
Analysis of
Key Agreement Protocols

Brita Vesterås

Master’s Thesis
Master of Science in Information Security

30 ECTS
Department of Computer Science and Media Technology

Gjøvik University College, 2006

Institutt for
informatikk og medieteknikk
Høgskolen i Gjøvik
Postboks 191
2802 Gjøvik

Department of Computer Science
and Media Technology
Gjøvik University College
Box 191
N-2802 Gjøvik
Norway

Analysis of Key Agreement Protocols

Abstract

This master’s thesis study the recently proposed key agreement protocols. Since they are
so new, there has not been any detailed analysis of them; hence one cannot be sure of
how secure they really are. The security of these protocols is essential; since they are
responsible for the integrity and confidentiality of all transactions from the moment the
protocol is employed. If the key agreement procedure contains security flaws, unintended
parties can get hold of the key and use it to decrypt all the transmitted messages that are
encrypted with this key.

In order to secure the systems, one is always interested in finding the key agreement
protocol that achieve the highest possible level of security. Because of this, new protocols
are suggested all the time. Some of these does not have any security proof, and even
those protocols that have been through an analysis may still contain flaws.

This master’s thesis analyse a few of these protocols and try to detect their weaknesses
and find what kind of attacks that can be a threat to each of the protocols. We also try to
enhance the protocols in which we find weaknesses.

Sammendrag - Abstract in norwegian

Masteroppgaven tar for seg noen av de siste foreslåtte protokollene for nøkkel-utveksling.
Ettersom de er så nye, har de ikke gjennomgått en detaljert analyse, og kan derfor in-
neholde sikkerhetshull. Sikkerhet i protokollene er viktig, ettersom de er ansvarlig for
integriteten og konfidensialiteten til all kommunikasjon fra det øyeblikket de tas i bruk.

For å unngå problemer er det viktig å finne den protokollen som har best sikkerhet.
Nye protokoller blir foreslått for å prøve å tilfredsstille kravene, men det er ikke noe bevis
for at de har klart det.

Denne masteroppgaven vil analysere noen av disse nye protokollene og prøve å avdekke
deres svakheter. Vi prøver også å forbedre de protokollene der vi finner svakheter.

ii

Analysis of Key Agreement Protocols

Preface

This master thesis is a part of the fulfillment of my Master’s degree in Information Secu-
rity at Gjøvik University College. I have been a student at Gjøvik University College from
autumn 2001 to spring 2006. I spent the first three years studying for a Bachelor degree
in Computer Science, and the last two to earn my Master’s degree.

The essence of my study is computer security. Since more and more computer sys-
tems are used in our daily life, keeping these systems safe and secure is an important
issue and a great challenge. An effective means to achieve this is to maintain a high level
of integrity and confidentiality by encrypting information. Key agreement protocols play
an important role in this context. Courses like Cryptology and Network Security have
provided me with a good knowledge and inspiration to explore this topic further.

Working with this project has given me more knowledge to what kind of challenges
we are facing regarding secure key agreement, and also information about some key el-
ements to reduce the possibility of abuse.

iii

Analysis of Key Agreement Protocols

Acknowledgement

I would like to thank my supervisor, Professor Chik How Tan, for his inspiration and
support throughout the entire project period. He has been of great help, and given me
constructive comments and ideas.

Thank you, Hossein, for the support and collaboration during this master study.

I would also like to thank my family, and Solveig, Desirée and Inger Lise for giving
me the time and space I needed to finish this project.

v

Analysis of Key Agreement Protocols

Basic definitions

adversary - someone whose purposes are in conflict with one’s own purposes.

availability - information and resources being available at the time of request.

collision-free hash function - a hash function where the chance of producing the same
digest from two different messages is small.

confidentiality - keeping information secret from other than the intended recipient(s).

denial-of-service attack - an attack on a computer system or network which overwhelms
the system. This results in users not getting the service they want.

digest - the result of a hash function.

discrete logarithm - similar to ordinary logarithms, but in a group context.

discrete logarithm problem - given g, h in a group G, finding k such that h = gk.

Elliptic Curve Cryptography (ECC) - a cryptographic method that is based on elliptic
curves.

Elliptic Curve Discrete Logarithm Problem (ECDLP) - the problem of finding k given
the points kP and P.

field - an algebraic structure where addition, subtraction, multiplication and division
(but not division by zero) may be performed.

finite field - a field that contains a finite number of elements.

hash function - a function that converts a string of any size into a fixed size string
containing random-looking elements. A kind of digital fingerprint.

integrity - assurance that data has not been changed.

key control - the ability to choose the key, or the parameters used in key computation.

key establishment - mechanisms that enable two parties to establish some kind of se-
cret.

prime - a number with no divisors (cannot be split up into smaller factors). A positive
integer with no other divisors except 1 and itself.

revoke key - remove a key from use.

factorisation - finding prime factors of an integer.

safe prime - a prime number of the form 2p± 1, where p is also prime.

vii

Analysis of Key Agreement Protocols

Contents

Preface . iii
Acknowledgement . v
Basic definitions . vii
Contents . ix
List of Figures . xi
1 Introduction . 1

1.1 Keywords . 1
1.2 Topic of this thesis . 1
1.3 Problem description . 1
1.4 Justification and motivation . 2
1.5 Research questions . 2
1.6 Choice of methods . 2
1.7 Structure of the thesis . 3

2 Preliminaries . 5
2.1 Related work . 5
2.2 One-way functions . 5

2.2.1 Hash Functions . 6
2.2.2 Discrete logarithm problem . 7
2.2.3 Factorisation problem . 7
2.2.4 Elliptic curve discrete logarithm problem 7

2.3 Design methods . 8
2.3.1 Diffie-Hellman key agreement protocol 8
2.3.2 Elliptic Curve Cryptosystems . 10
2.3.3 MQV protocol . 11

2.4 Attack methods of key agreement protocols 13
2.4.1 Characterising attacks . 13
2.4.2 Active and passive attacks . 13
2.4.3 Different kind of attacks . 14

2.5 Protocol Analysis . 16
3 Wen-Lin-Hwang’s protocol . 19

3.1 Notations . 19
3.2 Protocol . 19
3.3 Analysis of protocol . 20
3.4 Improvement of the protocol . 23

4 Popescu’s protocol . 25
4.1 Notations . 25
4.2 Protocol . 25
4.3 Analysis of protocol . 26
4.4 Improvement of the protocol . 28

5 Harn-Hsin-Mehta’s protocol . 31

ix

Analysis of Key Agreement Protocols

5.1 Notations . 31
5.2 Protocol . 31
5.3 Analysis of protocol . 32
5.4 Improvement of the protocol . 35

6 Tseng’s protocol . 37
6.1 Notations . 37
6.2 Protocol . 37
6.3 Analysis of protocol . 38

7 Yoon-Yoo’s protocol . 41
7.1 Notations . 41
7.2 Protocol . 41
7.3 Analysis of protocol . 42

8 Summary . 45
8.1 Key manangement . 46

9 Conclusion . 49
9.1 Attack methods of key agreement protocols 49
9.2 Design methods of key agreement protocols 49
9.3 Weaknesses in the protocols . 50

10 Future work . 51
Bibliography . 53

x

Analysis of Key Agreement Protocols

List of Figures

1 Diffie-Hellman key agreement protocol . 9
2 Elliptic curve key agreement . 11
3 MQV protocol . 13
4 Wen-Lin-Hwang’s protocol - precomputation phase 20
5 Wen-Lin-Hwang’s protocol - execution phase 20
6 Attack sequence on Wen-Lin-Hwang’s protocol A - previous protocol run . 21
7 Attack sequence on Wen-Lin-Hwang’s protocol B - transmission of en-

crypted messages . 21
8 Wen-Lin-Hwang’s protocol - precomputation phase - enhanced version . . 23
9 Wen-Lin-Hwang’s protocol - execution phase - enhanced version 24
10 Popescu’s protocol . 26
11 Attack sequence on Popescu’s protocol - attacker C initiating a protocol run 27
12 Attack sequence on Popescu’s protocol - attacker C intercepting a conver-

sation . 28
13 Popescu’s protocol - enhanced version . 29
14 Harn-Hsin-Mehta’s protocol . 32
15 Attack sequence on Harn-Hsin-Mehta’s protocol A - previous protocol run . 33
16 Attack sequence on Harn-Hsin-Mehta’s protocol B - transmission of en-

crypted messages . 33
17 Harn-Hsin-Mehta’s protocol - enhanced version 35
18 Tseng’s protocol . 39
19 Yoon-Yoo’s protocol . 42
20 Summary of analysed protocols . 45

xi

Analysis of Key Agreement Protocols

1 Introduction

Key establishment, which is a fundamental building block in cryptography, is in [4] de-
fined to be any process whereby a shared secret key becomes available to two or more
parties, for subsequent cryptographic use.

There are two kinds of key establishment protocols; key transport protocols and key
agreement protocols. Key transport protocols is created by one principal and securely
transmitted to the second principal. In key agreement protocols, both principals con-
tribute information which is combined in order to create the secret key.

Key establishment protocols have traditionally been among the hardest protocols to
design.

There are several challenges concerning key exchange. These are:

• ensuring that the keys are exchanged so that sender and receiver can perform encryp-
tion and decryption

• preventing an eavesdropper from getting to know the key

• give the receiver some proof that a message was encrypted by the party who claims
to have sent the message

This master thesis analyses a few recent key agreement protocols, and tries to find
their weaknesses. It also tries to enhance protocols with weaknesses.

1.1 Keywords

Security, key agreement, key agreement protocols, cryptology.

1.2 Topic of this thesis

This thesis provides an overview of the different attacks against key agreement protocols,
and the basics that these protocols are based on. With this knowledge in mind, a few pro-
tocols are analysed to see if they have any vulnerabilities that can be used to attack the
protocols.

1.3 Problem description

Key agreement protocols are considered one of the hardest protocols to design, and are
one of the most important parts of a system when it comes to integrity and confidential-
ity of data.

1

Analysis of Key Agreement Protocols

There are continuously new proposals for key agreement protocols. The problem con-
cerning the security of these protocols are that they have no security proof. There has
been no thorough analysis of the protocols, and there is not enough knowledge regard-
ing attack methods in key agreement protocols.

The work of this thesis can be divided into three parts:

• provide a summary of different ways to attack key agreement protocols

• describe design criterias of the protocols

• analyse various key agreement protocols

1.4 Justification and motivation

This is an area that is rapidly changing. Considering the fact that information technology
continuously becomes a greater part of our lives, security is a more and more important
factor.

Many key agreement protocols have been proposed, but many of them are without se-
curity proof. Even with the security proof, the protocol may contain weaknesses that may
be exploited with a new kind of attack. Because of this, we must continuously analyse
protocols to make sure that they are sound.

After completion of this master thesis, one would have a more detailed understand-
ing of the attack methods of key agreement protocols, some information on design of key
agreement protocols and an analysis of how secure the protocols that have been analysed
are.

1.5 Research questions

The research questions that will be explored in this thesis are:

• What are the attack methods of key agreement protocols?

• What are the design methods of key agreement protocols?

• What are the weaknesses of the protocols this thesis analyses?

1.6 Choice of methods

The methods which will be used to find answers to the research questions, is a combina-
tion of litterature study and a more experimental approach.

The answers to the first two research questions can be found in the litterature. The
task will be to find the relevant information, summarise it and present it in a structured
way.

We will be able to answer the third research question after an analysis of the five

2

Analysis of Key Agreement Protocols

protocols. There are many different ways to do this. They span from an "ad-hoc" method
where you put yourself in the attacker’s place and try to attack the protocol, to formalised
methods with strict rules. In this thesis, we have chosen to use a few protocol features as
the basis of our analysis. In this way, we will get results in the time frame available, and
a comparison of the results from the different protocols will be possible.

1.7 Structure of the thesis

The rest of the thesis is organised as follows: chapter 2 provides the theory and back-
ground for the thesis. Here we present the problems key agreement protocols are based
on, like hash functions, the discrete logarithm problem, the factorisation problem and
the elliptic curve discrete logarithm problem. Then we review some of the basic design
methods, like Diffie-Hellman, elliptic curve cryptosystem and the MQV1 protocol. We also
present the common ways to attack key agreement protocols. Finally, we look at what
features we will focus on in the analysis of the protocols of this thesis.

