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Abstract 

With the need for organizations to stay online and connected to the World Wide Web, 
the need for security measures is stronger than ever. One important security feature is 
the utilization of an Intrusion Detection System, IDS. But as this is a relatively new 
technology it is still hazed in a grey cloud of confuse and misunderstanding. This thesis 
will focus on giving the reader an insight of IDS and methods used.  The Intrusion 
Detection Systems of today have yet to prove their full potential. An especially strong 
feature of an IDS is to alert currently unknown attacks/misuse as it detects traffic that 
is outside the normal boundaries. Unfortunately this kind of IDS have a tendency to 
produce a high number of alerts on normal traffic as well. This thesis will investigate if 
the Kernighan-Lin algorithm may be used in an Intrusion Detection System and 
compare the results with the k-means algorithm. The Kernighan-Lin has not been used 
in an IDS, but k-means have already been implemented and tested. The study of 
Kernighan-Lin heuristic will hopefully reveal if it can perform better than the k-means 
regarding accuracy without a significant loss in speed.  

The testing of the two algorithms, Kernighan-Lin and k-means, shows that 
Kernighan-Lin has a good potential as a classifier in an IDS. It does have some 
limitations, but they can be solved or circumvented. The true strength of 
Kernighan-Lin was the accuracy it provided. It managed to correctly identify each 
attack. However the tests done do favor the Kernighan-Lin in some degree.  
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Sammendrag 

Organisasjoner og bedrifter i dag krever å være online og koblet til Internet. Dette 
stiller høye sikkerhetskrav. I perimetersikring for organisasjonen er Intrusion 
Detection System, IDS, et viktig element. Men dette er en ung teknologi som på grunn 
av manglende forståelse og kunnskap ikke blir benyttet i særlig grad. Denne 
Masteroppgaven tar for seg en forklaring av IDS og kort forklaring om de forskjellige 
måtene som en IDS opererer på. Intrusion Detection Systemer har enda å vise sitt fulle 
potensiale som et forsvarsverk. En veldig sterk egenskap er at en IDS kan oppdage 
angrep før de er kjent, ved at den sammenligner normal trafikk mot unormal trafikk. 
Desverre har denne typen IDS en tendens til å generere mange falske advarsler. Denne 
Master0ppgaven skal undersøke om det er mulig å forbedre feilraten i en IDS ved å 
benytte Kernighan-Lin heuristic og sammenligne de resultatene med k-means heuristic. 
Kernighan-Lin er ikke benyttet i en IDS, mens k-means har allerede blitt implementert 
og testet.   

Testing av de to algoritmene, Kernighan-Lin og k-means viste at Kernighan-Lin har et 
godt potensiale i en IDS. Den har noen begrensninger men disse kan løses. Styrken til 
Kernighan-Lin ligger i at den er veldig presis til å identifisere angrep. Forsøkene gjort i 
denne Masteroppgaven viser at Kernighan-Lin er veldig presis, men den har også en 
fordel i forhold til k-means testen.   
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True positive: A measure of correctly assumed attacks/non-attacks made by the IDS. 

Cluster: A specific group of features arranged by an algorithm often determined by 
similarities of a given attribute.  

IDS: Intrusion Detection System. It is the totality of a defense mechanism design to act 
like a burglar alarm. This is often in order to detect potential attack/misuse in an 
organization’s network. 

Misuse: Undesired traffic in a network. This may be a direct attack, malware, worms, 
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Summary of Results 

 

This thesis has demonstrated that one can use Kernighan-Lin clustering algorithm for 
classification of network patterns in an Intrusion Detection System, and that this 
algorithm performs very well.  

 

The Kernighan-Lin heuristic partitioning was tested with regards to the well known 
k-means algorithm in an Intrusion Detection System. Both were tested on the same 
computer with the same dataset and the results of the Kernighan-Lin are more accurate 
then those attained by means of the k-means algorithm.  

The results were based on the false positive / true positive ratio. The dataset KDD-Cup 
was used as the number of attacks within this set was known. 

 

The experiment was designed to answer the following questions: 

“Will the Kernigan-Lin Heuristic produce a higher or lower true / false positive rate 
than the k–means partition?” 

 

The hypothesis was that Kernighan-Lin will have a lower false positive rate than the 
k-means. The experiment in this thesis confirms this hypothesis. And the second 
hypothesis was that Kernighan-Lin would be slower. This was also confirmed, but there 
is a solution to this and an IDS can still run efficiently with the Kernighan-Lin heuristic 
implemented. 
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1 Introduction 

1.1 Topic 
As more and more organizations rely on Internet the need for security is increased. The 
number of attacks on the World Wide Web is getting larger and the methods used are 
sophisticated. To protect themselves, organizations make use of different security 
systems and one of those are Intrusion Detection Systems, IDS. IDS is a relatively 
young technology and have yet to reach common acceptance. One of the shortfallings is 
that in order to alert about yet unknown attack one might be overwhelmed with false 
alarms. In other words, the system triggers an alarm on traffic that is normal and not 
an attack. There is a need to improve the IDS so that false alarms are at a minimum 
with as small as possible loss of speed.  This thesis investigates if it is possible to use the 
Kernighan-Lin heuristic instead of the k-means heuristic and thus produce better 
results regarding false positive / true positive ratio in an Intrusion Detection System. A 
description of clustering and Intrusion Detection are presented as well as an 
introduction to the algorithms k-means and Kernighan-Lin.  

 

Keywords: Intrusion Detection System, clustering, patterns, k-means algorithm, 
Kernighan-Lin algorithm. 
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1.2 Problem Description 
Most Intrusion Detection Systems today rely on signature based detection. The 
disadvantage with these systems is that they can only detect known attacks. The 
introduction of anomaly based Intrusion Detection Systems shows that it is possible to 
create a detection system that also detects attack that are currently unknown. Such 
systems are still at an early stage of development, but as new attacks emerge almost 
every day, the need for such intrusion detection is present. To separate misuse from 
normal attack may prove very difficult as they tend to overlap each other. In many 
cases there is no clearly defined distinction between the two. It is this overlap that 
causes the false positive and false negative results, and developers strive to increase the 
accuracy of Intrusion Detection Systems. Algorithms are improved and methods are 
researched to improve the performance of an Intrusion Detection System. Two 
imperative elements are speed and accuracy; the IDS must give as accurate results as 
possible within as short time frame as possible. The k-means is a well-known algorithm 
for use within an Intrusion Detection System because of its simplicity and speed, but it 
does have its flaws. It may cause high false positive rate in the overall IDS.  

There are several ways to improve an Intrusion Detection System. One might try to 
further improve the algorithm, test other algorithms or look at a new method. And for 
this thesis the focus has come to a new algorithm that has yet to be tested in an 
Intrusion Detection System. This algorithm, Kernighan-Lin, has proved itself in other 
areas [2] and it is interesting to see how the performance is, compared to k-means 
regarding both accuracy and speed.  
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1.3 Justification, Motivation and Benefits 
The extra security an Intrusion Detection System might add is valuable for many 
organizations. To develop an application or configure a system to be absolutely secure 
is extremely difficult. And it can be expensive to replace existing systems with more 
secure ones [32]. An IDS can aid the security of a system as it may detect attacks and 
misuse that goes unnoticed by a firewall or anti virus software. The real strength and 
potential of an Intrusion Detection System based on anomaly detection is that it can 
detect an unknown attack. This does not apply for a signature based IDS. However the 
problem for an anomaly based IDS is the accuracy as the false positive rate is too high. 
As most Intrusion Detection Systems today rely on signature based detection, it does 
not differ too much for other well-known security measures. Furthermore, IDS suffers 
with high complexity and high price so many organizations use other means to secure 
themselves. And often the vulnerability is ignored as a whole.  

In security it might prove very valuable to be proactive instead of reactive. If a brand 
new attack occurs, it would benefit greatly to be ahead of the attack. Most systems 
today are reactive in that they rely on signatures; they search data for known features. 
But then the attack is already known and may have crippled the system or sensitive 
data may already been stolen. It is desired to have a high probability to be warned 
about every type of attacks, new or old, as they are used on the system; this is a 
proactive approach. This approach may also detect unintended misuse that was not 
foreseen when the system was designed. An anomaly Intrusion Detection System is 
proactive, but unfortunately it suffers from a high degree of false alerts, or false 
positives. It tends to generate a warning when there in fact are no attacks.   

In this thesis looks deeper into the fact that anomaly based Intrusion Detection System 
have too high false positive rate. This have a very negative side effect in that people 
tend to loose faith in the system and the IDS just becomes a big investment for the 
organization without any gain. If the false positive rate would be greatly lowered more 
people could gain confidence in the system.  

1.3.1 Benefactors 

Stakeholders would be IDS operators, computer security managers in general and 
researchers that try to develop more reliable anomaly based intrusion detection. If it is 
proven that Kernighan-Lin does have a much higher accuracy without great loss of 
speed this will help further researcher on developing a better and more accurate IDS. 
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1.4 Research Question  
 
To be able to test the two algorithms as accurately as possible it is chosen to use 
KDD-Cup data set as test set. This has the advantage of knowledge of how many 
attacks/misuse are present in the dataset and will give a good measure of correctness of 
each algorithm. There are several algorithms to be tested but this thesis will 
concentrate on two algorithms. The first one is the k-means, an algorithm used in 
Intrusion Detection System, and the Kernighan-Lin. The latter algorithm has yet to be 
tested in an Intrusion Detection System.  

 

This leads to the following research questions: 

1. To what degree can Kernighan-Lin Algorithm be used in an Intrusion Detection 
System for anomaly detection? 

 
2. Analyze the k-means vs. Kernighan-Lin algorithms and see whether Kernighan-Lin 

has a higher or lower false positive rate than k-means. 
 
Hypothesis: The Kernighan-Lin will provide a lower false positive rate than k-means. 

 

3. Is there a significant speed difference between the two systems? 
 
Hypothesis: Kernighan-Lin will be slower than k-means, but workaround is possible.  
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2 A Review of State of the Art 

The first Intrusion Detection System was developed as an automated method for 
reviewing audit trails [3]. The system had a goal to remove redundant work and make it 
easier to focus on the log entries that needed attention. In mid 80s Dorothy Denning 
and Peter Naumann developed a real-time IDS and this model tried to discern attacks 
by anomaly detection. In this period several IDS system were born; IDES, Discovery, 
Haystack, MIDAS and some others. Most of these systems were designed for military 
use. The internet had yet to become the Net we know today, so commercial use was 
limited to the major banks and the largest of corporations [23]. Research and 
development of Intrusion Detection System is relatively young [3] [12]. It has been 
studied for approximately 30 years, and given the complexity of the problem the IDS is 
still at an early stage. Several problems have to be worked out before a really good IDS 
may be presented [10]. Often they generate a high degree of false alarms [21]. Most 
commercial and available Intrusion Detection Systems today are misuse based, or 
signature based. The signature based IDS look for distinct features and see if they 
match a predefined database. This database holds data that describes what attack data 
looks like, the attack-data’s signature. This is the easiest IDS to build and as a general 
rule it generates less False Positive results. But they also tend to miss more attacks as 
they slip past the system unnoticed.  

 

2.1 Anomaly 
Anomaly based Intrusion Detection Systems separate malicious traffic from normal 
traffic by other means. They can for instance use learning or clustering [1]. When 
learning is used the system must be supervised with a manager that tells the system 
what it should react on. This manager uses a sample dataset, often artificially generated, 
and as the system responds the manager will ‘tell’ whether the system acted correctly or 
not. This is a tedious task and often leads to wrongly configured systems as the dataset 
may not be proper for the given domain it should represent. The difficulties of making 
a good initial dataset and the time it takes to teach the IDS how to act makes learning 
based IDS expensive and complex. But it is still early in the development and learning 
may soon get the necessary progress to become a reliable Intrusion Detection System.  
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2.2 Clustering 
Clustering is perhaps the method with the most promising result. Clustering is often 
referred to as unsupervised classification. It does not require an initial dataset and the 
strength of the system lies within the algorithm itself. Several algorithms have been 
proposed [1]. Single-Link Clustering algorithm, k-means (Squared error Clustering), 
hierarchical clustering algorithm to mention a few [1] [16] [24] [30]. This thesis takes a 
look at a clustering algorithm called Kernighan-Lin.  This is a well known algorithm for 
partitioning nodes of a graph and is much used as a tool for assigning components of 
electrical circuits on circuit boards [2] [7]. This algorithm has been proved to be very 
good at finding close to the optimal partition in relatively short time. However this 
algorithm has not yet been tested as a classification module for an IDS. Many 
experiments are conducted with different types of cost matrices, both in 1-0 matrices 
and integer matrices [2]. But not so much research has been done at float type matrices. 
With the given dataset, KDD-Cup, and Euclidean measure we would get decimal 
number as vectors. This thesis researches if the Kernighan-Lin algorithm can be used 
as a categorizer between attacks and normal traffic in an IDS.  
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3 Claimed contribution 

The primary goal of this thesis is to research possible improvements of the results in an 
Intrusion Detection System that uses clustering techniques. In the search for increased 
accuracy in anomaly based intrusion detection it was interesting to take a look at the 
Kernighan-Lin algorithm and use that instead of the k-means. The focal point was to 
research the false positive rate of the known algorithm, the k-means, and see if the 
Kernighan-Lin may have the potential to replace it. The contribution consists of 
studying if the Kernighan-Lin produces a better accuracy than k-means. It may seem 
that Kernighan-Lin is a lot slower algorithm but this thesis briefly takes a look if this 
decreased speed is of greater significance. This is achieved by realizing the 
Kernighan-Lin and testing this within an IDS.  
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4 About Clustering and IDS 

4.1 IDS 
An IDS, or Intrusion Detection System, is basically a burglar system for a network or 
computer system. One general definition is: “It is defined as the process of monitoring 
the events occurring in a computer system or network, analyzing them for signs of 
security problems” [3]. Security problems are defined by the system’s security polices 
at each place and may greatly differ from system to system. An Intrusion Detection 
System may greatly strengthen the defense of a system [23]. It is an extra security 
perimeter behind the firewall, or often behind the firewall, and if properly installed it 
enhances the overall security of the network.  Although it is a young security system of 
which much more research is needed [3] many good results have been achieved.  

It has been shown that comparing to standard manual log reading by humans 
Intrusion Detection Systems are far more accurate. In an early study of Intrusion 
Detection Systems, a prototype was tested and it detected several hundreds of attacks, 
and manually log reading by humans only detected about 1-2% of these attacks [3]. So 
the system proves that an automated burglar system is far more accurate, it detects 
more attacks, than manual log reading. It’s also a lot faster and can be performed at a 
near real-time basis. It has the capability to detect brand new attacks without any prior 
knowledge, this type of IDS is called anomaly based IDS.  The other type is signature 
based which is faster but cannot detect new unknown attacks. 

