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Implementing modular arithmetic using OpenCL

Abstract

Problem description: Most public key algorithms are based on modular arithmetic. The simplest,
and original, implementation of the protocol uses the multiplicative group of integers modulo
p, where p is prime and g is primitive root mod p. This is the way Diffie-Hellman is implemen-
ted. RSA is implemented in a similar way c=me mod p*q. For this reason public key crypto
RSA is much slower than symmetric key algorithms, like DES and AES. Recently the field of
using Graphics Processing Units (GPUs) for general purpose computing has become more wide-
spread. Many computational problems have gained a significant performance increase by using
the highly parallel properties of the GPU.

Motivation: Implementing public key algorithms using OpenCL allows the implementation to
query the system for OpenCL enabled devices(GPU,CPU and other parallel processors) to select
the best device in order to run the encrypting/decrypting of data. The same implementation can
be run on a variety of different system with different GPUs, CPU as long as at least one device is
able to run OpenCL programs/code.

Planned contribution: The planned outcome of this project is a fast implementation of public
key algorithms able to run in parallel on a variety of parallel devices(GPU,CPU and other parallel
processors) that is capable to run OpenCL code/programs.
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1 Introduction

1.1 Topic covered by the project

Most public key algorithms are based on modular arithmetic, e.g. RSA and Diffie-Hellman. Public
key encryption and decryption are computationally heavy because a lot of modular multiplica-
tions with very large numbers are needed to perform these tasks. The security of the RSA crypto
system is based on two mathematical problems: the problem of factoring large numbers and
the RSA problem. In cryptography, the RSA problem summarizes the task of performing an RSA
private-key operation given only the public key. Full decryption of an RSA cipher text is thought to
be infeasible on the assumption that both of these problems are hard, i.e., no efficient algorithm
exists for solving them1. Providing security against partial decryption may require the addition
of a secure padding scheme. Diffie-Hellman key exchange (D-H) is a cryptographic protocol that
allows two parties that have no prior knowledge of each other to jointly establish a shared secret
key over an insecure communications channel. This key can then be used to encrypt subsequent
communications using a symmetric key cipher. The simplest, and original, implementation of the
protocol uses the multiplicative group of integers modulo p, where p is prime and g is primitive
root mod p.

1.2 Problem description

The RSA problem is also the main reason public key crypto is much slower than symmetric
key algorithms, like DES and AES. Recently the field of using Graphics Processing Units (GPUs)
for general purpose computing has become more widespread2,3. Many computational problems
have gained a significant performance increase by using the highly parallel properties of the GPU.

OpenCL (Open Computing Language) is a framework for writing programs that execute
across heterogeneous platforms consisting of CPUs, GPUs, and other processors. OpenCL was
initially developed by Apple Inc., which holds trademark rights, and refined into an initial pro-
posal in collaboration with technical teams at AMD, Intel, and Nvidia. Apple submitted this initial
proposal to the Khronos Group4. On June 16, 2008, the Khronos Compute Working Group was
formed5 with representatives from CPU, GPU, embedded-processor, and software companies.
This group worked for five months to finish the technical details of the specification for OpenCL
1.0 by November 18, 2008. This technical specification was reviewed by the Khronos members
and approved for public release on December 8, 20086. OpenCL 1.0 has been released with Mac
OS X v10.6 ("Snow Leopard"). According to an Apple press release7:

Snow Leopard further extends support for modern hardware with Open Computing Language

1http://en.wikipedia.org/wiki/RSA_Factoring_Challenge
2http://gpgpu.org
3http://www.nvidia.com/object/cuda_home.html#
4http://www.khronos.org/opencl/
5http://www.khronos.org/news/press/releases/khronos_launches_heterogeneous_computing_initiative/
6http://www.khronos.org/news/press/releases/the_khronos_group_releases_opencl_1.0_specification/
7http://www.apple.com/pr/library/2008/06/09snowleopard.html
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(OpenCL), which lets any application tap into the vast gigaflops of GPU computing power
previously available only to graphics applications. OpenCL is based on the C programming
language and has been proposed as an open standard.

Snow Leopard was released to the public on friday 28.08.2009.

1.3 Keywords

• Data encryption

• Public key cryptosystems

• Performance evaluation

• Parallel processing

1.4 Justification, motivation and benefits

The objective of this project is to make a fast implementation of public key algorithms on a GPU
using the OpenCL specification as implemented in OS X 10.6. The operation that needs to be
executed in parallel is modular multiplication, as this is the basis of modular exponentiation.
Furthermore a performance comparison between the GPU and a normal CPU implementation
should be made. Implementing public key algorithms using OpenCL allows the implementation
to query the system for OpenCL enabled devices(GPU,CPU and other parallel processors) to select
the best device in order to run the encrypting/decrypting of data. The benefits is that the same
implementation can be run on a variety of different systems with different GPUs, CPUs as long
as at least one device is able to run OpenCL programs/code.

1.5 Research questions

• How to make modular multiplication execute in parallel on a GPU as efficiently as possible.
This is the essence of the project as this is the basis of modular exponentiation. This operation
is used both for RSA and for Diffie-Hellman.

• How to take full advantage of the parallel execution of the GPU when implementing public
key algorithms using OpenCL.

• How to best utilize the memory bandwidth of the graphics card, this is a key component in
making a fast implementation of public key algorithms.

1.6 Planned contributions

The planned outcome of this project is a fast implementation of public key algorithms able to run
in parallel on a variety of parallel devices(GPU,CPU and other parallel processors) that is able to
run OpenCL code/programs.
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2 Related work

There have been several others that have done work in the field of making modular multiplication
execute in parallel on a GPU, from the early work using specialized API’s to the more recent that
use Nvidia’s CUDA1 , so far there don’t seem to exist any papers where the use of ATI’s Stream
SDK2 have been tried. This is one of the things to be tried in this thesis, to implement a fast
modular multiplication algorithm that run on both Nvidia and ATI using the OpenCL capabilities
of OS X3. This implementation can be used on any system as long as it is able to run OpenCL
programs/software. Both ATI4 and Nvidia5 are working on developing OpenCL support for their
products, so it looks like there will be wide support of OpenCL on different operation systems
soon. In most papers from the later years on related work, we see that CUDA is the method that
is used the most.

2.1 GPU computing power
Adrin Boeing did in 2008 a survey of the current state of cryptographic function implementations
on GPGPUs(General-Purpose computation on Graphics Processing Units) [1]. He did not limit
his finding to just Nvidia but included hardware from other vendors as well, ATI/AMD, Intel and
IBM/Sony/Toshiba. He created a table that showed the performance at the time of the survey.
Table 1 on Page 4 shows the details of his findings.

GPU’s have improved significantly since the survey was conducted. ATI, Nvidia and Intel have
done much work on further developing their GPU platforms. ATI has released their next gener-
ation GPU the ATI RadeonTM HD 5800 Series6 with a promise of processing power (single pre-
cision): 2.72 TeraFLOPS and processing power (double precision): 544 GigaFLOPS for the 5870
model. This is a huge leap forward from the 1.2 TeraFLOPS of the old 4870 model as shown in
Boeing’s survey in Table 1 on Page 4. Nvidia is working on its next generation CUDA Architecture
called Fermi7 they promise up to 512 CUDA cores in one GPU. Maybe the most interesting news
in this GPU architecture is the support for concurrent kernel execution, where different kernels
of the same application context can execute on the GPU at the same time. Concurrent kernel
execution allows programs that execute a number of small kernels to utilize the whole GPU8.
So the news from the two largest GPU manufactures tells of an exciting time to come for GPU

1http://www.nvidia.com/object/cuda_home.html#
2http://developer.amd.com/gpu/ATIStreamSDK/Pages/default.aspx
3http://www.apple.com/macosx/
4http://ati.amd.com/technology/streamcomputing/opencl.html
5http://www.nvidia.com/object/cuda_opencl.html
6http://www.amd.com/us/products/desktop/graphics/ati-radeon-hd-5000/hd-5870/Pages/ati-radeon-hd-5870-

specifications.aspx
7http://www.nvidia.com/object/fermi_architecture.html
8http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf
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Technology Specifications Peak billion
operations
per second

Nvidia GTX 280 30 (cores) * 8 (SIMD units) * 3 (op-
erations per unit) * 1300 MHz (clock
speed)

936

ATI/AMD Radeon 4870 10 (cores) * 16 (SIMD units) * 10 (op-
erations per unit) * 750 MHz (clock
speed)

1200

Sony, Toshiba, IBM CELL 8 (SPE cores) * 4 (SIMD units) * 2
(operations per unit) * 4 GHz (clock
speed)

256

Intel Larrabee (predicted) 32 (cpu cores) * 16 (SIMD units) * 2
(operations per unit) * 2 GHz (clock
speed)

2000

Intel, Core 2 E7200 2 (CPU cores) * 4 (SIMD units) * 2 (op-
erations per unit) * 2.53 GHz (clock
speed)

40

Table 1: Peak performance characteristics of computing technology

based performance and the use of GPU calculations in end user applications, and not just game
performance.

2.2 Modular multiplication and RSA
From [2] we can find that the work of modular arithmetic is very old.

Original works on modular arithmetic are very old. The Chinese Remainder Theorem was first
proposed around the fifth century by Sun Tsu [3] But the use of this arithmetic to represent
numbers was introduced only in 1959 by H.L. Garner [4].

Peter Lawrence Montgomery is an American mathematician who is widely published in the math-
ematical end of the field of cryptography.

Montgomery’s Modular Multiplication Algorithm [5]:
{Pre − condition : 0 ≤ A < rn}

R := 0 ;
For i := 0 to n-1 do
Begin
R := R + ai ∗ B;
qi := (−r0m

−1
0 ) mod r ; R := (R + qi ∗M) div r;

Invariant : 0 ≤ R < M + B

End
{ Post-condition: Rrn = A ∗ B +Q ∗M and, consequently, R ≡ (A ∗ B ∗ r−n ) mod M }
Define an N-residue to be a residue class modulo N. Select a radix R coprime to N such that
R > N and such that computations modulo R are inexpensive. Let iR−1 and N ′ be integers
satisfying 0 < R−1 < N and 0 < N ′ < R and RR−1 - NN’ = 1.

If we define Ai =
∑n−1
j=i ajr

j−i so that Ai = rAi+1 + ai and use similar notation for Qi then it
is easy to prove by induction that at the end of the ith iteration R = AixB − QixM. Hence the

4
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post-condition holds.
Many others have built on this algorithm to produce a smaller and faster way of doing mod-

ular multiplication.
A Residue Number System (RNS) represents a large integer using a set of smaller integers, so

that computation may be performed more efficiently. It relies on the Chinese remainder theorem
of modular arithmetic for its operation, a mathematical idea from Sun Tsu Suan-Ching (Master
Sun’s Arithmetic Manual) in the 4th century AD.

A residue number system is defined by a set of N integer constants, {m1,m2,m3, . . . ,mn},
referred to as the moduli. Let M be the least common multiple of all themi. Any arbitrary integer
X smaller than M can be represented in the defined residue number system as a set of N smaller
integers {x1, x2, x3, . . . , xN} with xi = X modulo mi representing the residue class of X to that
modulus. Note that for maximum representational efficiency it is imperative that all the moduli
are coprime, that is, no modulus may have a common factor with any other. M is then the product
of all themi. The main interest of the Residue Number Systems is to distribute integer operations
on evaluations with the residues values. Thus an operation with large integers is made on the
residues which are small numbers and where computations can be executed independently for
each modulo allowing a complete parallelization of the calculus.

