
 

 

 

 

Private and Accountable Storage in 
Distributed and Dynamic Environments 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

        
 

 NISlab  
   Norwegian Information 
   Security Laboratory 

 

 

Espen Torseth 
espen@torseth.net 

 
 
 
 
 
 

 

 
 
 
 
Examensarbete 
Nr 2004-x-164 
2002 
 
 

  
 
Examensarbete 20 poäng 
i data- och systemvetenskap 
inom magisterprogrammet i informations- och kommunikations säkerhet, 
Kungl Tekniska Högskolan 

Institutionen för  
Data- och Systemvetenskap 

HØGSKOLEN 
I GJØVIK 

 





Abstract

One of the major challenges in current technologies for distributed com-
puting is how to preserve the policy applied to data when the data moves
around in the distributed environment. Most technologies today seem to
assume that either there is a global storage infrastructure suitable for all
users, or that the policy is trivial to transfer and express equally well on
any storage system. When you add the dynamic nature of these distributed
environments and the need for both privacy and accountability, it is obvious
that both these assumptions are flawed.

Here an alternative, and somewhat novel, approach to distributed storage
is presented. This new approach is based on observing the commonalities
between different distributed computing environments, e.g. Grids, mobile
agents and peer-to-peer networks, and by separating the policy enforcement
from the data storage. Privacy and accountability will be shown to be achiev-
able in this new approach by combining techniques from anonymous remail-
ers and peer-to-peer networks with a trusted third party and partially trusted
observers.

An abstract model for a generalized distributed computing node was
made to disentangle the approach for storage from any specific distributed
computing system. The thesis specifies a protocol for providing pseudonyms
for users, which is specified and analyzed formally with Casper and FDR2.
A system for anonymous messaging is given, but is not formally analyzed.
Finally the storage system is described in sufficient detail for possible analysis
or implementation.



Sammendrag

En av de store utfordringene i dagens teknologier for dstribuert prosesser-
ing er hvordan skal policy knyttet til data bevares når data flyttes omkring
i distribuerte miljø. De fleste nåværende teknologier ser ut til å anta at en-
ten så eksisterer det en global lagringsinfrastruktur som passer alle brukere,
eller at policy er enkelt å flytte og utrykke likeverdig godt på hvilket som
helst lagringssystem. Når du legger til den dynamiske naturen til slike dis-
tribuerte systemer og behovet for både personvern og etterrettlighet, så er
det åpenbart at begge disse antagelsene er feilaktige.

Her blir en alternativ, og noe ny, tilnærimngsmåte presentert. Denne
nye tilnærimngsmåten blir basert på observasjon av likheter mellom ulike
miljø for distribuert prossessering, f.eks. Grid, mobile agenter og peer-to-peer
nettverk, og ved å skille ut håndheving av policy fra selve lagringen av data.
Personvern og etterrettlighet vil bli vist at er mulig i denne nye tilnærimngen
ved å kombinere teknikker fra anonymiserende epost-systemer og peer-to-
peer nettverk med tiltrodde tredjeparter og delvis tiltrodde observatører.

En abstrakt model for en generalisert distribuert prossesseringsnode ble
laget for å løsrive tilnærimngsmåten fra et spesifikt system for distribuert
prossessering. Oppgaven spesifiserer en protokoll for å utstede pseudonymer
til brukere, som blir spesifisert og formelt analysert ved hjelp av Casper
og FDR2. Et system for anonymiserte meldinger blir beskrevet, men ikke
formelt analysert. Til slutt blir tilnærimngsmåten for lagring beskrevet i
nødvendig detaljeringsnivå for mulig analyse og implementering.

ii



Preface

The origin of this thesis started with a suggestion from Prof. Snekkenes and
Audestad that I should "‘. . . look a Grids and security. . . "’. At first this
seemed rather straightforward, but when after studying the Grid literature
it became more and more obvious that there was more fundamental and
general problems with large distributed and dynamic environments. When
I tried to identify what I believed to be more general problems, I started to
examine peer-to-peer- and agentbased-technologies. With help from Prof.
Audestad I also got insight into how distributed objects like CORBA and
TINA was conceived and implemented.

During this inital phase of the work I also realized that what interested
me most was the seemingly incompatible requirements of privacy and ac-
countability, and how these two can be balanced and implemented in a large
scale distributed and dynamic, and potentially self-configurating, environ-
ment. Since my background also involves many hours of analyzing protocols,
sometimes even to help debug applications, I have an inclination to focus on
the protocols involved in a system.

While scratching my head on what the thesis finally would be on, I was
lucky enough to have the opportunity to have interesting discussion with a
colleague, Kåre Langedrag, and Øyvind Kolås at HiG. Kåre and I started
to discuss the latest Internetworms and how simplistic they really were. We
continued with a informal brainstorm on what the ultimate Internetworm
would be like. Kåre, as a software developer, quickly realized that what
we were talking about, in reality was a distributed operating environment.
Later the same week I was at HiG and while waiting for Prof. Audestad, I
talked to Øyvind. I brought up my indecision on a thesis topic and what
Kåre and I had come up with, and Øyvind gave me some interesting feedback
on both topics that finally made me realize what I had lurking in the back
of my head.

I wanted to find the commonalities in different distributed computing
platforms and see if there were any common and more fundamental problem
areas to research. The final topic was decided as late as June 8th 2004, just
3 weeks prior to the due date. This is a clear indication that available time
and the ambition levels might have been somewhat incompatible ,.

During the work on this thesis, starting in the fall of 2003, I also be-

iii



came the union representative for NITO1 at ErgoIntegration2, my current
employer. This was not a smart thing to accept. . . . The same fall ErgoInte-
gration downsized the staff by approximately 10%, with all the extra work
this means for union representatives. Spring 2004 brought on the biannual
negotiation of wages and working conditions. As a friendly advise to others;
don’t combine work, studies, familiy, and union representation – something
must yield. For my part it was mainly the time availble for this thesis.

I have to thank Prof. Snekkenes and Audestad for their patience and
trust while I was wandering around in the literature and problem space. The
PhD students at NISLab for helpful talks and discussions, Hanno Langweg,
Geir Dyrkolbotn and Nils Kalstad Svendsen. Gavin Lowe for crucial and
timely assistance to get the Casper tool running. My boss, Bjørn Berthelsen,
also deserves credit for giving enough flexibility at work while finishing the
thesis and ErgoIntegration for financing my studies. The office gang at work
for their encouragement and humor: Geir Myhre, Ludvig Nedregård, Jan
Arve Gran, Espen Bøe, Terje Engen, and Jens Libæk.

Finally I want to thank my children, Aase Mari (9) and Anna Emilie
(3), and my wife, Anita, for keeping me connected with reality while I was
writing the thesis. Putting on band-aids, making dinner, and vacuuming can
do wonders when one is stuck in an abstract world of distributed storage and
security.

1The Norwegian Society of Engineers
2A part of ErgoGroup (http://www.ergo.no/)

iv



Contents

Abstract i

Preface iii

Contents v

List of Figures ix

List of Tables xi

1 Introduction 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Research questions . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Originality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.4 Thesis structure . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.5 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.6 Ethics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 State of the art 5

2.1 Distributed dynamic systems . . . . . . . . . . . . . . . . . . 5

2.1.1 Grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.2 Agents . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.3 Peer-to-peer . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.4 Telecommunications and distributed objects . . . . . . 7

2.1.5 Comparison of the different technologies . . . . . . . . 7

2.1.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 Privacy and accountability . . . . . . . . . . . . . . . . 9

2.2.2 Protocol analysis . . . . . . . . . . . . . . . . . . . . . 10

2.3 Trusted processing . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.1 Trusted operating environments . . . . . . . . . . . . . 13

2.3.2 Evaluation schemes . . . . . . . . . . . . . . . . . . . . 13

2.3.3 Trusted hardware modules . . . . . . . . . . . . . . . . 13

2.3.4 Mathematical transformation . . . . . . . . . . . . . . 14

v



2.4 Tying policy to data . . . . . . . . . . . . . . . . . . . . . . . 14

2.4.1 Content based information security . . . . . . . . . . . 14

2.4.2 Digital rights management . . . . . . . . . . . . . . . . 15

3 Theory 17

3.1 Privacy and accountability . . . . . . . . . . . . . . . . . . . . 18

3.1.1 Privacy . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1.2 Accountability . . . . . . . . . . . . . . . . . . . . . . 20

3.1.3 Privacy vs. Accountability . . . . . . . . . . . . . . . . 21

3.2 Confinement in dynamic distributed systems . . . . . . . . . . 22

3.3 Are distributed dynamic systems different? . . . . . . . . . . 22

3.4 Storage in distributed dynamic environments . . . . . . . . . 24

4 Environment 25

4.1 General assumptions . . . . . . . . . . . . . . . . . . . . . . . 28

4.1.1 Dispute settlement . . . . . . . . . . . . . . . . . . . . 28

4.1.2 Billing . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2 General goals . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.3 Users . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.3.1 Assumptions . . . . . . . . . . . . . . . . . . . . . . . 29

4.3.2 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.4 Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.4.1 Assumptions . . . . . . . . . . . . . . . . . . . . . . . 31

4.4.2 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.5 Brokers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.5.1 Assumptions . . . . . . . . . . . . . . . . . . . . . . . 31

4.5.2 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.6 Trusted third parties . . . . . . . . . . . . . . . . . . . . . . . 32

4.6.1 Assumptions . . . . . . . . . . . . . . . . . . . . . . . 32

4.6.2 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.7 Catalogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.7.1 Assumptions . . . . . . . . . . . . . . . . . . . . . . . 33

4.7.2 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5 System model 35

5.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.2 Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.3 Storage agents . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.3.1 Client . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.3.2 Storage agent . . . . . . . . . . . . . . . . . . . . . . . 39

5.3.3 Storage adapter . . . . . . . . . . . . . . . . . . . . . . 39

5.3.4 Storage provider . . . . . . . . . . . . . . . . . . . . . 41

5.4 Privacy enhancing network . . . . . . . . . . . . . . . . . . . 41

vi



6 Protocols 45

6.1 Flow patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
6.2 Pseudonymity . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6.2.1 Pseudonymity flow pattern . . . . . . . . . . . . . . . 48
6.2.2 Pseudoprotocol . . . . . . . . . . . . . . . . . . . . . . 49
6.2.3 Description of protocol fields . . . . . . . . . . . . . . 49
6.2.4 Protocol v.1 . . . . . . . . . . . . . . . . . . . . . . . . 50
6.2.5 Analysis v.1 . . . . . . . . . . . . . . . . . . . . . . . . 50
6.2.6 Protocol v.1.1 . . . . . . . . . . . . . . . . . . . . . . . 50
6.2.7 Analysis v.1.1 . . . . . . . . . . . . . . . . . . . . . . . 51
6.2.8 Protocol v.2 . . . . . . . . . . . . . . . . . . . . . . . . 51
6.2.9 Analysis v.2 . . . . . . . . . . . . . . . . . . . . . . . . 51
6.2.10 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 51

7 Conclusion 53

7.1 General conclusions . . . . . . . . . . . . . . . . . . . . . . . . 53
7.2 Answers to research questions . . . . . . . . . . . . . . . . . . 53

7.2.1 Question 1 . . . . . . . . . . . . . . . . . . . . . . . . 53
7.2.2 Question 2 . . . . . . . . . . . . . . . . . . . . . . . . 53
7.2.3 Question 3 . . . . . . . . . . . . . . . . . . . . . . . . 54
7.2.4 Question 4 . . . . . . . . . . . . . . . . . . . . . . . . 54

7.3 Further work . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

A Notation 57

B Casper script - Protocol v.1 59

C Casper script - Protocol v.1.1 61

D Casper script - Protocol v.2 63

Bibliography 65

Index 73

vii



viii



List of Figures

2.1 Entities and interfaces . . . . . . . . . . . . . . . . . . . . . . 8

3.1 Privacy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 Non-repudation . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3 Privacy vs. Accountability . . . . . . . . . . . . . . . . . . . . 21

4.1 Entities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.2 Simple entities . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.1 Sandbox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.2 Storage model . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.3 Storage adapter . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.4 Privacy enhancing network . . . . . . . . . . . . . . . . . . . 41
5.5 Message format example . . . . . . . . . . . . . . . . . . . . . 43

6.1 Flow patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
6.2 Pseudonymity flow patterns . . . . . . . . . . . . . . . . . . . 48

ix



x



List of Tables

2.1 Comparison of distributed technologies . . . . . . . . . . . . . 8

6.1 Protocol v.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.2 Protocol v.1.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.3 Protocol v.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

A.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

xi



xii



Chapter 1

Introduction

The goal of this thesis was to explore information security in distributed
computing and in particular how storage is solved. There are many systems
and concepts for distributed storage, but few, if any, that try to balance
individuals privacy needs with societies accountability needs.

1.1 Background

The origin of the thesis was a suggestion by the professors at NISlab, Einar
Snekkenes and Jan Audestad, to ” . . . look at Grids and security. . . ´´. This
was a rather broad topic, so in an effort to narrow it down to something
interesting and manageable, we tried several angels. The first was to look
at transactions within a Grid, the next was trusted or secure distributed
processing, and some other topics that were totally uninteresting. During
this process two things happened; first we broadened the literature study
to other technologies for distributed computing and second was that storage
seemed to be an area that was less studied than other topics.

The author has always been intrigued by the problem of combining
strong privacy protection with strong accountability, especially in dynam-
ically changing environments. Thus the final topic became private and ac-
countable storage in distributed dynamic environments.

An other important influence for the final topic and research questions
is the authors experience as a systems designer. One of the issues that
almost never finds a satisfactory solution is when data is transferred from
one organization to an other. There are no sensible way of transferring the
policy for the data’s usage. The ”solution´´ commonly used is to create a
contractual agreement between the two organizations that in principal just
says that the receiving organization will do its best to protect the data from
unacceptable usage.