The task of an Intrusion Detection System is to alert the manager of the network when 
an incident has happened. This incident may be an attack from the outside. For 
instance an attacker that tries to break into the network and steal valuable data. Even 
though he bypasses the firewall, and when he does the firewall probably won’t bother 
him anymore, the Intrusion Detection system scans the traffic all the time and when a 
particular threshold is reached an alert is generated and sent to the manager of the 
network [25]. The same thing applies when an attack comes from the inside. It 
monitors the entire network and logs so that even if the attacker is behind the firewall 
at all times the Intrusion Detection System can detect the attack.  
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In addition the IDS may detect unintentional errors from users and generate an alert 
before some critical errors actually occur. The IDS itself does nothing except monitor, 
detect and then generate an alert. The executive step, or the counter action to a 
misuse/anomaly, is done by the system manager. A further development, or an 
enhancement, of the IDS results in an IPS.  
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4.1.1 IPS 

IPS is an intrusion Prevention System, and as such it does the same as IDS but 
additionally it has an executive step so when a misuse/anomaly is detected it may apply 
some countermeasure to limit the damage. An IPS is popularly said to be a 
combination of an IDS and a Firewall. What the IPS often does when an attack is 
detected is to block the invading source, be it from the inside or outside. This block may 
be permanent until a manager lifts it or it may be a temporary block that lasts just a 
given period of time before it is automatically lifted. But as mentioned before the IDS is 
not yet a perfect, or even near perfect system, so letting the system decide the proper 
countermeasure on its own may be as fatal as the attack itself.  

  

4.1.2 Identifying attacks 

The IDS have many challenges to be addressed and solved. The primary problem is the 
difficulty to separate normal traffic from the actual attack as they seem to blend 
together. This issue is somewhat taken care of in a signature based IDS, but also this 
system may fail in discerning attacks from normal traffic. The signature based IDS 
have a database in which special features uniquely identify a particular attack, much 
like a traditional antivirus program. It has to be updated regularly to detect new attacks 
and its potential to detect attacks that yet are to be discovered is greatly reduced [10]. 
The database may get very large and prognoses show that it will only get larger as time 
goes by. The larger the database the slower the system will be. Also the manager of the 
system must carefully look through every scenario to predict potential misuse, 
intended or unintended, to create a functional IDS [25].  

The other type of IDS that try to combat this is an anomaly based IDS. This system has 
a particular algorithm, or several algorithms, that separate data by looking at the 
features, and in this way tries to find the attack among the data. It does not have a 
database on which it relies, but the algorithm looks at a portion of the data and 
analyses this. This type of IDS will be discussed further in this chapter.  
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The current products offering today are not good in any aspect [10]. The biggest 
problems are false alarms given when the system thinks it is an attack but the fact is 
that it is normal traffic. When systems are designed to produce less false alarms it tend 
to detect less malicious traffic as false positive and false negative are closely related 
[23]. Slow attacks may also present a problem for the IDS especially if it is to run in real 
time.  

The IDS also have to combat the time aspect. The data gathered in networks today are 
quite a large set and to process all this is time consuming. It was questioned earlier if 
IDS had to define a new time definition known as near real time. The time between the 
data is gathered and then processed before a result is generated is not in real time. But 
given the data power and the strength of the algorithms today this issue is no longer a 
concern [3] [24].  

 

4.1.3 Security Policy 

The IDS can never be better than the security policy. A poorly designed security policy 
will also effect the configuration of the IDS. A security policy is often derived from the 
three basics of information security [11]: 

•  Confidentiality: Make sure that only authorized persons get access to classified 
information and that proper measure for identifying and authorization are met.  

•  Integrity: The information remains intact, accurate, valid  and unaltered.  
•  Availability: A service must meet the requirement of stability and that information 

is available when the need arise.  
 
It is very important for each organization to design a security policy that reflects the 
flow of information. This will aid the security managers and everyone affected by the 
configuration of the organization’s security.  Firewalls, routing, software, hosts and 
many more features of information flow and storage will utilize this policy. And 
perhaps most important is the Intrusion Detection System itself. As the goal of the 
Intrusion Detection System is to be a burglar alarm it needs to know what’s defined as a 
threat, or attack. The off-the-self products, be it commercial or open source, have a 
basic setting defining misuse/anomaly, but to tune the system to act according to the 
organization’s best interests it needs to have a strict plan to set its parameters 
according to. A security Policy will enforce this transition and aid the technicians to 
configure a proper IDS. 
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4.1.4 Challenges 

The term misuse/anomaly is relative to the network and the particular system that it 
will monitor. The IDS is not a wonder machine that only needs to be hooked up on the 
system. It needs configuration and regular updates. In many cases the manager and the 
IDS must be trained to discover the particular features and patterns in the network to 
be tuned well. These discovered features and patterns are then mapped into the IDS for 
optimal performance. But one must remember that generally a network is rarely static 
and the IDS must be updated continuously. The IDS has been developed from early 
days on for monitoring audits but as of later it has been used in several systems where 
security is an issue. 

Today’s Intrusions Detection Systems are powerful and capable of detecting most 
attacks, but they still need a lot of research. For both the anomaly and signature based 
Intrusion Detection Systems one must combat the high number of False Positives. The 
signature based IDSs have a flaw as they may let attacks more easily slip past unnoticed, 
but they tend to have a lower false positive than anomaly based, and they are faster. 
Most commercial Intrusion Detection Systems today are based on signatures [31]. The 
results are good, but the full potential of the IDS is yet to be fully unleashed. Several 
studies have been done on the algorithms for anomaly detection, but the answer to a 
perfect algorithm is far away, or may not exist. Still IDS face many challenges but the 
future looks good as it is still early on in the development/research process [12].  
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4.1.5 Elements of an IDS 

An Intrusion Detection System consists primarily of three elements: 

•  A classification module that contains the algorithms that partition the data. This 
module may implement very different techniques such as signature/anomaly or 
clustering/learning.   

 
•  The analyzer interprets the results from the previous phase (classification) and 

labels the results accordingly. They might be labeled as normal or misuse/anomaly. 
Or they can have different degrees of labeling.  

 
•  The final element is the decision engine that makes a decision based on the security 

policy and the result from the analyzer.  
 

A fourth element at the first stage might be added to optimize the process, see figure 1 
below. The data filtering module has as a task to narrow down the specific features of 
the data so that the format closely resembles that used in the classification process [28]. 
Overhead data is removed and for example all relevant data is presented as numbers 
for further processing. This module might not be needed at all depending on the system 
used and the data it must analyze. The data source is the source from which the 
information is derived, for instance the network that the Intrusion Detection System 
will monitor.   
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Figure 1: A basic overview of a standard Intrusion Detection System 
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There may be several sources in a particular system that gathers data. The objects that 
gather the data are often referred to as sensors and they may be computers that solely 
tap the network traffic or programs that log the events on computers. To tap the 
network traffic the network interface card is often set to promiscuous mode [3]. This 
makes it possible for the sensor to pick up all packages in the network, but as it does 
not contain an ip-address it makes it more difficult to attack. The drawback is that in a 
modern network where switches control the traffic, the sensor may not pick up any 
traffic, or only a limited portion of the overall network traffic.  

The sensors, if placed in a large system, may be hierarchically set up, so that the lower 
level sensors send the information up to a sensor higher in the pyramid until the top 
sensor is reached. Then this sensor, placed at the top of the pyramid, has all the data 
gathered form the bottom sensors and the data are ready to be analyzed. The sensors is 
basically a sniffer or a simple log program.  

The analyzer may also be hierarchically set up depending on the size of the entire 
system. If so the data are distributed among the analyzers and they may either produce 
a result of their own or run in parallel on the same data set in order to quicken the 
process. There are several ways to analyze data and this is the most difficult step. The 
main reason that analyzing is so difficult is that it is difficult to separate misuse, attack 
data, from normal data [3] [32]. They each have distinct features that separate them, 
but some features overlap, see figure 2. 

 
 Figure 2: The problems separation misuse from normal traffic 
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What characterizes a misuse/anomaly may as well be a legal traffic form in a particular 
system. The analyzer must be customized for each of the networks it will supervise. 
This customization is derived from the network’s security policy and the particular 
network traffic.  

It would seem that the future IDS will be of an anomaly detection based type, or 
perhaps a combination of signature and anomaly. Although anomaly has some issues 
like high false positive rate, it does have a potential that should not be overlooked. And 
especially with regard to the feature that it can detect new and yet unidentified attacks 
and abnormal traffic patterns. Clustering is a type of algorithm that can identify 
patterns and therefore is very lucrative for usage in an Intrusion Detection System. The 
clustering algorithms have the ability to discern misuse from normal traffic and classify 
data as attack or non-attack without prior knowledge. Clustering is valuable because its 
task is to categorize patterns unsupervised and this classification may be configured to 
discern attack from non-attack patterns in network traffic. The two clustering 
algorithms that this thesis concentrates on, k-means and Kernighan-Lin are two of the 
types that may be very good in an IDS. The k-means is used in several Intrusion 
Detection Systems today and with good results. Several researches and enhancements 
are done with the k-means algorithm as of today [6] [16]. What this thesis looks into is 
whether the Kernighan-Lin will provide a better result.  

For the analyzing portion of an Intrusion Detection System much work still needs to be 
done. The market is still held back at signature based Detection which have good sense 
of detection of known attacks. The false positive rate for anomaly based Detection is 
still too high and this results in many alarms that are not an attack. This may yet again 
prove fatal for a system as people loose confidence in them. Although behind the 
numbers another potential threat emerges. A false negative rate is difficult to measure 
as this is actual attacks that bypass the detection. This number is assumed to be much 
higher in a signature based system, but it is difficult to prove. In a given normal 
network one cannot with a hundred percent certainty know what traffic is normal and 
what is abnormal. Therefore the number of attacks that are not detected cannot be 
determined accurately. One could use sanitized data/traffic but that is difficult to 
obtain and may be unfit for the network domain to be tested.  The negative effect is that 
signature based is easier for a manager to relate to as it gives fewer false alarms and the 
attacks that are not detected will not bother the manager. But it gives a false sense of 
security.  
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The anomaly based IDS will alert often on non-attacks but it may often detect attacks 
that otherwise would pass unnoticed until it is too late. Clustering would seem to be the 
way to proceed with the anomaly based IDS and more emphasis on research is given in 
regard to this subject. 
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4.2 Clustering 
Classification of data may be performed by two very different approaches [15]. It can be 
carried out with learning where the system slowly learns how the user wants to 
partition the features [17]. This system has some disadvantages when it comes to the 
initializing phase. It may be very time consuming to generate data the system will learn 
from. The manager of this system must know of every attack in the initial data set, and 
a large scale predefined dataset is difficult to come by. KDD-Cup is such a dataset. This 
dataset is based on a military traffic pattern and although it is good documented and 
skillfully categorized, the realistic use of this dataset is limited. Other networks, like 
commercial for instance, have a different traffic pattern and possibly very different 
attacks/misuses. The learning phase itself is also a time consuming task, as the system 
doesn’t learn by itself. It needs a supervisor to decide right from wrong, or misuse from 
normal traffic. Systems based on learning have the potential to perform very well, but it 
is vulnerable as of how good the learning data set is, and how it is interpreted by the 
supervisor according to the security policy. 

Another approach to classification of data is to use clustering techniques. Clustering is 
a set of procedures that partitions a set of data without prior knowledge [29] and is 
therefore an anomaly based IDS. Or it can be defined as an unsupervised classification 
of patters into groups [1] [14]. Clustering appeals to many researchers based on its 
versatility and because of the many fields it can be applied in [22]. Some areas include  
classification of properties of an image, document retrieval, classification of objects 
and persons such that recognition may be used, pattern reorganization/classification, 
data compression and data mining [1] [16] [29]. 

As data is provided for the clustering algorithm it will produce a set of classes. The 
distinction between a good clustering and a less good clustering algorithm is much 
based on the environment and the data that is provided. Some clustering algorithms 
may perform well in one setting that it is designed for, but severely lack performance 
when presented with another problem. No theoretical guidelines currently exist for 
choosing appropriate patterns and features. There is no clustering algorithm that is 
optimal for every task [19]. Therefore the algorithm in question must be closely 
examined with regards to the data and desired result before it is implemented. And 
more often that not the data must be cleansed before it is used as input in the clustering 
algorithm. Some data have to be altered and some have to be discarded/extracted.  
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The output of the clustering algorithm is closely tied to the input. It is then imperative 
for the user of the clustering algorithm to have a thorough understanding in both of the 
particular technique and detailed knowledge of the data gathering process. When the 
user has this desired knowledge it makes it easier to find the true class structure [1]. 
The most descriptive features that closely identify the data are the best to be utilized to 
increase the performance and validity of the class-structure. Features are then often 
arranged in a particular way before the clustering itself takes place [29]. Specific 
criteria are used as a check for the output’s validity during a cluster validity analysis. 
One might often have a good idea of how some data are partitioned, but it is difficult to 
be sure of the entire outcome. To maintain the degree of objectivity in the validity 
assessment of an algorithm, or its output, one must look at the clustering structure. If 
this structure, or output, with reason can be said to not have occurred by merely a 
chance then it can be said to be valid.  

The two figures below, figure 3:a and 3:b, describes a clustering process. Figure 3:a 
depicts X’s spread out in a graph. These are points scattered about and with the use of 
clusters it is desired to make a categorization of these X’s which can be concluded not 
to be random. Figure 3:b has been clustered and the numbers identify each of the 
clusters in which the X’s belong. This is a constructed example but the idea of a 
clustering procedure shown. As one can see from figure 3:a a pattern is already present. 
And this pattern is formalized in figure 3:b, and it can be said that this categorization 
did not occur by mere chance.  
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Figure 3 (a) and (b): Figure a, to the left, shows 17 features. Figure b shows 17 
categorized features after clustering. 
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Clustering is mainly used to find patters in large data sets that may be overwhelmingly 
for a human to do. Patterns may be a measure of physical nature or an abstract 
notation. Patters are usually represented by multidimensional features, and each of 
these features represents a vector. In this study the vectors consists of 41 dimensions 
(features). The clustering algorithms are derived from assumptions and underlying 
proven mathematical fundamentals, but the algorithm as a whole is based on the best 
guess and analysis of results. The problem presented that a clustering algorithm must 
solve is often a time consuming task if the optimal solution is to be found. It is of an 
intractable nature as it cannot be done with a polynomial time algorithm on a 
deterministic computer [19]. The clustering algorithms are then based on finding 
several good partitions instead of one optimal. The algorithm may find the optimal 
solution but that is by chance [1]. The essential core of the problem is that the 
complexity of the problem is defined as non-polynomial or a high degree polynomial, 
O(n2) or more. This is too time-consuming to be practically useful.  

The often used example is the traveling salesman dilemma to illustrate this: A 
salesperson must visit all towns but he doesn’t know the optimal route. The towns are 
connected by various roads, some towns are connected with several other towns and 
some are just connected to one. To solve this problem an exhaustive search may be 
used and it is guaranteed to find the best available path for the salesman. But if the 
number of towns is large, it is nearly impossible to find all routes and then decide 
which one is the optimal. The complexity is polynomial and complexity quickly grows 
as numbers of towns are increased. Instead of testing all the possibilities a heuristic 
approach is proposed. That is trial and error, combined within the basic set of the 
algorithm.  

