System for integration of tools for full
content verification on multiple sensors

Tommy Steensnas

Master’s Thesis
Master of Science in Information Security
30 ECTS
Department of Computer Science and Media Technology
Gjgvik University College, 2010

Avdeling for

informatikk og medieteknikk
Hggskolen i Gjgvik

Postboks 191

2802 Gjgvik

Department of Computer Science
and Media Technology

Gjgvik University College

Box 191

N-2802 Gjgvik

Norway

System for integration of tools for full content
verification on multiple sensors

Tommy Steensnées

30th June 2010

System for integration of tools for full content verification on multiple sensors

Abstract

Cyberspace is the newest addition to the domains for warfare. As in the other domains
both offensive and defensive operations are relevant. Defensive operations in cyberspace
can draw on experience from traditional information security, but might use other pro-
cedures and use tools in a different way. This thesis shows how existing command line
tools for packet captures can be used more effectively. The research provides a definition
of a scalable effective system for packet capture for use in Computer Network Defense
(CND) verification and analysis. A prototype of the system is presented and evaluated in
terms of efficiency and effectiveness.

iii

System for integration of tools for full content verification on multiple sensors

Sammendrag (Abstract in Norwegian)

Cyberspace er det nyeste domenet for krigfgring. Som i de andre domenene er det be-
hov for bade offensive og defensive operasjoner. I defensive operasjoner i cyberpace kan
en bruke erfaringer fra tradisjonell informasjonssikkerhet, men det kan veere behov for
& forandre prosesser og prosedyrer, ogbruker verktgyene pd en ny mate. Denne mas-
teroppgaven viser hvordan eksisterende kommandolinjebaserte verktgy kan brukes mer
effektivt. Forskningen viser et effektivt skalerbart system til bruk i verifikasjon og analyse
knyttet til Computer Network Defense (forsvar av datanettverk). En prototype utvikles
og evalueres med tanke pa effektivitet.

System for integration of tools for full content verification on multiple sensors

Contents

Abstract. e e iii
Sammendrag (Abstract in Norwegian) A
CONtENLS v vttt e e e e e e e e e e e e e e e e e e vii
Listof Figures i e e e e e e ix
Listof Tables e e xi
Preface e e e xiii
1 Introduction it e e e 1
1.1 Topiccovered i i i i e e e e e e 1
1.2 Keywords . . . o v v v v et e e e e e e e e e e e e 1
1.3 Problemdescription 1
1.3.1 Example o0 o e e e e e e e e e e e e 1
1.4 Computer Network Defense 2
1.5 Justification, motivation and benefits 3
1.6 Research questions 6
1.7 Claimed contributions e 7
2 Relatedwork e 9
2.1 Relatedwork e 9
2.1.1 Commercialtools 9
2.1.2 Open-sourcetools, 9
2.1.3 Related work conclusion oL, 10
3 Choiceofmethods. e 11
3.1 Efficiency e e e e e 11
3.2 Effectiveness i i i i e e e e e e e e e 11

4 System for integrating non-scalable command line tools for verification on
multiple Sensors e e e e e e 13
4.1 ThesSystem v v v ittt e e e e e e e e e e e e e e 13
4.1.1 Compatibility and environment requirements 13
4.1.2 Communicating with sensors 15
4.2 Designchoices e 15
4.2.1 Platform o e e e e e e 15
4.2.2 Programming language 15
4.2.3 WebFramework 15
4.3 Architecture and implementation o 0oL, 16
4.4 Legalconsiderations 19
5 Experimentsandresults, 21
5.1 Keystroke-Level Modeling 21
5.2 Percieved effectiveness i e e 26
5.2.1 Testsubjects 26
522 Testing. . . v v v v it e e e e e e e 26
52.3 Results. e 26

vii

System for integration of tools for full content verification on multiple sensors

5.2.4 Reliabilityand validity 27
6 Conclusion e e 29
7 Futurework 31
Bibliography e e e 33
Appendices L. e e e e e e
A Questionnaire e e e e e e e e e 35
B serverpy o e e e 37
C remotel.py o i e e e e e e e e 39
D VIEWS.PY . . . o o e e e e e e 41
E models.py e 47

viii

System for integration of tools for full content verification on multiple sensors

O 00O N O U1 A WN

==
= O

List of Figures

Schematic of the CND process v v v v v v v v i v v vt 4
Verification process v v v v i i e e e e e e e e e 5
Workflow in Dumpadmin 14
Outline of sensornetwork 17
The add capture interface of Dumpadmin 18
Keystrokes as function of the number of sensors (example 1) 23
Keystrokes as function of the number of sensors (example 2) 23
Keystrokes as function of the number of sensors (example 3) 24
Average keystrokes per sensor (example 1) 24
Average keystrokes per sensor (example 2) 25
Average keystrokes per sensor (example 3) 25

ix

System for integration of tools for full content verification on multiple sensors

List of Tables

1 KeystroKes v v v v i e i e e e e e e e e e e e e e e 22
2 Results from questionnaireso 27

Xi

System for integration of tools for full content verification on multiple sensors

Preface

The author of this thesis is employed by the Norwegian Defense Security Service(NODSS)
and works as an analyst at the Critical Infrastructure Protection Center(CIPC) at Jgrstad-
moen outside Lillehammer. The main task of this center is to conduct Computer Network
Defense(CND) for the Norwegian Defense. This is a relatively new military discipline
and over the last few years we have experimented with several different tools to help
effectively defend our computer networks. The amount of traffic and complexity of the
networks is very high and being able to use the proper tools is imperative to solve this
task. The work done in this thesis is based on the experiences from the last few years
and is one small step on the way to create an effective toolbox specially adapted to our
operators, environment and spesific tasks.

Acknowledgements

This thesis would not have come together without help for which I am very grateful. First
of a I would like to thank my supervisor Prof. Slobodan Petrovi¢ for guiding me through
all phases of this thesis and keeping me on track. I have had periods of doubt. I would
also like to thank my good friend and fellow student Kjell Tore Fossbakk for always being
open for discussions and patiently supporting me in my programming. [am ever grateful
to my boss and all my coworkers at the Critical Infrastructure Protection Center for their
contributions to my research and for giving me the time and opportunity to write this
thesis. Lastly, I want to send a big thanks to my girlfriend Guro, whom have made my
life bearable the period of writing this thesis. Her efforts in keeping our home livable and
taking care of just about everything in my absence have been invaluable.

xiii

System for integration of tools for full content verification on multiple sensors

1 Introduction

1.1 Topic covered

The cyber domain has over the last years become increasingly relevant for warfare. This
domain has proven especially fitted for asynchronous warfare and has on several occa-
sions been used in political conflicts. Therefore most modern countries have started to
develop capacities in this area of warfare. As in all areas of warfare there is a need to
be able to run both offensive and defensive operations. As in other countries around the
world this is one of the military disciplines described in the Norwegian defense doctrine
[1]. Although part of the doctrine there are still several challenges to be met both in pro-
cesses, procedures and tools on both the tactical and the strategic level. This thesis has
focused mainly on tools and presents a system for packet capture for use in Computer
Network Defense(CND).

1.2 Keywords

Information security, network security monitoring, intrusion detection, information war-
fare, Computer Network Defense

1.3 Problem description

There are no commercial tools especially designed for CND. Therefore different combi-
nations of commercial software, open-source software and in-house developed software
are being used. This constellation derives problems with scalability and manageability.
One of the common challenges is that of data collection when verifying an indicator.

1.3.1 Example

To describe the problem and show the need for this thesis an example is in place. The
presented example shows a typical event and the work flow towards verification and
handling of a possible incident. First one of the deployed sensors shows an indication
of malicious activity on the network. Let the activity for this example be a connection
to a website which is a known distributor of malware. In this case the hosted malware
is an IRC bot. This will obviously trigger a need to verify if the computer connecting
to this website got infected with the malware. Because we know the bot we will also
know where this bot connects to get updates or commands. Therefore to verify we can
capture traffic from the computers we suspect are infected towards the botnet controller.
If we get traffic we can easily determine if the computer is infected and advise on how
to handle it. This example is trivial, but illustrates the principle.