Chapter 3-7 analyse various key agreement protocols. Chapter 3 considers Wen-Lin-
Hwang’s protocol for clients with low computing power. In chapter 4 we present Popescu’s
protocol, which focuses on being efficient and providing authentication. Harn-Hsin-Mehta’s
protocol, based on a single cryptographic assumption, is described in chapter 5. Chapter
6 contains an analysis of Tseng’s protocol, which focuses on preventing denial-of-service
attacks. In chapter 7 we present Yoon-Yoo’s protocol, where prevention of off-line pass-
word guessing and modification attacks are the priority.

The reason why exactly these protocols has been chosen, is that they are quite differ-
ent from one another. They are also proposed recently and without security proof.

The findings of chapter 3-7 are summarised in chapter 8. In chapter 9 we make some
conclusions. Chapter 10 considers future work and possible ways to improve protocols.

1Menezes, Qu and Vanstone

3

Analysis of Key Agreement Protocols

2 Preliminaries

There are some key features that is being used to create cryptographic protocols. These
features include one-way functions to provide the security. From these basic means we
get simple protocols that recent protocols are based on. Considering the important part
computer systems have in our daily life, we need to make sure that our systems is as se-
cure as possible. The way to do this is to analyse the cryptographic protocols thoroughly,
so that they are as sound as possible. Then we may be assured that the protocol will
resist attacks.

This chapter gives a brief summary of related work. It provides an overview of the one-
way functions or "problems" key agreement protocols take advantage of, and presents
some of the basic protocols that the recent protocols are based on. We also describe the
most common methods to attack key agreement protocols. The last section provides the
features we will focus on during our protocol analysis.

2.1 Related work

Key agreement protocols are the common way for two principals to achieve secure com-
munication by establishing a session key to encrypt the data that is being sent between
them [38]. These kind of protocols have a long history, the first known protocol was
Diffie-Hellman in 1976. Since then, many key agreement protocols have been proposed.

These kind of protocols are one of the hardest to develop. The reasons for this are
that key agreement protocols are interactive protocols between two or more parties and
that there are many different ways to attack the protocols [17]. Designers are still trying
to improve the security of the protocols, but despite of the designers’ best effort and in-
tentions some protocols still contain flaws.

The development of key agreement protocols is based on try-and-fail [17]. A new
protocol is developed which provides good security. Then a weakness is found in the
protocol, or a new kind of attack is discovered, and the protocol is not longer safe. The
security attributes is updated based on the new knowledge, and the whole process starts
again. There is so far no formalised way to develop protocols.

Going into details about this in this thesis is impossible, but more information can be
found in [1] and professional journals. This thesis only focuses on recent key agreement
protocols and new attack methods.

2.2 One-way functions

A one-way function [29] is described as a mathematical function which is easy to com-
pute in one direction (the forward direction), but difficult to compute in the opposite

5

Analysis of Key Agreement Protocols

direction. We also call this a non-reversible function. A trapdoor one-way function is a
one-way function where the inverse computation is easy as long as you have some extra
information (the trapdoor). If you do not have this extra information, the computation
is hard.

Cryptosystems with private/public key pairs are based on trapdoor one-way functions.
The private key is the extra information you need in order to compute the function in
both directions. If you do not possess the private key, you may only compute the func-
tion in the forward direction. The forward direction is used for encryption and signature
verification, and the inverse direction is used for decryption and signature generation.

No function has so far been proven to be a one-way function [29]. If there is some
proof that a function believed to be one-way can in fact be computed both ways, it will
make all cryptosystems based on that function insecure.

Here we describe some examples of one-way functions.

2.2.1 Hash Functions

A hash function is a kind of signature for a stream of data that represents the content. It
converts a string of any length into a string of a fixed size. A hash function should behave
as much as possible as a random function, but needs to be deterministic and efficient.

Even a slight change in the input value will result in a major change in the output
value. This is called the Avalanche effect [41].

A hash function should provide the following properties [43]:

• given an output h it should be hard to find the corresponding input m such that
h = H(m).

• given an input m1 it should be hard to find another input m2 such that H(m1) =

H(m2).

• it should be hard to find two different messages m1 and m2 that result in the same
hash value (H(m1) = H(m2)).

Hash functions may be used to:

• verify file integrity - make sure that the file has not been modified.

• store passwords - passwords should not be stored in clear text. Instead, the resulting
hash value is stored.

• signing a document - the document is first hashed, and the result is encrypted with
the private key in order to assure the recipient who sent the document.

The two most used hash functions are MD5 and SHA-1.

6

Analysis of Key Agreement Protocols

2.2.2 Discrete logarithm problem

Discrete logarithms [29, 45] are similar to regular logarithms, except that they are used
in a group context. In cryptography, this means in the group Zp∗. This means the set of
integers 1, 2, ..., p − 1 under multiplication modulo the prime p. This may look something
like:

45 mod 11 (2.1)

Finding the result of this logarithm is easy, we compute 45 = 1024 and then find the
remainder after dividing with 11. The result is

45 mod 11 = 1 (2.2)

But, if the equation looks like this:

4k mod 11 = 9 (2.3)

and we want to find the value of k, we are facing a challenge. Because of the modular
context, there may be many possible answers. By raising 4 to the power of higher and
higher values of k, we see that one value which gives the correct result is k = 3,

43 mod 11 = 9 (2.4)

Equation 2.3 is an example of the discrete logarithm problem. There exists no efficient
algorithm in order to solve this kind of problem. When the values are bigger than this, it
can be very time-consuming. Also, the fact that there may be several values of k which
gives the same result, complicates it even more.

2.2.3 Factorisation problem

Factorisation can be described as splitting an integer into a set of smaller integers [29].
These integers are called factors, and when you multiply them together, the result is the
original integer. Prime factorisation means splitting an integer into factors that are prime
numbers. Any positive integer can be represented as the product of prime numbers in
one way only. Multiplying two prime integers is easy, but the factorisation of the result is
hard. These two last characteristics are exactly what several cryptosystems take advan-
tage of.

An example of a cryptosystem who use this idea is RSA [29]. RSA was developed in
1978 by Ronald Rivest, Adi Shamir and Leonard Adleman. The main idea is to choose
two large primes p and q. These two values is the private key. Then we compute a value
n = p ∗ q, which is the public key. The assumption is that, if the values are sufficiently
large, it will not be possible to retract p and q knowing n.

2.2.4 Elliptic curve discrete logarithm problem

The basic in elliptic curve cryptography is using points on the curve to perform compu-
tations [29, 46]. There is in advance defined a base point P and a modulo prime value
p. Each user selects a value k which is his private key, and computes Q = k ∗ P mod p as
his public key.

7

Analysis of Key Agreement Protocols

Since k is his private key, he does not want anyone to find this value. And this is where
we take advantage of the elliptic curve discrete logarithm problem. Performing the re-
verse operation and find k when you know the value of Q is considered to be difficult, or
perhaps impossible, to derive. And to complicate the matter even more, because of the
presence of mod p, there may be several values for k that will give Q as a result, but you
have no information about which value is the correct one.

2.3 Design methods

Most of the new key agreement protocols are based on some standard protocols. Here
we describe the most important of these standards. We also present the assumed "prob-
lems" that is used in cryptography in order to keep information available to the intended
parties, and unavailable to others.

2.3.1 Diffie-Hellman key agreement protocol

Diffie-Hellman key agreement protocol [30, 44, 2], invented in 1976 by Whitfield Diffie
and Martin Hellman, is the earliest example of an asymmetric key establishment tech-
nique. It is still found in many secure connectivity protocols on the Internet.

Diffie-Hellman is a cryptographic protocol for secure exchange of a shared secret
between two parties over an untrusted network. The two parties may not have ever
communicated previously, but with their new shared secret key they can encrypt their
communications over the insecure channel. The perhaps most important part of the pro-
tocol is that the key is not sent over the connection, so that it can be detected by an
eavesdropper.

In [2] we get an explanation of the protocol. Alice and Bob agree on two numbers p
and g. p is a large prime number and g is called the base generator. Alice picks a secret
number a and computes her public number

x = ga mod p (2.5)

Bob picks a secret number b and computes his public number

y = gb mod p (2.6)

Alice and Bob then exchange their public numbers x and y. Alice computes

KA = ya mod p = (gb mod p)a mod p = (gb)a mod p = gab mod p (2.7)

Bob computes

KB = xb mod p = (ga mod p)b mod p = (ga)b mod p = gab mod p (2.8)

The resulting keys are
KA = KB = K (2.9)

8

Analysis of Key Agreement Protocols

and they have a secret key that they can use to encrypt messages.

Figure 1 shows an execution of the protocol.

Alice g, p Bob

a

b

x = ga mod p
x→

y = gb mod p
y←

KA = ya mod p

= (gb mod p)a mod p

= (gb)a mod p

= gab mod p

= K

KB = xb mod p

= (ga mod p)b mod p

= (ga)b mod p

= gab mod p

= K

Figure 1: Diffie-Hellman key agreement protocol

The special part about this protocol is that they have agreed on a key without actually
passing this key between them and risking that it has been intercepted by anyone else.
Even if any third party should get hold of x and y, and also knows the parameters g and
p, he will still not be able to compute the key. In order to compute the correct key, he
needs to know either a or b, but these values are kept secret.

The strength in this protocol, which makes it impossible to calculate a or b given x
or y, lies in the modular arithmetic. This makes it a one-way function, because there are
potentially a huge number of values of Alice’s number a that would give the same x value
(see section 2.2.2).

This key exchange mechanism does not specify any prior agreement or subsequent au-
thentication between the participants. The protocols without that requirement are called
anonymous key agreement protocols.

A drawback with the basic Diffie-Hellman protocol is that it has no authentication of
the parties. This means that an adversary that controls the channel can perform a man-
in-the middle attack to make the two communicating parties compute separate keys with
the adversary. The two parties believe that they are sharing a key, and are unaware of
what has really happened.

9

Analysis of Key Agreement Protocols

2.3.2 Elliptic Curve Cryptosystems

Elliptic curves as algebraic entities have been studied for over 100 years [24, 46]. The
first time it was introduced in cryptography was in 1985.

An elliptic curve is defined by the equation

y2 = x3 + a ∗ x + b (2.10)

where x and y are variables, and a and b are constants. All the values come from a field.
A field is a group of values that are familiar to one another. Some examples are real
numbers, complex numbers and rational numbers. Integers modulo a prime number are
an example of a finite field. This is the field that is used for cryptographic purposes. Here
the equation has an extra element at the end:

y2 = x3 + a ∗ x + b mod p (2.11)

Elliptic curve cryptography depends on the difficulty of solving the discrete logarithm
for the group of an elliptic curve over some finite field. This problem is called Elliptic
Curve Discrete Logarithm Problem, ECDLP.

The most used finite field are the Galois field GF(p), which contains the integers mod-
ulo a prime number p. GF(2n) are also often used.

When we have the elliptic curve E, and a field GF(q), we look at the group of points
E(q) of the form (x, y), where both x and y are in GF(q). There is also defined a group
operation " + ". Then we define a second operation " ∗ ". The two operations work as
follows: If P is some point in E(q), then we define

2 ∗ P = P + P (2.12)

3 ∗ P = P + P + P (2.13)

and so on.

When the elliptic curves are used in cryptography, one decides a base point P and a
modulo prime value p, which are published. Each participant selects its own private key
k and then publishes the value Q = k ∗ P mod p as the public key. If Alice and Bob have
private keys kA and kB, and the public keys QA and QB, then Alice can calculate

kA ∗QB = kA ∗ (kB ∗ P) (2.14)

and Bob can compute the same value as

kB ∗QA = kB ∗ (kA ∗ P) (2.15)

10

Analysis of Key Agreement Protocols

Then they have agreed upon a secret value that is easy for them to compute, but difficult
for any third party to derive.

Figure 2 shows an execution of the protocol.