 

The definition of a heuristic algorithm is given in [20]:  

 “An algorithm that usually, but not always, works or that gives nearly the right answer”.  

 

One might test several possibilities and see if one is better than the other. This testing 
may continue until desired results occur or other terminating criterion is met. Many 
clustering algorithms have a sort of random procedure or a heuristic approach, where 
different subsets are tested to find a solution.  
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This traveling salesman dilemma is just an illustration of the problem of why one might 
want to use heuristics to solve a problem. The clustering algorithms has a goal to solve 
a problem that is polynomial, within a short time frame as possible but still 
maintaining as a high degree of accuracy as possible. As previously mentioned, a 
heuristic method may not find the optimal solution, or partition, for the problem, but it 
will often come up with a good solution fairly quickly.  

The clustering techniques will always suffer from tradeoffs. For example gain one 
increase of performance in accuracy, finding as close to the optimum result in nearly all 
cases, will often result in a severe decrease in speed [18].  

There are several types of cluster algorithms and many variations of each one. This is 
natural since cluster algorithms must be customized based on the task at hand. Some 
different approaches to clustering algorithms are [1]: 

Fuzzy or hard; where hard clustering assign a pattern to one cluster, and fuzzy 
clustering assigns weights, or degree of membership, to clusters.   

Deterministic or stochastic; when the clustering algorithm is deterministic it will 
follow a predefined set that should yield the same result when applied to the same data 
set. The stochastic algorithms use a random function to pick a starting subset for 
instance.  
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4.3 Distance 
The clustering algorithm partitions the data based on similarities between the vectors 
from the same feature space. The distance measure must be chosen carefully in 
accordance to the problem at hand. Many clustering algorithms do not base the 
partition on similarities from the same feature space, but group them by 
dissimilarities(distances). For this distance calculation Euclidean distance is the most 
common. Euclidean distance measure is derived from the Minkowski metric. The 
Euclidean measure has its value p = 2 as shown with the formulas below [1]: 

 

The Minkowski metric: 

 

 

 

 

 

And the Euclidean measure where p = 2:                             
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The Euclidean distance is easily understandable and therefore easily applied. It gives 
good measure and is computed efficiently. But it has some drawbacks as well. The 
Minkowski metric, and the Euclidean metric as its special case, may favor the 
largest-scale feature and cause the result to be less accurate. The values calculated 
should thus either normalize the features or use some weighting scheme to counter this 
[1].  
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4.4 Squared Error Algorithm 
Squared Error Algorithm is a method that uses a criterion function in clustering 
techniques [1] [16]. The algorithm arranges the patterns with each predefined centroid. 
The centroid might be a selected vector from the dataset to be partitioned or a virtual 
vector of which the dataset must be arranged according to. The number of centroids is 
decided by the system, but normally an Intrusion Detection System would have two 
centroids; one that defines normal traffic and one that defines anomaly. The squared 
error criterion uses the formula shown below to find out which centroid is most similar 
to a given vector.  

  

 

 

 

 

L defines the initial clustering and H is the pattern, or data set to be categorized. K is 
the number of clusters. The centroid is c and x is the pattern.  

 

4.5 The K-means Algorithm 
Perhaps one of the most popular squared error algorithms for clustering is the k-means  
[1] [15] [16]. It is a very simple and intuitive algorithm. The implementation of the 
algorithm is easy and its time complexity is O(n), where n is the number of vectors to 
be clustered. These good properties make the k-means an attractive function within a 
system that utilizes clustering of data [16]. Because of it is linear time complexity, 
k-means can process great amounts of vectors without loss of performance. A 
computation of 1000 vectors would take double the time of computing 500 vectors.  
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The k-means starts with a random initial partition. The number of clusters is 
determined by the designer based upon the task of the algorithm.  The task of k-means 
is to take the surrounding patterns and assign them to the initial clusters based on 
similarity.  New centroids are then chosen and the algorithm re-run. This takes usually 
3-5 iterations and then each centroids represents a cluster. 

The weakness of k-means is the randomly chosen initial partition [1] [17] [26]. If that 
partition is chosen badly the result will be unsatisfactory. It will terminate with what it 
believes to be the minimum for the given dataset but that result is only a local 
minimum. The figure below, figure 4, shows potential local minima where k-means 
might halt and give a result.  The global minimum is the correct answer.  

 

Figure 4: The k-means initialization problem  

 

And often k-means will find this correct minimum, but if the random initialization is 
unfortunate then the result might be the spot market as a local minimum.  This is a 
product of the heuristic approach and is valid for all heuristically based algorithms, but 
some algorithms are more affected by this weakness than others. This Thesis 
investigates if Kernighan-Lin is less affected by this local minimum problem and thus 
produces higher accuracy(less false positives).  
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A further illustration of the problem is shown in figure 5. If the initial selected patterns 
are A, B and C the result of the clustering performed by k-means will be as shown with 
the circles. K-means(A,B,C) = ({A}, {B,C}, {D, E, F}). But the global minimum or the 
optimal result for this situation is as shown with the rectangles.   

 

 

 
Figure 5: The k-means makes the wrong partition when the initial partition is badly 
chosen. The bad cluster result is within the circles and the optimal solution is within 
the rectangles 
 
 
Squarederror(global minimum) = ({A, B, C}, {D, E}, {F,G}). If the k-means were to use 
A, D and F as initial partition it will yield the correct result.  

 K-means(A, D, F) = ({A, B, C} ,{D, E} ,{F,G}) [1].  
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4.5.1 The Kernighan-Lin Algorithm 

The Kernighan-Lin algorithm is used to view external against internal cost between 
nodes of a graph that emerges from the given dataset to be clustered.  The figure below, 
figure 6, shows two partitions; Partition A and Partition B. The nodes of the graph are 
assigned to each of the partitions. The internal cost is the cost of an edge between two 
nodes within the same partition. The external cost is the cost of the edge of a node in 
one partition to a node in the other partition. The Kernighan-Lin algorithm and used in 
this thesis uses two partitions only. The cost within each partition, the internal cost, is 
rated lower than the cost between nodes across the partition, the external cost.  

 

 
Figure 6: Illustration of External Cost and Internal Cost between two partitions 
 

The algorithm tries to move each node between partitions so that the graph is 
maintained but with as low cost, the total sum of internal and external, as possible. 
Which in part mean that the internal cost should be maximized while the external cost 
is minimized. The Kernighan-Lin heuristic partitioning of interconnected graphs has 
been used in circuit partitioning for a time. And it has been proven to be very successful 
[7]. The results are close to the optimum and the time-complexity is almost linear. 
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 The Kernighan-Lin can be easily implemented in hardware or software or a 
combination of the two, and over time the Kernighan-Lin has proven difficult to 
outperform. There are faster algorithms, and more accurate but as a combination 
Kernighan-Lin is one of the best. The results for Kernighan-Lin algorithm are a result 
of an extension provided by Fidduccia/Mattheyses and their addition made the 
Kernighan-Lin run in linear-time [7].   

The unimproved Kernighan-Lin would give a time-complexity of O(n2), which is an 
polynomial time function and much slower than the k-means for instance. And the 
improved Kernighan-Lin is close to O(n log n).  The implementation of the algorithm in 
this thesis follows the standard Kernighan-Lin algorithm. This specific version of the 
Kernighan-Lin algorithm is designed to produce the best possible result, but at the cost 
of time complexity. The flow-chart is given in figure 7 and its time complexity is very 
close to O(n2 log n), which is by contrast of k-means a much slower process. This thesis 
also intends to use a high count of nodes n, so it is interesting to see if the difference in 
running time will be of concern.  
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4.5.2 Flow-Chart of Kernighan-Lin 

 

The first Kernighan-Lin heuristic does is to partition the graph in to two parts. The size 
of the partitions is determined by the input. Then the pair of nodes with the highest 
external cost is found. This will then be one node from partition A and one from 
partition B, since the external cost is defined as the cost between nodes in separate 
partitions. The two selected nodes are subtracted from the initial partition group and 
the next node pairs are selected in the same manner. This continues until all nodes in 
one partition are exhausted and this requires one partition, partition A, to be smaller 
than the other. When all nodes in partition A are checked the algorithm further 
calculate the total of gains accumulated from this change and this values is G. If the 
value G is higher than 0 then further change can be made to improve the result. All the 
nodes pairs previously selected are exchanged and the algorithm runs again, increasing 
the iteration.  If G is less than 0 then a local minimum are found and the algorithm are 
finished.  

The flowchart is shown in figure 7 and a short description of symbols follows: 

Let us consider a graph consisting of n nodes. Let A be the first partition of nodes and 
B the second one such that partitions A and B represent all nodes in the graph. Let g 
be the maximal gain for a single interchange between A and B. Let D be the difference 
of the external and internal cost between a node pair of partition A and B (D = 
External cost – Internal cost, for all nodes in the graph). The resulting D is then an 
array containing the cost difference for all nodes in the graph.  Let c be the matrix for 
cost between every node. This is a two dimensional array and is often obtained by using 
the Euclidean distance described above. This cost can be a bidirectional cost that has a 
different value depending of which way one travels between two nodes.  

The Kernighan-Lin heuristic will try do decrease the external cost by a series of 
interchanges of subsets of the partitions A and B. When no further improvement is 
possible with this interchange the resulting partitions is a local minimum with respect 
to the algorithm [2]. The resulting partitions will then have a fairly high probability of 
being a globally minimum partition.  

The gain g is calculated by adding D, the difference of external and internal cost, of a 
single interchange between the partitions A and B. and then subtracts 2 times the cost 
matrix, c, for the subset. ai and bj are two nodes from the two partitions respectively 
that are changed, and those two nodes are selected such that g is maximum.  
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The reason for it to be added twice is that D is expressed as an internal cost in the 
subset and after the exchange it will be an external cost.  The maximum gain for a 
single exchange between the partitions is then calculated by:  

 

D is then recalculated after the change for all nodes in both partitions by the following 
formula.    

 

 

 

 

x is an element within the partition A subtracted the sub-partition ai and Y is an 
element within the partition B subtracted the sub-partition bj.  

When all nodes have been exhaustedly calculated and we have a gain for all of the 
subset pairs within the partitions A and B respectively, the maximum gain from the set 
g is selected. The inner loop of the algorithms terminates when all the nodes in the 
smallest partition have been selected (p = n). The smallest partition has to be A for this 
to terminate. If this maximum gain is greater than 0 further reductions can be made. If 
the maximum gain is 0 a locally minimum is reached and the algorithm is finished.  

Usually this implementation has between 2-6 iterations before termination criteria are 
met [7] regardless of the number of nodes. Many experiments with different types of 
cost matrices have been performed. Both with 1-0 cost, integer cost and the results 
have been similar with regards to number of iterations, and indications from earlier 
work shows that it should not perform so differently with decimal value as cost [2].  
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This version of the Kernighan-Lin works only with two partitions, but for a use in an 
Intrusion Detection System that is of no concern, as it is desired to discern anomalous 
from normal traffic. The partition B must be larger than the partition A. If the partition 
A is larger than B, then the partitions must be swapped, and the necessary result must 
be reversed to produce the correct result. This is set by the algorithm itself and cannot 
work in any other way. This may propose a problem in an IDS as one cannot assume 
that there are more normal traffic than attacks. However the solution to this problem 
would be to make an initial check and if there are more attacks the partitions are 
swapped and results of the algorithm’s output are changes accordingly.  
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Figure 7: Flow-Chart of Kernighan-Lin Heuristic Partition Algorithm 
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5 Choice of Methods 

5.1 Background 
To answer the specified research questions one must establish an approach. This is 
necessary to maintain the required validity and reproducible experiments. The choice 
of experiment conducted is defined by Creswell in two principal methods [8]. The first 
approach is a qualitative one and is defied as one where the inquirer often makes use of 
knowledge claims based on multiple meanings of personal experience, or socially or 
historically constructed perspectives. This method is often used for development of a 
theory. Researched based on this method often ends up with open-ended, emerging 
data as a result. The quantitative method makes use of the cause and effect principle, 
where a hypothesis is generated and measurable variables are used to prove or 
disprove the claimed hypothesis. A mixed-method is a combination of both qualitative 
and quantitative where the researcher bases knowledge claims on more 
problem-centered and consequence-oriented grounds, collecting data either in the 
parallel or in a sequential order to get the best understanding of the problem, and 
collecting both numerical and text data.  

 

5.2 Approach in Thesis 
In this thesis there are chosen three questions to be answered, resulting in two 
hypotheses. Both of these hypotheses can be measured by the output of variables. By 
implementing the Kernighan-Lin heuristic partition algorithm in the Intrusion 
Detection System the output result could be measured. This thesis should then be able 
to answer whether the algorithm have a potential as a classification module. And 
further the results from Kernighan-Lin version of the IDS can be compared with the 
k-means version of the IDS. The outputs are measurable variables that needs no more 
translation and by interpreting the results this thesis gives an indication as of how good 
the Kernighan-Lin would be as a competitor against k-means.  The variables are given 
as True Positive and False Positive, where true positive is the number of correctly 
labelled attacks and False Positive is the number of incorrect attacks. The IDS uses the 
classification module to determine the number of attacks and what of the subset, 
consisting of 1000 elements, are attacks.  
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The thesis relies mostly on a quantitative approach, as this gives the most accurate 
results. The variables to be measured and compared are already defined. The dataset to 
be used as basis for comparison between the two algorithms, Kernighan-Lin vs. 
k-means, is decided to be KDD-Cup 99. There are no other large dataset to use as a test 
set, and given the details of documentations this would be a good candidate. 

Any written paper and documentations regarding clustering is very valuable for this 
thesis. This is a field in constant development and much interest is in this area. Many 
researchers have contributed in one way or the other and it is necessary to be updated 
on the available methods. It is crucial to get a deep insight of the workings of clusters, 
and clustering techniques, to fully understand the problem at hand. It is also desired to 
make the C-code run quick and avoid special fall pits. Using literature and research 
papers will be of great value in both assessing the problem and continue where no 
research-material is to be found, as well as answer those problems. 

 

5.3 Coding 
A study of clustering was necessary before any action were to be taken. The algorithm 
will be coded in, and the first prototype will be a simple version. This will be tested and 
if it passes the testing it will be further enhanced. This is to make sure that the 
procedure of Kernighan-Lin Is correctly done before any advanced calculations are 
done. When the more advanced version of Kernighan-Lin is finished it has to be tested 
within the IDS itself. Every function and calculation will be closely examined.  
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6 Experimental work 

 

This chapter provides a description of the experiment carried out in this thesis, where 
the Kernighan-Lin algorithm is tested in order to see if it can be used in an Intrusion 
Detection System, and further how it compares with the opposing algorithm, k-means.  

