

ASPECT-ORIENTED PROGRAMMING
AND SECURITY
A comparison between implementing
JAAS with AOP and OOP

 NISlab
 Norwegian Information
 Security Laboratory

Hågen Hasle

Examensarbete
Nr 2004-x-164
2002

Examensarbete 20 poäng
i data- och systemvetenskap
inom magisterprogrammet i informations- och kommunikations säkerhet,
Kungl Tekniska Högskolan

HØGSKOLEN
I GJØVIK

Institutionen för
Data- och Systemvetenskap

I

 Hågen Hasle

ASPECT-ORIENTED PROGRAMMING AND
SECURITY
A comparison between implementing JAAS with AOP and OOP

Hågen Hasle
Gjøvik University College, Box 191, 2802 Gjøvik, Norway

Abstract: Good programming is essential if we want secure software. Security flaws can
occur in all phases of software’s lifecycle, and proper design and sound
configuration and environment are all important elements. But many security-
holes are introduced by sloppy programmers and insecure programming.
Aspect-Oriented Programming (AOP) is a new programming paradigm that
among many things has been recognized as showing great promise when it
comes to applying security. We have implemented a security framework into
an existing application to measure how good AOP is to add authentication and
authorization to existing applications. We define a set of metrics that can be
used to test the different approaches and determine which one is most
effective. Our results show that it is difficult to use standard OOP metrics to
measure the advantage AOP gives you, even after adaptation. Our results still
show that AOP show merit when it comes to making code reliable and
maintainable.

Keywords: Information security, Aspect-Oriented Programming, JAAS, software
engineering metrics.

På norsk: God programmering er essensielt hvis vi ønsker sikker programvare.
Sikkerhetshull kan oppstå i alle fasene i et programs livssyklus, and god
design og riktig konfigurering er viktige elementer for å unngå dette. Men
mange sikkerhetshull introduseres av slurvete programmerere og usikker
programmering. Aspekt-orientert programmering (AOP) er et forholdsvis nytt
programmeringsparadigme som blant annet får anerkjennelse for at det virker
lovende når det gjelder å sikre kode. Vi har implementert en sikkerhetsløsning
både med AOP og vanlig objekt-orientert programmering (OOP) for å måle
hvor bra AOP er til å legge autentisering og autorisering til en eksisterende
applikasjon. Vi har definert et sett metrikker som kan brukes til å male
forskjellene på de to fremgangsmåtene og avgjøre hvilken som er best.
Resultatene våre viser at det er vanskelig å bruke vanlige OOP metrikker for å
måle fordelene AOP gir. Likevel viser resultatene våre at AOP gir kode som
er mer pålitelig og enklere å vedlikeholde.

II

Aspect-oriented programming and security

TABLE OF CONTENTS

III

1. Introduction..1
1.1 Description of key terms ...1
1.2 Problem description ..4
1.3 Claimed contributions ...5
1.4 Justification and motivation ..5

2. Related work..6
3. What we have done..10

3.1 Discussion about the case study..11
3.2 The programming..12

4. Analysis of the differences between AOP and OOP14
4.1 Code examples from the applications14
4.2 Impact on the Trusted Computing Base..................................17
4.3 Hacking JAAS...19
4.4 Experiences from programming with AOP.............................20

5. Quantifying and measuring the differences21
5.1 Metric I: Lines of Code...23
5.2 Metric II: Code complexity...25
5.3 Metric III: Chidamber and Kemerer Metrics30

6. Conclusions..35
7. Future work..36
8. References..37

1. INTRODUCTION

The topics covered by this thesis are aspect-oriented programming (AOP)
in Java and software metrics. More specifically how AOP relates to
authentication and authorization as implemented in the Java Authentication
and Authorization Service (JAAS) and how it is possible to quantify and
measure the impact AOP has on security.

1.1 Description of key terms

In this chapter we will describe some of the key terms used in this paper.
To be able to fully understand this paper a better understanding of these
terms than what we can give here is probably necessary, but even a
rudimentary understanding will help you a long way.

1.1.1 Java

Java is a high-level programming language originally made by Sun
Microsystems. The following description is taken from webopedia.com:

Java is an object-oriented language similar to C++, but simplified to
eliminate language features that cause common programming errors. Java
source code files (files with a .java extension) are compiled into a format
called bytecode (files with a .class extension), which can then be executed
by a Java interpreter. Compiled Java code can run on most computers
because Java interpreters and runtime environments, known as Java Virtual
Machines (VMs), exist for most operating systems, including UNIX, the
Macintosh OS, and Windows.

Java is the programming language we will focus on in this thesis.

Although AOP can be used in several different programming languages, I
have chosen to use Java because it is the programming language I am most
familiar with. Java is also one of the largest and most widely used
programming languages today, especially on the server side.

1.1.2 JAAS

The Java Authentication and Authorization Service (JAAS) is a package
that enables services to authenticate and enforce access controls upon users.
It implements a Java version of the standard Pluggable Authentication
Module framework, and supports user-based authorization.

1

 Hågen Hasle

JAAS consists of two parts: authentication and authorization. In other
words, it can be used for both authentication and authorization: For
authenticating users to securely determine who is executing Java code and
for authorization of users to make sure they have the right permissions
required to perform their actions.

A typical usage of JAAS consists of four steps, from a programmers
point of view:
1. Create a LoginContext
2. Optionally pass a CallbackHandler to the LoginContext, for gathering or

processing authentication data
3. Perform authentication by calling the LoginContext's login() method
4. Perform privileged actions using the returned Subject (assuming login

succeeds)
To successfully use JAAS, you also have to configure your application

properly. JAAS requires several different files to be supplied.

1.1.3 Aspect-oriented programming

AOP was developed by researchers at Xerox Palo Alto Research Center,
and was first introduced in [17]. The following are quotes from some
articles about aspect-oriented programming:

Aspect-oriented programming (AOP) grew out of a recognition that
typical programs often exhibit behavior that does not fit naturally into a
single program module, or even several closely related program modules.
Aspect pioneers termed this type of behavior crosscutting because it cut
across the typical divisions of responsibility in a given programming model.
In object-oriented programming, for instance, the natural unit of modularity
is the class, and a crosscutting concern is a concern that spans multiple
classes. Typical crosscutting concerns include logging, context-sensitive
error handling, performance optimization, and design patterns. [1]

Object-oriented techniques for implementing such concerns result in
systems that are invasive to implement, tough to understand, and difficult to
evolve. The new aspect-oriented programming (AOP) methodology
facilitates modularization of crosscutting concerns. [2]

AOP allows you to define crosscutting concerns that can be applied
across separate, and very different, object models. It allows you to layer —
rather than embed — functionality so that code is more readable and easier
to maintain. [3]

AOP and OOP are not competing technologies, but actually complement
each other quite nicely. [3] This means that AOP is an extension to OOP,
and is not meant to replace it.

2

Aspect-oriented programming and security

There are some new terms in AOP that are essential to understand and be
aware of. We will describe them shortly here. For a more thorough
description, please turn to [17] or [8].

Aspect-oriented programs consist of core classes and aspects. The core
classes are regular OOP classes, and are meant to implement the functional
requirements of the program. Aspects are separate modules that implement
functionality that is orthogonal to the core functionality. This functionality
is meant to be executed at locations in the core code that the programmer
defines. These locations are called joinpoints. A weaver is responsible for
insert the right code into the right locations. The code in an aspect is
organized in advice. An advice is a construct that is similar to a method in
OOP. An advice can be executed before, after or around a specified
joinpoint. An around-advice can be used to replace the code in the core
classes, or merely as a combination of a before- and after-advice. The last
new construct in AOP is the pointcut, which is used to tie advice and
joinpoints together. You use the pointcut to specify which joinpoints you
wish to execute your advice at. A joinpoint can be all kinds of different code
constructs, depending on the kind of AOP implementation you use.
Examples are method calls, method execution, exception handling, attribute
access and object initialization.

AOP can be implemented in several different ways in Java, which is the

programming language we will focus on. [1] describes three ways;
dynamically through Java’s dynamic proxies-feature, dynamically through
bytecode manipulation or statically through a kind of precompiler. The most
famous AOP framework in Java, AspectJ, uses the last approach.
Depending on the approach you use, you might need to use special tools or
precompilers. AspectJ comes with a precompiler that turns the aspects into
ordinary code, and weaves everything together. The compiled classes can be
run on an ordinary Java Virtual Machine (JVM). If you use the bytecode
manipulation approach, you will need a tool that manipulates the bytecode
the ordinary compiler produces. Several such tools are made; AspectWerkz
and JAC are two well-known options. You can still use an ordinary JVM.
The last approach, dynamic weaving through Java’s dynamic proxy feature,
you will still need a framework that does the weaving, but it is all done in
regular Java, no bytecode processing is necessary.

1.1.4 Common Criteria

Common Criteria [27] is a program for evaluation of IT Security. The
Common Criteria represents the outcome of efforts to develop criteria for
evaluation of IT security that are widely useful within the international

3

 Hågen Hasle

community. It is an alignment and development of a number of source
criteria: the existing European, US and Canadian criteria (ITSEC, TCSEC
and CTCPEC respectively).

The CC presents requirements for the IT security of a product or system
under the distinct categories of functional requirements (CC Part 2) and
assurance requirements (CC Part 3). The CC functional requirements define
desired security behaviour. Assurance requirements are the basis for gaining
confidence that the claimed security measures are effective and implemented
correctly.

