate: 0.951048951048951
False negatives: 7.0, False negative rate: 0.04895104895104895
False positives: 0.0, False positive rate: 0.026317768253252126
True negatives: 50.0, True negative rate: 0.973682231746748
Detection rate: 0.9247311827956989, Accuracy: 0.951048951048951
Precision: 0.9570604833762728, Recall: 0.951048951048951

D.4 Reduced Feature Sets - GeFSCFS
out_combo_red.arff with Naive Bayes
True positives: 85.0, True positive rate: 0.9440559440559441
False negatives: 8.0, False negative rate: 0.055944055944055944
False positives: 0.0, False positive rate: 0.030077449432288145
True negatives: 50.0, True negative rate: 0.9699225505677118
Detection rate: 0.9139784946236559, Accuracy: 0.9440559440559441
Precision: 0.951772365565469, Recall: 0.9440559440559441

out_combo_red.arff with K-NN
True positives: 91.0, True positive rate: 0.951048951048951
False negatives: 2.0, False negative rate: 0.04895104895104895
False positives: 5.0, False positive rate: 0.07255432739303708
True negatives: 45.0, True negative rate: 0.927445672606963
Detection rate: 0.978494623655914, Accuracy: 0.951048951048951
Precision: 0.9512488840946288, Recall: 0.951048951048951

out_combo_red.arff with C4.5
True positives: 85.0, True positive rate: 0.9090909090909091
False negatives: 8.0, False negative rate: 0.09090909090909091
False positives: 5.0, False positive rate: 0.09511241446725319
True negatives: 45.0, True negative rate: 0.9048875855327468
Detection rate: 0.9139784946236559, Accuracy: 0.9090909090909091
Precision: 0.9110920526014865, Recall: 0.9090909090909091

out_combo_red.arff with SVM
True positives: 85.0, True positive rate: 0.9370629370629371
False negatives: 8.0, False negative rate: 0.06293706293706294
False positives: 1.0, False positive rate: 0.043084442439281154
True negatives: 49.0, True negative rate: 0.9569155575607189
Detection rate: 0.9139784946236559, Accuracy: 0.9370629370629371
Precision: 0.9433640614791164, Recall: 0.9370629370629371

109

Behavior-based Classification of Botnet Malware

out_combo_red.arff with Bayes Network
True positives: 86.0, True positive rate: 0.951048951048951
False negatives: 7.0, False negative rate: 0.04895104895104895
False positives: 0.0, False positive rate: 0.026317768253252126
True negatives: 50.0, True negative rate: 0.973682231746748
Detection rate: 0.9247311827956989, Accuracy: 0.951048951048951
Precision: 0.9570604833762728, Recall: 0.951048951048951

out_dynamic_red.arff with Naive Bayes
True positives: 82.0, True positive rate: 0.916083916083916
False negatives: 11.0, False negative rate: 0.08391608391608392
False positives: 1.0, False positive rate: 0.0543634859763892
True negatives: 49.0, True negative rate: 0.9456365140236107
Detection rate: 0.8817204301075269, Accuracy: 0.916083916083916
Precision: 0.9280618979414161, Recall: 0.916083916083916

out_dynamic_red.arff with K-NN
True positives: 82.0, True positive rate: 0.8741258741258742
False negatives: 11.0, False negative rate: 0.1258741258741259
False positives: 7.0, False positive rate: 0.13240544401834728
True negatives: 43.0, True negative rate: 0.8675945559816527
Detection rate: 0.8817204301075269, Accuracy: 0.8741258741258742
Precision: 0.8776238326800125, Recall: 0.8741258741258742

out_dynamic_red.arff with C4.5
True positives: 81.0, True positive rate: 0.8741258741258742
False negatives: 12.0, False negative rate: 0.1258741258741259
False positives: 6.0, False positive rate: 0.12315813219039023
True negatives: 44.0, True negative rate: 0.8768418678096097
Detection rate: 0.8709677419354839, Accuracy: 0.8741258741258742
Precision: 0.8802232250508112, Recall: 0.8741258741258742

out_dynamic_red.arff with SVM
True positives: 81.0, True positive rate: 0.8881118881118881
False negatives: 12.0, False negative rate: 0.11188811188811189
False positives: 4.0, False positive rate: 0.09714414617640424
True negatives: 46.0, True negative rate: 0.9028558538235959
Detection rate: 0.8709677419354839, Accuracy: 0.8881118881118881
Precision: 0.8970538589199848, Recall: 0.8881118881118881

out_dynamic_red.arff with Bayes Network
True positives: 82.0, True positive rate: 0.916083916083916
False negatives: 11.0, False negative rate: 0.08391608391608392
False positives: 1.0, False positive rate: 0.0543634859763892
True negatives: 49.0, True negative rate: 0.9456365140236107
Detection rate: 0.8817204301075269, Accuracy: 0.916083916083916

110

Behavior-based Classification of Botnet Malware

Precision: 0.9280618979414161, Recall: 0.916083916083916

out_static_red.arff with Naive Bayes
True positives: 90.0, True positive rate: 0.916083916083916
False negatives: 3.0, False negative rate: 0.08391608391608392
False positives: 9.0, False positive rate: 0.12834198060004512
True negatives: 41.0, True negative rate: 0.8716580193999548
Detection rate: 0.967741935483871, Accuracy: 0.916083916083916
Precision: 0.9170375079465988, Recall: 0.916083916083916

out_static_red.arff with K-NN
True positives: 90.0, True positive rate: 0.9230769230769231
False negatives: 3.0, False negative rate: 0.07692307692307693
False positives: 8.0, False positive rate: 0.11533498759305211
True negatives: 42.0, True negative rate: 0.8846650124069478
Detection rate: 0.967741935483871, Accuracy: 0.9230769230769231
Precision: 0.9236002093144952, Recall: 0.9230769230769231

out_static_red.arff with C4.5
True positives: 92.0, True positive rate: 0.9090909090909091
False negatives: 1.0, False negative rate: 0.09090909090909091
False positives: 12.0, False positive rate: 0.1598435972629521
True negatives: 38.0, True negative rate: 0.840156402737048
Detection rate: 0.989247311827957, Accuracy: 0.9090909090909091
Precision: 0.9159942621481082, Recall: 0.9090909090909091

out_static_red.arff with SVM
True positives: 90.0, True positive rate: 0.9090909090909091
False negatives: 3.0, False negative rate: 0.09090909090909091
False positives: 10.0, False positive rate: 0.14134897360703813
True negatives: 40.0, True negative rate: 0.858651026392962
Detection rate: 0.967741935483871, Accuracy: 0.9090909090909091
Precision: 0.9105708245243128, Recall: 0.9090909090909091

out_static_red.arff with Bayes Network
True positives: 90.0, True positive rate: 0.9090909090909091
False negatives: 3.0, False negative rate: 0.09090909090909091
False positives: 10.0, False positive rate: 0.14134897360703813
True negatives: 40.0, True negative rate: 0.858651026392962
Detection rate: 0.967741935483871, Accuracy: 0.9090909090909091
Precision: 0.9105708245243128, Recall: 0.9090909090909091

D.5 New Combined Feature Set - GeFSCFS
out_combined_merged with Naive Bayes
True positives: 87.0, True positive rate: 0.9230769230769231
False negatives: 6.0, False negative rate: 0.07692307692307693

111

Behavior-based Classification of Botnet Malware

False positives: 5.0, False positive rate: 0.08759305210918115
True negatives: 45.0, True negative rate: 0.9124069478908188
Detection rate: 0.9354838709677419, Accuracy: 0.9230769230769231
Precision: 0.9235195750541019, Recall: 0.9230769230769231

out_combined_merged with K-NN
True positives: 90.0, True positive rate: 0.9230769230769231
False negatives: 3.0, False negative rate: 0.07692307692307693
False positives: 8.0, False positive rate: 0.11533498759305211
True negatives: 42.0, True negative rate: 0.8846650124069478
Detection rate: 0.967741935483871, Accuracy: 0.9230769230769231
Precision: 0.9236002093144952, Recall: 0.9230769230769231

out_combined_merged with C4.5
True positives: 89.0, True positive rate: 0.9370629370629371
False negatives: 4.0, False negative rate: 0.06293706293706294
False positives: 5.0, False positive rate: 0.08007368975110911
True negatives: 45.0, True negative rate: 0.9199263102488909
Detection rate: 0.956989247311828, Accuracy: 0.9370629370629371
Precision: 0.936864047806297, Recall: 0.9370629370629371

out_combined_merged with SVM
True positives: 90.0, True positive rate: 0.916083916083916
False negatives: 3.0, False negative rate: 0.08391608391608392
False positives: 9.0, False positive rate: 0.12834198060004512
True negatives: 41.0, True negative rate: 0.8716580193999548
Detection rate: 0.967741935483871, Accuracy: 0.916083916083916
Precision: 0.9170375079465988, Recall: 0.916083916083916

out_combined_merged with Bayes Network
True positives: 90.0, True positive rate: 0.9440559440559441
False negatives: 3.0, False negative rate: 0.055944055944055944
False positives: 5.0, False positive rate: 0.0763140085720731
True negatives: 45.0, True negative rate: 0.923685991427927
Detection rate: 0.967741935483871, Accuracy: 0.9440559440559441
Precision: 0.9439179241810821, Recall: 0.9440559440559441

D.6 Complete Feature Sets - Unsupervised Discretization

out_combo_d.arff with Naive Bayes
True positives: 92.0, True positive rate: 0.7272727272727273
False negatives: 1.0, False negative rate: 0.2727272727272727
False positives: 38.0, False positive rate: 0.4980254154447703
True negatives: 12.0, True negative rate: 0.5019745845552297
Detection rate: 0.989247311827957, Accuracy: 0.7272727272727273
Precision: 0.7830016137708445, Recall: 0.7272727272727273

112

Behavior-based Classification of Botnet Malware

out_combo_d.arff with K-NN
True positives: 89.0, True positive rate: 0.8951048951048951
False negatives: 4.0, False negative rate: 0.1048951048951049
False positives: 11.0, False positive rate: 0.15811564779306717
True negatives: 39.0, True negative rate: 0.8418843522069329
Detection rate: 0.956989247311828, Accuracy: 0.8951048951048951
Precision: 0.8959359245405756, Recall: 0.8951048951048951

out_combo_d.arff with C4.5
True positives: 82.0, True positive rate: 0.8391608391608392
False negatives: 11.0, False negative rate: 0.16083916083916083
False positives: 12.0, False positive rate: 0.19744040905331228
True negatives: 38.0, True negative rate: 0.8025595909466878
Detection rate: 0.8817204301075269, Accuracy: 0.8391608391608392
Precision: 0.8384837047451029, Recall: 0.8391608391608392

out_combo_d.arff with SVM
True positives: 87.0, True positive rate: 0.8391608391608392
False negatives: 6.0, False negative rate: 0.16083916083916083
False positives: 17.0, False positive rate: 0.2436769681930972
True negatives: 33.0, True negative rate: 0.7563230318069027
Detection rate: 0.9354838709677419, Accuracy: 0.8391608391608392
Precision: 0.8399004841312533, Recall: 0.8391608391608392

out_combo_d.arff with Bayes Network
True positives: 91.0, True positive rate: 0.8671328671328671
False negatives: 2.0, False negative rate: 0.13286713286713286
False positives: 17.0, False positive rate: 0.22863824347695316
True negatives: 33.0, True negative rate: 0.771361756523047
Detection rate: 0.978494623655914, Accuracy: 0.8671328671328671
Precision: 0.8776501276501276, Recall: 0.8671328671328671

out_dynamic_d.arff with Naive Bayes
True positives: 93.0, True positive rate: 0.6573426573426573
False negatives: 0.0, False negative rate: 0.34265734265734266
False positives: 49.0, False positive rate: 0.6373426573426574
True negatives: 1.0, True negative rate: 0.3626573426573427
Detection rate: 1.0, Accuracy: 0.6573426573426573
Precision: 0.7755835713582192, Recall: 0.6573426573426573

out_dynamic_d.arff with K-NN
True positives: 80.0, True positive rate: 0.8741258741258742
False negatives: 13.0, False negative rate: 0.1258741258741259
False positives: 5.0, False positive rate: 0.11391082036243326
True negatives: 45.0, True negative rate: 0.8860891796375668
Detection rate: 0.8602150537634409, Accuracy: 0.8741258741258742

113

Behavior-based Classification of Botnet Malware

Precision: 0.8833742322586137, Recall: 0.8741258741258742

out_dynamic_d.arff with C4.5
True positives: 81.0, True positive rate: 0.8391608391608392
False negatives: 12.0, False negative rate: 0.16083916083916083
False positives: 11.0, False positive rate: 0.1881930972253553
True negatives: 39.0, True negative rate: 0.8118069027746447
Detection rate: 0.8709677419354839, Accuracy: 0.8391608391608392
Precision: 0.8399701321696207, Recall: 0.8391608391608392

out_dynamic_d.arff with SVM
True positives: 86.0, True positive rate: 0.8531468531468531
False negatives: 7.0, False negative rate: 0.14685314685314685
False positives: 14.0, False positive rate: 0.20841567035115424
True negatives: 36.0, True negative rate: 0.7915843296488457
Detection rate: 0.9247311827956989, Accuracy: 0.8531468531468531
Precision: 0.8520312245893642, Recall: 0.8531468531468531

out_dynamic_d.arff with Bayes Network
True positives: 88.0, True positive rate: 0.8811188811188811
False negatives: 5.0, False negative rate: 0.11888111888111888
False positives: 12.0, False positive rate: 0.17488232197909617
True negatives: 38.0, True negative rate: 0.8251176780209039
Detection rate: 0.946236559139785, Accuracy: 0.8811188811188811
Precision: 0.8813010245568386, Recall: 0.8811188811188811

out_static_d.arff with Naive Bayes
True positives: 92.0, True positive rate: 0.8461538461538461
False negatives: 1.0, False negative rate: 0.15384615384615385
False positives: 21.0, False positive rate: 0.27690653432588913
True negatives: 29.0, True negative rate: 0.7230934656741108
Detection rate: 0.989247311827957, Accuracy: 0.8461538461538461
Precision: 0.8674835488994781, Recall: 0.8461538461538461

out_static_d.arff with K-NN
True positives: 90.0, True positive rate: 0.9020979020979021
False negatives: 3.0, False negative rate: 0.0979020979020979
False positives: 11.0, False positive rate: 0.15435596661403114
True negatives: 39.0, True negative rate: 0.8456440333859689
Detection rate: 0.967741935483871, Accuracy: 0.9020979020979021
Precision: 0.9041948150859044, Recall: 0.9020979020979021

out_static_d.arff with C4.5
True positives: 92.0, True positive rate: 0.9370629370629371
False negatives: 1.0, False negative rate: 0.06293706293706294
False positives: 8.0, False positive rate: 0.10781562523498008

114

Behavior-based Classification of Botnet Malware

True negatives: 42.0, True negative rate: 0.8921843747650198
Detection rate: 0.989247311827957, Accuracy: 0.9370629370629371
Precision: 0.9398406244917872, Recall: 0.9370629370629371

out_static_d.arff with SVM
True positives: 82.0, True positive rate: 0.8461538461538461
False negatives: 11.0, False negative rate: 0.15384615384615385
False positives: 11.0, False positive rate: 0.18443341604631927
True negatives: 39.0, True negative rate: 0.8155665839536808
Detection rate: 0.8817204301075269, Accuracy: 0.8461538461538461
Precision: 0.8461538461538461, Recall: 0.8461538461538461

out_static_d.arff with Bayes Network
True positives: 92.0, True positive rate: 0.8741258741258742
False negatives: 1.0, False negative rate: 0.1258741258741259
False positives: 17.0, False positive rate: 0.22487856229791714
True negatives: 33.0, True negative rate: 0.7751214377020829
Detection rate: 0.989247311827957, Accuracy: 0.8741258741258742
Precision: 0.8882854867744238, Recall: 0.8741258741258742

D.7 Complete Feature Sets - Supervised Discretization

out_combo_d_sv.arff with Naive Bayes
True positives: 78.0, True positive rate: 0.8881118881118881
False negatives: 15.0, False negative rate: 0.11188811188811189
False positives: 1.0, False positive rate: 0.06940221069253327
True negatives: 49.0, True negative rate: 0.9305977893074666
Detection rate: 0.8387096774193549, Accuracy: 0.8881118881118881
Precision: 0.9098184252456405, Recall: 0.8881118881118881

out_combo_d_sv.arff with K-NN
True positives: 88.0, True positive rate: 0.916083916083916
False negatives: 5.0, False negative rate: 0.08391608391608392
False positives: 7.0, False positive rate: 0.10984735694413114
True negatives: 43.0, True negative rate: 0.8901526430558689
Detection rate: 0.946236559139785, Accuracy: 0.916083916083916
Precision: 0.9156575880260092, Recall: 0.916083916083916

out_combo_d_sv.arff with C4.5
True positives: 83.0, True positive rate: 0.8811188811188811
False negatives: 10.0, False negative rate: 0.11888111888111888
False positives: 7.0, False positive rate: 0.12864576283931123
True negatives: 43.0, True negative rate: 0.8713542371606888
Detection rate: 0.8924731182795699, Accuracy: 0.8811188811188811
Precision: 0.8834454853322778, Recall: 0.8811188811188811

out_combo_d_sv.arff with SVM

115

Behavior-based Classification of Botnet Malware

True positives: 92.0, True positive rate: 0.7762237762237763
False negatives: 1.0, False negative rate: 0.22377622377622378
False positives: 31.0, False positive rate: 0.4069764643958192
True negatives: 19.0, True negative rate: 0.5930235356041809
Detection rate: 0.989247311827957, Accuracy: 0.7762237762237763
Precision: 0.8186082210472454, Recall: 0.7762237762237763

out_combo_d_sv.arff with Bayes Network
True positives: 78.0, True positive rate: 0.8881118881118881
False negatives: 15.0, False negative rate: 0.11188811188811189
False positives: 1.0, False positive rate: 0.06940221069253327
True negatives: 49.0, True negative rate: 0.9305977893074666
Detection rate: 0.8387096774193549, Accuracy: 0.8881118881118881
Precision: 0.9098184252456405, Recall: 0.8881118881118881

out_dynamic_d_sv.arff with Naive Bayes
True positives: 76.0, True positive rate: 0.8741258741258742
False negatives: 17.0, False negative rate: 0.1258741258741259
False positives: 1.0, False positive rate: 0.0769215730506053
True negatives: 49.0, True negative rate: 0.9230784269493947
Detection rate: 0.8172043010752689, Accuracy: 0.8741258741258742
Precision: 0.9014924469469924, Recall: 0.8741258741258742

out_dynamic_d_sv.arff with K-NN
True positives: 82.0, True positive rate: 0.8601398601398601
False negatives: 11.0, False negative rate: 0.13986013986013987
False positives: 9.0, False positive rate: 0.15841943003233325
True negatives: 41.0, True negative rate: 0.8415805699676667
Detection rate: 0.8817204301075269, Accuracy: 0.8601398601398601
Precision: 0.8617152078690541, Recall: 0.8601398601398601

out_dynamic_d_sv.arff with C4.5
True positives: 78.0, True positive rate: 0.8881118881118881
False negatives: 15.0, False negative rate: 0.11188811188811189
False positives: 1.0, False positive rate: 0.06940221069253327
True negatives: 49.0, True negative rate: 0.9305977893074666
Detection rate: 0.8387096774193549, Accuracy: 0.8881118881118881
Precision: 0.9098184252456405, Recall: 0.8881118881118881

out_dynamic_d_sv.arff with SVM
True positives: 93.0, True positive rate: 0.6503496503496503
False negatives: 0.0, False negative rate: 0.34965034965034963
False positives: 50.0, False positive rate: 0.6503496503496503
True negatives: 0.0, True negative rate: 0.34965034965034963
Detection rate: 1.0, Accuracy: 0.6503496503496503
Precision: 0.42295466770991247, Recall: 0.6503496503496503

116

Behavior-based Classification of Botnet Malware

out_dynamic_d_sv.arff with Bayes Network
True positives: 76.0, True positive rate: 0.8741258741258742
False negatives: 17.0, False negative rate: 0.1258741258741259
False positives: 1.0, False positive rate: 0.0769215730506053
True negatives: 49.0, True negative rate: 0.9230784269493947
Detection rate: 0.8172043010752689, Accuracy: 0.8741258741258742
Precision: 0.9014924469469924, Recall: 0.8741258741258742

out_static_d_sv.arff with Naive Bayes
True positives: 90.0, True positive rate: 0.8811188811188811
False negatives: 3.0, False negative rate: 0.11888111888111888
False positives: 14.0, False positive rate: 0.19337694563501018
True negatives: 36.0, True negative rate: 0.8066230543649898
Detection rate: 0.967741935483871, Accuracy: 0.8811188811188811
Precision: 0.8855567509413663, Recall: 0.8811188811188811

out_static_d_sv.arff with K-NN
True positives: 91.0, True positive rate: 0.8951048951048951
False negatives: 2.0, False negative rate: 0.1048951048951049
False positives: 13.0, False positive rate: 0.17661027144898112
True negatives: 37.0, True negative rate: 0.8233897285510188
Detection rate: 0.978494623655914, Accuracy: 0.8951048951048951
Precision: 0.9007755065447373, Recall: 0.8951048951048951

out_static_d_sv.arff with C4.5
True positives: 92.0, True positive rate: 0.9370629370629371
False negatives: 1.0, False negative rate: 0.06293706293706294
False positives: 8.0, False positive rate: 0.10781562523498008
True negatives: 42.0, True negative rate: 0.8921843747650198
Detection rate: 0.989247311827957, Accuracy: 0.9370629370629371
Precision: 0.9398406244917872, Recall: 0.9370629370629371

out_static_d_sv.arff with SVM
True positives: 92.0, True positive rate: 0.8461538461538461
False negatives: 1.0, False negative rate: 0.15384615384615385
False positives: 21.0, False positive rate: 0.27690653432588913
True negatives: 29.0, True negative rate: 0.7230934656741108
Detection rate: 0.989247311827957, Accuracy: 0.8461538461538461
Precision: 0.8674835488994781, Recall: 0.8461538461538461

out_static_d_sv.arff with Bayes Network
True positives: 90.0, True positive rate: 0.8811188811188811
False negatives: 3.0, False negative rate: 0.11888111888111888
False positives: 14.0, False positive rate: 0.19337694563501018
True negatives: 36.0, True negative rate: 0.8066230543649898

117

Behavior-based Classification of Botnet Malware

Detection rate: 0.967741935483871, Accuracy: 0.8811188811188811
Precision: 0.8855567509413663, Recall: 0.8811188811188811

118

Behavior-based Classification of Botnet Malware

E Source Code

E.1 deLink Integration

from a r f f import a r f f r ead , a r f f w r i t e # using a r f f module !
import commands # commands module
import re # regex module
import sys # fo r input commands
import p e f i l e # s t a t i c PE parse r
import os # io i n t e r f a c e
import submit_to_anubis # anubis sanbox submit te r
import u r l l i b 2 # web i n t e r f a c e
import u r l l i b # web i n t e r f a c e
import time # time i n t e r f a c e

de l ink f ea tu r e e x t r a c t o r func t ion
def de l ink () :

Gets a l l n e c c e s a r i l y in format ion :
ddimage = raw_input (" Image f i l e (whole path) \n ")
i n n f i l e a r f f = raw_input (" Corresponding ARFF input f i l e (whole path) \n ")
a r f f i n = open (i n n f i l e a r f f)
a r f f o u t = raw_input (" Output f i lename \n ")
machinenr = raw_input (" Machine number\n ")
medianr = raw_input (" Media number\n ")

fou t = open (a r f f ou t , ’w ’) # Opens input a r f f f i l e

parses the input ARFF f i l e :
p r i n t " S t a r t i n g Pars ing ARFF f i l e . . . "
(name , sparse , a l i s t , m) = a r f f r e a d (a r f f i n)
p r i n t " Done Pars ing ! "