 

6.1 About this Thesis 
This thesis performs an experiment to see which effect the Kernighan-Lin algorithm for 
partition of a graph would make in an IDS compared to the already implemented 
k-means. The k-means already gives good results but it still has some problems. As 
mentioned, the k-means has a weakness in how the initial partition is selected. The 
often used implementation makes a random initial selection in the graph and this 
selection may prove fatal. Also the k-means has a too high false positive rate. One 
might say that all results higher that 0 false positive is too high, but one must be 
realistic. The researchers and developers hope to reach this goal but on a practical level 
this will never be. As this may be it is important to keep this number as low as possible 
to make the system as reliable as possible. In this thesis we investigate if the 
Kernighan-Lin can truly provide better results or if some unknown issue makes it no 
more, or perhaps less, accurate than the k-means.  
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6.2 Purpose of the experiment 
The purpose of this experiment is to evaluate the two hypotheses:  

 

1. Hypothesis: The Kernighan-Lin will provide a lower false positive rate than 
k-means. 
 

2. Hypothesis: Kernighan-Lin will be slower than k-means.  
 

To do this, the Kernighan-Lin had to be coded with the goal to be used as a 
classification module in an Intrusion Detection System. The IDS was available as 
described in the previous chapter, but had the k-means as the classification module. 
What had to be done was to replace k-means with Kernighan-Lin and then use the test 
dataset for comparison. This Dataset is called the KDD-cup [6] [13] and is the only 
extensive dataset available. An Intrusion Detection System was obtained [4] for this 
thesis, and was modified to two versions, one with k-means and the other with 
Kernighan-Lin. The two versions were tested on the same computer and the results 
compared.  
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6.3 The coding 
The Kernighan-Lin was coded in C-language using Microsoft Visual Studio 2005. The 
first version of coding was set up with no focus on the cost between the nodes, to test 
the capabilities at the lowest level. This program read from a file the nodes of the graph.  

The file had a simple structure as shown in the table below. This table shows, in the 
first line, that node 1 and 3 are connected. The first version of the coded set the cost 
between these nodes as 1 and where there where no connection between nodes, the cost 
was set to 0.  

 

File of graph 

1 3 

1 4 

2 5 

2 8 

3 6 

4 5 

4 7 

5 9 

8 9 

Table 1: The input file for the first version of Kernighan-Lin. 9 nodes and connections 
are read horizontally. 1 is connected to 3 and 4, 2 is connected to 5 and 8 and so on.  
 
 
An old Fortran coded Kernighan-Lin program [5] was available that could be utilized 
and results of partitioning compared. In this way the C-coded version could be tested 
so that it would give the same results.  The Kernighan-Lin was tested on a graph 
consisting of 9 nodes with connections as shown in table 1 and the partition sizes were 
set to 4 for A partition and 5 for the Partition B. The initial partition is shown in table 
2(a). This is to partitions ordered 1-9 and the connection matrix was read from file, 
table 1.  The result was the following partition shown in table 2(b): 
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Initial Partition: 

Partition A:  1, 2, 3, 4 

Partition B: 5, 6, 7 ,8 ,9 

Table 2(a): The starting partition of the algorithm 
Result Partition: 

Partition A: 1, 7, 3, 6 

Partition B: 5, 4, 2, 8, 9 

Table 2(b): The resulting partition of the algorithm 
 

 

This result was compared to the Fortran coded algorithm and they gave the same result.  
Both in the number of iterations (2), which is the number of exchanges between the 
partitions, and the resulting partition. Then, in order to have it work with an Intrusion 
Detection System, the C-coded Kernighan-Lin had to be modified. Firstly, and the most 
important was that the cost between nodes had to be calculated based on the 41 
columns with attributes(features) for each node. This measure was calculated using the 
Euclidean distance as mentioned in Section 4.2. Some functions had to be revised for 
accurate calculation of the distance vector, and they were derived from the article [2]. 
The input function was changed from reading from a file to read from an array created 
by the IDS. Further the output was changed so that the resulting coding can be viewed 
in the appendix A, which contains the whole Kernighan-Lin algorithm. One important 
note regarding the code: The Kernighan-Lin algorithm requires that the first partition, 
partition A, is of a less size then partition B. The system was set up so that when the 
IDS called the Kernighan-Lin function it tested if A was smaller than B. If that was not 
the case it called another version of the Kernighan-Lin where the partitions were 
swapped and so was the output labeling for correct results.  
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6.4 KDD-Cup 
KDD-Cup is the dataset used for this experiment [13]. The choice of dataset is greatly 
limited because of the difficulties and amount of work it takes to sanitize large amounts 
of data. The KDD-cup is a database containing almost 500.000 network packets which 
are cleansed and identified. The dataset contains a large set of attacks as it is derived 
from a military environment. This makes the dataset not good for an Intrusion 
Detection System based on learning. It would be suitable for an environment which is 
similar to the military but for other organizations this dataset would cause incomplete 
learning. The same criterion remains for testing a practical IDS for a given organization. 
This dataset may not represent the traffic pattern well. But as for research on 
unsupervised partitioning, cluster-based IDS, this dataset serves. The main goal of this 
thesis is to compare two algorithms, and the dataset in particular is of no great 
importance. What is important is the knowledge of number of attacks and what type 
they are when comparing two algorithms.  

 The vast amount of data and the detail of which it is described makes the 
KDD-Cup ideal for testing performance of Intrusion Detection System on a research 
basis. With almost half a million entries, each with 41 characteristics, makes a large test 
database and suitable for extensive tests of an Intrusion Detection System. The table 
shown below, table 3, gives an example of two network packets that are represented by 
KDD-Cup. The 43 rows represent an id for each packet, a classification if it is an attack 
or not and the 41 other rows make up the dimensions that makes a vector for a given 
packet in the Kernighan-Lin algorithm and the distance is calculated using Euclidean 
distance on all the columns for each packet.  

 

id  19064 19219 

Duration 1 22 

protocol_type 0 0 

Service 25 23 

Flag 10 10 

src_bytes 1405 140 

dst_bytes 403 2020 
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Land 0 0 

wrong_fragment 0 0 

Urgent 0 0 

Hot 0 0 

num_failed_logins 0 0 

logged_in 1 1 

num_compromised 0 0 

root_shell 0 0 

Su_attempted 0 0 

num_root 0 0 

num_file_creations 0 0 

num_shells 0 0 

num_access_files 0 0 

num_outbound_cmds 0 0 

is_host_login 0 0 

is_guest_login 0 0 

Count 1 1 

srv_count 1 1 

serror_rate 0 0 

srv_serror_rate 0 0 

rerror_rate 0 0 

srv_rerror_rate 0 0 

same_srv_rate 100 100 

diff_srv_rate 0 0 
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srv_diff_host_rate 0 0 

dst_host_count 47 1 

dst_host_srv_count 233 1 

dst_host_same_srv_rate 100 100 

dst_host_diff_srv_rate 0 0 

dst_host_same_src_port_rate 0 100 

dst_host_srv_diff_host_rate 0 0 

dst_host_serror_rate 0 0 

dst_host_srv_serror_rate 0 0 

dst_host_rerror_rate 0 0 

dst_host_srv_rerror_rate 0 0 

Attack 12 12 

Table 3: 2 examples of a KDD-CUP database entry 
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6.5 Initial 
Both versions of the IDS were tested on the same computer, a standard IBM pc running 
Microsoft Windows XP. The application was coded within Microsoft Visual Studio 8. 
The test was not run in parallel but sequentially. The IDS with k-means implemented 
was tested first and then the results were noted. Then Kernighan-Lin version of the IDS 
was then tested and the results were compared. The dataset was the same for both 
versions, KDD-Cup. 

The test was then redone on a different computer for a reference. This was also a 
computer running Microsoft Windows XP and Microsoft Visual Studio 8.  

The IDS had some information as output given at the beginning and the end for each of 
the 1000 datasets. The important information here were the True positive and False 
Positive hits for the algorithm and number of attacks in the data set. In reality the 
packets in the environment that the Intrusion Detection System is guarding have four 
states when analyzed. Those four states are: 

 

True negative: The IDS assumes that this is not an attack, and does nothing. This is 
correct since the traffic is not malicious. 

False negative: This indicates that the IDS assume that traffic is not malicious, but in 
truth it is. This could for instance be an attack that goes by undetected. This is perhaps 
the most important state. 

True positive: The traffic is labelled as attack, or a misuse by the IDS and this is correct.  
This is traffic of which the IDS should generate an alarm. 

False Positive: This is normal traffic where an IDS generate an alarm as it assumes this 
is an attack/misuse. This is one aspect that one tries to reduce with an anomaly 
Intrusion Detection System.  

 

The intersection of each of the states is given in figure 8 below. It shows the correlation 
between misuse and normal traffic, and that they are so closely tied that a distinct 
separation is very difficult. If one moves the decision threshold for an improvement in 
one instance, True Positive or True Negative, the effect will be that the opposite value 
will decrease in accuracy.  
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Figure 8: A graph showing the coherence between True Negative(TN), False 
Negative(FN), False Positive(FP) and True Positive(TP) 
 
 
The IDS that is used in this thesis for testing the Kernighan-Lin Algorithm gives the 
output of True Positive and False Positive. The number of attacks are already known 
because of the well documented KDD-Cup test dataset. The True Positive and False 
Positive are related, a decrease in one leads to an increase on the other. The desired 
result is to have as low false positive as possible, hopefully 0, and a high true positive as 
possible.  

6.6 Procedure 
The Intrusion Detection System which has been coded prior to this thesis works by 
reading 1000 data packets from the dataset, KDD-Cup, and then analyzing this portion 
before another 1000 packets are read.  In most papers [2] [7] the Kernighan-Lin 
heuristic was just tested with a much smaller dataset. The maximum was around 400 
nodes. This test tries to see how Kernighan-Lin performes with as much as 1000 nodes 
in one partition. As Kernighan-Lin is a rather complex procedure, O(n2 log n), it is 
interesting to see how it will perform with such a great number of nodes regarding the 
running time.   



  Kernighan-Lin Heuristic in an IDS 

 

 

 

 

 

  

 

 

 

 

 

 

45

Every packet in the KDD-Cup dataset was run through by both versions of the IDS. 
Figure 9 displays the output for the k-means algorithm. The number of attacks ranged 
from 0-1000 in the data set. The parameters that are important in this figure is ‘tp’ 
(True Positives) and ‘fp’(False Positives).  ‘tp’ shows how many attacks the IDS have 
correctly identified and ‘fp’ shows how many attacks the IDS wrongly identify. This 
Intrusion Detection System compares the results from the algorithm with the test 
dataset. The algorithm has to find the correct number of attacks and label those exactly.  

The last output sequence in this figure shows that there are 2 attacks in range 3000 – 
4001 of the dataset. But k-means finds 11 attacks (183 – 172 = 11) but none of them are 
the actual attacks.  

 
Figure 9: A portion of the output from the IDS running k-means algorithm 
 

The difference between the two algorithms was mainly that Kernighan-Lin had number 
of attacks as input. Partition A had the size of the attacks and partition B had the size of 
non-attacks. Given 200 attacks in the dataset, partition A was 200 and B was 800. If 
the number of attacks was grater then 500 the partitions had to be reversed and the 
labeling reversed as well in order to accommodate this change.  
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Each run of the experiment had the same result both for Kernighan-Lin and k-means. 
The experiment was run 6 times each with the same results respectively. The IDS read 
a sequence of 1000 packages from KDD-Cup dataset for each run. The attacks within 
this sequence ranged from 0-1000, no attacks to all attacks.  

 

6.7 Results of the Experiments 
The results of the experiments show that Kernighan-Lin algorithm has a good potential 
as a classifier in an Intrusion Detection System. The speed was slower than the 
k-means but that difference was not too great by any standard.  The partition on the 
other hand shows that it performs very well. When presented with the number of 
attacks it managed to correctly identify every attack.   

Table 4 shows the 50 first data elements of k-means and Kernighan-Lin. Each element 
consists of 1000 packets. The results are incremental which means that for instance the 
True Positive in row two consists of True Positive from row 1 plus True Positive from 
row 2 and so on. This choice of output was already set in the IDS this study was based 
upon.  

The TP(True Positive) is the number of attacks correctly identified by the algorithm 
and the FP(False Positive) is the number of falsely assumed attack. This means that if 
there are 5 attacks among the 1000 dataset and the IDS assumes 20 attacks it might get 
5 TP and 15 FP if the labeling of the 5 attacks itself are correct.  The ‘attacks’ column is 
the number of attacks in the dataset.  
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 K-means Kernighan-Lin 

Data set Attacks TP FP TP FP 

0-999 0 0 43 0 0 

1000-1999 0 0 109 0 0 

2000-2999 0 0 172 0 0 

3000-3999 2 0 183 2 0 

4000-4999 0 0 201 2 0 

5000-7999 0 0 308 2 0 

6000-6999 0 0 316 2 0 

7000-7999 376 374 316 378 0 

8000-8999 1000 1376 316 1378 0 

9000-9999 1000 2374 316 2378 0 

10000-10999 1000 3374 316 3378 0 

11000-11999 321 3695 329 3699 0 

12000-12999 0 3695 364 3699 0 

13000-13999 0 3695 428 3699 0 

14000-14999 0 3695 432 3699 0 

15000-15999 21 3695 494 3720 0 

16000-16999 0 3695 565 3720 0 

17000-17999 0 3695 644 3720 0 



Kernighan-Lin Heuristic in an IDS 

 

 

 

 

 48 

 

 

 

 

 

 

18000-18999 0 3695 688 3720 0 

19000-19999 99 3794 702 3819 0 

20000-20999 0 3794 745 3819 0 

21000-21999 0 3794 807 3819 0 

22000-22999 69 3810 822 3888 0 

23000-23999 0 3810 903 3888 0 

24000-24999 0 3810 947 3888 0 

25000-25999 0 3810 948 3888 0 

26000-26999 94 3878 986 3982 0 

27000-27999 0 3878 1027 3982 0 

28000-28999 0 3878 1050 3982 0 

29000-29999 0 3878 1085 3982 0 

30000-30999 0 3878 1108 3982 0 

31000-31999 1 3878 1112 3983 0 

32000-32999 0 3878 1205 3983 0 

33000-33999 0 3878 1335 3983 0 

34000-34999 0 3878 1384 3983 0 

35000-35999 0 3878 1388 3983 0 

36000-36999 0 3878 1509 3983 0 

37000-37999 0 3878 1548 3983 0 

38000-38999 0 3878 1565 3983 0 
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39000-39999 281 4154 1571 4263 0 

40000-40999 724 4874 1571 4987 0 

41000-41999 5 4874 1575 4992 0 

42000-42999 127 5001 2448 5119 0 

43000-43999 914 5915 2534 6033 0 

44000-44999 1000 6915 2534 7033 0 

45000-45999 1000 7915 2534 8033 0 

46000-46999 1000 8915 2534 9033 0 

47000-47999 1000 9887 2534 10033 0 

48000-48999 1000 10887 2534 11033 0 

49000-49999 1000 11887 2534 12033 0 

Table 4: A comparison of the 50 first elements (50 000 first packets) of k-means and 
Kernighan-Lin 
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6.7.1 Accuracy 

As noted the Kernighan-Lin performed very well. The experiment tested the whole 
dataset and when presented with the number of attacks it correctly identified all of 
them, resulting in 0 False Positives. The k-means had a much higher False Positive rate. 
Although the experiment is artificial as the Kernighan-Lin had the advantage to know 
the number of attacks it shows that the heuristic itself found all of the attacks.  This is a 
great strength for an algorithm when used within an Intrusion Detection System.   

