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Abstract

Malicious software (malware) has been a constant threat to computer environments.
Every year malware inflict staggering amount of damage and incur vast financial losses
worldwide. Malware has changed drastically and its purpose, attack vectors and meth-
ods are no longer simple. Furthermore the attackers often utilize unknown vulnerabilit-
ies, evasion techniques and generator algorithms which drastically increase the impact,
effectiveness and quantity of malware. Thus the task falls to security experts to develop
tools and techniques to thwart this ever expanding threat. The challenge is to detect all
attacks, regardless of evasion techniques, while keeping false alarms to a minimum. This
thesis seeks to analyze the application of function call-based malware detection. More
specifically function calls with their inter-dependencies, extracted by use of information-
based dependency matching. Analysis will be performed to research whether this method
is reliable and improve obfuscation resilience. The thesis discusses the difference of per-
forming detection at library call, system call or function call(hybrid) layer, and how well
detection can be performed at these layers.
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Sammendrag

Skadelig kode som virus, ormer, trojanere har vært en konstant trussel mot datamaskiner
og tilhørende nettverk. Hvert år påføres store skader som resulterer i mye arbeid og fin-
ansielle tap. Skadelig kode har endret seg drastisk, og dets formål, angreptsvektor og
metode er ikke lenger enkel. Videre benytter angripere ofte ukjente sårbarheter, beskyt-
telsesmekanismer og algoritmer som drastisk øker omfanget, effektiviteten og mengden
skadelig kode. Oppgaven faller derfor til sikkerhetseksperter for å utvikle verktøy og
sikkerhetsmekanismer som kan avverge og motvirke denne evig økende trusselen. Ut-
fordringen er å oppdage og stoppe alle angrep, uavhengig av hvilke unnvikelsesmanøvre
og metoder som benyttes. Denne oppgaven forsøker å detektere skadelig kode basert på
API-kall analyse. Mer spesifikt, så benyttes API-kall og avhengigheter mellom disse. Disse
avhengighetene opprettes ved hjelp av informasjon fra API-kallene. Oppgaven går så ut
på å undersøke om man kan opprette avhengigheter mellom API-kall på en pålitelig
måte. Videre undersøkes det om denne type deteksjon er mer robust mot typiske un-
nvikelsesmanøvre (obfuscation techniques). Til slutt så analyseres forskjeller i deteksjon
for brukermodus og systemmodus. Dette være seg forskjellen på vanlige og systemkrit-
iske oppgaver, og om det finnes forskjeller mellom disse for deteksjon av skadelig kode.
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1 Introduction

The purpose of this chapter is to give an introduction of the subject and challenge in ques-
tion, as well as justification and motivation of its importance. The chapter also proposes
research questions to guide the thesis, and a discussion of the planned contributions.

1.1 Topic

Malware is short for malicious software and can be defined as any program or file that is
harmful to a computer environment or its user [9]. Malware has existed since before the
modern and wide spread use of computers. Historically speaking, one of the first samples
of malware was a virus which infected the game ANIMAL in 1975 [1]. The purpose of
the virus was simple, as it copied itself to every directory [10]. As malware developed,
the intrusion detection systems (IDS) were created. The role of an IDS is to detect and
report any malicious behavior. The problem however is that malware, like computers
and software has changed drastically. The purpose, attack vectors and methods are no
longer simple. Furthermore the attackers often utilize unknown vulnerabilities, evasion
techniques and generator algorithms which drastically increase the impact, effectiveness
and quantity of malware. Thus the challenge of any IDS is to detect all attacks, regardless
of evasion techniques, while keeping false alarms to a minimum.

1.2 Keywords

Malware, intrusion detection system, behavioral-based detection, machine learning, func-
tion call analysis, dynamic API traces.

1.3 Problem description

Malware detection by itself is a relatively new field of science. Regardless, it has al-
ways been an important part- and heavily researched subject of information security.
Some key reasons for this is the large amount of money and opportunities to be gained
by controlling information systems. Because of this, large investments by organizations,
governments and criminals alike are made to increase cyber-warfare capabilities. The
result is ever increasing threats, while the security is lagging behind.

There exist more advanced methods of malware detection, which utilize statistical
methods, clustering or learning. However, these algorithms often have high false positive
rates or low detection accuracy. Due to these downsides, they are seldom deployed. Be-
cause of this, typical malware detection utilizes signature matching, since these systems
are accurate and provide low false alarm rates. Furthermore users have high expectations
for both reliability and speed, such that security measures which result in high overhead
are rarely acceptable. The attackers spend much resources on finding new attacks as
well as employing cutting-edge obfuscation techniques to evade detection. Previous work
countered this by bringing detection to the lower levels of computer hierarchy, namely by
function call analysis. Function call analysis can be performed both statically and dynam-
ically. Static analysis is typically performed through source code analysis or disassembly,
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while dynamic analysis is done through function call tracing. This thesis focuses on the
latter.

There exist several ways of analyzing function call traces. Both sequential, non-sequential,
use of arguments, resource use, n-gram, tainting etc. These are further discussed and ex-
plained in Section 3.2. This thesis focus on function calls and their inter-dependencies
and thus sequences of function calls are used. The inter-dependencies are created us-
ing information about function call parameters and return values. Because of this we
call this method information-based dependency matching. Furthermore it will analyze at
what level function call analysis is best performed. Be it at a high level for program lib-
raries or low level near system kernel. The goal is to gain a better understanding of pros
and cons with regard to detection accuracy, obfuscation and throughput at the different
layers.

1.4 Justification, motivation and benefits

The importance of computer systems in todays society cannot be underestimated. Com-
puter systems are not only used by the common man, but also by critical infrastructure
such as water, sewage, power, communications, health-care and day-to-day infrastructure
such as ordering and deliverance of food. It is therefore essential to research methods
which safeguard the integrity, availability and confidentiality of any such system.

Dynamic function call-based malware detection should be able to better withstand
obfuscation attacks. Furthermore by looking for anomalous data, the system would be
able to detect previously unknown attacks. Consequently, a successful implementation of
this method could improve obfuscation resilience and increase its ability to detect novel
attacks.

1.5 Research questions

This thesis is to a large extent motivated by the use of information-based dependency
matching for malware detection and its advantages with regard to obfuscation resili-
ence. At the same time however, information-based dependency matching has known
weaknesses [11, 12] that needs further studies. Subsequently it will compare the differ-
ence of performing function call detection in user mode (library calls) and kernel mode
(system calls). In particular, this thesis seeks to answer the following questions:

1. Is the use of information-based dependency matching reliable?

2. Will obfuscation resilience increase by use of information-based dependency match-
ing?

3. Which features provide the best accuracy with regard to false positives and detection
rate for the different layers?

1.6 Contributions

This master thesis seeks to provide a better understanding of the abilities of information-
based dependency matching. Especially with regard to obfuscation resilience and reliab-
ility. The thesis also discusses the differences of performing detection at different func-
tion call layers. This has to the author’s knowledge not been discussed previously and is
important as it might have a direct impact on the method’s detection rate, obfuscation
resilience and throughput.
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1.7 Thesis outline

This section provide a brief summary listing of the content presented in this thesis. The
listing is based on the chapters, where each chapter and its content is described. First
the literature about malware, related work and graph matching is presented. Then the
methodology is presented, followed by the results of the analysis as well as discussions,
conclusion and further work.

• Chapter 2 presents literature related to malware detection. First the malware tax-
onomy is described. Followed by literature about malware detection and intrusion
detection methods and their respective categorizations. Finally there is a discussion
on the different malware obfuscation techniques.

• Chapter 3 presents the related literature of the thesis. First it describes function call
analysis and the differences of user mode and kernel mode detection. Then the state
of the art with regard to malware detection for function calls is outlined. Finally an
introduction to information-based dependencies is given. This section discuss how
one can create dependencies between function calls.

• Chapter 4 provides an introduction to the graph matching problem. First it discusses
what graphs are, then the different graph matching methods. The chapter finalize
with a section on graph-based learning, and how this is implemented in SUBDUE.

• Chapter 5 presents the methodology and covers all aspects of how the thesis is carried
out. This includes the generation of dataset, to pre-processing and choice of detec-
tion classifier, as well as the methods required to answer the research questions. The
methodology is chosen based on the related literature presented in Chapter 3 and 4.

• Chapter 6 include all the experimental results for each research question. First the
reliability testing of information-based dependencies is performed. Then the obfus-
cation resilience of information-based dependency matching is analyzed. Finally the
detection rates of information-based dependency graph matching by use of SUBDUE
are evaluated.

• Chapter 7 provides a discussion of the theoretical considerations and practical implic-
ations as well as summary of the thesis.

• Chapter 8 concludes and summarizes the most important findings in this thesis

• Chapter 9 presents a range of topics that should be further analyzed to better under-
stand the inherent capabilities and implications of the method.
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2 Malware detection

This chapter provide an in depth discussion of the malware taxonomy. It then discusses a
series of malware detection and intrusion detection methods and their respective categor-
izations. Finally there is a discussion on the different malware obfuscation techniques.

2.1 Malware Taxonomy

There exist several definitions for malware. Although mostly similar they do have dif-
ferences worth mentioning. For instance Preda et al. [13] define malware as a program
with malicious intent that has the potential to harm the machine on which it executes or
the network over which it communicates. This definition cover both malicious actions per-
formed toward the machine and the network. What it ignores however is the user of this
system. This is important as malware does not only damage the system, but also invades
the users’ privacy by accessing and changing documents and data. Subsequently the fol-
lowing definition will be used: malware is short for malicious software and can be defined
as any program or file that is harmful to a computer environment or its user [9].

As malware is a collective term for malicious software, there exist several sub-categories
of malicious software. These terms are discussed below.

2.1.1 Virus

A Virus is a program that inserts itself into one or more files and then performs some ac-
tion [2]. One of the key characteristics of a virus is that it needs a host to propagate
further. Be it a file transferred over a network, USB flash drive or a shared network
device. Bishop [2] identifies insertion phase and execution phase as the two key phases
of a computer virus. In the first phase the virus inserts itself into another file and in the
second phase it executes. Over the last couple of decades several different categories of
viruses has been identified. These are:

Boot sector virus

A boot sector is the part of the hard drive that contain data which bootstrap the system
or mount disk drives [2], typically called the Master Boot Record. A virus that infects the
MBR is called a boot sector virus. Since the content of this sector is executed first, the
boot sector virus is able to start alongside the operating system. A method commonly
utilized by boot sector viruses is to overwrite the MBR (512B) with the virus itself, then
copy the original MBR to succeed the virus in such a way that the virus can point to the
original MBR and control the execution [1]. Example is provided in Figure 1. Brain virus
is an example of a boot sector virus. It is one of the oldest viruses and was detected in
January 1986 [14].

Executable virus

An executable virus is a virus that infects executable programs [2]. The common method
of executable viruses is to insert itself after the file header. Thus the virus will be executed
before the rest of the program. This method is displayed in Figure 2. The Jerusalem Virus
is an example of an executable virus [15].
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Figure 1: Boot Sector Virus [1]

Figure 2: Executable Virus [2]

TSR virus

Terminate and stay resident virus [2]. These are viruses that remain resident in memory
after application has terminated. For instance after boot up the brain virus (boot sector
virus) is loaded into memory, instead of being run once at boot [2].

Stealth virus

Stealth viruses seek to hide themselves by concealing infected files and processes. Ac-
cording to Bishop [2] a stealth virus conceals infected files, while Szor [1] state that
stealth viruses always intercept functions, such that the user receives modified and sub-
verted data. As such, it inhibits rootkit like behavior. Rootkits are discussed further in
Section 2.1.3. Viruses utilize these concealing methods to various degree, as for instance
the boot sector Brain Virus was programmed to show the user the original MBR [1].

Encrypted virus

Encrypted viruses consist of an enciphered virus body along with a small decipherment
routine [2]. Malware detection software quickly realized that viruses had distinct signa-
tures. Thus they implemented simple signature-based detection schemes. The malware
authors countered this by enciphering the virus. This made the virus itself much harder
to analyze, as one would have to decrypt in order to analyze. One can however run the
virus and analyze dynamically as well as extract the virus itself from memory. Hence the
encryption only provides an additional layer for the analyst. Signature-based detection is
equally efficient, as the malware detection routine can identify the decipherment routine
of the virus. One of the first viruses that utilized encrypted was the Cascade virus [16, 1]
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on DOS. The virus body in Cascade was similar to that shown in Figure 3, where the
decipherment routine is located in front of the enciphered virus.

Figure 3: Encrypted virus [2]

Polymorphic virus

A polymorphic virus changes its form each time it inserts itself into a new program [2].
Polymorphic were the result of the next step in the evolution of virus after encrypted
viruses. Since malware detection software was able to identify the decipherment routine
and successfully detect encrypted malware, the malware authors sought to make mal-
ware which would change on each infection. Subsequently this is an attempt to fool the
signature-based systems. Furthermore it is often used in conjunction with encryption-
based viruses [2]. One of the first examples of polymorphic viruses was the 1260 Virus,
which was written by Mark Washburn in 1990 [1]. The 1260 Virus utilized junk inser-
tion which in turn changed the size of the virus. Thus the signatures of the known bad,
changed as well. Since they no longer could look for simple signatures.

Macro virus

A macro virus is a virus composed of a sequence of instructions that is interpreted, rather
than executed directly [1]. Except from the fact that macro viruses go through an inter-
preter they are no different than regular viruses. The virus may be written in any macro
language, as for instance MS Word. One of the best known macro viruses are the Melissa
virus [17] which infected Word 97 and 98 on MS Windows and Mac OS X [2].

2.1.2 Worm

A worm is defined as a program that copies itself from one computer to another [2].
The key difference between a worm and a virus is the fact that the virus needs a host to
propagate. The worm copies and sends itself to computers via available networks, net-
work shares, e-mails etc. One of the first known malicious worms was the Morris worm
which hit the Internet in November 1988 [18]. Named after its creator Robert Morris Jr.,
the Morris worm propagated fast throughout the Internet. Since then advanced worm
propagation techniques such as hit-list scanning have been researched [19]. Hit-list scan-
ning is a technique which creates an initial list of vulnerable targets before starting the
infection. Thus when infection takes place the hit-list is transferred to the infected cli-
ents, which in turn target parts of the hit-list to increase propagation [19]. The effect of
this technique is a drastically increased propagation throughout the network.

2.1.3 Rootkit

Rootkits are defined as a combination of malicious software that provide backdoor ac-
cess to the machine as well as modifications which hide the rootkit and traces of intru-
sion [20]. Rootkits are further categorized into the following four categories:
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• Application-layer rootkits

• Library-layer rootkits

• Operating System-layer rootkits

• Hardware-layer rootkits

These subcategories are discussed below.

Application-layer rootkit

Application-layer rootkits, also called command-layer rootkits target the higher layers of
the computer architecture. Be it files, registry or other application specific artifacts on
a host. Typical actions include deleting logs and hiding files which makes the malware
inconspicuous. The downside however is that application-layer rootkits doesn’t subvert
the system kernel. As such they are quite easy to detect, since one can find them using
common signature-based systems.

Library-layer rootkit

Library-layer rootkits goes one step further than application-layer rootkits, since they
manipulate the libraries used by the applications. Subsequently they are able to subvert a
set of applications which use a specific library. One can for instance manipulate libraries
of cryptographic hash functions to return benign values, such that a known bad file is
never found. From a forensic perspective this can be countered by utilizing external
tools when analyzing a computer. For instance by loading a USB-flash drive which has
standalone software which doesn’t depend on host DLL files.

Kernel-layer rootkit

The third method of system subversion is called kernel-layer rootkits. Kernel-layer rootkits
focus on compromising the kernel of the operating system. This includes methods such
as in-line hooking of system call tables [21, 22, 23] or direct-kernel-object manipula-
tion [24].

Hardware-layer rootkit

Hardware rootkits focus on firmware and hardware subversion. These rootkits are im-
mensely complex and very challenging to detect as one rarely test such equipment for
malicious activity. A taxonomy of hardware trojans is provided in [25] by Tellefsen. By
definition hardware trojans and hardware-layer rootkits are not the same. However, of-
tentimes they exhibit similar behavior. For instance a GPU which is programmed by the
manufacturer to leak sensitive information and hide its tracks is both a rootkit and a
trojan.

2.1.4 Backdoor

A backdoor is a mechanism which bypasses normal security checks [18]. As such it might
be a part of software or software configurations. Typically when a hacker gets access to
a computer he seeks to install a backdoor which allow for easy return. Hence it is not a
malware that propagates, such as viruses and worms, but rather a method and technique
commonly utilized by computer criminals. A typical backdoor opens a port which allows
a perpetrator to connect to the client.
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2.1.5 Trojan

A trojan is a program with an overt (documented or known) effect and a covert (undocu-
mented or unexpected) effect [2]. Malware is typically concatenated to regular software
and posted on file sharing networks. As such, trojans are one of the most prominent
threats in today’s Internet-based community. Previous research on malware in peer-to-
peer networks found that a total of 68% of all executables and archives contained mal-
ware [26]. Hence the likelhood for infection for an unsuspecting user is very high.

2.1.6 Spyware

Aycock [18] defines spyware as software which collects information from a computer
and transmits it to someone else. This is a broad definition, in which case most software
is spyware, which is not true. Hence, in this thesis we define spyware as software which
collects and transmits information from a computer without the user’s knowledge or
consent. Typically the goal of spyware is to collect personal identifiable information (PII)
such as name, e-mail address, credit information and passwords. This is then used to
access the user’s accounts and purchase items in the user’s name or extract his or hers
funds.

2.1.7 Adware

Adware is similar to spyware, except it usually gathers information about the users and
their habits [18]. It then feed the user pop-up advertisements or redirect browsing to
special web-sites in order to entice the user into buying products.

2.2 Malware detection and intrusion detection

Malware detection is defined as a system that attempts to determine whether a program
has malicious intent [8]. While intrusion detection is defined as the process of monitoring
the events occurring in a computer system or network and analyzing them for signs of pos-
sible incidents, which are violations or imminent threats of violation of computer security
policies, acceptable use policies, or standard security practices [27].

Malware detection is similar to intrusion detection systems, since they both try to
identify malicious actions. Key difference being that malware detection only focus on
malware, I.E. malicious software, while IDS systems seek to identify all possible incidents
or malicious actions. As such malware detection might be seen as a subcategory of IDS.
Due to this fact, most of the terminologies of IDS stand true for malware detection.
Hence, to provide an introduction in malware detection we must also discuss the general
aspects of IDS.

Intrusion detection systems are typically categorized after scope of protection, model
and analysis method. A brief introduction to these categorizations is provided below.

2.3 Scope of protection

By scope of protection one check whether the IDS is network-based, host-based or application-
based [28]. It is a way to categorize which aspects of the system the IDS monitor.

• Network-based: By network-based, the IDS monitors all traffic sent over the network.
The type of network traffic depends on the sensor location within the network.

• Host-based: Host-based IDS on the other hand monitor all actions performed on a
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host. Scope depends on algorithm and implementation, but typical monitored data
include registry, files, logs, function calls and network data.

• Application-based: Application-based IDS are as the name imply specific for each
application. These IDS’s monitor data internal to each application such as application
events, logs and data. It might also be inspecting protocol specific information. Typical
example would be SQL monitoring for a database system.

This thesis will largely focus on host-based in general, as it focuses on function calls,
which represent all activity and not just application specific data.