Inc lude a l l new a t t r i b u t e s f o r the ARFF f i l e :
newent = [’ entropy ’ , 1 , []] # indexing a t t r i b u t e entropy
machine = [’ machine ’ , 1 , []] # indexing a t t r i b u t e machine metadata (numeric)
media = [’ media ’ , 1 , []] # indexing a t t r i b u t e media metadata (e . g . , d i sk = 1)
i p s t r = [’ IP s ’ , 0 , []] # indexing a t t r i b u t e IPs
m a i l s t r = [’ mai l s ’ , 0 , []] # indexing a t t r i b u t e mai l s
u r l s t r = [’ u r l s ’ , 0 , []] # indexing a t t r i b u t e URLs
a l i s t . append (machine) # adding machine a t t r i b u t e to a l i s t
a l i s t . append (media) # adding media a t t r i b u t e to a l i s t
a l i s t . append (newent) # adding ent a t t r i b u t e to a l i s t
a l i s t . append (i p s t r) # adding ip a t t r i b u t e to a l i s t
a l i s t . append (m a i l s t r) # adding mail a t t r i b u t e to a l i s t
a l i s t . append (u r l s t r) # adding u r l a t t r i b u t e to a l i s t

goes through a l l f i l e o b j e c t s parsed from a r f f f i l e and adds f e a t u r e s :
f o r obj in m:

i p t o t a l = " " # r e s e t t i n g f o r cur ren t f i l e o b j e c t ’ s ip s t r i n g
m a i l t o t a l = " " # r e s e t t i n g fo r cur ren t f i l e o b j e c t ’ s mail s t r i n g
u r l t o t a l = " " # r e s e t t i n g f o r cur ren t f i l e o b j e c t ’ s u r l s t r i n g
obj . append (machinenr) # machine metadata add
obj . append (medianr) # media metadata add
cmdent = " i c a t "+ddimage+" "+s t r (obj [15]) + " | ent " # command to c a l c u l a t e entropy
entoutput = commands . getoutput (cmdent) # ge t s entropy
ent = re . f i n d a l l (’ Entropy = ([0−9].[0−9]+) ’ , entoutput) # e x t r a c t s entropy value
p r i n t " Entropy f o r : " , ob j [0] , " − " , ent [0] # p r i n t s s t a t u s and entropy
obj . append (ent [0]) # adds the entropy to o b j e c t

opening cur ren t f i l e o b j e c t ’ s content from image f i l e , us ing i c a t
p r i n t " IP , mai l s and URLs i s added to : " , ob j [0] # adding s t a t u s
cmdstr = " i c a t "+ddimage+" "+s t r (obj [15]) # command to get f i l e content from image
using i c a t
ca t inpu t = commands . getoutput (cmdstr) # executes command and s t o r e s output f o r
search ing

f ind a l l ips , based on fo l lowing regu la r expres s ion :
i p s = re . f i n d a l l (’ (? : [\ d]{1 ,3}) \ . (? : [\ d]{1 ,3}) \ . (? : [\ d]{1 ,3}) \ . (? : [\ d]{1 ,3}) ’ ,

c a t inpu t)
i f len (i p s) > 0: # i f any IP found

f o r ip in i p s : # go through a l l found
i p t o t a l += ’ " ’ + ip + ’ " ’ # add to IP to s t r i ng , seperated by quotes

119

Behavior-based Classification of Botnet Malware

obj . append (i p t o t a l) # appending i p s to l i s t
e l s e : # i f no ip

obj . append (’ ? ’) # add ? (empty)

f ind a l l emails , based on fo l lowing regu la r expres s ion :
emai ls = re . f i n d a l l (
’ [a−zA−Z0−9]+[\._\−]∗[a−zA−Z0−9]∗@[a−zA−Z0−9]+[\.\−_]∗[a−zA−Z0−9]∗[\.][a−zA−Z]+ ’ ,

ca t inpu t)
i f len (emai l s) > 0: # i f any email found

f o r mail in emai l s : # go through a l l found
m a i l t o t a l += ’ " ’ + mail + ’ " ’ # add mail to s t r i n g

obj . append (m a i l t o t a l) # appending emai ls to l i s t
e l s e : # i f no email

ob j . append (’ ? ’) # add ? (empty)

#f ind a l l URLS , based on fo l lowing regu la r expres s ion :
u r l s = re . f i n d a l l (
’ h t tp [s] ? : / / (? : [a−zA−Z]|[0−9]|[!∗\(\) ,]|[\.]|(?:%[0−9a−fA−F][0−9a−fA−F]))+ ’ ,

ca t inpu t)
i f len (u r l s) > 0: # i f any email found

fo r u r l in u r l s : # go through a l l found
u r l t o t a l += ’ " ’ + u r l + ’ " ’ # add mail to s t r i n g

obj . append (u r l t o t a l) #appending u r l s to l i s t
e l s e : # i f no email

ob j . append (’ ? ’) # add ? (empty)

#wr i t e s the new l i s t s with a t t r i b u t e s and va lues to " fou t "− f i l e :
a r f f w r i t e (fout , a l i s t ,m, name)
#c l o s e the used f i l e s :
fou t . c l o s e ()
a r f f i n . c l o s e ()

malware a n a l y s i s func t ion
def malware_analys is

path to malware samples
d i r e c to ry_pa th = " F u l l path to malware samples "
load names in to l i s t
f i l e _ l i s t = os . l i s t d i r (d i r e c to ry_pa th)

i t e r a t i n g through l i s t and generat ing s t a t i c r e p o r t s
f o r name in f i l e _ l i s t :

p r i n t ’ cu r ren t malware ’+name
pe = p e f i l e . PE(d i r e c to ry_pa th + name)
check i f patch e x i s t s
d = ’ . / s t a t i c _ d a t a / ’
i f not os . path . e x i s t s (d) :

os . makedirs (d)
s t o r e repor t as t x t f i l e
report_name = d+name+ ’ . t x t ’
r epor t = open (report_name , ’w ’)
r epor t . wr i te (pe . dump_info ())

path to xml−f i l e
xml_path = " ht tp :// anubis . i s e c l a b . org / index . php? ac t ion=r e s u l t&ta sk_ id="
add task id s to l i s t
i d _ l i s t = []

i t e r a t i n g through l i s t and upload f i l e s
f o r name in f i l e _ l i s t :

upload f i l e s to anubis
p r i n t ’ cu r ren t f i l e ’+name
fname = di re c to ry_pa th+name
ta sk_ id = submit_to_anubis . submit (’ FILE ’ , fname)
i d _ l i s t . append (t a sk_ id)
p r i n t ’ get your repor t with t h i s id ’+ta sk_ id

counter = 0
i t e r a t e through id l i s t
f o r t a sk_ id in i d _ l i s t :

p r i n t ’ p roces s ing cur ren t ta sk ’+ta sk_ id
done = Fa l se

loop u n t i l xml−f i l e i s ready −− may take long time depending on queue
while not done :

download xml or html repor t
u r l = xml_path+ta sk_ id+ ’&format=xml ’
user_agent = ’ I n t e r n e t Explorer ’
va lues = { ’name ’ : ’ User ’ , ’ l o c a t i o n ’ : ’No ’ , ’ language ’ : ’ Python ’ }
headers = { ’ User−Agent ’ : user_agent }

p r i n t ’ f e t c h i n g f i l e from ’+u r l

120

Behavior-based Classification of Botnet Malware

data = u r l l i b . ur lencode (va lues)
req = u r l l i b 2 . Request (ur l , data , headers)
xml_url = u r l l i b 2 . urlopen (req) . g e t u r l ()
x m l _ f i l e = u r l l i b 2 . urlopen (xml_url) . read ()

parse f i l e
h t m l _ f i l e = Fa l se
i f x m l _ f i l e . f i nd (’<html ’) != −1:

p r i n t ’ no xml f i l e i s a v a i l a b l e ’
h t m l _ f i l e = True

i f anubis i s ready
i f not h t m l _ f i l e :

check i f patch e x i s t s
d = ’ . / dynamic_data / ’
i f not os . path . e x i s t s (d) :

os . makedirs (d)
s t o r e f i l e
f i le_name = d + f i l e _ l i s t . index (counter) + ’ . xml ’
l o c a l f = open (fi le_name , ’w ’)
l o c a l f . wr i te (x m l _ f i l e)
l o c a l f . c l o s e ()
done = True
counter += 1
p r i n t ’ xml r e t r i e v e d and s tored as ’+ta sk_ id+ ’ . xml ’

e l s e :
s l eep f o r 5 second
p r i n t ’ s l e ep ing f o r 5 seconds . . . zzz ’
time . s l eep (5)

p r i n t ’ done r e t r i e v i n g s t a t i c and dynamic r e p o r t s ! ’

#must c a l l the ja r−f i l e f o r ARFF f i l e c r ea t i on
os . system (" java −j a r f e a t u r e _ e x t r a c t o r . j a r ")

main func t ion
def main(argv) :

f o r arg in sys . argv :
i f arg == ’−d ’ :

deLink f ea tu re e x t r a c t i o n
de l ink ()

e l i f arg == ’−f ’ :
s t a t i c and dynamic f ea tu r e e x t r a c t i o n
malware_analys is ()

i f __name__ == " __main__ " :
main(sys . argv)

121

Behavior-based Classification of Botnet Malware

E.2 Feature Extractor
Main

package f ea tu re . e x t r a c t o r ;

//main c l a s s f o r f ea tu re e x t r a c t o r component
// e x t r a c t s s t a t i c and dynamic f e a t u r e s
// bu i l d s s t a t i c , dynamic and a combined f ea tu re s e t
// genera tes a r f f−f i l e s r e f l e c t i n g the f ea tu re s e t s
pub l i c c l a s s Main
{

//main method
pub l i c s t a t i c void main(S t r ing [] args)
{

t r y
{

Fea tu reEx t rac to r e x t r a c t o r =
new Fea tu reEx t rac to r () ;

//EXTRACT FEATURES!
e x t r a c t o r . ex t rac t_dynamic_ fea tures () ;
System . out . p r i n t l n () ;
e x t r a c t o r . e x t r a c t _ s t a t i c _ f e a t u r e s () ;

//COMBINE FEATURES!
e x t r a c t o r . combine_features () ;

//EXTRACT LABELS !
e x t r a c t o r . e x t r a c t _ l a b e l s () ;

//GENERATE ARFF !
System . out . p r i n t l n () ;
e x t r a c t o r . g e n e r a t e _ a r f f () ;

} catch (Except ion e)
{

e . p r in tS tackTrace () ;
}

}

}

Parser

package f ea tu re . e x t r a c t o r ;

import java . io . F i l e ;
import java . io . F i leReader ;
import java . io . IOException ;
import java . u t i l . A r r a y L i s t ;
//DOM l i b r a r i e s f o r XML pars ing
import javax . xml . pa r se r s .∗ ;
import org . w3c .dom.∗ ;

// c l a s s Par se r i s the c o n t r o l l i n g e n t i t y of the XML and t e x t par se r
// i t loads the dynamic and s t a t i c r e p o r t s and i n i t i a t e s pars ing
pub l i c c l a s s Par se r
{

// d i r e c t o r i e s
p r i v a t e s t a t i c f i n a l S t r i ng DYNAMIC_PATH = " . \ \ dynamic_data \\ " ;
p r i v a t e s t a t i c f i n a l S t r i ng STATIC_PATH = " . \ \ s t a t i c _ d a t a \\ " ;

// samples ready f o r f u r t h e r proces s ing
p r i v a t e Ar rayL i s t <XML> xml_samples ;
p r i v a t e Ar rayL i s t <PE> pe_samples ;

//xml and t x t f i l e s
p r i v a t e Ar rayL i s t <F i l e > p e _ f i l e s ;
p r i v a t e Ar rayL i s t <F i l e > x m l _ f i l e s ;

pub l i c Par se r ()
{

xml_samples = new ArrayL i s t <XML>() ;
pe_samples = new ArrayL i s t <PE>() ;

p e _ f i l e s = new ArrayL i s t <F i l e >() ;
x m l _ f i l e s = new ArrayL i s t <F i l e >() ;

}

122

Behavior-based Classification of Botnet Malware

// re turn xml samples
pub l i c Ar rayL i s t <XML> get_xml_samples ()
{

re turn xml_samples ;
}

// re turn pe samples
pub l i c Ar rayL i s t <PE> get_pe_samples ()
{

re turn pe_samples ;
}

// loads dynamic r e p o r t s
pub l i c void open_dynamic_reports ()
{

//open s t a t i c _ d a t a −> loop through each f i l e name
F i l e da ta_ fo lde r = new F i l e (DYNAMIC_PATH) ;
F i l e [] content s = da ta_ fo lde r . l i s t F i l e s () ;

f o r (i n t i = 0; i < content s . length ; i++)
{

i f (content s [i] . i s F i l e ())
{

x m l _ f i l e s . add(content s [i]) ;
}

}
}

// i n i t i a t e xml par se r
pub l i c void parse_xml () throws Except ion
{

// i t e r a t e through loaded f i l e s
f o r (i n t i = 0; i < x m l _ f i l e s . s i z e () ; i++)
{

XML xml = new XML() ;
S t r i ng id = x m l _ f i l e s . get (i) . getName () ;
id = id . s u b s t r i n g (0 , id . length ()−4) ;

DocumentBuilderFactory f a c t o r y = DocumentBuilderFactory . newInstance
() ;

DocumentBuilder bu i l de r = f a c t o r y . newDocumentBuilder () ;
Document doc = bu i lde r . parse (x m l _ f i l e s . get (i)) ;

xml . analyze_document (doc , id) ;

xml_samples . add(xml) ;
}

}

// loads s t a t i c r e p o r t s
pub l i c void o p e n _ s t a t i c _ r e p o r t s ()
{

//open s t a t i c _ d a t a −> loop through each f i l e name
F i l e da ta_ fo lde r = new F i l e (STATIC_PATH) ;
F i l e [] content s = da ta_ fo lde r . l i s t F i l e s () ;

f o r (i n t i = 0; i < content s . length ; i++)
{

i f (content s [i] . i s F i l e ())
{

p e _ f i l e s . add(content s [i]) ;
}

}
}

// i n t i a t e t x t par se r
pub l i c void parse_pe () throws IOException
{

// i t e r a t e through loaded f i l e s
f o r (i n t i = 0; i < p e _ f i l e s . s i z e () ; i++)
{

F i l e f i l e = p e _ f i l e s . get (i) ;
S t r i ng id = f i l e . getName () ;
id = id . s u b s t r i n g (0 , id . length ()−4) ;

i n t len ;
char [] chr = new char [4096];
f i n a l S t r i n g B u f f e r b u f f e r = new S t r i n g B u f f e r () ;
f i n a l F i leReader reader = new Fi leReader (f i l e) ;

123

Behavior-based Classification of Botnet Malware

t r y
{

while ((len = reader . read (chr)) > 0)
{

b u f f e r . append (chr , 0 , len) ;
}

}
f i n a l l y
{

reader . c l o s e () ;
}

PE pe = new PE () ;
pe . add_dl l (b u f f e r . t o S t r i n g () , id) ;
pe_samples . add(pe) ;

}
}

}

PE

package f ea tu re . e x t r a c t o r ;

import java . u t i l . A r r a y L i s t ;

// c l a s s PE i s the tex t−parse r f o r s t a t i c
// crea ted by the PE parse r p e f i l e
pub l i c c l a s s PE
{

p r i v a t e S t r i ng sample_id ;
p r i v a t e Ar rayL i s t <DLL> d l l ;

pub l i c PE ()
{

d l l = new ArrayL i s t <DLL>() ;
}

//method par se r s s t a t i c t e x t f i l e s and look
// f o r DLL dependencies in the repor t
pub l i c void add_dl l (S t r i ng tex t , S t r i ng id)
{

sample_id = id ;

// t r i g g e r on ’ . d l l ’ s t r i n g
S t r i ng d e l i m i t e r = " . d l l " ;

// i t e r a t i n g through s t a t i c repor t
f o r (i n t i = 0; i < t e x t . length ()−5; i++)
{

S t r i ng d l l _ sub = t e x t . s u b s t r i n g (i , i +4) ;
// i f found a used DLL
i f (d l l _ sub . compareTo (d e l i m i t e r)==0)
{

//need to parse backward to f ind DLL name
i n t back_pos = i ;
boolean found_name = f a l s e ;

while (! found_name)
{

S t r i ng n = t e x t . s u b s t r i n g (back_pos−1,back_pos) ;

i f (n . compareTo (" \n ") == 0)
{

found_name = true ;
}
e l s e back_pos−−;

}

S t r i ng name = t e x t . s u b s t r i n g (back_pos , i) ;

// i f func t ion name i s found
i f (found_name)
{

//need to add " unknown " func t ion names as wel l
S t r i ng unknown = " Ordinal " ;
S t r i ng sub = t e x t . s u b s t r i n g (i +4, i +12) ;

// ex t ra pars ing statement v a r i a b l e
S t r i ng d = t e x t . s u b s t r i n g (i , i +5) ;

124

Behavior-based Classification of Botnet Malware

i f (unknown . compareTo (sub) == 0)
{

S t r i ng func t ion = " unknown " ;

// add to A r r a y L i s t
d l l . add(new DLL(name , func t ion)) ;

}
e l s e i f (d . compareTo (" . d l l . ")==0)
{

//need to parse forward to f ind func t ion
name

i n t for_pos = i ;
boolean found_funct ion = f a l s e ;

while (! found_funct ion)
{

S t r i ng n = t e x t . s u b s t r i n g (for_pos ,
for_pos+1) ;

i f (n . compareTo (" ") == 0)
{

found_funct ion = true ;
}
e l s e for_pos++;

}

S t r i ng func t ion = t e x t . s u b s t r i n g (i +5,
for_pos) ;

// add to A r r a y L i s t
d l l . add(new DLL(name , func t ion)) ;

}
}

}
}

}

// re tu rns sample id
pub l i c S t r i ng get_sample_id ()
{

re turn sample_id ;
}

// re tu rns l i s t of d l l s
pub l i c Ar rayL i s t <DLL> g e t _ d l l ()
{

re turn d l l ;
}

}

DLL

package f ea tu re . e x t r a c t o r ;

// c l a s s DLL holds in format ion found by the t e x t par se r
// ana lyz ing s t a t i c r e p o r t s from p e f i l e
pub l i c c l a s s DLL
{

p r i v a t e S t r i ng d l l _ t y p e ;
p r i v a t e S t r i ng d l l _ f u n c t i o n ;
p r i v a t e S t r i ng dl l_name_funct ion ; //name + func t ion

pub l i c DLL(S t r ing d l l _ type , S t r i ng d l l _ f u n c t i o n)
{

t h i s . d l l _ t y p e = d l l _ t y p e ;
t h i s . d l l _ f u n c t i o n = d l l _ f u n c t i o n ;
t h i s . d l l_name_funct ion = d l l _ t y p e . toLowerCase ()+" . "+d l l _ f u n c t i o n ;

}

pub l i c void s e t _ d l l _ t y p e (S t r i ng d l l _ t y p e)
{

t h i s . d l l _ t y p e = d l l _ t y p e ;
}

pub l i c void s e t _ d l l _ f u n c t i o n (S t r i ng d l l _ f u n c t i o n)
{

t h i s . d l l _ f u n c t i o n = d l l _ f u n c t i o n ;
}

pub l i c S t r i ng g e t _ d l l _ t y p e ()
{

125

Behavior-based Classification of Botnet Malware

re turn d l l _ t y p e ;
}

pub l i c S t r i ng g e t _ d l l _ f u n c t i o n ()
{

re turn d l l _ f u n c t i o n ;
}

pub l i c S t r i ng get_dl l_name_funct ion ()
{

re turn dl l_name_funct ion ;
}

}

XML

package f ea tu re . e x t r a c t o r ;

import org . w3c .dom.∗ ;

// c l a s s XML i s a xml−parse r f o r dynamic r e p o r t s by Anubis
// i t looks f o r d i f f e r e n t e n t i t i e s r e l a t e d to a c t i v i t i e s of
//DLLs , network , r e g i s t r y , f i l e s and proces se s
pub l i c c l a s s XML
{

p r i v a t e S t r i ng sample_id ;
p r i v a t e DLLDependency dl l_dependenc ies ;
p r i v a t e R e g i s t r y A c t i v i t y r e g i s t r y _ a c t i v i t i e s ;
p r i v a t e F i l e A c t i v i t y f i l e _ a c t i v i t i e s ;
p r i v a t e P r o c e s s A c t i v i t y p r o c e s s _ a c t i v i t i e s ;
p r i v a t e NetworkAct iv i ty n e t w o r k _ a c t i v i t i e s ;

pub l i c XML()
{

t h i s . d l l_dependenc ies = nu l l ;
t h i s . r e g i s t r y _ a c t i v i t i e s = nu l l ;
t h i s . f i l e _ a c t i v i t i e s = nu l l ;
t h i s . p r o c e s s _ a c t i v i t i e s = nu l l ;
t h i s . n e t w o r k _ a c t i v i t i e s = nu l l ;

}

// re turn sample_id
pub l i c S t r i ng get_sample_id ()
{

re turn sample_id ;
}

// re tu rns d l l dependencies
pub l i c DLLDependency g e t _ d l l ()
{

re turn dl l_dependenc ies ;
}

// re tu rns r e g i s t r y a c t i v i t i e s
pub l i c R e g i s t r y A c t i v i t y g e t _ r e g i s t r y ()
{

re turn r e g i s t r y _ a c t i v i t i e s ;
}

// re tu rns f i l e a c t i v i t i e s
pub l i c F i l e A c t i v i t y g e t _ f i l e ()
{

re turn f i l e _ a c t i v i t i e s ;
}

// re tu rns process a c t i v i t i e s
pub l i c P r o c e s s A c t i v i t y ge t_proces s ()
{

re turn p r o c e s s _ a c t i v i t i e s ;
}

// re tu rns network a c t i v i t i e s
pub l i c NetworkAct iv i ty get_network ()
{

re turn n e t w o r k _ a c t i v i t i e s ;
}

pub l i c void analyze_document (Document doc , S t r i ng id)
{

126

Behavior-based Classification of Botnet Malware

sample_id = id ;

//DLL DEPENDENCIES
// get loaded_d l l a t t r i b u t e s
NodeList loaded_d l l = doc . getElementsByTagName (" loaded_d l l ") ;
DLLDependency dl l_dep = new DLLDependency () ;
f o r (i n t i = 0; i < loaded_d l l . getLength () ; i++)
{

Element element = (Element) loaded_d l l . item (i) ;
d l l_dep . add_loaded_dl l (element) ;

}
d l l_dependenc ies = dl l_dep ;

//REGISTRY ACTIVITY
// get reg_key_created
R e g i s t r y A c t i v i t y reg_ac t = new R e g i s t r y A c t i v i t y () ;
NodeList reg_key_created = doc . getElementsByTagName (" reg_key_created ") ;
f o r (i n t i = 0; i < reg_key_created . getLength () ; i++)
{

Element element = (Element) reg_key_created . item (i) ;
reg_ac t . add_reg_key_created (element) ;

}
// get reg_value_modi f ied
NodeList reg_value_modi f ied = doc . getElementsByTagName (" reg_value_modi f ied "

) ;
f o r (i n t i = 0; i < reg_value_modi f ied . getLength () ; i++)
{

Element element = (Element) reg_value_modi f ied . item (i) ;
reg_ac t . add_reg_value_modif ied (element) ;

}
// get reg_value_read
NodeList reg_value_read = doc . getElementsByTagName (" reg_value_read ") ;
f o r (i n t i = 0; i < reg_value_read . getLength () ; i++)
{

Element element = (Element) reg_value_read . item (i) ;
reg_ac t . add_reg_value_read (element) ;

}
r e g i s t r y _ a c t i v i t i e s = reg_ac t ;

// FILE ACTIVITY !
// get f i l e _ c r e a t e d
F i l e A c t i v i t y f i l e _ a c t = new F i l e A c t i v i t y () ;
NodeList f i l e _ c r e a t e d = doc . getElementsByTagName (" f i l e _ c r e a t e d ") ;
f o r (i n t i = 0; i < f i l e _ c r e a t e d . getLength () ; i++)
{

Element element = (Element) f i l e _ c r e a t e d . item (i) ;
f i l e _ a c t . a d d_ f i l e _ c r e a t ed (element) ;

}
// get f i l e _ m o d i f i e d
NodeList f i l e _ m o d i f i e d = doc . getElementsByTagName (" f i l e _ m o d i f i e d ") ;
f o r (i n t i = 0; i < f i l e _ m o d i f i e d . getLength () ; i++)
{

Element element = (Element) f i l e _ m o d i f i e d . item (i) ;
f i l e _ a c t . add_ f i l e_modi f i ed (element) ;

}
// get f i l e _ d e l e t e d
NodeList f i l e _ d e l e t e d = doc . getElementsByTagName (" f i l e _ d e l e t e d ") ;
f o r (i n t i = 0; i < f i l e _ d e l e t e d . getLength () ; i++)
{

Element element = (Element) f i l e _ d e l e t e d . item (i) ;
f i l e _ a c t . a dd _ f i l e _d e l e t e d (element) ;

}
// get f i l e _ r e a d
NodeList f i l e _ r e a d = doc . getElementsByTagName (" f i l e _ r e a d ") ;
f o r (i n t i = 0; i < f i l e _ r e a d . getLength () ; i++)
{

Element element = (Element) f i l e _ r e a d . item (i) ;
f i l e _ a c t . add_ f i l e_ read (element) ;

}
// get s e c t i o n _ o b j e c t _ c r e a t e d
NodeList s e c t i o n _ o b j e c t = doc . getElementsByTagName (" s e c t i o n _ o b j e c t _ c r e a t e d "

) ;
f o r (i n t i = 0; i < s e c t i o n _ o b j e c t . getLength () ; i++)
{

Element element = (Element) s e c t i o n _ o b j e c t . item (i) ;
f i l e _ a c t . add_sec t i on_ob jec t_c rea ted (element) ;

}
// get device_control_communicat ion
NodeList dev i c e_con t ro l = doc . getElementsByTagName ("

device_control_communicat ion ") ;

