
Can Network Security be Fun?
An agent-based Simulation
Model and Game proposal

Frode Petter Gilberg

Master’s Thesis
Master of Science in Information Security

30 ECTS
Department of Computer Science and Media Technology

Gjøvik University College, 2006

Institutt for
informatikk og medieteknikk
Høgskolen i Gjøvik
Postboks 191
2802 Gjøvik

Department of Computer Science
and Media Technology
Gjøvik University College
Box 191
N-2802 Gjøvik
Norway

Can Network Security be Fun? An agent-based Simulation Model and Game proposal

Abstract

Too often, people’s knowledge about network and information security is built from their
own experiences with accidents, or through “learning by burning”. This could be a very
costly affair.

Most Internet users lack the motivation and knowledge needed to have the appropri-
ate protection. It is hard to seek knowledge from the literature when you do not know
what to look for.

Using design research, a network security game based on a complex agent-based sim-
ulation was designed, and we wanted to see if it was possible to build a game prototype
within a time-period of five months. We also wanted to investigated if this game could
be fun to play.

A game design, both model and prototype, are presented and developed.
Our study showed that it is possible to build a game prototype and that it can be built

in five months if the developer have the prior technical skills required, and that (s)he are
willing to use more than 1200 man-hours to complete the game.

The degree of enjoyment experienced in the current version, does not seem to be
high enough for people to keep playing the game for a longer period of time. The game
should be extended with more challenges and better graphics, music and sound effects.
In addition, further studies should focus on competitive elements, like multi-player and
real-time attack/defend scenarios, to make it more enjoyable.

Further studies must be conducted with more participants to tell with enough degree
of confidence that a network security game is fun to play.

iii

Can Network Security be Fun? An agent-based Simulation Model and Game proposal

Sammendrag

Altfor ofte lærer man om nettverk- og informasjonssikkerhet gjennom egne, dårlige, er-
faringer, eller gjennom såkalt “learning by burning”. Dette kan være en kostbar affære.

De fleste internettbrukere mangler motivasjonen og kunnskapen som skal til for å
beskytte deres systemer godt nok, og det kan være vanskelig å finne kunnskapen i litter-
aturen når man ikke vet hva man skal søke etter.

Ved å bruke design research metoden designet vi et nettverkssikkerhetsspill basert
på en kompleks agent-basert simulasjon. Vi ønsket å se om det var mulig å lage en slik
spill-prototype innenfor en tidsperiode på fem måneder. Vi ønsket også å undersøke om
dette spillet kunne oppleves som morsomt å spille.

Et spill design, både modellen og en prototype blir presentert og utviklet.
Vår undersøkelse viser at det er mulig å utvikle en spillprototype og at dette kan

gjøres innenfor den nevnte tidsrammen hvis utvikleren har de tekniske forkunnskaper
som skal til og er villig til å bruke mer enn 1200 mannetimer på oppgaven.

Graden av erfart underholdning i den nåværende versjonen ser ut til å være for lav
til at noen ønsker å spille spillet over en lengre periode. Spillet burde utvides med
flere utfordringer og bedre grafikk, lyd og lydeffekter. I tillegg bør man i videre studier
fokusere på andre konkurranseelementer som for eksempel en flerspillerversjon med
både angresps- og forsvars- scenarioer for å gjøre spillet mer morsomt.

Videre studier må utføres med flere deltakere for at man men nok grad av sikkerhet
kan si at et nettverksspill er morsomt å spille.

v

Can Network Security be Fun? An agent-based Simulation Model and Game proposal

Preface

First of all I would thank Prof. Einar Snekkenes at the Norwegian Information Security
laboratory (NISLab) for supervising the planning and work of this study, and for pointing
me in the right directions at different phases throughout this project.

I would also like to thank Espen Torseth at The Norwegian Centre for Information
Security (NorSIS) who helped me with technical issues related to network management
and network security.

Finally, I would like to thank the players who participated in the experiment and who
gave valuable feedback to this project.

Your help and guidance were highly appreciated.

Frode Gilberg, 2006/06/25

vii

Can Network Security be Fun? An agent-based Simulation Model and Game proposal

Contents

Abstract . iii
Sammendrag . v
Preface . vii
Contents . ix
List of Figures . xiii
List of Tables . xv
1 Introduction . 1

1.1 Revisions . 1
1.2 Definitions . 1
1.3 Topic covered by this thesis . 1
1.4 Problem description . 1
1.5 Justification, motivation and benefits . 2
1.6 Stakeholders . 2
1.7 Research questions . 2

1.7.1 Is it possible to build a game within a short time limit? 3
1.7.2 Will it be fun to play? . 3

2 Summary of claimed contributions . 5
3 Review of state of the art . 7

3.1 Popular Simulation Games . 7
3.1.1 Sim City . 7
3.1.2 RollerCoaster Tycoon . 8
3.1.3 CyberCIEGE . 8

3.2 Games and Simulations . 10
3.2.1 Distinguishing Games and Simulation Games from Simulators . . . 10
3.2.2 Classification of Information Security Simulators 11

3.3 Network Simulators . 12
3.4 Network Design Principles . 12
3.5 Engineering principles for IT security . 13
3.6 Models, Metrics and Taxonomies . 13
3.7 Game Play Theory . 14

3.7.1 What makes games fun to play? . 14
3.7.2 Flow and GameFlow . 15
3.7.3 Other Game Play Theories . 17

3.8 Software Development . 17
3.8.1 Design Tools . 18
3.8.2 Development Tools . 18

4 Method . 19
4.1 Literature Review and Content Analysis 19
4.2 Design Research . 19
4.3 User Trails, Interviews and Feedback questionnaires 19

ix

Can Network Security be Fun? An agent-based Simulation Model and Game proposal

5 The Game . 21
5.1 Introduction . 21
5.2 Game Review . 21

5.2.1 SimCity . 21
5.2.2 Rollercoaster Tycoon . 22
5.2.3 CyberCIEGE . 22

5.3 Game theory . 23
5.3.1 Challenge . 23
5.3.2 Fantasy . 23
5.3.3 Curiosity . 24
5.3.4 Ideas from GameFlow theory . 25

5.4 Game idea . 25
5.5 Scope . 26
5.6 Internet Sites . 26
5.7 Physical Network components . 27
5.8 Network traffic . 27
5.9 Users . 27
5.10 Resource management . 27
5.11 Attacks . 28
5.12 Spreading mechanisms . 28
5.13 Countermeasures . 28
5.14 Limitations . 29

