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Building IDS rules by means of a honeypot

Abstract

In today’s society people become more and more dependent on com-
puter systems. It is therefore vital that such systems are up and run-
ning at all times. One factor that has the power to destroy the availabil-
ity is computer network attacks (CNA). (CNA are defined as "methods
aimed at destroying, altering or obstructing information in computers,
computer networks or the networks themselves"). Unfortunately, the In-
ternet show an increasing trend regarding the usage of malicious ac-
tivities such as intrusion attempts, denial-of-service attacks, phishing,
spamming and worms. Some automated attacks can compromise a large
number of computers in a short period of time. To try to minimize this
threat, it would be nice to have a security system which has the ability
to detect new attacks and react on them. This thesis focuses on seeing
how good IDS rules that can be generated automatically based on data
logged by a simple honypot. The results are based on data collected by
a network intrusion detection system named SNORT, a low-interaction
honeypot named honeyd and a vulnerability scanner named Nessus. Re-
sults found in this thesis claim that honeyd logs sufficient information
to make functional SNORT rules out of, but some rule options are not
possible to determine.

Sammendrag

Dagens samfunn har blitt veldig avhengig av datasystemer for å være
produktive. Det er derfor viktig at disse systemene har en høy grad av
tilgjengelighet (oppetid). En faktor som har muligheten til å redusere
tilgjengeligheten er datanettverks angrep (CNA). (CNA defineres som
metoder hvis hensikt er å ødelegge, endre eller hindre informasjon i
datamaskiner, datanettverk eller nettverket i seg selv). Dessverre er det
en økning i antall angrep over internett fra år til år. Disse angrepene
inkluderer blant annet innbrudd, DoS, phishing, spam og ormer. Noen av
disse angrepene kan "ødelegge" et stort antall maskiner på kort tid. For
å redusere denne trusselen er det ønskelig å ha et system som har mu-
ligheten til å se nye angrep og behandle disse. Denne masteroppgaven vil
fokusere på hvor gode IDS regler som kan bli generert automatisk basert
på informasjon hentet fra en enkel honeypot. Resultatene er basert på
data samlet inn av en nettverks IDS ved navn SNORT, en lav interaksjons
honeypot ved navn honeyd og en sårbarhets skanner ved navn Nessus.
Resultatene våres viser at honeyd logger tilstrekkelig informasjon til å
kunne generere funksjonable SNORT regler, men enkelte felter i reglene
er ikke mulig å finne basert på loggene.
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and encouragement during the thesis work. My fellow students also deserve thanks for
giving me inputs during master seminars and discussions. I would also like to thank
members of the SNORT forum, and the honeyd forum for giving answers to my questions.
I also want to thank my family and friends for the patience and understanding they
have shown for my work. Last but not least, my thanks go to my girlfriend for her love,
support, and understanding during the whole period of time that went into this thesis.

Vidar Ajaxon Grønland, 2006/06/30

v





Building IDS rules by means of a honeypot

Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
Sammendrag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Topic covered by this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Problem description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Justification, motivation and benefits . . . . . . . . . . . . . . . . . . . . . 1
1.4 Research questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.5 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Previous work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1 What is an intrusion? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Honeypot technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Rule generating systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Summary of claimed contributions . . . . . . . . . . . . . . . . . . . . . . . . 11
4 Choice of Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5 Theoretical background and introduction . . . . . . . . . . . . . . . . . . . . 15

5.1 SNORT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.1.1 Packet decoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.1.2 Pre-processors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.1.3 Detection engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.1.4 Logging and alerting system . . . . . . . . . . . . . . . . . . . . . . 18
5.1.5 Output module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.1.6 Writing good SNORT rules . . . . . . . . . . . . . . . . . . . . . . . 18
5.1.7 Understanding Standard SNORT Alert Output . . . . . . . . . . . . 21

5.2 Honeypots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.2.1 Definition of a honeypot . . . . . . . . . . . . . . . . . . . . . . . . 22
5.2.2 Honeyd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.2.3 Configuring honeyd . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.2.4 Honeyd log files . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.3 Nessus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.4 How to generate SNORT rules . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.5 Longest Common Substring algorithm . . . . . . . . . . . . . . . . . . . . 26
5.6 True/False Positive Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.7 Improved system for datacollection . . . . . . . . . . . . . . . . . . . . . . 27

6 Experimental work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
6.1 Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
6.2 Overview and technical information . . . . . . . . . . . . . . . . . . . . . 32

vii



Building IDS rules by means of a honeypot

6.3 Experiment result expectations . . . . . . . . . . . . . . . . . . . . . . . . 33
6.4 Measurement method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

6.4.1 Measuring known signature generating systems . . . . . . . . . . . 35
6.5 FTP scan experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

6.5.1 How the experiment is conducted . . . . . . . . . . . . . . . . . . . 36
6.5.2 Experiment 1 - Control . . . . . . . . . . . . . . . . . . . . . . . . . 36
6.5.3 Experiment 2 - New FTP rules . . . . . . . . . . . . . . . . . . . . . 37

6.6 WEB SERVER scan experiment . . . . . . . . . . . . . . . . . . . . . . . . 43
6.6.1 How the experiment is conducted . . . . . . . . . . . . . . . . . . . 43
6.6.2 Experiment 1 - Control . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.6.3 Experiment 2 - New rules . . . . . . . . . . . . . . . . . . . . . . . 44

6.7 Extracting flow and protocol . . . . . . . . . . . . . . . . . . . . . . . . . 52
7 General conclusion and future work . . . . . . . . . . . . . . . . . . . . . . . 55

7.1 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
A Installation and configuring . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

A.1 Installing honeyd-1.0a-rc2.tar.gz on Fedora Core 3 . . . . . . . . . . . . . 61
A.2 Problems during installation of various programs . . . . . . . . . . . . . . 64

A.2.1 Installing honeyd on Ubuntu 5.10 . . . . . . . . . . . . . . . . . . . 64
A.2.2 Installing honeyd on Fedora Core 4 . . . . . . . . . . . . . . . . . . 65

A.3 Solutions to the problems installing honeyd . . . . . . . . . . . . . . . . . 65
B WEB servers scan-rules (.50 SuSE) . . . . . . . . . . . . . . . . . . . . . . . . 67
C Differences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

viii



Building IDS rules by means of a honeypot

List of Figures

1 SNORT components . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2 Example of three honeyd.log entries . . . . . . . . . . . . . . . . . . . 24
3 Example of a stat ../* attack . . . . . . . . . . . . . . . . . . . . . . 24
4 Example of an attempt to login on the web page . . . . . . . . . . . . . 25
5 Confusion matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6 Flowchart of rule generating system . . . . . . . . . . . . . . . . . . . 28
7 Network topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
8 How a web attack looks like in the honeypot’s log file web.log . . . . . 45

List of Tables

1 A selection of Generator ID’s . . . . . . . . . . . . . . . . . . . . . . . . 22
2 Importance of ranking numbers . . . . . . . . . . . . . . . . . . . . . . 34
3 Ranking of rule fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4 Number of alerts from each rule when a Nessus FTP scan is run . . . . 41
5 Differences between original and new rules . . . . . . . . . . . . . . . 41
6 Number of alerts from each rule when a Nessus web servers scan is run 48
7 Differences between original and new rules . . . . . . . . . . . . . . . 49
8 Differences between original and new rules . . . . . . . . . . . . . . . 51

ix





Building IDS rules by means of a honeypot

1 Introduction

1.1 Topic covered by this thesis

This thesis covers issues regarding behaviour and implementation of a simple honeypot
and the use of such technology in creating IDS rules. A honeypot is a computer that is
implemented in a network for the purpose of attracting attackers. This computer has
nothing to do with the production network, thus all traffic into the honeypot is by def-
inition malicious [2]. The goal is to attract attackers by pretending to be an interesting
network. The log files from the honeypot serve as data collectors in conjunction with
other widely used data collectors such as tcpdump [23] if needed. A security scanner
named Nessus [4] is used to generate traffic towards the honeypot, leaving us with full
control of the entire system. We use SNORT [8], a signature based Network intrusion de-
tection system (NIDS) to check if the rules we create are usable. The main goal is to
see how good SNORT rules that can be made, with as little user intervention as possible,
based on information from the collected data.

1.2 Problem description

Many IDS’s in use today are signature based. These IDS’ are only capable of detecting
already known attacks (attacks which have a signature entry in the database of the IDS).
This is a huge problem when new attacks arrive. A signature based IDS are only capable
of detecting alterations of already known attacks at best. Therefore there is an interest in
trying to make a rule generating system to automatically generate new rules when new
attacks arrive. In this thesis we look at the possibility of using a low-interaction honeypot
to address this problem. The important question is then if the honeypot logs sufficient
information to make rules out of. We propose a measurement method to see how good
the rules we create are, compared to original rules alerting on the same threat. Due to
the limited time available, we only re-create known rules and measure the difference
between the originals and those we re-create.

1.3 Justification, motivation and benefits

There are issues concerning the effectiveness of IDS’ capability to alert on malicious traf-
fic. By using honeypots, one can be certain that all traffic towards it is malicious. This
is because the honeypots itself have no production activity and no authorized activities.
The question is then if the IDS’ are capable of detecting all the attacks in the honeypot,
or if some attacks are undetected. By checking the logs from the honeypot, it is possible
to check if the IDS detected all the attacks, and if it did not, there have to be made new
rules. Measuring how good rules we are able to create is an important question that has
to be answered.

Signature based IDS vs. Anomly based IDS
As stated earlier, signature based IDS’ are good at alerting on already known threats.
They usually tell the administrator what type of attack it has detected (portscan, web,

1



Building IDS rules by means of a honeypot

ftp etc.), and their importance (priority). It is of course important that the IDS rule is
of good quality to be sure the alerts are trustworthy. The problem with signature based
IDS’ occur when a new attack arrives. In these cases, anomaly detection is supposed to
function well. In anomaly detection we know or learn the nature of the normal, non-
attacked state. Then we compare the present state with what is supposed to be normal.
The system then alerts if it sees behaviour, which is different from the normal one. The
challenge to anomaly-based detection is defining what is normal. Since most networks
change over time (adding services etc.), the "normal" state also changes, making it diffi-
cult to establish the normal network behaviour for longer periods. This is the reason for
us to choose a signature based IDS in this thesis. We want to make it easier to create new
rules for new attacks to be used in a signature based IDS. One solution is to actually use
an anomaly based IDS to direct possible malicious traffic to the honeypot as suggested by
Anagnostakis et al. in [13], and then make signatures if the traffic is deemed malicious.

Benefits from using a honeypot when creating new IDS rules
Honeypots are a security technology whose value is in being attacked, probed or com-
promised so that the methods of the attacker can be logged and studied. The philosophy
is simple: they do not have any production purpose, there is no authorized interaction
with them, so any interaction with a honeypot is most likely a scan, probe or attack.
The reason for choosing honeypots in this thesis is because of their detection value. As
stated, a honeypot has no production activity, no authorized, legitimate interactions will
take place on it. This basically means that all traffic towards it is by definition malicious,
leaving us with a dataset only consisting of malicious activity. In a way, one may see
a honeypot as the opposite of an IDS. Where IDS’ fail, honeypots can excel. Here are
several examples:

• Reduces False Positives - All activity with the honeypot is by definition unauthorized,
making it extremely effective at detecting attacks.

• Detecting False Negatives - A honeypot easily identifies and captures new attacks or
activities against it.

• Encryption - Even if an attack is encrypted, the honeypot will still capture the activity.

Honeypots can carry out extremely simple and cost effective detection. They usu-
ally need very little resources and maintenance, leading to a very cheap implementation
cost. Also the fact that the amount of information needed to be collected and analyzed
is greatly reduced, allows employees to focus on other matters. This makes a honeypot
perfectly suited for this research, both because of the data collection and the low imple-
mentation cost. We will use a simple honeypot to see if it is suited for generating rules
to be used by a signature based IDS’. The reason for choosing a simple low-interaction
honeypot is because of security aspects involved when using high-interaction ones.

1.4 Research questions

The following research questions have been answered in this thesis:

1. Is honeyd suitable for detecting new attacks?

2. How to translate data captured by honeyd into SNORT rules?

2
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3. How good rules can be made based on data logged by honeyd?

1.5 Limitations

Because of the fact that the honeypot might log vast amounts of data for manual analysis,
we have to limit ourselves in order to adjust the size of the task to the available resources.
The procedure(s) proposed in this thesis are not a final product ready for production, but
rather a prototype showing a proposed way of solving the problem. We have also limited
the thesis to only include attacks against FTP port 21 and WEB port 80.

3
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2 Previous work

2.1 What is an intrusion?

As far back as in 1980, the concept of intrusion detection was introduced. Anderson [14]
defined an intrusion attempt or a threat to be the potential possibility of a deliberate
unauthorized attempt to:

• access information (Confidentiality)

• manipulate information (Integrity)

• render a system unreliable or unusable (Availability)

This is still the case today, 26 years later. In [17], Biermann et al. define a computer in-
trusion to be any set of actions that attempt to compromise the Confidentiality, Integrity
or Availability (CIA) of a resource, which is the same as stated by Anderson. Mukherjee et
al. define intrusions as "unauthorized use, misuse and abuse of computer systems [30].
These definitions all lead to the same general observation, namely that an intrusion is a
successful violation of the security policy.

RFC2828 [12] defines a security intrusion as:

A security event, or a combination of multiple security events, that constitutes a se-
curity incident in which an intruder gains, or attempts to gain, access to a system (or
system resource) without having authorization to do so.

2.2 Honeypot technologies

When deciding upon which honeypot type that was best suited for this master thesis, dif-
ferent types of honeypots were studied. The honeynet project [1] and the book [40] pro-
vided guidelines on how to implement honeypots. A program called Honeywall, which
includes logging software (SEBEK [7]) and intrusion prevention system (SNORT-inline)
is described in [1]. SEBEK is a tool for collecting data passing through the read() system
call. This is useful for example when logging SSH connections, since this tool then logs
all keystrokes and files used with the scp command. SNORT-inline is an intrusion pre-
vention system which drops packets that would raise alerts on SNORT. Honeywall works
as a bridge which is transparent to the attacker.

Spitzner [41] claims that for detection, simple honeypots that emulate systems and
services, such as Specter [9] and honeyd [34], are the best. Honeyd [34] is a low interac-
tion honeypot, able to simulate big networks with many services. For more information
about honeyd please see section 5.2.

Another article related to honeypots is [33], which states: "complementarities be-
tween high and low interaction honeypots can increase the accuracy of information col-
lected by simple environments deployed in different places." This means that one may
use a high interaction honeypot to control what services need to be refined in order to

5
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collect the same amount of data on the low interaction honeypot. This is usually solved
by implementing scripts on the low interaction honeypot to simulate a response to a re-
quest from the cracker1, as honeyd [34] does.

In [18], it is discussed how to attract attackers to the honeypot. Registering the hon-
eypot in the DNS servers of the organisation and enabling zone transfer in the local DNS
server of the honeypot is suggested. This approach might be useful if the honeypot we
deploy has a low frequency of attacks.

Anagnostakis et al. [13] presents a system to combine the advantages of anomaly
detection and honeypots. By using high-interaction honeypots, the amount of false pos-
itives seen by an anomaly detector can be drastically reduced due to the fact that all
traffic towards the honeypot is deemed malicious by definition. The authors propose to
mirror suspicious traffic to a honeypot previously detected by a network based anomaly
detector to determine the accuracy of the anomaly prediction. Misclassified benign traf-
fic will be validated by the shadow honeypot and then handled by the real system. They
have named the system "shadow honeypot" because the traffic is transparently mirrored
to the honeypot. The shadow honeypot is an instance of the protected application (e.g.
a web server/client, FTP server/client) which shares all internal state with a normal in-
stance of the application. This instance is instrumented to detect potential attacks. It is
stated that shadow honeypots allow detecting exploits for client programs such as web
browsers that require user interaction. This approach is in essence a way to train the
anomaly detectors, but is also a possible approach we could use if we have sufficient
time to implement a high-interaction honeypot. By using this approach it is possible to
redirect possible malicious traffic to the honeypot, hopefully leaving us with more data
to create rules from.

In order to find out how to translate honeypot captured data into a new signature, a
study on how a SNORT [8] signature is built is obviously needed.

Problems with honeypots are well known. In [43], Spitzner discusses the problems
with today’s honeypots. Especially high-interaction honeypots have problems one should
not oversee. These systems run real operating systems and applications and hence a
serious security risk submerges. It is very important to think through all aspects of im-
plementing such technology. Also the aspects of storing information about attackers are
much debated. It is important to make sure that the laws of the country the honeypot is
deployed in are followed. (In Norway, personopplysningsloven [5]). The main reason for
us not to use a high-interaction honeypot is because it should be monitored (by a person)
at all times.

In [36], a powerful tool for testing NIDS is described (AGENT 2). This tool generates
different ways of deploying a single attack. By doing this, one can be sure that the NIDS
is capable of detecting variations of one specific attack. This tool might come in handy if

1Malicious hackers are often called black hat hackers, but it is more appropriate to call them crackers
as this is a term which distinguishes the exploitation of security weaknesses from hacking in general.

2Attack GEneration for Nids Testing tool
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we are not able to collect enough data in the honeypot, and it if is possible to direct the
tests towards the honeypot instead of the NIDS.

2.3 Rule generating systems

The book "Intrusion Signatures and Analysis" [21] gives a good understanding about in-
trusion analysis methodology. It focuses on full analysis of an attack along with traces to
determine what happened and how.

There have been a few attempts to design systems with self generating signatures
based on logging information. One of the first attempts was Honeycomb [26]. Honey-
comb is a host-based intrusion detection system that automatically creates signatures. It
uses a honeypot to collect malicious traffic, and applies the longest common substring
(LCS3) algorithm on the packet content of a number of connections going to the same
services. Honeycomb applies the LCS algorithm to binary strings built out of the ex-
changed messages in two different ways: Horizontal detection 4 and Vertical detection5.
The result from the LCS algorithm is then used as a signature when creating a new rule
for the respective attack. An evaluation of Honeycomb performed in [49], states that
Honeycomb produces too many signatures on traffic without malicious content. This re-
sults in a high number of false positives.

The article [49] also evaluates three other signature generation systems named Ne-
mean [49], Earlybird [39] and Autograph [24]. The last two systems only make rules for
worms, while Nemean generates rules in general.

Autograph [24] uses heuristics to classify traffic into two categories: one flow pool
with suspicious activity and one with non-suspicious activity. To become a suspicious
connection, more than S unsuccessful connection attempts towards different internal
IP’s must occur (all from the same source). Then the successful connections from this
suspicious source are stored in the suspicious flow pool. A TCP flow reassembly is used
on the suspicious flow pool, before they use Rabin fingerprints [19] to partition the pay-
load into small blocks. Then the blocks are counted to determine their prevalence, and
the most common substring from these blocks makes the worm signature. A blacklisting
system is used to decrease the number of false positives.