Alice P, p Bob

kA

kB

QA = kA ∗ P mod p
QA→

QB = kB ∗ P mod p
QB←

K = kA ∗QB mod p

= kA ∗ (kB ∗ P) mod p

K = kB ∗QA mod p

= kB ∗ (kA ∗ P) mod p

Figure 2: Elliptic curve key agreement

One of the advantages of elliptic curve cryptography is that one can use a smaller key
size than other methods, and still achieve the same level of security.

The additive group described above can be compared to the multiplicative group of
powers of an integer g modulo a prime p: g0, g, g2, The problem of finding k when
you know kP and P is in this group similar to solving the discrete logarithm problem. It
is therefore called the elliptic curve discrete logarithm problem (ECDLP).

ECC is regarded as the strongest asymmetric algorithm at a given key length. It may
therefore be useful over links that have very tight bandwidth requirements.

2.3.3 MQV protocol

Menezes, Qu and Vanstone proposed a protocol called MQV [6, 15]. This protocol is
used to establish a shared secret between two parties. Both parties generate dynamic
private/public key pairs and exchange their public keys. Then each party calculates an
implicit signature by using his own private key and the other party’s public key. This
signature is used to generate the shared secret. The secret generated by each party will
be the same only if they are based on the corresponding public keys. This means that a
man-in-the-middle attack will not be possible.

In [6, 15] we get the details of the protocol. The protocol is based on elliptic curves,
which is described in section 2.3.2. P is a point on the elliptic curve E(q). χ and γ

represent the first L-bits of the x-coordinate of the points X and Y, respectively. L =[
(log2 q)+1

2

]
. The factor h is a co-factor, h =

|G|
q .

11

Analysis of Key Agreement Protocols

A has the private/public key pair (a,A). Similarly, B has the private/public key pair
(b, B). A selects a random value x and calculates

X = xP (2.16)

B selects a random value y and calculates

Y = yP (2.17)

The values X and Y are exchanged.

A calculates
sA = (x + χa) mod q (2.18)

and
SB = (Y + γB) mod q (2.19)

B calculates
sB = (y + γb) mod q (2.20)

and
SA = (X + χA) mod q (2.21)

Both A and B calculate the shared secret

K = h sA SB = h sB SA (2.22)

Figure 3 shows an execution of the protocol.

MQV makes sure that no third party can intercept the messages.

12

Analysis of Key Agreement Protocols

Alice P, q Bob

x

X = xP
X→

y

Y = yP
Y←

sA = (x + χa) mod q

SB = (Y + γB) mod q

sB = (y + γb) mod q

SA = (X + χA) mod q

K = h sA SB

K = h sB SA

Figure 3: MQV protocol

2.4 Attack methods of key agreement protocols

There are several different ways to perform an attack on a key agreement protocol. In
this subsection, we will briefly describe how attacks may be characterised, the difference
between active and passive attacks and present some common attack methods.

2.4.1 Characterising attacks

The practical importance of an attack is dependent on the answers to these questions
[42]:

• What knowledge and capabilities are needed as a prerequisite?

• How much additional secret information are deduced?

• How much effort is required?

How likely the different attacks are to be used in real life, varies a lot. A common
assumption for cryptographers is to prepare for a worst case scenario, and think that if
a scheme can resist unrealistic attacks, it will also resist attacks that it could face in reality.

2.4.2 Active and passive attacks

There are several different ways to attack key agreement protocols. We often divide them
into passive and active attacks.

A passive attack is an attack which only require some network monitoring equipment.
This is the easiest kind of attack, but also the kind that is easiest to protect against. All
you need is to encrypt the transmitted messages, and the attacker will get no information
out of the monitoring.

An active attack involves alteration or modification of a message. It requires more
work, both from the attacker’s side and the defender’s side.

13

Analysis of Key Agreement Protocols

2.4.3 Different kind of attacks

There are many different ways an attacker can exploit a protocol This subsection con-
tains a brief description of some of the most common attack methods [1].

Eavesdropping: Eavesdropping [1] means that an adversary captures information
that is being sent in the protocol. Eavesdropping has existed throughout time, where
someone overhears things they were not supposed to and when the communicating par-
ties are not aware of him. In the information technology sense it means unintended
parties getting hold of messages without the intended parties knowing it.

There is no way of preventing eavesdropping, but it is possible to protect the content
of the messages. This can be done by using encryption. It helps assure the confidentiality
of the message, since only those who know the key can decrypt the message. The eaves-
dropper can still get hold of the message, but has no way of knowing the content. This
requires that the key has been kept secret, so that only the two communicating parties
have information about the key.

This is one of the most basic kinds of attack, and more complex attacks might include
eavesdropping as part of the attack. Eavesdropping is a kind of passive attack.

Modification: In a modification attack [1], the adversary alters the information that
is sent in the protocol. This is a kind of active attack, since the attacker has a stronger
role in this situation than a passive attack, where he just listens to the communication.

A way to prevent this kind of attack is to use cryptographic integrity measures.

Replay: A replay attack [1, 48] is an attack where a valid transmission is being
recorded, and then later repeated, to the same or a different principal, for attacking
purposes. This is done either by the originator or by an adversary who intercepts the
data and retransmits it. This is a fundamental kind of attack, which is often used as a
part of more complex attacks.

One way to avoid replay attacks is using session tokens [48]. These are used only one
time, and will therefore reveal any attempts of replay. Another way of preventing this
kind of attack is by using timestamps.

Reflection: A reflection attack [1] is a way of attacking a challenge-response authen-
tication system that uses the same protocol in both directions. The idea is to trick the
target into providing the answer to its own challenge. This attack is only possible if the
protocol allow parallel runs.

The way to prevent this attack is to require the initiating party to first respond to chal-
lenges before the target party responds to its challenges. Another solution is to require
the key or protocol to be different for each direction of communication.

14

Analysis of Key Agreement Protocols

Denial of service attack: A denial of service attack [1] is when attackers send many
invalid requests to a server without establishing a server connection in order to over-
whelm a server and stop legitimate users from getting a connection with the server. The
attack may be divided in two groups: attacks trying to use up the computational resources
(like CPU resources or storage resources) of the server and those trying to exhaust the
number of allowed connections.

There are no complete solution to this kind of attack. The only defense is to reduce
the impact each connection have on the server, by minimising computational calculations
and the number of values that the server needs to store for each connection.

Typing attack: A typing attack [1] means that the adversary replaces a message field
of one type with a message field of another type. This will make the recipient misinter-
pret a message, and accept a protocol element as another one (of a different type). For
example could a principal identifier be falsely accepted as a key.

Cryptanalysis: Cryptanalysis [1, 42] is the study of methods for obtaining the mean-
ing of encrypted information, without access to the secret information that is normally
required [42]. In most cases, this kind of attack focuses on finding the secret key.

Frequency analysis is the basic tool for breaking classical ciphers and reveal the secret
key. In normal conversation, some letters appear more frequently than others (i.e. "E" is
the most frequent letter in the English language). This information can be used to try
to decrypt substitution ciphers (encryption algorithms that replaces each letter with the
same value each time); and from this reveal the secret key, which can then be used to
decrypt following messages.

Certificate manipulation: Certificate manipulation is when the adversary modifies
certificate information to perform an attack on a protocol. The certificate of a principal
acts as an assurance from a trusted third party that the principal’s public key really does
belong to that principal [1]. The trusted authority does not necessarily receive some evi-
dence that the principal really possesses the private key that corresponds with the value
he claims to be his public key. This may cause problems when an adversary gains a cer-
tificate containing a public key value without having the corresponding private key.

Protocol interaction: Protocol interaction means that the adversary chooses a new
protocol to interact with a known protocol. Most of the long-term keys are meant to be
used for a single protocol only [1, 7]. Despite of this, some keys are used in more than
one protocol. For example could a protocol which use decryption to prove possession of
an authentication key be used by an adversary to decrypt messages from another proto-
col, provided that the same key is being used [1].

The ways to prevent this kind of attack is to use different keys for each protocol, and
to include protocol details (like identifier and version number) in an authenticated part
of the messages.

15

Analysis of Key Agreement Protocols

2.5 Protocol Analysis

As we said in section 1.6, there are many different ways to analyse protocols, but in
this thesis we have chosen to focus on whether or not the protocols meet some specified
goals. Here we present these goals and give a short description of them.

A secure protocol is capable of resisting both passive and active attacks. In addition
to this, some other features are highly desired [3]:

1. Known key security: a protocol run should result in a unique secret session key. If this
key is compromised, it should have no impact on other session keys.

2. Forward secrecy: The fact that long-term private keys are compromised, should have
no impact on the secrecy of previously established session keys.

3. Key-compromise impersonation resilience: If entity A’s long-term private key is com-
promised, an adversary is able to impersonate A. But this should not enable him to
impersonate other entities to A.

4. Unknown key-share resilience: If entity A wants to create a secret key with B, it should
not be possible that A is tricked into sharing a key with entity C.

5. Key control: Neither of the entities should be able to force the session key to a value
of his choice.

We would also like to have some kind of authentication in our protocols, so that the
principals can verify each other’s identity. Authenticated key agreement protocols may
be divided into two categories: public-key-based key agreement protocols and password-
based key agreement protocols. The first category adopts signature schemes in order to
provide mutual authentication. The second category allows both principals to share a
secret password in advance to provide the authentication property. An authenticated key
agreement protocol must achieve one of these two security goals [7] (from A to B):

• implicit (weak) key confirmation: B is assured that A is the only other entity that could
know the correct key.

• explicit (strong) key confirmation: B is assured that A is the only other entity that
knows the correct key (B has verified that A has received the correct key).

In an Authenticated Key Exchange (AKE) protocol, two requirements must be met [40]:

• mutual authentication: (two party authentication) both parties authenticate them-
selves in such a way that both parties are assured of the other party’s identity.

• secure communication: the two communicating entities establishes a session key in
order to secure later transmissions.

These features are greatly used for analysis of key agreement protocols. It is also these
factors we will consider when analysing the protocols of this thesis.

Assumptions regarding the attacker’s resources is not important in this kind of analy-

16

Analysis of Key Agreement Protocols

sis, when we see if the protocols fulfill these specific goals. We illustrate this with the
definition of forward secrecy: The way the long-term key is compromised, whether it has
been revealed by a brute force attack or it was not properly protected by its owner, is not
the focus here. What we are interested in, is the consequenses if this happens.

17

Analysis of Key Agreement Protocols

3 Wen-Lin-Hwang’s protocol

In 2005, Wen, Lin and Hwang [40] proposed a protocol for key establishment for low
computing power devices, like cellular phones, PDAs1 and smart cards.

The article focuses on designing an AKE-LPC (Authenticated Key Exchange - for Low
Power Computing clients) protocol, based on hybrid key architecture. A hybrid key ar-
chitecture means that one entity (often a server) stores a pair of matching public/private
keys while the other entity shares a secret with the server.

The authors propose two protocols, the last with a slight modification to achieve ex-
plicit mutual authentication. We will only consider the last one.

3.1 Notations

Here we describe the notations used in this protocol.

• UC, US - Client (UC) and server (US)

• sC - A k-bit master key that UC stores

• (pkS, skS) - A public/private key pair held by US

• EpkS
(x) - Encryption of x using the server’s public key pks

• DskS
(y) - Decryption of y using the server’s private key sks

• rC, rS - two random numbers (of k-bit length) of client (rC) and server (rS)

• f(), H() - one-way hash functions

3.2 Protocol

From the beginning, the client UC stores it’s master key sC. The server US holds the
private and public key pair (skS, pkS), and maintains a public table which contains all
identities (like UC) and their corresponding verifiers (like f(UC, sC)). The table record
for client UC will be UC, f(UC, sC).

The protocol consists of two phases, the precomputation phase and the protocol exe-
cution phase. In the precomputation phase, UC selects a random number rC. UC then
computes the cipher text y from EpkS

(UC, sC, rC). UC then stores rC and y, see figure 4.