From table 4 it is clear that Kernighan-Lin has a good accuracy as it detects all attacks. 
When presented with 376 attacks the Kernighan-Lin detects all but k-mean detects 374 
of them. Both perform 100% accurate when presented with a dataset consisting of only 
attacks, 1000 attacks. But when there are 0 attacks Kernighan-Lin is the only algorithm 
which performs accurately. The k-means detects falsely 43 attacks as seen in the first 
row. By the three first rows the k-means has detected 172 attacks/ misuse which was in 
fact normal traffic. And with a low number of attacks, 2 in row 4, k-means doesn’t 
detect any of the attacks but wrongly assumes 11 other attacks. The Kernighan-Lin 
identifies both attacks correctly.  

The k-means heuristic performs well when the number of attacks is large. Then it 
mostly identifies all attacks and when the dataset have only contains attacks the 
k-means rarely assumes that the dataset include non-attacks. But at low attack rates 
within the dataset k-means suffers.  Sometimes the False Positive rate is as high as 
10%.  

The advantage of Kernighan-Lin gained by knowing the exact number of attacks, while 
k-means did not, favors the Kernighan-Lin heuristic.  The Kernighan-Lin had to know 
the partition size in advance and this could be accomplished by either using a fixed size, 
using k-means or the number of attacks itself. The choice was to use the actual number 
of attacks since this makes it possible to see of Kernighan-Lin can identify the attacks 
in the dataset correctly. It was not possible to do the same for k-means as it would 
require major changes in the coding of the algorithm. The testing would then be a 
compromise. The use of k-means as an indicator to the number of attacks and then use 
Kernighan-Lin to identify those would make the results too closely tied to the k-means.  
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6.7.2 Speed 

The testing of speed of the two algorithms was of a secondary importance. This thesis 
would like to see if the Kernighan-Lin algorithm had to use significantly longer time to 
test the data set than k-means had to.  The Kernighan-Lin had a much higher time 
complexity than k-means and given the size of the dataset it was assumed that the 
difference in running time between the two algorithms would be very noticeable. But as 
it turned out the delay in time was not that great. It was obvious that Kernighan-Lin 
had a slower procedure than the k-means but given that this version of the 
Kernighan-Lin algorithm is not optimized regarding time complexity the result here 
was very promising. The difference in time was close to around 30%-50% increase of 
running time when using Kernighan-Lin and this is far less than expected. Although 
this is not an accurate estimation of running time it gives an indication of the result.  
And even with 1000 nodes for each run indicates good results for Kernighan-Lin. As 
the running time of Kernighan-Lin increases with the number of nodes it must process, 
this number can be reduced for greater performance in time.  

 

6.7.3 A combination of k-means and Kernighan-Lin 

It was also tested to calculate the number of attacks using k-means and then let 
Kernighan-Lin separate attacks from non-attacks. The result was slightly better than 
k-means by itself. The number of attacks proposed by k-means is not accurate enough 
to provide good results. As mentioned k-means can be of by as much as 10-15%% and 
this again influence the results of Kernighan-Lin. But with the addition of 
Kernighan-Lin the attacks are identified more accurately.  
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7 Discussion of Results 

The advantage for the Kernighan-Lin was that it was presented with the number of 
attacks, where k-means was not. The k-means did not allow an input of the exact 
number of attack and sometimes this would make it less accurate. But the remarkable 
discovery was that the Kernighan-Lin algorithm managed to identify with 100% 
accuracy every misuse from normal traffic. This means that it would certainly detect all 
the attacks if put in a loop and tried all the possible numbers of attacks, but at the cost 
of a reduced speed of course. In this case it would be 501 loops of the Kernighan-Lin 
heuristic as the dataset consists of 1000 elements. The first attempt would be A=0 and 
B=1000, next loop would be A=1 and B= 999 and so forth. Keep in mind that the 
partition A must be less than, or equal to, the partition B so the last partition is A=500 
and B= 500. Another approach  

A reduction of the number of elements in each sample would increase the speed of the 
Kernighan-Lin heuristic, but also increase the number of iterations of the dataset. The 
k-means was presented with a portion of data with 2 attacks and it found 11 attacks. 
But these 11 attacks were in fact no attacks at all and false positives were generated. The 
2 attacks present would have gone unnoticed by and produced a true negative result. 
The attacks managed to slip through without being detected. These are especially the 
results of an Intrusion Detection System that one would like to avoid. Undetected 
attacks render a Detection System untrustworthy and even though it was only 2 packets 
that slipped through, this is not acceptable. Otherwise one could see from the table 4 
that k-means produce a high amount of false positive. Which means that it tend to 
locate attacks where there are none. This has the effect to make managers of an 
Intrusion Detection system to loose confidence in the system. And it also takes a lot of 
resources to scan the alerts to find that there is no threat at all. 
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Kernighan-Lin on the other hand made no such mistakes, which is promising. Even if 
there were few attacks Kernighan-Lin algorithm detected them correctly. The loss of 
speed according to k-means is not as significant as first expected. The k-means was 
very fast as it scanned the dataset within seconds. The Kernighan-Lin algorithm used 
approximately same time on the given dataset. The time would be increased when 
Kernighan-Lin loops through all the possible partitions, and in this case the running 
time would increase about 500 times, some partitions in the loop would take very little 
time. A partition of A=1 and b=999 would often require less iterations than a a=400 
and b=600 partition. But the Kernighan-Lin heuristic may also be configured to run 
faster regarding complexity and it may be other means than looping through all 501 
combinations. Another algorithm may be used to detect number of attacks before 
Kernighan-Lin identifies them. K-means can be used in this way but this algorithm is 
too inaccurate for this task. It will not benefit the system too greatly as the accuracy 
improvement is minimal and the running time is much greater.  

 

The Kernighan-Lin heuristic only works with two partitions, and this may be a 
disadvantage. In systems where the only goal is to separate misuse from normal traffic 
this cause no problem. But if the system requires several degrees of separation between 
different misuses Kernighan-Lin is unable to provide that functionality by itself. The 
solution here might be to categorize the results from Kernighan-Lin algorithm in a 
separate function. A proposed system would be that an algorithm first determines the 
number of attacks within the dataset, then Kernighan-Lin identifies the attacks and 
finally another algorithm categorizes the results in a desired classification. Depending 
on the complexity of the other algorithms this may be a slow process. Kernighan-Lin is 
not the fastest algorithm for classification and with the addition of two others the 
system may be greatly challenged regarding speed.  
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8 Conclusion 

This thesis has demonstrated that it is possible to use Kernighan-Lin heuristic partition 
algorithm within an Intrusion Detection System and the results are very good 
regarding the accuracy.  For this thesis 3 research questions were proposed in Section 
1.4. Have the questions been answered and what, if that is the case, was the concluding 
answer? 

 

1. To what degree can Kernighan-Lin Algorithm be used in an Intrusion Detection 
System for detecting misuse? 
 
The scenario set up for Kernighan-Lin algorithm to test if it could be used as a 
classification module in an Intrusion Detection System proved that it is possible. 
But we should keep in mind that the testing of this algorithm used the number of 
attacks as an input: the number of attacks is not known in a real environment. This 
version of Kernighan-Lin cannot work in an IDS by its own but the experiment 
clearly shows the power of the partitioning done with Kernighan-Lin heuristic. All 
the attacks were discovered and no false positives were generated.  But 
Kernighan-Lin cannot by itself find the number of attacks. For this other means 
must be used.  

 
 
2. Analyze the k-means vs. Kernighan-Lin algorithms and see whether 

Kernighan-Lin has a higher or lower false positive rate than k-means. 
 

The experiment conducted in this thesis proves that Kernighan-Lin have a much 
higher degree of accuracy than k-means. The Kernighan-Lin managed to identify 
all attacks and completely separated them from non-attacks. This shows that 
Kernighan-Lin is very good at discerning malicious traffic from normal traffic and 
the overlapping between the two was something that Kernighan-Lin algorithm 
managed to cope with. This was shown when there were massive attacks, no 
attacks and all in between. The Kernighan-Lin algorithm gives a higher true 
positive rate and a much lower false positive rate.  
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3. Is there a significant speed difference between the two systems? 
 

This was a secondary question that was asked to see if one would lose significant 
speed if accuracy was improved. The world of Intrusion Detection must struggle 
between several tradeoffs and one of them is the tradeoff between speed and 
accuracy [21]. Increase the performance in one causes loss of performance in the 
other. But this thesis showed that even though the accuracy was greatly improved 
the loss of speed was not that significant. This again proves the potential of 
Kernighan-Lin heuristic. 
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9 Future work 

This thesis has shown that Kernighan-Lin algorithm may be a great solution for 
accuracy in an Intrusion Detection System.  The increase in computation time is very 
small compared to the gain in accuracy. However the implementation of the 
Kernighan-Lin heuristic in this thesis is not final. It is proven that Kernighan-Lin 
heuristic can be used and the accuracy is high. But the speed may be further optimized. 
The coding itself is not optimized to run at greatest efficiency, and also it may have 
some security issues, for instance with creation of arrays using calloc-function. The 
implementation relies very much on the security measures in the main program 
feeding the information to the function. There are also several other variations of 
Kernighan-Lin algorithm that may be tested. These versions have focused more on the 
time complexity of the algorithm and sacrificed some of the accuracy. It remains to be 
tested if this lowered accuracy affects the result of the partitioning within an Intrusion 
Detection System. The faster variations of Kernighan-Lin algorithm have a time 
complexity that is very close to O(n).  

As this implementation of Kernighan-Lin algorithm uses known attacks as an input it 
cannot be used directly as an IDS. What greatly separates the Kernighan-Lin from 
k-means is that it identifies attacks correctly. If a given dataset has 10 attacks and 
Kernighan-Lin algorithm is fed with knowledge of just 5 attacks it will correctly identify 
those 5 attacks. K-means algorithm may find 10 attacks but as shown with the 
experiment those 10 results could be non-attacks. A suggested further development of 
this research is to look at a way to enhance the implementation of Kernighan-Lin to 
work efficiently [7] [29] without prior knowledge of the dataset, i.e. in a loop. The use 
of k-means to calculate number of attacks is possible but it might be other ways to 
determine number of attacks in a more accurate way.  



  Kernighan-Lin Heuristic in an IDS 

 

 

 

 

 

  

 

 

 

 

 

 

57

10 Bibliography 

[1] A.K. Jain, M. N. Murty and P. J. Flynn. Data Clustering: A review. ACM 
Computing Surveys, Vol. 31, No. 3 sep 1999.   

[2] B.W. Kernighan, S. Lin. An Efficient Heuristic Procedure for Partitioning Graphs. 
Bell System Technical Journal, vol. 49 No. 2 1970. 

[3] R. G.  Bace. Intrusion Detection. Macmillian Technical Publishing 2002.  
[4] The Intrusion Detection System developed by S. Petrovic, G. Alvarez, J. Carbo, A. 

Orfila, February 2004. 
[5] Fortran Code Developed by S. Petrovic. 
[6] S. Petrovic, G. Alvarez, A. Orfila, J. Carbo. Labelling Clusters in an Intrusion 

Detection System Using a Combination of Clustering Evaluation Techniques. In 
Conference Proceedings of the 39th Hawaii International Conference on System 
Sciences 2006. 

[7] F. Vahid, T. D. Le. Extending the Kernighan/Lin Heuristic for Hardware and 
Software Funtunal Partitioning. Kluwer Academic Publisers, Boston 1997. 

[8] J. Creswell. Research design, quantitative, qualitative and mixed approaches. Sage 
publication, 2003.  

[9] Description of the KDD-CUP dataset and the contest. 
http://www.kdnuggets.com/datasets/kddcup.html 

[10] Bruce Schneier. Secret and Lies. Wiley Publishing Inc.  2000. 
[11] T. Daler, R. Guldbrandsen, T. A. Høie, B. Melgård, T. Sjølstad. Håndbok i 

datasikkerhet. Tapir akademiske forlag 2002. 
[12] S. Northcut, L. Zeltser, S. Winters, K.K Frederick, R.W. Ritchey. Inside Network 

Perimeter Security. New Riders Publishing 2003. 
[13] Download of the KDD-Cup dataset. 

http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html 
[14] A. Strehl. Relationship-based Clustering and Cluster Ensembles for 

High-dimensional Data Mining. 2002. 
http://www.lans.ece.utexas.edu/~strehl/pubs.html 

[15] P. Berkhin. Survey of Clustering Data Mining Techniques. Accrue Software Inc 
2002. 
http://www.ee.ucr.edu/~barth/EE242/clustering_survey.pdf 

[16] T. Kanungo, D. M. Mount, N. S. Netanyahu, C. D. Piatko, R. Silverman, A, Y. Wu. 
An Efficient k-Means Clustering Algorithm: Analysis and Implementation. IEEE 
vol. 24, no. 7.  July 2002. 



Kernighan-Lin Heuristic in an IDS 

 

 

 

 

 58 

 

 

 

 

 

 

 
 
[17] G. Fung. A Comprehensive Overview of Basic Clustering Algorithms.  June 22, 

2001. 
http://www.cs.wisc.edu/~gfung/clustering.pdf  

[18] R. Xu, D. Wunsch II. Survey of Clustering Algorithms. IEEE, vol. 16, No. 3, May 
2005 

[19] V. Estivill-Castro. Why so many clustering algorithms. ACM SIGKDD Exploration 
Newletter vol. 4, No. 1, June 2002. 

[20] NIST. Definition of heuristic.  
http://www.nist.gov/dads/HTML/heuristic.html 

[21] H. Debar, M. Dacier, A. Wespi, S. Lampart. An Experimentation Workbench for 
Intrusion Detection Systems. IBM Research Report March 1998. 

[22] Y. Guan, Large-Scale Clustering: Algorithm and Applications. The University of 
Texas, May 2006. 

[23] R. P. Lippmann, D. J. Fried, I. Graf, J. W. Haines, K. R. Kendall, D. McClung, D. 
Weber, S. E. Webster, D. Wyschogrod, R. K. Cunningham, M. A. Zissman. 
Evaluation Intrusion Detection Systems: The 1998 DARPA Off-line Intrusion 
Detection Evaluation. Computer Networks 34 (4), 1999. 579U595. 

[24] H. S. Javitz, A. Valdes. The SRI IDES Statistical Anomaly Detector. IEEE 1991 
[25] J. McHugh, A. Christie, J. Allen. The Role of Intrusion Detection Systems. 

Software Engineering Institute CERT, IEEE October 2000. 
[26] A. K. Jain, a Topchy, M. H. C. Law, J. M. Buhmann. Landscape of Clustering 

Algorithms. Proceedings of the 17th International Conference on Pattern 
Recognition, 2004. ICPR Aug. 2004. 