2.4 Scope of model

By model one categorize between anomaly- and signature-based [28, 29]. The difference
in these methods is how the detection is performed. Either by looking at the known-good,
then creating profiles and classifying everything else as anomalies (anomaly-based). Or
looking for known-bad signatures, then classifying everything else as benign (signature-
based).

2.4.1 Signature-based

Signature-based detection looks for the known bad. As opposed to the first generation
antivirus scanners this doesn’t only mean known-bad cryptographic hash sums. However,
any malicious characterization or statistical properties, be it information such as variables
and URLs or applications, protocols and files. The key downside to signature-based detec-
tion is that since it looks for the known bad, it sometimes creates too specific signatures.
The outcome is that by performing small modifications to the malware a perpetrator can
easily avoid detection. Previous studies has in fact proved that signature based detection
is vulnerable to obfuscation techniques such as polymorphism and metamorphism [30].
The challenge of signature-based detection is to change the signatures, such that they are
more general, and able to detect modified malware categories, but not so general that
they create false positives.

2.4.2 Anomaly-based

Anomaly-based detection focus on identifying the known-good. As a result it has an
advantageous ability to detect new malware, such as mutations of an existing malware
family, but also novel attacks and techniques. The reason that anomaly-based detection
is more suited for detecting new attacks is because any deviation from the known good
is classified as malicious. This however has a downside, since it often cause a large set of
false positives. Hence in many ways anomaly-based detection is the opposite of signature-
based detection. This also holds true for the challenges, as one have to create more
specific templates, which in turn reduce the amount of false positives.

2.5 Analysis method

By analysis method one check whether detection is performed pre-execution or during
execution, I.E. static or dynamic [29], respectively. Common methods of static analysis
is source code analysis or disassembly, while dynamic methods execute, then trace or log
execution flow, or look at changes in the system post-execution.

Analysis method is especially important in malware detection since it depends on
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whether the system needs to execute the malware or not. The safest option of course is
to analyze the file pre-execution. However, sometimes malware is obfuscated in such a
way that it cannot be analyzed statically. These methods will be discussed next in Sec-
tion 2.6. As a result, one has to execute the binary and investigate the artifacts it creates
in the system. These artifacts might not be written to disk, but reside in memory only.
Furthermore one typically has a large set of artifacts to uncover. Artifacts may include,
but not restricted to memory data, disk data such as files, registry, folders, file metadata,
binaries, logs etc. To make matters worse malware typically seek to erase their tracks.
Thus it is important to note where detection takes place, whether one trace every action
or simply look at the artifacts post-execution.

Another key challenge is that the system itself generates a lot of artifacts. This is be-
neficial in some cases as one can detect malicious actions. However, it also means that
a lot of the artifacts one investigate might be generated by the system itself, and not
a result of the malicious file. This too is important to consider when implementing the
analysis method. For instance a dynamic malware detection method based on comparing
images pre- and post-execution will be susceptible to a lot of benign system artifacts. A
dynamic malware detection method that traces a process on the other hand, will only see
that process’s actions. A potential downside however might be that the process spawns
additional threads and processes that the detection method isn’t able to follow. Hence
the malware might be able to break free and avoid detection. Although two simple ex-
amples, they show the complexity of computer systems that is needed to consider when
implementing an analysis method.

2.5.1 Static analysis

Static analysis is a method used to determine the inner workings of software without
actually executing the program. This is typically done through, disassembly, signature
scanners and decompiling. The key advantage of static analysis is the fact that one doesn’t
need to execute malware.

First-Generation Scanners

Scanners are the word that comes to mind when one speaks of Anti-virus(AV) software.
However these AV’s utilize a range of different techniques to detect malware. The first-
generation scanners is by far the simplest, which utilize techniques such as string match-
ing [1]. This is basically an exact string search for some known bad string. These were
then extended to support wildcards. That is, the strings may include unknown data for
the size of the wildcard (typically one byte) [1]. A very simple example of a string match-
ing is provided in Figure 4. As one can see in the figure the matching algorithm matches
the string character by character. If the current character matches it checks the next
one. Because of this methodology, similar strings will have a series of matches before
the mismatch occurs, which result in performance degradation. To counter this, the first-
generation signature scanners started using cryptographic hash-values [1].

Figure 4: First generation string matching

11



Information-based Dependency Matching For Behavioral Malware Analysis

The AV developers further sought to make AV faster and reduce the amount of disk ac-
cess. Thus they implemented top-and-tail scanning, which basically is to scan the header
and the tail of the files, instead of the whole body [1]. Entry-point and fixed-point scan-
ning was then implemented. These techniques made AV scanners even faster, as they
take advantage of the fact that most files have entry points for objects, and that many
viruses target these entry locations [1].

Second-Generation Scanners

As malware evolved and started mutating using no instruction pointers (NOP) [1], which
successfully avoided the first-generation scanners. The AV scanners had to change ac-
cordingly and evolved into the second-generation scanners. Which started using smart
scanners, that ignored such NOP [1]. A hybrid method called skeleton detection was also
implemented. This method dropped all NOP, white space and non-essential instructions,
such that only the essential code is parsed. Thus increasing the AV’s ability to detect
malware of the same family, as mutations were less successful [1].

Second-generation scanners then started utilizing nearly exact identification, which
is the use of two checksums for only parts of the virus body. If one of the checksums
matches a warning of a potential match is given [1]. This was succeeded by the exact
identification, which instead utilized checksums for the whole virus body which was
constant [1]. I.E. variables were excluded to remove environment-dependent data. Such
that only the constant virus body is used as a signature. Exact signature matching has the
advantage that it is able to differentiate between malware hybrids and different variants
of the same family [1]. However, its exact matching is likely to make malware obfuscation
techniques more effective.

Malware-Specific Scanners

Malware-specific scanners are the next step in the evolution of AVs. Malware-specific
scanners search, as the name imply for specific malware [1]. It’s more commonly known
as algorithmic scanning, however we feel this name is more suitable as it actually reflect
the technique’s intention. Malware-specific scanners have had several issues with port-
ability and stability [1]. However implementations of abstract programming languages
such as Java-like portable code has given mitigated the portability issues as they can
run on any system [1]. Since malware-specific scanners typically are processor intensive,
they need to filter their search. For instance, searching for executable viruses can be lim-
ited to executable files. This can of course be exploited and avoided using obfuscation.
However, this is further discussed in Section 2.6.

Source code analysis

Source code analysis is a method commonly affiliated with programming quality assur-
ance. However analyzing source code manually can be an efficient way to detect malware
as well. In the right hands, access to the source code can reveal the malicious program’s
intentions, the attackers proficiency as well as information of how the intruder got access
and which vulnerabilities were exploited. Information of source code analysis tools and
techniques is provided on The Open Web Application Security Project (OWASP) [31].

Disassembly

Disassembly is the process of taking an executable binary as input and generate the as-
sembly language representation of the program as output [7]. The program, which is
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represented by machine code (zeroes and ones) is interpreted by the disassembler, but
instead of executing code, it stores the textual representation in assembly [7]. Disas-
sembly is usually performed by disassemblers, I.E. programs specially designed for this
task. These disassemblers typically support multiple CPU architectures, as disassembly is
a processor-specific task [7].

Decompiling

Decompilers are the next step in the evolution after disassemblers. Disassemblers con-
vert machine code into human readable assembly code. The challenge is that for most
humans, assembly code isn’t easy to interpret. Thus the decompilers translate machine
code into a high level language (c-like code) [7], which is far easier to interpret. This
typically results in something similar to the actual source code. It is of course not com-
pletely similar to the source code, however it is likely to be helpful when analyzing large
segments of code.

2.5.2 Dynamic analysis

Dynamic analysis is defined as the process of executing malware in a monitored environ-
ment to observe its behaviors [32]. As opposed to static analysis, one actually executes
the malicious code, which can be dangerous unless performed securely. There are sev-
eral ways of performing dynamic analysis. These include taking snapshots and compar-
ing pre- and post-execution and analyzing during execution by use surveillance tools or
debuggers

Dynamic analysis can be performed on two different architectures. That is, physical
and virtual hosts respectively. On physical hosts you control the computers using re-
imaging software, while the virtual hosts are controlled by virtualization software. Both
the virtual and the physical host computers are typically controlled by a controller [32].
This is a server that decides which malware to load and analyze, and when to re-image
or revert snapshots.

The advantage of physical hosts is that they behave as regular hosts would. As such
virtualization-aware malware will have no effect. The unfortunate downside however is
that the process of re-imaging is slower than reverting snapshots [32].

Virtual hosts on the other hand are quick and easy to set up. Furthermore one can use
snapshots to control the host environment, as well as using several different baselines.
A baseline represents the operating system and its software configuration. As malware
might behave differently for different operating system (OS) versions, it is important to
test the most common ones, to which are vulnerable.

Securing the environment

There are two downsides of this virtualized approach. First, malware can break out of
the environment and onto the host computer [33]. Second, malware doesn’t behave as
it usually does when virtualized, as it won’t be able to communicate with command and
control servers or outside environment. The first issue can be mitigated by:

• updating host computer and virtualization software

• dedicated host computer which is not connected other networks

• monitor host with integrity detection systems

13



Information-based Dependency Matching For Behavioral Malware Analysis

The second issue we can control by selecting malware that i) doesn’t need interaction
with outside network, ii) enable by emulation, I.E. services such as DNS and e-mail ser-
vices can be emulated on the virtualized host to enable the malware and its functionality.
This is a common method of dynamic reverse engineering [34].

In addition to these precautions it is common sense to isolate the network for both
physical and virtual lab environments, given that malware’ propagation abilities.

Pre- and post-execution comparison

In this method one compare chosen data pre- and post-execution. For instance by taking
a snapshot of the registry, file system or memory, then run malware and observe its be-
havior, by checking which changes occurred on the system. Regshot [35] is one example
of such a program, which analyze changes made in registry.

Run-time behavioral analysis

This method is common in live forensic analysis where one need to analyze malware or
running processes on a live system. It is based on using tools to analyze artifacts on a run-
ning systems, such as memory, processes, handles, threads, files, network connections,
connected devices and of course the file system. A comprehensive software analysis suite
commonly used for this purpose is the Windows Sysinternals [36].

Debugging

A debugger is a program that run and monitor the execution of other programs [37].
While debugging is the act of locating bugs in software [37]. Debugging is oftentimes not
classified as dynamic analysis [32]. However, due to the fact that by definition dynamic
analysis executes malware, and the debugger is a program that controls this execution
we have classified it as such.

A debugger can be a powerful tool to find vulnerabilities and analyze malware [32].
One can start debugging a new process or even hook into running processes. This makes
the debugger a powerful tool for dynamic analysis.

2.6 Obfuscation techniques

There are few good and proper definitions of the word obfuscation. One paper [38]
defines obfuscation as a technique that makes programs harder to understand. However,
obfuscation is not only meant to trick the human analyst, but also techniques that throw
technical systems off track. Such as polymorphic malware for signature-based detection.
Thus in this thesis we define obfuscation as any technique used to evade detection. It is
important to note that most obfuscation techniques seek to change a program, in order
to avoid detection, but keeping the same functionality.

Obfuscation can be performed both manually and automatically. By manual obfusca-
tion we think of methods that are implemented during the programming, while auto-
matic obfuscation is implemented by a program. Automatic obfuscation is most often
advantageous as it provides better mechanisms for automatically obfuscating the com-
plete program [7]. Furthermore it usually obfuscate after the program is compiled, such
that one doesn’t make the source code less readable for the developers [7].

Obfuscation is not only used in malware, but actually a common protection mechan-
ism to protect software from competitors. In fact one of the first surveys on obfuscation
methods discusses obfuscation techniques for software protection [39]. The survey dis-
cusses a range of obfuscation categories such as data obfuscation, layout obfuscation,
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control obfuscation and preventive transformations. Within these subcategories a total
of 26 obfuscation techniques are discussed and analyzed with regard to a set of proposed
metrics. These are potency, resilience and execution cost. It is important to note that
even though many of the same obfuscation techniques are used for both software and
malware, their efficiency may differ, as they have different requirements. For instance
software has performance criteria, while malware need to change continuously in order
to beat signature-based detection systems [38]. Another application worth mentioning is
the use of obfuscation for security. As many hackers seek to analyze software and web-
sites in order to find vulnerabilities, for example poor input validation etc., obfuscation
can be used as a security measure to counter such probing and analysis [38].

In this thesis we will not go in depth on obfuscation and measure the quality of the
different techniques. Nor will we discuss obfuscation with regard to software protection
or security. But rather discuss the existing obfuscation techniques and how they evade
today’s malware detection systems.

2.6.1 Compression & Encryption

Malware and malware detection has often been discussed as a cat and mouse game.
This is not without reason, as the malware authors have always created some malicious
code or obfuscation technique, and when the malware detection catch up, they create
a new one. Malware started out simple, without any forms for obfuscation. Then, when
malware detection started using signatures, the malware authors had to adapt and hide
their code. This was performed using compression and encryption algorithms. Encrypted
viruses were discussed earlier in Section 2.1.1. Due to this reason we will not go in depth
in this section, but rather describe how encryption work as an obfuscation method in
general as well as some methods of enhancement.

Encryption and compression is implemented in such a way that the malware consist
of an encrypted part and a decryptor. The decryptor is a sequence of code responsible for
deciphering the enciphered malware [40].

Since encryption is one of the oldest obfuscation methods, there has been developed
several ways of enhancing its efficiency. The following techniques was proposed in [1]:

• Change direction of the encryption/decryption loop, such that both forward and back-
ward loops are supported [1]

• Use multiple layers of encryption. Such that the first decyrptor decrypts the second
one, while the second decrypt the third, and so on [1]. An example of this method
can be viewed in Figure 5

• Several encryption loops take place one after another, with randomly selected forward
and backward loops [1]

• Use of more than two keys to decrypt each encrypted piece of information, combined
with long keys [1]

• Nonlinear decryption [1]
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Figure 5: Use of multiple encryptions[1]

2.6.2 Polymorphism

Polymorphic viruses were discussed in Section 2.1.1. In this section we discuss poly-
morphism as a general obfuscation method instead of the virus-specific implementation.

Polymorphic malware can be viewed as the next step in the evolution of malware after
encrypted malware [38]. The reason is that when encrypted malware was introduced the
malware detection systems started targeting the decryption routine in order to detect
encrypted malware. Hence signature-based detection remained just as effective. This
chain of events lead to the evolution of polymorphic malware, which randomly change
the decryption routine each time it infects a host [38]. Since the decryption routine
changes for each infection it becomes challenging for signature-based systems to perform
detection.

There exist counter mechanisms however that are able to detect such malware. For
instance AV scanners that utilize sandboxing and emulation to run malware [38]. This is
effective since the malware is run dynamically and decrypted, which allows for inspection
of the actual malicious code. From this code the antivirus-vendors can create signatures
for signature-based detection or observe malicious behavior for anomaly-based detection.

2.6.3 Metamorphism

Since polymorphic malware could be detected by emulating malware or running it in
sandboxed environments the malware authors developed metamorphic malware able to
change itself from infection to infection. Thus, like polymorphic malware the malware
itself is changed upon infection. However, it is not simply the decryption routine which
is changed, but the malware itself. This is a vital difference, as the malware need to
edit code, then recompile [38]. As a result the complete malware changes over time and
makes signature-based detection obsolete, as no parts of the malware can be identified
by signatures.

2.6.4 Packers

Packers are commonly known as software applications that store either encrypted or
compressed executables (packed), in such a way that when executed the packed execut-
able is loaded into memory and executed [3]. Since packers both encrypt and compress
they are also commonly called cryptors and compressors [41].
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Due to the compression and encryption of packers it is typically challenging to analyze
packers statically. For malware authors this is beneficial, as a lot of today’s malware
detection systems utilize static detection, for instance by scanning files stored on disk.
This will be completely ineffective, as the malware only can be detected in memory.
Hence it is resilient against most static analysis, except those that implement decryption
and compression routines. However this can easily be avoided by implementing unknown
or less commonly used encryption and compression algorithms.

Packers are typically categorized into the four following categories: compressors,
crypters, protectors and bundlers [3]. These are defined below:

• Compressors: Simply compress executable, typically with little or no anti-unpacking
tricks [3]. Examples of compressors include: Ultimate Packer for eXecutables (UPX) [42]
and ASPack [43].

• Crypters: Packers that encrypt and obfuscate executables [3]. Examples include: Yoda’s
Crypter [44] and PolyCrypt PE [45].

• Protectors: A hybrid packer that utilizes both cryptor and compressor features [3].
Examples include Armadillo [46] and Themida [47].

• Bundlers: A type of packer that packs multiple executables and data files into a single
executable [3]. Examples include PEBundle [48] and MoleBox [49].

Figure 6: Portable Executable File Format[3]

Packers are most common for the Windows Portable Executable (PE) Format, how-
ever also exist for ELF (Linux executables). The PE file format is displayed in Figure 6.
To perform packing a packer typically parse the PE internals structures, then reorgan-
ize PE headers, sections, import tables and export tables into new structures and then
attach code that malware access before the original entry point(OEP) [3]. This code is
commonly known as stub. The stub’s function is to decompress or decrypt the original
data and locate the OEP [3]. Packer software typically contains numerous different en-
cryption and compression schemes, which allows for a range of different packed files.
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Furthermore packers can utilize other forms of obfuscation such as polymorphism in
order to further create new packed samples [3].

Crimeware as a Service

In 2009 a web-based automated packing service called Polypack was developed [50].
Although a research-based project, it provided people with the ability to test malware.
More specifically, a front-end web-based interface to upload malware, which is packed
with a set of packers, whose obfuscation resilience is tested against a set of antivirus
software. Some would argue that this is in fact crimeware as a service [51], as one is
able to test the effectiveness of packed malware before launching an attack. The project
is not only able to find the packer with best average result, but also the best packer for
each specific malware [50], to maximize the chances of not being detected. The project
provides an example of how dangerous packer techniques can be to successfully avoid
detection.

2.6.5 Specific obfuscation methodologies

In this subsection we discuss a series of specific obfuscation techniques that are utilized
either by themselves or together to obfuscate malware. Many of these techniques are
used by polymorphism, metamorphism and packers.

Dead code insertion

As the name states, this obfuscation technique revolves around the idea of inserting dead
code or useless code into the malware. This might for instance be no-operation point-
ers, changing state of program back and forth [38], or introducing code which is never
executed. This method is effective against both signature-based detection and sequence-
based detection. It is effective against signatures, as it insert code. Subsequently the
effectiveness of the method depends on the size of the signatures. If the signatures are
small and very specific, the method might fail, as it might not be able to insert code into
that specific code segment. Thus, the larger the signatures, the more effective this method
will be. Similarly, inserting dead-code into the malware will distort the sequence of ex-
ecution. Hence it is likely to impact the sequence-based detection methods. However,
its effectiveness depends on the implementation and method. Figure 7b shows a dead
code injection example. The corresponding non-obfuscated sample code is provided in
Figure 7a. As one can see from the example, these are simple NOP functions. These func-
tions can easily be avoided by AV signatures, by ignoring such functions as a part of the
signature [40]. This process is performed by a deobfuscator, whose purpose is to im-
plement data-flow analysis algorithms to automatically remove irrelevant functions [7].
However, this in turn can be avoided, as there are many ways of doing nothing. As such,
any programmer can include large portions of code which distort the signature, but have
no significant impact on the execution and end-result.