In the protocol execution phase, UC sends y to US. US decrypts y to obtain (UC, sC, rC).
US then checks if f(UC, sC) matches with the value in the table. If it is a match, US then

1Personal Digital Assistant

19

Analysis of Key Agreement Protocols

(sC) Client Server (skS, pkS)

rC ← {0, 1}k

y = EpkS
(UC, sC, rC)

Figure 4: Wen-Lin-Hwang’s protocol - precomputation phase

selects a random number rS. If not, US terminates the protocol. US creates an authenti-
cation value AuthS = H(H[y, rC, rS], 2) and sends rS, AuthS to UC, see figure 5.

UC verifies AuthS and creates an authentication value AuthC = H(H[y, rC, rS], 1)

and sends to US. UC computes the session key SK = H(H[y, rC, rS], 0).
US verifies AuthC. If it is okay, US computes the session key SK = H(H[y, rC, rS], 0).

(sC, rC, y) Client Server (skS, pkS)

y→
(UC, sC, rC) = DskS

(y)
match with table?

rS ← {0, 1}k

sk ′ = H(y, rC, rS)
AuthS = H(sk ′, 2)

rS,AuthS←
sk ′ = H(y, rC, rS)
H(sk ′, 2)? = AuthS

AuthC = H(sk ′, 1)
AuthC→

H(sk ′, 1)? = AuthC

SK = H(sk ′, 0) SK = H(sk ′, 0)

(’?=’ means checking if the two sides of the equation are equal)

Figure 5: Wen-Lin-Hwang’s protocol - execution phase

3.3 Analysis of protocol

This protocol does not meet the forward secrecy goal. The long-term secret keys in this
protocol are sC and skS. sC is used in y = EpkS

(UC, sC, rC), and skS is used to decrypt y
to get back the three values UC, sC, rC. We assume that an attacker has eavesdropped on
a previous key agreement session, and has the transmitted messages y, (rS, AuthS) and
AuthC. If he manage to get hold of the key skS, he can decrypt the message y. Then he
has y, rC and rS, which is all he needs to create the previously established session key
SK = H(H[y, rC, rS], 0). He can then use this key to decrypt all previously sent messages

20

Analysis of Key Agreement Protocols

that was encrypted with this key. So this protocol fails to meet the forward secrecy goal.

We assume that an attacker has been eavesdropping on a previous run of the protocol
between client and server, see figure 6.

(sC) Client Server (skS, pkS)

rC1
← {0, 1}k

y1 = EpkS
(UC, sC, rC1

)

y1→
(UC, sC, rC1

) = DskS
(y)

match with table?

rS1
← {0, 1}k

sk ′
1 = H(y1, rC1

, rS1
)

AuthS1
= H(sk ′

1, 2)
rS1

,AuthS1←
sk ′

1 = H(y1, rC1
, rS1

)
H(sk ′

1, 2)? = AuthS1

AuthC1
= H(sk ′

1, 1)
AuthC1→

H(sk ′
1, 1)? = AuthC1

SK1 = H(sk ′
1, 0) SK1 = H(sk ′

1, 0)

(’?=’ means checking if the two sides of the equation are equal)

Figure 6: Attack sequence on Wen-Lin-Hwang’s protocol A - previous protocol run

They then use the session key to exchange some encrypted messages, see figure 7.

The attacker now has the information y1, rS1
, AuthS1

, AuthC1
, C1 and C2. He still

does not have enough information to compute the session key, and hence he cannot de-
crypt the two messages.

Client Server

C1 = ESK1
(M1)

C1→
M1 = DSK1

(C1)
C2 = ESK1

(M2)
C2←

M2 = DSK1
(C2)

Figure 7: Attack sequence on Wen-Lin-Hwang’s protocol B - transmission of encrypted messages

21

Analysis of Key Agreement Protocols

But if the attacker learns the value of the private key skS, he can decrypt y1 and from
that get the values UC, sC and rC1

. He now has all he needs to compute the session key
SK1 = H(y1, rC1

, rS1
). Then he may decrypt both C1 and C2 and retrieve the original

messages. So the forward secrecy goal is not fulfilled.

The other goals are fulfilled in this protocol.

Known key security: The session key SK is computed from H(H[y, rC, rS], 0). Besides
from the value 0, all the values change each session. This means that even if the session
key is compromised, it will have no effect on other session keys. So the protocol meets
the known key security goal.

Key-compromise impersonation resilience: If the client’s long-term private key sC is
compromised, an attacker can impersonate the client and create the message y. This is
because the encryption algorithm, the servers public key pkS and UC is publicly known.
All the attacker then needs in order to create the message y = EpkS

(UC, sC, r ′
C) is a ran-

dom value r ′
C. But because the attacker does not know the server’s secret key sks, he is

not able to decrypt the value y and get the information he needs in order to compute the
hash value sk ′ = H(y, rC, r ′

S). He cannot get the correct value of rC without decrypting y.

We now look at it in the other way, and assume that the server’s private key skS is
compromised. Then an attacker can decrypt the message y from a client. He can then
complete the protocol and create a session key SK between the client and the attacker.
But he still cannot impersonate another client to the server. He needs to know one of
the client’s private keys sx in order to do this. So the protocol meets the key-compromise
impersonation goal.

Unknown key-share resilience: Because of the Auth messages the two parties ex-
change, they prove their identity to each other. As long as the server’s private key skS

is not compromised, only the server could decrypt y and get the rS, which it needs to
create an AuthS value that the client would accept. And still, as long as skS is not com-
promised, only the client who sent the first message will know the value of rC and create
an AuthC that the server would accept. So the protocol meets the unknown key-share
resilience goal.

Key control: The session key SK = H(H[y, rC, rS], 0) consists of two random values,
one from each entity. Since the server picks his value last, and then already know both y

and rC, he can choose a rS so that the session key results in the value that he wants. But,
because of the hash functions, he needs to try different values of rS until he finds a value
that results in the wanted key. One of the assumptions regarding hash functions is that
it is computationally infeasible to find a value x that will give the wanted result y (H(x)
= y), as described in section 2.2.1. In this case it means that even though the server has
three of the values needed to perform the session key (y, rC and 0) and is in total control
of the last value rS, it would be practically impossible to find a value that, after the two
hash functions, will result in the wanted key. So the protocol meets the key control goal.

22

Analysis of Key Agreement Protocols

Key confirmation: Because both principals verify each other’s Auth values, they con-
firm that the other principal is computing the same session key. Hence the protocol pro-
vides strong key confirmation.

The protocol’s specific goal: The goal for this protocol was to make the client perform
as little computations as possible, and to achieve mutual authententication and secure
communications, see section 2.5.

We see that the client only has to perform a few hash functions, which requires low
resources.

The client is authenticated by sending his user ID UC and secret sC, encrypted with
the server’s public key pkS in y = EpkS

(UC, sC, rC). The server is authenticated by send-
ing back fC in AuthS = H(H[y, rC, rS], 2). If we assume that the server’s private key skS

is kept secret, which it should be, only the server could decrypt y and retrieve the value
rC.

Because of the two Auth messages, both parties know that they are using the same
values y, rC and rS. They then know that they will compute the same session key.

So the protocol achieves mutual authentication and secure communication, and it has
low computational requirements on the client side.

3.4 Improvement of the protocol

The original protocol did not meet the forward secrecy goal. If the long-term secret key
sC or skS were compromised, it would affect both the current and previous session keys.

If we should make a minor change to the protocol so that it meets the forward secrecy
goal, it could look like the protocol in figures 8 and 9.

We introduce two new secret values, kC and kS. These values are used to create
nC = ykC and nS = ykS , which are used to compute the session key.

(sC) Client Server (skS, pkS)

rC ← {0, 1}k

y = EpkS
(UC, sC, rC)

kC ← {0, 1}k

nC = ykC

Figure 8: Wen-Lin-Hwang’s protocol - precomputation phase - enhanced version

In our proposed protocol, the session key is computed by SK = H(H[(nC)kS , rC, rS], 0)

23

Analysis of Key Agreement Protocols

(sC, rC, y, kC, nC) Client Server (skS, pkS)

y,nC→
(UC, sC, rC) = DskS

(y)
match with table?

rS ← {0, 1}k

kS ← {0, 1}k

nS = ykS

sk ′ = H((nC)kS , rC, rS)
AuthS = H(sk ′, 2)

rS,nS,AuthS←
sk ′ = H((nS)kC , rC, rS)
H(sk ′, 2)? = AuthS

AuthC = H(sk ′, 1)
AuthC→

H(sk ′, 1)? = AuthC

SK = H(sk ′, 0) SK = H(sk ′, 0)

(’?=’ means checking if the two sides of the equation are equal)

Figure 9: Wen-Lin-Hwang’s protocol - execution phase - enhanced version

or SK = H(H[(nS)kC , rC, rS], 0). We use the idea from Diffie-Hellman, see section 2.3.1,
when we make the first part of the inner hash value to be ykCkS , where ykC and ykS is
transmitted but not kC or kS alone. Even with the long-term private keys, an attacker can
only get hold of the values nC, nS, rC and rS. But he does not know the secret random
values kC and kS. So therefore he cannot compute the session key, and our protocol
meets the forward secrecy goal.

24

Analysis of Key Agreement Protocols

4 Popescu’s protocol

Popescu [28] has proposed an efficient and secure authenticated key agreement proto-
col that is based on the Diffie-Hellman key agreement. The protocol uses elliptic curve
cryptography, which is described in section 2.3.2.

4.1 Notations

Here we describe the notations used in this protocol.

• P is a point on the elliptic curve E(q)

• H is a one-way hash function

• a, b are random integers from the interval [1, q-1]. These are the secret keys of user
A and B, respectively

• YA = −a∗P and YB = −b∗P are two points on the elliptic curve. These are the public
keys of user A and B, respectively

• KS = −b ∗ YA = −a ∗ YB = ab ∗ P is the long term secret key of A and B

4.2 Protocol

The authenticated key agreement protocol is as follows: A generates a random integer
kA from the interval [1, q-1] and computes VA = −kA ∗P and eA = H(xVA

, xKS
), where

xVA
and xKS

are the x-coordinate of the VA and KS points, respectively. A sends VA and
eA to B.

Similarly, B randomly selects an integer kB from the interval [1, q-1] and computes
VB = −kB ∗ P and eB = H(xVB

, xKS
). B sends VB and eB to A.

A computes H(xVB
, xKS

) and compares the result to eB. If they are not identical, A
terminates the execution. Otherwise A computes the point KA = −kA ∗ VB.

B computes H(xVA
, xKS

) and compares the result to eA. If they are not identical, B
terminates the execution. Otherwise B computes the point KB = −kB ∗ VA.

Figure 10 shows an execution of the protocol.
A and B then have computed the same key K = −kA ∗ VB = −kB ∗ VA = kAkB ∗ P,

and they have authenticated each other.

25

Analysis of Key Agreement Protocols

Alice P, KS Bob

kA

VA = −kA ∗ P

eA = H(xVA
, xKS

)
VA,eA→

kB

VB = −kB ∗ P

eB = H(xVB
, xKS

)
VB,eB←

H(xVB
, xKS

)? = eB

KA = −kA ∗ VB

H(xVA
, xKS

)? = eA

KB = −kB ∗ VA

(’?=’ means checking if the two sides of the equation are equal)

Figure 10: Popescu’s protocol

4.3 Analysis of protocol

This protocol does not meet the key-compromise impersonation resilience goal. If entity
A’s long-term private key a is compromised, an attacker can use this key together with
B’s public key YB and the publicly known value P to generate KS = −a ∗ YB. Then he can
pretend to be A and execute the protocol with B.

We still assume that the attacker knows the private key a, only this time he wants to
impersonate B to A. He computes the value KS from −a ∗ YB. He selects a random value
kB ′ and computes VB ′ and eB ′ . When he receives VA from A, he can compute the session
key between A and the attacker.

The attacker then can impersonate A to B, which is reasonable since it is A’s key that
have been compromised. But the attacker also has enough information to impersonate B
to A. The attacker may either initiate a run of the protocol to A, while he pretends to be
B (see figure 11), or he can intercept the transmissions A sends to B and respond back
himself, posing as B (see figure 12). This is the part that makes the protocol fail to meet
the wanted security feature.

The other goals are fulfilled in this protocol.

Known key security: The session key K is computed from kAkB ∗ P. Both kA and kB

are chosen randomly for each session. Even if this key is compromised, it will have no
effect on other session keys. Therefore, the protocol meets the known key security goal.