Earlybird, the signature generating system proposed in [39], monitors traffic using
sensors sifting through the traffic aiming at creating signatures for worms. The sensors
report anomalous signatures to an aggregator responsible for activating blocking ser-
vices, reporting and control. They propose an unfeasible algorithm, and end up using
approximations to this algorithm. Their approach is based on two observations:

• Some portions of the content in worms are invariant

3The Longest Common Substring problem looks for the longest shared byte sequences across pairs of con-
nections.

4Horizontal pattern detection: two messages at the same depth into the stream are passed as input to the
LCS algorithm for detection.

5Vertical pattern detection: for both connections, several incoming messages are concatenated into one
string and then passed as input to the LCS algorithm for detection.
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• The spreading of a worm is atypical for internet applications

Said in a simpler manner, they claim it is rare to observe the same string recurring within
packets sent from many sources to many destinations. The main procedure they propose
is to sift through network traffic for content strings that are both frequently repeated
and widely dispersed. This is supposed to be enough to identify new worms and their
signatures. All false positives the authors of [39] have experienced have been feasible to
"whitelist".

Nemean [49] incorporates protocol semantics into the rule generation algorithm. Be-
cause of this it is capable of handling more than just worm attacks. In comparison with
COVERS [27], Nemean does not have a correlation step to pinpoint attack-containing
bytes. COVERS only needs simplified message format specifications, while Nemean re-
quires more detailed knowledge of service semantics. The biggest difference though is
that COVERS do not require expert knowledge about which message fields are most
likely to contain attacks as Nemean does.

Liang and Sekar propose an approach they call COVERS (COntext-based VulnERability-
oriented Signature) [27], which uses a forensics analysis of a victim server’s memory to
correlate attacks to inputs received over the network, and automatically develop a signa-
ture that characterizes inputs that carry attacks. In short, they observe ongoing attacks
-> create signatures -> use these signatures to filter out future occurrences of these at-
tacks. The filters can be deployed as an in-line network filter or inside the address space
of a protected server. The main advantage by the approach presented here is that it is
able to generate signatures from single attack instances, as opposed to Earlybird, Au-
tograph, Honeycomb, Polygraph [31] and PADS [45], which need sufficient number of
attack samples to extract a good signature.

The Honeyanalyzer [46] is another signature generating system which generates rules
based on honeyd captured information in conjunction with tcpdump. The security admin-
istrator (SA) gets information from a web GUI that tells him for instance what ports have
been attacked. It is then up to the SA to execute the LCS algorithm on the log informa-
tion that corresponds to the attack. The experience and wisdom of the SA is important
to generate good signatures. This system has a high user interaction factor.

The author of [31] states that systems such as Honeycomb, Autograph and EarlyBird
have a flaw in their assumption: "that there exists a single payload substring that will re-
main invariant across worm connections, and will be sufficiently unique to the worm that it
can be used as a signature without causing false positives." He states further that worm au-
thors may design worms, which substantially change their payloads for each connection,
so called polymorphic worms, which render the above mentioned systems useless. The
contribution in [31] aims at producing signatures that match polymorphic worms. The
major problem is that the payload of this type of worm varies as stated above. Therefore,
signatures that are specified by a single contiguous non-variant sequence of bytes (one
static signature used for content matching) can in general not be applied to detect these
worms. Instead, the authors propose signatures that are specified by sets of contiguous
byte sequences (Tokens). They present Polygraph, a system to cope with the above men-
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tioned problems. The Polygraph monitor consists of a Flow classifier, a Polygraph Signa-
ture Generator, and a Signature Evaluator. The Flow classifier reassembles the payload of
TCP connection and detects suspicious flows that are passed to the Signature Generator.
In this article the authors concentrate on the Signature Generator and omit the design of
the Flow classifier since this is well documented by i.e. [32]. The authors propose three
types of signatures produced by the Polygraph Signature Generator:

• Conjunction Signatures

• Token-Subsequence Signatures

• Bayes Signatures

In [47] a system for creating rules for worms is presented. They claim that a collab-
orative security system (a distributed detection system that automatically shares infor-
mation in real-time about anomalous behaviour experienced at the moment of attack
among collaborating sites) will substantially improve protection against wide-scale in-
fections. They use PAYL [48], an anomalous payload sensor, in a collaborative security
system, and exchange information about suspected malicious packets. PAYL uses either
LCS or LCSeq6 on packets targeting the entire LAN, not only the honeypot. Since most
worms have a self replicating behaviour, the authors assume that portions of incoming
and outgoing malicious traffic are correlated that are sent by self replicating worms. If a
correlation in the traffic is detected, the resulting data serves as a signature candidate.
It is stated that their approach can detect zero-day exploits and generate signatures for
these new exploits.

In [45] Tang et al. introduce an approach to automatically capture spreading worms.
They introduce signatures ("position-aware distribution signatures (PADS)") that are
based on a statistical measure to detect polymorphic worms. They use two honeypot
types called inbound and outbound to capture worms. The inbound honeypot is a high-
interaction intended to be compromised. This makes all traffic originating from this hon-
eypot as being malicious. Then this traffic is sent to the outbound honeypot for analysis
and signature generation. This system of two honeypots is denoted as a double-honeypot
system.

6Longest Common Subsequence
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3 Summary of claimed contributions

This research will contribute in the following ways:

1. See if a low-interaction honeypot (honeyd) is a good tool for logging attacks.

2. Ease the workload of the administrator when new IDS rules have to made. Signatures
are to be used with SNORT.

3. See if data collected by the honeypot is sufficient for creating new IDS rules, and how
good these rules can be made with as little user intervention as possible.

If we are able to determine what honeypot type collects the best data set, it will be
easier for the others to perform similar experiments. It is not necessary for them to waste
time on conducting experiments to determine what honeypot type they should use. It
is vital though that the data set contains all the necessary log items that distinguish a
specific attack from other attacks.

By reducing the user intervention regarding signature generation, the workload for
the security administrator is reduced when it comes to keeping the IDS up to date. It will
be much easier for the security administrator to find out that a new attack has occurred,
and how he can make a signature to prevent the attack from happening again. This will
improve the security of the system since the probability that a new attack goes through
undetected is reduced.

We also present a measuring system for measuring how good the rules we manage to
create from the honeypot logs are. This measuring system is described in 6.4.
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4 Choice of Methods

We will use a mixed approach in this thesis, using literature studies and laboratory ex-
periments. The choice of methods is described related to each research question.

1. Is honeyd suitable for detecting new attacks?

2. How to translate data captured by honeyd into SNORT rules?

3. How good rules can be made based on data logged by honeyd?

Is honeyd suitable for detecting new attacks?

Literature study and implementing honeyd to see how good it is.

How to translate data captured by honeyd into a new rule?

How to translate honeypot captured data into a SNORT rule will involve both a literature
study of SNORT and a trial and error experiment to see if it is possible to get useful data
from the honeypot logs.

How good rules can be made based on data logged by honeyd?

A method for measuring differences between original rules and rules we re-create will
be presented. This will in essence measure if the new rules are missing important rule
header or rule option fields. Also the false positive and false negative rate will be mea-
sured.
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5 Theoretical background information and introduction
to the new rule generating approach

5.1 SNORT

SNORT [8] is a widely used signature-based Intrusion Detection System. We first give a
general definition of an IDS, and then explain characteristics of SNORT, as an important
representative of such systems. The information below is given to show all elements,
which must be considered when making a rule generating system.

Intrusion detection is a set of techniques and methods used to detect suspicious activ-
ity both at the network and host level. There are two basic categories of IDS’, signature-
based intrusion detection systems and anomaly detection systems.
Attacks have signatures (like computer viruses), that can be detected using software.
Based upon a set of signatures and rules, the detection system is able to find and log sus-
picious activity and generate alerts. Anomaly detection is based on the assumption that
an attack on a computer system will be noticeably different from normal system activity,
and an intruder will exhibit a pattern of behaviour different from that of the normal use
[44].

Intrusion detection systems usually capture data from the network and apply their
rules to that data or detect anomalies in them. SNORT is primarily a rule-based IDS, and
is our choice of IDS in this thesis. The reason for us to choose SNORT is because it is
one of the most used open source1 IDS’. SNORT uses rules stored in simple text files that
can be modified by a text editor, which makes it easy for us to manipulate them. SNORT
stores rules in separate files based on the category of the rule (ftp, web, snmp, icmp
etc.). Technically, the rules are included in the main configuration file (snort.conf).
SNORT reads this file at start-up, and builds an internal data structure as described in
section 5.1.3. One important thing about SNORT is to implement as many signatures as
we can using as few rules as possible. This is because SNORT gets slower for each added
rule as described in section 5.1.3.

SNORT consists of several components as shown in figure 1. The major components
are:

• Packet decoder

• Preprocessors

• Detection engine

• Logging and Alerting system

• Output modules

1Open source is a term used on software which is free of charge, and the source code is available for
reading/editing
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Figure 1: SNORT components

5.1.1 Packet decoder

The packet decoder is a series of decoders that each decode specific protocol elements
into an internal data structure. It starts with the lower level Data Link protocols, and
works it way up the network stack decoding each protocol as it moves up. When packets
move through the decoders, a data structure is filled up with decoded packet data. Now
the data stored in the data structure is ready to be analyzed by the pre-processors and the
detection engine. Libpcap is used to capture the raw packets, this makes sure all protocol
headers are unaltered by the OS.

5.1.2 Pre-processors

There are two categories of pre-processors. One purpose is to make the packet suitable
for the detection engine to apply rules to it. The other purpose is to find obvious errors
and detect anomalies in the data packets. Some attacks cannot be detected by signature
matching using the detection engine. Because of this, special pre-processors have been
made to try to detect these attacks. These pre-processors are vital in discovering non-
signature based attacks. The other pre-processors tasks are to normalize traffic in order
for the detection engine to accurately match signatures. The main goal for these pre-
processors is to defeat attacks that try to evade the detection engine by manipulating
patterns in the traffic. Defragmenting packets is also a task for the pre-processor. This
is vital because before any rules may be applied, the packet must be reassembled. The
reason for this is to avoid being misled by attacks that have been divided into several
packets. pre-processors used by SNORT in default configuration are listed below.

• frag3 => Eliminate IP fragmentation attacks. Should always be enabled.

• stream4 => Used for maintaining the state of TCP streams, which is used in detecting
some types of information gathering attacks. Important because signatures may be
distributed amongst several packets.

• flow => Keeps track of TCP states.

• sfPortscan => Designed for detecting the first phase in a network attack: the Recon-
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naissance. Was designed for detecting most NMAP2 scans.

• HTTP_inspect => Detects abnormal HTTP traffic and normalizes it so that the de-
tection engine can properly interpret it. The normalizing process translates various
character sets, such as Unicode or hex, to characters that SNORT recognizes. It works
specifically with the URI strings of an HTTP request. If the traffic encountered needs
decoding an alert is generated. Works on a packet to packet basis (regardless of the
fragmentation) unless another pre-processor reassembles the packets first.

• RPC_decode => Works in the same way as the HTTP_decode, but whith the RPC
protocoll. Useful to avoid RPC attacks where the signature has been split into several
packets.

• BO => Detects Back Orifice attacks. Specific for Windows systems.

• Telnet_decode => Decodes or removes arbitrarily inserted binary Telnet control codes
in a Telnet or FTP stream. This eliminates the possibility to insert control codes into
FTP or Telnet communications to avoid beeing seen by SNORT.

• Performance Monitor => Measures SNORT’s realtime performance.

• ARPspoof => Detects some ARP spoofing attakcs like ARP cache overwrite and ARP
spoofing.

• ASN1_decode => Detects various inconsitencies in ASN.13 which may indicate ma-
licious behaviour.

• spade => Statisical Packet Anomaly Detection Engine. Used to detect general packet
anomalies in IP packets. Uses a lot of memory on high load networks.

5.1.3 Detection engine

The most important part of SNORT is the detection engine. It serves two major functions:
parsing rules and detecting signatures (intrusion activity). By parsing the SNORT rules,
the detection engine builds attack signatures. The rules are read line by line, and load
into an internal data structure (important to write the rules correctly, or the detection
engine will fail when loading them into the internal data structure). Now all traffic is run
through the loaded rule set in the order they were loaded into memory. Rules are split
into two functional sections: rule header and rule option. In the rule header, information
about conditions for applying the signature is set. This is the part in the rule before the
parenthesis as shown in section 5.1.6.

The detection engine is the time-critical part of SNORT. Depending upon how power-
ful the host computer is and how many rules have been defined, it may take different
amounts of time to respond to different packets. If the traffic on the network is too
high, SNORT may start dropping packets if it does not have available resources to perform
the signature matching. To be able to run SNORT on a high bandwidth network (above
100Mb/s), either a distributed system or a host with high specs are needed. This is a

2Nmap ("Network Mapper") is a free open source utility for network exploration or security auditing. It was
designed to rapidly scan large networks, although it works fine against single hosts.

3Abstract Syntax Notation One is an international standard for coding and transmitting complex data struc-
tures. It is used by several higher-level protocols including LDAP, SNMP, SSL and X.509.
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factor we must have in mind when designing the rule generating system. It is crucial to
keep the number of rules down to a minimum in order to avoid dropping of packets, and
make the rules as effective as possible.

The detection engine processes rule headers and rule options differently. A linked list
decision tree is built by the detection engine. A packet is tested to see whether it is TCP.
If so, the packet is passed to the part of the tree that has rules for TCP. Then the packet
is tested to see if it matches a source address in a rule. If it does, the packet is passed
down the corresponding rule chains. This procedure is done until the packet matches
a signature, or tests clean. When a signature is matched to the content of a packet,
SNORT makes an alert and continues searching for other rules matching the signature.
On earlier versions of SNORT (1.x) this was not the case. SNORT used to stop checking
when a signature match was found. This made it important to sort the rules in an order
based on the most malicious signatures first. Because of the way SNORT handles rules, it
is important to make sure that all necessary information is included in the rule to make
it traverse the decision tree the right way. If this is not taken care of, then the rule might
end up in the wrong place in the tree, leading to a false negative.

5.1.4 Logging and alerting system

Depending upon what the detection engine finds inside a packet, the packet may be used
to log the activity or generate an alert. Our implementation of SNORT logs in simple text
files and tcpdump-style files. All of the log files are stored under /var/log/snort folder on
a UNIX system by default.

5.1.5 Output module

These modules are used to control the output from SNORT detection engine. Normally
the alerts and logs go into files in the /var/log/snort directory. By using these output
modules, outputs can be processed and messages can be sent to a number of different
destinations. Here are a few examples of output modules:

• Database

• SNMP, send alerts as SNMP traps to a centrally managed network operation center

• SMB, pop-up alert windows

• Syslog, for logging to a centralized logging server

• XML

• CSV, for comma separated files

5.1.6 Writing good SNORT rules

The purpose of a rule is to detect a specific type of traffic by matching all traffic against
it. This is not always easy to accomplish. Often there is a gap between what the rule is
intended to trigger on and what type of traffic actually triggers the rule. When writing
the rules, one must narrow down the rule to only trigger on the traffic patterns of which
alerts are wanted. This is really a balancing act, since a too specific rule most likely will
fail to alert on attacks which deviate a little from the properties in the rule (false neg-
atives). On the other hand, a rule which is too general will produce alerts on benign
traffic (false positives). To be able to write good rules, it is important to research and
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find unique patterns in the traffic. The patterns need not be unique by themselves, but if
one combines them they should add up to be as unique as possible. Regarding the syntax
of the rule it is vital to be sure that all elements in the rule are correct. If a faulty written
rule manages to load, it could possibly trigger on large amounts of benign traffic, which
in turn may lead to overload of the intrusion database. Another possibility is that the
rule might not trigger on the intended traffic, leading to the belief that no attacks have
occurred. Because of all possible problems with faulty written rules, it is suggested that
all new rules are tested before they are implemented in production networks [25].

Rule header and rule option

A SNORT rule is divided into two parts, the rule header and the rule option. All text before
the first parenthesis is the rule header. All text inside the parenthesis is the rule option.
Let’s take a closer look at the rule header. This header consists of the following:

• Rule action

• Alert - Generate an alert and log the packet

• Log - Just log the packet

• Pass - Drop any packet that matches the signature

• Protocol - Monitor either TCP, UDP or ICMP packets

• Direction operator - What traffic direction the rule shall apply to

• Source and destination IP address

• Source and destination ports

The rule option consists of this:

• Content related options keyword

• Content - Specifies the pattern to look for in the packet’s payload

• Uricontent - Triggers on the URI portion of a request

• Nocase - Match regardles case

• Offset - Where in the payload SNORT should start looking for the string specifeid
in content

• Depth - How many bits SNORT should look into the payload. Saves resources

• Regex - Makes it possible to use regular expressions in the content part

• Session related option keyword

• Flow - Specifies the traffic flow direction in which the rule should apply

• Session - Captures and records session data

• IP-related option keywords

• Ttl - Search for packets with this exact ttl value (IP header)

• Tos - Search for packets with this tos value (IP header)
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• Id - Test the packet for a specific fragmentation ID

• Ipopts - Monitors packets for specific IP options

• Fragbits - Checks the fragmentation field in the IP header

• Dsize - Detects a packets payload size

• Ip_proto - Specifies what IP protocol to apply the rule to

• Sameip - Checks if the source IP is the same as the destination IP

• Fragoffset - Monitors for packets containing a particular fragmentation offset
value

• TCP-related option keywords

• Flags - The flags keyword is used to check if specific TCP flag bits are present

• Seq - The seq keyword is used to check for a specific TCP sequence number

• Ack - The ack keyword is used to check for a specific TCP acknowledge number

• ICMP-related option keywords

• Itype - Is used to check for a specific ICMP type value

• Icode - Is used to check for a specific ICMP code value

• Icmp_id - Is used to check for a specific ICMP ID value

• Icmp_seq - Is used to check for a specific ICMP sequence value

Here is an example of a SNORT rule:

alert tcp any any -> 192.168.1.0/24 111 (content:"|00 01 86 a5|"; msg: "mountd access";)

This rule describes an alert that is generated when SNORT matches a network packet
with all of the following attributes:

• TCP packet

• Source from any IP address on any port

• Destined for any IP address on the 192.168.1.0/24 network on port 111

• Packet contains 00 01 86 a5

The word(s) before the colons in the rule options section are called option keywords.
These keywords may appear once, as with content in the example above, or multiple
times. If the rule above matches a packet, an alert is made with the message: mountd
access. This makes it easy to figure out what the attacker was trying to accomplish.
If it is necessary to log both parts in a connection, one can use the bi-directional operator
<>. This is handy for logging and analyzing both sides for instance in a telnet connec-
tion. The operator considers both IP address and port number. The following example is
of a telnet connection logger:

log !192.168.1.0/24 any <> 192.168.1.0/24 23

This rule tells SNORT to log all packets between machines which is not on the
192.168.1.0/24 segment and machines on the 192.168.1.0/24 segment, where the des-
tination port number is 23.
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Recomended options to include when writing SNORT rules:

• Use the msg keyword

• Use the classtype keyword (or priority directly)

• Use a number to identify a rule by using the sid keyword

• If the rule applies to a known wulnerability, a reference to a URL should be given in
order to make it easy to find more information about the attack. This is done by using
the reference keyword

• Use the rev keyword to keep track of different verisons of the rule

• Use flow to make SNORT perform faster

It is important to make sure the signature/rule is specific to the service it applies to.
For instance a rule triggering on the content: 4773903ac4b83ff4dc2s, must be specific
to which service this string is a threat. If this is not done appropriately, a simple e-mail
containing the string would generate an alert.