Register reassignment

Register reassignment refer to the change of registers used by live variables [38]. For
instance during execution of a variable there exist a register R1 that remain unused. This
register can replace the variable’s current register R2 for the duration of execution [38].
The method is likely to be effective against signature-based detection, as it changes the
code. However it is not likely to be effective against anomaly-based methods or reverse
engineering [38]. A simple example of register reassignment is provided in Figure 7c. If
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(a) Sample Code[40]

(b) Dead code injection[40] (c) Register Reassignment[40]

(d) Instruction Substitution[40] (e) Code Transposition[40]

Figure 7: Obfuscation Examples

one compare to the sample code in Figure 7a, one can see that the registers EAX, EBX
and EDX are reassigned to EBX, EDX and EAX, respectively [40].

Code substitution

Code substitution, also called instruction substitution [38], is the process of substitut-
ing functions with equivalent functionality. This method is likely to be effective against
signature-based detection, as it swaps out parts of the code. Previous research states
that this is one of the most effective obfuscation mechanisms, which even might be ef-
fective against reverse engineering [38]. An example of code substitution is provided in
Figure 7d. For instance, one can replace xor with sub and mov with push/pop [40].

Code-reordering

Code-reordering, also called code transposition [38]. The method is self-explanatory, as
the name says, it is the process of moving code. This is typically independent code [38],
as the result of execution should be the same. Similarly to dead-code insertion the code-
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Figure 8: White space randomization. Source: [4]

reordering is likely to be effective against signature-based detection. This is because code
is moved around, which should distort signatures and sequence. One limitation however,
might be the number of changes one is able to implement. As the success of the method
is likely to be dependent on the number of independent functions within the code. An
example of code-reordering is provided in Figure 7e, where the independent functions
are re-ordered to distort the signature.

Code separation

Separation of code and objects is a common obfuscation technique for many coding
languages. For instance for PDF documents one can separate objects and code and store
separately, such that they must be concatenated before execution [52].

White space randomization

White space randomization is a very simple technique of obfuscation, as it only intro-
duces whitespace into the code. The goal is to make the code less readable or distort
signature for signature-based IDS systems. This technique however can only be utilized
on code that will be analyzed pre-execution, and not source code software that compile
or assemble the software. Reason being that such compilers and assemblers ignore white
space. For instance JavaScript parsers will ignore the whitespace [4]. However, since de-
tection might be implemented as a step before the JavaScript execution, and not a part
of the execution itself, the method is likely to be effective.

Comment randomization

Comment randomization is similar to white space randomization in the sense that it has
no impact on the control flow of the program. Rather it introduces data that will be
ignored by the parser or compiler. Its obfuscation impact is also similar to white space
randomization, as it will make the code less readable and might trick signature-based
systems. The last statement obviously fully depends on the method of the signature-
based detection system. However, if comments aren’t ignored, but implemented as a part
of the signature, it will affect the obfuscation resilience.

String obfuscation

String obfuscation is a simple, but effective obfuscation technique for making strings
harder to read. As an example one can split strings into several pieces, which are as-
sembled before execution. Furthermore strings can be encoded using hexadecimal, Uni-
code and other encodings in order to create different representations of the string [4].
One example of such obfuscation is provided in Figure 9, where the string we’ve got a
problem is represented by use of different encodings. Similarly to white-space and com-
ment randomization, string obfuscation is ignored by compilers and parsers, such that
it is only effective against analysis systems implemented pre-execution or reverse engin-
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Figure 9: String obfuscation [4]

Figure 10: Variable name randomization and function pointer [4]

eers.

Variable and function name randomization

The variable and function name randomization takes advantage of the fact that func-
tions and variables can be reassigned [4]. Hence it reassigns functions and values in
order to confuse human analysts and detection systems. The technique can be viewed
in Figure 10, where the variable A1 is set to randomFunctionName and used as a para-
meter in Function2, which is renamed to the eval function, that evaluates and executes
the JavaScript. This technique is quite simple, but also effective as it immediately makes
the code less readable. Fortunately it can be easily analyzed by for instance changing the
function2=eval to function2=print, such that the code is parsed then printed to screen
instead of executed. By using this method the encoding would be parsed as well, which
drastically speed up the analysis.

Encoding

One simple way of obfuscation is to use different encodings. For instance encode parts
of the program or variables differently. Although two of the most common encoding
schemes are ASCII and Unicode, there exist a large set of encoding schemes. Further-
more one could implement new techniques or binary offsets to confuse the analysts. This
method should be implemented at binary level, as some compiler may modify it during
the compilation process [7].

Opaque predicates

The idea behind opaque predicates is to create logical statements whose outcome is
constant and known in advance [7]. For instance creating statement that will never be
true, can be used to confuse both human analysts and automatic decompilation tools [7].
For instance ’if (x+5 == x)’, will never be true. For opaque predicates one seek to create
such constants that are known in advance, but are hard to predict without running or
debugging the code [7].
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(a) Sample Code[7] (b) Interleaving obfuscation example[7]

Figure 11: Interleaving example

Table interpretation

Table interpretation is an obfuscation technique that converts the entire program or func-
tions into a table interpretation layout [7]. The general idea is to break code into multiple
short code fragments, while the code loop through a conditional code sequence that de-
cide which of the code fragments to jump to [7]. The technique is known to be powerful,
as it can confuse both human analysts and deobfuscators [7].

Inlining and Outlining

Inlining is a compiler optimization technique that replace a function call with the copy of
the code for that code [7]. The goal is to improve runtime performance, by eliminating
overhead of calling a function [7]. For obfuscation purposes inlining can be effective, as
it eliminate the internal abstractions created by the developer [7].

Outlining was proposed in [39] as an obfuscation method, where one take selected
or random code segments and create functions [7]. This will decrease readability and is
likely to make manual analysis more challenging.

Code Interleaving

Interleaving is an obfuscation technique where the idea is to interleave two or more
functions such that the code become challenging to interpret [7]. A sample interleaving
obfuscation example is included in Figure 11. The obfuscated pseudo code in Figure 11b
use opaque constants for jump functions to further obfuscate, as a simple jump instruc-
tion would be simple to follow [7].

Code Integration

A newer, more advanced, and far more potent form of obfuscation is called code integ-
ration. Code integration was introduced in the malware Zmist [51]. Where it integrated
itself into the target program. First the malware decompiled executable into objects, then
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it mutated itself using a combination of previously discussed obfuscation methods, before
it finally inserted itself between the objects and reassembled the executable [51].

Anti-debugging techniques

As debugging is a common tool for reverse engineering it has become common for mal-
ware writers to implement tricks and techniques that detect debugging. Once detected
the malware won’t behave as it usually does, hence obstructing the analysis. Since de-
bugging is supported by hardware and software there exists a range of different methods
that can be utilized to detect debugging. Furthermore, since it is hardware supported, a
lot of the techniques may be platform specific [1]. A vast range of techniques are pro-
posed in [1]. It is outside the scope of this thesis to discuss all of these. However we will
list them for completeness:

1. Hooking INT 1 and INT 3 on x86

2. Calculating in the interrupt vectors of INT 1 and INT 3

3. Calculating checksum of the code to detect break points

4. Checking the state of the stack during execution of code

5. Using INT 1 or INT 3 to execute another interrupt

6. Using INT 3 to enter kernel mode on Windows 9x

7. Using INT 0 to generate a divide-by-zero exception

8. Using INT 3 to generate an exception

9. Using Win32 with IsDebuggerPresent() API

10. Detecting a debugger via Registry Keys Look-Up

11. Detecting a debugger via driver-list or memory scanning

12. Decryption using the SP, ESP (Stack pointer)

13. Backward decryption of the virus body

14. Prefetch-queue attacks

15. Disabling the keyboard

16. Using exception handlers

17. Clearing the content of debug registers

18. Checking the content of video memory

19. Checking the content of the thread information block

20. Using the createfile() API

21. Using hamming code to attack break points

22. Obfuscating file formats and entry points

Anti-disassembly

Disassembly is the process of translating machine code into assembly language. Disas-
sembly is a common tool for reverse engineering and even sometimes automated mal-
ware detection. Because of this, there has been developed methods that seek to disrupt
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the disassembly process or distort the output, in order to avoid detection. Common meth-
ods for anti-disassembly are described in [1], and include the following:

• Encryption

• Polymorphism

• Metamorphism

• Code confusion to avoid analysis

• Opcode mixing-based code confusion

• Use of checksums

• Compression

2.6.6 Discussion

We have in this subsection discussed a range of different obfuscation techniques. What
it is interesting is that code integration is one of the most advanced techniques. Yet
this technique was first seen in the malware Zmist which was discovered in 2000 [51],
which in a rapidly evolving digital world is actually quite some time ago. This in turn
begs the question whether the evolution of obfuscation techniques has halted? Are the
techniques so effective that no effort is needed to improve them? Yet the whitepaper
from Symantec [52] state that new techniques are found every week. Hence it is likely
that there exist novel techniques or combinations which are applied in the wild, but not
covered here or even remain undocumented in academic literature.
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3 Related work

This chapter contains the related literature of the thesis. First it discusses function call
analysis and the differences of user mode and kernel mode detection. Then the state
of the art with regard to malware detection for function calls is outlined. Finally an
introduction to information-based dependencies is given, which describes how one can
create dependencies between function calls.

3.1 Function call analysis

This thesis focus on detection by use of function calls, whether it is library calls in user
mode, system calls in kernel mode or the hybrid function calls. Because of this, we will
give an introduction to each layer in this section, and explain what we mean by the
different layers.

3.1.1 The Operating system

The operating system can be viewed as a resource manager whose primary tasks is to
keep track of which resources programs use, grant resource requests, account for us-
age and mediate conflicts [53]. When a program execute, the operating system start a
process, which typically consist of multiple threads to carry out execution tasks. Library
calls and system calls are collective terms for such tasks. Key difference being that library
calls are execution tasks for user mode execution, while system calls for kernel mode
execution.

Figure 12: Linux Kernel Structure [5]

Kernel mode execution consists in general of file management, memory management,
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process management, IPC (inter process communication), networking and SELinux, which
is a feature for access control on Linux. Basically all of these system services are executed
by system calls in kernel. An overview of the Linux kernel is provided in Figure 12.
From this figure one can see how general applications and libraries run in user mode.
Whenever a process needs access to a system service a trap is executed to transfer control
to the operating system [53]. The operating system then inspect the trap function with
parameters to figure out what is needed, then execute the appropriate system call and
finally return control to the process [53].

To summarize a library call is execution of a function in user mode, system call is
execution of function in kernel. While function calls is a collective term used for the
hybrid execution that trace both user- and kernel mode execution.

3.1.2 Differences between library call and system call detection

Based on the fact that library calls are user mode execution while system calls handle
system services it is reasonable to believe that there might be a difference in detection at
the different layers. This assumption stem not only from the fact that system calls handle
more critical system resources, but the fact that the amount of executions at the different
layers might be different. Furthermore there are far less system calls than library calls.
Subsequently the layers are quite different, with regard to access to critical resources,
amount of calls and executed calls. This in turn might result in different detection rate,
obfuscation resilience and throughput for the layers.

The reason that the amount of existing calls is different is that the hierarchy of lib-
raries works as a funnel. High layer libraries utilize lower level libraries. As such, there
exist a lot of high level libraries, while the lower one get, the fewer libraries there is.
This idea is illustrated in Figure 13a. This figure is a Windows example, as the ntdll.dll is
the interface to Windows kernel. However, the general structure is similar for both Linux
and Windows.

The hypothesis is that malware detection will be easier at a higher layer, since one
see exactly which function calls that are responsible for the malicious behavior. On the
contrary detection may be more challenging at lower layers, as the amount of traced
calls is likely to increase. In addition there might be less visible malicious behavior. Thus
it becomes more challenging to differentiate between malicious and benign. This is il-
lustrated in Figure 13b. However detection at higher layer is likely to be susceptible to
obfuscation as there exist enormous amounts of different library calls and not all are
known. As mentioned there are substantially more library calls than system calls. How-
ever the library calls utilize the system calls. Thus it is reasonable to presume that library
call analysis provide better throughput, as fewer calls are executed and traced.

3.2 State of the art

In this section we provide an overview of the state of the art for malware detection with
regard to function calls. The section outlines different methods of performing detection
with regard to the different analysis methods.

3.2.1 Overview

A non-exhausting listing of the methods and existing research is provided in Table 1. The
table is categorized based on analysis method and detection model. Given the enormous
focus on malware detection throughout the years there exist a lot more research. How-
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(a) Function call funnel

(b) Actual Malicious Behavior

Figure 13: Library call compared to system call

ever surveying all material would be an enormous amount of work and a thesis by itself.
Thus this project present what we believe is relevant with regard to the project and its
research goals.

Control Flow Graphs Construct and traverse node with regard to node content and
inter-relationship

Intrusion Prevention System A system whose task is to report and prevent any mali-
cious activity

Tainting The process of marking data and monitoring and checking its flow throughout
the system

N-gram Collection of n-byte strings which are typically used for detection based on stat-
istical analysis or learning

Sequential Take sequence of function calls into account

Non-Sequential Disregard function call order. Simply counts occurrences
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Anomaly-based Signature-based
Static N-gram [54, 55, 56, 57], Taint-

ing [58, 59, 60] Other [61, 62]
Control Flow Graph-based [63, 64,
65, 66, 67, 68, 8], Other [69, 70,
71]

Dynamic Sequential [72, 73, 74, 75, 76,
77, 78, 79, 80, 81, 82, 83, 84,
85, 86, 11, 87, 88, 89, 90], Non-
sequential [91, 92, 93, 94, 95, 96,
97]

Reference Monitor-based (Host
IPS) [98, 99]

Table 1: Existing research on Function Call-based malware detection

3.2.2 Static signature-based detection

Previous work demonstrated that commercial signature-based systems (virus scanners)
are vulnerable against metamorphism and polymorphism [100]. The reason is that these
signature-based systems most often are syntactic and doesn’t analyze the semantics of
malware. To mitigate this issue semantic-aware malware detectors was developed [64,
65, 66, 67, 68, 8]. These semantic-aware methods are typically performed through static
signature-based detection. The semantics is represented by use of control flow graphs
(CFG), which describe the malicious code behavior. CFGs typically utilize source code
analysis or disassembly to inspect behavior. This information is then used to construct
and traverse nodes with regard to node content and inter-relationship.

As one can see in Table 1, most of the surveyed static signature-based methods are
control flow graph-based (CFG). Control flow graphs were described previously. There
exist however a range of other static signature-based detection methods. For instance
detection based on disassembly and association rules [69], data-oriented behavior mod-
eling based on source code analysis [70] and detection by use of statistics and similarity
scores [71].

3.2.3 Dynamic signature-based detection

The dynamic signature-based methods are based on reference monitors and work as a
host intrusion prevention system. A reference monitor is a validation mechanism whose
goal is to enforce access control policy [101]. Subsequently an IPS based on this mech-
anism would be able to control execution access.

3.2.4 Static anomaly-based detection

The surveyed methods of static anomaly-based detection are mostly taint-based and n-
gram-based. Tainting is the process of marking data and tracking its flow through the sys-
tem. N-gram detection on the other hand divides data into n-grams and performs analysis
based on these, whether based on learning or statistical analysis. Other static anomaly-
based methods include methods that utilize disassembly with neural networks [61] and
learning based on features from decompressor tools [62].

3.2.5 Downsides of static-based approaches

Recent work however prove that static analysis alone is insufficient, as obfuscation tech-
niques can be applied to trick semantic aware detection [64, 41]. The paper [64] sought
to exploit the fact that detection was performed statically, by including an opaque con-
stant which only can be determined dynamically [64]. The code is then implemented in
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such a way that certain behavior occur only given a certain condition/constant which is
extracted during runtime [64].

Another technique which greatly decreases the effectiveness of static detection is the
use of packers and cryptors. Packers and cryptors seek to compress and/or encipher the
malicious sequences in such a way that they cannot be detected pre-execution. This of
course depends on the detection module’s ability to decompress/decipher, but in prac-
tice it should not be difficult to apply an algorithm which is unknown for the detection
module.

It is obvious that both signature-based and static-based detection has challenges with
regard to obfuscation techniques. To thwart these vulnerabilities focus shifted towards
dynamic anomaly-based detection. The advantage of dynamic anomaly-based detection
which utilizes function calls is that existing obfuscation techniques are very ineffective.
Metamorphic and polymorphic code for instance, seeks to change the code in order to
fool signature-based systems. But since the effect and behavior would be the same, func-
tion call-based detection should be more resilient. Furthermore it should be highly resili-
ent against packers, cryptors and opaque constants since these are designed to trick static
analysis. Subsequently it is reasonable to assume that dynamic anomaly-based detection
based on function calls have greater obfuscation resilience.

3.2.6 Dynamic anomaly-based detection

For categorizing dynamic anomaly-based detection we chose to differentiate between
sequential and non-sequential. I.e. whether the detection method take the sequence of
function calls into account or not. This is an important difference as function calls might
be malicious only in combination with others. However sequential methods have down-
sides as well, such as susceptibility to obfuscation [96]. For instance by introducing calls
to distort the sequence. This is but one of many ways to categorize. There exist methods
which focus on arguments, resource use, tainting, graph matching, statistics etc. How-
ever by categorizing based on sequence we could easily differentiate between all the
surveyed methods.

Tainting is used for both static [58, 59, 60] and dynamic [87, 88, 89, 90] anomaly
based detection. The static method use disassembly to analyze possible paths, then check
code to detect all possible flows of information. While the dynamic method trace and
control information. Tainting is sometimes called information flow control and typically
used to determine accessibility of sensitive information or critical functions.

3.3 Information-based dependency matching

The realization that dynamic anomaly-based detection techniques are likely to have bet-
ter obfuscation resilience lead to the creation of this thesis. Most of the function call-
based methods surveyed in Section 3.2.6, used either sequential or non-sequential func-
tion call analysis. Furthermore some methods utilized the arguments and other depend-
encies between the function calls to perform detection.

MINIMAL1 was one such method, that utilized sequence and arguments to create de-
pendencies between function calls [11]. MINIMAL was a novel technique that proposed
to use system call traces and their inter dependencies represented as malicious behavior
graphs for detection. Since the system call traces don’t contain dependencies by them-

1MINIMAL: is a technique for mining minimally malicious behavior [11].
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selves these were created post-execution. This was performed by using the following
three methods:

• Def-use dependence: Express that a value output by one system call is used as input to
another system call [11]

• Ordering dependence: states that the first system call must precede the second system
call [11]

• Value Dependence: Logic formula expressing the conditions placed on the argument
values of one or more system calls [11]

The dependency rules described in MINIMAL form the base from which dependencies
are used in this thesis. However, due to the fact that some of these methods might infer
dependencies where there in fact are none, compel questions whether this method is
reliable. This was to some extent discussed in [11], but further analyzed in [12], which
also provided source code of def-use dependency matching. Examples include def-use
dependencies based on integer values as described in [12]. This imply that a dependency
exist, if a function call with argument x succeed another function call which use x as a
return value. Now this is obviously not true, as use of integer is common in programming
as both arguments and return values. However, for use of memory values it might be
more reliable. Analysis of the reliability of dependency matching is of key importance in
this thesis and analyzed further in Section 6.1.

There exist however other ways of inferring dependencies. For instance taint tracking
which is proposed in [74]. The method proposed in [74] used an extended version of
Anubis [102] to trace system calls and utilize taint analysis to create dependencies. Un-
fortunately taint-based systems result in high overhead [87], and will not be used in this
thesis.

