
HØGSKOLEN
I GJØVIK

Using benchmarking to improve IDS
configurationsNorwegian InformationNorwegian Information

Security Laboratory

NISlab

Morten Tvenge

Institutionen för
Data- och Systemvetenskap

Examensarbete 20 poäng
i data- och systemvetenskap
inom magisterprogrammet i informations- och kommunikations säkerhet,
Kungl Tekniska Högskolan

Examensarbete
Nr 2004-x-164
2002

Using benchmarking to improve IDS configurations

Preface

This MSc thesis is the final project of the Masters course in Information Security at
Gjøvik University College (Høgskolen i Gjøvik)

With my background with a bachelor degree in computer technology it felt natural to
choose a more technical angeled topic. Since many of my fellow students chose
information security from a management perspective, I thought it would be nice to
contribute with a more technical thesis.

IDSs have been of interest since I took a general computer security course in my
bachelor education for more than two years ago. For me, the challenge was to find the
right angle of this thesis, which I have spent a lot of time finding out in the previous fall
semester, and into this spring semester. IDS is a broad topic, and narrowing the research
field has also been a great challenge.

I have always been fascinated by the Open source / GPL environment, by their efforts
and contributions to non-commercial software. Many of them are using their spare time
to work with developing software as a free alternative to more or less expensive
commercial software. I personally believe that many businesses, especially the smaller
ones, can save money using open source software as an alternative. Many does already,
as an example Linux distributions, Web servers, Office applications as well as security
applications are being used.

After searching in some mailing lists on the Internet, I found out that many questions
were like “How can I benchmark my IDS?” and “Is tool X any good when testing an
IDS?” This triggered me into studying of IDS and benchmarking. In this thesis I find it
interesting to see how the Open source / GPL software performs in an IDS
benchmarking setting.

NISlab
Gjøvik University College
Høgskolen i Gjøvik
30.06.04

Morten Tvenge

II

Using benchmarking to improve IDS configurations

Abstract

Benchmarking Intrusion Detection Systems (IDS) can be an important way of finding
out how your IDS performs. As a watchdog against crackers, malicious code and other
potential threats from networks, it is important that you as certain as possible that the
IDS works as intended. High rates of false-positives and false-negatives may undermine
the reasons for using an IDS. False-positives occupies time and resources when the IDS
generates false alerts. Even worse, are the false-negatives, which is all the attacks the
IDS fails to detect. These high rates can make it difficult to justify the use of an IDS.
These error rates may be a consequence of the IDS architecture and how it is
configured.

It is a known fact that configuring an IDS to work properly is difficult, unless you are an
expert in the field. Benchmarking has been for experts only, and the price tag is often
high. If one cannot afford expensive equipment and hiring consultant services, one is
left alone with own skills and experience. Recent work with IDS benchmarking does
not reveal any unified approach for novices with limited resources. There is a jungle of
software to choose from and there are many pitfalls.

So one approach can be to use a benchmark methodology that can focus on testing the
configuration of the IDS. By testing an IDS with different configuration, we can find
witch elements in a configuration that are important to reduce the error rates. Using
existing and free software based on an adequate methodology, this thesis might be an
aid for novices in the work with configuring or benchmark their IDS, with the goal to
improve the configuration reducing error-rates and which may lead to improved security
response and freeing up resources.

III

Using benchmarking to improve IDS configurations

Sammendrag

Benchmarking av Intrusion Detection Systems (IDS) kan være en viktig metode for å
finne ut om IDSen fungerer som den skal. Da IDS fungerer som en vaktbikkje mot
angrep, skadelig programvare eller andre potensielle trusler fra datanettverkene, er det
veldig viktig at IDSen fungerer som den skal. Høye rater av false-positives og false-
negatives kan være en medvirkende årsak til argumentasjon mot å bruke IDS. False-
positives opptar både tid og resurser fra IT personell når IDSen genererer falske
alarmer. False-negatives er enda verre, siden dette er angrep som IDSen ikke klarer å
detektere. Slike feilrater gjør det vanskelig å rettferdiggjøre bruken av IDSer. Årsaken
til slik slike feilrater, kan ligge i begrensingene til IDS-arkitekturen og i
konfigurasjonen.

Å konfigurere en IDS slik at den virker som den skal, kan være vanskelig med mindre
en er ekspert på området. Benchmarking er en metode for hvordan man skal teste en
IDS, og dens funksjonalitet. Benchmarking av IDSer blir stort sett utført av eksperter
med en ganske så stiv prislapp. Hvis en ikke har råd til dyrt utstyr og leie av
konsulenttjenester, er en overlatt til seg selv. Arbeid innen IDS benchmarking gir ikke
noen entydig metode for IT personell og andre amatører med begensede resurser til å
teste IDSer. Det er mye programvare og metodikker å velge mellom, men
sannsynligheten for å lykkes er ikke stor. Det er mange feller som fører til dårlig eller
lite tilstrekkelige resultater.

Måten å angripe det på kan da være å finne en benchmarking metodikk som kan brukes
medfokus på å teste IDSens konfigurasjon. Ved å teste ulike konfigurasjoner av IDSen,
kan vi finne hvilken elementer, eller deler av konfigurasjoen som reduserer feilratene.
Ved å bruke eksisterende og gratis programvare med grunnlag i en god metodikk, kan
denne oppgaven brukes til å hjelpe IT personell og andre med små tilgjengelige
resurser, slik at også denne gruppen kan gjenmnomføre en IDS benchmark selv, eller
som hjelp til å vise hva som bør vektlegges i en IDS konfigurasjon. Dette vil
forhåpentligvis føre til forbedret konfigurasjon, slik at feil-ratene blir redusert, og IT
personellet kan fokusere på andre viktige arbeidsoppgaver.

IV

Using benchmarking to improve IDS configurations

Table of Contents

1. Introduction... 1
1.1 Background...1
1.2 Motivation ... 2
1.3 Problem description and research questions..3
1.4 Stakeholders and target groups... 5
1.5 Research method...5
1.6 Delimitations and assumptions...6
1.7 Thesis layout... 7

2. State of the art in IDS benchmarking..9
2.1 Available benchmarking methodologies.. 9
2.2 Software used in the experiment...10
2.3 Areas with weak literature coverage...10
2.4 Claimed contributions of this work.. 11

3. The Experiment... 12
3.1 Introduction...12
3.2 Brief introduction to the experiment...12
3.3 Benchmarking methods.. 13
3.4 Test environment.. 15
3.5 Methodology and research questions..24
3.6 Test criteria... 27

4. Results and analysis.. 34
4.1 Introduction...34
4.2 Configuration schemes .. 34
4.3 NIDS benchmarking candidates... 37
4.4 Scenario 1: No background traffic..37
4.5 The other scenarios .. 62
4.6 Guideline to IDS configurations... 62

5. General discussion of results and experiences.. 63
5.1 Software ...63
5.2 Benchmarking methodology...68
5.3 Benchmarking IDS configurations... 68

6. Future work .. 70
6.1 Introduction...70
6.2 Methodology...70
6.3 IDS and configuration benchmarking...70
6.4 Testing software..71

7. Conclusions.. 72
7.1 Methodology...72
7.2 IDS and benchmarking configurations .. 72
7.3 Software tools... 73
7.4 Summary...73

Acknowledgments..75
References.. 76
Definitions and commonly used words..81

V

Using benchmarking to improve IDS configurations

Appendix A: Test results.. 1
A.1 Introduction..1
A.2 Configuration scheme 1... 1
A.3 Configuration scheme 2... 6
A.4 Configuration scheme 3... 11
A.5 Configuration scheme 4... 16
A.6 Configuration scheme 5... 21
A.7 Configuration scheme 1 *.. 26

Appendix B: Reliability test..31
B.1 Introduction.. 31
B.2 Reliability test results...32
B.3 Discussion.. 36

Appendix C: Technical problems.. 37
C.1 Introduction..37
C.2 IDS (Snort)...37
C.3 Testing tools...37
C.4 Hardware..37

VI

Using benchmarking to improve IDS configurations

List of figures

Figure 1.1: The model of error rates in an IDS, when reducing the
alert sensitivity and/or increases packet inspection...................................... 4

Figure 3.1: Test scenario with no Internet connection.. 21
Figure 3.2: Test scenario with a traffic generator source... 21
Figure 3.3: Test scenario with real Internet connection.. 22
Figure 3.4: A test scenario where the IDS is tested with several configuration schemes...... 25
Figure 4.1: Comparison chart of the results using Nmap.. 40
Figure 4.2: Comparison chart of the drop rate using Nmap... 42
Figure 4.3: Comparison chart of the results using Nessus... 43
Figure 4.4: Comparison chart of the drop rate using Nessus.. 44
Figure 4.5: Comparison chart of the results using Snot.. 44
Figure 4.6: Comparison chart of the drop rate using Snot... 45
Figure 4.7: Comparison chart of the results using Nikto... 46
Figure 4.8: Comparison chart of the drop rate using Nikto.. 46
Figure 4.9: Comparison chart of the results using Fragroute with Snot............................ 47
Figure 4.10: Comparison chart of the results using Fragroute with Nmap.......................... 48
Figure 4.11: Comparison chart of the results using Fragroute with Nikto........................... 48
Figure 4.12: Comparison chart of the drop rate using Fragroute with its tools.................... 49
Figure 4.13: Comparison chart of the results using IDSwakeup....................................... 50
Figure 4.14: Comparison chart of the drop rate using IDSwakeup.................................... 51
Figure 4.15: Comparison chart of the results using Shellcode exploits.............................. 51
Figure 4.16: Comparison chart of the drop rate using Shellcode exploits........................... 52
Figure 4.17: Comparison chart of the results using ISIC.. 53
Figure 4.18: Comparison chart of the drop rate using ISIC... 53
Figure 4.19: Comparison chart of the results using Nmap.. 54
Figure 4.20: Comparison chart of the results using Nessus... 55
Figure 4.21: Comparison chart of the results using Snot.. 56
Figure 4.22: Comparison chart of the results using Nikto... 56
Figure 4.23: Comparison chart of the results using Fragroute.. 57
Figure 4.24: Comparison chart of the results using IDSwakeup....................................... 58
Figure 4.25: Comparison chart of the results using Shellcode exploits.............................. 59
Figure 4.26: Comparison chart of the results using ISIC.. 59
Figure 4.27: Conclusive lines based on the results from the IDS benchmarking.................. 60

Appendix:
Figure B.1: Graphical view of Examined packets by the IDS compared to average value.... 33
Figure B.2: Graphical view of Packets dropped by the IDS compared to average value...... 34
Figure B.3: Graphical view of Drop rate of packets in % by the IDS compared to the

average value.. 34
Figure B.4: Graphical view of Nr of Alerts detected by the IDS compared to the average

value... 35

VII

Using benchmarking to improve IDS configurations

VIII

Using benchmarking to improve IDS configurations

1. Introduction

1.1 Background

IDSs1 have been around for many years now. From the most basic, the IDSs have
evolved to sophisticated security software. Axelsson describes the techniques and
taxonomy in [19] and [20].

Commercial enterprises are developing many of the IDSs on the market today. The
support services for the IDSs are aiding their customers in the work with configuration.
Several companies have specialized themselves in IDS benchmarking, and this can be
very useful to validate that the IDS performs according to its specification or in a
certification process. IDS benchmarking is also useful after deployment, to ensure it
meets the operational requirements on the network. Especially in security critical
organisations IDSs can be a part of the efforts made as result of a risk analysis, where
the security requirements are higher. Benchmarking can be a time consuming and
expensive affair. Not all companies have money to spare to use on such consulting
services.

The security requirements varies from business to business, based on type of business
and which information it stores and processes. IT staff probably want more budget
fundings to increase security from top management, since acquiring information
security very often is expensive [22]. When budgets are tight, one have to gain most
security for each $. In such situations, commercial IDS and especially consultant
services as IDS benchmarking or support services, will probably be a too big expense
post, and it may be questionable if the effect are wroth its costs.

As an alternative to commercial IDSs, there are a number of IDS free of charge and
based on the following types of licences:

• Open source licences (http://www.opensource.org)
• GPL licences (http://www.gnu.org/copyleft/gpl.html)
• BSD licences (http://www.opensource.org/licenses/bsd-license.php)
• Freeware

Software released and published with either of these licences, are free to use and modify
as long as the licence type is followed. Today there are several IDSs, and of course other
types of software available under these licences. Open source IDS software usually have
no support directly from the vendor, except How-tos, mailinglists or other information
sources found on the Internet or other information channels.

Benchmarking of IDSs, have been of great interest since mid 90's. This we can see from
the the number of papers within IDS topic. Ideally, benchmarking can aid the work with

1Intrusion Detection Systems

1

Using benchmarking to improve IDS configurations

picking the right IDS, but it can also be valuable after deployment to see if it works
somewhat as planned or intended.

IDS benchmarking is often executed by consultant services, like NFR security,
Neohapsis and many others. Other work with IDS benchmarks are funded for
governmental purposes, like the DARPHA project [6], as an example. So if consulting
services are to expensive, and other projects are not fully open, one really have no
options than doing it self. The job with evaluating IDSs for can be a difficult [1], and if
one is no expert in the field, the are so many pitfalls that the result can be most often be
less than adequate.

1.2 Motivation

The goal itself, is not that everyone must, or should, benchmark their IDSs. It all
depends on what needs and requirement the business has. But if one choose to have an
IDS in the network, it ought to work as good as possible. Based on Ranum in [1] and
[16], the main challenges for IDSs are:

• False-positives, alerts of an intrusion detection that is not real
• False-negatives, attacks that are not detected by the IDS

How the IDSs deals with this, is anchored in the architecture and how the IDSs is
configured. To test or benchmark an IDS, one could just pick a testing software out of
the blue, but the result might not be in harmony with the reality. If a benchmarking
methodology is used, this helps as a guideline, given that the methodology is adequate,
to test the important aspects of an IDS's functionality. Its intention is to increase the
quality of the work when we are testing an IDS, so that the results can be as good as
possible.

When using an IDS, it is not desirable that the IDS occupy unnecessary resources of the
work force, where they use hours of scanning IDS logs and alerts. Most of them
probably are fake2. To achieve lesser working hours with the IDSs, one must reduce
rates of false negatives and false-positives, so that the IDS gives most performance for
lesser effort. One approach could be to reduce the IDS sensors alert sensitivity, but this
again will increase the risk of false-negatives, which might be much worse than false
positives. False positives leads to more work analyzing the IDS alert logs, and occupies
time and resources. False negatives on the other hand, is an attack that goes unnoticed. It
may not necessary lead to a security break, but reactive countermeasures cannot be
taken, of either the IDS or IT staff.

Therefore one must find a way in the middle. If an IDS architecture is already chosen,
the IDS configuration may be a suitable place to alter the baseline for false positive and
false negative rates. There are, as I am aware of, no publically open IDS benchmark that

2 False positives

2

Using benchmarking to improve IDS configurations

are dealing specific with testing different IDS configurations to see how the IDS
performs under different configuration. By doing this, we hopefully can pinpoint what
elements of an IDS configuration that gives the lowest error-rates. This increases
efficiency in resource use, as well as the IDS is doing up to the best the architecture can
perform. Configuring an IDS to work with low rates of false-negatives and false-
positives is not always easy, and it require some skills and experience [16].

When searching the Internet in the topic of IDS benchmarking, the questions asked on
mailing lists, like [31] and others, are quite often “What tool should I use when testing
my IDS?”, “Is tool X any good?” or “Where can I find relevant literature?”, “What
testing methodologies shout I use?”.These questions arise when one is in the process of
testing and evaluating an IDS. It is clear that people responsible for performing an IDS
benchmark has too little knowledge and need something to guide them with the steps
when benchmarking their IDS. Therefore the motivation of this work, is to help the
inexperienced IT staff or system administrators that have deployed their IDS3, and is not
happy with its performance due to high false positive rates, and wants to find out how
they can use benchmarking to improve its performance, due to configuration changes.
By improving performance, it is in this thesis defined as reducing the number of false
positives and enlighten the aspects of false negative rates. Better performing IDSs might
reduce work load for IT staff and maybe contribute to a better understanding of the
results generated by the IDS.

In a bigger scale, this work might contribute to focussing on a more standardized
approach on IDS benchmarking, and also be useful to IDS users on the work with
configuring an IDS to perform better.

1.3 Problem description and research questions

In order to answer the problems raised in this thesis, we have to find out with an
existing benchmarking methodology how we can benchmark an IDS. To be able to see
improvements in performance, the benchmarking should focussing on testing several
configurations so that the results can be compared. The differences in the benchmarking
results may be an indicator of how good the changes in the configuration were, and what
good effect on performance such change might give.

The changes have to be based on the IDS's reaction to testing tool based on the
benchmarking methodology. The number of alarms or alerts raised have to be compared
based on which configuration the IDS is configured with. From the alerts we have to
find more information whether it is a genuine attack, a false positive, or if it is possible
to determine some false negatives. The decisions must be made based on the
characteristics of the tools used to benchmark the IDS.

3 Mainly a free of charge IDS, but also cheaper commercial IDSs where support services are too
expensive.

3

Using benchmarking to improve IDS configurations

The goal of which results that are ideal, is shown in Figure 1.1, where the results should
be somewhere near where the false positive rate and false negative rate crosses. The
figure is derived from Ranum's figure in [16]. Please note that that only is a model for
illustration and understanding of the concept, and is not a exact scientific model. When
the configuration is changed by, as an example, detection sensitivity the false positive
rate might drop when reducing detection sensitivity. But if this sensitivity is to low, real
attacks might be missed, and the false negative rate will increase. The idea of using
configuration changes together with benchmark, is just to tune performance closer to
where the two rates crosses. The benchmarking results will be a pinpoint to in what
direction the results move.

Figure 1.1: The model of error rates in an IDS, when reducing

the alert sensitivity and/or increases packet inspection.

With benchmarking of the IDS configurations, it is desired to find some elements of the
configuration that can be aiding a configuration of an IDS, and maybe a corner stone for
the work with configuration guides.

This reveals three main sections of information it is necessary to find out :

• Available benchmarking methods
• Important configuration test criteria based on the methodology
• Existing penetration tests used on IDSs, i.e. tools used for testing

Of this the following research questions are essential:

• To what extent can benchmarking be used to improve IDS configurations
• To what extent is this approach in IDS benchmarking useful
• Which benchmarking methodologies may be suitable
• What are the advantages and weak sides of the chosen methodology and software

4

False-negatives
 (red)

False-positives
 (yellow)

Using benchmarking to improve IDS configurations

• Based on the methodology, what software can be used
• If we use freely available testing software, are they adequate according to the

methodology
• How can the different configurations be classified to ease comparison among

other IDSs
• To what extent can IDS benchmarking be used in a IDS configuration guide
• Which elements of the configuration gives better performance for lesser tuning
• How can we trust the results

1.4 Stakeholders and target groups

This thesis is aimed to IT staff and decision makers in smaller businesses that wishes to
deploy an open source / GPL / BSD licensed or freeware IDS where it is desirable to
find out how the IDS performs, and what can be done to improve its performance.

People that are working with IDS benchmarking or writing tools for security penetration
testing may also find this thesis interesting.

1.5 Research method

In order to be able to find answer to the research questions, it is necessary to use one ore
more scientific techniques. These will provide methods using existing research and
gaining new knowledge with this work. Based on the research questions in section in
section 1.3, the methods are selected to how these can be most useful gaining the
answers needed. The method is based on information and guidance in [26].

In the this thesis, it will be natural to use an qualitative experiment, a quasi experiment,
to find the answers we need. The experiment is used to see if the concept and a way of
thinking when performing an IDS benchmarking with the main goal to improve the
configuration of an IDS, really is applicable and meaningful. The qualitative approach is
due to the fact that work with IDS benchmarking is time consuming. There are not
enough time within the limits of this thesis work, to perform enough tests to get the
statistical material, as of an quantitative approach. If a quantitative approach had been
used, as far as I can see, every single configuration benchmark should have been tested a
vast amount of repeatable times to get any statistical material. Since there are many
possible configurations and limited time, such approach is not possible within the scope
of this thesis. When benchmarking an IDS, a selection of configurations has to be
chosen. I theory, the number of possible configurations is enormous, due to many
configuration options. Therefore a little selection of possible configurations will be used
in the testing to see if it is possible to identify an track changes in the results and find
out what configuration that was the reason for this change.

5

Using benchmarking to improve IDS configurations

The practical sides experiment is based on setting up an test environment with
computers, so that the IDS can be installed and configured on a machine and tested
with its various configurations. More details are described in chapter 3.

To get a pinpoint on the reliability of the testing results, as little quantitative experiment
will be used. The base for this is using a tool and a configuration and run the test 40
times to see the distribution of alerts an error rates presented by the IDS. This
experiment will be used when analyzing to what extent we can trust the results and how
repeatable they are.

To find an adequate benchmarking, related work must be found. Citeceer and Google
are the primary information sources, supplied with literature from library and own
technical books. The idea is find a methodology, that is suitable for the targets:

• Opensource/BSD/Freeware licensed software, both IDS and testing tools
• Not to complex, and preferably suited for IDS or network security devices.
• Not to specific for a certain kind of IDS
• Completely open for public view
• Based on experiences and best practices

To be able to put a benchmark into a real IDS test, software must be used. The software
is found mainly by google. Recommendations from previous work will be evaluated, as
well as own experiences, and recommendations from mailinglists and forums on the
Internet.

To make a complete survey on benchmarking and available tools, is too extensive in this
thesis, therefore a brief “dive” in the most common and popular research material will
be taken. Of course, better methodologies and especially tools will probably be
developed in the future, and this can be enhanced into this work, unless it's radically
changed in completely new way to think of IDS benchmarking.

1.6 Delimitations and assumptions

The topic IDS may seem narrow most people. The fact is that it is not. There are Host
based IDSs (HIDS), Network based IDSs (NIDS), Network Node IDSs (NNIDS) [1],
and there are different approaches in the detecting technologies, like signature based,
anomaly based and audit records [8]. In addition, there are many IDSs on the market
today, both commercial and of non profit licenses. To cover all these types of IDSs is a
tremendous amount, and expensive work. As a graduate student with limited time and
resources, it will be a too wide research area. Therefore I have chosen to narrow the
research topic to intrusion detection based on network traffic. Due to limited resources, I
will concentrate on the freely available NIDSs. Hereby NIDS will also be referred to as
IDS, but notice the real difference between these two.

6

Using benchmarking to improve IDS configurations

When it comes to the testing tools, there are also limited to open source / BSD/ GPL
licences or freeware. This might lead to more complicated testing, with the challenges
that follows, since more complete test suites for IDSs are commercial.

The test environment used for testing IDSs and their configurations, are also limited,
due to lack of computers and access to network devices as routers, authentic servers or
authentic networks.

Due to these limitations, I believe it is important to show that benchmarking can be
done with limited resources, by starting on the work with creating a more standardized
method for benchmarking IDSs. Limited time might reduce the width and depth in
proving that this can be done. Event though if the result details are not complete, the
method to produce the results will be provided so that test settings and further results
can be reproduced.

In the latest years there has been a lot of discussion whether IDS really are useful, as in
[23]. Benchmarking also has weaknesses , but none of these discussions are covered in
this thesis because this thesis are intended to address the technical challenges of
benchmarking after the decision to deploy an IDS have been taken.

The organisational consequences and aspects of an IDS is not covered in this thesis.
Though this might be as well as important as the IDS performance itself, this is not a
part of the scope of the thesis. Here we inspect the technical sides of the IDS.

1.7 Thesis layout

Chapter 1 Introduction

General information about the research goals and methods, also background and
motivation of the work is presented.

Chapter 2 State of the art in IDS benchmarking

A presentation of the existing research material available. This is used as the theoretical
base for
methodologies and techniques. The chapter also describes this work's contribution.