127

Behavior-based Classification of Botnet Malware

fo r (i n t i = 0; i < dev i ce_con t ro l . getLength () ; i++)
{

Element element = (Element) dev i c e_con t ro l . item (i) ;
f i l e _ a c t . add_device_control_communicat ion (element) ;

}
// get fs_control_communicat ion
NodeList f s _ c o n t r o l = doc . getElementsByTagName (" fs_control_communicat ion ") ;
f o r (i n t i = 0; i < f s _ c o n t r o l . getLength () ; i++)
{

Element element = (Element) f s _ c o n t r o l . item (i) ;
f i l e _ a c t . add_fs_control_communicat ion (element) ;

}
f i l e _ a c t i v i t i e s = f i l e _ a c t ;

//PROCESS ACTIVITY !
// get th read_ s t a tu s
P r o c e s s A c t i v i t y p roce s s_ac t = new P r o c e s s A c t i v i t y () ;
NodeList th read_ s t a tu s = doc . getElementsByTagName (" th read_s t a tu s ") ;
f o r (i n t i = 0; i < th read_s t a tu s . getLength () ; i++)
{

Element element = (Element) th read_ s t a tu s . item (i) ;
p roce s s_ac t . add_thread_s ta tus (element) ;

}
// get remote_thread_created
NodeList remote_thread = doc . getElementsByTagName (" remote_thread_created ") ;
f o r (i n t i = 0; i < remote_thread . getLength () ; i++)
{

Element element = (Element) remote_thread . item (i) ;
p roce s s_ac t . add_remote_thread_created (element) ;

}
// get p roces s_c rea ted
NodeList p roces s_c rea ted = doc . getElementsByTagName (" proces s_c rea ted ") ;
f o r (i n t i = 0; i < proces s_c rea ted . getLength () ; i++)
{

Element element = (Element) proces s_c rea ted . item (i) ;
p roce s s_ac t . add_process_created (element) ;

}
p r o c e s s _ a c t i v i t i e s = proce s s_ac t ;

//NETWORK ACTIVITY !
// get socke t
NetworkAct iv i ty network_act = new NetworkAct iv i ty () ;
NodeList socke t = doc . getElementsByTagName (" socke t ") ;
f o r (i n t i = 0; i < socke t . getLength () ; i++)
{

Element element = (Element) socke t . item (i) ;
network_act . add_socket (element) ;

}
// get dns_query
NodeList dns = doc . getElementsByTagName (" dns_query ") ;
f o r (i n t i = 0; i < dns . getLength () ; i++)
{

Element element = (Element) dns . item (i) ;
network_act . add_dns_query (element) ;

}
// get smtp_conversat ion
NodeList smtp = doc . getElementsByTagName (" smtp_conversat ion ") ;
f o r (i n t i = 0; i < smtp . getLength () ; i++)
{

Element element = (Element) smtp . item (i) ;
network_act . add_smtp_conv (element) ;

}
// get h t tp_conver sa t i on
NodeList h t tp = doc . getElementsByTagName (" h t tp_conver sa t i on ") ;
f o r (i n t i = 0; i < ht tp . getLength () ; i++)
{

Element element = (Element) ht tp . item (i) ;
network_act . add_http_conv (element) ;

}
// get t cp_conver sa t ion
NodeList tcp = doc . getElementsByTagName (" t cp_conver sa t ion ") ;
f o r (i n t i = 0; i < tcp . getLength () ; i++)
{

Element element = (Element) tcp . item (i) ;
network_act . add_tcp_conv (element) ;

}
// get udp_conversat ion
NodeList udp = doc . getElementsByTagName (" udp_conversat ion ") ;
f o r (i n t i = 0; i < udp . getLength () ; i++)
{

128

Behavior-based Classification of Botnet Malware

Element element = (Element)udp . item (i) ;
network_act . add_udp_conv (element) ;

}
n e t w o r k _ a c t i v i t i e s = network_act ;

}
}

DLLDependency

package f ea tu re . e x t r a c t o r ;

import org . w3c .dom.∗ ;
import java . u t i l . A r r a y L i s t ;

// c l a s s DLLDependency holding DLL dependency r e l a t e d informat ion
// found by the XML−parse r ana lyz ing dynamic r e p o r t s from Anubis
pub l i c c l a s s DLLDependency
{

p r i v a t e Ar rayL i s t <LoadedDLL> loaded_d l l s ;

pub l i c DLLDependency ()
{

loaded_d l l s = new ArrayL i s t <LoadedDLL>() ;
}

// adding loaded d l l va lues
pub l i c void add_loaded_dl l (Element d l l)
{

NamedNodeMap a t t r s = d l l . g e t A t t r i b u t e s () ;
LoadedDLL loaded_d l l = new LoadedDLL () ;

f o r (i n t i = 0; i < a t t r s . getLength () ; i++)
{

A t t r cur ren t = (A t t r) a t t r s . item (i) ;

i f (cur ren t . getName () . compareTo (" base_address ") == 0)
loaded_d l l . se t_base_address (cur ren t . getValue ()) ;

i f (cur ren t . getName () . compareTo (" base_name ") == 0)
loaded_d l l . set_base_name (cur ren t . getValue ()) ;

i f (cur ren t . getName () . compareTo (" ful l_name ") == 0)
loaded_d l l . se t_ fu l l_name (cur ren t . getValue ()) ;

i f (cur ren t . getName () . compareTo (" is_load_t ime_dependency ") == 0)
loaded_d l l . se t_ i s_ load_t ime_dependency (cur ren t . getValue ()) ;

i f (cur ren t . getName () . compareTo (" load_t ime ") == 0)
loaded_d l l . se t_ load_t ime (cur ren t . getValue ()) ;

i f (cur ren t . getName () . compareTo (" s i z e ") == 0)
loaded_d l l . s e t _ s i z e (cur ren t . getValue ()) ;

}
l oaded_d l l s . add(loaded_d l l) ;

}

pub l i c Ar rayL i s t <LoadedDLL> ge t_ loaded_d l l s ()
{

re turn loaded_d l l s ;
}

// inner c l a s s
pub l i c c l a s s LoadedDLL
{

p r i v a t e S t r i ng base_address ;
p r i v a t e S t r i ng base_name ;
p r i v a t e S t r i ng ful l_name ;
p r i v a t e S t r i ng is_load_t ime_dependency ;
p r i v a t e S t r i ng load_t ime ;
p r i v a t e S t r i ng s i z e ;

pub l i c LoadedDLL ()
{

base_address = n u l l ;
base_name = n u l l ;
ful l_name = n u l l ;
is_ load_t ime_dependency = n u l l ;
load_time = n u l l ;
s i z e = nu l l ;

}

pub l i c void se t_base_address (S t r i ng base_address) { t h i s . base_address =
base_address ; }

pub l i c void set_base_name (S t r i ng base_name) { t h i s . base_name = base_name ;}

129

Behavior-based Classification of Botnet Malware

pub l i c void se t_ fu l l_name (S t r ing ful l_name) { t h i s . ful l_name = full_name ;}
pub l i c void set_ i s_ load_t ime_dependency (S t r i ng is_load_t ime_dependency) {

t h i s . is_load_t ime_dependency = is_load_t ime_dependency ;}
pub l i c void se t_ load_t ime (S t r ing load_t ime) { t h i s . load_time = load_t ime ;}
pub l i c void s e t _ s i z e (S t r ing s i z e) { t h i s . s i z e = s i z e ;}

pub l i c S t r i ng get_base_address () { re turn base_address ; }
pub l i c S t r i ng get_base_name () { re turn base_name ;}
pub l i c S t r i ng get_ful l_name () { re turn ful l_name ;}
pub l i c S t r i ng get_is_ load_t ime_dependency () { re turn is_load_t ime_dependency

;}
pub l i c S t r i ng get_ load_t ime () { re turn load_t ime ;}
pub l i c S t r i ng g e t _ s i z e () { re turn s i z e ; }

}
}

RegistryActivity

package f ea tu re . e x t r a c t o r ;

import org . w3c .dom.∗ ;

import java . u t i l . A r r a y L i s t ;

// c l a s s R e g i s t r y A c t i v i t y s t o r i n g r e g i s t r y a c t i v i t y r e l a t e d informat ion
// found by the XML−parse r ana lyz ing dynamic r e p o r t s from Anubis
pub l i c c l a s s R e g i s t r y A c t i v i t y
{

p r i v a t e Ar rayL i s t <RegKeyCreated> reg_key_created ;
p r i v a t e Ar rayL i s t <RegValueModified> reg_value_modi f ied ;
p r i v a t e Ar rayL i s t <RegValueRead> reg_value_read ;

pub l i c R e g i s t r y A c t i v i t y ()
{

reg_key_created = new ArrayL i s t <RegKeyCreated >() ;
reg_value_modi f ied = new ArrayL i s t <RegValueModified >() ;
reg_value_read = new ArrayL i s t <RegValueRead >() ;

}

// adding crea ted r e g i s t r y keys
pub l i c void add_reg_key_created (Element reg)
{

NamedNodeMap a t t r s = reg . g e t A t t r i b u t e s () ;
RegKeyCreated reg_key = new RegKeyCreated () ;

i f (a t t r s . getLength () > 0)
{

A t t r a_name = (A t t r) a t t r s . item (0) ;
reg_key . set_name (a_name . getValue ()) ;
reg_key_created . add(reg_key) ;

}
}

// adding modif ied r e g i s t r y va lues
pub l i c void add_reg_value_modif ied (Element reg)
{

NamedNodeMap a t t r s = reg . g e t A t t r i b u t e s () ;
RegValueModified reg_mod = new RegValueModified () ;

f o r (i n t i = 0; i < a t t r s . getLength () ; i++)
{

A t t r cur ren t = (A t t r) a t t r s . item (i) ;

i f (cur ren t . getName () . compareTo (" count ") == 0)
reg_mod . se t_count (cur ren t . getValue ()) ;

i f (cur ren t . getName () . compareTo (" d e s c r i p t i o n ") == 0)
reg_mod . s e t _ d e s c r i p t i o n (cur ren t . getValue ()) ;

i f (cur ren t . getName () . compareTo (" key ") == 0)
reg_mod . se t_key (cur ren t . getValue ()) ;

i f (cur ren t . getName () . compareTo (" value_data ") == 0)
reg_mod . se t_va lue_da ta (cur ren t . getValue ()) ;

i f (cur ren t . getName () . compareTo (" value_name ") == 0)
reg_mod . set_value_name (cur ren t . getValue ()) ;

}
reg_value_modi f ied . add(reg_mod) ;

}

// adding read r e g i s t r y va lues
pub l i c void add_reg_value_read (Element reg)
{

130

Behavior-based Classification of Botnet Malware

NamedNodeMap a t t r s = reg . g e t A t t r i b u t e s () ;
RegValueRead reg_read = new RegValueRead () ;

f o r (i n t i = 0; i < a t t r s . getLength () ; i++)
{

A t t r cur ren t = (A t t r) a t t r s . item (i) ;

i f (cur ren t . getName () . compareTo (" count ") == 0)
reg_read . se t_count (cur ren t . getValue ()) ;

i f (cur ren t . getName () . compareTo (" key ") == 0)
reg_read . se t_key (cur ren t . getValue ()) ;

i f (cur ren t . getName () . compareTo (" value_data ") == 0)
reg_read . se t_va lue_da ta (cur ren t . getValue ()) ;

i f (cur ren t . getName () . compareTo (" value_name ") == 0)
reg_read . set_value_name (cur ren t . getValue ()) ;

}
reg_value_read . add(reg_read) ;

}

// re tu rn ing crea ted r e g i s t r y keys
pub l i c Ar rayL i s t <RegKeyCreated> get_reg_key_created ()
{

re turn reg_key_created ;
}

// re tu rn ing modif ied r e g i s t r y va lues
pub l i c Ar rayL i s t <RegValueModified> get_reg_va lue_modi f ied ()
{

re turn reg_value_modi f ied ;
}

// re tu rn ing read r e g i s t r y value
pub l i c Ar rayL i s t <RegValueRead> get_reg_va lue_read ()
{

re turn reg_value_read ;
}

// inner c l a s s
pub l i c c l a s s RegKeyCreated
{

p r i v a t e S t r ing name ;

pub l i c RegKeyCreated ()
{

name = nu l l ;
}

pub l i c void set_name (S t r i ng name) { t h i s . name = name;}
pub l i c S t r i ng get_name () { re turn name;}

}

// inner c l a s s
pub l i c c l a s s RegValueModified
{

p r i v a t e S t r ing count ;
p r i v a t e S t r ing d e s c r i p t i o n ;
p r i v a t e S t r ing key ;
p r i v a t e S t r ing value_data ;
p r i v a t e S t r ing value_name ;

pub l i c RegValueModified ()
{

count = n u l l ;
d e s c r i p t i o n = n u l l ;
key = nu l l ;
va lue_data = n u l l ;
value_name = n u l l ;

}

pub l i c void se t_count (S t r i ng count) { t h i s . count = count ; }
pub l i c void s e t _ d e s c r i p t i o n (S t r i ng d e s c r i p t i o n) { t h i s . d e s c r i p t i o n =

d e s c r i p t i o n ;}
pub l i c void se t_key (S t r ing key) { t h i s . key = key ;}
pub l i c void se t_va lue_da ta (S t r i ng value_data) { t h i s . va lue_data = value_data

; }
pub l i c void set_value_name (S t r i ng value_name) { t h i s . value_name = value_name

;}

pub l i c S t r i ng get_count () { re turn count ; }
pub l i c S t r i ng g e t _ d e s c r i p t i o n () { re turn d e s c r i p t i o n ;}

131

Behavior-based Classification of Botnet Malware

pub l i c S t r i ng get_key () { re turn key ;}
pub l i c S t r i ng get_va lue_data () { re turn value_data ;}
pub l i c S t r i ng get_value_name () { re turn value_name ;}

}

// inner c l a s s
pub l i c c l a s s RegValueRead
{

p r i v a t e S t r i ng count ;
p r i v a t e S t r i ng key ;
p r i v a t e S t r i ng value_data ;
p r i v a t e S t r i ng value_name ;

pub l i c RegValueRead ()
{

count = n u l l ;
key = nu l l ;
va lue_data = n u l l ;
value_name = n u l l ;

}

pub l i c void se t_count (S t r ing count) { t h i s . count = count ; }
pub l i c void se t_key (S t r ing key) { t h i s . key = key ;}
pub l i c void se t_va lue_da ta (S t r i ng value_data) { t h i s . va lue_data = value_data

; }
pub l i c void set_value_name (S t r ing value_name) { t h i s . value_name = value_name

;}

pub l i c S t r i ng get_count () { re turn count ; }
pub l i c S t r i ng get_key () { re turn key ;}
pub l i c S t r i ng get_va lue_data () { re turn value_data ;}
pub l i c S t r i ng get_value_name () { re turn value_name ;}

}
}

NetworkActivity

package f ea tu re . e x t r a c t o r ;

import java . u t i l . A r r a y L i s t ;
import org . w3c .dom.∗ ;

// c l a s s NetworkAct iv i ty s t o r i n g network a c t i v i t y r e l a t e d informat ion
// found by the XML−parse r ana lyz ing dynamic r e p o r t s from Anubis
pub l i c c l a s s NetworkAct iv i ty
{

p r i v a t e Ar rayL i s t <Socket> socket ;
p r i v a t e Ar rayL i s t <DNSQuery> dns_query ;
p r i v a t e Ar rayL i s t <SMTPConversation> smtp_conversat ion ;
p r i v a t e Ar rayL i s t <HTTPConversation> ht tp_conver sa t ion ;
p r i v a t e Ar rayL i s t <TCPConversation> tcp_conver sa t ion ;
p r i v a t e Ar rayL i s t <UDPConversation> udp_conversat ion ;

pub l i c NetworkAct iv i ty ()
{

socke t = new ArrayL i s t <Socket >() ;
dns_query = new ArrayL i s t <DNSQuery>() ;
smtp_conversat ion = new ArrayL i s t <SMTPConversation >() ;
h t tp_conver sa t ion = new ArrayL i s t <HTTPConversation >() ;
t cp_conver sa t ion = new ArrayL i s t <TCPConversation >() ;
udp_conversat ion = new ArrayL i s t <UDPConversation >() ;

}

// adding socke t va lues
pub l i c void add_socket (Element net)
{

NamedNodeMap a t t r s = net . g e t A t t r i b u t e s () ;
Socket s = new Socket () ;

f o r (i n t i = 0; i < a t t r s . getLength () ; i++)
{

A t t r cur ren t = (A t t r) a t t r s . item (i) ;

i f (cur ren t . getName () . compareTo (" c lo se_ t ime ") == 0)
s . s e t _ c l o s e_ t ime (cur ren t . getValue ()) ;

i f (cur ren t . getName () . compareTo (" c rea te_ t ime ") == 0)
s . s e t _ c r ea t e_ t ime (cur ren t . getValue ()) ;

i f (cur ren t . getName () . compareTo (" created_by_thread ") == 0)
s . s e t _ c r ea t e_ t ime (cur ren t . getValue ()) ;

i f (cur ren t . getName () . compareTo (" f o r e i g n _ i p ") == 0)

132

Behavior-based Classification of Botnet Malware

s . s e t _ f o r e i g n _ i p (cur ren t . getValue ()) ;
i f (cur ren t . getName () . compareTo (" f o r e i gn_por t ") == 0)

s . s e t _ f o r e i g n _ p o r t (cur ren t . getValue ()) ;
i f (cur ren t . getName () . compareTo (" i s _ l i s t e n i n g ") == 0)

s . s e t _ i s _ l i s t e n i n g (cur ren t . getValue ()) ;
i f (cur ren t . getName () . compareTo (" l o c a l _ i p ") == 0)

s . s e t _ l o c a l _ i p (cur ren t . getValue ()) ;
i f (cur ren t . getName () . compareTo (" l o c a l _ p o r t ") == 0)

s . s e t _ l o c a l _ p o r t (cur ren t . getValue ()) ;
}
socke t . add(s) ;

}

// adding dns query va lues
pub l i c void add_dns_query (Element net)
{

NamedNodeMap a t t r s = net . g e t A t t r i b u t e s () ;
DNSQuery dq= new DNSQuery () ;

f o r (i n t i = 0; i < a t t r s . getLength () ; i++)
{

A t t r cur ren t = (A t t r) a t t r s . item (i) ;

i f (cur ren t . getName () . compareTo ("name") == 0)
dq . set_name (cur ren t . getValue ()) ;

i f (cur ren t . getName () . compareTo (" r e s u l t ") == 0)
dq . s e t _ r e s u l t (cur ren t . getValue ()) ;

i f (cur ren t . getName () . compareTo (" s u c e s s f u l l ") == 0)
dq . s e t _ s u c c e s s f u l l (cur ren t . getValue ()) ;

i f (cur ren t . getName () . compareTo (" type ") == 0)
dq . se t _ t ype (cur ren t . getValue ()) ;

}
dns_query . add(dq) ;

}

// adding smtp conver sa t ion va lues
pub l i c void add_smtp_conv (Element net)
{

NamedNodeMap a t t r s = net . g e t A t t r i b u t e s () ;
SMTPConversation sc = new SMTPConversation () ;

f o r (i n t i = 0; i < a t t r s . getLength () ; i++)
{

A t t r cur ren t = (A t t r) a t t r s . item (i) ;

i f (cur ren t . getName () . compareTo (" content ") == 0)
sc . s e t _con ten t (cur ren t . getValue ()) ;

i f (cur ren t . getName () . compareTo (" d e s c r i p t i o n ") == 0)
sc . s e t _ d e s c r i p t i o n (cur ren t . getValue ()) ;

i f (cur ren t . getName () . compareTo (" de s t _ ip ") == 0)
sc . s e t _ d e s t _ i p (cur ren t . getValue ()) ;

i f (cur ren t . getName () . compareTo (" des t_por t ") == 0)
sc . s e t _ d e s t _ p o r t (cur ren t . getValue ()) ;

i f (cur ren t . getName () . compareTo (" r e c i p i e n t ") == 0)
sc . s e t _ r e c i p i e n t (cur ren t . getValue ()) ;

i f (cur ren t . getName () . compareTo (" sender ") == 0)
sc . se t_sender (cur ren t . getValue ()) ;

i f (cur ren t . getName () . compareTo (" s e r v e r _ r e p l y ") == 0)
sc . s e t _ s e r v e r _ r e p l y (cur ren t . getValue ()) ;

i f (cur ren t . getName () . compareTo (" s r c _ i p ") == 0)
sc . s e t _ s r c _ i p (cur ren t . getValue ()) ;

i f (cur ren t . getName () . compareTo (" s r c _ p o r t ") == 0)
sc . s e t _ s r c _ p o r t (cur ren t . getValue ()) ;

i f (cur ren t . getName () . compareTo (" s u b j e c t ") == 0)
sc . s e t _ s u b j e c t (cur ren t . getValue ()) ;

}
smtp_conversat ion . add(sc) ;

}

// adding ht tp conver sa t ion va lues
pub l i c void add_http_conv (Element net)
{

NamedNodeMap a t t r s = net . g e t A t t r i b u t e s () ;
HTTPConversation hc = new HTTPConversation () ;

f o r (i n t i = 0; i < a t t r s . getLength () ; i++)
{

A t t r cur ren t = (A t t r) a t t r s . item (i) ;

i f (cur ren t . getName () . compareTo (" de s t _ ip ") == 0)

133

Behavior-based Classification of Botnet Malware

hc . s e t _ d e s t _ i p (cur ren t . getValue ()) ;
i f (cur ren t . getName () . compareTo (" des t_por t ") == 0)

hc . s e t _ d e s t _ p o r t (cur ren t . getValue ()) ;
i f (cur ren t . getName () . compareTo (" hostname ") == 0)

hc . set_hostname (cur ren t . getValue ()) ;
i f (cur ren t . getName () . compareTo (" s r c _ i p ") == 0)

hc . s e t _ s r c _ i p (cur ren t . getValue ()) ;
i f (cur ren t . getName () . compareTo (" s r c _ p o r t ") == 0)

hc . s e t _ s r c _ p o r t (cur ren t . getValue ()) ;
}
h t tp_conver sa t ion . add(hc) ;

}

// adding tcp conver sa t ion va lues
pub l i c void add_tcp_conv (Element net)
{

NamedNodeMap a t t r s = net . g e t A t t r i b u t e s () ;
TCPConversation t c = new TCPConversation () ;

f o r (i n t i = 0; i < a t t r s . getLength () ; i++)
{

A t t r cur ren t = (A t t r) a t t r s . item (i) ;

i f (cur ren t . getName () . compareTo (" de s t _ ip ") == 0)
t c . s e t _ d e s t _ i p (cur ren t . getValue ()) ;

i f (cur ren t . getName () . compareTo (" des t_por t ") == 0)
t c . s e t _ d e s t _ p o r t (cur ren t . getValue ()) ;

i f (cur ren t . getName () . compareTo (" org_by tes_sent ") == 0)
t c . s e t _o rg_by te s_ sen t (cur ren t . getValue ()) ;

i f (cur ren t . getName () . compareTo (" r e s_by t e s_ s en t ") == 0)
t c . s e t _ r e s _ b y t e s _ s e n t (cur ren t . getValue ()) ;

i f (cur ren t . getName () . compareTo (" s r c _ i p ") == 0)
t c . s e t _ s r c _ i p (cur ren t . getValue ()) ;

i f (cur ren t . getName () . compareTo (" s r c _ p o r t ") == 0)
t c . s e t _ s r c _ p o r t (cur ren t . getValue ()) ;

i f (cur ren t . getName () . compareTo (" s t a t e ") == 0)
t c . s e t _ s t a t e (cur ren t . getValue ()) ;

}
t cp_conver sa t ion . add(t c) ;

}

// adding udp conver sa t ion va lues
pub l i c void add_udp_conv (Element net)
{

NamedNodeMap a t t r s = net . g e t A t t r i b u t e s () ;
UDPConversation t c = new UDPConversation () ;

f o r (i n t i = 0; i < a t t r s . getLength () ; i++)
{

A t t r cur ren t = (A t t r) a t t r s . item (i) ;

i f (cur ren t . getName () . compareTo (" de s t _ ip ") == 0)
t c . s e t _ d e s t _ i p (cur ren t . getValue ()) ;

i f (cur ren t . getName () . compareTo (" des t_por t ") == 0)
t c . s e t _ d e s t _ p o r t (cur ren t . getValue ()) ;

i f (cur ren t . getName () . compareTo (" org_by tes_sent ") == 0)
t c . s e t _o rg_by te s_ sen t (cur ren t . getValue ()) ;

i f (cur ren t . getName () . compareTo (" r e s_by t e s_ s en t ") == 0)
t c . s e t _ r e s _ b y t e s _ s e n t (cur ren t . getValue ()) ;

i f (cur ren t . getName () . compareTo (" s r c _ i p ") == 0)
t c . s e t _ s r c _ i p (cur ren t . getValue ()) ;

i f (cur ren t . getName () . compareTo (" s r c _ p o r t ") == 0)
t c . s e t _ s r c _ p o r t (cur ren t . getValue ()) ;

i f (cur ren t . getName () . compareTo (" s t a t e ") == 0)
t c . s e t _ s t a t e (cur ren t . getValue ()) ;