1.2 Problem description

In today’s society security has become a prime concern for both people
and companies. To achieve confidentiality and integrity for data we want to
protect we need user authentication and authorization.

There are many applications already built without security or with

security-solutions that doesn’t meet the demands of the environments the
applications are deployed in. An example of this is that instead of using a
standard username-password combination as authentication there might be a
need of a single sign-on mechanism or a link to the company’s central
LDAP-server. Because of this applications must be modified and
recompiled. This can be a troublesome and error-prone process, and can
possibly lead to new security-holes. It can also be quite time-consuming,
due to the difficulty of the task.

To help programmers more easily build secure and reliable authentication

and authorization-solutions frameworks like JAAS have been created. But
security can still be troublesome to implement. Not only do we need to use
the proper security mechanisms, but they must also be properly
implemented.

JAAS-related code will still be sprinkled around at every place security is
needed, possibly all through the application. This mixing of core
functionality and security-related functionality puts great demand on
developers; they need to handle both things at the same time. Not every
programmer has the skills and competence required.

Aspect-oriented programming claims to help solve these problems with
its new crosscutting techniques. Several papers [5, 6, 7, 9, 18] claim that
AOP is a viable programming paradigm, especially for security concerns.
AOP will lead to a better organized codebase, where security and core
functionality is not mixed together.

4

Aspect-oriented programming and security

A well structured and organized codebase is a good starting point if you
want a secure application with few faults and errors. When an application
evolves, authorization might need to be added to several new places in the
code. It is important that the application is easy to maintain, so that bugs are
not introduced in the process.

Common Criteria (CC) also recognizes this. CC’s last part is about
Assurance Requirements. An example of these requirements is design
complexity minimization:

Design complexity minimisation contributes to the assurance that the
code is understood -- the less complex the code in the TSF (Target of
Evaluation Security Functions), the greater the likelihood that the design of
the TSF is comprehensible. Design complexity minimisation is a key
characteristic of a reference validation mechanism. [28]

AOP is quite new, and the claims made about AOP’s superiority are not

very substantiated. Our concern in this paper is thus how we can verify that
AOP does indeed lead to code that is better organized, resulting in better
reliability and maintainability.

1.3 Claimed contributions

Recently some papers have proposed some metrics that can be used to
describe and measure the differences between AOP and OOP. We discuss
this work, and also propose one metrics of our own for measuring growth in
lines of code.

We show, through both a theoretical basis and a practical assessment
using three different metrics, that implementing JAAS in AOP rather than
OOP can lead to improvements in reliability and maintainability, which
ultimately leads to improved security.

Our focus is not upon security functionality, because the same

functionality can be developed with JAAS using both OOP and AOP. We
focus instead on more traditional software metrics, measuring aspects like
code complexity and dependencies. Although this is briefly explained
above, a more thorough explanation of why we do this can be found in the
chapter “Quantifying and measuring the differences”.

1.4 Justification and motivation

If aspect-oriented programming can help to separate code that handles
authentication and authorization from the main code of the application,
ordinary developers won’t need to be security-specialists. By finding a way

5

 Hågen Hasle

to modularize and reuse code for authentication and authorization we can
hopefully reduce the complexity and trouble of retrofitting new security-
solutions to existing applications. This modularization can ease the burden
on developers and lead us to develop more secure applications faster.

Ordinary developers can focus on meeting the functional requirements

and therefore specialize their competency, and companies can save money
and still increase their software’s security. AOP can also help companies
and developers meet the demands set by the Common Criteria more easily.

2. RELATED WORK

A lot of papers on aspect-oriented programming and security agree that
security is a very good fit for AOP.

In a quite old paper [13], the authors point out several interesting things:

• When adding AOP to existing code it is often necessary to refactor the
existing code to produce good and viable join points.

• It is best when the interface between aspects and code is narrow and
unidirectional. The aspect should have a well-defined effect on the base
code and the aspect should refer to the base code but not vice versa.

• It is easier to understand and manage aspects when the aspect code forms
the glue between two object-oriented structures.
The authors conclude that AOP shows promise and can benefit

developers. But they also think we have much left to learn about AOP, and
are unsure as to what kind of problems is it best suited.

In [5] the authors write that security is a good target for AOP. Security

often crosscuts very deeply with the application. Also, the security
implementation needs to be implemented very carefully in order not to
introduce security holes. Verification of correctness is much easier if the
code is not scattered across many classes in the application. In [6] the
authors argues that AOP shows great promise as a technique for building
more reliable software and sees security in general as an area where AOP
could greatly ease the burden for developers. In [7] the authors write that
AOP can help us separate security-related concerns from the main code and
thus freeing developers that are not security-experts of having to think about
security all the time.

Several papers show that AOP is usable for adding authentication and

authorization to applications. [9, 18] shows examples of how this can be

6

Aspect-oriented programming and security

done. One of the few books on AOP [8] has included a chapter about how
AOP can be used to write JAAS-code that implements authentication and
authorization. In [10] the authors describe how infrastructural services can
be added to objects with AspectJ. They show both authentication and
authorization, but also persistence and transactions.

Other papers also point out security in general and more specifically

authentication and authorization as crosscutting concerns that are well suited
to be modularized as aspects. But we have not found any papers with an
emphasis on adding authentication and authorization to already existing
applications. A question still remains if AOP is more or less useful if the
developer isn’t free to structure the code the way he wants, but has to adjust
his new code to an already existing codebase.

When it comes to adding authentication and authorization with AOP,
there are several ways this can be done. In [1], three ways to implement
AOP is described, all with their pros and cons. Static weaving requires
recompilation of code, but doesn’t necessarily require great modification of
the existing code. Dynamic weaving is a form of byte-code manipulation, as
doesn’t require us to recompile the code. Dynamic proxies require both a
recompile and more extensive modification of the source code.

In [5] the authors describe a security framework they are building in an
aspect-oriented way using AspectJ. AspectJ uses a static form of weaving.
They have learned by doing this that AspectJ is not flexible enough, it needs
a more flexible, open weaving process. The authors of [10] also conclude
that AspectJ is not well suited for creating generic frameworks. This is not
because of the static weaving, but because the aspect’s code and the
declaration of where the aspect should be used is not separate. We think this
work has been done with an older version of AspectJ, and the problems
pointed out in these papers are solved in the newest versions. Our
experience is that AspectJ is well suited for creating generic frameworks. It
has the possibility to weave both sourcecode and compiled bytecode, both
classfiles and jarfiles. And you can define abstract aspects with abstract
pointcuts that lets you separate the aspect’s code and the declaration of
where it should be used. This shows that AOP is a new and evolving
technology, where demands and wishes from the community are listened to,
and where problems are worked out.

Some papers points out that the fact that AOP promotes a separation of
concerns makes modularization easy, and this makes reuse easy. According
to the authors of [14], the advantages of AOP are the following:

7

 Hågen Hasle

• Evolvable security concern enables agile development and maintenance.

Instead of the impossible “get-it-right-the-first-time” it is possible to have
a controlled “penetrate-and-patch” approach. Upgrading and evolving the
application becomes cleaner, easier and more powerful.

• Better comprehensibility and focused efforts lead to fewer bugs. By
modularizing security the security experts can focus on what they do
best, and the regular developers can focus on implementing the
functional requirements and worry less about security. It also helps reuse
and parallel development.

AOP is not without problems though. According to [11, 12], there is a

risk that a dynamic AOP framework can be used by an intruder to introduce
malicious code into an application.

Many of the papers we have read have provided few measures and real

experiments as proof of the claims they make. Many authors seem to base
their claims of AOP’s superiority solely on their own experience. This is
hardly scientific, and further research is definitely needed.

Until recently, there were few exceptions to this. [13] was one of the few
exceptions. They have conducted a number of studies to assess the
usefulness of AOP and similar technologies. Both semi-controlled
experiments and larger case studies have been performed.

[12] also measures performance. Their metric is based on the execution
speed and throughput.

In their re-engineering attempt of an existing application, the authors of
[21] shows that using aspect-oriented techniques reduce the amount of lines
of code in the application.

Quite recently, a new set of papers have appeared, where OOP and AOP

is compared using traditional software metrics. Our work builds upon these
papers and the work done by their authors. But before we describe them, we
should first mention some important papers in the field of software metrics.
Most of the work we present here is also described by Fenton in his book
about software metrics [20]. His comments and critique has been valuable to
us in finding the metrics we wanted to use, and in our work in general.

One of the most important papers about software metrics is [4], where
Chidamber and Kemerer propose a suite of metrics that can be used for
measuring and evaluating object-oriented code. They propose six metrics:

• Weighted Methods Per Class (WMC)
• Depth of Inheritance Tree (DIT)
• Number of Children (NOC)
• Coupling between objects (CBO)

8

Aspect-oriented programming and security

• Response For a Class (RFC)
• Lack of Cohesion in Methods (LCOM)
These six metrics have since their introduction been greatly used and

discussed, and form the basis of other metrics. They have also recently been
adapted to be used for measuring AOP code.

 We describe the Chidamber and Kemerer metrics suite (C&K metrics) in
more detail later in this paper, when we use them to measure our own work.

Another important software metric is McCabe’s cyclomatic complexity.

[24] We describe this in more detail in the metrics chapter, but the essence is
that we can measure the number of linearly independent paths through a
module, and this is used to represent program complexity.