1



1.2. RESEARCH QUESTIONS CHAPTER 1. INTRODUCTION

1.2 Research questions

In an effort to explore the topic of private and accountable storage in dis-
tributed dynamic environments, we chose the following research questions:

1. How do current systems for distributed computing address storage chal-
lenges?

2. How can policy be guaranteed to follow the data it controls access to?

3. How can security, flexibility, privacy, and accountability all be simulta-
neously be achieved for storage in distributed dynamic environments?

4. What are the minimal assumptions needed to achieve question two and
three?

The first question is aimed at narrowing the scope of the thesis. Question
two should give a basic understanding of the limitations on attaching policy
and data to each other. The third aims at finding a generalized system
model, rather than a specific solution for a specific system. Question four
goes directly at what assumptions has to be made to achieve the goals in
question two and three, and gives a basis to conclude on the feasibility for a
practical and secure implementation.

1.3 Originality

Current efforts to tie policy and data together typically requires a centralized
policy infrastructure and secures all but the individuals interests. Here we
present a system model that gives individuals the possibility to control their
own data, regardless of where and how it is stored. This is achieved without
compromising the flexibility for the parties involved.

The use of an active component, i.e. a mobile agent, to enforce policy
and act as a conduit to data in a generalized setting, is novel. Other models
capable of this exists, but as far as we have identified, none of them has
made use of this capability in an active manner.

There is a treatment of pseudonymity, rather than anonymity, to help
balance the needs of an individual with the needs of a society. All operations
seen by others are made under a pseudonym, and the interaction between
a user and its storage agent is anonymized. The anonymity is achieved
while preserving the identification of the user to the storage agent. This
is novel since most or all other anonymity research also tries to create an
environment where every participants has full anonymity with the respect
to all other participants.

Finally there was made an effort to formally analyze a pseudonymity
protocol. Our literature study found no such protocols formally analyzed
elsewhere.

2



CHAPTER 1. INTRODUCTION 1.4. THESIS STRUCTURE

1.4 Thesis structure

To have generalized results on how privacy and accountability can be achieved
in large scale distributed and dynamic environments, the thesis emphasizes
the equalities of different technologies for distributed computing. The main
purpose is to separate the theory of how privacy and accountability can be
realized from any particular technology. This is described in chapter 2 and
chapter 3.

As a means for later specification and analysis, the thesis tries to describe
distributed systems as a minimal and abstract model. Chapters 4 and 5 are
used for this. Abstract models are given for both the general distributed
environment and the individual nodes.

The major parts, chapters 5 and 6 deals with what protocols are needed
and what their requirements are. For any protocol a possible specification,
or a suggestion of important issues, is given. Some basic security analysis
are done on specified protocols to explore if they are feasible to analyze.

Conclusions and and further work is in chapter 7, and supplemental ma-
terial are found in the appendices.

Throughout the thesis any definitions or assumptions are given in the
context were they are first used.

1.5 Method

This thesis is a pure theoretical work. Thus the main method has been lit-
erature studies. The proposal of a system model are mainly based on the
authors experience as a systems designer at ErgoIntegration and sound engi-
neering principals. Finally the proposed model and critical parts is analyzed.
A formal analysis have been striven for, but since this is quite time consum-
ing, it has only been tried on one critical protocol in the system model.

Since, as noted in chapter 1.1, the problem we started with was both wide
and open, there was in reality few other methods that could have been used.
Most of the time spent on the thesis has been used on finding and reading
relevant, and not so relevant, literature. The search was gradually narrowed
down as the author gained better understanding of the subject matter. This
method will often enable one to identify the underlying challenges, but is
also quite risky since it is very time consuming. An other risk is that while
searching for general or more fundamental problems, is that one might end
up with finding nothing at all.

1.6 Ethics

Any security system that tries to give privacy protection, can typically be
used by criminals to hide their data too. Similarly can any system for ac-

3



1.6. ETHICS CHAPTER 1. INTRODUCTION

countability probably be used to create a totalitarian surveillance system.
Both these extremes are problematic, but often system designers chose to
land on one or the other based on some sort of logic or belief for that par-
ticular problem instance. Ideally these should be balanced.

The majority should be able to enjoy the benefits of their privacy, without
a big brother watching over their shoulder. At the same time the majority
also wants proper authorities to be able to investigate crimes and other
unwanted activity.1 A possible compromise would be systems that enabled
authorities to investigate the crimes, but that thwart large scale surveillance.

1What is considered a crime or unwanted activity, will wary with time and culture.

4



Chapter 2

State of the art

2.1 Distributed dynamic systems

There are many products, designs, and research on distributed systems. Of-
ten the emphasis is on how they differ, rather than the similarities. Here
the attention will be on their similarities, to demonstrate that the security
challenges might better be solved on a higher abstraction level, before being
implemented. In 2.1.6 it will be shown how from the view of any entity
in a distributed environment, the functionality of the closest interface to a
communicating party the only reality that entity knows of the other party.

2.1.1 Grid

Grid technology has gotten a lot of attention from both academic [18, 29]
and commercial [2] environments. The academic community is seeking a
cheaper and better way to attack the grand challenge problems, and the
commercial interests lies in more efficient use of commodity hardware to
reduce operational costs or replace expensive specialized computers. Grids
are in many ways a refinement of earlier ideas [68] of meta-computing1, but
has gone beyond that. The main source of information on Grids is the Global
Grid Forum [81] (GGF). Their main reference platform is the Globus Toolkit
[85], but this is only one view of what a Grid is. Alternatives can be found
in the Legion project[83] which is more agent-like and [79] Condor which has
its roots in harnessing unused CPU-cycles.

Grid technology is already available from several commercial vendors.
Sun, IBM, HP, Intel, and Oracle all have different Grid based products
available. There are also several new companies which specialize in Grid
technology.

Most Grid efforts today have a focus on GGF’s OGSA2 [18, 29] concept.

1i.e. building a computer of computers.
2Open Grid Services Architecture

5



2.1. DISTRIBUTED DYNAMIC SYSTEMSCHAPTER 2. STATE OF THE ART

The main goal of OGSA is to provide for interoperability and transparency
for Grid services. OGSA as such does not address storage, it is only a
framework for actual services.

The driving force behind Grid research seems to be a desire to harness
and share wasted computing resources across organizations and nations. In
the Grid context security initiatives are primarily concerned with access con-
trol, encrypting communication channels, and the integration of PKI and
Kerberos. Little or no consideration is given on how policy can be trans-
ferred in an effective manner when data is transferred or utilized by different
organizations.

GSI3 [4] is the security infrastructure of the Globus toolkit. What is
interesting to note, is that a strikingly similar security infrastructure was
presented in [32] as early as 1989.

2.1.2 Agents

Agents have been extensively [57] studied. There are many projects finished
and running on the subject. Here this will not be as thoroughly discussed as
Grids, but we will show that there exists important similarities in the basic
goals of agent-based systems and Grids.

An agent is in essence a autonomous piece of code and data that can,
within limits of each agent based system, move freely between participating
nodes to harness resources or provide services. Grids also allows for dynamic
reconfiguration of where and how a job is done, and also provides a service
oriented view of resources.

As for Grids, there is little or no research done on how to tie data and
its policy together. In agent based technologies this should be easier to
accomplish, since an infrastructure for code, and implicitly data, mobility
already exists.

2.1.3 Peer-to-peer

Peer-to-peer has had a lot of attention the last few years. The origins of
peer-to-peer-technology are more anarchistic than Grids and agents. Early
peer-to-peer systems were primarily made to enable users to share, often
illegal, files easily and out of public control. Early systems [58, 52] either
had scalability problems or were not pure peer-to-peer systems. Now there
are more serious research and product development efforts on peer-to-peer
technologies. Suns JXTA [71] effort is one important arena today. In the
open source community peer-to-peer also seems to have matured and issues
on scalability have been addressed in some systems, e.g. [14].

Peer-to-peer also have a basic goal of utilizing distributed resources and
providing services to the participating nodes. Today the service has primarily

3Grid security infrastructure

6



CHAPTER 2. STATE OF THE ART2.1. DISTRIBUTED DYNAMIC SYSTEMS

been file sharing, but as Suns JXTA shows peer-to-peer is not limited to that.
Especially JXTA shows that peer-to-peer actually has many similarities with
Grid and agent based systems.

2.1.4 Telecommunications and distributed objects

A very informative example of a distributed dynamic system is the telecom-
munication industry. The TINA4 Consortium [15] can also serve as a good
example of a system of distributed objects.

Telecommunications has a long history [6] in making and managing dis-
tributed systems. The GSM cellular phone system is a good example of how
to create a massively distributed and interoperable system for speech and
data communications. Thus telecommunications can teach us many valu-
able lessons in systems design. Unfortunately telecommunications does not
address the problem of policies concerning data transferred over the network
as such. They do address policy issues, but then as a means of supporting
billing.

TINA, which is very similar to CORBA5, does not seem to address stor-
age and usage policies with respect to data [19]in general. They have a rather
old draft [13] on information modeling concepts, but does not explicitly ad-
dress these policy issues.

2.1.5 Comparison of the different technologies

These different technologies for distributed computing are not easy to com-
pare. Here the goals is to show similarities, and not in any way ranking them.
Table 2.1 shows that there are differences in privacy and accountability, but
this seems to stem more from the goals and assumptions of early instances
of the technologies, rather than inherent limitations. Metering is not that
easy to generalize. Depending on the supporting infrastructure, there can
be inherent limitations in different technologies for distributed computing.
Services and resource sharing is trivially shown to be the basic goals for all
the reviewed technologies. No of the technologies do explicitly support a
mechanism to bind data and its policy together, but some does implicitly
support this.

2.1.6 Conclusion

In all of these distributed systems any entity sees only the interface of other
entities. The implementation details behind that interface is typically invis-
ible and ignorable for other entities. In essence an entity can not by simply

4Telecommunications Information Networking Architecture
5Common Object Request Broker Architecture

7



2.1. DISTRIBUTED DYNAMIC SYSTEMSCHAPTER 2. STATE OF THE ART

Table 2.1: Comparison of distributed technologies

OGSA Legion Agents P2P Telecom. TINA

Privacy Weak Possible Possible Weak Varies Possible

Accountability Weak Possible Possible No Yes Yes

Metering Strong Possible Possible No Strong Strong

Services Yes Yes Yes Yes Yes Yes

Resource sharing Yes Yes Yes Yes Yes Yes

Policy tied to data No Possible Possible No No Possible

observing messages to and from other entities, know how they are imple-
mented. In one instance a service might be run as a dedicated system. The
same service might also be reachable as a virtual host on a shared computing
cluster, or as a downloaded local applet. Since an entity thus can not make
any assumption on how a service is implemented, every entity must be able
to enforce their policies by themselves. This is illustrated in figure 2.1, were
it is clear that the users in reality have no way of knowing how their data
are stored at a storage provider.

Storage

provider

Storage

agent
Storage

adapter
Client

Client

adapter

User U
s
e
r

in
te

r
f
a
ce

U
s
e
r

in
te

r
f
a
ce

I
A

P
I

N
e
tw

o
r
k

A
P

I

N
e
tw

o
r
k

A
P

I

C
ie

n
t
−

A
g
e
n
t

A
P

I

A
g
e
n
t
−

S
to

r
a
g
e

A
P

I

N
e
tw

o
r
k

A
P

I

N
e
tw

o
r
k

A
P

I
?

Figure 2.1: Entities and interfaces

One way of illustrating this point is by utilizing the same philosophical
experiment that Plato used in The Republic [60]. Instead of people chained
in a cave that is only shown shadows of real objects, we can think of a piece
of code that only sees an API. That particular piece of code can not be
assured that the API actually gives access to the real service it requests or
just a simulated result. There is also no way a piece of code can be sure that
it communicates outside its own computer or not. Thus the knowledge we
assume an entity has in large distributed and dynamic systems, is primarily
based on our own knowledge and assumptions in that system.

A very illustrative example is the Honeynet project [86]. If a honeypot
or honeynet is to be useful to asses the capabilities of a capable adversary,
it is obvious that the virtual environment the adversary sees must emulate
the system the adversary expects. This emulation must be so effective that

8



CHAPTER 2. STATE OF THE ART 2.2. PROTOCOLS

both automated and manual by the adversary checks will come out the same
as for the real environment. An earlier example is Bill Cheswick’s analysis
of the actions made by a hacker called Berferd in [12]6.

All these examples all illustrate that today the assumptions most storage
systems build upon are outdated or inappropriate for the task. Thus we
should explore other ways of protect our data.

2.2 Protocols

Security protocols exists in abundance. Thus we narrow the scope to proto-
cols for privacy and non-repudation and analysis techniques. Even with this
limitation of scope, we can only hope to scratch the surface of these topics.

2.2.1 Privacy and accountability

There exist many protocols for privacy and accountability. Since our main
concern here is conditional privacy, we are more interested in anonymity and
pseudonymity protocols rather than pure confidentiality protocols. It is also
trivial to show that a global system for tamper resistant logs is unfeasible,
so the emphasis for accountability protocols will be on non-repudation and
multi party non-repudation.

Privacy

Protocols for privacy protection in the sense used here was not found. What
we found was that for our definition of privacy protection current solutions
or efforts result in systems rather than protocols. For the protection of the
confidentiality aspect of privacy there are many protocols in use and theory.
Two good examples of current production protocols are IPSec7 [38, 41] and
SSL8/TLS9 [39, 16]. Both have been criticized as being to complex and some
security flaws have been found [30, 78] for some, sometimes quite obscure,
configurations and in the basic protocols.