Let us say we needed to find out if more computers were infected with the same
bot. We could set up the capture to look at all traffic towards the controller. This would
catch other possibly infected computers and not only the computer we have suspicions
towards. As long as all traffic passes by the same sensor that should be just as easy. If
there are several access-ways to the Internet and there are several deployed sensors the
analysts will have to do the same process repeated for all sensors. When this scenario
takes place several times a day a lot of time is wasted administrating packet captures.

System for integration of tools for full content verification on multiple sensors

The results of this thesis presents a solution to how analysts with simple means can
make this process more effective. This thesis is focused towards packet capture, but the
methodology will easily relate to other command-line tools as well.

The above example shows how verification by capturing traffic can be relevant and
highlights the problem when the operations need to be repeated for several sensors. This
process gives a linear relationship between the operations needed to start a capture and
the number of sensors. Further on, the analyst will need to access the captured data
separately on each of the sensors additionally lengthening the process. This thesis shows
how the operations needed from the detection of an indicator to the point where useful
data can be presented to the analyst can be substantially decreased in a multi-sensor
environment.

The situation today can be described as shown in Equation 1.1

O=o0xs (1.1
where:
O is total number of operations
o is number of operations per sensor (needed to start packet capture)
s is total number of sensors

The goal of this project is to provide a system that can be described by the following
equation (1.2)

O=o01*xs+K, (1.2)
where:
01 is number of operations exclusive to each sensor
K, is number of operations needed to start capture (constant)

and
0 >> 01

1.4 Computer Network Defense

CND is not a concept that is uniformly defined among all users of the term. Other
terms such as Information Security(InfoSec), Information Assurance(IA) Network Secu-
rity Monitoring (NSM)® usually contain some of the same elements. Some literature even
describes one term as a subset of the other. Even though the range of definitions is wide,
most of them include some variation of the act of securing information and computer
networks. The US Department of Defense defines CND as follows:

"[CND]Describes the actions taken, within the Department of Defense (DoD), to pro-
tect, monitor, analyze, detect, and respond to unauthorized activity within DoD in-
formation systems and computer networks. CND protection activity employs informa-
tion assurance principals and includes deliberate actions taken to modify an assurance
configuration or condition in response to a CND alert or threat information."

A similar definition can be found in the "Dictionary of Military and Associated Terms. US
Department of Defence 2005.":

INSM is described thoroughly in [2]

System for integration of tools for full content verification on multiple sensors

"Defensive measures to protect and defend information, computers, and networks
from disruption, denial, degradation, or destruction. Also called CND."

[3] goes further in describing Computer Network Operations.

In Norway the concept of Computer Network Defense is pretty new and not well
described in official documents, but the Norwegian Defense Operational Doctrine [1] (in
Norwegian) describes CND as:

"Measures to actively protect information by monitoring, analyzing and realizing coun-
termeasures to attacks on ones own information systems"

As we see from the definitions presented above the scope of CND is very wide. In this
thesis the definition from [1] as shown above will be used. CND as a whole is a complex
task and includes several different subprocesses. To be effective the CND professionals
need good tools to support the different stages of CND. The system described in this the-
sis applies to the borderline between detection and analysis where the operator detects
some anomaly and is in need of more data for verification and analysis. In Figure 1 a
rough outline of the steps in the CND process is shown. It all starts with the Comman-
ders Critical Information Requirements(CCIR). These are the categories of incidents that
are of interest. Based on those requirements one starts collection planning. This phase
includes putting sensors in strategic spots in such a way that indicators of incidents of
interest can be collected. When all is in place the continuous phase of monitoring and
collecting indicators starts. The indicators of interest are analyzed. If needed additional
data collection are initiated. If an actual security incident is verified the collected indica-
tors are escalated to incidents and operations planning and incident handling is started.
As stated earlier, the system presented in this thesis is used for collection of additional
data for verification and analysis. Based on the example from Chapter 1 (Section 1.3.1)
Figure 2 shows this part of the process in more detail.

1.5 Justification, motivation and benefits

As mentioned, the cyber domain is becoming increasingly important. As a consequence
several nation states have started developing capacities in order to conduct warfare in
this new domain [4]. The arise of such capacities and the will to actively use them show
the necessity of being able to defend the national(NII) and defense information infras-
tructure(DID).

The information systems in the DII are changing at a very slow pace. Both architec-
ture and even software can at any time be considered out of date. Complicating this
further is the fact that the people defending the networks do not necessarily have ac-
cess to the schematics and the inner workings of the network. There are many reasons
for this and this situation is probably not going to change considerably for a long time.
Therefore the security analysts can never hope for optimal conditions. To prepare for
defensive operations in cyberspace we do what would be done in the physical world. We
analyze the battlefield and make the best of the terrain at our disposal. This makes it
absolutely essential for the analysts or the "cyber warriors" to have flexible, scalable tools
that can be easily implemented in any network. Big, heavy enterprise Security Incident
Managers(SIMs) and the like do not work as advertised without being designed in to the
information infrastructure and are therefore often not the right tools. Anyway, SIMs will
give added benefit if already present in the network to defend.

System for integration of tools for full content verification on multiple sensors

Collection
planning

Analysis process Cdiators.

Specific data collection

r
\ Varification of

indicators

Ciparations
planning

Figure 1: Schematic of the CND process

System for integration of tools for full content verification on multiple sensors

Process

Indicator

Description

Indicator shows possible bot activity|

Decides to collect
more data

Area of the process
where the Dumpadmin
system is effective

—

Starting tcpdump
for datacollection

Process repeated for each sensor

Results monitored

Check regularly on all sensors for
changes to the capturefiles.

Analyze results.

Figure 2: Verification process

False or true positive

System for integration of tools for full content verification on multiple sensors

The current state of the art is represented mainly by commercial products. These prod-
ucts are expensive and to be attractive on the market they have to appeal to the people
with the means to buy them. In most cases that is not technicians or security specialists,
but upper management staff. The most popular products today focus on compliance and
automation and make promises to be the "complete solution". For analysts they are often
too complex to administer, not flexible enough and difficult to optimize for the relevant
infrastructure. Further on in a military context the goal of defending networks can have
more nuances than stopping the attack as fast as possible. To obtain the necessary flex-
ibility and the ability to operate in any infrastructure presented, analysts often end up
making their own toolbox compiled of a collection of open-source tools combined with
in-house developed scripts. Inquiries to several highly recognized actors in the security
business both at the national and the international level have yielded the same answers
concerning CND tools.

The SANS methodology for incident handling which is widely adopted as best practice
follows the steps of preparation, identification, containment, eradication, recovery and
lessons learned [5, 6, 7]. This process does not take in the possibility of military defensive
operations. As mentioned above, in a military context there are often other priorities than
stopping the attack and recovering the system. To support future operations it is always
important to gain as much knowledge about an adversary as possible. One way to do this
is to watch the adversaries’ movement and collect information. In [8] Pham defines the
differences between events and incidents. He points out that who, what, where, when
are the questions important to answer when verifying an event. He goes on pointing out
that the most important thing to answer is whether the event is contrary to the security
policy. In information warfare there is a question that is at least as important as those
mentioned. The question is why? What were the objectives of the adversary? Answers
to this question will be very important input to our own planning process. Although
there exists a security policy for military networks, policy violations will be secondary to
keeping a relative information superiority compared to the adversary.

As mentioned, there is a need to have tools that will have effect in all kinds of net-
works. Some commercial businesses have the privilege of being able to build their corpo-
rate networks with security in mind and making them optimal for an active defense. This
privilege is not the case for most military security analysts. Primarily the networks are
built for functionality and the security is added when needed. Therefore a military secu-
rity analyst has to make use of the infrastructure available. This, as pointed out above,
shows the need for simple and scalable tools that can be incorporated with minimal ef-
fort and be effective in any infrastructure. Experience shows that tools an analyst always
will need include simple command line tools like tcpdump, netflow, ngrep and the likes.
These tools will be effective in any environment. What they lack is enterprise support
making them scalable for large distributed deployment. This thesis shows how tcpdump
can effectively be used for verification in a multi-sensor infrastructure.