[27] G. Jagannathan, K. Pilliaipallamnatt, R. N. Wright. A New Privacy-Preserving 
Distributed k-Clustering Algorithm. SIAM SDM Conference 2006. 
http://www.cs.stevens.edu/~rwright/Publications/sdm06.pdf 

[28] R. Vaarandi. A Data Clustering Algorithm for Mining Patterns From Event Logs. 
IEEE 2003. 
http://kodu.neti.ee/~risto/publications/slct-ipom03-web.pdf 

[29] S. Oliveira, S. C. Seok. Matrix-based algorithm for document clustering. March 
2005. 
http://www.cerfacs.fr/algor/CSC05/Abstracts/27_oliveira.pdf 

[30] S. Bandyopadhyay, E. J. Coyle. An Energy Efficient Hierarchical Clustering 
Algorithm for Wireless Sensor Networks. Proceedings of the 22nd Annual Joint 
Conference of the IEEE Computer and Communications Societies (Infocom 2003). 



  Kernighan-Lin Heuristic in an IDS 

 

 

 

 

 

  

 

 

 

 

 

 

59

[31] S. Antonatos, K. G. Anagnostakis, E. P. Markatos. Generating Realistic Workloads 
for Network Intrusion Detection Systems. AMC workshop on Software and 
Performance, 2004.  
citeseer.ist.psu.edu/antonatos04generating.html 

[32] D. E. Denning. An Intrusion Detection Model. IEEE Transaction of Software 
Engineering Se-13, 1987 



Kernighan-Lin Heuristic in an IDS 

 

 

 

 

 60 

 

 

 

 

 

 

APPENDIX 



  Kernighan-Lin Heuristic in an IDS 

 

 

 

 

 

  

 

 

 

 

 

 

61

A.  CODE 

 

 

 

 

 

 



 T
he

 K
er

ni
gh

an
-L

in
 h

eu
ris

tic
 c

od
e 

 
1

 #
i
n
c
l
u
d
e
 
"
s
t
d
a
f
x
.
h
"
 

#
i
n
c
l
u
d
e
 
<
s
t
d
i
o
.
h
>
 

#
i
n
c
l
u
d
e
 
<
s
t
d
l
i
b
.
h
>
 

 /
*
 
K
e
r
n
i
g
h
a
n
-
L
i
n
 
a
l
g
o
r
i
t
h
m
 
w
i
t
h
 
c
o
s
t
 
d
i
f
f
e
r
e
n
t
i
a
t
e
d
 
n
o
d
e
s
.
 
I
n
c
l
u
d
e
s
 
c
a
l
l
o
c
 
a
r
r
a
y
 
a
l
l
o
c
a
t
i
o
n
.
 
T
h
i
s
 

F
u
n
c
t
i
o
n
 
m
u
s
t
 
b
e
 
c
a
l
l
e
d
 
d
i
f
f
e
r
e
n
t
l
y
 
d
e
p
e
n
d
i
n
g
 
o
n
 
t
h
e
 
s
i
z
e
 
o
f
 
n
a
_
r
.
 
I
f
 
n
a
_
r
 
i
s
 
e
q
u
a
l
 
o
r
 
l
a
r
g
e
r
 
t
h
a
n
 
 

n
b
_
r
 
t
h
e
n
 
t
h
e
 
p
a
r
t
i
t
i
o
n
s
 
m
u
s
t
 
b
e
 
s
w
a
p
p
e
d
 
a
n
d
 
l
a
b
e
l
i
n
g
 
a
t
 
t
h
e
 
e
n
d
 
m
u
s
t
 
b
e
 
s
w
a
p
p
e
d
 
a
s
 
a
 
r
e
s
u
l
t
.
 
 

n
a
_
r
 
i
s
 
t
h
e
 
f
i
r
s
t
 
p
a
r
t
i
t
i
o
n
 
a
n
d
 
n
b
_
r
 
i
s
 
t
h
e
 
s
e
c
o
n
d
 
p
a
r
t
i
t
i
o
n
.
 
T
h
e
 
d
o
u
b
l
e
 
p
o
i
n
t
e
r
 
i
n
d
a
t
a
 
c
o
n
t
a
i
n
s
 
t
h
e
 

t
w
o
d
i
m
e
n
t
i
o
n
a
l
 
a
r
r
a
y
 
o
f
 
t
h
e
 
d
a
t
a
 
t
o
 
b
e
 
p
a
r
t
i
t
i
o
n
e
d
.
 
M
a
x
l
e
n
g
t
h
 
i
s
 
t
h
e
 
l
e
n
g
t
h
 
o
f
 
c
o
l
u
m
s
 
i
n
d
a
t
a
,
 
a
n
d
 
n
d
a
t
a
 
i
s
 

t
h
e
 
n
u
m
b
e
r
 
o
f
 
r
o
w
s
,
 
o
r
 
e
s
s
e
n
t
i
a
l
l
y
 
t
h
e
 
n
u
m
b
e
r
 
o
f
 
n
o
d
e
s
.
 
P
a
r
t
d
e
f
 
i
s
 
t
h
e
 
o
u
t
p
u
t
 
l
a
b
e
l
 
i
n
 
w
h
i
c
h
 
t
h
e
 
r
e
s
u
l
t
 

p
a
r
t
i
t
i
o
n
 
i
s
 
l
a
b
e
l
e
d
.
 
I
t
s
 
l
a
b
e
l
e
d
 
1
 
f
o
r
 
a
t
t
a
c
k
 
a
n
d
 
2
 
f
o
r
 
n
o
n
 
a
t
t
a
c
k
.
 
*
/
 

 v
o
i
d
 
k
l
(
i
n
t
 
n
a
_
r
,
 
i
n
t
 
n
b
_
r
,
 
d
o
u
b
l
e
 
*
*
i
n
d
a
t
a
,
 
i
n
t
 
n
d
a
t
a
,
i
n
t
 
*
p
a
r
t
d
e
f
,
 
i
n
t
 
m
a
x
l
e
n
g
t
h
)
{
 
 

i
n
t
 
n
a
 
=
 
n
a
_
r
;
 

i
n
t
 
n
b
 
=
 
n
b
_
r
;
 

f
l
o
a
t
 
m
a
x
 
,
 
g
s
u
m
;
 

i
n
t
 
a
 
=
 
0
;
 

i
n
t
 
b
 
=
 
0
;
 

i
n
t
 
i
 
,
 
k
,
 
g
;
 

i
n
t
 
l
 
=
 
0
;
 

 
 
 
 
f
l
o
a
t
 
*
*
c
;
 

i
n
t
 
*
a
p
a
r
t
;
 

i
n
t
 
*
a
p
a
r
t
1
;
 

i
n
t
 
*
b
p
a
r
t
;
 

i
n
t
 
*
b
p
a
r
t
1
;
 

i
n
t
 
*
x
s
e
t
;
 

i
n
t
 
*
y
s
e
t
;
 

f
l
o
a
t
 
*
D
d
a
t
a
;
 

f
l
o
a
t
 
*
g
a
i
n
s
;
 

 
 

 
 



 T
he

 K
er

ni
gh

an
-L

in
 h

eu
ris

tic
 c

od
e 

 
2

 
c
 
=
 
(
f
l
o
a
t
 
*
*
)
c
a
l
l
o
c
(
n
d
a
t
a
,
s
i
z
e
o
f
(
f
l
o
a
t
 
*
)
)
 
;
 
/
/
2
d
 
a
r
r
a
y
 
f
o
r
 
c
o
s
t
 
m
a
t
r
i
x
 

 
 

f
o
r
(
g
=
0
;
g
<
n
d
a
t
a
;
g
+
+
)
 

 
 

 
c
[
g
]
 
=
 
(
f
l
o
a
t
 
*
)
c
a
l
l
o
c
(
n
d
a
t
a
 
,
s
i
z
e
o
f
(
f
l
o
a
t
)
)
;
 

  
a
p
a
r
t
 
=
 
(
i
n
t
 
*
)
 
c
a
l
l
o
c
(
n
a
 
+
1
,
 
s
i
z
e
o
f
(
i
n
t
)
)
;
 
/
/
a
l
l
o
c
a
t
e
 
m
e
m
r
y
 
f
o
r
 
a
r
r
a
y
s
 

 
a
p
a
r
t
1
 
=
 
(
i
n
t
 
*
)
 
c
a
l
l
o
c
(
n
a
 
+
1
,
 
s
i
z
e
o
f
(
i
n
t
)
)
;
 

 
b
p
a
r
t
 
=
 
(
i
n
t
 
*
)
 
c
a
l
l
o
c
(
n
b
+
1
,
 
s
i
z
e
o
f
(
i
n
t
)
)
;
 

 
b
p
a
r
t
1
 
=
 
(
i
n
t
 
*
)
 
c
a
l
l
o
c
(
n
b
+
1
,
 
s
i
z
e
o
f
(
i
n
t
)
)
;
  

 
x
s
e
t
 
=
 
(
i
n
t
 
*
)
 
c
a
l
l
o
c
(
n
d
a
t
a
,
 
s
i
z
e
o
f
(
i
n
t
)
)
;
 

 
 

 
y
s
e
t
 
=
 
(
i
n
t
 
*
)
 
c
a
l
l
o
c
(
n
d
a
t
a
,
 
s
i
z
e
o
f
(
i
n
t
)
)
;
 

 
D
d
a
t
a
 
=
 
(
f
l
o
a
t
 
*
)
 
c
a
l
l
o
c
(
n
d
a
t
a
,
 
s
i
z
e
o
f
(
f
l
o
a
t
)
)
;
 

 
g
a
i
n
s
 
=
 
(
f
l
o
a
t
 
*
)
 
c
a
l
l
o
c
(
n
d
a
t
a
,
 
s
i
z
e
o
f
(
f
l
o
a
t
)
)
;
 
 
  

  
s
e
t
v
a
r
(
n
a
,
 
n
b
,
 
n
d
a
t
a
,
 
m
a
x
l
e
n
g
t
h
,
 
a
p
a
r
t
,
 
a
p
a
r
t
1
,
 
b
p
a
r
t
,
 
b
p
a
r
t
1
,
 
c
,
 
x
s
e
t
,
 
y
s
e
t
)
;
 

 
 
 
 
 g
r
a
p
h
r
e
a
d
(
n
d
a
t
a
,
 
m
a
x
l
e
n
g
t
h
,
 
c
,
 
i
n
d
a
t
a
)
;
 

 
 
 
 
 i
n
i
t
i
a
l
(
n
d
a
t
a
,
 
n
a
,
 
n
b
,
 
a
p
a
r
t
,
 
a
p
a
r
t
1
,
 
b
p
a
r
t
,
 
b
p
a
r
t
1
)
;
 

 
 
 
 
 
 

 
 
 
 
d
o
 
 
 {
 

 
i
 
=
 
0
;
 

 
/
/
c
a
l
c
u
l
a
t
e
s
 
D
 
=
 
e
x
t
e
r
n
a
l
 
c
o
s
t
 
-
 
I
n
t
e
r
n
a
l
 
C
o
s
t
 
f
o
r
 
e
v
e
r
y
 
p
o
i
n
t
 
o
f
 
t
h
e
 
g
r
a
p
h
 

 
 
 
 
 d
v
a
l
u
e
s
(
n
d
a
t
a
,
 
n
a
,
 
n
b
,
 
D
d
a
t
a
,
 
a
p
a
r
t
,
 
b
p
a
r
t
,
 
c
)
;
 
 

 
d
o
 
 
 
 
 
{
 

 
 
 
 
 
 
 
 
 
 
 
 
/
/
F
i
n
d
 
a
 
m
a
x
i
m
a
l
 
g
a
i
n
 
a
s
 
a
 
r
e
s
u
l
t
 
o
f
 
p
o
s
s
i
b
l
e
 
e
x
c
h
a
n
g
e
 
o
f
 
t
h
e
 
p
o
n
t
s
 

 
 
 

/
/
f
r
o
m
 
A
p
a
r
t
 
a
n
d
 
B
p
a
r
t
 

 
 
 

m
a
x
 
=
 
m
a
x
g
a
i
n
(
&
a
,
 
&
b
,
 
n
a
,
 
n
b
,
 
D
d
a
t
a
,
 
a
p
a
r
t
,
 
b
p
a
r
t
,
 
c
)
;
 

 
 
 

g
a
i
n
s
[
i
]
 
=
 
m
a
x
;
 

 
 
 
 
 
 
 
 
 
 
 
 
x
s
e
t
[
i
]
 
=
 
a
;
 

 
 
 
 
 
 
 
 
 
 
 
 
y
s
e
t
[
i
]
 
=
 
b
;
 

 
 
 

/
/
r
e
m
o
v
e
 
a
 
f
r
o
m
 
A
p
a
r
t
 
a
n
d
 
b
 
f
r
o
m
 
B
p
a
r
t
 

 
 
 

s
e
t
d
i
f
(
a
p
a
r
t
,
 
a
,
 
n
a
)
;
 

 
 
 
 
 
 
 
 
 
 
 
 
s
e
t
d
i
f
(
b
p
a
r
t
,
 
b
,
 
n
b
)
;
 

 
 
 
 
 
 
 
 
 
 

c
a
l
c
(
n
a
,
 
n
b
,
 
a
,
 
b
,
 
a
p
a
r
t
1
,
 
b
p
a
r
t
1
,
 
c
,
 
D
d
a
t
a
)
;
 

 
 
 

i
+
+
;
 

 
 
 

i
f
(
i
 
>
 
(
n
d
a
t
a
-
1
)
)
 
/
/
i
f
 
a
r
r
a
y
 
o
u
t
 
o
f
 
b
o
u
n
d
s
 
t
h
e
n
 
e
x
i
t
 

 
 
 

 
e
x
i
t
(
0
)
;
 

 
 
 
 
 
 
 
 
 
 
 
 
}
w
h
i
l
e
(
!
i
s
e
m
p
t
y
(
a
p
a
r
t
,
 
n
a
)
)
;
 



 T
he

 K
er

ni
gh

an
-L

in
 h

eu
ris

tic
 c

od
e 

 
3

 
 
 
 
 
 

 
/
/
F
i
n
d
 
t
h
e
 
m
a
x
i
m
a
l
 
p
a
r
t
i
a
l
 
s
u
m
 
i
n
 
t
h
e
 
a
r
r
a
y
 
g
a
i
n
s
 
 

 
 

m
a
x
p
a
r
t
s
u
m
(
n
d
a
t
a
,
 
n
a
,
 
&
g
s
u
m
,
 
&
k
,
 
g
a
i
n
s
)
;
 

 
 
 
 
+
+
l
;
 

 
/
/
i
f
 
G
s
u
m
 
>
 
0
 
e
x
c
h
a
n
g
e
 
a
n
d
 
r
e
p
e
a
t
.
 

 
i
f
(
g
s
u
m
 
>
 
0
)
{
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e
x
c
h
a
n
g
e
(
n
a
,
 
k
,
 
a
p
a
r
t
,
 
a
p
a
r
t
1
,
 
x
s
e
t
,
 
y
s
e
t
)
;
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e
x
c
h
a
n
g
e
(
n
b
,
 
k
,
 
b
p
a
r
t
,
 
b
p
a
r
t
1
,
 
y
s
e
t
,
 
x
s
e
t
)
;
 