5.1.7 Understanding Standard SNORT Alert Output
SNORT writes alerts to the file /var/log/snort/alert by default (Unix). When SNORT gen-
erates an alert message for a XMAS scan, it will look like this:

[**] [1:1228:7] SCAN nmap XMAS [**]
[Priority: 1]

The [**] is not relevant to the alert, but makes it easy to see where the main informa-
tion about the attack is in the alert file. Now let’s see what the different numbers stand
for:

The first number is the Generator ID; this tells the user what component of SNORT gener-
ated this alert. For a list of GIDs, we can refer to Table 1. In this case, the alert was made
by the rules_subsystem (1) component of SNORT.

The second number is the SNORT ID (also referred to as Signature ID). For a list of pre-
processor SIDs, gen-msg.map file should be seen. The SID number is written directly into
the rule by using the sid option. In this case, 1228 represents a nmap XMAS scan.

The third number is the revision ID. This number is primarily used when writing rules,
as each revision of the rule should increment this number with the "rev" option. In this
example we see that this is the 7th revision of this rule.

At the beginning of the text string, there is a word with only uppercase letters. This
word tells the user where to find the rule. In this case the rule is from the scan.rules
file in /etc/snort/rules/ (on a Unix system). The rest of the fist line is the message
telling what the alert is alerting on.

The second line is telling the administrator how serious the alert is. SNORT uses either the
classtype option or the priority option to give this information. Rules that have a clas-
sification will have a default priority set (from 1-4, where 1 is the most severe). The clas-
sifications used by the rules provided with SNORT are defined in etc/classification.config
on a Unix system. When using the priority option, the rule maker can decide on what
number to use. We will use 0 as the number for our rules, to make them stand out from
the rest.
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Table 1: A selection of Generator ID’s
Generator name GID Comment
rules_subsystem 1 SNORT Rules Engine
tag_subsystem 2 Tagging Subsystem
portscan 100 Portscan1
http_decode 102 HTTP decode 1/2
bo 105 Back Orifice
unidecode 110 unicode decoder
stream4 111 Stream4 preprocessor
decode 116 SNORT Internal Decoder
scan2 117 portscan2
sfportscan 122 Dan Roelkers portscan
frag3 123 Marty Roesch’s ip frag reassembler

5.2 Honeypots

5.2.1 Definition of a honeypot
There are many definitions of a honeypot. They depend on the people using them, and
what they want to accomplish. Here are three possible ways of defining a honeypot, one
just as correct as another:

• a solution to lure or deceive attackers

• a technology used to detect attacks

• real computers designed to be hacked into and learned from

Spitzner [41, 42] gives the following two definitions: "A honeypot is a resource whose
value is in being attacked or compromised. This means, that a honeypot is expected to
get probed, attacked and potentially exploited. Honeypots do not fix anything. They pro-
vide us with additional, valuable information" and "A honeypot is an information system
resource whose value lies in unauthorized or illicit use of that resource".

What these definitions tell us is that honeypots are not limited to solving only one
problem. They have a wide range of application. Basically, there are two different cat-
egories of honeypots: production and research. Research honepots are used to collect
information from the network, while production honeypots are used to protect the net-
work and secure the organization. We will use a honeypot called honeyd as a research
honeypot in this thesis for the purpose of collecting information about attacks.

Honeypots can generally be divided into three different categories, low-interaction,
medium-interaction and high-interaction honeypots [41]. A high-interaction honeypot
simulates all aspects of an operating system. A low-interaction honeypot simulates only
some parts, for example the network stack. A high-interaction honeypot can be compro-
mised completely, allowing an attacker to gain full access of the system and use it to
launch further attacks. In contrast, low-interaction honeypots only simulate services that
cannot be exploited to get complete access of the honeypot. Low-interaction honeypots
are more limited, but they are useful to gather information at a higher level, e.g., learn
about network probes or worm activity. Medium-interaction honeypots fall somewhere
in between its low and high interaction counterparts in that they are home-made and not
some out-of-the-box pre-made solution. Medium-interaction honeypots can range from a
simple port listener to a complete host just sitting on a network waiting to be attacked.
Basically, these honeypots are built and completely customized by those who will be ad-
ministering them.
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Honeypots may also be divided into two broad categories; production and research.
The purpose of a production honeypot is to help mitigate risk in an organization. The
honeypot adds value to the security measures of an organization. A production honeypot
is usually synonymous with a low-interaction honeypot. This is because it is the safest in-
teraction type to deploy in production networks. The second category, research, includes
honeypots, which are designed to gather information on the community of attackers.
These honeypots are used to gather intelligence on the general threats organizations
may face, allowing the organization to better protect against those threats. Usually a
medium- or high-interaction honeypot is used for this purpose, but also low-interaction
honeypots such as honeyd could be used. The reason for honeyd to fall into this category
is because of its sophisticated way of dealing with requests, as discussed below.

5.2.2 Honeyd
Honeyd [34, 35] is a low-interaction honeypot used to simulate virtual hosts on a net-
work. The main use of honeyd is in honeynet research, typically for setting up virtual
honeypots to engage attackers. It can fake the personality of "any" operating system, and
can be configured to offer different TCP/IP "services" like HTTP, SMTP, SSH, FTP etc.
These emulated services make it possible to determine what the attackers are attempt-
ing to do and what they are looking for. This is done by creating scripts that listen on
specific ports and then interact with attackers in a predetermined manner. We use the
wuftpd.sh and apache.sh scripts in the experiments to gather information about web and
FTP attacks.

A very useful feature of honeyd is its ability to simulate an entire network within one
machine. It is even possible to define factors as hops, packet loss and latency. This lets us
simulate networks in the test lab and present a virtual network to an attacker.

5.2.3 Configuring honeyd
The following section is written based on the article [37]. A virtual honeypot is in honeyd
configured with a template created in a configuration file (honeyd.conf) that defines the
characteristics of a honeypot (OS type, ports it listens on and behaviour of emulated ser-
vices). Each template is given a name (i.e. windows, linux, default). A new template is
created by using the create command. The set command assigns a personality from a
NMAP fingerprinting file to the template. This personality determines the network be-
haviour of the given operating system that is simulated by honeyd. The set command
also defines the default behaviour for network protocols: reset, open or block. When us-
ing block, all packets for the specified protocol are dropped by default. If using reset, the
ports are closed by default. Open means that all ports are open by default. Another im-
portant command is add. This command is used to specify the services that are remotely
accessible. Bind is used to assign a template to an IP address. Sample scripts using these
commands are available in various technical reports (e.g., [16, 20], and in Appendix A
of this thesis.

5.2.4 Honeyd log files
Honeyd logs information about attacks in different log files depending on which service
the attack was pointed at. In the experiment chapter (chapter 6), we make use of two
of the honeypot’s log files. These files are web.log and honeyd.txt. In conjunction with
these two files we also include the "main" log file honeyd.log in the explanation below.

The structure of honeyd.log
All connections to and from the honeypot are logged in a file named honeyd.log. The
honeyd.log file consists of the following fields:

<date & time><protocol><seebelow><src_IP><src_port><dst_IP><dst_port:><packet_size>
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<flags><OS fingerprint>

The third field may either be S, E or -. S means the start of a new connection, E the
end of a connection and - if a packet is not belonging to any connection. On lines with E,
honeyd logs the amount of data received and sent at the end of the line. An example of
three honeyd.log entries are shown in Figure 2.

2006-03-22-13:13:27.4148 tcp(6) - 128.39.44.11 54265 128.39.44.40 80: 40 R [Linux 2.6 ]
2006-03-22-13:13:27.4959 tcp(6) S 128.39.44.11 55286 128.39.44.40 80 [Linux 2.6 ]
2006-03-22-13:13:32.5889 tcp(6) E 128.39.44.11 55286 128.39.44.40 80: 48 1058

Figure 2: Example of three honeyd.log entries

The structure of honeyd.txt
This log file is used by a number of service scripts like:

• msftp.sh

• wuftpd.sh

• ssh.sh

• telnetd.sh

In our approach to automate rule generation, we suggest that each service logs to its
own file because this makes it easier to determine what type of service was attacked. If all
services were to log to the same file, it would have been more difficult to sort the entries
in the file based on services. Another solution would be to make a script that sorts entries
based on the –MARK– line as shown below. This line gives information about destination
and source port number. As the example (Fig. 3) shows, each element of an attack is
logged between –MARK– and –ENDMARK–. In this particular attack we only need the
line with stat ../* to make the rule out of. As discussed earlier in this section we also
might need the first line to be able to determine what type of service was attacked.

--MARK--,"Fri Apr 14 14:01:07 CEST 2006","wu-ftpd/FTP","128.39.44.11",
"128.39.44.55",42512,21,
"USER anonymous
PASS nessus@nessus.org
stat ../*
PASV
",
--ENDMARK--

Figure 3: Example of a stat ../* attack

The structure of web.log
Web.log is used by the apache.sh script which is run on some of the virtual hosts on
the honeypot. The following (Fig. 4) is an example from the web.log after an attack has
occurred on a virtual SuSE host. The only information we want is to know what the
attack consisted of and what it was attacking. The first line gives us the information that
an attack against our apache script on port 80 has occurred. Also the source IP and source
port are logged on this line. On the following line the actual attack is logged. All lines
below this line are not important, and are removed before the rule generating is started.
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--MARK--,"Tue Apr 11 13:47:50 CEST 2006","apache/HTTP","128.39.44.11","128.39.44.50",33537,80,
"GET /login.html HTTP/1.1
Connection: Close
Host: 128.39.44.50
Pragma: no-cache
User-Agent: Mozilla/4.75 [en] (X11, U; Nessus)
Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, image/png, */*
Accept-Language: en
Accept-Charset: iso-8859-1,*,utf-8
",
--ENDMARK--

Figure 4: Example of an attempt to login on the web page

5.3 Nessus
In this section we explain how the vulnerability scanner or a so called penetration testing
utility called Nessus [4] works. We need a vulnerability scanner in order to control the
attacks toward our honeypot, make it possible to reproduce the experiment results and to
get a dataset containing several different attacks. Nessus’ value is to scan networks for
vulnerabilities and report if any are found. We use Nessus to scan the honeypot in order
to get a dataset containing malicious traffic. There are a number of free security scanners
available: SAINT [6], VLAD [10] and Nessus are only a few of them. In [15], Bauer states
that Nessus stands out as a viable alternative to powerful commercial products, such as ISS’
Internet Scanner and NAI’s CyberCop Scanner. He also states that Nessus in many ways
exceeds the usability and flexibility of its proprietary counterparts. Also an open source
program named Metasploit [3] has been developed to test IDS’. This program was too
difficult to use, and lacked the possibility to automate the scan in a simple manner. Be-
cause of the before mentioned flaws in other scanners, Nessus is our choice.

Nessus is a vulnerability scanner that tells the user what security flaws are present in
the system. Nessus depends on nmap to be able to do its tasks. We use Nessus because it
is a widely deployed vulnerability scanner both amongst administrators and crackers.

Once Nessus has determined which services are present (by using nmap), it performs
various checks to determine which software packages are running, which version they
are and whether they’re subject to any known vulnerabilities. Predictably, this level of
intelligence requires a good vulnerability database that must be updated periodically as
new vulnerabilities come to light. We only updated the database at installation to avoid
the probability of getting different results during the experiments. If Nessus does not
include a vulnerability check for something we would like to have, it is possible to write
our own vulnerability checks. This is not something all security scanners have, but Nes-
sus does and hence gives us the possibility to customize it after our needs. When Nessus
has finished a scan, it reports all vulnerabilities found and explains them in detail and
how to fix them.

Nessus’ Architecture

Nessus consists of two major parts: a server (nessusd) which runs all the scans, and
a client, with which one can control scans and view reports. This distributed architec-
ture makes Nessus flexible and also allows us to mix platforms if necessary. This is not
something we probably need, since we can run without problems both the server and
client on the same machine. When the client is connected to the server, a list of plug-ins
(vulnerability tests) supported by the server and a number of other options appear. (How
we configure Nessus is explained in more detail in the experiment chapter). Once a scan
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is initiated, Nessus invokes each appropriate module and plug-in as specified, beginning
with the nmap scan (if required). The results of one plug-in test determine if a subse-
quent test should be run or how. When the scan is finished, the results are sent back to
the client. We only utilize this report to ensure that the scan was successful in scanning
the service we specified.

5.4 How to generate SNORT rules
In this section we explain how we generate the rules used in the experiments. Before the
rule generating can begin, we need a dataset with malicious traffic. This is taken care
of by the honeypot and Nessus. We use Nessus to scan a specific service on a specific
virtual host on the honeypot. The traffic is also run through the SNORT IDS to see what
traffic raises alerts. Then the dataset is edited to only include data SNORT alerted on. This
is because we only want to create rules for traffic we know SNORT has a rule for. The
reason for this is that we need to have a counterpart in order to measure the differences
between the original rules and the new rules. The goal is to se if we are able to create
working rules based on information logged by a low-interaction honeypot as honeyd. We
will compare the new rules to the originals by measuring the differences based on per-
formance (False positives/False negatives), in addition to ranking each missing field by
their importance as we see it. A procedure for extracting rules from honeypot log files is
presented in the experiment chapter for both web attacks and FTP attacks. An important
part of the rule generating was to make it as automatic as possible, using only informa-
tion given by the honeypot and the standard way of writing SNORT rules. We had to use
some assumptions in the procedure regarding what fields SNORT most likely would use
for the attacks we deploy. This does not influence the results because the knowledge we
have of SNORT rules are freely available to anyone wanting to implement our procedure
into a working program. How our procedure would perform on traffic not made by Nes-
sus is a different question, but in this thesis we will only use this traffic.

All rules are generated by hand following the procedures presented in each of the
two experiments, bearing in mind that only information from the honeypot may be used.
By definition, all traffic towards a honeypot is malicious, hence all the possibilities of
creating rules, which result in false positives are greatly reduced.

5.5 Longest Common Substring algorithm
We use the LCS algorithm [22] to reduce the number of rules created. By using this algo-
rithm it is possible to create one rule for several similar attacks. This is important because
it is a relation between SNORT’s processing speed and the number of rules it loads.

The LCS algorithm [11, 22] is used to find the longest string(s) that is a substring
or are substrings of two or more strings. There are several ways of implementing this
algorithm, such as using suffix trees or dynamic programming (matrix). We chose to
use the latter because our strings are short, hence the computational overhead is not
so important. It is also the easiest to understand. The problem though is that the LCS
is not suited for polymorphic worms [31]. This is because polymorphic worms change
too much of its payload for LCS to get a good result out of. To cope with this, another
similar algorithm may be used, namely the Longest Common Subsequence [11, 38, 22].
We chose not to use this algorithm because our traffic does not include any polymorphic
attacks.

5.6 True/False Positive Ratio
True Positive Ratio (TPR) is a way of showing how good the IDS is at alerting on real
attacks. In our setting we use this to show how good our rules are compared to the
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originals. TPR is obtained by the following formula:

TPR =
TP

TP + FN

Where: TP = The number of alerts on malicious traffic, FN = The number of missing
alerts on malicious traffic. The total number of intrusions is given by TP + FN.

False Positive Ratio (FPR) shows the proportion of instances, which were not an attack
but still were alerted on. FPR is a result of the following formula:

FPR =
FP

FP + TN

Where: FP = The number of alerts on benign traffic, TN = The number of correct
decisions on benign traffic. The total number of no-intrusions is given by FP + TN.

A perfect IDS would have TPR = 1 and FPR = 0. This would result in alerts only on
malicious traffic, and no alerts on benign traffic.

The confusion matrix in Fig 5 illustrates what FP, FN, TP and TN mean.

Figure 5: Confusion matrix

5.7 Improved system for datacollection
The following section is about a data collection system which involves the use of anomaly
detection, IPS and honeypots. This system has not been tested or given a thorough study.
It is only meant as a suggestion of how to improve the amount of data collected by the
honeypot. Because of the fact that a honeypot only sees traffic directed towards it makes
our system vulnerable to attacks directed directly to the production network. We have
tried to solve this problem by designing a system based on previous work related to
honeypots and IDS’. In this section we present a rule generating system based on work
done by other authors. The general idea for data collection is based on an article written
by Anagnostakis et al. [13]. We use the shadow honeypot system in conjunction with an
anomaly detector to direct malicious traffic towards the honeypot. This is useful since a
normal honeypot only interacts on traffic destined towards it. The major problem with
this is that the honeypot must be detected by the attacker, and then the attacker must
direct the attack towards it. If the attacker does not find the honeypot interesting he/she
might attack other computers on the network instead, making us unable to log the attack
in the way a honeypot can. But with the use of an anomaly based IDS, traffic destined
to all hosts on the network can be re-directed towards the honeypot if it is beleived
to be malicious. It is then important that the honeypot is able to mislead the service
requested in such a manner that the attacker does not see the difference. Anagnostakis
et al. [13] solve this by having a mirrored version of the real service on the honeypot. The
honeypot then determines if the request is benign or not, if it is, the traffic is redirected
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to the normal service and dealt with as normal. In our approach we will use a normal
honeypot (preferably a low-interaction one if it is feasible to create scripts good enough
in order not to be revealed by the attacker) instead of the shadow honeypot. The reason
for us to prefer the low-interaction honeypot is because this type of honeypot does not
need as much maintenance and monitoring as high-interaction needs. It is also a goal to
keep it as simple as possible to make it usable to people with limited knowledge of such
systems. Sadly we did not have the time to implement this system, and it is therefore
presented as a possible future work in section 7.1. A flowchart of our presented system
is shown in figure 6.