Assumption 2.1. Privacy protection is not reached with a protocol alone –
a complete system is needed.

Non-repudation

Non-repudation is an area of active research. The first protocols to achieve
both fairness and efficiency [87, 69] are quite recent. The main goal of non-
repudation is to create a evidence that some action by an entity occurred.

6This is the granddaddy of all subsequent honeypots.
7Internet Protocol Security
8Secure Socket Layer
9Transport Layer Security – The standardizations of SSL by IETF

9



2.2. PROTOCOLS CHAPTER 2. STATE OF THE ART

Non-repudation is often the basis for e-commerce protocols [21, 72] over open
networks. Actually non-repudation is just a way of creating accountability
with the help of a cryptographic protocol. This aspect of non-repudation is
more relevant for our purposes.

Current research on non-repudiation seems to be focused on the protocols
themselves and on their applications in e-commerce. In [24] the use of agents
as mediators between endpoints is discussed. Even though e-commerce is the
main focus here, the usage of mediators, with varying trust levels, is novel.

Most efficient non-repudation protocols use a trusted third party to create
a manageable trust system. Though non-repudation can be achieved with-
out a trusted third party, this typically will result in an inefficient protocol
overall.

Assumption 2.2. An efficient and fair non-repudation protocol must use a
trusted third party as its basis of trust.

Multi party non-repudation

Multi party non-repudation is a generalization of non-repudation [42]. As for
normal non-repudation protocols, multi party non-repudation can be based
on an optimistic approach [43, 35], were a trusted third party is only utilized
when disputes occur.

A new property in multi party non-repudation is exclusion-freenessindexexclusion-
freeness. In [36] both weak and strong exclusion-freeness is defined.

Weak At the end of a protocol run, an excluded participant is able to prove
to an external adjudicator that it was excluded.

Strong At the end of a protocol run there are no excluded participants.

Both weak and strong exclusion-freeness can be utilized by distributed
systems to handle situations where multiple parties must agree that an action
occurred.

2.2.2 Protocol analysis

Security analysis of cryptographic protocols has been and is an area of active
research. Here we will only give a high level overview [26, 49] of this complex
and intriguing topic. In [49] Meadows gives a much more complete of the
state of the art than here. Here the purpose is to create at context for later
discussions in this thesis.

It is interesting to reiterate the words of Needham and Schroeder in [54],
since this paper has inspired, directly or indirectly, the topic of this chapter.

Finally, protocols such as those developed here are prone to
extremely subtle errors that are unlikely to be detected in normal

10



CHAPTER 2. STATE OF THE ART 2.2. PROTOCOLS

operation. The need for techniques to verify correctness of such
protocols is great, and we encourage those interested in such
problems to consider this area.
Roger M. Needham and Michael D. Schroeder

A striking example is an attack [44] on the Needham-Schroeder protocol
developed in [54] that was found by Gavin Lowe in 1996, 28 years later.

The Dolev-Yao attacker

Before Dolev and Yao’s seminal paper [17], there was no publically described
abstract attacker for cryptographic protocols. Other attackermodels have
been described [74], but either these have been shown to be equivalent or
weaker than the original. In [10, 11] Cervesato shows that the Dolev-Yao
attacker is the most powerful one.

The Dolev-Yao attacker has the power to:

• delete

• replay

• fake

• redirect

any message between parties, only limited to cryptographic constraints.
One topic that seems to be missing is on how the Dolev-Yao attacker fits

in a security analysis of non-repudation protocols. An underlying assumption
for the Dolev-Yao attacker is that the adversary is an other entity than the
legal participants. It is implicitly assumed that all other participants are
honest and well behaved. This is in stark contrast with the dominating
justification for non-repudation protocols – sometimes the legal participants
try to cheat. The implication of this observation is that one should be very
careful with the interpretation of results from the analysis methods described
here, if we apply them to non-repudation protocols.

Logics

BAN logic [8] is the earliest attempt on formal analysis of cryptographic
protocols. The logic presented by Burrows, Abadi and Needham was lim-
ited to analysis of authentication protocols. This fact has sometimes been
overlooked by later criticism of the logic.

The GNY logic [34] is an extension of BAN logic to capture more sce-
narios than only authentication, but at the cost of making the logic more
complex. This complexity is eased by the existence of a GUI based tool.
SPEAR II [63] was made by Elton Saul as part of his master thesis at the
University of Cape Town.

11



2.3. TRUSTED PROCESSING CHAPTER 2. STATE OF THE ART

SVO logic [73] by Syverson and Oorschot is a newer logic. This logic
unifies aspects from GNY and other logics, while at the same time it retains
much of the simplicity of the original BAN logic.

Model-checking and state enumeration

Several authors have used different model checkers and state enumeration
techniques to analyze security protocols. Catherine Meadows NRL10 proto-
col analyzer [50] is one of the successful examples.

An other example of this approach is Casper [45, 46] which uses FDR211

[47] to check the generated CSP12 [37] code. It is one of the few tools
that are freely13 available. The distribution comes with a easy to follow
tutorial and user guide [46], and has a fairly user friendly input and output
syntax. The concept of using CSP a underlying tool for analysis of security
protocols is well documented and presented in [26] by Peter Ryan et al.
The combination of a supporting book and sensible syntax was the main
motivation for choosing Casper as the method for protocol analysis in this
thesis.

Other approaches

Spi calculus [1] is an extension to pi calculus to support reasoning on security
protocols. Here the attacker does not need to be explicitly specified. This
might make spi calculus capable of analyzing scenarios were all participants
are misbehaving, rather than under just one attacker model.

Strand spaces [25, 22] is a graph-theoretic interpretation of the Dolev-Yao
attacker. This approach is fairly new, but has a very appealing simplicity
and elegance.

2.3 Trusted processing

Trusted processing is a non-trivial problem to achieve locally, and even more
so in an distributed environment. There exists several products, designs, and
ideas that claim to achieve this. Here a few possibilities are presented along
with the abstract model used for this thesis. The main designs for trusted
remote computing seems to be:

• Trusted operating operating environments (i.e. operating systems,
sandboxes or virtual machines)

• Trusted hardware modules

10Navy Research Laboratories
11Failure Divergent Refinement
12Communicating Sequential Processes
13Both in the sense of freedom and free of charge.

12



CHAPTER 2. STATE OF THE ART 2.3. TRUSTED PROCESSING

• Mathematical transformation

In thesis the abstract model used is based on the first bullet, but to give
the reader a general idea of the possibilities the other two is presented as
short sketches of the concepts.

2.3.1 Trusted operating environments

All security schemes need some sort of trusted environment to do critical
processing in. In chapter 5.2 sandboxes are described in detail. Sandboxes
is only one way such an environment might be made. Thus here we present
alternative and complementary technologies.

2.3.2 Evaluation schemes

The basic idea behind evaluation schemes is that by having someone other
than the maker of a system perform an evaluation of that system, we will
gain more trust in the correct performance of that system. In many ways
evaluation schemes are just a way of formalizing the time old engineering
practice and academic principle of peer review.

Most books on information or computer security [48, 33, 59] contain a
good introduction to the different evaluation schemes. Here we just state
that Common Criteria (CC) is considered the state of the art. CC was made
an ISO, ISO 15408, standard in 1999.

Even though evaluations can be an important element to reach a sufficient
level of trust, it is by no means a clear link between a evaluation level and
the resulting level of trust. Trust is a very subjective topic. What or who we
trust is more often based on what and who we know, rather than an arbitrary
certificate by an evaluation company. Thus an evaluation will add little or
nothing to the resulting level of trust, if the users do not have an existing
trust relationship with the evaluated system, evaluator, system supplier, etc.

2.3.3 Trusted hardware modules

Trusted hardware has been, and is, a key part of many high security sys-
tems. As a platform for trusted computation it usually takes two forms.
Either it is embedded in a CPU or as an external hardware module. Both
concepts have been used with success and failures, but in essence they are
not that dissimilar. Both work on the basic assumption that hardware is less
vulnerable to tamper than software. Sometimes this is correct, other times
not.

Smart cards are very illustrative here. They are often used as a token
to store private keys and perform security critical parts of a protocol, e.g.
sign a hash of a document. Even though a smart card might be unhackable
today, it must nonetheless be provided with the correct input to produce

13



2.4. TYING POLICY TO DATA CHAPTER 2. STATE OF THE ART

reliable output. As long as the surrounding system can be subverted to
perform arbitrary actions, it clearly follows that a smart card can be fooled
into signing any hash it is presented with.

Smart cards and other hardware based approaches, does all or parts of
sensitive computations in hardware that is unaccessible to other entities on
the same platform. The main challenge is how do you get the application
in to the trusted hardware and how can you interact with it without the
possibility for compromise. Ross Anderson has several informative examples
on how things fails in [61] and at his homepage [62].14 Other sources for
information on how things fail can be found a Peter Neumann’s homepage
[55] and The Risks Digets [51] wich he moderates.

2.3.4 Mathematical transformation

The expression mathematical transformation was chosen, as it has a broader
application than cryptographic methods. The use of cryptographic methods
applies to most every form of trusted computing in one way or the other.
Here we look at how mathematics can transform a sensitive computation
to a non-sensitive one. The two examples given illustrate the two basic
approaches. We can transform the representation of a program and data
into another form or problem space that disguises the original sensitivty.
The other option is to split the program up in several smaller units, where
the smaller units are not sensitive.

In [7] Tønnes Brekne shows that it is possible to perform computations
with an encrypted program on an encrypted Turing Machine. The thesis is
on encrypted automata and shows that it is possible, but does not show how
to do in an cryptographically strong manner.

An example of splitting a sensitive computation into several non-sensitive
parts is given in [75]. Here the author shows how computations can be split
up in N tasks and run them on K computers (where K > N), and that the
computation will be successful as long as the number of cheaters is below
a given threshold. In some ways this is related to both secret sharing and
techniques for high availability systems.15

2.4 Tying policy to data

2.4.1 Content based information security

In [27] the concept of content based information security (CBIS) is intro-
duced. NATO16 with their coalition partners face challenges in exchanging

14In general Anderson shows that most things fail. . .
15Both these presentations are very simplified, and interested readers are recommended

to read the original texts themselves.
16North Atlantic Treaty Organization

14



CHAPTER 2. STATE OF THE ART 2.4. TYING POLICY TO DATA

information in peace restoring and peace keeping missions. This problem is
not isolated to NATO’s military coalition forces, but also extends to civilian
agencies and humanitarian organizations. In peace operations all these par-
ties must, to varying degrees, exchange sensitive information to achieve the
ultimate goal of peace.

The experiences gained from current and past operation shows that the
information infrastructure use today is inefficient for the kind of information
sharing peace operation need. Thus NATO has started research on CBIS to
find alternative approaches.

The architecture described for CBIS calls for the use of trusted hardware
and a centralized security manager. Thus even if the basic idea is similar to
the concept presented in this thesis, there is a difference in approach. Here
we strive for flexibility and user empowerment.

2.4.2 Digital rights management

Digital rights management (DRM) is a controversial and confusing topic.
The basic aim is to tie the copyright owners policy to copyrighted mate-
rial, such that a consumer is forced to comply with that policy. Most of
the interesting literature is either requires a membership in one of the many
industry consortia or the signing of a non-disclosure agreement. Ross Ander-
son provides a useful FAQ [5] on the subject and links to relevant websites
and news stories. Here we just note that while the aim is to bind data and
policy together, digital rights management has a clear bias on protecting the
copyright owners.

15



2.4. TYING POLICY TO DATA CHAPTER 2. STATE OF THE ART

16



Chapter 3

Theory

In any non-trivial distributed system, there are some basic challenges that
must be addressed. In 2 it will be shown that these challenges are common
for all major initiatives on distributed computing, but that the different
initiatives addresses them in a to narrow context and that this hinders reuse
of protocols for privacy and non-repudation.

Based on personal experience and observations as a designer at a service
provider, we tend to focus on the most pressing problems, without trying
to identify commonalities with other similar problems. This has a negative
effect on exploiting synergies and developing common solutions to common
problems. Put into harsher words, we are good at finding a solution or fix,
but not identifying the problem.

One of the main goals with the thesis is to show that identifying similar-
ities in different technologies can help us identifying the more fundamental
issues, rather than just concentrating on how to solve it for one particular
system. Thus the primary goals in this thesis is to show:

• That different technologies for distributed computing essentially try to
solve the same basic problems.

• That protocols for privacy and non-repudation can be designed for
a generalized distributed environment, and easily be adapted to the
different distributed computing environments.

• That such protocols can be analyzed with formal methods.

Secondary goals have been to gain a general understanding of:

• different models for distributed computing.

• how formal analysis of security protocols are done.

• the limits of formal analysis.

17



3.1. PRIVACY AND ACCOUNTABILITY CHAPTER 3. THEORY

• that it is fruitful to analyze commonalities, rather than specialties.

• engineering security into complex distributed computing environments.

To keep the thesis within a reasonable scope, storage was chosen as the
focus here.

3.1 Privacy and accountability

Privacy and accountability are often naively viewed as two opposing ex-
tremes. In some cases this view is correct, but not complete. The primary
goal for privacy is to secure an individuals right to a private sphere. Account-
ability has the primary goal of guaranteeing a way of placing responsibility
for actions. When we consider the goals, it is obvious that they are not
two opposing extremes, but rather two non-trivial goals that are not easy to
reach in complex environments.

3.1.1 Privacy

An individuals right to privacy is legally protected in most of the world. The
European data protection act of 1995 [76] is a prime example. Privacy is also
considered as a basic human right in article 12 of the The Universal Decla-
ration of Human Rights [53]. However there is also no doubt that privacy
exists in different degrees and forms.1 The two basic aspects of privacy, we
claim, are anonymity and confidentiality . Privacy is a combination of these
to aspects, but here we will focus primarily on anonymity. The main reason
is that individuals right for confidentiality of their sensitive data, usually
already is secured by laws or policies. The laws and policies seldom discuss
to what extent individuals should be identified or not.