McCabe has also proposed a second metric, the essential complexity
measure. The purpose of this metric is to express the level of structure in an
application. There are some elements of a flowgraph that are considered
structured. If a piece of code is expressed as a flowgraph we can remove
those elements. This is called decomposing the graph. The essential
complexity is basically the cyclomatic complexity of what is left of the
flowgraph, which represents the unstructured code. The GOTO-statement is
a well known source of unstructured code. Java is a high-level language
where the GOTO-statement doesn’t exist; it has only the constructs McCabe
refer to as a structured prime. The essential complexity measure doesn’t
make much sense when measuring Java code, as all code according to
McCabe’s definitions is well structured.

Halstead’s software science measures were an early attempt to measure

program size and complexity. He counts the number of operators and
operands, and defines among others a program’s volume and level based on
computations with these variables. Fenton criticizes Halstead’s metrics in
his book [20]. He argues that the relationship between the real world and the
mathematical model is unclear, and that some of the metrics Halstead define
are unvalidated and not properly articulated.

Bache introduced the VINAP measures in 1990, which measures control

flow complexity. These metrics have been testing in several empirical
studies, and are shown to be reliable indicators of maintainability. However,
they are not as widespread as McCabe’s cyclomatic complexity measure.
They are implemented in two commercial measurement tools, but we have
not found them in any open source tools. Papers describing them are also
hard to find.

9

 Hågen Hasle

The last three metrics are all described in [20], and further references can
be found there.

Aspect-oriented programming has been around for some years now, but
compared to both procedural programming and object-oriented
programming, it is quite new. This is reflected also in the research done in
the field of software metrics. As mentioned above, papers about metrics for
aspect-oriented programming and design have just recently begun to appear.

Zakaria and Hosny [18] discuss the effect AOP has on the Chidamber

and Kemerer metrics (C&K metrics). Their work is mostly theoretical, and
based on their thoughts and a few code examples they describe how the
different metrics will be affected in a positive or negative way by using
AOP.

Tsang, Clarke and Baniassad [19] have done almost the same as we do in

their research. They have used the C&K metrics to compare an AO system
with an OO counterpart. In doing so they had to adjust the C&K metrics to
be able to measure AO code properly. We discuss their work and the
adjustments they had to do to the C&K metrics in the metrics chapter.

Coupling is one of the metrics that Chidamber and Kemerer introduced.
This metric has been important to other researchers as well, and a lot of
papers and tools focus on it. Coupling is closely related to measuring
dependencies. Zhao [22] proposes a metric suite for measuring the
dependencies in AO code. He defines these metrics based on a dependence
model which consists of a group of dependence graphs. The metrics he
proposes can be used to measure the complexity of the code.

Dufour et al. [23] examine the dynamic behavior of AspectJ. They
present a benchmark and a tool that can be used to measure the performance
of AspectJ. Performance can be an important factor, also when it comes to
security. The many DOS attacks on large web sites have shown that. We
have chosen not to investigate this any further in our thesis. The
performance of the different AOP tools is constantly increasing, and we feel
that measurements done in this area will soon loose their importance.

3. WHAT WE HAVE DONE

We have added JAAS authentication and authorization to the Java Pet
Store, an example application from Sun’s Blueprints program. We have

10

Aspect-oriented programming and security

developed two parallel and equivalent versions of this application, one using
OOP and another using AOP.

By developing the same framework in two different ways we have been

able to perform a case study. We have defined the variable we have control
over as the programming paradigm. By changing this from OOP to AOP we
can measure how other dependent response variables change.

We believe this kind of case study/model-building is appropriate for this
task because the only way to test a new programming paradigm is to
program or to view the programs of others. Others have chosen the same
approach [19]. We discuss this further below.

3.1 Discussion about the case study

A formal experiment on requires appropriate levels of replication (several
teams and/or several projects), and randomized experimental subjects and
objects. A case study is when you examine objects across a single team and
a single project, or when you don’t have the required level of random
selection. When doing a case study, it is possible to show the effects of a
technology in a typical situation, but not generalize it to every possible
situation. The advantage of an experiment is that it is easier to generalize
your results. A case study has several elements that are similar to those of a
formal experiment though.

We have defined an experimental hypothesis H1 stating that AOP will

lead to better reliability and maintainability. We will test this hypothesis
against our conservative hypothesis H0 which states that there are no
significant differences. We will program the same application twice in two
different ways, and this kind of comparative analysis is essential in
experiments and case studies. When we program the authentication and
authorization in a regular object-oriented way, this is the control, the status
quo. The metrics we have defined are the response variables, which are used
to evaluate the hypothesis.

A case study is a comparative study, and we have chosen the “sister

project” variant. This kind of study involves two projects, and we
implement the same framework twice. It is important that the state variables
are similar for both projects. The state variables are the descriptive
variables. If they’re not constant it is more difficult to explain a change in
the response variables.

11

 Hågen Hasle

Another key issue to be able to properly establish and measure the
response variables is to minimize the effect of confounding factors.
Confounding factors are when the effect of several factors is
indistinguishable from each other. An example of this is when you’re
learning how to use a method or tool as you try to assess its benefits. We
have tried to avoid this by spending a considerable amount of time learning
AOP before we begun programming. The code we have written is
influenced by what other, more experienced programmers have done before
us. We have also let other programmers with expertise in this field review
our code, so that possible improvements could be spotted.

One might argue that a formal experiment would be preferable to a case

study. Can we generalize our results at all, or will the best we can say be
that AOP works better than pure OOP for us? This is a possible weakness,
but we don’t see it as a viable option to let other people do the programming
for us. To be able to do that, they must spend a lot of time learning JAAS
and AOP. AOP is still so new that very few people have any experience
with it. Our solution to this problem, besides the things we mention above,
has been to make it easy for others to reproduce what we have done, and
possibly do it better. We use publicly available applications and frameworks
like the Java Pet Store Application and JAAS, so anyone can do what we
have done. If anyone can improve either of the security frameworks it will
be possible to produce a new set of results and compare them to our own.
We believe this can help justify the fact that we have done the programming
ourselves instead of letting others do it.

The description given here of a formal experiment and a case study is

mostly taken from [16], and we recommend this paper for a more thorough
explanation.

3.2 The programming

The Java Pet Store is an application made to teach new developers design
patterns and good programming practice, and can be downloaded from
http://java.sun.com/developer/releases/petstore/.

We have focused on the admin-application in Java Pet Store. This is a

small application used to administer the store. It is a Swing application, and
is normally downloaded from the web and started through Java Web Start
(http://java.sun.com/products/javawebstart/). The admin-application already
had a rudimentary form of security. Because Java Web Start is used to start
the application, the entry point is a web page. This page has a form-based

12

Aspect-oriented programming and security

authentication scheme, where the user is checked against a database of valid
usernames and passwords. After this point, the only authorization that is
made is on the servlet that process requests from the Web Start client, and
the authorization is simply a check to see if it exists a session. (This implies
that a user has been authenticated through the form-based authentication
scheme.) This is a home-grown solution that works well enough, but it has
certain flaws. It is very simple, and lacks any differentiation among the
various authenticated users. It doesn’t follow any standards, and if you want
to check the users against a LDAP server instead of a database, a lot of
programming must be done.

But the shortcomings of the authentication and authorization scheme

used in the admin-application in Java Pet Store are not really our focus. Our
focus is to add JAAS to an existing application, and we have chosen Java Pet
Store because it is readily available and well known. So we started by
removing the existing authentication. This is easily done in the web.xml file
of the admin-application. Then we removed the authorization in the servlet.
To do this we only had to alter one variable.

Because an application started by Java Web Start is a normal desktop

application, and not an applet or another kind of special web-application, we
could now start the admin-application from a DOS-prompt. We now had an
excellent starting point for our own task; to add JAAS to the admin-
application with ordinary object-oriented programming and with aspect-
oriented programming. We needed to do four things:

We started by adding authentication on the client. The authentication we
use is a simple form where the process use Windows’ startup authentication
and return the username and id the user has in Windows. This way no
interaction with the user is necessary.

We then added authorization in the client in two ways. We check when
the users select the About-item in the menu. Although the about action is a
trivial one, it can still be used by us to show how adding authorization must
be done. We also limit the users GUI. There are two different panels in the
admin-application, the orders-panel and the sales-panel. We limit the access
to the sales-panel by removing the button and menu-item that opens it if the
user doesn’t have the right permissions.

We then transfer the authenticated subject from the client to the server.
The admin-application is a client-server application, and authorization must
also be done at the server.

At last, we added authorization to the three actions the user can perform
on the server.

13

 Hågen Hasle

We did all of this using both OOP and AOP. Both of the applications we
developed can be reviewed, and can be found in a zip-file accompanying this
paper.

4. ANALYSIS OF THE DIFFERENCES BETWEEN
AOP AND OOP

In this chapter we will analyze and discuss some of the differences
between AOP and OOP. This chapter serves as an introduction to the next
chapter, where we focus on what we can measure and assess. We start of by
presenting some code examples from the applications we developed, to show
how the two programming styles differ. Then we discuss the impact this has
on the Trusted Computing Base of an application. Last, we analyze how
AOP and JAAS can make hacking an application possible, and the dangers
we must be aware of.

4.1 Code examples from the applications

The differences between AOP and OOP can easily be shown in our
source code. The class ApplRequestProcessor in the package
com.sun.j2ee.blueprints.admin.web can serve as an example.