}
udp_conversat ion . add(t c) ;

}

pub l i c Ar rayL i s t <Socket> ge t_ socke t ()
{

re turn socke t ;
}

pub l i c Ar rayL i s t <DNSQuery> get_dns_query ()
{

re turn dns_query ;
}

pub l i c Ar rayL i s t <SMTPConversation> get_smtp_conversat ion ()

134

Behavior-based Classification of Botnet Malware

{
re turn smtp_conversat ion ;

}

pub l i c Ar rayL i s t <HTTPConversation> ge t_h t tp_conve r sa t i on ()
{

re turn h t tp_conver sa t ion ;
}

pub l i c Ar rayL i s t <TCPConversation> ge t_ t cp_conver sa t i on ()
{

re turn t cp_conver sa t ion ;
}

pub l i c Ar rayL i s t <UDPConversation> get_udp_conversat ion ()
{

re turn udp_conversat ion ;
}

// inner c l a s s
pub l i c c l a s s Socket
{

p r i v a t e S t r ing c lose_ t ime ;
p r i v a t e S t r ing crea te_ t ime ;
p r i v a t e S t r ing created_by_thread ;
p r i v a t e S t r ing f o r e i g n _ i p ;
p r i v a t e S t r ing fo r e i gn_po r t ;
p r i v a t e S t r ing i s _ l i s t e n i n g ;
p r i v a t e S t r ing l o c a l _ i p ;
p r i v a t e S t r ing l o c a l _ p o r t ;

pub l i c Socket ()
{

c lose_ t ime = n u l l ;
c rea te_ t ime = n u l l ;
c reated_by_thread = n u l l ;
f o r e i g n _ i p = nu l l ;
f o r e i gn_po r t = n u l l ;
i s _ l i s t e n i n g = n u l l ;
l o c a l _ i p = n u l l ;
l o c a l _ p o r t = n u l l ;

}

pub l i c void se t _ c l o s e_ t ime (S t r i ng c lose_ t ime) { t h i s . c lo se_ t ime = close_ t ime
;}

pub l i c void se t _ c r ea t e_ t ime (S t r i ng crea te_ t ime) { t h i s . c rea te_ t ime =
crea te_ t ime ;}

pub l i c void se t_c rea ted_by_ thread (S t r i ng created_by_thread) { t h i s .
c reated_by_thread = created_by_thread ;}

pub l i c void s e t _ f o r e i g n _ i p (S t r i ng f o r e i g n _ i p) { t h i s . f o r e i g n _ i p = f o r e i g n _ i p
;}

pub l i c void s e t _ f o r e i g n _ p o r t (S t r i ng fo r e i gn_po r t) { t h i s . f o r e i gn_po r t =
fo re i gn_po r t ; }

pub l i c void s e t _ i s _ l i s t e n i n g (S t r i ng i s _ l i s t e n i n g) { t h i s . i s _ l i s t e n i n g =
i s _ l i s t e n i n g ;}

pub l i c void s e t _ l o c a l _ i p (S t r i ng l o c a l _ i p) { t h i s . l o c a l _ i p = l o c a l _ i p ; }
pub l i c void s e t _ l o c a l _ p o r t (S t r i ng l o c a l _ p o r t) { t h i s . l o c a l _ p o r t = l o c a l _ p o r t

; }

pub l i c S t r i ng ge t_c lo se_ t ime () { re turn c lose_ t ime ;}
pub l i c S t r i ng ge t_c rea te_ t ime () { re turn crea te_ t ime ;}
pub l i c S t r i ng get_created_by_thread () { re turn created_by_thread ;}
pub l i c S t r i ng g e t _ f o r e i g n _ i p () { re turn f o r e i g n _ i p ;}
pub l i c S t r i ng ge t _ fo r e i gn_por t () { re turn fo r e i gn_po r t ; }
pub l i c S t r i ng g e t _ i s _ l i s t e n i n g () { re turn i s _ l i s t e n i n g ;}
pub l i c S t r i ng g e t _ l o c a l _ i p () { re turn l o c a l _ i p ;}
pub l i c S t r i ng g e t _ l o c a l _ p o r t () { re turn l o c a l _ p o r t ; }

}
// inner c l a s s
pub l i c c l a s s DNSQuery
{

p r i v a t e S t r ing name ;
p r i v a t e S t r ing r e s u l t ;
p r i v a t e S t r ing s u c c e s s f u l l ;
p r i v a t e S t r ing type ;

pub l i c DNSQuery ()
{

name = nu l l ;
r e s u l t = n u l l ;

135

Behavior-based Classification of Botnet Malware

s u c c e s s f u l l = n u l l ;
type = n u l l ;

}

pub l i c void set_name (S t r ing name) { t h i s . name = name;}
pub l i c void s e t _ r e s u l t (S t r i ng r e s u t l) { t h i s . r e s u l t = r e s u l t ; }
pub l i c void s e t _ s u c c e s s f u l l (S t r i ng s u c c e s s f u l l) { t h i s . s u c c e s s f u l l =

s u c c e s s f u l l ; }
pub l i c void se t_ type (S t r ing type) { t h i s . type = type ;}

pub l i c S t r i ng get_name () { re turn name;}
pub l i c S t r i ng g e t _ r e s u l t () { re turn r e s u l t ; }
pub l i c S t r i ng g e t _ s u c c e s s f u l l () { re turn s u c c e s s f u l l ; }
pub l i c S t r i ng get_ type () { re turn type ;}

}
// inner c l a s s
pub l i c c l a s s SMTPConversation
{

p r i v a t e S t r i ng content ;
p r i v a t e S t r i ng d e s c r i p t i o n ;
p r i v a t e S t r i ng des t_ ip ;
p r i v a t e S t r i ng des t_por t ;
p r i v a t e S t r i ng r e c i p i e n t ;
p r i v a t e S t r i ng sender ;
p r i v a t e S t r i ng s e r v e r _ r e p l y ;
p r i v a t e S t r i ng s r c _ i p ;
p r i v a t e S t r i ng s r c _ p o r t ;
p r i v a t e S t r i ng s u b j e c t ;

pub l i c SMTPConversation ()
{

content = n u l l ;
d e s c r i p t i o n = n u l l ;
de s t _ ip = n u l l ;
de s t_por t = nu l l ;
r e c i p i e n t = n u l l ;
sender = n u l l ;
s e r v e r _ r e p l y = n u l l ;
s r c _ i p = n u l l ;
s r c _ p o r t = n u l l ;
s u b j e c t = n u l l ;

}

pub l i c void se t_con ten t (S t r i ng content) { t h i s . content = content ; }
pub l i c void s e t _ d e s c r i p t i o n (S t r i ng d e s c r i p t i o n) { t h i s . d e s c r i p t i o n =

d e s c r i p t i o n ;}
pub l i c void s e t _ d e s t _ i p (S t r ing des t _ ip) { t h i s . de s t _ ip = des t_ ip ; }
pub l i c void s e t _ d e s t _ p o r t (S t r i ng des t_por t) { t h i s . des t_por t = des t_por t ; }
pub l i c void s e t _ r e c i p i e n t (S t r i ng r e c i p i e n t) { t h i s . r e c i p i e n t = r e c i p i e n t ; }
pub l i c void se t_sender (S t r ing sender) { t h i s . sender = sender ; }
pub l i c void s e t _ s e r v e r _ r e p l y (S t r i ng s e r v e r _ r e p l y) { t h i s . s e r v e r _ r e p l y =

s e r v e r _ r e p l y ; }
pub l i c void s e t _ s r c _ i p (S t r ing s r c _ i p) { t h i s . s r c _ i p = s r c _ i p ; }
pub l i c void s e t _ s r c _ p o r t (S t r i ng s r c _ p o r t) { t h i s . s r c _ p o r t = s r c _ p o r t ; }
pub l i c void s e t _ s u b j e c t (S t r i ng s u b j e c t) { t h i s . s u b j e c t = s u b j e c t ; }

pub l i c S t r i ng get_content () { re turn content ; }
pub l i c S t r i ng g e t _ d e s c r i p t i o n () { re turn d e s c r i p t i o n ;}
pub l i c S t r i ng ge t_de s t _ ip () { re turn des t_ ip ;}
pub l i c S t r i ng ge t_des t_por t () { re turn des t_por t ; }
pub l i c S t r i ng g e t _ r e c i p i e n t () { re turn r e c i p i e n t ; }
pub l i c S t r i ng get_sender () { re turn sender ; }
pub l i c S t r i ng g e t _ s e r v e r _ r e p l y () { re turn s e r v e r _ r e p l y ; }
pub l i c S t r i ng g e t _ s r c _ i p () { re turn s r c _ i p ;}
pub l i c S t r i ng ge t _ s r c _p o r t () { re turn s r c _ p o r t ; }
pub l i c S t r i ng g e t _ s u b j e c t () { re turn s u b j e c t ; }

}
// inner c l a s s
pub l i c c l a s s HTTPConversation
{

p r i v a t e S t r i ng des t_ ip ;
p r i v a t e S t r i ng des t_por t ;
p r i v a t e S t r i ng hostname ;
p r i v a t e S t r i ng s r c _ i p ;
p r i v a t e S t r i ng s r c _ p o r t ;

pub l i c HTTPConversation ()
{

des t _ ip = n u l l ;
de s t_por t = nu l l ;

136

Behavior-based Classification of Botnet Malware

hostname = n u l l ;
s r c _ i p = n u l l ;
s r c _ p o r t = n u l l ;

}

pub l i c void s e t _ d e s t _ i p (S t r i ng des t_ ip) { t h i s . de s t _ ip = des t_ ip ; }
pub l i c void s e t _ d e s t _ p o r t (S t r i ng des t_por t) { t h i s . des t_por t = des t_por t ; }
pub l i c void set_hostname (S t r i ng hostname) { t h i s . hostname = hostname ;}
pub l i c void s e t _ s r c _ i p (S t r i ng s r c _ i p) { t h i s . s r c _ i p = s r c _ i p ; }
pub l i c void s e t _ s r c _ p o r t (S t r i ng s r c _ p o r t) { t h i s . s r c _ p o r t = s r c _ p o r t ; }

pub l i c S t r i ng ge t_de s t _ ip () { re turn des t_ ip ;}
pub l i c S t r i ng ge t_des t_por t () { re turn des t_por t ; }
pub l i c S t r i ng get_hostname () { re turn hostname ;}
pub l i c S t r i ng g e t _ s r c _ i p () { re turn s r c _ i p ;}
pub l i c S t r i ng g e t _ s r c _ po r t () { re turn s r c _ p o r t ; }

}
// inner c l a s s
pub l i c c l a s s TCPConversation
{

p r i v a t e S t r i ng des t_ ip ;
p r i v a t e S t r i ng des t_por t ;
p r i v a t e S t r i ng org_by tes_sent ;
p r i v a t e S t r i ng r e s_by t e s_ sen t ;
p r i v a t e S t r i ng s r c _ i p ;
p r i v a t e S t r i ng s r c _ p o r t ;
p r i v a t e S t r i ng s t a t e ;

pub l i c TCPConversation ()
{

des t _ ip = n u l l ;
de s t_por t = n u l l ;
o rg_by tes_sent = n u l l ;
r e s _by t e s_ s en t = nu l l ;
s r c _ i p = n u l l ;
s t a t e = n u l l ;

}

pub l i c void s e t _ d e s t _ i p (S t r i ng des t_ ip) { t h i s . de s t _ ip = des t_ ip ; }
pub l i c void s e t _ d e s t _ p o r t (S t r i ng des t_por t) { t h i s . des t_por t = des t_por t ; }
pub l i c void se t _o rg_by te s_ sen t (S t r i ng org_by tes_sent) { t h i s . o rg_by tes_sent =

org_by tes_sent ; }
pub l i c void s e t _ r e s _ b y t e s _ s e n t (S t r i ng r e s_by t e s_ sen t) { t h i s . r e s _by t e s _ sen t =

re s_by t e s_ s en t ; }
pub l i c void s e t _ s r c _ i p (S t r i ng s r c _ i p) { t h i s . s r c _ i p = s r c _ i p ; }
pub l i c void s e t _ s r c _ p o r t (S t r i ng s r c _ p o r t) { t h i s . s r c _ p o r t = s r c _ p o r t ; }
pub l i c void s e t _ s t a t e (S t r i ng s t a t e) { t h i s . s t a t e = s t a t e ; }

pub l i c S t r i ng ge t_de s t _ ip () { re turn des t_ ip ;}
pub l i c S t r i ng ge t_des t_por t () { re turn des t_por t ; }
pub l i c S t r i ng ge t_org_by te s_sen t () { re turn org_by tes_sent ; }
pub l i c S t r i ng ge t _ r e s_by t e s_ sen t () { re turn re s_by t e s_ sen t ; }
pub l i c S t r i ng g e t _ s r c _ i p () { re turn s r c _ i p ;}
pub l i c S t r i ng g e t _ s r c _ po r t () { re turn s r c _ p o r t ; }
pub l i c S t r i ng g e t _ s t a t e () { re turn s t a t e ; }

}
// inner c l a s s
pub l i c c l a s s UDPConversation
{

p r i v a t e S t r i ng des t _ ip ;
p r i v a t e S t r i ng des t_por t ;
p r i v a t e S t r i ng org_by tes_sent ;
p r i v a t e S t r i ng r e s_by t e s_ sen t ;
p r i v a t e S t r i ng s r c _ i p ;
p r i v a t e S t r i ng s r c _ p o r t ;
p r i v a t e S t r i ng s t a t e ;

pub l i c UDPConversation ()
{

des t _ ip = n u l l ;
de s t_por t = n u l l ;
o rg_by tes_sent = n u l l ;
r e s _by t e s_ s en t = nu l l ;
s r c _ i p = n u l l ;
s t a t e = n u l l ;

}

pub l i c void s e t _ d e s t _ i p (S t r i ng des t_ ip) { t h i s . de s t _ ip = des t_ ip ; }
pub l i c void s e t _ d e s t _ p o r t (S t r i ng des t_por t) { t h i s . des t_por t = des t_por t ; }
pub l i c void se t _o rg_by te s_ sen t (S t r i ng org_by tes_sent) { t h i s . o rg_by tes_sent =

137

Behavior-based Classification of Botnet Malware

org_by tes_sent ; }
pub l i c void s e t _ r e s _ b y t e s _ s e n t (S t r i ng r e s_by t e s_ sen t) { t h i s . r e s _by t e s _ sen t =

re s_by t e s_ s en t ; }
pub l i c void s e t _ s r c _ i p (S t r ing s r c _ i p) { t h i s . s r c _ i p = s r c _ i p ; }
pub l i c void s e t _ s r c _ p o r t (S t r i ng s r c _ p o r t) { t h i s . s r c _ p o r t = s r c _ p o r t ; }
pub l i c void s e t _ s t a t e (S t r ing s t a t e) { t h i s . s t a t e = s t a t e ; }

pub l i c S t r i ng ge t_de s t _ ip () { re turn des t _ ip ;}
pub l i c S t r i ng ge t_des t_por t () { re turn des t_por t ; }
pub l i c S t r i ng ge t_org_by te s_sen t () { re turn org_by tes_sent ; }
pub l i c S t r i ng ge t _ r e s_by t e s_ sen t () { re turn re s_by t e s_ sen t ; }
pub l i c S t r i ng g e t _ s r c _ i p () { re turn s r c _ i p ;}
pub l i c S t r i ng ge t _ s r c _p o r t () { re turn s r c _ p o r t ; }
pub l i c S t r i ng g e t _ s t a t e () { re turn s t a t e ; }

}
}

FileActivity

package f ea tu re . e x t r a c t o r ;

import org . w3c .dom.∗ ;

import java . u t i l . A r r a y L i s t ;

// c l a s s F i l e A c t i v i t y s t o r i n g f i l e a c t i v i t y r e l a t e d informat ion
// found by the XML−parse r ana lyz ing dynamic r e p o r t s from Anubis
pub l i c c l a s s F i l e A c t i v i t y
{

p r i v a t e Ar rayL i s t <Fi leCreated> f i l e _ c r e a t e d ;
p r i v a t e Ar rayL i s t <Fi leModi f ied> f i l e _ m o d i f i e d ;
p r i v a t e Ar rayL i s t <F i l eDe le ted > f i l e _ d e l e t e d ;
p r i v a t e Ar rayL i s t <FileRead> f i l e _ r e a d ;
p r i v a t e Ar rayL i s t <Sect ionObjectCreated> s e c t i o n _ o b j e c t _ c r e a t e d ;
p r i v a t e Ar rayL i s t <DeviceControlCommunication> device_control_communicat ion ;
p r i v a t e Ar rayL i s t <FsControlCommunication> fs_control_communicat ion ;

pub l i c F i l e A c t i v i t y ()
{

f i l e _ c r e a t e d = new ArrayL i s t <Fi leCreated >() ;
f i l e _ m o d i f i e d = new ArrayL i s t <Fi leModi f ied >() ;
f i l e _ d e l e t e d = new ArrayL i s t <F i l eDe le ted >() ;
f i l e _ r e a d = new ArrayL i s t <FileRead >() ;
s e c t i o n _ o b j e c t _ c r e a t e d = new ArrayL i s t <Sect ionObjectCreated >() ;
device_control_communicat ion = new ArrayL i s t <DeviceControlCommunication >() ;
fs_control_communicat ion = new ArrayL i s t <FsControlCommunication >() ;

}

// adding f i l e c rea ted va lues
pub l i c void a d d_ f i l e _ c r e a t ed (Element f i l e)
{

NamedNodeMap a t t r s = f i l e . g e t A t t r i b u t e s () ;
F i l eCrea ted f c r e a t e d = new F i l eCrea ted () ;

i f (a t t r s . getLength () > 0)
{

A t t r a_name = (A t t r) a t t r s . item (0) ;
f c r e a t e d . set_name (a_name . getValue ()) ;
f i l e _ c r e a t e d . add(f c r e a t e d) ;

}
}

// adding f i l e c rea ted va lues
pub l i c void add_ f i l e_modi f i ed (Element f i l e)
{

NamedNodeMap a t t r s = f i l e . g e t A t t r i b u t e s () ;
F i l eMod i f i ed fmodi f ied = new Fi l eMod i f i ed () ;

f o r (i n t i = 0; i < a t t r s . getLength () ; i++)
{

A t t r cur ren t = (A t t r) a t t r s . item (i) ;

i f (cur ren t . getName () . compareTo (" d e s c r i p t i o n ") == 0)
fmodi f ied . s e t _ d e s c r i p t i o n (cur ren t . getValue ()) ;

i f (cur ren t . getName () . compareTo ("name") == 0)
fmodi f ied . set_name (cur ren t . getValue ()) ;

}
f i l e _ m o d i f i e d . add(fmodi f ied) ;

}

138

Behavior-based Classification of Botnet Malware

// adding f i l e de le ted va lues
pub l i c void a dd _ f i l e _de l e t e d (Element f i l e)
{

NamedNodeMap a t t r s = f i l e . g e t A t t r i b u t e s () ;
F i l eDe l e t ed f d e l e t e d = new F i l eDe l e t ed () ;

f o r (i n t i = 0; i < a t t r s . getLength () ; i++)
{

A t t r cur ren t = (A t t r) a t t r s . item (i) ;

i f (cur ren t . getName () . compareTo (" d e s c r i p t i o n ") == 0)
f d e l e t e d . s e t _ d e s c r i p t i o n (cur ren t . getValue ()) ;

i f (cur ren t . getName () . compareTo ("name") == 0)
f d e l e t e d . set_name (cur ren t . getValue ()) ;

}
f i l e _ d e l e t e d . add(f d e l e t e d) ;

}

// adding f i l e read va lues
pub l i c void add_ f i l e_ read (Element f i l e)
{

NamedNodeMap a t t r s = f i l e . g e t A t t r i b u t e s () ;
F i leRead f read = new Fi leRead () ;

i f (a t t r s . getLength () > 0)
{

A t t r a_name = (A t t r) a t t r s . item (0) ;
f read . set_name (a_name . getValue ()) ;
f i l e _ r e a d . add(f read) ;

}
}

// adding s e c t i o n o b j e c t c rea ted va lues
pub l i c void add_sec t i on_ob jec t_c rea ted (Element o b j e c t)
{

NamedNodeMap a t t r s = o b j e c t . g e t A t t r i b u t e s () ;
Sec t ionObjec tCreated soc = new Sect ionObjec tCreated () ;

i f (a t t r s . getLength () > 0)
{

A t t r a_f i le_name = (A t t r) a t t r s . item (0) ;
soc . se t_ f i l e_name (a_f i le_name . getValue ()) ;
s e c t i o n _ o b j e c t _ c r e a t e d . add(soc) ;

}
}

// adding dev ice con t ro l communication va lues
pub l i c void add_device_control_communicat ion (Element con t ro l)
{

NamedNodeMap a t t r s = con t ro l . g e t A t t r i b u t e s () ;
DeviceControlCommunication dcc = new DeviceControlCommunication () ;

f o r (i n t i = 0; i < a t t r s . getLength () ; i++)
{

A t t r cur ren t = (A t t r) a t t r s . item (i) ;

i f (cur ren t . getName () . compareTo (" contro l_code ") == 0)
dcc . s e t_con t ro l _code (cur ren t . getValue ()) ;

i f (cur ren t . getName () . compareTo (" count ") == 0)
dcc . se t_count (cur ren t . getValue ()) ;

i f (cur ren t . getValue () . compareTo (" f i l e ") == 0)
dcc . s e t _ f i l e (cur ren t . getValue ()) ;

}
device_control_communicat ion . add(dcc) ;

}

// adding f s con t ro l communication va lues
pub l i c void add_fs_control_communicat ion (Element con t ro l)
{

NamedNodeMap a t t r s = con t ro l . g e t A t t r i b u t e s () ;
FsControlCommunication dcc = new FsControlCommunication () ;

f o r (i n t i = 0; i < a t t r s . getLength () ; i++)
{

A t t r cur ren t = (A t t r) a t t r s . item (i) ;

i f (cur ren t . getName () . compareTo (" contro l_code ") == 0)
dcc . s e t_con t ro l _code (cur ren t . getValue ()) ;

i f (cur ren t . getName () . compareTo (" count ") == 0)
dcc . se t_count (cur ren t . getValue ()) ;

139

Behavior-based Classification of Botnet Malware

i f (cur ren t . getValue () . compareTo (" f i l e ") == 0)
dcc . s e t _ f i l e (cur ren t . getValue ()) ;

}
fs_control_communicat ion . add(dcc) ;

}

pub l i c Ar rayL i s t <Fi leCrea ted> g e t _ f i l e _ c r e a t e d ()
{

re turn f i l e _ c r e a t e d ;
}

pub l i c Ar rayL i s t <Fi leModi f ied> g e t _ f i l e _ m o d i f i e d ()
{

re turn f i l e _ m o d i f i e d ;
}

pub l i c Ar rayL i s t <F i l eDe le ted> g e t _ f i l e _ d e l e t e d ()
{

re turn f i l e _ d e l e t e d ;
}

pub l i c Ar rayL i s t <FileRead> g e t _ f i l e _ r e a d ()
{

re turn f i l e _ r e a d ;
}

pub l i c Ar rayL i s t <Sect ionObjectCreated> g e t _ s e c t i o n _ o b j e c t _ c r e a t e d ()
{

re turn s e c t i o n _ o b j e c t _ c r e a t e d ;
}

pub l i c Ar rayL i s t <DeviceControlCommunication> get_device_control_communicat ion ()
{

re turn device_control_communicat ion ;
}

pub l i c Ar rayL i s t <FsControlCommunication> get_fs_control_communcat ion ()
{

re turn fs_control_communicat ion ;
}

// inner c l a s s
pub l i c c l a s s F i l eCrea ted
{

p r i v a t e S t r i ng name ;

pub l i c F i l eCrea ted ()
{

name = nu l l ;
}

pub l i c void set_name (S t r ing name) { t h i s . name = name;}
pub l i c S t r i ng get_name () { re turn name;}

}

// inner c l a s s
pub l i c c l a s s F i l eMod i f i ed
{

p r i v a t e S t r i ng d e s c r i p t i o n ;
p r i v a t e S t r i ng name ;

pub l i c F i l eMod i f i ed ()
{

d e s c r i p t i o n = n u l l ;
name = nu l l ;

}

pub l i c void s e t _ d e s c r i p t i o n (S t r i ng d e s c r i p t i o n) { t h i s . d e s c r i p t i o n =
d e s c r i p t i o n ;}

pub l i c void set_name (S t r ing name) { t h i s . name = name;}

pub l i c S t r i ng g e t _ d e s c r i p t i o n () { re turn d e s c r i p t i o n ;}
pub l i c S t r i ng get_name () { re turn name;}

}

// inner c l a s s
pub l i c c l a s s F i l eDe l e t ed
{

p r i v a t e S t r i ng d e s c r i p t i o n ;
p r i v a t e S t r i ng name ;