30



Information-based Dependency Matching For Behavioral Malware Analysis

4 Graph Matching

This chapter provides an introduction to the graph matching problem. First it discusses
what graphs are, then the different graph matching methods. The chapter finalize with a
chapter on graph learning and SUBDUE, which is the tool used in this thesis.

4.1 Terminology

A graph consists of a set of vertices and edges. Vertices are also sometimes called nodes
or points. A typical annotation of a graph is G=(V,E), where G is the graph, V is the
vertices and E is the edges.

The size of the graph is the number of edges [6].
If two vertices (u,v) are connected by the edge e. The vertices are adjacent or neigh-

bors [6]. This can also be denoted by e=(u,v). If there is no direction however, the edges
are called undirected [6]. If all edges have directions it is said to be a directed graph [6].

Edges and vertices may also contain more information. For instance, both may contain
a label. If a graph consist of edges and vertices with labels, it is called a labeled graph [6].
However, vertices and edges may also contain attributes. If this is the case, then the graph
is called an attributed graph [6].

4.2 The graph matching problem

Graph matching is as the name suggests the problem of matching graphs. This may be
performed by a various different methods. For instance one can use similarity measures
for calculating how different the graphs are, or by use of other measures that represent
the features of the graph. One of the most common methods of performing graph match-
ing is by use of graph edit distance (GED). The graph edit distance can be defined as the
minimum amount of edit operations required to transform one graph into another [103].

There exist two key methods of performing graph matching. These are exact graph
matching and inexact graph matching. Exact graph matching seeks to find graphs that
are identical, while inexact graph matching seek graphs that are as similar as possible.
This can be performed by use of edit distance, such that for exact graph matching the edit
distance of two graphs would be zero. While the edit distance for inexact graph matching
should be based on some threshold. The taxonomy for graph matching is provided in
Figure 14. As one can see there is both exact and inexact graph matching, which both
have their subcategories.

In order to use graphs for malware detection one must find a way to build the graphs.
Detection is based on a set of features, and the features for malware detection can be
anything from amount of registry and file changes to the dynamics of function calls.
If one take function calls as an example one can build graphs that represent the exe-
cution flow. These graphs can then form the baseline from which malware detection is
performed. However it is not only full execution behavior that can be used. In order to
improve detection rates, it is often common to prune graphs by removing either redund-
ant or non-critical behavior. For instance by only using critical or security related calls for
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Figure 14: Graph Matching Taxonomy [6]

building the graphs. This might not only improve detection rate, but also throughput, as
the graphs can become immensely large and complex.

The next subsections will go in further detail on exact- and inexact graph matching.

4.2.1 Exact Graph Matching

As mentioned above, exact graph matching is the challenge of finding identical graphs.
That is, the graphs should have a one to one mapping. If this is the case, the graphs are
said to be isomorphic [6]. As Figure 14 shows the subsections of exact graph matching are
graph isomorphism and sub-graph isomorphism. I.e. whether the full graph is isomorphic
or just a part of it.

For malware detection graph isomorphism is not desired. Reason for this statement
is because programs change often, and that the actual execution behavior might depend
on the environment specific variables, such as time and version of operating system.
Furthermore, the execution context and options may change program behavior. Hence it
is not unlikely that graphs may differ slightly based on which system, when and how it
is executed.

Sub-graph isomorphism on the other hand is more resilient as one is able to create
sub-graphs of malicious behavior. This was performed in [11] where minimal graphs for
malicious behavior was extracted. This is not only beneficial in order to account for the
vulnerabilities mentioned above, but is also likely to increase throughput, as the graphs
are smaller. Another example is [104], where critical API graphs are deducted and used
in a sub-graph isomorphic detection scheme.

The computational complexity of graph isomorphism remain an open question, since
it has not been proven to have one type of complexity such as P or NP-complete [6]. Sub-
graph isomorphism however, has been proven to be NP-complete [105]. The problem
with NP-complete complexity is that the complexity rapidly increases with the size of the
problem. The impact is that some graphs might be too large for classification. This will
severely impact the method, as the throughput is directly associated with the size of the
graph. Subsequently pre-processing or pruning graphs might prove a necessity.
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4.2.2 Inexact Graph Matching

Inexact graph matching should be utilized wherever it is impossible to find isomorphism
between the graphs [6]. This is typically the case in graphs which vary a lot or has
high variance in terms of vertices, edges, labels and attributes. For instance, if function
calls where represented with all parameters and return values, without pruning or pre-
processing, then isomorphism would be very unlikely. This is because each call trace
usually consists of a lot of environment specific variables such as memory values that
change for each execution. Hence, if one look purely on the memory values and compares
these for different traces, one is not able to extract useful information. However, the
patterns of these environment specific variables, or other parameters might be important.
For these instances, where isomorphism might not always possible, inexact matching can
be used.

Inexact graph matching has been successfully applied in cartography, character recog-
nition and medicine [6]. It is not as prevalent in malware detection, however there exist
examples. For instance [106], where subgraphs are used for detection using graph edit
distance. The method utilizes API calls, which is equivalent to function calls, I.E. both
user mode and kernel mode detection.

The computational complexity of inexact graph matching is NP complete where:

|VM| ≤ |VD|

[107]. Inexact sub-graph matching is also known to have NP-complete [6]. This has the
same ramifications as explained above.

4.2.3 Graph-based Learning

In this section we introduce graph-based learning. The first section describes what ma-
chine learning is about. While the second section discusses machine learning with regard
to graphs.

Machine Learning

Machine Learning is defined as the scientific discipline whose goal is the classification
of objects into a number of categories or classes [108]. This allows for an automatic
method that is able to classify and differentiate data into classes, based on learning from
the input data. For graphs this is the automatic classification of structural patterns such
as vertices and edges, and non-structural data such as vertice- and edge attributes.

Graph-based learning

According to [109], graph-based learning can be categorized into multi-relational data
mining and learning, and graph-based relational learning. The latter is implemented in
a system called SUBDUE [110], which is useful for graph-based discovery of patterns,
clustering and supervised learning.

For this thesis graph-based relational learning was chosen, based on the fact that it is
fully documented, automated, and allows for graph-based learning. One key downside
however in SUBDUE is that it only looks for structural patterns based on vertices, edges
and labels. This means that one cannot perform attribute-based learning.

SUBDUE

SUBDUE is a graph-based knowledge discovery system that finds structural and rela-
tional patterns in data representing entities and relationships [110]. In SUBDUE graphs
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are represented by labeled vertices and edges. The goal of SUBDUE is to find patterns in
graphs, and more specifically it can perform unsupervised learning, supervised learning
and graph grammar learning [110]. SUBDUE has been successfully applied in areas such
as bioinformatics, web structure mining, counter-terrorism, social network analysis, avi-
ation and geology [110]. SUBDUE has also been tested for anomaly detection on network
data [111]. The method utilized weighted graphs, unsupervised learning for detection
and 1999 KDD Cup data set. It found that both conditional substructure entropy and
graph regularity could be used to find anomalous data in network traffic [111].

In order to learn and find patterns in data, SUBDUE seeks to compress subgraphs in
order to find structural properties in data. There are several ways of measuring which
subgraphs that are used. However one method is based on how much the subgraph
compresses the total graph. Which means that SUBDUE will go through all subgraphs
and try to compress. It then chose the subgraph that compress the most and this graph
is used as a feature. The process of choosing and compressing graphs is displayed in
Figure 15.

SUBDUE can be used for both supervised and unsupervised learning, as well as exact
and inexact graph matching. For inexact graph matching a threshold can be set using the
-threshold option. The supervised classification is performed by finding subgraphs that
exist in one class, but less frequent in the other. Thus a set of subgraphs is checked to see
which has the best relevance with regard to detection rate. Furthermore cross validation
can be automatically performed by use of the cvtest program and -nfolds option.

SUBDUE has three evaluation methods for finding substructures available. These are
minimum description length, size and set cover.

Minimum description length for substructure S in the graph G is calculated as follow-
ing: value(S,G)=(DL(G) / (DL(S)+DL(G|S)). Where DL is the description length in bits,
and (G|S) is G compressed with S [112]. MDL is an evaluation method that is good at
compressing graphs.

Size for substructure S in graph G is calculated as: value(S,G)= size(G) / (size(S) +
(size(G|S)) where size(G) = (vertices(G)+edges(G)) and (G|S) is G compressed with
S. Size is a bit faster to compute than MDL, but less consistent [112].

Set cover of substructure S is computed as the number of positive examples containing
S, plus the number of negative examples not containing S, all divided by the total number
of examples [112]. Set cover is considered the method which is best at discriminating
between classes.
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(a) With Patterns (b) Compressed Patterns

Figure 15: SUBDUE Patterns
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5 Choice of methods

This section discusses the methodology used to guide and analyze the individual research
questions and the project in its entirety. It will discuss the different methods and justi-
fication for why the method is appropriate, as well as expected results. First the dataset
is explained, along with evaluation of previous datasets and generation of the dataset
used in this thesis. Then the pre-processing, where it is explained how the dataset is
preprocessed before it is used for detection. Methods for detection classifiers are then
analyzed in order to choose the most proper detection method with regard to the dataset
and its features. Finally experimental design for each of the research questions are dis-
cussed where the methodology for experiments for each research question is explained
and justified.

5.1 Dataset

The most important issue when dealing with IDS systems and malware detection is a
representative data set. The dataset should be a best possible representation of the ac-
tual environment. This means the base rate (attack frequency), attack types and data in
general should be similar to that of the real environment.

5.1.1 Evaluation of existing datasets

There exist a few function call datasets which are frequently used for research [113,
114, 115, 116]. The first three [113, 114, 115] are the Defense Advanced Research Pro-
jects Agency (DARPA) datasets from Massachusetts Institute of Technology (MIT) Lincoln
Lab. These are often referred to as DARPA or IDEVAL dataset, short for intrusion detec-
tion evaluation dataset. There exist three such sets, one from 1998, 1999 and 2000. All
three datasets are simulated, which means that there are no background anomalies. The
downside of these datasets is that they are very old and not representative for today’s
threats. Further deficiencies are discussed in [91], which state that too few calls exist for
software traces in training data, making the training process unrealistically simple [91].
It also list the number of system calls is limited [91]. Furthermore the attacks are listed
in a separate list with timestamps. Such that one has to extract the function call traces
based on timing of attack. Additionally data is stored in the Basic Security Module (.bsm)
format. Subsequently, some effort is required to make use of this dataset. Because of this,
the fact that it is outdated and the downsides discussed in [91] it will not be used for
this thesis.

The Sequence TIme-Delay Embedding (STIDE) [116] dataset on the other hand is
well organized and easy to understand. It has separate traces for training and testing
data for both malicious and benign data. The key downside with this dataset however is
that it only contains system call traces and not library calls. Furthermore it only traces
system call names and not parameters and return values which is essential for this thesis.
As a result we have no suitable dataset, and have to generate our own.
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5.1.2 Generation of dataset

The advantage of generating a new dataset is that one can use new types of malware,
which make the dataset more relevant. Furthermore one can carry out traces for system
calls and library calls. Resulting in a dataset which can be used to research differences in
detection of the different layers.

To generate a dataset, the following is needed: a secure environment for tracing,
benign software, malicious software and tracing/hooking software.

Secure Environment

There are several ways of setting up an environment for testing. Examples include virtu-
alization, emulation and hardware. These are discussed below.

Virtualization

A secure environment for tracing and testing malware can be achieved by setting up a vir-
tualized environment using VMware [117] or VirtualBox [118]. This is common practice
by reverse engineers and there exist several guidelines for how to do this securely [119].
The advantages of using virtualization are that it is in general quite fast as it can be scrip-
ted. Furthermore it is considered safe, as one can isolate the environment. There exist
however virtualization aware malware that, if advanced and successful, might be able to
escape the virtualization. These, and more security considerations of virtualizations are
discussed in Section 2.5.2.

Another potential downside of this environment is the fact that it is isolated. A lot
of malware and software alike need external resources and commands to operate. For
instance botnet malware might not be active until it receives commands from a botmas-
ter. Similarly a worm might not propagate if it cannot see active network interfaces. To
counter this it is possible to set up a network interface on the virtualized machine, then
install FakeDNS to emulate DNS responses [120]. Thus if a malware seek to capture in-
formation then send a mail, this information will be traced. Of course, the e-mail and any
other network traffic will be sent to a 127.0.0.1. So no response will ever be available.
This means that malware that needs interaction with a botmaster or similar, will not be
able to show its true behavior. This is a necessary limitation as it would not be ethical
to let a machine become infected and stay connected to the Internet. The ramification of
such an event might be responsibility for infecting other hosts, or being used as a bot or
proxy during an actual attack.

Emulation

An alternative to virtualization is to use emulation services such as QEMU [121]. QEMU
was used as a platform in [74], where they state that the issues of virtualization aware
malware is not applicable as QEMU is not virtualization, but emulation. This is true, but
there are other issues need to be considered when using emulation. The most severe
issue is that emulation is far from a native environment [32]. Thus one cannot expect
the software or malware to behave as it originally would. Which is a serious issue, when
tracing and analyzing the behavior of malware.

Despite the issues above we tested Zerowine and Zerowine Tryouts, which are mal-
ware analysis images that runs on QEMU. Zero Wine [122] and Zero Wine Tryouts [123]
provided a lot of useful output, such as complete report of imported and used libraries,
strings, file headers and signature. However, in both cases the API tracing crashed far too
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often. It was in fact not able to provide API-trace output for any of the 10 malware that
was tested.

Hardware

The third method of dynamic malware analysis is by utilizing physical hosts as environ-
ment. To do this one need a physical computer, with installed operating system and soft-
ware. The malware must then be traced and extracted, before the physical computer is
re-imaged. This is in general a slow process as one would have to re-image the computer
after each infection. The upside of the method is that it is not affected by virtualization-
aware malware.

Due to virtualization’s scripting and snapshots, malware analysis can be both fast
and scalable. Because of this, virtualization was chosen as a method for generating the
dataset. However, virtualization was not used with emulated DNS responses due to t

Tracing software

There exist several software for both library call and system call tracing, however many
of these tools use different techniques for tracing. Each of these techniques has different
benefits and downsides that might affect the outcome of the traces. Subsequently it is
important to understand these techniques in order to choose the tool which is the most
accurate and complete in the sense that it is able to provide traces for all calls, regardless
of library. An analysis of the different techniques is provided in [124, 125]. The tech-
niques described in these resources are discussed with regard to their advantages and
downsides for this project below.

Clone DLL

This method copies a DLL’s functionality into a wrapper DLL and replace the original
DLL file, such that the copied DLL is loaded by the executable [124]. Since one control
the DLL one can easily implement functionality to trace all calls to the DLL itself.

• Pro: Easy to implement, complete control over calls and parameters [124]

• Con: Need to edit all DLL’s one seeks to trace, as well as updating these over time [124]

Import Address Table Patching

Executable files on Windows are stored in the Portable Executable (PE) format [124].
This format contains an import address table, which store information about the impor-
ted functions from DLLs. The table contain entries for each DLL that point to a new table.
This table lists all the functions of each DLL. This function-specific entry is updated every
time that function is executed [124]. Since all of this is maintained in memory during
execution it can be traced. The way this is performed is to replace the function-specific
entries with hook function that cause all executions to be traced through the hook [124].
Subsequently one can trace both function call name, parameters and return value.

• Pro: IAT Patching is standard in Windows [124]. Furthermore one is able to trace all
calls regardless of DLL

• Con: Complex implementation [124]
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Minimalist Debugger

The implementation of a spying application that insert x86 "‘INT 3"’ as the first instruc-
tion for all APIs one wish to trace [124]. When these functions are executed a status
breakpoint occur, and the spying application can extract API call information and call
stack.

• Pro: Easier to implement than IAT patching [124]. More maintainable as status break-
point API can handle all function calls [124]

• Con: Windows exception handling is slow, which cause scalability issues [124]. Fur-
thermore it is difficult to catch the return value [124].

Remote Debugging using WinDbg

Remote debugging can be performed by setting up two physical computers where the
client executes software with kernel debugging enabled. The server is then connected
remotely via a serial null-model cable or high-speed Firewire [7]. Kernel debugging can
be enabled by editing the boot.ini file on Windows. The output can then be parsed using
WinDbg on the server [7].

• Pro: Both kernel-mode (system call) and user-mode (library calls) can be traced

• Con: Requires a complex physical lab-environment [126]

Ptrace for Linux

Ptrace for Linux is a system call that can be used by processes to observe and control
the execution of another process. This is a Linux-based method which is implemented in
Kernel. Meaning that it easily can be utilized without hooking into or kernel. Ptrace is
utilized by both strace and ltrace, which are Linux-based software that can trace kernel
mode and user mode execution.

• Pro: Both kernel-mode and user-mode can be traced

• Con: Linux only

Chosen methods and tools

In this thesis both Windows and Linux datasets were tested. Unfortunately the Windows
data proved challenging to analyze as it was very unfamiliar with regard to structure and
execution compared to Linux. Seeing as the dataset need to be analyzed and explained
we choose Linux as a platform to create our dataset. The reason for this choice was
mostly based on familiarity with Linux, as the trace files are quite complex, and we had
limited time on this thesis. Because of this, it was easy to chose hooking technique as
well, since Linux has implemented ptrace for this purpose as a part of its kernel. As a
result both strace and ltrace are used for tracing system calls and library calls for Linux.
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5.1.3 Dataset Generation Architecture

We have so far discussed all the aspects of setting up the environment for malware and
software analysis. This subsection outlines the dataset generation architecture in its en-
tirety. That is, how the dataset generation is implemented in this thesis.

In order to provide a safe an automated environment we chose virtualization. Vir-
tualization can be scripted by use of the vmrun executable. This allows for virtualized
machines to start, stop, create snapshots, revert snapshot, load files, extract files and ex-
ecute files. First off, we created a virtual Ubuntu machine using Ubuntu 8.10 (Intrepid).
The old version of Ubuntu was chosen due to its likelihood of being vulnerable, which
in turn would enable the malware. This virtual client was set up without networking in
order to contain the malware. The tracing software strace and ltrace was a part of the
distro, so there was no need to install or change the system. A snapshot was then cre-
ated to provide better control of the environment, such that it could be reverted after
infection.

A script was then created on the host computer, which ran Windows 7 with VMware
workstation. The script worked in the following way:

• Run additional script for all files in folder X that execute the following commands:
Revert snapshot
Start virtual machine
Load software/malware from host to virtualized client
Trace and execute software/malware and log to file
Copy execution trace log from virtualized client to host
Stop virtual machine

Figure 16: Dataset Generation Architecture

The process can be viewed in Figure 16. This is not only a simple process, but also
secure and scalable. Seeing that an arbitrary amount of malware and software can be
executed in a safe environment and logged to file by the push of one button. The process
is performed three times for all software and malware, such that library calls, system
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calls and function calls are logged separately. This has the inherent benefit that previous
execution never will affect the next. The scripts that automate this process is provided in
Appendix B.

5.1.4 Dataset selection

Software and malware can be downloaded from open sources on the Internet. Software
can be downloaded directly from client through for instance Ubuntu Software Center.
Malware on the other hand can be gained through sites such as VX heavens [127], Packet
storm security [128] and Offensive computing [129]. For this thesis we will use VX heav-
ens as they have a database of over 271.000 thousand malware samples and conveniently
allow download through use of torrent (peer-to-peer file sharing).

Since we chose Linux as a platform, there is a limited amount of malware. Further-
more the malware is downloaded from online resources without description of capab-
ilities. Subsequently it is challenging to analyze the malware’ obfuscation abilities, as
this would require that one reverse engineer every sample. This is obviously not feasible
within the time limit of this thesis. Hence malware is chosen randomly based architecture
and thus likelihood of success.