6 Design Research . 31
6.1 The Design Process . 31

6.1.1 Development platform . 31
6.1.2 Building the executive kernel . 31
6.1.3 Deadlock issues . 32
6.1.4 Networking . 32
6.1.5 Building the Application Protocols 33
6.1.6 Simulating Attacks . 34
6.1.7 Building the graphical front end . 35
6.1.8 Converting a Network Editor into a Game 37
6.1.9 Designing the Game . 38
6.1.10 Brazilian Dance . 38
6.1.11 Small Office Paranoia . 39
6.1.12 Wrong Turn . 40
6.1.13 Netrepreneur . 40
6.1.14 Free Play . 40
6.1.15 Calculation Scores . 41
6.1.16 Balancing the game . 41

6.2 The Game Model . 41
6.2.1 General model issues . 41
6.2.2 A short UML notation introduction 42
6.2.3 The Net component . 43
6.2.4 Agent based simulation . 44
6.2.5 The Executive Kernel . 44

x

Can Network Security be Fun? An agent-based Simulation Model and Game proposal

6.2.6 Agents . 46
6.2.7 Network agents . 46
6.2.8 Virtual Users . 47
6.2.9 The Base Node . 49
6.2.10 Lower-layer Nodes . 49
6.2.11 The Physical Layer . 51
6.2.12 Upper-layer nodes . 51
6.2.13 The Network layer . 52
6.2.14 The Transport Layer . 53
6.2.15 Data . 54
6.2.16 Packets . 54
6.2.17 Data flow . 55
6.2.18 The File System . 55
6.2.19 Sockets . 57
6.2.20 Running applications . 59
6.2.21 Processes and Threads . 59
6.2.22 Memory . 60
6.2.23 Malware and Exploits . 60
6.2.24 Script-kid attacks . 61
6.2.25 Spam . 61
6.2.26 Countermeasures . 62

6.3 Summary . 63
7 The experiment . 65

7.1 User Trials . 65
7.2 The Feedback Questionnaire . 65
7.3 The Interviews . 65

8 Results . 67
8.1 The Participants . 67
8.2 Ordinal questions . 67
8.3 Open-ended questions . 67

8.3.1 The negative properties of the game? 67
8.3.2 The most negative property of the game? 68
8.3.3 The positive properties of the game? 68
8.3.4 The most positive property of the game? 68
8.3.5 Ideas to make the game more fun and interesting? 68
8.3.6 Ideas to make the game more motivational? 69
8.3.7 Other comments . 69

9 Discussion . 73
9.1 Design and development . 73

9.1.1 Model Issues . 73
9.1.2 Sensory Issues . 73

9.2 Feedback results . 73
9.2.1 Malone: Identifying with the Fantasy 74
9.2.2 Malone: Sensory . 74
9.2.3 GameFlow:Concentration . 74
9.2.4 GameFlow:Challenge . 75

xi

Can Network Security be Fun? An agent-based Simulation Model and Game proposal

9.2.5 GameFlow:Player Skills . 75
9.2.6 GameFlow:Control . 76
9.2.7 GameFlow:Clear Goals . 76
9.2.8 Feedback . 76
9.2.9 GameFlow:Immersion . 77
9.2.10 GameFlow:Competition . 77
9.2.11 Other results . 77
9.2.12 Summary . 77

10 Future work . 79
10.1 Determine enjoyment . 79
10.2 Additional Features . 79
10.3 Validity as a Learning Tool . 79
10.4 Multiplayer gaming . 79
10.5 Dynamic Construction . 79
10.6 Fine tuning . 79
10.7 Better Graphics . 80

11 Conclusion . 81
Bibliography . 83
A Feedback questionnaire . 87

A.1 Statements and responses . 87
A.2 Open ended questions . 90

B Simposter User manual . 91
B.1 About the game . 91
B.2 Game Objectives . 91
B.3 Network design . 91
B.4 Mouse operations . 91
B.5 Key Controls . 92
B.6 The tool bar . 92
B.7 Route table/Sub-net configuration . 93
B.8 Sub-net configuration . 93
B.9 Setting up firewall rules . 94
B.10 Installing software . 94
B.11 Creating public services . 94
B.12 Hints and tips . 95

C Statistical enumerators . 97
D The simulation Loop . 103
E Code sample - Web browser client . 107

xii

Can Network Security be Fun? An agent-based Simulation Model and Game proposal

List of Figures

1 Sim City screen shot . 7
2 RollerCoaster Tycoon screen shot . 8
3 CyberCIEGE Screen shot . 9
4 Design characteristics of games, simulation games and simulators 10
5 A general model for generating and accumulating knowledge 20
6 Using and accumulating knowledge in two realms 20
7 First conceptual draft . 26
8 Security Layers . 29
9 Processes and Threads . 37
10 Game menu . 38
11 The Brazilian Dance introduction dialog 39
12 The game result dialog . 40
13 Component architecture . 42
14 Class inheritance notation . 43
15 Class aggregation notation . 43
16 Class composition notation . 44
17 Simulation components . 44
18 Agents . 47
19 User states . 48
20 The Executive kernel, the Internet, Sites and WAN 50
21 Ports and Network Interface Cards . 51
22 Host model . 51
23 Layer 3 classes . 53
24 The Packet Structure . 55
25 Traffic Flow . 56
26 Files and the File System . 56
27 Threads and Sockets . 57
28 The TCP state model . 58
29 Applications . 59
30 Processes and Threads . 60
31 Malware and Exploit distribution . 62
32 News flash . 63
33 Results . 70
34 Mode, Median and Average . 71
35 Simposter Game Screen . 92
36 Simposter Routing table Screen . 93
37 Simposter Sub net dialog box . 94
38 Simposter Server Management dialog box 95

xiii

Can Network Security be Fun? An agent-based Simulation Model and Game proposal

List of Tables

1 Document history. 1
2 Definitions. 1
3 The OSI model. 26
4 Results from the different enjoyment categories 78

xv

Can Network Security be Fun? An agent-based Simulation Model and Game proposal

1 Introduction

1.1 Revisions

Date Comment
9.dec 2005 Title changed from “Evaluating Security

Decisions using Simulations” to “Using Games
to Improve Network Security Decisions”

11.dec 2005 Project proposal ready for evaluation
31.jan 2006 First chapter outline proposal
21.may 2006 Outlining of all chapters ready for evaluation
23.may 2006 Title changed to ’Can Network Security be Fun?’