First, for every request we send the authenticated subject from the client

to the server, appended to the original request. On the server-side, the
subject must be read from the request and stored. In the OOP version, this is
done in the following way:

ObjectInputStream oin = new
 ObjectInputStream(req.getInputStream());

try {

 sub = (Subject) oin.readObject();
} catch (Exception cnfe) {

 out.println(replyHeader + "<Message>" + cnfe.toString()

 + "</Message>\n" + "</Response>\n");
 return;

}

BufferedReader inp = new BufferedReader(
 new InputStreamReader(oin));

//req.getReader();

StringBuffer strbuf = new StringBuffer("");

In the original version, the code looked like this:

14

Aspect-oriented programming and security

BufferedReader inp = req.getReader();
StringBuffer strbuf = new StringBuffer("");

Then, when the original request is processed, one of three actions is

executed. The actions are all wrapped by a Subject.doAsPrivileged-method,
like this:

if (reqType.equals("GETORDERS")) {

 return (String) Subject.doAsPrivileged(sub,

 new PrivilegedExceptionAction() {
 public Object run() throws Exception {

 return getOrders(root);

 }
 }, null);

Inside the actions (in this case the getOrders-method), the users

permissions are checked:

String getOrders(Element root) {

AccessController.checkPermission(new

PetStoreActionPermission(

 "GetOrdersAction"));

These changes are not big, but they are done at three different places in

the file. Someone wanting to understand how authentication and
authorization is added to the application will have to search every file to find
out.

The AOP version is quite different. Here, the original code is unchanged,

and instead we have added some advice and pointcuts.

First, let us look at the pointcut and advice that reads the authenticated

subject from the request. We can see that the actual code is very similar to
the code in the OOP version. This is natural, considering that the two
versions do the same thing. The difference lies in the AOP version’s
pointcut expression, and how the code is organized in a separate method
(advice) instead of integrated into the original code.

public pointcut doPostOperation(ServletRequest req)

 : call(BufferedReader ServletRequest.getReader())
 && within(ApplRequestProcessor)

 && target(req);

15

 Hågen Hasle

Object around(ServletRequest req)

 : doPostOperation(req)

 {
 try {

 ObjectInputStream oin = new

ObjectInputStream(req.getInputStream());
 authenticatedSubject = (Subject) oin.readObject();

 ((HttpServlet)

thisJoinPoint.getThis()).log(authenticatedSubject
 .toString());

 BufferedReader inp = new BufferedReader(new

InputStreamReader(oin));
 return inp;

 } catch (ClassNotFoundException cnfe) {

 ((HttpServlet)
thisJoinPoint.getThis()).log("Exception:", cnfe);

 } catch (IOException ioe) {

 ((HttpServlet)
thisJoinPoint.getThis()).log("Exception:", ioe);

 }

 return proceed(req);
 }

Next, let us look at the code for the authorization checks. The pointcut is
very simple here, one line is sufficient. There are two advice, this is
similar to how we implemented the OOP version, where we had to insert
code at two different locations.

public pointcut authorizationOperations()

 : call(* ApplRequestProcessor.getOrders(..));

Object around()

 : authorizationOperations()
 && !cflowbelow(authorizationOperations())

 {

 try {
 return Subject.doAsPrivileged(authenticatedSubject,

 new PrivilegedExceptionAction() {

 public Object run() throws Exception {
 return proceed();

 }

16

Aspect-oriented programming and security

 }, null);
 } catch (PrivilegedActionException pae) {

 throw new AuthorizationException(pae.getException());

 }
 }

 before() : authorizationOperations()
 {

 AccessController

 .checkPermission(getPermission(thisJoinPointStaticPart));

 }

We see that AOP has enabled us to group all the authorization code in
one class, removing the scattering of code that we saw in the OOP
version.

4.2 Impact on the Trusted Computing Base

A Trusted Computing Base (TCB) is defined as the following:
• A component or set of components that implement the security policy for

a system. (http://www.sendo.com/kb/glossary.aspx?ID=441)
or:

• TCB refers to the totality of protection mechanisms (hardware, firmware
and software) that provide a secure computing environment. The TCB
includes everything that must be trusted -- access control, authorization
and authentication procedures, cryptography, firewalls, virus protection,
data backup, and even human administration -- in order for the right level
of security to work. (http://www.webopedia.com/TERM/T/TCB.html)

Common Criteria uses a different terminology. A system being

evaluated in Common Criteria is called a Target Of Evaluation (TOE). Their
concept TOE Security Functions (TSF) is similar to what we refer to as the
TCB. In [28], TSF is defined as “All parts of the TOE which have to be
relied upon for enforcement of the TSP.” TSP stands for TOE Security
Policy, and are the rules defining the required security behavior of a TOE.
We see that this definition is quite similar to our first definition of TCB, a
TSF is the implementation of the security policy.

In our case study, we only focus on the part of the TCB that lies within

the software. Firewalls, virus protection, data backup and human
administration is outside our scope. We focus primarily on access control,

17

http://www.sendo.com/kb/glossary.aspx?ID=441
http://www.webopedia.com/TERM/T/TCB.html

 Hågen Hasle

authorization and authentication. The important part of these two definitions
is that the TCB refers to the protection mechanisms, the components in the
system that implement the security policy. In our application the protection
mechanisms are our usage of JAAS.

We see from the code examples in the previous chapter that AOP permits

the JAAS-related code to be kept separately from the core code. In our AOP
version of the Java Pet Store, not a single line of code in the original
application had to be changed to include JAAS. This means that all code
that is a part of the protection mechanisms is separated from the core code.
The aspects we have made are the components that constitute the TCB.

This isolation of the TCB makes it easier to understand it, and see how it

is implemented. Tasks such as code reviews are simplified. This is relevant
not only for day-to-day development and testing, but also for larger-scale
projects where external evaluation is done.

An example of such an external evaluation scheme is the Common

Criteria. In CC’s part about Assurance Requirements, there are several
requirements where the modularization provided by AOP is relevant and can
be of big help. The following are quotes from [28], where CC’s
requirements are presented:

The ADV_IMP.2.2E element defines a requirement that the evaluator
determine that the implementation representation is an accurate and
complete instantiation of the TOE security functional requirements.
(page 99)

To be able to determine if the implementation of the TCB satisfies the
security policy, it is a clear advantage that the TCB is organized in a few
classes and packages, instead of being scattered throughout the sourcecode.

Other CC requirements are also relevant to our work, among others the
requirements regarding Modularity, Reduction of complexity and
Minimisation of complexity (ADV_INT), and the requirements on
Representation correspondence (ADV_RCR).

It is however important to distinguish between the protection

mechanisms and the code that they protect. Although AOP groups all the
code related to the protection mechanisms together in one module, it also
makes the link between the protection mechanisms and the code it protects
more difficult to see. The declarative weaving-process AOP uses is not as
easily understood as the ordinary OOP syntax where the JAAS code is put
where authorization is wanted. So although it is easier to verify that the

18

Aspect-oriented programming and security

protection mechanisms are properly coded and don’t contain any bugs or
backdoors, it is more difficult to check whether every part of the code you
want to protect really is protected, nothing more and nothing less. (A
pointcut can possibly select more joinpoints than you want as well as fewer.)

To help remedy this potential problem, AspectJ comes with an aspect

browser, that lets you see which parts of your code a pointcut affects. This is
a big help in designing the pointcuts properly, and is a very important tool.

4.3 Hacking JAAS

As we mention in the chapter on related work, a couple of papers discuss
the possible dangers of using dynamic AOP. We will use this chapter to
discuss this a bit further, but would first like to show how easy it is to disable
every authorization check in a system implementing JAAS.

As written by J. Viega and G. McGraw in [15]; sometimes you have to

demonstrate to people the flaws in their software, otherwise they won’t
believe you.

To mange this treat, all we had to do was write these few lines of code:

public pointcut hackJAAS();
 : call(* AccessController.checkPermission(..));

void around() : hackJAAS()
{
 //Do nothing. No proceed-call.
}

The reason this is such as easy task is that JAAS is a standardized

framework. To perform an authorization check, you must call
AccessController.checkPermission. Everyone knows this, both lawful
programmers and hackers. That means that if you know that an application
uses JAAS, you automatically know which code you need to disable. You
don’t need to see the sourcecode, you don’t need to see any kind of
documentation.

However, nothing is that simple. You still need to be able to weave the
code we have written into the application you want access to. This will be
the tricky part. As we explained in the chapter on key terms, there are
several kinds of AOP. We distinguish between static weaving and dynamic
weaving. Static weaving is done before the compilation takes place, or as a

19

 Hågen Hasle

part of the compilation. The aspects and the core classes are merged
together into a common bytecode. This is the safest choice, and you only
need to be certain that nobody tries to sneak any malicious code into the
compilation process.

Dynamic weaving is a kind of bytecode manipulation, and this weaving
takes place at run-time. That means that malicious code can be introduced
when the application is started. This makes it easier for an insider to sneak
code into the application, and the implication is that you not only need to be
aware of malicious code when you compile the application, but every time
you start it.