1.6 Research questions

Based on the the previous discussion, in this section we define our research questions.
As stated, we will show that tcpdump can be used more effectively. In order to prove
increased effectiveness we define the following research questions:

e To what extent is it possible to integrate the use of packet capture tools in a way

System for integration of tools for full content verification on multiple sensors

that minimizes the added effort of starting a packet capture when expanding the
number of sensors?

e Can the data from the captures be organized in a way that makes them accessible
for the analyst?

e If so, can this integration also be used to document the process in such a way that
it reduces the need for administrative documentation?

1.7 Claimed contributions

As a result of the research in this thesis, the following contributions will be made.
e Definition of a scalable effective system for packet capture in CND analysis.

e Definition of a method for integrating unscalable open source command line based
security tools for efficient CND incident analysis.

e Implementation of a prototype for the methods mentioned above.

System for integration of tools for full content verification on multiple sensors

2 Related work

2.1 Related work

Although information security has been well established as a profession, active defense
of computer networks and especially cyber warfare are very new professions. Both tools
and procedures are focused towards compliance and "optimized" environments [9]. To
actively defend an information system in a cyber warfare perspective the analysts need
to focus their efforts slightly different. The main goal of Computer Network Defense is
not always to stop an intrusion or an attack as fast as possible. There are several tra-
ditional defensive military operations that can be conducted in cyber space. How one
handles attacks in cyberspace depends on the overall operations plan and must support
the commander’s need for information superiority. Information superiority is the single
most important prerequisite for success in asymmetric warfare [10]. One of the key re-
quirements is flexible tools for information collection. The field of defensive computer
network operations is young and research is limited. The relevant literature that is found
is not directly related to CND, but more focused on tools for security professionals.

2.1.1 Commercial tools

Examples of tools developed for security monitoring are Symantec Security Information
Manager[11], Netforensics SIM One[12] and CiscoWorks SIMS[13]. These tools are so
called security information managers. They aim to collect and correlate security related
information and present events to the analyst. Common for these tools is that they aim
to be "the" complete tool for the security organization in any business. These tools focus
on giving high-level views to the user/analyst and are designed specifically to prove
compliance with different laws, regulations and standards more easily [11, 13, 12, 14,

1.

In [9] Bouchard discusses requirements for log collection and security monitoring
solutions. He argues that "every IT department needs log management". The paper de-
scribes which requirements one should consider when choosing a log management so-
lution. Bouchard goes on to point out that there is a need for more than a passive log
collection system and that live event monitoring and handling is a necessity as well. The
focus of the paper is directed towards enterprise solutions for log management, but some
of the criteria are relevant for other solutions as well.

Similarly, [15] points out pitfalls to consider when choosing a SIM. Both these papers
are written for Netforensics and the recommendations must be considered favorable to
products from Netforensics. However, most of the considerations are relevant for security
thinking and should be taken into the process of building an environment for security
analysts.

2.1.2 Open-source tools

One effort to make a collection of tools for detection and analysis is NSMNow/[16], which
is mostly based on sguil [17]. Although a good effort, this tool is not yet flexible enough
to be the solution in CND. sguil has the possibility to look up netflow directly from a

System for integration of tools for full content verification on multiple sensors

Snort[18] alarm, but not the ability to start packet capture for that specific address.
Further on, the project is now on hold according to the web-page when it comes to
functionality and will only be updated with bug-fixes.

2.1.3 Related work conclusion

Since the military discipline of CND and even computer security are young fields of sci-
ence, the prior research in this specific area is very limited. The examples above represent
the current state of the art, but are only peripherally relevant to the problem at hand.

10

System for integration of tools for full content verification on multiple sensors

3 Choice of methods

This thesis was a qualitative study based on existing tools and procedures. We present a
system for using tcpdump more effectively in an environment with several sensors. This
system is based on experience from CND work in Norwegian Defense Security Service
(NDSS) and in dialog with operators. A prototype of the system is tested in a live envi-
ronment in NDSS. Results are based on both a survey and a calculation of efficiency as
described below. The work done in this thesis is a good basis for further development of
CND tools and procedures.

The goal of making this sort of interface is to make the CND process more effective.
However mainly measuring the time or number of operations used to complete the tasks
will not necessarily give the correct view of overall effectiveness. For some reason organi-
zations buy expensive analyst tools to provide good working conditions for the analysts,
but the analysts in our experience keep returning to the same non-optimized command
line tools. The reason for this may lay in usability. Therefore the success of this project
will be measured as a combination of increased efficiency and acceptable usability. Ac-
ceptable usability in this case will be based on interpreting user feedback and deducing
whether the system will be the preferred tool over the existing solutions.

3.1 Efficiency

To measure how efficient the new system is compared to the existing manual process
simple keystroke-level modeling was used. In [19] it is described how to use Keystroke-
Level Modeling (KLM) to estimate execution times. In this thesis there is no need to
estimate execution in time. The number of physical operators will provide a sufficient
basis for comparing the new system with the manual method currently in use. Therefore
the number of keystrokes needed to complete the task was counted and compared.

3.2 Effectiveness

In order to capture effectiveness differences based on the operators’ experience of the
new system a field test was conducted. The system was installed in a live environment
and operators were given an opportunity to use the system in their daily routine. To
increase usage in a limited experiment period some tasks were created for the operators.
The tasks represent problems similar to real incidents. After the experiment period was
concluded the analysts were set to answer a questionnaire. The questions were designed
to reflect how easy the system is to learn, the user experienced efficiency and the overall
value of such a system.

11

System for integration of tools for full content verification on multiple sensors

4 System for integrating non-scalable command line
tools for verification on multiple sensors

This thesis provides a more effective way of using tcpdump in an environment with mul-
tiple sensors. Tcpdump is an open-source command line tool used to capture network
traffic in real time. This tool is not in its own designed for use in an enterprise envi-
ronment and therefore does not scale well for multiple sensors. When detecting and
handling security incidents the task of verifying indicators and seeking information on
who conducts the attacks and why they are doing so is a very important part of the pro-
cess. What an analyst will always need is more information. The required information
is often sought by using tcpdump, or other similar tools, to provide full-content packet
captures of the relevant communication. When sensors are distributed in a large network
the task of starting packet captures with the correct filtering on all sensors can be tedious
and error prone. To make this process easier, this thesis proposes a way of abstracting
the interaction with tcpdump on each sensor providing the operator with one common
interface to all sensors.

4.1 The system

The main idea of this thesis is to provide a Web based interface for the operators to input
the correct command and filter. This interface also provides a list of available sensors
and gives the operators an option to select which sensor should activate the capture
command. Every command sent to the sensors is stored in a database making it possible
to provide history for all captures. The benefit of this feature will be discussed later.
Further on, the interface shows all ongoing captures and their status. When a capture
filter receives data and the capture file is updated the status immediately changes in the
interface. In this way analysts can immediately see activity and act upon the incidents.
Figure 4 shows an example of how a typical network is set up. The operators use clients
placed in a local network. The Dumpadmin system runs on a central master server. This
server can be placed locally on the same network as the clients on a separate network.
Practical and security considerations apply as for all networks and the network should
be designed to best serve the needs of the organization. The main requirement is that
the master server has to be able to connect to all the remote sensors and all clients must
be able to connect to the master server. The different remote sensors do not have to be
able to connect to each other.

4.1.1 Compatibility and environment requirements

The system proposed in this thesis communicates with all sensors in a given environ-
ment. To accomplished this it is assumed that there is one central place in the network
environment where the system can be installed witch provides network connectivity to
all sensors. The system can be installed on an existing server or on a dedicated server.
Installation requirements is not taken into further consideration in this thesis apart from
the design choices described for the prototype implementation. For the field test the ex-
isting network at NODSS/CIPC was used.

13

System for integration of tools for full content verification on multiple sensors

Webinterface)
Sensors
Master server

Runs script [server.py) to
manitor changes on
sansors, Open S5H

channel and sends inotify

lizstenar (remoted . py) to

User enters command \Imb -
Prosess commands and

Remotal.py listens for
changes. Sends changes
back through channel.

sends to all sensors
Each of tha sensors starts

I a packet capture

I Repgister changes in a

capture file
Server_py receives evenis.