Table 1: Document history.

1.2 Definitions

Word/Concept Explanation
IS Information Security
IA Information Assurance
IS Domain The boundary inside which IS decisions are made
ISP Internet Service Provider
IT Information Technology
OS Operating System

Table 2: Definitions.

1.3 Topic covered by this thesis

The purpose of this study is to look at existing information- and network- security games,
network simulators and popular commercial simulation games to identify game elements
that fit well into a network security context.

A game proposal will be discussed and what it should include to be valid for net-
work security gaming and how elements can be transformed into an enjoyable game. A
simulation model will be designed and a game prototype will built from scratch.

It will be investigated to what extent this game can be built within a five months
period and if it will be, or has the potential to be, fun to play.

Keywords: network security, computer game, agents, simulation game, model,
enjoyment.

1.4 Problem description
“Mrs. Experience is a tough teacher. She gives the test first and the lesson afterward”
-Unknown

Too often, knowledge about network- and information- security is accumulated through
first-hand experiences, or “learning by burning”. The implications of security breaches

1

Can Network Security be Fun? An agent-based Simulation Model and Game proposal

can be enormous in both cost and reputation, and in some worst-case scenarios, compa-
nies or enterprises might never recover from these events.

Numerous security breaches could have been avoided if people had better knowledge
so that they could make better security decisions, both prior to an incident, and afterward
to reduce the damage caused by these incidents.

Most users know little about information security. Large scale attacks are often ac-
complished through the use of hosts in home networks, which in turn were compromised
because its owners did not know how to secure their systems.

Although there are tools, games and simulators, that can be used to increase people’s
knowledge, they seem to focus on special areas of interests, and are often aimed at
experts in these areas. Also, access to these tools is often restricted.

Knowledge can be built through literature, but it can be hard to know what to look
for, when you don’t know what the problem is, or what the challenges are. Average
users seldom look for literature to improve their knowledge, due to lack of motivation or
awareness.

1.5 Justification, motivation and benefits

Internet citizens need a tool that could motivate them to seek information about network-
and information- security and how to improve the security of their own, and other’s,
infrastructure.

Information security is not only the responsibility of those who maintain corporate or
Internet networks. Large scale attacks on the Internet often origins from hosts in private-
and home- networks, and it is therefore everyone’s responsibility to take information
security seriously, even though they don’t think their assets are of any value to others.

With information technologies, processes interact in complex ways, and it can be hard
to figure out the implications of security related decisions. Sometimes it’s even hard to
recognize that a decision is really security related at all, as events, security related or not,
can be interconnected in very complex patterns. What is really a small event can easily
escalate into a major disaster.

A tool is needed to inform people about these patterns. A better understanding of
event correlation and the actions needed to control events would improve decision mak-
ing, and hence, reduce the impact of information security violations, on people, busi-
nesses and the society as a whole.

1.6 Stakeholders

The stakeholders for this project should be everyone involved in accessing public IT
networks, from the average user to companies, Internet Service Providers (ISPs) and
managements concerned with network security and vulnerabilities. In short, those who
want to increase the general awareness and knowledge, and hence reduce the number
of events that violates the integrity, confidentiality or availability of IT networks.

Educational institutions would also benefit from a tool that helps them improve stu-
dent’s knowledge in this area.

1.7 Research questions

Working with network security involves dealing with a wide range of tasks and config-
urations. A game need to include many of these elements. Building a computer game

2

Can Network Security be Fun? An agent-based Simulation Model and Game proposal

is a large undertaking and involves many processes, from the creative activity of build-
ing a conceptual idea to the design and development process involving technological
knowledge in multiple disciplines. Creating a game is one thing, making it fun to play
is something else. The threshold for success and failure is a fine one. It must be investi-
gate if the game based on a new complex simulation model could be fun to play, and/or
identify what would make the game (more) enjoyable. Questions for this study are;

• Q1: Is it possible to build a network security game within a short time limit?

• Q2: Will it be fun to play?

1.7.1 Is it possible to build a game within a short time limit?

The total time period of this study was six months and it was conducted by one partici-
pant; the author of this document. The idea is to build a game based on a complex state
structure of networks and network units. A complex model should make it possible to
re-create attacks seen in real life systems and hence increase the game realism. Related
issues is how trivial the game can be to be considered valid for network security gaming
and if this game can be built within the time limits of this study.

1.7.2 Will it be fun to play?

In game development, to attract players, a big concern is how to make a game fun to play.
In this study, this would involve identifying tasks in the network domain that introduces
exciting challenges and game play. How tasks can be handled in the game’s user interface
must be figured out, and considerations must be made in all layers of the software ar-
chitecture, the data layer, logic layer and graphical front end, to meet user expectations.
The level of enjoyment experienced by players should indicate how “finished” the game
is considered to be at the end of this study.

3

Can Network Security be Fun? An agent-based Simulation Model and Game proposal

2 Summary of claimed contributions

In this study we describe the process of building a network security game from scratch,
and show that this can be done within a time period of six months.

Achieving enjoyment in games are crucial in getting players motivated to play the
game. We will show that a network security game has the potential to be fun to play.
Also, other interesting elements are identified based on the ideas built in this study.