Forward secrecy: The long-term private keys here are a and b. These values does
not directly affect the session key. The session key K is computed by kAkB ∗ P. So if the
attacker wants to learn a previous session key, he must derive kA from VA = −kA ∗P and
find the session key from KA = −kA ∗ VB or derive kB in the same manner. But deriving

26

Analysis of Key Agreement Protocols

CB P, KS Alice

kC

VC = −kC ∗ P

eC = H(xVC
, xKS

)
VC,eC→

kA

VA = −kA ∗ P

eA = H(xVA
, xKS

)
VA,eA←

H(xVA
, xKS

)? = eA

KC = −kC ∗ VA

H(xVC
, xKS

)? = eC

KA = −kA ∗ VC

(’?=’ means checking if the two sides of the equation are equal)

Figure 11: Attack sequence on Popescu’s protocol - attacker C initiating a protocol run

these values from the Vx expressions are similar to solving the discrete logarithm prob-
lem, which is considered to be computationally infeasible, as described in section 2.2.2.
So the protocol meets the forward secrecy goal.

Unknown key-share resilience: We assume an attacker C in the middle, trying to
intercept all messages between A and B and replacing them with his own. He receives
VA, eA from A, intended to B, and exchanges these values with VC, eC and sends these to
B. B sends VB, eB to A, but C intercepts the message and replaces the values with V ′

C, e ′
C.

A and C now share a key, and B and C share a key. But the part that makes this scenario
impossible is the verification of the ex messages. These verifications control the relation-
ship between Vx and ex. As long as no private keys are compromised, the attacker has no
way of knowing the key KS, and will therefore not be able to get the correct relationship
between his values VC and eC, and V ′

C and e ′
C. When the verification fails, the protocol

execution is terminated. Therefore the unknown key-share resilience goal are met in this
protocol.

Key control: A does not have any way of forcing the session key to a value of his
choice. But since B receives VA before he chooses a value kB, he may choose a value
which will make the session key be the wanted value. However, in order to do this, he
needs to determine which value kB will give the wanted KB in the expression KB =

−kB ∗VA, and that is similar to solving the elliptic curve discrete logarithm problem (see
section 2.2.2). So the protocol meets the key control goal.

Key confirmation: In the verification of the e values in this protocol, the principals
only verify if the other principal has knowledge of the common secret KS. But it does not
give any information about whether or not the other principal has computed the same
session key. So this protocol only provides weak key confirmation.

27

Analysis of Key Agreement Protocols

Alice C Bob

kA

VA = −kA ∗ P

eA = H(xVA
, xKS

)
VA,eA→ intercept

kC

VC = −kC ∗ P

eC = H(xVC
, xKS

)
VC,eC←

H(xVC
, xKS

)? = eC

KA = −kA ∗ VC

H(xVA
, xKS

)? = eA

KC = −kC ∗ VA

(’?=’ means checking if the two sides of the equation are equal)

Figure 12: Attack sequence on Popescu’s protocol - attacker C intercepting a conversation

The protocol’s specific goal: The goal for this protocol is to be efficient. And as we
can see, the protocol only use hash functions and elliptic curve computations, which does
not require much resources. So this goal is met.

4.4 Improvement of the protocol

The original protocol did not meet the key-compromise impersonation resilience goal. If
an attacker gets hold of A’s private key a, he may use this knowledge to impersonate B
to A. If we make a slight modification of the protocol, see figure 13, we may be able to
fulfill this goal as well.

In order to authenticate the parties, we want each party to prove possession of its
private key. We let B compute V ′

A = −b ∗ VA, which he sends to A. A then checks the
equation −kA ∗ YB = V ′

A. If B really knows the private key that corresponds to his public
key YB, then the two sides of the equation will be equal and B has authenticated himself.
In the same way, A computes V ′

B = −a ∗ VB, which he sends to B. B then checks the
equation −kB ∗YA = V ′

B. If the two sides of the equation are equal, A has proven that he
knows the value of his private key a.

If A’s long-term private key a are compromised, an attacker may still be able to imper-
sonate A to B. But because he cannot compute a correct value for V ′

A, he can no longer
use his information about A’s private key to impersonate B to A. So the key-compromise
impersonation resilience goal is fulfilled.

28

Analysis of Key Agreement Protocols

Alice P, KS Bob

kA

VA = −kA ∗ P

eA = H(xVA
, xKS

)
VA,eA→

kB

VB = −kB ∗ P

eB = H(xVB
, xKS

)
V ′

A = −b ∗ VA

VB,eB,V ′
A←

H(xVB
, xKS

)? = eB

−kA ∗ YB? = V ′
A

V ′
B = −a ∗ VB

V ′
B→

KA = −kA ∗ VB

H(xVA
, xKS

)? = eA

−kB ∗ YA? = V ′
B

KB = −kB ∗ VA

(’?=’ means checking if the two sides of the equation are equal)

Figure 13: Popescu’s protocol - enhanced version

29

Analysis of Key Agreement Protocols

5 Harn-Hsin-Mehta’s protocol

In 2004, Harn, Hsin and Mehta [10] proposed a few key agreement protocols based on
Diffie-Hellman, which only used one single cryptographic assumption.They argued that
if a protocol could be constructed using one cryptographic assumption, it would be at
least as secure as that with multiple assumptions.

They associate a protocol based on multiple assumptions with a house with several
doors with different security mechanisms. The more doors a house has, the more ways
a thief can break into the house. The weakest security mechanism of all is the easiest
to overcome. And the more assumptions a protocol has, the more ways an attacker can
try to attack the protocol. The security of the protocol is then reduced to the security of
the weakest assumption. The designers propose three different protocols, each based on a
single cryptographic assumption. We will look at the protocol based on RSA factorisation.

5.1 Notations

Here we describe the notations used in this protocol. The two communicating parties are
i and j.

• pi, qi - two safe primes, pi = 2p ′
i + 1 and qi = 2q ′

i + 1

• gi - a long-term generator with order 2p ′
iq

′
i, publicly known

• di - a long-term private key, di ∈ [0, 2p ′
iq

′
i − 1]

• ni - a long-term public value, ni = piqi

• ei - a long-term public value, eidi mod (2p ′
iq

′
i) = 1

• Ri - a long-term public value, Ri = (gi)
di mod ni

• certi - a certificate containing the values ni, Ri, ei and gi

• ki - a short term key, ki ∈ [0, nj − 1]

• ri - a short term key, ri = (gj)
ki mod nj

• si - the signature

5.2 Protocol

For the computations, each party needs some of the other party’s public keys. A is given
the values gB, nB, RB and eB from B’s certificate, and B is given the values gA, nA, RA

and eA from A’s certificate.

A chooses a value kA, computes rA = (gB)kA mod nB and sends rA to B. B chooses a

31

Analysis of Key Agreement Protocols

value kB and computes rB = (gA)kB mod nA. He also computes kAB = (rA)dB mod nB

and sB = (rB)dBkAB mod nB, and sends the values (rB, sB) to A. A computes k ′
AB =

(RB)kA mod nB. A verifies sB and k ′
AB by checking the equation (rB)(k ′

AB)eB = (sB)eB mod nB.
If the two sides are equal, A computes kBA = (rB)dA mod nA and sA = (rA)dAkBA mod nA.
A then sends sA to B. B computes k ′

BA = (RA)kB mod nA. B verifies sA and k ′
BA by

checking the equation (rA)(k ′
BA)eA = (sA)eA mod nA.

Figure 14 shows an execution of the protocol.

Alice Bob

kA

rA = (gB)kA mod nB
rA→

kB

rB = (gA)kB mod nA

kAB = (rA)dB mod nB

sB = (rB)dBkAB mod nB
rB,sB←

k ′
AB = (RB)kA mod nB

(rB)(k ′
AB)eB? = (sB)eB mod nB

kBA = (rB)dA mod nA

sA = (rA)dAkBA mod nA
sA→

k ′
BA = (RA)kB mod nA

(rA)(k ′
BA)eA? = (sA)eA mod nA

(’?=’ means checking if the two sides of the equation are equal)

Figure 14: Harn-Hsin-Mehta’s protocol

Here we get two session keys, kAB for transmissions from A to B, and kBA for trans-
missions from B to A.

5.3 Analysis of protocol

This protocol does not meet the forward secrecy goal. The long-term private keys are
dx. If we assume that dB is compromised, an attacker can compute the key kAB from
(rA)dB mod nB (nB is publicly known, and rA can be found by eavesdropping on the
conversation between A and B). So clearly this will affect the current session key.

If the attacker has eavesdropped on previous conversations and archived the mes-
sages, both from the protocol execution and messages encrypted with previous session
keys, he may use the knowledge of dB to derive the previous session keys and read the
encrypted messages.

First, we assume a previous run of the protocol between A and B, where the attacker
C was eavesdropping on the conversation, see figure 15.

32

Analysis of Key Agreement Protocols

Alice Bob

kA1

rA1
= (gB)kA1 mod nB

rA1→
kB1

rB1
= (gA)kB1 mod nA

kAB1
= (rA1

)dB mod nB

sB1
= (rB1

)dBkAB1
mod nB

rB1
,sB1←

k ′
AB1

= (RB)kA1 mod nB

(rB1
)(k ′

AB1
)eB? = (sB1

)eB mod nB

kBA1
= (rB1

)dA mod nA

sA1
= (rA1

)dAkBA1
mod nA

sA1→
k ′

BA1
= (RA)kB1 mod nA

(rA1
)(k ′

BA1
)eA? = (sA1

)eA mod nA

(’?=’ means checking if the two sides of the equation are equal)

Figure 15: Attack sequence on Harn-Hsin-Mehta’s protocol A - previous protocol run

Alice Bob

C1 = EkAB1
(M1)

C1→
M1 = DkAB1

(C1)

C2 = EkBA1
(M2)

C2←
M2 = DkBA1

(C2)

Figure 16: Attack sequence on Harn-Hsin-Mehta’s protocol B - transmission of encrypted messages

The attacker C now has stored the information about rA1
, rB1

, sB1
, sA1

, C1 and C2. C
can not decrypt the messages because he does not have enough information to compute
the session key.

Then suppose that the attacker gets hold of the private key dB. Then C can compute
the session key kAB1

= (rA1
)dB mod nB. He can use this key to decrypt the ciphertext

C1 and retrieve the message M1, see figure 16. But he can still not decrypt C2. If the at-
tacker continues to eavesdrop on the conversations B has, he can compute each session
key for transmission from A to B until B changes his private key. So the forward secrecy
goal is not fulfilled.

33

Analysis of Key Agreement Protocols

The other goals are fulfilled in this protocol.

Known key security: The session keys kAB and kBA are based on the random values
kA and kB. Each kx value are independent of both previous and future ones, so disclo-
sure of the current secret session key will have no impact on other session keys. So the
protocol meets the known key security goal.

Key-compromise impersonation resilience: If we assume that A’s private key dA is
compromised, an attacker can execute the protocol and get a common key with B. (B
believes he is sharing a key with A). So clearly the attacker can impersonate A. But if the
attacker, still knowing dA, tries to impersonate B to A, he will not be able to compute
kAB = (rA)dB mod nB, because he does not know dB. A will detect this during the veri-
fication of sB. So the protocol meets the key-compromise impersonation resilience goal.

Unknown key-share resilience: If we assume an attacker C acting as a man-in-the
middle intercepting and modifying messages as he pleases, in order to try to trick one of
the parties into sharing a key with him. But because of the way both parties compute a
trial value k ′

xx based on some public information Rx of the party they want to establish a
common key with, and as long as the k ′

xx value is verified against the received values rx

and sx, he will not succeed. So the protocol meets the unknown key-share resilience goal.

Key control: The only changing values used to generate the session keys are kA and
kB. Both A and B chooses these values before they get to know the rest of the variables
they will use in order to generate the keys. So neither party will have the possibility to
force the value of the session keys. Therefore, the protocol meets the key control goal.

Key confirmation: Because both principal verifies the received value sx and the com-
puted value k ′

xx, they can verify that the other principal has computed the same session
key for that direction. So the protocol provides strong key confirmation.