4.4 Experiences from programming with AOP

Adding authentication and authorization using AspectJ turned out to be
quite an easy task, although we did run into some problems. This may be
explained by the fact that AOP is a new programming paradigm for us, and
learning to master something new is always a bit time-consuming. We used
“AspectJ in Action” [8] as a basis for what we did. We ran into a problem
that had to do with the classloading-mechanism in Java and permissions. It
seemed that AspectJ changed the default classloader, and when the code
used the classloader to load images, it didn’t have the proper permissions to
load the images anymore. When we consulted the AspectJ usergroup about
this, Ramnivas Laddad was so interested he wanted our entire codebase, so
he could examine this behavior more closely. AspectJ is not supposed to
affect the core code, but in this situation it did.

Using AspectJ was quite easy and very elegant, at least as long as we

only wanted to insert authorization checks at certain easily identifiable join
points. When we wanted to change how the GUI was displayed, it became
slightly worse. The code that adds buttons and menu items uses the same
class several times, so it was more difficult for us to construct a pointcut that
only matched one joinpoint and not the other. One version of our code had
code in the advice that checked the button or menu item to see if it was the
right one. This worked, but was not an ideal solution. We had to have two
different advice, one for the buttons and one for the menu items. And we
had code in the advices that really belonged in the pointcut. Because of this
reuse and proper abstraction/modularization was not possible, and this was
clearly a bad design. Eventually we managed to create a better solution. We
could reuse the same advice for both the menu items and the buttons, and we
moved the code that singled out the right object into the pointcut. AspectJ is
a powerful language, and the possibility to use if-statements in the pointcuts
saved us.

20

Aspect-oriented programming and security

All in all, programming with AOP and AspectJ was both powerful and

elegant, but also somewhat demanding. As with every other tool or
programming language, you have to expect a learning period where you
make mistakes and encounter problems. Our experience is that
programming with AOP also requires you to have a more thorough
understanding of the libraries you are using. Understanding how JAAS
worked and how we should implement it was easier in the OOP version. As
AOP can lead to a better separation of programming responsibilities, the
programmers who implement the authentication and authorization will more
likely be experienced in JAAS, so this should not be a problem.

We didn’t have to change the code at all when we used AOP, and the

solution we ended up with seemed very elegant. This is of course a
subjective opinion, and elegance is in the eye of the beholder. How does the
two solutions compare when we try to measure and quantify the differences?

5. QUANTIFYING AND MEASURING THE
DIFFERENCES

As we stated in the introduction, what we are trying to measure here is
whether or not AOP can help to separate code that handles authentication
and authorization from the main code of the application. Thus the metrics
we use are not security metrics, but metrics measuring code complexity and
similar aspects. This may sound strange, considering the fact that it is,
ultimately, security we are interested in. We will explain the reasoning
behind this now.

Security has many facets. One facet is the features implemented in a
piece of software. If you make a web-application, you might want to use
SSL to protect important information the user enters. If you don’t, malicious
attackers can possibly eavesdrop on the communication between the browser
and the server and collect the sensitive information. Another facet of
security is how well a feature is implemented. Bugs in an application can be
dangerous. In C, buffer overflow attacks are well known. There are several
examples of how an implementation of a security feature such as SSL has
either bugs or logical flaws that are possible to exploit. If the web-
application in the previous example uses a faulty SSL implementation, a
malicious attacker can still get access to the information he wants. The
moral is that not only do we need to use the proper security mechanisms, but
they must also be properly implemented.

21

 Hågen Hasle

These two security facets correspond to the two parts of the Common
Criteria specification, the functional requirements and the assurance
requirements.

JAAS is on of the security mechanisms we can use in a Java application.
It is a standardized solution to a common problem, how to implement
authentication and authorization. Several of the components needed in
JAAS are implemented by Sun or various third-party companies. These
components have probably gone through extensive testing, and will for the
sake of this argument be considered trustworthy. Our focus is on the code
we write ourselves.

What we have done is to implement a secure solution based on JAAS,
and added it to the Java Pet Store. The two versions we have made are
functionally equivalent, although they are programmatically quite different.
It is therefore irrelevant to measure anything related to the first facet of
security that we mentioned above. What we have chosen to do is to measure
attributes related to the second facet we mentioned. A well structured and
organized codebase is a good starting point if you want a secure application
with few faults and errors. The metrics we have chosen measure these
attributes.

The two most important attributes we are interested in are reliability and
maintainability. Reliability is closely related to security, and needs no further
introduction. Maintainability is also important. When an application
evolves, authorization might need to be added to several new places in the
code. It is important that the application is easy to maintain, so that bugs
aren’t introduced in the process. It is easier to perform a code-review on a
well structured and organized codebase than a complex and unstructured
one.

As Fenton [20] describes in his book, we distinguish between internal

and external attributes when we measure a product. Internal attributes
includes code structure, function points and lines of code. These attributes
can be measured before the application is finished. They can often be
measured as early in the process as the design phase, or at least in the
implementation phase, when you have access to the sourcecode. External
attributes includes reliability, security, usability and maintainability. Most
of these attributes are impossible to measure before the application is
finished and put in production.

Reliability is a good example. To be able to measure the downtime of
the application, or the mean time between failures, it is obviously necessary
to be in the production phase. However, we would like to be able to predict
the reliability of the software we develop before we get to the production

22

Aspect-oriented programming and security

phase. To do this, we must find a correlation between the internal attributes
we can measure, and the external attributes we are interested in.

There are several studies that have found such a correlation. Many
studies are described in [25], and they show that McCabe’s complexity
metrics correlate with reliability.

As described in Fenton, a study by Li and Henry that used both the C&K
metrics and McCabe’s metrics (among others), claimed that the C&K
metrics “contribute to the prediction of maintenance effort over and beyond
what can be predicted using size metrics alone.”

We have used three different metrics to compare the two solutions we

developed. They are described in this chapter, along with the results we got
when we applied them to our work. Brief discussions of how they well they
seemed to work are also included.

5.1 Metric I: Lines of Code

5.1.1 Description

Using Lines of Code (LOC) as a metric has a long tradition. Several
papers and books describe this. Fenton [20] gives a good and thorough
explanation of how LOC has been used and can be used.

Several variations of this metric exist, and it is important to be precise

about the definition of a Line of Code. Some people measure every line,
while others don’t include blank lines or comments. Others only count lines
containing an operator. We have chosen to count every line except blank
lines and comments. Different programmers have different programming
styles. Some like their code to be compact, others use a lot of whitespace.
Some comment a lot, others more sparsely. Eliminating blank lines and
comments makes the result indifferent to this. To further ensure that
different programming styles don’t influence the result we have used the
Eclipse editor’s built-in source formatter to format the code.

Although LOC is a widely known and used metric, there are many who

believe that it is a poor indicator of anything except size. We have chosen to
use LOC as one of our metrics anyway. This way, we can see if LOC can be
useful to describe the differences between AOP and OOP, a novel area for
this metric. LOC is such an easily assessable metric that if would be nice to
be able to use it.

23

 Hågen Hasle

Instead of merely looking at the total number of LOC, we have chosen to
measure how the growth in LOC evolves as we add our new features. As
authentication is a one-time process, it doesn’t have such a growth. But
when it comes to authorization, we can distinguish between the code that is
necessary to make authorization work at all and the code that is necessary
each place we want to add authorization in the code. Measuring it this way
can give us a formula that describes the evolvement of LOC: LOCtotal = x +
n * y This makes it possible not only to see what required the least amount
of LOC for the example I have used, but probably also for other projects.

In the evaluation of the results, a small number for x and y is the best. In

a tradeoff between x and y, the most important factor is y, that describes how
many LOC you must add for each authorization-point. Especially for large
projects, this is the number that will influence the total the most.

5.1.2 Results

In the OOP version, the authentication is 23 LOC, while the authorization
is between 12 and 15 LOC, depending on where in the code we add the
authorization checks. The mean LOC is 14. This gives us the formula
LOCtotal = 23 + n * 14.

In the AOP version, the authentication and authorization code is 77 LOC

before we add any authorization checkpoints at all. Each checkpoint takes
either 1 or 6 LOC to accomplish. The checks to limit the GUI, which were
more difficult and complex, take 6 LOC, the others only 1 LOC. The mean
is 3 LOC. This gives us the formula
LOCtotal = 77 + n * 3.

5.1.3 Discussion

We see that there is a great difference in the results between the AOP and
the OOP version. Although the AOP version has a greater initial LOC value,
the cost of increasing the amount of authorization checkpoints is minimal
compared to the OOP version. The AOP version is therefore favorable, in
accordance with what we wrote in the description of this metric.

We believe this is an indication that authorization should be treated as a
crosscutting concern, and thus is suited to be put in an aspect. Not only is it
possible to decrease the LOC you must write for each authorization
checkpoint, but the lines you need to write are pretty much the same each
time. This observation is not directly given by the LOC numbers, but the
reason why we need so few LOC to add a new authorization checkpoint

24

Aspect-oriented programming and security

using AOP is just this. Because the code is so similar it is easy to refactor it
out into an advice.

It is possible that the LOC values for the AOP version could have been

additionally decreased. We have made an abstract aspect that has two
concrete subaspects, one for the client code and one for the server code.
This is in conformity with good programming practices, but increases the
LOC measures. The fact that we used the authorization checks not only to
limit what code the user can run, but also to limit what GUI elements the
user can see, presented us with some problems. We couldn’t reuse the same
advice for these two situations, because they differ in the way unsuccessful
authorizations should be treated. We had to make two very similar advice to
cover these two situations. It is possible that we could have refactored some
of the shared code into a common method, thus decreasing the LOC value.

