

MSc thesis

Information security

Using hash values to
identify fragments of

evidence

Taking the concept of

known file hash databases
a step further.

Ketil Kintel
NISlab

Høgskolen i Gjøvik

ketil.kintel@hig.no

Oslo, August 27th 2004

1

mailto:ketil.kintel@hig.no

Abstract

As more criminals utilize computer equipment to do mischief and storage on

computers grow, an investigator is faced with an explosive growth in data

which needs to be sifted through in order to find evidence. This makes

investigation more and more time consuming and leads to less effective

enforcement of law and order.

This thesis explores the possibilities of using hash values in identification of

known evidence fragments. A method is sketched, tested and suggested as

input in the process of deciding whether a full-blown forensic examination is

warranted.

Sammendrag (Abstract in Norwegian)

Siden flere utnytter datautstyr til å begå kriminelle handlinger og

lagringskapasiteten på slikt utstyr øker, fører dette til en eksplosiv økning i den

datamengden som må gjennomgåes for å finne tekniske bevis. Det gjør at

etterforskninger tar lengre og lengre tid og vi får en mindre effektiv

håndhevelse av lov og orden.

Denne oppgaven ser på muligheten for å bruke hash-verdier til å identifisere

bruddstykker av kjent bevismateriale. En metode er skissert, testet og foreslått

som en faktor når man skal avgjøre om en fullstendig undersøkelse er

berettiget.

.

2

Table of Contents

Abstract ... 2
Table of Contents.. 3
List of Tables.. 4
List of Figures .. 5
1 Introduction .. 6

1.1 Dangers of Superficial Investigations .. 6
1.2 Introduction to Digital Forensics ... 7
1.3 Slack Space and Other Residual Data..10
1.4 The Two Fundamental Problems of Digital Forensics........................11
1.5 Uncertainty and Degradation of Digital Evidence12
1.6 Problem Statement ..13
1.7 Demarcation to Static Environments ..14
1.8 Review of the State of the Art...14
1.9 Claimed Contributions..16
1.10 Agenda ...17

2 Materials and Methods..18
2.1 Choice of Methods ..18
2.2 Use of Hashing Algorithms ...18
2.3 Generation of the Data Set..19
2.4 Generation of the Hash Database..22
2.5 Experiments on the Data Set ..23

3 Results ..24
4 Discussion ...26

4.1 Selecting the Recommended Block Size..26
4.2 Accounting for Duplicate Hashes ..26
4.3 Evaluation Against Proposed Guidelines..28
4.4 Levels of Uncertainty ..30
4.5 Resistance to Tampering ..30
4.6 Feasibility for a Real World Implementation ...31

5 Conclusion and Further Work...32
5.1 Further Work..32

6 Acknowledgements..34
7 References ...35
8 Appendices..40

8.1 Detailed result tables ...40
8.2 Detailed database contents...48
8.3 Suggested introductory Literature...49
8.4 Practical Problems ...50
8.5 Script and Program Listings...51
8.6 The Multiple Format Extraction Tool 7-Zip ...65
8.7 Bill of Materials ..65

Index..83

3

List of Tables

Table 1 – The 30 most common file extensions of the files in the test
database.. 21

Table 2 – Identification potential of in the test data for full 512 byte (one
sector) blocks .. 24

Table 3 – Other distribution of the duplicate hashes from the full 512 byte
(one sector) blocks... 25

Table 4 – Summary of requirement satisfaction for the proposed method............ 30
Table 5 – Identification when using 512 byte hash blocks (full sector)................... 40
Table 6 - Identification when using 384 byte hash blocks ... 41
Table 7 - Identification when using 256 byte hash blocks (half sector)................... 41
Table 8 - Identification when using 192 byte hash blocks ... 41
Table 9 - Identification when using 128 byte hash blocks (quarter of sector)........ 42
Table 10 - Identification when using 96 byte hash blocks ... 42
Table 11 - Identification when using 64 byte hash blocks (double MD5 block

size) ... 43
Table 12 - Identification when using 48 byte hash blocks ... 43
Table 13 - Identification when using 32 byte hash blocks (MD5 block size)......... 44
Table 14 - Identification when using 24 byte hash blocks ... 44
Table 15 - Identification when using 16 byte (128 bits) hash blocks (MD5

result size) .. 45
Table 16 - Identification when using 12 byte hash blocks ... 45
Table 17 - Identification when using 8 byte hash blocks.. 46
Table 18 - Identification when using 6 byte hash blocks.. 46
Table 19 - Identification when using 12 byte (32 bits) hash blocks (theoretical

minimum for this experiment if pure random data in database) 47
Table 20 - Identification when using 3 byte hash blocks.. 47
Table 21 - Identification when using 2 byte (16 bits) hash blocks (Unusable)....... 47
Table 22 - Identification when using 1 byte (8 bits)hash blocks (Unusable) 48
Table 23 – Detailed distribution of source for the 1 025 856 files used in

creating the database ... 48
Table 24 – All file extensions occurring more than 400 times in the database 49

4

List of Figures

Figure 1 - The distribution of origin of the files in the test data base...................... 20
Figure 2 - The identification potential for each of the block sizes in the

experiment... 25

5

1 Introduction

Computer technology has seen an exponential increase in data storage, and it

is not uncommon with terabyte storage. With storage space, the number of

files has grown in much the same manner, making a typical desktop computer

contain up to 100.000 files. [NIST 03]

As the number of computer related crimes grows [CERT 03] [Kruse et al 01],

more criminals utilize computer equipment to do mischief [Politidirektoratet

03] and crimes become more complex [Stephenson 03]; a strain is put on law

enforcement.

The following stories provide some examples of what this may lead to.

1.1

Dangers of Superficial Investigations

In 2002, a man was arrested in the UK. The police searched his computer,

found images describing sexual child abuse and then raised criminal charges

against him.

In order to be acquitted, he had to hire investigators himself. These

investigators did a more thorough examination of his computer than the

police had done, and found a modem hijacking trojan that most likely was the

source of the images in question [Schwartz 03].

The real damage for the UK man was not only that he was under false

charges for almost a year, but that he was expelled from the society of his

home town, was divorced and lost the visitation rights to his kids.

Currently, a Nordic police operation called Enea is running. 209 persons in

Norway are suspected for possession of images of sexual child abuse, and

have had their computer equipment seized. Because the centre of computer

crime1 does not have the capacity to investigate all the seized equipment, it is

1 Politiets datakrimsenter, Oslo

6

mainly to be done by inexperienced officers from local police precincts

[Olsen et al 04]. 70 of the arrested persons have not pled guilty to the charges.

We can only guess if and how many of those are victims of similar events as

the UK man.

In both these cases, the police was trying to ease the growing strain on

investigative resources in a way we believe is wrong (at least in a Norwegian

setting) - by sacrificing the depth and quality of the investigation.

Fairness is important, but it should work both ways - the guilty ones should

be punished and the innocent ones should go free. This thesis is an effort to

help preserving today’s level of legal protection by increasing the knowledge

about how more thorough and reliable evidence can be achieved in today’s

computer systems.

1.2 Introduction to Digital Forensics

The following chapters serve as a primer to those aspects of Digital Forensics

important to understanding the underlying problems and potential impact of

this work. Readers experienced in Forensic work may skip forward to chapter

1.6.

Digital Forensic is defined by [Gary 01] as:

The use of scientifically derived and proven methods toward the

preservation, collection, validation, identification, analysis, interpretation,

documentation and presentation of digital evidence derived from digital

sources for the purpose of facilitating or furthering the reconstruction of

events found to be criminal, or helping to anticipate unauthorized actions

shown to be disruptive to planned operations.

7

The use of the phrase “scientifically derived” is not accidental. The field has

traditionally been a domain of practioners rather than researchers. This is

supported by the fact that the very first Digital Forensic Research Workshop

was held as late as 2001, and the very first issue of the International Journal of

Digital Evidence was published as late as 2002.

Digital Forensics are performed in an investigative context to serve a specific

objective which relates to the environment where the investigation takes place

[Mocas 04]. The investigation process is supposed to reconstruct the incident

and give answers to the What, Who, When, Where, How and Why questions.

One of the main legal requirements is that the process used to examine

evidence must be reproducible. In addition, the information must possess the

following characteristics [Palmer 02]:

Relevant and/or Material: Will this information assist decision-makers

in their tasks?

Credible and/or Competent: Is the information believable, trustworthy,

and true and, if so, by what measure?

To illustrate, the process of digital forensics may be compared to archaeology

or arson investigation [Casey 03]. A regular case can be explained by

archaeology. An archaeologist studies artefacts to find out what it is, when

and where it was used in order to say something about the original context. If,

however, the criminal has tried to conceal the crime and destroyed vital

evidence, the process resembles more an arson investigation, where one must

rely heavily on crime scene characteristics to understand what happened.

The more technical term for this is correlation, as defined by [Stephenson 02]:

8

Digital forensic correlation is the comparison of evidentiary information

from a variety of sources with the objective of discovering information that

stands alone in concert with other such information, or corroborates or is

corroborated by other evidentiary information.

Regardless of the strategy of the investigation, the following analysis methods

are probably used most of the time [Casey 04]:

• Temporal – To find the time and sequence of events

• Relational – To find the relationships between suspects, victims and

the crime scene.

• Functional – To determine how a computer system functioned. This

is done in order to

o Determine the proper working of the system during the

relevant time period.

o Determine if the individual or a computer was capable of

performing actions necessary to commit the crime.

o Gain a better understanding of a piece of digital evidence or

the crime as a whole

o Gain insight into an offender's intent and motives. E.g. to

determine if the act was purposeful or accidental.

o Prove that digital evidence was tampered with, if this was the

case.

The investigative process proceeds from preservation of the state of the

technology, to collection of data or acquisition, to examination of data, to the

9

analysis and extraction of evidence, and to the preservation and presentation

of the evidence. [Reith et al 02]. Both the acquisition step [NIST 01] and the

preservation step [Hosmer 02] is covered elsewhere, and is of no relevance to

this thesis.

To find the truth, an investigator must identify:

• Inculpatory evidence: Evidence that verifies existing data or theories.

• Exculpatory evidence: Evidence that contradicts existing data or

theories.

To be able to find both evidence types, all data must be identified and

analysed. This is a huge task because of the increasing size of storage systems.

1.3 Slack Space and Other Residual Data

Residual data are data present in a system without being attached to a file. The

most common examples are swap files, unallocated clusters and file slack

space.

Unallocated clusters are usually found within a file partition, but it can also be

found between partitions, since partitions usually start on a whole cylinder

[Casey 04].

To be able to explain the concept of slack space, we will have to take a step

back: Physical hard disk technology has evolved into a complex subject. Some

older encodings use 557 physical bytes to encode a sector of 512 logical bytes

[Casey 04]. Newer technologies use advanced mathematics to encode logical

bits into the magnetic field of the platter. What is important for us is that

most disks in use today present the data to the rest of the computer hardware

and operating system in groups of 512 bytes, also called sectors [Carrier 02].

10

For most file systems2 the file content is stored in groups of sectors called

clusters or blocks. Space for file data is allocated in whole clusters. The

unused part of the last cluster is called “slack space”.

If the slack space contains data, it can have many sources: It could be a part

of the data file in the rest of the cluster [Bryson et al 02]; it could be a part of

a file stored in the cluster at one point in time, but later deleted; or, in older

versions of Windows, it could even be contents of RAM from when the file

was created [Casey 04].

Each cluster consists of one or a power of two consecutive 512-byte sectors

[Microsoft 04a]. Some file systems can break the cluster into fragments, but

these are never smaller than a sector [Carrier 02].

When it comes to Windows systems, all volumes of sizes greater than 513MB,

regardless of file system, have a default cluster size of at least two sectors

[Microsoft 04b]. There are, however, some ways to initialise a file system that

makes the cluster size one sector, regardless of disk size [Microsoft 01].

As larger disk drives are used, so does the cluster size. This leads to larger

areas of slack space. Thus even if the investigator must sift trough more data,

the value of each fragment will be greater.

1.4

The Two Fundamental Problems of Digital

Forensics

The two fundamental problems of Digital Forensics were defined [Carrier 03]

as the following:

2 There are many, but the top 5 is considered to be FAT, VFAT, NTFS, EXT2 and UFS [Bryson et al

02]

11

The Complexity Problem in digital forensics is that acquired data are

typically at the lowest and most raw format, which is often too difficult for

humans to understand.

The Quantity Problem in Digital Forensics is that the amount of data to

analyze can be very large. It is inefficient to analyze every single piece of it.

We will not discuss those here, but remembering them may ease the

understanding of some of the issues mentioned later.

1.5 Uncertainty and Degradation of Digital Evidence

Integrity and continuity of computer-based evidence is volatile and will

degrade at an exponential rate [Janes 00]. This degradation begins the

moment the relevant computer is used after an incident.

Very little of the potential evidence is tangible in the normal sense. Digital

evidence is interpretive and must be transformed or abstracted from the

collection of ones and zeroes it is in it lowest form before it is suitable for

analysis [Palmer 02] (the complexity problem). This process can be error

prone, both because of inaccurate tools and intent [Anonymous 02].

Uncertainties in evidence can thus not only stem from data corruption, loss or

tampering, but also from what simultaneously are introduced by abstraction

layer errors. In order to make sense to a human being, digital evidence has to

be abstracted. For example; data on a disk is abstracted to a partition, which

further is abstracted to a file system, where the content of one file can be

abstracted to text in a word processing document. During this process, errors

can be introduced because of abstraction errors or implementation errors

[Carrier 03].

12

Generally speaking, the Abstraction Layer Error Problem then becomes the

errors that are introduced by the layers of abstraction.

Because of this, we must try to estimate the uncertainty, or how closely the

measured values approximate reality.

Even if this is successful, completely reliable sources of digital evidence are

not believed to exist [Casey 02]. This makes digital evidence circumstantial,

and difficult to use as the sole evidence.

In addition, we have seen a growing problem of “digital gloves” – programs

like Evidence Eliminator™ designed to destroy evidence, and runefs designed

to hide evidence [Anonymous 02]. Such programs make fewer pieces of

evidence available, and force the investigation to be a more arson type3.

If more information about digital forensics is needed, a good starting point

would be the two books by Eoghan Casey listed in appendix 8.3.

1.6

Problem Statement

The problem an investigator faces is thus two-fold:

1. It is too time consuming to investigate on computers, especially old or

partially destroyed evidence.

2. Potential evidence is lost or not recognised because it is partially

overwritten by new data.

This leads us to the following research questions:

1. How can the investigation process be speeded up?

2. How can evidence be recognised even if it is partially overwritten?

3 See chapter 1.2

13

In order to answer the research questions, the following research problems

must be solved:

1. How can the quantity problem be solved?

2. Can it be solved easier by using current methods in different ways?

3. Are there ways of easing the complexity problem without the need for

abstraction layers?

4. How can one be more certain that most or all evidence is found?

5. In case of lack of complete data, can the fragments be identified in

any way?

6. How small can a fragment be in order to be able to identify which file

it is a part of?

1.7

1.8

Demarcation to Static Environments

A recent survey indicates that technology and tools are considered important

issues [Rogers et al 04]. We will therefore focus on technology, and the

discussion in this thesis only relate to a statical technical environment, where

the actions of the investigator do not have any potential to introduce changes

to the data. A typical example of such an environment is a bit stream image of

a hard disk drive.

Review of the State of the Art

As was mentioned earlier, the complexity problem is currently solved by tools

that translate data through layers of abstraction until it can be understood by

humans [Carrier 03].

The quantity problem can be eased by data reduction; by removing known

data or by grouping data together. In our case it is facilitated by sorting files

14

by types, attributes, or access time or identifying duplicates [NIST 03] or

known files by utilizing hash databases.

The latter is possible because a large amount of data consists of operating

system and application files not relevant to the investigation. This makes it

possible to use hash sets of known good files to eliminate these from review,

and thus reduce the total number of files to be reviewed [Larson 02]. The

same method can be used to flag known bad files for review [NIST 03]. One

common source of hashes for known files is NIST’s Reference Data Set4

Using this method, the smallest fragment that can be identified is a complete

file. This works very well on whole and undamaged evidence files, but is of no

use when we are dealing with fragmented, incomplete evidence.