Chapter 3 The experiment

A detailed presentation of the test experiment. This includes choice of methodologies
and choice of software. The chapter should describe most aspects of the practical
settings of the experiment, along with choices and delimitations. The intention is to
show how the work can be reproduced and used in later research.

7

Using benchmarking to improve IDS configurations

Chapter 4 Results

This chapter presents the output and results of the experiment The results are
commented and discussed, where the reasons for some deviations are explained. Some
of the research questions will be answered in this chapter.

Chapter 5 Discussion of the results

Interpretations of the work. Discussion of the results at a higher level, where objectivity
and critical angling of the results are important.

Chapter 6 Future work

Due to the broad topic, and thereby delimitations, it is natural that this work leads to
further research. The chapter presents what could be done better, and pinpoints
subtopics that needs to be further developed.

Chapter 7 Conclusions
Evaluation of the work. Sums up whether the research questions have been answered,
and if this works contributes to the IDS research as intended. Some of the more general
research questions will also be answered here

Appendix A Test results
The detailed results from the IDS testing. For special interested this appendix might be
used the context of understanding the results and presentations in chapter 4.

Appendix B: Reliability test
This is the results and discussion of small experiment describing the reliability of the
results.

Appendix C: Technical problems
Review of some technical problems encounted during this work.

8

Using benchmarking to improve IDS configurations

2. State of the art in IDS benchmarking

2.1 Available benchmarking methodologies

There are several IDS benchmarking methodologies, [5], [21], [24] and [6] as
examples of some previous work. Puketza, Zhang, Chung, Mukherjee and Olsson [5]
has developed a methodology for benchmarking IDSs. This has been a reference in
many projects in IDS benchmarking. However, this is 8 years old, and is not general
enough to be used as methodology. Although, it has some elements of their experience
that is useful. It will show an example of IDS testing in real life, not just a method on
the paper. Their experience, and the work with the DARPHA off-line Intrusion
Detection Evaluation [6] will aid the work with utilizing a methodology into a real-life
test. This work is not public, so it will not be used directly as a methodology, but some
of their experiences will come in handy. Ranum has written some good papers, [1] and
[16], dealing with pitfalls and common errors when benchmarking IDSs, based on
experiences in his career with benchmarking IDSs. Axelsson, [17], [19] and [20], has
contributed with issues in benchmarking, and with definitions and useful taxonomy.
The work of Ranum and Axelsson will be very helpful in avoiding some of the most
common errors done in IDS benchmarks, especially when drawing conclusive lines.
There are also some other work with benchmarking, but either they are not general
enough, or they are written for anomaly intrusion detection, like Maxion and Tan [27] .
But the interest of this article lies in the fact that it presents a benchmarking method that
hopefully enlightens aspects of benchmarking principles of IDSs

There is a lack of a unified and simpler approach in benchmarking IDSs. Some of the
benchmarks are inadequate, or too specialised for a specific setting. If one should
directly use more formal methods, the Common Criteria [25] could be an alternative.
But after my opinion, these are probably too complex for other than specialized
consulting businesses. A methodology that is somewhat in the middle, anchored in good
security practice, and has a relatively low learning threshold together with a general
approach that suits av wide range of IDS, is preferable. Research on mailinglists on the
Internet, like [31], the OSEC NIDS [3] test criteria and OSSTM [2] have been
recommended. These will be the methodology base for the work in this thesis. They are
further described in chapter 3.

9

Using benchmarking to improve IDS configurations

2.2 Software used in the experiment

In order to actually perform a test on an IDS, testing software are being used. From the
methodology, we can discover what to test on the IDS, and thereof pick out suitable
software to be used. There are a lack of good and complete testing software. Nidsbench
[9], is an effort to create such suite. Puketza, Zhang, Chung, Mukherjee and Olsson has
also deployed a test suite together with their methodology in 96. But these are not
general enough, and is also quite old. Otherwise there are numerous single tools
available, that are licensed as mentioned in previous chapter. There are also a lot of
commercial tools available, as example IDS informer from Blade Software, but
commercial IDSs is not a scope in this thesis. The goal is to find everything we need of
software that is free to use. A presentation of the software used in this theisis

2.3 Areas with weak literature coverage

There is a lack of a unified method for testing intrusion detection systems, a method that
is commonly accepted as an adequate method, with a set of tools can test all the
elements described in the methodology. Many methodologies have been presented, but
they are are not directly usable within the goals of the thesis. One problem is that many
of the experienced people working with IDS benchmarking use proprietary methods or
the more complex formal methods like Common Criteria [25]. When testing an IDS for
businesses with low resources, economy is important, and s simple methodology that is
understandable for other than experts is necessary. Hopefully the methodology used in
the thesis, will have such qualities.

There is a tremendous amount of tools available for security penetration testing. Though
some are good, many others are not so good. Many also have the same or partially the
same functionality. Without a good methodology for testing, it is hard to find the right
software. There is currently a lack of IDS testing suites, so this has to be created
according to what software exists and what is needed based on methodology. Some of
the software is old. I the worst cases, it probably wont compile on newer operating
systems.

Another problem with IDS testing, is that there are detected new security breaches every
day, and therefore it is difficult to stay up-to-date with all the latest attack patterns in a
penetration test. Therefore it is smarter to concentrate the testing on general types of
attack instead of dealing with all the latest specialized attacks. This also gives this work
more validity in the future, if the methodology tests if IDS can detect common and
general techniques used in most attacks.

10

Using benchmarking to improve IDS configurations

2.4 Claimed contributions of this work

Existing literature provides information about methods and principles of how to
benchmark and test IDSs. There are several ways of doing this according to previous
work. The work with this thesis will provide new information and knowledge in areas
that have not been covered before. These areas are basically :

• Based on a methodology, this thesis will present a way to benchmark the different
configuration of an IDS. I have not found any IDS benchmarks that explicit
concentrates on different IDS configurations.

• This work will hopefully aid IT staff with very limited budgets with benchmarking
and maybe improving their IDS configuration, because this work might help the
process of pinpointing what elements in an IDS configuration that leads to better
performance of the IDS. At best the consequences might be lesser false-positives and
false-negatives.

• This work also will be a further step in the process of standardizing benchmarking of
IDSs, which, after my experience and many other in the literature's opinion, is almost
absent.

11

Using benchmarking to improve IDS configurations

3. The Experiment

3.1 Introduction

This chapter describes methods used in the work with testing IDSs. The methods used
here are based on related work on IDS benchmarking. Basing this work on previous
methods and principles, will hopefully help avoiding some pitfalls and flaws done in
previous IDS testing. As an red line for this, Marcus J. Ranums work in [1].

This chapter will also cover details on the test setup. This includes hardware
configuration of network and computers used in the test scenario. Which operating
system and what services running on them will also be discussed. Choice of software,
both IDS and attacker/testing software will be described. Based on the method and
research questions it will also be presented what elements in an IDS to test. All this is
essential to create a test scenario that gives as good results as possible, and so that the
results can be reproduced in later experiments.

3.2 Brief introduction to the experiment

The main goal of this experiment, is to see how one can use benchmarking to improve
an IDS configuration. To do this, first a suitable benchmarking methodology has to be
chosen. Then a computer network has to be established as a test environment. At least
three roles has to be possessed; an attacker, a honeypot and an IDS.

Based on a methodology, software has to be picked out. It should be open source /
GPL / BSD licensed or freeware. The software should cover the aspects of an IDS
testing presented in the methodology, as good as possible. The IDS used should also be
based on free software. The software tools should run from the attacker machine. The
honeypot will be installed with several services like web, ftp, ssh, etc. to simulate a host
that contains something an attacker wants or wants to abuse. The IDS should be set up
with a configuration X. Then then attacker runs the software tools, and we register how
many attacks the IDS detects. Thereafter, we make some changes to the IDS
configuration and run the software tools once more, and register the results. This
procedure have to be done several times. At the end we have IDS benchmark results
from many different configurations. Now we can look after variations in the results. If
we see positive effects in results from one configuration compared to another, this might
indicate that we have found a parameter in the configuration that might be a improving
factor of the configuration.

12

Using benchmarking to improve IDS configurations

3.3 Benchmarking methods

3.3.1. Why using a benchmarking methodology

Ranum's experiences in IDS benchmarking, described in [1], proves that it is easy and
very common to create poorly designed benchmarks. They often suffer from inadequate
validity, i.e. the results from what we are measuring or testing is not really what we
should measure. As an example, lets say we are measuring the throughput of an IDS. In
this case it would be natural to have a load generator that simulates network traffic.
From the test results we get a throughput of some Mb/s. But what if the IDS throw away
packets if it is under heavy load? If this is not dealed with in the test, we probably are
not measuring what we hoped for, and therefore might be fooled to believe that the IDS
has greater throughput than it really has. This is one trivial pitfall out of many that may
lead to insufficient and results that might be a bad representation of reality.

In the literature there are a lot of benchmarking methodologies. So which one should be
used? The choice relies on either to develop a new methodology that is tailor made for
the IDS that is to be tested, or an existing benchmarking methodology can be used. The
methodology might not be 100% compatible for every needs, so some tuning will
probably have to be done. In this thesis I have chosen to base the work on existing
methodologies, so that the focus can be more concentrated on the testing. By using an
existing benchmark methodology, previous work and experiences can be utilized
through these methodologies. The point would be to choose a methodology that is
widely used, and should be based on known “best practices” and industry standards, e.g.
ISO or similar.

I have chosen the benchmarking methodology based on 2 methodologies:

1. OSSTM 2.1 (Open Source Security Testing Methodology)
2. OSEC (Open Security Evaluation Criteria)

These are mainly chosen because they are open for everyone, not only to use, but also to
contribution and experiences. As a parallel to open-source and GPL based software,
communities can be a part of evolving the products in a hopefully positive direction, as
described in [4]. In addition, some important elements in IDS testing from [15], will
also be used in creating an adapted methodology for this thesis.

3.3.2. OSSTM 2.1

The Open Source Security Testing Methodology [2] is the result of the work of
ISECOM (Institute for Security and Open Methodologies), managed by director Pete
Herzog. ISECOM is the initiative taker for assembling this security benchmark
methodology for benchmarking security products, as firewalls, IDSs and many other

13

Using benchmarking to improve IDS configurations

security and network devices. Herzog pinpoints that although the test sheets in this
manual [2], are not revolutionary, it is as a whole, a benchmark for the security testing
profession. The goal of this manual is to be an wide accepted benchmarking
methodology for security testing. The advantages of using OSSTM are many, but the
most appealing are its foundation in best practices from ISO 7799/ISO 17799, NIST,
MITRE, SET and many others. In addition it is founded on several legislation acts in
information security and personal data protection from western countries like USA,
Germany, UK, Australia and Spain. See [2] for the complete list. Even though this broad
foundation on best practices and legislation, it is not a guarantee for success. Therefore
one must treat this methodology as a guideline. One other strong advantage of using this
methodology is that even though ISECOM4 is responsible for updating the manual,
everyone can access and use the methodology. Everyone can contribute on this
methodology, either as constructive criticism, or added contribution of own experiences.
By this, the methodology can evolve to something better on everyones experience in the
information security profession.

3.3.3. OSEC

OSEC, Open Security Evaluation Criteria [3], is a similar project of open security
evaluation. This is very similar to OSSTM, described above, but is concentrated on
security products, mainly NIDS and firewalls. Its initiative taker is Neohapsis
(http://www.neohapsis.com), a company with years of experience in security consulting
and product testing. OSEC is driven by the lack of standardized methods in evaluating
security products. OSEC is based on the company's years of experience. But the most
important is that OSEC is open for all to use and review. As OSSTM OSEC evolves by
constructive criticism and contributions of other companies, end-users and security
communities. In this thesis, OSECs NIDS testing criteria will aid, together with the IDS
section of OSSTM to give a benchmark based on best practices and others experience in
IDS testing. The OSEC criteria can also be used in certification processes of network
equipment. The criteria is structured in a checklist of what to examine of the IDS. The
checklist is quite detailed. What software to use is not mentioned, except of some few
tests requiring some specific tools. The tools mentioned suits the license goals of this
thesis. The OSEC criteria are more detailed, and will be used more directly than
OSSTM. OSSTM also has a list of important factors, but is not so detailed.

4http://www.isecom.org

14

Using benchmarking to improve IDS configurations

3.4 Test environment

3.4.1. Delimitations

Due to my limited resources, a test network as OSEC and OSSTM describes in [2] and
[3], cannot be achieved. With the resources available, I have 3 computer, a hub and an
unfiltered Internet connection. Despite that Ranum in [1] claims that a successful IDS
testing relies on large investments in infrastructure and time, this is not something I can
achieve with my resources. So I have to do the best out of the equipment that I have
access to.

Most IDS tests are concerned of the speed and throughput performance of the IDS,
according to Ranum in [16]. This means the traffic capacity of the IDS, which are most
important for NIDS because they are based on analyzing network traffic. But in this
thesis, speed will not be focused on, due to that this might not be an important issue in
smaller businesses where the flow of data traffic is statistically lesser than in bigger
networks. In bigger networks commercial IDSs are more likely used, and capacity is of
greater importance in such environment. In addition, the machine hosting the IDS in this
experiment, is fairly slow, and this will most certainly be a bottleneck in a
speed/capacity test. But it is interesting to see how the IDSs performs when there are
limited computational power available.

In this thesis usability and user-friendliness are not a important factor and goal for the
testing. It is sure that usability and user-friendliness is important for end users, e.g.
system administrator and decision makers, in order to get a right response to an
intrusion alert. This is mentioned by S. Axelsson in [17]. The reason for not focusing
on these elements is that I chosen to concentrate on dealing with the detection
capabilities of the IDS sensor.

3.4.2. Network properties
The network used in this test environment, consists of :

• One separated and unfiltered Internet connection with its own subnet, switched
Ethernet connection.

• A “3com OfficeConnect Dual Speed Hub 8” used when not connected to the
Internet

According to the methodologies mentioned in [1], [2], [3], [5] and [6], background
traffic is an important element when testing IDSs. Therefore In the test setting, the IDS
should be tested with:

• No background traffic to easier determine false negatives

15

Using benchmarking to improve IDS configurations

• Generated background traffic to check for false positives in addition to the traffic
from the software tools

• True network traffic connected to the Internet

It is not very likely that hosts are not protected by any firewalls, but in this test, it will be
interesting to see how the test results may vary according to the type of background
traffic.

3.4.3. Hardware

The equipment available to me in the testbed is the following hardware:

2 stationary computers with the following hardware:

• Intel Pentium II 266 MHz
• 64 MB RAM
• 4 GB SCSI hard drive
• CD-ROM
• Network Interface Card

1 laptop with following hardware:

• Intel Celeron 400 MHz
• 192 MB RAM
• 20 GB 4200 RPM IDE hard drive
• CD-ROM
• PCMCIA Network Interface Card

These computers are certainly not state-of-the-art, and probably not what smaller
businesses uses5, but these are the only available to me for now. I will also be
interesting to see how these relatively slow machines perform during the tests.

3.4.4. Software

3.4.4.1. About the choices

In this thesis, I have chosen to use open-source / GPL / BSD licensed software or
freeware. One of the reasons for this, is my own limited resources and the target group is
smaller businesses that have a tight economical budget, that cannot afford expensive

5or anyone at all

16

Using benchmarking to improve IDS configurations

investments in information security and especially here, IDSs.

Many of the smaller businesses have very few employees in IT staff, due to limited
budgets. In addition, the skilled people are often engaged in larger companies, where
salaries are higher due to larger budgets and better economy.
Therefore I choose to install common software from the open-source community that it
is most likely to choose, both because of no buying costs and the availability of the
software. The availability is here meant as how easy it is to get hold on the software, as
example by using the common search engines on the Internet.

3.4.4.2. Operating system

Fedora Core release 16, previously known as the workstation edition of Redhat Linux.
This operating system will be used on all 3 computers. According to Distrowatch [7],
Fedora is the most popular Linux distribution the last year. This is not a scientific
survey, more a hit counter for the distributions web pages. There are no recent scientific
surveys on this at the moment that are of recent date. But anyhow it gives a pinpoint,
and backs up the idea that Fedora included former Red Hat, is one of the most popular,
if not the most popular, Linux distribution in the spring of 2004. In addition former Red
Hat and now Fedora is widely supported and compatible by software vendors. This
make Fedora a reasonable choice in operating system.

3.4.4.3. IDS software

The choice of IDS software relies on one of the principles in this thesis, to use open
source/GPL/BSD licensed software or freeware. This also include the IDS software
itself. There are many types of IDS software to choose from, but with the commercial
ones ruled out, the amount is getting quite smaller. The most commonly used IDSs
available will be the most interesting to uses, since the results from this work might be
of greater interest. But in addition, it also would be interesting to see how a so called
simple and trivial IDS will perform in the testing. This might tell us if it is needed to use
the most complex and advanced IDS on the market, or if it is sufficient with a more
simple and more easy managed IDS.

There are also several types of IDS detection techniques, according to Stallings in [8].
Audit records, statistical anomaly detection, rule based detection and distributed
intrusion. In this thesis I have limited the detection techniques to mainly cover rule
based detection, also known as signature based. By doing this, I can get a small and well
arranged group of test candidates. I prefer to test each IDS candidate more thoroughly if
the time allows, instead of a more shallow test of several more IDSs. Time is limited, so
for this thesis I will try to cover at least 1 IDSs, hopefully more.

6Codename Yarrow

17

Using benchmarking to improve IDS configurations

Therefore I have chosen following IDS:

1. Snort
(http://www.snort.org)

IDS evaluated as possible candidates but not tested. These are candidates of further
work based on this thesis:

1. Prelude Hybrid IDS
(http://www.prelude-ids.org)

2. BRO, A system for detecting network intruders in real-time,
(http://www.icir.org/vern/bro-info.html)

3. Libnids based IDS
(http://libnids.sourceforge.net/)

4. Firestorm NIDS,
(http://www.scaramanga.co.uk/firestorm/)

5. Shoki (NIDS),
(http://shoki.sourceforge.net/)

6. Tamandua NID (NIDS),
(http://tamandua.axur.org/)

3.4.4.4. IDS testing tools

There are some IDS test suites on the market, but they are commercial. To follow the
open-source/GPL license principles of the goals of this thesis, one must choose among
the tools within this kind of license, or at least as freeware. There is no available
package of tools that tests all aspects of an IDS, as far as I have discovered. Song and
Undy [9] confirms that there are a lack of such tools. Fortunately there are many stand-
alone tools that can test one or more attributes of the IDS. Therefore we have to use the
methodology to find out which element of the IDS we shall test, and which test tools
that can match and test the current property. Based on the methodology we can build up
our own test suite of separately available software. The choice of tools will be presented
in chapter 3.5.2

3.4.4.5. Running services

To attract attackers, at least one host has to run interesting services7. Ideally the services
should be run on different hosts. This is probably the most common in real life based on
speed and availability of the services. This is especially the case of larger companies
with quite heavy traffic load. Though some smaller businesses might have several
services running on a machine, due to small budgets. It is not unlikely to imagine that

7 This means something that in one or another way can be abused.

18

Using benchmarking to improve IDS configurations

some might have a dedicated machine as “server” to host all of their needed services. So
even though the scenarios created here are after the methodology standards, they might
be representable for some small businesses, which are one of the target group for this
thesis.

The choice of services to run on one of the machines are picked by terms of widely use,
and of course the hardware limitations on the machine. Since the machines are running
Fedora Core Linux, it feels natural to choose the services that follows as default with the
distribution. One of the reasons for that, is that some might think it is most convenient
and lesser work having the Linux' installation procedure set up the services
automatically. Instead of downloading the most recent versions of the desired services,
and compile, install and configure them manually, which more skillful and experienced
system administrators would preferably have done. Services coming along with the
Linux distributions are often not up-to-date, regarding latest version numbers and
security patches. Therefore these can be more vulnerable, since there might have been
discovered flaws or security holes in the software. It will be interesting to see if outdated
software can affect any parts of the test.

Which type of specific services that should run on the host, are based on what can be
typical in an smaller business combined with what services that comes along with
Fedora Linux:

• Apache web server with PHP
• MySQL
• Vsftp FTP server
• SSH remote shell
• Sendmail
• Because of limited hardware resources, the TWM window manager are used

instead of the default Gnome desktop. This preserves some memory and cpu time.

3.4.5. Logical Test Network

Due to limitation in hardware, I cannot use the reference network layout described in [2]
and [3]. Therefore it cannot have multiple subnets, routers or DMZs. In this case one
must limit the test to take place internally in a DMZ or subnet only.

There are 3 computers used in the scenarios. One attacker, which will launch attacks on
the victim. The victim is a kind of honeypot, where all interesting services are running.
This machine have something that the attacker in some or other way wants.

The IDS machine passively monitors traffic on the network. Since NIDS are the test
target, the network interface card must be in promiscuous mode to access the network
traffic. The IDS machine will normally be secured. According to Ptacek and Newsham
[10], IDSs 2 biggest threats are:

19

Using benchmarking to improve IDS configurations

1. Insufficient information from the packets the IDS can access. This means that the
IDS may not see the same packets as the victim, due to fragmentation of packets,
attackers evasion techniques or different packet acception/rejection policies on the
IDS and the victim or packet loss. Other problems can be timeouts, lag,
encryption/VPN and physical network properties, such as different subnets or
switched networks.

2. Denial of service8. The host running IDS is vulnerable to DoS attacks, since
launching such attacks may put the IDS out of function. If an attacker wants to
evade the IDS, he would probably launch a DoS or Distributed DoS attack against
the IDS.

So how is this dealed with in this test? Real-life is complicated, and the things
mentioned in 1. above will be too extensive to cover in this thesis. Therefore the test
setting must be limited as follows:

• No use on encryption of traffic, e.g. VPN.
• Use of signature-based IDSs. Fluctuation caused by network lag, differences in

packet acception/rejections, timeouts or packet loss must be further discussed in
the results

To avoid or reduce the probability to be attacked of a DoS, there are some
countermeasures one can take. First, the the interface where the IDS is capturing
packets, there could be no IP address assigned to the interface. This eliminates IP based
attacks from other networks, since routers work on the IP layer, layer 3 in the OSI model
[11], and therefore packets cannot be sent to an interface with no IP address. But on the
local subnet, the attacker can use the MAC address of the interface card instead of the IP
address to launch a DoS attack. Therefore this method is not 100% bulletproof. Another
method is to cut the Tx (transmit) wire on the interface card, or the wire. This makes it
physical possible for the machine to give any leads that it is online, since it only can
receive data. Unless the attacker know that it is online and its MAC address, the
machine hosting the IDS will most likely not be a subject for IDS, since it cannot give
away MAC address or online status by arp-requests [12]. IDSs may also use an
administrative interface, an own communication channel physically separated from the
production network with its own NIC and cables. This is described in the OSEC
methodology [3]. This is not used in this test setting, since there is a lack of computers
and infrastructure.

In this test setting, there will be no use of modified NICs or wires, because it will be
interesting to see how the IDSs reacts on DoS. It will not have an IP address so that it
cannot be attacked directly from the Internet, when connected.

The 3 different test scenarios are described in the following figures. The 3 different test
situation seen as a whole will hopefully tell us how much the environment has to say for
the test results.

8DoS

20

Using benchmarking to improve IDS configurations

Figure 3.1: Test scenario with no Internet connection

As shown in Figure 3.1, there are no Internet connection available. This can simulate
that the attacks comes for the inside by an insider on the local network, or from the
outside through a hijacked host. The victim will be attacked by the attackers software
suite described later. The IDS should passively monitor an trigger on the attacks. Having
no background traffic possible false-negatives can be detected, generally by subtracting
number of detected attacks from the total number of deployed attacks. This is also
described in section B in the OSEC NIDSv1 criteria.