For this thesis 200 malware and 100 software was chosen and traced. There were
performed three traces for each, which resulted in a total of 900 traces. Due to high
complexity of graph matching, only trace-files with less than 150KB were chosen. Sub-
sequently a subset of 190 malware and 75 software was selected as the final dataset.

In malware detection it is beneficial to have an equal amount of malware and soft-
ware, such that they have equal statistical impact on the classifier. This can be mitigated
by use of cross-validation. Cross validation make sure that the same amount of samples
for each class is used to train the classifier, regardless of the classes’ total amount of
samples. For instance if one had 200 malware and 100 software, one can utilize 10-fold
cross validation, which pick 10 software and 10 malware which is used for training of the
classifier, the rest is used for testing the accuracy. This is then performed for all samples,
such that both classes always have equal statistical impact on the classifier.

5.1.5 Dataset statistics

This section include descriptive statistics of the dataset that can be used to further under-
stand the data used. Understanding the data is important, as it might reveal interesting
patterns concerning the amount of vertices and edges for the different layers. Further-
more it gives an impression of the variance within the dataset. Table 2 include descriptive
statistics for edges and vertices for all three layers of detection, for malware, software
and both. The table includes total number of samples within each class, as well as sum,
mean, max, min, median and mode for all vertices and edges. This can be used to com-
pare the different layers of detection, as well as comparing software traces to malware.

Malware and software comparison

By comparing the total number of vertices for malware and software, one can easily see
that there is a vast difference of vertices and edges. Software contains almost the double
the amount of vertices and edges. This can be explained by the fact that malware gener-
ally have small tasks. They usually contain an exploit and a short payload, depending on
the malware’s purpose. Some malware may only be exploits, which seek to take advant-
age of a vulnerability, gain access, then open a reversed shell or install further malware.
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Software Malware Malware & Software
Total 75 190 265

Vertice Edge Vertice Edge Vertice Edge
Library

Sum 8110 11146 4700 6178 12810 17324
Mean 108,13 148,61 24,74 32,52 48,34 65,38
Max 1343 2115 985 986 1343 2115
Min 0 0 1 0 0 0

Median 15 24 7 8 8 10
Mode 15 8 5 8 5 8

System
Sum 9025 9536 7150 8001 16175 17537
Mean 120,33 127,15 37,63 42,11 61,04 66,18
Max 959 1000 315 438 959 1000
Min 24 26 22 24 22 24

Median 118 121 26 28 29 31
Mode 118 121 26 28 26 28

Function
Sum 17183 22562 12496 17432 29679 39994
Mean 229,11 300,83 65,77 91,75 111,99 150,92
Max 1509 2244 1011 1730 1509 2244
Min 27 32 26 32 26 32

Median 132 162 33 43 39 48
Mode 120 142 30 38 31 38

Table 2: Descriptive statistics

While other malware might be more elaborate, for instance rootkits, that seek to subvert
the system in order to stay hidden. Software on the other hand generally has more ex-
tensive tasks. They also often come with a GUI, which requires more processing. A list of
the selected dataset for software and malware can be found in Appendix C. If one look
closer at the Appendix, one see that there are 31 backdoors, 20 DoS applications, 62
Exploits, 30 flooders, 12 hackTools, 9 rootkits and 26 viruses. The software set is based
on Ubuntu distro binaries, and not sorted by class or application area.

Detection layers

If one look at the different layers, that is user mode (library calls), kernel mode (system
calls) and hybrid (function calls), one see that there is a difference in amount of calls. In
contrast to kernel mode, user mode for instance does not include memory initialization
and calls for exception handling. Hence it is expected to see less executions and hence
less vertices and edges for user mode. This is reflected in the dataset and can be seen in
Table 2. Furthermore, function calls represent the hybrid execution of both user mode
and kernel mode. Hence, this layer can generally be viewed as the sum of library calls and
system calls, at least in theory. In practice however there is a slight difference, since they
might be represented differently by use of the tracing programs ltrace and strace. Strace
is used to trace system calls while ltrace is used to trace library calls and hybrid calls.
Furthermore, each trace is performed separately, thus each layer represent a separate
execution. As such programs may execute differently based on scheduled runtime by
the kernel and environment specific conditions. These conditions may vary, but might
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for instance be time of day and other processes, since malware might look for certain
conditions before it execute payload. The variance in these conditions however should
be minimized as the execution is automated in the same clean environment for the whole
dataset.

5.2 Pre-processing

This thesis is based upon the idea of combining behavioral detection and graph theory.
In order to combine these we need to pre-process the data to form structural properties
that can be used for malware detection. This is where information-based dependency
matching is utilized. This was discussed in Section 3.3, where dependencies between
vertices are created based on sequence or similarity of parameter or return values. To
achieve this, a trace parser is needed that transform attribute data into structural data.
This was performed in [12], where the source code is provided. The same source code
was used in this thesis and extended to be able to parse function calls, system calls and
library calls, as well as output to a format which is parsable by the detection engine.
The source code is appended in Appendix A. The methodology concerning the reliability
testing of information-based dependencies is further explained in Section 5.4.1.

5.3 Detection classifier

Previously we have discussed the tools and environment to create the dataset. This sec-
tion focus on which classification method that will be utilized. That is, which method
that is used for determining whether the data is malware or software. The goal is to
choose a classification method that is able to utilize as many of the features as possible
from the dataset. Furthermore it should be able to analyze structural properties such as
graphs. The features that exist for the dataset is a set of traces for both malware and
software. Each trace consist of a set of function calls, that have a name, return value, set
of parameters and dependencies to other function calls.

5.3.1 Machine Learning and Pattern Recognition

Machine learning and pattern recognition was introduced in Section 4.2.3. Machine
learning was the process of purposely changing behavior in order to increase perform-
ance [130]. While pattern recognition is the scientific discipline whose goal is the clas-
sification of objects into a number of categories or classes [108]. There exist several
different methods within machine learning and pattern recognition. Broadly categorized
these fall into either unsupervised classification and supervised classification. Unsuper-
vised classification deal with classification of data based on similarity measures. While
supervised classification is classification based on pre-defined features.

Both supervised classification and unsupervised classification can be implemented by
use of programming or automatic tools such as Matlab or Weka [131]. This thesis we
will focus on the supervised classification. The following subsections we will discuss the
different machine learning classifier methods.

Statistical Models

One approach to machine learning is based on statistical modeling of data [132]. Stat-
istical modeling is the application of probability theory and decision theory to get an
algorithm [132]. Within statistical models one can classify between generative and dis-
criminative models. A generative model is a probabilistic model of all variables. While a
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discriminative model only model the target variables conditional on the observed vari-
ables. For instance, logic regression directly estimates parameters of P(Y|X), while naive
bayes directly estimates parameters for P(Y) and P(X|Y) [132]. Generative models re-
quire more work, but can utilize more prior knowledge, needs less data, is more modular
and can handle missing or corrupted data [132]. Discriminative on the other hand focus
only on discriminating one class from the other. Can be more efficient once trained and
fewer modeling assumptions are required [132]. Generative models include Naive Bayes,
Mixture of multinominals, Mixture of Gaussians, Hidden Markov Models, Bayesian net-
works and Markov random fields. While discriminative models include logistic regres-
sion, Support Vector Machines, Traditional neural networks, nearest neighbor and con-
ditional random fields.

A downside of the statistical models is that they work best with numeric values. Sub-
sequently nominal values such as string values are often converted into a vector in order
to get a numeric value [130], before they are used for classification. Unfortunately most
of the values in our dataset are string values (nominal). This has the inherent downside
that we would have to convert almost all parameters and return values.

Graph Edit Distance

Graph edit distance (GED) was mentioned in Section 4.2 and defined as the minimum
amount of edit operations required to transform one graph into another [103]. Graph
edit distance can be used for both exact and inexact graph matching. This is performed
by looking at the GED, whether it is zero, or within a certain range.

Using GED for detection however, means implementing a signature-based system, as
it is challenging to create a single GED that contain different malicious behavior. For
instance a GED can be created for an execution graph of a specific malware or malware
family. This is possible, since any similar malware or malware of that family is likely to
have a similar execution flow. A completely different malware however is likely to have
a very different execution flow, and hence a very large GED value. Because of this, GED-
based detection, would result in a signature-based detection system, where for instance
each malware family has a GED and detection is based upon some threshold.

Graph-based Learning

Graph-based learning and pattern recognition was explained in Section 4.2.3. This concept
is similar to regular machine learning and pattern recognition, however it has a unique
ability to analyze and find structural patterns in data. SUBDUE was mentioned as a
graph-based learning method. Unfortunately SUBDUE has the key downside that it is
only able to take vertice and edge labels into account, and not vertice and edge attrib-
utes [110].

5.3.2 Chosen detection method

One of the key goals of this thesis was to create an anomaly-based detection method.
Since using GED would infer a signature-based method we ruled this out first. Both the
implementation of regular- and graph-based machine learning and pattern recognition
was tested. Unfortunately the downside of Weka, by not being able to use nominal values
proved to challenging. Furthermore the thesis is not only based on learning and pattern
recognition, but also graphs and structural patterns. Because of this we found it most
suitable to use graph-based learning.
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5.4 Experimental Design

This section discusses how this thesis will answer each of the research questions.

5.4.1 Reliability of information-based dependency matching

To test reliability one has to check whether false dependencies are inferred. This is chal-
lenging without fully knowing the software. Furthermore the complexity drastically in-
creases when size of software increase. As a result it is almost impossible to test reliability
using third party software. One way to perform this is to do synthesize testing. I.E. create
a set of software programmed to test different scenarios. This was to some extent tested
in [12]. This thesis will further examine the reliability issues, by performing synthesize
tests for def-use dependencies, ordering dependencies and value dependencies.

Synthesize testing is performed by creating a sample program for specific scenarios
until each type of variable is covered. That is, synthetic programs are created for different
scenarios such as object handling, file IO, if/else checking, strings, etc. until all type
of variables has been tested. All types of variables are considered good until a false
dependency is found. If false dependency is found, the variable type is excluded from
the dependency parser. The goal is to rule out all types of variables that might infer false
dependencies, such that the dependency parser is able to infer correct dependencies. The
reason for this goal is to tune the dependency parser in such a way that it only creates
good dependencies, which result in correct execution behavior graphs.

Metrics

Metrics are commonly used to compare measurements to a predetermined baseline [133].
Measurements are objective observations of raw data [133]. Metrics on the other hand,
are either objective or subjective human interpretations of those data [133]. Good met-
rics should be measurable, attainable, repeatable and time-dependent [133]. In order
to create good metrics for our experiment we seek to define metrics which reflect these
properties. Since the goal of this experiment is to find reliable variable types, the res-
ulting metric is to find whether the variable type can infer false dependencies. This is
measured by use of synthesize testing to find examples where a false dependency can be
inferred. If no such examples are found the variable type is considered reliable for use of
dependency matching.

Results

The results of this testing will directly impact the next section as it will limit the available
features. More specifically, by limiting use of information-based dependency matching
there will be less dependencies and subsequently less features. Thus it is of key import-
ance to understand and make information-based dependency matching reliable, before
continuing with other experiments.

5.4.2 Obfuscation resilience of information-based dependency matching

The goal of this research question is to find whether information-based dependency
matching is resilient to the taxonomy of obfuscation methods presented in Section 2.6.
To achieve this a set of synthetic programs are implemented. First a simple hello world
is created to represent the original sample. Another program is then created for each
of the obfuscation methods. The goal is to see whether changes in code is reflected in
trace output and hence execution behavioral graphs which are used for detection. The
obfuscated applications should be as simple as possible, but always include code which
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"‘enable"’ or "‘represent"’ the obfuscation technique.

Metric

There exists previous work on obfuscation techniques [38], which proposed the following
metrics: potency, resilience, stealth and cost. Where potency is defined as the amount of
obscurity added to the program, resilience is ability to break automatic deobfuscator,
stealth is how well it blends with program and cost is the added overhead [38]. In our
analysis we seek not to analyze the methods full capabilities, but rather their direct
impact on our detection method. As such we will not discuss all these issues, but rather
focus on whether the obfuscation technique can be detected. That is, if the obfuscation
method impact the trace output. The metric of this experiment is thus the impact of
the obfuscation method. This can easily be measured as it is an objective observation of
differentiation in execution flow.

Limitations

Due to limited time and complexity of certain methods we will be unable to test all the
methods described in Section 2.6. Because of this we limit our experiments to packers
and certain specific obfuscation methods. The reason we don’t implement polymorphism
and metamorphism, is because these utilize a set of specific obfuscation techniques. Thus
by testing the specific obfuscation techniques, we will more accurately determine the
impact. The specific obfuscation techniques that are not tested in our experiments are the
following: encoding, code separation, table interpretation, code interleaving and code
integration.

It is important to note that only a single experiment is implemented for each obfus-
cation technique and that no definite conclusions can be drawn from these experiments.
The experiments merely provide a pointer to what might be the case, which in turn
should be subject to further research.

Results

The results of this test are not necessarily complex to analyze, but to understand. Reason
for this statement is that an obfuscation method that affect the execution behavior,
doesn’t necessarily mean that the obfuscation method will be successful in beating the
detection classifier. Rather it means that the obfuscation method to some extent impact
the method used for building the graphs. Since it is able to impact the graphs it might
have an impact on the classifier. However, the impact might also be insignificant. This
fully depends on the implementation on the method and which features that are selected
and used for the classifier. It is important to note that most of these obfuscation tech-
niques are designed to trick either static or signature-based detection systems. Hence
their efficiency, regardless of impact is expected to be lower. In this thesis we will not
analyze the efficiency with regard to detection rate. But rather analyze which obfusca-
tion methods that possibly can impact the execution behavior graphs. Hence it is not an
application area specific test, but rather an experiment that test the obfuscation resilience
of the general method.

5.4.3 Best set of features with regard to detection accuracy and false positives
for the different layers

The goal of this research question is to find a set of features that provide the best de-
tection accuracy and false positive rates for all the three layers. This research question
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has been taken into account in creation of the dataset. Since creation of three traces will
ensure that this research question can be analyzed for all of the different layers.

As mentioned earlier in Section 5.3, the classifier was to be implemented by use of
graph matching in SUBDUE. Since SUBDUE is fully automated and able to find patterns
on its own, no manual feature selection is needed. Furthermore 10-fold cross validation
can be implemented automatically. This will ensure that SUBDUE finds the best features
from the dataset and chose subgraphs that exist in malware, but less frequent in software.
Furthermore the 10-fold cross validation will ensure that both malware and software has
equal impact on the chosen features and thus classifier.

SUBDUE will then use 10-fold cross validation for training and the remaining data-
set for testing. When this process is complete it output a confusion matrix from which
detection accuracy and false positives and negatives can be analyzed.

Metrics

Since SUBDUE output a confusion matrix the metrics of this experiment will be true
positive, true negative, false positive and false negative.

• True positives is the number of correctly classified malware

• True negatives is the number of correctly classified software

• False positives is the number of software incorrectly classified as malware

• False negatives is the number of malware incorrectly classified as software

From these metrics the classification accuracy along with false positive- and false
negative rate can be calculated. These are then used as a baseline for discussing the
method’s efficiency, and comparing detection performed at the different layers.

Results

The no free lunch theorem dictates that whenever there is a classifier that solves a prob-
lem, there exists a problem where the classifier fails. Our goal in this experiment is to
find classifiers that provide good classification accuracy for malware detection. If one
for instance focus on throughput and obfuscation resilience it is likely that there exist
other classifiers that would perform better. To summarize, the results provided in this
experiment are only focused on providing the best possible detection rate.

48



Information-based Dependency Matching For Behavioral Malware Analysis

6 Experimental setup and results

This chapter includes all the experimental results for each research question. First the
reliability testing of information-based dependencies is performed. Then the obfuscation
resilience of information-based dependency matching is analyzed. Finally the detection
rates of information-based dependency graph matching by use of SUBDUE is evaluated.
After the experiments within each research questions summary is provided to list the
findings.

6.1 Reliability testing of information-based dependency matching

An introduction to information-based dependency matching was provided in Section 3.3.
As mentioned, several reliability issues were discussed. Both from the original paper [11]
and [12]. More specifically, both papers discussed issues related to def-use dependencies
with regard to non-handle values, such as integers or short strings [11, 12]. Further-
more ordering dependencies were identified as only reliable in conjunction with other
methods [12]. False dependencies in Value-based dependencies was also discussed [12].

The purpose of this Section is to shed light on the reliability issues of information-
based dependency matching. Furthermore it will complement the previous research with
comprehensive analyses of new scenarios in order to fully map the extent of the reliability
issues. The motivation for this is to be able to choose a reliable method, which will then
be used to for creating dependencies and building graphs that answer the remaining
research questions. This was discussed in [11, 12], however not extensively tested. The
conclusion was that handles or memory values could be used to create dependencies.
However neither of the papers tested all value types in order to investigate how these
can be used to create dependencies. Thus, in order to investigate this issue we propose
experiments and analyses of the following values: characters, character arrays, integers,
structs, classes and boolean values. Furthermore operator overloading will be tested.

6.1.1 Def-use dependencies

A def-use dependence express that a value output by one system call is used as input to an-
other system call [11]. More specifically this means that the return value of one function
call is used as a parameter for a subsequent function call. There are several challenges
with this approach. One is to determine which type of variables and return values that
are appropriate for creating dependencies.

Another issue is to determine how far the gap between function call can be in order to
infer a dependency. For instance if there are 100 function calls. What are the differences
between inferring a dependency between inferred between call 1 and call 100 or is it
only subsequent calls that can be dependent.

Boolean example

In Figure 17 we show an example of a function call trace for a very simple boolean func-
tion. The figure consist of the code, trace and resulting graph. The trace consist of a set of
function call names, which all has parameters and a return value. The graph represent-
ation display the function call names represented as vertices with appended timestamp.
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(a) Code (b) Trace

(c) Graph

Figure 17: Boolean function call example

The edges represent a dependency and is labeled by the dependency value. The purpose
of the experiment was to see whether functions within the C file could infer depend-
encies. However as one can see from the output there is only one dependency (after
program initialization). This is a dependency inferred by the integer value 24, which is
the character c in the program. The input value to character c was also c, however this is
not the dependency which is inferred, as the ASCII value of lowercase c is 99, while the
hex value is 61. Subsequently this value must be used to reference the character for both
functions. What is interesting about this example is the link between the library calls
and system calls. Since printf is the output function for library call, while sys_write is
the output function used by printf. This serves as a positive example of an actual def-use
dependency.

Another interesting fact is that there is no signs of the function test which was defined
within the c program. There is no trace of this function in neither library or system calls.
This is weird, as we expected to see some sort of check, whether the input character c
was similar to the value c. This most likely mean that this checking is performed not by
use of library call and system call but implemented directly by use of registers. Although
not an argument for or against def-use dependencies it is an important downside of the
method in general, as it proves that not all behavior is represented in the trace output,
even for software fully implemented by use of library calls.

Struct

The purpose of this example was to test how def-use dependencies relate to objects, more
specifically structs.