Anonymity

Anonymity is a non-trivial, and at times controversial, subject. It rises
many philosophical, social and political questions. The views given here
are strongly influenced by the author’s nationality and personal beliefs and
values. This thesis is written at a stable time in a stable democracy with a
strong protection of privacy both legally and culturally. Thus the issue on
an individuals right to privacy is not a problematic issue, but there are some
debates on to what extent an individual has a right for anonymity.

In general well behaved individuals do not have to identify themselves.
It is when laws, policies, or other regulations are broken, that individuals
are required to be identified. Sometimes identification, with varying success,

1Different cultures, societies, countries, etc., all have different expectations and values
concerning privacy.

18



CHAPTER 3. THEORY 3.1. PRIVACY AND ACCOUNTABILITY

is used as a preventive measure. Bruce Schneier has in his Crypto-Gram
newsletter [65, 66, 64] given many pros and cons on this subject. Here it
will for simplicity be assumed that it is acceptable for honest players in a
distributed system to be anonymous. This implies that it is acceptable for
dishonest players to be identified.

Assumption 3.1. It is acceptable for honest entities in a distributed envi-
ronment to be anonymous.

Privacy can be said to range from total identification to anonymity.
Where ideal privacy fits on the scale can be debated depending on culture
and legal context. It is however easy to argue that total identification of
every individual is not ideal and that anonymity for everyone equally is not
ideal. This trade off is illustrated in figure 3.1.

?

Privacy

� -No anonymity Full anonymity

Figure 3.1: Privacy

Figure 3.1 also illustrates how privacy can be viewed as conditional
anonymity rather than a seperate issue.

Confidentiality

Confidentiality is defined here as prevention of unauthorised disclosure of
information[33, page 5].

Definition 3.2. Confidentiality is the prevention of unauthorized disclosure
of information.

For privacy purposes confidentiality is mainly used to protect sensitive
information about individuals from unauthorized viewing. In most western
countries there are legal obligations on anyone who possesses such informa-
tion to protect it adequately. This aspect of privacy has been extensively
studied before, and it will not be treated in depth here. There are plentiful of
books on the subject, especially the cryptographic aspects, and the authors
favorite introductory texts are [70, 31, 3, 67]. In the rest of the thesis the
term privacy should thus be interpreted as how to secure honest individuals
from unnecessary identification. Where confidentiality is needed it will be
noted where applicable.

Definition 3.3. Privacy is the prevention of unnecessary or unauthorized
identification of individual persons.

19



3.1. PRIVACY AND ACCOUNTABILITY CHAPTER 3. THEORY

3.1.2 Accountability

Often accountability is seen as a key factor for a commercial system. Without
accountability there is no liability either, and thus nobody are responsible
for unacceptable actions. In commercial environments there have to exist an
acceptable and reasonably safe method for placing responsibility. This can
be achieved in different ways:

Cryptography For a thorough treatment on the cryptography of non-
repudation protocols see [87].

Logging Logs in many forms has been used to provide accountability in
many scenarios and settings. Financial instations are a prime example
of this form of accountability for both their employees, customers, and
regulatory instations.

Procedures Procedures typically support accountability by providing a log
of activity, or by ensuring that critical actions are under dual control.
The generating of root keys on a CA is a prime example.

Policies Policies support accountability by placing the responsibility for
flaws on someone. European laws concerning sensitive data on indi-
viduals are prime examples.

None of these facets of accountability can by themselves provide a com-
plete solution to guarantee accountability. They have to be carefully coordi-
nated to give effective and efficient accountability in any form of system for
distributed computing.

Non-repudationis basically a way of securing accountability in systems.
Since the main focus for non-repudation is to cryptographic provide some
sort of evidence to keep some entity accountable for an event or action. It is
interesting to view non-repudation as one way of representing the degree of
accountability, see figure 3.2. Non-repudation can also be claimed to provide
conditional accountability rather than just a cryptographic form of evidence.

?

Non-repudation

� -No accountability Full accountability

Figure 3.2: Non-repudation

20



CHAPTER 3. THEORY 3.1. PRIVACY AND ACCOUNTABILITY

3.1.3 Privacy vs. Accountability

For any general use and complex commercial system, there always will be a
trade off between individual’s privacy, their accountability, and the system’s
general functionality and efficiency. To try and identify a sensible balance
between privacy and accountability, we propose to view these two factors
as axis in a cartesian diagram. This gives us four quadrants (A − D) that
illustrate the different basic trade offs.

&%
'$

-

6

�

?

A

DC

B

Full accountability

No accountability

No anonymity Full anonymity

Figure 3.3: Privacy vs. Accountability

Figure 3.3 shows four basic trade offs in the four quadrants. The goal here
is to reach a point in quadrant A (indicated by a circle), where potentially
there is an optimal trade off between privacy and accountability. The four
basic trade off scenarios are:

A High accountability and high privacy can be reached, and is probably a
very good mix to base thriving commercial systems on top of.

B Here accountability is high and privacy low. This is applicable for sys-
tems where accountability is crucial, and privacy is either unwanted or
unneeded. An example can be military command and control systems.

C Low accountability and low privacy is probably best exemplified by the
current status of the Internet.

D Low accountability and high privacy, i.e. anonymity, has been supported
for multiple years through different means. Good examples are anony-
mous [84, 77] e-mail systems.

21



3.2. CONFINEMENT IN DYNAMIC DISTRIBUTED SYSTEMSCHAPTER 3. THEORY

3.2 Confinement in dynamic distributed systems

In any distributed system a user asks, or rather should ask: “How can I trust
that my data and applications haven’t been tampered with or compromised?”
The owners of resources in any distributed system should ask: “How can I
be assured that a user does not abuse or deny using my resources?” Both
these questions point back to Lampson’s confinement problemdefined in [9].
If a high levels of privacy or accountability is to be reached, there has to
exist at least some basic support for separation between tasks. In [48, page
439] Matt Bishop restates Lampson’s original paper as two requirements and
three definitions:

• Requirements

– The server must ensure that the resources it accesses on behalf of
the client include only those resources that the client is authorized
to access.

– The server must ensure that it does not reveal the client’s data
to any other entity not authorized to see the client’s data.

• Definitions

– The confinement problem is the problem of preventing a server
from leaking information that the user of the service considers
confidential.

– A covert channel is a path of communication that was not de-
signed to be used for communication.

– The rule of transitive confinement states that if a confined process
invokes a second process, the second process must be confined as
the caller.

These requirements and definitions places the main burden of enforce-
ment on the server. In traditional client-server architectures this was prob-
ably sufficient. These architectures tend to implicitly regard the servers
as trusted entities and the clients as potentially untrustworthy. This works
quite well as long as the environment is rather static. In these static environ-
ments the trust can be achieved by having manual procedures and policies in
place to replace any technical shortcomings of the security infrastructures.

3.3 Are distributed dynamic systems different?

In highly dynamic environments as Grid, peer-to-peer or agent based net-
works, the use of manual procedures will not scale. These environments can
be self-configurating and in many cases there will be no single authority that
can be a centralized basis for trust.

22



CHAPTER 3. THEORY3.3. ARE DISTRIBUTED DYNAMIC SYSTEMS DIFFERENT?

Definition 3.4. A distributed dynamic environment is any computing envi-
ronment that is: Distributed, dynamically configuarted, and partiall or fully
self-configurating.

The basic change is on of basic assumptions; before the implicit assump-
tion was based on a server serving several clients and that someone was
accountable for the correct operation of that server. This implicit assump-
tion can easily be traced back the famous Ware-report [28] from 1970 which
was written in a environment of terminals and mainframe computers. Today
the distinction between a client and server often is rather blurred, and the
accountability watered out since we have moved from dedicated local systems
to global services. In the global setting it might not be possible to identify
the entity who was the root cause of a failure. Thus basic assumptions have
changed.

No attempt to reformulate Lampson’s[9] work will be done, but as a
result of the change in assumptions on can argue that in these environments
all entities must be able to detect, document and possibly resolve breaches
of policy.

The focus here will be on how two conflicting sets of requirements possibly
can be combined in these complex systems. On one hand it is generally
acknowledged that people have a right of privacy , but at the same time it is
also expected that a person is accountable for their actions. In a commercial
setting this typically translates to that someone has to pay for what happens.

Privacy can be achieved by creating an environment where everyone is
anonymous. Such systems are technically possible [84, 77], but the conse-
quence is a practically total loss of accountability.

Accountability can be achieved by several means. Any form of traces left
by a person can be used to hold somebody accountable. A combination of
logging and authentication has been the main solution the last decades. An-
other possibility is to rely on non-repudation by cryptographic means. Here
the primary purpose has been to create an undeniable connection between a
subject and its actions. This undeniable property can be problematic where
privacy is a concern, while at the same time it might be crucial to secure the
privacy of others. For distributed environments with no centralized manage-
ment, it is probably easier to have a non-repudation mechanism scale than
to rely on having to analyze logs2 from several participants.

The real challenge then becomes to find a balance between privacy and
accountability. Any automated system or design will rely on some faith and
basic trust, and on external manual systems to handle the non-automated
situations that might occur. Thus any concept for privacy and accountability
in distributed computing environments will ultimately rely on an existing
judicial system to resolve disputes. There also has to be some basic faith in

2As far as I know there is no form of logging that is generally accepted as trusted or
tamper-proof

23



3.4. STORAGE IN DISTRIBUTED DYNAMIC ENVIRONMENTSCHAPTER 3. THEORY

the correct behavior of at least some of the trusted third parties involved. If
every trusted third party is unreliable and corrupt, a scalable and practical
solution is probably much more difficult to find.

3.4 Storage in distributed dynamic environments

A good summary of the challenges facing storage model in distributed dy-
namic environments can be found in chapter 8 of work package 5 [23] of the
DataGrid project[80]. Here four areas of open issues are listed: interactive
services, policies, access control, and objects. The essence of these challenges
are quite similar to the research question listed here in chapter 1.2.

One area that can, and probably will, create problems are namingand
name resolutionindexresolution, namefor data items. A good description of
the problem is given by Ross Anderson in [61, page 125]. Here we have chosen
to assume that naming and name resolution is solved by other means, but
this is clearly an area of work for any attempt of implementing this model.

Assumption 3.5. A practical, stable, secure, and robust system for naming
and name resolution exists and is accessible for all entities in a distributed
environment.

24



Chapter 4

Environment

Any distributed environment can at a high level be described as clients which
accesses services. This applies to peer-to-peer-based environments also; here
each node acts as a client and a service provider simultaneously. All dis-
tributed environments must also provide some basic methods for service and
client discovery and user, client, and service authorization. These methods
can themselves be services, but will typically have some form of special status
or configuration applied to them.

The basic assumption is that users use brokers to access services. Users,
brokers, and services uses catalogs and trusted third parties to facilitate their
cooperation and secure interaction.

Assumption 4.1. Users in distributed environments must use one or more
special services, here called brokers, to get access to the services and resources
they need.

Assumption 4.2. All resources and services are presented to the users as
a form of service.

Assumption 4.3. The special services needed by all entities in a distributed
environment are:

Catalogs The basis for naming and name resolution.

Brokers The basis for access management, metering, and billing.

Trusted third parties The basis for creating trust between entities.

The legend of figure 4.1 is:

U An user and its client.

N Any network that gives an user U access to a broker B.

B A service broker.

25



CHAPTER 4. ENVIRONMENT

&%
'$

U -
H

H
H

HH �
�

�
��*&%

'$
N -

�
�

�
�

��

@
@

@
@

@R

�
�

�
�� H

H
H

HHj

&%
'$

B
-

�

&%
'$

T

&%
'$

C

&%
'$

F

6

�
�

��

-

@
@

@R
?

@
@

@
@

@I

�
�

�
�

�	

&%
'$

S1

&%
'$

S2

&%
'$

S3

&%
'$

S
···

&%
'$

Sn

Primary route

Alternative route

Figure 4.1: Entities

F A network fabric that supports QoS1, and that gives brokers B control
over QoS parameters.

C A catalog service for meta data needed by other entities.

T A trusted third party service.

S An unspecified service.

Catalogs, trusted third parties, networks, fabrics, and brokers, are ser-
vices. Thus figure 4.1 could have been expressed as:

• Let U be a member of the set of all users U ⇒ U ∈ U

• Let S be a member of the set of all services S ⇒ S ∈ S

• Let → be an operator that means has access to

• Then:

U ∈ U ∧ S ∈ S

⇓

∀U : ∃SB ∈ S For all U there is at least a serviceSB that is inS

⇓

U → SB → S U can access every S inS viaSB

26



CHAPTER 4. ENVIRONMENT

&%
'$

U
-

� &%
'$

SB

6

�
�

��

-

@
@

@R
?

&%
'$

S1

&%
'$

S2

&%
'$

S3

&%
'$

S
···

&%
'$

Sn

Figure 4.2: Simple entities

Figure 4.1 could then have been simplified to figure 4.2:

Unfortunately this variation does make our notation less intuitive, even
though it is as correct as the chosen one. Any notation that potentially
has to use subscripts on subscripts, e.g. a time stamping trusted third party
would become STTS

, will be very difficult to read. Thus the choice of separate
letters for the key services N , B, F , C, and T .

The other distinction that might seem odd is the separation of network
andfabric. Network is used for any network, but fabric is the controlled
network that interconnects brokers and resources, and that is not directly
accessible to a user.2 A network N is any communication facility capable of
transporting messages between parties, but without any guarantees at all.
A fabric is any communication facility that can transport messages between
parties with negotiated and enforced QoS parameters.