Figure 3.2: Test scenario with a traffic generator source

Figure 3.2 is is almost the same as Figure 3.1 except from the traffic generator. Due to
the methodology followed, there should be a source of background traffic so that the
false-positive rate can be determined. According to Ranum [1], a successful traffic
generator should be based on the real traffic in the zone the IDS should operate. This
includes packet capturing over a larger time period to statistically determine which type
of traffic that is closest to real. TCPreplay9 can achieve this. In this thesis such work will
be too extensive, so I have to use a lesser “perfect” method, and that is to use existing
software in load/traffic generators. This must then simulate traffic based on the services
running on the victim. Since there are only 3 machines available, the traffic generator
must run on one of the hosts. Ideally, there should be a dedicated host doing this, but in
this situation the attacker have to do this. Because of this, Figure 3.2 differs a bit from
the real test situation, but it is done this way to better show that a traffic generator is the

9 TCPreplay is found at http://sourceforge.net/projects/tcpreplay/

21

Attacker IDS Victim

Hub

Attacker IDS Victim

Hub

Traffic generator

Using benchmarking to improve IDS configurations

difference from the test situation in figure 3.1.

In this situation we can determine false-positives. The generated traffic may trigger
alarms that really isn't any attacks. In addition to the background traffic, real attacks will
be deployed from the attacker. This mixture of background traffic combined with real
attacks tests the IDSs ability to differ traffic from real attacks. The results can be
compared with the results from figure 3.1, and then we can discover what semi-real
traffic affects the IDS ability of detecting real attacks. The principle of having
background traffic is used in OSEC NIDSv1 section C.

Figure 3.3: Test scenario with real Internet connection

In this last test situation, see Figure 3.3, the subnet is connected to the Internet through
an unfiltered connection. In this last setting, the IDS will try to detect the attacks based
on real Internet traffic. This is a step closer to a real environment for the IDS. Though it
is not always common to operate without a firewall, and the placement of the IDS may
vary, see [13]. Since this network are a simulated DMZ, the traffic would normally be
filtered so that the only traffic allowed in, would be addressed to the services running on
the victim. But allowing all types of traffic from outside the Internet, the IDS can be
utterly more stressed by real traffic.

3.4.6. Last notes

For those not reading chapter 4, 5, 6 or 7 i must be underlined that there was no time to
test all 3 scenarios as presented in 3.4.5. Only the first scenario were tested, but the two
other are still presented here to demonstrate the original thinking and purpose behind

22

The
Internet

Attacker IDS Victim

Router

Using benchmarking to improve IDS configurations

these scenarios and the experiment. The test of these must the be left as future work, see
chapter 6.

It must also be mentioned that the dedicated IDS machine broke down in the early
stages of the IDS test. Therefore the victim host10 had to act as both honeypot and IDS at
the same time. The consequences are further discussed in chapter 4. Though the figures
have not been altered, due to the argumentation above about leaving the initial
experiment description intact for later use.

10 The honeypot

23

Using benchmarking to improve IDS configurations

3.5 Methodology and research questions

3.5.1. Why a methodology and IDS test

In this thesis it is necessary to use the benchmarking methodology and the software tools
as guidance to answer the research questions of this thesis. It might look like this thesis
is just another IDS test. This is just somewhat true. An IDS test is the experiment that
produces the results needed to answer this thesis' research questions. It is necessary to
adapt the methodology in [2] and [3], and partially [15] so that the information we are
interested in, emerge from the results.

3.5.2. Relating research questions to the methodology

3.5.2.1. Differences from other IDS tests

The thing that differs with this thesis' IDS testing methodology, is that it is the IDS
configuration that is the most interesting test subject. The other tests from the literature
are based on testing an IDS with some configuration. It is very rare, from what I have
found, that the configuration is somewhat mentioned in a benchmark methodology. In
[14] and [15], the configuration is mentioned as important in use of alerts to system
administrators and the false-positives challenges.

As shown in Figure 3.4, we use a specific configuration scheme11 during a test of an
IDS. This configuration will be tested in the 3 different environments described in 3.3.5.
After the testing has been completed with all environment, a new configuration scheme
will be used to test the same IDS. According to this thesis' goals, several configuration
schemes will be tested. Each scheme will have variations in the IDS configuration for
the other schemes. As far as it is possible, a configuration scheme should be used among
the different types of IDS, specifically NIDS, participating in the testbed. The scheme
can than be used when comparing two NIDS of different brands as long as they are
compared on the same configuration scheme.

11A specific IDS configuration based on some guidelines of what elements of an IDS configuration that
should be “activated” or tuned. This concept has been developed for this IDS testing, and is presented in
chapter 4

24

Using benchmarking to improve IDS configurations

Figure 3.4 : A test scenario where the IDS is tested with several configuration schemes

3.5.2.2. Analyzing the results

In the literature there are very little information on how to analyze the results from an
IDS test. Most articles and papers are dealing with methodology and the aspects of this,
so that the test itself is in the center. How to analyze the results is almost not covered at
all. But after all, it does not have to be any known method to do this, as long as one
understand the results one are dealing with, and draw conclusions based on the quality
of the methodology. Ranum [1] argues that bad conclusions can be drawn, if one isn't
well aware of the limitations of the benchmarking methodology. If one are aware of
flaws in the methodology or software one are using, and the results are good, one cannot
conclude that the IDS performs as well as the test might say. If flaws are obvious, this
has to be in the conclusion, so the that it not should mislead any readers, that might not
have knowledge to detect such weaknesses in the test.

3.5.2.3. Extract new knowledge from the results

In order to answer the research questions, the information to do this, are found in the
results for the IDS tests. The first thing to analyze, is the results from one IDS. Since
each test of an IDS consists of running the test suite minimum 1 time per configuration,

25

IDS

IDS

IDS

Different IDS
configurations

No
backgroundtraffic

Semi-real
backgroundtraffic

Unfiltered
backgroundtraffic

Comparison of
the 3 results pr
IDS configuration

Attack
testsuite

Using benchmarking to improve IDS configurations

so there will be output from the software in the test suite for each configuration, in three
environments. All test results from one scenario are analyzed, and then we can tell
which configuration that brings the smallest rate of false-positives and false-negatives.
Then the results from the three scenarios is compared, so that we can see if background
traffic, load generated or real, has any effect on the results. Comparing results among
different IDSs, correlations in the configurations will imply important areas in IDS
configurations.

3.5.2.4. Challenges determining false positives and false negatives

The IDS used in this experiment uses the term 'alert', when something suspicious is
detected, refer to the user manual [28] for more details. So how should this be
interpreted? Is an alert a detected attack only? It is obvious that an alert is an event that
the IDS believes is suspicious, based on its signature database and configuration. An
alert can certainly be an attack, but it is also important to have in mind that one attack,
does not necessarily generate just 1 alert. An attack can be base on using several tools
and exploits with traffic that generates many alerts. Before an attacker decides to attack,
he might be probing for running host and services, and might use a vulnerability scanner
as well as an port scanner, before he might use an exploit to break in utilizing a
vulnerability. Al this traffic may result in several alerts. It is therefore difficult to say
exactly what portions of the traffic should be classified as the attack, and if any, what
should be false positives. Maybe the IDS did not detect the exploit, and should then this
be characterized as a false negative? There are no straight answers to these problems,
but one way to solve it, is that the security policy should be a central guidance document
for these issues. This document should define what traffic is classified as legal and
accepted, and what is not accepted. This might help us when trying to figure out what a
port scan should be classified as. If it is legal and detected by the IDS, then it is a false
positive. If it is illegal and detected, then it is registered as an attack. If it is bypassed by
the IDS we have a false negative. But the final problem still remain, if a port scan
generates 20 alerts and port scanning is defined as accepted, do we have 1 or 20 false
positives? This is hard to tell, and is very context specific. Therefore I choose not to
deal with the problems directly. In the results the goal is to detect the attacks12, but
reduce the number of alerts to a minimum at each attack.

From this, it might be tempting to play with the thought of a decision system above the
IDS, which compares the alert with security policy and other information about the
network13.

12 Unless it is an false positive generator
13 A similar project has been worked on at NISlab.

26

Using benchmarking to improve IDS configurations

3.6 Test criteria

3.6.1.What to focus on

When testing the IDSs, several tools must be used in order to test all elements of the
IDS configuration. What to test, is anchored in the methodology. So the next question is,
how shall we test? Nidsbench [9] is a attack suite for testing NIDS, though it does not
completely suit OSSTM [2] or OSEC [3], some of the software used can also be used in
the testing here. There also other test suites available, e.g. IDS Informer14, but these are
commercial and is not applicable for the scope and goals of this thesis.

Therefore a list of software to be used, must be created out from the test criteria in [2]
and [3]. As we can read in the media that new security issues are detected on a daily
basis. Tools that exploits these security issues, are spread at an enormously speed across
networks connected to the Internet. Therefore signature based IDSs must be updated
very often. If we make an optimistic assumption:

• If the IDSs can detect every attack in its signature database, then it is unnecessary
to test every attack of recent date, since the IDS have shown that it detects all
attacks of which it has been developed a signature for.

The point of such assumption is that basing the test suite just on the recent attacks,
makes this IDS benchmark useless in the future, because all these attacks will be
encountered for in software patches. So if we use the methodology and test suite in this
thesis and only tested the most “popular” attacks at this moment (spring 2004), this
thesis would, after my opinion, be of little interest both for public and scientific point of
view.

Therefore I choose to use more general attack tools, instead of just focusing on the most
recent exploits, that tests the IDS for common techniques used in attacks, as well as
methods for evading the IDS. Del Carlo has written about this in [18]. Examples of this
can be:

• Obfuscation – where data is manipulated
• Fragmentation – where the attack is spread over several packets and in different

order
• Encryption – where the attack is encrypted
• Denial of Service (DoS) – where the attacker tries to put the IDS out of function

By generalizing the attack suite, we can create a test suite that is valid, not just for now,
but also in the future until new and totally different attack types evolves. The benchmark
methodology used in this thesis are designed for this principle. Though as an example
on custom exploits attacks, an old and known attack, and a new attack, preferably
unknown to the IDS, should be tested on the IDS to see how the IDS deals with these.

14http://www.bladesoft.net

27

Using benchmarking to improve IDS configurations

3.6.2.The software suite used in the test

In this chapter the software used to test the IDSs are presented. A brief description of
what they do and where they can be found is explained. It is important to remember that
all software used are either freeware, BSD or GPL licensed or open source. No
commercial products are used.

It must be emphasized that software used for a specific type of IDS, also could be used
testing other IDSs. As a describing example, some packet- and traffic generator tools are
designed to use a Snort signature database as a source for generating traffic, these same
rules must also be used when testing other IDSs.

3.6.3. Test suite

3.6.3.1. Introduction

The following sections describes a proposal for an test suite that can be used based on
the methodology used. Each software has it brief description and where it can be
obtained. In addition, it is described in which part of the methodology the software is
anchored, i.e. which property of the IDS it should test. Note that this is a proposal of a
test suite based on the most common software found on the Internet using Google. This
might not be the most best or ideal test suite, but its intention is to show an example of
how this can be done. It is possible that there exist better tools, or that some new tools
have been made public, but that has to be a topic for further work with this project. All
tools used, are found during February 2004.

3.6.3.2. Nmap

Software
number

S 1

Description Portscanner that reveals listening ports on a remote host.
Location http://www.insecure.org/nmap/
Anchored in
methodology

OSSTM 2.1 Module 9.15, 9.17

OSEC NIDSv1 A.1

28

Using benchmarking to improve IDS configurations

3.6.3.3. Nessus

Software
number

S 2

Description Portscanner and vulnerabilityscanner
Location http://www.nessus.org
Anchored in
methodology

OSSTM 2.1 Module 9.15, 9.17

OSEC NIDSv1 A.1, A.2, A.4

3.6.3.4. Snot

Software
number

S 3

Description IDS evasion tool, a packet generator that triggers snort alerts taking a
snort rules file as input.

Location http://www.stolenshoes.net/sniph/index.html
Anchored in
methodology

OSSTM 2.1 Module 9.3, 9.4, 9.5, 9.6, 9.9, 9.10, 9.11, 9.12 and 9.14,

OSEC NIDSv1 C.1, C.3-C.10, D.1, D.2-D.6, D.7-D.11

3.6.3.5. Sneeze

Software
number

S 4

Description Packet generator that triggers snort alerts taking a snort rules file as
input. Works like Snot, for generating false positives

Location http://snort.sourceforge.net/sneeze-1.0.tar
Anchored in
methodology

OSSTM 2.1 Module 9.5, 9.6, 9.9, 9.10, 9.11, 9.12 and 9.14,

OSEC NIDSv1 C.1, C.3-C.10, D.1, D.2-D.6, D.7-D.11

29

Using benchmarking to improve IDS configurations

3.6.3.6. Nikto

Software
number

S 5

Description A web server scanner that performs various test using the HTTP
protocol and CGI scripts. Has techniques for evading/fooling IDSs.

Location http://www.cirt.net/code/nikto.shtml
Anchored in
methodology

OSSTM 2.1 Module 9.6, 9.8, 9.10, 9.11, 9.12, 9.14

OSEC NIDSv1 E.2-E.8, F.17-F.19, F.20-F.33, G.2

3.6.3.7. Fragroute

Software
number

S 6

Description Intercepts, modifies and rewrite egress traffic payload
Location http://monkey.org/~dugsong/fragroute/
Anchored in
methodology

OSSTM 2.1 Module 9.7, 9.8

OSEC NIDSv1 D.1, D.2-D.6, D.7-D.11

3.6.3.8. Fragrouter

Software
number

S 7

Description Tests the IDSs ability to deal with fragmentation of traffic
Location http://packetstorm.widexs.nl/UNIX/IDS/nidsbench/fragrouter.html
Anchored in
methodology

OSSTM 2.1 Module 9.9, 9.12

OSEC NIDSv1 D.12, F.1-F.16, F.17-F.19

30

Using benchmarking to improve IDS configurations

3.6.3.9. IDSwakeup

Software
number

S 8

Description Simulates false well-known attacks to detect false positives
Location http://www.hsc.fr/ressources/outils/idswakeup/index.html.en
Anchored in
methodology

OSSTM 2.1 Module 9.9, 9.10, 9.11, 9.14

OSEC NIDSv1 C.1, C.3-C.10, D.1, D.2-D.6, D.7-D.11

3.6.3.10. ADMmutate

Software
number

S 9

Description Tool for making buffer-overflow exploits polymorphic shellcode
Location http://www.ktwo.ca/security.html
Anchored in
methodology

OSSTM 2.1 Module 9.6, 9.13

OSEC NIDSv1 B.1, B.2

3.6.3.11. Apache 1.3.x – 2.0.48 remote users disclosure exploit

Software
number

S 10

Description Exploit using a vulnerability in the Apache web server
Location http://www.k-otik.net/exploits/12.06.m00-apache-w00t.c.php
Anchored in
methodology

OSSTM 2.1 Module 9.6, 9.13

OSEC NIDSv1 B.1, B.2

31

Using benchmarking to improve IDS configurations

3.6.3.12. Apache 1.3.X Remote Exploit

Software
number

S 11

Description Exploit using an old vulnerability in the Apache webserver
Location http://archives.neohapsis.com/archives/bugtraq/2002-06/att-0238/01-

apache-scalp.c
Anchored in
methodology

OSSTM 2.1 Module 9.6, 9.13

OSEC NIDSv1 B.1

3.6.3.13. 7plagues

Software
number

S 12

Description Denial of Service (DoS) tool testing the TCP/IP stack stability on a
remote host

Location http://packetstorm.linuxsecurity.com/DoS/7plagues.pl
Anchored in
methodology

OSSTM 2.1 Module 9.5, 9.14

OSEC NIDSv1 A.4-A.8, C.2, D.1, D.2-D.6, D.7-D.11

3.6.3.14. ISIC

Software
number

S 13

Description IP/TCP/UDP/ICMP stack stability testing tool (stress test),
Location http://www.packetfactory.net/Projects/ISIC/
Anchored in
methodology

OSSTM 2.1 Module 9.5, 9.14

OSEC NIDSv1 A.4-A.8, C.2, D.1, D.2-D.6, D.7-D.11. D.12

32

Using benchmarking to improve IDS configurations

3.6.3.15.Network Traffic Generator

Software
number

T 1

Description A tool for creating background traffic
Location http://freshmeat.net/projects/trafficgenerator/
Anchored in
methodology

OSSTM 2.1 Module 9.14

OSEC NIDSv1: As background traffic

33

Using benchmarking to improve IDS configurations

4. Results and analysis

4.1 Introduction

This chapter presents the results with following analysis from the IDS benchmarking.
The results are based on the test experiment described in chapter 3. Further presentation
of results, will be divided based on the test scenarios. The results from the IDS and its
configurations, according to the results from the testing software, will be grouped
together under each scenario. The test results are stored in details in tables in Appendix
A. In this chapter, the results will be displayed in graphs, due to increased readability.
Reading lots of numbers from a table is probably not a good way of presenting the
results, and it might be difficult to understand and draw any conclusions. The use of
graphs gives a better picture of the results by seeing results relatively to each others. If
more details of the tests are desired, Appendix A holds this information and is useful as
a reference to the graphs. Before presenting the results, the set of configuration schemes
used in the testing will be presented and explained.

4.2 Configuration schemes

4.2.1. Introduction

This sub chapter describes a proposal for configuration schemes that can be used in a
testing procedure. Such schemes is a concept intended as a cross IDS configuration
pattern where the goal is to find some common elements in the configuration that is
common for most IDSs. With this, we can give a more reasonably way to compare test
results of configuration benchmarking among different IDSs. This is not claimed to be
the most ideal way to do it, and it may not suit every IDS or environment, but further
research may improve this.

The configuration schemes are based on Snort configuration [28], but are generalized in
a manner that should suit most NIDSs, since the schemes are based on general IDS
techniques. The next chapters describes the configuration schemes used.

4.2.2. Configuration scheme 1: Default configuration

This scheme is the default configuration provided from the manufacturer. The
configuration is usually stored in one or several files created by the installation
procedure. In this scheme nothing of the configuration file(s) should be altered except
settings for where and how output should be presented, or other specific changes

34

Using benchmarking to improve IDS configurations

necessary in order to get the IDS to work. If this implies in changing elements that
directly or indirectly affects performance and benchmarking results, this must be
documented.

4.2.3. Configuration scheme 2: All signatures

In this scheme, every signatures available should be enabled, if not as default. This is to
be sure that the sensor uses all its detection capabilities.

4.2.3.1. Customized signatures enabled

One can also use only signatures suited for traffic on the network according to security
policy. From this the vendors signatures can be used, but it also opens for custom made
signatures, if these are available to use. This is especially useful in a DMZ or on an
internal network, that is protected with a firewall.

This option has not been tested and is not to find in any of the results, but this is an
example that this could be a single standalone configuration scheme. Adapting the IDS
to its operating environments have shown to be a good idea, and therefor this section is
added to underline the importance of testing the IDS in its operating environments.
Refer to Ranum [3].

4.2.4. Configuration scheme 3: No signatures enabled

Check the capabilities of the sensor if no signatures is enabled, if this is possible within
the IDS. This is useful to see if the IDS can report anything, if it should, by mistake
disabled the signatures.

4.2.5. Configuration scheme 4: IP fragmentation

This is the sensors ability to detect fragmented attacks relies on this function. Useful
parameters here can be to change timeout of the IP fragments. By increasing this, attacks
spread on many IP fragments and with longer delays might be detected. The drawback is
higher memory usage.

4.2.6. Configuration scheme 4: TCP stream reassembly

This is the sensors ability to detect attacks in a TCP session. As for IP fragmentation,
timeout and memory concerns are the same. In addition, other parameters as:

35

Using benchmarking to improve IDS configurations

• IDS evasion detection
• TCP state errors
• Scan detection
• Stateful inspection
• Limit inspection on ports, incoming or outgoing

There can be many options to focus on here, but further details may not be general
enough.

4.2.7. Summary

When benchmarking an IDS configuration, 4.2.2 - 4.2.6 sections are presenting
elements of an general IDS configuration where each scheme has a set of parameters
that can be altered either binary15 or as value16. The idea is to use configuration scheme
as a reference point, where the other alters the configuration in on area or section.

As an simplified example, lets say we are benchmarking IDS X with a false positive
generator, tool Y. First we use Y against the IDS, where X is configured according to
configuration scheme 1. A fictive result of, lets say 1000 alerts. Then we might want to
reduce this number. If we are not sure what exactly is the reason for the “high” number
of alerts (false positives), we can use, lets say configuration scheme 5, and tweak
parameters like enabling IDS evasion detection or increasing timeouts. When we now
run Y once more17. This time the number of alerts might have dropped to 600. This
might imply that by altering the configuration based on the scheme, have reduced the
number of false positives, and thereby improved the configuration on these kind of
attacks. Alternatively, the number of alerts could have risen, and that implies we have
moved in the wrong direction in the configuration.

The example is a very simplified, and a real situation will have to combine several
attacking tools and have to utilize the schemes in a combined manner, with several
tweaks of the parameters in each scheme. Comprehensive tests have to be done, with
several different configurations and results among them must be compared to be able to
draw any conclusions of what configuration is the best achievable. It is also worth
mentioning that some elements of an configuration might perform well against one type
of attacks, but might have undesirable consequences. As an example, if we reduces the
TCP reassembly timeout, see 4.2.5, the number of alerts (false positives) may decrease.
But as a result, some attacks using long delays between the TCP packets, the NIDS
might throw the TCP session and miss the attack. Thereby increasing the number of
false negatives. This demonstrates how hard it is to find the “golden middle-way”.
Many test runs are necessary, and it is an economical issue of how long and thorough
these tests should go.

15 on | off, 1 | 0
16 Numbers or strings
17 Of course Y must use the same criteria or parameter for each run

36

Using benchmarking to improve IDS configurations

The configuration schemes are useful in a more structured approach on altering an IDS
configuration for benchmarking purposes. It is also an effort to find common elements
in most NIDSs so that the benchmarking results may easier be compared, in the settings
where this makes sense.

4.3 NIDS benchmarking candidates

4.3.1. Snort

Snort18 is the most known and most common open source IDS available. I think it is a
good IDS to demonstrate the use of the benchmarking methodology and testing tools, so
that the research questions can be answered. Together with Snort, ACID [29] is used for
analyzing the results.

4.4 Scenario 1: No background traffic

4.4.1. Configuration of Snort

4.4.1.1. General settings

Snort was configure to send its output to a MySQL database. The reason for this is that
ACID depends on database access of the results. The analysis tool ACID was used to
make it easier to read the results from Snort. We have to assume this tool does not
change any information from Snort.

The http inspection setting in the Snort configuration had to be disabled in order to get
Snort to accept the configuration file. Several attempt were tried combined with
intensive google'ing on the Internet, but was unable to make it accept a unicode.map
character set file used with when inspecting traffic to Microsoft's IIS servers. This
settings was, strangely enough, accepted on the original dedicated IDS machine using
configuration scheme 1*.

4.4.1.2. Configuration scheme 1

Snort was here configured according to configuration scheme 1, described in 4.2.2, with
the default configuration.

18 http://www.snort.org

37

Using benchmarking to improve IDS configurations

4.4.1.3. Configuration scheme 2

All rules files in Snorts signature files were included in the configuration, using all
available signatures.

4.4.1.4. Configuration scheme 3

All rules were disabled, and no signatures used in the Snort configuration.

4.4.1.5. Configuration scheme 4

In the IP fragmentation section in the Snort configuration, preprocessor frag2 the
following parameters were changed :

• Default session timeout increased from 60 seconds to 120
• Default fragmentation buffer, memcap, increased from 4 MB to 8 MB

4.4.1.6. Configuration scheme 5

In the TCP stream reassembly section in the Snort configuration, preprocessor stream4,
the following parameters were changed:

• The parameter for detecting stealth port scans were enabled, sending detect_scans as
parameter to the preprocessor.