Other reduction methods include focusing on data most probably created by

the user, filtering duplicate files and identifying discrepancies [Casey 04].

The effectiveness of current tools is tied to the volume of data involved and

the time available to examine it. Storage has grown so large that it is very

difficult to examine every sector manually for data that may or may not be

evidence [Stephenson 03]. The investigator is therefore often limited to

searching for occurrences of text strings. Such a method assumes that it is

known which phrases that might yield interesting information. This method

seems outdated since the investigator is only able to see the tip of the ice berg,

and much incriminating and exculpatory evidence is potentially overlooked

[Anderson 01].

Investigators have also begun to question the effectiveness of making bit

stream images of whole such systems [Culley 03], despite it being the most

thorough option. Some even use statistical data sampling [Anderson 01] in

order to identify where to start the search for relevant evidence.

15

Some even go as far as to claim that full-blown forensic examinations usually

are unnecessary, and the investigation should cease when necessary evidences

to prosecute have been found [Ferraro 04]. This means skipping searching for

exculpatory evidence, and is what happened in the case with the U.K. man

described at the beginning.

It has been pointed out that methods must address this issue without

sacrificing the quality of the investigation [Janes 00]. Unfortunately, there

seems to be a trend away from this.

One method of handling degradation of evidence is to utilize data carving

[Casey 04], which means to look through residual data for sections matching

known file headers and footers. This may be useful, but its main limitation is

that it depends upon having intact headers. A variation of this method is to

utilize low-level, short-range structures to classify files [de Vel 04]. This

method seems to be able to identify the type of uncompressed file based on a

256 byte (half sector) fragment of the file. It is not able to say anything about

the content of the file.

From the review, it seems clear that many of the research problems have been

solved, but many still regard handling of fragmented evidence as a manual,

labour intensive task.

1.9

Claimed Contributions

In order to preserve the highest investigative standards, we believe we can

present a method to solve a part of the quantity problem relating to evidence

fragments, and at the same time be able to avoid the complexity and

abstraction layer error problems.

4 NIST Special Database 28 from NIST’s Standard Reference Data Group

16

This is done by applying the well known method of known file hash

databases to fragments of files, adapting it so it can be used in the special case

of slack space on a disk drive.

It will not give complete solutions to the research problems outlined earlier,

but will contribute to some extent to all of them.

Obviously, the stakeholders are not only digital forensic professionals

employed by corporations, police bureaus and intelligence agencies, but also

people under wrongful suspicions.

1.10 Agenda

This report outlines the results from an implementation of a fragment hash

database of real world data.

It starts with a brief account of the research method used and continues with

describing the hashing algorithm chosen.

The next section describes how the data is gathered for the test database and

how the different fragment databases are made. It follows up with some

comments on how the fragment databases are evaluated.

A brief section describes the most important results before the validity and

reliability of the experiment and the method is discussed and evaluated against

proposed field-specific guidelines.

17

2 Materials and Methods

2.1

2.2

Choice of Methods

Because the research questions are mainly problem centric, a mixed research

approach was chosen in order to solve them [Creswell 03]. This means

combining both quantitative and qualitative methods involving a literature

study and a quantitative experiment. Because of the enormous amount of data

produced by the experiment, the quantitative part will be limited to simple

statistics.

The hypothesis is that fragments are usable as identification of files. “Usable”

is defined here as more than half of the fragments can identify a file uniquely.

In this field, methods for estimating sample sizes and confidence intervals are

not very well researched into. This thesis will not try to find an answer to this,

but chapter 2.3 explains how the experiment will be designed to try to

compensate somewhat for this lack. To further ensure validity, the method

and results will be evaluated against guidelines proposed by the community.

Use of Hashing Algorithms

Hashing is an extremely good way to verify the integrity of a sequence of data

bits. It is a mathematical function which generates a hash value produced

from the data bits. Two files with the same bit patterns hash to the same value

when using the same algorithm. If the hashes for two files match, then it is a

very high probability that the files are the same. Because of this, hashes are

used as a primary verification tool to find identical files.

When NIST researched algorithms to use in their National Software

Reference Library (NSRL), one of the alternatives evaluated was the Message

Digest level 5 (MD5) algorithm [Boland et al 00]. MD5 is an improved

version of MD4, and is intended for digital signature applications. It processes

data in 512 bit (64 bytes) blocks, and outputs a 128-bits (16 byte) hash value.

18

This algorithm has since become the de-facto standard for identifying known

files in the digital forensic field, and is therefore the one used in this

experiment.

It would undoubtedly give more accurate results if we could populate the data

with the exact contents of the files instead of the hashes. But this would raise

ethical issues about handling of intellectual property for known good data,

and possession and distribution for known bad data. In addition the storage

requirement for the sample database would multiply as much as 32 times.

2.3 Generation of the Data Set

By using files containing purely random data, a fragment might be enough to

uniquely identify a file, and the chance of a correct identification of would be

possible to calculate. Real-world data is not random, so files from real systems

will be used.

Although forensic investigations often are focused on illegal material and files,

ethical and legal considerations made it necessary to only use data from

regular operating systems and program.

The experiment will try to compensate somewhat for the lacking estimation

of sample sizes and confidence intervals by using huge amount of data files.

Our test data was Microsoft Windows Trial Software and Service Pack for 3

architectures and 26 languages 228617, the complete Windows Platform

SDK, which is the building stone for many software packages 8760, 4

complete Linux distributions of different revisions and 5 x86-architectures

623796, FreeBSD for 2 different non x86-archtectures 140406 and Sun

Sorlaris Patches for 2 operating system versions and architectures 24277.

Chapter 8.7 contains a detailed description of the test data

19

Orgin of files

Windows
Linux
FreeBSD
Solaris

Figure 1 - The distribution of origin of the
files in the test data base.

The data contain an overweight of similar data; the same program file

compiled for different languages and architectures, and the same program or

data file in different revisions. This simulated worst case scenario was done to

limit the possibility for type I errors, and to get an impression of how the

results would have been on a fully populated database.

All files were extracted to their fullest extent5. This means that all nested

archives and compressed files were iteratively extracted until no more files

were generated. In the process, no files were overwritten, and the original

archive or compressed file was kept intact together with all intermediate files.

All files with sizes less than 2048 bytes and more than 16776704 bytes were

then discarded.

5 Some large archives were split into multiple parts in an uncommon way. With such archives, only the

first part was extracted

20

File Extension Instances
gz 70321
html 50376
dll 46666
dl_ 40893
mo 36902
h 20029
png 15517
so 13600
bz2 13475
exe 12005
htm 10630
ex_ 10183
o 9169
c 9127
pcf 8795
class 8200
docbook 7910
1 6332
cache 5811
xml 5627
inf 5571
3 5518
ko 5057
elc 4948
rpm 4513
a 4314
cpio 3888
java 3719
in_ 3717
desktop 3440

Table 1 – The 30 most common file
extensions of the files in the test database

The only real limitation of size would have been files of 512 bytes or more.

This is because at least one full block is needed to produce a hash value. A

minimum of 2048 was chosen to achieve at least four full continuous blocks,

and this would in a future experiment indicate how many blocks would be

needed to make a definitive identification. An upper boundary to limit the

number of large archives in the databases was needed, and the number was

chosen because it represented the maximum number of blocks expressible by

an unsigned integer. Compressed archives are also files, but since they per

21

definition contain little redundant data and most likely would provide unique

hash values, they were not very valuable paramount to include in the data.

A MD5 hash was generated of every file in order to identify duplicate files.

The strength of the MD5 algorithm has been questioned, but since it is the

de-facto standard in the field, and has been the subject of legal scrutiny, it was

a natural choice for this project.

All duplicates were then discarded, but the location was noted for future

reference. The 1 025 856 files then produced the data set of 625 529 unique,

but similar files amounting a total of 61 798 345 340 bytes.

In addition of the overview found in appendix 8.2, appendix 8.7 contain a

detailed inventory of the files used in the database.

2.4 Generation of the Hash Database

For each 512 byte block in each file, the MD5 hash was generated of the last

1, 2, 3, 4, 6, 8, 12, 16, 24, 32, 48, 64, 96, 128, 192, 256 and 386 bytes. The

sample sizes were chosen because they divide a full block in half iteratively,

and then divide each half once more. The hash was also generated for the

block as a whole to able to judge how well the smaller blocks served as an

identification of the block as a whole. If the files consisted of truly random

data, 27 bits are needed to identify an exact block inside a file, so there was no

need to calculate the database for 1, 2 and 3 byte blocks.

The hashes were sorted and placed in hash databases, one for each of the

block sizes. Each database contained 120 411 278 hashes with references to

the original file and the block position in it. This was more than six times the

size proposed in the original project plan, a modification necessary to make

the results more suitable for generalization.

22

2.5

Experiments on the Data Set

In order to find a fragment size that produced a balance between frequency of

collisions (false positives) and feasibility for usage, the 18 populated databases

were examined with simple counting and cross referencing. The number of

unique identifications and the number of hits of non unique was counted:

• Relatively to a unique file6 and the exact position in it.

• Relatively to a unique file.

• Relatively to a unique file name

• Relatively to a unique distribution/ database reference

When counting, the hash value for a stream of zeroes was removed from the

data set because it is usually the default value on unused parts of the disk, and

it is also very common - 10,8 to 13,6 times more common than the next

extreme value.

The exact method used in counting can be found by examining the listings in

appendix 8.5.

6 With an unique file, we mean a file with a unique MD5 hash value

23

3 Results

After counting the number of duplicates in the full block reference database,

it turned out that 41 803 042, one third, of the hashes were identical to at least

one another. This means that two thirds of the fragments could be uniquely

identified as belonging to a specific file. The distribution of the collisions can

be seen in the table below.

Files identified Number of hashes Unique hashes
Sum 120411278 88623418
1 (unique) 78838754 78697936
2 (usable) 12744746 6343505
3 (usable) 4321913 1426325
4 (usable) 2237552 552753
5 (usable) 2323359 459465
6 (usable) 1406662 228129
7 (usable) 1199157 166931
8 (usable) 1119482 137367
9 (usable) 670272 72708
10- 13349252 537180
100- 380757 1099
1000- 149230 19
10000- 1670142 1

Table 2 – Identification potential of in the test
data for full 512 byte (one sector) blocks

Hashes with 2 to 9 collision were tagged as usable (or guessable). This means

that one fragment might suggest 2 to 9 files, but if there are more fragments,

one exact might be interpolated.

If we ignore the unique hashes and look only at the duplicates, the following

table illustrates the identification potential relating to other attributes of the

file.

 Positions in file Distributions File names
1 Unique 8299195 3530535 4676377
2 Duplicate 923851 3309392 4702783
3- Multiple (usable) 760050 2588805 605958
10- 30587 586531 29412
100- 1557 716

24

1000- 22 17
10000- 1
Sum non-uniques 1716068 6484728 5338886

Table 3 – Other distribution of the duplicate
hashes from the full 512 byte (one sector)
blocks

For example does this mean that even if a fragment hash identifies multiple

possible unique files, it may still identify only one file name.

Appendix 8.1 contains the full results for all fragment sizes. The following

graph illustrates the identification rates for each size:

Identification rate vs block size

Uniquely indetifiable
file

Guessable file

0

20

40

60

80

100

120

512 384 256 192 128 96 64 48 32 24 16 12 8 6 4 3 2 1

M
ill

io
ns

Hash block size (bytes)

Id
en

tif
ia

bl
e

ha
sh

es

Figure 2 - The identification potential for each
of the block sizes in the experiment

The identification potential stays relatively high, but starts to drop sharply for

fragments smaller than 12 bytes.

.

25

4 Discussion

Although the test data for the database were carefully selected, they are still

nothing more than convenience samples. Also, errors in the software and

programs developed may have affected the validity of the results. This might

limit to what extent it can be generalized.

By using raw data from the fragment directly, many facets of the validity

problems are tackled. For example are errors associated with the forensic

specific complexity and abstraction layer error problems completely avoided.

4.1

4.2

Selecting the Recommended Block Size

Based on the acceptation criteria outlined in chapter 2.1, the minimum block

size usable for identification of files is somewhere between 8 and 12 bytes.

Since the MD5 hash value itself stored in the database is 16 bytes and it is

calculated based on 32 byte data blocks, it would probably make no sense in

using smaller fragments than 32 bytes without evaluating different hash

functions.

Since the 32 byte block also only gives a mere 9% drop in the unique

identification rates compared to the full block, it makes sense recommending

it as the preferred size to use in a practical implementation of the fragment

hash database.

A 32 byte fragment should be safely past margins of error since it can identify

a file in more than 60% of the time despite of the large size and similarity of

the test data.

Accounting for Duplicate Hashes

As shown in chapter 3, 35% of the full sector (512 bytes) blocks did not

uniquely identify a file. Below are the findings that explain some of the reason

behind this.

26

The tar file format was originally designed for tape devices capable of

manipulating a block at a time. The default block size is 512 bytes [Schmidt

03], which is the same as the size used in hard disks and this experiment. In

addition each non-full block is padded with zeroes to make a full 512 byte

block.

Since each intermediate file during expansion was kept, any block from a file

that was originating from one of the tar files in some form (tar, tgz, tbz2 and

tar.Z) will most likely be found at least twice, and will not contribute to the

exact identification figure.

This applies to the vast majority of files from Gentoo Linux (.tbz2) and

FreeBSD (.tgz) distributions, and must therefore be a significant factor in

determining the numbers and results.

Another factor is when a Windows executable file is localized, usually only the

end of it is changed. Windows files existing in different languages will

therefore count towards many duplicates in the hash database, without being

a true duplicate.

A block of only zeros produced the most common duplicate hash. It

accounted for 1 670 142 of the full block duplicates, but rises sharply as the

sample size decreases. This is more than ten times more instances than the

next extreme hash value. This could also somewhat be attributed to pad with

zero of the tar file format [Schmidt 03].

On the other hand, the most common file type in the test data was the

compression format gzip. Since the aim of most compression algorithm is to

reduce the redundancy in files to make them smaller, this lead to slightly

better average identification values than the method deserves.

27

It is reasonable to believe that as the hash database grows, the duplicate ratio

will grow with it, but it is not possible to predict at what rate without further

experiments.

4.3 Evaluation Against Proposed Guidelines

The majority of efforts in Digital Forensics has focused on development and

use of tools [Whitcomb 02], while ignoring the theoretical foundations

thereof. This has lead to attacks against the reliability and validity of this

method.[Carrier et al 03].

Brian Carrier and Sarah Mocas have both tried to address the theoretical

foundation for their development and have provided a set of guidelines to

verify the soundness of a method or tool [Mocas 04] [Carrier 03]. They

overlap somewhat, but can be summarized in the following eight criteria:

1. Non-interference - That evidence is not altered, or is altered in an

identified manner.

2. Usability – That the method or tool provides output at a level of

abstraction that is understandable by the investigator, and it is so clear

and accurate that it can not be interpreted incorrectly.

3. Comprehensive – That access to all output data is provided. This is

so an investigator is able to find both inculpatory and exculpatory

evidence.

4. Accuracy – That the method used to gain usability must be an

accurate translation trough the layers of abstraction, or if not, that the

margin of error is known. This is to ensure that the evidence

presented is what it claims. This can be thought of as a reliability issue

in other scientific contexts.

28

5. Deterministic – That the process is reproducible, and always

produces the same output, given the same data and transformation

rules. Also a reliability issue.

6. Verifiable – That the result is possible to verify using alternative

methods

7. Minimization – That the minimum necessary data was examined to

provide the output.

When assessing the proposed method using these guidelines, one gets the

following results:

Requirement Satisfied Comment

Non-

interference

Yes We are operating in a statically technical

environment, and the original data is only used

to perform lookups in databases

Usability Yes The investigator is presented with a list of all

files that contains the matching byte pattern

Comprehensive Yes as above

Accuracy Yes Since the method operates on the lowest level of

abstraction, no translation is necessary

Deterministic Yes Since both the hash algorithms and database

lookup is deterministic, so is the method. If,

however, the database is updated with new

known data, the output contains more results.