For the purpose of this thesis it is sufficient to view a storage resource
as any resource that can store a bit string in a sufficiently reliable way and
that can be retrieved through the fabric. Thus there is no distinction made
between RAM, disk, tape, etc.

Assumption 4.4. Storage is only characterized by the QoS and SLA3 pa-
rameters on its performance, permanence, and protection.

1Quality of Service
2This does not rule out the possibility that the fabric and the network sometimes might

be the same physical or logical entity.
3Service level agreement

27



4.1. GENERAL ASSUMPTIONS CHAPTER 4. ENVIRONMENT

4.1 General assumptions

Any system will ultimately rest on a set of assumption made by its designers.
These assumptions usually are the Achilles’ heel of systems. Ross Anderson
gives plenty examples in his book on security engineering [61]. If a proposed
system are to be analyzed by anyone other than the original designers, these
assumptions must be documented in as much detail as possible. Even though
this is striven for here, there are always a possibility for that some implicit
assumptions are undocumented because the designer believes that particular
assumption to be obvious or insignificant4.

4.1.1 Dispute settlement

Any automated system with several users and user groups will need an ex-
ternal system for any final ruling on how to treat suspicions and claims of
misbehaving users or services. It seems to impossible to create a completely
self contained system for accountability. Since the basic idea of account-
ability hold people responsible for their actions, all rules in a system, i.e.
its policy, will ultimately be subjectively interpreted by humans. Thus it
is impossible to have a fully automated system for accountability, because
there is always a chance that somebody just did not know that their actions
where unacceptable for others. This problem will always be present, and for
large systems it will be unavoidable.

This is how our societies are organized. If two parties disagree on who
is responsible for an action, they can get a ruling from the judicial system.
Thus there already is an existing external system for settling conflicts, and
any proposed system for accountability should support that existing system,
rather than trying to replace it. This implies that any accountability system
should be concerned with gathering usable evidence for use in a court of law,
rather than trying to stop all misuse. The same observation is made in [87]
and other texts on non-repudation or electronic commerce [21].

Another implication is that a court of law, at least in the western tra-
dition, the evidence has to remove any “shadow of a doubt” to rule against
a defending party. This can easily be viewed as a statistical test. As long
as the evidence shows that there is a small, but not insignificant, possibility
that someone else could have performed the contested act, the defendant is
viewed as innocent. This can possibly be used to create system for account-
ability that instead of securing every action, secures enough actions to be
within satisfactory statistical bounds for a claim against someone.

In this thesis all agreements between a service provider and a user, goes
through a broker infrastructure. The brokers main objective are to facilitate
fair billing and metering amongst the providers and users.

4Or the designer simply was not aware of that an assumption was made.

28



CHAPTER 4. ENVIRONMENT 4.2. GENERAL GOALS

4.1.2 Billing

It is assumed that there exist a functioning system for billing, i.e. the pro-
posed system should gather accountable metering data and run the financial
settlement on existing payment infrastructures. The main rationale behind
this is to reduce the overall complexity.

Assumption 4.5. Billing and payment use existing infrastructures.

4.2 General goals

The primary goals for this thesis is to give users access to their data:

• From any client

• From anywhere

• At anytime

• Only restricted by the access policy for a data item

• Provide users with sufficient privacy

Main goals for the support of the needs of service providers and author-
ities, is to provide sufficient user accountability to support:

• Metering and billing of storage services

• Investigation of unwanted activity

Basically we try to safeguard the privacy of honest users and simultane-
ously support investigation of suspected crimes.

4.3 Users

Users are expected to have access to one ore more clients, and that they
interact with multiple services during a session.

4.3.1 Assumptions

The user has access to a client that enables the user to:

• Do basic cryptographic computations

• Store some longterm secrets (i.e keys) safely

• Send, receive, and respond to messages to and from other entities

29



4.4. SERVICES CHAPTER 4. ENVIRONMENT

There is made no distinction between the user and its terminal or client.
For the other entities they are for all practical purposes inseparable for any
specific session. When a broker or other actor are authenticating or autho-
rizing users, the combination of the users identity, terminals identity, and
their relative (i.e. in- or outside a perimeter) should be taken in to account
before any final decision on authorization is made.

The last assumption is that the user has limited processing and band-
width compared to service providers. Thus any protocol has to limit the
users and their terminals interaction in a protocol to the bare minimum.

4.3.2 Goals

Users primary goals are:

• Privacy

• For data and applications:

– Confidentiality (if its sensitive)

– Integrity

– Availability

• The possibility to detect tampering or dishonest entities

• Be able to dispute false or wrong billing

4.4 Services

Services may be of the following types:

Fabric SF is any resource capable of transporting data from one location
to another.

Processing SP is any resource capable of doing computations, i.e. raw
CPU.

Application SA is any application made available to users. This service
typically requires SF , SP , and SS to be useful.

Storage SS is any form of storage service available.

Input SI is any other form of input service.

Output SO is any other form of output service.

These service types are sufficient for the treatment of security protocols
and system model in this thesis.

30



CHAPTER 4. ENVIRONMENT 4.5. BROKERS

4.4.1 Assumptions

The internals of a service are invisible to users and brokers. Chapter 2.1.6
provides more background on this.

Services are made available by service providers that may or may not
want compensation for the use of the services.

Service location, capabilities, cost, etc., is published in catalogs available
to all other entities.

4.4.2 Goals

Services as such has no goals. The service providers, i.e. service owners, has
multiple goals:

• Accurate and accountable metering

• Flexibility in service delivery

• Efficient dispute settlement

• Absence of liability for users usage of services5

4.5 Brokers

Brokers are the users only way to gain access to services through the fabric.
For the sake of this thesis brokers has vastly more computational power than
the users terminals.

4.5.1 Assumptions

All brokers are assumed to be able to meter the resources used by a user
when accessing a service and its resources. Metering is done with observers
as described in chapter 5.2.

It is also assumed that both the user and service provider agrees on at
least one broker that they both trust to meter fairly. This makes brokers a
kind of trusted third party.

4.5.2 Goals

Brokers has the same goals as services, see chapter 4.4.2.

5E.g. a storage service do not want to held liable for a user storing pirated software at
their facility.

31



4.6. TRUSTED THIRD PARTIES CHAPTER 4. ENVIRONMENT

4.6 Trusted third parties

Trusted third parties are key to achieving efficient non-repudation protocols[87].
There are several kinds of trusted third parties that can be useful. A list of
some typical ones are:

Certificate Authority TCA is an entity that signs other entities public
keys to verify that that public key belongs to that entity.

Time stamp TTS is an entity that attach a cryptographically secured time
stamp to a bit string presented to it from other entities.

Notary TNO is an entity that will notaries, and optionally store, a bit string
presented to it from other entities. Typically TNO signs the bit string
with the other entities signatures attached.

Key distribution TKD is an entity that will distribute cryptographic keys
to other entities as needed or requested. Typically TKD has access to
all keys.

Key translation TKT is an entity that will translate cryptographic keys
for other entities as needed or requested. Typically TKT has access to
all keys and is situated between the other entities.

Key storage TKS is an entity that will store6 cryptographic keys for other
entities as needed or requested. TKS might have clear text copies of
the keys, but this is not an absolute requirement.

All these can be viewed as a kind of service. Most of the assumptions
and goals of services, chapter 4.4.2, will apply to trusted third parties to, but
trusted third parties have extra assumptions and goals. Thus it was chosen
to separate services and trusted third parties to simplify later discussion and
analysis.

Even though a trusted third party is trusted , that trust should not be
blind. It is critical for any security design or architecture that one has a very
clear understanding of what a trusted third party is trusted to do.

4.6.1 Assumptions

The different types of trusted third parties are assumed to be trusted for
the type of task they perform, and not for any other tasks. Thus a time
stamping trusted third party is not trusted to provide e.g. key storage.

6This is the original trusted third party.

32



CHAPTER 4. ENVIRONMENT 4.7. CATALOGS

4.6.2 Goals

The goals of trusted third parties are as services the same as for services in
general, chapter 4.4.2, but in addition trusted third parties also has to protect
their trustworthiness. Loss of trust in a trusted third party can come from
both actions by the trusted third party itself or by attacks from the outside.
If the trusted third party fails internally, little or nothing, can be done to
reestablish its trust7. If however the attack comes from the outside, either as
a semantic or direct attack, a trusted third parties goal will be to safeguard
its reputation as a trusted third party.

4.7 Catalogs

Catalogs are a service, but are critical for all other entities, including other
catalogs, for finding the necessary meta data in different settings. Thus
catalogs will have more emphasis on integrity and availability than most
other services.

4.7.1 Assumptions

A catalog is assumed here to be non-malicious, i.e. it does not tamper with
the entries within itself.

Catalogs support both naming and name resolution for other entities.

4.7.2 Goals

Catalogs have the same goals as services, see chapter 4.4.2.

7Although Verisign seems to have lost very little trust even though they issued code
signing certificates to a faked Microsoft request.

33



4.7. CATALOGS CHAPTER 4. ENVIRONMENT

34



Chapter 5

System model

We showed in chapter 2, there are other efforts to have policy follow data.
The other efforts, and digital rights management in particular, has a focus
on securing an institutions rights rather than an individual.

5.1 Architecture

Figure 5.2 shows the overall architecture. All actions done by the user are
initiated via the users client.

A prerequisite is that users use a trusted third party to get a pseudonym
issued. The trusted third party will disclose the real identity of a user
if proper evidence is presented and proper procedures are followed. This
pseudonym is then embedded in or transferred to the storage agent. The
storage agent then uses this pseudonym as the identity presented to all other
entities in the system.

Communications between the users client and storage agent is encrypted,
i.e. they create a secure channel. Data produced by the user at the client is
transferred in as clear text within the existing secure channel to the storage
agent. The storage agent then choses, with the assistance of brokers, a
suitable storage provider to store the data on.

The storage provider sends a storage observer to the storage agent. This
observer is used to create a signed hash of the data that will be stored at
the storage provider facility. This hash is taken over the unencrypted data.
This enables the storage provider to respond to request by authorities etc.
to check for specific data. Before the data is transferred to the storage
provider it is encrypted, and the hash made by the storage observer and the
pseudonym used, is cryptographically tied to data. Thus a storage provider
can only answer with a pseudonym, even if the hash matches that of the
data in interest. This facilitates investigative measures, but does thwart a
big brother like surveillance in the architecture.

If an other entity is allowed to use the data, this can be achieved by at

35



5.2. PROCESSING CHAPTER 5. SYSTEM MODEL

least two fundamentally different methods. One is to hand over the necessary
keys to the other entity, but this obviously is in contradiction with our goals.
The other is to create a limited storage agent that gives the other entity a
interface which the other entity can operate on data via. This is not described
further here, but is clearly one of the more difficult problems not explored
here.

Finally all entities use the catalog to store names and metadata. The
catalog also serves the purpose of resolving names into addresses.

5.2 Processing

Achieving trusted processing at an external resource is not trivial. As an aid
for this thesis an abstract model of a sandboxed remote environment was
used to ease the mental process.

In this abstract environment the outer sandboxis there to protect the na-
tive platform from the clients actions inside the contained sandboxes. The
inner sandboxesare there to protect the clients applications etc. from the
native environment, the outer sandbox, and other clients inner sandboxes.
This idea is not revolutionary; this concept has been used by IBM, Digital,
and others to create security systems for a variety of scenarios, see [48] for
examples. The observeris inspired by a similar concept used in the CAFE
project [21, page 186], but here it is used as tool to assist brokers in getting
their metering data. An interesting effect of having an observer that gathers
the metering data, is that if metering is to costly for a e.g. grand challenge
computation, a user, broker and service provider might agree to have a sta-
tistical sampling in stead of full metering without any fundamental changes
in the underlying model.

Here the outer sandbox is what a service provider uses to facilitate the
possibility to sell or lease unused services or resources to other entities. The
inner sandbox gives the users of the services an ability to monitor their own
actions and compare this with their later billing data. It also enables a user
to detect attempts to tamper with its application or data. The observers give
brokers a view of the transactions between the inner and outer sandboxes,
so that brokers can e.g. gather metering data or detect foul play.

Other possible approaches for trusted computations are briefly discussed
in 2.3.

5.3 Storage agents

Here we are concerned with how data is accessed, not how it is stored on any
particular medium. The key issue is how we can create a firm link between
the data and its associated usage policy. Our model is a suggestion on how

36



CHAPTER 5. SYSTEM MODEL 5.3. STORAGE AGENTS

Application A

Personalized environment A

Application B

Personalized
Scheduling A

Personalized
Storage A

Personalized
Networking A

Inner sandbox A

Observer for
inner sandbox A

Application C

Personalized 
environment B

Inner sandbox B

Observer for
inner sandbox B

Virtual environment for inner sandboxes and observers

Virtual
Scheduling

Virtual
Storage

Virtual
Networking

Sandbox
Loader

Observer
Loader

Outer sandbox

Native
Scheduling

Native
Storage

Native
Networking

Native
Security

Native
Applications

Native platform

Global environment

Figure 5.1: Sandbox

this can be achieved by using a storage agent1. An obvious result of having
a storage agent operating on behalf of a user, is that it somehow must be
able to do its processing in a trusted manner. In the previous section, 5.2,
we have describe the model used as a basis for this thesis.

Here the useruses one or more clientsto access one or more storage
agentsthat provide access to one or more storage providersvia suitable stor-
age adapters.

The user, trusted third party, and catalog will not be further discussed
here as they are sufficiently treated in chapter 4.

1An implementation does not have t be based on agent or mobile agent technologies,
but the word agent best describes the concept presented here.