Figure 6: Flowchart of rule generating system

Explanation to figure 6:

• The IPS is an Intrusion Prevention System (Snort-inline)

• Dest_IP eq HP_IP is only included to visualise that traffic destined to the honeypot is
of course going to the honeypot. This is not something necessary to implement, since
this is done automatically

• AD is an anomaly detector used to re-direct possible malicious traffic to the honeypot

• The honeypot interacts with the possible malicious traffic and logs as much about the
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request/attack as possible

• The signature/rule generator generates rules and signatures based on the logging
information from the honeypot

The data collected by the honeypot will be analyzed by the signature generating sys-
tem in order to create IDS rules.
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6 Experimental work

All experiments in this chapter use traffic produced by Nessus with an updated plug-in
database (as of 25th of March 2006). The reason for this is because our preliminary
experiment showed that the honeypot did not get enough different attacks to create a
dataset from. For the FTP experiment, the Nessus FTP plug-in was used for scanning.
For the web server scan, the Nessus web server plug-in was used. Nessus was configured
to only do one scan at a time because this would produce traffic in the same order
each time. It was also configured to only scan one port number (for FTP -> port 21,
for web -> port 80). This reduces the amount of unwanted traffic in the log files. Each
experiment was run on all the different OS types, which included the specific service
script. For FTP this means that host 128.39.44.33, 128.39.44.50 and 128.39.44.55 were
scanned. The same was done for the web server scan. But only the host, which triggers
the highest amount of different alerts, is used in the control experiment. During all the
scanning attempts, SNORT is used to collect alerts. All occurrences of an alert are counted,
before the alert file is edited to only include one alert from each of the triggered rules
(often one rule is triggered several times). Then the corresponding rule to each alert was
included into the file to make it easier to see what the alert alerted on. When this is done,
the alert/rule file is compared to the log file from the honeypot (For FTP, honeyd.txt.
For WEB, web.log). All the rules are then reproduced as well as they can be, based on
the honeypot log. The goal then is to measure the differences between the original and
the new rule. When the new rules have been created, the experiment is repeated with
the new rules implemented in SNORT. Then the alert file from the control experiment is
compared to the new experiment. Hopefully the new rules will trigger on the same traffic
as the originals do.

6.1 Strategy
Before the experiments can be run, it is important to be aware of all parameters able to
affect the results of the experiment.

Reliability: To ensure reliability and reproducibility in the experiments, we have done
the following:

1. Always use Nessus as a traffic generator, with the same options set each time

2. Providing a full description of how the software has been installed (Appendix A,
version numbers and hardware setup (6.2)

3. Document how the scan is executed

Type of scan: We have used Nessus as a traffic generator. The reason for this is that
Nessus has a wide range of scans available, it is free of charge, widely used for testing
IDS’ and also used by hackers to scan networks. We have used Nessus to scan our virtual
hosts with only one port at a time (horizontal scan), to be able to see which hosts give
the highest amount of different SNORT alerts. This is because we want to have as large
dataset as possible to give the experiments more validity. We ended up using the web
servers scan and the FTP scan. Another reason for us to use a security scanner instead
of leaving the honeypot on a wild network is because of the risks involved with this. A
skilled cracker might be able to "steal" our honeypot, and use it to launch attacks against
other hosts on our network or other networks. By using a traffic generator like Nessus it
is also easier to reproduce the experiment scenarios later.
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Speed of the scan: To make sure the honeypot catches all the attacks sent by Nes-
sus we have configured Nessus to only do one scan at a time. This also serves another
purpose, giving us the same order of attacks in the log files, making it much easier to
compare the results.

Honeypot type: We chose to use a low-interaction honeypot because of the security
aspects regarding high-interaction honeypots [41]. In our experiments this would not
have been a problem since we don’t use any live traffic, but if our procedure is to be used
for discovering new attacks the honeypot must be deployed in the wild.

Presentation: How to present the results is a much debated topic. The most fre-
quently used method to graphically represent FPR and TPR for IDS’ are ROC curves,
even though these curves do have some weaknesses [28]. There exist a few examples
on how to modify these curves to fit the IDS evaluation [29]. We will present the results
using tables and ratios.

Changing the configuration of the honeypot or IDS: Altering some of the configu-
ration options in SNORT may make it alert more/less often. We have agreed upon keeping
the SNORT configuration file as it is by default. The only alterations we make is what rule
files to load. This depends on what experiment is run. The configuration file used by
the honeypot is kept static during the experiments. A test experiment is run before the
real ones to make sure everything works. We also made a perl script to erase all log files
before honeyd starts to make sure everything is "clean".

6.2 Overview and technical information
In this section we show how the hosts we use are connected, and what their specifications
are.

Figure 7: Network topology

The Nessus host
Dell Optiplex GX150 (2001)
* 1 GHz Pentium III
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* 256 MB RAM
* 40 GB HD

OS = Linux ubuntu 2.6.10-10-386, fully updated
Nessus v2.2.4 for Linux, with updated plugin database as of 03.28.06

The honeypot
Dell Optiplex GX150 (2001)
* 1 GHz Pentium III
* 256 MB RAM
* 40 GB HD

OS = Linux Fedora Core 3, 2.6.12-1.1381.FC3
Honeyd v1.0a

The SNORT host
Dell Optiplex GX150 (2001)
* 1 GHz Pentium III
* 256 MB RAM
* 40 GB HD

OS = Linux ubuntu 2.6.12-9-386, NO updates
SNORT v2.3.2 (build 12) with rules updated 03.30.06

The hub
HP advanceStack Hub-8U, 10Base-T, HPJ2610B

6.3 Experiment result expectations
We do these experiments to see if the following hypothesis stands:

Hypothesis: honeyd logs sufficient data about attacks to re-create SNORT rules

This hypothesis has two sides. First, we want to see if honeyd logs enough data to
re-create a known SNORT rule and that triggers properly on the same traffic pattern as
the original. Second, we want to see if it is possible to extract important rule header and
rule option fields for SNORT rules from the honeyd logs. We expect that this hypothesis
will stand for the majority of rules we re-create because of the amount of data honeyd
logs. A quick study of the log files shows that a great deal of information is logged for
each attempted attack. So the question is if it logs enough data to re-create known SNORT
rules in such a manner that they work satisfactorily.

6.4 Measurement method
Each field from the SNORT rule is ranked by a number from 0-6, where 6 is the most
important and 0 is the least important (Table 2). We will only include fields used in the
original rules, which were triggered in the control experiment (Table 3). It is important
to note that even though a field gets the rank of one, this does not mean that the field is
needless to include. This ranking is based on what fields are important to make the rule
work with as few false positives and false negatives as possible.
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Table 2: Importance of ranking numbers
Ranking Comment
0 Systematic error. Meaning that

this is excluded from the expe-
rient because it is impossible to
automate the making of this field
based on the honeypot logs

1 Not important
2 Important for the rule to make

sense to the administrator
3 Important for performance
4 Important for performance and

correct triggering
5 Important for performance, trig-

gering and reducing FNR & FPR
6 Vital for the rule to work

34



Building IDS rules by means of a honeypot

Table 3: Ranking of rule fields
Field name Ranking Comment
protocol 6 Must be specified
src_adr 6 Use any or $EXTERNAL_NET
dst_adr 6 Name the host in the rules and in the SNORT

config file, i.e. $HTTP_SERV. This makes
SNORT work faster because it now can skip
checking the traffic against rules which don’t
match the destination address

src_port 6 Use any
dst_port 6 Same as for dst_adr
msg 2 Needed for the administrator to understand

what triggered the rule
flow 4 Important for performance because of the di-

rection of the attack
content 6 Vital to make the rule trigger
uricontent 6 (5) A 5 when used togheter with content
distance 5 Specifies how far into a packet SNORT should

ignore before searching for a pattern. Similar
to depth, but distance is relative to the last
pattern match instead of the beginning of the
packet

pcre 5 Perl regular expression, makes it possible to
trigger on slightly different versions of the
same attack

within 4 maximum of N bytes between two Content
keywords

depth 4 How deep into the packet to search
nocase 4 To be able to trigger on all case mixes of the

same attack
reference 0 Only value is for admin to be able to find

places to read about the attack. Not consid-
ered to be important because this information
can easily be found on google. Zero-day at-
tacks does not have any available references

classtype 2 Without this, priority always equals zero in
the alert

Priority 2 Used instead of classtype to set the priority di-
rectly

sid 1 Not important
rev 1 Not important

6.4.1 Measuring known signature generating systems
Earlybird
Earlybird [39] is a signature genertaing system for worms. The only example found of a
rule created by Earlybird is as follows:

drop tcp $HOME_NET any -> $EXTERNAL_NET 5000 (msg:"2712067784 Fri May 14 03:51:00 2004";
rev:1; content:"|90 90 90 90 4d 3f e3 77 90 90 90 90 ff 63 64 90 90 90 90 90|";)

We were not able to find a corresponding original SNORT rule to compare with, but a
qualified guess would be that sid, classtype and flow would have been included. Also the
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msg field is not telling the administrator anything about the attack, which we consider
as important.

Honeycomb
Honeycomb [26] is another attempt on making IDS rules automatically. We have found
two outputs from this generator, and will assess these two now. First off is a rule made
to alert on the Slammer worm:

alert udp any any -> 192.168.169.2/32 1434 (msg: "Honeycomb Fri Jul 18 11h46m33 2003 ";
content: "|04 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01
01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01
01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01
01 01 01 01 01 01 01 01 01 01 01 01 01 01 DC C9 B0|B|EB 0E 01 01 01 01 01 01 01|p|AE|B
|01|p|AE|B|90 90 90 90 90 90 90 90|h |DC C9 B0 |B|B8 01 01 01 01|1|C9 B1 18|P|E2 FD|5
|01 01 01 05|P|89 E5|Qh.dllhel32hkernQhounthickChGetTf|B9|llQh32.dhws2_f|B9|etQhsockf
|B9|toQhsend|BE 18 10 AE|B|8D|E|D4|P|FF 16|P|8D|E|E0|P|8D|E|F0|P|FF16|P|BE 10 10 AE|B|
8B 1E 8B 03|=U|8B EC|Qt|05 BE 1C 10 AE|B|FF 16FF D0|1|C9|QQP|81 F1 03 01 04 9B 81 F1 01
01 01 01|Q|8D|E|CC|P|8B|E|C0|P|FF 16|j|11|j|02|j|02 FF D0|P|8D|E|C4|P|8B|E|C0|P|FF 16
89 C6 09 DB 81 F3|<a|D9 FF 8B|E|B4 8D 0C|@|8D 14 88 C1 E2 04 01 C2 C1 E2 08|)|C2 8D 04
90 01 D8 89|E|B4|j|10 8D|E|B0|P1|C9|Qf|81 F1|x|01|Q|8D|E|03|P|8B|E|AC|P|FF D6 EB|"; )

Next is the rule created for the Code Red II worm:

alert tcp 80.0.0.0/8 any -> 192.168.169.2/32 80 (msg: "Honeycomb Mon May 5 16h59m09 2003
"; flags: A; flow: established; content: "u|08 81|.0|9A 02 00 00 0F 84 C4 00 00 00
C7|F0|9A 02 00 00 E8 0A 00 00 00|CodeRedII|00 8B 1C|$|FF|U|D8|f|0B C0 0F 95 85|8|FE FF
FF C7 85|P|FE FF FF 01 00 00 00|j|00 8D 85|P|FE FF FF|P|8D 85|8|FE FF FF|P|8B|E|08 FF|
p|08 FF 90 84 00 00 00 80 BD|8|FE FF FF 01|thS|FF|U|D4 FF|U|EC 01|E|84|i|BD|T|FE FF
FF|,|01 00 00 81 C7|,|01 00 00 E8 D2 04 00 00 F7 D0 0F AF C7 89|F4|8D|E|88|Pj|00 FF|u|08
E8 05 00 00 00 E9 01 FF FF FF|j|00|j|00 FF|U|F0|P|FF|U|D0|Ou|D2 E8|;|05 00 00|i|BD|T|FE
FF FF 00|\&|05 81 C7 00|\&|05|W|FF|U|E8|j|00|j|16 FF|U|8C|j|FF FF|U|E8 EB F9
8B|F4)E|84|jd|FF|U|E8 8D 85|<|FE FF FF| P|FF|U|C0 0F B7 85|<|FE FF FF|=|88 88 00 00|s|
CF 0F B7 85|>|FE FF FF 83 F8 0A|s|C3|f|C7 85|p|FF FF FF 02 00|f|C7 85|r |FF FF FF
00|P|E8|d|04 00 00 89 9D|t|FF FF FF|j|00|j|01|j|02 FF|U|B8 83 F8 FF|t|F2
89|E|80|j|01|Th.f|04 80 FF|u|80 FF|U|A4|Yj|10 8D 85|p|FF FF FF|P|FF|u|80 FF|U|B0 BB 01
00 00 00 0B C0|tK3|DB FF|U|94|=3’|00 00|u?|C7 85|h|FF FF FF 0A 00 00 00 C7 85|l|FF FF
FF 00 00 00 00 C7 85|‘|FF FF FF 01 00 00 00 8B|E|80 89 85|d|FF FF FF 8D 85|h|FF FF
FF|Pj|00 8D 85|‘|FF FF FF|Pj|00|j|01 FF|U|A0 93|j|00|Th.f|04 80 FF|u|80 FF|U|A4|Y|83
FB 01|u1|E8 00 00 00 00|X-|D3 03 00 00|j|00|h|EA 0E 00 00|P|FF|u|80 FF|U|AC|=|EA 0E 00
00|u|11|j|00|j|01 8D 85|\|FE FF FF|P|FF|u|80 FF|U|A8 FF|u|80 FF|U|B4 E9 E7 FE FF FF BB
00 00 DF|w|81 C3 00 00 01 00 81 FB 00 00 00|xu|05 BB 00 00 F0 BF|‘|E8 0E 00 00 00
8B|d$|08|dg|8F|"; )

As both these examples show, Honeycomb only includes rule options that are neces-
sary to make the rule trigger. Both examples are without priority, sid, reference
and rev (these options are easy to automate, but still they have chosen to leave them
out). As it seems, this rule generator is good at extracting signatures from the honeypot,
but not very good at creating "complete" SNORT rules.

6.5 FTP scan experiment

6.5.1 How the experiment is conducted
The virtual host on the honeypot which gives the highest amount of different alerts is
used in this experiment (a Linux host running the wuftpd.sh script). This virtual host is
then attacked by Nessus’ FTP scan. Another machine running SNORT is checking the traffic
produced by Nessus and the virtual host, and giving alerts on traffic it finds malicious.

6.5.2 Experiment 1 - Control
The following information is gathered from the log file where honeyd logs ftp attacks
(honeyd.txt). Honeyd logged this information after a Nessus FTP scan against one of the
honeypot’s virtual hosts. In this particular case it was a Linux host with the wuftpd.sh
script, which was attacked. Only the strings with a corresponding rule are listed here.
The actual log file consists of 353 strings.
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• RETR .rhosts

• stat ../*

• SITE exec /bin/sh -c bin/id

• SITE exec /bin/sh -c /usr/bin/id

• CWD ..%20

• CWD ..%20

• CWD ~nonexistinguser

• RETR .forward

• CWD ~root

• SITE EXEC %p

• CWD ~root

6.5.3 Experiment 2 - New FTP rules
Based on the information from the section above, we want to know how good rules
we can make. We will use the measurement method from subsection 6.4 to make some
statistics showing the quality of the new rule. The following experiment is conducted in
the same manner as the control experiment above. The only difference is that we now
switch the original rules with the new rules we have created.

FTP scan against a virtual Linux machine with a wuftpd.sh script
In this section we will try to create SNORT rules based on the strings from Section 6.5.2.
The goal is to see if we are able to make useful rules based on information from the
honeypot. We will compare the new rules to the originals by measuring the difference
based on the ranking system found in Section 6.4.

Before the process of creating rules started, the honeypot logfile was edited to remove
strings which were irrelevant. These string were:
• –MARK–,"Mon Apr 3 19:09:20 CEST 2006","wu-ftpd/FTP","128.39.44.11","128.39.44.55",60699,21,

• –ENDMARK–

• USER

• PASS

• PASV

• QUIT

• ",

• SYST

• CWD /

Procedure for creating FTP rules
We now present a new algorithm to automate FTP rule generation:

int $count = 1000000; \\ used for sid numbering
int $X = 5; \\ used for LCS minimum output
string $cont; \\ storing content (signature)

Use "grep" to remove irrelevant data in the log file.
Sort the file alphabetically.
If many lines starting with equal content (3 or more), use LCS to
find what is equal. (A LCS result should never be shorter than X characters,
this is because a to short string might trigger on numerous strings it has
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nothing to do with).

set X; \\ Promt user for minimum LCS output

while (honeyd.txt not empty){
$cont="string from file"

print to rulefile {
alert tcp $EXTERNAL_NET any -> $HOME_NET $FTP_PORTS (msg:"NEW FTP $cont";
flow:to_server,established; content:"$cont"; nocase; priority:0;
sid:$count; rev:1;)

$count ++;
else
ERROR
}

This procedure is an attempt to automate the creating of the rules. All fields in the
alerts created are static because they were in use in all the original files we tried to recre-
ate. The information for flow and protocol is available in the honeypot file honeyd.log,
and how to extract this information and interpret it is presented in section 6.7. We also
use nocase in all of our rules to make sure SNORT ignore the case of the letters. This may
lead to false positives, but this is highly unlikely. Since the honeyd.txt file only includes
FTP attacks in our experiment, we do not have to do any checks to see if it really is a
FTP attack. If deployed in the wild, each service would log to its own file. The informa-
tion needed to distinguish what service the attack was meant for is also available in the
honeyd.txt file, so it is possible to log everything in one file if desired. Using a database
to store the attacks in is also a possibility.

The rules we made by hand from the honeypot log, are shown below. These rules
have been made following the procedure above (section 6.5.3. The number inside the []
is the SID number of the original rule.

alert tcp $EXTERNAL_NET any -> $HOME_NET 21 (msg:"NEW FTP RETR .rhost";
flow:to_server,established; content:"RETR .rhost"; nocase; priority:0;
sid:1000000; rev:1;)

Different from the original: [335]

• content:".rhost";

• nocase not supposed to be included

• no reference

• no classtype:suspicious-filename-detect

alert tcp $EXTERNAL_NET any -> $HOME_NET 21 (msg:"NEW FTP stat ../*";
flow:to_server,established; content:"stat ../*"; nocase; priority:0;
sid:1000001; rev:1;)

Different from the original: [1777]

• content:"STAT";

• no pcre:"/^STAT\s+[^\n]*\x2a/smi";

38



Building IDS rules by means of a honeypot

• no reference

• no classtype:attempted-dos

alert tcp $EXTERNAL_NET any -> $HOME_NET 21 (msg:"NEW FTP SITE exec
/bin/sh -c /usr/bin/id"; flow:to_server,established;
content:"SITE exec /bin/sh -c /usr/bin/id"; nocase; priority:0;
sid:1000002; rev:1;)

Different from the original: [361]

• content:"SITE";

• content:"EXEC";

• no pcre:"/^SITE\s+EXEC/smi";

• no distance:0

• no reference

• no classtype:bad-unknown

alert tcp $EXTERNAL_NET any -> $HOME_NET 21 (msg:"NEW FTP SITE exec
/bin/sh -c /bin/id"; flow:to_server,established;
content:"SITE exec /bin/sh -c /bin/id"; nocase; priority:0;
sid:1000003; rev:1;)

Different from the original: [361]

• content:"SITE";

• content:"EXEC";

• no pcre:"/^SITE\s+EXEC/smi";

• no distance:0

• no reference

• no classtype:bad-unknown

alert tcp $EXTERNAL_NET any -> $HOME_NET 21 (msg:"NEW FTP CWD ..%20.";
flow:to_server,established; content:"CWD ..%20."; nocase; priority:0;
sid:1000004; rev:1;)

Different from the original: [360]

• content:".%20."