An agent-based simulation model for simulating networks and attacks was designed
and implemented. A game was developed designed to use this simulation model for
interactive real-time network security gaming. The model involves a complex network
simulation using a sub-set of the TCP/IP stack of protocols. It will be described how
a complex state structure can be utilized to simulate malicious code attacks and other
attacks associated with inter-connected networks.

5

Can Network Security be Fun? An agent-based Simulation Model and Game proposal

3 Review of state of the art

In this chapter existing theories and state-of-the-art in the area of network security, gam-
ing and gaming theory will be discussed.

3.1 Popular Simulation Games

The following chapters will describe some popular commercial games using game play
elements that could be adapted to a network security context. In this study focus will be
on simulation games. Computer networks are, by nature, good candidates for simulation
techniques, and popular simulation games like Sim City and Roller Coaster Tycoon will
be used as sources of game play ideas.

3.1.1 Sim City

Sim City, created by Will Wright, is one of the most popular simulation games to date.
The first version released in 1989 sparked a whole series of simulation games.

The purpose of Sim City is to build a functional town with industrial, commercial and
residential areas, and provide transport, roads, electricity and other services requested
by its citizens.

Figure 1: Sim City screen shot

7

Can Network Security be Fun? An agent-based Simulation Model and Game proposal

In Sim City the player takes the role of a city mayor and through resource manage-
ment and budgets, builds the city by laying out building areas, roads and transports in
a city map. The city design must be prepared for different types of disasters like riots,
flooding, lightning, fire, tornadoes and Godzilla-attacks(!). The impact of disasters de-
pends on how much is spent on fire and police services and where these services are
located. How things are constructed will have an impact on different statistics like crime,
pollution and traffic jams. These statistics provide feedback to the player on how well
(s)he is playing the game.

3.1.2 RollerCoaster Tycoon

RollerCoaster Tycoon is another popular simulation game developed by Chris Sawyer
and published by Hasbro Interactive.

Figure 2: RollerCoaster Tycoon screen shot

In this game the player is the administrator of a theme park. The objectives is to build
the park’s attractions and the player is rated by the visitors’ happiness level. Visitors have
different preferences on what they want to ride, and the player must carefully monitor
emotions expressed by these visitors in order to satisfy their needs.

For this study, it is interesting to see how user preferences and demands have been
implemented to provide feedback.

3.1.3 CyberCIEGE

This study is not the first attempt to build a security game. Researchers at Center for In-
formation Systems Security Studies and Research (CISR) have developed an information
assurance teaching tool called CyberCIEGE [1].

8

Can Network Security be Fun? An agent-based Simulation Model and Game proposal

Figure 3: CyberCIEGE Screen shot

CyberCiege is a scenario-based simulation and resource management game where
game play ideas also have been borrowed from games like SimCity and Rollercoaster
Tycoon. Even though CC is classified as a game CC has a strong focus on learning. The
approach used in this project is slightly different, were focus is mainly on how to build
an enjoyable game; a game that is fun to play.

In [2], Irvine et. al, presents CyberCIEGE as “an innovative computer-based tool to
teach information assurance concepts”.

CC is built on an advanced scenario definition language expressing security-related
risk management tradeoffs in different scenarios. The scenario definition language in-
cludes the following major elements;

• Assets. Information of some value for the enterprise, like secret formulas, corporate
accounting, business plans, expense statements, and marketing material.

• Users. Virtual users whose productive work makes money for the enterprise.

• Zones. Physical zones that can be used to control the physical movements of users.

• Conditions and triggers. The scenario designer defines conditions to be assessed by
the engine during play, and specifies actions to occur as the result of a combination
of condititions.

• Objectives and Phases. Scenarios can be divided into several phases, each consisting
of one or more objectives.

9

Can Network Security be Fun? An agent-based Simulation Model and Game proposal

Some of the ideas found in CyberCIEGE will be used in this study. CyberCIEGE in-
volves network construction, application configuration and users who uses networks and
creates assets through the use of applications.

CyberCIEGE includes both defender- and attack- scenarios.

3.2 Games and Simulations

Simulation, from the latin word simulare, means to “fake” or to “replicate”. Games usu-
ally tries to simulate or replicate real situations.

3.2.1 Distinguishing Games and Simulation Games from Simulators

Most games contains some sort of simulation. Narayanasamy’s taxonomy [3] distin-
guishes games from simulation games on the goal-oriented characteristics. According
to this taxonomy, simulation games does not have any obvious end-state, while “ordi-
nary” games have. Narayanasamy et. al describes what they mean is the correct use of
the terms games, simulation games and simulators. Their article “provide a user’s and
designer’s perspective on a definitive comparison of the similarities and differences be-
tween games in general, simulation games, and simulators”. A method is introduced on
how to distinguish games and simulation games from simulators, using a taxonomy of
observable design characteristics (fig. 4).

Figure 4: Design characteristics of games, simulation games and simulators

Simulation games are classified using four categories;

• Participatory. Involves physical simulation and virtual/augmented reality environ-
ments.

10

Can Network Security be Fun? An agent-based Simulation Model and Game proposal

• Iterative. Uses in-game parameters to derive meaningful real-world results. Players
can iteratively provide input, obtain results and reflect upon the result to provide
more meaningful input.

• Procedural. Player provides new input iteratively, reflects upon the result and provide
more input. Players are encouraged to make use of predefined procedures to complete
the game.

• Situational. A complex scenario is presented which depends on actions taken by
multiple human and/or intelligent computer players.

The common denominator for these categories of simulation games is that an action-
consequence model is noticeable in the game.

Simulators are commonly classified by the simulation model they adopt;

• Monte Carlo. Makes use of state sequencing.

• Discrete Event. State changes at discrete points in time when some event occurs.

• Continuous. State changes occur at continuous points in time.

• Combined. A combination of discrete and continuous.

• Agent-based simulation. A special type of discrete simulation where individual en-
tities are represented directly and possesses an internal state and set of behaviors or
rules which determine how the agent’s state is updated from one time-step to the
next.