37



5.3. STORAGE AGENTS CHAPTER 5. SYSTEM MODEL

Client

Catalog

TTP

Storage

provider

Storage

agent

Storage

adapter

Client

adapter

Storage

adapter

Storage

adapter

Storage

provider

Storage

provider

Client
Client

adapter

User

Figure 5.2: Storage model

5.3.1 Client

Clients can here be any platform or code that provides a user with a usable
interface to interact with a storage agent. Thus we make no other assump-
tions on the clients than that they are able of some form of communication
with a client adapter, catalog, and trusted third party, and that they provide
the user with a user interface suitable for the task at hand.

If we want to protect the users privacy, the client and client adapter must
provide a secure channel[31] over the underlying communication infrastruc-
ture. Our only assumption on this secure channel, is that it must use a
mechanism, cryptographic or other, that effectively thwart attacks on the
channel by a Dolev-Yao attacker.

A users clients are one of few entities that by default sees the users data
in clear text. The data is encrypted in transit to the storage agent with a
secure channel and when it resides at a storage provider. This protects the
users privacy.

The final assumption is that the client can execute in an environment
trusted by the user.

38



CHAPTER 5. SYSTEM MODEL 5.3. STORAGE AGENTS

5.3.2 Storage agent

Storage agents are the enforcers of policy on data access and usage. They
also serves the role of brokers for the access to storage services. Storage
agents act on the behalf of one or more users, and have access to all keying
material used to encrypt users data. The storage agents does their processing
in an trusted environment.

Storage agents are allowed to spawn copies of themselves, as long as they
are registered in a catalog, to either increase availability for its users, or to
increase the throughput in data transfers. This opens for the possibility for
users to instruct the storage agent to transfer data without the using the
users client platform or bandwidth.2

Client adapter

The users only interface to a storage agent, and ultimately the storage
provider, is via the clients client adapter. Thus there has to exist some
authentication and authorization mechanism between the client and client
adapter, or more precisely between the user and storage agent.

The rationale behind having multiple client adapters are to maintain
the important aspects of flexibility for users and future proofing a system
model. If there was a fixed interface between the client and storage agent, any
significant change in communication technology between them, would cause
a major change in interface. It would also make this model less flexible in
providing the users real options in how they want to access and use their
data.

The interface between the client adapter and the storage agent must be
fixed. This will probably be one the main challenges to create if one wishes
to implement this model.

5.3.3 Storage adapter

Flexibility, as for client adapters, is the main rationale for storage adapters,
too.

Figure 5.3 does not show the observer from an impartial broker, but this
is necessary when fair metering is needed. The main goal is to show how a
storage provider can get a fingerprint, i.e. hash, of the unencrypted data.
The storage observer is similar to a brokers observer, but is only allowed to
transmit a hash and a signed hash back to the storage provider. Before the
data is stored the storage adapter binds the policy to data. The policy is
provided to the storage adapter by the storage agent.

All user keys, k, PU and SU is provided to the storage adapter by the
storage agent. The keys, PS and SS , for the storage observer is embedded

2This functionality has existed in FTP for many years, but without our security model.

39



5.3. STORAGE AGENTS CHAPTER 5. SYSTEM MODEL

Storage

provider
S.Ch.

Storage

observer

In

OutIn

Out

k

ek(data)

H(data)

sS(H(data))

eP (k)

Client

H(data)

In

Out

Controls

and

formatting

In

Out

Integrity

check

dS(k)

k

ek(data)

S.Ch. = Secure Channel

Figure 5.3: Storage adapter

in it when the storage provider transmits it to the storage adapter.

The resulting data file stored at the storage provider will look something
like this:

DataID‖Pseudonym‖H(data)‖

sSU
(H(policy‖data))‖sSS

(H(data))‖

ePU
(k)‖ek(policy‖data)

DataID An unique ID for the data item

Pseudonym The pseudonym of the user owning the data item

U User

S Storage provider

policy Usage policy for the data item

data The data

An implementation would have to refine on these items.

The storage adapter gives a good starting point for finding a possible
solution to the problem, see chapter 5.1, of giving other entities access to the
data. Probably

40



CHAPTER 5. SYSTEM MODEL5.4. PRIVACY ENHANCING NETWORK

5.3.4 Storage provider

The storage provider offloads most of the cryptography to the storage ob-
server. This lowers the processing power needed at the storage provider,
while the work load of the storage agent only increase with an extra hash
and signing operation.

With our scheme the storage providers should not be liable for what data
users store at their facilities. They have never seen the unencrypted data,
but still can support an investigation.

5.4 Privacy enhancing network

If we are to guarantee privacy in spite of powerful adversaries, we have to
provide some means to thwart traffic analysis. Traffic analysishas a long,
and effective history, starting at WWI and playing a key role in WWII[40].
The traditional defenses have been either to hide the communication[61] or
to have all channels operating at full speed at all times. In a commercial
setting neither are particularly practical or cost effective. Thus we have to
have an other way to introduce enough noise in the communication channels
to thwart traffic analysis.

Based on ideas drawn from the Mixmaster[84] project and I2P[82], we
propose here to create an peer-to-peer privacy enhancing network where the
endpoint of a logical channel can identify each other while all other nodes
or attackers have no effective means to identify which nodes are talking to
each other.

N3

N5Nn

N...

N2

A B
N4

N6

N1

Logical channel

1

2

3

4
5

Figure 5.4: Privacy enhancing network

Here A sends a message to B via a subset of the peer-to-peer nodes. If
this message is to be protected from the intermediate nodes, it is obvious
that the message has to be encrypted. We also have to hide the eventual

41



5.4. PRIVACY ENHANCING NETWORKCHAPTER 5. SYSTEM MODEL

endpoint from the intermediate nodes. Thus we have to describe message
formats and protocols to achieve this. These protocols is not thoroughly
analyzed here, but some suggestions and claims are made.

The basic message format is a header with routing information and a
payload that can contain anything. The header must as a minimum have to
contain information on:

• The address of the next hop node

• A minimum waiting period

• A maximum waiting period

• An integrity check for the payload

All these items and the payload must then be encrypted under the receiving
nodes public key to stop an external observer from following a bit pattern
end to end.

A countermeasure against traffic analysisis to create sufficient noise in the
timing between events. Here the sender can for each hop specify a minimal
and maximal waiting period before the message is transferred to the next
hop. If there there are numerous enough messages this will decrease an
adversaries ability to correlate incoming and outgoing messages from a node.

An other possible countermeasure is to have each node encrypt the mes-
sage, which is already encrypted, again, but attach some random amount
of padding. This will create further problems for adversaries in correlating
incoming and outgoing traffic at a node. This will stop a possible weakness
in the scheme proposed here, since a message grows smaller for each hop,
but at the cost of more processing at each hop. As a compromise we suggest
that by allowing for a trailing set of decoy messages, an adversary can not
identify which node in a chain of messages that received the real message
and not a decoy.

The header contains no information on who the sender is at all. This
stops dishonest nodes from gathering information for traffic analysis, but at
the same time opens for denial of service attacks. How we can stop such
attacks, or at least minimize their impact, is not considered here. Other
peer-to-peer networks tries to solve the problem of dishonest participants,
often called leeches, in a number of ways, but here no effort has been made
to apply them to this model.

As shown in figure 5.4, a message should go through a number of hops
between endpoints, and possibly have a trail of decoy messages, to hide the
true communicating parties. Thus a message can look something like this:

Here it is easy to see that a possible weakness in this scheme lies in that
the node that receives a message might be identified by the fact that the
outgoing message is significantly smaller than the incoming message. This

42



CHAPTER 5. SYSTEM MODEL5.4. PRIVACY ENHANCING NETWORK

DecoyP1
H1‖P2 H2‖P3 H3‖P4 Message‖H4‖P5

Figure 5.5: Message format example

can be thwarted by having multiple decoys of varying sizes, but this will
decrease the overall performance.

43



5.4. PRIVACY ENHANCING NETWORKCHAPTER 5. SYSTEM MODEL

44



Chapter 6

Protocols

There will be several sub-protocols involved in any reasonably large and
complex distributed environment. When we then add a very high level of
dynamics to the mix, the need for sub-protocols soon becomes apparent. In
RFC 1925 [20] it is claimed that:

. . . In protocol design, perfection has been reached not when
there is nothing left to add, but when there is nothing left to take
away. . .
Ross Callon (ed.)

Even though this is one of the classic April Fool’s RFCs, the principle of
simplicity is one of the most important basis for any sensible security system.
This is emphasized by both by Ross Anderson in [61] and Peter Neumann
in [56].

6.1 Flow patterns

One method to identify potential protocols in a design, system, model or
architecture is to create flow patterns. This is simply drawings that shows the
interaction between the different entities, and serves as an informal method
to facilitate further refinement of needed protocols.

In figure 6.1 the interactions discussed here are drawn black. The in-
teractions in gray is not discussed here, but will probably be essential for a
possible implementation. Interactions with dotted gray lines are considered
to be out of scope. Flow patterns can be refined further by e.g. drawing
the information flow in each interaction between two participants in detail
to identify protocol steps.

The interaction identified so far are:

A User ↔ Client – The user interface

45



6.1. FLOW PATTERNS CHAPTER 6. PROTOCOLS

Catalog

TTP

Storage

provider

Storage

agent

Storage

provider

Storage

provider

Client

User

Subagent

Other

entity

Subagent

A

B C

D

E

F

F

Broker

G G

I

I

I

H

H

H

K

L

GM

Figure 6.1: Flow patterns

B Client ↔ Trusted third party – Request for and issuance of a pseudonym
and its certificate

C Anyone ↔ Trusted third party – Check of certificate validity

D Client ↔ Storage agent – Embedding of pseudonym and initial keying

E Client ↔ Storage agent – Data transfer, usage, and storage

F Storage agent ↔ Subagent – Creation and keying

G Anyone ↔ Broker – Service agreement, observer creation, and metering

H Storage agent ↔ Storage provider – Acceptance of storage observer

I Storage agent ↔ Storage provider – Use of data storage services

K Subagent↔ Other entities – Data access interface and policy enforcement

L Anyone ↔ Catalog – Storing and retrieving meta data, names, etc.

M Broker ↔ User – Billing and payment

46



CHAPTER 6. PROTOCOLS 6.2. PSEUDONYMITY

Even for a relatively small system and little, it is easy to find an abun-
dance of interactions. All these interactions might need their own protocol
or sub-protocol. However for an efficient implementation, we would have to
use a lot of resources on protocol design. In particular one should try to
minimize the protocols involved, and if possible use existing protocols.

Here the goal was to try and identify potential protocols, and if possible
do a formal analysis of some of them. With our primary goal of protecting
users privacy, it is easy to see that the creation of a pseudonym is critical for
all subsequent actions. If we can not create a sensible pseudonymity protocol,
the system as a whole fails to reach this goal. Thus we have only specified
and analyzed potential candidates for pseudonym issuance protocols.

6.2 Pseudonymity

Full anonymity would probably gain malicious users more than honest users,
the goal is to provide strong pseudonymity, i.e. guarantee that an individual
can remain anonymous as long as there are no disputes or other strong
reasons to identify individuals.

An efficient pseudonymity scheme seems to require that a users trusts at
least one trusted third party unconditionally to perform a pseudonymizing
function correctly for them. A key question then is when should a user
acquire a pseudonym:

• At the start of every session?

• When needed, i.e. just before sensitive actions?

• Whenever a user wants to be invisible?

The first is the simplistic view that whatever a user chooses to do, is the users
business. However, before making this choice, one should carefully consider
if there might be to high performance impacts for constrained clients.

Definition 6.1. A constrained client is a client that has severe limitations
in processing, storage or bandwidth resources.

The second option will probably be the most efficient in terms of resources
used for pseudonymity, but rises at least a couple of concerns.

• How can we define what is sensitive in a global society?

• Can this model support traffic analysis so that pseudonymity is in
reality lost?

These concerns will probably make this option unrealistic because of general
privacy concerns. The main problem seems to that the users will not have

47



6.2. PSEUDONYMITY CHAPTER 6. PROTOCOLS

direct control on the choices, and that they will be at the mercy of choices
made by others.

The last option seems most promising since it empowers users. Thus if a
user accepts the performance penalty, they can chose to be pseudonymized
at all times, or they can choose to wait until they perform actions they
themselves deems sensitive. A remaining problem is if the general population
of users can make informed choices on what is sensitive or not.

6.2.1 Pseudonymity flow pattern

The interactions for a pseudonymity service is shown in figure 6.2.

TTPClient

User

B

C

D

E

A

F

G

Others

Figure 6.2: Pseudonymity flow patterns

A User ↔ Client – The user interface

B Client ↔ Trusted third party – Identity of client and user

C Trusted third party ↔ Client – Identity of trusted third party

D Client ↔ Trusted third party – Attributes of pseudonym

E Trusted third party ↔ Client – Signed certificate

F Anyone ↔ Trusted third party – Check of validity of pseudonymity cer-
tificate

G Anyone ↔ Trusted third party – Dispute settelment

Items A, F, and G are out of scope of the core pseudonymity issuance.
Thus we will try to create an efficient and secure1 protocol for items B
through E. Protocol efficiency is often measured in the total number of steps
involved, so we will strive for the lowest possible number of steps.

1Secure in the sense that it passes the tests of the chosen analysis methodology.

48



CHAPTER 6. PROTOCOLS 6.2. PSEUDONYMITY

6.2.2 Pseudoprotocol

The protocol can be described at a high level as:

1. User contacts trusted third party to obtain a pseudonym

2. Trusted third party authenticates and authorizes the user

3. The user specifies the parameters the pseudonym should contain

4. The trusted third party issues the pseudonym

After the protocol run the trusted third party stores the pseudonym
with the users real identity until it expires. Expiry here is the expiry time
of the pseudonym plus a reasonable period after that expiry so that possible
disputes can be solved.