Mixed radix numeral systems are non-standard positional numeral systems in which the nu-
merical base varies from position to position. Such numerical representation is advantageous
when representing units that are equivalent to each other, but not by the same ratio. For example,
32 weeks, 5 days, 7 hours, 45 minutes, 15 seconds, and 500 milliseconds might be rendered rel-
ative to minutes in mixed-radix notation as:
3252577244560.15605001000

There are a number of ways to convert a number in one base (radix) to the equivalent number
in another base. The standard techniques are all variations on three basic methods. The most
straightforward technique is perhaps the expansion method. Suppose we wish to convert the
binary number 10101.1 to decimal. We may do so merely by using the definition of a number
representation as an abbreviated polynomial, Thus, we may write
10101.12 = 1x2

4 + 0x23 + 1x22 + 0x21 + 1x20 + 1x2−1

= 16+ 0+ 4+ 0+ 1+ 0.5

= 21.510

But suppose we wish to go the other way. How would we convert 21.510 to binary? Writing
21.510 = 2x101 + 1x100 + 5x10−1 does not seem to be of much help. But look at what we get
when we write this polynomial in binary notation (1010 = 10102 and 510 = 1012, of course):
21.510 = (2x101 + 1x100 + 5x10−1)10

= (10x10101 + 1x10100 + 101x1010−1)2

= (10100+ 1+ 0.1)2

= 10101.12

The above examples illustrate an important fact about the conversion techniques that we will
examine—namely, that they may be used to convert from any base to any other base. This is
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important to remember, particularly because many texts show conversion from radix-a to radix-b
being done one way, and conversion from radix-b to radix-a being done another, the implication
being that the methods of conversion are fundamentally asymmetric.

The Chinese remainder theorem is a result about congruences in number theory and it’s gen-
eralizations in abstract algebra. The original form of the theorem, contained in a third-century
AD book Sun Zi suanjing (The Mathematical Classic by Sun Zi) by Chinese mathematician Sun
Tzu and later republished in a 1247 book by Qin Jiushao, the Shushu Jiuzhang (Mathematical
Treatise in Nine Sections) is a statement about simultaneous congruences (see modular arith-
metic). Suppose n1, n2,. . . ,nk are positive integers which are pairwise coprime. Then, for any
given integers a1, a2, . . . , ak, there exists an integer x solving the system of simultaneous con-
gruences
X ≡ a1 (mod n1)
X ≡ a2 (mod n2)
...
X ≡ ak (mod nk)
Furthermore, all solutions x to this system are congruent modulo the product N = n1n2. . .nk.
Hence X ≡ y (mod ni) for all 1 ≤ i ≤ k, if and only if X ≡ y (mod N).
Sometimes, the simultaneous congruences can be solved even if the ni’s are not pairwise coprime.
A solution x exists if and only if:
ai ≡ aj (mod gcd(ni, nj)) for all i and j.
All solutions x are then congruent modulo the least common multiple of the ni.

In mathematics, a Mersenne number is a positive integer that is one less than a power of two:
Mp = 2p − 1

Some definitions of Mersenne numbers require that the exponent p be prime. A Mersenne prime
is a Mersenne number that is prime.

In [6] the authors outlines 5 different ways to implement a fast modular multiplication al-
gorithm:

• Modular Multiplication Using Montgomery’s Technique

• Modular Multiplication in Residue Number Systems (RNS)

• Base Extension Using a Mixed Radix System (MRS)

• Base Extension Using the Chinese Remainder Theorem (CRT)

• Multiplication Modulo Generalized Mersenne Primes

There has been extensive work done in the area of modular multiplication Bajard et al.[2,
7, 8, 9, 10, 11, 12, 13] has done extensive work using different approaches to speed up the
modular multiplication. In [14] Bajard et al. implemented RSA using RNS this was the first
implementation of RSA in RNS which do not require any conversion, either from radix to RNS
beforehand or RNS to radix afterward. The proposed algorithms have a high parallelization
possibility when implemented in either software or hardware. Wu et al. [15] are focusing on how

6
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to use the Chinese Remainder Theorem and Montgomery’s Modular Multiplication Algorithm in
the design of a circuits that are able of modular multiplication in parallel. Colin D. Walter [16]
focuses on designing a chip that is able to perform modular multiplication in parallel.

2.3 Modular multiplication on a GPU
In [17] the authors were focusing on using Residue Number System(RNS) with standard val-
ues of N, that is taking N as a 1024-bit number. They also touch on the Chinese Remainder
Theorem(CRT) with the statement that this theorem can accelerate the public and private key
operations of RSA. They stop at this statement and do not provide any further proof or refer-
ences. Instead they focus on using RNS, continuing to implement modular exponentiation with 5
different attempts to create a fast method of doing modular exponentiation. There was no CUDA
on the market when they did their research so the used OpenGL to implement the programs
to run their simulations. Moss et al. [17] came to a conclusion based on their experiments that
there is a:

overhead imposed by OpenGL and transfer of data to and from the accelerator(GPU).

This finding is supported by the recommendation B1 from Szerwinski et al.[6] that is listed
below.

In [6] the authors provide a valuable list that shows some of the key areas in how to create a
fast implementation. This list shows key points in making code run fast on a GPU:

Maximize use of available processing power

A1 Maximize independent parallelism in the algorithm to enable easy partitioning in threads
and blocks.

A2 Keep resource usage low to allow concurrent execution of as many threads as possible,
i.e., use only a small number of registers per thread and shared memory per block.

A3 Maximize arithmetic intensity, i.e., match the arithmetic to band- width ratio to the GPU
design philosophy: GPUs spend their transistors on ALUs, not caches. Bearing this in mind
allows to hide memory access latency by the use of independent computations (latency
hiding). Examples include using arithmetic instructions with high throughput as well as
re-computing values instead of saving them for later use.

A4 Avoid divergent threads in the same warp.

Maximize use of available memory bandwidth

B1 Avoid memory transfers between host and device by shifting more computations from the
host to the GPU.

B2 Use shared memory instead of global memory for variables.

B3 Use constant or texture memory instead of global memory for constants.

B4 Coalesce global memory accesses, i.e., choose access patterns that allow to combine sev-
eral accesses in the same warp to one, wider access.

B5 Avoid bank conflicts when utilizing shared memory, i.e., choose patterns that result in the
access of different banks per warp.

B6 Match access patterns for constant and texture memory to the cache design.

7
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Figure 1: Performance of Nvidia GPU vs Intel CPU

Szerwinski et al.[6] selected to use a combination of CRT-RNS as their choice to produce a
implementation using CUDA. The HW was a Nvidia 8800GTS GPU. The paper concludes with
performance numbers showing that their work resulted in a fast implementation that out per-
formed earlier work done by others. But they do not include any source code so we can test their
findings. They do not say if they used single precision or double precision. Current Nvidia GPUs
have double precision support, but it is 8-10 times slower than single precision. This slowdown
in speed is documented in the Nvidia Tesla C1060 documentation9, there is a similar slowdown
for the other Nvidia products.

Harrison & Waldron [18] have implemented RSA using CUDA on a Nvidia 8800GTX GPU.
They also touch different ways of doing modular multiplications, but they clearly state that they
use single precision in their implementation. They choose to try RNS-CRT like Szerwinski and
Guneysu[6] to show performance numbers that support their claim that the GPU implementation
outperform a CPU implementation. Both these papers use the Nvidia G80 series of GPU. The
G200 series of Nvidia GPU’s has more cores than the G80 series and it would be interesting
to test if the conclusions from their papers will be different on a GPU with more cores. More
specifically, the GPU is especially well-suited to address problems that can be expressed as data-

9http://www.siliconmechanics.com/files/TeslaPSCDatasheet.pdf
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parallel computations. So if the program is written in a way that can fully utilize the GPU and
all its cores, then the more cores the GPU has the faster the program will run. This will not scale
linearly but if the program is well written and the problem is well-suited to run in parallel, there
will be an increase in performance with more cores.

From the papers published in this field there is an improvement of performance for every new
paper, the main focus of the papers in the most recent years is to try to implement the modu-
lar multiplication in RSA using RNS with the combination of CRT-RNS. The chosen method of
implementation does not vary much. The one thing that does change in the papers is the hard-
ware used to implement the modular exponentiation. This can lead to some of the performance
gain shown in the papers. As you can see from the Figure 1 on Page 8 there has been a huge
development of GPU performance 10.

10http://developer.download.nvidia.com/compute/cuda/2_3/toolkit/docs/NVIDIA_CUDA_Programming_Guide_2.3.pdf
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3 Theoretical Analysis

This chapter includes some of the possibilities of how to solve modular arthritic. The algorithms
need to be studied to see if any of them is suited for use on a GPU, the factors to look out for is
parallelism and if the algorithm is suited for SIMD(Single instruction, multiple data).

In the following sections we will give different ways to realize modular arithmetic efficiently,
i.e. ways to compute addition, subtraction and multiplication modulo m, where m is called the
modulus. RSA uses modulo N, where N is the product of two large primes p and q: N = p ∗ q.

3.1 Multiplication Using Montgomery’s Technique
In [19] C Kaya Koc et al. has described five different algorithms for doing multiplication using
Montgomery. The algorithms showed in the paper is:

• Separated Operand Scanning(SOS).

• Coarsely Integrated Operand Scanning(CIOS).

• Finely Integrated Operand Scanning(FIOS).

• Finely Integrated Product Scanning(FIPS).

• Coarsely Integrated Hybrid Scanning(CIHS).

The Montgomery multiplication algorithm speeds up the modular multiplications and squaring
required for exponentiation. It computes the Montgomery product

MonPro(a,b)=abr−1 mod n

given a,b < n and r such that the greatest common denominator (n,r) =1.

To describe the Montgomery reduction algorithm, we need an additional quantity, n’, the in-
teger with property rr−1 nn’=1. We can compute both integers r−1 and n’ with the extended
Euclidean algorithm. We compute MonPro(a,b) as follows: function ModPro(a,b)

t:=ab

u:=[t+(tn’ mod r)n]/r

if u >= n then return u-n, else return u

However, we did not take into account the space required to keep the input and output values
a,b,n,n0’, and u

3.1.1 Separated Operand Scanning(SOS)
In this method they use four steps to compute the final values.

t=0
for i = 0 to s -1

C:= 0
for j = 0 to s-1

(C,S):=t[i +j] +a[j]b[i]+C

11
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t[i + j] := S
t[i + s]:=C

This first loop computes the product a b where we initially assume t to be zero.

for i = 0 to s - 1
C:=0
m:=t[i]n’[0] mod W
for j = 0 to s -1

(C,S):=t[i + j] + mn[j] + C
t[i + j]:= S

ADD(t[i + s],C)

W = 2w

The ADD function in this segment performs a carry propagation that adds C to the input array
given by the first argument, starting from the first element(t[i+s]) and propagating it until it
generates no further carry. The Add function is necessary for carry propagation up to the last
word of t, which increases the size of t to 2s words and a single bit.