• Default session timeout increased from 30 seconds to 120.
• Default reassembly buffer, memcap, increased from 8 MB to 12 MB

4.4.2. Test results with configuration scheme 1*

The test results presented is preformed on a different machine than the results in 4.4.3-
4.4.7. The machine used here was the original machine intended to host the IDS. It is an
Intel Celeron 400 MHz, described in 3.3.3. The configuration of Snort using
configuration scheme 1, is the same as in 4.4.1.2, with the exception that the http
inspection worked on this machine. The reason for using an asterisk19 in when referring
to the configuration scheme, is to help making no mistake mixing up the results from

19 *

38

Using benchmarking to improve IDS configurations

the to different machines, since the preferences for the results are different, based on
different hardware and a slight difference in the configuration.

Since there are only one result with this computer, there are no point of showing them
alone i diagrams. The idea is to compare the results from several different
configurations, and this is unfeasible with only results from one configuration available.
Instead it is more interesting to compare result with this machine and and the other
machine used in the test. By this, we can see which impact hardware changes have on
the testing results. The comparison charts will be presented after the other results in
section 4.4.5.

4.4.3. Change of hardware hosting the IDS

4.4.3.1. Background for hardware change

Due to hardware failure in the beginning of the test with configuration scheme 2, this is
the only test results that could be retrieved with use of that computer. With no extra
money for spare parts20, the machine acting as honeypot had to act as IDS as well.

4.4.3.2. Consequences for further testing and results

With the need of porting the IDS onto the machine running services, this implies some
direct consequences for further testing.

• System services and the IDS service must now run on the same host, sharing even
less resources than the machine previously used. This is especially problematic
since when launching a tool from the other machine, the service tested will
consume cpu time, as well as the IDS. This will affect the results by increased
packet drop rate, especially with use of traffic intensive tools. This leads to less
accurate results, since many of the packets dropped can contain attacks. E.g. a
launched DoS attack against the web service, may render the IDS useless.

• Since further testing suffers from increased packet drops, the drop rate must be
measured as well as number of alerts. As a consequence, some of the tests were
expanded. Therefore not all results exist in the initial first test compared to the
other.

• The IDS will be more exposed, since we cannot hide behind no IP address
assignation. The IDS have to be on the same interface21 as the service on the
honeypot. A secondary NIC could have been used as an alternative, but this option
was not available at the time.

20 Spare parts for laptops are expensive!
21 Network Interface Card (NIC)

39

Using benchmarking to improve IDS configurations

4.4.4. Presentation of results running IDS on honeypot

4.4.4.1. Introduction

The results will be comparison chart were the IDS testing results are displayed with data
from configuration scheme 1 to 5, grouped after which software used in the test. By this,
variations in the number of alerts generated from the IDS could be compared, and we
cans see how these numbers changes based on change of IDS configuration. In addition,
each chart of result will be followed by a chart displaying the drop rate from the tests.
When reading the graphs it is important to have in mind what the different configuration
schemes are. Refer to section 4.2.

4.4.4.2. Results with Nmap (S 1)

Figure 4.1: Comparison chart of the results using Nmap

From Figure 4.1 we see that the TCP FIN portscan triggers most alerts. Using no
signatures no alerts is raised. Enabling all signatures in scheme 2 seems to increase the
number of alerts. Increasing IP fragmentation buffer and session timeout seems to
slightly reduce the number of alerts compared to default configuration in scheme 1. In
scheme 5 TCP reassembly buffer and session timeout actually increases the alerts
compared to scheme 1. Note that scheme 5 uses default IP fragmentation parameters. To
see any rough lines here, one can only say that increasing buffers in timeouts in IP
fragmentation may reduce the alerts compared to a default configuration. Combining
increases in buffer and timeouts in both TCP reassembly and IP fragmentation have not
been done in this IDS test, but results could be interesting to evaluate in another test

40

Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5
0

10
20
30
40
50
60
70
80
90

100
110
120
130
140
150

Nmap (S 1) comparison chart

 nmap <IP address>
 nmap -sF <IP address>
 nmap -O <IP address>

Configuration scheme

A
le

rts

Using benchmarking to improve IDS configurations

situation to see if this combination might give better results.

The problem with port scans, is that they generate some alerts. How to deal with these,
are a security policy issue. The security policy document should define to what extent
port scanning is accepted. If port scans should would be legal, one could define it as
portscan activity and make the IDS ignore it. In that case these alerts would be false-
positives and thereby reduced or eliminated. But port scans may also be used by
attackers to gain information about network and services, in a early step of an attack.
Thereby one can lose the preventive effect, and we might have false-negatives. It is a
challenge when port scans are not allowed, because of the amount of port scans that are
not any part of an attack. It could just be someone doing it for fun or for testing
purposes. This would then lead to many false-positives. This illustrates that configuring
IDSs is difficult, and must be anchored in security policy. It is hard to tell whether one
should characterize such alerts as false positives or false negatives, since a port scan can
be a part of an attack or just innocent traffic. A solution might be that the IDS should
check later traffic to see if something more suspicious would occur. But then again one
might lose the ability to be preventive against the attacker.

In Figure 4.2 we see the packet drop rate from the nmap test. We see that with the -sF
parameter the drop rate increases significantly. This is because of increased traffic.
Since the host running the IDS has very limited resources, the IDS has to throw away
more packets. We see a slightly decrease in drop rate by enabling all signatures in
scheme 2, and this might be the cause of increased alerts using that configuration
scheme. Scheme 4 has much higher drop rate than the others, and this is probably the
why scheme 4 has the lowest alert level due to the high drop rate. This demonstrates that
it is easy to be fooled by the numbers. Especially with slow hardware, drop rate must be
considered to reduce the possibility of making the wrong decisions.

41

Using benchmarking to improve IDS configurations

Figure 4.2: Comparison chart of the drop rate using Nmap

4.4.4.3. Results with Nessus (S 2)

In Figure 4.3 we see some of the same characteristics as for nmap. Nessus uses port scan
techniques like nmap, so the discussion in the previous section is also valid here. When
using safe checks we see that the alert level is quite the same, with the exception of
scheme 3 where no signatures are enabled. Increasing buffers and session timeouts seem
to reduce the alert level slightly. When even the harmful attacks are enabled22, we see a
rise in number of alerts, especially in scheme 2. It is interesting to see that the IDS used,
Snort, gave a small number of alerts. This is the detection architecture that reports of
erroneous packets, used by the Nessus' probes. If one, by mistake, has disabled all
signatures this shows that the IDS in a limited manner, is able to report events even
though it is a signature based IDS. This can be regarded as positive feature, but the
usefulness might be left for discussion. Nessus has a large number of test and it is very
hard to do any statistics of what is false negatives or false positives. The alerts is useful
to indicate that something is happening, but the number of alerts should preferably be
reduced

22 All plugins in the Figure 4.3 and 4.4

42

Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5
0

5

10

15

20

25

30

35

40

45

50

Nmap (S 1) comparison chart

 nmap <IP address>
 nmap -sF <IP address>
 nmap -O <IP address>

Configuration scheme

%
 p

ac
ke

td
ro

p

Using benchmarking to improve IDS configurations

Figure 4.3: Comparison chart of the results using Nessus

Figure 4.4 shows that the drop rate reflects the alert level. When all attacks are enabled
we see an increase in drop rate, which indicates increased traffic. This we see especially
where all signatures are enabled (scheme 2) and increased buffers and timeouts in
scheme 3 and 4. The reason is most likely because those schemes need more
computational power and memory

43

Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5
0

250

500

750

1000

1250

1500

1750

2000

2250

2500

2750

Nessus (S 2) comparison chart

All safe plugins
All plugins

Configuration scheme

A
le

rts

Using benchmarking to improve IDS configurations

Figure 4.4: Comparison chart of the drop rate using Nessus

.

4.4.4.4. Results with Snot (S 3)

Figure 4.5: Comparison chart of the results using Snot

Snot uses the Snort signature database to launch a series of fake attacks. Snot was used
with randomly up to 5 second delay between each attack, so therefor it is not guaranteed
that the number of attacks was the same for each run. Therefore the results might not be

44

Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5
0

2,5

5

7,5

10

12,5

15

17,5

20

22,5

25

Snot (S 3) comparison chart

10 minute run

Configuration scheme

A
le

rts

Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5
0

2,5
5

7,5
10

12,5
15

17,5
20

22,5
25

27,5
30

32,5
35

37,5

Nessus (S 2) comparison chart

All safe plugins
All plugins

Configuration scheme

%
 p

ac
ke

td
ro

p

Using benchmarking to improve IDS configurations

representable. But still we see, in Figure 4.5, the same trend as the previous results.
Scheme 4 gives lowest number of attacks. Increasing TCP reassembly buffers and
timeout seems not to bee the solution. Enabling all signatures naturally also increases
the detection engine's ability to detect more of the attack. These attacks are characterized
as false positives, since the Snot is called a “false positives generator”. In scheme 3 it is
natural, that no attacks are detected, since Snort creates traffic based on the signature
database.

In Figure 4.6 it is surprisingly to see that there are no packet drops. The explanation is
due to the delays between the attacks, probably gives the IDS time to process all traffic.

Figure 4.6: Comparison chart of the drop rate using Snot

4.4.4.5. Results with Nikto (S 5)

This tool examines web services, and has the ability to use IDS evasion techniques. The
results are shown in Figure 4.7. Using no IDS evasion, it seems scheme 2 is slightly
better than scheme 1 and 4. Using the evasion techniques, the results have some
variations among the schemes, but seeing all tests together in the “big picture”, again
scheme 4 seems to have on average lower alert rate than the rest, except for scheme 3.
In general the results implies roughly the same trend we have seen before.

45

Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5
0,00

0,10

0,20

0,30

0,40

0,50

0,60

0,70

0,80

0,90

1,00

Snot (S 3) comparison chart

10 minute run

Configuration scheme

%
 p

ac
ke

td
ro

p

Using benchmarking to improve IDS configurations

Figure 4.7: Comparison chart of the results using Nikto

Figure 4.8: Comparison chart of the drop rate using Nikto

The drop rates in Figure 4.8 show that this test generates some traffi, but it is interesting
that some test have low drop rate with default or all signatures enabled, but higher drop
rates when increasing buffers and session timeouts. This are most likely due to
computational power. But there are also tests that is opposite, where the drop rate falls.
It is not clear why. Even with no signature used, we see here that even scheme 3 suffers

46

Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5
0

50

100

150

200

250

300

350

400

450

500

Nikto (S 5) comparison chart

Generic
Generic + evasion 1
Generic + evasion 2
Generic + evasion 3
Generic + evasion 4
Generic + evasion 5
Generic + evasion 6
Generic + evasion 7
Generic + evasion 8

Configuration scheme

A
le

rts

Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5
0

5

10

15

20

25

30

35

40

45

50

Nikto (S 5) comparison chart

Generic
Generic + evasion 1
Generic + evasion 2
Generic + evasion 3
Generic + evasion 4
Generic + evasion 5
Generic + evasion 6
Generic + evasion 7
Generic + evasion 8

Configuration scheme

%
 p

ac
ke

t d
ro

p

Using benchmarking to improve IDS configurations

from packet drop. This is very small values, and could also be caused by suddenly high
cpu usage of the host running the IDS.

4.4.4.6. Results with Fragroute (S 6)

Fragroute rewrites traffic from other tools, and the results with Snot are shown i Figure
4.9. We see that the number of alerts are significantly higher than Snot without
Fragroute. Here it is interesting to see that using configuration from scheme 3, also
generates alerts. This is because Fragroute generates new traffic with errors in TCP
headers an IP header. These are detected by Snort even without any signatures. It is also
worth noticing that scheme 4 now has higher amounts of alerts than both scheme 1 and
5. Again, scheme 2 is in its own class, like with the previous use of snort.

Figure 4.9: Comparison chart of the results using Fragroute with Snot

47

Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5
0

200

400

600

800

1000

1200

1400

1600

1800

2000

Fragroute (S 6) with Snot comparsion chart

Snot 10 minute run

Configuration scheme

A
le

rts

Using benchmarking to improve IDS configurations

Figure 4.10: Comparison chart of the results using Fragroute with Nmap

In Figure 4.10, we see Fragroute using nmap traffic. The trend is like the previous chart,
only somewhat more leveled. Again, scheme 3 generates alerts, due to header errors.

Using Fragroute with Nikto traffic, the pattern repeats it selves in Figure 4.11, though
even more leveled, with the exception of that scheme 4 here generates slightly less alerts
than scheme 5.

Figure 4.11: Comparison chart of the results using Fragroute with Nikto

48

Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14

Fragroute (S 6) with Nmap comparison chart

 nmap <IP address>

Configuration scheme

A
le

rts

Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5
0

1000
2000
3000
4000
5000
6000
7000
8000
9000

10000
11000
12000
13000

Fragroute (S 6) with Nikto comparison chart

Nikto Generic

Configuration scheme

Al
er

ts

Using benchmarking to improve IDS configurations

Figure 4.12: Comparison chart of the drop rate using Fragroute with its tools

When analyzing the drop rate for the three previous alerts in Figure 4.11, we see that
drop rate is high for all schemes. The rate is fairly equal, with the exception of scheme
3, which does not have to concentrate on pattern matching. It is clear that this is
Fragroute that expands the traffic volume, making it harder for the IDS with limited
hardware resources. If we compares drop rates with the tool's previous tests, this
confirms the traffic increase.

4.4.4.7. Results with IDSwakeup (S 8)

Figure 4.13 shows the results from IDSwakeup. These results appear somewhat different
than we have seen before. Scheme 3 produces alerts, being one of the schemes with the
highest alert level. It is interesting to see that in this test, scheme 2 seems to have the
lowest results. In this test both scheme 4 and 5 is higher, with a couple of exception of
the parameters used. It is not clear why the results here differs from the others, but this
is a tool written for testing IDSs, so therefore this might test better the abilities of the
IDS. The parameter responsible for the variations is TTL23 with different values. This
seems to have effect on the results.

23 Time To Live parameter in the IP header

49

Scheme
1

Scheme
2

Scheme
3

Scheme
4

Scheme
5

0,00

5,00

10,00

15,00

20,00

25,00

30,00

35,00

40,00

45,00

50,00

Fragroute (S 6) comparison chart

Snot 10 minute run
 nmap <IP address>
Nikto Generic

Configuration scheme

%
 p

ac
ke

td
ro

p

Using benchmarking to improve IDS configurations

Figure 4.13: Comparison chart of the results using IDSwakeup

If we see the drop rates from Figure 4.14, we can see that this tool generates some
traffic. The drop rate is fairly even among the schemes. It is worth noticing that here the
drop rate is not any higher with increased buffers and session timeouts than with the
other schemes. This might indicate that the tool uses long session delays during the test.

50

Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5
0
5

10
15
20
25
30
35
40
45
50
55
60
65
70

IDSwakeup (S 8) comparison chart

IDSwakeup <src IP> <dest
IP> 10 5
IDSwakeup <src IP> <dest
IP> 10 0
IDSwakeup <src IP> <dest
IP> 10 1
IDSwakeup <src IP> <dest
IP> 10 2

Configuration scheme

Al
er

ts

Using benchmarking to improve IDS configurations

Figure 4.14: Comparison chart of the drop rate using IDSwakeup

4.4.4.8. Results with Shellcode exploits (S 10 and S 11)

Figure 4.15: Comparison chart of the results using Shellcode exploits

Using shellcode exploits, the results are shown in figure 4.15. Two different exploits for
the Apache Web server were used. The first exploit was not detected by any
configuration. The second was equally detected by all, except for scheme 3. Again, the
difficulties classifying the alert appears. The apache version used, was not vulnerable for
these two exploits. So the question is if whether this misdetection is a false negative, or

51

Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5
0

2,5

5

7,5

10

12,5

15

17,5

20

22,5

Shellcode exoloit (S 10 & S 11) comparison chart

Apacheexploit (S 10)
Apacheexploit (S 11)

Configuration scheme

A
le

rts

Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5
0

5

10

15

20

25

30

35

40

45

IDSwakeup (S 8) comparison chart

IDSwakeup <src IP> <dest
IP> 10 5
IDSwakeup <src IP> <dest
IP> 10 0
IDSwakeup <src IP> <dest
IP> 10 1
IDSwakeup <src IP> <dest
IP> 10 2

Configuration scheme

%
 p

ac
ke

td
ro

p

Using benchmarking to improve IDS configurations

the detected were a false positives. To make any conclusions like this or similar, the IDS
actually have to know what services and versions that runs inside the network. To make
this possible, one have to have information flow to the decision module of the IDS, or
have a decision system based on information from the IDS and other tools and
information sources on the network.

Figure 4.16: Comparison chart of the drop rate using Shellcode exploits

Reading the drop rates in Figure 4.16, we see a very strange result. These exploits
generates a little amount of traffic. We see that the schemes using the signature
detection does not have packet drops. But scheme 3 has. This must be an error that
most likely is due to a sudden use of cpu time on the host.

4.4.4.9.Results with ISIC (S 14)

Figure 4.17 shows the results from using the stress test, and TCP/IP stack tool ISIC. We
see that 5 400 000 packets naturally generates more alerts than 1 000 000. Here we see
some of the commonalities in the charts from previous tests, but with the exception of
scheme 3. Since the traffic relies on testing the TCP/IP stack, scheme 3 also generates
errors because of errors in the TCP / UDP and IP packets. But we can see that the
configuration here has consequences of the number of alerts reported. As mentioned,
seeing the results in general, we see the same tendencies as before, but with default
configuration maybe slightly better.

52

Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5
0,00

2,50

5,00

7,50

10,00

12,50

15,00

17,50

20,00

22,50

25,00

27,50

30,00

Shellcode exploit (S 10 & S 11) comparison chart

Apacheexploit (S 10)
Apacheexploit (S 11)

Configuration scheme

%
 p

ac
ke

td
ro

p

Using benchmarking to improve IDS configurations

Figure 4.17: Comparison chart of the results using ISIC

Figure 4.18: Comparison chart of the drop rate using ISIC

From the drop rates presented in Figure 4.18, we see that this really is a stress test, that
also could be used as a DoS attack. With drop rates at just under 50 %, this tools almost
makes the IDS unusable. This implies the limitation using older hardware with
relatively low capacity. Here it is even more important not to interpret the results of the
alerts directly. With this drop rate we cannot say other than it is a dead race between the
configurations, at best. Seen on the bright side, the one can used the results to see that
something unusual is happening, and take further actions from there.

53

Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

ISIC (S 14) comparison chart

Icmpsic 5400000
icmpsic 1000000
tcpsic -I 100 -T 100
1000000
tcpsic 1000000
Udpsic 1000000
Isic 1000000

Configuration scheme

A
le

rts

Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5
0

5

10

15

20

25

30

35

40

45

50

ISIC (S 14) comparison chart

Icmpsic 5400000
icmpsic 1000000
tcpsic -I 100 -T 100 1000000
tcpsic 1000000
Udpsic 1000000
Isic 1000000

Configuration scheme

%
 p

ac
ke

td
ro

p

Using benchmarking to improve IDS configurations

4.4.5. Presentation of results; consequences of hardware change

4.4.5.1. Introduction

Refer to the previous 4.4.2 and 4.4.3 sections.
There exist no data on drop rate to the first test using dedicated machine running the
IDS.

4.4.5.2. Results with Nmap (S 1)

Figure 4.19: Comparison chart of the results using Nmap

Figure 4.19 presents the nmap results. The initial nmap test there was only one result
available. Scheme 1* on the dedicated machine has more alerts than the IDS on the
honeypot machine. Since the packet drop rate is unknown we cannot directly conclude
anything from this chart, but apparently more alerts were generated from scheme 1*.

54

Scheme 1* Scheme 1
0

10

20

30

40

50

60

70

80

90

100

110

120

Nmap (S 1) comparison chart

 nmap <IP address>
 nmap -sF <IP address>
 nmap -O <IP address>

Configuration scheme

A
le

rts

Using benchmarking to improve IDS configurations

4.4.5.3. Results with Nessus (S 2)

Figure 4.20: Comparison chart of the results using Nessus

The results from Nessus are displayed in Figure 4.20. Due to expanding the test after the
dedicated machine died, the “All plugins” results are not available in scheme 1*. But
we see that the number of alerts in scheme 1* are much less than in scheme 1. There
must be some kind of error in the scheme 1* result here. Either that not all plugins really
was enabled, or sudden increase in cpu usage on the dedicated machine.

4.4.5.4. Results with Snot (S 3)

Figure 4.21 shows the results using Snot. Initial, Snot ran in scheme 1* in 300 minutes
against 10 minutes on scheme 1. Therefore we have to calculate an estimate for a 10
minute run in scheme 1* :

785 alerts / 300 min. * 10 min. = 26 alerts

This result is more comparable since we use the same time period. Note that this is an
estimate. Snot's randomly delays from 0-5 seconds between each attack may influence
the number of alerts.

So based on the estimate and the results from scheme 1, we see that the number of alerts
is significantly higher than for scheme 1. It is difficult to say why, since the
configuration is the same, except for http inspection in scheme 1-524, which may have
had impact on the results. Since http inspection was disabled in scheme 1-5, this has no
consequences when comparing the results.

24http inspection would not work whatsoever because of the unicode.map file. It had to be disabled on the
honeypot machine. Refer to Snort manual [28].

55

Scheme 1* Scheme 1
0

100
200
300
400
500
600
700
800
900

1000
1100
1200
1300
1400

Nessus (S 2) comparison chart

All safe plugins
All plugins

Configuration shceme

Al
er

ts

Using benchmarking to improve IDS configurations

Figure 4.21: Comparison chart of the results using Snot

4.4.5.5. Results with Nikto (S 5)

Figure 4.22: Comparison chart of the results using Nikto

Figure 4.22 shows the results of Nikto, including IDS evasion 9. This was so time
consuming that it, due to little time, had to be ruled out in scheme 3-5. If we make an
assumption that since scheme 1* were tested on a faster and dedicated IDS machine it
should have less packet drop rate than for scheme 1. Following that assumption, the

56

Scheme 1* Scheme 1
0

250
500
750

1000
1250
1500
1750
2000
2250
2500
2750
3000
3250
3500
3750
4000

Nikto (S 5) comparison chart

Generic
Generic + evasion 1
Generic + evasion 2
Generic + evasion 3
Generic + evasion 4
Generic + evasion 5
Generic + evasion 6
Generic + evasion 7
Generic + evasion 8
Generic + evasion 9

Configuration scheme

A
le

rts

Scheme 1* Scheme 1
0

3

5

8

10

13

15

18

20

23

25

28

Snort (S 3) comparison chart

10 minute run

Configuration scheme

Al
er

ts

Using benchmarking to improve IDS configurations

results here seem more logical. Lower drop rate should increase the number of detected
alerts. This we saw in the results in 4.4.4, where higher drop rate gave lower alert
frequency. One thing to notice here is the evasion 925 parameter. This is somewhat
higher in scheme 1. If we check the Appendix A, the drop rate for scheme 1 is 0 %, so
packet drops is not the issue here. What causes this is hard to tell for certain. But if we
see the trend that in general higher computational powers here gives higher detection
rates.