Verifiable Yes An investigator is able to manually verify a byte

29

pattern to an original file.

Minimization Yes Only the number of bytes of each sector needed

to produce a hash value is used.

Table 4 – Summary of requirement
satisfaction for the proposed method.

This indicates that the proposed method is sound and does not contradict the

current best practices in the field.

4.4

4.5

Levels of Uncertainty

The validity of evidence is important, and in order to find a balance between

the need for estimates of certainty in digital evidence versus the cost and

complexity of calculating uncertainty, one of the pioneers in digital forensics,

Eoghan Casey, proposed a scale for categorizing levels of certainty in digital

evidence [Casey 02]. This scale ranges form C0 - Erroneous/ Incorrect to C6

– Certain, which is considered inconceivable at the moment.

Trying to describe the level of certainty of the proposed method using this

scale, indicates level C2 - Somewhat Uncertain. This is because there is only

one source of evidence and that source is not protected against tampering.

But if the method is used on several blocks and gives the same result, the

certainty level rises to C4 - Probable. This is because there are independent

sources of evidence that agree. However, the evidence is still not protected

against tampering.

Resistance to Tampering

It is important to note that the method only identifies the block from which

the hash is taken. There are no guarantees that the rest of the slack space is

from the same dataset. Because of this, one must be careful of jumping to

quick conclusion without comparing the finding to other evidence.

30

One can also imagine that if a method like the one described in this thesis

becomes widespread, the electronic glove programs will be modified to place

fragments of trojans into slack space in addition to the techniques in use

today.

This suggests that the method should not be used as sole conclusive evidence

or in a system to automatically filter data.

4.6 Feasibility for a Real World Implementation

The known files database delivered with AccessData’s Forensic Toolkit is

approximately 70 MB in size. The average size of the files in the database in

this experiment was just below 99 000 bytes (193 fragments). Based on this,

one could assume that the size of a reasonable complete fragment database

would be around 28GB

If using similar calculations on the 7,198,856 unique files in version 2.3 of the

NIST NSRL hash database, one could estimate that the fragment database

would be around 44GB.

 None of these sizes is so large that it should prevent practical

implementations.

31

5 Conclusion and Further Work

Many solutions to the research problems were pointed out in the

introduction, and the experiment also suggested in depth solutions to

problems 2, 3, 5 and 6.

The author of this research was not able to provide a good answer to how

one could be sure that most or all evidence is recognised, but the research

indicates that using the proposed method will bring us one step closer to the

final solution.

It also showed that this method seems superior to classification by low-level,

short-range structures [de Vel 04] or data carving [Casey 04] when looking at

fragments of known files.

However, since it might be inaccurate and susceptible to falsification of

evidence, it might best be used to complement other methods.

Maybe the best compromise between resource usage and legal protection is to

start out with searching for just enough evidence to prosecute as suggested by

[Ferraro 04], but switch to a full-blown forensic investigation if any of the

quick hash based methods indicates presence of malicious code.

5.1 Further Work

When examining the results of the experiment, some natural follow up

questions materialized.

It might be useful to analyze the data to find out how the identification ratio

changed based on the origin and type of files in the database. This would give

answer to if the method is still usable if, for example, all files originate from a

32bit Windows system or if all files are image files.

32

A prototype robust enough for general access implementing this method

could be deployed in order to get data on how helpful it is to the community.

It might be interesting to look at to what extent the more advanced

techniques used by anti virus scanners can be used to identify fragments more

effectively and accurate than using fragment hashes.

One could also explore the way NTFS compressed files are stored on disk7

and examine if it is possible to do something similar with hashes for those

structures. Today, no tool exists that is able to analyze NTFS compressed

slack space, and it is believed that it is impossible to do so without the

accompanying Master File Table entry [Sanderson 02].

It might also be possible to explore if and how it can be adapted to network

traffic, either in a general manner or in a protocol specific manner.

7 NTFS compresses files in units of 16 clusters (8 kB minimum), each which can consist of either

compressed or uncompressed data. After compression, the remaining space in the unit is padded with
zeroes, and it is not used until the disk runs out of space

33

6 Acknowledgements

The author wishes to thank Telenor ASA for the support, and being granted

time to conduct work on this thesis, and his advisor, Einar Snekkernes for

invaluable advice during the process.

I would also like to thank my wife, Agnes, and kids, Miko, Jan and Maria who

have not complained too much during the many and long evenings and

weekends used to complete this thesis.

34

7 References

[Anonymous 02] Anonymous. (July 2002). Defeating Forensic Analysis on

Unix. Phrack, Volume 0x0b, Issue 0x3b, Phile #0x06 of 0x12. Retrieved on

May 30. 2004 from http://phrack.org/gogetit/phrack59/p59-0x06.txt

[Anderson 01] Anderson, Michael R. (May 2001). Hard Disk Drives - Bigger

is Not Better: Increasing Storage Capacities, The Computer Forensics

Dilemma. New Technologies Armor, Inc. Retrieved May 28. 2004 from

http://www.forensics-intl.com/art14.html

[Boland et al 00] Boland, Tim. Fisher, Gary. (June 2000). Selection of Hashing

Algorithms. Retrieved May 28. from

http://www.nsrl.nist.gov/documents/hash-selection.doc

[Bryson et al 02] Bryson Curt. Stevens, Scott. (2002). Tool testing and

Analytical Methodology. Casey, Eoghan. Handbook of Computer Crime

Investigation, London: Academic Press.

[Carrier 02] Carrier, Brian. (June 2002). An Investigator's Guide to File System

Internals. Presentation at FIRST 2002, 24 Jun 2002, Hawaii, USA.

[Carrier 03] Carrier, Brian. (2003). Defining Digital Forensic Examination and

Analysis Tools Using Abstraction Layers. Journal of Digital Evidence,

WINTER 2003, Volume 1, Issue 4.

[Carrier et al 03] Carrier, Brian. Spafford, Eugene H. (2003). Getting Physical

with the Digital Investigation Process . International Journal of Digital

Evidence. Fall 2003, Volume 2, Issue 2

[Casey 02] Casey, Eoghan. (2002). Error, Uncertainty, and Loss in Digital

Evidence. Journal of Digital Evidence, Summer 2002, Volume 1, Issue 2.

35

[Casey 03] Casey, Eoghan. (July 2003). Arson, Archaeology, and Computer

Crime Investigation. Computer Fraud & Security, Volume 2003, Issue 7,

Pages 12-15.

[Casey 04] Casey, Eoghan. (2004). Digital Evidence and Computer Crime:

Forensic Science, Computers and the Internet. (Second Edition). London:

Academic Press. Chapters 8-10.

[CERT 03] CERT® Coordination Center (CERT/CC). (January 2003).

CERT/CC Statistics 1988-2003. Retrieved June 4. 2004 from

http://www.cert.org/stats/

[Creswell 03] Creswell , John W. (2003). Research Design: Qualitative,

Quantitative and Mixed Methods Approaches. Second Edition, SAGE

Publications

[Culley 03] Culley, Adrian. (June 2003). Computer forensics: past, present and

future. Information Security Technical Report, Volume 8, Issue 2, Pages 32-

36.

[Ferraro 04] Ferraro, Monique Mattei. Russell, Andrew. (February 2004).

Current issues confronting well-established computer-assisted child

exploitation and computer crime task forces. Digital Investigation, Volume 1,

Issue 1, Pages 7-15.

 [Gary 01] Palmer, Gary. (November 2001). A Road Map for Digital Forensic

Research. Technical Report DTR-T0010-01, DFRWS. Report from the First

Digital Forensic Research Workshop (DFRWS).

[Hosmer 02] Hosmer, Chet. (Spring 2002). Proving the Integrity of Digital

Evidence with Time. International Journal of Digital Evidence, Volume 1,

Issue 1.

36

[Janes 00] Janes, Simon. (June 2000). The Role of Technology in Computer

Forensic Investigations. Information Security Technical Report, Volume 5,

Issue 2, Pages 43-50.

[Kruse et al 01] Kruse, Warren G. Heiser, Jay G. (September 2001).

Computer Forensics: Incident Response Essentials. Addison Wesley

Professional

[Larson 02] Larson, Troy. (2002). The other Side of Civil Discovery. Casey,

Eoghan. Handbook of Computer Crime Investigation, London: Academic

Press. Page 43.

[Microsoft 01] Microsoft. (August 2001). Microsoft Knowledge Base Article -

231756: The Convert.exe Tool Uses 512-Byte Clusters. Retrieved May 30.

2004 from http://support.microsoft.com/default.aspx?scid=kb;en-us;231756

[Microsoft 04a] Microsoft. (April 2004). MSDN: Supported file systems.

Retrieved May 30. 2004 from http://msdn.microsoft.com/library/en-

us/fileio/base/supported_file_systems.asp

[Microsoft 04b] Microsoft. (2004). Cluster Size. Microsoft Windows XP

Resource Kit, Part II Desktop Management, Chapter 13. Retrieved May 30.

2004 from

http://www.microsoft.com/resources/documentation/Windows/XP/all/res

kit/en-us/prkc_fil_lxty.asp

[Mocas 04] Mocas, Sarah. (February 2004). Building theoretical underpinnings

for digital forensics research. Digital Investigation, Volume 1, Issue 1, Pages

61-68.

[NIST 01] NIST CFTT. (October 2001). Disk Imaging Tool Specification,

v3.16.

37

http://support.microsoft.com/default.aspx?scid=kb;en-us;231756
http://msdn.microsoft.com/library/en-us/fileio/base/supported_file_systems.asp
http://msdn.microsoft.com/library/en-us/fileio/base/supported_file_systems.asp

[NIST 03] NIST. (August 2003). National Software Reference Library

(NSRL): Project Overview. Retrieved May 28. 2004 from

http://www.nsrl.nist.gov/Project_Overview.htm

[Olsen et al 04] Olsen, Inger Anne. Rapp, Ole Magnus. (May 2004). Søker

blant 850.000 barnepornobilder. Aftenposten Nettutgaven. May 27. 2004

00:12. Retrieved June 5. 2004 from

http://www.aftenposten.no/nyheter/iriks/article797019.ece

[Palmer 02] Palmer, Gary L. (2002). Forensic Analysis in the Digital World.

Journal of Digital Evidence, Spring 2002, Volume 1, Issue 1.

[Politidirektoratet 03] Politidirektoratet. (April 2003). Nasjonal

trusselvurdering 2003.

[Reith et al 02] Reith, M., Carr, C., Gunsch., G. (2002). An examination of

digital forensic models. International Journal of Digital Evidence, Volume 1,

Issue 3.

[Rogers et al 04] Rogers, Marcus K. Seigfried, Kate (February 2004). The

future of computer forensics: A needs analysis survey. Computers & Security,

Volume 23, Issue 1, Pages 12-16.

[Sanderson 02] Sanderson, Paul. (October 2002). NTFS Compression - a

forensic view. Revised January 3. 2003. Retrieved May 28. 2004 from

http://www.sandersonforensics.co.uk/Files/NTFS%20compression%20whit

e%20paper.pdf

[Schwartz 03] Schwartz, John. (2003). Acquitted Man Says Virus Put

Pornography On Computer. New York Times, August 11, 2003, Late Edition

- Final , Section C , Page 1 , Column 5.

38

[Schmidt 03] Schmidt, Marco. (June 2003). TAR archive file format. Retrieved

June 4. 20004 from http://www.geocities.com/marcoschmidt.geo/tar-

archive-file-format.html

[Stephenson 02] Stephenson, Peter. (December 2002). Analysis and

Correlation. Computer Fraud & Security, Volume 2002, Issue 12, Pages 16-

18.

[Stephenson 03] Stephenson, Peter. (June 2003). A comprehensive approach

to digital incident investigation. Information Security Technical Report,

Volume 8, Issue 2, Pages 42-54.

[de Vel 04] de Vel, Olivier. (June 2004). File classification using byte sub-

stream kernels. Digital Investigation, Volume 1, Issue 2, Pages 150-157.

39

8 Appendices

Local Gjøvik University College regulations state that all information that

could be useful to the next generation of thesis writers or necessary to

duplicate the results should be included. This section therefore contains some

detail information that normally would have been considered irrelevant.

8.1 Detailed result tables

Identification when using 512 byte hash blocks (full sector)
Identify only file Identify file and position in it Dup-

licates Total
hashes

% Unique
hashes

% Total
hashes

% Unique
hashes

%

Unique 78838754 65 78697936 88 78608124 65 78608124 88
2 12744746 10 6343505 7 12785760 10 6392880 7
3 4321913 3 1426325 1 4308729 3 1436243 1
4 2237552 1 552753 0 2257192 1 564298 0
5 2323359 1 459465 0 2291330 1 458266 0
6 1406662 1 228129 0 1395822 1 232637 0
7 1199157 0 166931 0 1161286 0 165898 0
8 1119482 0 137367 0 1117816 0 139727 0
9 670272 0 72708 0 671040 0 74560 0
10- 13349252 11 537180 0 13101138 10 547809 0
100- 380757 0 1099 0 633642 0 2852 0
1000- 149230 0 19 0 228155 0 117 0
10000- 1670142 1 1 0 1851244 1 7 0
Sum 120411278 100 88623418 100 120411278 100 88623418 100

Table 5 – Identification when using 512 byte
hash blocks (full sector)

Identification when using 384 byte hash blocks
Identify only file Identify file and position in it Dup-

licates Total
hashes

% Unique
hashes

% Total
hashes

% Unique
hashes

%

Unique 78230679 64 78068152 88 77962933 64 77962933 88
2 12682208 10 6308709 7 12734390 10 6367195 7
3 4323112 3 1424930 1 4311039 3 1437013 1
4 2244545 1 552171 0 2261236 1 565309 0
5 2319504 1 458386 0 2286920 1 457384 0
6 1387000 1 225796 0 1385226 1 230871 0
7 1195281 0 166059 0 1156050 0 165150 0
8 1177849 0 142127 0 1157928 0 144741 0
9 670214 0 72570 0 671211 0 74579 0
10- 13651514 11 546298 0 13374601 11 558010 0
100- 398953 0 1206 0 683634 0 3116 0
1000- 192591 0 32 0 259137 0 127 0
10000- 1937828 1 1 0 2166973 1 9 0

40

Identification when using 384 byte hash blocks
Identify only file Identify file and position in it Dup-

licates Total
hashes

% Unique
hashes

% Total
hashes

% Unique
hashes

%

Sum 120411278 100 87966437 100 120411278 100 87966437 100
Table 6 - Identification when using 384 byte
hash blocks

Identification when using 256 byte hash blocks (half sector)
Identify only file Identify file and position in it Dup-

licates Total
hashes

% Unique
hashes

% Total
hashes

% Unique
hashes

%

Unique 77261593 64 77088202 88 76978324 63 76978324 88
2 12565884 10 6246027 7 12609254 10 6304627 7
3 4303405 3 1416394 1 4284894 3 1428298 1
4 2205853 1 542747 0 2232192 1 558048 0
5 2311005 1 456055 0 2276180 1 455236 0
6 1356172 1 220975 0 1360236 1 226706 0
7 1188566 0 165083 0 1150478 0 164354 0
8 1182844 0 142648 0 1163568 0 145446 0
9 668518 0 72166 0 666711 0 74079 0
10- 14162066 11 562013 0 13831233 11 574993 0
100- 545316 0 1337 0 749317 0 3420 0
1000- 446409 0 39 0 292004 0 142 0
10000- 2213647 1 1 0 2816887 2 14 0
Sum 120411278 100 86913687 100 120411278 100 86913687 100

Table 7 - Identification when using 256 byte
hash blocks (half sector)