This second loop updates t to compute t + m*n.

for j = 0 to s
u[j]:= t[j + s]

We then divide the computed value of t by r, by simply ignoring the lower s words of t.

B:=0
for i = 0 to s - 1

(B,D):=u[i] - n[i] - B
t[i]:=D

(B,D):=u[s] - B
t[s]:=D
if B:=0 then return t[0],t[1],...,t[s -1]

else return u[0],u[1],...,u[s -1]

Finally we obtain the number u in s+1 words. The algorithm then performs the multi precision
subtraction from step 3 of MonPro to reduce u if necessary. This is the same way for all five
algorithms.

A brief inspection of the SOS method, shows that it requires 2s2 +s multiplications, 4s + 4s +
2 additions, 6s2+ 7s + 3 reads, and 2s2+ 6s + 2 writes. Furthermore, the SOS method requires
a total of 2s + 2 words for temporary results, which store the (2s + 1) word array t and the
one-word variable m. Figure 2 on Page 13 illustrates the SOS method for s = 4.

We define n ′
0 as the inverse of the least significant word of n modulo 2w that is, n ′

0 = n−1
0 (mod

2w). We can compute it using a very simple algorithm from Duss and Kaliki[20]. Furthermore,
the reason for separating the product computation ab from the rest of the steps for computing
u is that when a = b, we can optimize the Montgomery multiplication algorithm for squaring.
This optimization allows us to skip almost half the single-precision multiplications, since aiaj =
ajai. To perform optimized Montgomery squaring, we replace the first part of the Montgomery
multiplication algorithm with the following simple code:

12
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Figure 2: SOS method for s = 4. The algorithm first performs multiplication operation t=ab(a); it then
multiplies n ′

0, by each word of t to find m(b); it obtains the final result by adding the shifted nm to t(c).

for i= 0 to s - 1
(C,S):= t[i + i] + a[i]a[i]
for j = i + 1 to s - 1

(C,S):= t[i+j] + 2a[j]a[i] + C
t[i+j]:= S

t[i+S] := c

One tricky part here is that value 2a[j]a[i] requires more than two words for storage. If the
C value does not have an extra bit, one way to deal with this is to rewrite the loop to add the
a[j]a[i] terms first,without multiplication by 2. The algorithm can then double the result and add
in the a[i]a[i] terms.

3.1.2 Coarsely Integrated Operand Scanning(CIOS)
CIOS improves on SOS by integrating the multiplication and reduction steps. Specifically, instead
of computing the entire product ab and then reducing, it alternates between iterations of the
outer loops for multiplication and reduction. This is possible because the value of m in the
ith iteration of the outer loop for reduction depends only on value t[i], which is completely
computed by the ith iteration of the outer loop for multiplication. This leads to the following
algorithm:

for i = 0 to s - 1
C:=0
for j=0 to s - 1

(C,S) := t[j] + a[j]b[i] + C
t[j]:= S

(C,S):= t[s] + C
t[s]:= S
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t[s + 1] := C
C := 0
m := t[0]n’[0] mod W
for j = 1 to s - 1

(C,S) := t[j] +mn[j] + C
t[j]:= S

(C,S):=t[s] + C
t[s]:= S
t[s +1]:=t[s + 1] + C
for j=0 to s

t[j]:=[j + 1]

For a slight improvement, they integrate the shifting into the reduction as follows:

m := t[O]n’[O]mod W
(C,S) := t[0] + mn[o]
for j = 1 to s- 1

(C,S) := t[j] + mn[j] + C
t[j-1] := S

(C,S):= t[s] + C
t[s-1]:=S
t[s]:= t[s+1] + C

The CIOS method (with the slight improvement) requires 2s2 + s multiplications, 4s2 + 4s + 2
additions, 6s2 + 7s + 2 reads, and 2s2 + 5s + 1 writes, including the final multi precision sub-
traction. It uses s+ 3 words of memory space, a significant improvement over the SOS method.
In [20] S. R. Dusse et al. developed a cryptographic library for Motorola DSP56000 digital signal
processor, the library contains three improvements of the CIOS method. In [21] M. McLoone et
al. present a generic CIOS architecture that provides high speed Montgomery modular multi-
plication. This paper describes how to use CIOS with multiple operand sizes and achieve a high
throughput. K. Zhao used in [22] CIOS as a comparison to a Karatsuba Montgomery multiplica-
tion. The Karatsuba [23] algorithm is an efficient procedure for multiplying large numbers that
was discovered by Anatolii Alexeevitch Karatsuba in 1960 and published in 1962.

3.1.3 Finely Integrated Operand Scanning(FIOS)

FIOS integrates the two inner loops of the CIOS method into one by computing the multiplica-
tions and additions in the same loop. The algorithm computes multiplications ajbi and mnj in
the same loop and then adds them to form the final t. In this case, the algorithm must compute
t0 before entering the loop, since m depends on this value. This corresponds to unrolling the first
iteration of the loop for i = 0.

for i= 0 to s - 1
(C,S):= t[0] + a[O]b[i]
ADD(t[1],C)
m:=Sn’[0] mod W
(C,S):=S + mn[0]

The algorithm computes partial products of ab one by one for each value of i,then adds mn to
the partial product. It then shifts this sum right one word, making t ready for the next i iteration.

14
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Figure 3: An iteration of the FIOS method. The computation of partial product t(0)= a ∗ b, (a) enables
computation of m(i) in that iteration. The algorithm then finds an intermediate result t(j+1) by adding
n ∗m(i) to this partial product (b).

for j= 1 to s - 1
(C,S):= t[j] + a[j]b[i] + C
ADD(t[j + 1],C)
(C,S):=S +mn[j]
t[j - 1]:=S

(C,S):=t[s] + C
t[s - 1]:=S
t[s]:=t[s + 1] + C
t[s + 1]:=0

This method differs from CIOS in that it has only one inner loop. Figure 3 on Page 15 illus-
trates the algorithm for s = 4. The FIOS method requires 2s2 + s multiplications, 5s2 + 3s +
2 additions, 7s2 + 5s + 2 reads, and 3s2 + 4s + 1 writes, including the final multi precision
subtraction. This is about 2s more additions, writes and reads than the CIOS uses. Fan et al. [24]
used FIOS on an programable multi core system to speed up montgomery multiplications using
Very Long Instruction Word (VLIW) processor as a prototype.

3.1.4 Finely Integrated Product Scanning(FIPS)
FIPS interleaves computations ab and mn, but here both computations are in the product scan-
ning form. The method keeps the values of m and u in the same s-word array m.

for i = O to s - l
for j = 0 to i- 1
(C,S) = l[O] + a[j]b[i - j]
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ADD(t[1],C)
(C,S):=S+m[j]n[i-j]
t[0]:=S
ADD(t[1],C)

(C,S):=t[0] + a[i]b[0]
ADD(t[1],C)
m[i]:=Sn’[0] mod W
(C,S):=S + m[i]n[0]
ADD(t[1],C)
t[0]:=t[1]
t[1]:=t[2]
t[2]:=0

This loop computes the ith word of m using n ′
0, and then adds the least significant word of

mn to t.

for i = s to 2s -1
for j = i - s + 1 to s - 1

(c,S):=t[0] + a[j]b[i - j]
ADD(t[1],C)
(C,S):=S + m[j]n[i - j]
t[0]:=S
ADD(t[1],C)

m[i - s]:=t[0]
t[0]:=t[1]
t[1]:=t[2]
t[2]:=0

This loop completes the computation by forming the final result u’ word in the memory space
of m. The FIPS method requires 2s2 + s multiplications, 6s2 + 2s + 2 additions, 9s2 + 8s + 2
reads and 5s2 + 8s + 1 writes. The FIPS method requires s + 3 words of space.

3.1.5 Coarsely Integrated Hybrid Scanning(CIHS)
This method is a modification of the SOS method. It is called hybrid scanning method because it
mixes the product-scanning method with the operand-scanning method.

for i = 0 to s - 1
C:= 0
for j = 0 to s - i - 1

(C,S):= t[i +j] + a[j]b]i + C
t[i + j]:=S

(C,S):=t[s] + C
t[s]:=S
t[s +1 ]:= C

This first stage computes (n - j) words of the jth partial product of ab and adds them to t.

for i = 0 to s - 1
m:=t[0]n’[0] mod W
(C,S):= t[0] + mn[0]
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Method Multiplications Additions Reads Writes Space
SOS 2s2+s 4s2+4s+2 6s2+7s+3 2s2+6s+2 2s+2
CIOS 2s2+s 4s2+4s+2 6s2+7s+2 2s2+5s+1 s+3
FIOS 2s2+s 5s2+3s+2 7s2+5s+2 3s2+4s+1 s+3
FIPS 2s2+s 6s2+2s+2 9s2+8s+2 5s2+8s+1 s+3
CIHS 2s2+s 4s2+4s+2 6.5s2+6.5s+2 3s2+5s+1 s+3

Table 2: Multiplication Using Montgomery’s Technique time and space requirements of the methods.

for j = 1 to s - 1
(C,S):=t[j] + mn[j] +C
t[j -1]:=S

(C,S):=t[s] + C
t[s -1]:=S
t[s]:=t[s + 1] + C
t[s + 1]=0

Then we interleave multiplication mn with addition ab + mn. It divides by r by shifting one word
at a time within the i loop Since m is one word long and product mn+C is two words long, total
sum t+mn needs at most s + 2 words.

for j = i + 1 to s - 1
(C,S):=T[s - 1] + b[j]a[s - j + i]
t[s -1]:=S
(C,S):=t[s] + C
t[s]:=S
t[s + 1]:=C

This computes the (s + i)th word of ab.
CIHS requires 2s2 + s multiplications. However, the number of additions decreases to 4s2 +

4s + 2. The number of reads is 6.5s2 + 6.5s + 2, and the number of writes is 3s2 + 5s + 1. As
we mentioned earlier, this algorithm requires s + 3 words of temporary space.

3.1.6 Selecting the most promising method
From the sections above we can summarize the methods as showed in Table 2 on Page 17 the
method that promises the fewest calculations is the CIOS method. CIOS is also a method that has
a structure suitable for SIMD. This method is a good starting point to implement the experiments
from.

3.2 Modular Arithmetic in Residue Number Systems

Advantages of residue number systems are easy parallelism, which are a result from the carry-free
arithmetic and the possibility to implement multiplication without computation of sub-products.
Section 2.2 introduces RNS and some of the notations used. In this section algorithms used in
RNS are further analyzed to locate potential algorithms to use in an implementation. Following
the argument given in [14], we assume that all currently available cryptographic protocols could
be easily adopted to use RNS encoding directly and thus we disregard ways to convert between
RNS and the commonly used radix-b representation. However, the advantages stated above do
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not come for free: division, and as a result reduction modulo some arbitrary modulus M, is hard
in residue number systems and sophisticated algorithms are needed. Almost all papers focus on
hardware implementation and cannot be translated into a SIMD model without loosing at least
some of their benefits.

3.2.1 Modular Multiplication Techniques
From Bajard et al. [14] we find RNS algorithms used to implement a full RSA implementation
using RNS.