4.4.5.6. Results with Fragroute (S 6)

Figure 4.23: Comparison chart of the results using Fragroute

The Fragroute results are shown in Figure 4.23. From 4.4.4.6 we saw that Fragroute, in
general, generates more traffic using other tools than they would if they were running
standalone. We see that number of alerts running Snot gives extraordinary amounts of
alerts. This results seems very strange and is in a whole different class of numbers than
the previous test. Note that this test was executed with Snot running in exactly 10
minutes. There are no obvious reasons for this number to be so high. Http inspection is
probably not, as the only reason, cause of this high number. Also, during the run of
Nikto in scheme 1*, the lights blinks indicating traffic on the hub, were suspiciously
“silent”. What causing this, is also very hard to tell, but we see in the results, that
something must be wrong here. Scheme 1 has been compared with the other schemes,
and nothing directly appears wrong. Therefore it is more likely that something happened
with the scheme 1* test. These results are too suspicious to be used in any conclusive
line.

25 Session splicing

57

Scheme 1* Scheme 1
0

1000
2000
3000
4000
5000
6000
7000
8000
9000

10000
11000
12000
13000

Fragroute (S 6) comparison chart

Snot 10 minute run
 nmap <IP address>
Nikto Generic

Configuration scheme

A
le

rts

Using benchmarking to improve IDS configurations

4.4.5.7. Results with IDSwakeup (S 8)

Figure 4.24: Comparison chart of the results using IDSwakeup

The results of the IDSwakeup test are displayed in Figure 4.24. In scheme 1* only two
parameters were tested with. But we see that the number of alerts is much higher here
using scheme 1* . Drop rates in scheme 1, is high, ranging from around 35 % to 45 %.
This will probably be the reason for much lower alert rate in scheme 1.

4.4.5.8. Results with Shellcode exploits (S 10 & S 11)

Figure 4.25 shows the results from the shellcode exploits. Here we see something
interesting. The S 10 exploit was in fact detected in scheme 1*. This was mot detected
by any schemes on the honeypot machine. Since there were literally no packet drops, the
http inspection setting used in scheme seems to be the most likely cause of this
detection. As we can see, the S 11 exploits are detected on both with equal amount of
alerts.

58

Scheme 1* Scheme 1
0

25

50

75

100

125

150

175

200

IDS wakeup (S 8) comparison chart

IDSwakeup <src IP> <dest
IP> 10 5
IDSwakeup <src IP> <dest
IP> 10 0
IDSwakeup <src IP> <dest
IP> 10 1
IDSwakeup <src IP> <dest
IP> 10 2

Comparsion chart

A
le

rts

Using benchmarking to improve IDS configurations

Figure 4.25: Comparison chart of the results using Shellcode exploits

4.4.5.9. Results with ISIC

Figure 4.26: Comparison chart of the results using ISIC

Figure 4.26 shows the results using ISIC. In this traffic intensive test, we really see how
important the hardware is. Scheme 1* have an alert level in its own class. We saw that
every second packet were thrown using the honeypot machine. It would really have
been interesting knowing the drop rate from the dedicated machine, but these are not
available. The icmpsic test using 1000000 packets was not committed with scheme 1*.

59

Scheme 1* Scheme 1
0

2,5

5

7,5

10

12,5

15

17,5

20

22,5

Shellcode exploit (S 1O & S 11) comparison chart

Apacheexploit (S 10)
Apacheexploit (S 11)

Configuration scheme

A
le

rts

Scheme 1* Scheme 1
0

5000
10000
15000
20000
25000
30000
35000
40000
45000
50000
55000
60000
65000
70000
75000
80000

ISIC (S 14) comparison chart

Icmpsic 5400000
icmpsic 1000000
tcpsic -I 100 -T 100
1000000
tcpsic 1000000
Udpsic 1000000
Isic 1000000

Using benchmarking to improve IDS configurations

4.4.6. Summary and conclusions on the test results

4.4.6.1. Scheme 1 – scheme 5

Section 4.4.4 has described the results from the benchmarking of an IDS. In this case
Snort was used. We have defined some configuration schemes, a general approach on
what to focus on when configuring the IDS, to be used when testing an IDS
configuration. 5 different configurations has been tested, and we have seen the results in
charts making it easier to see the bigger lines. Due to very limited hardware, we have
seen that the IDS tends to throw packets when it is challenged with heavy load from
large amounts of traffic, or when other services on the machine running the IDS
occupies resources needed by the IDS. The drop rates have shown to be important, and
are very often the reason for decreased alert levels.

To use these tests to improve IDS configurations, one must be aware of the limitations
in network and hardware. Drop rates have shown to have impact on the results. Event if
the results tells us about alerts, the drop rate can be used as a measurement of how much
we can trust those numbers. Of course, many other factors, like quality of tools, IDS
capabilities, methodology, may also have impact on the results. Refer to Appendix B for
some words about reliability of testing.

In this test we there mostly too high drop rate to be able to directly say if one
configuration is better than the other. If we had more reliable data, there might have
been possible to use the numbers more directly when fine tuning and testing the
configurations. Here we have to see bigger lines. We have seen a common pattern of the
charts, see Figure 4.27. Scheme 1 has some alerts, scheme 2 has higher level of alerts,
scheme 3 with no or little, scheme 4 with lesser than scheme 1 and finally scheme 5
with little more than scheme 1
.

Figure 4.27: Conclusive lines based on the results from the IDS benchmarking

60

S 1 S 2 S 3 S 4 S 5

Alerts

Configuration scheme

Using benchmarking to improve IDS configurations

If the numbers in the test had been more reliable, we could have concluded with that
applying attributes from configuration scheme 4 would have a positive effect. But as we
know from the drop rates, scheme 4 had typically relative higher drop rate than the
others, so we cannot conclude directly with that. Another thing we can see, is that
applying every signature available, might not be the the best way of reducing the alert
level. This confirms the Snort manual [28], were dynamic and adapted rules and
signatures are encouraged to use. This means only adapting signatures that matches the
traffic available on a network. For instance, if one does not have any telnet servers on
the network, why should on search for inbound telnet traffic? The only reason would be
to monitor attempts, if that is interesting to gain knowledge of. We also see that the IDS
will miss very much of the attacks, if by some reason all signatures have been disabled.
This might be trivial, but if so happened it would be preferable that an IDS would report
little, instead of nothing. But then, it might be more suspicious if it didn't report
anything. The point is that eliminating signatures that should be activated, important
information might be lost that could in worse case be a false positive, a missed attack.

4.4.6.2. Scheme 1* - scheme 1

Here we compared the test results from to different computers, with different
preferences. This we saw the consequences of. The test parameters was not 100 %
equal, with the result of comparison problems. A slightly difference in the configuration
scheme resulted in deviations. This shows that in order to compare a scheme from a
computer to another, or even among different kinds of IDSs, the configuration based on
the scheme has to be as identical as possible, or else one have to take the differences
into account.

We saw that differences in hardware resources made quite big deviations in the alert
level. Due to lack of drop rate information from the fastest machine, we cannot directly
conclude anything about whether the drop rate decreases, but logics say that it ought to.

Using these results directly is no good. There are to much uncertainties related to one or
the other result. But what is apparent, is that using adequate hardware is necessary. If
one is uncertain, this benchmarking methodology and its tool can be used, with focusing
on the drop rate.

61

Using benchmarking to improve IDS configurations

4.5 The other scenarios

Executing the IDS benchmark is a very time consuming process. Especially when
applying many configuration schemes that should be tested, often several times when
fine tuning. In this thesis, one of the goals was to try to test the configurations in
different environments, described in chapter 3, to see what variations the change of
environment makes. There has not been time for this, but we have seen that what
signatures that have been enabled, has effects on the results. Adapting the signatures to
the actual environment will therefore be an important issue when benchmarking the IDS
configurations. If one test an configuration in one environment, this might not be just as
good on another network with other preferences. This is also mentioned by Ranum in
his experiences with IDS benchmarking [1].

4.6 Guideline to IDS configurations

Clearly, due to the fact of high packet drop rates, it would be too ambiguous, if not
erroneous, to try to point out how an IDS should be configured. To do this, we had to
increase the number of configuration schemes, by making each scheme more specialized
and narrow. But this has a drawback. If the configuration schemes are to narrow, they
might be harder to use with other kinds of IDSs. But if comparison among IDSs are
irrelevant for a cause, more specialized schemes can be made, since it then might only
be one IDS benchmarked. One have to check the reliability of the tests to get more
accurate results, see Appendix B. But validity is very important as well. One have to be
sure that the tools tests what the properties of the IDS that is intended.

To give a simple example of how pointing out improvements of an IDS configuration
can be done, we can use the results described in 4.4.4 and the conclusions in 4.4.6.
If the drop rates had been much lower, and the results as they are, we could have
concluded with that since configuration scheme 4 had general lower alert rates26. In
addition, it seems like adapting signatures to its working environment also would have a
positive effect. By this, make such adaptions in the configuration. After this, a new
round of testing has to be applied to verify the effects of the changes. The more detailed
configuration schemes to compare with, the better and more specific elements that
improves the IDS configuration can be revealed. But it is a drawback of heavily
expanded time consume, because of higher number of test rounds. This must in that case
be a trade off, regarding granularity of configuration schemes and usage of time. All in
all, it is a question of how much resources one is willing to sacrifice, i.e. what gives
most effect of the money.

26 Meaning lower false positives. False negatives also has to be encounted for in the evaluation

62

Using benchmarking to improve IDS configurations

5. General discussion of results and experiences

5.1 Software

5.1.1. IDS

It is clearly that more than just one IDS has to be tested to increase the validity of the
test results. Snort is representative for the NIDSs that are freely available, and has rich
functionality with lots of configuration options. However the results from the tests are
characterized by the lack of computing resources. This can clearly bee seen after the IDS
were moved to a slow machine, where packet drops so severe that nearly almost every
second packet were thrown away. This decreases the value of the results. One cannot be
sure if the percentage of packet drop is constant. Since it is the same host that runs the
services often attacked, and the IDS. They will claim the same resources, that are
definitely limited, leading to that at least one of them loses. This is typical when both
are under heavy load. Therefore we see an increase in packet drops with intensive and
exhaustive test that require a lot from both the service and the IDS. A DoS attack
against a service will probably be an DoS against the IDS as well. This is a big
drawback in the reliability of the results. This is an unwanted situation, but the hardware
situation during the work with this thesis is the reason for this. By the projects final
weeks it was to late to replace any hardware.

5.1.2. Testing tools

5.1.2.1. General issues

Much of the testing tools used in this thesis are quite old, with no longer development.
4-5 year old software does not always work on todays operating systems. This project
has proved that fact. The lack of good and automated testing software leads to use of
large amounts of time trying to get the software to work, and work as intended. Some of
the software are quite useful, and performs very well of what they are intended to do.
After searching the web for open source / BSD licensed / freeware tools, most of the
developers says that their tool tests IDSs, but I haven't found any yet, that tests a wide
aspect of the IDS. Most tools have a narrow field they tend to operate. By relating to
many small and specialized tools, the testing becomes more time consuming and
complicated than it ideally could be. Nessus impressed me during the benchmarking
process. Not only is it one of the most advanced vulnerability scanners, but it has also
implemented IDS evasion techniques, based on Whisker. It would not surprise me, that
this tool may evolve towards a IDS testing tool as well in a relative short time period. It

63

Using benchmarking to improve IDS configurations

is my opinion that the results from the testing would have been easier to draw
conclusions from if we had a more unified tool set available.

Some of the tools aren't very usable in attack statistics. When a tool is used for testing
an IDS's signature capabilities, one cannot count on that the tool gives information of
how many attacks that are launched. This makes using the results in accurate
calculations. The tools may never have been intended to be used in statistical analysis,
but this is surely something to think about when developing IDS testing tools in the
future.

The next chapter are some words on each tool describing experiences with them in this
work, and weaknesses discovered during the test..

5.1.2.2. Nmap (S 1)

Nmap is a great tool for testing the IDS's port scan activity abilities. It is the most
common port scanning tool available, and is rich of advanced functionality. This come
in hand if one will tune the IDS to only detect sophisticated port scans, like stealth
scans.

5.1.2.3. Nessus (S 2)

Nessus was originally a port scanning tool, using nmap, and a vulnerability scanner.
Lately it also has gotten the Whisker IDS evasion abilities, that makes it even more
actual as a IDS testing tool candidate. It is rich on features, but the interest in IDS
context will be to test the IDS's ability to detect port scans and vulnerability scans. The
IDS evasion functionality increases its value if one does not use Whisker or Whisker
based software. In the test used here, none of the IDS evasion techniques were used,
since Nikto (S 5) uses those features. Nessus has may advanced features for its
vulnerability scans. The plug in based system makes it easy to customize the scans, that
also can be useful for IDS testing purposes.

5.1.2.4. Snot (S 3)

Snot is a false positive generator. It was originally designed to use with the Snort IDS. It
uses the Snort's signature database as input to generate traffic that contains the patterns
found in the snort signatures. It can though be used with other IDSs, but is then limited
to generating attacks that Snort detects. This has not been tested here. The problem with
Snot, is that it is old, and has not been updated for a while. It is designed to use Snort
version 1.8 signatures, but in these test version 2.1 signatures were used. The
consequence of this, was that many of the newer signature were rejected by Snot

64

Using benchmarking to improve IDS configurations

because of changes in structure in the signature database27. As of lack of features, it
would give much more value, when testing reliability, that Snot would give some
statistics of number of attacks generated, time consume. This would indeed aid in
measuring performance. The last comment on this tool, is about making it work. It is
distributed as source code, so it has to be compiled on the computer. Since it is so old,
there were some problems to get it to compile. Necessary libraries on the Linux system
was to new, and not backward compatible with older versions. The solution was to
install old libraries. These problems is relatively easy to solve, but takes some time to
figure out what is wrong and how to solve it. This increases the level of usage, and
might be a negative side for many.

5.1.2.5. Sneeze (S 4)

This software is also a false positives generator. But it was impossible to get it work on
the systems used in the tests. Several attempts were done. It finally compiled, but would
not work as intended. None of the efforts in trying to make it work failed. It might be
possible to make it work, maybe on other Linux distributions, or platforms, but one have
to have in mind that there is a possibility that it might not work. No results were
possible to produce, and that is why it is not in the test results.

5.1.2.6. Nikto (S 5)

This tool scans a web server for vulnerabilities. This is based on the Whisker libraries
for IDS evasion techniques. In the tests used here, the apache web server contained very
little features to test. This tool will probably be more fruitful in when testing an in-real-
life use web server, maybe running a web shop or a log-in site. All the IDS evasion
techniques, 1-9 were tested. IDS evasion number 9 session splicing, was too time
consuming, and was only executed on configuration scheme 1* and 1-2. The conclusion
after using the IDS evasion capabilities, is that in most cases the number of alerts
increased, compared to using Nikto without these features. This indicates that the IDS in
this case, managed to detect these evasion techniques, but generated much more alarms
in addition. The question is whether the IDS should report that it has detected evasion
techniques, or it just should report the events triggered by the underlying software, here
Nikto's web tests.

5.1.2.7. Fragroute (S 6)

Fragroute uses other tool's traffic, and rewrites it and sends it to a destination host. In
this benchmark, Nmap, Nikto and Snot were used to see how the IDS dealed with this
modified traffic. This tool performs fragmentation, delays, drops, overlapping,

27 The “database” consists of several text files, joined to one file with the Unix/Linux command 'cat'

65

Using benchmarking to improve IDS configurations

reordering, duplicating on the ingress traffic. As a consequence, the IDS generates much
more alerts by sending the traffic through this tool, than the tools does standalone. The
vast majority if the alerts are due to TCP / UDP and IP header errors.

5.1.2.8. Fragrouter (S 7)

This tool performs much of the same as Fragroute, though they have differences.
Fragrouter is intended to run on a dedicated host. It accepts incoming traffic, preferably
traffic by other tools and rewrites the IP traffic. The IP packets will be reordered,
fragmented in different sizes, or else altered in many ways. The goal is that the traffic
should evade the IDS. Unfortunately, there just were not enough machines available in
this test setting to make use of this tool. It would indeed be interesting to see how the
IDS would deal with this kind of traffic. The OSEC methodology [3] has defined
several test with this tool, but this has to be done in later experiments with more
machines available.

5.1.2.9. IDSwakeup (S 8)

This is as tool designed for testing IDSs. It generates a series of false attacks to see if the
IDS can detect it. There are no data on how good this tool is, but we saw the variation of
alerts based on the configuration schemes, and thereby usable. Though, it has no update
functionality, like for example Nikto has.

5.1.2.10. ADMmutate (S 9)

ADMmutate is an API28 for generating polymorphic shellcode exploits. Ordinary
exploits have a typical network traffic pattern making it easy to create a signature for it.
Making the exploit polymorphic means that the characteristics of the exploit are being
changed by this API, so that the attack pattern changes compared to the original. This
requires that the source code for an exploit is available, and calling some API functions
before it is compiled. Though the manual explained that it was quite trivial to
implement, it was not possible to compile the exploits using the ADMmutate API.
Threes different exploits were tried, but no one would compile. With computer
engineering and programming background, this ought to be trivial, but days of trial and
error combined with searching the Internet gave no results. It would really have been
interesting to see if the IDS would have managed to detect polymorphic shellcode
exploits. The API has not been updated for a while, and this might be the cause of why
the code would not compile with the API's functions29.

28 Application Programing Interface
29 The exploits compiled fine without using the API

66

Using benchmarking to improve IDS configurations

5.1.2.11. Apache 1.3.x – 2.0.48 remote users disclosure exploit (S 10)

As an example of exploits, this was used to see how the IDS dealt with shellcode
exploits. Though the web server was not vulnerable for this exploit, it was still
interesting to see if the IDS detected it. As mentioned, registering false negatives is not
trivial, but using exploits and combine it with the polymorphic API, it is easier to
register these false negatives when an actual attack is executed. This exploit did not
produce any alerts, but since the web server was not vulnerable in this case we might
say that it was no false negative. But the IDS cannot know for sure which version of
software that runs or not, so it actually was a false negative.

5.1.2.12. Apache 1.3.X Remote Exploit (S 11)

The web server this exploit attacked, were not vulnerable either, but here we got alerts
from the IDS. The exploit generated 21 alerts in the tests. This should be more than
enough to alert of an exploit attack. It is tempting to say that 20 of the alerts were false
positives, but it relies on how the exploit is made. It could easily be built abusing several
exploits at once.

5.1.2.13. 7Plagues (S 12)

This is a Perl script launching huge amounts of traffic, a DoS tool. But again, trouble
appeared. The script was made using the old threading model in Pearl, so even with
downloading old Perl modules of different kinds, it would not run. Though the author is
familiar with Perl programming, after many, many attempts, this script could not be
used. ISIC therefore had to be the stress tool used. This script needs to be updated in
order to work with the newer operating systems and Perl versions.

5.1.2.14. ISIC (S 13)

This stress testing tool testing the TCP/IP stack implementation, could also be used as a
form of DoS. This came clear when we saw the drop rate from the IDS. The tool has the
ability to test the IP, TCP and UDP protocols. The intense traffic generated by the ISIC
tools really shot the alert levels to the sky. It is worth noticing that this tool can crash
operating systems with poor TCP/IP implementation, which makes it a quite dangerous
tool, so it might be important to detect such activities. But the downside is the high
level of alerts. It is tempting to classify most of them as false positives, but security
policy and IDS implementation have to be the parameters for such classification. This
tool is is anchored in the OSEC methodology [3], but the throughput at 8 Mbit/s and 5
400 000 packets was to heavy both for the IDS and the machine running ISIC. The real
throughput reported by ISIC was between 3,5 and 4,0 Mbit/s, regarding which protocol

67

Using benchmarking to improve IDS configurations

tested. The amount of transferred packets were due to practical reasons reduces to 1 000
000. The hardware limitations therefore was responsible that this tool could not be
executed at “full speed”.

5.1.2.15. T 1 Network Traffic Generator (T 1)

This tool is intended to create network traffic. It was planned that this should be used in
scenario 2, where the IDS tests were to be executed with background traffic. The tool
were tried out, but even if it complied well, it didn't seem to work. It is not clear what
was wrong, but there were not enough time to find it out. Finding a good traffic
generator is hard. Ranum [1] also points out that most of them are flawed in IDS
benchmarking situations. It depends on the intentions. Here it was originally planned to
make some extra noise and traffic on the network to challenge the IDS. This could have
also be done with ISIC, but it would have triggered many alerts, making it harder to see
differences among the configurations.

5.2 Benchmarking methodology

The methodology used as base for the testing have so far been adequate. There were
never any goals to find the “best methodology in the world”, but rather to find a
methodology that were sufficient enough to cover the most important aspects of
benchmarking IDSs. Focusing on the IDS configuration has not been any problem using
the methodologies in [2] and [3]. One of the greatest challenges has been to find suitable
software of good quality, that tests the topics described in the methodology. As
mentioned before, the hardest part has been insufficient hardware resources, which also
has consequences for compliance of the methodology. Some requirements have not been
achieved because of limited computing power. Stress testing tool as ISIC is a very good
example of this. Fragrouter is another example on a tool that hasn't been used as
according to the methodology. OSEC has several tests based on Fragrouter, but it
couldn't be executed due to lack of computers.

5.3 Benchmarking IDS configurations

The idea of purposing a methodology to use for non-experts in benchmarking IDS, has
shown to work, based on the experiment. Though this experiment has been troubled
with insufficient hardware, this can be used to underline how important it is to know the
limitations in the IDS testing, this is also confirmed by Ranum [1]. Using slow hardware
in this experiment, revealed high packet drop rate, making the results less reliable.
Considering drop rates and combining results, we were able to see common pattern that
some configurations tended to have generally higher or lower alert levels than others.

68

Using benchmarking to improve IDS configurations

The trend was apparent with almost every tool used. This might be a good indication.
But due to the fact of poor reliability, we cannot conclude anything directly, but to say
that this seems to work and be a way of performing IDS benchmarks with focus on
configurations. Its strength lies in the foundation of the methodology, so with further
work based on this thesis, more conclusive information might be gained.

69

Using benchmarking to improve IDS configurations

6. Future work

6.1 Introduction

Working with this thesis, it has come clearly that IDS benchmarking is very time
consuming and a complexed topic. Very much of the initiate planned work, have have to
be ruled out due to time consuming tests, and technical difficulties. During the tests, it
came also clear that more work has to be done with the software, so based on the
experiences in the IDS testing the next sections proposals for improvements and
expansions of this work

6.2 Methodology

• Evaluate the OSEC and OSSTM methodologies with a deeper an more thorough
analysis with focus on how well they cover all aspects of an IDS.

• See if there are any method to “benchmark” how good the methodologies are.
• If so, find out how good open methodologies compared to those not available for

public.

6.3 IDS and configuration benchmarking

• Execute the tests using the two last scenarios defined in chapter 3, preferably with
scenario 1 since hardware platform might be different, with the goal to see how static
and dynamic30 background traffic affect the results.

• Test other IDSs.
• Compare several IDSs.
• Compare one IDS using different hardware to see the affects.
• Compare free of charge IDSs against commercial using this methodology or an

extended edition of it.
• Use this methodology on a real-life network, or bigger test network
• See if there are possibilities to port this experiment to other types of IDSs, e.g. Host

based IDSs.
• Create more configuration schemes with higher granularity.
• Create more configuration schemes and test them among several IDSs and see how

configuration schemes makes sense when comparing performance across different
IDSs.
• See how granular these can be before encounting problems with different

configuration architecture.

30 And authentic, refer to scenario 3

70

Using benchmarking to improve IDS configurations

• Deeper study of the connection between configuration scheme and the configuration
elements.

• Deeper study in reliability and validity of an IDS and how it deals with tests.
• How does this affect results in a benchmarking situation.

• Study the effects of using analyzing tools with intrusion databases.
• Usability, user friendliness, error rates are important topics.

6.4 Testing software

• Further develop some of the older tools not working, or difficult making it work.
• Improve user friendliness of many of the tools.
• Try to combine some of the tools and write it as one. Dealing with fewer tools might

male the testing less complicated.
• Create new tools specialized in IDS testing
• Find replacements for tools not working in this experiment, and perform benchmarks

• Evaluate against the methodology
• Experiment with usage of several traffic load generators and see if those has effects

on the results.
• Enhance the software test suite

• Reveal weak coverage according to benchmarking methodology.