Pushes updates to web-
interface I

User monitors changes I I

Figure 3: Workflow in Dumpadmin

14

System for integration of tools for full content verification on multiple sensors

4.1.2 Communicating with sensors

One of the key functions of the framework is to send commands to different remote
machines. Sub-requirement for this function is to be securely transmitting. The universal
way of communicating securely with a command line interface is SSH. Therefore separate
SSH connections to multiple servers is a requirement. The second key requirement for the
command interface is that an analyst should be able to send commands to the different
remote machines without needing to handle the SSH connections himself. The interface
should also be accessible for several analysts simultaneously. Because of this, the interface
is chosen to be Web based. In this way, one can easily distribute the interface through
existing servers and protocols.

Lastly, the interface must provide the analyst with information regarding updates to
the captures, preferably in real-time. This is required for the operator to be able to react
quickly to incidents.

Other beneficial properties of the interface are logging of all actions and history of
all captures. This gives a higher degree of verifiability in regard to actions taken by the
operators,' which governmental organizations are required to provide.

4.2 Design choices

To test the framework and prove the increased effectiveness, a prototype was developed.
This section describes which choices have been made considering design and implemen-
tation of the system.

4.2.1 Platform

Tepdump is a tool originally developed for POSIX platforms (Unix, Linux) and later
ported to Windows systems under the name windump. Based on the fact that tcpdump is
natively installed and supported in most Linux systems, Linux is the platform chosen for
this thesis. Among the many different flavors of Linux Ubuntu was the operating system
of choice. Ubuntu is easy to install and maintain, has very good support both officially
and by a large user community and has good support for different types of hardware.
Also, the author has been using Ubunutu for some time and is somewhat familiar with
its inner workings.

4.2.2 Programming language

There are several programming languages that could serve the purpose for this project.
However, the language of choice is python. This is based on compatibility with other
systems at NODSS/CIPC and the author’s prior knowledge of this language.

4.2.3 Web Framework

The Django [20, 21]framework is perfect for easily creating advanced web based projects
with python. The developers of Django have taken great care to separate logic form pre-
sentation and very little python code is mingled in with the html. This makes it possible to
make changes to either the apperance or the logic without having to change them both.
Django uses what is called an MVC development pattern . The acronym MVC stands for
Model, View and Controller. As explained in the Django Book ([20]) the model is the
data access layer. This is where data gets accessed and validated. The view part is the

!In Norwegian this is called “notoritet“ which means one should have logs detailing all actions in such a way
that a controlling body can get a clear view of incidents and how they are handled. More on this requirement
in Section 4.4

15

System for integration of tools for full content verification on multiple sensors

layer taking care of presenting data to the user. In Django this is accomplished through
templates. Lastly, the controller is the layer that handles all the logic of the application.
This is where decisions are made based on user input. In Django this happens in the
views.

4.3 Architecture and implementation

The main goal of the system is to send commands to several servers in different locations
through SSH. The increased number of operations due to increased number of sensors
should be transparent to the operator/analyst. To manage this, the system is built up of
the following components:

Django based Web interface Handles web interaction, user-authentication and database
interaction

Database The prototype is based on Sqlite3[22], but any database could be used. Stores
sensors, captures and commands, users and other information necessary.

Orbited and Stomp Server for pushing events to web.
Paramiko SSH conncetions.

Pyinotify Trap inode events to watch changes in capture files.
Execnet Run pyinotify remotely through SSH channel

The most important part of the framework is were commands are entered by the
analyst and sent to the different sensors. This is done through a simple form created
with a few lines of Django code and executed via Paramiko. Paramiko is a Pyhton library
constructed to easily connect and send commands through SSH.

Figure 3 shows the work flow of the Dumpadmin system. First of all the necessary
server needs to run on the master server. Obviously a Web server is needed to provide
the interface for the user. The Web server must be compatible with python and Django.
For the prototype, the development server bundled with Django was used. Since Web
technologies for the time being do not natively support sockets and thereby two-way
communication we needed some mean to push updates to the Web interface. For this
we used the COMET server Orbited and the Stomp client library. Orbited runs as a stan-
dalone server and handles connections from the browser and interacts with the Django
application. The last script that needs to be run is server.py (Appendix B)which was de-
veloped for this prototype. It handles the events from the sensors. This is performed by
connecting to all the sensors via SSH using the execnet library and establishing a gate-
way. Through this gateway, a separate script is executed to simply listen for inode events
in the folder specified for captures. The pyinotify library provides this functionality. When
an inode event is captured it is sent back to the master server through the gateway and
server.py sends it to a message channel on the orbited server. These connections are run
in separate threads so events from different sensors will not block each other. Starting
a capture is executed by entering the required information in the Web interface. The
interface for starting captures is shown in Figure 5

The following input fields are shown:

16

System for integration of tools for full content verification on multiple sensors

Distributed sensors

/ Operators clients N

W1

Sensor,
Location 1

(i

@ Master server

3 ‘

S
- <

=

%

Sensor,
Location 2

.

Q

Q

Sensor,
Location n

—

Figure 4: Outline of sensor network

e Command

Description

Authorized

e Sign
o Dfile
e Sensors

The ’Command’ input field is the most important of all the input fields. It is intended
for the tcpdump command followed by the necessary switches and a filter. The ’-w’ switch
to give an output filename should not be used.The filename is given in the 'Dfile’ field
and the switch is handled by the system. The ’Description’ field is used to give some
background for this particular capture. For the example used earlier in this thesis (Sec-
tion 1.3.1) a description could be something like:

All traffic to known IRC bot controller. Shows possibly infected clients.

When the capture is a part of a case or ongoing operation a reference should also be
present in the description.

To keep track of who is authorizing the use of full-content captures, the ’Authorized’
field should be filled in. This information is required when inspected as described in
Section 4.4. The ’Sign’ field is intended for the initials of the operator executing the com-
mand. 'Dfile’ is where the name of the output file should be entered. In the prototype the

17

System for integration of tools for full content verification on multiple sensors

Add capture

Time: 14:54:19

| ongoing captures | Add capture | Inactive captures | Capture directory |

E g_muﬂ _bn.?m" M sensors:

Hold down "Control”, or "Command” on a Mac, to select more than one. l

python

Figure 5: The add capture interface of Dumpadmin

18

System for integration of tools for full content verification on multiple sensors

filename cannot include whitespace. The filename of the destination file is also used as
the name of the identifier for the screen command used to run tcpdump. Finally, the 'Sen-
sors’ field lists available sensors. Multiple sensors can be selected by holding the control
(<CTRL>) key when clicking on sensor names. When the user pushes the 'Run’ button
the form is sent to the Django application running in the Web server on the master server.
In this application the following takes place. First the complete tcpdump command is
built up. In order to make the output from the command accessible by logging on to the
sensor manually. The tcpdump command is run inside a screen. The screen is identified
with the same name as the filename for the capture file. The filename given from the
user is prefixed with the current date and time to ensure uniqueness. When the com-
plete command is ready for execution the Django application uses the Paramiko library
to establish an SSH connection to each of the sensors in turn and executes the command.
When the command is successfully executed the operation is stored in a database. Finally,
a response is sent to the browser showing a list of the ongoing captures. When changes
in any of the capture files occur an update is sent to this list via the Orbited server as
described above.

Further, the web interface gives access to a couple of other important features. First,
the ’Ongoing captures’ page which is were all the ongoing captures is listed and their
status updated in real-time. This is the view the operators would use most as part of
their daily monitoring of the networks. The last feature worth mentioning is the Inactive
captures’. This page produces a list of all previous captures that are now inactive. This
list can be exported as PDF an is what would be shown to an inspection team.