Let us briefly recall the principles of Montgomery’s techniques. Given two integers R;N such
that gcd(R,N)=1, and 0 ≤ x < RN, the Montgomery reduction technique evaluates xR−1 mod
N by computing the value q < R such that x + qN is a ultiple of R.

Algorithm 1 MM(a,b,N), RNS Montgomary Multiplication

Input: Two RNS bases β = (m1, · · · ,mk), and β ′ = (mk+1, · · · ,m2k), such that M=
∏k
i=1mi,

M ′ =
∏k
i=1mk+i and gcd(M,M’)=1; a redundant modulus mr, gcd(mr,mi)=1, ∀i = 1 · · · 2k; a

positive integer N represented in RNS in both bases and for mr such that two positive integers
a,b represented in RNS in both bases and for mr, with ab<MN.
Output: a positive integer r̂ represented in RNS in both bases and mr, such that r̂ ≡
abM−1(modN), and r̂<(k + 2)N.

t=ab in β ∪ β ′∪ mr
q=t(−n−1) in β

[q in β]→ [q̂ in β∪mr]
r̂ = (t + q̂N)M−1 in β ′∪mr
[r̂ in β]← [r̂ in β’]

Algorithm 1 summarizes the computations of the RNS Montgomery multiplication. It computes
the Montgomery product abM−1 mod N, where a,b, and N are represented in RNS in both bases
β and β’. β and β’ is defined as β = m1, ldots, mk and β’=mk+1,. . .,m2k.

Algorithm 2 First (approximated) RNS Base extension
Input: ( q1, · · · , qk), the RNS representation of q in the base β,
Output: (q̂k+1, · · · , q̂2k) and q̂r, the RNS representation of q̂ in β ′∪mr.
σi = qi |M

−1
i |mi

mod mi

t0 = 0

for i = 1· · · k do

ti=(ti−1 + σi|Mi|mj
) mod mi

q̂j=tk

In [25] J. Yang et al. builds on P. Leong et al. algorithms in [26] to implement an algorithm
for modular multiplication using RNS.
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Algorithm 3 Second RNS Base extension
Input: (r̂k+1, · · · , r̂2k) and r̂r, the RNS representation of r̂ in β ′∪mr
Output: (r̂1, · · · , r̂k), the RNS representation of r̂ in β.
ξj = r̂j|M

t−1
j |mj

mod mj

t0 = 0

for j = 1 · · · k do

tj = (tj−1 + ξk+1|M
′
j |mr

) mod mr

β = |Mt−1|mr
(tk − |̂r|mr

) mod mr

t0 ← 0

for j = 1 · · · k do

tj = (tj−1 + ξk+j|M
′
j |mi

) mod mi

r̂i = (tk − |βM ′|mi
) mod mi

First, we convert x, 2w, 2n, and 2n+j to RNS representations with the selected moduli, where j
= 0, 1, . . . , w. Note that the RNS representations of 2w, 2n, and 2n+j can be precomputed and
stored in a table such that the conversion cost can be reduced. The inputs of our algorithm, x
and y, are expressed in RNS and the binary system representations, respectively. Besides, the
output value z is expressed in binary system. The algorithm is shown as follows:

Input: (x: is expressed in RNS, y: is expressed in binary system)

Output: z: is expressed in RNS.

Set z = 0 expressed in RNS.

Divide the binary representation of y into dn/we parts and each part is denoted as yi.
Convert each yi into an RNS representation.

Compute z = x ·RNS yi +RNS z ·RNS 2w, where i = dn/we.

Set j=0.

Compute h(z’). If h(z’) = n + j, compute z = z
−RNS2

n+j
+RNSd[j]

Compute h(z’) again. If h(z’) = n, let z = z
−RNS2

n+j
+RNSd[0]

Compute j=j+1. If j≤w, go to Step 5.

Compute i=i-1. If i>0, go to Step 3.

Convert z into the binary system. If z ≥ N, compute z = (z + 2n - N) mod 2n.

In Step 2, yi is a partial binary representation of y. For example, if the binary representation
of y is (110011)2 and w = 3, we have y2 = (110)2 and y1 = (011)2. We must convert each
yi into its corresponding RNS representation with the selected moduli. However, the RNS
representation of each yi can be also precomputed and stored. In the simplified case (i.e., w
= 1), it requires no cost to convert yi’s into RNS representations since all RNS digits of yi can
be directly set to be 0 or 1 (i.e., yi = (0,0,...,0) or (1,1,...,1).
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Based on the work by Posch et al. [27], Kawamura et al. [28] created new base extension
algorithm, which plays an important role in an RNS Montgomery multiplication. This new ex-
tension in turn got slightly changed by Bajard et al. [29, 11] later. The latter technique is given
in Algorithm 4 . While Posch et al. [27] needed additional correction steps because of the under-
lying primitives, Kawamura uses accurate algorithms and adds some restrictions regarding the
dynamic range needed to compute consecutive multiplications.

Algorithm 4 Modular Multiplication Algorithm for Residue Number Systems
Require: A modulus M, two RNS bases A and B, composed of n distinct moduli mi each, i.e.
A = (m0,m1, . . . ,mn−1) and B = (mn,mn+1, ...,m2n−1), with respective dynamic ranges A
=
∏n−1
i=0 mi and B =

∏2n−1
i=n mi, gcd(A, B) = gcd(A,M) = 1 and B > A > 4M. Two factors

X and Y, 0 leq X,Y < 2M, encoded in both bases and in Montgomery form, i.e. 〈X〉A∪B and
〈Y〉A∪B, X = xA (mod M) and Y = yA (mod M).

Ensure: The product C = XYA−1 (mod M), 0 leq C < 2M, in both bases and Montgomery
form, i.e. 〈C〉A∪B and C = xyA (mod M).

1: 〈u〉A∪B ← 〈X〉A∪B ∗ 〈Y〉A∪B

2: 〈f〉A ← 〈u〉A ∗ 〈−M−1〉A
3: 〈f〉A∪B ← BaseExtend(〈f〉A)
4: 〈u〉B ← 〈u〉B + 〈f〉B.〈M〉B 〈u〉A = 0 by construction

5: 〈w〉B ← 〈v〉B ∗ 〈A−1〉B
6: 〈w〉A∪B ← BaseExtend(〈w〉B)
7: return 〈w〉A∪B

Freking et al. [30] created a sequential RNS Montgomery Modular Multiplication algorithm
integrating mixed-radix conversion to speed up the the base extension used in [27].

Computations in residue number systems yield the advantage of being inherently parallel.
According to Algorithm 4 all steps are computed in one base only, except for the first multiplica-
tion. Thus, the optimal mapping of computations to threads is as follows: each thread determines
values for one modulus in the two bases. As a result, we have coarse-grained (different exponen-
tiations) and fine grained parallelism (base size), fulfilling Criterion A1 ref. 2.3. We call n’ the
number of residues that can be computed in parallel, i.e., the number of threads per encryption.
The base extension by Shenoy et al. [31] needs a redundant residue starting from the first base
extension to be able to compute the second base extension.

3.2.2 Base Extension Using a Mixed Radix System

Assume we have the RNS representation of some integer x in base
A = (m0,m1. . . . ,mn−1), 〈X〉A = 〈|X|m0

, |X|m1
, . . . , |X|mn−1

〉A
and want to compute the representation in another base
B = (mn,mn+1. . . . ,m2n−1), 〈X〉B = 〈|X|mn

, |X|mn+1
, . . . , |X|m2n−1

〉B
One possibility to achieve this efficiently is to derive the mixed radix system (MRS) representa-
tion of x first and compute the residues modulo the target base afterwards.
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Conversion to Mixed Radix System
Szab and Tanaka in their book about residue arithmetic [32] describe base extension algorithms.
Assume we define a mixed residue system using the base (m0,m1, ...,mn−2), i.e. directly match-
ing the source RNS (m0,m1, ...,mn−2,mn−1). Let the mixed radix representation of x be 〈〈Xn−1, Xn−2, . . . , X0〉〉.
Then the following equation holds:

x = xn−1mn−2mn−3 . . .m2m1m0+xn−2mn−3mn−4 . . .m2m1m0+. . .+x3m2m1m0+x2m1m0+

x0

Now further assume that xi < mi for all i. Observe that x0 = |x|m0
, i.e. the first digit of the

MRS representation equals the first residue in the RNS representation of x. By subtracting this
digit from the second residue of the RNS we obtain

|x − x0|m1
= |x1m0|m1

.
Thus, we can compute the next MRS digit x1 by multiplying |x− x0|m1

with the multiplicative
inverse of m0 modulo m1.

||x − x0|m1
∗ |m−1

0 |m1
|m1

= |x1m0 ∗m−1
0 |m1

= |x1|m1
= x1

Each following MRS digit can be attained using a similar approach, for example the next digit
x2 can be derived by using all the previous steps for the third RNS digit |x|m2

, subtracting x1
and multiplying with |m−1

1 |m2
:

||x|m2
− |x0|m2

|m2
= |x2m1m0 + x1m0|m2

||x − x0|m2
∗ |m−1

0 |m2
|m2

= |x2m1 + x1|m2

||(x − x0)m
−1
0 |m2

− |x1|m2
|m2

= |x2m1|m2

||(x − x0)m
−1
0 − x1|m2

∗m−1
1 |m2

|m2
= |x2|m2

= x2

Thus, the following recursive description can be used to compute all MRS digits:

|ϕ0|mi
= |x|mi

|ϕk+1|mi
= |(|ϕk|mi

− |xk|mi
) ∗ |m−1

k |mi
|mi

= |(|ϕk|mi
− |xk|mi

) −Ainvi,k |mi

x0 = |x|m0

xk+1 = |ϕk+1|mk+1

where k = 0,1,...,n - 2 and Ainvi,k = |m−1
k |mi

is a matrix of pre-computed constants. Note the
values needed to compute xk+1: it depends on ϕk+1, ϕk, . . . , ϕ0, but only the RNS digit with
index k + 1. The more MRS digits get computed the less RNS digits have to be taken into
account: at the start all RNS digits except the first one are involved in subtraction of the MRS
digit x0 and multiplication by the inverse of m0 modulo the respective RNS moduli, while the
next k-iteration only needs the lately computed MRS digit x1 and all RNS digits except the first
two. In other words, only the residues of ϕk+1, . . . , ϕ0 with indices i ≥ k have to be computed
in each iteration. This however is quite non-optimal for our SIMD model when using n tasks,
each handling one of the n residues of ϕk+1.

Conversion to RNS Using the Parallel Method

A common way of converting the MRS representation to RNS is the way described by Szab and
Tanaka[32]. From the Szab and Tanaka equations which holds for numbers encoded in the mixed
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radix system from above. When reducing this equation modulo one of the target moduli, saymi,
we have:

|x|mi
= |xn−1mn−2 . . .m0 + xn−2mn−3 . . .m0 + . . .+ x0|mi

= |xn−1mn−2 . . .m0|mi
+ |xn−2mn−3 . . .m0|mi

+ . . .+ |x0|mi

= ||xn−1|mi
|mn−2 . . .m0|mi

|mi
+ ||xn−2|mi

|mn−3 . . .m0|mi
|mi

+ . . .+ |x0|mi∣∣∣∑n−1
k=0

(
|xk|mi

∣∣∣∏k−1
µ=0mµ

∣∣∣
mi

)∣∣∣
mi

=
∣∣∣∑n−1

k=0

(
|xk|mk

Aprodi,k

)∣∣∣
mi

While this technique is highly parallelizable and fits very well to our SIMD architecture, it has
the disadvantage of using an n x n matrix of pre-computed values that need storage space and
require n2 look-ups for the full base extension from A to B.