A trivial way of creating pseudonyms is to issue short term digital cer-
tificates with the subjects name as a randomized string the trusted third
party can use to resolve which real user it was issued to. Another possibility
might be to use hash-chains in some form. A protocol based on hash-chains
might be better suited for constrained client platforms, but hash chains are
not easy to model in Casper. Thus we will base our protocols on RSA-like
algorithms.

We will try two approaches. First we try to do the protocol (v.1) with
just two messages. The second version (v.2) uses a total of four messages,
where the first two authenticates the participants and the last two is the
actual data exchange.

The complete Casper scripts are found in the appendices. The use of
Casper and FDR2 are described in detail in [46] and [26], and will not be
restated here.

6.2.3 Description of protocol fields

For all the protocols in this chapter, the following names and notations will
be used:

U Identity of the user

P Identity of the trusted third party

nx A nonce x generated by participant X

data The request for a pseudonymity certificate

f(data) The certificate made by applying function f on the data2

PX Participant X’s public key

2A better way of modelling certificate request in Casper was not found by the author.

49



6.2. PSEUDONYMITY CHAPTER 6. PROTOCOLS

In the Casper scripts and final analysis the user is called Ulrich, the
trusted third party is called Peter, and the intruder is called Mallory. Names
prefixed with I_ are instances where Mallory acts as an imposter.

6.2.4 Protocol v.1

The first challenge was how to model a certificate request and the corre-
sponding computation of the certificate reply.

The first attempt:

Table 6.1: Protocol v.1

Message # Direction Message

1 U → P : U, P, (U, P, data)PP

2 B → A : U, P, (U, P, f(data))PU

6.2.5 Analysis v.1

This protocol is vulnerable to a man-in-the-middle (MIM) attack.3

0. -> Ulrich : Mallory

1. Ulrich -> I_Mallory : Ulrich, Mallory, {Ulrich, Mallory, Data}{PK(Mallory)}

1. I_Ulrich -> Peter : Ulrich, Peter, {Ulrich, Peter, Data}{PK(Peter)}

2. Peter -> I_Ulrich : Peter, Ulrich, {Peter, Ulrich, f(Data)}{PK(Ulrich)}

The intruder knows Data

Goodbye

The cause of the attack is the lack of liveness checks and weak mutual
authentication.

6.2.6 Protocol v.1.1

Here we try to thwart the MIM attack, by utilizing a nonce to verify that
the trusted third party is alive, and to prevent session replays.

The second attempt:

Table 6.2: Protocol v.1.1

Message # Direction Message

1 U → P : U, P, (nu, U, P, data)PP

2 B → A : U, P, (nu, U, P, f(data))PU

3This the actual output from Casper.

50



CHAPTER 6. PROTOCOLS 6.2. PSEUDONYMITY

6.2.7 Analysis v.1.1

This protocol is also vulnerable to a MIM attack.

0. -> Ulrich : Mallory

1. Ulrich -> I_Mallory : Ulrich, Mallory, {Nu, Ulrich, Mallory, Data}{PK(Mallory)}

1. I_Peter -> Peter : Peter, Peter, {Nu, Peter, Peter, Data}{PK(Peter)}

2. Peter -> I_Peter : Peter, Peter, {Nu, Peter, Peter, f(Data)}{PK(Peter)}

The intruder knows Data

Goodbye

The cause of the attack thus seems to be caused by weak mutual authen-
tication.

6.2.8 Protocol v.2

Our final attempt sacrifices the efficiency of the two first attempts, and uses
a total of four messages. The first two attempts to thwart the MIM attack
by having an exchange of encrypted nonces prior to the actual certificate
request and issuance.

Our third attempt:

Table 6.3: Protocol v.2

Message # Direction Message

1 U → P : U, P, (U, P.nu)PP

2 B → A : U, P, (P, U, nu, np))PU

3 U → P : U, P, (U, P, nu, np, data)PP

4 B → A : U, P, (P, U, nu, np, f(data))PU

6.2.9 Analysis v.2

This version of the protocol passes the analysis made by Casper and FDR2.

6.2.10 Discussion

Have we proved anything? In [49] Meadows restates the fact that protocol
security problem is undecidable. Thus we can not prove that a protocol is
secure in general, only that it is immune to attacks under a set of assump-
tions.

A more important issue is whether the author has used the Casper tool
correctly or not. This is the first attempt to analyze protocols outside the
Casper user manual and tutorial. There is a high probability that the author
has missed some finer points on how to effectively use the tools.

51



6.2. PSEUDONYMITY CHAPTER 6. PROTOCOLS

The area that causes most concern, was the inability to model certificate
issuance in a good manner. Here we chose to simulate it by just using a
hash-function on the request. This can have an impact on the result of the
analysis.

The final question is whether or not we have found a new protocol. This
exact protocol is probably new, but it is not a pure pseudonymity protocol in
the sense used here. It looks more like a protocol for general use for issuing
certificates on-line to known users.

52



Chapter 7

Conclusion

7.1 General conclusions

We have shown that storage challenges can be solved in other ways than
tradition approaches. Some new theory on the subject of privacy and ac-
countability has put forth, and been applied to system model presented here.

A proposed protocol for issuance of pseudonyms has been made and an-
alyzed with a tool set for formal analysis. However this protocol is probably
not a pure pseudonymity protocol in our sense, but rather a protocol for
issuance of certificates to known users.

7.2 Answers to research questions

7.2.1 Question 1

How do current systems for distributed computing address storage challenges?

In general we found that current systems do not effectively enforce the
policy that applies to a particular data item after it has been transferred.
There are several security infrastructures available, but few, if any, address
the binding of policy to data items.

7.2.2 Question 2

How can policy be guaranteed to follow the data it controls access to?

We have not shown that we can guarantee that the policy will follow data
in every situation. A system model, survey of the state of the art, and some
theoretical contributions have been made. These can be utilized to explore
this question further. We have shown that it might be possible to create such
systems.

53



7.3. FURTHER WORK CHAPTER 7. CONCLUSION

7.2.3 Question 3

How can security, flexibility, privacy, and accountability all be simultaneously
be achieved for storage in distributed dynamic environments?

In general we have not given a general proof of this. We have demon-
strated, mainly through the system model, that such system can exist.

7.2.4 Question 4

What are the minimal assumptions needed to achieve question two and three?

A complete minimal set of assumptions was not found. However a few as-
sumption is found to be necessary for the overall security for any distributed
dynamic system:

• A trusted and tamper proof processing environment

• At least one trustworthy trusted third party

• Security protocols that are immune against powerful adversaries

In general we can say that any security system rests on the first of these
three assumptions.

7.3 Further work

During our work on this thesis there were many interesting topics that was
not explored. Here we present a summary of the some of them:

• Create a prototype of system model, in particular the sandboxed process-
ing with observers presented in chapter 5.2.

• Explore if a statistical or probabilistic approach to information secu-
rity can create more efficient security models for distributed dynamic
environments.

• Do a more thorough analysis of how agent based storage compares in
security and functionality to other forms of distributed storage.

• Explore how average Jane and average Joe can be educated or em-
powered to make informed decisions on their security needs and risk
acceptance level.

• Explore if it is possible to enumerate or calculate what level of de-
coy messages that are necessary to effectively hide real traffic in an
anonymity network depending on the size and utilization of that net-
work.

54



CHAPTER 7. CONCLUSION 7.3. FURTHER WORK

• Explore how Denial-of-Service attacks can be limited or thwarted in
peer-to-peer networks or in general.

• Reasoning on attack models for non-repudation systems, and possibly
other security areas than just for cryptographic protocols.

55



7.3. FURTHER WORK CHAPTER 7. CONCLUSION

56



Appendix A

Notation

The notations used in this thesis is mainly taken from the notations used in
[87] and [26] combined with influences from numerous other books, reports
and articles.

57



APPENDIX A. NOTATION

Table A.1: Notation

Notation Explenation

X‖Y Concatenation of two messages X and Y .

[X] Message X is optional.

H(X) A one way hash function applied to message
X.

gK(X) An integrity mechanism for message X with
key K.

fx where x ∈ {1, 2, . . . , n} A flag in a message.

SENVK(X) A secure envelope that is generated by us-
ing symmetric cryptographic techniques and
allows the holder of secret key K to authen-
ticate the integrity and origin of message X.

eK(X) Encryption of message X with key K.

dK(X) Decryption of message X with key K.

sSA
(X) Principals A’s digital signature on message X

with the private signature key SA.

SA Principals A’s private signature key.

VA Principals A’s public verification key.

PA Principals A’s public encryption key.

P−

A
Principals A’s private decryption key.

A→ B : X Principal A sends message X to principal B.

A← B : X Principal A recives message X from principal
B.

58



Appendix B

Casper script - Protocol v.1

#Free variables

U, P : Agent

data : Nonce

f : HashFunction

PK : Agent -> PublicKey

SK : Agent -> SecretKey

InverseKeys = (PK, SK)

#Protocol description

0. -> U : P

1. U -> P : U, P, {U, P, data}{PK(P)}

2. P -> U : P, U, {P, U, f(data)}{PK(U)}

#Processes

INITATOR(U, data) knows PK, SK(U)

RESPONDER(P) knows PK, SK(P)

#Specification

Secret(U, data, [P])

Secret(P, data, [U])

Agreement(U, P, [data])

Agreement(P, U, [data])

#Actual variables

Ulrich, Peter, Mallory : Agent

Data : Nonce

#Functions

symbolic PK, SK

#System

INITATOR(Ulrich, Data)

RESPONDER(Peter)

59



APPENDIX B. CASPER SCRIPT - PROTOCOL V.1

#Intruder Information

Intruder = Mallory

IntruderKnowledge = {Ulrich, Peter, Mallory, PK, SK(Mallory)}

60



Appendix C

Casper script - Protocol v.1.1

#Free variables

U, P : Agent

data, nu: Nonce

f : HashFunction

PK : Agent -> PublicKey

SK : Agent -> SecretKey

InverseKeys = (PK, SK)

#Protocol description

0. -> U : P

1. U -> P : U, P, {nu, U, P, data}{PK(P)}

2. P -> U : P, U, {nu, P, U, f(data)}{PK(U)}

#Processes

INITATOR(U, data, nu) knows PK, SK(U)

RESPONDER(P) knows PK, SK(P)

#Specification

Secret(U, data, [P])

Secret(P, data, [U])

Agreement(U, P, [data])

Agreement(P, U, [data])

#Actual variables

Ulrich, Peter, Mallory : Agent

Data, Nu : Nonce

#Functions

symbolic PK, SK

#System

INITATOR(Ulrich, Data, Nu)

RESPONDER(Peter)

61



APPENDIX C. CASPER SCRIPT - PROTOCOL V.1.1

#Intruder Information

Intruder = Mallory

IntruderKnowledge = {Ulrich, Peter, Mallory, PK, SK(Mallory)}

62



Appendix D

Casper script - Protocol v.2

#Free variables

U, P : Agent

data, nu, np : Nonce

f : HashFunction

PK : Agent -> PublicKey

SK : Agent -> SecretKey

InverseKeys = (PK, SK)

#Protocol description

0. -> U : P

1. U -> P : U, P, {U, P, nu}{PK(P)}

2. P -> U : P, U, {P, U, nu, np}{PK(U)}

3. U -> P : U, P, {U, P, nu, np, data}{PK(P)}

4. P -> U : P, U, {P, U, nu, np, f(data)}{PK(U)}

#Processes

INITATOR(U, data, nu) knows PK, SK(U)

RESPONDER(P, np) knows PK, SK(P)

#Specification

Secret(U, data, [P])

Secret(P, data, [U])

Agreement(U, P, [data])

Agreement(P, U, [data])

#Actual variables

Ulrich, Peter, Mallory : Agent

Data, Nu, Np : Nonce

#Functions

symbolic PK, SK

#System

63



APPENDIX D. CASPER SCRIPT - PROTOCOL V.2

INITATOR(Ulrich, Data, Nu)

RESPONDER(Peter, Np)

#Intruder Information

Intruder = Mallory

IntruderKnowledge = {Ulrich, Peter, Mallory, PK, SK(Mallory)}

64



Bibliography

[1] Martín Abadi and Andrew D. Gordon. A calculus for cryptographic
protocols: The spi calculus. In Fourth ACM Conference on Computer
and Communications Security, pages 36–47. ACM Press, 1997.

[2] Ahmar Abbas. Grid Computing: A Practical Guide to Technology and
Applications. Charles River Media, Inc., 2004.

[3] Paul van Oorschot Alfred J. Menezes and Scott Vanstone. Handbook
of Applied Cryptography. Discrete Mathematics and Its Applications.
CRC Press LLC, 1997.

[4] The Globus Alliance. GSI Documentation, June 2004. http://www-
unix.globus.org/toolkit/docs/3.2/gsi/index.html.

[5] Ross Anderson. ‘Trusted Computing’ Frequently Asked Questions, Au-
gust 2003. http://www.cl.cam.ac.uk/ rja14/tcpa-faq.html.

[6] Jan A. Audestad. Telecommunications: Systems, Technologies and Ap-
plications. Telenor Corporate University / Norwegian University of Sci-
ence and Technology (NTNU), 2nd. edition, 2002.

[7] Tønnes Brekne. Encrypted Computation. PhD thesis, Norwegian Uni-
versity of Science and Technology, July 2001.

[8] Michael Burrows, Martín Abadi, and Roger Needham. A logic of au-
thentication, from proceedings of the royal society, volume 426, number
1871, 1989. In William Stallings, Practical Cryptography for Data In-
ternetworks, IEEE Computer Society Press, 1996. 1996.

[9] Butler W. Lampson. A Note on the Confinement Problem. Communi-
cations of the ACM, 16(10):613–615, October 1973.

[10] I. Cervesato. The dolev-yao intruder is the most powerful attacker, 2001.
citeseer.ist.psu.edu/cervesato01dolevyao.html.