4.4 Legal considerations

As information security professionals, we have to consider the legal aspects of our work
and constantly monitor how relevant rules and regulations apply to our work. take care
about legal aspects that need to be considered. The legal implications of monitoring com-
puter networks for security incidents are different under the different national laws. The
principles described here are based on Norwegian laws and regulations and are taken
from the directives given for governmental and military practices. CND in the Norwe-
gian defense are mainly regulated through the directive for the security in the Norwe-
gian Defense, although new directives are under development. These directives points
out who should perform security monitoring and incident handling as well as some ex-
amples of what is meant by these activities. Apart from that, there are at the moment
few directions when it comes the the legal implications of CND. However, there are a
few legal limitations that are especially important to consider on a daily basis in this
line of work. First of all there are privacy concerns. Capturing and monitoring network
data can give access to private information which must be handled accordingly. Privacy
related issues are regulated through the law on handling private information (Person-
opplysningsloven, [23]). In addition, law on police authority for military personnel (Lov
om militeer politimyndighet, [24]) and law on defense secrets (Lov om forsvarshemme-
ligheter, [25]) authorize use of certain enforcement measures that has to be balanced
between military operational concerns and national security on one side and privacy and
legal protection of individuals on the other side. To assure that all public administra-
tive bodies, such as the defense, all act within their authority, several controlling bodies
regularly inspect the relevant government branches. In order to account for all past ac-

19

System for integration of tools for full content verification on multiple sensors

tivities when inspected it is imperative to be able to present detailed documentation on
all activity. How, when and why packet captures are started are one of the issues that
is vigorously controlled to ensure that the right judgments have been made concerning
privacy issues.

20

System for integration of tools for full content verification on multiple sensors

5 Experiments and results

5.1 Keystroke-Level Modeling
In this thesis, the properties of the framework was measured in two different ways to
show whether the goals have been reached. First, we performed a simple Keystroke-
Level Modeling (KLM). This is basically counting the number of keys one has to press
on the keyboard to start the desired capture. The capture filter will affect the number
of keystrokes required and different filters might yield different results. Therefore, we
shall give examples with different lengths of filters to show the relationship between the
manual method and using the Dumpadmin system. The two methods can be compared
using the following equations:

Km=kxs 5.1
where:
Ky is total number of keystrokes (manual method)

k is the number of keystrokes per sensor

s is total number of sensors

Kda = ke + kg + Kauth + ksign +ks+s (5.2)

where:
Kaq is the total number of keystrokes (Dumpadmin)

k. is the number of keystrokes in tcpdump command (screen and -w <filename> not
included)

kq is the number of keystrokes in description
Kauth is the number of keystrokes in name of authorizing officer

Ksign is the number of keystrokes in signature of operator starting the capture (initials
only)

k¢ is the keystrokes in the filename (without extension)
s is the number of sensors

When starting a packet capture from the command line, the command required is of
the form:

screen —S ’<name of screen >’ tcpdump —<necessary switches> —w
<filename> ’<bpf filter >’

To calculate keystrokes for comparison of the two methods we used the following
three tcpdump commands:

21

System for integration of tools for full content verification on multiple sensors

Listing 5.1: "Example tcpdump commands"

screen —S ’screennamel’ tcpdump —nns O —w capturefilel.cap
"host 172.16.13.245’

screen —S ’screenname2’ tcpdump —nns O —w capturefile2.cap
"host 172.16.13.245 and port 1337’

screen —S ’screenname3’ tcpdump —nns 0 —w capturefile3.cap
"host 172.16.13.245 and not port 80 and not port 22 and not
port 443 and not port 25 and not port 23’

Note that they are all preceded with a screen command. Since several operators
should be able to work on the sensors and terminals have to be closed occasionally, all
commands are run in screen to be able to reconnect from other terminals. In Dumpad-
min, the screen commands are handled by the system itself and will not result in extra
keystrokes.

Given Equations 5.1 and 5.2, we can calculated the total numbers of keystrokes for
the two methods based on the above examples (Listing 5.1). In Table 1, the numbers of
keystrokes for the different operations are given. In addition, there will be keystrokes
for tabbing between input fields in the Dumpadmin interface. Note that execution times
are not given and mental processes are left out of the model. These factors will not
significantly affect the relationship in efficiency between the two methods.

Example k ke | kKa | Kauth | Ksign | K
1 78 35 | 50 8 3 8
2 92 49 | 50 8 3 8
3 159 | 116 | 50 8 3 8

Table 1: Keystrokes

As shown on the plots of the three example commands (Figure 6, 7 and 8) there
was a significant improvement in efficiency in terms of keystrokes already with two sen-
sors. When adding sensors the gain increases. The size (length) of the Berkeley Packet
Filter(BPF) filter for the packet capture does not significantly change the relationship
between the two methods. As shown in (Figure 9, 10 and 11), the average number
of keystrokes per sensor is constant when using the manual method. When using the
Dumpadmin system on the other hand the average amount of keystrokes will decrease
as the number of sensors increases.

By means of keystrokes a considerable increase in efficiency was achieved. In addition
there are several factors that was not measured in this model. First of all the complexity
of using different shells for all the sensors will make it very difficult and time consuming
for the operator to ensure that the commands are executed correctly on each sensor.
This manual procedure also opens for a risk for human error. Further on there will be
no central log keeping track of active and stopped captures. The legal implications were
discussed in Section 4.4. Although Keystroke Level Modeling takes into account time
used for cognitive or mental processes it would not be possible to reliably compute the
time use for mental processes due to use of several different terminals. This would not
be a linear function of the number of terminals and would require a study based on
empiric data. Anyway this limitation does not affect the result of this experiment. The
operator’s experience, and therein the cognitive processes, was taken into consideration
in the survey and interviews with the operators.

22

System for integration of tools for full content verification on multiple sensors

Keystrokes

Keystrokes

Example 1

800

700

600

500

400

300

200

100

Manlual metho& —

Dumpzy

7

1000

900

800

700

600

500

400

300

200

100

Number of sensors

Figure 7: Keystrokes as function of the number of sensors (example 2)

23

/
1 1 1 1 1 1 1
2 3 4 5 6 8 9 10
Number of sensors
Figure 6: Keystrokes as function of the number of sensors (example 1)
Example 2
T T T T T T T
Manual method ——

Dumpadmin

/]
/
// N
//
~
/ b
/ // 1
// .
~
/// -
/ / 1
~
//
7 .
/
_—

L u

1 1 1 1 1 1 1

2 3 4 5 6 8 9 10

System for integration of tools for full content verification on multiple sensors

Keystrokes

Keystrokes

1600

1400

1200

1000

800

600

400

200

110

Example 3

T T T T T T T
Manual method

Dumpadmin

2 3 4 5 6 7 8 9
Number of sensors

Figure 8: Keystrokes as function of the number of sensors (example 3)

Example 1, average

10

100

90

80

' ' ' ' ' ' Man'ual methocll —
Dumpadmin

70

60

50

40

30

20

10

2 3 4 5 6 7 8 9
Number of sensors

Figure 9: Average keystrokes per sensor (example 1)

24

10

System for integration of tools for full content verification on multiple sensors

Keystrokes

Keystrokes

Example 2, average

120 T T T T T T T T
Manual method —
Dumpadmin

100

80 |-

40

20

0 1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9

Number of sensors

Figure 10: Average keystrokes per sensor (example 2)

Example 3, average
200 T T T T T T

10

Man'ual metho& —
Dumpadmin
180 |-

160

140 -

100

80 |-

60 |-

0 1 1 1 1 1 1 1 1

1 2 3 4 5 6 7 8 9
Number of sensors

Figure 11: Average keystrokes per sensor (example 3)

25

10

System for integration of tools for full content verification on multiple sensors

In these examples calculations are shown only for up till 10 sensors. The patterns is
linear so increasing the number of sensors will not affect the results. How many sensors
the system could handle is not tested in this project. Increasing to a hundred or even
several hundred should not cause problems because very little processing is required.
What could be a limiting factor is the number of simultaneous network connections.
Testing this is outside the scope of this project and such large numbers of sensors are
not relevant at the time. However, such a test should be conducted for different types of
hardware before putting the system into production.

5.2 Percieved effectiveness

In addition to KLM, we want to measure the experienced or perceived effectiveness of
the system. That is, if the operators are more effective and feel more comfortable using
this system compared to the manual way of starting packet capture. To accomplish this,
a prototype was implemented and tested by a group of test subjects.

5.2.1 Test subjects

The test subjects were professional operators and analysts at the NODSS/CIPC. They are
employed to monitor and analyze security incidents in the Norwegian Defense informa-
tion systems. These operators are the main target group for this system and will provide
valid results.

5.2.2 Testing

The testing was performed in a operational network at Norwegian Security Service Crit-
ical Infrastructure Protection Center. The system was installed parallel to other existing
tools and the operators were provided with tasks that should be completed using the
Dumpadmin system.