• Hybrid. Uses an analytical sub-model within a discrete event model.

Narayanasamy argues that “simulation games can be defined as a mixture of a game
of skill, chance and strategy that results in the simulation of a complex structure”. This
definition fits well in to one of the goals for this study; to simulate a complex structure
of networks and network components.

Even if there are downsides in using simulations [4], a simulation fit well into a
network and network security context.

3.2.2 Classification of Information Security Simulators

A game about network security should include simulating networks and security phe-
nomenons. Saunders [5] divides simulators into different categories;

• Packet Wars. Packet Wars simulators are real, but isolated, networks with the only
purpose to simulate network attacks and defenses at a technological level. The pros
of these simulators are the use of real hardware and software. The cons would be
the time and effort you need to setup a new simulation session. Hardware would
need to be reset and software has to be re-installed before each new session. The
cost involved in having such equipment for simulation purposes only, is of course
another argument. Examples of such simulation networks are IWAR (USMA/West
Point), ID’ed net (DEFCON) and Root wars (Toorcon).

• Sniffers + Network Design Tools. These are packages used by system administrators
and system developers who need detailed understanding of packet flows and buffer
overflows. Network Modeling and Simulation (NMS) packages can be used for in-
depth analysis and testing at bit-level. These are very fast simulation techniques, but

11

Can Network Security be Fun? An agent-based Simulation Model and Game proposal

only for technical purposes. Examples of such packages are Cnet, EcoPredictor, IT
DecisionGuru, NetCracker and NetRule.

• Canned Attack/Defend Scenarios. These simulators are usually standalone game
applications used as a gaming and learning tool. Scenarios vary from hard- coded
attack trees using random events to more complex dynamic simulations. Examples of
applications are InfoChess, CyberProtect and The Information Security War Gaming
System (ISWGS).

• Management Flight Simulators. MFS are typically built upon a system dynamics
model created to help project managers and directors to better understand the inter-
action between people, equipment and economics where processes influences each
other dynamically in different ways. Numerous system dynamics models have been
built for specific information security tasks, like the Information Technology Organi-
zation Flight Simulator, the Synthetic Environments for Advanced Simulations (SEAS,
now CyberMBA). Other tools related to this type of modeling and simulation would
be Matlab/Simulink and Easel.

• Role Playing. Finally, Saunders includes the role playing type simulators. These are
often scenario based training events played out using white boards, paper and pencil.
These role playing games often focus on the management role in an organization
usually at a national level.

3.3 Network Simulators

In addition to IS simulators there exists a wide range of network simulators. Network
simulators have been developed for different purposes, most aimed at technical anal-
ysis of packet transmission. Some are free for academic use, and others aimed at the
commercial market. Network simulations often referred in the literature are;

• OPNET. Commercial product suite used to design, deploy, and manage network in-
frastructure, including equipment and network enabled applications. OPNet’s mod-
eler is actually a development tool used to analyze protocols and application in dis-
tributed networks.

• OMNet++. OMNET is typically used for computer networks and traffic modeling,
and modeling communication protocols and distributed systems. It is freely distributed
under an academic public license.

• cnet. This simulation is primarily aimed at networks courses and help students to bet-
ter understand the purposes of the different layers of the OSI-model. cnet is designed
as a discrete event simulator.

• ns-2. Ns is a discrete event simulator targeted at networking research. Ns provides
support for simulation of TCP, routing, and multicast protocols over wired and wire-
less (local and satellite) networks.

3.4 Network Design Principles

In [6], Saltzer and Schroeder defines basic principles of secure design which to some
extent can be used in the design of computer networks. Definitions are taken from
Bishop[7].

12

Can Network Security be Fun? An agent-based Simulation Model and Game proposal

• The principle of Least Privilege. A subject should be given only those privileges that
it needs in order to complete its task.

• The principle of Fail-safe Defaults. Unless a subject is given explicit access to an
object, it should be denied access to that object.

• The principle of Economy of Mechanism. Security mechanisms should be as simple
as possible.

• The principle of Least Common Mechanism. Mechanisms used to access resources
should not be shared.

• The principle of Complete Mediation. All accesses to objects should be checked to
ensure that they are allowed.

• The principle of Separation of Privilege. A system should not grant permission
based on a single condition.

• The principle of Open Design. The security of a mechanism should not depend on
the secrecy of its design or implementation.

• The principle of Psychological Acceptability. Security mechanisms should not make
the resource more difficult to access than if the security mechanisms were not present.

3.5 Engineering principles for IT security

In a recommendation [8] from the National Institute of Standards and Technology (NIST),
33 design principles are discussed in relevance to the life-cycles of systems;

• Initiation phase

• Development/Acquisition phase

• Implementation phase

• Operation/Maintenance phase

• Disposal phase

Many of these principles are relevant in securing computer networks and should be
taken into account in this study.

3.6 Models, Metrics and Taxonomies

Best-practices in information security, standards and regulations will be considered. These
includes;

• “Guidelines for the Security of Information Systems” developed, endorsed, and pub-
lished by the Organization for Economic Cooperation and Development. 1992. See
http://www.oecd.org//dsti/sti/it/secur/prod/e_secur.htm

• “BS 7799 - Information Security Management” from the United Kingdom Department
of Trade and Industry, published under authority of the British Standards Institute.
1995 - 1999. See: http://www.bsi.org.uk/disc/

• “ISO/IEC 17799 - Information Technology - Code of practice for information security
management” [9] from International Standard.

• “Control Objectives for Information and Related Technology” (CobiT) developed, en-

13

Can Network Security be Fun? An agent-based Simulation Model and Game proposal

dorsed and published by the Information Systems Audit and Control Foundation.
1995 - 1999. http://www.isaca.org/cobit.htm

• “BS 15000 / ISO 20000 - ITIL & Incident Management” [10]

In addition, metrics and taxonomies considered to be best practice are available from
the literature. These include Landwehr’s taxonomy of Computer Program Security Flaws
[11], the Common Criteria specification [12] and Weaver’s Taxonomy of Computer Worms
[13].