Conversion to RNS Using the Serial Method

Bajard et al. describe a slight modification to the previous algorithm [33, 2]. This modification
computes the sum involved in each conversion serially, thus trading the n2 look-ups in the matrix
Aprodi,k for the inability to compute the sum in parallel. This means no particular disadvantage in
our case, as we want to use n threads, one for each target modulus, only.

Bajard et al. present further techniques to reduce the number of look-ups needed and to
shorten the relevant operands [33, 2].

3.2.3 Base Extension Using the Chinese Remainder Theorem

The Chinese remainder theorem is a result about congruences in number theory and it’s gener-
alizations in abstract algebra. This is an efficient way to compute all residues modulo the target
base, the instruction flow is highly uniform and fits our SIMD architecture well, i.e. we can use
n threads to compute the n residues of x in the target base in parallel. Harrison et al. [18] used
CRT in their paper to speed up their implementation.

Shenoy and Kumaresan’s Technique

In [31] Shenoy et al. presents a technique to extend the base of a residue number system (RNS)
based on the Chinese remainder theorem (CRT) and to use the redundant modulus. The tech-
nique obtains the residue(s) of a given number in the extended moduli without resorting to
the traditional mixed radix conversion (MRC) algorithm. The base extension can be achieved in
log2n table lookup cycles where n is the number of moduli in the RNS. Shenoy et al. demon-
strates the superiority of the technique compared in terms of latency and hardware requirements
to the traditional Szabo et al. [32] method.

Posch and Posch’s Technique
Posch and Posch describe a base extension algorithm that approximates using floating or fixed
point arithmetic [34]. This can be used in an approximate Chinese Remainder Reconstruction,
and is found to be a fast method. More precisely, they compute a weighted sum of all xk with the
weights wk < 1 being rational constants that only depend on the moduli mk:

α ′ =
∣∣∣∑n−1

k=0 xkwk

∣∣∣, with wk =

∣∣∣∣Â−1
k

∣∣∣∣
mk

mk
< 1
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Note that α is not principally upper-bounded by n.
In an approximate Chinese Remainder Reconstruction each term is calculated to a limited

floating point precision reducing both the amount of work done and the accuracy of the recon-
struction. Powell et al. [35] use this technique in their library for parallel modular arithmetic.
Among other things needed to implement RSA efficiently, Pearson [36] fundamentally describes
the same algorithm. However, his paper is not giving any reasoning or bounds involved and
states that, given a particular set of parameters, the algorithm outputs the correct value “almost
always”. The author claims that exceptional cases can be easily detected and corrected without
stating how this can be achieved.

Kawamura et al.’s Technique

Kawamura et al. [28] provide a new RNS base extension algorithm. Cox-Rower Architecture
described in this paper is a hardware suitable for the RNS Montgomery multiplication. In this ar-
chitecture, a base extension algorithm is executed in parallel by plural Rower units controlled by
a Cox unit. Each Rower unit is a single-precision modular multiplier-and-accumulator, whereas
Cox unit is typically a 7 bit adder. Transformation to and from radix representation is also covered
in the paper.

Bajard et al.’s Technique

Finally, Bajard et al. [8] follow the most radical approach possible: they simply compute no α at
all . The resulting value will still be equivalent to the exact value modulo M, but may include an
offset of up to (n - 1)M. This is possible due to the fact that α is strictly bounded by n. However,
this technique needs additional measures of precaution in the multiplication algorithm, which
predominantly condense in the higher dynamic ranges needed.
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4 Computing on the GPU

This chapter contains information on how to execute code on the GPU. There are many differ-
ent ways of doing this. In [37] Cook et al. uses the the OpenGL API to utilize the power of the
GPU to perform AES operations, S. Fleissner [38] implements Montgomery multiplications us-
ing OpenGL and OpenGL Shading Language. Other API that can be used includes DirectX Direct
Compute1 and ATI Close To Metal2. This chapter will be limited to the use of CUDA and OpenCL.
CUDA and OpenCL is the newest way of doing calculations using the GPU and is gaining pop-
ularity in the marked. AMD/ATI has closed their Close to Metal project and is fully committed
to using OpenCL as the way to use AMD/ATI in general computing using the GPU. CUDA is only
limited described and the inclusion of CUDA is only to show how similar CUDA is to OpenCL.
OpenCL is to be described in more detail as this is the programing API used to implement the
modular arthritic operations in this project.

4.1 CUDA

CUDA (an acronym for Compute Unified Device Architecture) is a parallel computing architec-
ture developed by NVIDIA. CUDA is the computing engine in NVIDIA graphics processing units
or GPUs that is accessible to software developers through industry standard programming lan-
guages. Programmers use ’C for CUDA’ (C with NVIDIA extensions), compiled through a Path-
Scale3 Open64 C compiler, to code algorithms for execution on the GPU. CUDA architecture
supports a range of computational interfaces including OpenCL and DirectCompute. Third party
wrappers are also available for Python, Fortran, Java and Matlab.

A CUDA program calls parallel kernels. A kernel executes in parallel across a set of parallel
threads. The programmer or compiler organizes these threads in thread blocks and grids of
thread blocks. The GPU instantiates a kernel program on a grid of parallel thread blocks. Each
thread within a thread block executes an instance of the kernel, and has a thread ID within its
thread block, program counter, registers, per-thread private memory, inputs, and output results.
A thread block is a set of concurrently executing threads that can cooperate among themselves
through barrier synchronization and shared memory. A thread block has a block ID within its
grid. A grid is an array of thread blocks that execute the same kernel, read inputs from global
memory, write results to global memory, and synchronize between dependent kernel calls. In the
CUDA parallel programming model, each thread has a per-thread private memory space used for
register spills, function calls, and C automatic array variables. Each thread block has a per-Block
shared memory space used for inter-thread communication, data sharing, and result sharing in
parallel algorithms. Grids of thread blocks share results in Global Memory space after kernel-
wide global synchronization. Figure 4 on Page 26 show the CUDA hierarchy.

1http://msdn.microsoft.com/en-us/directx/default.aspx
2http://developer.amd.com/media/gpu_assets/Hensley-Close_to_the_Metal(Siggraph07_GPGPUCourse).pdf
3http://www.pathscale.com/
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Figure 4: CUDA Hierarchy of threads, blocks, and grids, with corresponding per-thread private, per-block
shared, and per-application global memory spaces.

CUDA’s hierarchy of threads maps to a hierarchy of processors on the GPU; a GPU executes
one or more kernel grids; a streaming multiprocessor (SM) executes one or more thread blocks;
and CUDA cores and other execution units in the SM execute threads. The SM executes threads
in groups of 32 threads called a warp. While programmers can generally ignore warp execution
for functional correctness and think of programming one thread, they can greatly improve per-
formance by having threads in a warp execute the same code path and access memory in nearby
addresses.

The latest video drivers from Nvidia all contain the necessary CUDA components. CUDA works
with all NVIDIA GPUs from the G8X series onwards, including GeForce, Quadro and the Tesla
line. Nvidia states that programs developed for the GeForce 8 series will also work without modi-
fication on all future Nvidia video cards, due to binary compatibility. CUDA gives developers ac-
cess to the native instruction set and memory of the parallel computational elements in CUDA
GPUs. Using CUDA, the latest NVIDIA GPUs effectively become open architectures like CPUs. Un-
like CPUs however, GPUs have a parallel "many-core" architecture, each core capable of running
thousands of threads simultaneously - if an application is suited to this kind of an architecture,
the GPU can offer large performance benefits.

CUDA comes with a software environment that allows developers to use C as a high-level
programming language. As illustrated by Figure 5 on Page 27, other languages or application
programming interfaces will be supported, such as FORTRAN, C++, OpenCL, and DirectX Com-
pute.
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Figure 5: CUDA is Designed to Support Various Languages or Application Programming Interfaces

There have been many others that have done modular arithmetic using CUDA as the API to
use the GPU as the processing unit some examples can be found in [39, 18, 40, 6, 41].

4.2 OpenCL

4.2.1 Introduction

OpenCL (Open Computing Language) is an open royalty-free standard for general purpose par-
allel programming across CPUs, GPUs and other processors, giving software developers portable
and efficient access to the power of these heterogeneous processing platforms.

"OpenCL supports a wide range of applications, ranging from embedded and consumer soft-
ware to HPC solutions, through a low-level, high-performance, portable abstraction. By creating
an efficient, close-to-the-metal programming interface, OpenCL will form the foundation layer of
a parallel computing ecosystem of platform-independent tools, middleware and applications"4.

OpenCL consists of an API for coordinating parallel computation across heterogeneous pro-
cessors; and a cross-platform programming language with a well-specified computation environ-
ment. The OpenCL standard:

• Supports both data- and task-based parallel programming models

• Utilizes a subset of ISO C99 with extensions for parallelism

• Defines consistent numerical requirements based on IEEE 754

• Defines a configuration profile for handheld and embedded devices

• Efficiently interoperates with OpenGL, OpenGL ES, and other graphics APIs

The specification is divided into a core specification that any OpenCL compliant implementation
must support; a handheld/embedded profile which relaxes the OpenCL compliance requirements
for handheld and embedded devices; and a set of optional extensions that are likely to move into
the core specification in later revisions of the OpenCL specification.

OpenCL is being created by the Khronos Group5 with the participation of many industry-

4http://www.khronos.org/opencl/
5http://www.khronos.org/opencl/
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leading companies and institutions.

4.2.2 The Anatomy of OpenCL 1.0

The OpenCL 1.0 specification is made up of three main parts: the language specification, platform
layer API and runtime API.

The language specification describes the syntax and programming interface for writing com-
pute kernels that run on supported accelerators, such as GPUs and multi-core CPUs. The language
used is based on a subset of ISO C99. C was chosen as the basis for the first OpenCL compute
kernel language due to its prevalence and familiarity in the developer community. To foster con-
sistent results across different platforms, a well-defined IEEE 754 numerical accuracy is defined
for all floating point operations along with a rich set of built-in functions. The developer has the
option of pre-compiling their OpenCL compute kernel or letting the OpenCL runtime compile
their kernels on demand.

The platform layer API gives the developer access to routines that query for the number and
types of devices in the system. The developer can then select and initialize the necessary compute
devices to properly run their work load. It is at this layer that compute contexts and work-queues
for job submission and data transfer requests are created.

Finally, the runtime API allows the developer to queue up compute kernels for execution and
is responsible for managing the compute and memory resources in the OpenCL system.

Table 3 on Page 28, is a concise representation of the various parts of OpenCL.