Another important aspect of the LOC metric, that we would like to

mention but have not put a great deal of emphasis on, is where in the code
the new lines are entered. In the AOP version, not a single line of code in
the original program has been altered, and not a single line of code has been
added to any of the original objects. In the OOP version, several classes has
been modified. The fact that it is possible to add JAAS to the Pet Store
application without altering the original sourcecode is an addition suggestion
that authentication and authorization indeed represents orthogonal
functionality, and thus is suited to be implemented by AOP.

5.2 Metric II: Code complexity

5.2.1 Description

It is a common belief that there is a link between the structure of an
application’s code, and the quality of the product. Many researchers have
tried to measure the structural properties of software. The intention has been
to establish a link between these measurements and properties like how easy
it is to test and maintain a product, failure rate and other external attributes.

As we wrote in the previous chapter, the Common Criteria is also

concerned about code complexity:
Design complexity minimisation contributes to the assurance that the

code is understood -- the less complex the code in the TSF, the greater the
likelihood that the design of the TSF is comprehensible. Design complexity

25

 Hågen Hasle

minimisation is a key characteristic of a reference validation mechanism.
[28]

CC present several requirements about how developers should minimize
complexity:
 Developer action elements
 ADV_INT.3.1D The developer shall design and structure the TSF

in a modular fashion that avoids unnecessary
interactions between the modules of the design.

ADV_INT.3.2D The developer shall provide an architectural
description.

ADV_INT.3.3D The developer shall design and structure the TSF
in a layered fashion that minimises mutual
interactions between the layers of the design.

ADV_INT.3.4D The developer shall design and structure the TSF
in such a way that minimises the complexity of
the entire TSF.

ADV_INT.3.5D The developer shall design and structure the
portions of the TSF that enforce any access
control and/or information flow control policies
such that they are simple enough to be analysed.

ADV_INT.3.6D The developer shall ensure that functions whose
objectives are not relevant for the TSF are
excluded from the TSF modules.

There are several different approaches to measuring code complexity.

The one we have chosen to use is McCabe’s cyclomatic complexity
measure. McCabe’s work was originally done in 1976, but has withstood
the test of time. His work has been incorporated into several open source
measuring tools, such as CheckStyle (http://checkstyle.sourceforge.net) and
Metrics (http://metrics.sourceforge.net).

Although Fenton in his discussion is skeptical to the use of the
cyclomatic number as a general complexity measure, he does however
believe it to be a useful indicator of how difficult an application will be to
test and maintain. And this is, after all, what we are looking for.

A number of studies have confirmed the usefulness of the cyclomatic
number. Grady reported from a study involving 850000 lines of code that
there was a correlation between a module’s cyclomatic number and the
number of updates required to the module. Several other studies are
presented in [25].

Cyclomatic complexity is based on the structure of an application’s

control flow graphs. A control flow graph describes the logic structure of

26

http://checkstyle.sourceforge.net/
http://metrics.sourceforge.net/

Aspect-oriented programming and security

software modules. Each possible execution path of a software module has a
corresponding path from the entry node to the exit node of the module’s
control flow graph.

An example of Control Flow Graph is show in below:

Cyclomatic complexity is defined to be e – n + 2, where e and n are the
number of edges and nodes in the control flow graph. Cyclomatic
complexity is also known as v(G), where v refers to the cyclomatic number
in graph theory and G indicates that the complexity is a function of the
graph. v(G) = e – n + 2.

There are simpler ways to compute the cyclomatic complexity than
counting all edges and nodes. There are several automatic tools that can do
the job for you. There is also another way if you measure by hand, you can
count the number of decision predicates. If all decision predicates are binary
and there are p decision predicates, then v(G) = p + 1. A binary decision
predicate appears on the control flow graph as a node with exactly two edges
flowing out of it. The metric application “Metrics” count the following
statements and constructs as binary predicates in Java: if, for, while, do,
case, catch, the ternary operator :?, and the conditional operators in
expressions; && and ||.

We count the same way as “Metrics”, with one exception. The reason
the &&-operator is counted, is that in Java (as in C++ and other
programming languages), the second part of an expression combined with
&& will be skipped if the first part is evaluated to be false. This is called
short circuiting, and can lead to two different paths of execution.

27

 Hågen Hasle

This is fine in regular object-oriented Java programming, but not when it
comes to aspect-oriented programming and pointcuts. In a pointcut, the
expression is not a part of a program flow, it is used to describe and capture
a program flow. The code isn’t executed in the regular sense. This means
that an expression can evaluate to both true and false, depending on the
joinpoint you look at.

Take the following code as an example:
public pointcut doPostOperation(ServletRequest req)

 : call(BufferedReader ServletRequest.getReader())

 && within(ApplRequestProcessor)
 && target(req);

This pointcut consists of three parts. The first part captures every call to
ServletRequest.getReader(). There are only a few joinpoints in the code this
matches, but there are thousands of joinpoints it doesn’t match. The second
part limits the possible joinpoints to those inside the class
ApplRequestProcessor. This reduces the impact of the pointcut, and helps
clarify which joinpoints are affected. This clearly doesn’t add complexity, if
anything it reduces it. The third part of the expression isn’t evaluated at all;
it is included only to capture the ServletRequest-object in the code, so that it
can be used in the advice. The conclusion of this little discussion is that the
&&-operator in a pointcut doesn’t short-circuit like the regular && in Java,
and doesn’t add to the cyclomatic complexity.

According to the documentation following the software metrics analyzing

tool “CheckStyle”, the cyclomatic complexity of a module can be evaluated
according to the following limits:

1-4 is good, 5-7 is considered ok, 8-10 means you should consider
refactoring your code, and >10 means you definitely should refactor your
code.

The limit of 10 is used by the “Metrics” tool as well.

According to [26], cyclomatic complexity should not be aggregated for

an entire class. Because of the fact that every method has a minimum
cyclomatic complexity of one, a class with many methods would
automatically have a high score, although it wouldn’t necessarily be very
complex. An example of this is a typical domain object that adheres to the
rules of JavaBeans. An object like this would have several getter- and setter-
methods that would contribute greatly to the total cyclomatic complexity.
The correct way to evaluate cyclomatic complexity is on a per-method basis.

28

Aspect-oriented programming and security

5.2.2 Results

The following table shows the results of measurements:

Class and method affected AOP OOP Original
ApplRequestProcessor

processRequest 0 +1 8
getChartInfo 0 0 6
updateOrders 0 0 5
getOrders 0 0 4

HttpPetStoreProxy
doHttpPost 0 0 8

PetStoreAdminClient
createUI 0 +2 1
createMenuBar 0 +1 1
createToolBar 0 +1 1
AboutAction.actionPerformed 0 +1 1

SubjectHolder
getAuthenticatedSubject 3
NullCallbackHandler.handle 1

AbstractPetStoreJAASAspect
before : authOperations 3
around : authorizationOperations 2
before : authorizationOperations 1
Authenticate 1
NullCallbackHandler.handle 1

PetStoreJAASServerAspect
around : doPostOperation 2
getPermission 1
pointcut authorizationOperations 3
pointcut doPostOperation 1

PetStoreJAASClientAspect
getPermission 1
around : restrictingMenu || restrictingToolBar * 2
before : restricting * 1
around: httpPostOperation 2
pointcut authOperations 1
pointcut authorizationOperations 1
pointcut httpPostOperation 1
pointcut restrictingToolBar 1
pointcut restrictingMenu 1

* Not including the || in the anonymous pointcut

29

 Hågen Hasle

Total increase in cyclomatic complexity for OOP: 10
Total increase for AOP, not including pointcuts: 17
Total increase for AOP, including pointcuts: 17 + 9

5.2.3 Discussion

The results we get from this metric need some interpretation. We see that
the total increase in cyclomatic complexity is higher when we use AOP. But
on the other hand no method in the AOP version has a higher cyclomatic
complexity than 3, which is a very good number. In the OOP version, where
the authorization code is placed inside the core modules, it heightens the
cyclomatic complexity of these modules. This can help bring an already
high number even higher, as the cyclomatic complexity is increased by one
or two for each authorization point, depending on the operation.

The increased total complexity in the AOP version can be accounted for
by the large increase in number of methods. While the OOP version only
has two new methods (both in the SubjectHolder class), the AOP version has
eleven (not including the pointcuts). As the minimum cyclomatic
complexity for a method is 1, this large number of methods has a clear
impact on the result. As we write in the description of this metric,
cyclomatic complexity should not be aggregated for an entire class, but
should be evaluated only on a method-basis.

As a conclusion, we clearly favor the AOP version. It doesn’t affect the

core methods in a negative way, and every new method is kept at a low and
manageable level when it comes to cyclomatic complexity. Cyclomatic
complexity is not meant to be calculated at a package level or even a class
level, but at a method level. And the overall cyclomatic complexity of the
methods involved is lower in the AOP version.