140

Behavior-based Classification of Botnet Malware

pub l i c F i l eDe l e t ed ()
{

d e s c r i p t i o n = n u l l ;
name = nu l l ;

}

pub l i c void s e t _ d e s c r i p t i o n (S t r i ng d e s c r i p t i o n) { t h i s . d e s c r i p t i o n =
d e s c r i p t i o n ;}

pub l i c void set_name (S t r i ng name) { t h i s . name = name;}

pub l i c S t r i ng g e t _ d e s c r i p t i o n () { re turn d e s c r i p t i o n ;}
pub l i c S t r i ng get_name () { re turn name;}

}

// inner c l a s s
pub l i c c l a s s Fi leRead
{

p r i v a t e S t r i ng name ;

pub l i c Fi leRead ()
{

name = nu l l ;
}

pub l i c void set_name (S t r i ng name) { t h i s . name=name;}
pub l i c S t r i ng get_name () { re turn name;}

}

// inner c l a s s
pub l i c c l a s s Sec t ionObjec tCreated
{

p r i v a t e S t r i ng f i le_name ;

pub l i c Sec t ionObjec tCreated ()
{

f i le_name = n u l l ;
}

pub l i c void se t_ f i l e_name (S t r i ng f i le_name) { t h i s . f i le_name = fi le_name ;}
pub l i c S t r i ng get_ f i l e_name () { re turn f i le_name ;}

}

// inner c l a s s
pub l i c c l a s s DeviceControlCommunication
{

p r i v a t e S t r ing contro l_code ;
p r i v a t e S t r ing count ;
p r i v a t e S t r ing f i l e ;

pub l i c DeviceControlCommunication ()
{

contro l_code = n u l l ;
count = n u l l ;
f i l e = n u l l ;

}

pub l i c void se t_con t ro l _code (S t r i ng contro l_code) { t h i s . contro l_code =
contro l_code ;}

pub l i c void se t_count (S t r i ng count) { t h i s . count = count ; }
pub l i c void s e t _ f i l e (S t r i ng f i l e) { t h i s . f i l e = f i l e ; }

pub l i c S t r i ng ge t_cont ro l_code () { re turn contro l_code ;}
pub l i c S t r i ng get_count () { re turn count ; }
pub l i c S t r i ng g e t _ f i l e () { re turn f i l e ; }

}

// inner c l a s s
pub l i c c l a s s FsControlCommunication
{

p r i v a t e S t r ing contro l_code ;
p r i v a t e S t r ing count ;
p r i v a t e S t r ing f i l e ;

pub l i c FsControlCommunication ()
{

contro l_code = n u l l ;
count = n u l l ;
f i l e = n u l l ;

}

141

Behavior-based Classification of Botnet Malware

pub l i c void se t_con t ro l _code (S t r i ng contro l_code) { t h i s . contro l_code =
contro l_code ;}

pub l i c void se t_count (S t r ing count) { t h i s . count = count ; }
pub l i c void s e t _ f i l e (S t r i ng f i l e) { t h i s . f i l e = f i l e ; }

pub l i c S t r i ng ge t_cont ro l_code () { re turn contro l_code ;}
pub l i c S t r i ng get_count () { re turn count ; }
pub l i c S t r i ng g e t _ f i l e () { re turn f i l e ; }

}
}

FeatureExtractor

package f ea tu re . e x t r a c t o r ;

import java . io . IOException ;
import java . u t i l . A r r a y L i s t ;

import f ea tu re . e x t r a c t o r . FeatureDynamic . DynamicString ;
import f ea tu re . e x t r a c t o r . F e a t u r e S t a t i c . S ta t i cDLL ;

// c l a s s Fea tu reEx t rac to r i s the c o n t r o l l i n g e n t i t y f o r
// e x t r a c t i n g f e a t u r e s and bu i ld ing s t a t i c , dynamic and
//combined f ea tu re s e t s
pub l i c c l a s s Fea tu reEx t rac to r
{

p r i v a t e Parser par se r ;
p r i v a t e ARFF a r f f ;

p r i v a t e Ar rayL i s t <Fea tu reS ta t i c > f e a t u r e _ s t a t i c ;
p r i v a t e Ar rayL i s t <FeatureDynamic> feature_dynamic ;
p r i v a t e Ar rayL i s t <FeatureCombo> feature_combo ;

pub l i c Fea tu reEx t rac to r ()
{

par se r = new Parser () ;
a r f f = new ARFF() ;
f e a t u r e _ s t a t i c = new ArrayL i s t <Fea tu reS ta t i c >() ;
feature_dynamic = new ArrayL i s t <FeatureDynamic >() ;
feature_combo = new ArrayL i s t <FeatureCombo >() ;

}

//method e x t r a c t s s t a t i c f e a t u r e s and bu i ld a s t a t i c f ea tu re s e t
pub l i c void e x t r a c t _ s t a t i c _ f e a t u r e s () throws IOException
{

System . out . p r i n t l n (" S t a r t s t a t i c f ea tu r e e x t r a c t i o n ") ;

//open f i l e s
par se r . o p e n _ s t a t i c _ r e p o r t s () ;

// c a l l par se r
System . out . p r i n t l n (" S t a r t ana lyz ing TXT documents ") ;
par se r . parse_pe () ;
System . out . p r i n t l n (" Done analyz ing TXT documents ") ;

// prepare f e a t u r e s
System . out . p r i n t l n (" S t a r t preper ing s t a t i c f e a t u r e s ") ;
A r rayL i s t <PE> pe_samples = parse r . get_pe_samples () ;

// i t e r a t e through l i s t
f o r (i n t i = 0; i < pe_samples . s i z e () ; i++)
{

PE current_pe = pe_samples . get (i) ;
F e a t u r e S t a t i c f ea tu re = new F e a t u r e S t a t i c () ;
f ea tu re . a d d _ s t a t i c _ f e a t u r e (current_pe) ;
// System . out . p r i n t l n () ;
// s t o r e o b j e c t in l i s t
f e a t u r e _ s t a t i c . add(f ea tu re) ;

}

System . out . p r i n t l n (" Done prepar ing s t a t i c f e a t u r e s ") ;
}

//method e x t r a c t s dynamic f e a t u r e s and bu i ld a dynamic f ea tu re s e t
pub l i c void ex t rac t_dynamic_ fea tures () throws Except ion
{

System . out . p r i n t l n (" S t a r t dynamic f ea tu r e e x t r a c t i o n ") ;

//open f i l e s

142

Behavior-based Classification of Botnet Malware

parse r . open_dynamic_reports () ;

// c a l l par se r
System . out . p r i n t l n (" S t a r t ana lyz ing XML documents ") ;
par se r . parse_xml () ;
System . out . p r i n t l n (" Done anlyz ing XML documents ") ;

// prepare f e a t u r e s
System . out . p r i n t l n (" S t a r t prepar ing dynamic f e a t u r e s ") ;
A r rayL i s t <XML> xml_samples = parse r . get_xml_samples () ;
// i t e r a t e through l i s t
f o r (i n t i = 0; i < xml_samples . s i z e () ; i++)
{

XML current_xml = xml_samples . get (i) ;
FeatureDynamic f ea tu re = new FeatureDynamic () ;
f ea tu re . add_dynamic_features (current_xml) ;
// s t o r e o b j e c t in l i s t
feature_dynamic . add(f ea tu re) ;

}
System . out . p r i n t l n (" Done prepar ing dynamic f e a t u r e s ") ;

}

//method combines the s t a t i c and dynamic f ea tu re s e t s
pub l i c void combine_features ()
{

System . out . p r i n t l n (" \ nS ta r t combining f e a t u r e s ") ;

// f ind dynamic and s t a t i c f ea tu re o b j e c t with same sample id
fo r (i n t i = 0; i < feature_dynamic . s i z e () ; i++)
{

FeatureDynamic fd = feature_dynamic . get (i) ;
S t r i ng fd_ id = fd . get_sample_id () ;

f o r (i n t i i = 0; i i < f e a t u r e _ s t a t i c . s i z e () ; i i ++)
{

F e a t u r e S t a t i c f s = f e a t u r e _ s t a t i c . get (i) ;
S t r i ng f s _ i d = f s . get_sample_id () ;

// i f sample id match
i f (fd_ id . compareTo (f s _ i d) == 0)
{

// e x t r a c t l i s t of S ta t i cDLL and DynamicString
Ar rayL i s t <Stat icDLL> s d l l = f s . g e t _ s t a t i c _ d l l () ;
A r rayL i s t <DynamicString> d s t r i n g = fd . g e t _ f e a t u r e s

() ;

// c rea t e FeatureCombo o b j e c t and add to l i s t
feature_combo . add(new FeatureCombo (s d l l , d s t r ing ,

fd_ id)) ;

break ;
}

}
}
System . out . p r i n t l n (" Done combining f e a t u r e s ") ;

}

// e x t r a c t i n g l a b e l s
pub l i c void e x t r a c t _ l a b e l s ()
{

// e x t r a c t from s t a t i c data
fo r (i n t i = 0; i < f e a t u r e _ s t a t i c . s i z e () ; i++)
{

f e a t u r e _ s t a t i c . get (i) . e x t r a c t _ l a b e l () ;
}
// e x t r a c t from dynamic data
fo r (i n t i = 0; i < feature_dynamic . s i z e () ; i++)
{

feature_dynamic . get (i) . e x t r a c t _ l a b e l () ;
}
// e x t r a c t from combo
fo r (i n t i = 0; i < feature_combo . s i z e () ; i++)
{

feature_combo . get (i) . e x t r a c t _ l a b e l () ;
}

}

// generate ARFF f i l e
pub l i c void g e n e r a t e _ a r f f () throws Except ion
{

143

Behavior-based Classification of Botnet Malware

System . out . p r i n t l n (" Generate ARFF f i l e ") ;

a r f f . generate_ar f f_dynamic (feature_dynamic) ;
a r f f . g e n e r a t e _ a r f f _ s t a t i c (f e a t u r e _ s t a t i c) ;
a r f f . generate_arf f_combo (feature_combo) ;

// a r f f . g e n e r a t e _ a r f f _ l d (feature_dynamic) ;
}

}

FeatureDynamic

package f ea tu re . e x t r a c t o r ;

import java . u t i l . A r r a y L i s t ;

import f ea tu re . e x t r a c t o r . DLLDependency .∗ ;
import f ea tu re . e x t r a c t o r . F i l e A c t i v i t y .∗ ;
import f ea tu re . e x t r a c t o r . NetworkAct iv i ty .∗ ;
import f ea tu re . e x t r a c t o r . P r o c e s s A c t i v i t y .∗ ;
import f ea tu re . e x t r a c t o r . R e g i s t r y A c t i v i t y .∗ ;

pub l i c c l a s s FeatureDynamic
{

// used when apply ing > 2 l a b e l s
p r i v a t e S t r i ng l a b e l ;
// used when apply ing mal i c ious vs benign
p r i v a t e S t r i ng l abe l _ t ype ;
p r i v a t e S t r i ng sample_id ;
p r i v a t e Ar rayL i s t <DynamicString> dynamic ;

pub l i c FeatureDynamic ()
{

dynamic = new ArrayL i s t <DynamicString >() ;
}

// re turn sample id
pub l i c S t r i ng get_sample_id ()
{

re turn sample_id ;
}

// re turn l a b e l
pub l i c S t r i ng g e t _ l a b e l ()
{

re turn l a b e l ;
}

// re turn l a b e l type
pub l i c S t r i ng ge t _ l abe l _ t ype ()
{

re turn l abe l _ t ype ;
}

//method ass dynamic f e a t u r e s
pub l i c void add_dynamic_features (XML xml)
{

sample_id = xml . get_sample_id () ;

//DLL DEPENDENCY ATTRIBUTES
DLLDependency d l l = xml . g e t _ d l l () ;

DynamicString d l l _base_addres s = new DynamicString (" d l l _base_addres s ") ;
DynamicString dll_base_name = new DynamicString (" dll_base_name ") ;
DynamicString d l l _ fu l l _name = new DynamicString (" d l l _ fu l l _name ") ;
DynamicString dl l_ i s_ load_t ime_dependency = new DynamicString ("

d l l_ i s_ load_t ime_dependency ") ;
DynamicString d l l _ load_ t ime = new DynamicString (" d l l _ load_ t ime ") ;
DynamicString d l l _ s i z e= new DynamicString (" d l l _ s i z e ") ;

A r rayL i s t <LoadedDLL> l d l l = d l l . ge t _ l oaded_d l l s () ;
f o r (i n t i = 0; i < l d l l . s i z e () ; i++)
{

d l l _base_addres s . add_content (l d l l . get (i) . get_base_address ()) ;
dll_base_name . add_content (l d l l . get (i) . get_base_name ()) ;
d l l _ fu l l _name . add_content (l d l l . get (i) . get_fu l l_name ()) ;
d l l_ i s_ load_t ime_dependency . add_content (l d l l . get (i) .

get_ is_ load_t ime_dependency ()) ;
d l l _ load_ t ime . add_content (l d l l . get (i) . get_ load_t ime ()) ;
d l l _ s i z e . add_content (l d l l . get (i) . g e t _ s i z e ()) ;

144

Behavior-based Classification of Botnet Malware

}
dynamic . add(d l l _base_addres s) ;
dynamic . add(dll_base_name) ;
dynamic . add(d l l _ fu l l _name) ;
dynamic . add(dl l_ i s_ load_t ime_dependency) ;
dynamic . add(d l l _ load_ t ime) ;
dynamic . add(d l l _ s i z e) ;

//REGISTRY ACTIVITY ATTRIBUTES
R e g i s t r y A c t i v i t y r e g i s t r y = xml . g e t _ r e g i s t r y () ;

DynamicString reg_key_created_name = new DynamicString ("
reg_key_created_name ") ;

Ar rayL i s t <RegKeyCreated> rkc = r e g i s t r y . ge t_reg_key_created () ;
f o r (i n t i = 0; i < rkc . s i z e () ; i++)
{

reg_key_created_name . add_content (rkc . get (i) . get_name ()) ;
}
dynamic . add(reg_key_created_name) ;

DynamicString reg_value_modi f ied_count = new DynamicString ("
reg_value_modi f ied_count ") ;

DynamicString reg_va lue_mod i f i ed_desc r ip t ion = new DynamicString ("
reg_va lue_mod i f i ed_desc r ip t ion ") ;

DynamicString reg_value_modif ied_key = new DynamicString ("
reg_value_modif ied_key ") ;

DynamicString reg_value_modi f ied_va lue_data = new DynamicString ("
reg_value_modi f ied_va lue_data ") ;

DynamicString reg_value_modif ied_value_name = new DynamicString ("
reg_value_modif ied_value_name ") ;

Ar rayL i s t <RegValueModified> rvm = r e g i s t r y . get_reg_va lue_modi f ied () ;
f o r (i n t i = 0; i < rvm . s i z e () ; i++)
{

reg_value_modi f ied_count . add_content (rvm . get (i) . get_count ()) ;
reg_va lue_mod i f i ed_desc r ip t ion . add_content (rvm . get (i) .

g e t _ d e s c r i p t i o n ()) ;
reg_value_modif ied_key . add_content (rvm . get (i) . get_key ()) ;
reg_value_modi f ied_value_data . add_content (rvm . get (i) . ge t_va lue_data

()) ;
reg_value_modif ied_value_name . add_content (rvm . get (i) . get_value_name

()) ;
}
dynamic . add(reg_value_modi f ied_count) ;
dynamic . add(reg_va lue_mod i f i ed_desc r ip t ion) ;
dynamic . add(reg_value_modif ied_key) ;
dynamic . add(reg_va lue_modi f ied_value_data) ;
dynamic . add(reg_value_modif ied_value_name) ;

DynamicString reg_value_read_count = new DynamicString ("
reg_value_read_count ") ;

DynamicString reg_value_read_key = new DynamicString (" reg_value_read_key ") ;
DynamicString reg_value_read_value_data = new DynamicString ("

reg_va lue_read_value_data ") ;
DynamicString reg_value_read_value_name = new DynamicString ("

reg_value_read_value_name ") ;
Ar rayL i s t <RegValueRead> rv r = r e g i s t r y . ge t_reg_va lue_read () ;
f o r (i n t i = 0; i < rv r . s i z e () ; i++)
{

reg_value_read_count . add_content (r v r . get (i) . get_count ()) ;
reg_value_read_key . add_content (r v r . get (i) . get_key ()) ;
reg_value_read_value_data . add_content (r v r . get (i) . ge t_va lue_data ()) ;
reg_value_read_value_name . add_content (r v r . get (i) . get_value_name ()) ;

}
dynamic . add(reg_value_read_count) ;
dynamic . add(reg_value_read_key) ;
dynamic . add(reg_va lue_read_value_data) ;
dynamic . add(reg_value_read_value_name) ;

// FILE ACTITIVIES ATTRIBUTES
F i l e A c t i v i t y f i l e = xml . g e t _ f i l e () ;

DynamicString f i l e_created_name = new DynamicString (" f i l e_crea ted_name ") ;
Ar rayL i s t <Fi leCrea ted> f c = f i l e . g e t _ f i l e _ c r e a t e d () ;
f o r (i n t i = 0; i < f c . s i z e () ; i++)
{

f i l e_crea ted_name . add_content (f c . get (i) . get_name ()) ;
}

145

Behavior-based Classification of Botnet Malware

DynamicString f i l e _ d e l e t e d _ d e s c r i p t i o n = new DynamicString ("
f i l e _ d e l e t e d _ d e s c r i p t i o n ") ;

DynamicString f i l e_de le ted_name = new DynamicString (" f i l e_de le ted_name ") ;
Ar rayL i s t <F i l eDe le ted> fd = f i l e . g e t _ f i l e _ d e l e t e d () ;
f o r (i n t i = 0; i < fd . s i z e () ; i++)
{

f i l e _ d e l e t e d _ d e s c r i p t i o n . add_content (fd . get (i) . g e t _ d e s c r i p t i o n ()) ;
f i l e_de le ted_name . add_content (fd . get (i) . get_name ()) ;

}
dynamic . add(f i l e _ d e l e t e d _ d e s c r i p t i o n) ;
dynamic . add(f i l e_de le ted_name) ;

DynamicString f i l e _ m o d i f i e d _ d e s c r i p t i o n = new DynamicString ("
f i l e _ m o d i f i e d _ d e s c r i p t i o n ") ;

DynamicString f i le_modif ied_name = new DynamicString (" f i le_modi f ied_name ") ;
Ar rayL i s t <Fi leModi f ied> fm = f i l e . g e t _ f i l e _ m o d i f i e d () ;
f o r (i n t i = 0; i < fm . s i z e () ; i++)
{

f i l e _ m o d i f i e d _ d e s c r i p t i o n . add_content (fm . get (i) . g e t _ d e s c r i p t i o n ()) ;
f i le_modif ied_name . add_content (fm . get (i) . get_name ()) ;

}
dynamic . add(f i l e _ m o d i f i e d _ d e s c r i p t i o n) ;
dynamic . add(f i le_modif ied_name) ;

DynamicString f i le_read_name = new DynamicString (" f i le_read_name ") ;
Ar rayL i s t <FileRead> f r = f i l e . g e t _ f i l e _ r e a d () ;
f o r (i n t i = 0; i < f r . s i z e () ; i++)
{

f i le_read_name . add_content (f r . get (i) . get_name ()) ;
}
dynamic . add(f i le_read_name) ;

DynamicString f i l e _ o b j e c t _ c r e a t e d _ f i l e _ n a m e = new DynamicString ("
f i l e _ o b j e c t _ c r e a t e d _ f i l e _ n a m e ") ;

Ar rayL i s t <Sect ionObjectCreated> soc = f i l e . g e t _ s e c t i o n _ o b j e c t _ c r e a t e d () ;
f o r (i n t i = 0; i < soc . s i z e () ; i++)
{

f i l e _ o b j e c t _ c r e a t e d _ f i l e _ n a m e . add_content (soc . get (i) . ge t_ f i le_name
()) ;

}
dynamic . add(f i l e _ o b j e c t _ c r e a t e d _ f i l e _ n a m e) ;

DynamicString f i l e_ f s com_con t ro l _ code = new DynamicString ("
f i l e _ f s com_con t ro l _ code ") ;

DynamicString f i l e_ f s com_count = new DynamicString (" f i l e_ f s com_count ") ;
DynamicString f i l e _ f s c o m _ f i l e = new DynamicString (" f i l e _ f s c o m _ f i l e ") ;
A r rayL i s t <FsControlCommunication> f c c = f i l e . get_fs_control_communcat ion () ;
f o r (i n t i = 0; i < f c c . s i z e () ; i++)
{

f i l e_ f s com_con t ro l _ code . add_content (f c c . get (i) . ge t_cont ro l_code ()) ;
f i l e_ f s com_count . add_content (f c c . get (i) . get_count ()) ;
f i l e _ f s c o m _ f i l e . add_content (f c c . get (i) . g e t _ f i l e ()) ;

}
dynamic . add(f i l e_ f s com_con t ro l _ code) ;
dynamic . add(f i l e_ f s com_count) ;
dynamic . add(f i l e _ f s c o m _ f i l e) ;

DynamicString f i l e_dev i cecom_cont ro l_code = new DynamicString ("
f i l e_dev i cecom_cont ro l_code ") ;

DynamicString f i l e_dev icecom_count = new DynamicString ("
f i l e_dev icecom_count ") ;

DynamicString f i l e _ d e v i c e c o m _ f i l e = new DynamicString (" f i l e _ d e v i c e c o m _ f i l e "
) ;

A r rayL i s t <DeviceControlCommunication> dcc = f i l e .
get_device_control_communicat ion () ;

f o r (i n t i = 0; i < dcc . s i z e () ; i++)
{

f i l e_dev i cecom_cont ro l_code . add_content (dcc . get (i) . ge t_cont ro l_code
()) ;

f i l e_dev icecom_count . add_content (dcc . get (i) . get_count ()) ;
f i l e _ d e v i c e c o m _ f i l e . add_content (dcc . get (i) . g e t _ f i l e ()) ;

}
dynamic . add(f i l e_dev i cecom_cont ro l_code) ;
dynamic . add(f i l e_dev icecom_count) ;
dynamic . add(f i l e _ d e v i c e c o m _ f i l e) ;

//PROCESS ACTIVITY ATTRIBUTES
P r o c e s s A c t i v i t y process = xml . ge t_proces s () ;

146

Behavior-based Classification of Botnet Malware

DynamicString thread_status_number_threads = new DynamicString ("
thread_status_number_threads ") ;

DynamicString thread_s ta tus_ t ime = new DynamicString (" th read_s ta tus_ t ime ") ;
Ar rayL i s t <ThreadStatus> t s = process . ge t _ th read_ s t a tu s () ;
f o r (i n t i = 0; i < t s . s i z e () ; i++)
{

thread_status_number_threads . add_content (t s . get (i) .
get_number_of_threads ()) ;

th read_s ta tus_ t ime . add_content (t s . get (i) . get_t ime ()) ;
}
dynamic . add(thread_status_number_threads) ;
dynamic . add(thread_s ta tus_ t ime) ;

DynamicString remote_thread_created_process = new DynamicString ("
remote_thread_created_process ") ;

A r rayL i s t <RemoteThreadCreated> r t s = process . get_remote_thread_created () ;
f o r (i n t i = 0; i < r t s . s i z e () ; i++)
{

remote_thread_created_process . add_content (r t s . get (i) . ge t_proces s ())
;

}
dynamic . add(remote_thread_created_process) ;

DynamicString process_created_cmd_l ine = new DynamicString ("
process_created_cmd_l ine ") ;

DynamicString p r o c e s s _ c r e a t e d _ d e s c r i p t i o n = new DynamicString ("
p r o c e s s _ c r e a t e d _ d e s c r i p t i o n ") ;

DynamicString process_created_exe_name = new DynamicString ("
process_created_exe_name ") ;

Ar rayL i s t <ProcessCreated> pc = process . ge t_proces s_c rea ted () ;
f o r (i n t i = 0; i < pc . s i z e () ; i++)
{

process_created_cmd_l ine . add_content (pc . get (i) . get_cmd_l ine ()) ;
p r o c e s s _ c r e a t e d _ d e s c r i p t i o n . add_content (pc . get (i) . g e t _ d e s c r i p t i o n ()

) ;
process_created_exe_name . add_content (pc . get (i) . get_exe_name ()) ;

}
dynamic . add(process_created_cmd_l ine) ;
dynamic . add(p r o c e s s _ c r e a t e d _ d e s c r i p t i o n) ;
dynamic . add(process_created_exe_name) ;

//NETWORK ACTIVITY ATTRIBUTES
NetworkAct iv i ty network = xml . get_network () ;

DynamicString socke t_c lo se_ t ime = new DynamicString (" socke t_c lo se_ t ime ") ;
DynamicString socke t_c rea te_ t ime = new DynamicString (" socke t_c rea te_ t ime ") ;
DynamicString socke t_crea ted_by_thread = new DynamicString ("

socket_crea ted_by_thread ") ;
DynamicString s o c k e t _ f o r e i g n _ i p = new DynamicString (" s o c k e t _ f o r e i g n _ i p ") ;
DynamicString socke t _ fo r e i gn_po r t = new DynamicString (" so cke t _ fo r e i gn_po r t "