• no reference

• no classtype:bad-unknown

alert tcp $EXTERNAL_NET any -> $HOME_NET 21 (msg:"NEW FTP
CWD ~nonexistinguser"; flow:to_server,established;
content:"CWD ~nonexistinguser"; nocase; priority:0; sid:1000005; rev:1;)

Different from the original: [1672]

• content:"CWD";
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• no pcre:"/^CWD\s+~/smi";

• no reference

• no classtype:denial-of-service

alert tcp $EXTERNAL_NET any -> $HOME_NET 21 (msg:"NEW FTP RETR .forward";
flow:to_server,established; content:"RETR .forward"; nocase; priority:0;
sid:1000006; rev:1;)

Different from the original: [334]

• content:".forward";

• nocase not supposed to be included

• no reference

• no classtype:suspicious-filname-detect

alert tcp $EXTERNAL_NET any -> $HOME_NET 21 (msg:"NEW FTP CWD ~root";
flow:to_server,established; content:"CWD ~root"; nocase; priority:0;
sid:1000007; rev:1;)

Different from the original: [336, 1672]

• content:"CWD"; nocase; content:"~root"; distance:1; nocase; [336]

• no pcre:"/^CWD\s+~root/smi"; [336]

• content:"CWD"; [1672]

• no pcre:"/^CWD\s+~/smi"; [1672]

• no reference

• no classtype:bad-unknown

alert tcp $EXTERNAL_NET any -> $HOME_NET 21 (msg:"NEW FTP SITE EXEC %p";
flow:to_server,established; content:"SITE EXEC %p"; nocase; priority:0;
sid:1000008; rev:1;)

Different from the original: [361]

• content:"SITE";

• content:"EXEC";

• no pcre:"/^SITE\s+EXEC/smi";

• no distance:0

• no reference

• no classtype:bad-unknown

Results from testing the new rules compared to the originals
In this experiment we have added the new rules into SNORT. Then we have done exactly
the same as we did in the control experiment.

Alert statistics overall:

• False negatives: 0
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Table 4: Number of alerts from each rule when a Nessus FTP scan is run
Nr Org. rulename New rule Org. rule
1 .rhosts 1 1
2 EXPLOIT STAT * 1 1
3 SITE EXEC 3 (3 rules) 3
4 serv-u dir. trav 2 2
5 CWD ~ attempt 1 3
6 .forward 1 1
7 CWD ~root 2 2

• False positives: 0

As we can see in Table 4, the new rules alert on the same traffic as the originals.

Statistics

Table 5: Differences between original and new rules
Ranking Occurences Comment
Rank 0 All ref
Rank 1 0
Rank 2 All classtype (using priority directly)
Rank 3 0
Rank 4 2 nocase not supposed to be included
Rank 5 7 pcre and distance missing
Rank 6 0
Equal to original 0 Rank 0-2 not considered
Almost equal to origi-
nal

3 Only difference is that our rules also in-
clude the FTP commands (RETR, SITE
etc.). Rank 0-2 not considered

Table 5 shows that we have many rules missing fields with the rank of 5. The con-
sequence of missing the pcre1 field is not important since our procedure creates rules
based on entire strings in the honeypot log file (exact content matches). We do however
suffer from performance loss if several of our self generated rules could have been re-
placed by one rule using pcre. A missing distance results in lower performance, since
SNORT would continue scanning the whole packet instead of stopping when the distance
is achieved. The difference in number of CWD ~ attempt alerts in table 4 is because the
original rule also alerts on the two occurences with CWD ~root.

Here is an excerpt from the bottom of the SNORT alert file, both the control and the
experiment:

Experiment alerts when using the new rules
[**] [1:1000007:1] NEW FTP CWD ~root [**]
[Priority: 0]
04/14-15:34:41.376347 128.39.44.11:44798 -> 128.39.44.55:21
TCP TTL:64 TOS:0x0 ID:59088 IpLen:20 DgmLen:62 DF
***AP*** Seq: 0xEC1C4D5 Ack: 0xC5B02A19 Win: 0x5B4 TcpLen: 32
TCP Options (3) => NOP NOP TS: 1453204114 30225214

1If the exact format of the content we try to match is known, content should be used. For any variable data,
use pcre.
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Next are the alerts from the control experiment
[**] [1:336:10] FTP CWD ~root attempt [**]
[Classification: Potentially Bad Traffic] [Priority: 2]
04/03-19:11:40.084219 128.39.44.11:60752 -> 128.39.44.55:21
TCP TTL:64 TOS:0x0 ID:12564 IpLen:20 DgmLen:62 DF
***AP*** Seq: 0x9A16AD01 Ack: 0xEFC0A422 Win: 0x5B4 TcpLen: 32
TCP Options (3) => NOP NOP TS: 515677826 30225254
[Xref => http://cve.mitre.org/cgi-bin/cvename.cgi?name=1999-0082]
[Xref => http://www.whitehats.com/info/IDS318]

[**] [1:1672:11] FTP CWD ~ attempt [**]
[Classification: Detection of a Denial of Service Attack] [Priority: 2]
04/03-19:11:40.084219 128.39.44.11:60752 -> 128.39.44.55:21
TCP TTL:64 TOS:0x0 ID:12564 IpLen:20 DgmLen:62 DF
***AP*** Seq: 0x9A16AD01 Ack: 0xEFC0A422 Win: 0x5B4 TcpLen: 32
TCP Options (3) => NOP NOP TS: 515677826 30225254
[Xref => http://cve.mitre.org/cgi-bin/cvename.cgi?name=2001-0421][Xref =>
http://www.securityfocus.com/bid/9215][Xref =>
http://www.securityfocus.com/bid/2601]

As we see, both the original rule-set and the new rule-set alert on the same traffic
when exactly the same traffic is replayed against the honeypot. The only difference is that
the original rule set alerts twice on the ~root attack, where as the new rule set only alerts
once. The downside is that the original rule set has a general rule for attacks containing
CWD ~, where as the new rule set has one rule for each different attack containing this
string (one rule for ~root, and one for ~nonexistinguser. With a larger data set it
would probably have been easier to find similarities in the attacks, and hence create more
general rules. Another important difference is that the new rules always have a priority
= 0. This is because we substitute the classtype option with priority, to get a special
priority for all new rules. The reason for doing this is because we did not manage to
extract the information needed to classify the attacks into classtypes. We then had three
options, either use priority directly, do not include priority at all or make a new classtype
for each service we create new rules for. (One classtype for zero-day web attacks and one
for zero-day FTP attacks.) We chose the first option, because this gives the administrator
an easy job if he wants to change the priority (if he finds the rule not so important).

Conclusion
In this experiment we were able to create SNORT rules based on the honeypot logs. These
rules performed equally compared to the original rules used by SNORT. This only show
that the honeypot logs sufficient information to re-create the rules, but not necessarily
that our rules are just as good as the originals. If we were to create rules based only on
the honeypot log, many new problems would occur. How to know what in the log file
is an actual attack is one problem. This is not really an issue that will be considered in
this thesis because by definition all traffic entering a honeypot is considered malicious.
Therefore, the very usage of honeypots is a solution to this problem. But even though
this is supposed to be the case, an attacker may very well use benign traffic in parts of
his attack. Normal user may also connect to the honeypot by mistake. This would lead to
a lot of false positives. So in the case of FTP attacks we conclude that the honeypot logs
the information needed, but some kind of filtering must be used on the log file to remove
known benign traffic and irrelevant strings like those listed below. This can easily be
done by a script using the grep command, in conjunction with a known good database.
It is important that the grep commands are specific enough so that they don’t remove
for instance all occurrences with "CWD", when "CWD ~" and CWD ..%20" is considered
malicious traffic. The grep commands must therefore be applied with caution. In this
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case, "CWD /" and "CWD" could be removed, but not any other occurrences like the
before mentioned "CWD ~". By doing this, the probability of removing a new attack is
greatly reduced, hence reducing the false negative rate. Another way of reducing benign
traffic from the dataset is to use honeypot systems specifically developed to cope with
the problem of getting benign traffic into the honeypot [45, 13].

We do not know what the result would have been if the amount of traffic had been
larger. The only thing we proved here is that the honeypot logs the information needed
to create the rules corresponding to the traffic produced by a Nessus FTP scan. Our rules
also seem to be good enough to alert on the same attacks as the originals do. The major
difference is that the original rules are more general, leading to less rules. They are also
less susceptive to variations in the attacks because of the use of pcre.

6.6 WEB SERVER scan experiment

6.6.1 How the experiment is conducted
The virtual host on the honeypot, which gives the highest amount of different alerts, is
used in this experiment (a SUsE host running an apache.sh script). This virtual host is
then attacked by Nessus’ web servers scan. Another machine running SNORT is checking
the traffic produced by Nessus and the virtual host, and giving alerts on traffic it finds
malicious.

6.6.2 Experiment 1 - Control
The following information is gathered from the log file where honeyd logs web attacks.
Honeyd logged this information after a Nessus web server scan against one of the hon-
eypots virtual hosts (128.39.44.50). In this particular case it was a SUsE host with an
apache.sh script which was attacked. SNORT loads all default rule files except snmp.rules
and icmp.rules. Below is a listing of the strings, which triggered alerts in the control ex-
periment. We will consider all traffic not listed here but in the web.log file, as benign to
make it more manageable. The actual log file consists of approximately 850 lines.

• GET /login.html HTTP/1.1

• GET /robots.txt HTTP/1.1

• GET /CVS/Entries HTTP/1.1

• GET /Admin_files/ HTTP/1.1

• GET /_vti_bin/ HTTP/1.1

• GET /admin_/ HTTP/1.1

• GET /backup/ HTTP/1.1

• GET /backups/ HTTP/1.1

• GET /cbi-bin/ HTTP/1.1

• GET /doc/ HTTP/1.1

• GET /iisadmin/ HTTP/1.1

• GET /iissamples/ HTTP/1.1

• GET /intranet/ HTTP/1.1

• GET /webalizer/ HTTP/1.1

• GET /_mem_bin/ HTTP/1.1

• GET /dms0/ HTTP/1.1

• GET /oprocmgr-status/ HTTP/1.1

• GET /server-info/ HTTP/1.1

• GET /server-status/ HTTP/1.1

• GET /srchadm/ HTTP/1.1
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• GET /test-cgi/ HTTP/1.1

• GET /way-board/ HTTP/1.1

• GET /webcart/ HTTP/1.1

• GET /webcart-lite/ HTTP/1.1

• GET /www-sql/ HTTP/1.1

• GET /~root HTTP/1.1

• GET /DB4Web/ HTTP/1.1

• "PROPFIND / HTTP/1.1

• GET /mod_gzip_status HTTP/1.1

• "SEARCH / HTTP/1.1

• "GET / root HTTP/1.1

• GET /<script>cross_site_scripting.nasl</script> HTTP/1.1

• GET /NULL.ida HTTP/1.1

• GET /NULL.printer HTTP/1.1

• GET /_vti_bin/fpcount.exe HTTP/1.1

• GET /_vti_bin/shtml.dll/_vti_rpc HTTP/1.1

• GET /iisadmpwd/aexp.htr HTTP/1.1

• GET /iisadmpwd/aexp2.htr HTTP/1.1

• GET /iisadmpwd/aexp2b.htr HTTP/1.1

• GET /iisadmpwd/aexp3.htr HTTP/1.1

• GET /iisadmpwd/aexp4.htr HTTP/1.1

• GET /iisadmpwd/aexp4b.htr HTTP/1.1

• GET /search?NS-query-pat=../../../../../../../../../etc/passwd HTTP /1.1

• GET /_vti_inf.html HTTP/1.1

• GET /a.jsp/<SCRIPT>alert(document.domain)</SCRIPT> HTTP/1.1

• GET /cgi-bin/test.cgi.bat? | echo HTTP/1.1

• GET ../../../../../../etc/passwd HTTP/1.1

• GET /../../../../../../../../../etc/passwd HTTP/1.1

• GET //../../../../../../../../../etc/passwd HTTP/1.1

• GET /%2e%2e/%2e%2e/%2e%2e/%2e%2e/%2e%2e/etc/passwd HTTP/1.1

• GET /././././././../../../../../etc/passwd HTTP/1.1

The original log file has been manipulated to only include strings which are important
to generate rules out of. This manipulation has been done by using grep2. From the
example below, we want to keep the string containing "GET /login.html. This is done
by removing the –MARK– string and all strings below "GET. The options used with grep
are -w for words and -v if we want to keep everything except the lines containing the
pattern we search for. In the case of the example (Fig. 8) we could use the following
command: less web.log | grep GET > tmp. This would give us all lines containing GET.
But since there are attacks that do not use a GET line, we had to manipulate the log file
the hard way by removing lines without useful information with grep -w -v <a word>.

6.6.3 Experiment 2 - New rules
This experiment is conducted in the same way as the control, but with the new rules
loaded instead of the original web rules. The same traffic is sent towards the virtual

2General Regular Expression Parser. Grep is a UNIX program that looks for patterns found in files and reports
on their occurrences.
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--MARK--,"Tue Apr 4 12:46:01 CEST 2006","apache/HTTP","128.39.44.11",
"128.39.44.50",44797,80,
"GET /login.html HTTP/1.1
Connection: Close
Host: 128.39.44.50
Pragma: no-cache
User-Agent: Mozilla/4.75 [en] (X11, U; Nessus)
Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, image/png, */*
Accept-Language: en
Accept-Charset: iso-8859-1,*,utf-8
",
--ENDMARK--

Figure 8: How a web attack looks like in the honeypot’s log file web.log

host (not only the strings listed above). We still consider only the strings from above
to be malicious traffic, and all other traffic as benign. This is against the definition of
traffic towards a honeypot, but makes it easier to measure the difference in performance
(meaning number of alerts). We use this approach because we need to be able to compare
the original rules with the ones we create.

WEBSERVER-scan against a virtual SUsE machine with an apache.sh script
In this section we try to create SNORT rules based on the strings from section 6.6.2.
The goal is to see if we are able to create useful rules based on that information. We
will compare the new rules to the originals by measuring the differences based on the
experiment results found in the next section, in addition to the ranking of each missing
field. All the rules are made by hand following the procedure presented below, bearing
in mind that only information from the honeypot may be used. Since all the attacks
against the web server consist of "some string", we will use "content" and "uricontent" as
the triggering field in our rules. The difference between the two is that "uricontent" only
checks the URI3 of an HTTP packet as opposed to the whole packet as "content" does.
One major difference between the experiment and what would have been done in the
"wild", is that there would have been created rules for all the strings in the web.log file.
This is because of the fact that all traffic towards a honeypot is considered malicious.

Procedure for creating web rules
The following is a sketch of the web rules creating procedure used in this thesis:

int $count = 1000000; \\ used for sid numbering
int $X = 5; \\ used for LCS minimum lenght
string $cont, $cont2; \\ storing content (signature)
string $cont_OR_uri; \\ use content or URIcontent
int $one_OR_two; \\ one or two contents switch

Use "grep" to remove irrelevant data in the log file.
Sort the file alphabetically.
if many lines starting with equal content (3 or more), use LCS to
find what is equal. (Minimum result from LCS is X characters).
$one_OR_two = 1;

while (file not empty){
if !(../ || %2e%2e || ./ in logfile line) {
$cont_OR_uri=uricontent:;

3Uniform Resource Identifier. SNORT runs the URI trough the http_inspect pre-processor to normalize it. The
pre-processor fix URI’s that have been mangled in an attempt to evade the IDS. When using "uricontent" only
the actual content of the URI is considered, not http:\\ ,GET and so on.
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$cont="string before HTTP/1.1" (Not include GET if present)
}

else
$cont_OR_uri=content:;
if (string before and after ../ or %2e%2e or ./) {
$cont="string before first ../ or %2e%2e or ./
$cont2="string after last ../ or %2e%2e or ./ and HTTP/1.1"
$one_OR_two=2
}
else
$cont="string after last ../ or %2e%2e or ./"

if (one_OR_two = 1) {
print to rulefile {
alert tcp $EXTERNAL_NET any -> $HOME_NET $HTTP_PORTS (msg:"NEW WEB
$cont + $cont2"; flow:to_server,established; $contORuri:$cont;
nocase; priority:0; sid:$count; rev:1;)
}

elseif (one_OR_two = 2) {
print to rulefile {
alert tcp $EXTERNAL_NET any -> $HOME_NET $HTTP_PORTS (msg:"NEW WEB
$cont"; flow:to_server,established; $contORuri:$cont; nocase;
priority:0; $conORuri:$cont2; nocase; sid:$count; rev:1;)
}
else
ERROR
$count ++;
}

This procedure is an attempt to automate the creating of the rules. Most fields in the
print section are static because they always appear in the way they do here in the corre-
sponding originals. The information for flow and protocol is available in the honeypot
file honeyd.log (see section 6.7). We also use nocase in all of our rules to make sure
SNORT ignore the case of the letters. The procedure is created based on knowledge from
the control experiment to re-created known rules, and hence not valid if deployed in the
wild. We still create rules only based on the honeypots log files, but a little knowledge of
the originals, like the flow, is statically implemented.

Below are three examples of rules made by hand from the honeypot log. These rules
have been made following the procedure above. For a complete listing of rules please see
Appendix B.

alert tcp $EXTERNAL_NET any -> $HOME_NET $HTTP_PORTS (msg:"NEW WEB
/login.htm"; flow:to_server,established; uricontent:"/login.htm"; nocase;
priority:0; sid:1000010; rev:1;)

Different from the original: [1564]

• no reference

• no classtype:web-application-activity
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alert tcp $EXTERNAL_NET any -> $HOME_NET $HTTP_PORTS (msg:"NEW WEB
/robots.txt"; flow:to_server,established; uricontent:"/robots.txt";
nocase; priority:0; sid:1000011; rev:1;)

Different from the original: [1852]

• no reference

• no classtype:web-application-activity

alert tcp $EXTERNAL_NET any -> $HOME_NET $HTTP_PORTS (msg:"NEW WEB
/CVS/Entries"; flow:to_server,established; uricontent:"/CVS/Entries";
nocase; priority:0; sid:1000012; rev:1;)

Different from the original: [1551]

• no reference

• no classtype:web-application-activity

Results from testing the new rules compared to the originals
In this experiment we have added the new rules into SNORT. Then we have done exactly
the same as we did in the control experiment.