71

Using benchmarking to improve IDS configurations

7. Conclusions

7.1 Methodology

In this thesis, The OSEC and OSSTM methodologies were used as a base for the IDS
benchmarking. Both the OSEC and OSSTM methodologies had specialized sections for
benchmarking IDSs. The OSEC methodology's NIDS testing criteria, were far more
detailed than the OSSTM, therefore this methodology influenced more than the
OSSTM. The OSEC methodology had a series of tests with detailed description of what
to test, and what results were acceptable or not. It seems that these methodologies
together have been adequate for this usage in the experiment of this thesis. There were
no indications that there were any limitations in the methodologies that might have
impacted or decreased the value of the results. On the other hand it is hard to measure if
the methodology is implemented right. Therefore the question of the validity in this is
not possible to say anything conclusive about. There are too many black boxes in such
testing environment, which one does not see in details what happens with the data flow.
This is for IDS, testing tools and even how the operating systems and network devices
deal with the network traffic. We just have to trust that the results are somewhat correct,
but have in mind that errors may appear, since we do not have the entire picture of haw
data is processed31. Measuring methodology compliance, the question if we actually
follows and use the methodology as intended, is a thesis in it selves, and it is not
guaranteed that the work is 100 % compliant to the methodology here either. Reasons
for this are because of software tools that did not work or had some lack of feature. In
addition, the test network was too little and simple to implement all checks defined in
the methodology.

7.2 IDS and benchmarking configurations

In the experiment, we used Snort as an example of using a free IDS. The introduction of
configuration schemes was essential to be able to classify and test the different
configurations. The schemes made it also easier to pinpoint what improvements that
could be gained in a configuration, and it has a potential to be a framework when
benchmarking configurations among different IDSs. This has not been tested, but the
though behind these schemes are to make it possible to have a cross IDS comparison
framework. Further testing have to be done, to prove that it is feasible. Tested with one
IDS they the concept of such configuration schemes seems useful, but due to lack of
time, only five general schemes were designed and tested. To make the benchmarking
and comparison more fruitful, several more schemes must be defined with higher
granularity that identifies more specialized parts of the configuration.

It was possible to detect variations among the results of the different schemes. Though,
due to slow hardware, the reliability of the results was not good. This Appendix B

31 At least not in this project

72

Using benchmarking to improve IDS configurations

shows. Therefore one has to be very careful with drawing any conclusions. Still, we
were able to see some common characteristics when comparing all schemes with the
results from all tools. Thereby it is demonstrated that the changes in configuration can
be detected by benchmarking. But it is important to be aware of the limitations of both
hardware and the tools used. The tests of this thesis showed that slow hardware were
responsible for high packet drop rates, especially at high traffic volumes.

Further testing has to be done to verify the effects of the changes. The work has shown
that this is a time consuming affair, when using many tools with many configuration. So
a lot of time have to be invested when using such method. Not all tests planned in this
thesis were carried out due to optimistic plans and some technical difficulties. Such
errors are easy to make, and one have to remember that trouble can occur a, and have in
mind that these tests takes more time than one would think. In light of the experiences
from this thesis, on can say the original plans was a bit too optimistic.

7.3 Software tools

The tools used in the tests when benchmarking the IDS were anchored in the
methodology as good a it was possible to get it. They were freely available using the
licenses defined earlier in this thesis. The experiences with these tools showed that there
are a lack of unified IDS testing tools. If following the methodology, one has to deal
with several tools doing special tasks. Many of these these were useful, bot sadly some
of them would not work, due to the fact of being old and incompatible with newer
systems. Some had not been updated for some years, and it is questionable if they are
valid today as they were at the time they were released. Therefor a lot of work have to
be done on this front of IDS testing, New and updated tools may aid gaining more valid
results. In addition, some of them were both complicated to get to work properly, as
well as complicated usage and user interface. Performing tests with current software has
a relatively high user level. One have to have deeper knowledge in operating systems
and software development, as well as detailed network communication.

7.4 Summary

In this thesis, it has been focused on finding a way to use IDS benchmarking to improve
the configuration of IDSs. Using public available methodologies based on best practices
and experience, the thesis has founded a base for further work in developing a
benchmarking suite for novices in the IDS benchmarking area. The suite of testing
software has shown that there are software available for use in IDS testing, though it is
not perfect, and a lot of work must be done improving existing software. Much of the
existing software are too buggy and outdated. There is a need for unified tools. The ideal
might be one tool testing all aspects of the methodology, but this might be to ambitious
today.

We have used the experiment to show that the idea of benchmarking IDS configurations

73

Using benchmarking to improve IDS configurations

makes results. The variations are detectable. But due to poor reliability in the test
results, we cannot dram any direct conclusion of important elements that improve the
IDS configuration. Much more work has to be done with faster hardware and more
testing of different and more detailed configurations in order to get steps further in the
process of identifying important configuration elements.

The usability of the approach described and tested in this thesis, is a bit impaired by the
fact that testing these configurations takes very long time. Configurations have to be
tested an compared with other configurations again and again. The use of time and
complexity might be frightening factors due to economy and used of resources. But
with further research and development might reduce the efforts in a more standardized
manner. This work is though a foundation to further studies with the goal to finding a
more standardized and open methodologies of benchmarking IDSs and their
configuration, with goals of improving the IDS performance.

All research questions have been addressed, but is not easy to make a conclusion with
two lines below the answer on every question asked. There are many variables to be
aware of and conditions that impacts on the results. Even though, we have addressed the
problems and considerations were there has been to thin foundation to anchor
conclusions.

74

Using benchmarking to improve IDS configurations

Acknowledgments

I'd like to thank the following that contributed to the work with this thesis:

• My teaching supervisor Professor Einar Snekkenes.

• Fellow students in my class, 02MAISA, for helpful feedback during our
presentations.

• Erik Hjelmås for providing hardware and helpful support and hints.

• IT Service at Gjøvik University College for providing hardware, and a separated
subnet with unlimited Internet access.

• Openoffice.org (http://www.openoffice.org) as a splendid alternative to MS Word.
No comment about Latex mentioned.

And finally I would like to thank my girlfriend and roommate Iselin Hillersøy for
patience, support and care, as well as my inspiration and motivation during the work
with this thesis.

75

Using benchmarking to improve IDS configurations

References

[1]
Markus J. Ranum,
Experiences benchmarking Intrusion Detections Systems,
NFR Security Press,
2001

[2]
Pete Herzog,
OSSTM 2.1 Open Source Security Testing Methodology manual,
The institute for Security and Open Methodology, ISECOM,
2003

[3]
Neohapsis OSEC Open Security Evaluation Criteria,
Open Security Evaluation Criteria (OSEC) website,
http://osec.neohapsis.com/

[4]
Douglas C. Schmidt, Adam Porter,
Leveraging Open-Source Communities To Improve the Quality & Performance of
Open-Source Software,
 In First Workshop on Open-Source Software Engineering, International Conference on
Software Engineering, May 2001,
2001

[5]
N. J. Puketza, K. Zhang, M. Chung, B. Mukherjee and R. A. Olsson,
A Methodology for Testing Intrusion Detection Systems,
IEEE Transactions on Software Engineering,
1996

[6]
R. Lippmann, D. Fried, I. Graf, J. Haines, K. Kendall, D. McClung, D. Weber, S.
Webster, D. Wyschogrod, R. Cunningham and M. Zissman,
Evaluating Intrusion Detection Systems: The 1998 DARPA Off-line Intrusion Detection
Evaluation,
IEEE Computer Society Press,
2000

[7]
Distrowatch.com,
How popular is your distribution?,
http://www.distrowatch.com/stats.php?section=popularity,
April 2004

76

Using benchmarking to improve IDS configurations

[8]
W. Stallings,
Network Security Essentials Application and Standards, Second Edition,
Prentice Hall, pp 297-309,
2003
[9]
D. Song, G. Shaffer and M. Undy,
Nidsbench – A network intrusion detection system test suite,
Anzen Computing RAID99,
1999

[10]
T.H. Ptacek, T.M. Newsham,
Insertion, Evasion, and Denial of Service: Eluding Network Intrusion Detection,
Secure Networks Inc.,
1998

[11]
W. Stallings,
Data & Computer Communications, Sixth Edition,
Prentice Hall, pp 528-529,
2000

[12]
W. R. Stevens,
TCP/IP Illustrated, Volume 1, The protocols,
Addison Wesley, pp 54-60,
2000

[13]
B. Laing,
How To Guide-Implementing a Network Based Intrusion Detection System,
Internet Security Systems,
2000

[14]
R. Bace, P. Mell,
Intrusion Detection Systems,
NIST Special Publication on Intrusion Detection Systems,
2000

[15]
P. Mell,V. Hu, R. Lippmann, J. Haines, M. Zissman,
An Overview of Issues in Testing Intrusion Detection Systems,
National Institute of Standards and Technology and Massachusetts Institute of
Technology Lincoln Laboratory,
2003

77

Using benchmarking to improve IDS configurations

[16]
M.J. Ranum,
False Positives: A User’s Guide to Making Sense of IDS Alarms,
ICSA Labs IDSC,
2003

[17]
S. Axelsson,
On A difficulty in Intrusion Detection,
Recent Advances in Intrusion Detection
1999,
 http://citeseer.nj.nec.com/axelsson99difficulty.html

[18]
C. Del Carlo,
Intrusion detection evasion: How Attacker get past the burglar alarm,
SANS Institute,
2003

[19]
S. Axelsson,
Intrusion Detection Systems: A Survey and Taxonomy,
Chalmers University 99-15,
2000,
http://citeseer.nj.nec.com/axelsson00intrusion.html

[20]
S. Axelsson,
Research in Intrusion-Detection Systems: A survey,
Chalmers University of Technology,
1998, revisited 1999

[21]
N. Athanasiades, R. Abler, J. Levine, H. Owen and G. Riley
Intrusion Detection Testing and Benchmarking Methodologies,
First IEEE International Information Assurance Workshop,
2003

[22]
R. Anderson,
Why Information Security is Hard,
University of Cambridge Computer Laboratory,
2001,
http://www.acsac.org/2001/papers/110.pdf

78

Using benchmarking to improve IDS configurations

[23]
M. Vandenwauver, J. Claessens, W. Moreau, C. Vaduva and R. Maier,
Why Enterprises Need More than Firewalls and Intrusion Detection Systems,
IEEE 8th International Workshops on Enabling Technologies: Infrastructure for
Collaborative Enterprises (WET ICE'99), 16-18 June 1999, Stanford, CA, USA,
1999

[24]
S. Lodin,
Intrusion Detection Product Evaluation Criteria,
Lodin, S. (1998). Intrusion Detection Product Evaluation Criteria,
1998,
http://citeseer.nj.nec.com/lodin98intrusion.html

[25]
CC – Common Criteria for Information Security Evaluation,
Common Criteria homepage,
http://csrc.nist.gov/cc/

[26]
Morten Srene,
Vitenskapelig forfatterskap - Hvordan lykkes med skriftlige studentoppgaver,
Kolle forlag, ISBN 82-463-0016-4, pp 71-112,
1999

[27]
R. Maxion and K. Tan,
Benchmarking Anomaly-Based Detection Systems,
In Proceedings of the 1st International Conference on Dependable Systems & Networks,
2000,
http://citeseer.nj.nec.com/maxion00benchmarking.html

[28]
M. Roesch, C. Green,
Snort Users Manual,
2004,
http://www.snort.org/docs/snort_manual.pdf

[29]
ACID,
Analysis Console for Intrusion Databases (ACID) Website,
http://www.andrew.cmu.edu/user/rdanyliw/snort/snortacid.html

[30]
Einar Snekkenes,
Lecture notes for a course on Security metrics,
NISlab,
2003

79

Using benchmarking to improve IDS configurations

[31]
Neohapsis IDS Archives for IDS mailing lists
http://archives.neohapsis.com/archives/ids/

80

Using benchmarking to improve IDS configurations

Definitions and commonly used words

This is a list of words used in this thesis, which need further explanations of what they
mean in this context. Some of the descriptions has been found on
http://www.google.com using its “define:keyword” search string.

Keyword Description
Attacker A person that performs or try to perform a an attack to gain

unauthorized privileges or information on a remote system,
based on Confidentiality, Integrity and Availability

Benchmark A method of standardized quantitative measurement, often
performance of some object. Test is also used here as a
synonym, enhancing language variation.

DMZ DeMilitarized Zone. Network of part of a network were the
security level is different than from other networks. This may
be due to that there are servers running on this network, with
different access control than for the rest of the network. Here
we might find web servers, mail servers, ftp servers, etc,
were inbound traffic is allowed.

DoS Denial of Service. Attack from one or many hosts with the
goal to exhaust resources on a remote system with intention
to bring it out of service.

False positive An intrusion detection that indicates a security event, here an
attack, which really is legitimate traffic

False negative A missed intrusion detection, where an actual attack gets
past the IDS without any notice.

Honeypot A host specially configured with services as a decoy for
potential attackers. Often used to inspect attack patterns.

Host A computer or system often assigned with an Internet
address (IP address)

HIDS Host Intrusion Detection System. IDS running on a host to
detect intrusions on that specific machine.

IDS Intrusion Detection System. A general term used in context
with burglar alarms used on computer systems that alerts of
any detected attack. In this thesis the term is often used
where NIDS or the IDS name would be more correct to use.

Lag Latency. In network context; Time from a data packet is sent,
to it is received by the receiver.

Methodology A description of steps and procedures to collect and analyze
information.

81

Using benchmarking to improve IDS configurations

Keyword Description
NIC Network Interface Card, often Network card. Necessary for

network communication (here: Ethernet) among computers.
NIDS Network Intrusion Detection System
Polymorphic The ability to change or mutate its appearance so that the

characteristics appear different, but its functionality is the
same. Used to fool detection engines, like anti virus or IDS.

Sensor The detecting engine of an IDS. It is located where the it can
have access to the physical network. The sensor is often
located with the rest of the IDS software or hardware, but
there are distributed IDSs with many sensors spread out on
the network, with a central host that processes the alerts, the
decision module.

System administrator Person or role which has higher or the highest privileges on a
computer or network, responsible for running the computer
or network.

Victim Here defined as the machine running services that a possible
attacker will use or abuse to get unauthorized resources.
Used here with the term honeypot.

VPN Virtual Private Network. A logical network of computers
talking to each other across physical networks, using
encryption to ensure authentication, confidentiality and
integrity.

82

Using benchmarking to improve IDS configurations

83

Using benchmarking to improve IDS configurations

Appendix A: Test results

A.1 Introduction
This chapter presents the results from the IDS tests from the experiment. The results are
organized in tables for increasing readability. Each result from a configuration scheme is
placed in its own table. If needed, strange or unclear results will be commented. The
“Type” field has intentionally been left blank, to underline the difficulties of classifying
the the alerts as attack or false positive, or even false negatives.

A.2 Configuration scheme 1

Software and command options (Config 1) Packet
drop rate
(%)

Results
(Alert)

Type

Nmap, 3.48 (S 1)
nmap <IP address> 5,05 7
nmap -sF <IP address> 47,83 113
nmap -O <IP address> 6,65 9

Notes:
Nessus, 2.0.10 (S 2)

All plugins enabled except the ones that could
be harmful to the service on the victim 8,54 890

All plugins enabled, even the harmful ones 23,57 1328
Notes: The second test crashed the remote machine at
first try.
Snot, 0.92a (S 3)

snot -r rules/all.rules -s <source
IP> - <destination IP> -l 5 0,00 15
Notes: all.rules is all the signatures used by snort
(cat rules/*.rules > rules/all.rules).

Not all signatures where approved by snot, probably
because of that snot is quite old and not 100%
compatible with todays version of Snort.10 minute
run.
Sneeze, 1.0 (S 4)

1

Using benchmarking to improve IDS configurations

Software and command options (Config 1) Packet
drop rate
(%)

Results
(Alert)

Type

sneeze.pl -f rules/all.rules -s
<source IP> - d <destination IP> - -

Notes: This software was impossible to make it work.
When starting it, it used all CPU cycles but sent no
packets. It is a Perl script and several attempts to fix it
didn't succeed.
Nikto, 1.32 (S 5)
nikto.pl -Cgidirs -generic -host <IP>
-output output1.txt -verbose 33,51 124
Next commands using Whiskers IDS evasion
nikto.pl -Cgidirs -generic -host <IP>
-output output1e1.txt -verbose -evasion 1 5,86 76
nikto.pl -Cgidirs -generic -host <IP>
-output output1e2.txt -verbose -evasion 2 28,96 183
nikto.pl -Cgidirs -generic -host <IP>
-output output1e3.txt -verbose -evasion 3 45,35 494
nikto.pl -Cgidirs -generic -host <IP>
-output output1e4.txt -verbose -evasion 4 42,93 327
nikto.pl -Cgidirs -generic -host <IP>
-output output1e5.txt -verbose -evasion 5 44,93 332
nikto.pl -Cgidirs -generic -host <IP>
-output output1e6.txt -verbose -evasion 6 28,72 202
nikto.pl -Cgidirs -generic -host <IP>
-output output1e7.txt -verbose -evasion 7 28,77 223
nikto.pl -Cgidirs -generic -host <IP>
-output output1e8.txt -verbose -evasion 8 24,91 205
nikto.pl -Cgidirs -generic -host <IP>
-output output1e9.txt -verbose -evasion 9 0 3998
Notes:
Fragroute, 1.2 (S 6)
fragroute <destination IP>
snot -r rules/all.rules -s <source IP> - d
<destination IP> -l 5 47,40 661
nmap <IP address> 0,00 11
nikto.pl -Cgidirs -generic -host <IP>
-output output1f.txt -verbose 45,75 12518
Notes: Fragroute rewrites traffic and is dependent on
other tools output.
Fragrouter, 1.2 (S 7) -
fragrouter -B1 -host <IP address> -
fragrouter -F1 -host <IP address> -

2

Using benchmarking to improve IDS configurations

Software and command options (Config 1) Packet
drop rate
(%)

Results
(Alert)

Type

fragrouter -F2 -host <IP address> -
fragrouter -F3 -host <IP address> -
fragrouter -F4 -host <IP address> -
fragrouter -F5 -host <IP address> -
fragrouter -F6 -host <IP address> -
fragrouter -F7 -host <IP address> -
Notes: Fragrouter is routing and mixing network
traffic to a host, so that the attacks must run from a
host, through the host running Fragrouter. Fragrouter
mixes the attacks in 8 different ways to evade IDSs. In
my test setting a became short of a machine, and
therefore it was not possible to run this software in a
reasonable setting. A proposal for use, would be to set
up Fragrouter in 8 modes, running one ore more of the
tools for each mode. According to OSEC [3], the
Fragrouter tests are vital and should be accomplished.
IDSWakeup, 1.0 (S 8)
IDSwakeup <source IP> <destination IP> 10 5 40,07 43
IDSwakeup <source IP> <destination IP> 10 0 44,35 39
IDSwakeup <source IP> <destination IP> 10 1 36,76 54
IDSwakeup <source IP> <destination IP> 10 2 40,54 50
Notes: IDSwakep with altered TTL (Time-To-Live)
field. The software package also contains iwu that can
send a buffer as a datagram. This is useful when
testing for attack signatures. Did not find this useful
here, since other software does this in easier ways. Se
documentation for usage.
ADMmutate, 0.84 (S 9)

3

Using benchmarking to improve IDS configurations

Software and command options (Config 1) Packet
drop rate
(%)

Results
(Alert)

Type

API for creating polymorphic shellcode. Apply header
and call functions from the original shellcode:
#include "ADMmutapi.h"
struct morphctl *mctlp;
struct morphctl mut;
mut.upper = 0; mut.lower = 0;
mut.banned = 0; mctlp = &mut;
mut.arch = IA32; // Intel x86
 ...
init_mutate(mctlp);
apply_key(buff, strlen(shellcode), nops-1,
mctlp);
apply_jnops(buff, nops-1, mut);
apply_engine(buff, strlen(shellcode), nops-
1, mut);
...

Intended use with Apache 1.3.X Remote Exploit -
Notes: Though this should be relatively straight-
forward to implement in the shellcode, according to
the documentation, this was not the case. It was
impossible to compile the exploit with the
polymorphic code lines. The errors originates from the
API, and several attempts on fixing the problem(s)
failed.
Shellcode exploit, (S 10) (Apache 1.3.x – 2.0.48
remote users disclosure)
apacheexploit -t <destination IP> -p 80 -u
userlist.txt -l log1.txt -b 0,00 0
Notes: Compile:
gcc m00-apache-w00t.c -o apacheexploit
Target was not vulnerable, but the exploit was
detected. Userlist.txt is a list of users to remotely
disclose. Here the exploit ran 3 times without any
detection!
Shellcode exploit, (S 11) (Apache 1.3.x remote
exploit)
apacheexploit 3 <destination
IP>:<destination port> 0,00 21
Notes: Compile:
gcc 01-apache-scalp.c -o apacherexploit
First parameter indicates operating system / web
server. Intended for OpenBSD but works on Linux
7plagues, (S 12)

4

Using benchmarking to improve IDS configurations

Software and command options (Config 1) Packet
drop rate
(%)

Results
(Alert)

Type

7plagues.pl <destination IP> <protocol> -
Notes: Protocol is icmp, udp, tcp, igmp, misc. This is
a Perl script that was impossible to get to work. It is
written with the old threading system of Perl, and was
after many, many attempts with different library
packages impossible to get it to work.
ISIC, 0.05 (S 12)
icmpsic -s rand -d <destination IP> -I 100
-p 5400000 -m 8192 -r 342536 1) 49,94 9106
icmpsic -s rand -d <destination IP> -I 100
-p 1000000 -m 8192 -r 342536 2) 49,95 1304
tcpsic -s rand -d <destination IP>,80 -I
100 -T 100 -p 1000000 -m 8192 -r 342536 3) 49,94 1468
tcpsic -s rand -d <destination IP>,80 -p
1000000 -m 8192 -r 342536 4) 49,92 1506
udpsic -s rand -d <destination IP> -I 100
-p 1000000 -m 8192 -r 342536 5) 49,91 2042
isic -s rand -d <destination IP> -F50 -I10
-p 1000000 -m 8192 -r 342536 6) 49,87 1411
Notes: 1-2) 5 400 000 packet are to exhausting for the
low capacity machines. Therefore 1 000 000 packets
are chosen. 4 Mbit/s throughput. The requirements are
described in OSEC [3]. Machines with low capacity is
the reason for this.

3) 3,7 Mbit/s throughput.

4) 3,7 Mbit/s

5) 3,4 Mbit/s

6) 3,8 Mbit/s with 50% fragmentation, 10% random
IP header length

5

Using benchmarking to improve IDS configurations

A.3 Configuration scheme 2

Software and command options (Config 2) Packet
drop rate
(%)

Results
(Alert)

Type

Nmap, 3.48 (S 1)
nmap <IP address> 4,21 8
nmap -sF <IP address> 47,52 144
nmap -O <IP address> 3,18 11

Notes:
Nessus, 2.0.10 (S 2)

All plugins enabled except the ones that could
be harmful to the service on the victim 20,91 924

All plugins enabled, even the harmful ones 36,93 2571
Notes:
Snot, 0.92a (S 3)

snot -r rules/all.rules -s <source
IP> - <destination IP> -l 5 0,00 23
Notes: all.rules is all the signatures used by snort
(cat rules/*.rules > rules/all.rules).