5.3 Metric III: Chidamber and Kemerer Metrics

5.3.1 Description

Chidamber and Kemerer’s paper [4] about software metrics is an
important paper, and the metrics they proposed has been widely used, and
still are. Chidamber and Kemerer base their work on a set of principles
proposed by Bunge and later applied to object-oriented systems by Yand and
Weber. “The world is viewed as being composed of substantial individuals
that possess a finite set of properties. Collectively, a substantial individual

30

Aspect-oriented programming and security

and its properties constitute an object. A class is a set of objects that have
common properties, and a method is an operation on an object that is defined
as part of the declaration of the class.” [20, p. 318]. Chidamber and Kemerer
use these notions to define a number of metrics that are claimed to relate to
some of these attributes:

• Weighted Methods Per Class (WMC)
• Depth of Inheritance Tree (DIT)
• Number of Children (NOC)
• Coupling between objects (CBO)
• Response For a Class (RFC)
• Lack of Cohesion in Methods (LCOM)

Not all the metrics are useful for us in our scenario. We do not create a

lot of new classes in neither the AOP version nor the OOP version, because
we do not build a system from the ground up. Especially in the OOP
version, we mostly add code to existing methods. This means that some of
the C&K metrics, like Depth of Inheritance Tree and Number of Children
doesn’t change. We have also excluded the Lack of Cohesion in Methods
metric, as it didn’t give us much result. There are too few variables used in
our code.

The three remaining metrics are useful to us, and we present them below.

Tsang et al. [19] have used these metrics to evaluate a program implemented
in both OOP and AOP before us, and we discuss their adaptation of the
metrics along with the introduction to the metrics.

We have not found any literature saying how large these numbers should

be or how large they shouldn’t be. This will make it more difficult for us to
declare a winner, and we will merely discuss and try to interpret the results.

5.3.1.1 Weighted Methods per Class (WMC)
Weighted Methods per Class is a measure of the number of methods

implemented within a class.

Tsang adapt WMC for use with AOP by counting aspects as classes and

advice as methods. We agree with this adaptation, and have chosen to do the
same. However, we have chosen to use McCabe’s cyclomatic complexity to
weight each method. This is a quite common approach, used by both the
source analyzing tool “Metric” and by other researchers. [20 p. 319] Tsang
does not do this, they don’t seem to use any sort of weight-system. In our
opinion, this deteriorates their results.

31

 Hågen Hasle

5.3.1.2 Coupling Between Objects (CBO)

Coupling Between Objects is a count of the number of other classes from
which elements are used, i.e calls or attribute access between classes.

The adaptation Tsang et al. made to this metric to make it suitable for

AOP is in our view far from perfect. They considered aspects coupled to
classes only if the aspects explicitly name the classes. The joinpoint call(*
*(..)) is therefore not coupled to any other class, although it will match
every other class. The joinpoint call(org.hig.Test.doTest(..)) is coupled to
the Test class in the org.hig package. In practice, this might be an approach
that works fairly well. But is has some obvious flaws that we would like to
discuss here.

Firstly, in AOP one must distinguish between the caller and the callee.

The caller is the object making the call, the callee is the object being called
upon. The call-joinpoint is on the caller side, not the callee side. If you
want to weave code on the callee side, you should use the execute-joinpoint.
In most cases, the effect will be the same, but not always. This means that
the coupling should not necessarily be to the class mentioned in the pointcut,
because that will probably be the callee in both cases. In the call(
org.hig.Test.doTest(..)) joinpoint the advice is not woven into the Test-class,
but into whatever class it is that calls the Test-class.

Secondly, in some cases coupling may seem to increase if we use

Tsang’s definition, although it actually decreases. This can be shown in the
following two pointcuts:

public pointcut restrictingToolBar_version1()

 : call(* java.awt.Container.add(java.awt.Component+));

public pointcut restrictingToolBar_version2()

 : call(* java.awt.Container.add(java.awt.Component+));
 && withincode(* PetStoreAdminClient.createToolBar(..));

These two pointcuts are the same, except that the last one has added an

extra line. This line would, if we follow Tsang’s rules, add a coupling to a
new class from the aspect. But the point behind using the withincode
construct is to limit the classes affected by the pointcut. The first call-
joinpoint can match code in several classes. Because we only wanted to
weave our advice into the a couple of specific places in the
PetStoreAdminClient class, we added the second line. This helps us limit
the number of joinpoints the pointcut matches, and should therefore not

32

Aspect-oriented programming and security

increase the coupling. Our opinion is that this rule is in violation of the
measurement theory as described by Fenton [20].

Coupling is clearly a difficult metric to measure. In OOP, coupling is

well defined and easy to measure. But AOP is by its nature a more fluid and
less stringent way to program. Tsang’s solution to how we should define
coupling is probably based on the fact that it is easy to use: If a classname is
included, we’ll count it. This can be done manually, by merely looking at
the code. How easy a metric is to assess is an important factor, so we are not
trying to ridicule this in any way. We believe however that their definition is
not precise enough, and should be replaced. Our opinion is that the CBO
metric should reflect where the aspect is being weaved into the core code.
The distribution of the AspectJ compiler also includes a tool for displaying
the effect a pointcut has on the core code. This tool, or a similar one, can
give us the answer to how many classes are affected by a given pointcut.

But this also has its limitations. It can make it impossible to measure
coupling by looking at the aspect alone, we must always examine the entire
system together. If we introduce new core classes into a system, the number
of couplings may increase, and the same aspect can have a different number
of couplings in two systems. In our own code however, this has not been a
problem. Our pointcuts are defined in such a way that it is easy to see which
classes they affect.

The approach we have chosen in regard to the first problem we discussed

about Tsang’s definition, is to treat call and execute joinpoints differently.
In an execute joinpoint, code is woven into the actual method that is
executed. This means that no other methods are involved, and the coupling
between the aspect and the core code should only be to the class that
contains the executed method. In a call joinpoint, code is woven into the
method that calls the method mentioned in the joinpoint. The code is
inserted on the caller side. This creates a coupling from the aspect to both
the class being called, and the caller class. Our reasoning for this is that it is
the caller class where the weaving takes place, but it is the call to class
mentioned in the joinpoint that decides where in the caller class the code
should be woven.

This has been a long discussion. It is important to decide how to adapt

the CBO metric to AOP. However, we want to point out that pointcuts are
not the only source of coupling. Every use of another class from within an
object creates a coupling. To count these we use the import-statements as a
starting point, and also check to see if classes from the same package are
used as well.

33

 Hågen Hasle

5.3.1.3 Response For a Class (RFC)

Response For a Class is the number of methods that can potentially be
executed in response to a message received by an object of a class. This
includes every method in the object itself, as well as every method in other
classes directly called by a method in the object. (Only the first level is
counted, we don’t traverse further down.)

Again, we choose to count as Tsang does. They count invocations from

core code to aspects when calculating RFC. We know when advice in the
aspects are called through the pointcut definitions. We see that similarly to
our needs when calculating CBO, we need to know exactly which classes are
affected by an aspect. This is fortunately no problem in our code, but
generally speaking, a tool like the aspect browser that comes with AspectJ
might come in handy.

5.3.2 Results

5.3.2.1 Weighted Methods per Class
The numbers shown are the increase (λ) for each class, not the total

number.

 OOP AOP
ApplRequestProcessor 1 0
HttpPostPetStoreProxy 0 0
PetStoreAdminClient 5 0
SubjectHolder 4 NIL
AbstractPetStoreJAASAspect NIL 8
PetStoreJAASServerAspect NIL 3
PetStoreJAASClientAspect 6

5.3.2.2 Coupling Between Objects
Here the numbers are the total number for each class.

 Original OOP AOP
ApplRequestProcessor 27 33 27
HttpPostPetStoreProxy 22 24 22
PetStoreAdminClient 24 31 24
SubjectHolder NIL 6 NIL
AbstractPetStoreJAASAspect NIL NIL 10
PetStoreJAASServerAspect NIL NIL 13
PetStoreJAASClientAspect NIL NIL 19

34

Aspect-oriented programming and security

5.3.2.3 Response For a Class

Here the numbers presented are again only the increase (λ), not the total
number.

 OOP AOP
ApplRequestProcessor 10 4
HttpPostPetStoreProxy 4 1
PetStoreAdminClient 9 4
SubjectHolder 7 NIL
AbstractPetStoreJAASAspect NIL 15
PetStoreJAASServerAspect NIL 11
PetStoreJAASClientAspect NIL 16

5.3.3 Discussion

We see similar results here as we did when we calculated McCabe’s
cyclomatic complexity. The core classes have lower numbers in the AOP
version than in the OOP version, but the aspects in the AOP version have so
high numbers that it is difficult to select a winner. It would probably have
been better if the application we worked with was bigger, and we had to
implement more code to add JAAS everywhere we wanted. The results we
get with this metric are not very decisive. However, we tend to like the more
balanced results we get from the AOP version. Although the total number
(if all results are added) is higher, we have no extremely huge classes.
Responsibility, methods and coupling is more evenly distributed among the
classes in the code.

6. CONCLUSIONS

We see through our work that AOP shows merit when it comes to
implementing authentication and authorization. Both the LOC metric and
the complexity metric suggest that the AOP version has an advantage,
especially for large applications. The last metric is more open for
interpretation, but the combined result gives a clear indication that the AOP
version is the best alternative. Its scores seem more balanced, and it doesn’t
affect the core code in a negative way but distributes the load to several
classes/aspects. If we look closer at how the metrics are calculated, we also
believe that if the application we were adding JAAS to had been greater,
AOP’s advantage would probably be easier to see. AOP also permits us to
organize thee Trusted Computing Base in fewer files with clearer

35

 Hågen Hasle

boundaries, making it easier to get an overview of the code involved and
easier to perform a code review.

The fact that the core code is virtually unaffected in the AOP version is

shown in all three metrics, and this is perhaps the best suggestion that
authentication and authorization in the form of JAAS is well suited for
aspect-oriented programming.