 

 
 

 
 

 
 

 
 
 
 
 
}
 
 
 

 
 
 

 
 
 
 
}
w
h
i
l
e
(
g
s
u
m
 
>
 
0
)
;
 
 
 

   
f
o
r
(
g
 
=
 
0
;
 
g
 
<
 
n
a
;
 
g
+
+
)
 
p
a
r
t
d
e
f
[
a
p
a
r
t
1
[
g
]
]
 
=
 
1
;
 
/
/
l
a
b
e
l
 
t
h
e
 
o
u
t
p
u
t
,
 
1
 
i
s
 
a
t
t
a
c
k
 
a
n
d
 
2
 
i
s
 
n
o
n
-
a
t
t
a
c
k
 

 
f
o
r
(
g
 
=
 
0
;
 
g
 
<
 
n
b
;
 
g
+
+
)
 
p
a
r
t
d
e
f
[
b
p
a
r
t
1
[
g
]
]
 
=
 
2
;
 

  
f
r
e
e
(
a
p
a
r
t
)
;
 
/
/
f
r
e
e
 
t
h
e
 
m
e
m
o
r
y
 

 
f
r
e
e
(
a
p
a
r
t
1
)
;
 

 
f
r
e
e
(
b
p
a
r
t
)
;
 

 
f
r
e
e
(
b
p
a
r
t
1
)
;
 

 
f
r
e
e
(
x
s
e
t
)
;
 

 
f
r
e
e
(
y
s
e
t
)
;
 

 
f
r
e
e
(
D
d
a
t
a
)
;
 

 
f
r
e
e
(
g
a
i
n
s
)
;
 

f
o
r
(
i
=
0
;
i
<
n
d
a
t
a
;
i
+
+
)
 

 
 

f
r
e
e
(
c
[
i
]
)
 
;
 

 
f
r
e
e
(
c
)
 
;
 

 
 
 
 
 }
 
/
/
 
e
n
d
 
k
l
 

 
 
 
 
 



 T
he

 K
er

ni
gh

an
-L

in
 h

eu
ris

tic
 c

od
e 

 
4

 v
o
i
d
 
g
r
a
p
h
r
e
a
d
(
i
n
t
 
n
d
a
t
a
,
 
i
n
t
 
m
a
x
l
e
n
g
t
h
,
 
f
l
o
a
t
 
*
*
c
,
 
d
o
u
b
l
e
 
*
*
i
n
d
a
t
a
)
{
 

 
 
 
 
 /
*
s
t
r
u
c
t
u
r
i
z
e
 
t
h
e
 
i
n
p
u
t
 
f
r
o
m
 
t
h
e
 
s
o
u
r
c
e
f
i
l
e
.
 
T
h
e
 
d
a
t
a
 
i
s
 
f
r
o
m
 
i
n
d
a
t
a
.
 
m
a
x
l
e
n
g
t
h
 
i
s
 
t
h
e
 
n
u
m
b
e
r
 
o
f
 
c
o
l
u
m
s
 

a
n
d
 
n
d
a
t
a
 
i
s
 
n
u
m
b
e
r
 
o
f
 
r
o
w
s
.
 
T
h
e
 
d
i
s
t
a
n
c
e
 
c
a
l
c
u
l
a
t
i
o
n
 
u
s
e
s
 
e
u
c
l
i
d
i
a
n
 
m
e
a
s
u
r
e
*
/
 
 

 
i
n
t
 
i
,
 
j
,
 
k
;
 

 
f
l
o
a
t
 
s
u
m
;
 

 
d
o
u
b
l
e
 
s
;
 

 
 
 

 
 
 
 
f
o
r
(
i
 
=
 
1
;
 
i
 
<
 
n
d
a
t
a
;
 
i
+
+
)
{
 

 
 

f
o
r
(
j
 
=
 
(
i
 
+
 
1
)
;
 
j
 
<
=
 
n
d
a
t
a
;
 
j
+
+
)
{
 

 
 

 
s
 
=
 
0
;
 

 
 

 
f
o
r
(
 
k
 
=
 
0
;
 
k
 
<
 
m
a
x
l
e
n
g
t
h
;
 
k
+
+
)
 
{
 

 
 

 
 

s
 
+
=
 
p
o
w
(
(
i
n
d
a
t
a
[
i
]
[
k
]
 
-
 
i
n
d
a
t
a
[
j
]
[
k
]
)
 
,
2
)
;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
}
/
/
k
 

 
 

 
i
f
(
s
 
>
=
 
0
)
 
s
u
m
 
=
 
(
f
l
o
a
t
)
s
q
r
t
(
s
)
;
 

 
 

 
e
l
s
e
 
{
 

 
 

 
 

p
r
i
n
t
f
(
"
U
n
a
b
l
e
 
t
o
 
s
q
u
a
r
e
 
r
o
o
t
:
 
%
f
"
,
 
s
)
;
 

 
 

 
 

e
x
i
t
(
0
)
;
 

 
 

 
 
 
 

 
 

 
 

}
 

 
 
 
 
 
 

 
 

 
c
[
i
-
1
]
[
j
-
1
]
 
=
 
s
u
m
;
 

 
 

 
c
[
j
-
1
]
[
i
-
1
]
 
=
 
s
u
m
;
 
/
/
t
h
e
 
a
r
r
a
y
 
h
a
s
 
s
a
m
e
 
c
o
s
t
 
f
o
r
 
b
o
t
h
 
d
i
r
e
c
t
i
o
n
.
 
 

 
 

}
/
/
j
 
 
 

 
}
/
/
i
 
 
 
 
 
 

}
/
/
e
n
d
 
g
r
a
p
h
r
e
a
d
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 v
o
i
d
 
i
n
i
t
i
a
l
(
i
n
t
 
n
d
a
t
a
,
 
i
n
t
 
n
a
,
 
i
n
t
 
n
b
,
 
i
n
t
 
*
a
p
a
r
t
,
 
i
n
t
 
*
a
p
a
r
t
1
,
 
i
n
t
 
*
b
p
a
r
t
,
 
i
n
t
 
*
b
p
a
r
t
1
)
{
 

 
 
 
 
/
*
F
o
r
m
s
 
t
h
e
 
i
n
i
t
i
a
l
 
s
t
r
u
c
t
u
r
e
 
o
f
 
t
h
e
 
g
r
a
p
h
.
 
*
/
 

 
 

 
i
n
t
 
i
 
=
 
0
;
 

 
 
 

i
n
t
 
j
 
=
 
0
;
 

 
 
 

i
n
t
 
k
;
 

 
 
 
 
 
 

 
 
 
 
 f
o
r
(
k
 
=
 
1
;
 
k
 
<
=
 
n
d
a
t
a
;
 
k
+
+
)
 
{
 

 
 
 
 
  

i
f
(
k
 
<
=
 
n
a
)
{
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a
p
a
r
t
[
i
]
 
=
 
k
;
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a
p
a
r
t
1
[
i
]
 
=
 
k
;
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
i
+
+
;
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
}
 

 
 
 
 
 
 
 
 
 
 
 e
l
s
e
 
{
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b
p
a
r
t
[
j
]
 
=
 
k
;
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b
p
a
r
t
1
[
j
]
 
=
 
k
;
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
j
+
+
;
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
}
 

 
 
 
 
 
 
 
 
 
 
}
 

 
 
 
 
 
}
/
/
e
n
d
 
i
n
i
t
i
a
l
 

 v
o
i
d
 
d
v
a
l
u
e
s
(
i
n
t
 
n
d
a
t
a
,
 
i
n
t
 
n
a
,
 
i
n
t
 
n
b
,
 
f
l
o
a
t
 
*
D
d
a
t
a
,
 
i
n
t
 
*
a
p
a
r
t
,
 
i
n
t
 
*
b
p
a
r
t
,
 
f
l
o
a
t
 
*
*
c
)
 
{
 
 

 
 
 
 
/
*
C
a
l
c
u
l
a
t
e
s
 
t
h
e
 
v
a
l
u
e
 
D
 
f
o
r
 
e
v
e
r
y
 
p
o
i
n
t
 
o
f
 
t
h
e
 
g
r
a
p
h
 
b
y
 
u
s
i
n
g
 

 
t
h
e
 
I
n
t
e
r
n
a
l
 
a
n
d
 
E
x
t
e
r
n
a
l
 
v
a
l
u
e
s
.
 
E
v
e
r
y
 
n
o
d
e
 
h
a
v
e
 
e
d
g
e
s
 
t
o
 
o
n
e
 
a
n
o
t
h
e
r
*
/
 

 
 
 
 
 

 
i
n
t
 
i
;
 

 
i
n
t
 
x
;
 

 
i
n
t
 
y
;
 

 
f
l
o
a
t
 
*
E
a
 
=
 
(
f
l
o
a
t
 
*
)
 
c
a
l
l
o
c
(
n
d
a
t
a
,
 
s
i
z
e
o
f
(
f
l
o
a
t
)
)
;
 

 
f
l
o
a
t
 
*
E
b
 
=
 
(
f
l
o
a
t
 
*
)
 
c
a
l
l
o
c
(
n
d
a
t
a
,
 
s
i
z
e
o
f
(
f
l
o
a
t
)
)
;
 

 
f
l
o
a
t
 
*
I
a
 
=
 
(
f
l
o
a
t
 
*
)
 
c
a
l
l
o
c
(
n
d
a
t
a
,
 
s
i
z
e
o
f
(
f
l
o
a
t
)
)
;
 

 
f
l
o
a
t
 
*
I
b
 
=
 
(
f
l
o
a
t
 
*
)
 
c
a
l
l
o
c
(
n
d
a
t
a
,
 
s
i
z
e
o
f
(
f
l
o
a
t
)
)
;
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f
o
r
(
i
 
=
 
0
;
 
i
 
<
 
n
d
a
t
a
;
 
i
+
+
)
 
{
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
E
a
[
i
]
 
=
 
0
;
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
E
b
[
i
]
 
=
 
0
;
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
I
a
[
i
]
 
=
 
0
;
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
I
b
[
i
]
 
=
 
0
;
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
D
d
a
t
a
[
i
]
 
=
 
0
;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
}
 

 
 
 
 
 
 
 
 
 
 
 
 

 
f
o
r
(
x
 
=
 
1
;
 
x
 
<
 
(
n
d
a
t
a
 
-
1
)
;
 
x
+
+
)
 
{
 

 
 
 
 
  

f
o
r
(
y
 
=
 
(
x
+
1
)
;
 
y
 
<
 
n
d
a
t
a
;
 
y
+
+
)
 
{
 
 
 
 
 
 
 

 
 

 
i
f
(
i
s
m
e
m
b
e
r
(
x
,
 
a
p
a
r
t
,
 
n
a
)
 
&
&
 
i
s
m
e
m
b
e
r
(
y
,
 
b
p
a
r
t
,
 
n
b
)
)
 
{
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
E
a
[
x
 
-
 
1
]
 
+
=
 
c
[
x
 
-
 
1
]
[
y
-
1
]
;
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
E
b
[
y
 
-
 
1
]
 
+
=
 
c
[
y
 
-
 
1
]
[
x
-
1
]
;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
}
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 i
f
(
i
s
m
e
m
b
e
r
(
y
,
 
a
p
a
r
t
,
 
n
a
)
 
&
&
 
i
s
m
e
m
b
e
r
(
x
,
 
b
p
a
r
t
,
 
n
b
)
)
 
{
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
E
a
[
y
 
-
 
1
]
 
+
=
 
c
[
y
 
-
 
1
]
[
x
-
1
]
;
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
E
b
[
x
 
-
 
1
]
 
+
=
 
c
[
x
 
-
 
1
]
[
y
-
1
]
;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
}
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 i
f
(
i
s
m
e
m
b
e
r
(
x
,
 
a
p
a
r
t
,
 
n
a
)
 
&
&
 
i
s
m
e
m
b
e
r
(
y
,
 
a
p
a
r
t
,
 
n
a
)
)
 
{
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
I
a
[
x
 
-
 
1
]
 
+
=
 
c
[
x
 
-
 
1
]
[
y
-
1
]
;
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
I
a
[
y
 
-
 
1
]
 
+
=
 
c
[
y
 
-
 
1
]
[
x
-
1
]
;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
}
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 i
f
(
i
s
m
e
m
b
e
r
(
x
,
 
b
p
a
r
t
,
 
n
b
)
 
&
&
 
i
s
m
e
m
b
e
r
(
y
,
 
b
p
a
r
t
,
 
n
b
)
)
 
{
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
I
b
[
x
 
-
 
1
]
 
+
=
 
c
[
x
 
-
 
1
]
[
y
-
1
]
;
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
I
b
[
y
 
-
 
1
]
 
+
=
 
c
[
y
 
-
 
1
]
[
x
-
1
]
;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
}
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
}
 

 
 

}
 
 
 
 
 
 
 
 

 
 

f
o
r
(
i
 
=
 
1
;
 
i
 
<
=
 
n
d
a
t
a
;
 
i
+
+
)
 
{
 

 
 

i
f
(
i
s
m
e
m
b
e
r
(
i
,
 
a
p
a
r
t
,
 
n
a
)
)
{
 
 

 
 

 
D
d
a
t
a
[
i
 
-
 
1
]
 
=
 
E
a
[
i
 
-
 
1
]
 
-
 
I
a
[
i
 
-
 
1
]
;
  

 
 

 
 

 
 

 
 

}
 

 
 

e
l
s
e
 
{
 
 

 
 

 
D
d
a
t
a
[
i
 
-
 
1
]
 
=
 
E
b
[
i
 
-
 
1
]
 
-
 
I
b
[
i
 
-
 
1
]
;
 

 
 

 
}
 

 
 
 
 
 
 
 
 
 
 
}
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f
r
e
e
(
E
a
)
;
 

 
f
r
e
e
(
E
b
)
;
 

 
f
r
e
e
(
I
a
)
;
 

 
f
r
e
e
(
I
b
)
;
 

}
/
/
 
e
n
d
 
d
v
a
l
u
e
s
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 f
l
o
a
t
 
m
a
x
g
a
i
n
(
i
n
t
 
*
a
,
 
i
n
t
 
*
b
,
 
i
n
t
 
n
a
,
 
i
n
t
 
n
b
,
 
f
l
o
a
t
 
*
D
d
a
t
a
,
 
i
n
t
 
*
a
p
a
r
t
,
 
i
n
t
 
*
b
p
a
r
t
,
 
f
l
o
a
t
 
*
*
c
)
 
{
 

 
 
 
 
 /
*
C
a
l
c
u
l
a
t
e
s
 
t
h
e
 
m
a
x
i
m
a
l
 
g
a
i
n
 
o
b
t
a
i
n
e
d
 
a
f
t
e
r
 
e
x
c
h
a
n
g
e
 
o
f
 
e
l
e
m
e
n
t
 
a
 
f
r
o
m
 
A
p
a
r
t
 
a
n
d
 
b
 
f
r
o
m
 
B
p
a
r
t
*
/
 

 
 

 
f
l
o
a
t
 
g
a
i
n
;
 