The protocol’s specific goal: The designers here want to make a protocol based on
only one assumption, namely RSA factoring. We see that for an attacker to compute the
session key from A to B, he will need to find kA from rA = (gB)kA mod nB, so that he
may compute kAB = (RB)kA mod nB. This means solving the discrete logarithm prob-
lem, which is described in 2.2.2. As an alternative he can try to find the private key dB of
B. In order to do this, he needs to extract dB from eBdB mod (2p ′

Bq ′
B) = 1. The attacker

needs to find the values for pB and qB from nB in order to find p ′
B and q ′

B. This is the
same as solving the RSA factorisation problem, which is described in section 2.2.3.

The attacker only needs to solve one of these problems in order to find the session
key for one direction. But we see that he could avoid the RSA factorisation and instead
try to solve a discrete logarithm. Therefore, the protocol is not based solely on RSA fac-
torisation.

34

Analysis of Key Agreement Protocols

5.4 Improvement of the protocol

The problem with the original protocol was that it did not meet the forward secrecy goal.
If the long-term private key of either party was compromised, an attacker could compute
both the current and previous session keys. If we should make a minor change to the pro-
tocol so that it meets the forward secrecy goal, it could look like the protocol in figure 17.

We introduce two new values, mA = (RA)kA mod nA and mB = (RB)kB mod nB.
These values are used to make the session keys dependent on more secret values than
just the long-term secret keys.

Alice Bob

kA

rA = (gB)kA mod nB

mA = (RA)kA mod nA
rA,mA→

kB

rB = (gA)kB mod nA

mB = (RB)kB mod nB

kAB = (rA)dBkB mod nB

sB = (rB)dBkAB mod nB
rB,mB,sB←

k ′
AB = (mB)kA mod nB

(rB)(k ′
AB)eB? = (sB)eB mod nB

kBA = (rB)dAkA mod nA

sA = (rA)dAkBA mod nA
sA→

k ′
BA = (mA)kB mod nA

(rA)(k ′
BA)eA? = (sA)eA mod nA

(’?=’ means checking if the two sides of the equation are equal)

Figure 17: Harn-Hsin-Mehta’s protocol - enhanced version

In our proposed protocol, the key for messages transmitted from A to B is com-
puted by kAB = (rA)dBkB mod nB. So even if the attacker gets to know B’s long-
term private key dB, he cannot compute the key because he does not know the se-
cret random value kB. If we look at A’s computation of the same key, it constitutes of
k ′

AB = (mB)kA mod nB. mB is transmitted in clear text, and nB is publicly known. But
an attacker will not know the value kA. Extracting kA from rA or mA, or kB from rB or
mB is the same as solving the discrete logarithm problem (see section 2.2.2), which is
considered impossible .

The same way of thinking applies for the session key in the opposite direction. So
knowing the long-term secret key dA or dB is not enough to be able to compute the cur-
rent or previous session keys. You also need to know kA or kB. Therefore, our proposed
protocol meets the forward secrecy goal.

35

Analysis of Key Agreement Protocols

6 Tseng’s protocol

In 2005, Tseng [38] proposed a key agreement protocol with explicit key confirmation
which require very little computational cost in order to reduce the impact of denial-of-
service attacks. They focus on CPU-exhaustion and storage-exhaustion.

CPU-exhaustion means that the attacker tries to use up all the server’s computational
resources, and storage-exhaustion is when the attacker fills the server’s memory with vari-
ables connected to the various requests to the server.

In this analysis, we will only look at the last protocol, namely the New Authenticated
Key Agreement Protocol.

6.1 Notations

Here we describe the notations used in this protocol.

• p, q - two large primes, where q is a factor of p − 1

• g - a generator in GF(p) with order q

• H - a collision-free hash function

• Ii - identity information of user i

• xi - secret key, xi ∈ [0, q − 1]

• yi - public key, yi = gxi mod p

• EB, DB - the server’s encryption and decryption functions

• KS - the server’s master secret, used together with a timestamp to generate the secret
key of Ei

• K - the final session key between A and B

The values p, q, g and H are published.

6.2 Protocol

The client A chooses a random number a ∈ [0, q − 1] and computes rA = ga mod p. The
server B also chooses a random number b ∈ [0, q − 1] and computes rB = gb mod p,
sB = b + xB ∗H(rB, yB) mod q and MB = gsB mod p.

A sends IA to B. B computes cB = EB(rB,MB, sB). B sends rB, cB and IB to A.

A computes M ′
B = rB ∗ (yB)H(rB,yB) mod p, V = H(M ′

B, rA, rB, yA) and sA = a +

37

Analysis of Key Agreement Protocols

xA∗V mod q. A also computes MA = gsA mod p, e = H(MA, rA), K ′
A = (M ′

B)sA mod p

and TA = H(rA, rB, K ′
A). A sends V, TA, rA, e, cB and IA to B.

B recovers rB,MB and sB by decrypting cB. B then checks to see if V is equal
to H(MB, rA, rB, yA). If it is not, the protocol is terminated. Otherwise, B computes
M ′

A = rA ∗ (yA)V mod p and compares e to the result of H(M ′
A, rA). If the values are

not equal, the protocol is terminated. Otherwise, B computes K ′
B = (M ′

A)sB mod p and
checks if TA is equal to H(rA, rB, K ′

B). Finally, B computes TB = H(rB, rA, K ′
B). B sends

TB to A.

A checks if both sides of the equation TB = H(rB, rA, K ′
A) are equal. If not, the proto-

col is terminated. If it is okay, A computes the session key K = H(K ′
A). B also computes

the same session key from K = H(K ′
B).

Figure 18 shows an execution of the protocol.

6.3 Analysis of protocol

All the goals are fulfilled in this protocol.

Known key security: The session key K = H(K ′
x) is based on a hash value. This means

that as long as there is a slight change in the input value K ′
x, the output K will be totally

different. Based on the assumption that a hash function is a one-way function, as pre-
sented in section 2.2.1, the disclosure of K will not reveal any information about other
session keys.

But if we instead assume that the value K ′
x is compromised, let us see what happens

then. The value K ′
x is based on the values sA and sB. These two values are computed

using the random values a and b, respectively. These values change each time, with no
distinct pattern. Therefore, it is not possible to get information about other session keys
even if the value K ′

x is compromised. So the protocol meets the known key security goal.

Forward secrecy: The long-term private keys in this protocol are xA and xB. These
values are used to compute sA = a + xA ∗V mod q and sB = b + xB ∗H(rB, yB) mod q.
The values sA and sB are used to generate the values K ′

A and K ′
B, respectively. To com-

pute K ′
A we need M ′

B and sA, and to compute K ′
B we need M ′

A and sB. We can compute
M ′

B = rB∗(yB)H(rB,yB) (yB is publicly known, and rB we get from eavesdropping on the
conversation), and M ′

A we can find in the same fashion. But we cannot get the values
sA or sB because we do not know the random values a and b. In order to find a or b, the
attacker must derive these values from rA = ga mod p or rB = gb mod p. Extracting
these values would be similar to solving the discrete logarithm problem, as presented in
section 2.2.2. Therefore, the protocol meets the forward secrecy goal.

Key-compromise impersonation resilience: If A’s long-term private key xA is com-
promised, an attacker can participate in a protocol run and set up a session key between
him and B. B believes he is sharing a key with A.

38

Analysis of Key Agreement Protocols

Alice p, q, g, H Bob

a

rA = ga mod p

b

rB = gb mod p

HB = H(rB, yB)
sB = b + xB ∗HB mod q

MB = gsB mod p
IA→

cB = EB(rB,MB, sB)
rB,cB,IB←

M ′
B = rB ∗ (yB)H(rB,yB) mod p

V = H(M ′
B, rA, rB, yA)

sA = a + xA ∗ V mod q

MA = gsA mod p

e = H(MA, rA)
K ′

A = (M ′
B)sA mod p

TA = H(rA, rB, K ′
A)

V,TA,rA,e,cB,IA→
(rB,MB, sB) = DB(cB)

V ? = H(MB, rA, rB, yA)

M ′
A = rA ∗ (yA)V mod p

e ? = H(M ′
A, rA)

K ′
B = (M ′

A)sB mod p

TA ? = H(rA, rB, K ′
B)

TB = H(rB, rA, K ′
B)

TB←
TB ? = H(rB, rA, K ′

A)
K = H(K ′

A)
K = H(K ′

B)

(’?=’ means checking if the two sides of the equation are equal)

Figure 18: Tseng’s protocol

Let us assume that the attacker wants to use his knowledge of xA to impersonate B to
A. Because of the relationship between Mx and M ′

x, where one is based on the private
key xx and the other is based on the corresponding public key yx, the attacker will not
be able to pull this off. He will generate sB using the wrong private key. A computes M ′

B

and then K ′
A based on B’s public key yB. They will then end up with different values of

K ′
x. A will discover this when he receives TB, and terminate the protocol. So the protocol

meets the key-compromise impersonation resilience goal.

Unknown key-share resilience: Because of the relationship between Mx and M ′
x

mentioned above, it is not possible to be tricked into sharing a key with another entity
than what was intended. The TA and TB verifications will detect any attempts of this, and
the protocol will be terminated. So the protocol meets the unknown key-share resilience

39

Analysis of Key Agreement Protocols

goal.

Key control: The impact each party could have on the key is when they choose their
random values a and b. B chooses his value early on, and will have no impact on the
final key. A also does this early, but since he does not transmit his value, he can change
it after he gets the value M ′

B. But finding a value a which will give a sA that results in
the wanted session key, is very difficult. In order to do this, A needs to find a input value
K ′

A to the hash function, which will give the wanted session key as output. After that, A
needs to get the sA value from the expression K = (M ′

B)sA mod p in order to get a a

value to use to compute rA. But this scenario requires A to break the hash function and
solve the discrete logarithm problem, which is presented in section 2.2.1 and 2.2.2. Both
of these problems are considered computationally infeasible. So the protocol meets the
key control goal.

Key confirmation: Because both principals controls the received value T and make
sure that the other principal has used the same value for K ′

x as they have computed, they
know that they will compute the same session key. So this protocol provides strong key
confirmation.

The protocol’s specific goal: This protocol tries to reduce the impact of denial-of-
service attacks against the server (here B) by minimising the server’s computations and
storage needs.

On the computational side, we see that B needs to perform 5 hash functions, 1 en-
cryption, 1 decryption, 2 modular multiplications and 4 modular exponentiations. This is
quite a lot, but if we take one more look at the protocol, we see that about half of these
computations comes after the verification of the client (here A). After responding to A,
the protocol lets A perform some computation and send some values to B. B verifies this
by performing the same computation and comparing it to the received value V . If the
two values does not match, B terminates the protocol. If A is trying to perform a denial-
of-service attack, he will probably not take the time to compute the values properly. B
will then detect this fast, and stop the communication.

When it comes to the storage part, we see that B encrypts all values connected to this
session and sends it back to A. This way he does not have to store anything before he has
verified A and retrieved the values back in the third transmission of the protocol.

40

Analysis of Key Agreement Protocols

7 Yoon-Yoo’s protocol

In 2005, Yoon and Yoo [50] proposed a key agreement protocol which they claim to be
efficient and simple, and able to resist off-line password guessing and modification at-
tacks. The protocol is based on elliptic curve cryptography.

7.1 Notations

Here we describe the notations used in this protocol.

• P - a common password between A and B

• GF(q) - a finite field

• E(q) - an elliptic curve over GF(q)

• Q - a point on the elliptic curve E(q)

• P ′ - a point on E(q) computed from P with a password

• a, b - the secret random value of A and B, respectively

• H - a hash function

7.2 Protocol

A selects a random integer a and computes X1 = a ∗Q + P ′. A then sends X1 to B.

B similarly chooses a random integer b and computes Y1 = b∗Q, X = X1 −P ′ = a∗Q

and SKB = b ∗ X = a ∗ b ∗Q. B then sends Y1 and H(X, SKB) to A.

A computes SKA = a∗Y1 = a∗b∗Q. A then compares the expressions H(a∗Q,SKA)

and the received H(X, SKB). If they are not equal, the protocol terminates. Otherwise, A
sends H(Y1, SKA) to B.