[11] Iliano Cervesato. MSR, Access control, and the Most Powerful Attacker.
citeseer.ist.psu.edu/cervesato01msr.html.

65



BIBLIOGRAPHY BIBLIOGRAPHY

[12] Bill Cheswick. An evening with berferd, in which a hacker is lured,
endured, and studied. Proc. Winter USENIX Conference, January 1992.
http://research.lumeta.com/ches/papers/berferd.ps.

[13] H. Christensen and E. Colban (ed.). Information mod-
elling concepts. TINA Baseline, Telecommunications In-
formation Networking Architecture Consortium, April 1995.
http://www.tinac.com/specifications/documents/imc94-public.pdf.

[14] Bram Cohen. The Official BitTorrent Home Page.
http://bitconjurer.org/BitTorrent/, June 2004.

[15] Telecommunications Information Networking Architecture Consortium.
TINA-C Homepage. http://www.tinac.com/, June 2004.

[16] T. Dierks and C. Allen. The TLS Protocol - Version 1.0.
http://www.ietf.org/rfc/rfc2246.txt, January 1999.

[17] Danny Dolev and Andrew C. Yaou. On the Security of Public Key
Protocols. IEEE Transactions on Information Theory, 29(2):198–208,
1983.

[18] Ian Foster (ed.) and Karl Kesselman (ed.). The Grid: Blueprint for a
New Computing Infrastructure. Morgan Kaufmann Publishers/Elseviere
Inc., 2nd. edition, 2004.

[19] Martin Chapman (ed.) and Stefano Montesi. Overall Concepts
and Principles of TINA. Tina baseline, Telecommunications
Information Networking Architecture Consortium, February 1995.
http://www.tinac.com/specifications/documents/overall.pdf.

[20] Ross Callon (ed.). The Twelve Networking Truths. RFC 1925, April
1996.

[21] Donald O’Mahony et al. Electronic Payment Systems for E-Commerce.
Computer Security Series. Artech House, Inc., 2nd edition, 2001.

[22] F. Javier Thayer et al. Mixed strand spaces. In 12th IEEE Computer
Security Foundations Workshop, volume 27(2), pages 72–82. IEEE Com-
puter Society Press, June 1999.

[23] John Gordon et al. Wp05: Mass storage management. Technical Report
DataGrid-05-D5.2-0141-3-4, CERN, SARA, PPARC, February 2002.

[24] Jose A. Onieva et. al. Agent-mediated non-repudiation protocols. Elec-
tronic Commerce Research and Applications, 2004. Article in press.

[25] Joshua D. Guttman et al. Strand Spaces: Why is a Security Protocol
Correct? 1998 IEEE Symposium on Security and Privacy, May 1998.

66



BIBLIOGRAPHY BIBLIOGRAPHY

[26] Peter Ryan et al. The Modelling and Analysis of Security Protocols:
The CSP Approach. Addison-Wesley, 2001.

[27] Robert C. Logsdon et al. Content Based Information Security (CBIS).
White paper / NATO - Allied Command Transformation, 2003.

[28] Willis H. Ware et al. Security Controls for Computer Systems. Tech-
nical report, Defence Science Board Task Force on Computer Security,
February 1970.

[29] Fran Berman et al. (eds.). Grid Computing: Making the Global In-
frastructure a Reality. Wiley Series on Paralell and Distributed Com-
puting. John Wiley & Sons, Ltd., 2003.

[30] Niels Ferguson and Bruce Schneier. A Cryptographic Evaluation of
IPsec. http://www.schneier.com/paper-ipsec.html, 1999.

[31] Niels Ferguson and Bruce Schneier. Practical Cryptography. Wiley Pub-
lishing, Inc., 2003.

[32] M. Gasser, A. Goldstein, C. Kaufman, and B. Lampson. The digital
distributed system security architecture. In Proc. 12th NIST-NCSC
National Computer Security Conference, pages 305–319, 1989.

[33] Dieter Gollman. Computer Security. John Wiley & Sons Ltd, 1999.

[34] Li Gong, Roger Needham, and Raphael Yahalom. Reasoning About Be-
lief in Cryptographic Protocols. In Proceedings 1990 IEEE Symposium
on Research in Security and Privacy, pages 234–248. IEEE Computer
Society, 1990.

[35] Nicolás González-Deleito and Olivier Markowitch. An Optimistic Multi-
party Fair Exchange Protocol with Reduced Trust Requirements. In
Proceedings of the 4th International Conference on Information Security
and Cryptology, volume 2288 of Lecture Notes in Computer Science,
pages 258–267. Springer-Verlag, December 2001.

[36] Nicolás González-Deleito and Olivier Markowitch. Exclusion-Freeness in
Multi-party Exchange Protocols. In Proceedings of the 5th Information
Security Conference, volume 2433 of Lecture Notes in Computer Science,
pages 200–209. Springer-Verlag, September 2002.

[37] C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall,
1985. http://www.usingcsp.com/.

[38] IETF. IP Security Protocol (ipsec) Charter.
http://www.ietf.org/html.charters/ipsec-charter.html, June 2004.

67



BIBLIOGRAPHY BIBLIOGRAPHY

[39] IETF. Transport Layer Security (tls) Charter.
http://www.ietf.org/html.charters/tls-charter.html, June 2004.

[40] David Kahn. The Codebreakers - The Story of Secret Writing. Scribner,
2nd. edition, 1996.

[41] S. Kent and R. Atkinson. Security Architecture for the Internet Proto-
col. http://www.ietf.org/rfc/rfc2401.txt, November 1998.

[42] Steve Kremer and Olivier Markowitch. A multi-party non-repudiation
protocol. pages 271–280. IFIP World Computer Congress, Kluwer Aca-
demic Publishers, August 2000. 15th International Conference on In-
formation Security (SEC 2000).

[43] Steve Kremer and Olivier Markowitch. Optimistic non-repudiable infor-
mation exchange. Lecture Notes in Computer Sciences, 2015:109–122,
December 2000. 3rd International Conference on Information Security
and Cryptology (ICISC 2000).

[44] Gavin Lowe. Breaking and fixing the Needham-Schroeder public-key
protocol using FDR. In Tools and Algorithms for the Construction and
Analysis of Systems (TACAS), volume 1055, pages 147–166. Springer-
Verlag, Berlin Germany, 1996.

[45] Gavin Lowe. Casper: A compiler for the analysis of security protocols.
In PCSFW: Proceedings of The 10th Computer Security Foundations
Workshop. IEEE Computer Society Press, 1997.

[46] Gavin Lowe. Casper: A Compiler for the Analysis of Security Protocols.
http://web.comlab.ox.ac.uk/oucl/work/gavin.lowe/Security/Casper/,
June 2004.

[47] Formal Systems (Europe) Ltd. Formal Systems (Europe) ltd.
http://www.fsel.com/, June 2004.

[48] Matt Bishop. Computer Security : art and science. Pearson Education,
Inc., 2003.

[49] Catherine Meadows. Formal Methods for Crypto-
graphic Protocol Analysis: Emerging Issues and Trends.
http://citeseer.ist.psu.edu/586062.html.

[50] Catherine Meadows. The NRL protocol analyzer: An overview. Journal
of Logic Programming, 26(2):113–131, 1996.

[51] Peter G. Neumann (moderator). The risks digest.
http://www.risks.org/.

[52] Napster, LLC. Napster.com. http://www.napster.com/, June 2004.

68



BIBLIOGRAPHY BIBLIOGRAPHY

[53] United Nations. The Universal Declaration of Human Rights.
http://www.unhchr.ch/udhr/lang/eng.htm, December 1948.

[54] R. M. Needham and M. Schroeder. Using encryption for authentication
in large computer networks. Communications of the ACM, 21(12):993–
999, 1978.

[55] Peter G. Neumann. Homepage.
http://www.csl.sri.com/users/neumann/neumann.html.

[56] Peter G. Neumann. Practical Architectures for Survivable Systems and
Networks.
http://www.csl.sri.com/neumann/survivability.html, June 2000.

[57] University of Liverpool and University of Southampton.
Agentlink.org - European Coordination Action for Agent-Based Com-
puting. http://www.agentlink.org/, June 2004.

[58] OSMB, LLC. Gnutella.com, June 2004. http://www.gnutella.com/.

[59] Charles Pfleeger and Shari Lawrence Pfleeger. Security in Computing.
Pearson Education, Inc., 3rd. edition, 2003.

[60] Plato. The Republic. Translated by Benjamin Jowett,
http://www.constitution.org/pla/republic.htm (June 2004), Circa 360
BC.

[61] Ross Anderson. Security Engineering. John Wiley & Sons, Inc., 2001.

[62] Ross Anderson. Homepage. http://www.cl.cam.ac.uk/users/rja14/,
June 2004.

[63] Elton Saul. SPEAR II Project Summary.
http://www.cs.uct.ac.za/Research/DNA/SPEAR2/, June 2004.

[64] Bruce Schneier. Crypto-Gram Newsletter (April 15, 2004).
http://www.schneier.com/crypto-gram-0404.html.

[65] Bruce Schneier. Crypto-Gram Newsletter (December 15, 2001).
http://www.schneier.com/crypto-gram-0112.html.

[66] Bruce Schneier. Crypto-Gram Newsletter (February 15, 2004).
http://www.schneier.com/crypto-gram-0402.html.

[67] Bruce Schneier. Applied Cryptography. John Wiley & Sons, Inc., 2nd
edition, 1996.

[68] Larry Smarr and Charles E. Catlett. Metacomputing. Communications
of the ACM, 36(6):44–52, 1992.

69



BIBLIOGRAPHY BIBLIOGRAPHY

[69] Olivier Markowitch Steve Kremer and Jianying Zhou. An intensive
survey of fair non-repudiation protocols. Computer Communications,
25:1606–1621, 2002.

[70] Douglas R. Stinson. Cryptography : theory and practice. Chapmann
Hall/CRC, 2nd edition, 2002.

[71] Inc. Sun Microsystems. jxta.org. http://www.jxta.org/, June 2004.

[72] Eun Kyo Park Sungwoo Tak, Yugyung Lee. A software framework for
non-repudation services in electronic commerce based on the internet.
Microprocessors and Microsystems, 27:265–276, 2003.

[73] P. Syverson and P. van Oorschot. On unifying some cryptographic pro-
tocol logics. In Proc. IEEE Symposium on Research in Security and
Privacy, pages 14–28, 1994.

[74] Paul Syverson, Catherine Meadows, and Iliano Cervesato. Dolev-Yao
is no better than Machiavelli.

[75] Doug Szajda, Barry Lawson, and Jason Owen. Hardening Functions for
Large Scale Distributed Computations. In IEEE Symposium on Security
and Privacy. Institute of Electrical and Electronics Engineers, Inc., May
2003.

[76] European Union. Directive 95/46/EC of the European Parliament and
of the Council of 24 October 1995 on the protection of individuals with
regard to the processing of personal data and on the free movement of
such data. In Official Journal L281, pages 31–50. November 1995.

[77] Unknown. Mixmonion: A Type III Anonymous Remailer.
http://www.mixminion.net/, June 2004.

[78] David Wagner and Bruce Schneier. Analysis of the ssl 3.0 protocol. In
The Second USENIX Workshop on Electronic Commerce Proceedings,
pages 29–40, http://www.schneier.com/paper-ssl.html, November 1996.
USENIX Press. Revised April 15, 1997.

[79] Website. Condor Project Homepage. http://www.cs.wisc.edu/condor/,
June 2004.

[80] Website. The datagrid project. http://www.eu-datagrid.org/, June
2004.

[81] Website. Global Grid Forum, June 2004. http://www.ggf.org/.

[82] Website. I2P, June 2004.

70



BIBLIOGRAPHY BIBLIOGRAPHY

[83] Website. Legion: A Worldwide Virtual Computer.
http://legion.virginia.edu/, June 2004.

[84] Website. Mixmaster. http://mixmaster.sourceforge.net/, June 2004.

[85] Website. The Globus Alliance, June 2004. http://www.globus.org/.

[86] Website. The Honeynet Project. http://www.honeynet.org/, June 2004.

[87] Jianying Zhou. Non-repudiation in Electronic Commerce. Artech House
computer security series. Artech House, Inc., 2001.

71



BIBLIOGRAPHY BIBLIOGRAPHY

72



Index

accountability, 10, 18, 20, 22, 23
accountable, 23
adapter, client, 39
adapter, storage, 37, 39
agent, storage, 36, 37, 39
analysis, traffic, 41, 42
anonymity, 18
anonymous, 23
architecture, 35
attacker, Dolev-Yao, 11
authentication, 11

broker, 31

catalog, 33
channel, secure, 38
client, 37, 38
client adapter, 39
conditional accountability, 20
conditional anonymity, 19
confidentiality, 18, 19
confinement, 22
confinement problem, 22
covert channel, 22

Dolev-Yao attacker, 11

fabric, 27
flow patterns, 45

inner sandbox, 36

name resolution, 24
naming, 24
network, 27
non-repudiation, 9, 20, 23

observer, 31, 36

observer, storage, 39
outer sandbox, 36

patterns, flow, 45
privacy, 18, 22, 23
privacy protection, 9
processing, 36
protection, privacy, 9
provider, service, 31
provider, storage, 37, 41
pseudonymity, 9

rule of transitive confinement, 22

sandbox, 36
sandbox, inner, 36
sandbox, outer, 36
secure channel, 38
service, 30
service provider, 31
storage, 18
storage adapter, 37, 39
storage agent, 36, 37, 39
storage observer, 39
storage provider, 37, 41

traffic analysis, 41, 42, 47
transitive confinement, 22
trusted, 32
trusted third party, 32
TTP, 32

user, 29, 37

73