As stated in [26], the quality of a system relies on its ability to function in the real
world. The test subjects have significant experience in detecting and analyzing security
incidents and can test the system for real life performance. After completing the tasks
they were given a questionnaire containing questions designed to evaluate usefulness,
ease of use, ease of learning and satisfaction. The questionnaire was based on the paper
by Arnold Lund in the October 2001 issue of Usability Interface ([27]). The questionnaire
includes nine statements with a scaled answers from 1 through 7 where 1 is disagree
and 7 is agree. Lastly, the test subjects were also given the opportunity to give additional
comments on how to improve the systems usefulness. The complete questionnaire is
shown in Appendix A. In addition the test subjects were observed occasionally during
the test period and issues were discussed as they emerged.

The deployed system were merely a prototype so comments regarding bugs, system
features and aesthetics is not considered in the effectiveness evaluation, but the most
important comments were used as input for future work.

5.2.3 Results

Results from the questionnaires were gathered and mean, median and mode were cal-
culated. Only eight operators answered the questionnaires. This a small sample, but still
represents 67% of the operators that would normally use this system and it is therefore
likely that the results are representative for the unit. Due to the nature of their shifts and
personnel on leave a 100% sampling rate was not possible. The effect of the samplesize

26

System for integration of tools for full content verification on multiple sensors

on the results will be discussed further in the next section (Section 5.2.4).

Question(statement) Mean | Median | Mode
The system would help me be more effective 4.4 5 5
It would be useful in my daily job 4.4 5 5
Both occasional and regular users would benefit from it 4.6 4.5 7
I can use it successfully every time 5 6 7
The system is easy to use 4.5 5 4
The system was easy to learn 5.3 6 7
I easily remember how to use it 5.5 7 7
The system makes it easier to monitor packet captures 4.9 5.5 5
I prefer this system over the manual method for starting | 5.1 6 6
and monitoring packet captures

Table 2: Results from questionnaires

Table 2 shows the results from the questionnaires filled out by the test subjects. The
results show that the majority of the operators agree that the system will increase their
effectiveness if used. They also prefer to use this system over the manual method.

Based on the comments from the test subjects there are a few factors to consider
when interpreting these results. First of all, it is not possible to ensure a common basis
for answering the questions. Some subjects gave a very low score for usefulness based on
missing features and other have given scores based only on existing features. However,
this affects the results in a negative direction meaning that it is still safe to conclude
that a system based on this prototype would increase the overall effectiveness of the
operators. Furthermore, the concept of the interface construction is acceptable for the
operators and can be used successfully.

A few additions should be implemented in the system before put into production use.
First of all there should be a possibility to use BPF filters from a filter file instead of en-
tering the filter in the command field. Other features that would increase the usefulness
of the system are the ability to edit ongoing captures, better error checking and recovery,
as well as some way of inspecting the content of captures.

5.2.4 Reliability and validity
The sample size in this survey is to small to make the results quantifiable. That was not
the purpose of this research either. As stated in the research questions the purpose of this
research was to find whether or not it is possible to make the way packet captures are
used in security incident verification more effective. Therefore a qualitative approach has
been chosen. The sample size is mainly a convenience sample [28] in that all available
operators has answered the questionnaire. However, there is a large amount of judgment
in sampling implicated as well. The test subjects in this survey is a very homogeneous
group in terms of tasks, experience and education. Therefore it can be stated with high
confidence that the sample group is representative. Further on comments on the ques-
tionnaires and discussions with and observations of the operators suggests that we have
reach data saturation with this sample.

One operator in particular has given answers that has affected the results negatively.
As explained above the operators might have answered on slightly differing premises.
This is due to evolvement of established procedures parallel to this study. In particular
this is true for the most negative answers given from this one operator. The prototype has

27

System for integration of tools for full content verification on multiple sensors

not been sufficiently adjusted to the procedures per time, only to the procedures existing
at the start of this research (January 2010). Despite this the results still suggests that the
prototype shows promise in terms of increasing efficiency and effectiveness.

Due to the ever changing premises it can be difficult to reproduce the exact results of
this research. Still a similar survey should yield the same conclusions. More effort could
be put in to ensuring a common premise for all the test subjects, but observations of and
comments from the subjects will likely reveal the same results.

28

System for integration of tools for full content verification on multiple sensors

6 Conclusion

This thesis has presented a system for administering full content packet captures for use
in verification and analysis in a CND context. The main goal for this system is to increase
effectiveness of the CND process. We now take a look at the research questions stated in
Section 1.6 and conclude for each of them separately.

1. To what extent is it possible to integrate the use of packet capture tools in a way
that minimizes the added effort of starting a packet capture when expanding the
number of sensors?

This thesis has shown that it is possible to almost eliminate the added effort by adding
extra sensors. This has been shown by KLM of the prototype implementation. By a usabil-
ity survey, a set of test subjects have confirmed that a system like the presented prototype
would make the verification process more effective. However, it was pointed out that
some extra features would add to the benefits of the system. The most beneficial feature
would be the ability to use predefined files for BPF filtering in the tcpdump command.
There might be limitations to the number of sensors that can be administered, but not in
the range of sensors that will be in use at CIPC in the foreseeable future.

2. Can the data from the captures be organized in a way that makes them accessible
for the analyst?

The survey showed that the ability to effectively monitor the captures for changes was
increased when using the Dumpadmin system. To further add to this increase, the possi-
bility to do simple inspection of the capture files should be added. There is also a need
to organize the way changes are presented in the ’Ongoing captures’ view in order to
accoubt for a greater number of sensors.

3. If so, can this integration also be used to document the process in such a way that
it reduces the need for administrative documentation?

The proposed system stores all active and stopped captures in a database in such a way
that it can later be documented what captures have been used for what purposes. As
discussed in Section 4.4 this is an absolute requirement. When included directly in the
system the need for extra logging and documentation is decreased which again makes
for increased effectiveness for the operators.

29

System for integration of tools for full content verification on multiple sensors

7 Future work

This thesis has shown that it is possible to significantly increase effectiveness in CND
by making interface to more easily use command line based tools in an environment of
multiple sensors. Drawing on experience from this thesis, there are at least two paths
of research that would benefit CND professionals. First off, the system proposed in this
thesis could easily be expanded to include more tools and so be a more complete toolbox.
To accomplish this several aspects needs to be studied. First of all, a broad survey of
which tools to include should be conducted. A thorough usability study of the interfaces
of existing SIMs and other commercial information security products could give valuable
input to what works and what does not. Apart from giving operators the necessary tools,
giving them an interface they can effectively use would be critical for the success of such
work. The scope of these problems are wide and would probably be best solved in several
delimited studies.

As a supplement to the proposed research a slightly different path is to build in more
features to the system proposed in this thesis and conduct an empirical study of the
usefulness of the system among several different user groups. Before starting a survey
the possibility to load filters from files and some simple query options should be added.
Possibly some way of editing the filter files through the interface would also be beneficial.
The different filters should include comments describing the purpose of each filter. Lastly,
some effort should be put in to error checking and correction making the system more
robust. To get the best results from such a survey the prototype should be adjusted to
fit the current work processes and should be tested and adjusted in cooperation with
operators.

31

System for integration of tools for full content verification on multiple sensors

(1]
(2]

(3]
(4]
(5]
(6]

[71

(8]
[91
[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]
[19]

[20]

Bibliography

stabsskole, F. 2007. Forsvarets Fellesoperative Doktrine. Forsvarsstaben.

Bejtlich, R. 2004. The Tao of Network Security Monitoring - Beyond Intrusion Detec-
tion. Addison-Wesley.

Holdaway, E. J. 2001. Active computer network defense: An assessment.
Hildreth, S. A. 2001. Cyberwarfare. CRS Report for Congress.
Bilardo, C. 2002. Deterring cyber attacks.

Pokladnik, M. 2007. An incident handling process for small and medium busi-
nesses. SANS Information Security Reading Room.

Morreale, T. 2008. Incident handling for smes (small to medium enterprises).
SANS Information Security Reading Room.

Pham, C. 2001. From events to incidents.
Bouchard, M. 2009. Demand more from your log management solution.