) ;
DynamicString s o c k e t _ i s _ l i s t e n i n g = new DynamicString (" s o c k e t _ i s _ l i s t e n i n g "

) ;
DynamicString s o c k e t _ l o c a l _ i p = new DynamicString (" s o c k e t _ l o c a l _ i p ") ;
DynamicString s o c k e t _ l o c a l _ p o r t = new DynamicString (" s o c k e t _ l o c a l _ p o r t ") ;
A r rayL i s t <Socket> socke t = network . ge t_ socke t () ;
f o r (i n t i = 0; i < socke t . s i z e () ; i++)
{

socke t_c lo se_ t ime . add_content (socke t . get (i) . ge t_c lo se_ t ime ()) ;
socke t_c rea te_ t ime . add_content (socke t . get (i) . ge t_c rea te_ t ime ()) ;
socket_crea ted_by_thread . add_content (socke t . get (i) .

ge t_created_by_thread ()) ;
s o c k e t _ f o r e i g n _ i p . add_content (socke t . get (i) . g e t _ f o r e i g n _ i p ()) ;
so cke t _ fo r e i gn_po r t . add_content (socke t . get (i) . g e t _ fo r e i gn_po r t ()) ;
s o c k e t _ i s _ l i s t e n i n g . add_content (socke t . get (i) . g e t _ i s _ l i s t e n i n g ()) ;
s o c k e t _ l o c a l _ i p . add_content (socke t . get (i) . g e t _ l o c a l _ i p ()) ;
s o c k e t _ l o c a l _ p o r t . add_content (socke t . get (i) . g e t _ l o c a l _ p o r t ()) ;

}
dynamic . add(socke t_c lo se_ t ime) ;
dynamic . add(socke t_c rea te_ t ime) ;
dynamic . add(socket_crea ted_by_thread) ;
dynamic . add(s o c k e t _ f o r e i g n _ i p) ;
dynamic . add(socke t _ fo r e i gn_po r t) ;
dynamic . add(s o c k e t _ i s _ l i s t e n i n g) ;
dynamic . add(s o c k e t _ l o c a l _ i p) ;
dynamic . add(s o c k e t _ l o c a l _ p o r t) ;

DynamicString dns_name = new DynamicString (" dns_name ") ;
DynamicString dns_ re su l t = new DynamicString (" dns_ re su l t ") ;

147

Behavior-based Classification of Botnet Malware

DynamicString d n s _ s u c c e s s f u l l = new DynamicString (" d n s _ s u c c e s s f u l l ") ;
DynamicString dns_type = new DynamicString (" dns_type ") ;
A r rayL i s t <DNSQuery> dns = network . get_dns_query () ;
f o r (i n t i = 0; i < dns . s i z e () ; i++)
{

dns_name . add_content (dns . get (i) . get_name ()) ;
dns_ re su l t . add_content (dns . get (i) . g e t _ r e s u l t ()) ;
d n s _ s u c c e s s f u l l . add_content (dns . get (i) . g e t _ s u c c e s s f u l l ()) ;
dns_type . add_content (dns . get (i) . ge t_ type ()) ;

}
dynamic . add(dns_name) ;
dynamic . add(dns_ re su l t) ;
dynamic . add(d n s _ s u c c e s s f u l l) ;
dynamic . add(dns_type) ;

DynamicString smtp_content = new DynamicString (" smtp_content ") ;
DynamicString smtp_desc r ip t ion = new DynamicString (" smtp_descr ip t ion ") ;
DynamicString smtp_dest_ ip = new DynamicString (" smtp_dest_ ip ") ;
DynamicString smtp_dest_port = new DynamicString (" smtp_dest_port ") ;
DynamicString smtp_rec ip i en t = new DynamicString (" smtp_rec ip i en t ") ;
DynamicString smtp_sender = new DynamicString (" smtp_sender ") ;
DynamicString smtp_server_rep ly = new DynamicString (" smtp_server_rep ly ") ;
DynamicString smtp_src_ ip = new DynamicString (" smtp_src_ ip ") ;
DynamicString smtp_src_port = new DynamicString (" smtp_src_port ") ;
DynamicString smtp_subjec t = new DynamicString (" smtp_subjec t ") ;
A r rayL i s t <SMTPConversation> smtp = network . get_smtp_conversat ion () ;
f o r (i n t i = 0; i < smtp . s i z e () ; i++)
{

smtp_content . add_content (smtp . get (i) . ge t_content ()) ;
smtp_desc r ip t ion . add_content (smtp . get (i) . g e t _ d e s c r i p t i o n ()) ;
smtp_dest_ ip . add_content (smtp . get (i) . ge t _de s t _ ip ()) ;
smtp_dest_port . add_content (smtp . get (i) . ge t_des t_por t ()) ;
smtp_rec ip i en t . add_content (smtp . get (i) . g e t _ r e c i p i e n t ()) ;
smtp_sender . add_content (smtp . get (i) . get_sender ()) ;
smtp_server_rep ly . add_content (smtp . get (i) . g e t _ s e r v e r _ r e p l y ()) ;
smtp_src_ ip . add_content (smtp . get (i) . g e t _ s r c _ i p ()) ;
smtp_src_port . add_content (smtp . get (i) . g e t _ s r c _ p o r t ()) ;
smtp_subjec t . add_content (smtp . get (i) . g e t _ s u b j e c t ()) ;

}
dynamic . add(smtp_content) ;
dynamic . add(smtp_desc r ip t ion) ;
dynamic . add(smtp_dest_ ip) ;
dynamic . add(smtp_dest_port) ;
dynamic . add(smtp_rec ip ien t) ;
dynamic . add(smtp_sender) ;
dynamic . add(smtp_server_rep ly) ;
dynamic . add(smtp_src_ ip) ;
dynamic . add(smtp_src_port) ;
dynamic . add(smtp_subjec t) ;

DynamicString h t tp_de s t _ i p = new DynamicString (" h t tp_de s t _ i p ") ;
DynamicString h t tp_des t _por t = new DynamicString (" h t tp_des t _por t ") ;
DynamicString http_hostname = new DynamicString (" http_hostname ") ;
DynamicString h t t p _ s r c _ i p = new DynamicString (" h t t p _ s r c _ i p ") ;
DynamicString h t t p _ s r c _ p o r t = new DynamicString (" h t t p _ s r c _ p o r t ") ;
A r rayL i s t <HTTPConversation> ht tp = network . ge t_h t tp_conver sa t i on () ;
f o r (i n t i = 0; i < ht tp . s i z e () ; i++)
{

h t tp_de s t _ i p . add_content (h t tp . get (i) . ge t _de s t _ ip ()) ;
h t tp_des t _por t . add_content (ht tp . get (i) . ge t_des t_por t ()) ;
http_hostname . add_content (ht tp . get (i) . get_hostname ()) ;
h t t p _ s r c _ i p . add_content (h t tp . get (i) . g e t _ s r c _ i p ()) ;
h t t p _ s r c _ p o r t . add_content (ht tp . get (i) . g e t _ s r c _ p o r t ()) ;

}
dynamic . add(h t tp_de s t _ i p) ;
dynamic . add(h t tp_des t _por t) ;
dynamic . add(http_hostname) ;
dynamic . add(h t t p _ s r c _ i p) ;
dynamic . add(h t t p _ s r c _ p o r t) ;

DynamicString t cp_de s t _ ip = new DynamicString (" t cp_de s t _ i p ") ;
DynamicString t cp_des t_por t = new DynamicString (" t cp_des t_por t ") ;
DynamicString t cp_org_by te s_ sen t = new DynamicString (" t cp_org_by te s_ sen t ") ;
DynamicString t cp_ re s_by t e s_ s en t = new DynamicString (" t cp_ r e s_by t e s_ s e n t ") ;
DynamicString t c p _ s r c _ i p = new DynamicString (" t c p _ s r c _ i p ") ;
DynamicString t c p _ s r c _ p o r t = new DynamicString (" t c p _ s r c _ p o r t ") ;
DynamicString t c p _ s t a t e = new DynamicString (" t c p _ s t a t e ") ;
A r rayL i s t <TCPConversation> tcp = network . ge t_ t cp_conver sa t i on () ;
f o r (i n t i = 0; i < tcp . s i z e () ; i++)
{

148

Behavior-based Classification of Botnet Malware

t cp_de s t _ ip . add_content (tcp . get (i) . ge t _de s t _ ip ()) ;
t cp_des t_por t . add_content (tcp . get (i) . ge t_des t_por t ()) ;
t cp_org_by te s_ sen t . add_content (tcp . get (i) . ge t_org_by te s_sen t ()) ;
t cp_ r e s_by t e s_ s e n t . add_content (tcp . get (i) . g e t _ r e s_by t e s_ s en t ()) ;
t c p _ s r c _ i p . add_content (tcp . get (i) . g e t _ s r c _ i p ()) ;
t c p _ s r c _ p o r t . add_content (tcp . get (i) . g e t _ s r c _ p o r t ()) ;
t c p _ s t a t e . add_content (tcp . get (i) . g e t _ s t a t e ()) ;

}
dynamic . add(t cp_de s t _ ip) ;
dynamic . add(t cp_des t_por t) ;
dynamic . add(t cp_org_by te s_ sen t) ;
dynamic . add(t c p_ re s_ by t e s_ s en t) ;
dynamic . add(t c p _ s r c _ i p) ;
dynamic . add(t c p _ s r c _ p o r t) ;
dynamic . add(t c p _ s t a t e) ;

DynamicString udp_dest_ip = new DynamicString (" udp_dest_ip ") ;
DynamicString udp_dest_port = new DynamicString (" udp_dest_port ") ;
DynamicString udp_org_bytes_sent = new DynamicString (" udp_org_bytes_sent ") ;
DynamicString udp_res_bytes_sent = new DynamicString (" udp_res t_by te s_sen t ")

;
DynamicString udp_src_ ip = new DynamicString (" udp_src_ ip ") ;
DynamicString udp_src_port = new DynamicString (" udp_src_port ") ;
DynamicString udp_state = new DynamicString (" udp_state ") ;

A r rayL i s t <UDPConversation> udp = network . get_udp_conversat ion () ;
f o r (i n t i = 0; i < udp . s i z e () ; i++)
{

udp_dest_ip . add_content (udp . get (i) . ge t _de s t _ ip ()) ;
udp_dest_port . add_content (udp . get (i) . ge t_des t_por t ()) ;
udp_org_bytes_sent . add_content (udp . get (i) . ge t_org_by te s_sen t ()) ;
udp_res_bytes_sent . add_content (udp . get (i) . g e t _ r e s_by t e s_ sen t ()) ;
udp_src_ ip . add_content (udp . get (i) . g e t _ s r c _ i p ()) ;
udp_src_port . add_content (udp . get (i) . g e t _ s r c _ p o r t ()) ;
udp_state . add_content (udp . get (i) . g e t _ s t a t e ()) ;

}
dynamic . add(udp_dest_ip) ;
dynamic . add(udp_dest_port) ;
dynamic . add(udp_org_bytes_sent) ;
dynamic . add(udp_res_bytes_sent) ;
dynamic . add(udp_src_ ip) ;
dynamic . add(udp_src_port) ;
dynamic . add(udp_state) ;

}

// re turn dynamic f e a t u r e s
pub l i c Ar rayL i s t <DynamicString> g e t _ f e a t u r e s ()
{

re turn dynamic ;
}

// e x t r a c t l a b e l s from samples
pub l i c void e x t r a c t _ l a b e l ()
{

i f (sample_id != n u l l)
{

//go backwards from s t r i n g name to exclude s p e c i f i c ve r s ion of
malware fami ly

f o r (i n t i = sample_id . length ()−1; i > 0; i−−)
{

i n t a = i ;
i n t b = i −1;

S t r i ng n = sample_id . s u b s t r i n g (b , a) ;

i f (n . compareTo (" . ") == 0)
{

l a b e l = sample_id . s u b s t r i n g (0 , b) ;

i f (l a b e l . s u b s t r i n g (0 ,6) . compareTo (" Benign ") == 0)
{

l abe l _ t ype = " benign " ;
}
e l s e
{

l abe l _ t ype = " mal i c ious " ;
}

break ;
}

149

Behavior-based Classification of Botnet Malware

}
}
e l s e
{

System . out . p r i n t l n (" Cannot e x t r a c t l a b e l from sample id ! ") ;
}

}

// inner c l a s s f o r holding name and content
pub l i c c l a s s DynamicString
{

p r i v a t e S t r i ng name ;
p r i v a t e S t r i ng content ;
p r i v a t e Ar rayL i s t <Str ing> s t r i n g _ l i s t ;
p r i v a t e i n t ld ; // l evens the in

pub l i c DynamicString (S t r ing name)
{

t h i s . name = name ;
t h i s . content = nu l l ;
t h i s . s t r i n g _ l i s t = new ArrayL i s t <Str ing >() ;
t h i s . ld = 0;

}

pub l i c void add_content (S t r i ng c)
{

S t r i ng m = n u l l ;

i f (c != n u l l)
{

s t r i n g _ l i s t . add(c) ;
m = c ;

}
e l s e
{

m = " " ;
}

i f (content == n u l l)
{

S t r i ng n = " \ " " + m + " \ " " ;
content = n ;

}
e l s e
{

S t r i ng n = " \ " " + m + " \ " " ;
content = content + n ;

}
}

pub l i c void c a l c _ l d ()
{

i f (s t r i n g _ l i s t . s i z e () == 1)
{

// not sure i f t h i s i s good enough
ld = s t r i n g _ l i s t . get (0) . length () ;

}
e l s e
{

Ar rayL i s t <Integer> ld_sco re = new ArrayL i s t <Integer >() ;

// c a l c u l a t e a l l combinations
f o r (i n t i = 0; i < s t r i n g _ l i s t . s i z e () ; i++)
{

i n t score = 0;
f o r (i n t i i = 0; i i < s t r i n g _ l i s t . s i z e () ; i i ++)

score += LD . computeLevenshteinDistance
(s t r i n g _ l i s t . get (i) , s t r i n g _ l i s t .

get (i i)) ;
l d_ s co re . add(score) ;

}

// f ind lowest score
i n t lowes t_cur ren t = 0;
f o r (i n t i = 0; i < ld_sco re . s i z e ()−1; i++)
{

lowes t_cur ren t = ld_sco re . get (i) ;
i n t next = ld_sco re . get (i +1) ;

i f (lowes t_cur ren t > next)

150

Behavior-based Classification of Botnet Malware

lowes t_cur ren t = next ;
}

// s e t lowest score
ld = lowes t_cur ren t ;

}
}

pub l i c S t r i ng get_name () { re turn name;}
pub l i c S t r i ng get_content () { re turn content ; }
pub l i c Ar rayL i s t <Str ing> g e t _ s t r i n g _ l i s t () { re turn s t r i n g _ l i s t ; }
pub l i c i n t ge t_ ld () { re turn ld ;}

}

@Deprecated // t e s t i n g levens the in−d i s t ance
pub l i c s t a t i c c l a s s LD
{

p r i v a t e s t a t i c i n t minimum(i n t a , i n t b , i n t c)
{

re turn Math . min(Math . min(a , b) , c) ;
}

pub l i c s t a t i c i n t computeLevenshteinDistance (CharSequence s t r1 , CharSequence
s t r 2)

{
i n t [] [] d i s t ance = new i n t [s t r 1 . length () + 1][s t r 2 . length () + 1] ;

f o r (i n t i = 0; i <= s t r 1 . length () ; i++)
d i s t ance [i][0] = i ;

f o r (i n t j = 0; j <= s t r 2 . length () ; j++)
d i s t ance [0][j] = j ;

f o r (i n t i = 1; i <= s t r 1 . length () ; i++)
f o r (i n t j = 1; j <= s t r 2 . length () ; j++)

d i s t ance [i][j] = minimum(
d i s t ance [i − 1][j] + 1 ,

d i s t ance [i][j − 1] + 1 ,
d i s t ance [i − 1][j − 1]

+ ((s t r 1 . charAt (i − 1) == s t r 2 . charAt (j − 1)) ? 0
: 1)) ;

re turn d i s t ance [s t r 1 . length ()][s t r 2 . length ()] ;
}

}

}

FeatureStatic

package f ea tu re . e x t r a c t o r ;

import java . u t i l . A r r a y L i s t ;

// c l a s s F e a t u r e S t a t i c holds the crea ted s t a t i c f ea tu re s e t
pub l i c c l a s s F e a t u r e S t a t i c
{

p r i v a t e S t r i ng sample_id ;
// used when apply ing > 2 l a b e l s
p r i v a t e S t r i ng l a b e l ;
// used when apply ing mal i c ious vs benign
p r i v a t e S t r i ng l abe l _ t ype ;
p r i v a t e Ar rayL i s t <Stat icDLL> s t a t i c _ d l l ;

pub l i c F e a t u r e S t a t i c ()
{

s t a t i c _ d l l = new ArrayL i s t <Stat icDLL >() ;
}

// re tu rns s t a t i c d l l
pub l i c Ar rayL i s t <Stat icDLL> g e t _ s t a t i c _ d l l ()
{

re turn s t a t i c _ d l l ;
}

// re tu rns sample id
pub l i c S t r i ng get_sample_id ()
{

re turn sample_id ;
}

151

Behavior-based Classification of Botnet Malware

// re turn l a b e l
pub l i c S t r i ng g e t _ l a b e l ()
{

re turn l a b e l ;
}

// re turn l a b e l type
pub l i c S t r i ng ge t _ l abe l _ t ype ()
{

re turn l abe l _ t ype ;
}

// e x t r a c t i n g l a b e l from sample
pub l i c void e x t r a c t _ l a b e l ()
{

i f (sample_id != n u l l)
{

//go backwards from s t r i n g name to exclude s p e c i f i c ve r s ion of
malware fami ly

f o r (i n t i = sample_id . length ()−1; i > 0; i−−)
{

i n t a = i ;
i n t b = i −1;

S t r i ng n = sample_id . s u b s t r i n g (b , a) ;

i f (n . compareTo (" . ") == 0)
{

l a b e l = sample_id . s u b s t r i n g (0 , b) ;

i f (l a b e l . s u b s t r i n g (0 ,6) . compareTo (" Benign ") == 0)
{

l abe l _ t ype = " benign " ;
}
e l s e
{

l abe l _ t ype = " mal i c ious " ;
}

break ;
}

}
}
e l s e
{

System . out . p r i n t l n (" Cannot e x t r a c t l a b e l from sample id ! ") ;
}

}

//method adds s t a t i c f e a t u r e s
pub l i c void a d d _ s t a t i c _ f e a t u r e (PE pe)
{

sample_id = pe . get_sample_id () ;

// f ind a l l DLL names
Ar rayL i s t <DLL> d l l s = pe . g e t _ d l l () ;

S t r i ng c u r r e n t _ d l l = n u l l ;
S t r i ng func t i on s = " " ;
S t r i ng name_functions = " " ;
S t r i ng q = " \ " " ;

i n t counter = 0;

i f (! d l l s . isEmpty ())
{

c u r r e n t _ d l l = d l l s . get (0) . g e t _ d l l _ t y p e () ;
i f (d l l s . get (0) . g e t _ d l l _ f u n c t i o n () . compareTo (" unknown ")!= 0)
{

// adding only func t ion c a l l
f unc t i on s = q+d l l s . get (0) . g e t _ d l l _ f u n c t i o n ()+q ;
name_functions = q+d l l s . get (0) . get_dl l_name_funct ion ()+q ;

}
}

// count same func t ion and bu i ld func t i on s s t r i n g s
f o r (i n t i = 1; i < d l l s . s i z e () ; i++)
{

S t r i ng n e x t _ d l l = d l l s . get (i) . g e t _ d l l _ t y p e () ;

152

Behavior-based Classification of Botnet Malware

i f (c u r r e n t _ d l l . compareTo (n e x t _ d l l)==0)
{

i f (d l l s . get (i) . g e t _ d l l _ f u n c t i o n () . compareTo (" unknown ")!= 0)
{

counter++;
i f (func t i on s . compareTo (" ")==0)
{

// adding func t i on s to a long s t r i n g
S t r i ng itemp = q+d l l s . get (i) .

g e t _ d l l _ f u n c t i o n ()+q ;
S t r i ng ftemp = func t i on s+itemp ;
func t i on s = ftemp ;

// adding func t ion to the other s t r i n g
S t r i ng jtemp = q+d l l s . get (i) .

get_dl l_name_funct ion ()+q ;
S t r i ng gtemp = name_functions + jtemp ;
name_functions = gtemp ;

}
e l s e
{

// adding func t i on s to a long s t r i n g
S t r i ng itemp = " "+q+d l l s . get (i) .

g e t _ d l l _ f u n c t i o n ()+q ;
S t r i ng ftemp = func t i on s+itemp ;
func t i on s = ftemp ;

// adding func t ion to the other s t r i n g
S t r i ng jtemp = " "+q+d l l s . get (i) .

get_dl l_name_funct ion ()+q ;
S t r i ng gtemp = name_functions + jtemp ;
name_functions = gtemp ;

}
}

}
e l s e
{

//add d l l
S ta t i cDLL d l l = new Stat i cDLL () ;
d l l . set_dl l_name (c u r r e n t _ d l l) ;
d l l . se t_count (counter) ;
d l l . s e t _ d l l _ f u n c t i o n s (func t i on s) ;
d l l . s e t_d l l _name_func t ions (name_functions) ;

//add to array
s t a t i c _ d l l . add(d l l) ;

// r e s e t counter
counter = 0;
func t i on s = " " ; // or ’ ? ’
name_functions = " " ;
// change cur ren t s t r i n g
c u r r e n t _ d l l = n e x t _ d l l ;

}
}

}

// inner c l a s s
pub l i c c l a s s Sta t i cDLL
{

p r i v a t e S t r i ng dll_name ;
p r i v a t e i n t count ;
p r i v a t e S t r i ng d l l _ f u n c t i o n s ;
p r i v a t e S t r i ng dl l_name_funct ions ;

pub l i c void p r i n t _ i n f o ()
{

System . out . p r i n t l n (dll_name + " −> " + count + " −> " +
d l l _ f u n c t i o n s) ;

}

pub l i c void set_dl l_name (S t r i ng dll_name) { t h i s . dll_name = dll_name .
toLowerCase () ; }

pub l i c void se t_count (i n t count) { t h i s . count = count ; }
pub l i c void s e t _ d l l _ f u n c t i o n s (S t r i ng d l l _ f u n c t i o n s) { t h i s . d l l _ f u n c t i o n s =

d l l _ f u n c t i o n s ; }
pub l i c void se t_d l l _name_func t ions (S t r i ng n) { t h i s . d l l_name_funct ions = n ;}

pub l i c S t r i ng get_dll_name () { re turn dll_name ;}
pub l i c i n t get_count () { re turn count ; }

153

Behavior-based Classification of Botnet Malware

pub l i c S t r i ng g e t _ d l l _ f u n c t i o n s () { re turn d l l _ f u n c t i o n s ; }
pub l i c S t r i ng get_d l l_name_funct ions () { re turn dl l_name_funct ions ; }

}
}

FeatureCombo

package f ea tu re . e x t r a c t o r ;

import java . u t i l . A r r a y L i s t ;

import f ea tu re . e x t r a c t o r . FeatureDynamic . DynamicString ;
import f ea tu re . e x t r a c t o r . F e a t u r e S t a t i c . S ta t i cDLL ;

// c l a s s FeatureCombo bu i l d s a f ea tu re s e t based
//on s t a t i c and dynamic f ea tu re s e t
pub l i c c l a s s FeatureCombo
{

p r i v a t e S t r i ng sample_id ;
// used when apply ing > 2 l a b e l s
p r i v a t e S t r i ng l a b e l ;
// used when apply ing mal i c ious vs benign
p r i v a t e S t r i ng l abe l _ t ype ;
p r i v a t e Ar rayL i s t <Stat icDLL> s t a t i c _ d l l ;
p r i v a t e Ar rayL i s t <DynamicString> dynamic_str ing ;

pub l i c FeatureCombo (Ar rayL i s t <Stat icDLL> s t a t i c _ d l l , A r rayL i s t <DynamicString>
dynamic_str ing , S t r i ng sample_id)

{
t h i s . s t a t i c _ d l l = s t a t i c _ d l l ;
t h i s . dynamic_str ing = dynamic_str ing ;
t h i s . sample_id = sample_id ;

}

// e x t r a c t i n g l a b e l
pub l i c void e x t r a c t _ l a b e l ()
{

i f (sample_id != n u l l)
{

//go backwards from s t r i n g name to exclude s p e c i f i c ve r s ion of
malware fami ly

f o r (i n t i = sample_id . length ()−1; i > 0; i−−)
{

i n t a = i ;
i n t b = i −1;