Not all signatures where approved by snot, probably
because of that snot is quite old and not 100%
compatible with todays version of Snort.10 minute
run.
Sneeze, 1.0 (S 4)

sneeze.pl -f rules/all.rules -s
<source IP> - d <destination IP> - -

Notes: This software was impossible to make it work.
When starting it, it used all CPU cycles but sent no
packets. It is a Perl script and several attempts to fix it
didn't succeed.
Nikto, 1.32 (S 5)
nikto.pl -Cgidirs -generic -host <IP>
-output output2.txt -verbose 33,21 116
Next commands using Whiskers IDS evasion
nikto.pl -Cgidirs -generic -host <IP>
-output output2e1.txt -verbose -evasion 1 11,54 69
nikto.pl -Cgidirs -generic -host <IP>
-output output2e2.txt -verbose -evasion 2 21,46 305

6

Using benchmarking to improve IDS configurations

Software and command options (Config 2) Packet
drop rate
(%)

Results
(Alert)

Type

nikto.pl -Cgidirs -generic -host <IP>
-output output2e3.txt -verbose -evasion 3 45,06 326
nikto.pl -Cgidirs -generic -host <IP>
-output output2e4.txt -verbose -evasion 4 40,07 432
nikto.pl -Cgidirs -generic -host <IP>
-output output2e5.txt -verbose -evasion 5 44,38 334
nikto.pl -Cgidirs -generic -host <IP>
-output output2e6.txt -verbose -evasion 6 31,11 166
nikto.pl -Cgidirs -generic -host <IP>
-output output2e7.txt -verbose -evasion 7 28,57 191
nikto.pl -Cgidirs -generic -host <IP>
-output output2e8.txt -verbose -evasion 8 27,21 188
nikto.pl -Cgidirs -generic -host <IP>
-output output2e9.txt -verbose -evasion 9 0,00 3897
Notes:
Fragroute, 1.2 (S 6)
fragroute <destination IP>
snot -r rules/all.rules -s <source IP> - d
<destination IP> -l 5 46,32 1956
nmap <IP address> 0,00 14
nikto.pl -Cgidirs -generic -host <IP>
-output output2f.txt -verbose 44,44 12968
Notes: Fragroute rewrites traffic and is dependent on
other tools output.
Fragrouter, 1.2 (S 7) -
fragrouter -B1 -host <IP address> -
fragrouter -F1 -host <IP address> -
fragrouter -F2 -host <IP address> -
fragrouter -F3 -host <IP address> -
fragrouter -F4 -host <IP address> -
fragrouter -F5 -host <IP address> -
fragrouter -F6 -host <IP address> -
fragrouter -F7 -host <IP address> -

7

Using benchmarking to improve IDS configurations

Software and command options (Config 2) Packet
drop rate
(%)

Results
(Alert)

Type

Notes: Fragrouter is routing and mixing network
traffic to a host, so that the attacks must run from a
host, through the host running Fragrouter. Fragrouter
mixes the attacks in 8 different ways to evade IDSs. In
my test setting a became short of a machine, and
therefore it was not possible to run this software in a
reasonable setting. A proposal for use, would be to set
up Fragrouter in 8 modes, running one ore more of the
tools for each mode. According to OSEC [3], the
Fragrouter tests are vital and should be accomplished.
IDSWakeup, 1.0 (S 8)
IDSwakeup <source IP> <destination IP> 10 5 38,96 36
IDSwakeup <source IP> <destination IP> 10 0 44,81 36
IDSwakeup <source IP> <destination IP> 10 1 39,28 48
IDSwakeup <source IP> <destination IP> 10 2 39,33 36
Notes: IDSwakep with altered TTL (Time-To-Live)
field. The software package also contains iwu that can
send a buffer as a datagram. This is useful when
testing for attack signatures. Did not find this useful
here, since other software does this in easier ways. Se
documentation for usage.
ADMmutate, 0.84 (S 9)
API for creating polymorphic shellcode. Apply header
and call functions from the original shellcode:
#include "ADMmutapi.h"
struct morphctl *mctlp;
struct morphctl mut;
mut.upper = 0; mut.lower = 0;
mut.banned = 0; mctlp = &mut;
mut.arch = IA32; // Intel x86
 ...
init_mutate(mctlp);
apply_key(buff, strlen(shellcode), nops-1,
mctlp);
apply_jnops(buff, nops-1, mut);
apply_engine(buff, strlen(shellcode), nops-
1, mut);
...

Intended use with Apache 1.3.X Remote Exploit -

8

Using benchmarking to improve IDS configurations

Software and command options (Config 2) Packet
drop rate
(%)

Results
(Alert)

Type

Notes: Though this should be relatively straight-
forward to implement in the shellcode, according to
the documentation, this was not the case. It was
impossible to compile the exploit with the
polymorphic code lines. The errors originates from the
API, and several attempts on fixing the problem(s)
failed.
Shellcode exploit, (S 10) (Apache 1.3.x – 2.0.48
remote users disclosure)
apacheexploit -t <destination IP> -p 80 -u
userlist.txt -l log2.txt -b 0,00 0
Notes: Compile:
gcc m00-apache-w00t.c -o apacheexploit
Target was not vulnerable, but the exploit was
detected. Userlist.txt is a list of users to remotely
disclose. Here the exploit ran 3 times without any
detection!
Shellcode exploit, (S 11) (Apache 1.3.x remote
exploit)
apacheexploit 3 <destination
IP>:<destination port> 0,00 21
Notes: Compile:
gcc 01-apache-scalp.c -o apacherexploit
First parameter indicates operating system / web
server. Intended for OpenBSD but works on Linux
7plagues, (S 12)
7plagues.pl <destination IP> <protocol> -
Notes: Protocol is icmp, udp, tcp, igmp, misc. This is
a Perl script that was impossible to get to work. It is
written with the old threading system of Perl, and was
after many, many attempts with different library
packages impossible to get it to work.
ISIC, 0.05 (S 12)
icmpsic -s rand -d <destination IP> -I 100
-p 5400000 -m 8192 -r 342536 1) 49,93 9402
icmpsic -s rand -d <destination IP> -I 100
-p 1000000 -m 8192 -r 342536 2) 49,92 1950
tcpsic -s rand -d <destination IP>,80 -I
100 -T 100 -p 1000000 -m 8192 -r 342536 3) 49,92 2135

9

Using benchmarking to improve IDS configurations

Software and command options (Config 2) Packet
drop rate
(%)

Results
(Alert)

Type

tcpsic -s rand -d <destination IP>,80 -p
1000000 -m 8192 -r 342536 4) 49,90 2158
udpsic -s rand -d <destination IP> -I 100
-p 1000000 -m 8192 -r 342536 5) 49,88 2730
isic -s rand -d <destination IP> -F50 -I10
-p 1000000 -m 8192 -r 342536 6) 49,85 1729
Notes: 1-2) 5 400 000 packet are to exhausting for the
low capacity machines. Therefore 1 000 000 packets
are chosen. 4 Mbit/s throughput. The requirements are
described in OSEC [3]. Machines with low capacity is
the reason for this.

3) 3,4 Mbit/s throughput.

4) 3,4 Mbit/s

5) 3,4 Mbit/s

6) 3,8 Mbit/s with 50% fragmentation, 10% random
IP header length

10

Using benchmarking to improve IDS configurations

A.4 Configuration scheme 3

Software and command options (Config 3) Packet
drop rate
(%)

Results
(Alert)

Type

Nmap, 3.48 (S 1)
nmap <IP address> 0,00 0
nmap -sF <IP address> 0,00 0
nmap -O <IP address> 0,00 0

Notes:
Nessus, 2.0.10 (S 2)

All plugins enabled except the ones that could
be harmful to the service on the victim 2,20 10

All plugins enabled, even the harmful ones 2,03 52
Notes: The preprocessors in Snort [28] are
responsible for detections, since signatures are
disabled
Snot, 0.92a (S 3)

snot -r rules/all.rules -s <source
IP> - <destination IP> -l 5 0,00 0
Notes: all.rules is all the signatures used by snort
(cat rules/*.rules > rules/all.rules).

Not all signatures where approved by snot, probably
because of that snot is quite old and not 100%
compatible with todays version of Snort.10 minute
run. Nothing detected since Snot uses the Snort
signatures to generate false positives
Sneeze, 1.0 (S 4)

sneeze.pl -f rules/all.rules -s
<source IP> - d <destination IP> - -

Notes: This software was impossible to make it work.
When starting it, it used all CPU cycles but sent no
packets. It is a Perl script and several attempts to fix it
didn't succeed.
Nikto, 1.32 (S 5)
nikto.pl -Cgidirs -generic -host <IP>
-output output3.txt -verbose 0,82 0
Next commands using Whiskers IDS evasion

11

Using benchmarking to improve IDS configurations

Software and command options (Config 3) Packet
drop rate
(%)

Results
(Alert)

Type

nikto.pl -Cgidirs -generic -host <IP>
-output output3e1.txt -verbose -evasion 1 0,00 0
nikto.pl -Cgidirs -generic -host <IP>
-output output3e2.txt -verbose -evasion 2 0,00 0
nikto.pl -Cgidirs -generic -host <IP>
-output output3e3.txt -verbose -evasion 3 0,00 0
nikto.pl -Cgidirs -generic -host <IP>
-output output3e4.txt -verbose -evasion 4 0,02 0
nikto.pl -Cgidirs -generic -host <IP>
-output output3e5.txt -verbose -evasion 5 0,00 0
nikto.pl -Cgidirs -generic -host <IP>
-output output3e6.txt -verbose -evasion 6 0,10 0
nikto.pl -Cgidirs -generic -host <IP>
-output output3e7.txt -verbose -evasion 7 0,00 0
nikto.pl -Cgidirs -generic -host <IP>
-output output3e8.txt -verbose -evasion 8 0,00 0
nikto.pl -Cgidirs -generic -host <IP>
-output output3e9.txt -verbose -evasion 9 0,00 0
Fragroute, 1.2 (S 6)
fragroute <destination IP>
snot -r rules/all.rules -s <source IP> - d
<destination IP> -l 5 42,75 302
nmap <IP address> 0,00 1
nikto.pl -Cgidirs -generic -host <IP>
-output output3f.txt -verbose 42,99 1372
Notes: Fragroute rewrites traffic and is dependent on
other tools output. Results here are due to header
errors in TCP and IP protocols, not a signature
detection
Fragrouter, 1.2 (S 7) -
fragrouter -B1 -host <IP address> -
fragrouter -F1 -host <IP address> -
fragrouter -F2 -host <IP address> -
fragrouter -F3 -host <IP address> -
fragrouter -F4 -host <IP address> -
fragrouter -F5 -host <IP address> -
fragrouter -F6 -host <IP address> -
fragrouter -F7 -host <IP address> -

12

Using benchmarking to improve IDS configurations

Software and command options (Config 3) Packet
drop rate
(%)

Results
(Alert)

Type

Notes: Fragrouter is routing and mixing network
traffic to a host, so that the attacks must run from a
host, through the host running Fragrouter. Fragrouter
mixes the attacks in 8 different ways to evade IDSs. In
my test setting a became short of a machine, and
therefore it was not possible to run this software in a
reasonable setting. A proposal for use, would be to set
up Fragrouter in 8 modes, running one ore more of the
tools for each mode. According to OSEC [3], the
Fragrouter tests are vital and should be accomplished.
IDSWakeup, 1.0 (S 8)
IDSwakeup <source IP> <destination IP> 10 5 39,90 36
IDSwakeup <source IP> <destination IP> 10 0 38,80 51
IDSwakeup <source IP> <destination IP> 10 1 39,22 49
IDSwakeup <source IP> <destination IP> 10 2 39,10 61
Notes: IDSwakep with altered TTL (Time-To-Live)
field. The software package also contains iwu that can
send a buffer as a datagram. This is useful when
testing for attack signatures. Did not find this useful
here, since other software does this in easier ways. Se
documentation for usage.
ADMmutate, 0.84 (S 9)
API for creating polymorphic shellcode. Apply header
and call functions from the original shellcode:
#include "ADMmutapi.h"
struct morphctl *mctlp;
struct morphctl mut;
mut.upper = 0; mut.lower = 0;
mut.banned = 0; mctlp = &mut;
mut.arch = IA32; // Intel x86
 ...
init_mutate(mctlp);
apply_key(buff, strlen(shellcode), nops-1,
mctlp);
apply_jnops(buff, nops-1, mut);
apply_engine(buff, strlen(shellcode), nops-
1, mut);
...

Intended use with Apache 1.3.X Remote Exploit -

13

Using benchmarking to improve IDS configurations

Software and command options (Config 3) Packet
drop rate
(%)

Results
(Alert)

Type

Notes: Though this should be relatively straight-
forward to implement in the shellcode, according to
the documentation, this was not the case. It was
impossible to compile the exploit with the
polymorphic code lines. The errors originates from the
API, and several attempts on fixing the problem(s)
failed.
Shellcode exploit, (S 10) (Apache 1.3.x – 2.0.48
remote users disclosure)
apacheexploit -t <destination IP> -p 80 -u
userlist.txt -l log3.txt -b 28,89 0
Notes: Compile:
gcc m00-apache-w00t.c -o apacheexploit
Target was not vulnerable, but the exploit was
detected. Userlist.txt is a list of users to remotely
disclose.
Shellcode exploit, (S 11) (Apache 1.3.x remote
exploit)
apacheexploit 3 <destination
IP>:<destination port> 0,00 0
Notes: Compile:
gcc 01-apache-scalp.c -o apacherexploit
First parameter indicates operating system / web
server. Intended for OpenBSD but works on Linux
7plagues, (S 12)
7plagues.pl <destination IP> <protocol> -
Notes: Protocol is icmp, udp, tcp, igmp, misc. This is
a Perl script that was impossible to get to work. It is
written with the old threading system of Perl, and was
after many, many attempts with different library
packages impossible to get it to work.
ISIC, 0.05 (S 12)
icmpsic -s rand -d <destination IP> -I 100
-p 5400000 -m 8192 -r 342536 1) 49,92 9581
icmpsic -s rand -d <destination IP> -I 100
-p 1000000 -m 8192 -r 342536 2) 49,89 2450
tcpsic -s rand -d <destination IP>,80 -I
100 -T 100 -p 1000000 -m 8192 -r 342536 3) 49,94 1493
tcpsic -s rand -d <destination IP>,80 -p
1000000 -m 8192 -r 342536 4) 49,92 1536

14

Using benchmarking to improve IDS configurations

Software and command options (Config 3) Packet
drop rate
(%)

Results
(Alert)

Type

udpsic -s rand -d <destination IP> -I 100
-p 1000000 -m 8192 -r 342536 5) 49,91 1996
isic -s rand -d <destination IP> -F50 -I10
-p 1000000 -m 8192 -r 342536 6) 49,59 1651
Notes: 1-2) 5 400 000 packet are to exhausting for the
low capacity machines. Therefore 1 000 000 packets
are chosen. 4 Mbit/s throughput. The requirements are
described in OSEC [3]. Machines with low capacity is
the reason for this.

3) 3,7 Mbit/s throughput.

4) 3,7 Mbit/s

5) 3,4 Mbit/s

6) 3,8 Mbit/s with 50% fragmentation, 10% random
IP header length

15

Using benchmarking to improve IDS configurations

A.5 Configuration scheme 4

Software and command options (Config 4) Packet
drop rate
(%)

Results
(Alert)

Type

Nmap, 3.48 (S 1)
nmap <IP address> 21,23 6
nmap -sF <IP address> 47,72 110
nmap -O <IP address> 25,40 7

Notes:
Nessus, 2.0.10 (S 2)

All plugins enabled except the ones that could
be harmful to the service on the victim 10,98 821

All plugins enabled, even the harmful ones 35,19 1603
Notes:
Snot, 0.92a (S 3)

snot -r rules/all.rules -s <source
IP> - <destination IP> -l 5 0,00 12
Notes: all.rules is all the signatures used by snort
(cat rules/*.rules > rules/all.rules).

Not all signatures where approved by snot, probably
because of that snot is quite old and not 100%
compatible with todays version of Snort.10 minute
run. Nothing detected since Snot uses the Snort
signatures to generate false positives.
Sneeze, 1.0 (S 4)

sneeze.pl -f rules/all.rules -s
<source IP> - d <destination IP> - -

Notes: This software was impossible to make it work.
When starting it, it used all CPU cycles but sent no
packets. It is a Perl script and several attempts to fix it
didn't succeed.
Nikto, 1.32 (S 5)
nikto.pl -Cgidirs -generic -host <IP>
-output output4.txt -verbose 32,62 134
Next commands using Whiskers IDS evasion
nikto.pl -Cgidirs -generic -host <IP>
-output output4e1.txt -verbose -evasion 1 3,35 84

16

Using benchmarking to improve IDS configurations

Software and command options (Config 4) Packet
drop rate
(%)

Results
(Alert)

Type

nikto.pl -Cgidirs -generic -host <IP>
-output output4e2.txt -verbose -evasion 2 32,74 147
nikto.pl -Cgidirs -generic -host <IP>
-output output4e3.txt -verbose -evasion 3 46,43 241
nikto.pl -Cgidirs -generic -host <IP>
-output output4e4.txt -verbose -evasion 4 45,93 266
nikto.pl -Cgidirs -generic -host <IP>
-output output4e5.txt -verbose -evasion 5 46,20 254
nikto.pl -Cgidirs -generic -host <IP>
-output output4e6.txt -verbose -evasion 6 31,18 146
nikto.pl -Cgidirs -generic -host <IP>
-output output4e7.txt -verbose -evasion 7 28,51 198
nikto.pl -Cgidirs -generic -host <IP>
-output output4e8.txt -verbose -evasion 8 29,12 164
nikto.pl -Cgidirs -generic -host <IP>
-output output4e9.txt -verbose -evasion 9 -

Notes: Evasion 9 skipped due to extensive
time use.
Fragroute, 1.2 (S 6)
fragroute <destination IP>
snot -r rules/all.rules -s <source IP> - d
<destination IP> -l 5 45,86 964
nmap <IP address> 0,00 12
nikto.pl -Cgidirs -generic -host <IP>
-output output4f.txt -verbose 46,11 11149
Notes: Fragroute rewrites traffic and is dependent on
other tools output.
Fragrouter, 1.2 (S 7) -
fragrouter -B1 -host <IP address> -
fragrouter -F1 -host <IP address> -
fragrouter -F2 -host <IP address> -
fragrouter -F3 -host <IP address> -
fragrouter -F4 -host <IP address> -
fragrouter -F5 -host <IP address> -
fragrouter -F6 -host <IP address> -
fragrouter -F7 -host <IP address> -

17

Using benchmarking to improve IDS configurations

Software and command options (Config 4) Packet
drop rate
(%)

Results
(Alert)

Type

Notes: Fragrouter is routing and mixing network
traffic to a host, so that the attacks must run from a
host, through the host running Fragrouter. Fragrouter
mixes the attacks in 8 different ways to evade IDSs. In
my test setting a became short of a machine, and
therefore it was not possible to run this software in a
reasonable setting. A proposal for use, would be to set
up Fragrouter in 8 modes, running one ore more of the
tools for each mode. According to OSEC [3], the
Fragrouter tests are vital and should be accomplished.
IDSWakeup, 1.0 (S 8)
IDSwakeup <source IP> <destination IP> 10 5 36,83 56
IDSwakeup <source IP> <destination IP> 10 0 40,35 39
IDSwakeup <source IP> <destination IP> 10 1 38,35 39
IDSwakeup <source IP> <destination IP> 10 2 36,44 67
Notes: IDSwakep with altered TTL (Time-To-Live)
field. The software package also contains iwu that can
send a buffer as a datagram. This is useful when
testing for attack signatures. Did not find this useful
here, since other software does this in easier ways. Se
documentation for usage.
ADMmutate, 0.84 (S 9)
API for creating polymorphic shellcode. Apply header
and call functions from the original shellcode:
#include "ADMmutapi.h"
struct morphctl *mctlp;
struct morphctl mut;
mut.upper = 0; mut.lower = 0;
mut.banned = 0; mctlp = &mut;
mut.arch = IA32; // Intel x86
 ...
init_mutate(mctlp);
apply_key(buff, strlen(shellcode), nops-1,
mctlp);
apply_jnops(buff, nops-1, mut);
apply_engine(buff, strlen(shellcode), nops-
1, mut);
...

Intended use with Apache 1.3.X Remote Exploit -

18

Using benchmarking to improve IDS configurations

Software and command options (Config 4) Packet
drop rate
(%)

Results
(Alert)

Type

Notes: Though this should be relatively straight-
forward to implement in the shellcode, according to
the documentation, this was not the case. It was
impossible to compile the exploit with the
polymorphic code lines. The errors originates from the
API, and several attempts on fixing the problem(s)
failed.
Shellcode exploit, (S 10) (Apache 1.3.x – 2.0.48
remote users disclosure)
apacheexploit -t <destination IP> -p 80 -u
userlist.txt -l log4.txt -b 0,00 0
Notes: Compile:
gcc m00-apache-w00t.c -o apacheexploit
Target was not vulnerable, but the exploit was
detected. Userlist.txt is a list of users to remotely
disclose. Here the exploit ran 3 times without any
detection!
Shellcode exploit, (S 11) (Apache 1.3.x remote
exploit)
apacheexploit 3 <destination
IP>:<destination port> 0,00 21
Notes: Compile:
gcc 01-apache-scalp.c -o apacherexploit
First parameter indicates operating system / web
server. Intended for OpenBSD but works on Linux
7plagues, (S 12)
7plagues.pl <destination IP> <protocol> -
Notes: Protocol is icmp, udp, tcp, igmp, misc. This is
a Perl script that was impossible to get to work. It is
written with the old threading system of Perl, and was
after many, many attempts with different library
packages impossible to get it to work.
ISIC, 0.05 (S 12)
icmpsic -s rand -d <destination IP> -I 100
-p 5400000 -m 8192 -r 342536 1) 49,94 7870
icmpsic -s rand -d <destination IP> -I 100
-p 1000000 -m 8192 -r 342536 2) 49,94 1358
tcpsic -s rand -d <destination IP>,80 -I
100 -T 100 -p 1000000 -m 8192 -r 342536 3) 49,94 1542

19

Using benchmarking to improve IDS configurations

Software and command options (Config 4) Packet
drop rate
(%)

Results
(Alert)

Type

tcpsic -s rand -d <destination IP>,80 -p
1000000 -m 8192 -r 342536 4) 49,91 1759
udpsic -s rand -d <destination IP> -I 100
-p 1000000 -m 8192 -r 342536 5) 49,91 2078
isic -s rand -d <destination IP> -F50 -I10
-p 1000000 -m 8192 -r 342536 6) 49,86 1702
Notes: 1-2) 5 400 000 packet are to exhausting for the
low capacity machines. Therefore 1 000 000 packets
are chosen. 4 Mbit/s throughput. The requirements are
described in OSEC [3]. Machines with low capacity is
the reason for this.

3) 3,4 Mbit/s throughput.

4) 3,4 Mbit/s

5) 3,4 Mbit/s

6) 3,8 Mbit/s with 50% fragmentation, 10% random
IP header length

20

Using benchmarking to improve IDS configurations

A.6 Configuration scheme 5

Software and command options (Config 5) Packet
drop rate
(%)

Results
(Alert)

Type

Nmap, 3.48 (S 1)
nmap <IP address> 3,61 8
nmap -sF <IP address> 47,49 126
nmap -O <IP address> 1,77 10

Notes:
Nessus, 2.0.10 (S 2)

All plugins enabled except the ones that could
be harmful to the service on the victim 10,18 844

All plugins enabled, even the harmful ones 34,77 1654
Notes: The second test crashed the remote machine at
first try.
Snot, 0.92a (S 3)

snot -r rules/all.rules -s <source
IP> - <destination IP> -l 5 0,00 20
Notes: all.rules is all the signatures used by snort
(cat rules/*.rules > rules/all.rules).