We have also seen that AOP, especially dynamic AOP, requires you to

pay good attention to the code you program, deploy and run. AOP makes it
possible for an intruder to sneak malicious code into your application, and
you need good routines to prevent this from happening.

7. FUTURE WORK

Our results suggests that AOP is indeed a viable and good choice if you
want to implement JAAS in you application. But because our codebase was
not all that big, further studies should be performed. Although it will be
both time-consuming and require quite a lot of resources, a large scale case
study or experiment would be very useful. This can show if we are right in
our predictions that AOP’s advantage over OOP will increase as the
codebase increases.

What we would suggest is to find a college or university that teaches
AOP to its students. By using students that are familiar with AOP, a large
scale experiment could be performed. A testing framework should be
established, possibly using a tool like JUnit (http://www.junit.org). By
giving the students a predefined application they should add JAAS to, and by
making a set of unit tests in JUnit that can confirm when the necessary code
has been added, it should be possible to perform such an experiment quite
easily. Tools that extracted the necessary metrics from the students’ code
should also be made, as it would be a very tedious process to do manually.
The results can be correlated with the students’ grades and the time invested
in the task to see how this factors influence the results.

We would also like to see better support for metrics covering AOP in the

various open source tools out there. Both “Metrics”, “CheckStyle” and
“JDepend” are great tools, but they only support regular OOP. We had to do
most of our measurement by hand, and this was a tedious process. A key to
success for everything new when it comes to programming is tool support.
AspectJ already comes with some great tools and is supported in several of
the major IDEs, but support for AOP is lacking in most other tools.

36

http://www.junit.org/

Aspect-oriented programming and security

8. REFERENCES

37

[1] M. J. Yuan and N. Richards. Lightwight Aspect-Oriented Programming: Putting the
Interceptor pattern to work. Dr. Dobb’s Journal, no. 351, August 2003.

[2] N. Lesiecki. Improve modularity with aspect-oriented programming. 1 January 2002.

[URL: http://www-106.ibm.com/developerworks/java/library/j-aspectj/]

[3] R. Laddad. I want my AOP!, Part 1. [URL: http://www.javaworld.com/javaworld/jw-01-

2002/jw-0118-aspect.html]

[4] S. R. Chidamber and C. F. Kemerer. A Metrics Suite for Object Oriented Design. IEEE

Transactions on Software Engineering, vol. 20, no. 6, 1994

[5] B. Vanhaute and B. De Win. AOP, Security and Genericity. 12. July 2001. [URL:

http://www.cs.kuleuven.ac.be/cwis/research/distrinet/public/showperson.php?ID=2]

[6] J. Viega and J. Voas. Can Aspect-Oriented Programming Lead to More Reliable

Software? IEEE Software. November/December 2000.

[7] J. Viega, J.T. Bloch and P. Chandra. Applying Aspect-Oriented Programming to Security.

Cutter IT Journal, vol. 14, no. 2, February 2001.

[8] R. Laddad. AspectJ in Action. Manning Publications Co, 2003.

[9] B. De Win, B. Vanhaute and B. De Decker. How aspect-oriented programming can help

to build secure software. Informatica –Ljubljana-, vol. 26, no. 2. 2002.

[10] M. Mezini, K. Ostermann and R. Pichler. Component Models and Aspect-Oriented

Programming. 2001. [URL: http://www.st.informatik.tu-
darmstadt.de:8080/lehre/ws01/sctoo/materials/aj-aop.pdf] (Accessed 15. December 2003.)

[11] D. Palmer. Dynamic Aspect-Oriented Programming in an Untrusted Environment.

Workshop on Foundations of Middleware Technologies, part of the International
Symposium on Distributed Objects and Applications, 2002.

[12] A. Popovici, G. Alonso and T. Gross. Just-In-Time Aspects: Efficient Dynamic

Weaving for Java. Proceedings of the 1st international conference on Aspect-oriented
software development, AOSD 2003, Boston, USA, 2003.

[13] G.C. Murphy, R.J. Walker, E.L.A. Baniassad, M.P. Robillard, A. Lai and M.A. Kersten.

Does Aspect-Oriented Programming Work? Communications of The ACM, vol. 44, no.
10, October 2001.

[14] B. De Win, F. Piessens, W. Joosen and Tine Verhanneman. On the importance of the

separation-of-concerns principle in secure software engineering. Workshop on the
Application og Engineering Principles to System Security Design, Boston, Usa, November
6-8 2002.

 Hågen Hasle

[15] J. Viega and G. McGraw. Building Secure Software. Addison-Wesley Professional

Computing Series, 2001.

[16] B. Kitchenham, L. Pickard and S.L. Pfleeger. Case studies for method and tool

evaluation. Software, IEEE, vol. 12, no. 4, July 1995, p. 52-62. [URL:
http://www.idi.ntnu.no/emner/mnfit365/artikler/s4052.pdf]

[17] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C.V. Lopes, J.-M. Loingtier and J.

Irwin. Aspect-Oriented Programming. Proceedings of the European Conference on
Object-Oriented Programming, Finland, June 1997.

[18] A. A. Zakaria and Dr. H. Hosny. Metrics for Aspect-Oriented Software Design.

Proceedings of the 1st international conference on Aspect-oriented software development,
AOSD 2003, Boston, USA, 2003.

[19] S. L. Tsang, S. Clarke, E. Baniassad. Object Metrics for Aspect Systems: Limiting

Empirical Inference Based on Modularity. Submitted to ECOOP 2004, Oslo, Norway, 14-
18 June 2004.

[20] N.E. Fenton and S.L. Pfleeger. Software Metrics. 2nd Revision edition. Brooks Cole,

1998

[21] I. S. Welch and R. J. Stroud. Re-engineering Security as a Crosscutting Concern. The

Computer Journal, vol. 46, no. 5, 2003

[22] J. Zhao. Towards A Metrics Suite for Aspect-Oriented Software. Technical-Report SE-

2002-136-25, Information Processing Society of Japan (IPSJ), 2002.

[23] B. Dufour, C. Goard, L. Hendren, C. Verbrugge, O. de Moor and G. Sittampalam.

Measuring the Dynamic Behaviour of AspectJ Programs. Accepted for OOPSLA '04 -
revisions pending. OOPSLA 2004, Vancouver, British Columbia, October 24-28, 2004.

[24] T. McCabe. A Complexity Measure. IEEE Transactions on Software Engineering,
December 1976.

[25] A. H. Watson and T. J. McCabe. Structured Testing: A Testing Methodology Using the

Cyclomatic Complexity Metric. NIST Special Publication 500-235. September 1996.

[26] Andrew Glover. Code Improvement Through Cyclomatic Complexity [URL:

http://www.onjava.com/pub/a/onjava/2004/06/16/ccunittest.html?page=1]

[27] The Common Criteria. [URL: http://www.commoncriteriaportal.org]

[28] Common Criteria for Information Technology Security Evaluation. Part 3: Security

Assurance Requirements. Ver. 2.2, rev. 256. January 2004. [URL:
http://www.commoncriteriaportal.org/public/files/ccpart3v2.2.pdf]

38

	KTH_Final release MsSc thesis Hågen Hasle_without frontpage.pdf
	INTRODUCTION
	Description of key terms
	Java
	JAAS
	Aspect-oriented programming
	Common Criteria

	Problem description
	Claimed contributions
	Justification and motivation

	RELATED WORK
	WHAT WE HAVE DONE
	Discussion about the case study
	The programming

	ANALYSIS OF THE DIFFERENCES BETWEEN AOP AND OOP
	Code examples from the applications
	Impact on the Trusted Computing Base
	Hacking JAAS
	Experiences from programming with AOP

	QUANTIFYING AND MEASURING THE DIFFERENCES
	Metric I: Lines of Code
	Description
	Results
	Discussion

	Metric II: Code complexity
	Description
	Results
	Discussion

	Metric III: Chidamber and Kemerer Metrics
	Description
	Weighted Methods per Class (WMC)
	Coupling Between Objects (CBO)
	Response For a Class (RFC)

	Results
	Weighted Methods per Class
	Coupling Between Objects
	Response For a Class

	Discussion

	CONCLUSIONS
	FUTURE WORK
	REFERENCES

	Hågen Hasle - Aspect-oriented programming and security - forside.pdf
	KTH_Final release MsSc thesis Hågen Hasle_without frontpage.pdf
	INTRODUCTION
	Description of key terms
	Java
	JAAS
	Aspect-oriented programming
	Common Criteria

	Problem description
	Claimed contributions
	Justification and motivation

	RELATED WORK
	WHAT WE HAVE DONE
	Discussion about the case study
	The programming

	ANALYSIS OF THE DIFFERENCES BETWEEN AOP AND OOP
	Code examples from the applications
	Impact on the Trusted Computing Base
	Hacking JAAS
	Experiences from programming with AOP

	QUANTIFYING AND MEASURING THE DIFFERENCES
	Metric I: Lines of Code
	Description
	Results
	Discussion

	Metric II: Code complexity
	Description
	Results
	Discussion

	Metric III: Chidamber and Kemerer Metrics
	Description
	Weighted Methods per Class (WMC)
	Coupling Between Objects (CBO)
	Response For a Class (RFC)

	Results
	Weighted Methods per Class
	Coupling Between Objects
	Response For a Class

	Discussion

	CONCLUSIONS
	FUTURE WORK
	REFERENCES