In Figure 18 we can see that there are inferred 4 dependencies based on the value -1.
All dependencies exist between the function access and the function mmap. Access is a
kernel function which checks a user’s permissions to a specific file. Upon success it returns
zero, while on error it return -1 [134]. Mmap on the other hand is a kernel function for
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(a) Code (b) Trace

(c) Graph

Figure 18: Struct system call example

mapping files or devices into memory. As one can see from Figure 18b the dependency
is inferred by the value -1 which is parameter 5. According to [135], parameter 5 is the
file descriptor. And the value -1 simply means that anonymous mapping is used and the
mapping is not backed up by any file [135]. Hence a dependency is falsely inferred based
on the fact that both functions commonly used -1 as a parameter.

Another interesting fact is shown in Figure 19, where we see output for library and
system calls for the same program as above. What is interesting in this scenario is the
fact that library calls and their equivalent system calls work in different ways. The reason
for this statement is because a dependency is inferred for library calls, but not for system
calls. As one can see, getchar and putchar are dependent, but read and write are not.
This is interesting as it proves as an example that functions are implemented in different
ways at different layers. Which in turn affect the rate at which def-use dependencies can
be successfully inferred for that function. Furthermore both these behaviors are captured
using function calls, where both library and system call traces are included. Thus this

51



Information-based Dependency Matching For Behavioral Malware Analysis

(a) Trace lib (b) Trace sys

(c) Graph lib (d) Graph sys

Figure 19: Struct system call and library call example

dependency could be detected by both function call and library call trace output.

FileIO

In Figure 20 we have included an example that shows both correct and incorrect use of
def-use dependencies. In this example program, the line Today is the first day of the rest
of your life is read from file. This file is read character by character and output to console
the same way. Source is included in Figure 20a. The purpose of this experiment was to
test whether one should restrict the sequence for which one can create a dependency. For
instance if a dependency must be following the dependent function, or in the last 100
subsequent functions, or simply subsequent, regardless of how far.

If one look at the trace output in Figure 20b, one can see that a handle is returned
when fopen is called. This handle (’0x9cc9008’) is then used by each fgetc function,
as it reads the memory mapped file character by character. This is further visualized in
Figure 20d. This example showed how effective memory values are at creating depend-
encies. Memory values are quite unique, which makes them good for creating depend-
encies. Furthermore this example shows that dependencies can exist further down the
chain of function calls, and not necessarily just the 10 subsequent calls.

In the previous experiment displayed in Figure 19, we saw that integers could be
useful for creating dependencies. This experiment on the other hand provides a counter-
example, where one can see the impact of false dependencies by use of integer def-use
dependencies. Figure 20c emphasize the putchar functions where the first argument is
similar to the return value. That is, it gets the character it should write as the first argu-
ment, and it returns the same value when completed. This in turn creates a set of false
dependencies when several similar characters are printed. This means that every similar
character in the line: Today is the first day of the rest of your life, is dependent, which is
certainly not correct. Graph output which depicts this behavior is provided in Figure 20e.
This example proves as an example of how not even high integers can be trusted to be
used as def-use dependencies.

Discussion

During these four experiments for def-use dependencies we have found several inter-
esting properties about information-based dependency matching. First we have verified
that integers are unsuited, as even high integers easily infer false dependencies, as all
numbers a part of the ASCII tables are often utilized. Furthermore we have found that all
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(a) Source FileIO

(b) Trace lib1 (correct) (c) Trace lib2 (incorrect)

(d) Graph lib1 (correct)

(e) Graph lib2 (failed)

Figure 20: FileIO library call correct and failed example

functions have an integer or handle return value. And even though characters are used
they are represented through the decimal value of the ASCII table, which makes charac-
ters not very useful for def-use dependencies. We have also learned that not all behavior
is captured through function calls since if checks and comparisons seem to be implemen-
ted directly by use of registers. Furthermore dependencies are inferred based on return
values and parameters, thus similar functionality might infer different dependencies for
the different layers, depending on the implementation of the call in that layer. We also
found that it is hard to put a limit on how subsequent a call should be in order to infer
a dependency. We proved in Figure 20d that for instance for fileIO, the limit depends on
the size of the file/string, thus making hard limits impossible.
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(a) Code (b) Trace

(c) Graph

Figure 21: String system call example

6.1.2 Value dependencies

Value Dependence is a logic formula expressing the conditions placed on the argument
values of one or more system calls [11]. Hence it is a dependency inferred from sim-
ilar parameter values from subsequent function calls. This method is useful for finding
dependencies from parameter referencing. For instance functions which use character
arrays as parameters, which are always reference transferred. For def-use dependencies
we showed how unreliable integers can be for inferring dependencies. This is likely to
hold true for values as well, given that there are more parameters than return values.
Furthermore characters were represented by decimal values, such that we cannot in-
fer dependencies based on single characters. Strings on the other hand are likely to be
different. Handle values have proven to be quite unique and good for representing de-
pendencies. However, we should analyze which strings are suitable and their appropriate
length. For instance the value ’NULL’ is a commonly used string to represent an empty
pointer. Thus this is likely to infer false dependencies. As such the goal of this subsection
is to find the appropriate use of strings as value dependencies. To explore this issue we
have an experiment which is discussed below.

Experiment 1

To implement the knowledge learned from the experiments in the def-use subsection
above, a limit to dependencies based on strings of 8 or more characters was implemen-
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ted. This was due to the fact that characters are represented as decimal values, and
decimal/integer values are not reliable. Furthermore short strings such as NULL are un-
reliable, thus a higher threshold was implemented. The source of the program used in
this experiment is displayed in Figure 21a, while a subsection of the created dependen-
cies are displayed in Figure 21c. In Figure 21b one can see the trace output belonging
to the graph. The dependent traces and values are color encoded. The access functions
create a dependency based on the filepath ’/etc/ld.so.nohwcap’. However the purpose of
this function is only to determine access to a file, thus there is likely no real dependency
between the functions. Similarly the mmap2 functions infer dependencies based on the
parameter PROT_READ PROT_WRITE, which is simply a parameter for mmap2 which
maps a file into memory. Thus another example of a false dependency for long string val-
ues. Both these examples show that value dependencies easily create false dependencies,
since the occurrences of similar parameters are common. Thus we should limit its use by
reducing the inferred dependencies to memory values only, since these are quite unique.

6.1.3 Ordering dependencies

Ordering dependence: states that the first function call must precede the second function
call [11]. In practice this means that all function calls will be dependent on the previous
function call. The goal of this section is to shed light on the issues that may arise from
implementing and not implementing this dependency rule.

Figure 22: Ordering Dependency
example

The complications of implementing this rule was
discussed in [12], where it was concluded that sub-
sequent function calls not necessarily are dependent.
An example was given where the user input a charac-
ter, the character is printed to screen, then some text
is printed. Obviously the text is not dependent on the
previous functions. This is true, however, should not
the sequence of execution be implemented as a part
of the execution graphs? By not implementing this
rule one risk having a graph tree that does not purely
represent the execution itself. For instance if the last
function call is dependent on the first function call.
Then these would be linked in such a way that all
the remaining calls are displayed and linked sequen-
tially after the last function call. An example of this
can be seen in Figure 21c, where all the dependent
function calls are tied to function calls with an early
timestamp. Thus the dependent function calls, are
moved forward in the execution graph. Subsequently
distorting the representation of execution.

A counter argument to this statement could be
that sequentially correct models can easily be evaded
by implementing dummy functions. Thus obfuscat-
ing attack pattern and evading detection. One way to
counter this could be by weighting the dependencies,
such that ordering dependencies doesn’t impact the
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classifier as much as value and def-use dependencies.
This might be a good idea, seeing that def-use based
dependencies are the hardest to come by, then value-based, then finally ordering, which
always occur.

6.1.4 Summary

In this section we have experimented with information-based dependency matching and
the three rule-types it use. The goal was to find how reliable each rule-type was, and for
which variables they could utilize to create dependencies. Furthermore we have found
other interesting findings and reliability issues that might impact the method and imple-
mentation in thesis. To summarize the results of the experiments performed, we will in
this subsection list the findings. First the finding is listed, then the impact on implement-
ation or method is listed below.

• Characters are represented by decimal values and must be considered integers (Ref
Section 6.1.1).

Impact: No single characters are used to find dependencies.

• Use of integers are unreliable for dependency matching (Ref Section 6.1.1).
Impact: No integers are used to find dependencies.

• If checks and value comparison might be implemented by use of registers as no trace
of such activity can be captured using function calls (Ref Section 6.1.1).

Impact: No impact on implementation, but a major downside, as it proves that
not all behavior can be captured using function calls.

• Functions import and export data using different mechanisms. Thus certain depend-
encies can only be detected if the functions utilize such behavior. This leads to differ-
ent dependencies based on different functions for both user-mode and kernel-mode
(Ref Section 6.1.1).

Impact: Kernel-mode and user-mode dependencies and thus graph behavior will
be different, even for the same application. Which is interesting as some malware
might only be detected at specific layers.

• Use of strings are unreliable for dependency matching, with the exception of handles
and memory values (Ref Section 6.1.2).

Impact: Only memory values, I.E. strings that start with 0x are used to find de-
pendencies.

• Ordering dependencies infer false dependencies, however prove necessary to provide
accurate graph behavior (Ref Section 6.1.3).

Impact: Ordering dependencies are implemented.

• Weighting dependencies based on rule-type might be a good idea to correctly repres-
ent the uniqueness of a dependency (Ref Section 6.1.3).

Impact: Not implemented, but could be interesting for further work.
Argument: Might be a great idea, given that memory values are environment

specific and shouldn’t be used for detection. Thus a weighted approach with 1,2,3
might be more suitable.
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(a) Sample Code (b) Sample trace

(c) Dead Code Insertion (d) Dead Code Insertion Trace

Figure 23: Dead code insertion example

Variable type Unreliable Comment
Integers Yes -
Characters Yes Characters are represented by ASCII numbers

and thus integers by definition
Boolean values Yes represented as integers
Strings Yes With the exception of memory values

Table 3: Variable type reliability

6.2 Obfuscation resilience of information-based dependency match-
ing

The goal of this section is to measure the obfuscation resilience of information-based
dependency matching. The information-based dependency matching implementation is
based on the previous section. To measure the obfuscation resilience we perform a set of
experiments against the obfuscation methods discussed in Section 2.6.

The experiments are like the previous section based on synthesize testing. First we
create a simple C application and trace output. Then we implement the obfuscation
method, and trace output. The trace logs are then compared in order to find whether
the obfuscation technique had an impact on the method.

6.2.1 Dead code insertion

For this experiment we set up a simple hello world program and then implemented an
obfuscated version where we added another printf function that print a character to
screen. The code and trace output can be viewed in Figure 23. As one can see from
the trace ouput another printf line is added to the output. This shows that dead code
insertion can be detected using function calls. It is important however, to note that not
all dead code insertion can be detected. For instance arithmetic operations and if checks
as discussed earlier will not be detected on function call traces as they are likely to be
implemented directly by use of registers.
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(a) Sample Hello World (b) Register Reassignment

(c) Sample trace

(d) Register Reassignment Trace

Figure 24: Register Reassignment example

6.2.2 Register reassignment

In this experiment we test the impact of the register reassignment obfuscation technique,
which is based on swapping of registers used by live variables. To do this we created
a very simple hello world program in assembly. The regular program can be seen in
Figure 24a, while the obfuscated example is provided in 24b. By comparison, one can
see that the only difference is a reassignment of registers, which is outlined in green.
Trace output for both programs is provided below in Figure 24c and 24d. From the trace
output one can see that there are no differences. As a result, the register reassignment
method have no impact on our method.

Another interesting fact about assembly is that it is very low level programming,
which bypasses regular library calls. Thus tracing the execution of assembly-based pro-
grams will always result in an empty trace output. For system calls on the other hand
we will get a successful trace, as can be seen in Figure 24c and 24d. This is important,
as assembly-based programs only can be traced and thus detected by system call-based
detection.

6.2.3 Code Substitution

In Figure 25 we have included an example of code substitution. The figure consists of
code and trace for both sample and obfuscated code. The experiment is pretty simple, as
it only replaces the getchar function with a gets function, which is equivalent in function-
ality for our purpose. The resulting trace output in Figure 25d is as expected different.
However, there is another interesting finding, which is that the succeeding output func-
tion changed as well. Putchar changed to printf. This might be simply because that single
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(a) Sample (b) Sample trace

(c) Code Substitution (d) Code Substitution Trace

Figure 25: Code Substitution example

(a) Sample (b) Sample trace

(c) Code Reordering (d) Code Reordering Trace

Figure 26: Code Reordering example

characters are printed using putchar, while strings are printed using printf. However, it
shows that by changing one function, succeeding functions might change as a result.

6.2.4 Code reordering

The code reordering obfuscation technique deal with the reordering of functions in order
to change the sequence of execution. To create this scenario we created a simple program
where an integer is given by user, then b is randomly generated, while c consist of the
sum. Both the acquisition of a and b are independent and could be in any order, as long
as they occur before c. Thus the obfuscated version is simply a change of sequence. The
experimental code and trace is provided in Figure 26. From the result one can see that
the sequence of functions is changed.

6.2.5 White space and comment randomization

We mentioned in Section 2.6.5 about white space randomization and comment random-
ization that these were techniques that affect code that is parsed pre-assembly or pre-
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(a) Sample (b) Sample trace

(c) Obfuscated code (d) Obfuscated Trace

Figure 27: Whitespace and comment randomization example

execution. For instance for JavaScript, where detection typically is performed before the
browser parse the JavaScript. Reason for this statement is that the parsers ignore such
comments and white space. However, in order to verify and test this, we implemented a
simple experiment. This code and trace for both sample and obfuscated example is given
in Figure 27. The resulting trace is as expected similar.

6.2.6 String obfuscation

The idea behind string obfuscation is that there exist several ways of representing the
string. A string might be encoded differently or separated by a range of variables, then
concatenated before execution. Thus there might be several examples of this technique
that both impact and doesn’t impact our method. However, since obfuscation techniques
that impact our method are important we sought to find proof of this in our experiment.
The experiment can be viewed in Figure 28, where both code and trace is provided for
both sample and obfuscated example. The trace output for the obfuscated example is
only a selected section of the trace. However it shows as an example of how execution
is different, as it executes every character by itself and not the complete string. Our
example is however, dependent on how the string is used. But that is likely to be true for
malware as well. Because of this we conclude that string obfuscation impact our method.

6.2.7 Variable and function name randomization

Variable and function randomization is a technique used to fool detection systems and
human analysts, by reassigning variables and functions. To test this we created an exper-
iment where a string hello world is transferred through variables and a function in order
to be printed. The output of both programs should be "‘Hello World!"’. The experimental
code and trace for sample and obfuscation technique can be found in Figure 29. From
the figure one can see that they have the same trace output, and that reassigning the
variables and functions had no effect on the execution. This is logical, as no additional
commands are executed.

6.2.8 Opaque predicates

Opaque predicates is an obfuscation technique where one uses statements whose result
is known in advance, but not obvious. These might both impact and not impact the
trace output depending on method used. For instance, one might include a complex
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(a) Sample (b) Sample trace

(c) Obfuscated code (d) Obfuscated Trace

Figure 28: String obfuscation example

(a) Sample (b) Sample trace

(c) Obfuscated code (d) Obfuscated Trace

Figure 29: Variable and function randomization example

calculation. Which is calculated by use of registers, and thus not traced. However, one
might also include other functions that will result in an execution trace. To prove this we
implemented an experiment where the time function is used to extract the seconds since
1.1.1970. This time value is then used to check if there has been 30000 hours since that
date. Which to an analyst is not obvious, but always true. The experiment can be viewed
in Figure 30, and as one can see from the trace output, there is a difference in execution.

6.2.9 Inlining and outlining

Inlining was earlier described as a compiler optimization technique where a call to a
function is replaced with that functions entire code. This resulted in better performance,
as overhead of calling function was removed. An opposite technique is called outlining,
where code is placed in functions, rather than duplications. This has the beneficial ef-
fect that the code looks more compact. Both techniques, impact the code. However, will
it impact the execution trace as well, and subsequently our method? The goal of this
experiment is to find the answer to this question. To do this we implemented a simple
experiment, where an integer is typed by user then printed to screen. This is performed
twice, to illustrate a proper example of both inlining and outlining. That is, functions
are typically implemented for code that occurs more than once. The experiment can be
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(a) Sample (b) Sample trace

(c) Obfuscated code (d) Obfuscated Trace

Figure 30: Opaque example

(a) Inlining (b) Inlining trace

(c) Outlining (d) Outlining trace

Figure 31: Inlining and outlining example

viewed in Figure 31. From the trace output in Figure 31b and 31d from both inlining and
outlining, one can see that the execution behavior is the same. Thus the technique has
no impact on our method.

6.2.10 Packers

In Section 2.6.4 of the literature study we discussed packers and how they are implemen-
ted to obfuscate malware. In this section we seek to see whether packers are effective
against our method, or if we can detect the behavior crated by the packers. To carry out
this experiment we decided to implement a packer on one of our previous experiments,
namely the string experiment depicted in Figure 21. The string program takes a string as
input then output the same string. To implement the packer we decided to use UPX [42],
since it is able to pack ELF files, which are the executable files for Linux. There is however
a bug in UPX, such that our program had to be compiled statically, which unfortunately
could not be traced by ltrace. Subsequently we only have the system call traces for the
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packed and unpacked program.

(a) Graph Unpacked (b) Graph Packed

Figure 32: Packer Example

For this experiment we chose to include dependency graphs rather than trace output,
to help visualize how easy it is to identify an obfuscation routine using our method. The
experiment can be seen in Figure 32, where the unpacked trace is viewed in Figure 32a,
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while the packed trace had to be split it in two due to lack of space and is displayed in
Figure 32b. The figures are color encoded in such a way that the green is similar for both,
while red system calls exist purely for packers. From this behavior we can see that our
method is able to trace and detect packers, and not only see the program’s functionality,
but also identify the obfuscated packing routine. In conclusion, the packed example has
an impact, but can also easily be identified using information based dependency match-
ing for function calls.

Obfuscation technique Impact Comment
Packers Yes -
Dead Code Insertion Yes There exist "‘dead code"’ which will not impact

as well, such as arithmetic operations
Register reassignment No Assembly could only be traced by system calls
Code substitution Yes Succeeding functions might change as a result
Code reordering Yes Only affect sequence of calls
White space randomiza-
tion

No Ignored by parser

Comment randomization No Ignored by parser
String obfuscation Yes Likely to be highly dependent on use of string
Variable and function
name randomization

No

Opaque Predicates Yes There exist "‘opaque predicates"’ which will
not impact as well, such as arithmetic oper-
ations

Inlining and outlining No

Table 4: Obfuscation Matrix

6.2.11 Summary

To summarize the obfuscation resilience experiments, a total of 6 out of 11 methods had
an impact on our method. However, it is important to note that most of these techniques
are designed to trick signature-based or static detection systems. Hence their effective-
ness on information-based dependency matching for function calls has never been tested.
Due to the fact that detection mechanisms based on machine learning utilize both the
known good and known bad, it is hard to predict the obfuscation techniques effective-
ness. The obfuscation techniques might both be effective and counter-effective. Some
techniques might obfuscate the sequence of execution in such a way that the malware
is classified as software. However, the distinctive patterns of each obfuscation technique
might also contribute to making detection easier. This was easily seen in the packer ex-
periment in Section 6.2.10. In conclusion, it is only the behavioral-based obfuscation
techniques that has an impact on our method. However, the effectiveness of these should
be measured by use of a controlled dataset. This is only possible where one know exactly
what malware and software utilize the different techniques. Furthermore, the results
show that 5 out of 11 techniques does not have an impact at all, which is good, seeing
as this was one of the motivations for doing detection at this layer.
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6.3 Classification accuracy for different layers

The goal of this section is to analyze the differences of performing detection at the differ-
ent layers. Experiments for analyzing detection rate will be carried out using information-
based dependency graph matching for library calls, system calls and function calls (hy-
brid). Each subsection will describe the detection rate and subfigure for each of the
methods used for detection.