Identification when using 192 byte hash blocks
Identify only file Identify file and position in it Dup-

licates Total
hashes

% Unique
hashes

% Total
hashes

% Unique
hashes

%

Unique 76758949 63 76572085 88 76453656 63 76453656 88
2 12501370 10 6209957 7 12544630 10 6272315 7
3 4287654 3 1409496 1 4266795 3 1422265 1
4 2198001 1 540374 0 2229984 1 557496 0
5 2303985 1 454136 0 2268260 1 453652 0
6 1332910 1 217369 0 1340946 1 223491 0
7 1183005 0 163934 0 1143002 0 163286 0
8 1167136 0 143072 0 1168336 0 146042 0
9 666505 0 71769 0 663516 0 73724 0
10- 14582860 12 574176 0 14192227 11 588067 0
100- 482051 0 1459 0 807109 0 3708 0
1000- 253270 0 39 0 336797 0 153 0
10000- 2693582 2 1 0 2996020 2 12 0
Sum 120411278 100 86357867 100 120411278 100 86357867 100

Table 8 - Identification when using 192 byte
hash blocks

41

Identification when using 128 byte hash blocks (quarter of sector)
Identify only file Identify file and position in it Dup-

licates Total
hashes

% Unique
hashes

% Total
hashes

% Unique
hashes

%

Unique 75919817 63 75710767 88 75578292 62 75578292 88
2 12393734 10 6148063 7 12430978 10 6215489 7
3 4261949 3 1399633 1 4241091 3 1413697 1
4 2194234 1 538652 0 2234728 1 558682 0
5 2284060 1 449813 0 2251205 1 450241 0
6 1307850 1 212383 0 1317240 1 219540 0
7 1169292 0 161671 0 1128918 0 161274 0
8 1177707 0 144021 0 1179912 0 147489 0
9 663676 0 71279 0 660159 0 73351 0
10- 15248633 12 594888 0 14797177 12 610452 0
100- 621035 0 1828 0 974723 0 4354 0
1000- 294467 0 40 0 368964 0 163 0
10000- 2874824 2 1 0 3247891 2 15 0
Sum 120411278 100 85433039 100 120411278 100 85433039 100

Table 9 - Identification when using 128 byte
hash blocks (quarter of sector)

Identification when using 96 byte hash blocks
Identify only file Identify file and position in it Dup-

licates Total
hashes

% Unique
hashes

% Total
hashes

% Unique
hashes

%

Unique 75238990 62 75011088 88 74867954 62 74867954 88
2 12297507 10 6093770 7 12329036 10 6164518 7
3 4245277 3 1391450 1 4218288 3 1406096 1
4 2190347 1 536784 0 2236636 1 559159 0
5 2269957 1 446298 0 2237435 1 447487 0
6 1288473 1 209104 0 1302096 1 217016 0
7 1160040 0 160134 0 1120434 0 160062 0
8 1182990 0 144315 0 1187176 0 148397 0
9 663256 0 71047 0 658116 0 73124 0
10- 15748353 13 611313 0 15290626 12 628573 0
100- 791439 0 2207 0 1117093 0 4954 0
1000- 88347 0 39 0 436994 0 196 0
10000- 3246302 2 2 0 3409394 2 15 0
Sum 120411278 100 84677551 100 120411278 100 84677551 100

Table 10 - Identification when using 96 byte
hash blocks

Identification when using 64 byte hash blocks (double MD5 block size)
Identify only file Identify file and position in it Dup-

licates Total
hashes

% Unique
hashes

% Total
hashes

% Unique
hashes

%

Unique 74120169 61 73852777 88 73689859 61 73689859 88
2 12147145 10 6005366 7 12165990 10 6082995 7
3 4219217 3 1377805 1 4180620 3 1393540 1

42

Identification when using 64 byte hash blocks (double MD5 block size)
Identify only file Identify file and position in it Dup-

licates Total
hashes

% Unique
hashes

% Total
hashes

% Unique
hashes

%

4 2197277 1 536485 0 2251376 1 562844 0
5 2250874 1 441506 0 2218295 1 443659 0
6 1265846 1 204566 0 1282860 1 213810 0
7 1147655 0 157501 0 1105608 0 157944 0
8 1193089 0 144967 0 1202280 0 150285 0
9 663467 0 70519 0 654462 0 72718 0
10- 16553266 13 636475 0 16067182 13 656755 0
100- 1045477 0 2830 0 1373645 1 6154 0
1000- 184533 0 52 0 576727 0 270 0
10000- 3423263 2 2 0 3642374 3 18 0
Sum 120411278 100 83430851 100 120411278 100 83430851 100

Table 11 - Identification when using 64 byte
hash blocks (double MD5 block size)

Identification when using 48 byte hash blocks
Identify only file Identify file and position in it Dup-

licates Total
hashes

% Unique
hashes

% Total
hashes

% Unique
hashes

%

Unique 73177667 60 72874001 88 72693505 60 72693505 88
2 12012957 9 5926559 7 12019574 9 6009787 7
3 4201711 3 1369142 1 4158909 3 1386303 1
4 2205978 1 536044 0 2262220 1 565555 0
5 2235892 1 437565 0 2202930 1 440586 0
6 1257114 1 202138 0 1274700 1 212450 0
7 1138513 0 155606 0 1096074 0 156582 0
8 1201206 0 145531 0 1214144 1 151768 0
9 667147 0 70431 0 655956 0 72884 0
10- 17153161 14 656229 0 16685870 13 679794 0
100- 1336301 1 3414 0 1603271 1 7161 0
1000- 258077 0 59 0 684191 0 324 0
10000- 3565554 2 2 0 3859934 3 22 0
Sum 120411278 100 82376721 100 120411278 100 82376721 100

Table 12 - Identification when using 48 byte
hash blocks

Identification when using 32 byte hash blocks (MD5 block size)
Identify only file Identify file and position in it Dup-

licates Total
hashes

% Unique
hashes

% Total
hashes

% Unique
hashes

%

Unique 71483901 59 71119651 88 70908002 58 70908002 88
2 11762878 9 5777179 7 11737588 9 5868794 7
3 4199690 3 1361451 1 4145874 3 1381958 1
4 2231050 1 538092 0 2293064 1 573266 0
5 2224026 1 432939 0 2186635 1 437327 0
6 1255918 1 200583 0 1277814 1 212969 0

43

Identification when using 32 byte hash blocks (MD5 block size)
Identify only file Identify file and position in it Dup-

licates Total
hashes

% Unique
hashes

% Total
hashes

% Unique
hashes

%

7 1123888 0 152825 0 1082886 0 154698 0
8 1222107 1 147204 0 1241432 1 155179 0
9 681394 0 71260 0 668547 0 74283 0
10- 18190322 15 688437 0 17694187 14 718241 0
100- 1807724 1 4760 0 2061446 1 9303 0
1000- 449320 0 84 0 855606 0 416 0
10000- 3779060 3 2 0 4258197 3 31 0
Sum 120411278 100 80494467 100 120411278 100 80494467 100

Table 13 - Identification when using 32 byte
hash blocks (MD5 block size)

Identification when using 24 byte hash blocks
Identify only file Identify file and position in it Dup-

licates Total
hashes

% Unique
hashes

% Total
hashes

% Unique
hashes

%

Unique 69922027 58 69510933 88 69274232 57 69274232 87
2 11534461 9 5644251 7 11484710 9 5742355 7
3 4219338 3 1361208 1 4151706 3 1383902 1
4 2270444 1 543661 0 2330296 1 582574 0
5 2227813 1 431291 0 2185300 1 437060 0
6 1278758 1 202176 0 1297026 1 216171 0
7 1125642 0 151941 0 1080583 0 154369 0
8 1250778 1 149258 0 1268880 1 158610 0
9 701301 0 72800 0 688014 0 76446 0
10- 18973354 15 712383 0 18468747 15 748433 0
100- 2214836 1 5931 0 2451088 2 11253 0
1000- 617944 0 104 0 1040549 0 499 0
10000- 4074582 3 3 0 4690147 3 36 0
Sum 120411278 100 78785940 100 120411278 100 78785940 100

Table 14 - Identification when using 24 byte
hash blocks

Identification when using 16 byte (128 bits) hash blocks (MD5 result size)
Identify only file Identify file and position in it Dup-

licates Total
hashes

% Unique
hashes

% Total
hashes

% Unique
hashes

%

Unique 66618438 55 66141842 87 65871539 54 65871539 87
2 10988915 9 5339005 7 10878410 9 5439205 7
3 4293138 3 1374331 1 4202799 3 1400933 1
4 2356008 1 557449 0 2411596 2 602899 0
5 2247864 1 431242 0 2196000 1 439200 0
6 1360530 1 212221 0 1369782 1 228297 0
7 1158948 0 154490 0 1108051 0 158293 0
8 1323600 1 155296 0 1336024 1 167003 0
9 759840 0 77775 0 738504 0 82056 0

44

Identification when using 16 byte (128 bits) hash blocks (MD5 result size)
Identify only file Identify file and position in it Dup-

licates Total
hashes

% Unique
hashes

% Total
hashes

% Unique
hashes

%

10- 20476117 17 760809 1 19919239 16 807646 1
100- 3238150 2 9043 0 3468545 2 15897 0
1000- 1055940 0 160 0 1470682 1 653 0
10000- 4533790 3 3 0 5440107 4 45 0
Sum 120411278 100 75213666 100 120411278 100 75213666 100

Table 15 - Identification when using 16 byte
(128 bits) hash blocks (MD5 result size)

Identification when using 12 byte hash blocks
Identify only file Identify file and position in it Dup-

licates Total
hashes

% Unique
hashes

% Total
hashes

% Unique
hashes

%

Unique 63032525 52 62518912 87 62236887 51 62236887 87
2 10395134 8 5018509 7 10224498 8 5112249 7
3 4335720 3 1380649 1 4222479 3 1407493 1
4 2440657 2 572756 0 2480620 2 620155 0
5 2239550 1 426055 0 2179160 1 435832 0
6 1447695 1 224878 0 1457334 1 242889 0
7 1208348 1 159894 0 1155343 0 165049 0
8 1402808 1 162797 0 1403408 1 175426 0
9 815875 0 83018 0 790110 0 87790 0
10- 21970291 18 810251 1 21336486 17 865095 1
100- 4394526 3 12599 0 4624407 3 20785 0
1000- 1700648 1 245 0 1858682 1 849 0
10000- 5027501 4 4 0 6441864 5 68 0
Sum 120411278 100 71370567 100 120411278 100 71370567 100

Table 16 - Identification when using 12 byte
hash blocks

Identification when using 8 byte hash blocks
Identify only file Identify file and position in it Dup-

licates Total
hashes

% Unique
hashes

% Total
hashes

% Unique
hashes

%

Unique 55897006 46 55401434 87 55135192 45 55135192 86
2 9002234 7 4312923 6 8768614 7 4384307 6
3 4195432 3 1327283 2 4058067 3 1352689 2
4 2436133 2 566835 0 2441052 2 610263 0
5 2087731 1 391866 0 2013345 1 402669 0
6 1533445 1 235519 0 1515330 1 252555 0
7 1257461 1 164506 0 1192541 0 170363 0
8 1484682 1 170840 0 1473232 1 184154 0
9 882079 0 88873 0 847431 0 94159 0
10- 24723570 20 892846 1 23839285 19 955123 1
100- 7769745 6 23548 0 7840274 6 33986 0
1000- 2803115 2 586 0 3292225 2 1525 0

45

Identification when using 8 byte hash blocks
Identify only file Identify file and position in it Dup-

licates Total
hashes

% Unique
hashes

% Total
hashes

% Unique
hashes

%

10000- 6338645 5 10 0 7994690 6 84 0
Sum 120411278 100 63577069 100 120411278 100 63577069 100

Table 17 - Identification when using 8 byte
hash blocks

Identification when using 6 byte hash blocks
Identify only file Identify file and position in it Dup-

licates Total
hashes

% Unique
hashes

% Total
hashes

% Unique
hashes

%

Unique 48824193 40 48358481 87 48126117 39 48126117 86
2 7214663 5 3410355 6 6910630 5 3455315 6
3 3764957 3 1183597 2 3611286 2 1203762 2
4 2187984 1 502292 0 2155832 1 538958 0
5 1802476 1 332582 0 1715160 1 343032 0
6 1455033 1 220859 0 1420410 1 236735 0
7 1206869 1 155797 0 1129296 0 161328 0
8 1429175 1 164100 0 1417216 1 177152 0
9 847321 0 84057 0 807354 0 89706 0
10- 25677835 21 894799 1 24621269 20 961728 1
100- 11996700 9 36224 0 11492986 9 47730 0
1000- 5807638 4 1474 0 6481827 5 2950 0
10000- 8196434 6 28 0 10521895 8 132 0
Sum 120411278 100 55344645 100 120411278 100 55344645 100

Table 18 - Identification when using 6 byte
hash blocks

Identification when using 4 byte (32 bits) hash blocks (theoretical minimum)
Identify only file Identify file and position in it Dup-

licates Total
hashes

% Unique
hashes

% Total
hashes

% Unique
hashes

%

Unique 39941903 33 39675949 88 39541108 32 39541108 88
2 4812812 3 2268050 5 4568212 3 2284106 5
3 2799446 2 881072 1 2669538 2 889846 1
4 1542418 1 353355 0 1489880 1 372470 0
5 1237203 1 226906 0 1162635 0 232527 0
6 1128163 0 170954 0 1075356 0 179226 0
7 960184 0 123402 0 887733 0 126819 0
8 1223850 1 142734 0 1198968 0 149871 0
9 670678 0 66119 0 627777 0 69753 0
10- 22804125 18 731806 1 21331344 17 779985 1
100- 18366696 15 54725 0 16836608 13 66891 0
1000- 14326218 11 3775 0 14310144 11 6028 0
10000- 10597582 8 62 0 14711975 12 279 0
Sum 120411278 100 44698909 100 120411278 100 44698909 100

46

Table 19 - Identification when using 12 byte
(32 bits) hash blocks (theoretical minimum for
this experiment if pure random data in
database)

Identification when using 3 byte hash blocks (Unusable)
Identify only file Identify file and position in it Dup-

licates Total
hashes

% Unique
hashes

% Total
hashes

% Unique
hashes

%

Unique 3561948 2 3548638 23 3541127 2 3541127 23
2 7813451 6 3885212 25 7741490 6 3870745 25
3 9056887 7 2996212 19 8945304 7 2981768 19
4 7550777 6 1864748 12 7422856 6 1855714 12
5 5188173 4 1020644 6 5085890 4 1017178 6
6 3268430 2 531482 3 3190068 2 531678 3
7 2060707 1 283857 1 2003169 1 286167 1
8 1427786 1 170273 1 1380744 1 172593 1
9 1110222 0 116656 0 1068894 0 118766 0
10- 17791741 14 615052 4 16338037 13 644677 4
100- 19357356 16 56920 0 17589951 14 66876 0
1000- 21011142 17 5026 0 18198143 15 7044 0
10000- 21212658 17 196 0 27905605 23 583 0
Sum 120411278 100 15094916 100 120411278 100 15094916 100

Table 20 - Identification when using 3 byte
hash blocks

Identification when using 2 byte (16 bits) hash blocks (Unusable)
Identify only file Identify file and position in it Dup-

licates Total
hashes

% Unique
hashes

% Total
hashes

% Unique
hashes

%

Unique 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0
10- 0 0 0 0 0 0 0 0
100- 40531490 33 53609 81 35674559 29 49537 75
1000- 36740701 30 11405 17 32292008 26 14929 22
10000- 43139087 35 522 0 52444711 43 1070 1
Sum 120411278 100 65536 100 120411278 100 65536 100

Table 21 - Identification when using 2 byte (16
bits) hash blocks (Unusable)

Identification when using 1 byte (8 bits) hash blocks (Unusable)

47

Identify only file Identify file and position in it Dup-
licates Total

hashes
% Unique

hashes
% Total

hashes
% Unique

hashes
%

Unique 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0
10- 0 0 0 0 0 0 0 0
100- 0 0 0 0 0 0 0 0
1000- 0 0 0 0 0 0 0 0
10000- 120411278 100 256 100 120411278 100 256 100
Sum 120411278 100 256 100 120411278 100 256 100

Table 22 - Identification when using 1 byte (8
bits)hash blocks (Unusable)