 
 
 
 
 f
l
o
a
t
 
m
a
x
 
=
 
-
9
9
9
9
9
9
9
9
9
.
0
;
 

 
 
 
 
 i
n
t
 
i
;
 

 
 
 
 
 i
n
t
 
j
;
 

  
 
 
 
 f
o
r
(
i
 
=
 
0
;
 
i
 
<
 
n
a
;
 
i
+
+
)
 
{
 

 
 
 
 
  
 
 
 
 
 
f
o
r
(
j
 
=
 
0
;
 
j
 
<
 
n
b
;
 
j
+
+
)
 
{
 

 
 

 
 
 
i
f
(
a
p
a
r
t
[
i
]
 
!
=
 
0
 
&
&
 
b
p
a
r
t
[
j
]
 
!
=
 
0
)
{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 
 
 
 

 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
g
a
i
n
 
=
 
D
d
a
t
a
[
a
p
a
r
t
[
i
]
 
-
 
1
]
 
+
 
D
d
a
t
a
[
b
p
a
r
t
[
j
]
 
-
 
1
]
 
-
 
(
2
 
*
 
(
c
[
a
p
a
r
t
[
i
]
 
-
 
1
]
[
b
p
a
r
t
[
j
]
 
-
 
1
]
)
)
;
 
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
i
f
(
g
a
i
n
 
>
=
 
m
a
x
)
{
 

 
 

 
 

m
a
x
 
=
 
g
a
i
n
;
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
*
a
 
=
 
a
p
a
r
t
[
i
]
;
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
*
b
 
=
 
b
p
a
r
t
[
j
]
;
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
}
 

 
 

}
 

 
 
 
 
 }
 

 
r
e
t
u
r
n
 
m
a
x
;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

}
/
/
e
n
d
 
m
a
x
g
a
i
n
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 v
o
i
d
 
m
a
x
p
a
r
t
s
u
m
(
i
n
t
 
n
d
a
t
a
,
 
i
n
t
 
n
a
,
 
f
l
o
a
t
 
*
g
s
u
m
,
 
i
n
t
 
*
k
,
 
f
l
o
a
t
 
*
g
a
i
n
s
)
 
{
 
 
 
 
 

 
 
 

/
*
C
a
l
c
u
l
a
t
e
s
 
t
h
e
 
m
a
x
i
m
a
l
 
p
a
r
t
i
a
l
 
s
u
m
 
o
f
 
t
h
e
 
m
a
m
b
e
r
s
 
o
f
 
 

 
t
h
e
 
a
r
r
a
y
 
g
a
i
n
s
*
/
 

 
 

 
f
l
o
a
t
 
s
;
 

 
 
 
 
 i
n
t
 
i
;
 

 
 
 
 
 i
n
t
 
j
;
 

 
 
 
 
 f
l
o
a
t
 
*
s
u
m
 
=
 
(
f
l
o
a
t
 
*
)
 
c
a
l
l
o
c
(
n
d
a
t
a
,
 
s
i
z
e
o
f
(
f
l
o
a
t
)
)
;
 

 
*
g
s
u
m
 
=
 
-
9
9
9
9
;
 

  
 
 
 
f
o
r
(
i
 
=
 
0
;
 
i
 
<
 
n
a
;
 
i
+
+
)
 
{
 

 
 
 
 
  

s
 
=
 
0
;
 

 
 
 
 
 
 
 
 
 
 
f
o
r
(
j
 
=
 
0
;
 
j
 
<
=
 
i
;
 
j
+
+
)
 
{
 

 
 
 
 
 
 
 
 
 
 
  

s
 
=
 
s
 
+
 
g
a
i
n
s
[
j
]
;
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
}
 

 
 
 
 
 
 
 
 
 
 
 
s
u
m
[
i
]
 
=
 
s
;
 

 
 
 
 
 
 
 
 
 
 
 
}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
f
o
r
(
i
 
=
 
0
;
 
i
 
<
 
n
a
;
 
i
+
+
)
 
{
 

 
 
 
 
  

i
f
(
s
u
m
[
i
]
 
>
=
 
*
g
s
u
m
)
 
{
 

 
 
 
 
 
 
 
 
 
 
  

*
g
s
u
m
 
=
 
s
u
m
[
i
]
;
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 *
k
 
=
 
i
;
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
}
 
 
 

 
f
r
e
e
(
s
u
m
)
;
 

}
/
/
e
n
d
 
m
a
x
p
a
r
t
s
u
m
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 v
o
i
d
 
e
x
c
h
a
n
g
e
(
i
n
t
 
n
a
b
,
 
i
n
t
 
k
,
 
i
n
t
 
*
p
a
r
t
,
 
i
n
t
 
*
p
a
r
t
1
,
 
i
n
t
 
*
s
e
t
,
 
i
n
t
 
*
s
e
t
1
)
 
{
 
 
 

 
/
*
E
x
c
h
a
n
g
e
 
t
h
e
 
s
e
t
s
 
x
s
e
t
 
a
n
d
 
y
s
e
t
 
b
e
t
w
e
e
n
 
A
p
a
r
t
 
a
n
d
 
B
p
a
r
t
*
/
 

 
 

 
i
n
t
 
i
;
 
 
 

 
 
 
 
 i
n
t
 
j
;
 
 
 
 

 
 
 
 
 f
o
r
(
i
 
=
 
0
;
 
i
 
<
=
 
k
;
 
i
+
+
)
 
{
 

 
 
 
 
  

f
o
r
(
j
 
=
 
0
;
 
j
 
<
 
n
a
b
;
 
j
+
+
)
 
{
 

 
 
 
 
 
 
 
 
 
 
  

i
f
(
s
e
t
[
i
]
 
=
=
 
p
a
r
t
1
[
j
]
)
 
{
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

p
a
r
t
[
j
]
 
=
 
s
e
t
1
[
i
]
;
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 p
a
r
t
1
[
j
]
 
=
 
s
e
t
1
[
i
]
;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 }
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e
l
s
e
 
p
a
r
t
[
j
]
 
=
 
p
a
r
t
1
[
j
]
;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 }
 

 
 
 
 
 
 
 
 

}
 
 
 

 
 
 

f
o
r
(
i
 
=
 
0
;
 
i
 
<
 
n
a
b
;
 
i
+
+
)
 
p
a
r
t
1
[
i
]
 
=
 
p
a
r
t
[
i
]
;
 
 
 
 
 
 
 
 

}
/
/
e
n
d
 
e
x
c
h
a
n
g
e
 

  v
o
i
d
 
c
a
l
c
(
i
n
t
 
n
a
,
 
i
n
t
 
n
b
,
 
i
n
t
 
a
,
 
i
n
t
 
b
,
 
i
n
t
 
*
a
p
a
r
t
1
,
 
i
n
t
 
*
b
p
a
r
t
1
,
 
f
l
o
a
t
 
*
*
c
,
 
f
l
o
a
t
 
*
D
d
a
t
a
)
{
 

 
/
*
R
e
c
a
l
c
u
l
a
t
e
s
 
t
h
e
 
d
 
v
a
l
u
e
s
 
a
f
t
e
r
 
t
h
e
 
m
a
x
i
m
a
l
 
g
a
i
n
 
i
s
 
c
h
o
s
e
n
*
/
 

  
i
n
t
 
i
;
 

  
f
o
r
(
i
 
=
 
0
;
 
i
 
<
 
n
a
;
 
i
+
+
)
 
{
 

 
 
 
 
 
 
i
f
(
a
p
a
r
t
1
[
i
]
 
!
=
 
a
)
 

 
 

 
D
d
a
t
a
[
a
p
a
r
t
1
[
i
]
-
1
]
 
=
 
D
d
a
t
a
[
a
p
a
r
t
1
[
i
]
-
1
]
 
+
 
(
2
*
c
[
a
p
a
r
t
1
[
i
]
-
1
]
[
a
-
1
]
)
 
-
 
(
2
*
c
[
a
p
a
r
t
1
[
i
]
-
1
]
[
b
-
1
]
)
;
 

 
 

}
 

  
f
o
r
(
i
 
=
 
0
;
 
i
 
<
 
n
b
;
 
i
+
+
)
 
{
 

 
 
 
 
 
 
i
f
(
b
p
a
r
t
1
[
i
]
 
!
=
 
b
)
 

 
 

 
D
d
a
t
a
[
b
p
a
r
t
1
[
i
]
-
1
]
 
=
 
D
d
a
t
a
[
b
p
a
r
t
1
[
i
]
-
1
]
 
+
 
(
2
*
c
[
b
p
a
r
t
1
[
i
]
-
1
]
[
b
-
1
]
)
 
-
 
(
2
*
c
[
b
p
a
r
t
1
[
i
]
-
1
]
[
a
-
1
]
)
;
 

 
 

 
}
 

 }
/
/
e
n
d
 
c
a
l
c
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 v
o
i
d
 
s
e
t
d
i
f
(
i
n
t
 
*
s
,
 
i
n
t
 
x
,
 
i
n
t
 
n
)
 
{
 

 
/
*
r
e
m
o
v
e
s
 
t
h
e
 
e
l
e
m
e
n
t
 
x
 
f
r
o
m
 
t
h
e
 
s
e
t
 
,
 
b
u
t
 
n
u
m
b
e
r
 
o
f
 
e
l
e
m
e
n
t
s
 
i
s
 
t
h
e
 
s
a
m
e
*
/
 

 
 

 
i
n
t
 
i
;
 
 
 

 
 
 
 
 

 
f
o
r
(
i
 
=
 
0
;
 
i
 
<
 
n
;
 
i
+
+
)
 
{
 

 
 

i
f
(
x
 
=
=
 
s
[
i
]
)
 
{
 

 
 
 
 
 
 
 
 
 
 
  

s
[
i
]
 
=
 
0
;
 

 
 

 
b
r
e
a
k
;
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 }
 

 
 
 
 
 
 
 
 
 
 
}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

}
/
/
e
n
d
 
s
e
t
d
i
f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 i
n
t
 
i
s
e
m
p
t
y
(
i
n
t
 
*
s
 
,
 
i
n
t
 
n
)
 
{
 

 
/
*
r
e
t
u
r
n
s
 
0
(
f
a
l
s
e
)
 
i
f
 
a
r
r
a
y
 
s
 
i
s
 
n
o
t
 
e
m
t
p
y
.
 
o
t
h
e
r
w
i
s
e
 
i
t
 
r
e
t
u
r
n
s
 
1
(
t
r
u
e
)
 

 
C
h
e
c
k
s
 
w
h
e
t
h
e
r
 
s
e
t
 
s
 
i
s
 
e
m
p
t
y
*
/
 

 
 
 
 
 

 
i
n
t
 
i
;
 

 
 
 
 
 

 
f
o
r
(
i
 
=
 
0
;
 
i
 
<
 
n
;
 
i
+
+
)
 
{
 

 
 

i
f
(
s
[
i
]
 
!
=
 
0
)
 
 

 
 

 
r
e
t
u
r
n
 
0
;
 
/
/
f
a
l
s
e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 }
 

 
 
 
 
 
 
 
 
 
 
 r
e
t
u
r
n
 
1
;
 
 
 
 
/
/
t
r
u
e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

}
/
/
 
e
n
d
 
i
s
e
m
p
t
y
 
 
 
 

 i
n
t
 
i
s
m
e
m
b
e
r
(
i
n
t
 
x
,
 
i
n
t
 
*
s
,
 
i
n
t
 
n
)
 
{
 

 
/
*
D
e
t
e
r
m
i
n
e
s
 
i
f
 
x
 
i
s
 
a
n
 
e
l
e
m
e
n
t
 
i
n
 
t
h
e
 
s
e
t
 
s
.
 
I
f
 
x
 
i
s
 
a
n
 
 

 
e
l
e
m
e
n
t
 
t
h
e
 
f
u
n
c
t
i
o
n
 
r
e
t
u
r
n
s
 
1
,
 
t
r
u
e
.
 
O
t
h
e
r
w
i
s
e
 
i
t
 
r
e
t
u
r
n
s
 

 
0
,
 
f
a
l
s
e
*
/
 

  
i
n
t
 
i
;
 

 
f
o
r
(
i
 
=
 
0
;
 
i
 
<
 
n
;
 
i
+
+
 
)
 
{
 

 
 
 
 
  

i
f
(
x
 
=
=
 
s
[
i
]
)
 
r
e
t
u
r
n
 
1
;
 
/
/
t
r
u
e
 

 
 
 
 
 
 
 
 
 
 
 }
 

 
 
 
 
 r
e
t
u
r
n
 
0
;
 
 
 
/
/
f
a
l
s
e
 
 
 

}
/
/
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i
s
m
e
m
b
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 v
o
i
d
 
s
e
t
v
a
r
(
i
n
t
 
n
a
,
 
i
n
t
 
n
b
,
 
i
n
t
 
n
d
a
t
a
,
 
i
n
t
 
m
a
x
l
e
n
g
t
h
,
 
i
n
t
 
*
a
p
a
r
t
,
i
n
t
 
*
a
p
a
r
t
1
,
 
i
n
t
 
*
b
p
a
r
t
,
 
i
n
t
 
*
b
p
a
r
t
1
,
 

f
l
o
a
t
 
*
*
c
,
 
i
n
t
 
*
x
s
e
t
,
 
i
n
t
 
*
y
s
e
t
)
 
{
 

 
/
*
 
M
a
k
e
 
c
e
r
t
a
i
n
 
t
h
a
t
 
a
l
l
 
e
l
e
m
e
n
t
s
 
a
r
e
 
a
t
 
0
 
w
h
e
n
 
i
n
i
t
i
l
i
z
e
d
*
/
 

 
 

 
i
n
t
 
i
;
 

 
i
n
t
 
j
;
 

 
f
o
r
(
i
 
=
 
0
;
 
i
 
<
 
n
a
;
 
i
+
+
)
{
 

 
 

a
p
a
r
t
[
i
]
 
=
 
0
;
 

 
 

a
p
a
r
t
1
[
i
]
 
=
 
0
;
 

 
 

}
 

 
 

f
o
r
(
i
 
=
 
0
;
 
i
 
<
 
n
b
;
 
i
+
+
)
{
 

 
 

b
p
a
r
t
[
i
]
 
=
 
0
;
 

 
 

b
p
a
r
t
1
[
i
]
 
=
 
0
;
 

 
 

}
 

  
f
o
r
(
i
 
=
 
0
;
 
i
 
<
 
n
d
a
t
a
;
 
i
+
+
)
{
 

 
 

x
s
e
t
[
i
]
 
=
 
0
;
 

 
 

y
s
e
t
[
i
]
 
=
 
0
;
 

 
 

f
o
r
(
j
 
=
 
0
;
 
j
 
<
 
m
a
x
l
e
n
g
t
h
;
 
j
+
+
)
 
{
 

 
 

 
c
[
i
]
[
j
]
 
=
 
0
;
 
 

 
 

 
 

 
}
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/
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