Applegate, M. 2001. Preparing for asymmetry: As seen through the lens of joint
vision 2020.

Symantec. 2008. Symantec security information manager.

Netforensics. 2009. Actionable security intelligence: Preparing for the next threat
with a proactive strategy.

Systems, C. 2005. Ciscoworks sims incident resolution management: Unifying the
security team to eliminate threats.

Netforensics. 2009. Closing the cyber-security gap in the bulk power system.

Netforensics. 2008. 10 common pitfalls to avoid when evaluating security infor-
mation management (sim) solutions.

2009. Nsmnow. http://www.securixlive.com/nsmnow/index.php.

Sguil: The analyst console for network security monitoring.
http://sguil.sourceforge.net/docs.html.

The Snort Project. Snort Users Manual, 2.8.6 edition, April 2010.
Kieras, D. 2001. Using the keystroke-level model to estimate execution times. 11.

Holovaty, A. & Kaplan-Moss, J. The django book. Internet. Second edition. Only
available online. First edition printed on apress.

33

System for integration of tools for full content verification on multiple sensors

[21] Django documentation. Internet(last visited 01.06.2010).
[22] About sqlite. Internet (last visited 01.06.2010).

[23] og politidepartementet, J. 2000. Lov om behandling av personopplysninger. Inter-
net, lovdata.no. http://lovdata.no/all/hl-20000414-031.html.

[24] Forsvarsdepartementet. May 1988. Lov om politimyndighet i det militaere forsvar.
Internet, lovdata.no. http://lovdata.no/all/hl-19880520-033.html.

[25] Forsvarsdepartementet. August 1914. Lov om forsvarshemmeligheter. Internet,
lovdata.no. http://lovdata.no/all/hl-19140818-003.html.

[26] Bevan, N. 1995. Measuring usability as quality of use. Software Quality Journal, 4,
115-150.

[27] Lund, A. M. 2001. measuring usability with the use questionnare. Usability Inter-
face, Society for Technical Communication Usability SIG Publication, 8.

[28] Marshall, M. N. 1996. Sampling for qualitative research. Family Practice, 13.

34

System for integration of tools for full content verification on multiple sensors

Appendix A Questionnaire

The next page shows the questionnaire used for gathering feedback from the test sub-
jects.

35

Dumpadmin usability questionnaire

The system would help me be more effective.

It would be useful in my daily job.

Both occasional and regular users would benefit from it.
| can use it successfully every time.

The system is easy to use.

The system was easy to learn.

| easily remember how to use it.

The system makes it easier to monitor packet captures.

| prefer this system over the manual method for starting and monitoring
packet captures.

What changes or improvements would make this system more useful?

Disagree
1 2 3
1 2 3
1 2 3
1 2 3
1 2 3
1 2 3
1 2 3
1 2 3

2 3

> b

Agree
56
56

System for integration of tools for full content verification on multiple sensors

Appendix B server.py

import execnet, os,json,stomp,threading, sys
print sys.path

from batchutils import Daemonize

import remotel

from dumpadmin.models import Sensors

class connectThread (threading.Thread):
"""Threading class to support connections to several
sensors simultaneously """

def init__(self ,host,remote_script,sensor name):
threading.Thread. _init__(self)
self.host=host
self .remote_script=remote_script
self .sensor name=sensor_name

def run(self):

self .exec_remote(self.host,self.remote_script, "tommy")

#Callback function. Used in setcallback ()
def receiver(self ,res):

"""Function used as callback for the
exec_remote. When events are received from
remote sensors they are sent to a orbited
channel. """

res[’sensor_name’]=self.sensor name

print "POSTDATA: ", res

message = json.dumps(res)

conn.send (message, destination=’/messages’)

return None

def exec remote(self ,host,remote,name):

"""This function connects to a remote host
throught SSH using the execnet library. The
remote host is given by ’host’. Commands
(script) to execute remotely is given by
‘remote 7. """

#Opens a gateway to the remotehost

gw = execnet.makegateway("ssh=root@%s" % host)
#In this case the root user is used. The
master server needs to be in the authorized
file on the remote sensor to connect
without a password. This setup should be

37

System for integration of tools for full content verification on multiple sensors

if name ==

changed to an unpriveleged user for security

#0Opens a channel and executes script remote
ch = gw.remote_exec(remote)

#Set callback function. Output from remote side
gets sent to receiver (). All output from
remote side will be processed immediately

print "Setting callback"

ch.setcallback (self.receiver)

#Waits for remote script to close.
ch.waitclose ()

" "o,

_main__

#When started a stomp client is initiated and connects
to the orbited server and channel.

conn =

stomp . Connection ()

conn.start ()
conn.connect ()
conn.subscribe (destination="/messages’, ack=’auto’)

sensors

= Sensors.objects.all ()

for sensor in sensors:

print sensor.ip
if sensor.ip:

host = sensor.ip
elif sensor.hostname:
host = sensor.hostname

else:

raise Exception, "No_hostname_or_IP_
address”

connectThread (host ,remotel , sensor.name) . start ()

38

System for integration of tools for full content verification on multiple sensors

Appendix C remotel.py

#Script that is sent to the remote sensors

import os,sys,json,re

import pyinotify

from datetime import datetime
sys.path.append(’/home/tommy/Documents/Master/ Thesis ’)
#from masterproject import settings

from django.conf import settings

if name == ' channelexec__ ’:

wm = pyinotify.WatchManager ()
mask = pyinotify.IN MODIFY

class PTmp(pyinotify.ProcessEvent):
def process IN MODIFY(self, event):
""" Function for handling
modification events"""
size =
os.path. getsize (os.path.join (event.path,
event.name))

#Gather the details we need to

send

#event _details = json.dumps({
"modtime"
str(datetime.now()),
"newsige" : sige, "name"

event.name })

name = re.sub(’\.cap$’,’’
event .name)

event details = { "modtime"
str (datetime .now()),
"newsize" : size, "name"
name }

B

#Send event details for
processing by the calling
function

channel.send(event details)

#Print for debugging. Comment

out in production.
print event details

39

System for integration of tools for full content verification on multiple sensors

wdd = wm.add watch(settings .WATCH DIR, mask,
rec=True)

notifier = pyinotify.Notifier (wm, PTmp())

while True:
try:
notifier.process_events ()
if notifier.check events():
notifier.read events ()
notifier.process_events ()

except KeyboardInterrupt:
raise
notifier.stop ()
break

40

System for integration of tools for full content verification on multiple sensors

Appendix D views.py

Create your views here.

#Imports

from contextlib import contextmanager

from django.contrib.auth.decorators import login required

from django.contrib.auth import authenticate, login

from django.db import models

from django.forms import ModelForm

from django.forms.models import modelformset factory

from django.http import HttpResponse, HttpResponseRedirect

from django.template import Template, Context

from django.template.loader import get template

from django.shortcuts import render to_response

from masterproject.dumpadmin.models import Captures, Sensors,
Message

from django.conf import settings

from cgi import escape

import cStringlO as StringlO

import ho.pisa as pisa

import datetime, threading, execnet,paramiko,
0s,json ,stomp, pyinotify , time,sys

#Start the Stomp server and subscribe. Necessary for realtime
updates.

conn = stomp.Connection ()

conn.start ()

conn.connect ()

conn.subscribe (destination="/messages’, ack=’auto’)

class CaptureForm (ModelForm) :
class Meta:
model = Captures
#fields = (’command’, ’description’, ’sensors’,
“authorizged ’, ’sign’, ’dfile’, ’active’)

def render to_pdf(template src, context dict):
template = get template(template src)
context = Context(context dict)
html = template.render(context)

41

System for integration of tools for full content verification on multiple sensors

result = StringIO.StringlIO ()

pdf =
pisa.pisaDocument (StringIO . StringIO (html.encode ("ISO—8859—-1")),
result)
if not pdf.err:
return HttpResponse(result.getvalue (),
mimetype="application/pdf’)
return HttpResponse ('We_had,_some_errors <pre>¥%s</pre>’ %
escape (html))