8.2 Detailed database contents

Ref Count Ref Count Ref Count Ref Count Ref Count
g40x8 80411 24ja 5448 24tr 3393 x1ru 2413 46en 1116
m923 76314 ss8rs 4673 24pt 3392 x1fr 2412 cs2en 1101
m922 65175 e3en 4478 24sv 3392 x1es 2410 on3cs 530
g41p3 64731 e23en 3925 24nl 3391 x1nl 2410 on3fr 514
g41i6 64730 spp3en 3627 e54en 3384 x1de 2409 on3ja 492
m103 60638 24fr 3458 24el 3218 x1hu 2409 on3sp 485
f521al1 58273 24es 3457 24ar 3215 x1it 2409 on3ko 480
g41at 56780 24de 3456 24he 3214 x1pt 2409 on3it 478
f521sp1 55964 24en 3452 24da 3213 x1br 2408 s23en 478
m101 53450 ss8rx 3434 24fi 3213 x1pl 2408 on3ge 471
m102 51087 24ko 3432 23en 3204 x1sv 2408 on3br 452
m921 50461 24hk 3425 24no 3197 x1tr 2408 on3en 451
srv03sp1 17093 24cn 3424 22en 2563 x1cs 2407 on3ct 448
x0922207 16437 24it 3410 x1en 2500 x1fi 2407 lc3en 219
x0945916 16033 24hu 3409 x1ja 2441 x1da 2404 s74en 189
f521al2 13121 24tw 3409 x1cn 2427 x1no 2404 mm 16
f521sp2 13048 24br 3408 x1ch 2424 x1ar 2401 logs 3
psdk 8760 24cs 3408 x1tw 2423 x1he 2400
ss9rs 8516 24pl 3394 x1el 2416 21en 1919
ss9rx 7654 24ru 3394 x1ko 2413 bt4en 1448

Table 23 – Detailed distribution of source for
the 1 025 856 files used in creating the
database

Ext Count Ext Count Ext Count Ext Count Ext Count
gz 70321 a 4314 3x 1630 ps 785 cp_ 512
html 50376 cpio 3888 gpd 1463 hl_ 764 9 504

48

dll 46666 java 3719 ch_ 1400 cat 759 scm 501
dl_ 40893 in_ 3717 tbz2 1294 jar 740 dat 499
mo 36902 desktop 3440 tar 1283 exp 705 rb 498
h 20029 pyc 3221 makefile 1221 patch 675 as_ 497
png 15517 el 3171 idl 1206 afm 674 sp_ 496
so 13600 sys 3117 5 1201 n 664 xsl 493
bz2 13475 txt 2811 pl 1186 file 648 vf 490
exe 12005 0 2732 36432* 1155 pfb 647 pp_ 487
htm 10630 ppd 2691 tfm 1083 pdb 641 xul 482
ex_ 10183 gif 2651 js 1051 oc_ 635 tbz 466
o 9169 pyo 2609 cgi 1047 sty 630 info 462
c 9127 py 2386 4 1040 cab 624 ttf 452
pcf 8795 8 2226 tex 1000 7 611 css 447
class 8200 res 2212 readme 970 tcl 586 dxf 440
docbook 7910 2 2205 asp 967 fo_ 577 vim 434
1 6332 pm 1983 mf 910 scr 566 tt_ 423
cache 5811 changelog 1979 wav 908 sc_ 562 aspx 407
xml 5627 sy_ 1961 level 860 htm_1033 554 glade 405
inf 5571 pkg-plist 1943 stw 848 lc_time 554
3 5518 xpm 1915 jpg 835 en 550
ko 5057 ebuild 1815 ocx 830 conf 535
elc 4948 hlp 1769 pod 805 cpl 533
rpm 4513 chm 1676 3qt 786 properties 524

Table 24 – All file extensions occurring more
than 400 times in the database

8.3 Suggested introductory Literature

The last year has seen quite a few books on Digital Forensics, especially

targeted towards incident response on a corporate environment. The

following two books by Eoghan Casey is written for a technical audience in a

law enforcement environment, and are widely used and referenced in this

setting. They are therefore a natural recommendation as introductory

literature in this field.

• Casey, Eoghan: Handbook of Computer Crime Investigation, 2002,

Academic Press, London

• Casey, Eoghan: Digital Evidence and Computer Crime - Forensic

Science, Computers and the Internet, 2004, Academic Press, London

49

8.4 Practical Problems

This chapter outlines some of the practical problems encountered during the

experiment. It is only of interest for those attempting to duplicate the results

or perform similar experiments.

Approximately 360 GB disk space was used to produce the 60 GB database

of unique files. This was mainly due to wide extensive use of batch

processing, downloading all, extracting all, and then inserting all into the

database. A more resource friendly method would have been to download,

extract and insert the archives one by one.

Running several of the jobs was time consuming, especially the extracting and

fragment check summing. It was not uncommon to have to wait for several

days before the results were ready. In this scenario, debugging was very

important, since a bug in a job not only could result in that the result of the

job was unusable, but also that results from previous jobs were damaged.

In this case, it seemed like the bottle neck on the desktop systems was mainly

disk IO.

Directory depth and file names are limited to 256 bytes on a Windows NTFS

volume, so this lead to some problems during extracting of deeply nested

packages.

As an example; to fully extract all levels of the archive apache2-mod_php-

2.0.48_4.3.4-1mdk.i586.rpm, the xAll script needed to make the directory

structure apache2-mod_php-2.0.48_4.3.4-1mdk.i586.rpm.EXP\apache2-

mod_php-2.0.48_4.3.4-1mdk.i586.cpio.gz.EXP\apache2-mod_php-

2.0.48_4.3.4-1mdk.i586.cpio.EXP.

A next version of the script could be designed to choose the destination path

in a different way.

50

The size of the data sets involved made them impossible to process with

statistic software on the hardware available to the author. This meant that all

processing had to be done by specially developed software.

The use of Microsoft Word as the text processor presented difficult

problems. It was probably due to lack of knowledge of the tool, but it was a

challenge to achieve the desired results when deadlines were fast approaching.

8.5 Script and Program Listings

8.5.1 xAll – Extract All

The following JPSoft 4NT 5.00 Batch Script was used to recursively extract

archive files. It makes use of the multi-format archiver 7-zip to do the actual

extraction. Archives are extracted to a directory named after the archive with

an extra extension .EXP for further expansion.

@ECHO OFF
ECHO eXtract ALL in a subdirectory
ECHO This program must be run several times to extract all levels
ECHO.

SETLOCAL

SET ZZ=7z.exe

UNALIAS *
SET LISTF=%@UNIQUE[%TEMP%]
SET LOGF=%_CWD\xAll.LOG

ECHO Secarcing for non empty files with no description ...
DIR /F /S /A:-D /H /[s1] /I"[]" /[!DESCRIPT.ION]* > %LISTF%

ECHO Processing %@EVAL[%@LINES["%LISTF%"] + 1] files in
"%LISTF%" ...
ECHO Processing %@EVAL[%@LINES["%LISTF%"] + 1] files in
"%LISTF%" >> "%LOGF%"

FOR %F in (@"%LISTF%") (
 ECHO Extracting "%F%" ...
 ECHO Extracting "%F%" >> "%LOGF%"

51

 SET EXTF=%@FILENAME["%F%"]
 SET OUTD=%EXTF%.EXP
 PUSHD %@PATH["%F%"]
 %ZZ% x -aou -y -o"%OUTD%" "%EXTF%" >>& "%LOGF%"
 DESCRIBE "%EXTF%" /D"Extracted COUNT=%@FILES[
"%OUTD%*"] RC=%? DIR=%OUTD%"
 POPD
)

DEL %LISTF% >& NUL

ECHO Log of operations is in file "%LOGF%" .

ENDLOCAL

8.5.2 MD5sort – Sort files according to hash and find

uniques.

The following JPSoft 4NT 5.00 Batch Script was used to sort the extracted

files into a directory structure based on it’s MD5 hash value. This was done

both to be able to discard duplicate files, but also to facilitate quick lookup of

the original file and information about the original origin. The directory

structure was choosen because of the way NTFS is designed to sort directory

entries by name [Casey 04]. This is also the exact way Microsoft itself has

choosen to implement large file storage applications.

The script needs a MD5 checksum file in md5sum-format as input.

@ECHO OFF
ECHO Sort files according to MD5 hash value
ECHO USAGE: MD5sort {MD5file} {DestinationPath}
ECHO.

EVENTLOG MD5sort is starting with parameters %0$
SETLOCAL
SETDOS /D0
UNALIAS *

SET MD5FILE=%1
SET DESTINATIONPATH=%2

SET LOGF=%_CWD\MD5sort.LOG

52

FOR %line in (@%MD5FILE%) DO (
 SET MD=%@WORD[0,%line]
 SET FN=%@WORD["*",1,%line]
 SET
DP=%DESTINATIONPATH%\%@LEFT[1,%MD%]\%@INSTR[1,1,%
MD%]\%@INSTR[2,1,%MD%]\%MD%
 SET FDT=%@FILEDATE["%FN%",,4] %@FILETIME["%FN%",,s]
 MD /N /S %DP% >& NUL
 IF "%_?" == "0" (
 MOVE /H "%FN%" %DP%\content >>& %LOGF%
 SET DEST=%DP%\content
 ECHO CompanyName %@VERINFO[%DEST%,CompanyName]
- %DP%\verinfo
 ECHO FileDescription %@VERINFO[%DEST%,FileDescription] --
%DP%\verinfo
 ECHO FileVersion %@VERINFO[%DEST%,FileVersion] --
%DP%\verinfo
 ECHO ProductName %@VERINFO[%DEST%,ProductName] --
%DP%\verinfo
 ECHO ProductVersion %@VERINFO[%DEST%,ProductVersion] --
%DP%\verinfo)
 ECHO %FN%%=t%FDT% >> %DP%\paths
)

ECHO Log of operations is in file "%LOGF%" .

ENDLOCAL
EVENTLOG MD5sort has finished

8.5.3 MD5frag – Calculate MD5 checksums of all fragments

The following .NET 1.1 C# program calculates MD5 hashes of all fragments

used in this experiment.

The output is in ASCII format with one record on each line to make it

possible to sort the tables using utilities preinstalled with operating systems. In

order to make the sorting jobs manageable on regular desktop hardware, the

output is preliminary sorted in files based on the first byte of the MD5

checksum. When all 256 files have been sorted, it is possible to just merge the

files to create the main fragment database.

53

The program needs a list of all content files to process as input.

using System;
using System.IO;
using System.Security.Cryptography;

namespace MD5frag
{
 class ClassMain
 {
 [STAThread]
 static void Main(string[] args)
 {
 MD5 mMD5 = new MD5CryptoServiceProvider();
 byte[] bHash;
 byte[] bBlock = new Byte[512];

 StreamWriter[] swWriters512 = CreateWriters("table.512.fragments.");
/*Repeated for every block size*/
 StreamWriter[] swWriters1 = CreateWriters("table.1. fragments.");

 int iLineCounter = 0;

 Stream sFileList = File.OpenRead(args[0]);
 StreamReader srFileList = new StreamReader(sFileList);

 string sFileDataName = srFileList.ReadLine();
 while (sFileDataName != null)
 {
 string sFileDataHash = sFileDataName.Substring(6, 32);
 if (iLineCounter++ % 10 == 0)
 Console.WriteLine("Processing {0}.", sFileDataHash);

 Stream sFileData = File.OpenRead(sFileDataName);
 BufferedStream bsFileData = new BufferedStream(sFileData);

 int iCounter = 0;
 while (bsFileData.Read(bBlock, 0, 512) == 512)
 {
 bHash = mMD5.ComputeHash(bBlock);
 swWriters512[bHash[0]].WriteLine("{0} {1} {2,5}", HashString(bHash),
sFileDataHash, iCounter);

/*Repeated for every block size*/

 bHash = mMD5.ComputeHash(bBlock, 499, 1);
 swWriters1 [bHash[0]].WriteLine("{0} {1} {2,5}", HashString(bHash),
sFileDataHash, iCounter);

 iCounter++;
 }
 bsFileData.Close();
 sFileDataName = srFileList.ReadLine();

54

 }
 srFileList.Close();

 CloseWriters(swWriters1);
/*Repeated for every block size*/
 CloseWriters(swWriters512);

 }

 static StreamWriter[] CreateWriters(string sFilename)
 {
 StreamWriter[] swWriters = new StreamWriter[256];

 for(int iCounter=0; iCounter <= 255 ; iCounter++)
 {
 swWriters[iCounter] =
 new StreamWriter(sFilename + iCounter.ToString("x2"));
 }
 return swWriters;
 }

 static void CloseWriters(StreamWriter[] swWriters)
 {
 for(int iCounter=0; iCounter <= 255 ; iCounter++)
 {
 swWriters[iCounter].Close();
 }
 }

 static string HashString(byte[] hash)
 {
 return
 hash[0].ToString("x2") +
 hash[1].ToString("x2") +
 hash[2].ToString("x2") +
 hash[3].ToString("x2") +
 hash[4].ToString("x2") +
 hash[5].ToString("x2") +
 hash[6].ToString("x2") +
 hash[7].ToString("x2") +
 hash[8].ToString("x2") +
 hash[9].ToString("x2") +
 hash[10].ToString("x2") +
 hash[11].ToString("x2") +
 hash[12].ToString("x2") +
 hash[13].ToString("x2") +
 hash[14].ToString("x2") +
 hash[15].ToString("x2");
 }

 }
}

55

8.5.4 MD5stats – Identify duplicate fragments

The following .NET 1.1 C# program identifies fragments with the same

MD5 checksum. It logs them to a separate file so they can be analyzed later.

It makes a special note if all the fragments are from the same position in

different files. This makes it easier to spot cases where the same checksum is

due to different language versions or revisions of the same file.

It also keeps track of which file the various fragments are from, making it

possible to say something about why this particular fragment was a duplicate.

The program needs the main fragment database as input.

using System;
using System.IO;
using System.Collections;
using System.Collections.Specialized;

namespace MD5stats
{
 /// <summary>
 /// Summary description for Class1.
 /// </summary>
 class ClassMain
 {
 /// <summary>
 /// The main entry point for the application.
 /// </summary>
 [STAThread]
 static void Main(string[] args)
 {
 long lLineTotalCounter = 0;
 long lUniqueHashesTotalCounter = 0;
 long lDuplicateTotalCounter = 0;

 string sHashBlockOld = ""; // The last block hash
 string sHashFileOld = ""; // The last file hash

 int iDuplicateCount = 0; // Reset the number of duplicates for this hash

 StringDictionary sdDistributions = new StringDictionary();
 StringDictionary sdFileNames = new StringDictionary();
 StringDictionary sdFileHashes = new StringDictionary();
 StringDictionary sdBlocks = new StringDictionary();

56

 Stream sFileList = File.OpenRead(args[0]);
 StreamReader srFileList = new StreamReader(sFileList);

 Stream sFileDuplicates = File.OpenWrite(args[0] + ".duplicates");
 StreamWriter swFileDuplicates = new StreamWriter(sFileDuplicates);

 Stream sFileDuplicatesNames = File.OpenWrite(args[0] + ".duplicates.names");
 StreamWriter swFileDuplicatesNames = new StreamWriter(sFileDuplicatesNames);

 string sHashPair = srFileList.ReadLine();
 while (sHashPair != null)
 {
 string sHashBlock = sHashPair.Substring(0, 32);
 string sHashFile = sHashPair.Substring(33, 32);
 int iBlock = Int32.Parse(sHashPair.Substring(66));

 lLineTotalCounter++;