OpenCL C
C-based cross-platform programming interface

Subset of ISO C99 with language extensions - familiar to developers
Well-defined numerical accuracy - IEEE 754 rounding behavior with defined maximum error

Online or offline compilation and build of compute kernel executables
Includes a rich set of built-in functions

OpenCL API
A hardware abstraction layer over diverse computational resources

Query, select and initialize compute devices Create compute contexts and work-queues
OpenCL Runtime

Execute compute kernels
Manage scheduling, compute, and memory resources

Table 3: Main parts of OpenCL

OpenCL C

OpenCL defines OpenCL C, which is a variant of the familiar C99 language optimized for GPU
programming. It incorporates changes necessary to adapt the C programming language for
use with GPUs and to support parallel processing. OpenCL C includes comprehensive support
for vector types to streamline data flow and increase efficiency. Well-defined numerical preci-
sion requirements (based on IEEE 754-2008) are specified to provide mathematical consistency
across the GPU hardware of different vendors. Developers use OpenCL C to rewrite just the
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Figure 6: Kernel executing as defined by OpenCL 1.0

performance- or data-intensive routines in their applications. During the rewrite, the routine is
factored down to its most elementary state: a series of discrete operations that describe the com-
putations that can be performed in parallel over a data set. The resulting code, which is similar
to a traditional C function, is called an OpenCL kernel. Unlike traditional C code, OpenCL ker-
nels are incorporated into the application in an uncompiled state. They are compiled on the fly
and optimized for the user’s hardware before being sent to the GPU for processing. Figure 6 on
Page 29 show how this work. There are some important limitations in the OpenCL C language
that is further explained in section 4.2.5 on Page 31.

OpenCL API

The OpenCL API provides functions that allow an application to manage parallel computing
tasks. It enumerates the OpenCL-capable hardware in a system, sets up the sharing of data
structures between the application and OpenCL, controls the compilation and submission of
kernels to the GPU, and has a rich set of functions that manage queuing and synchronization.

OpenCL Runtime

The OpenCL runtime executes tasks submitted by the application via the OpenCL API. The
runtime efficiently transfers data between main memory and the dedicated VRAM used by the
GPU, and directs execution of the kernels on the GPU hardware. During execution, the OpenCL
runtime manages the in-order or out-of-order dependencies between the kernels, and utilizes the
GPU’s processing elements in the most efficient manner.

4.2.3 OpenCL Execution Model

The AMD/ATI web site has an article containing information on the OpenCL Execution Model6

In short the article explains the execution model like this:

OpenCL has a flexible execution model that incorporates both task and data parallelism. Data
movements between the host and compute devices, as well as OpenCL tasks, are coordinated
via command queues. Command queues provide a general way of specifying relationships
between tasks, ensuring that tasks are executed in an order that satisfies the natural depend-
ences in the computation. The OpenCL runtime is free to execute tasks in parallel if their
dependencies are satisfied, which provides a general-purpose task parallel execution model.
Tasks themselves can be comprised of data-parallel kernels, which apply a single function over
a range of data elements, in parallel, allowing only restricted synchronization and communic-
ation during the execution of a kernel.

6http://developer.amd.com/documentation/articles/pages/opencl-and-the-ati-stream-v2.0-beta.aspx
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Figure 7: Memory hierarchy as defined by OpenCL 1.0

Parts of this article is copied to Appendix A on Page 53 to further explain the execution model.

4.2.4 The Memory Model

OpenCL defines a multi-level memory model with memory ranging from private memory visible
only to the individual compute units in the device to global memory that is visible to all compute
units on the device. Depending on the actual memory subsystem, different memory spaces are
allowed to be collapsed together.

OpenCL 1.0 defines 4 memory spaces: private, local, constant and global. Figure 7 on Page 30,
shows a diagram of the memory hierarchy defined by OpenCL.

Private memory is memory that can only be used by a single compute unit. This is similar to
registers in a single compute unit or a single CPU core.

Local memory is memory that can be used by the work-items in a work-group.
Constant memory is memory that can be used to store constant data for read-only access by

all of the compute units in the device during the execution of a kernel. The host processor is
responsible for allocating and initializing the memory objects that reside in this memory space.

Finally, global memory is memory that can be used by all the compute units on the device.
Each compute device has a global memory space, which is the largest memory space available to
the device, and typically resides in off-chip DRAM. There is also a read-only, limited-size constant
memory space, which allows for efficient reuse of read-only parameters in a computation. Each
compute unit on the device has a local memory, which is typically on the processor die, and
therefore has much higher bandwidth and lower latency than global memory. Local memory can
be read and written by any work-item in a work-group, and thus allows for local communication
between work-groups. Additionally, attached to each processing element is a private memory,
which is typically not used directly by programmers, but is used to hold data for each work-item
that does not fit in the processing element’s registers.

As OpenCL has a relaxed consistency model, different work-items may see a different view
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of global memory as the computation progresses. Within a work-item, reads and writes to all
memory spaces are consistently ordered, but between work-items, synchronization is necessary
in order to ensure consistency. This relaxed consistency model is an important part of OpenCL’s
efforts to provide parallel scalability: parallel programs that rely on strong memory consistency
for synchronization and communication usually fail to execute in parallel, because memory or-
dering requirements force a serialization of such programs during execution, hindering scalabil-
ity. Requiring explicit synchronization and communication between work-items encourages pro-
grammers to write scalable code, avoiding the trap often seen in parallel programming where
code looks parallel, but ends up executing in serial due to frequent and implicit synchronization
induced by reliance on a strict memory ordering model.

Additionally, OpenCL views the global memory space of each compute device as private and
separate from host memory. Moving data between compute devices and the host requires the
programmer to manually manage communication between the host and the compute devices.
This is done through the use of explicit memory reads and writes between devices.

4.2.5 Limitations in the OpenCL C language
When writing kernels there are some important limitations on what is allowed in the code. The
limitations can be found on the Khronos7 web page. The list below is a collection of some of the
limitations found on the web page:

• The use of pointers is somewhat restricted. The following rules apply:

• Arguments to __kernel functions declared in a program that are pointers must be de-
clared with the __global, __constant or __local qualifier.

• A pointer declared with the __constant, __local, or __global qualifier can only be as-
signed to a pointer declared with the __constant, __local, or __global qualifier respect-
ively.

• Pointers to functions are not allowed.

• Arguments to __kernel functions in a program cannot be declared as a pointer to a
pointer(s). Variables inside a function or arguments to non __kernel functions in a pro-
gram can be declared as a pointer to a pointer(s).

• Bit-fields are currently not supported.

• Variable length arrays and structures with flexible (or unsized) arrays are not supported.

• Variadic macros and functions are not supported.

• The C99 standard headers assert.h, ctype.h, complex.h, errno.h, fenv.h, float.h, inttypes.h,
limits.h, locale.h, setjmp.h, signal.h, stdarg.h, stdio.h, stdlib.h, string.h, tgmath.h, time.h,
wchar.h, and wctype.h are not available and cannot be included by a program.

• The extern, static, auto, and register storage-class specifiers are not supported.

• Predefined identifiers are not supported.

• Recursion is not supported.

7http://www.khronos.org/opencl/
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• The function using the __kernel qualifier can only have return type void in the source code.

4.2.6 Performance considerations
In [6] the authors provide a valuable list that shows some of the key areas in how to create a fast
implementation. This list shows key points in making code run fast on a GPU:

Maximize use of available processing power

A1 Maximize independent parallelism in the algorithm to enable easy partitioning in threads
and blocks.

A2 Keep resource usage low to allow concurrent execution of as many threads as possible,
i.e., use only a small number of registers per thread and shared memory per block.

A3 Maximize arithmetic intensity, i.e., match the arithmetic to band- width ratio to the GPU
design philosophy: GPUs spend their transistors on ALUs, not caches. Bearing this in mind
allows to hide memory access latency by the use of independent computations (latency
hiding). Examples include using arithmetic instructions with high throughput as well as
re-computing values instead of saving them for later use.

A4 Avoid divergent threads in the same warp.

Maximize use of available memory bandwidth

B1 Avoid memory transfers between host and device by shifting more computations from the
host to the GPU.

B2 Use shared memory instead of global memory for variables.

B3 Use constant or texture memory instead of global memory for constants.

B4 Coalesce global memory accesses, i.e., choose access patterns that allow to combine sev-
eral accesses in the same warp to one, wider access.

B5 Avoid bank conflicts when utilizing shared memory, i.e., choose patterns that result in the
access of different banks per warp.

B6 Match access patterns for constant and texture memory to the cache design.

To achieve these goals on a GPU we need to consider the memory access patterns in the ap-
plication. Nvidia has published best practice guide for OpenCL8. From this guide there are some
areas that is needed to be looked at to be successful in implementing fast modular arithmetic on
a GPU.

• Memory Optimizations: Correct memory management is one of the most effective means
of improving performance. This chapter explores the different kinds of memory available to
OpenCL applications, and it explains in detail how memory is handled behind the scenes.

• NDRanges Optimizations: How to make sure your OpenCL application is exploiting all
the available resources on the GPU.

• Instruction Optimizations: Certain operations run faster than others. Using faster opera-
tions and avoiding slower ones often confers remarkable benefits.

• Control Flow: Carelessly designed control flow can force parallel code into serial exe-
cution; whereas thoughtfully designed control flow can help the hardware perform the
maximum amount of work per clock cycle.

8http://www.nvidia.com/content/cudazone/CUDABrowser/downloads/papers/NVIDIA_OpenCL_BestPracticesGuide.pdf
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Figure 8: Linear memory segments and threads in a half warp

Memory Optimizations

Perhaps the single most important performance consideration in programming for the CUDA
architecture is coalescing global memory accesses. Global memory loads and stores by threads
of a half warp (16 threads) are coalesced by the device in as few as one transaction (or two
transactions in the case of 128-bit words) when certain access requirements are met. To un-
derstand these access requirements, global memory should be viewed in terms of aligned seg-
ments of 16 and 32 words. Figure 8 on Page 33 helps explain coalescing of a half warp of 32-bit
words, such as floats. It shows global memory as rows of 64-byte aligned segments (16 floats).
Two rows of the same color represent a 128-byte aligned segment. A half warp of threads that
accesses the global memory is indicated at the bottom of the figure.

• High Priority: Ensure global memory accesses are coalesced whenever possible.

• Medium Priority: Use shared memory to avoid redundant transfers from global

• Low Priority: For kernels with long argument lists, place some arguments into constant
memory to save shared memory.

NDRange Optimizations

Thread instructions are executed sequentially in OpenCL, and, as a result, executing other
warps when one warp is paused or stalled is the only way to hide latencies and keep the
hardware busy. Some metric related to the number of active warps on a multiprocessor is
therefore important in determining how effectively the hardware is kept busy. This metric is
occupancy. Occupancy is the ratio of the number of active warps per multiprocessor to the
maximum number of possible active warps. Another way to view occupancy is the percentage
of the hardware’s ability to process warps that are actively in use. Higher occupancy does not
always equate to higher performance—there is a point above which additional occupancy does
not improve performance. However, low occupancy always interferes with the ability to hide
memory latency, resulting in performance degradation.

Instruction Optimizations

Awareness of how instructions are executed often permits low-level optimizations that can be
useful, especially in code that is run frequently (the so-called hot spot in a program). Best
practices suggest that this optimization be performed after all higher-level optimizations have
been completed. Single-precision floats provide the best performance and their use is highly
encouraged. The throughput of single-precision floating-point add, multiply, and multiply-add
is 8 operations per clock cycle. Integer division and modulo operations are particularly costly
and should be avoided or replaced with bitwise operations whenever possible.
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• High Priority: Minimize the use of global memory. Prefer shared memory access where
possible.