S t r i ng n = sample_id . s u b s t r i n g (b , a) ;

i f (n . compareTo (" . ") == 0)
{

l a b e l = sample_id . s u b s t r i n g (0 , b) ;

i f (l a b e l . s u b s t r i n g (0 ,6) . compareTo (" Benign ") == 0)
{

l abe l _ t ype = " benign " ;
}
e l s e
{

l abe l _ t ype = " mal i c ious " ;
}

break ;
}

}
}
e l s e
{

System . out . p r i n t l n (" Cannot e x t r a c t l a b e l from sample id ! ") ;
}

}

// re turn sample id
pub l i c S t r i ng get_sample_id ()
{

re turn sample_id ;
}

// re turn l a b e l
pub l i c S t r i ng g e t _ l a b e l ()
{

154

Behavior-based Classification of Botnet Malware

re turn l a b e l ;
}

// re turn l a b e l type
pub l i c S t r i ng ge t _ l abe l _ t ype ()
{

re turn l abe l _ t ype ;
}

// re turn s t a t i c f e a t u r e s
pub l i c Ar rayL i s t <Stat icDLL> g e t _ s t a t i c _ d l l ()
{

re turn s t a t i c _ d l l ;
}

// re turn dynamic f e a t u r e s
pub l i c Ar rayL i s t <DynamicString> get_dynamic_s t r ing ()
{

re turn dynamic_str ing ;
}

}

ARFF

package f ea tu re . e x t r a c t o r ;

import f ea tu re . e x t r a c t o r . FeatureDynamic . DynamicString ;
import f ea tu re . e x t r a c t o r . F e a t u r e S t a t i c . S ta t i cDLL ;
// imported s td java l i b r a r i e s
import java . io . F i l e ;
import java . io . IOException ;
import java . u t i l . A r r a y L i s t ;
import java . u t i l . Scanner ;
// imported weka l i b r a r i e s
import weka . core . A t t r i b u t e ;
import weka . core . Fas tVec to r ;
import weka . core . In s tance ;
import weka . core . In s t ance s ;
import weka . f i l t e r s . F i l t e r ;
import weka . f i l t e r s . unsupervised . a t t r i b u t e . Remove ;
import weka . f i l t e r s . unsupervised . a t t r i b u t e . StringToWordVector ;
import weka . core . conve r t e r s . A r f fSave r ;

//ARFF c l a s s generates 3 ARFF f i l e s with d i f f e r e n t a t t r i b u t e types
// r e f l e c t i n g s t a t i c , dynamic and a combined f ea tu re s e t
pub l i c c l a s s ARFF
{

// holds data tha t i s going to wr i t t en to f i l e
p r i v a t e In s t ance s data ;
p r i v a t e Ar rayL i s t <Fea tu reS ta t i c > f s t a t i c ;
p r i v a t e Ar rayL i s t <FeatureDynamic> fdynamic ;
p r i v a t e Ar rayL i s t <FeatureCombo> fcombo ;

pub l i c ARFF()
{

//empty cons t ruc to r
}

// p r i v a t e methods checks i f a r r a y l i s t conta in c e r t a i n s t r i n g
p r i v a t e boolean c o n t a i n s _ s t r i n g (Ar rayL i s t <Str ing> l i s t , S t r i ng name)
{

f o r (i n t i = 0; i < l i s t . s i z e () ; i++)
{

S t r i ng s = l i s t . get (i) ;
// i f l i s t conta in s t r i n g
i f (s . compareTo (name)==0)
{

re turn t rue ;
}

}
re turn f a l s e ;

}

// p r i v a t e method re tu rns a index to input s t r i n g search
p r i v a t e i n t f i n d _ s t r i n g (Ar rayL i s t <Stat icDLL> l i s t , S t r i ng name)
{

f o r (i n t i = 0; i < l i s t . s i z e () ; i++)
{

S t r i ng s = l i s t . get (i) . get_dll_name () ;
// i f l i s t conta in s t r i n g

155

Behavior-based Classification of Botnet Malware

i f (s . compareTo (name)==0)
{

re turn i ;
}

}
re turn −1;

}

//method c r e a t e s an a r f f f i l e based on s t a t i c f e a t u r e s
pub l i c void g e n e r a t e _ a r f f _ s t a t i c (Ar rayL i s t <Fea tu reS ta t i c > f e a t u r e _ s t a t i c) throws

Except ion
{

// l o c a l v a r i a b l e s
double [] va lues ;
double [] v a l u e s _ l a b e l ;
I n s t ance s l abe l _da ta ;
f s t a t i c = f e a t u r e _ s t a t i c ;

//add a l l d l l s used by a l l i n s t a n c e s in a l i s t
A r rayL i s t <Str ing> d l l _ l i s t = new ArrayL i s t <Str ing >() ;
f o r (i n t i = 0; i < f s t a t i c . s i z e () ; i++)
{

Ar rayL i s t <Stat icDLL> c _ d l l = f e a t u r e _ s t a t i c . get (i) . g e t _ s t a t i c _ d l l ()
;

f o r (i n t i i = 0; i i < c _ d l l . s i z e () ; i i ++)
{

//add s t r i n g i f i t does not e x i s t in l i s t
S t r i ng c _ s t r i n g = c _ d l l . get (i i) . get_dll_name () ;
i f (! c o n t a i n s _ s t r i n g (d l l _ l i s t , c _ s t r i n g))
{

d l l _ l i s t . add(c _ s t r i n g) ;
}

}
}

//add a t t r i b u t e s f o r used d l l s − t rue or f a l s e (nominal)
Fas tVec to r a t t r i b u t e s = new Fas tVec to r () ;
Fas tVec to r a t t _ t r u e _ f a l s e = new Fas tVec to r () ;
a t t _ t r u e _ f a l s e . addElement (" t rue ") ;
a t t _ t r u e _ f a l s e . addElement (" f a l s e ") ;

//must c r ea t e a t t r i b u t e s f o r l a b e l s
Fas tVec to r a t t _ l a b e l s = new Fas tVec to r () ;
Fas tVec to r l a b e l _ a t t r i b u t e s = new Fas tVec to r () ;
A r rayL i s t <Str ing> s l a b e l s = new ArrayL i s t <Str ing >() ;
//add dummy
// a t t _ l a b e l s . addElement ("dummy") ;
f o r (i n t i = 0; i < f s t a t i c . s i z e () ; i++)
{

S t r i ng l = f s t a t i c . get (i) . g e t _ l abe l _ t ype () ;
i f (! c o n t a i n s _ s t r i n g (s l a b e l s , l))
{

a t t _ l a b e l s . addElement (l) ;
s l a b e l s . add(l) ;

}
}

//add a l l used a t t r i b u t e s in the a t t r i b u t e s−o b j e c t
f o r (i n t i = 0; i < d l l _ l i s t . s i z e () ; i++)
{

S t r i ng dll_name = d l l _ l i s t . get (i) ;
S t r i ng d l l _ f u n c t i o n s = dll_name + " _ func t i ons " ;
//add a t t r i b u t e DLL name
a t t r i b u t e s . addElement (new A t t r i b u t e (dll_name , a t t _ t r u e _ f a l s e)) ;
//add a s t r i n g with func t ion names
a t t r i b u t e s . addElement (new A t t r i b u t e (d l l _ f u n c t i o n s , (Fas tVec to r) n u l l

)) ;
}

//add a t t r i b u t e sample l a b e l
l a b e l _ a t t r i b u t e s . addElement (new A t t r i b u t e (" sample_ labe l " , a t t _ l a b e l s)) ;

//add in s tance o b j e c t
data = new Ins t ance s (" B e h a v i o r S i m i l a r i t y " , a t t r i b u t e s , 0) ;
l abe l _da ta = new Ins t ance s (" B e h a v i o r S i m i l a r i t y " , l a b e l _ a t t r i b u t e s , 0) ;

// i t e r a t e through the d l l l i s t
f o r (i n t i = 0; i < f s t a t i c . s i z e () ; i++)
{

156

Behavior-based Classification of Botnet Malware

va lues = new double [data . numAttr ibutes ()] ;
v a l u e s _ l a b e l = new double [l abe l _da ta . numAttr ibutes ()] ;

A r rayL i s t <Stat icDLL> s t a t i c _ d l l s = f s t a t i c . get (i) . g e t _ s t a t i c _ d l l () ;
i n t counter = 0;

// i t e r a t e f ea tu re s t a t i c o b j e c t s
f o r (i n t i i = 0; i i < d l l _ l i s t . s i z e () ; i i ++)
{

S t r i ng c _ s t r i n g = d l l _ l i s t . get (i i) ;
i n t found = f i n d _ s t r i n g (s t a t i c _ d l l s , c _ s t r i n g) ;

// i f DLL i s used in the s t a t i c r epor t
i f (found != −1)
{

i n t index = found ;
va lues [counter] = a t t _ t r u e _ f a l s e . indexOf (" t rue ") ;
// i n t d l l _ c a l l s = s t a t i c _ d l l s . get (index) . get_count

() ;
S t r i ng func t i on s = s t a t i c _ d l l s . get (index) .

g e t _ d l l _ f u n c t i o n s () ;

i f (func t i on s . compareTo (" ")==0)
{

va lues [counter+1] = Ins tance . miss ingValue ()
;

}
e l s e
{

va lues [counter+1] = data . a t t r i b u t e (counter
+1) . addStr ingValue (func t i on s) ;

}
}
// e l s e add miss ing va lues
e l s e
{

va lues [counter] = a t t _ t r u e _ f a l s e . indexOf (" f a l s e ") ;
va lues [counter+1] = Ins tance . miss ingValue () ;

}
counter += 2;

}
//add va lues in in s t ance o b j e c t
v a l u e s _ l a b e l [l abe l _da ta . numAttr ibutes ()−1] = a t t _ l a b e l s . indexOf (

f s t a t i c . get (i) . g e t _ l abe l _ t ype ()) ;

In s tance i n s t 1 = new Ins tance (1 .0 , va lues) ;
In s tance i n s t 2 = new Ins tance (1 .0 , v a l u e s _ l a b e l) ;

data . add(i n s t 1) ;
l abe l _da ta . add(i n s t 2) ;

}
// s p l i t s t r i n g s
data = get_new_instances (data) ;
// remove va lues without c o r r e l a t i o n
data = c o r r e l a t i o n _ f i l e r (data , " . \ \ c f _ v e c t o r s \\ c f _ s t a t i c . t x t ") ;
//merge i n s t a n c e s so tha t sample_ labe l i s the l a s t a t t r i b u t e
In s t ance s t e s t = Ins t ance s . mergeInstances (data , l abe l _da ta) ;
w r i t e _ t o _ f i l e (t e s t , " . \ \ a r f f _ o u t \\ o u t _ s t a t i c . a r f f ") ;

}

//method c r e a t e s an a r f f f i l e based on dynamic f e a t u r e s
pub l i c void generate_ar f f_dynamic (Ar rayL i s t <FeatureDynamic> feature_dynamic) throws

Except ion
{

// l o c a l v a r i a b l e s
fdynamic = feature_dynamic ;
double [] va lues ;
double [] v a l u e s _ l a b e l ;
I n s t ance s l abe l _da ta ;

//add a l l e n t i t i e s used by a l l i n s t a n c e s are added in a l i s t
A r rayL i s t <Str ing> e n t i t y _ l i s t = new ArrayL i s t <Str ing >() ;
// s ince a l l e n t r i e s are s i m i l a r f o r a l l o b j e c t s i t w i l l do with the f i r s t

index
Ar rayL i s t <DynamicString> d s t r i n g = fdynamic . get (0) . g e t _ f e a t u r e s () ;
f o r (i n t i i = 0; i i < d s t r i n g . s i z e () ; i i ++)
{

//add e n t i t y names to s t r i n g
S t r i ng c _ s t r i n g = d s t r i n g . get (i i) . get_name () ;
e n t i t y _ l i s t . add(c _ s t r i n g) ;

157

Behavior-based Classification of Botnet Malware

}

Fas tVec to r a t t r i b u t e s = new Fas tVec to r () ;

//must c r ea t e a t t r i b u t e s f o r l a b e l s
Fas tVec to r a t t _ l a b e l s = new Fas tVec to r () ;
Fas tVec to r l a b e l _ a t t r i b u t e s = new Fas tVec to r () ;
A r rayL i s t <Str ing> s l a b e l s = new ArrayL i s t <Str ing >() ;
//must add dummy
// a t t _ l a b e l s . addElement ("dummy") ;
f o r (i n t i = 0; i < fdynamic . s i z e () ; i++)
{

S t r i ng l = fdynamic . get (i) . g e t _ l abe l _ t ype () ;
i f (! c o n t a i n s _ s t r i n g (s l a b e l s , l))
{

a t t _ l a b e l s . addElement (l) ;
s l a b e l s . add(l) ;

}
}
//add a t t r i b u t e sample l a b e l
l a b e l _ a t t r i b u t e s . addElement (new A t t r i b u t e (" sample_ labe l " , a t t _ l a b e l s)) ;

// adding a t t r i b u t e s in f a s t v e c t o r
f o r (i n t i = 0; i < e n t i t y _ l i s t . s i z e () ; i++)
{

S t r i ng entity_name = e n t i t y _ l i s t . get (i) ;
//add a t t r i b u t e s
a t t r i b u t e s . addElement (new A t t r i b u t e (entity_name , (Fas tVec to r) n u l l))

;
}

//add in s tance o b j e c t
data = new Ins t ance s (" B e h a v i o r S i m i l a r i t y " , a t t r i b u t e s , 0) ;
l abe l _da ta = new Ins t ance s (" B e h a v i o r S i m i l a r i t y " , l a b e l _ a t t r i b u t e s , 0) ;

// i t e r a t e through f e a t u r e s
f o r (i n t i = 0; i < fdynamic . s i z e () ; i++)
{

va lues = new double [data . numAttr ibutes ()] ;
v a l u e s _ l a b e l = new double [l abe l _da ta . numAttr ibutes ()] ;

A r rayL i s t <DynamicString> ds = fdynamic . get (i) . g e t _ f e a t u r e s () ;

f o r (i n t i i = 0; i i < ds . s i z e () ; i i ++)
{

//add fea tu r e content s
S t r i ng n = ds . get (i i) . ge t_content () ;

i f (n == n u l l)
{

//when s t r i n g i s nu l l i n s e r t miss ing value
va lues [i i] = Ins tance . miss ingValue () ;

}
e l s e
{

// e l s e i n s e r t content
va lues [i i] = data . a t t r i b u t e (i i) . addStr ingValue (n) ;

}
}
// adding sample_ labe l
v a l u e s _ l a b e l [l abe l _da ta . numAttr ibutes ()−1] = a t t _ l a b e l s . indexOf (

fdynamic . get (i) . g e t _ l abe l _ t ype ()) ;

In s tance i n s t 1 = new Ins tance (1 .0 , va lues) ;
In s tance i n s t 2 = new Ins tance (1 .0 , v a l u e s _ l a b e l) ;

data . add(i n s t 1) ;
l abe l _da ta . add(i n s t 2) ;

}
// s p l i t s t r i n g s
data = get_new_instances (data) ;
// remove va lues without c o r r e l a t i o n
data = c o r r e l a t i o n _ f i l e r (data , " . \ \ c f _ v e c t o r s \\ cf_dynamic . t x t ") ;
//merge i n s t a n c e s so tha t sample_ labe l i s the l a s t a t t r i b u t e
In s t ance s t e s t = Ins t ance s . mergeInstances (data , l abe l _da ta) ;
// wr i te to f i l e
w r i t e _ t o _ f i l e (t e s t , " . \ \ a r f f _ o u t \\ out_dynamic . a r f f ") ;

}

//method c r e a t e s an a r f f f i l e based on combined f e a t u r e s

158

Behavior-based Classification of Botnet Malware

pub l i c void generate_arf f_combo (Ar rayL i s t <FeatureCombo> feature_combo) throws
Except ion

{
fcombo = feature_combo ;

//need two ar ray s f o r holding va lues
Ar rayL i s t <Str ing> d l l _ l i s t = new ArrayL i s t <Str ing >() ;
Ar rayL i s t <Str ing> e n t i t y _ l i s t = new ArrayL i s t <Str ing >() ;

f o r (i n t i = 0; i < fcombo . s i z e () ; i++)
{

// adding s t a t i c f e a t u r e s
Ar rayL i s t <Stat icDLL> c _ d l l = fcombo . get (i) . g e t _ s t a t i c _ d l l () ;
f o r (i n t i i = 0; i i < c _ d l l . s i z e () ; i i ++)
{

//add s t r i n g i f i t does not e x i s t in l i s t
S t r i ng c _ s t r i n g = c _ d l l . get (i i) . get_dll_name () ;
i f (! c o n t a i n s _ s t r i n g (d l l _ l i s t , c _ s t r i n g))
{

d l l _ l i s t . add(c _ s t r i n g) ;
}

}
}

// adding dynamic f e a t u r e s
Ar rayL i s t <DynamicString> d s t r i n g = fcombo . get (0) . get_dynamic_s t r ing () ;
f o r (i n t i i = 0; i i < d s t r i n g . s i z e () ; i i ++)
{

//add e n t i t y names to s t r i n g
S t r i ng c _ s t r i n g = d s t r i n g . get (i i) . get_name () ;
e n t i t y _ l i s t . add(c _ s t r i n g) ;

}

//make a t t r i b u t e l i s t
Fas tVec to r a t t r i b u t e s = new Fas tVec to r () ;
Fas tVec to r l a b e l _ a t t r i b u t e s = new Fas tVec to r () ;

//must c r ea t e a t t r i b u t e s f o r l a b e l s
Fas tVec to r a t t _ l a b e l s = new Fas tVec to r () ;
A r rayL i s t <Str ing> s l a b e l s = new ArrayL i s t <Str ing >() ;
//must add dummy
// a t t _ l a b e l s . addElement ("dummy") ;
f o r (i n t i = 0; i < fcombo . s i z e () ; i++)
{

S t r i ng l = fcombo . get (i) . g e t _ l abe l _ t ype () ;

i f (! c o n t a i n s _ s t r i n g (s l a b e l s , l))
{

a t t _ l a b e l s . addElement (l) ;
s l a b e l s . add(l) ;

}
}
//add a t t r i b u t e sample l a b e l
l a b e l _ a t t r i b u t e s . addElement (new A t t r i b u t e (" sample_ labe l " , a t t _ l a b e l s)) ;

// adding s t a t i c a t t r i b u t e s in f a s t v e c t o r
f o r (i n t i = 0; i < d l l _ l i s t . s i z e () ; i++)
{

S t r i ng dll_name = d l l _ l i s t . get (i) ;
S t r i ng d l l _ f u n c t i o n s = dll_name + " _ func t i ons " ;
//add a s t r i n g with func t ion names
a t t r i b u t e s . addElement (new A t t r i b u t e (d l l _ f u n c t i o n s , (Fas tVec to r) n u l l

)) ;
}

// adding dynamic a t t r i b u t e s in f a s t v e c t o r
f o r (i n t i = 0; i < e n t i t y _ l i s t . s i z e () ; i++)
{

S t r i ng entity_name = e n t i t y _ l i s t . get (i) ;
//add a t t r i b u t e s
a t t r i b u t e s . addElement (new A t t r i b u t e (entity_name , (Fas tVec to r) n u l l))

;
}

//add va lues
data = new Ins t ance s (" B e h a v i o r S i m i l a r i t y " , a t t r i b u t e s , 0) ;
In s t ance s l abe l _da ta = new Ins t ance s (" B e h a v i o r S i m i l a r i t y " , l a b e l _ a t t r i b u t e s

, 0) ;

double va lues [] ;

159

Behavior-based Classification of Botnet Malware

double [] v a l u e s _ l a b e l ;

// i t e r a t e through f e a t u r e s
f o r (i n t i = 0; i < fcombo . s i z e () ; i++)
{

va lues = new double [data . numAttr ibutes ()] ;
v a l u e s _ l a b e l = new double [l abe l _da ta . numAttr ibutes ()] ;

A r rayL i s t <DynamicString> ds = fcombo . get (i) . ge t_dynamic_s t r ing () ;
Ar rayL i s t <Stat icDLL> sd = fcombo . get (i) . g e t _ s t a t i c _ d l l () ;

// r e s e t t i n g counter
i n t counter = 0;

// adding s t a t i c f e a t u r e s
f o r (i n t i i = 0; i i < d l l _ l i s t . s i z e () ; i i ++)
{

S t r i ng c _ s t r i n g = d l l _ l i s t . get (i i) ;
i n t found = f i n d _ s t r i n g (sd , c _ s t r i n g) ;

// i f DLL i s used in the s t a t i c r epor t
i f (found != −1)
{

i n t index = found ;
S t r i ng name_functions = sd . get (index) .

ge t_d l l_name_funct ions () ;

// S t r ing name_functions = sd . get (index) .
ge t_d l l_name_funct ions () ;

i f (name_functions . compareTo (" ")==0) va lues [counter]
= Ins tance . miss ingValue () ;

e l s e va lues [counter] = data . a t t r i b u t e (counter) .
addStr ingValue (name_functions) ;

}
e l s e
{

// e l s e i n s e r t i n g miss ing va lues
va lues [counter] = Ins tance . miss ingValue () ;

}
counter++;

}

// adding dynamic f e a t u r e s
f o r (i n t i i = 0; i i < ds . s i z e () ; i i ++)
{

//add fea tu r e content s
S t r i ng n = ds . get (i i) . ge t_content () ;

i f (n == n u l l)
{

//when s t r i n g i s nu l l i n s e r t miss ing value
va lues [counter] = Ins tance . miss ingValue () ;

}
e l s e
{

// e l s e i n s e r t content
va lues [counter] = data . a t t r i b u t e (counter) .

addStr ingValue (n) ;
}
counter++;

}
// i n s e r t i n g a t t r i b u t e s o b j e c t s i n to in s t ance o b j e c t s
v a l u e s _ l a b e l [l abe l _da ta . numAttr ibutes ()−1] = a t t _ l a b e l s . indexOf (

fcombo . get (i) . g e t _ l abe l _ t ype ()) ;

In s tance i n s t 1 = new Ins tance (1 .0 , va lues) ;
In s tance i n s t 2 = new Ins tance (1 .0 , v a l u e s _ l a b e l) ;

data . add(i n s t 1) ;
l abe l _da ta . add(i n s t 2) ;

}
// s p l i t s t r i n g s
data = get_new_instances (data) ;
// remove va lues without c o r r e l a t i o n
data = c o r r e l a t i o n _ f i l e r (data , " . \ \ c f _ v e c t o r s \\ cf_combo . t x t ") ;
//merge i n s t a n c e s in order to get l a b e l as l a s t a t t r i b u t e
In s t ance s t e s t = Ins t ance s . mergeInstances (data , l abe l _da ta) ;
// wr i te a r f f−f i l e
w r i t e _ t o _ f i l e (t e s t , " . \ \ a r f f _ o u t \\out_combo . a r f f ") ;

}

160

Behavior-based Classification of Botnet Malware

// p r i v a t e method to save a r f f f i l e
p r i v a t e void w r i t e _ t o _ f i l e (In s t ance s data , S t r i ng path) throws IOException
{

Ar f fSave r saver = new Ar f fSave r () ;
saver . s e t I n s t a n c e s (data) ;

saver . s e t F i l e (new F i l e (path)) ;
saver . wr i teBatch () ;

System . out . p r i n t l n (" Stored r e s u l t a t " + path) ;
}

// p r i v a t e method f o r s p l i t t i n g s t r i n g s with StringToWordVector
p r i v a t e In s t ance s get_new_instances (In s t ance s data) throws Except ion
{

StringToWordVector stwv = new StringToWordVector (10000) ;
stwv . set InputFormat (data) ;
S t r i ng [] opt ions = new St r ing [14] ;

// parameters
opt ions [0] = "−R" ;
opt ions [1] = " f i r s t −l a s t " ;
opt ions [2] = "−W" ;
opt ions [3] = " 10000 " ;
opt ions [4] = "−prune−r a t e " ;
opt ions [5] = "−1.0 " ;
opt ions [6] = "−N" ;
opt ions [7] = " 0 " ;
opt ions [8] = "−stemmer " ;
opt ions [9] = " weka . core . stemmers . NullStemmer " ;
opt ions [10] = "−M" ;
opt ions [11] = " 1 " ;
opt ions [12] = "−t oken i ze r " ;
opt ions [13] = " weka . core . t oken i ze r s . WordTokenizer −d e l i m i t e r s \ " \\ r \\ t

\ \ \ " \ " " ;

stwv . se tOpt ions (opt ions) ;
In s t ance s new_data = F i l t e r . u s e F i l t e r (data , stwv) ;

re turn new_data ;
}

//method
p r i v a t e In s t ance s c o r r e l a t i o n _ f i l e r (In s t ance s in s t , S t r i ng path) throws Except ion
{

Ar rayL i s t <Double> values = open_cor re l a t i on_vec to r (path) ;
Ar rayL i s t <Integer> indeces = new ArrayL i s t <Integer >() ;

Remove remove = new Remove() ;