 //if (lLineTotalCounter % 4096 == 0)
 //Console.WriteLine("Block {0}, file {1}", sHashBlock, sHashFile);

 if (sHashBlock != sHashBlockOld) // A new block
 {
 if (iDuplicateCount >= 2) // Are there some data to save (was the last one a duplicate)?
 {
 // HashBlock DuplicateCount FileHashCount BlockCount DistCount FileNameCount
 swFileDuplicates.WriteLine("{0} {1,7} {2,7} {3,7} {4,7} {5,7}", sHashBlockOld,
iDuplicateCount, sdFileHashes.Count, sdBlocks.Count, sdDistributions.Count,
sdFileNames.Count);
 // HashBlock Dists FileNames Blocks
 swFileDuplicatesNames.WriteLine("{0}\t{1}\t{2}\t{3}", sHashBlockOld,
KeysString(sdDistributions), KeysString(sdFileNames), KeysString(sdBlocks));
 }
 else
 {
 lUniqueHashesTotalCounter++;
 }

 iDuplicateCount = 1; // Reset the number of duplicates for this hash

 sdDistributions.Clear();
 sdFileNames.Clear();
 sdFileHashes.Clear();
 sdBlocks.Clear();
 }
 else // The same block as the last time (duplicate)
 {
 if (iDuplicateCount == 1) // It has not been buildt before
 {
 GetDistsAndNames(sHashFileOld, sdDistributions, sdFileNames);

 if (! sdFileHashes.ContainsKey(sHashFileOld))
 sdFileHashes.Add(sHashFileOld, "");

57

 }

 lDuplicateTotalCounter++;
 iDuplicateCount++;

 if (sHashFile != sHashFileOld) // A new file
 {
 GetDistsAndNames(sHashFile, sdDistributions, sdFileNames);

 if (! sdFileHashes.ContainsKey(sHashFile))
 sdFileHashes.Add(sHashFile, "");
 }

 if (! sdBlocks.ContainsKey(iBlock.ToString()))
 sdBlocks.Add(iBlock.ToString(), "");
 }

 sHashBlockOld = sHashBlock; // Save the last block hash
 sHashFileOld = sHashFile; // Save the last file hash

 sHashPair = srFileList.ReadLine();
 }

 swFileDuplicatesNames.Close();
 swFileDuplicates.Close();
 srFileList.Close();

 Console.WriteLine("{0} lines processed. {1} were duplicates. {2} unique/single
instaces.", lLineTotalCounter, lDuplicateTotalCounter, lUniqueHashesTotalCounter);
 }

 static void GetDistsAndNames(string sHash, StringDictionary sdDistributions,
StringDictionary sdFileNames)
 {
 Stream sFilePaths = File.OpenRead("F:\\Uniques\\" + sHash[0] + "\\" + sHash[1] + "\\"
+ sHash[2] + "\\" + sHash + "\\paths");
 StreamReader srFilePaths = new StreamReader(sFilePaths);
 string sPaths = srFilePaths.ReadLine();
 while (sPaths != null)
 {
 string[] sSplit = sPaths.Split(new Char[] {'\\','\t'});
 string sDistribution = sSplit[0]; // Get the distribution/ database reference name
 string sFileName = sSplit[sSplit.Length - 2]; // Get the file name
 if (sFileName == "[Content]") // One of the special names
 sFileName = sSplit[sSplit.Length - 3]; // Get a more descriptive file name

 if (! sdDistributions.ContainsKey(sDistribution))
 sdDistributions.Add(sDistribution, "");
 if (! sdFileNames.ContainsKey(sFileName))
 sdFileNames.Add(sFileName, "");

58

 //Console.WriteLine("Adding hash {0}: {1}, {2}, {3}.", sHash, sFileName,
sdDistributions.Count, sdFileNames.Count);

 sPaths = srFilePaths.ReadLine();
 }
 srFilePaths.Close();
 }

 static string KeysString(StringDictionary sdKeys)
 {
 string sKeys = "";
 foreach (DictionaryEntry deEntry in sdKeys)
 sKeys = sKeys + deEntry.Key + " ";
 return sKeys;
 }

 }
}

8.5.5 DBstats – Simple statistics about hash database content

The following .NET 1.1 C# program sums up simple statistics about the

fragments in the database.

The program needs the main fragment database as input.

using System;
using System.IO;

namespace DBstats
{
 /// <summary>
 /// Summary description for Class1.
 /// </summary>
 class ClassMain
 {
 /// <summary>
 /// The main entry point for the application.
 /// </summary>
 [STAThread]
 static void Main(string[] args)
 {
 long[] lTFilesT = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; // 0=total, 1-9=numbers,
10=10-99, 11=100-999, 12=1000-9999, 13=10000-
 long[] lTFilesU = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
 long[] lTFilesPosT = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
 long[] lTFilesPosU = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
/* long[] lTFilesU = new Int64[14];
 long[] lTFilesPosT = new Int64[14];
 long[] lTFilesPosU = new Int64[14];*/

59

 Console.WriteLine("Processing file {0} ...", args[0]);

 Stream sFileList = File.OpenRead(args[0]);
 StreamReader srFileList = new StreamReader(sFileList);

 // Initalize variables
 string sHashPair = srFileList.ReadLine();
 long lCFiles = 1; // Count the first instance of a file
 long lCFilesPos = 1; // Count the first instance of a file and position pair
 string sHashBlockOld = sHashPair.Substring(0, 32);
 string sHashFileOld = sHashPair.Substring(33, 32);

 // Read the first line to be processed
 sHashPair = srFileList.ReadLine();

 while (sHashPair != null)
 {
 string sHashBlock = sHashPair.Substring(0, 32);
 string sHashFile = sHashPair.Substring(33, 32);

 if (sHashBlock != sHashBlockOld) // A new block
 {
 TableIncrement(lTFilesPosT, lTFilesPosU, lCFilesPos, lCFilesPos);
 TableIncrement(lTFilesT, lTFilesU, lCFilesPos, lCFiles);

 lCFilesPos = 1; // Count the first instance of a file and position pair
 lCFiles = 1; // Count the first instance of a file

 sHashBlockOld = sHashBlock; // Save the last block hash
 sHashFileOld = sHashFile; // Save the last file hash
 }
 else // The same block as the last time (duplicate)
 {
 lCFilesPos ++;

 if (sHashFile != sHashFileOld) // A new file
 {
 lCFiles ++;

 sHashFileOld = sHashFile; // Save the last file hash
 }
 }

 sHashPair = srFileList.ReadLine();
 }

 // Save off last data
 TableIncrement(lTFilesPosT, lTFilesPosU, lCFilesPos, lCFilesPos);
 TableIncrement(lTFilesT, lTFilesU, lCFilesPos, lCFiles);

 srFileList.Close();

60

 Stream sFileStat = File.OpenWrite(args[0] + ".sq.TXT");
 StreamWriter swFileStat = new StreamWriter(sFileStat);

 swFileStat.WriteLine("Quick statistics for file {0}.", args[0]);

 swFileStat.WriteLine("Identify both file and position");
 TableWrite(lTFilesPosT, lTFilesPosU, swFileStat);

 swFileStat.WriteLine("Identify file only");
 TableWrite(lTFilesT, lTFilesU, swFileStat);

 swFileStat.WriteLine("");
 swFileStat.Close();
 }

 static void TableIncrement(long[] lTableTotal, long[] lTableUnique, long lHashCnt, long
lInstanceCnt)
 {
 // 0=total, 1=unique // 0=total, 1-9=numbers, 10=10-99, 11=100-999, 12=1000-9999,
13=10000-
 lTableTotal[0] += lHashCnt;
 lTableUnique[0] ++;

 if (lInstanceCnt < 10)
 {
 lTableTotal[lInstanceCnt] += lHashCnt;
 lTableUnique[lInstanceCnt] ++;
 }
 else if (lInstanceCnt < 100)
 {
 lTableTotal[10] += lHashCnt;
 lTableUnique[10] ++;
 }
 else if (lInstanceCnt < 1000)
 {
 lTableTotal[11] += lHashCnt;
 lTableUnique[11] ++;
 }
 else if (lInstanceCnt < 10000)
 {
 lTableTotal[12] += lHashCnt;
 lTableUnique[12] ++;
 }
 else
 {
 lTableTotal[13] += lHashCnt;
 lTableUnique[13] ++;
 }
 }

 static void TableWrite(long[] lTableTotal, long[] lTableUnique, StreamWriter swFile)
 {
 // 0=total, 1=unique // 0=total, 1-9=numbers, 10=10-99, 11=100-999, 12=1000-9999,
13=10000-

61

 swFile.WriteLine("Desc\tTotal\tTotal %\tUnique\tUnique %");
 swFile.Flush();
 swFile.WriteLine("Sum\t{0}\t100\t{1}\t100", lTableTotal[0], lTableUnique[0]);
 swFile.Flush();

 for (int iCnt=1; iCnt < 10; iCnt++)
 swFile.WriteLine("{0}\t{1}\t{2}\t{3}\t{4}", iCnt, lTableTotal[iCnt], lTableTotal[iCnt]
* 100 / lTableTotal[0], lTableUnique[iCnt], lTableUnique[iCnt] * 100 / lTableUnique[0]);

 swFile.WriteLine("10-\t{0}\t{1}\t{2}\t{3}", lTableTotal[10], lTableTotal[10] * 100 /
lTableTotal[0], lTableUnique[10], lTableUnique[10] * 100 / lTableUnique[0]);
 swFile.WriteLine("100-\t{0}\t{1}\t{2}\t{3}", lTableTotal[11], lTableTotal[11] * 100 /
lTableTotal[0], lTableUnique[11], lTableUnique[11] * 100 / lTableUnique[0]);
 swFile.WriteLine("1000-\t{0}\t{1}\t{2}\t{3}", lTableTotal[12], lTableTotal[12] * 100 /
lTableTotal[0], lTableUnique[12], lTableUnique[12] * 100 / lTableUnique[0]);
 swFile.WriteLine("10000-\t{0}\t{1}\t{2}\t{3}", lTableTotal[13], lTableTotal[13] * 100
/ lTableTotal[0], lTableUnique[13], lTableUnique[13] * 100 / lTableUnique[0]);

 }

 }
}

8.5.6 SourceStat – Simple Statistics about the source of files

The following .NET 1.1 C# program counts and produces simple statistics

based on the source of the fragments in the hash database.

The program needs the main fragment database as input

using System;
using System.IO;
using System.Collections;
using System.Collections.Specialized;

namespace SourceStat
{
 /// <summary>
 /// Summary description for Class1.
 /// </summary>
 class ClassMain
 {
 /// <summary>
 /// The main entry point for the application.
 /// </summary>
 [STAThread]
 static void Main(string[] args)
 {
 long lUniqueCounter = 0;

62

 long lTotalCounter = 0;

 StringDictionary sdDistributions = new StringDictionary();
 StringDictionary sdExtensions = new StringDictionary();

 Stream sFileList = File.OpenRead(args[0]);
 StreamReader srFileList = new StreamReader(sFileList);

 string sLine = srFileList.ReadLine();
 while (sLine != null)
 {
 string sHash = sLine.Substring(6, 32);

 lUniqueCounter ++;
 lTotalCounter += GetDistsAndExts(sHash, sdDistributions, sdExtensions);

 sLine = srFileList.ReadLine();
 }
 srFileList.Close();

 Stream sFileStat = File.OpenWrite("C:\\Master\\Sources.Stat.TXT");
 StreamWriter swFileStat = new StreamWriter(sFileStat);

 swFileStat.WriteLine("Information about a total of {0} files, {1} uniques.",
lTotalCounter, lUniqueCounter);

 swFileStat.WriteLine("Distributions");
 TableWrite(sdDistributions, swFileStat);

 swFileStat.WriteLine("File Extensions");
 TableWrite(sdExtensions, swFileStat);

 swFileStat.WriteLine("");
 swFileStat.Close();

 }

 static void TableWrite(StringDictionary sdDict, StreamWriter swFile)
 {
 swFile.WriteLine("Entry\tCount");

 foreach (DictionaryEntry deEntry in sdDict)
 {
 swFile.WriteLine("{0}\t{1}", deEntry.Key, deEntry.Value);
 }
 }

 static long GetDistsAndExts(string sHash, StringDictionary sdDistributions,
StringDictionary sdExtensions)
 {
 StringDictionary sdDstTmp = new StringDictionary();;
 StringDictionary sdExtTmp = new StringDictionary();;

63

 long lPathsCounter = 0;
 Stream sFilePaths = File.OpenRead("F:\\Uniques\\" + sHash[0] + "\\" + sHash[1] + "\\"
+ sHash[2] + "\\" + sHash + "\\paths");
 StreamReader srFilePaths = new StreamReader(sFilePaths);
 string sPaths = srFilePaths.ReadLine();
 while (sPaths != null)
 {
 lPathsCounter++;
 string[] sSplit = sPaths.Split(new Char[] {'\\','\t'});
 string sDistribution = sSplit[0]; // Get the distribution/ database reference name
 string sFileName = sSplit[sSplit.Length - 2]; // Get the file name
 if (sFileName == "[Content]") // One of the special names
 sFileName = sSplit[sSplit.Length - 3]; // Get a more descriptive file name

 sSplit = sFileName.Split(new Char[] {'.'});
 string sExtension = sSplit[sSplit.Length - 1]; // Get the extension
 if (sExtension == "exp") // One of the special names
 {
 sExtension = sSplit[sSplit.Length - 2] + ".exp"; // Get a more descriptive extension
 if (sExtension == "tbz.exp" || sExtension == "aa.exp")
 {
 sExtension = "tar";
 }
 }

 if (!sdDstTmp.ContainsKey(sDistribution))
 sdDstTmp.Add(sDistribution, "1");

 if (!sdExtTmp.ContainsKey(sExtension))
 sdExtTmp.Add(sExtension, "1");

 sPaths = srFilePaths.ReadLine();
 }
 srFilePaths.Close();

 foreach (DictionaryEntry deEntry in sdDstTmp)
 if (sdDistributions.ContainsKey(deEntry.Key.ToString()))
 sdDistributions[deEntry.Key.ToString()] = IncString(sdDistributions[
deEntry.Key.ToString()]);
 else
 sdDistributions.Add(deEntry.Key.ToString(), "1");

 foreach (DictionaryEntry deEntry in sdExtTmp)
 if (sdExtensions.ContainsKey(deEntry.Key.ToString()))
 sdExtensions[deEntry.Key.ToString()] = IncString(sdExtensions[
deEntry.Key.ToString()]);
 else
 sdExtensions.Add(deEntry.Key.ToString(), "1");

 return (lPathsCounter);

 }

 static string IncString(string sValue)

64

 {
 long lValue = Int64.Parse(sValue) + 1;
 return (lValue.ToString());
 }

 }
}

8.6 The Multiple Format Extraction Tool 7-Zip

The extraction tool used was the open source project 7-Zip from

http://www.7-zip.org/ .

Since it can expand and extract files at least from files of types MSI, CAB, ??_,

RPM, DEB TAR, CPIO, GZIP, BZIP2, ZIP, RAR and ARJ, and also was

able to correctly identify the type of archive without relying on file extension,

it was very suitable as a universal extraction tool for this project.

8.7 Bill of Materials

The following lists the archive files used to populate the database for this

experiment. The archives themselves were not a part of the database, but all

the files they produced when recursively expanded were .

Microsoft Windows Server 2003, Enterprise Edition, for 64-bit Extended

Systems. 17093 files.

File sized 519030784, dated 07.09.03 07:17. Database reference srv03sp1.

http://download.microsoft.com/download/c/9/b/c9ba876f-414f-4dd1-

bf25-a84891278b69/srv03sp1_usa_1069_amd64fre_ads.iso

Microsoft Windows Server 2003, Enterprise Edition, 32-bit. 16437 files.

File sized 569346048, dated 22.04.03 01:06. Database reference x0922207.

http://download.microsoft.com/download/5/2/b/52beb621-1a93-41bb-

a57d-ea5c7aef7f76/x09-22207.iso

Microsoft Windows Server 2003, Enterprise Edition, for 64-bit Itanium-

Based Systems. 16033 files.

65

http://www.7-zip.org/

File sized 596054016, dated 22.04.03 02:03. Database reference x0945916.

http://download.microsoft.com/download/4/c/c/4cc5a2fe-c8cf-4f58-8d4b-

b21e76f5bcf9/x09-45916.iso

Microsoft Windows XP Service Pack 1a Network Installation, Arabic. 2401

files.

File sized 128887392, dated 27.01.03 22:20. Database reference x1ar.

http://download.microsoft.com/download/d/a/2/da2a084c-3349-4cce-

96be-d8f79126f58a/xpsp1a_ar_x86.exe

Microsoft Windows XP Service Pack 1a Network Installation, Portuguese

(Brazilian). 2408 files.