Control Flow

Any flow control instruction (if, switch, do, for, while) can significantly affect the instruction
throughput by causing threads of the same warp to diverge; that is, to follow different exe-
cution paths. If this happens, the different execution paths must be serialized, increasing the
total number of instructions executed for this warp. When all the different execution paths
have completed, the threads converge back to the same execution path. To obtain best per-
formance in cases where the control flow depends on the thread ID, the controlling condition
should be written so as to minimize the number of divergent warps.

• High Priority: Avoid different execution paths within the same warp. where possible.

4.2.7 Installing OpenCL

In order to use OpenCL on a system we first need to install an OpenCL enabled driver. Both
Nvidia and AMD/ATI have delivered drivers that enable developers to utilize OpenCL in programs
running on Windows, Linux and OS X. OS X support is delivered by Apple and is included in OS
X 10.6 Snow Leopard9 with support for the following GPUs:

• Nvidia

• NVIDIA GeForce 9400M

• GeForce 9600M GT

• GeForce 8600M GT

• GeForce GT 120

• GeForce GT 130

• GeForce GTX 285

• GeForce 8800 GT

• GeForce 8800 GS

• Quadro FX 4800

• Quadro FX5600

• ATI

• ATI Radeon HD 4670

• ATI Radeon HD 4850

• ATI Radeon HD 4870

9http://www.apple.com/macosx/specs.html
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In order to use OpenCL on a Nvidia GPU the system needs to install the needed software
downloaded from the Nvidia web site10 the download includes OpenCL drivers, OpenCL Visual
Profiler, OpenCL code samples, and OpenCL Best Practices Guide. Nvidia supports installation on
Windows and Linux, support for OS X is included in OS X 10.6 Snow Leopard11.

To utilize AMD/ATI GPU the system needs to install the needed software from AMD/ATI
downloaded from the AMD/ATI web site12. AMD/ATI supports Windows and Linux, support for
OS X is included in OS X 10.6 Snow Leopard13.

4.3 OpenCL or CUDA

CUDA is developed by Nvidia to use the Nvidia GPU as a processing unit in programs running on
a system with a supported Nvidia GPU. Some differences on the two platforms:

• CUDA

• Runs programs only on Nvidia GPUs.

• Large community of developers14.

• Highly optimized for Nvidia GPUs.

• Nvidia controls the development of CUDA.

• Supported from the G8X series onwards(G8X series released in 2006)

• OpenCL

• Runs on all supported accelerators, CPUs GPUs or specialized hardware.

• Is an open standard developed by the Khronos Group.

• Community of developers from the leading GPU companies, AMD(ATI)15 and Nvidia16

• Shorter life time (December 8 2008) than Nvidia CUDA and the support in OS is just
starting to appear.

OpenCL addresses the need for a cross-platform, industry standard approach to development
for heterogeneous architectures. This can enable more developers to take advantage of GPGPU
acceleration in their applications, but what is even more compelling is the opportunity to build
applications that leverage all of the system’s compute resources – CPUs and GPUs – to provide a
superior user experience.

10http://developer.nvidia.com/object/opencl-download.html
11http://www.apple.com/macosx/specs.html
12http://developer.amd.com/gpu/ATIStreamSDK/Pages/default.aspx
13http://www.apple.com/macosx/specs.html
14http://forums.nvidia.com/index.php?s=b61a17fcf475bc0e0bd56d8518c76ac2&showforum=62
15http://forums.amd.com/devforum/categories.cfm?catid=390&entercat=y
16http://forums.nvidia.com/index.php?showforum=134

35





Implementing modular arithmetic using OpenCL

5 Experiments

This chapter will include all work done in OpenCL and results from experiments run on the GPU.

5.1 Equipment used

In order to be able to run modular exponential calculations on the GPU we need equipment
capable of running code on the GPU using OpenCL. In this thesis the selected equipment was
limited to the support of OpenCL when we started this thesis. At the start time of writing the
software the only operating system supporting OpenCL was Apple OS X 10.6. This situation has
changed(15.04.2010) and AMD and Nvidia have delivered support for both Microsoft Windows
and Linux in their graphics cards drivers. Due to this fact we decided to buy an Apple Mac Pro
to be used to run all experiments on. The hardware is specified in more detail in Table 5.1 on
Page 37. All the code for all the experiments is written in the C programing language the code
running on the GPU is also written in C with the inclusion of the OpenCL extensions.

Software used in the experiments is software supported on the Apple OS X platform, the
Table 5.1 on Page 38 has more details on the software and versions used in the experiments.

5.2 Modular Arithmetic on the GPU

5.2.1 Selecting method to use in the experiments
GPU

From the knowledge learned in Chapter 3 we selected to try to solve the challenge of modular
arithmetic using a Montgomery approach as described in Sections 3.1.2 and 3.2.2. The main
body of the OpenCL code then looks like this:

u32 a[N], n[N], workspace[(N+2)];
u32 t[N];
int id = get_local_id(0); // To get the thread id
u32 i,j;
u32 ex;
u32 blockId = get_group_id(0)*STRIDE; //To get the block id
t[id] = x[id + blockId ]; //Assign values to be calculated in this thread

Computer equipment
CPU Two 2.26GHz Quad-Core Intel Xeon 5500 series processors
GPU Nvidia GeForce GTX 285 with 1024MB of GDDR3 memory, PCI Express 2.0
Memory 12GB
Hard Disk 4TB

Table 4: Computer equipment used in the experiments
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Software
Operating System Apple OS X 10.6.3
IDE Apple Xcode 3.2.1
Compiler GCC 4.2
External libraries OpenSSL 0.98

Table 5: Software used in the experiments

a[id] = r2[id + blockId];
n[id] = mod[id + blockId];

d = inv2adic(n[0]);

mulredc(t, t, a, n, d, workspace, N); // t = xR mod N

redc(a, a, n, d, workspace, N); // a = R mod N

for(i=0; i < BITS/32; ++i) //need to work in wraps of 32 threads to fully utilize the wrap size on the GPU
{

ex = exponent[i + blockId];

for(j=0; j < 32; ++j)
{

if(ex&1)
mulredc(a, a, t, n, d, workspace, N);

mulredc(t, t, t, n, d, workspace, N);
ex >>= 1;

}
}

To run a kernel on the GPU using OpenCL there is a list of steps that has to be performed:

1 Get a list of available devices.

OpenCL is capable of running the code on different devices, we need to obtain a list of
supported devices on the system at hand. This is done using the OpenCL API.

2 Select device.

We need to select the device we like to run the kernel on. This enables us to select the
best device for the work at hand. We can also read out data about the device if we like to
further analyze the capabilities of the device.

3 Create a context.

This creates a "connection" to the device we have selected to use. This context is used to
read/write data to the device.
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4 Create command queue.

The command queue is responsible for scheduling the running of kernels on the GPU. We
can schedule to run more than one kernel and create dependencies between the kernels
in order to have them executed in an specific order.

5 Read the kernel file.

All kernel code to run on the device is written in a separate file and read at runtime.

6 Create program object.

Add the kernel code file to the program object in order to enable the device to compile
the program.

7 Compile kernel.

Use the newly created program object to compile the kernel code. The compilation is done
on the device and there is a possibility to read back the compile log to check for errors if
the compile failed.

8 Create memory objects.

Create the memory objects responsible for storing the data on the device.

9 Write memory object to device memory.

Copy memory objects from the system memory to the device memory.

10 Set kernel arguments.

Set the appropriate kernel argument, this is often the memory objects created earlier.

11 Execute kernel.

Use the command queue to schedule execution of the kernel program created using the
program object.

12 Read memory object.

Read back to the system memory from the device memory, this is the only way to get the
results from running a kernel.

13 Free objects.

We need to free objects created on the device in order to enable it to run more kernels
without running out of memory.

In arithmetic computation, Montgomery reduction is an algorithm introduced in 1985 by
Peter Montgomery [5] that allows modular arithmetic to be performed efficiently when the mod-
ulus is large (typically several hundred bits). A single application of the Montgomery algorithm
is faster than a "naive" modular multiplication. The code for modular reduction in OpenCL is
included to show how the code is constructed to do the calculations using the GPU:

void mulredc(u32 *z, u32 *x, u32 *y, u32 *n, const u32 d, u32 *t,int N)
{
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int i, id = get_local_id(0);
u32 m, u;
t[id] = 0;
t[N] = t[N+1] = 0;

for(i=0; i < N; ++i)
{

// multiply
addmul_1(t, x, y[i], N);

// reduce
m = d*t[0];
addmul_1(t, n, m, N);

// shift
u = t[id+1];
t[id] = u;
u = t[N+1];
t[N] = u;
t[N+1] = 0;

}

if(cmp_ge_n(t, n, N)){
sub_n(t, t, n,N);
}

z[id] = t[id];
}

The main focus of the GPU program was to align the threads into wraps of size 32. This to
maximize the utilization of the Nvidia GPU properties. Using this method we found that it was
better to have threads do nothing than break the wrap size of 32. Even more important was it
to follow the rules from [6] and use the rules to optimize the GPU program. M. Welschenbach
book "Cryptography in C and C++" [42] contains c code samples on how to create Montgomery
multiplication and exponentiation modulo n. The samples have been used to create a starting
point for the OpenCL code used in the experiment. But in the end none of this code was used in
the final program. As a reference in C the book "The C programming language" was used to solve
C language questions the book "Programming in C" [43] was used for the same purpose. When
starting to create the GPU code the article by S Fleissner [38] contains valuable points in how to
create a GPU program that does Montgomery exponentiation. The article contains a list of steps
how this can be done:

1. Use n to pre-compute n ′ and r.

2. Calculate ā := axr mod n.
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3. Calculate x̄ := 1xr mod n. item For i:=|b|-1 down to 0 do

(a) Calculate x̄ := MonPro(x̄, x̄)

(b) If the i-th bit of b is set, then calculate x̄ := MonPro(ā, x̄)

4. Calculate x = MonPro(x̄, 1).

The OpenCL coding was done using these online resources as references[44, 45, 46] and the
work of Samuel Neves[47]. To create the values of n and e OpenSSL1 was used to create the
values using the RSA struct of OpenSSL. The use of OpenSSL as the generator of values ensures
that the values are of high quality and with the correct length.

The RSA structure consists of several BIGNUM components. It can contain public as well as
private RSA keys:

struct
{
BIGNUM *n; // public modulus
BIGNUM *e; // public exponent
BIGNUM *d; // private exponent
BIGNUM *p; // secret prime factor
BIGNUM *q; // secret prime factor
BIGNUM *dmp1; // d mod (p-1)
BIGNUM *dmq1; // d mod (q-1)
BIGNUM *iqmp; // q^-1 mod p
// ...
};

RSA

The function RSA_generate_key is used to fill the RSA struct with the values we need to do the
modular arithmetic using OpenCL. The function is part of the OpenSSL Library and is found used
in the C programing language using this include statment: #include <openssl/rsa.h>

CPU

One of OpenCL’s properties is to be multi device, meaning that the same code should be able to
run on different devices without any changes to the code. The experiments indicates that this is
not completely true, after starting to optimize the code for running on the GPU with the highest
speed possible the code would no longer compile on the the CPU. This challenge lead to the
creation of to separate code projects one for the GPU using OpenCL and one on the CPU. The
question was then how to select the best path for creating a fast code for modular arithmetic on
the CPU, the decision landed on doing the same as Harrison et al. in [18] and use OpenSSL as the
library for RSA calculations. OpenSSL library is highly optimized for RSA operation and other
attempts to create something from scratch showed that this was the fastest solution possible
when using the CPU.