SID Rulename New rule Org. rule
1564 login.htm access 1 1
1852 robots.txt access 1 1
1551 /CVS/Entries access 1 1
1212 Admin_files access 1 1
1288 /_vti_bin/ access 3 3
1385 mod-plsql admin access 1 1
1213 backup access (two rules) 2 2
1668 /cgi-bin/ access 12 1
1560 /doc/ access 1 1
993 iisadmin access 1 1
1402 iissamples access 1 1
1214 intranet access 1 1
1847 webalizer access 1 1
1286 _mem_bin 1 1
1872 Oracle Dynamic Monitoring Services

dms access
1 1

1874 Oracle Java Process Manager access 1 1
1520 server-info access 1 1
1521 server-status access 1 1
1040 srchadm access 1 1
835 test-cgi access 1 2
896 way-board access 1 1
1125 webcart access 1 1
1848 webcart-lite access 1 1
887 www-sql access 1 1
1145 /~root access (two rules) 2 2
2060 DB4Web access 1 1
1079 WebDAV propfind access 1 1

Continued on next page
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SID Rulename New rule Org. rule
974 Directory traversal attempt No 6
1112 http directory traversal No 7
2156 mod_gzip_status access 1 1
2091 WEBDAV nessus safescan attempt No 1
1070 WebDAV search access 1 1
1497 cross site scripting attempt (two rules) 2 2
1242 .ida access 1 1
971 .printer access 1 1
1013 fpcount access 1 1
940 shtml.dll 1 1
937 _vti_rpc (included in another rule) No 1
1018 iisadmpwd attempt 6 6
987 .htr access 6 6
1487 /iisadmpwd/aexp2.htr access (in-

cluded in another rule)
No 1

1828 iPlanet Search directory traversal at-
tempt

1 1

1122 /etc/passwd 6 6
990 _vti_inf.html access 1 1
976 .bat? access (included in another rule,

but does not work)
No 1

Table 6: Number of alerts from each rule when a Nessus web
servers scan is run

As Table 6 shows, the new rules perform pretty well. The major difference is that
the new rules usually alert on the complete string in which the attack is included. This
makes the new rules less specific then the originals, but they do alert, which is the most
important part. One must bear in mind though that this experiment uses static traffic,
meaning that every time it is run it produces the same traffic. Because of this it is difficult
to measure the false negative and false positive rate expected when run in the wild.

What traffic caused different alerts?
By using the Unix command diff4, we get the following differences when comparing
which strings the new rules alerted on comparing to the originals.

> "GET /cgi-bin/zQbVo4pJ9OXq.html HTTP/1.1
> "GET /cgi-bin/zQbVo4pJ9OXq.cgi HTTP/1.1
> "GET /cgi-bin/zQbVo4pJ9OXq.sh HTTP/1.1
> "GET /cgi-bin/zQbVo4pJ9OXq.pl HTTP/1.1
> "GET /cgi-bin/zQbVo4pJ9OXq.inc HTTP/1.1
> "GET /cgi-bin/zQbVo4pJ9OXq.shtml HTTP/1.1
> "GET /cgi-bin/zQbVo4pJ9OXq.php HTTP/1.1
> "GET /cgi-bin/zQbVo4pJ9OXq.php3 HTTP/1.1
> "GET /cgi-bin/zQbVo4pJ9OXq.cfm HTTP/1.1
> "GET /cgi-bin/com5.pl HTTP/1.1
< "GET /cgi-bin/test-cgi.bat?|echo HTTP/1.1 (/cgi-bin triggers this rule,

but it should be /test-cgi)

4Diff is a file comparison utility that outputs the differences between two files.
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All lines with ">" is traffic the new rules alerted on but not the originals. (False positives).
All lines with "<" is traffic the new rules should have alerted on (False negatives).

Statistics

Table 7: Differences between original and new rules
Ranking Occurences Comment
Rank 0 All ref
Rank 1 0
Rank 2 All classtype missing, using priority instead
Rank 3 0
Rank 4 3 within, nocase and depth:8 are missing
Rank 5 1 pcre is missing
Rank 6 3 content, uricontent
No rule 4 sid:974,1112,2091,976,(937,1487). 937 and

1487 are included in other rules
Equal to origi-
nal

20 Rank 0-2 not considered

Almost equal to
original

9 Only difference is a / to much in the uricontent
or content field. Rank 0-2 not considered

Table 7 shows that we are having more problems re-creating rules in this experiment
than we had in the FTP experiment. We have fewer occurrences with rank 5, but here
we have 3 occurrences with the rank of 6. The occurrences with rank 6 are re-created
rules missing one of two content elements. Because of the simple procedure we use for
extracting content matching strings, we manage to make the rule work with only one
of the two content elements. This makes our rules more specific until we have enough
almost similar attacks to extract similarities from. A reason for us to have more problems
re-creating rules for web attacks is probably because we have about 6 times as many
attacks in this experiment. The information needed to fix the missing fields in rank 6
is available in the honeypot log, but our simple procedure is not able to extract this
information. The information needed to re-create the rules we did not manage to re-
create was not found in the web.log file used in this experiment. It is possible that this
information can be found in honeyd.log or by using tcpdump on all traffic in and out
from the honeypot. Alert statistics not including rules we did not manage to re-create at
all (Rows in table 6 with "No"):

• False negatives: 1/51 = 1,961% (Because the rule did not work. Really 0 because this
string is alerted on by another rule)

• False positives: 11 (really 10 because one of the false positives are actually an attack
supposed to be alerted on by a rule we did not manage to re-create)

Alert statistics overall:

• False negatives: 15 (Mostly because we did not manage to re-create some of the rules)

• False positives: 11 (really 10 because one of the false positives is actually an attack
supposed to be alerted on by a rule we did not manage to re-create)

If we consider each line from the list found in 6.6.2 as attacks (51 attacks), and only
demand that an alert for each line is present (regardles of what it actually alert on), we
get the following TPR/FPR for the new rules:

TPR =
51

51 + 0
= 1
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FPR =
10

10 + 773
= 0, 128

The original rules are used as a reference here, hence the TPR = 1 and the FPR = 0.
This does not mean that the original rules perform perfectly, but we consider the original
rules as perfect in order to have something to compare with. As we can see from the
calculation above, the new rules have a TPR = 1, and a FPR = 0,128. This shows that
the new rules alert on all lines found in 6.6.2, but also alert on some lines not considered
as attacks. Since this system is supposed to detect zero-day attacks, we believe that a few
False Positives is a good tradeoff to get a TPR = 1.

If we consider all traffic collected by the honeypot as malicious (834 attacks, as the
definition of a honeypot states), we get the following TPR and FPR:

Original rules:

TPR =
51

51 + 783
= 0, 06115

FPR =
0

0 + 0
= 0

New rules:

TPR =
61

61 + 773
= 0, 073

FPR =
0

0 + 0
= 0

These results show that our rules actually perform better than the originals. The TPR
for our new rules would be considerable higher if we had carried out a full-scale experi-
ment. It is important to note that we only tried to make rules for attacks SNORT alerted on
in the control experiment. We claim that it is possible to create rules for the Nessus web
servers scan that would give a TPR ≈ 1, based only on data collected by the honeypot.

What caused the differences?
To be certain Nessus sends the same traffic each time, we used the Linux command diff
to find differences between the first and second time the experiment was run. To see the
full output from this test, see Appendix C. As this shows, the differences between the first
and second attempt is irrelevant for the experiment.

The new rules, which performed differently from the control are:

• backup

• cgi-bin access

• test-cgi access

• ~root access

• cross site scripting attempt

• + the rules which were not re-created

Number one in table 8 is a result of the procedure failing to see that /backup/ and
/backups/ could be in one rule. The result is that two rules are created, only resulting in
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Table 8: Differences between original and new rules
Nr Rulename Org. rule New rule
1 /backup uricontent:"/backup" uricontent:"/backup/"
2 /cgi-bin uricontent:"/cgi-bin/

+ content:"/cgi-bin/
HTTP"

uricontent:"/cgi-bin/"

3 /test-cgi uricontent:"/test-cgi" "uricontent:"/test-cgi/"
4 /~root "uricontent:/~root" "uricontent:"/~root/"
5 cross site script-

ing
content:"<SCRIPT>" uricontent:"/<script>cross_site

_scripting.nasl</script>"

a microscopic performance loss in SNORT.
Result: 0 False Positives/Negatives, but performance loss in loading one extra rule into
SNORT.

The reason number two in table 8 differed so much regarding number of alerts is
because of the missing content:"/cgi-bin/ HTTP". The original rule only alerts on occur-
rences with /cgi-bin/ alone, as opposed to the new one which alerts on all occurrences
with /cgi-bin/. This leads to 11 false positives when we consider all traffic which was not
alerted on in the control experiment as benign.
Result: 11 False Positives.

The reason number three in table 8 only caught one of the two lines with /test-cgi,
is because the new rule only searches for /test-cgi/ which don’t alert on /test-cgi.bat? as
the original do. The procedure created a rule to search for the string containing /test-
cgi.bat?, but it did not work with SNORT because this particular string included a pipe
symbol making SNORT believe the content after the pipe symbol is in a hexadecimal for-
mat. (This string is alerted on by another rule, but this is only a coincidence)
Result: 1 (0) False Negative.

The reason number four differ is for the same reason as for number two. It has a /
in the end of the trigger string, resulting in a false negative. The happy side is that the
procedure has created a rule for the string this rule failed to alert on, actually making
this rule redundant.
Result: 0 False Positives/Negatives

The reason number five does not perform equally as the original is because of the
procedure’s lack of understanding what in the strings is important. The string producing
the false negative in this case is captured by another rule, making the procedure actually
covering both lines containing <script>.
Result: 0 False Positives/Negatives, but performance loss in loading one extra rule into
SNORT.

Alert when using the new rules
The following alert is produced by SNORT when loaded with the new rules we have crated.
This rule alerts on traffic matching "/_vti_bin/shtml.sll/_vti_rpc".

[**] [1:1000044:1] NEW WEB /_vti_bin/shtml.dll/_vti_rpc [**]
[Priority: 0]
04/11-13:52:40.269727 128.39.44.11:43740 -> 128.39.44.50:80
TCP TTL:64 TOS:0x0 ID:28552 IpLen:20 DgmLen:324 DF
***AP*** Seq: 0xD4FF684B Ack: 0x7AEBFC2F Win: 0x16D0 TcpLen: 20
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Alerts when using the original rules
These alerts are produced by SNORT when loaded with the original rules. The three alerts
below are triggered on the same string as above. As this shows, the original rules divide
this string into three different alerts. This results in a more specific message to the ad-
ministrator with references to each of the vulnerabilities, but also gives him more alerts
to read through.

[**] [1:940:15] WEB-FRONTPAGE shtml.dll access [**]
[Classification: access to a potentially vulnerable web application] [Priority: 2]
04/04-12:50:56.906906 128.39.44.11:45582 -> 128.39.44.50:80
TCP TTL:64 TOS:0x0 ID:29615 IpLen:20 DgmLen:324 DF
***AP*** Seq: 0x3A8FE212 Ack: 0x2C32288D Win: 0x16D0 TcpLen: 20
[Xref => http://www.microsoft.com/technet/security/bulletin/ms00-060.mspx]
[Xref => http://cgi.nessus.org/plugins/dump.php3?id=11395]
[Xref => http://cve.mitre.org/cgi-bin/cvename.cgi?name=2000-0746]
[Xref => http://cve.mitre.org/cgi-bin/cvename.cgi?name=2000-0413]
[Xref => http://www.securityfocus.com/bid/1595]
[Xref => http://www.securityfocus.com/bid/1594]
[Xref => http://www.securityfocus.com/bid/1174]
[Xref => http://www.whitehats.com/info/IDS292]

[**] [1:1288:8] WEB-FRONTPAGE /_vti_bin/ access [**]
[Classification: access to a potentially vulnerable web application] [Priority: 2]
04/04-12:50:56.906906 128.39.44.11:45582 -> 128.39.44.50:80
TCP TTL:64 TOS:0x0 ID:29615 IpLen:20 DgmLen:324 DF
***AP*** Seq: 0x3A8FE212 Ack: 0x2C32288D Win: 0x16D0 TcpLen: 20
[Xref => http://cgi.nessus.org/plugins/dump.php3?id=11032]

[**] [1:937:10] WEB-FRONTPAGE _vti_rpc access [**]
[Classification: access to a potentially vulnerable web application] [Priority: 2]
04/04-12:50:56.906906 128.39.44.11:45582 -> 128.39.44.50:80
TCP TTL:64 TOS:0x0 ID:29615 IpLen:20 DgmLen:324 DF
***AP*** Seq: 0x3A8FE212 Ack: 0x2C32288D Win: 0x16D0 TcpLen: 20
[Xref => http://cgi.nessus.org/plugins/dump.php3?id=10585]
[Xref => http://cve.mitre.org/cgi-bin/cvename.cgi?name=2001-0096]
[Xref => http://www.securityfocus.com/bid/2144]

Conclusion
For the sake of this experiment our procedure created fewer rules, but still alerted on
all but one of the strings containing possible malicious content. This proves again that
honeyd logs are suitable for creating rules out of. How the honeyd logs would look like
when deployed in the wild is not considered here, but we claim that the logging capa-
bilities are sufficient. Since we only used traffic produced by Nessus it is hard for us to
say anything about how the rule generating procedure would perform when tested on
live/wild traffic. The only thing we know for sure is that honeyd logs enough information
to make meaningful rules from, but that extracting the signature itself may be a problem
(especially for polymorphic worms). Suggestions for improvements are documented in
the future work chapter.

6.7 Extracting flow and protocol
The rule option flow and rule header field protocol is possible to extract from honeyd’s
honeyd.log file. A working procedure for doing this is not explained here, but a possible
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approach is suggested. The file honeyd.log logs all connections to the honeypot (how
to interpret information in this file is given in subsection 5.2.4. Below is an excerpt from
the file:

Date-11:39:45.2204 tcp(6) S xxx.xxx.xxx.132 21133 128.39.xxx.47 80 [Win XP SP1]
Date-11:39:45.5088 tcp(6) E xxx.xxx.xxx.132 21133 128.39.xxx.47 80: 0 1058

This information could then be linked up to other log files to be able to find flow and
protocol for a specific attack. From the information above we could extract the following:

Flow: from: xxx.xxx.xxx.132 21133 to 128.39.xxx.47 80
Results in a: flow:to_server,establieshed

Protocol: tcp
$HOME_NET and $HTTP_PORTS (by checking destination address and portnumber

against the snort.conf file)
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7 General conclusion and future work

In this thesis we have defined a new IDS rule generating procedure based on information
obtained from honeypot logs made by honeyd. Several experiments were performed in
order to see if the honeypot was able to log sufficient information to create rules from.
As proven in the experiments, this seems to be the case since we were able to re-create
nearly all the rules we aimed at re-creating. The test results show that the rule generat-
ing procedure gave a few false positives and none false negatives. The main goal of the
experiments was to see if the honeypot logged enough information to make rules out
of. To find the answer to this we created a system for ranking each rule option field in
the SNORT rule. As the results from this ranking system show, the honeypot logs the most
important fields necessary for rule generating. This confirms that honeyd is suitable for
generating SNORT rules. Our rule generating system was made to work with traffic gen-
erated by Nessus, and hence would not work perfectly in the wild. Polymorphic worms
for instance would make our rule generating system create rules which would be use-
less since the same signature would not appear twice. If we compare our generating
method to other signature generating systems [26, 39], we can state that our method
includes neccessary rule options these systems does not (i.e. flow, priority. Also our
rules, because of the fact that we make the rules with more options, would perform faster
when implemented into SNORT. One example is the flow option, which make SNORT only
check traffic matching the specified flow. Also the use of names on different services, i.e.
HTTP_SERVERS, makes SNORT perform faster.

We now return to the research questions to summarize the findings:

1. Is honeyd suitable for detecting new attacks?

This question is answered by the experiments, which give a conclusion that it is suit-
able for this. We actually did not detect any new attacks, this due to the desire to
make the experiments reproducible, hence using Nessus as a traffic generator. If the
honeypot logs sufficient data about Nessus scans, it most likely would log enough
data about other attacks too.

2. How to translate data captured by honeyd into SNORT rules?

To answer this question a procedure for converting honeypot log files into SNORT
rules was made. This procedure has a few limitations, but in the setting we made it
work for, it functions in such a manner that it produces a low false positive and false
negative ratio.

3. How good rules can be made based on data logged by honeyd?

We created a measurement system to rank each option field used by the original
SNORT rules. The option fields were given a rank based on the impact they have on
the rules triggering capabilities. Ranking was given by a number from 0-6, where 6
is given to the most important option needed to make the rule trigger. As our exper-
iments demonstrate, the rules we re-created had a low number of missing options
that were important to make them trigger. This confirms that honeyd is suitable for
collecting attack data to make IDS rules out of.
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7.1 Future work
Based on the findings in this thesis, we suggest the following point marks as future work:

• Improve the rule generating procedure to work with live/wild traffic.

• Create a metric for measuring the manual workload needed to fix rules with missing
option fields and non good option fields. If this metric were to be acknowledged
internationally, it would be easier to create good rulegenerating systems when there
is a "standard" to fulfill.

• Implement the improved system for data collection (Section 5.7) to see if this gives a
better dataset to create rules from.

• Test known rulegenerating systems with Nessus traffic, and compare the generated
rules to the ones presented in this thesis.

• Implement a known procedure for extraction of polymorphic worm signatures (Poly-
graph/Nemean) or make one.

• Use a different traffic generator than Nessus to get a different data set.

• Record live traffic in the honeypot with i.e. tcpdump, generate rules and replay the
traffic with the new rules loaded into SNORT to see if the rules are good enough.
Expected result is that the msg option field might not be as descriptive as the ones
in our experiments. This due to the fact that live traffic contains several attack types
not discussed in this thesis (i.e. worms, which SNORT alerts on based on hexadecimal
strings).

56



Building IDS rules by means of a honeypot

Bibliography

[1] The honeynet project. http://www.honeynet.org/. (Visited Oct. 2005).

[2] Honeynets article. http://project.honeynet.org/papers/honeynet/index.html. Vis-
ited Oct.

[3] Metasploit. http://www.metasploit.com/index.html.

[4] Nessus, vulnerability scanner. www.nessus.org.

[5] Personopplysningsloven. http://www.lovdata.no/all/nl-20000414-031.html.

[6] Saint. http://www.saintcorporation.com/products/vulnerability_scan/saint/saint_scanner.html.

[7] Sebek. http://www.honeynet.org/tools/sebek/. (Visited Nov. 2005).

[8] Snort. http://www.snort.org/. (Visited Nov. 2005).

[9] Specter, intrusion detection system. www.specter.com. (Visited Dec. 2005).

[10] Vlad. http://www.bindview.com/Services/RAZOR/Utilities/Unix_Linux/vlad.cfm.

[11] Wikipedia, the free encyclopediaa. http://en.wikipedia.org.

[12] Rfc 2828. http://rfc.net/rfc2828.html, 2000.

[13] K. G. Anagnostakis, S. Sidiroglou, P. Akritidis, K. Xinidis, E. Markatos, , and A. D.
Keromytis. Detecting targeted attacks using shadow honeypots. In In Proceedings
of the 14th Usenix Security Symposium, 2005.

[14] James P. Anderson. Computer security threat monitoring and surveillance. Techni-
cal report, Fort Washington, 1980.

[15] Mick Bauer. Paranoid penguin: checking your work with scanners, part ii: Nessus.
Linux J., 2001(86):11, 2001.