3.7 Game Play Theory

Theories has been developed to identify what makes games fun to play and these will be
used in discussions and to test the enjoyment hypothesis.

3.7.1 What makes games fun to play?

In [14], Malone describes how to make games fun to play. His intuitions are discussed in
different categories. This is an extract from his paper;

• Challenge. In order for at computer game to be challenging, it must provide a goal
whose attainment is uncertain. A number of important consequences follow from this
simple principle;

• Goal. Simple games should provide an obvious goal. Usually the more obvious
and compelling the goal is, the better. Complex environments without built-in
goals should be structured so that users will be able to easily generate goals of
appropriate difficulty. The best goals are often practical or fantasy goals rather
than simply goals of using a skill. Players must be able to tell whether they are
getting closer to the goal.

• Uncertain outcome. A game is usually boring if the player is either certain to win
or certain to loose. Malone argues four ways to make an outcome uncertain;

• Variable difficulty level. Difficulties can be variable depending on how well the
player plays. Levels can be chosen by the player or determined by an oppo-
nent’s skill.

• Multiple level goals. Multiple goals can be created by having a basic goal of
accomplishing something in the game and then meta-goals of reaching the
basic goal efficiently. Malone mentions score-keeping and speed-responses as
means of meta-goals.

• Hidden information. The game should selectively reveal information which
could provoke the player’s curiosity.

• Randomness. Uncertain outcome could be accomplished through the use of
randomness.

• Self-esteem. Success in a computer game, like success in challenging activities,
can make people feel better about themselves. The opposite is failure, which can
lower a persons self-esteem and decrease the player’s desire to play the game.
This negative effect could be reduced by introducing variable difficulties.

• Fantasy.

14

Can Network Security be Fun? An agent-based Simulation Model and Game proposal

• Intrinsic and extrinsic fantasies. Fantasies are associated with the goal of the game
and the skills used to reach it. Malone describes how intrinsic fantasies can be
more fun than extrinsic ones. With extrinsic fantasies the fantasy depends on the
skill, but not vice versa. Intrinsic fantasies provides feedback so that the player
can improve his/her skills. For example, that consequences of the players actions
are visualized (feedback) and the player can improve skills to get better results
in the next attempt. Malone argues that this is more interesting and instructional
than extrinsic fantasies.

• Emotional aspects of fantasy. Malone argues that it is difficult to know what emo-
tional needs people have and how these might (partially) be met by computer
games. But he assumes that games that embody emotionally-involving fantasies
like war, destruction, and competition are likely to be more popular than those
with less emotional fantasies. Because peoples fantasy preferences vary, a com-
puter game with different fantasies could have a broader appeal.

• Curiosity. Curiosity is the motivation to learn. Malone distinguishes between sensory
and cognitive curiosity.

• Sensory curiosity. Computer games can appeal to the sensory curiosity by using
audio and visual effects as decoration, to enhance fantasy, as reward or as a rep-
resentation of the system.

• Cognitive curiosity. Cognitive curiosity can be thought of as a desire to bring bet-
ter “form” to one’s knowledge structures (completeness, consistency and parsi-
mony). This can be in form of informative feedbacks. To engage a learner’s cu-
riosity, feedback should be surprising. To be educational, feedback should be con-
structive.

3.7.2 Flow and GameFlow
In [15], Sweetser and Wyeth constructed a model called GameFlow based on the widely
accepted Flow model introduced by Csikszentmihalyi [16] who stated that

“Flow is an experience so gratifying that people are willing to do it for its own sake, with little

concern for what they will get out of it, even if it is difficult or dangerous”.
Flow experiences consist of eight elements;

1. a task can be completed;

2. the ability to concentrate on a task;

3. that concentration is possible because the task has clear goals;

4. that concentration is possible because the task provides immediate feedback;

5. the ability to exercise a sense of control over actions;

6. a deep but effortless involvement that removes awareness of the frustrations of ev-
eryday life;

7. concern for self disappears, but sense of self emerges stronger afterwards; and

8. the sense of the duration of time is altered.

The GameFlow criteria for player enjoyment in games;

15

Can Network Security be Fun? An agent-based Simulation Model and Game proposal

• Concentration. Games should require concentration and the player should be able
to concentrate on the game;

• games should provide a lot of stimuli from different sources

• games must provide stimuli that are worth attending to

• games should quickly grab the players’ attention and maintain their focus through-
out the game

• players should not be burdened with tasks that don’t feel important

• games should have a high workload, while still being appropriate for the players’
perceptual, cognitive, and memory limits

• players should not be distracted from tasks that they want or need to concentrate
on

• Challenge. Games should be sufficiently challenging and match the player’s skill
level;

• challenges in games must match the players’ skill levels

• games should provide different levels of challenge for different players

• the level of challenge should increase as the player progresses through the game
and increases their skill level

• games should provide new challenges at an appropriate pace

• Player Skills. Games must support player skill development and mastery.

• players should be able to start playing the game without reading the manual

• learning the game should not be boring, but be part of the fun

• games should include on-line help so players don’t need to exit the game

• players should be taught to play the game through tutorials or initial levels that
feel like playing the game

• games should increase the players’ skills at an appropriate pace as they progress
through the game

• players should be rewarded appropriately for their effort and skill development

• game interfaces and mechanics should be easy to learn and use

• Control. Players should feel a sense of control over their actions in the game;

• players should feel a sense of control over their characters or units and their move-
ments and interactions in the game world

• players should feel a sense of control over the game interface and input devices

• players should feel a sense of control over the game shell (starting, stopping,
saving, etc.)