6.3.1 System calls

Figure 33: Set
Cover Subgraph

The classification accuracy of system calls is 95,8%, 95,8% and
98,9% for MDL, Size and Set Cover, respectively. Seeing as no form
of manual feature selection or expert knowledge was provided,
these rates seem unusually high. It is however the methods job
to parse graphs, learn and find patterns that discriminates well.
This seems to have worked well for this particular dataset. For all
three methods there are three false positives, while both MDL and
Size has eight false negatives. Since it is the Set cover method that
discriminates best we will focus on explaining the results of this
method.

The confusion matrix for set cover is depicted in Table 5c. As
mentioned there are only three false positives. More specifically
these are the programs Sed, hostname and dnsdomainname that
were misclassified as malware. To fully understand how the clas-
sifier is able to achieve this classification accuracy we must ana-
lyze the subgraph used for detection. For completeness we have
included the graph in Figure 33. As one can see from this figure,
this is actually a subgraph of the memory initialization routine.
The program execution start at the execve call, which is followed
by a brk, access, mmap2, access, open, fstat64, mmap2 and finally
a munmap call. The left side of the graph shows mmap2, mpro-
tect, mprotect and finally munmap. From the figure one can see
that most of the dependencies are sequence based. However there
are also an ordering-based dependency and a def-use dependency,
denoted by two and three, respectively.

After analyzing a set of malware one can see that this substruc-
ture exist in all of the malware. This would be very unusual, if it
was malware behavior. However, since it actually is the program
initialization and loading into memory it is quite feasible. Further-
more, the substructure only occur in 3/75 software. Which begs
the question of how this is feasible, and whether there really is
such a big difference in program initialization between software
and malware.

To answer this question one must understand how programs
are loaded into memory, and what aspects of a program that might
affect this initialization. After surveying the issue we came up with the following pos-
sible reasons: programming language, wrapper or packer functionality, compiler, com-
piler flags and package dependencies. Furthermore, if one look at the subgraphs of the
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MDL
Classified as

Correct class Positive Negative
Positive 182 8
Negative 3 72

Classification accuracy 95,8%
(a) MDL

Size
Classified as

Correct class Positive Negative
Positive 182 8
Negative 3 72

Classification accuracy 95,8%
(b) Size

Setcover
Classified as

Correct class Positive Negative
Positive 190 0
Negative 3 72

Classification accuracy 98,9%
(c) Set Cover

Table 5: System call confusion matrix

software one will see that there is a difference in the mprotect sequence. The most im-
portant difference between malware and software is that the malware only have two
succeeding mprotect calls, while software has three. This can be seen in Figure 34b and
Figure 34a. This point to a difference in memory protection for the different classes. But
since both malware and software was executed in a similar fashion in the same Ubuntu
environment the difference has to be within the binaries, and not the environment. This
realization leads to the discovery of the implementation of Stack Guard in Linux com-
pilers. It turns out that all malware is either compiled with either an old compiler or
without stack protection as an alternative. While the three misclassified software are
likely to be compiled with an old version of GCC. This in turn leads to a difference in ini-
tialization, as the binaries compiled with stackguard will have more memory protection.
Since this is kernel mode detection and not user mode detection, such behavior is traced
by the system calls.

To analyze whether stack protection was the reason for the difference between the
classes we set up an experiment where we compiled a hello world c application with
GCC v4.6.3 and GCC v2.9.5. The latest version includes stack protection while the oldest
does not. The difference between the resulting graphs can be seen in Figure 35. As one
can see from the picture the graph with stack protection contain one extra mprotect
system call. The graph that was based on the old compiler would have resulted in a false
positive, while the one compiled with the newest compiler would not. Hence it is highly

(a) Bzip2recover(Software) (b) Backdoor.Linux.Blackhole(Malware)

Figure 34: Malware and software difference
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(a) Stack protection (b) No stack protection

Figure 35: Stack protection difference

likely that this is the reason for the difference in execution.
Using the memory initialization for classifying malware is not beneficial. Simply be-

cause a binary does not utilize stack protection does not mean that the binary is mali-
cious. It could merely be an outdated compiler or removed by other reasons. However,
this is not to say that the classification method was successful. The goal of subdue is to
find subfigures that discriminate well. Which in this experiment worked very well, since
it got a classification accuracy of 98,9%. The only downside was the dataset, since all
malware was compiled with either old compilers or without stack protection.

This experiment proves as an example that feature selection and expert knowledge is
invaluable when creating a classifier. Since one must always understand the result and
how the classifier actually works. By using feature selection one can guide the creation
of the classifier by choosing features that are both relevant and non-redundant. In this
experiment the features would be the chosen subgraphs.

6.3.2 Library calls

The classification accuracy for library calls is 32,5%, 32,5% and 91,7% for MDL, Size and
Set cover, respectively. This is a vast difference, but not surprising, seeing that the two
first methods seek to find subgraphs that compress the best, while the Set cover method
is best at finding discriminating patterns. From the confusion matrixes in Table 6 one can
see that both MDL and Size has 179 false negatives and 0 false positives, while the Set
cover method has 22 false negatives and 0 false positives. The Set cover method result
is quite extraordinary because it has a very high classification accuracy, but a zero false
positives.

Initial analysis of the MDL and Size methods showed that they had both chosen a
large set of printf calls for subgraphs. This is reasonable as printf was used to output large
sections of text. However, since these printf subgraphs does not occur in all malware they
did not prove to be a good classifier. This can be rectified by utilizing feature selection
before classification. However, due to the amount of work this would result in, we will
not perform feature selection in this thesis. Instead we will focus on the results of the Set
cover method to explain the classifier behavior.
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MDL
Classified as

Correct class Positive Negative
Positive 11 179
Negative 0 75

Classification accuracy 32,5%
(a) MDL

Size
Classified as

Correct class Positive Negative
Positive 11 179
Negative 0 75

Classification accuracy 32,5%
(b) Size

Setcover
Classified as

Correct class Positive Negative
Positive 168 22
Negative 0 75

Classification accuracy 91,7%
(c) Set Cover

Table 6: Library call confusion matrix

The Set cover method created a subgraph that consisted of __register_frame_info
and __deregister_frame_info. Unfortunately, these features seem to be closely related to
the compiler issue we discussed in the previous section. According to [136] these calls
are used for exception handling. Further literature [137] indicate that these might be
compiled into the binary by the compiler to provide exception handling. As such it is
possible that these features stem from an old compiler, which does not exist in binaries
compiled with newer compilers. This statement is strengthened by the fact that none of
the software included this library call.

To analyze whether this could be true or not we implemented an experiment to check
whether a new version of GCC would have the same trace output for library calls as an
old version. Then a total of five malware was downloaded from Exploit-DB [138]:

• Linux Kernel 2636 exploit

• Linux Kernel 2636 canbcm exploit

• Linux Kernel 2637 exploit

• Linux kernel emulation exploit

• Tivoli IBM exploit

(a) GCC 4.6.3 (b) GCC 2.9.5

Figure 36: Register frame info

All five malware were compiled with both GCC version 4.6.3 and GCC version 2.9.5,
then traced. For all traces of GCC 2.9.5 we found both __register_frame_info and __de-
register_frame_info in the library call traces. These were not present in any of the trace
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files for GCC 4.6.3. An extract of the trace can be viewed in Figure 36, where one can see
that Figure A 36a for GCC 4.6.3 does not include register frame info, but Figure B 36b
for GCC 2.9.5 does. Because of this, we argue that the subgraph used for detection for
library calls is not malicious behavior, but a result due to compiler difference.

6.3.3 Function calls

Figure 37: Set
Cover Subgraph

The classification accuracy for Function calls are 92,8% for Set
Cover. Furthermore it had three false positives and 16 false neg-
atives. The full results can be viewed in Table 7. SUBDUE was not
able to finish for MDL and Size, which proves as an example of
how high the computational complexity of graph matching really
is. While the library calls with set cover used only a few minutes
to complete learning of subgraphs, the function call dataset with
MDL and Size used over two days without completing the learning
process. This is not only because MDL and Size are slower than
set cover, but because function calls have more traces than library
calls. This is important as the runtime and complexity grows rap-
idly with an increase in number of function calls. An illustration
of this can be seen in Appendix D, where the runtime of the trace
parser is tested.

Function calls are a hybrid layer consisting of both library calls
and system calls. As such it is expected that one will see similarit-
ies in detection for either one of the layers or both. This assump-
tion turns out to be true, as the subgraph used for detection for
function calls are similar to that of system calls. The subgraph can
be viewed in Figure 37. The subgraph consists of 13 vertices and
13 edges, that all are based on sequence-based dependencies. The
graph consists of the memory initialization routine, up until the
start of the program (__libc_start_main). The similarity to system
calls is reflected in the high classification accuracy and the low
amount of false positives as well. However, due to the fact that
the subgraph was based on the memory initialization routine, and
this routine was proven unreliable in Section 6.3.1, the graph and
hence results are not reliable.

Setcover
Classified as

Correct class Positive Negative
Positive 174 16
Negative 3 72

Classification accuracy 92,8%

Table 7: Function call Set cover confusion matrix
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6.3.4 Summary

To summarize the classification accuracy for the different layers, the best results were
98,9%, 91,7% and 92,8% by use of set cover for system calls, library calls and func-
tion calls, respectively. The full results can be viewed in Table 8, where the classification
accuracy of all the methods for the different layers is provided. The fact that set cover
was best is not unexpected seeing as it was the best method for discriminating between
classes. Unfortunately the results were due to subgraphs that didn’t measure anomal-
ous/malicious behavior, but rather compiler differences. This was the case for both user
mode execution and kernel mode execution. Kernel mode was affected since no stack
protection was used, while user mode by old GCC compiler exception handling routine.
This is not to say that the method was not successful in finding discriminative patterns,
however it is challenging to say whether this was because of the dataset or by design. The
results give strong indications that careful selection of subgraphs is needed. Such that a
set of subgraphs are found and only the ones responsible for anomalous/malicious beha-
vior are chosen. In order to do this, knowledge of the environmental specific variables is
needed.

MDL Size Set Cover
System calls 95,8% 95,8% 98,9%
Library calls 32,5% 32,5% 91,7%

Function calls - - 92,8%

Table 8: Summary of classification accuracy
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7 Implications and discussions

In Chapter 6 the experimental results of this thesis was presented. The experiments fo-
cused on the reliability issues of information-based dependencies, obfuscation resilience
and classification accuracy of the different layers. This chapter provides discussions of
the implications as well as summary of the thesis. First the theoretical and practical im-
plications of the obtained results are discussed. Then the thesis, its research questions
and findings is summarized at the end of this chapter.

7.1 Theoretical considerations

This thesis sought to improve upon the theoretical foundations of information-based
dependency matching. This was performed by analyzing both the reliability issues and
obfuscation resilience of the method. Furthermore the potency of the technique has been
analyzed with regard to its ability to classify between malware and software. The purpose
of this section is to reflect upon the theoretical implications of the findings.

From the experimental studies regarding reliability performed in Section 6.1, it was
found that only strings that represented memory values could be deemed reliable. This
result in far less inferred dependencies, since memory values are quite unique. Further-
more, by only allowing memory values to infer dependencies the amount of value- and
def-use dependencies will be far lower than sequence-based dependencies. In general
value-based dependencies are a bit more common than def-use dependencies, while se-
quence dependencies always exist between subsequent vertices. This fact leads to the
realization that weights could be used to represent edge values. This was in part imple-
mented in this thesis, however only by use of edge labels. The labels were not weighted,
such that a def-use dependency would have different impact than other dependencies.
However, by using edge labels the graphs can be compared based on structure and de-
pendency types, rather than structure and environment specific variables such as memory
values. This is important as memory values change almost every time, and should not be
used for comparison between graphs.

Further analysis of the synthesize testing showed that register behavior is not trace-
able and thus not represented in the behavior graphs. The downside of this fact is that
register behavior such as comparing register values cannot be traced. This means that
comparison of variables such as if/else or string values won’t be traced and cannot be
part of a behavioral graph.

Differentiation in dependencies for the layers were also found during the synthesize
testing. The reason for this difference is that some layers implement certain functions in
different ways. This means that different layers may infer different dependencies from
the same program. This in turn may lead to a difference in detection, seeing as some
dependencies only may be inferred on one layer.

The experimental studies of obfuscation resilience found that 6/11 obfuscation meth-
ods had an impact on the method. This means that some methods may be ruled out
completely, while the efficiency of the rest remains to be tested. The methods that could
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be ruled out consists of register reassignment, white space randomization, comment ran-
domization, variable and function name randomization as well as inlining and outlining.
Register behavior is as mentioned above not captured by this method. Hence it is reason-
able that it is unaffected by register-based obfuscation. White space and comment ran-
domization are both techniques that are commonly used for JavaScripts or other code
that is parsed and executed and not built by a compiler. Since the parser will ignore both
whitespace and comments. The same may to some extent be applied to variable and
function name randomization as well as inlining and outlining, as these are interpreted
by the compiler before the executable is built. In general the method was more resili-
ent against structural and appearance-based methods, while it was less resilient against
methods that sought to change the execution flow.

Finally the method’s ability to perform malware detection was analyzed by use of
graph matching in SUBDUE. The results from this analysis were conflicted as the sub-
graphs to a certain extent was biased. The method provided good results and at best a
classification accuracy of 98,9%. However due to the fact that the subgraphs used for
detection was a result of compiler, it is challenging to say whether the results are valid
with regard to classification accuracy.

7.2 Practical implications

The dataset used in this thesis was created based on binaries downloaded from VX heav-
ens [127]. This is a popular dataset commonly used in research. For instance [139, 140,
41] to name a few. It is known that a lot of the malware provided at VX heavens is out-
dated [140], however for many purposes this dataset is sufficient. To explain how the
dataset might be relevant for some and outdated for others, an understanding of fea-
tures is needed. In [41] features were extracted from DLL dependencies, registry, file,
network and process activity. Subsequently detection is performed at a higher layer, and
the results are most likely not affected by compiler specific information. In comparison
to this thesis where the library calls and system calls are traced, which as discussed in
Section 6.3 are highly susceptible to changes in compilers.

This thesis found that compiler behavior such as memory protection and exception
handling affected the dependency graphs. These are behaviors that were dependent on
not only compiler flags, but also compiler version. As such, it is reasonable to assume
that other compiler behavior might affect the dependency graphs as well. Because of
this it becomes more important to be aware of differences in the dataset when choosing
features. Such that relevant features are chosen. For instance, SUBDUE can be used to
find 100 subgraphs. These can then be clustered and analyzed further by use of expert
knowledge. A selection of subgraphs can then be performed based on subgraph behavior.
For instance choosing subgraphs for botnet malware, exploits, command & control, and
so on. Subsequently one can customize detection for each type of malware by choosing
whether a subgraph should be included or not. This will in turn affect the detection rate
and false positive rate, based on generalization of chosen subgraphs.

The complexity of graph matching was not thoroughly tested in this thesis. However,
during experiments of the classifier, methods such as MDL and Size were noticeably
slower than the Set cover method. Furthermore, the size of the dataset had a significant
impact on the complexity and hence runtime of the experiments. Set cover and size ran
for over two days on the function call dataset without being able to complete the learning
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of subgraphs. This is a significant difference in comparison to Set cover with library call,
which completed learning of subgraphs in the matter of a few minutes. Similarly the
trace parser that builds dependencies had high runtime for large files. Both of these
experiences prove as arguments against the method’s scalability with regard to runtime.

7.3 Summary

The goal for this thesis was to create an automated, learning-based, obfuscation resilient
detection engine able to efficiently detect malware. The motivation for this was the rap-
idly increasing threat of malware and computer attacks, which has led to challenges in
handling security related incidents. This problem is enhanced, by the attacker’s abilities
to utilize unknown vulnerabilities, evasion techniques and generator algorithms, which
increases the impact, effectiveness and quantity of malware. The problem has become
so extensive that the typical signature-based approach no longer is sufficient. Because of
this, we sought to bring detection to the lower layers of operating systems in order to
increase obfuscation resilience. Furthermore the method is implemented by graph-based
learning, which is able to automatically find structural patterns in data.

To achieve this, a dataset was created using an automated lab environment able to
execute and an arbitrary number of malware and software. The dataset was then pre-
processed to find structural patterns by use of information-based dependencies. The re-
liability of this method was then tested in order to make sure that no false dependencies
were inferred. This was performed by experimenting with several synthesized programs,
to find which variable types that could be used. The sequence of calls and order of which
dependencies could be inferred was also tested. The results proved that only memory val-
ues were reliable. This is similar to the method used in [11]. However, our method can
be seen as an extension to this because it utilize value- and ordering-based dependencies
as well as def-use dependencies.

The method’s obfuscation resilience was then tested to see whether bringing detection
to a low layer increased obfuscation resilience. This turned out to be true, seeing as
only 6/11 methods actually had an impact on the behavioral graphs. Furthermore the
efficiency of these six methods is likely to be lower, seeing that they are all designed to
obfuscate signature-based and static detection schemes.

Finally the classification accuracy of the method was to be evaluated by use of graph-
based learning in SUBDUE. A best classification accuracy of 98,9% was provided and
SUBDUE proved to be good at performing classification based on structural patterns. The
results however, are disputed, seeing as the subgraphs used for detection was a result of
compiler difference in the dataset. This lead to the realization that malware detection at
this layer is far more complex, and that further precautions are needed when selecting
subgraphs for detection.
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8 Conclusion

This thesis has improved upon existing methodology used in [11]. Whose goal was to use
dynamic traces of function call data in order to build dependencies and create graphs for
malware detection. Not only has the thesis identified and analyzed key reliability issues,
but it has also shown that it is resilient against a range of obfuscation techniques. The
method was further expanded to use graph-based learning, by use of sub isomorphism
in SUBDUE. The result is a reliable, highly resilient and an effective malware detection
method. The experiments were performed based on a newly created dataset from 100
software and 200 malware, resulting in 900 traces. A total of 795 of these was chosen
and used for classification and learning of subgraphs, using 10-fold cross validation.

Experimental results showed that only memory values are reliable for creating de-
pendencies. Another crucial issue is when a dependency can be inferred. The experi-
ments showed that hard limits with regard to dependency sequence are impossible. The
use of order-based dependency was also implemented to provide more accurate behavi-
oral graphs. Furthermore the obfuscation resilience of the method has been thoroughly
tested. It is no longer a theoretical assumption based on the fact that the obfuscation
techniques are designed to evade signature-based and static techniques, but a tested and
verified method. The results of this analysis showed that our technique is resilient against
5/11 of the surveyed techniques. The remaining 6 techniques do to some extent impact
the method, however their efficiency has not been tested.

The analysis of the method found that there are differences in performing detection
at the different layers. This is not only represented by the classification accuracy, but also
the fact that dependencies are a result of functions, which in turn are layer specific. The
graph-based method proved to be effective in discriminating structural data. However
the results may be disputed due to a difference of compilers in the dataset, which turned
out to be the reason for the high classification accuracy. These results in turn lead to
the realization that detection at this layer requires extraordinary attention to details
regarding the selection of subgraph.