[16] Reto Baumann. Honeyd - a low involvement honeypot in action. Originall published
as part of the GCIA practical, page 14, 2003.

[17] E. Biermann, E.Cloete, and L.M. Venter. A comparison of intrusion detection sys-
tems. Computers & Security, 20:676–683, 2001.

[18] Raouf Boutaba, Kevin Almeroth, Ramon Puigjaner, Sherman Shen, and James P.
Black. Efficient deployment of honeynets for statistical and forensic analysis of
attacks from the internet. Lecture Notes in Computer Science, 34622005:756–767,
2005.

[19] A. Broder. Some applications of rabin’s fingerprinting method, 1993.

[20] Roshen Chandran and Sangita Pakala. Simulating networks with honeyd. Technical
report, Dec 2003.

[21] Mark Cooper, Stephen Northcutt, Matt Fearnow, and Karen Frederick. Intrusion
Signatures and Analysis. SAMS, 2001.

57



Building IDS rules by means of a honeypot

[22] Dan Gusfield. Algorithms on strings, trees, and sequences: computer science and com-
putational biology. Cambridge University Press, New York, NY, USA, 1997.

[23] Van Jacobson, Craig Leres, and Steven McCanne. Tcpdump, intercept and display
communications. www.tcpdump.org. (Visited Dec. 2005).

[24] Hyang-Ah Kim and Brad Karp. Autograph, toward automated, distributed worm
signature detection. USENIX Security Symposium, pages 271–286, 2004.

[25] Jack Koziol. Intrusion detection with SNORT. SAMS, 2003.

[26] Christian Kreibich and Jon Crowcroft. Honeycomb: creating intrusion detection sig-
natures using honeypots. ACM SIGCOMM Computer Communication Review, 34:51–
56, 2004.

[27] Zhenkai Liang and R. Sekar. Fast and automated generation of attack signatures: a
basis for building self-protecting servers. In CCS ’05: Proceedings of the 12th ACM
conference on Computer and communications security, pages 213–222. ACM Press,
2005.

[28] John McHugh. Testing intrusion detection systems: a critique of the 1998 and 1999
darpa intrusion detection system evaluations as performed by lincoln laboratory.
ACM Trans. Inf. Syst. Secur., 3(4):262–294, 2000.

[29] Peter Mell, Vincent Hu, Richard Lippmann, Josh Haines, and Marc Ziss-
man. An overview of issues in testing intrusion detection systems.
http://csrc.nist.gov/publications/nistir/nistir-7007.pdf. NIST IR 7007.

[30] B. Mukherjee, L. T. Heberlein, and K. N. Levitt. Network intrusion detection. Net-
work, IEEE, Volume 8:26 – 41, 1994.

[31] James Newsome, Brad Karp, and Dawn Song. Polygraph: Automatically generating
signatures for polymorphic worms. IEEE Computer Society Washington, DC, USA,
2005.

[32] Vern Paxson. Bro: a system for detecting network intruders in real-time. Computer
Networks (Amsterdam, Netherlands: 1999), 31(23–24):2435–2463, 1999.

[33] Fabien Pouget and Thorsten Holz. A pointillist approach for comparing honeypots.
Lecture Notes in Computer Science, 3548:51, 2005.

[34] Niels Provos. Honeyd, virtual honeypot. http://www.honeyd.org/. (Visited Dec.
2005).

[35] Niels Provos. A virtual honeypot framework. In Proceedings of the 12th USENIX
Security Symposium, pages 1–14, August 2004.

[36] Shai Rubin, Somesh Jha, and Barton P. Miller. Automatic generation and analysis of
nids attacks. 20th Annual Computer Security Applications Conference (ACSAC’04),
pages 28–38, 2004.

[37] Karthik Sadasivam, Banuprasad Samudrala, and T. Andrew Yang. Design of net-
work security projects using honeypots. J. Comput. Small Coll., 20(4):282–293,
2005.

[38] David Sankoff and Joseph Kruskal. Time Warps, String Edits, and Macromolecules.
Addison-Wesley, 1983.

[39] Sumeet Singh, Cristian Estan, George Varghese, and Stefan Savage. Automated
worm fingerprinting. USENIX Security Symposium, pages 45–60, 2004.

58



Building IDS rules by means of a honeypot

[40] L. Spitzner. Know Your Enemy : Learning about Security Threats. Addison-Wesley
Professional, 2004.

[41] Lance Spitzner. Honeypots: Tracking Hackers. Addison-Wesley Professional, 2002.

[42] Lance Spitzner. Honeytokens: The other honeypot, 2003.
www.securityfocus.com/infocus/1713.

[43] Lance Spitzner. Problems and challenges with honeypots.
http://www.securityfocus.com/infocus/1757, 2004.

[44] A. Sundaram. An introduction to intrusion detection. The ACM student magazine,
1996.

[45] Y. Tang and S. Chen. Defending against internet worms: A signature-based ap-
proach. In In Proceedings of the IEEE Infocom 2005, 2005.

[46] Urjita Thakar, Sudarshan Varma, and A.K. Ramani. Honeyanalyzer : Analysis and
extraction of intrusion detection patterns & signatures using honeypot.

[47] Ke Wang, Gabriela Cretu, and Salvatore J. Stolfo. Anomalous payload-based worm
detection and signature generation. In RAID, pages 227–246, 2005.

[48] Ke Wang and Salvatore J. Stolfo. Anomalous payload-based network intrusion
detection. In RAID, pages 203–222, 2004.

[49] Vinod Yegneswaran, Jonathon T. Giffin, Paul Barford, and Somesh Jha. An architec-
ture for generating semantics-aware signatures. 14th USENIX Security Symposium,
pages 97–112, 2005.

59





Building IDS rules by means of a honeypot

A Installation and configuring

A.1 Installing honeyd-1.0a-rc2.tar.gz on Fedora Core 3
1. Install Fedora Core 3 with all necessary developement packages.

2. Update yum.conf with the following:
[dries]
name=Extra Fedora rpms dries - $releasever - $basearch
baseurl=http://ftp.belnet.be/packages/dries.ulyssis.org/fedora/linux/$releasever/
$basearch/dries/RPMS/

3. Run this command in a bash shell: yum update

4. Install libraries Honeyd needs: yum install libdnet.i386 && arpd.i386 (arpd should be
avoided in production networks, use proxy arp instead)

5. Download libevent1.0e and libevent-devel1.0e from http://rpmfiend.net and install them

6. Extract honeyd-1.0a-rc2.tar.gz

7. Go to the folder containing honeyd-1.0a-rc2 files (in a bash shell)

8. Run the following commands:
# ./configure - -without-python
# make
# make install

Honeyd files are now placed in the /usr/local/share/honeyd/ folder. Before you start
Honeyd you need to configure the .conf file in /usr/local/share/honeyd/ We have made
the .conf file based on the IP range 128.39.44.32/27 (128.39.44.32-128.39.44.63). This
range has not been subnetted in the router, and therefore we use the entire range of the
subnet as hosts. Hence the first and last address in the range should be the broadcast
(.63) and network address (.32). Because of problems encountered when not binding all
IP addresses in the range to specific hosts (segmentation fault), we have used the bind
command also on the default template. This is our .conf file as of April the 10th 2006:
/usr/local/share/honeyd/honeyd.conf

##################################################
#Honeyd configuration file made by Vidar Grønland#
##################################################

route entry 128.39.44.32 network 128.39.44.32/27
route 128.39.44.32 link 128.39.44.32/27

#######################################################################################

# WINDOWS XP WORKSTATION
create windows
set windows personality "Microsoft Windows XP Professional SP1"
set windows uptime 1728650
add windows tcp port 80 "sh /scripts/win32/web.sh"
set windows default tcp action reset
set windows default udp action reset
set windows ethernet "3Com"

#Debian-specific (use nobody = 65534 instead of 32767)
#set windows uid 65534 gid 65534

#######################################################################################
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# WINDOWS 2003 SERVER
create win_serv
set win_serv personality "Microsoft Windows Server 2003 Enterprise Edition"
set win_serv uptime 8728650
add win_serv tcp port 21 "sh /scripts/win32/win2k/msftp.sh $ipsrc $sport $ipdst $dport"
add win_serv tcp port 80 "sh /scripts/win32/win2k/iis.sh $ipsrc $sport $ipdst $dport"
set win_serv default tcp action reset
set win_serv default udp action reset
set win_serv ethernet "3Com"

#######################################################################################
# LINUX HOST
create linux
set linux personality "Linux kernel 2.4.20"
set linux uptime 15111242
add linux tcp port 21 "sh /scripts/unix/linux/suse7.0/wuftpd.sh $ipsrc $sport $ipdst $dport"
add linux tcp port 80 "sh /scripts/unix/linux/suse8.0/apache.sh $ipsrc $sport $ipdst $dport"
set linux default tcp action reset
set linux default udp action reset
set linux ethernet "3Com"
#Debian-specific (use nobody = 65534 instead of 32767)
#set linux uid 65534 gid 65534

#######################################################################################
# LINUX SuSE HOST
create linux_SuSE
set linux_SuSE personality "Linux 2.4.7 (X86)"
#set linux_SuSE personality "Linux kernel 2.2.13 (SuSE; X86)"
set linux_SuSE uptime 8111242
add linux_SuSE tcp port 21 "sh /scripts/unix/linux/suse8.0/proftpd.sh $ipsrc $sport $ipdst $dport"
add linux_SuSE tcp port 80 "sh /scripts/unix/linux/suse8.0/apache.sh $ipsrc $sport $ipdst $dport"
set linux_SuSE default tcp action reset
set linux_SuSE default udp action reset
set linux_SuSE ethernet "3Com"

#######################################################################################
create default
set default personality "Microsoft Windows XP Home Edition"
add default udp port 135 open
add default tcp port 137 open
add default udp port 137 open
add default tcp port 139 open
set default default tcp action reset
set default default udp action block
set default default icmp action open
set default uptime 1523472
#set default uid 17 gid 17
set default ethernet "3Com"

#######################################################################################
# CISCO ROUTER
create router
set router personality "Cisco 7206 running IOS 11.1(24)"
set router default tcp action reset
set router default udp action reset
add router tcp port 22 "sh /scripts/unix/linux/suse8.0/ssh.sh $ipsrc $sport $ipdst $dport"
add router tcp port 23 "perl /scripts/router/router-telnet.pl"
add router tcp port 80 open
set router uid 65000 gid 32767
set router uptime 57327950

#######################################################################################
bind 128.39.44.32 router

bind 128.39.44.33 win_serv
bind 128.39.44.34 win_serv
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bind 128.39.44.35 windows
bind 128.39.44.36 windows
bind 128.39.44.37 windows
bind 128.39.44.38 windows
bind 128.39.44.39 windows
bind 128.39.44.40 windows
bind 128.39.44.41 windows
bind 128.39.44.42 windows
bind 128.39.44.43 windows
bind 128.39.44.44 windows
bind 128.39.44.45 windows
bind 128.39.44.46 windows
bind 128.39.44.47 windows
bind 128.39.44.48 windows
bind 128.39.44.49 windows

bind 128.39.44.50 linux_SuSE
bind 128.39.44.51 linux
bind 128.39.44.52 linux
bind 128.39.44.53 linux
bind 128.39.44.54 linux
bind 128.39.44.55 linux
bind 128.39.44.56 linux
bind 128.39.44.57 linux
bind 128.39.44.58 linux
bind 128.39.44.59 linux

bind 128.39.44.60 default
bind 128.39.44.61 default
bind 128.39.44.62 default
bind 128.39.44.63 default

All the scripts that simulate services must be in the folders specified in the .conf file,
it is also vital that all scripts and files used by Honeyd is owned by the correct user. We
run Honeyd by the user Honeyd, which can be created by using the useradd command
from /usr/sbin/:

# ./useradd -m -s /sbin/nologin -d /usr/local/share/honeyd -u 65000 honeyd

Now, to start Honeyd you first need to start the arp daemon (if you don’t use proxy
arp). This is done from the folder /usr/sbin/:

# ./arpd -d 128.39.44.32/27

If you want to use proxy arp, then repeat this for all IP’s:

# arp -s 128.39.44.32 <honeyd’s mac adr> permanent pub

Then open a new shell and do the following:
SU to root. Goto /usr/local/share/honeyd/ and create a file named honeyd.log. Change
the owner of this file to the Honeyd user (chown honeyd *).

To start honeyd, type in the following into a shell standing in user/local/share/honeyd:

# honeyd -d -u 65000 -f honeyd.conf -x xprobe2.conf -p nmap.prints -a
nmap.assoc -l honeyd.log 128.39.44.32/27

• -d tells Honeyd not to daemonize it self. This makes Honeyd show all traffic directly
on to the screen
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• -u tells Honeyd to run using the Honeyd user

• -f is the name of the configuration file

• -x, -p and -a are files used by honeyd for fooling nmap and xprobe scans

• -l is the name of the log file

• 128.39.44.32/27 tells honeyd to only listen to traffic directed to this segment of
adresses

To stop honeyd, use ctrl+c. If you are to run honeyd for a longer period of time, it is
advised to run it in a sandbox environment using systrace or chroot. This prevents an
attacker from exploiting bugs in your honeyd scripts.

Depending on which scripts you use, you also may have to create files named web.log
and honeyd.txt.
We have made a simple perl script to delete and create the logging files needed:

#!/usr/bin/perl

print ‘rm web.log‘;
print ‘rm iis.log‘;
print ‘rm honeyd.log‘;
print ‘rm honeyd.txt‘;
print ‘rm web.sh.log‘;

print ‘echo >> /usr/local/share/honeyd/web.log‘;
print ‘echo >> /usr/local/share/honeyd/iis.log‘;
print ‘echo >> /usr/local/share/honeyd/honeyd.log‘;
print ‘echo >> /usr/local/share/honeyd/honeyd.txt‘;
print ‘echo >> /usr/local/share/honeyd/web.sh.log‘;
print ‘chown honeyd *‘;

A.2 Problems during installation of various programs
During the installation of honeyd, we encountered a few problems. We had estimated to
use about to-three days to make honeyd work. This was a bad estimate, since we actually
used about 15 days to make it work properly. Because of limited experience with Unix
based operating systems, solving the different problems were difficult. We also posted
questions on the honeyd.org forum, hoping to get solutions to our problems. As it turned
out, no one had answers to our specific problems. But after trying honeyd on Ubuntu,
Fedora Core 4 and Fedora Core 3 it finally worked after some tweaking on the Fedora
Core 3 distribution. The problems encountered are described below.

A.2.1 Installing honeyd on Ubuntu 5.10
The www.honeyd.org webpage states that honeyd requires libevent, libdnet and libpcap
to be able to compile. On our first attemt to compile honeyd on a Ubuntu machine we
encountered a few problems:

• The libdnet library is called libdumbnet on Debian distributions. The libdnet library
installs a DECnet system which we don’t need.

• The -dev libraries also had to be installed

• No C compiler was installed by default

• Also missing was; autoconf, automake, flex, bison, libedit, libedit-dev, zlib1g-dev,
make, libc6-dev

• Error in file dhcpclient.c line 475 and 528
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When running honeyd, we repeatedly got segmentation fault and honeyd shuts down.
We also tried to install Honeyd by using #apt-get install honeyd. This also ended up
with a segmentation fault.

A.2.2 Installing honeyd on Fedora Core 4
Downloaded honeyd-1.0a.rc2.tar.gz, libpcacp-0.9.4, libedit-0.3-1guru.suse100.x86.64.rpm.
Used #yum install <package> to install the following packages:

• libdnet-1.10-2.fc4

• libevent-1.1a-2.fc4

• gcc

• flex

• bison

• libdnet-devel

• readline-devel

• zlib-devel

• compat-gcc-32

Then we ran #export CC=gcc-32, to make gcc32 the default compiler and not version
4. honeyd compiled OK, but still we got segmentation fault after a little while.

A.3 Solutions to the problems installing honeyd
It seems that the segmentation faults is regarding the configuration file that specifies the
virtual hosts, and that there were missing some programs and libraries. When we tried
to ping hosts which were not binded to specific IP addresses, the segmentation fault ap-
peared. Addresses not binded are supposed to be answered with the default template in
the configuration file, but this did not seem to work properly. Sometimes honeyd replied
to unbinded addresses and sometimes not (mostly not). When we specified all addresses
in the range, honeyd answered to ping, but it got segmentation fault after a while when
real attackers attacked. The best we managed was with Fedora Core 3 installation with
all development packets installed and updated. When running honeyd-1.0a.rc2 on Fedora
C3 without binding all addresses, we managed to make it work perfectly with attacks
from the inside. When attackers from the outside send TCP packets to unbinded hosts,
the segmentation fault again appears. We solved this by simply binding all addresses in
the range we want to specific IP’s. After doing this honeyd has run almost without seg-
mentation faults. Now the segmentation fault appears seldom, thus making it possible to
carry through an entire experiment without problems.
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B WEB servers scan-rules (.50 SuSE)

These rules have been made by hand from the honeypot’s weblog file, following the
procedure presented in 6.6.3. Only the rules which created alerts in the control expe-
rient is reproduced. If the variabel $HTTP_SERVERS in snort.conf is used as intended,
$HOME_NET should be replaced by $HTTP_SERVERS. This would speed up SNORT.

alert tcp $EXTERNAL_NET any -> $HOME_NET $HTTP_PORTS (msg:"NEW WEB /login.htm";
flow:to_server,established; uricontent:"/login.htm"; nocase; priority:0;
sid:1000010; rev:1;)

Different from the original: [1564]

• no reference

• no classtype:web-application-activity

alert tcp $EXTERNAL_NET any -> $HOME_NET $HTTP_PORTS (msg:"NEW WEB /robots.txt";
flow:to_server,established; uricontent:"/robots.txt"; nocase; priority:0;
sid:1000011; rev:1;)

Different from the original: [1852]

• no reference

• no classtype:web-application-activity

alert tcp $EXTERNAL_NET any -> $HOME_NET $HTTP_PORTS (msg:"NEW WEB /CVS/Entries";
flow:to_server,established; uricontent:"/CVS/Entries"; nocase; priority:0;
sid:1000012; rev:1;)

Different from the original: [1551]

• no reference

• no classtype:web-application-activity

alert tcp $EXTERNAL_NET any -> $HOME_NET $HTTP_PORTS (msg:"NEW WEB /Admin_files/";
flow:to_server,established; uricontent:"/Admin_files/"; nocase; priority:0;
sid:1000013; rev:1;)

Different from the original: [1212]

• uricontent:"/Admin_files";

• no reference

• no classtype:attempted-recon

alert tcp $EXTERNAL_NET any -> $HOME_NET $HTTP_PORTS (msg:"NEW WEB /_vti_bin/";
flow:to_server,established; uricontent:"/_vti_bin/"; nocase; priority:0;
sid:1000014; rev:1;)
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Different from the original: [1288]

• no reference

• no classtype:web-application-activity

alert tcp $EXTERNAL_NET any -> $HOME_NET $HTTP_PORTS (msg:"NEW WEB /admin_/";
flow:to_server,established; uricontent:"/admin_/"; nocase; priority:0;
sid:1000015; rev:1;)