File sized 129117792, dated 27.01.03 21:02. Database reference x1br.

http://download.microsoft.com/download/5/8/6/5862ce05-4993-4a0c-

82f8-576909fe3a77/xpsp1a_br_x86.exe

Microsoft Windows XP Service Pack 1a Network Installation, Chinese

(Simplified). 2424 files.

File sized 147856480, dated 27.01.03 21:03. Database reference x1cn.

http://download.microsoft.com/download/a/4/9/a49ca543-097f-4e57-

b8e5-ee1090f7f022/xpsp1a_cn_x86.exe

Microsoft Windows XP Service Pack 1a Network Installation, Chinese (Hong

Kong)

File sized 129710688, dated 04.04.03 22:55. Database reference x1cn.

http://download.microsoft.com/download/e/7/d/e7da5bdc-8407-4739-

9a5e-0967987e941a/xpsp1a.exe

Microsoft Windows XP Service Pack 1a Network Installation, Czech

File sized 129511008, dated 27.01.03 21:05. Database reference x1cs.

http://download.microsoft.com/download/2/b/5/2b5361c9-c38b-402e-

8066-f830e82bfffc/xpsp1a_cs_x86.exe

66

Microsoft Windows XP Service Pack 1a Network Installation, Danish

File sized 129143904, dated 27.01.03 21:04. Database reference x1da.

http://download.microsoft.com/download/5/8/7/5876b6c3-995f-43f0-

9580-32d92f91205a/xpsp1a_da_x86.exe

Microsoft Windows XP Service Pack 1a Network Installation, German

File sized 129049184, dated 27.01.03 20:56. Database reference x1de.

http://download.microsoft.com/download/a/4/c/a4ce1a3b-fac8-4597-

be33-c10ced905c3b/xpsp1a_de_x86.exe

Microsoft Windows XP Service Pack 1a Network Installation, Greek

File sized 129707616, dated 27.01.03 21:17. Database reference x1el.

http://download.microsoft.com/download/d/4/b/d4bf1ef1-3a5b-4013-

a745-5779c11dad1b/xpsp1a_el_x86.exe

Microsoft Windows XP Service Pack 1a Network Installation, English

File sized 131170400, dated 24.01.03 22:18. Database reference x1en.

http://download.microsoft.com/download/5/4/f/54f8bcf8-bb4d-4613-

8ee7-db69d01735ed/xpsp1a_en_x86.exe

Microsoft Windows XP Service Pack 1a Network Installation, Spanish

File sized 129186400, dated 27.01.03 21:03. Database reference x1es.

http://download.microsoft.com/download/0/d/d/0ddcd740-012b-4e45-

84d0-52d63dbec578/xpsp1a_es_x86.exe

Microsoft Windows XP Service Pack 1a Network Installation, Finnish

File sized 129474656, dated 27.01.03 22:21. Database reference x1fi.

http://download.microsoft.com/download/1/8/5/1853ee20-2800-4e99-

a9b6-012165be675c/xpsp1a_fi_x86.exe

Microsoft Windows XP Service Pack 1a Network Installation, French

File sized 129283168, dated 27.01.03 20:59. Database reference x1fr.

67

http://download.microsoft.com/download/c/5/5/c5582838-ac1a-4edb-

ade5-035c949edd69/xpsp1a_fr_x86.exe

Microsoft Windows XP Service Pack 1a Network Installation, Hebrew

File sized 128788064, dated 27.01.03 22:22. Database reference x1he.

http://download.microsoft.com/download/2/4/5/245ef5d9-a09c-4ed1-

8fea-f5ba8449992c/xpsp1a_he_x86.exe

Microsoft Windows XP Service Pack 1a Network Installation, Hungarian

File sized 129642080, dated 27.01.03 20:55. Database reference x1hu.

http://download.microsoft.com/download/e/2/2/e221c26d-492c-4856-

b644-2a2e7d9ce2e3/xpsp1a_hu_x86.exe

Microsoft Windows XP Service Pack 1a Network Installation, Italian

File sized 129048672, dated 27.01.03 22:22. Database reference x1it.

http://download.microsoft.com/download/6/a/7/6a727e5c-c84b-45ef-

b943-b0080acfe352/xpsp1a_it_x86.exe

Microsoft Windows XP Service Pack 1a Network Installation, Japanese

File sized 131510368, dated 27.01.03 20:59. Database reference x1ja.

http://download.microsoft.com/download/c/8/0/c8092bab-f1b8-4119-

8bcf-2e8dab528c25/xpsp1a_ja_x86.exe

Microsoft Windows XP Service Pack 1a Network Installation, Korean

File sized 129086560, dated 27.01.03 20:50. Database reference x1ko.

http://download.microsoft.com/download/3/2/3/32360c0e-b42c-4903-

b7ab-b93f601d4893/xpsp1a_ko_x86.exe

Microsoft Windows XP Service Pack 1a Network Installation, Dutch

File sized 129155168, dated 27.01.03 21:00. Database reference x1nl.

http://download.microsoft.com/download/8/2/8/828e2216-e87c-4a0e-

a056-c83da3e781f2/xpsp1a_nl_x86.exe

68

Microsoft Windows XP Service Pack 1a Network Installation, Norwegian

File sized 128893536, dated 27.01.03 21:05. Database reference x1no.

http://download.microsoft.com/download/2/0/c/20c376d4-664b-4fbb-

8c94-a91f5839ca2d/xpsp1a_no_x86.exe

Microsoft Windows XP Service Pack 1a Network Installation, Polish

File sized 129326176, dated 27.01.03 21:14. Database reference x1pl.

http://download.microsoft.com/download/8/1/4/814a9d5f-54e0-43ee-

b1b5-5509101f3e7b/xpsp1a_pl_x86.exe

Microsoft Windows XP Service Pack 1a Network Installation, Portuguese

File sized 129053280, dated 27.01.03 21:18. Database reference x1pt.

http://download.microsoft.com/download/7/7/f/77f8e1de-8c5d-4b5e-

9de8-23d58506b20e/xpsp1a_pt_x86.exe

Microsoft Windows XP Service Pack 1a Network Installation, Russian

File sized 129240672, dated 27.01.03 21:23. Database reference x1ru.

http://download.microsoft.com/download/f/d/7/fd7a4d93-1cf6-40ac-

93c9-c99338aa95ec/xpsp1a_ru_x86.exe

Microsoft Windows XP Service Pack 1a Network Installation, Swedish

File sized 128775264, dated 27.01.03 22:11. Database reference x1sv.

http://download.microsoft.com/download/b/a/5/ba56e88a-a9eb-4ab5-

ab8e-b50f43d42b1b/xpsp1a_sv_x86.exe

Microsoft Windows XP Service Pack 1a Network Installation, Turkish

File sized 129104968, dated 26.02.03 04:31. Database reference x1tr.

http://download.microsoft.com/download/8/f/6/8f6ab9e4-9a82-4b25-

8d14-6f0718cc2174/xpsp1a_tr_x86.exe

Microsoft Windows XP Service Pack 1a Network Installation, Chinese

(Traditional)

File sized 129694816, dated 27.01.03 21:02. Database reference x1tw.

69

http://download.microsoft.com/download/5/8/b/58b518f7-94d6-4bd7-

a333-4a55e4e2c662/xpsp1a_tw_x86.exe

Microsoft Windows 2000 Service Pack 4 Network Installation, Arabic

File sized 117102392, dated 20.06.03 22:28. Database reference 24ar.

http://download.microsoft.com/download/3/f/8/3f8a308a-eae1-4a2d-

927d-1f76d3e60442/w2ksp4_ar.exe

Microsoft Windows 2000 Service Pack 4 Network Installation, Portuguese

(Brazilian)

File sized 133702888, dated 21.06.03 01:37. Database reference 24br.

http://download.microsoft.com/download/f/a/0/fa0ac2ef-53b3-4ff0-af13-

ba383610e31e/w2ksp4_br.exe

Microsoft Windows 2000 Service Pack 4 Network Installation, Chinese

(Simplified)

File sized 134405296, dated 20.06.03 21:51. Database reference 24cn.

http://download.microsoft.com/download/4/1/4/4140e2e0-0ad9-4438-

ac52-da0e0429c0e6/w2ksp4_cn.exe

Microsoft Windows 2000 Service Pack 4 Network Installation, Czech

File sized 133962744, dated 21.06.03 23:32. Database reference 24cs.

http://download.microsoft.com/download/f/d/2/fd2b1d2a-16c8-43ba-

b805-518dbff8a438/w2ksp4_cs.exe

Microsoft Windows 2000 Service Pack 4 Network Installation, Danish

File sized 116951736, dated 21.06.03 01:09. Database reference 24da.

http://download.microsoft.com/download/7/c/7/7c7b3abd-2bfc-4e0d-

b808-f4abdfc1c5f1/w2ksp4_da.exe

Microsoft Windows 2000 Service Pack 4 Network Installation, German

File sized 135945992, dated 20.06.03 10:53. Database reference 24DE.

70

http://download.microsoft.com/download/C/3/5/C35591E3-52B6-4BE0-

95D3-EC82FA01CE12/W2KSP4_DE.EXE

Microsoft Windows 2000 Service Pack 4 Network Installation, Greek

File sized 117420152, dated 21.06.03 01:00. Database reference 24el.

http://download.microsoft.com/download/1/3/5/135cb641-c2a7-4e1b-

95a0-69f75dc31674/w2ksp4_el.exe

Microsoft Windows 2000 Service Pack 4 Network Installation, English

File sized 135477136, dated 20.06.03 10:30. Database reference 24EN.

http://download.microsoft.com/download/E/6/A/E6A04295-D2A8-

40D0-A0C5-241BFECD095E/W2KSP4_EN.EXE

Microsoft Windows 2000 Service Pack 4 Network Installation, Spanish

File sized 135157672, dated 21.06.03 01:21. Database reference 24es.

http://download.microsoft.com/download/0/d/0/0d02572f-e667-4bd7-

a2d7-4b1a4328a711/w2ksp4_es.exe

Microsoft Windows 2000 Service Pack 4 Network Installation, Finnish

File sized 116970400, dated 21.06.03 01:02. Database reference 24fi.

http://download.microsoft.com/download/e/7/a/e7ae1b1f-3ef9-43f3-8df6-

4bdb954e52c0/w2ksp4_fi.exe

Microsoft Windows 2000 Service Pack 4 Network Installation, French

File sized 135498520, dated 21.06.03 02:02. Database reference 24fr.

http://download.microsoft.com/download/c/f/0/cf065ae8-0c96-47f5-

ba2b-3220da77076e/w2ksp4_fr.exe

Microsoft Windows 2000 Service Pack 4 Network Installation, Hebrew

File sized 117048040, dated 20.06.03 22:23. Database reference 24he.

http://download.microsoft.com/download/f/0/6/f06f92c9-0ba8-4522-

aa5c-28de26efa7ab/w2ksp4_he.exe

71

Microsoft Windows 2000 Service Pack 4 Network Installation, Chinese

(Hong Kong)

File sized 134670224, dated 20.06.03 21:44. Database reference 24hk.

http://download.microsoft.com/download/c/c/a/ccafe1fa-c4a2-4851-a2a9-

eb973e2c3acb/W2KSP4_hk.EXE

Microsoft Windows 2000 Service Pack 4 Network Installation, Hungarian

File sized 134008064, dated 03.07.03 03:55. Database reference 24HU.

http://download.microsoft.com/download/f/2/f/f2f70a3e-943b-4ef3-806b-

91a4f2d12df6/W2KSP4_HU.EXE

Microsoft Windows 2000 Service Pack 4 Network Installation, Italian

File sized 133231760, dated 21.06.03 02:01. Database reference 24it.

http://download.microsoft.com/download/4/3/9/4399958a-cae3-48cf-

9fc3-2a36daab3a5e/w2ksp4_it.exe

Microsoft Windows 2000 Service Pack 4 Network Installation, Japanese NEC

File sized 136766896, dated 20.06.03 13:23. Database reference 24ja.

http://download.microsoft.com/download/9/7/8/978cd2a3-94df-4308-

8889-1d7d30bb7623/W2KSP4_ja.EXE

Microsoft Windows 2000 Service Pack 4 Network Installation, Japanese

File sized 138817112, dated 20.06.03 12:45. Database reference 24ja.

http://download.microsoft.com/download/a/0/0/a008c376-a5fc-4219-

9ba7-7b61d1236fc0/W2KSP4_ja.EXE

Microsoft Windows 2000 Service Pack 4 Network Installation, Korean

File sized 135493952, dated 20.06.03 21:24. Database reference 24KO.

http://download.microsoft.com/download/d/3/2/d32db0d3-9420-4568-

b0ed-57a3060fb1ea/W2KSP4_KO.EXE

Microsoft Windows 2000 Service Pack 4 Network Installation, Dutch

File sized 133457176, dated 21.06.03 01:11. Database reference 24nl.

72

http://download.microsoft.com/download/1/b/7/1b7b823b-e760-4aa3-

99d6-d9843cf71e7f/w2ksp4_nl.exe

Microsoft Windows 2000 Service Pack 4 Network Installation, Norwegian

File sized 116836560, dated 21.06.03 01:20. Database reference 24no.

http://download.microsoft.com/download/2/4/c/24ce4080-c34c-4636-

bc01-8eb900f5021e/w2ksp4_no.exe

Microsoft Windows 2000 Service Pack 4 Network Installation, Polish

File sized 134248176, dated 21.06.03 02:48. Database reference 24pl.

http://download.microsoft.com/download/a/3/2/a32416d3-941d-424a-

9310-21951f74216f/w2ksp4_pl.exe

Microsoft Windows 2000 Service Pack 4 Network Installation, Portuguese

File sized 133672824, dated 21.06.03 02:18. Database reference 24pt.

http://download.microsoft.com/download/a/7/4/a74b413f-d85c-4c0f-

8170-2bd9b9ac7a7f/w2ksp4_pt.exe

Microsoft Windows 2000 Service Pack 4 Network Installation, Russian

File sized 133952584, dated 21.06.03 03:46. Database reference 24ru.

http://download.microsoft.com/download/6/1/1/611e63b8-95ec-40f4-

b96c-e676f96d1a95/w2ksp4_ru.exe

Microsoft Windows 2000 Service Pack 4 Network Installation, Swedish

File sized 134273616, dated 21.06.03 03:42. Database reference 24sv.

http://download.microsoft.com/download/4/2/6/4261d8ed-167d-4b45-

9757-c0f2828e94fa/w2ksp4_sv.exe

Microsoft Windows 2000 Service Pack 4 Network Installation, Turkish

File sized 133527376, dated 21.06.03 03:01. Database reference 24tr.

http://download.microsoft.com/download/6/a/d/6ad2327b-836f-4e38-

9a83-d305793a9a8d/w2ksp4_tr.exe

73

Microsoft Windows 2000 Service Pack 4 Network Installation, Chinese

(Traditional)

File sized 134668304, dated 20.06.03 21:57. Database reference 24tw.

http://download.microsoft.com/download/0/c/9/0c9ff7be-5ac4-4b44-

badf-783dfc53b307/W2KSP4_tw.EXE

Microsoft Windows 2000 Service Pack 3 Network Installation, English

File sized 130978672, dated 23.07.02 19:23. Database reference 23en.

http://download.microsoft.com/download/win2000platform/SP/SP3/NT5

/EN-US/W2Ksp3.exe

Microsoft Windows 2000 Service Pack 2 Network Installation, English

File sized 106278016, dated 07.05.01 14:34. Database reference 22en.

http://download.microsoft.com/download/win2000platform/SP/SP2/NT5

/EN-US/W2KSP2.exe

Microsoft Windows 2000 Service Pack 1 Network Installation, English

File sized 87326656, dated 25.07.00 03:11. Database reference 21en.

http://download.microsoft.com/download/win2000platform/SP/SP1/NT5

/EN-US/sp1network.exe

Microsoft Windows NT 4.0 Service Pack 6a Full Install, Standard Version for

Intel (x86) platform, English Language Version

File sized 35720696, dated 20.11.99 02:50. Database reference 46en.