The thesis has also uncovered drawbacks of the method, which affected detection in
an unexpected manner. An example of this is the fact that register behavior such as com-
parison of data is not exhibited in the trace files. This is important, as behavioral aspects
such as if/else checks and string comparison is not a part of the behavioral graphs.

In conclusion, the thesis has made significant progress in documenting and analyzing
the theoretical foundations of information-based dependency matching. The method has
been deemed reliable, by extensive testing of synthesized programs. As well as resilient to
a range of various obfuscation methods. The method shows great potential, but further
work is needed to verify the classification accuracy and feasibility of the method with
regard to computational complexity.
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9 Further Work

The use of information-based dependency matching is a relatively new method, which
requires further research and scrutiny in order to become more reliable. Since it is a new
method there are a range of topics that should be further analyzed in order to completely
understand the inherent capabilities and implications of the method. In this final chapter
we discuss these issues in order to provide a pointer to topics that require further work.

First of all it is important to analyze the effects of environment specific variables such
as operating system and compilers that are used to build and execute the software and
malware. The effects of compilers turned out to have a significant impact on the data-
set used in this thesis. It was shown that not only compilers, but compiler version, flags
and options had an impact on the trace output. This should be further analyzed in or-
der to understand the full effects this has on the dataset. The knowledge gained after
analyzing effects of environment specific variables should then be used for subgraph se-
lection. More specifically one can utilize methods such as unsupervised learning in order
to cluster subgraphs based on similarity. The knowledge of environment specific vari-
ables should then be used to exclude such subgraphs from the classifier. The remaining
subgraphs can be analyzed with regard to type of behavior. For instance whether the sub-
graph is frequent in mail communication for botnet malware, or whether it is a common
buffer overflow technique typically used by exploits. By analyzing such behavior one can
select subgraphs for all types of malicious behavior and extend detection coverage based
on needs. Furthermore, by utilizing subgraphs for specific types of malicious behavior it is
likely that the method will have better classification accuracy. More so, one can decrease
the false positive rate by choosing specific and targeted behavioral subgraphs rather than
generalized malicious behavior. Well-chosen subgraphs not only provide good classifica-
tion accuracy, but also limit the chance of overfitting. Meaning that the method should
not only perform well on this data, but provide a greater external validity and perform
well on all data.

Numbering of different dependency rules was implemented for the trace parser. This
resulted in the fact that dependency edges are denoted by a number, rather than the
memory value. The number represents the type of dependency rule, whether it is order-
ing dependency, value dependency or def-use dependency. This has the beneficial effect
that graph matching can be performed based on dependency types rather than environ-
ment specific values. However, the dependency rules don’t occur with equal similarity.
Hence it might be possible to implement weighted graph matching. Where a def-use
dependency actually have a higher impact than an ordering dependency. The effects of
this should be analyzed, both with regard to reliability of weighted values, as well as
the resulting accuracy. Furthermore there is options in SUBDUE which allow for inexact
graph matching. This means that the subgraph is not matched to identical subgraphs
(isomorphism), but based on a threshold. Inexact graph matching might provide better
detection rates, but is likely to also affect the false positive rate. Thus further work should
be invested in analyzing whether inexact graph matching provides better classification
accuracy for information-based dependency matching.
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The impact of obfuscation methods was tested and results showed that 6/11 methods
had an impact on the information-based dependency matching. However in order to
test the efficiency of these methods more elaborate tests are needed. More specifically
the dataset should include the obfuscation methods, such that tests can be performed
to analyze whether this has an impact. This is challenging as a lot of malware only
exist as binaries. Thus focus on source code and verification that the malware utilize
the obfuscation techniques is important. This analysis was too comprehensive for this
thesis, but should be analyzed as further work, as the obfuscation resilience is the key
reason for choosing this detection method. Furthermore a more extensive analysis should
be performed, which also includes the obfuscation methods that were not tested in this
thesis due to limited time. The metrics can also be extended to include potency, resilience,
stealth and cost in order to get a deeper understanding of how the obfuscation method
affects information-based dependency matching.

The computational complexity of information-based dependencies and matching of
the resulting graphs were not extensively tested in this thesis. Further work should be
spent analyzing the complexity of the method and ultimately the possible throughput.
This is important as the method cannot be used, regardless of accuracy if it is not fast
enough. This relates to the psychological acceptability of the method, as users won’t use
it if the method is too slow.

Finally the method should be analyzed, compared and integrated with other meth-
ods. By doing this one can see how the method compares to static and signature-based
approaches, as well as how good they would work together as a hybrid detection engine.
Recent work has shown that combining static and dynamic detection methods provide
better classification accuracy [41]. Furthermore there exist work which seek to combine
different supervised and/or unsupervised classifier methods [141, 142]. Surveys compar-
ing single and hybrid classifiers indicate that combining classifiers might improve detec-
tion rate [143]. Hence further work should be performed to survey the advantages and
disadvantages of every method and analyze how the dynamic behavioral-based method
proposed in this thesis can be combined with other techniques to provide a superior
detection method.
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A Output parser

This appendix consist of the output parser. The output parser was used for pre-processing
trace data and create structural behavior based on information-based dependency match-
ing. The parser include all three types of dependency rules and can parse logs from strace
and ltrace for function calls, library calls and system calls.
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B Virtualization Scripts

The virtualization scripts were used for automating the dataset environment. By use of
these scripts one can execute, parse and log the behavior for an arbitrary number of
malware and software.
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C Selected Malware and Software

This appendix contain the selected malware and software for the dataset. It shows the
name of all samples, as well as the size of the trace files for the different layers.
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Selected Binaries

Side 1

3 1 3
8 5 4
8 5 4
4 1 3
3 1 3
3 1 3
3 1 3
3 1 3
3 2 3
3 1 3
3 1 3
2 1 2
6 4 2
3 1 3
4 1 3
3 1 3

10 3 8
3 1 3
3 1 3
4 1 3
3 1 3

31 6 28
3 1 3
4 2 3
3 1 3
4 1 3
4 1 3
4 1 3

32 6 28
3 1 3
3 1 3
3 1 3
3 1 2
3 1 3
3 1 3
3 1 3
3 1 3
3 1 3
3 1 3
3 1 3
3 1 3
3 1 3
3 1 3
3 1 3
3 1 3
3 1 3
3 1 3
3 1 3
3 1 3
3 1 3
3 1 3
3 1 3

Name Func-call size (Byte) Lib-call size (Byte) Sys-call size (Byte)
Backdoor.Linux.Blackhole_dir
Backdoor.Linux.BO.c_dir
Backdoor.Linux.BO.d_dir
Backdoor.Linux.Caem.c_dir
Backdoor.Linux.CGI.a_dir
Backdoor.Linux.CGI.b_dir
Backdoor.Linux.Cyrax.b_dir
Backdoor.Linux.DobDrag_dir
Backdoor.Linux.Eko_dir
Backdoor.Linux.Excedoor_dir
Backdoor.Linux.Gummo_dir
Backdoor.Linux.Keitan.a_dir
Backdoor.Linux.Koka.a_dir
Backdoor.Linux.Muench_dir
Backdoor.Linux.Ovason_dir
Backdoor.Linux.Phobi.b_dir
Backdoor.Linux.Phobi.l_dir
Backdoor.Linux.Promptte.a_dir
Backdoor.Linux.Rpctime_dir
Backdoor.Linux.Rst.a_dir
Backdoor.Linux.Sckit.k_dir
Backdoor.Linux.SitC.a_dir
Backdoor.Linux.Smack_dir
Backdoor.Linux.Small.bm_dir
Backdoor.Linux.Small.bq_dir
Backdoor.Linux.Small.bw_dir
Backdoor.Linux.Small.bx_dir
Backdoor.Linux.Small.j_dir
Backdoor.Linux.SSh.c_dir
Backdoor.Linux.Subsevux.a_dir
Backdoor.Linux.UDP.a_dir
DoS.Linux.Arang_dir
DoS.Linux.Chass_dir
DoS.Linux.Icmp.a_dir
DoS.Linux.Icmp.b_dir
DoS.Linux.Icmp.c_dir
DoS.Linux.Icmp.d_dir
DoS.Linux.Igmp.a_dir
DoS.Linux.IISuxor_dir
DoS.Linux.Kod.a_dir
DoS.Linux.Nocwage.a_dir
DoS.Linux.Octopus.a_dir
DoS.Linux.Octopus_dir
DoS.Linux.Overdrop.a_dir
DoS.Linux.Scut.a_dir
DoS.Linux.Slice.b_dir
DoS.Linux.Small.b_dir
DoS.Linux.SSPing.10_dir
DoS.Linux.Stream.b_dir
DoS.Linux.Targ.a_dir
DoS.Linux.Wgcrash.a_dir
Exploit.Linux.Apache.134_dir



Selected Binaries

Side 2

3 1 3
3 1 3
3 1 3
2 1 2
2 1 2
3 1 3
4 1 4
4 2 3

133 131 3
3 1 3
3 1 3
3 1 3
3 1 3
3 1 3
3 1 3

10 5 5
16 2 17

4 1 4
3 1 3
3 1 3
2 1 2
3 1 3
3 1 3
3 1 3
2 1 2
3 1 3
3 1 3
3 1 3
3 1 3
2 1 2
3 1 3
3 1 3
3 1 3

94 1 3
3 1 3
3 1 3
6 4 3
6 4 3
7 2 4
2 1 2
3 1 2
3 1 3
3 1 3
4 1 3
3 1 3
4 1 3

11 6 3
4 1 3
3 1 3
3 1 3

16 2 17
3 1 3
4 1 3

Exploit.Linux.Apache.1327_dir
Exploit.Linux.Bind.c_dir
Exploit.Linux.Bnc.a_dir
Exploit.Linux.Bonk.a_dir
Exploit.Linux.Bonk.b_dir
Exploit.Linux.Brk.h_dir
Exploit.Linux.CronDum.b_dir
Exploit.Linux.DCom.e_dir
Exploit.Linux.Espacker_dir
Exploit.Linux.Freeze.a_dir
Exploit.Linux.IIS-Attacker_dir
Exploit.Linux.Ircd.a_dir
Exploit.Linux.Ircd.b_dir
Exploit.Linux.KArtsd_dir
Exploit.Linux.Local.af_dir
Exploit.Linux.Local.f_dir
Exploit.Linux.Local.g_dir
Exploit.Linux.Local.h_dir
Exploit.Linux.Local.i_dir
Exploit.Linux.Local.w_dir
Exploit.Linux.Login_dir
Exploit.Linux.Lpd.c_dir
Exploit.Linux.Mirc.a_dir
Exploit.Linux.Mirc.b_dir
Exploit.Linux.Mms.a_dir
Exploit.Linux.Moogrey_dir
Exploit.Linux.Nuker.Igmp.a_dir
Exploit.Linux.Nuker.Small.b_dir
Exploit.Linux.Nuker.Small.c_dir
Exploit.Linux.Nuker.Small.d_dir
Exploit.Linux.Nuker.Win.a_dir
Exploit.Linux.Nuker.Win.b_dir
Exploit.Linux.Pirch.a_dir
Exploit.Linux.ProcSuid.e_dir
Exploit.Linux.Proftpd.d_dir
Exploit.Linux.Proftpd.e_dir
Exploit.Linux.Race.h_dir
Exploit.Linux.Race.i_dir
Exploit.Linux.Rpc.b_dir
Exploit.Linux.Rpc.c_dir
Exploit.Linux.Rpc.d_dir
Exploit.Linux.Rpc.e_dir
Exploit.Linux.Small.ae_dir
Exploit.Linux.Small.af_dir
Exploit.Linux.Small.as_dir
Exploit.Linux.Small.at_dir
Exploit.Linux.Small.au_dir
Exploit.Linux.Small.k_dir
Exploit.Linux.Small.l_dir
Exploit.Linux.Small.m_dir
Exploit.Linux.Small.r_dir
Exploit.Linux.Small.s_dir
Exploit.Linux.Small.z_dir



Selected Binaries

Side 3

4 2 3
2 1 2
3 1 3
3 2 3
5 2 4
3 1 3
6 1 6

16 2 17
3 1 3
3 1 3
3 1 3
3 1 3
3 2 3
3 2 3
3 1 3
3 1 3
3 1 3
3 2 3
3 1 3
3 1 2
2 1 2
3 1 3
8 3 5
3 1 3
8 3 5
2 1 2
5 2 3
3 1 3
3 1 3
3 1 2
3 1 3
3 1 3
2 1 2
3 1 2
3 1 2
3 1 3
3 1 3
3 1 3
3 1 3
3 2 3
3 1 3
3 1 3
3 1 3
2 1 2
3 1 3
6 2 5
3 1 3
3 1 3
3 1 3
3 1 3
2 1 2
3 1 3
3 1 3

Exploit.Linux.Snuq_dir
Exploit.Linux.Sorso.a_dir
Exploit.Linux.Teso.a_dir
Exploit.Linux.Trixack.a_dir
Exploit.Linux.Vma.a_dir
Exploit.Linux.WuFtpd.a_dir
Exploit.Linux.WuFtpd.c_dir
Exploit.Linux.Xpl.a_dir
Flooder.Linux.Alcohol.a_dir
Flooder.Linux.Alcohol.b_dir
Flooder.Linux.Bliz.a_dir
Flooder.Linux.Bloop.a_dir
Flooder.Linux.Echo.a_dir
Flooder.Linux.Echo.b_dir
Flooder.Linux.Fusys.a_dir
Flooder.Linux.Gewse.a_dir
Flooder.Linux.Nestea.a_dir
Flooder.Linux.Pepsy.b_dir
Flooder.Linux.Raped_dir
Flooder.Linux.Rycoll.a_dir
Flooder.Linux.Silly.a_dir
Flooder.Linux.Silly.b_dir
Flooder.Linux.Slice.a_dir
Flooder.Linux.Slice.c_dir
Flooder.Linux.Slice_dir
Flooder.Linux.Small.c_dir
Flooder.Linux.Small.d_dir
Flooder.Linux.Small.e_dir
Flooder.Linux.Small.h_dir
Flooder.Linux.Small.i_dir
Flooder.Linux.Small.j_dir
Flooder.Linux.Small.p_dir
Flooder.Linux.Small.r_dir
Flooder.Linux.Smurf.a_dir
Flooder.Linux.Smurf.b_dir
Flooder.Linux.Stream.a_dir
Flooder.Linux.Synk.a_dir
Flooder.Linux.Synk.b_dir
HackTool.Linux.CleanLog.b_dir
HackTool.Linux.CleanLog.m_dir
HackTool.Linux.Dnstroyer.a_dir
HackTool.Linux.Masan.a_dir
HackTool.Linux.Masan.b_dir
HackTool.Linux.ProcHider.a_dir
HackTool.Linux.Quacker.a_dir
HackTool.Linux.Small.a_dir
HackTool.Linux.Small.b_dir
HackTool.Linux.Sniffer.Sysniff.d_dir
HackTool.Linux.Sniffer.Sysniff_dir
HackTool.Linux.Vulner_dir
Rootkit.Linux.Agent.c_dir
Rootkit.Linux.Agent.d_dir
Rootkit.Linux.Agent.e_dir



Selected Binaries

Side 4

3 1 3
2 1 2

16 13 3
3 1 3

39 11 30
3 1 3
4 1 4
6 2 4
5 1 6
5 1 6
5 1 6
5 1 6
5 1 6
5 1 6
5 1 6
3 1 3
2 1 2

10 6 5
10 6 5

4 1 3
5 1 4
3 1 3

14 1 5
35 15 15
18 8 8
35 15 15

6 2 4
4 1 3
5 2 4
3 1 3

47 40 9
11 3 17

bunzip2 4 2 3
bzip2 5 3 3
bzip2recover 3 1 3

8 1 8
10 2 10
10 2 10
10 2 10

9 1 10
13 2 13

9 1 10
12 3 11

4 2 3
5 1 6

12 2 13
32 20 14

dir 25 12 14
6 1 6

13 2 11
8 1 8

10 1 10
false 8 1 8

Rootkit.Linux.Agent.n_dir
Rootkit.Linux.Agent.sm_dir
Rootkit.Linux.Agent.t_dir
Rootkit.Linux.Agent.v_dir
Rootkit.Linux.Matrics.a_dir
Rootkit.Linux.Matrics.sk_dir
Virus.Linux.Brundle.b_dir
Virus.Linux.Clifax_dir
Virus.Linux.Grip.a_dir
Virus.Linux.Grip.b_dir
Virus.Linux.Grip.c_dir
Virus.Linux.Grip.d_dir
Virus.Linux.Grip.f_dir
Virus.Linux.Little.a_dir
Virus.Linux.Little.b_dir
Virus.Linux.Manpages_dir
Virus.Linux.Nel.a_dir
Virus.Linux.Nuxbee.1403_dir
Virus.Linux.Nuxbee.1411_dir
Virus.Linux.Osf.8759_dir
Virus.Linux.Radix_dir
Virus.Linux.Silvio.a_dir
Virus.Linux.Silvio.b_dir
Virus.Linux.Snoopy.a_dir
Virus.Linux.Snoopy.b_dir
Virus.Linux.Snoopy.c_dir
Virus.Linux.Svat.a_dir
Virus.Linux.Svat.b_dir
Virus.Linux.Svat.c_dir
Virus.Linux.Thebe.b_dir
Virus.Linux.Thou.b_dir
Virus.Linux.Winter.340_dir

cat
chgrp
chmod
chown
chvt
cp
cpio
date
Dbus-cleanup-sockets
Dbus-uuidgen
dd
df

dnsdomainname
dumpkeys
echo
egrep



Selected Binaries

Side 5

13 2 11
10 1 10
58 35 18

3 1 3
9 1 10
6 2 5

grep 10 1 10
6 2 4
3 1 3
5 1 4

13 2 11
kill 4 1 4

10 2 10
6 2 4

84 67 18
22 8 14

103 86 10
11 2 12
11 2 12

5 2 3
more 14 3 12

96 84 13
2 1 2
9 1 10
9 1 10

mv 13 2 14
14 3 13
13 2 12
13 2 12

4 1 4
ping6 4 1 4

99 25 61
8 1 8

10 2 10
10 2 10

9 1 11
Run-parts 3 1 3
sed 13 4 10

13 2 11
17 11 4
10 2 10
17 8 10

5 1 5
9 1 10
8 1 8
9 1 10
3 1 3

touch 11 2 12
true 8 1 8

4 1 5
75 66 10

9 1 8
57 28 26

fgconsole
fgrep
fortune
fusermount
getty
Gnome-gnuchess

gzip
hostname
ip
kbd_mode

ln
loadkeys
login
ls
lsmod
mkdir
mknod
mktemp

mount
mountpoint
mt
Mt-gnu

nc
open
openvt
ping

ps
pwd
readlink
rm
runlevel

setfont
sh
sleep
stty
sulogin
swapon
sync
tailf
tempfile

udevadm
umount
uname
vdir



Selected Binaries

Side 6

14 7 9wpa_supplicat
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D Computational Complexity

This appendix contain data regarding the computational complexity of the trace parser.
The appendix lists size of trace files and the execution time required to parse and build
the dependency graphs. The goal of this appendix is to provide an indication of the
computational complexity of the method, as the runtime increase rapidly with the size
of the graph.
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Computational Complexity

Side 1

320B 4 0,046
501B 6 0,031
1KB 14 0,031
2KB 24 0,046
4KB 52 0,047
8KB 120 0,187
16KB 163 0,639
31,3KB 407 2,059
65,9KB 1092 33,243
124KB 1619 48,066
258KB 4227 898,998
408KB 5721 3205,14
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