// i t e r a t e through c o r r e l a t i o n vec to r and s t o r e indeces f o r ’ 0 ’ va lues
i n t count = 1;
fo r (i n t i = 0; i < va lues . s i z e () ; i++)
{

i f (va lues . get (i) < 0.1)
{

indeces . add(i) ;
count++;

}
}
System . out . p r i n t l n (" Values tha t can be removed " + count) ;

// conver t a r r a y l i s t i n to array
i n t [] f i l t e r _ a r r a y = new i n t [indeces . s i z e ()] ;
f o r (i n t i = 0; i < f i l t e r _ a r r a y . length ; i++)
{

f i l t e r _ a r r a y [i] = indeces . get (i) ;
}
// System . out . p r i n t l n (" Double check " + f i l t e r _ a r r a y . length) ;

// remove
remove . s e t A t t r i b u t e I n d i c e s A r r a y (f i l t e r _ a r r a y) ;
remove . set InputFormat (i n s t) ;
In s t ance s new_data = F i l t e r . u s e F i l t e r (i n s t , remove) ;
re turn new_data ;

}

//mehod opens c o r r o l a t i o n ve c to r s
p r i v a t e Ar rayL i s t <Double> open_cor re l a t i on_vec to r (S t r i ng path) throws Except ion

161

Behavior-based Classification of Botnet Malware

{
// loading t e x t f i l e from path
Scanner scanner = new Scanner (new F i l e (path)) ;
Ar rayL i s t <Double> values = new ArrayL i s t <Double >() ;
while (scanner . hasNext ())
{

double d = Double . parseDouble (scanner . nextL ine ()) ;
va lues . add(d) ;

}
re turn va lues ;

}

@Deprecated // t e s t i n g l evens t e in−d i s t ance
pub l i c void g e n e r a t e _ a r f f _ l d (Ar rayL i s t <FeatureDynamic> feature_dynamic) throws

IOException
{

fdynamic = feature_dynamic ;
double [] va lues ;

//add a l l e n t i t i e s used by a l l i n s t a n c e s are added in a l i s t
A r rayL i s t <Str ing> e n t i t y _ l i s t = new ArrayL i s t <Str ing >() ;
// s ince a l l e n t r i e s are s i m i l a r f o r a l l o b j e c t s i t w i l l do with the f i r s t

index
Ar rayL i s t <DynamicString> d s t r i n g = fdynamic . get (0) . g e t _ f e a t u r e s () ;
f o r (i n t i i = 0; i i < d s t r i n g . s i z e () ; i i ++)
{

//add e n t i t y names to s t r i n g
S t r i ng c _ s t r i n g = d s t r i n g . get (i i) . get_name () ;
e n t i t y _ l i s t . add(c _ s t r i n g) ;

}

Fas tVec to r a t t r i b u t e s = new Fas tVec to r () ;

//must c r ea t e a t t r i b u t e s f o r l a b e l s
Fas tVec to r a t t _ l a b e l s = new Fas tVec to r () ;
A r rayL i s t <Str ing> s l a b e l s = new ArrayL i s t <Str ing >() ;
f o r (i n t i = 0; i < fdynamic . s i z e () ; i++)
{

S t r i ng l = fdynamic . get (i) . g e t _ l abe l _ t ype () ;
i f (! c o n t a i n s _ s t r i n g (s l a b e l s , l))
{

a t t _ l a b e l s . addElement (l) ;
s l a b e l s . add(l) ;

}
}
//add a t t r i b u t e sample l a b e l
a t t r i b u t e s . addElement (new A t t r i b u t e (" sample_ labe l " , a t t _ l a b e l s)) ;

// adding a t t r i b u t e s in f a s t v e c t o r
f o r (i n t i = 0; i < e n t i t y _ l i s t . s i z e () ; i++)
{

S t r i ng entity_name = e n t i t y _ l i s t . get (i) ;
//add a t t r i b u t e s −> modif ied fo r i n t e g e r s
a t t r i b u t e s . addElement (new A t t r i b u t e (entity_name)) ;

}

//add in s tance o b j e c t
data = new Ins t ance s (" B e h a v i o r S i m i l a r i t y " , a t t r i b u t e s , 0) ;

// i t e r a t e through f e a t u r e s
f o r (i n t i = 0; i < fdynamic . s i z e () ; i++)
{

va lues = new double [data . numAttr ibutes ()] ;
A r rayL i s t <DynamicString> ds = fdynamic . get (i) . g e t _ f e a t u r e s () ;

// adding sample_id value
va lues [0] = a t t _ l a b e l s . indexOf (fdynamic . get (i) . g e t _ l abe l _ t ype ()) ;

f o r (i n t i i = 0; i i < ds . s i z e () ; i i ++)
{

//add fea tu r e content s
i n t n = ds . get (i i) . ge t_ ld () ;

i f (n == 0)
{

//when s t r i n g i s nu l l i n s e r t miss ing value
va lues [i i +1] = Ins tance . miss ingValue () ;

}
e l s e
{

162

Behavior-based Classification of Botnet Malware

// e l s e i n s e r t content
va lues [i i +1] = n ;

}
}
data . add(new Ins tance (1 .0 , va lues)) ;

}
w r i t e _ t o _ f i l e (data , " . \ \ a r f f _ o u t \\ out_ ld . a r f f ") ;

}
}

163

Behavior-based Classification of Botnet Malware

E.3 Evaluator
Main

package eva lua t ion ;

import java . io . Fi leNotFoundExcept ion ;
import java . io . IOException ;
import java . u t i l . A r r a y L i s t ;

import eva lua t ion . OpenARFF . DynamicInstances ;

//main c l a s s f o r eva lua t ion components
// opens a r f f f i l e s and runs 5 c l a s s i f i e r s
pub l i c c l a s s Main
{

pub l i c s t a t i c void main(S t r ing [] args)
{

t r y
{

//open ARFF f i l e s
OpenARFF open = new OpenARFF() ;
// get i n s t a n c e s
Ar rayL i s t <DynamicInstances> dyn_ins t = open . g e t _ i n s t a n c e s () ;
// Ar rayL i s t <DynamicInstances> dyn_ ins t = open . merge_instances () ;
// eva lua te
Eva luator eva l = new Evaluator (dyn_ ins t) ;
eva l . E v a l u a t e C l a s s i f i e r s () ;

}
catch (Except ion e)
{

System . out . p r i n t l n (e) ;
}

}
}

Evaluator

package eva lua t ion ;

import java . awt .∗ ;
import java . io .∗ ;
import java . u t i l .∗ ;
import javax . swing .∗ ;

import eva lua t ion . OpenARFF . DynamicInstances ;
import weka . core .∗ ;
import weka . c l a s s i f i e r s .∗ ;

import weka . c l a s s i f i e r s . bayes . NaiveBayes ;
import weka . c l a s s i f i e r s . bayes . BayesNet ;
import weka . c l a s s i f i e r s . l azy . IBk ;
import weka . c l a s s i f i e r s . t r e e s . J48 ;
import weka . c l a s s i f i e r s . f unc t i on s . LibSVM ;

import weka . c l a s s i f i e r s . eva lua t ion .∗ ;
import weka . f i l t e r s . F i l t e r ;
import weka . f i l t e r s . unsupervised . a t t r i b u t e . D i s c r e t i z e ;
import weka . gui . v i s u a l i z e .∗ ;

// c l a s s Eva luator runs 5 c l a s s i f i e r s on the loaded f ea tu re s e t s
pub l i c c l a s s Eva luator
{

p r i v a t e Ar rayL i s t <DynamicInstances> dyn_ins t ;

pub l i c Eva luator (Ar rayL i s t <DynamicInstances> dyn_ins t)
{

t h i s . dyn_ ins t = dyn_ins t ;
}

//method eva lua te s the c l a s s i f i e r s
pub l i c void E v a l u a t e C l a s s i f i e r s () throws Except ion
{

f o r (i n t i = 0; i < dyn_ ins t . s i z e () ; i++)
{

// get i n s t a n c e s
In s t ance s i n s t = dyn_ ins t . get (i) . ge t _ in s t ance () ;
i n s t . s e tC l a s s Index (dyn_ ins t . get (i) . ge t _ in s t ance () . numAttr ibutes ()

−1) ;

164

Behavior-based Classification of Botnet Malware

// c l a s s i f i c a t i o n with Naive Bayes
System . out . p r i n t l n (dyn_ ins t . get (i) . get_name () + " with Naive Bayes "

) ;
Eva luat ion eva l = NaiveBayesEvaluat ion (i n s t) ;
p r i n t _ r e s u l t s (eva l) ;
eva l = nu l l ;

// c l a s s i f i c a t i o n with K−NN
System . out . p r i n t l n (dyn_ ins t . get (i) . get_name () + " with K−NN") ;
eva l = KNNEvaluation (i n s t) ;
p r i n t _ r e s u l t s (eva l) ;
eva l = nu l l ;

// c l a s s i f i c a t i o n with C4 .5
System . out . p r i n t l n (dyn_ ins t . get (i) . get_name () + " with C4 .5 ") ;
eva l = C45Evaluation (i n s t) ;
p r i n t _ r e s u l t s (eva l) ;
eva l = nu l l ;

// c l a s s i f i c a t i o n with SVM
System . out . p r i n t l n (dyn_ ins t . get (i) . get_name () + " with SVM") ;
eva l = SVMEvaluation (i n s t) ;
p r i n t _ r e s u l t s (eva l) ;
eva l = nu l l ;

// c l a s s i f i c a t i o n with Bayes Network
System . out . p r i n t l n (dyn_ ins t . get (i) . get_name () + " with Bayes

Network ") ;
eva l = BayesNetworkEvaluation (i n s t) ;
p r i n t _ r e s u l t s (eva l) ;
eva l = nu l l ;

}
}

//method f o r Naive Bayes
p r i v a t e Eva luat ion NaiveBayesEvaluat ion (In s t ance s i n s t) throws Except ion
{

// t r a i n c l a s s i f i e r
C l a s s i f i e r c l = new NaiveBayes () ;
Eva luat ion eva l = new Eva luat ion (i n s t) ;
eva l . c rossVa l idateModel (c l , i n s t , 10 , new Random(1)) ;

re turn eva l ;
}

//method f o r Bayes Network
p r i v a t e Eva luat ion BayesNetworkEvaluation (In s t ance s i n s t) throws Except ion
{

// d i s c r e t i z e
i n s t = get_unsuperv i sed_ ins tances (i n s t) ;

// t r a i n c l a s s i f i e r
C l a s s i f i e r c l = new BayesNet () ;

S t r i ng [] opt ions = new St r ing [13] ;
// parameters
opt ions [0] = "−D" ;
opt ions [1] = "−Q" ;
opt ions [2] = " weka . c l a s s i f i e r s . bayes . net . search . l o c a l . K2 " ;
opt ions [3] = "−−" ;
opt ions [4] = "−P " ;
opt ions [5] = " 1 " ;
opt ions [6] = "−S " ;
opt ions [7] = " BAYES " ;
opt ions [8] = "−E " ;
opt ions [9] = " weka . c l a s s i f i e r s . bayes . net . e s t imate . S impleEst imator " ;
opt ions [10] = "−−" ;
opt ions [11] = "−A" ;
opt ions [12] = " 0.5 " ;

c l . se tOpt ions (opt ions) ;

Eva luat ion eva l = new Eva luat ion (i n s t) ;
eva l . c rossVa l idateModel (c l , i n s t , 10 , new Random(1)) ;

re turn eva l ;
}

//method f o r K−NN
p r i v a t e Eva luat ion KNNEvaluation (In s t ance s i n s t) throws Except ion

165

Behavior-based Classification of Botnet Malware

{
// t r a i n c l a s s i f i e r

C l a s s i f i e r c l = new IBk () ;

S t r i ng [] opt ions = new St r ing [6] ;
// parameters
opt ions [0] = "−K" ;
opt ions [1] = " 1 " ;
opt ions [2] = "−W" ;
opt ions [3] = " 0 " ;
opt ions [4] = "−A" ;
opt ions [5] = " weka . core . neighboursearch . LinearNNSearch −A \" weka . core .

Euc l ideanDis tance −R f i r s t −l a s t \ " " ;

c l . se tOpt ions (opt ions) ;

Eva luat ion eva l = new Eva luat ion (i n s t) ;
eva l . c rossVa l idateModel (c l , i n s t , 10 , new Random(1)) ;

re turn eva l ;
}

//method f o r C4 .5
p r i v a t e Eva luat ion C45Evaluation (In s t ance s i n s t) throws Except ion
{

// t r a i n c l a s s i f i e r
C l a s s i f i e r c l = new J48 () ;

S t r i ng [] opt ions = new St r ing [4] ;
// parameters
opt ions [0] = "−C" ;
opt ions [1] = " 0.25 " ;
opt ions [2] = "−M" ;
opt ions [3] = " 2 " ;

c l . se tOpt ions (opt ions) ;

Eva luat ion eva l = new Eva luat ion (i n s t) ;
eva l . c rossVa l idateModel (c l , i n s t , 10 , new Random(1)) ;

re turn eva l ;
}

//method f o r SVM
p r i v a t e Eva luat ion SVMEvaluation (In s t ance s i n s t) throws Except ion
{

// t r a i n c l a s s i f i e r
C l a s s i f i e r c l = new LibSVM () ;

S t r i ng [] opt ions = new St r ing [20] ;
// parameters
opt ions [0] = "−S " ;
opt ions [1] = " 0 " ;
opt ions [2] = "−K" ;
opt ions [3] = " 2 " ;
opt ions [4] = "−D" ;
opt ions [5] = " 3 " ;
opt ions [6] = "−G" ;
opt ions [7] = " 0.0 " ;
opt ions [8] = "−R" ;
opt ions [9] = " 0.0 " ;
opt ions [10] = "−N" ;
opt ions [11] = " 0.5 " ;
opt ions [12] = "−M" ;
opt ions [13] = " 40.0 " ;
opt ions [14] = "−C" ;
opt ions [15] = " 1.0 " ;
opt ions [16] = "−E " ;
opt ions [17] = " 0.0010 " ;
opt ions [18] = "−P " ;
opt ions [19] = " 0.1 " ;

c l . se tOpt ions (opt ions) ;

Eva luat ion eva l = new Eva luat ion (i n s t) ;
eva l . c rossVa l idateModel (c l , i n s t , 10 , new Random(1)) ;

re turn eva l ;
}

166

Behavior-based Classification of Botnet Malware

//method f o r unsupervised d i s c r e t i z a t i o n
p r i v a t e In s t ance s ge t_unsuperv i sed_ ins tances (In s t ance s data) throws Except ion
{

D i s c r e t i z e d = new D i s c r e t i z e () ;
d . set InputFormat (data) ;

S t r i ng [] opt ions = new St r ing [6] ;
// parameters
opt ions [0] = "−B" ;
opt ions [1] = " 10 " ;
opt ions [2] = "−M" ;
opt ions [3] = "−1.0 " ;
opt ions [4] = "−R" ;
opt ions [5] = " f i r s t −l a s t " ;

d . se tOpt ions (opt ions) ;

In s t ance s new_data = F i l t e r . u s e F i l t e r (data , d) ;

re turn new_data ;
}

//method f o r p r i n t i n g the eva lua t ion r e s u l t s
p r i v a t e void p r i n t _ r e s u l t s (Eva luat ion eva l)
{

double [] [] n = eva l . confus ionMatr ix () ;

double TP = n [0] [0] ;
double FN = n [0] [1] ;
double FP = n [1] [0] ;
double TN = n [1] [1] ;

System . out . p r i n t l n (" True p o s i t i v e s : " + TP + " , True p o s i t i v e ra t e : " + eva l .
weightedTruePos i t iveRate ()) ;

System . out . p r i n t l n (" Fa l se nega t i ve s : " + FN + " , Fa l se negat ive ra t e : " + eva l .
weightedFalseNegat iveRate ()) ;

System . out . p r i n t l n (" Fa l se p o s i t i v e s : " + FP + " , Fa l se p o s i t i v e ra t e : " + eva l .
we igh tedFa l sePos i t i veRa te ()) ;

System . out . p r i n t l n (" True nega t i ve s : " + TN + " , True negat ive ra t e : " + eva l .
weightedTrueNegativeRate ()) ;

System . out . p r i n t l n (" Detec t ion ra t e : " + TP/(TP+FN) + " , Accuracy : " + (TP+TN) /(
TP+TN+FP+FN)) ;

System . out . p r i n t l n (" P r e c i s i o n : " + eva l . we ightedPrec i s ion () + " , Reca l l : " +
eva l . weightedRecal l ()) ;

System . out . p r i n t l n () ;
}

//method f o r showing a roc curve f o r a given c l a s s i f i e r
pub l i c void get_ROC(Eva luat ion eval , i n t c l a s s _ index) throws Except ion
{

// generate curve
ThresholdCurve t c = new ThresholdCurve () ;
i n t c l a s s Index = 0;
In s t ance s r e s u l t = t c . getCurve (eva l . p r e d i c t i o n s () , c l a s s Index) ;

// p lo t curve
Thresho ldV i sua l i zePane l vmc = new Thresho ldV i sua l i zePane l () ;
vmc . setROCString (" (Area under ROC = " +
U t i l s . doubleToStr ing (t c . getROCArea (r e s u l t) , 4) + ") ") ;
vmc . setName (r e s u l t . relationName ()) ;
PlotData2D tempd = new PlotData2D (r e s u l t) ;
tempd . setPlotName (r e s u l t . relationName ()) ;
tempd . addInstanceNumberAttr ibute () ;
// s p e c i f y which po in t s are connected
boolean [] cp = new boolean [r e s u l t . numInstances ()] ;
f o r (i n t n = 1; n < cp . length ; n++)

cp [n] = true ;

tempd . se tConnec tPo in t s (cp) ;
// add p lo t
vmc . addPlot (tempd) ;

// d i s p l a y curve
S t r i ng plotName = vmc . getName () ;
f i n a l javax . swing . JFrame j f =
new javax . swing . JFrame ("Weka C l a s s i f i e r V i s u a l i z e : "+plotName) ;
j f . s e t S i z e (500 ,400) ;
j f . getContentPane () . se tLayout (new BorderLayout ()) ;
j f . getContentPane () . add(vmc , BorderLayout . CENTER) ;

167

Behavior-based Classification of Botnet Malware

j f . addWindowListener (new java . awt . event . WindowAdapter ()
{

pub l i c void windowClosing (java . awt . event . WindowEvent e)
{

j f . d i spose () ;
}

}) ;
j f . s e t V i s i b l e (t rue) ;

}
}

OpenARFF

package eva lua t ion ;

import java . io .∗ ;
import java . u t i l . A r r a y L i s t ;

import weka . core . In s t ance s ;
import weka . core . conve r t e r s . A r f fSave r ;

// c l a s s OpenARFF opens a r f f f i l e s from a s p e c i f i e d d i r e c t o r y
pub l i c c l a s s OpenARFF
{

p r i v a t e s t a t i c f i n a l S t r i ng ARFF_PATH = " . \ \ a r f f _ o u t \\ " ;
p r i v a t e s t a t i c f i n a l S t r i ng ARFF_MERGE_PATH = " . \ \ merge\\ " ;

pub l i c OpenARFF()
{

//empty cons t ruc to r
}

//method opens a r f f f i l e s and s t o r e the i n s t a n c e s
pub l i c Ar rayL i s t <DynamicInstances> g e t_ i n s t a n ce s () throws Fi leNotFoundException ,

IOException
{

Ar rayL i s t <DynamicInstances> i n s t a n c e s = new ArrayL i s t <DynamicInstances >() ;

F i l e da ta_ fo lde r = new F i l e (ARFF_PATH) ;
F i l e [] content s = da ta_ fo lde r . l i s t F i l e s () ;

f o r (i n t i = 0; i < content s . length ; i++)
{

i f (content s [i] . i s F i l e ())
{

S t r i ng name = content s [i] . getName () ;

In s t ance s i n s t = new Ins t ance s (
new BufferedReader (

new Fi leReader (ARFF_PATH + name))
) ;

i n s t a n c e s . add(new DynamicInstances (in s t , name)) ;
}

}
re turn i n s t a n c e s ;

}

//method opens a r f f f i l e s and s t o r e the i n s t a n c e s
pub l i c Ar rayL i s t <DynamicInstances> merge_instances () throws Fi leNotFoundException ,

IOException
{

Ar rayL i s t <DynamicInstances> i n s t a n c e s = new ArrayL i s t <DynamicInstances >() ;

F i l e da ta_ fo lde r = new F i l e (ARFF_MERGE_PATH) ;
F i l e [] content s = da ta_ fo lde r . l i s t F i l e s () ;

// f i r s t ARFF
S t r ing name = content s [0] . getName () ;
In s t ance s i n s t = new Ins t ance s (

new BufferedReader (
new Fi leReader (ARFF_MERGE_PATH + name))) ;

// second ARFF
S t r ing name2 = content s [1] . getName () ;
In s t ance s i n s t 2 = new Ins t ance s (

new BufferedReader (
new Fi leReader (ARFF_MERGE_PATH + name2))) ;

In s t ance s merged = Ins tance s . mergeInstances (ins t2 , i n s t) ;

168

Behavior-based Classification of Botnet Malware

i n s t a n c e s . add(new DynamicInstances (merged , " out_combined_merged ")) ;

// s t o r e a r f f
Ar f fSave r saver = new Ar f fSave r () ;
saver . s e t I n s t a n c e s (merged) ;

saver . s e t F i l e (new F i l e (" . \ \ out_stat_dyn_merged . a r f f ")) ;
saver . wr i teBatch () ;

re turn i n s t a n c e s ;
}

// inner c l a s s f o r holding in fo
pub l i c c l a s s DynamicInstances
{

p r i v a t e S t r i ng name ;
p r i v a t e In s t ance s i n s t ;

pub l i c DynamicInstances (In s t ance s in s t , S t r i ng name)
{

t h i s . i n s t = i n s t ;
t h i s . name = name ;

}

pub l i c In s t ance s ge t_ in s t ance ()
{

re turn i n s t ;
}

pub l i c S t r i ng get_name ()
{

re turn name ;
}

}
}

169

	Abstract
	Sammendrag
	Acknowledgments
	Contents
	List of Abbreviations
	Introduction
	Topic covered by the Thesis
	Keywords
	Problem Description
	Justification, Motivation and Benefits
	Research Questions and Hypotheses
	Methodology
	Contributions
	Thesis Outline

	Malware Detection and Malware Forensic Analysis
	Digital Forensics Overview
	Branches of Digital Forensics
	Forensic Methodologies

	Malware Detection and Analysis Introduction
	Malware Types
	Malware Detection
	Malware Analysis

	Obfuscation Techniques
	Packers and Cryptors
	Polymorphism and Metamorphism
	Defeating Obfuscation

	Botnet Malware
	Botnet Life-Cycle
	Botnet Architecture
	Botnet Detection

	Static Malware Analysis
	Static Malware Forensics
	Windows Portable Executables
	Application Programming Interface Calls

	Dynamic Malware Analysis
	Dynamic Malware Forensics
	Application Programming Interface Tracing
	Virtual/Sandbox Environment

	Machine Learning and Data Mining
	Machine Learning and Data Mining Introduction
	Machine Learning
	Data Mining
	Applications
	Challenges

	Features and Feature Quality
	Feature Roles and Types
	Feature-Quality Measures

	Data-Preprocessing Methods
	Feature Discretization
	Missing/Unknown Feature Values
	Feature Selection

	Classification vs Clustering
	Classification
	Clustering
	Main Differences

	New Computational Method for Static and Dynamic Analysis
	deLink Framework
	Theoretical Method
	Preferences and Assumptions
	System Design
	Data Acquisition
	Feature Extraction
	Preprocessing
	Classification
	Evaluation

	System Implementation
	Tools, Libraries and Data Formats
	Implementation Details
	Summary

	Method Discussions
	Acquiring Analysis Reports
	Implementation Challenges

	Experiments
	Experimental Environment
	System Setup
	Dataset

	Experiment Scenarios
	Proof-of-Concept
	Complete Feature Sets
	Reduced Feature Sets

	Experiment Results
	Proof-of-Concept
	Complete Feature Sets
	Reduced Feature Sets

	Experiment Discussions

	Implications, Discussions and Conclusions
	Main Results and Findings
	Theoretical Considerations
	Practical Implications
	Recommendations for Further Research

	Bibliography
	Entity Features
	DLL Dependencies
	Registry Activities
	File Activities
	Process and Thread Activities
	Network Activity

	UML Diagrams
	Parser
	Feature Extractor
	Evaluator

	Proof-of-Concept Supplements
	Packers Identification
	ARFF Viewer
	Levenshtein Distance Attempt
	DLL Import In Code
	Clam AntiVirus Results

	Classification Results
	Complete Feature Sets
	Reduced Feature Sets - CFS
	New Combined Feature Set - CFS
	Reduced Feature Sets - GeFSCFS
	New Combined Feature Set - GeFSCFS
	Complete Feature Sets - Unsupervised Discretization
	Complete Feature Sets - Supervised Discretization

	Source Code
	deLink Integration
	Feature Extractor
	Evaluator