B compares the expressions H(b ∗Q,SKB) and H(Y1, SKA). If they are not equal, the
protocol terminates. Otherwise, the protocol execution has finished, and A and B have
agreed on the key K = H(SKA) = H(SKB).

After the verifications of the hash values, both parties have authenticated each other.

Figure 19 shows the execution of the protocol.

41

Analysis of Key Agreement Protocols

Alice P,Q Bob

a

X1 = a ∗Q + P ′

X1→
b

Y1 = b ∗Q

X = X1 − P ′

SKB = b ∗ X

HB = H(X, SKB)
Y1, HB←

SKA = a ∗ Y1

H(a ∗Q,SKA) ? = HB

HA = H(Y1, SKA)
HA→

H(b ∗Q,SKB) ? = HA

K = H(SKB)
K = H(SKA)

(’?=’ means checking if the two sides of the equation are equal)

Figure 19: Yoon-Yoo’s protocol

7.3 Analysis of protocol

All the goals are fulfilled in this protocol.

As long as there is no totally private keys in this protocol, only the shared secret pass-
word P, we find that the key-compromise impersonation resilience goal is not fit in this
context, and choose to leave it out of the analysis. We may instead conclude that if this
password is compromised, the principals may not be authenticated.

Known key security: The secret session key here is K = H(SKA) = a ∗ Y1 = a ∗ b ∗Q.
The values a and b are random for each session key, so the compromise of the current
session key will have no effect on other session keys. Therefore, the protocol meets the
known key security goal.

Forward secrecy: The private key in this protocol are the password P, which is used to
derive the point P ′. If we assume that an attacker is eavesdropping on the conversation,
he will have archived transactions of previous X1’s and Y1’s. If he later gets to know P

and can derive P ′, he still need to get either a from X1 or b from Y1 in order to compute
the previous session key. Finding these values means solving the elliptic curve discrete
logarithm problem. So the protocol meets the forward secrecy goal.

Unknown key-share resilience: The information that authenticates the entities in this
protocol is the knowledge of the point P ′. The verification of H(a∗Q,SKA) = H(X, SKB),
and the similar equation for B, assures both parties that the other party knows the pass-
word and was able to compute the correct point P ′. As long as this point (and the pass-

42

Analysis of Key Agreement Protocols

word P which it is derived from) is not compromised, the attacker cannot trick entity A
into sharing a key with another entity than B. So the protocol meets the unknown key-
share resilience goal.

Key control: B has the possibility to choose a value b after receiving X1 from A. The
session key is computed by the hash value of b and the received value from A. Finding a
b which gives the wanted output from the hash function is considered computationally
infeasible, see section 2.2.1. Therefore, the protocol meets the key control goal.

Key confirmation: Because of the verification of the hash values HA and HB the two
principals may be assured that the other principal has computed the same session key.
Therefore, this protocol provides strong key confirmation.

The protocol’s specific goal: The protocol’s goal is to be efficient and simple, and to
resist off-line password guessing and modification attacks.

From the diagram of the protocol, we see that it looks quite simple. It does not have
many transmissions or computations. The computations in the protocol is based on ellip-
tic curve computations and hash functions, which does not require much computational
resources.

When it comes to the password-guessing, we see that they never use the real pass-
word. Instead they use an elliptic curve point that is derived from the password. If an
attacker eavesdrops on the conversation, he can get the values X1, Y1, HB and HA.
From the two first values, he may try to guess P ′ by testing some values P ′′ and find
X ′ = X1 − P ′′. But in order to verify his guess, he needs to compute H ′ = H(X ′, SK ′

B)

and compare the result to HB. If he could derive b from Y1 = b ∗ Q, he could compute
SK ′

B = b ∗ X ′ and verify his guess. But as we have seen in section 2.2.4, this is the same
as solving the elliptic curve discrete logarithm problem. We may then conclude that the
protocol resists password guessing attacks.

Because of the verification of the received Hx values, both parties know that the other
party has received the correct value and that they are computing the same key. A modi-
fication attack is therefore not possible.

43

Analysis of Key Agreement Protocols

8 Summary

As we have seen in the previous chapters, the structure of the protocols varies.

Figure 20 shows a summary of the protocols’ structure and what security features
they provide. The protocols are listed in the same order as they were analysed:
P1 Wen-Lin-Hwang’s protocol
P2 Popescu’s protocol
P3 Harn-Hsin-Mehta’s protocol
P4 Tseng’s protocol
P5 Yoon-Yoo’s protocol

Summary of the protocols
Feature P1 P2 P3 P4 P5
of transmissions 3 2 3 4 3
of hash computations 8 4 0 12 6
of encryptions 1 0 0 1 0
of decryptions 1 0 0 1 0
of modular multiplications 0 0 2 4 0
of modular exponentiations 0 0 8 8 0
of EC point computations 0 4 0 0 6
Known Key Security OK OK OK OK OK
Forward Secrecy NO OK NO OK OK
Key-Compromise Impersonation OK NO OK OK -
Unknown Key-Share Resilience OK OK OK OK OK
Key Control OK OK OK OK OK
Key Confirmation strong weak strong strong strong

Figure 20: Summary of analysed protocols

Different computations require different computational resources. Hash functions are
easy to compute, and encryption and decryption is a bit more computationally expensive.
Modular exponentiation requires most computational resources.

From the result of the analysis of the five protocols, we notice some security flaws.
This does not come from lack of knowledge on the designer’s part or a too hasty devel-
opment, but it is simply because it is difficult, if not impossible, to focus on all aspects
of security at the same time. Others think in a different way and with a slightly differ-
ent perspective, and may therefore be able to detect problems the designers did not see.
This is not necessarily a bad thing, it could instead be a good means for quality assurance.

The analysis we have seen does not prove the security of the protocols. But it is a
helpful means for determining which protocols are sound. There is no assurance that the
most advanced protocols are the best.

45

Analysis of Key Agreement Protocols

8.1 Key manangement

As we have seen from the analysis, the problems some of the protocols encountered may
be avoided if the long-term secret keys are kept safe.

The life cycle of a key is [7]:

• creation

• distribution

• usage

• archiving

• destruction

The key generation is based on the specifications of the key (number of bits etc) and
a source of random bits. The key needs to be as random as possible. The generation may
be done by one of two parties: either by the user itself or by a TTP 1 on behalf of the
user. If this is the case, it must be distributed to the user in a secure manner. For instance,
the new key may be encrypted with a key shared between the user and the TTP during
transmission.

All private keys need to be stored in a secure manner. This way, no unauthorised
disclosure or modification of the keys may occur. A solution to this problem is to use
tamper-resistant hardware device, where you need some sort of PIN code or password
to get access to the content. Another possibility is to protect the key by encrypting it. We
may also divide the key into several parts, and store them separately, in such a way that
you need all parts of the key in order to make use of it. If the key’s lifetime is fulfilled,
and the key needs to be archived, it must still be stored in a secure manner.

When a key is to be destroyed, we need to remove all information about the key. Sim-
ply deleting it from the harddrive is not enough. We may overwrite the memory of the
hard drive with random data in order to remove all traces of the key. Another solution
may be to store the key on an external storage media, like a CD kept in a secure place.
When the key is no longer in use, the media is physically destroyed.

When a long-term private key is disclosed, all messages transmitted with session keys
based on that key may be affected. If we minimise the time a long-term key is in use,
we minimise the impact it will have if the key is disclosed. Using each key for only one
single purpose will also reduce the damage if the key is compromised.

If and when we detect that the long-term private key has been disclosed, we must
immediately revoke that key and create a new one. The lifetime of a key must be less
than the time it takes to find the key by exhaustive search.

As a summary, these are the things we need to remember when working with long-

1Trusted Third Party

46

Analysis of Key Agreement Protocols

term private keys in order to keep the key, and the whole system with it, secure [7]:

• limit the time a long-term key is in use

• use each key only for a single purpose

• store the key in a secure manner

• if you suspect that a secret key have been compromised, revoke it immediately and
create a new key

• when a key’s lifetime is fulfilled, the key must be destroyed in a secure way

By employing these simple measures, we have a good foundation for our system’s
security.

47

Analysis of Key Agreement Protocols

9 Conclusion

The purpose of this master thesis is to analyse a few key agreement protocols and try
to detect their weaknesses. If they have any weaknesses, we want to see what kind of
attacks may be launched against them. We also try to improve the protocols so that these
attacks will no longer succeed.

We will here make some conclusions regarding the research questions in 1.5.

9.1 Attack methods of key agreement protocols

As we have seen in section 2.4.2, there exists two basic categories of attacks. These are
passive attacks, where messages only is gathered but not altered, and active attacks,
where there are some modification of the messages.

There are quite a lot of attack methods under these two categories, and we will just
state them here:

• Eavesdropping - an adversary captures information that is sent in the protocol

• Modification - the information sent in the protocol is altered by an adversary

• Replay - a transmission is recorded, and then later retransmitted

• Reflection - sending the same message back to the sender in a new protocol run

• Denial of service attacks - the attacker overwhelms the server so that legitimate users
will not get a connection with the server

• Typing attack - replacing a message field of one type with a message field of another
type

• Cryptanalysis - the study of methods for obtaining the meaning of encrypted infor-
mation

• Certificate manipulation - modification of the certificate information

• Protocol interaction - using a new protocol to interact with a known protocol

More information about these kind of attacks can be found in section 2.4.2.

9.2 Design methods of key agreement protocols

All key agreement protocols are based on some standard protocols. In 2.3 we defined
Diffie-Hellman, MQV and the elliptic curve cryptography as the most used standards.

Cryptography are also based on some problems that are assumed to be hard to solve,
unless you have some extra secret information. We have in 2.2 defined a few of these

49

Analysis of Key Agreement Protocols

problems:

• Hash functions

• Discrete logarithm problem

• Factorisation problem

• Elliptic curve discrete logarithm problem

9.3 Weaknesses in the protocols

As we have seen in the analysis, three of the five analysed protocols fail to meet some
of the security features described in 2.5. But mostly, the analysed protocols have good
results.

Two of the protocols fail to meet the forward secrecy goal, and one protocol fail to
meet the key compromise impersonation resilience goal. All the problems are caused by
disclosure of the long-term private key. If we take the necessary steps in order to keep
this key secret, the encountered problems will not have any impact on the security. In
section 8.1 we make some suggestions about how to keep the private key safe.

We have also proposed an improvement of each of these three protocols, where we
try to enhance the parts where the protocols have problems. By performing slight modi-
fications to the original protocol, we are able to fulfill the goals that the original protocol
did not meet. It is important to notice that these changes are only suggestions, there may
also be other ways to fulfill the goals.

Considering the fact that three of five protocols fail to meet some of the security
features, we see that there is a need for better routines regarding key agreement proto-
cols. Since the security of the entire system is based on the security of the cryptographic
schemes that is employed, we need to get these schemes as secure as possible. Key agree-
ment protocols is an important part of these schemes.

Today, everyone is free to propose and publish key agreement protocols. Others may
read and verify them, and if they find weaknesses they perhaps publish this together
with their improvement of the protocol. This is a good means for assuring the protocol’s
security, but which protocols that is reviewed is quite random. So the protocols that are
not reviewed does not get the same security verification.

One way of improving these routines is by establishing a society of cryptographers
that verifies all new protocol proposals before they are published. If they find some
weaknesses in the protocol, the developers get to change the protocol and send it in
again. This way, all protocols have been through an analysis and the security might be
improved. The developers should not be intimidated by this society and not send in their
work before it is "perfect"; this should only be a means for improving the security of the
protocols, which benefits all parties.

50

Analysis of Key Agreement Protocols

10 Future work

The development over the last years have been increased use of communication tech-
nologies. We have no reason to think that this development will not continue. This results
in an increasing demand for computer systems that have high availability, integrity and
confidentiality.

The focus here are integrity and confidentiality, which we may achieve by using cryp-
tographic measures. In order to keep these two at a high level, we need systems that are
secure. A secure system is, as we have seen, dependent on the cryptography and there-
fore also on key agreement protocols.