Not all signatures where approved by snot, probably
because of that snot is quite old and not 100%
compatible with todays version of Snort.10 minute
run.
Sneeze, 1.0 (S 4)

sneeze.pl -f rules/all.rules -s
<source IP> - d <destination IP> - -

Notes: This software was impossible to make it work.
When starting it, it used all CPU cycles but sent no
packets. It is a Perl script and several attempts to fix it
didn't succeed.
Nikto, 1.32 (S 5)
nikto.pl -Cgidirs -generic -host <IP>
-output output5.txt -verbose 28,77 181
Next commands using Whiskers IDS evasion
nikto.pl -Cgidirs -generic -host <IP>
-output output5e1.txt -verbose -evasion 1 0,73 95

21

Using benchmarking to improve IDS configurations

Software and command options (Config 5) Packet
drop rate
(%)

Results
(Alert)

Type

nikto.pl -Cgidirs -generic -host <IP>
-output output5e2.txt -verbose -evasion 2 26,70 202
nikto.pl -Cgidirs -generic -host <IP>
-output output5e3.txt -verbose -evasion 3 45,28 312
nikto.pl -Cgidirs -generic -host <IP>
-output output5e4.txt -verbose -evasion 4 44,20 294
nikto.pl -Cgidirs -generic -host <IP>
-output output5e5.txt -verbose -evasion 5 45,00 331
nikto.pl -Cgidirs -generic -host <IP>
-output output5e6.txt -verbose -evasion 6 29,08 200
nikto.pl -Cgidirs -generic -host <IP>
-output output5e7.txt -verbose -evasion 7 27,24 211
nikto.pl -Cgidirs -generic -host <IP>
-output output5e8.txt -verbose -evasion 8 25,25 208
nikto.pl -Cgidirs -generic -host <IP>
-output output5e9.txt -verbose -evasion 9 - -

Notes: Evasion 9 skipped due to extensive time use.
Fragroute, 1.2 (S 6)
fragroute <destination IP>
snot -r rules/all.rules -s <source IP> - d
<destination IP> -l 5 46,74 799
nmap <IP address> 0,00 11
nikto.pl -Cgidirs -generic -host <IP>
-output output5f.txt -verbose 46,32 11255
Notes: Fragroute rewrites traffic and is dependent on
other tools output.
Fragrouter, 1.2 (S 7) -
fragrouter -B1 -host <IP address> -
fragrouter -F1 -host <IP address> -
fragrouter -F2 -host <IP address> -
fragrouter -F3 -host <IP address> -
fragrouter -F4 -host <IP address> -
fragrouter -F5 -host <IP address> -
fragrouter -F6 -host <IP address> -
fragrouter -F7 -host <IP address> -

22

Using benchmarking to improve IDS configurations

Software and command options (Config 5) Packet
drop rate
(%)

Results
(Alert)

Type

Notes: Fragrouter is routing and mixing network
traffic to a host, so that the attacks must run from a
host, through the host running Fragrouter. Fragrouter
mixes the attacks in 8 different ways to evade IDSs. In
my test setting a became short of a machine, and
therefore it was not possible to run this software in a
reasonable setting. A proposal for use, would be to set
up Fragrouter in 8 modes, running one ore more of the
tools for each mode. According to OSEC [3], the
Fragrouter tests are vital and should be accomplished.
IDSWakeup, 1.0 (S 8)
IDSwakeup <source IP> <destination IP> 10 5 38,32 36
IDSwakeup <source IP> <destination IP> 10 0 39,67 56
IDSwakeup <source IP> <destination IP> 10 1 35,87 68
IDSwakeup <source IP> <destination IP> 10 2 40,23 62
Notes: IDSwakep with altered TTL (Time-To-Live)
field. The software package also contains iwu that can
send a buffer as a datagram. This is useful when
testing for attack signatures. Did not find this useful
here, since other software does this in easier ways. Se
documentation for usage.
ADMmutate, 0.84 (S 9)
API for creating polymorphic shellcode. Apply header
and call functions from the original shellcode:
#include "ADMmutapi.h"
struct morphctl *mctlp;
struct morphctl mut;
mut.upper = 0; mut.lower = 0;
mut.banned = 0; mctlp = &mut;
mut.arch = IA32; // Intel x86
 ...
init_mutate(mctlp);
apply_key(buff, strlen(shellcode), nops-1,
mctlp);
apply_jnops(buff, nops-1, mut);
apply_engine(buff, strlen(shellcode), nops-
1, mut);
...

Intended use with Apache 1.3.X Remote Exploit -

23

Using benchmarking to improve IDS configurations

Software and command options (Config 5) Packet
drop rate
(%)

Results
(Alert)

Type

Notes: Though this should be relatively straight-
forward to implement in the shellcode, according to
the documentation, this was not the case. It was
impossible to compile the exploit with the
polymorphic code lines. The errors originates from the
API, and several attempts on fixing the problem(s)
failed.
Shellcode exploit, (S 10) (Apache 1.3.x – 2.0.48
remote users disclosure)
apacheexploit -t <destination IP> -p 80 -u
userlist.txt -l log5.txt -b 0,00 0
Notes: Compile:
gcc m00-apache-w00t.c -o apacheexploit
Target was not vulnerable, but the exploit was
detected. Userlist.txt is a list of users to remotely
disclose. Here the exploit ran 3 times without any
detection!
Shellcode exploit, (S 11) (Apache 1.3.x remote
exploit)
apacheexploit 3 <destination
IP>:<destination port> 0,00 21
Notes: Compile:
gcc 01-apache-scalp.c -o apacherexploit
First parameter indicates operating system / web
server. Intended for OpenBSD but works on Linux
7plagues, (S 12)
7plagues.pl <destination IP> <protocol> -
Notes: Protocol is icmp, udp, tcp, igmp, misc. This is
a Perl script that was impossible to get to work. It is
written with the old threading system of Perl, and was
after many, many attempts with different library
packages impossible to get it to work.
ISIC, 0.05 (S 12)
icmpsic -s rand -d <destination IP> -I 100
-p 5400000 -m 8192 -r 342536 1) 49,93 9792
icmpsic -s rand -d <destination IP> -I 100
-p 1000000 -m 8192 -r 342536 2) 50,00 1358
tcpsic -s rand -d <destination IP>,80 -I
100 -T 100 -p 1000000 -m 8192 -r 342536
3) 49,92 2088

24

Using benchmarking to improve IDS configurations

Software and command options (Config 5) Packet
drop rate
(%)

Results
(Alert)

Type

tcpsic -s rand -d <destination IP>,80 -p
1000000 -m 8192 -r 342536
4) 49,90 2085
udpsic -s rand -d <destination IP> -I 100
-p 1000000 -m 8192 -r 342536 5) 49,88 2655
isic -s rand -d <destination IP> -F50 -I10
-p 1000000 -m 8192 -r 342536 6) 49,86 1604
Notes: 1-2) 5 400 000 packet are to exhausting for the
low capacity machines. Therefore 1 000 000 packets
are chosen. 4 Mbit/s throughput. The requirements are
described in OSEC [3]. Machines with low capacity is
the reason for this.

3) 3,4 Mbit/s throughput.

4) 3,4 Mbit/s

5) 3,4 Mbit/s

6) 3,8 Mbit/s with 50% fragmentation, 10% random
IP header length

25

Using benchmarking to improve IDS configurations

A.7 Configuration scheme 1 *

A.7.1 Introduction

These results have been performed on a faster machine, see chapter 3.3.3. This machine
was originally intended to host the IDS, but broke down early in the testing phase.
Therefore there exists only results from this machine. The results may be compared with
the other results to see the impact of using a low capacity machine.

A.7.2 Results

Software and command options (Config 1) Packet
drop rate
(%)

Results
(Alert)

Type

Nmap, 3.48 (S 1)
nmap <IP address> - 10
nmap -sF <IP address> - -
nmap -O <IP address> - -

Notes:
Nessus, 2.0.10 (S 2)

All plugins enabled except the ones that could
be harmful to the service on the victim

-
230

All plugins enabled, even the harmful ones - 0
Notes: Last result must be erroneous
Snot, 0.92a (S 3)

snot -r rules/all.rules -s <source
IP> - <destination IP> -l 5

-
785

Notes: all.rules is all the signatures used by snort
(cat rules/*.rules > rules/all.rules).

Not all signatures where approved by snot, probably
because of that snot is quite old and not 100%
compatible with todays version of Snort. 5 hours and
15 minutes run. Results seem very little.
Sneeze, 1.0 (S 4)

sneeze.pl -f rules/all.rules -s
<source IP> - d <destination IP> - -

26

Using benchmarking to improve IDS configurations

Software and command options (Config 1) Packet
drop rate
(%)

Results
(Alert)

Type

Notes: This software was impossible to make it work.
When starting it, it used all CPU cycles but sent no
packets. It is a Perl script and several attempts to fix it
didn't succeed.
Nikto, 1.32 (S 5)
nikto.pl -Cgidirs -generic -host <IP>
-output output2.txt -verbose

-
635

Next commands using Whiskers IDS evasion
nikto.pl -Cgidirs -generic -host <IP>
-output output1e1.txt -verbose -evasion 1

-
370

nikto.pl -Cgidirs -generic -host <IP>
-output output1e2.txt -verbose -evasion 2

-
625

nikto.pl -Cgidirs -generic -host <IP>
-output output1e3.txt -verbose -evasion 3

-
1930

nikto.pl -Cgidirs -generic -host <IP>
-output output1e4.txt -verbose -evasion 4

-
1537

nikto.pl -Cgidirs -generic -host <IP>
-output output1e5.txt -verbose -evasion 5

-
1930

nikto.pl -Cgidirs -generic -host <IP>
-output output1e6.txt -verbose -evasion 6 - 1921
nikto.pl -Cgidirs -generic -host <IP>
-output output1e7.txt -verbose -evasion 7 - 575
nikto.pl -Cgidirs -generic -host <IP>
-output output1e8.txt -verbose -evasion 8

-
604

nikto.pl -Cgidirs -generic -host <IP>
-output output1e9.txt -verbose -evasion 9 - 3896
Notes:
Fragroute, 1.2 (S 6)
fragroute <destination IP>
snot -r rules/all.rules -s <source IP> - d
<destination IP> -l 5

-
11072

nmap -sF<IP address> - 101
nikto.pl -Cgidirs -generic -host <IP>
-output output1f.txt -verbose

-
652

Notes: Fragroute rewrites traffic and is dependent on
other tools output. Suspicious results from Nikto.
Seems very low.
Fragrouter, 1.2 (S 7) -
fragrouter -B1 -host <IP address> -
fragrouter -F1 -host <IP address> -

27

Using benchmarking to improve IDS configurations

Software and command options (Config 1) Packet
drop rate
(%)

Results
(Alert)

Type

fragrouter -F2 -host <IP address> -
fragrouter -F3 -host <IP address> -
fragrouter -F4 -host <IP address> -
fragrouter -F5 -host <IP address> -
fragrouter -F6 -host <IP address> -
fragrouter -F7 -host <IP address> -
Notes: Fragrouter is routing and mixing network
traffic to a host, so that the attacks must run from a
host, through the host running Fragrouter. Fragrouter
mixes the attacks in 8 different ways to evade IDSs. In
my test setting a became short of a machine, and
therefore it was not possible to run this software in a
reasonable setting. A proposal for use, would be to set
up Fragrouter in 8 modes, running one ore more of the
tools for each mode. According to OSEC [3], the
Fragrouter tests are vital and should be accomplished.
IDSWakeup, 1.0 (S 8)
IDSwakeup <source IP> <destination IP> 10 5 - 200
IDSwakeup <source IP> <destination IP> 10 0 - 200
IDSwakeup <source IP> <destination IP> 10 1 - -
IDSwakeup <source IP> <destination IP> 10 2 - -
Notes: IDSwakep with altered TTL (Time-To-Live)
field. The software package also contains iwu that can
send a buffer as a datagram. This is useful when
testing for attack signatures. Did not find this useful
here, since other software does this in easier ways. Se
documentation for usage.
ADMmutate, 0.84 (S 9)

28

Using benchmarking to improve IDS configurations

Software and command options (Config 1) Packet
drop rate
(%)

Results
(Alert)

Type

API for creating polymorphic shellcode. Apply header
and call functions from the original shellcode:
#include "ADMmutapi.h"
struct morphctl *mctlp;
struct morphctl mut;
mut.upper = 0; mut.lower = 0;
mut.banned = 0; mctlp = &mut;
mut.arch = IA32; // Intel x86
 ...
init_mutate(mctlp);
apply_key(buff, strlen(shellcode), nops-1,
mctlp);
apply_jnops(buff, nops-1, mut);
apply_engine(buff, strlen(shellcode), nops-
1, mut);
...

Intended use with Apache 1.3.X Remote Exploit -
Notes: Though this should be relatively straight-
forward to implement in the shellcode, according to
the documentation, this was not the case. It was
impossible to compile the exploit with the
polymorphic code lines. The errors originates from the
API, and several attempts on fixing the problem(s)
failed.
Shellcode exploit, (S 10) (Apache 1.3.x – 2.0.48
remote users disclosure)
apacheexploit -t <destination IP> -p 80 -u
userlist.txt -l log1.txt -b - 1
Notes: Compile:
gcc m00-apache-w00t.c -o apacheexploit
Target was not vulnerable, but the exploit was
detected. Userlist.txt is a list of users to remotely
disclose.
Shellcode exploit, (S 11) (Apache 1.3.x remote
exploit)
apacheexploit 3 <destination
IP>:<destination port> - 21
Notes: Compile:
gcc 01-apache-scalp.c -o apacherexploit
First parameter indicates operating system / web
server. Intended for OpenBSD but works on Linux
7plagues, (S 12)

29

Using benchmarking to improve IDS configurations

Software and command options (Config 1) Packet
drop rate
(%)

Results
(Alert)

Type

7plagues.pl <destination IP> <protocol> -
Notes: Protocol is icmp, udp, tcp, igmp, misc. This is
a Perl script that was impossible to get to work. It is
written with the old threading system of Perl, and was
after many, many attempts with different library
packages impossible to get it to work.
ISIC, 0.05 (S 12)
icmpsic -s rand -d <destination IP> -I 100
-p 5400000 -m 8192 -r 342536 1)

-
76581

icmpsic -s rand -d <destination IP> -I 100
-p 1000000 -m 8192 -r 342536 2)

- -

tcpsic -s rand -d <destination IP>,80 -I
100 -T 100 -p 1000000 -m 8192 -r 342536 3)

-
20669

tcpsic -s rand -d <destination IP>,80 -p
1000000 -m 8192 -r 342536 4)

-
16121

udpsic -s rand -d <destination IP> -I 100
-p 1000000 -m 8192 -r 342536 5)

-
23602

isic -s rand -d <destination IP> -F50 -I10
-p 1000000 -m 8192 -r 342536 6)

-
18424

Notes: 1) The IDS seemed to stop at 2 000 000
packets. 4 Mbit/s throughput. The requirements are
described in OSEC [3]. Machines with low capacity is
the reason for this.

2) Not evaluated

3) 3,6 Mbit/s throughput.

4) 3,6 Mbit/s

5) 3,4 Mbit/s

6) 3,8 Mbit/s with 50% fragmentation, 10% random
IP header length

30

Using benchmarking to improve IDS configurations

Appendix B: Reliability test

B.1 Introduction

This appendix contains a reliability test of the results from the IDS benchmarking. The
goal is to give an idea of how accurate the IDS test results are. Reliability is the extent
of how a test gives the same result when running the same test several times1. To show
the reliability of the results form the IDS testing, a tool used in the testing were picked
out. It was not a random choice. The set of tools generates different amounts of traffic
with different types of attacks witch the IDS triggers on. Some generates large amounts
of traffic that stresses the IDS. Other have smaller amounts of traffic. Some tools use
more advanced attack patterns often with IDS evasion techniques, while others use more
straight-forward attack types. Therefore the tool have to be representable as an average
of all tools used in the IDS testing. This is not easy, if possible, to find what tool that
generate “average traffic”, so some in between was the approach. A tool that didn't
generate too much traffic or too little according to the hardware used. Nor should it
generate to complex, or to plain attacks. Time consume pr. test was also an important
criteria, since the reliability test was to be repeated 40 times to get some statistical value
of the numbers.

The choice fell on nmap (S 1). Nmap without any special parameters is to straight
forward with fairly few alerts and small amounts of traffic. But by applying an extra
attribute, the result was different. It might be generating too much traffic, but relatively
short execution time was preferable. The command executed in the reliability test was

namp -sF <IP address>

where the -sF parameter performs a TCP FIN portscan2.

The reliability test were done in the same system setting as the IDS testing with Snort as
IDS. Default configuration according to configuration scheme 1 were used. The results
are presented in the next section. Discussion of the results are presented in the end of
this appendix.

1 Based on definition found at http://nces.ed.gov/nceskids/glossary.asp using google's
“define:reliability” search string

2 For more information about this parameter and Nmap, see http://www.insecure.org/nmap/

31

Using benchmarking to improve IDS configurations

B.2 Reliability test results

Table B.1 : Results using namp -sF <IP address>

Test nr Packets examined Packets dropped Drop rate in % Nr of Alerts
1 3479 6742 48,398 90
2 3451 6669 48,253 103
3 3488 6681 47,792 108
4 3446 6674 48,367 96
5 3471 6667 47,938 112
6 3456 6670 48,186 108
7 3477 6680 47,949 116
8 3452 6645 48,051 109
9 3484 6675 47,805 115

10 3460 6668 48,110 108
11 3448 6657 48,205 111
12 3484 6694 47,953 109
13 3463 6669 48,073 104
14 3481 6685 47,928 109
15 3458 6653 48,023 108
16 3480 6716 48,183 99
17 3479 6691 48,005 108
18 3460 6676 48,173 100
19 3491 6713 47,996 103
20 3480 6713 48,160 101
21 3462 6676 48,143 106
22 3455 6649 48,037 113
23 3483 6719 48,162 98
24 3474 6703 48,172 98
25 3477 6707 48,159 98
26 3457 6656 48,002 100
27 3479 6711 48,160 97
28 3465 6632 47,753 122
29 3453 6661 48,161 100

32

Using benchmarking to improve IDS configurations

Test nr Packets examined Packets dropped Drop rate in % Nr of Alerts
30 3477 6715 48,220 95
31 3478 6714 48,198 105
32 3474 6699 48,142 102
33 3458 6672 48,171 97
34 3465 6659 47,965 110
35 3451 6637 48,004 111
36 3478 6712 48,182 103
37 3477 6711 48,190 109
38 3473 6654 47,806 118
39 3468 6677 48,061 105
40 3470 6678 48,038 102

Figure B.1: Graphical view of Examined packets by the IDS compared to the
average value.

33

Examined packets

3420

3430

3440

3450

3460

3470

3480

3490

3500

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

Test nr

Pa
ck

et
s Packets examined

AVG

Using benchmarking to improve IDS configurations

Figure B.2: Graphical view of Packets dropped by the IDS compared to the
average value.

Figure B.3: Graphical view of Drop rate of packets in % by the IDS compared to
the average value.

34

Packets dropped

6560

6580

6600

6620

6640

6660

6680

6700

6720

6740

6760

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

Test nr

Pa
ck

et
s Packets dropped

AVG

Drop rate of packets

47,400

47,600

47,800

48,000

48,200

48,400

48,600

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

Test nr

%
 d

ro
pp

ed

Drop rate in %
AVG

Using benchmarking to improve IDS configurations

Figure B.4: Graphical view of Nr of Alerts detected by the IDS compared to the
average value.

Table B.2: Statistics from the reliability test

Statistical
variables

Packets examined Packets dropped Drop rate in % Nr of Alerts

Average 3469 6682 48,082 105
Median 3472 6677 48,126 105
Standard
deviation

12 26 0,146 7

IV3 0,003530475 0,00390016 0,003042636 0,065364929

3 Explained in section B.3

35

Alerts detected

0

20

40

60

80

100

120

140

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

Test nr

N
r o

f a
le

rt
s

Nr of Alerts
AVG

Using benchmarking to improve IDS configurations

B.3 Discussion

IV is Index of variation and is a measurement of reliability [30], where
IV= Standard deviation / Median. The smaller value it has, the better is the reliability.
As we can see from Table B.2, Packets examined, Packets dropped and Drop rate in %
are relatively low. The drop rate are naturally derived from the other Packets examined
and the Packets dropped values. But as we also can see from the results in Table B.1,
Figure B.1-B.4 and the IV of Nr of Alerts, the reliability is not so high as for the other.
We can see that even though the packet drop rate is fairly stable, the number of detected
alerts varies much more related to the other values.

Since the packet drop rate is very high at around 48 % it is clear this is a big weakness i
the IDS test results. But this is also due to limited hardware resources. The variation in
alert detection, most likely is a result of the high drop rate. Therefore, this number is not
so reliable as wanted in the IDS test results. It is important not to use the numbers
directly to draw any final conclusions, but rather see the results all together an look for
more general patterns from the results. Using the drop rate together with the results in
every test, will therefore become more important to be considered in this setting, than
with more powerful hardware.

It is also a question if the IDS reports the right number of packets received, examined
and dropped. The reason for this is the possibility that packets may be discarded before
snort can detect them. This could be measured with a stress test software where we
would have to know exactly the amount of transmitted packets, and compare this to the
number of packets detected by the IDS. Such test was not committed during the IDS
testing in thesis, due to lack of software where this functionality is present. But it is
clearly worth noticing, especially if one is able to produce very “accurate” test results, or
testing detection engine or other parts of the operating system dealing with network
communication and the TCP/IP stack implementation.

As a last comment on reliability, is the validity of this reliability test. Validity is if we
are measuring what we have intended to measure4. As explained in the previous
introduction section B.1, the tool used in this test is assumed to be somewhat
representable for all the test tools used in the IDS tests. Preferably, every tool ought to
have a reliability test like in B.2, since variations in both traffic amounts and attack
types varies. This has consequences for drop rates and nr of detected alerts. But to
achieve this, would be too time consuming, so this approach in this appendix is more an
estimation of the reliability with an example of how it can be done.

4 Based on definition found at http://www.synergyaids.com/lacriaids/glossary.asp using google's
“define:validity” search string

36

Using benchmarking to improve IDS configurations

Appendix C: Technical problems

C.1 Introduction

With every project dealing with computers, network and software there is always a risk
of things not going as planned, this is no exception. Various issues appeared during the
work with this thesis that caused delays and problems with reaching both time limits
and with the consequence of some originally planned activities had to be dropped. The
technical problems were time consuming which did not help in an else time consuming
project. These difficulties had direct impact of the results achieved in this thesis. Much
of the difficulties have been already been discussed, and this appendix is intended as a
summary.

C.2 IDS (Snort)

There were problems making Snort, version 2.1.2-2, accept the configuration file
snort.conf with the http inspection setting enabled. The error was that Snort was unable
to find a file called unicode.map, used when examining Microsoft IIS traffic. Though
full path to this file were given, Snort still would not accept the configuration file,
unless this setting were commented out. This error was fixed on the first dedicated
machine by adding the full path, but on the honeypot machine, it was not possible to fix
this.

C.3 Testing tools

A lot of the tools used when testing the IDS, was either problematic to get to work, or
they did not work at all. Compiling was one of the greatest challenges due to old source
code, and use of a fairly new Linux distribution. These showed to be incompatible, and
some of the tools could not be used. This caused less data to work with. Substitutes
were tried to be found, but either there were no-existent, or even the substitute would
not work.

C.4 Hardware

Lost the dedicated IDS machine during the start of configuration scheme 2, so the victim
machine, the honeypot, had to host the IDS as well as the services. The old hardware
was the reason for high packet drop rates, an less reliable results. Lack of resources on
both computer and network devices affects the results.

37