• players should not be able to make errors that are detrimental to the game and
should be supported in recovering from errors

• players should feel a sense of control and impact onto the game world (like their

16

Can Network Security be Fun? An agent-based Simulation Model and Game proposal

actions matter and the y are shaping the game world)

• players should feel a sense of control over the actions that they take and the
strategies that they use and that they are free to play the game the way that
they want (not simply discovering actions and strategies planned by the game
developers)

• Clear Goals. Games should provide the player with clear goals at appropriate times;

• overriding goals should be clear and presented early

• intermediate goals should be clear and presented at appropriate times

• Feedback. Players must receive appropriate feedback at appropriate times;

• players should receive feedback on progress toward their goals

• players should receive immediate feedback on their actions

• players should always know their status or score

• Immersion. Players should experience deep but effortless involvement in the game;

• players should become less aware of their surroundings

• players should become less self-aware and less worried about everyday life or self

• players should experience an altered sense of time

• players should feel emotionally involved in the game

• players should feel viscerally involved in the game

• Social Interaction. Games should support and create opportunities for social inter-
action;

• games should support competition and cooperation between players

• games should support social interaction between players (chat, etc.)

• games should support social communities inside and outside the game

In their study it was concluded that the GameFlow model could be used in its current
form to review games. Therefore, this model will be used to test the enjoyment hypothesis
(fun/not fun) for the game prototype built in this study.

3.7.3 Other Game Play Theories

Irvine shares hers ideas on game play and information security in [1] and [2] which
seems to be motivated by her work on CyberCiege. Also, Näkros [17] has some ideas
on how to visualize security aspects using computer games as a complement to the con-
ventional linear instruction. Their thoughts and insights into this topic will be taken into
account. Other theories about game play and game content could be borrowed from
Prensky[18] and Schneier[19].

3.8 Software Development

In the process of designing and developing a software product, some engineering tools
are required.

17

Can Network Security be Fun? An agent-based Simulation Model and Game proposal

3.8.1 Design Tools

A modeling tool will be needed to analyze objects, design the simulation model and
the front-end for the game. The Unified Modeling Language (UML) [20] is currently
considered best-practice in object oriented analyze and design and will be used in the
design research. One meta goal is to design a software model that can be extended for
future needs. Therefore, the design will be based on the theories of Design Patterns [21],
a topic associated with object oriented model designs. Design patterns can be used to
find the best object oriented design which in turn makes it easier to achieve features like
extendibility, good performance, and scalability.

3.8.2 Development Tools

Simulations normally consumes more resources than other applications and it will be
necessary to choose tools that achieves high performance, visualization and scalability.
The latter is concerned with the number of entities the game will be able to simulate.

Microsoft .NET offers a feature-rich framework for software development. The simula-
tion model, the theoretical framework, and user interface, will therefore be implemented
using the .NET framework and the C# programming language. C# and .NET is widely
used and is a convenient rapid application development environment for multi-tiered
applications and offers numerous application layer choices. Performance issues are ex-
pected to influence the choices made in the model design.

18

Can Network Security be Fun? An agent-based Simulation Model and Game proposal

4 Method

To answer the research questions, the following methods was used;

• literature review and content analysis to establish the conceptual model,

• design research to design the model and build the game prototype, and finally;

• user trails was arranged along with interviews using a feedback survey to evaluate the
game.

4.1 Literature Review and Content Analysis

To establish the conceptual game model and its limitations, literature and theories on
gaming and enjoyment was reviewed along with content analysis of existing, popular,
simulation games.

The idea was that a network security game should be built on a complex network
simulation and it should be possible to construct and configure networks and network
components while the simulation was running. Which tasks in the network security do-
main that was suitable to create an enjoyable game had to be investigated.

Conceptual ideas are described in chapter 5.

4.2 Design Research

To build the simulation model and game prototype, based on the conceptual ideas, addi-
tional information from the literature related to network design, security and engineering
techniques was used. This also included material on object oriented analysis and design,
and programming techniques.

The design research methodology described in Owen’s paper[22] was used the design
phase of this study to ensure that the prototype would have the quality needed to sim-
ulate networks and network attacks. Research was conducted in two realms; the realm
of theory (design) and the realm of practice (development). This process of knowledge
building is illustrated in fig. 5 and 6.

The design research process and game model is described in chapter 6.

4.3 User Trails, Interviews and Feedback questionnaires

To evaluate our game prototype we arranged user trails and created a feedback question-
naire. This questionnaire can be found in appendix A.

Participants was selected among a group of people identified as competent in network
administration and information security. The motivation behind this experiment was to
receive feedback related to the game as a phenomenon. Personal interviews and tele-
phone interviews were arranged using the questionnaire to create a structured interview.

This experiment is described in chapter 7.

19

Can Network Security be Fun? An agent-based Simulation Model and Game proposal

Figure 5: A general model for generating and accumulating knowledge

Figure 6: Using and accumulating knowledge in two realms

20

Can Network Security be Fun? An agent-based Simulation Model and Game proposal

5 The Game

The purpose of this chapter is to come up with some conceptual ideas on how to build
a network security game. This will be conducted through literature review and content
analysis of existing games.

5.1 Introduction

Information security topics typically involve, or depends on the use of networks and
distributed services. If a ultimate goal would be to construct a game that covers most
areas of information security, the intuition is that such a game should be built on top of
an existing network security game to get the best real-life experience as possible.

Networks are constructed to exchange data between hosts in an efficient and secure
manner. The type of data being transferred and the need for confidentiality, integrity
and availability usually depends on the businesses being conducted. Different businesses
have different goals, and both security and functionality goals must be met. Businesses
strive to balance these goals as requirements and threats changes over time. A set of
standards has been developed to help companies define and revise security policies [9]
[10] and equipment security needs [12].

Increased functionality often leads to more complex systems and system states, and
with increased complexity, systems gets more vulnerable for security attacks.

In the following chapters the scope of the game will be defined. Then ideas will be
discussed in relation to theories on fun and enjoyment in games. Before describing the
scope there will be a short review of popular simulation games.

5.2 Game Review

To get get help in defining the concept, games like SimCity, Rollercoaster Tycoon and
CyberCIEGE was used as sources of ideas.

5.2.1 SimCity

SimCity is a simulation game where the player is the urban-planner and mayor of a city.
Initially, a piece of land and some money is assigned. Objectives are to use this money
to build a functional city, attract citizens, and keep them happy. The more citizens the
player attracts, the more income (s)he will get from taxes. As a Mayor one must try to
balance the budget by keeping the taxes as low as possible but still have enough money
to support public services and money to extend the city by constructing new town areas.