The way new protocols are analysed now is a bit of a coincidence. The way things
are done now, by having others to look at your work is a good start. However, getting
some standards as to how to analyse protocols would help improve the security of the
protocols. Also, the sooner the protocol can be analysed, the better. Then we manage to
fix the problems before the protocols is taken into use.

As new attacks arise, protocols needs to be verified again and we may need to develop
some new protocols who can resist the new attacks.

51

Analysis of Key Agreement Protocols

Bibliography

[1] C. Boyd and A. Mathuria. Protocols for Authentication and Key Establishment.
Springer Verlag, 2003.

[2] D. A. Carts. "A Review of the Diffie-Hellman Algorithm and its Use in Secure Inter-
net Protocols". http://www.sans.org/rr/whitepapers/vpns/751.php, 2001.

[3] L. Chen and C. Kudla. "Identity Based Authenticated Key Agreement Protocols from
Pairings". http://www.hpl.hp.com/techreports/2003/HPL-2003-25.pdf, 2003.

[4] R. Choo. Provably-Secure Mutual Authentication and Key Establishment Protocols
Lounge. http://sky.fit.qut.edu.au/ choo/lounge.html.

[5] K.-K. R. Choo, C. Boyd and Y. Hitchcock. "The importance of proofs of security for
key establishment protocols - Formal analysis of Jan-Chen, Yang-Shen-Shieh, Kim-
Huh-Hwang-Lee, Lin-Sun-Hwang, and Yeh-Sun protocols". Journal of Computer
Communications, Special Issue of Internet Communication Security, 2006.

[6] "Code & Cipher - Certicom’s Bulletin of Security and Cryptography".
http://www.certicom.com/download/aid-90/C&C_voll_iss2.pdf, 2003. Vol. 1, no.
2.

[7] A. W. Dent and C. J. Mitchell. "User’s Guide to Cryptography and Standards", Artech
House Computer Security Series, 2004, chapter 11-12, pp. 215-266.

[8] R. Dutta and R. Barua. "Overview of Key Agreement Protocols".
http://citeseer.ist.psu.edu/cache/papers/cs2/433/http:zSzzSzeprint.iacr.orgzSz2
005zSz289.pdf/overview-of-key-agreement.pdf.

[9] S. Friedl. "An Illustrated Guide to Cryptographic Hashes".
http://www.unixwiz.net/techtips/iguide-crypto-hashes.html.

[10] L. Harn, W.-J. Hsin and M. Mehta. "Authenticated Diffie-Hellman key agreement
protocol using a single cryptographic assumption". IEE Proceedings on Communica-
tions, vol. 152, issue 4, pp. 404-410, 2005.

[11] G. Horn, K. M. Martin and C. J. Mitchell. "Authentication protocols for mobile net-
work environment value-addedservices". Vehicular Technology, IEEE Transactions
on, vol. 51, 2002, pp. 383-392.

[12] R.-J. Hwang and F.-F. Su. "A new efficient authentication protocol for mobile net-
works". Computer Standards & Interfaces, vol. 28, 2005, pp. 241-252.

[13] K. Imamoto and K. Sakurai. "A design of Diffie-Hellman based key exchange using
one-time ID in pre-shared key model". Proceedings of the 18th International Confer-
ence on Advanced Information Networking and Applications (AINA), Fukuoka, Japan,
pp. 327-332, March 2004.

53

Analysis of Key Agreement Protocols

[14] K. Imamoto and K. Sakurai. "Design and Analysis of Diffie-Hellman-Based Key Ex-
change Using One-time ID by SVO Logic". Electronic Notes in Theoretical Computer
Science, vol. 135, 2005, pp. 79-94.

[15] B. Kaliski. "Unknown Key Share Attacks and the MQV Protocol". ACM Transactions
on Information and System Security, vol. 4, no. 3, 2001, pp. 275-288.

[16] P. Keeratiwintakorn and P. Krishnamurthy. "An energy efficient security protocol for
IEEE 802.11 WLANs". Pervasive and Mobile Computing, vol. 2, 2006, pp. 204-231.

[17] C. Kudla. Modelling the security of two-party key agreement protocols.
http://www.cs.bris.ac.uk/Research/CryptographySecurity/Workshop/Slides/Kudla
.ppt, November 2004.

[18] T. Kyntaja. "A Logic of Authentication by Burrows, Abadi and Needham".
http://www.tml.tkk.fi/Opinnot/Tik-110.501/1995/ban.html.

[19] G. Horn, K. M. Martin and C. J. Mitchell. "Authentication protocols for mobile net-
work environment value-added services". Vehicular Technology, IEEE Transactions
on, vol. 51, 2002, pp. 383-392.

[20] L. Harn, M. Mehta and W.-J. Hsin. "Integrating Diffie-Hellman Key Exchange into
the Digital Signature Algorithm (DSA)". IEEE Communications Letters, vol. 8, 2004,
pp. 198-200.

[21] L. Law, A. Menezes, M. Qu, J. Solinas and S. Vanstone. "An Efficient Protocol for
Authenticated Key Agreement". Design, Codes and Cryptography, vol. 28, no. 2,
2003, pp. 119-134.

[22] J. Leiwo. "Cryptographic Protocols". http://www.tml.tkk.fi/Studies/T-
110.498/2003summer/Slides/lecture10.pdf, June 2003.

[23] H. Li and M. Singhal. "A Key Establishment Protocol for Bluetooth Scatternets".
Proceedings of the Third International Workshop on Mobile Distributed Computing
(ICDCSW’05), Washington, DC, USA, pp. 610-616, 2005.

[24] P. Malý. "Elliptic Curves Cryptography (ECC)". http://pepek.ic.cz/data/ECC.pdf.

[25] S.-L. Ng and C. Mitchell. "Comments on mutual authentication and key exchange
protocols for low power wireless communications". Communications Letters, IEEE,
vol. 8, 2004, pp. 262-263.

[26] R. C.-W. Phan. "Fixing the Integrated Diffie-Hellman-DSA Key Exchange Protocol".
IEEE Communications Letters, vol. 9, 2005, pp. 570-572.

[27] R. C.-W. Phan. "Cryptanalysis of two password-based authentication schemes using
smart cards". Computers & Security, vol. 25, 2006, pp. 52-54.

[28] C. Popescu. "A Secure Authenticated Key Agreement Protocol". Proceedings of the
12th IEEE Mediterranean Electrotechnical Conference, Dubrovnik, Croatia, pp. 783-
786, May 2004.

54

Analysis of Key Agreement Protocols

[29] RSA Laboratories. RSA Laboratories’ "Frequently Asked Questions About Today’s
Cryptography" Version 4.1. http://www.rsasecurity.com/rsalabs, 2000.

[30] RSA Security. What is Diffie-Hellman.
http://www.rsasecurity.com/rsalabs/node.asp?id=2248.

[31] D. Salomon. "Data Privacy and Security". Springer Professional Computing, 2003.

[32] B. Song and K. Kim. "Two-Pass Authenticated Key Agreement Protocol with Key
Confirmation". Proceedings of Indocrypt 2000, Calcutta, India, pp. 237-249, Decem-
ber 2000.

[33] M. A. Strangio. "Efficient Diffie-Hellmann two-party key agreement protocols based
on elliptic curves". 2005 ACM Symposium on Applied Computing - Proceedings of the
2005 ACM symposium on Applied computing, Santa Fe, New Mexico, pp. 324-331,
March 2005.

[34] A.-F. Sui, L.C.K. Hui, S.M. Yiu, K.P. Chow, W.W. Tsang, C.F. Chong, K.H. Pun, H.W.
Chan. "An improved authenticated key agreement protocol with perfect forward
secrecy for wireless mobile communication". IEEE Wireless Communications and
Networking Conference, New Orleans, Louisiana, pp. 2088-2093, March 2005.

[35] H.-M. Sun, B.-T. Hsieh and S.-M. Tseng. "Cryptanalysis of Aydos et al.’s ECC-based
wireless Authentication Protocol", Proceedings of the 2004 IEEE International Con-
ference on e-Technology, e-Commerce and e-Service (EEE’04), Taipei, Taiwan, pp. 565-
568, March 2004.

[36] C. H. Tan. "BAN logic" - lecture notes in IMT4101 Network Security.
http://www.hig.no/imt/file.php?id=1836.

[37] T.-Y. Wu, T.-S. Tsai and H.-C. Chao. "The implication of the security key exchange
during mobile IPv6 smooth handoff." The 7th International Conference on Advanced
Communication Technology, Phoenix Park, Korea, pp. 965-970, February 2005.

[38] Y.-M. Tseng. Efficient authenticated key agreement protocols resistant to a denial-
of-service attack. International Journal of Network Management, vol. 15, 2005, pp.
193-202.

[39] M. Volkmer and S. Wallner. "A Key Establishment IP-Core for Ubiquitous Comput-
ing". Proceedings of the 16th International Workshop on Database and Expert Systems
Applications, Copenhagen, Denmark, pp. 241-245, June 2005.

[40] H.-A. Wen, C.-L. Lin and T. Hwang. "Provably secure authenticated key exchange
protocols for low power computing clients". Computers & Security, vol. 25, 2006,
pp. 106-113.

[41] Wikipedia - Avalanche effect.
http://en.wikipedia.org/wiki/Avalanche_effect.

[42] Wikipedia - "Cryptanalysis".
http://en.wikipedia.org/wiki/Cryptanalysis.

55

Analysis of Key Agreement Protocols

[43] Wikipedia - "Cryptographic hash functions".
http://en.wikipedia.org/wiki/Cryptographic_hash_function.

[44] Wikipedia - Diffie-Hellman.
http://en.wikipedia.org/wiki/Diffie-Hellman.

[45] Wikipedia - Discrete Logarithm Problem.
http://en.wikipedia.org/wiki/Discrete_logarithm_problem.

[46] Wikipedia - Elliptic Curve Cryptography.
http://en.wikipedia.org/wiki/Elliptic_curve_cryptography.

[47] Wikipedia - "Key-agreement protocol".
http://en.wikipedia.org/wiki/Key-agreement_protocol.

[48] Wikipedia - "Replay attack".
http://en.wikipedia.org/wiki/Replay_attack.

[49] A. Wool. "Lightweight Key Management for IEEE 802.11 Wireless LANs with Key
Refresh and Host Revocation". Wireless Networks, vol. 11, 2005, pp. 677-686.

[50] E.-J. Yoon and K.-Y. Yoo. "New Efficient Simple Authenticated Key Agreement Pro-
tocol". Proceedings of Lecture Notes in Computer Science, vol. 3595, pp. 945-954,
2005.

[51] C. Zhuo, H. Fan, and H. Liang. "A New Authentication and Key Exchange Protocol in
WLAN". International Conference on Information Technology: Coding and Computing
(ITCC’05), Los Alamitos, CA, USA, pp. 552-556, 2005.

56

	Preface
	Acknowledgement
	Basic definitions
	Contents
	List of Figures
	Introduction
	Keywords
	Topic of this thesis
	Problem description
	Justification and motivation
	Research questions
	Choice of methods
	Structure of the thesis

	Preliminaries
	Related work
	One-way functions
	Hash Functions
	Discrete logarithm problem
	Factorisation problem
	Elliptic curve discrete logarithm problem

	Design methods
	Diffie-Hellman key agreement protocol
	Elliptic Curve Cryptosystems
	MQV protocol

	Attack methods of key agreement protocols
	Characterising attacks
	Active and passive attacks
	Different kind of attacks

	Protocol Analysis

	Wen-Lin-Hwang's protocol
	Notations
	Protocol
	Analysis of protocol
	Improvement of the protocol

	Popescu's protocol
	Notations
	Protocol
	Analysis of protocol
	Improvement of the protocol

	Harn-Hsin-Mehta's protocol
	Notations
	Protocol
	Analysis of protocol
	Improvement of the protocol

	Tseng's protocol
	Notations
	Protocol
	Analysis of protocol

	Yoon-Yoo's protocol
	Notations
	Protocol
	Analysis of protocol

	Summary
	Key manangement

	Conclusion
	Attack methods of key agreement protocols
	Design methods of key agreement protocols
	Weaknesses in the protocols

	Future work
	Bibliography