@login_required
def display meta(request):
"""Displays metadata for the server
values = request.META.items ()
values.sort ()
html = []
for k, v in values:
html. append ('<tr><td>%s </td><td>%s </td ></tr >’
% (k, v))
return HttpResponse(’<table>%s</table>’ %
'\n’.join (html))

nnn

#This should be set up to use certificates and trust.
@contextmanager
def create ssh (host, username=’root’):

"""Setup a SSH connection. Take three arguments (host,
username, password). Connects to host with username
and password. """

ssh = paramiko.SSHClient ()

ssh.set _missing host _key policy(paramiko.AutoAddPolicy())

try:
print "Creating _connection"
#ssh.connect(host, username=username,
password=password)
ssh.connect(host, port=22, username=username,
allow_agent=True, look for keys=True)
print "connected"
yield ssh
finally:

print "closing_connection"
ssh.close ()
print "closed"

@login required
def dump(request):

"""This view provides a form to start a new packet
capture. When POST data are sent the captures are
started on the defined sensors. Redirects to list
of ongoing captures"""

CapturesFormset = modelformset factory(Captures)

form = CaptureForm ()

42

System for integration of tools for full content verification on multiple sensors

#print formset
if (run’ in request.POST and
request .POST['run’]=="Run’) and (’command’ in
request .POST and request.POST[command’]) :
filename = ’cap%s%s’ %
(time. strftime ("%Y—%m-%d Yd-9AVE%S",
time.localtime ()) ,request.POST[’dfile ’])

print request.POST

req = request.POST. copy ()

req. _setitem_ _(’dfile’,filename)
capture=CaptureForm (req)

results={}
results[’out’]=""
results[’err’]=""

for k in req.getlist(’sensors’):
print "ID: %s" % k
#ip _adr=Sensors.objects.get(id="1")
sensor=Sensors.objects. get (id=k)

if sensor.ip:
host = sensor.ip
elif sensor.hostname:
host = sensor.hostname
else:
raise Exception, "No_hostname,,
or_IP_address"

with create_ssh (host=host) as ssh:

cmd = ’screen_—dmS_%s, Y%s, _—i, %s,,
—Uw_%s/%s .cap’ %
(req[’dfile’],req[’command’],sensor.interfa
#cmd = ’'sudo screen —dmS %s
sudo %s —Uw %s/%s.cap’ %

(request.POST[’dfile], request.POST[’comman

#cmd = ‘gnome—terminal —x %s —w
/home/tommy/captures/%s . cap’
%
(request.POST[’command’] , request.POST[’ dfil
#cmd = ’'sudo —n %s —w
/home/tommy/captures/%s . cap
& %

(request.POST[’command’] , request.POST[’ dfil
stdin, stdout, stderr =
ssh .exec_command (cmd)
print cmd
out=stdout.read ()
err=stderr.read ()

43

System for integration of tools for full content verification on multiple sensors

print ’'Output: %s, Error: %s’ %
(err, out)
#results ["out’] += "%s
output:\n\n%s\n\n" %
(sensor.name, out)
#results [’ err’] += "%s
error:\n\n%s\n\n" %
(sensor.name, err)
#Her maa destinasjonsfil endres fra filnavn til
full path. Path tas fra settings
capture.save ()
#CaptureForm (request.POST) . save ()
return HttpResponseRedirect(’/ongoing/’)
return render_to response (’dump.html’,{"formset":form})

@login_required
def show_ongoing(request):
"""This view lists the captures that are currently
active. """
data = Captures.objects. filter (active=True)
return render to response(’ongoing.html’,{ ’data’:data})

def login(request):
"""Use the Django included user authentication to log
in"""
username = request.POST[user’]
password = request.POST[’pass’]
user = authenticate (username=username,
password=password)
if user is not None:
if user.is_active:
login(request, user)
return
HttpResponseRedirect(’/ongoing/’)

else:
return
render_to response(’login.html’,{"error":"
is_not_enabled"})
else:
return

render_to_response(’login.html’ ,{"error":"Username,,
or_password,_is_not_valid"})

@login_required

def stop capture(request):

"""Stop capture and move the capture file to
another directory """

print "Stopping_capture"

cap_id=request.POST[’id ']

try:

cap=Captures.objects. get(id=cap_id)

44

System for integration of tools for full content verification on multiple sensors

for sensor in cap.sensors.all():
if sensor.ip:

host = sensor.ip
elif sensor.hostname:
host = sensor.hostname
else:
raise Exception, "No,
hostname_,or_IP_,
address"
with create_ssh (host=host) as
ssh:
cmd = ’screen_—X_—S, %s,,
quit ;mv,_%s/%s . cap,,
%s’ %

(cap.dfile ,settings .WATCH DIR, cap. ¢
print cmd

stdin, stdout, stderr =
ssh.exec_command (cmd)
out = stdout.read ()
err = stderr.read()
print "Killing_on_sensor _%s" %
sensor.ip
print err
print out
print "Setting_capture_non—active"
cap.active=False
cap.save ()
except Captures.DoesNotExist:
print "That_object_is_not_in_the
database"

return HttpResponseRedirect(’/ongoing/’)
@login_required
def view stopped(request):

sensors = Sensors.objects. all ()
olddir content = []
for sensor in sensors:

print sensor.ip

if sensor.ip:

host = sensor.ip
elif sensor.hostname:
host =

sensor . hostname
else:

raise Exception,

"No_hostname_or_IP_,
address"

with create_ssh (host=host) as ssh:

cmd = ’1s_—la %s’ % (settings.OLD DIR)
print cmd

stdin, stdout, stderr =

ssh .exec_command (cmd)
out=stdout.read ()

45

System for integration of tools for full content verification on multiple sensors

olddir_content.append(
{"sensor":sensor.name, "data":out})
print olddir_content
return
render_to _response(’stopped.html’,{"data":olddir_content})

def show inactive(request):
"""This view lists the captures that are currently
inactive. """
data = Captures.objects. filter (active=False)
return render to response(’inactive.html’,{’ ’data’:data})

def topdf(request):
#Retrieve data or whatever you need
data = Captures.objects. filter (active=False)
return render_to_ pdf(

"pdf.html’,

{
‘pagesize’: A4’
’data’: data,

¥

46

System for integration of tools for full content verification on multiple sensors

Appendix E models.py

from django.db import models

Create your models here.

class Sensors(models.Model) :
name = models. CharField (max_length=30)
location = models.CharField (max_length=50)
ip = models.IPAddressField (null=True, blank=True)
hostname = models.CharField (max_length=60,null=True,
blank=True)

interface = models. CharField (max_length=10,null=True,
blank=True)

def unicode_ (self):
return self.name

class Commands(models.Model) :
time = models.DateTimeField (auto_now_add=True)
command = models. TextField (editable=True)
description = models. TextField (editable=True)

sensors = models.ManyToManyField (Sensors, null=True,
blank=True)

class Meta:
abstract = True

class Captures (Commands) :

authorized = models.CharField (max_length=15)
sign = models.CharField (max_length=50)

dfile = models.CharField (max_length=150)
active = models.BooleanField (default=True)

def unicode_(self):
return self.command

class Message (models.Model) :

user = models.CharField (max_length=100)
body models. TextField () ;

time = models.DateTimeField () ;

47

System for integration of tools for full content verification on multiple sensors

def unitcode__(self):
return user + "_says:_" + body

48

	Abstract
	Sammendrag (Abstract in Norwegian)
	Contents
	List of Figures
	List of Tables
	Preface
	Introduction
	Topic covered
	Keywords
	Problem description
	Example

	Computer Network Defense
	Justification, motivation and benefits
	Research questions
	Claimed contributions
	Related work
	Related work
	Commercial tools
	Open-source tools
	Related work conclusion

	Choice of methods
	Efficiency
	Effectiveness

	System for integrating non-scalable command line tools for verification on multiple sensors
	The system
	Compatibility and environment requirements
	Communicating with sensors
	Design choices
	Platform
	Programming language
	Web Framework

	Architecture and implementation
	Legal considerations

	Experiments and results
	Keystroke-Level Modeling
	Percieved effectiveness
	Test subjects
	Testing
	Results
	Reliability and validity

	Conclusion

	Future work
	Bibliography
	Questionnaire
	server.py

	remote1.py
	views.py
	models.py