1http://www.openssl.org/docs/crypto/rsa.html
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Figure 9: Performance of Nvidia GPU vs Intel CPU. Performance is messages per second.

5.2.2 Results

Given the results from [18] where Harrison et al. achieved a peak performance of 5536.75 using
a G80 series Nvidia GPU the peak performance of 8533 from the top of the line G200 series GPU
used in this project is in line with the results from Harrison et al. From the Figure 1 on Page 8 we
can read that the G80 has a single precision performance just over 500 GFlops/s and the G200
is just below 1000 GFlops/s so the peak performance of 8533 is not twice the performance from
Harrison el al. but this is near impossible to achieve. So a peak performance of 8533 is in line
with the performance from Harrison et al. Szerwinski et al. [6] achieved a peak performance of
813 using the CIOS method on an older Nvidia 8800GTS GPU. As shown in Figure 1 on Page 8
there has been a great leap in performance for GPU in the resent years and this is not stopping,
there has been even greater performance leaps in the last 6 months with the release for ATI
Radeon HD 5000 series2 and the Nvidia Geforce 400 series3 moving the performance up in the
3000 GFlops/s range.

The results from running RSA public encrypt is showed in table 5.2.2 on Page 43
The peak performance in Table 5.2.2 on Page 43 is measured by doing many RSA encryptions

and measuring the total time and dividing by the number of messages to get the peak perform-
ance for doing RSA encryption. This has an large impact on the result of the GPU as the startup
cost(transfer of data to the GPU memory) is divided on many RSA encryption operations. The
CPU have a smaller startup cost. The CPU also increase it performance as we schedule to do more
RSA Encryption, indicating that OpenSSL is able to utilize the wast CPU power of the machine
running the experiments. The time of doing just one RSA encryption is 59 ms for the GPU and
33 ms for the CPU the time is the same for both 1024 and 2048 bits.

2http://www.amd.com/uk/products/desktop/graphics/ati-radeon-hd-5000/Pages/atiradeonhd5000.aspx
3http://www.nvidia.com/object/geforce_family.html

42



Implementing modular arithmetic using OpenCL

Peak Performance
Processing uint Bits Result

GPU
1024 8533
2048 4830

CPU
1024 2371
2048 1272

Min Performance
Processing uint Bits Result

GPU
1024 8089
2048 4272

CPU
1024 2360
2048 1265

Average Performance
Processing uint Bits Result

GPU
1024 8463
2048 4753

CPU
1024 2368
2048 1270

Table 6: Results from running the code. Result column is measured by RSA encryptions per second
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6 Conclusion

6.1 Conclusion

Over the course of the last few years, GPUs have risen in relevance in many computational
areas. Their impressive computing power in floating-point allowed GPUs to provide significant
speedups in computational finance, chemistry, etc1. In fact, a GPU-based cluster has reached
the Top 500 Supercomputer list2, at 170 TFlops3. With this in mind, we started this project to
harvest the computing power to perform modular arithmetic operations in the GPU. One of the
main obstacles, is the overhead incurred in copying data to the GPU and back. From this results,
using the GPU for cryptography is most fruitful when aiming for high-throughput.

OpenCL is a relatively young API and the implementation is still fresh so some of the promises
made by the API is still in working progress to be fulfilled. Especially the promise of write once
run everywhere is a truth with exceptions. From the experiments run the code written worked
fine on both CPU and GPU until we started tuning for better performance, once we started using
the different memory areas to speed up the modular arithmetic operations the code would no
longer compile on the CPU, we hope this will change as the implementations mature. Also is the
issue of different memory models on different devices will impact the performance of the kernel
executed. So to create a truly universal program the developer needs either to stay away from
trying to optimize performance or creating different version of the kernels and start by querying
the device for supported extensions and running the kernel version that best suits the device at
hand. So there is still some development needed before OpenCL is on route to deliver what it
has promised4.

We believe that we were successful: The best algorithm was selected and implemented ref
Sections 3.1.2 and 3.2.2. The resulting performance figures are in line with the state of the
art implementations, ref Sections 2.2 and 2.3, in the literature. This was accomplished by a
careful study and development of the algorithm using the literature available and experiment
with different settings on the GPU.

6.2 Future work

In this work we have not looked into the Elliptic Curve Cryptography, there is some work of
doing ECC on a GPU but there is no work done on implementing this using OpenCL to research
the performance of ECC on the GPU. In the timeline of this project there has been a larger
development of support of OpenCL from being implemented in Apple OS X 10.6 only to being
included in Microsoft Windows and Linux as well. There are also new suppliers of OpenCL drivers

1http://www.nvidia.com/object/cuda_apps_flash_new.html#
2http://www.top500.org/list/2009/11/100
3http://www.nvidia.com/object/io_1226945999108.html
4http://www.khronos.org/opencl/
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emerging, one of them is FOXC from Fixstars5. This is a fast runtime for OpenCL, according to
the book "The OpenCL Programming Book" [48] FOXC beats the AMD/ATI and Nvidia in memory
copy and kernel execution. When starting this project the selection of HW was limited to Apple
and there was a hope that the AMD/ATI Radeon HD 5870 GPU was to be available on the
Apple platform before the experiments were run, this did not happen and the experiments were
run on a Nvidia 285GTX GPU. ATI has delivered support for Windows and Linux and it will
be interesting to see if someone in the future will do research on how the AMD/ATI GPU will
perform with modular arithmetic operations.

Further research in using larger key values is also an area that can be of interest for further
work, in this project we limit the key size to 1024bit and 2048bit and optimized for these key
sizes. Larger key sizes can possible need a new approach and needs to be further researched in
order to locate the optimal implementation.

5http://www.fixstars.com/en/foxc/
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List of abbreviations

AMD Advanced Micro Devices

API Application Programming Interface

ATI ATI Technologies Inc.

CIHS Coarsely Integrated Hybrid Scanning

CISO Coarsely Integrated Operand Scanning

CPU Central Processing Unit

CRT Chinese Remainder Theorem

CUDA Compute Unified Device Architecture

ECC Elliptic Curve Cryptography

FIOS Finely Integrated Operand Scanning

FIPS Finely Integrated Product Scanning

GPGPU General-Purpose computation on Graphics Processing Units

GPU Graphics Processing Unit

HW Hardware

IBM International Business Machines

MRS Mixed Radix System

OpenCL Open Computing Language

RNS Residue Number System

RSA Rivest, Shamir and Adleman

SDK Software Development Kit

SOS Separated Operand Scanning
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A OpenCL Execution Model

OpenCL has a flexible execution model that incorporates both task and data parallelism. Data
movements between the host and compute devices, as well as OpenCL tasks, are coordinated
via command queues. Command queues provide a general way of specifying relationships
between tasks, ensuring that tasks are executed in an order that satisfies the natural depend-
ences in the computation. The OpenCL runtime is free to execute tasks in parallel if their
dependencies are satisfied, which provides a general-purpose task parallel execution model.
Tasks themselves can be comprised of data-parallel kernels, which apply a single function over
a range of data elements, in parallel, allowing only restricted synchronization and communic-
ation during the execution of a kernel. These concepts will be further explained in this section.

Kernels

As mentioned, OpenCL kernels provide data parallelism. The kernel execution model is based
on a hierarchical abstraction of the computation being performed. OpenCL kernels are ex-
ecuted over an index space, which can be 1, 2 or 3 dimensional. In Figure 10 on Page 53,
we see an example of a 2 dimensional index space, which has Gx * Gy elements. For every
element of the kernel index space, a work-item will be executed. All work items execute the
same program, although their execution may differ due to branching based on data charac-
teristics or the index assigned to each work-item. The index space is regularly subdivided into

Figure 10: SEQ Executing Kernels - Work-Groups and Work-Items

work-groups, which are tilings of the entire index space. In Figure 10 on Page 53, we see a
work-group of size sx * sy elements. Each work-item in the work group receives a work-group
id, labeled (wx, wy) in the figure, as well as a local id, labeled (sx, sy) in the figure. Each
work-item also receives a global id, which can be derived from its work-group and local ids.

53



Implementing modular arithmetic using OpenCL

The work-items may only communicate and synchronize locally, within a work-group, via a
barrier mechanism. This provides scalability, traditionally the bane of parallel programming.
Because communication and synchronization at the finest granularity is restricted in scope, the
OpenCL runtime has great freedom in how work-items are scheduled and executed.

Command Queues

To execute a kernel, the kernel is pushed onto a particular command queue. Enqueueing a
kernel is done asynchronously, so that the host program may enqueue many different kernels
without waiting for any of them to complete. When enqueueing a kernel, the developer option-
ally specifies a list of events that must occur before the kernel executes. Events are generated
by kernel completion, as well as memory read, write, and copy commands. This allows the
developer to specify a dependence graph between kernel executions and memory transfers
in a particular command queue or between command queues themselves, which the OpenCL
runtime will traverse during execution. Figure 11 on Page 54 shows a task graph illustrating
the power of this approach, where arrows indicate dependencies between tasks. For example,
Kernel A will not execute until Write A and Write B have finished, and Kernel D will not execute
until Kernel B and Kernel C have finished. The ability to construct arbitrary task graphs is a

Figure 11: Task Parallelism within a Command Queue

powerful way of constructing task-parallel applications. The OpenCL runtime has the freedom
to execute the task graph in parallel, as long as it respects the dependencies encoded in the
task graph. Task graphs are general enough to represent the kinds of parallelism useful across
the spectrum of hardware architectures, from CPUs to GPUs.
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Developers are also free to construct multiple command queues, either for parallelizing an
application across multiple compute devices, or for expressing more parallelism via completely
independent streams of computation. OpenCL’s ability to use both data and task parallelism
simultaneously is a great benefit to parallel application developers, regardless of their intended
hardware target.

Synchronization

Besides the task parallel constructs provided in OpenCL which allow synchronization and com-
munication between kernels, OpenCL supports local barrier synchronizations within a work-
group. This mechanism allows work-items to coordinate and share data in the local memory
space using only very lightweight and efficient barriers. Work-items in different work-groups
should never try to synchronize or share data, since the runtime provides no guarantee that all
work-items are concurrently executing, and such synchronization easily introduces deadlocks.

Work-items in different work-groups may coordinate execution through the use of atomic
memory transactions, which are an OpenCL extension supported by some OpenCL runtimes,
such as the ATI Stream SDK OpenCL runtime for the x86 multi-core compute devices. For
example, work-items may append variable numbers of results to a shared queue in global
memory. However, it is good practice that work-items do not, generally, attempt to communic-
ate directly, as without careful design scalability and deadlock can become difficult problems.
The hierarchy of synchronization and communication provided by OpenCL is a good fit for
many of today’s parallel architectures, while still providing developers the ability to write effi-
cient code, even for parallel computations with non-trivial synchronization and communication
patterns.
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