http://download.microsoft.com/download/winntsp/Install/6.0a/NT4/EN-

US/sp6i386.exe

Microsoft Exchange 2000 Server and Exchange 2000 Enterprise Server

Service Pack 3, English

File sized 173117728, dated 16.07.02 21:00. Database reference e23en.

http://download.microsoft.com/download/exchangeentserver/SP/3/NT5/

en-us/EX2KSP3_server.exe

74

Microsoft Exchange Server 5.5 Service Pack 4, English

File sized 23735760, dated 30.10.00 20:36. Database reference e54en.

http://download.microsoft.com/download/exch55/SP/4/NT45/EN-

US/SP4_550I.EXE

File sized 16816080, dated 30.10.00 20:37. Database reference e54en.

http://download.microsoft.com/download/exch55/SP/4/NT45/EN-

US/SP4_55CI.EXE

File sized 15764944, dated 30.10.00 20:37. Database reference e54en.

http://download.microsoft.com/download/exch55/SP/4/NT45/EN-

US/SP4_55client1I.exe

Microsoft SQL Server 2000 Service Pack 3a, English

File sized 45687344, dated 16.05.03 03:25. Database reference s23en.

http://download.microsoft.com/download/8/7/5/875e38ea-e582-4ee2-

9485-b459cd9c0082/sql2kasp3.exe

File sized 72514184, dated 24.07.03 01:53. Database reference s23en.

http://download.microsoft.com/download/8/7/5/875e38ea-e582-4ee2-

9485-b459cd9c0082/sql2kdesksp3.exe

File sized 57807120, dated 16.05.03 03:26. Database reference s23en.

http://download.microsoft.com/download/8/7/5/875e38ea-e582-4ee2-

9485-b459cd9c0082/sql2ksp3.exe

Microsoft SQL Server 7.0 Service Pack 4, English

File sized 43843304, dated 23.04.02 03:13. Database reference s74en.

http://download.microsoft.com/download/sql70/SP/7.00.1063/W98NT42

KMeXP/EN-US/sql70sp4.exe

Microsoft BizTalk Server 2004 Trial, English

File sized 151749328, dated 30.01.04 04:31. Database reference bt4en.

http://download.microsoft.com/download/4/1/2/4121c8be-6034-4cae-

ab1b-74caa1644ed1/BTS2004Eval_EN.exe

75

Microsoft Commerce Server 2002, English

File sized 169531816, dated 04.04.02 02:37. Database reference cs2en.

http://download.microsoft.com/download/commerceserver2002/eval/1.0/

NT5/EN-US/CS2002Evaluation.exe

Microsoft Live Communications Server 2003 Standard Edition Trial Version,

English

File sized 50835640, dated 18.08.03 21:19. Database reference lc3en.

http://download.microsoft.com/download/a/8/b/a8baa907-3c15-46f1-

b510-cc031c297cd5/LiveCommServer03_USA_RTM_Eval.exe

Microsoft Office SharePoint Portal Server 2003 - Evaluation Edition, English

File sized 301920864, dated 08.09.03 19:06. Database reference spp3en.

http://download.microsoft.com/download/7/7/d/77d791f5-49ed-4eb6-

8672-133e39555c1c/SPS2003.exe

Microsoft Exchange Server 2003 Enterprise Edition Evaluation, English

File sized 122340456, dated 25.06.03 06:58. Database reference e3en.

http://download.microsoft.com/download/4/1/9/4195df06-8694-4d7b-

ad94-a0003f139e97/E3EEVAENG.EXE

Microsoft OneNote 2003 (Office) 60-Day Trial, Brazilian Portugese

File sized 78284344, dated 17.09.03 21:18. Database reference on3Br.

http://download.microsoft.com/download/9/f/0/9f03a77b-f10b-4583-

98ea-9ea15c2d0c95/OneNote.exe

Microsoft OneNote 2003 (Office) 60-Day Trial, Chinese Simplified

File sized 247750200, dated 09.09.03 03:15. Database reference on3CS.

http://download.microsoft.com/download/d/6/2/d62ddd42-ba16-4a8d-

b775-d36ce90d6900/OneNote.exe

Microsoft OneNote 2003 (Office) 60-Day Trial, Chinese Traditional

File sized 131291192, dated 09.09.03 03:05. Database reference on3CT.

76

http://download.microsoft.com/download/b/a/c/bac50b46-d1f3-40fb-

9447-db6855cdd029/OneNote.exe

Microsoft OneNote 2003 (Office) 60-Day Trial, English

File sized 79259704, dated 09.09.03 02:50. Database reference on3En.

http://download.microsoft.com/download/9/d/e/9decc1cf-3066-495c-

bb8a-265e5d395312/OneNote.exe

Microsoft OneNote 2003 (Office) 60-Day Trial, French

File sized 104526392, dated 17.09.03 20:10. Database reference on3Fr.

http://download.microsoft.com/download/8/7/d/87d250c4-03f0-4b35-

a230-7db753434322/OneNote.exe

Microsoft OneNote 2003 (Office) 60-Day Trial, German

File sized 90468408, dated 09.09.03 03:06. Database reference on3Ge.

http://download.microsoft.com/download/d/5/9/d599bfa5-c1b4-4098-

ba78-becfacd87ec1/OneNote.exe

Microsoft OneNote 2003 (Office) 60-Day Trial, Italian

File sized 92341304, dated 17.09.03 13:23. Database reference on3It.

http://download.microsoft.com/download/9/0/F/90F7E507-6E77-43A3-

A0EC-A2A7BC1FCD9D/OneNote.exe

Microsoft OneNote 2003 (Office) 60-Day Trial, Japanese

File sized 152461368, dated 09.09.03 03:11. Database reference on3Ja.

http://download.microsoft.com/download/a/1/b/a1bce172-fd3a-4feb-

ad86-0da0040b7ee6/OneNote.exe

Microsoft OneNote 2003 (Office) 60-Day Trial, Korean

File sized 123904568, dated 09.09.03 03:11. Database reference on3Ko.

http://download.microsoft.com/download/1/3/9/13924aaa-cf3d-4510-

952a-62d81dcc7391/OneNote.exe

77

Microsoft OneNote 2003 (Office) 60-Day Trial, Spanish

File sized 88638008, dated 17.09.03 21:43. Database reference on3Sp.

http://download.microsoft.com/download/6/d/6/6d69123f-5d39-4f42-

be8b-0f69162d134b/OneNote.exe

Microsoft Windows Platform SDK, English

File sized 26221140, dated 02.04.03 02:28. Database reference psdk.

http://download.microsoft.com/download/platformsdk/sdk/update/win98

mexp/en-us/3790.0/FULL/PSDK-FULL.1.cab

File sized 26221140, dated 02.04.03 02:28. Database reference psdk.

http://download.microsoft.com/download/platformsdk/sdk/update/win98

mexp/en-us/3790.0/FULL/PSDK-FULL.2.cab

File sized 26221140, dated 02.04.03 02:29. Database reference psdk.

http://download.microsoft.com/download/platformsdk/sdk/update/win98

mexp/en-us/3790.0/FULL/PSDK-FULL.3.cab

File sized 26221140, dated 02.04.03 02:29. Database reference psdk.

http://download.microsoft.com/download/platformsdk/sdk/update/win98

mexp/en-us/3790.0/FULL/PSDK-FULL.4.cab

File sized 26221140, dated 02.04.03 02:31. Database reference psdk.

http://download.microsoft.com/download/platformsdk/sdk/update/win98

mexp/en-us/3790.0/FULL/PSDK-FULL.5.cab

File sized 26221140, dated 02.04.03 02:31. Database reference psdk.

http://download.microsoft.com/download/platformsdk/sdk/update/win98

mexp/en-us/3790.0/FULL/PSDK-FULL.6.cab

File sized 26221140, dated 02.04.03 02:32. Database reference psdk.

http://download.microsoft.com/download/platformsdk/sdk/update/win98

mexp/en-us/3790.0/FULL/PSDK-FULL.7.cab

File sized 26221140, dated 02.04.03 02:32. Database reference psdk.

http://download.microsoft.com/download/platformsdk/sdk/update/win98

mexp/en-us/3790.0/FULL/PSDK-FULL.8.cab

File sized 26221140, dated 02.04.03 02:32. Database reference psdk.

78

http://download.microsoft.com/download/platformsdk/sdk/update/win98

mexp/en-us/3790.0/FULL/PSDK-FULL.9.cab

File sized 26221140, dated 02.04.03 02:28. Database reference psdk.

http://download.microsoft.com/download/platformsdk/sdk/update/win98

mexp/en-us/3790.0/FULL/PSDK-FULL.10.cab

File sized 26221140, dated 02.04.03 02:29. Database reference psdk.

http://download.microsoft.com/download/platformsdk/sdk/update/win98

mexp/en-us/3790.0/FULL/PSDK-FULL.11.cab

File sized 26221140, dated 02.04.03 02:29. Database reference psdk.

http://download.microsoft.com/download/platformsdk/sdk/update/win98

mexp/en-us/3790.0/FULL/PSDK-FULL.12.cab

File sized 24343136, dated 02.04.03 02:28. Database reference psdk.

http://download.microsoft.com/download/platformsdk/sdk/update/win98

mexp/en-us/3790.0/FULL/PSDK-FULL.13.cab

Mandrake Linux 10, for i586, CD 1

File sized 728651776, dated 04.03.04 14:40. Database reference m101.

http://bo.mirror.garr.it/mirrors/Mandrake/iso/Mandrakelinux-10.0-

Community-Download-CD1.i586.iso

Mandrake Linux 10, for i586, CD 2

File sized 728797184, dated 04.03.04 14:41. Database reference m102.

http://bo.mirror.garr.it/mirrors/Mandrake/iso/Mandrakelinux-10.0-

Community-Download-CD2.i586.iso

Mandrake Linux 10, for i586, CD 3

File sized 728829952, dated 04.03.04 14:42. Database reference m103.

http://bo.mirror.garr.it/mirrors/Mandrake/iso/Mandrakelinux-10.0-

Community-Download-CD3.i586.iso

79

Mandrake Linux 10 Live CD, for i586

File sized 646500352, dated 07.01.04 17:55. Database reference mm.

http://bo.mirror.garr.it/mirrors/Mandrake/iso/MandrakeMove-i586.iso

Mandrake Linux 9.2, for i586, CD 1

File sized 683642880, dated 23.11.03 02:20. Database reference m921.

http://bo.mirror.garr.it/mirrors/Mandrake/iso/Mandrake92-cd1-

inst.i586.iso

Mandrake Linux 9.2, for i586, CD 2

File sized 731797504, dated 19.10.03 09:25. Database reference m922.

http://bo.mirror.garr.it/mirrors/Mandrake/iso/Mandrake92-cd2-ext.i586.iso

Mandrake Linux 9.2, for i586, CD 3

File sized 728948736, dated 19.10.03 13:10. Database reference m923.

http://bo.mirror.garr.it/mirrors/Mandrake/iso/Mandrake92-cd3-

i18n.i586.iso

Gentoo Linux 2004.0, for x86

File sized 721184768, dated 01.03.04 16:09. Database reference g40x8.

http://ftp.du.se/pub/os/gentoo/releases/x86/2004.0/livecd/universal/insta

ll-x86-universal-2004.0.iso

Gentoo Linux 2004.1, for AMD Athlon

File sized 646451200, dated 17.04.04 20:33. Database reference g41at.

http://ftp.du.se/pub/os/gentoo/releases/x86/2004.1/packagecd/athlon-

xp/packages-athlon-xp-2004.1.iso

Gentoo Linux 2004.1, for i686

File sized 649799680, dated 17.04.04 21:35. Database reference g41i6.

http://ftp.du.se/pub/os/gentoo/releases/x86/2004.1/packagecd/i686/pack

ages-i686-2004.1.iso

80

Gentoo Linux 2004.1, for pentium 3

File sized 650061824, dated 17.04.04 22:35. Database reference g41p3.

http://ftp.du.se/pub/os/gentoo/releases/x86/2004.1/packagecd/pentium3

/packages-pentium3-2004.1.iso

FreeBSD 5.2.1 Technology point release January 2004, for Alpha, CD 1

File sized 643694592, dated 25.02.04 04:51. Database reference f521al1.

ftp://ftp.no.freebsd.org/pub/FreeBSD/releases/alpha/ISO-

IMAGES/5.2.1/5.2.1-RELEASE-alpha-disc1.iso

FreeBSD 5.2.1 Technology point release January 2004, for Alpha, CD 2

File sized 304316416, dated 25.02.04 03:38. Database reference f521al2.

ftp://ftp.no.freebsd.org/pub/FreeBSD/releases/alpha/ISO-

IMAGES/5.2.1/5.2.1-RELEASE-alpha-disc2.iso

FreeBSD 5.2.1 Technology point release January 2004, for Sparc 64, CD 1

File sized 603619328, dated 24.02.04 15:54. Database reference f521sp1.

ftp://ftp.no.freebsd.org/pub/FreeBSD/releases/sparc64/ISO-

IMAGES/5.2.1/5.2.1-RELEASE-sparc64-disc1.iso

FreeBSD 5.2.1 Technology point release January 2004, for Sparc 64, CD 2

File sized 272662528, dated 24.02.04 14:08. Database reference f521sp2.

ftp://ftp.no.freebsd.org/pub/FreeBSD/releases/sparc64/ISO-

IMAGES/5.2.1/5.2.1-RELEASE-sparc64-disc2.iso

Sun Solaris 8 Patches, from 27.04.2003, for Sparc

File sized 127879981, dated 27.04.04 22:53. Database reference ss8rs.

ftp://sunsolve.sun.com/pub/patches/8_Recommended.zip

Sun Solaris 8 Patches, from 27.04.2003, for x86

File sized 59245794, dated 27.04.04 22:53. Database reference ss8rx.

ftp://sunsolve.sun.com/pub/patches/8_x86_Recommended.zip

81

Sun Solaris 9 Patches, from 27.04.2003, for Sparc

File sized 140228892, dated 27.04.04 22:09. Database reference ss9rs.

ftp://sunsolve.sun.com/pub/patches/9_Recommended.zip

Sun Solaris 9 Patches, from 27.04.2003, for x86

File sized 83056377, dated 27.04.04 22:50. Database reference ss9rx.

ftp://sunsolve.sun.com/pub/patches/9_x86_Recommended.zip

Higly compressible text log files from own systems

File sized 6623343. Database referemce logs.

File sized 9556500. Database referemce logs.

File sized 2214092. Database referemce logs.

82

Index
Abstraction Layer Error Problem 13
abstraction layer errors 12
archaeology 8
arson investigation 8
Complexity Problem 12
data carving 16

digital gloves 13
Exculpatory evidence 10
hash sets 15
Inculpatory evidence 10
known good files 15
Quantity Problem 12

83

	Abstract
	Table of Contents
	L
	List of Figures
	Introduction
	Dangers of Superficial Investigations
	Introduction to Digital Forensics
	Slack Space and Other Residual Data
	The Two Fundamental Problems of Digital Forensics
	Uncertainty and Degradation of Digital Evidence
	Problem Statement
	Demarcation to Static Environments
	Review of the State of the Art
	Claimed Contributions
	Agenda

	Materials and Methods
	Choice of Methods
	Use of Hashing Algorithms
	Generation of the Data Set
	Generation of the Hash Database
	Experiments on the Data Set

	Results
	Discussion
	Selecting the Recommended Block Size
	Accounting for Duplicate Hashes
	Evaluation Against Proposed Guidelines
	Levels of Uncertainty
	Resistance to Tampering
	Feasibility for a Real World Implementation

	Conclusion and Further Work
	Further Work

	Acknowledgements
	References
	Appendices
	Detailed result tables
	Detailed database contents
	Suggested introductory Literature
	Practical Problems
	Script and Program Listings
	xAll – Extract All
	MD5sort – Sort files according to hash and find uniques.
	MD5frag – Calculate MD5 checksums of all fragments
	MD5stats – Identify duplicate fragments
	DBstats – Simple statistics about hash database content
	SourceStat – Simple Statistics about the source of files

	The Multiple Format Extraction Tool 7-Zip
	Bill of Materials

	I