Different from the original: [1385]

• no reference

• no classtype:web-application-activity

alert tcp $EXTERNAL_NET any -> $HOME_NET $HTTP_PORTS (msg:"NEW WEB /backup/";
flow:to_server,established; uricontent:"/backup/"; nocase; priority:0;
sid:1000016; rev:1;)

Different from the original: [1213]

• no reference

• no classtype:attempted-recon

alert tcp $EXTERNAL_NET any -> $HOME_NET $HTTP_PORTS (msg:"NEW WEB /backups/";
flow:to_server,established; uricontent:"/backups/"; nocase; priority:0;
sid:1000017; rev:1;)

Different from the original: [1213]

• no reference

• no classtype:attempted-recon

alert tcp $EXTERNAL_NET any -> $HOME_NET $HTTP_PORTS (msg:"NEW WEB /cgi-bin/";
flow:to_server,established; uricontent:"/cgi-bin/"; nocase; priority:0;
sid:1000018; rev:1;)

Different from the original: [1668]

• missing content:"/cgi-bin/ HTTP";

• no reference

• no classtype:web-application-activity

alert tcp $EXTERNAL_NET any -> $HOME_NET $HTTP_PORTS (msg:"NEW WEB /doc/";
flow:to_server,established; uricontent:"/doc/"; nocase; priority:0;
sid:1000019; rev:1;)

Different from the original: [1560]

• no reference

• no classtype:web-application-activity
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alert tcp $EXTERNAL_NET any -> $HOME_NET $HTTP_PORTS (msg:"NEW WEB /iisadmin/";
flow:to_server,established; uricontent:"/iisadmin/"; nocase; priority:0;
sid:1000020; rev:1;)

Different from the original: [993]

• uricontent:"/iisadmin";

• no reference

• no classtype:web-application-activity

alert tcp $EXTERNAL_NET any -> $HOME_NET $HTTP_PORTS (msg:"NEW WEB /iissamples/";
flow:to_server,established; uricontent:"/iissamples/"; nocase; priority:0;
sid:1000021; rev:1;)

Different from the original: [1402]

• no reference

• no classtype:web-application-activity

alert tcp $EXTERNAL_NET any -> $HOME_NET $HTTP_PORTS (msg:"NEW WEB intranet";
flow:to_server,established; uricontent:"/intranet/"; nocase; priority:0;
sid:1000022; rev:1;)

Different from the original: [1214]

• no reference

• no classtype:attempted-recon

alert tcp $EXTERNAL_NET any -> $HOME_NET $HTTP_PORTS (msg:"NEW WEB /webalizer/";
flow:to_server,established; uricontent:"/webalizer/"; nocase; priority:0;
sid:1000023; rev:1;)

Different from the original: [1847]

• no reference

• no classtype:web-application-activity

alert tcp $EXTERNAL_NET any -> $HOME_NET $HTTP_PORTS (msg:"NEW WEB _mem_bin";
flow:to_server,established; uricontent:"/_mem_bin/"; nocase; priority:0;
sid:1000024; rev:1;)

Different from the original: [1286]

• no reference

• no classtype:web-application-activity

alert tcp $EXTERNAL_NET any -> $HOME_NET $HTTP_PORTS (msg:"NEW WEB /dms0/";
flow:to_server,established; uricontent:"/dms0/"; nocase; priority:0;
sid:1000025; rev:1;)

Different from the original: [1872]
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• no reference

• no classtype:web-application-activity

alert tcp $EXTERNAL_NET any -> $HOME_NET $HTTP_PORTS (msg:"NEW WEB /oprocmgr-status/";
flow:to_server,established; uricontent:"/oprocmgr-status/"; nocase;
priority:0; sid:1000026; rev:1;)

Different from the original: [1874]

• uricontent:"/oprocmgr-status";

• no reference

• no classtype:web-application-activity

alert tcp $EXTERNAL_NET any -> $HOME_NET $HTTP_PORTS (msg:"NEW WEB /server-info/";
flow:to_server,established; uricontent:"/server-info/"; nocase; priority:0;
sid:1000027; rev:1;)

Different from the original: [1520]

• uricontent:"/server-info";

• no reference

• no classtype:web-application-activity

alert tcp $EXTERNAL_NET any -> $HOME_NET $HTTP_PORTS (msg:"NEW WEB /server-status/";
flow:to_server,established; uricontent:"/server-status/"; nocase; priority:0;
sid:1000028; rev:1;)

Different from the original: [1521]

• uricontent:"/server-info";

• no reference

• no classtype:web-application-activity

alert tcp $EXTERNAL_NET any -> $HOME_NET $HTTP_PORTS (msg:"NEW WEB /srchadm/";
flow:to_server,established; uricontent:"/srchadm/"; nocase; priority:0;
sid:1000029; rev:1;)

Different from the original: [1040]

• uricontent:"/srchadm";

• no reference

• no classtype:web-application-activity

alert tcp $EXTERNAL_NET any -> $HOME_NET $HTTP_PORTS (msg:"NEW WEB /test-cgi/";
flow:to_server,established; uricontent:"/test-cgi/"; nocase; priority:0;
sid:1000030; rev:1;)

Different from the original: [835]

• uricontent:"/test-cgi";
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• no reference

• no classtype:attempted-recon

alert tcp $EXTERNAL_NET any -> $HOME_NET $HTTP_PORTS (msg:"NEW WEB /way-board/";
flow:to_server,established; uricontent:"/way-board/"; nocase; priority:0;
sid:1000031; rev:1;)

Different from the original: [896]

• uricontent:"/way-board";

• no reference

• no classtype:web-application-activity

alert tcp $EXTERNAL_NET any -> $HOME_NET $HTTP_PORTS (msg:"NEW WEB /webcart/";
flow:to_server,established; uricontent:"/webcart/"; nocase; priority:0;
sid:1000032; rev:1;)

Different from the original: [1125]

• no reference

• no classtype:attempted-recon

alert tcp $EXTERNAL_NET any -> $HOME_NET $HTTP_PORTS (msg:"NEW WEB /webcart-lite/";
flow:to_server,established; uricontent:"/webcart-lite/"; nocase; priority:0;
sid:1000033; rev:1;)

Different from the original: [1848]

• no reference

• no classtype:web-application-activity

alert tcp $EXTERNAL_NET any -> $HOME_NET $HTTP_PORTS (msg:"NEW WEB /www-sql/";
flow:to_server,established; uricontent:"/www-sql/"; nocase; priority:0;
sid:1000034; rev:1;)

Different from the original: [887]

• no reference

• no classtype:attempted-recon

alert tcp $EXTERNAL_NET any -> $HOME_NET $HTTP_PORTS (msg:"NEW WEB /~root/";
flow:to_server,established; uricontent:"/~root/"; nocase; priority:0;
sid:1000035; rev:1;)

Different from the original: [1145]

• uricontent:"/~root";

• no reference

• no classtype:attempted-recon
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alert tcp $EXTERNAL_NET any -> $HOME_NET $HTTP_PORTS (msg:"NEW WEB /DB4Web/";
flow:to_server,established; uricontent:"/DB4Web/"; nocase; priority:0;
sid:1000036; rev:1;)

Different from the original: [2060]

• no reference

• no classtype:web-application-activity

alert tcp $EXTERNAL_NET any -> $HOME_NET $HTTP_PORTS (msg:"NEW WEB PROPFIND /";
flow:to_server,established; content:"PROPFIND /"; nocase; priority:0;
sid:1000037; rev:1;)

Different from the original: [1079]

• content:"propfind";

• pcre:"/<\x3a\s*propfind.*?xmlns\x3a\a*a=[\x21\x22]?DAV[\x21\x22]?/iR";

• no reference

• no classtype:web-application-activity

alert tcp $EXTERNAL_NET any -> $HOME_NET $HTTP_PORTS (msg:"NEW WEB /mod_gzip_status/";
flow:to_server,established; uricontent:"/mod_gzip_status"; nocase; priority:0;
sid:1000038; rev:1;)

Different from the original: [2156]

• no reference

• no classtype:web-application-activity

alert tcp $EXTERNAL_NET any -> $HOME_NET $HTTP_PORTS (msg:"NEW WEB SEARCH /";
flow:to_server,established; content:"SEARCH /"; nocase; priority:0;
sid:1000039; rev:1;)

Different from the original [2091]:

• content:"SEARCH / HTTP/1.1|0D OA|Host|3A"

• content:"|0D 0A 0D 0A|"

• within:255;

• nocase not in original

• no reference

• no classtype:attempted-admin

%samme regel som over
alert tcp $EXTERNAL_NET any -> $HOME_NET $HTTP_PORTS (msg:"NEW WEB SEARCH /";
flow:to_server,established; content:"SEARCH /"; nocase; priority:0;
sid:1000039; rev:1;)

Different from the original [1070]:

• content:"SEARCH ";
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• depth:8;

• no reference

• no classtype:web-application-activity

alert tcp $EXTERNAL_NET any -> $HOME_NET $HTTP_PORTS (msg:"NEW WEB /~root";
flow:to_server,established; uricontent:"/~root"; nocase; priority:0;
sid:1000051; rev:1;)

Different from the original: [1145]

• no reference

• no classtype:attempted-recon

alert tcp $EXTERNAL_NET any -> $HOME_NET $HTTP_PORTS (msg:"NEW WEB
/<script>cross_site_scripting.nasl</script>"; flow:to_server,established;

uricontent:"/<script>cross_site_scripting.nasl</script>"; nocase; priority:0;
sid:1000040; rev:1;)

Different from the original: [1497]

• content:"<script>";

• no reference

• no classtype:web-application-activity

alert tcp $EXTERNAL_NET any -> $HOME_NET $HTTP_PORTS (msg:"NEW WEB /NULL.ida";
flow:to_server,established; uricontent:"/NULL.ida"; nocase; priority:0;
sid:1000041; rev:1;)

Different from the original: [1242]

• uricontent:".ida";

• no reference

• no classtype:web-application-activity

alert tcp $EXTERNAL_NET any -> $HOME_NET $HTTP_PORTS (msg:"NEW WEB /NULL.printer";
flow:to_server,established; uricontent:"/NULL.printer"; nocase; priority:0;
sid:1000042; rev:1;)

Different from the original: [971]

• uricontent:".printer";

• no reference

• no classtype:web-application-activity

alert tcp $EXTERNAL_NET any -> $HOME_NET $HTTP_PORTS (msg:"NEW WEB /_vti_bin/
fpcount.exe"; flow:to_server,established; uricontent:"/_vti_bin/fpcount.exe"; nocase;
priority:0; sid:1000043; rev:1;)

Different from the original: [1013]
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• uricontent:"/fpcount.exe";

• no reference

• no classtype:web-application-activity

alert tcp $EXTERNAL_NET any -> $HOME_NET $HTTP_PORTS (msg:"NEW WEB
/_vti_bin/shtml.dll/_vti_rpc"; flow:to_server,established;
uricontent:"/_vti_bin/shtml.dll/_vti_rpc"; nocase; priority:0;
sid:1000044; rev:1;)

Different from the original: [940, 937]

• uricontent:"/_vti_bin/shtml.dll"; [940]

• uricontent:"/_vti_rpc"; [937]

• no reference

• no classtype:web-application-activity

alert tcp $EXTERNAL_NET any -> $HOME_NET $HTTP_PORTS (msg:"NEW WEB /iisadmpwd/aexp";
flow:to_server,established; uricontent:"iisadmpwd/aexp"; nocase; priority:0;
sid:1000045; rev:1;)

Need to use the LCS algorithm to find the longest common string from the six lines
containing iisadmpwd.
Different from the original: [1018, 1487]

• uricontent:"/iisadmpwd/aexp2.htr"; [1487]

• no reference

• no classtype:web-application-activity

alert tcp $EXTERNAL_NET any -> $HOME_NET $HTTP_PORTS (msg:"NEW WEB .htr";
flow:to_server,established; uricontent:".htr"; nocase; priority:0;
sid:1000046; rev:1;)

Need to use an algorithm which can see that the six lines containing iisadmpwd all ends
with .htr.
Different from the original: [987, 1487]

• uricontent:"/iisadmpwd/aexp2.htr"; [1487]

• no reference

• no classtype:web-application-activity

alert tcp $EXTERNAL_NET any -> $HOME_NET $HTTP_PORTS (msg:"NEW WEB /search?NS-query-pat=
& /etc/passwd"; flow:to_server,established; content:"search?NS-query-pat="; nocase;
content:"/etc/passwd"’; nocase; priority:0; sid:1000047; rev:1;)

Different from the original: [1828]

• uricontent:"/search"; content:"NS-query-pat="; content:"../../";

• no reference

• no classtype:web-application-attack
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alert tcp $EXTERNAL_NET any -> $HOME_NET $HTTP_PORTS (msg:"NEW WEB /_vti_inf.html";
flow:to_server,established; uricontent:"/_vti_inf.html"; nocase; priority:0;
sid:1000048; rev:1;)

Different from the original: [990]

• no reference

• no classtype:web-application-activity

alert tcp $EXTERNAL_NET any -> $HOME_NET $HTTP_PORTS (msg:"NEW WEB
/a.jsp/<SCRIPT>alert(document.domain)</SCRIPT>"; flow:to_server,established;
uricontent:"/a.jsp/<SCRIPT>alert(document.domain)</SCRIPT>"; nocase; priority:0;
sid:1000051; rev:1;)

Different from the original: [1497]

• content:"<script>";

• no reference

• no classtype:web-application-activity

alert tcp $EXTERNAL_NET any -> $HOME_NET $HTTP_PORTS (msg:"NEW WEB /cgi-bin/
test-cgi.bat? |echo"; flow:to_server,established;
uricontent:"/cgi-bin/test-cgi.bat? |echo"; nocase; priority:0; sid:1000049; rev:1;)

Will not work because of the pipe symbol in uricontent string. This symbol is used when
representing hexadecimal values, which echo is not.
Different from the original: [976]

• uricontent:".bat?";

• no reference

• no classtype:web-application-activity

alert tcp $EXTERNAL_NET any -> $HOME_NET $HTTP_PORTS (msg:"NEW WEB /etc/passwd";
flow:to_server,established; content:"/etc/passwd"; nocase; priority:0;
sid:1000050; rev:1;)

Need to use the LCS Different from the original: [1122]

• no reference

• no classtype:attempted-recon
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C Differences

Differences between Nessus traffic from the first attempt (control) and second attempt
(new rules).

# Diff web.log_webserverscan_50_control_org.txt web.log_webserverscan_50_newrules.txt > tmp

# less tmp | grep GET > tmp2

< "GET /NonExistant759802178/ HTTP/1.1
> "GET /NonExistant397595117/ HTTP/1.1
< "GET /R4bgMqewQvLu.html HTTP/1.1
> "GET /rx8NoqOzN25_.html HTTP/1.1
< "GET /R4bgMqewQvLu.cgi HTTP/1.1
> "GET /rx8NoqOzN25_.cgi HTTP/1.1
< "GET /R4bgMqewQvLu.sh HTTP/1.1
> "GET /rx8NoqOzN25_.sh HTTP/1.1
< "GET /R4bgMqewQvLu.pl HTTP/1.1
> "GET /rx8NoqOzN25_.pl HTTP/1.1
< "GET /R4bgMqewQvLu.inc HTTP/1.1
> "GET /rx8NoqOzN25_.inc HTTP/1.1
< "GET /R4bgMqewQvLu.shtml HTTP/1.1
> "GET /rx8NoqOzN25_.shtml HTTP/1.1
< "GET /R4bgMqewQvLu.asp HTTP/1.1
> "GET /rx8NoqOzN25_.asp HTTP/1.1
< "GET /R4bgMqewQvLu.php HTTP/1.1
> "GET /rx8NoqOzN25_.php HTTP/1.1
< "GET /R4bgMqewQvLu.php3 HTTP/1.1
> "GET /rx8NoqOzN25_.php3 HTTP/1.1
< "GET /R4bgMqewQvLu.cfm HTTP/1.1
> "GET /rx8NoqOzN25_.cfm HTTP/1.1
< "GET /cgi-bin/R4bgMqewQvLu.html HTTP/1.1
> "GET /cgi-bin/rx8NoqOzN25_.html HTTP/1.1
< "GET /cgi-bin/R4bgMqewQvLu.cgi HTTP/1.1
> "GET /cgi-bin/rx8NoqOzN25_.cgi HTTP/1.1
< "GET /cgi-bin/R4bgMqewQvLu.sh HTTP/1.1
> "GET /cgi-bin/rx8NoqOzN25_.sh HTTP/1.1
< "GET /cgi-bin/R4bgMqewQvLu.pl HTTP/1.1
> "GET /cgi-bin/rx8NoqOzN25_.pl HTTP/1.1
< "GET /cgi-bin/R4bgMqewQvLu.inc HTTP/1.1
> "GET /cgi-bin/rx8NoqOzN25_.inc HTTP/1.1
< "GET /cgi-bin/R4bgMqewQvLu.shtml HTTP/1.1
> "GET /cgi-bin/rx8NoqOzN25_.shtml HTTP/1.1
< "GET /cgi-bin/R4bgMqewQvLu.php HTTP/1.1
> "GET /cgi-bin/rx8NoqOzN25_.php HTTP/1.1
< "GET /cgi-bin/R4bgMqewQvLu.php3 HTTP/1.1
> "GET /cgi-bin/rx8NoqOzN25_.php3 HTTP/1.1
< "GET /cgi-bin/R4bgMqewQvLu.cfm HTTP/1.1
> "GET /cgi-bin/rx8NoqOzN25_.cfm HTTP/1.1
< "GET /~I0WiMTNw HTTP/1.1
> "GET /~itSNqTkz HTTP/1.1
< "GET /error/%5c%2e%2e%5c%2e%2e%5c%2e%2e%5c%2e%2e%5cautoexec.bat1842598681 HTTP/1.1
> "GET /error/%5c%2e%2e%5c%2e%2e%5c%2e%2e%5c%2e%2e%5cautoexec.bat1757841550 HTTP/1.1
< "GET /error/%5c%2e%2e%5c%2e%2e%5c%2e%2e%5c%2e%2e%5cwinnt%5cwin.ini958608582 HTTP/1.1
> "GET /error/%5c%2e%2e%5c%2e%2e%5c%2e%2e%5c%2e%2e%5cwinnt%5cwin.ini1599968663 HTTP/1.1
< "GET /error/%5c%2e%2e%5c%2e%2e%5c%2e%2e%5c%2e%2e%5cboot.ini1944742498 HTTP/1.1
> "GET /error/%5c%2e%2e%5c%2e%2e%5c%2e%2e%5c%2e%2e%5cboot.ini745367903 HTTP/1.1

This shows that the only differences are that numbers and some of the strings consist
of randomized numbers or letters. In the original file there are approximately 830 lines.
As the diff command shows there are only 24 lines in the new experiment file which
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differ from the original. This is 2,89% difference. None of these differences have any
affect on the experiment result.
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