The player builds a city by laying out areas for residential, commercial and industrial
buildings. One can also construct buildings with special purposes, like police stations,
fire stations, hospitals, harbors, airports, sport arenas and by using other land marks,
revealed as artifacts as the simulation progresses.

Transport is important for the well-being of the city. Roads and train tracks must be
planned carefully. In later versions even underground subways and water supply can be
added. Cities would need landfill areas to dump garbage and power stations to provide
electricity.

21

Can Network Security be Fun? An agent-based Simulation Model and Game proposal

SimCity has no obvious end-state but contains meta-goals like keeping citizens happy
1. The player will have to save the city from exploding nuclear plants, pollution from coal
plants, flooding, etcetera. Health care, fire and police services contribute to risk manage-
ment. The cost of founding public services depends on how many of these services the
player builds. The services’ physical location has an impact on how citizens are attracted
to different areas of the city. High crime rates and pollution leads to urban decay and
lower tax-income in affected areas.

5.2.2 Rollercoaster Tycoon

In this game the player’s role is to manage a theme park. Instead of constructing build-
ings, the player must build attractions and other facilities typically associated with theme
parks. The objectives are to attract visitors, build rides and attractions in accordance to
visitor preferences while maintaining the park. As they get used to different rides, visitors
tend to demand more thrilling rides. The player will have to hire janitors to keep the park
fresh and clean and enough engineers must be hired so that rides can be repaired and
controlled at frequent, and safe, intervals. Failing to do so can result in break-downs and
accidents that claim lives which, of course, will have a very negative economical impact.
Being a manager, the player can also use money on advertising and offer free-tickets to
attract more visitors. Entertainers can be hired to keep people happy while queuing to
get onto the rides.

RCT is scenario-based, which means that the player is introduced to pre-configured
game scenarios (game levels) in which defined objectives have to met in order to get to
the next level.

An interesting element in RCT is it’s use of individual emotions. Each visitor has per-
sonal characteristics and ride preferences derived from these characteristics. The player’s
failure or success in satisfying visitor demands will result in very detailed expressions
and display of emotions. User statements can be expressed individually, or based on a
group of visitors. These expressions gives valuable feedback to the player on how to im-
prove the park. Feedbacks can be something like “Rollercoaster <ride name> was really
cool”, “The ice-cream was expensive”, “I don’t want to ride <ride name>. It looks too
dangerous”, etcetera.

5.2.3 CyberCIEGE

Inspired by SimCity and RollerCoaster Tycoon, in CyberCIEGE the player takes the role
of a decision maker for an IT-dependent organization.

Scenarios are targeted for special audiences with different assurance needs, but the
main objectives are to keep virtual IT-users happy and productive and at the same time
provide the security measures needed to protect valuable organizational information
assets [2].

Resource management is accomplished through the use of a budgets from which in-
vestments must be made to meet certain security goals. The player must make choices
regarding procedural, technical and physical security. Poor choices often results in disas-
ters. CyberCIEGE uses the potential tension between strong security and user productiv-
ity to illustrate that many security choices are an exercise in risk management.

1In later versions of the game, scenarios was introduced to establish main goals

22

Can Network Security be Fun? An agent-based Simulation Model and Game proposal

5.3 Game theory

The reviewed games, and the game idea for this study will now be discusses in the context
of Malone’s intuitions [14] and the GameFlow model[15].

5.3.1 Challenge

. Malone[14] stated that “in order for a computer game to be challenging, it must provide a
goal whose attainment is uncertain” and “In a sense, the very notion of game implies there
is an object of the game”.

With SimCity it became obvious that games did not always need to define clear goals
to be popular among players. This surprised the gaming industry, which by then was
convinced that games needed clear goals to be attractive. Even if later versions of SimCity
introduced city scenarios where the player had to keep some statistical game parameters
(crime, pollution, etcetera) below or above given thresholds to succeed, the basic game
idea was to build a city and keep citizens happy. Typically, people could play for hours
fascinated by the simulation and visual animations. Goals was defined by the player’s
themselves and they could try different strategies, like building the largest, cleanest,
most polluted city, etcetera.

In RollerCoaster Tycoon, scenarios have different goals that must be met for the player
to succeed. This could for example be to attract a given number of visitors or reach a
given park value within a defined time period. Scenarios can have more than one goal
on which some meta goals or all goals must be reached successfully. Reaching a scenario’s
main objectives is typically rewarded with new and more complex scenarios. There are
multiple advantages to this, according to Malone. First, the player is rewarded for skillful
playing which increases self-esteem. The game’s difficulty level is adapted to the player’s
skills, and it will bring uncertain outcome into the game to provoke the player’s curiosity;
hidden information, like a new scenario, is revealed periodically.

Instead of ending the game, in RCT, even if the player successfully completes the main
goals, (s)he can choose to continue building the park. Some scenarios are relatively fast
to finish while others can be played for hours, therefore players had this option to be
able to continue playing.

SimCity and RollerCoaster Tycoon as well as other simulation games present the
player with a complex environment, a city or theme park, and it is the player’s task
to construct or maintain this complex structure of entities.

Malone states that

“complex environments without built-in goals should be structured so that users will be able to

easily generate goals of appropriate difficulty”. Most people like to construct things, make
plans, create hypothesis and test them [8].

Sim City and Roller Coaster Tycoon are both simulation games with no obvious end-
states, but scenarios has been defined to create environments with different goals. This
approach should be considered for this study. For instance, by defining different net-
worked scenarios and environment characteristics with preset success and failure defini-
tions.

5.3.2 Fantasy

Malone uses the term fantasy to illustrate the game setting and how players are able to
identify with this setting. Because people’s fantasy preferences vary, a computer game

23

Can Network Security be Fun? An agent-based Simulation Model and Game proposal

with different kinds of fantasies could have a broader appeal.
For SC and RCT, it is an advantage that most players already are familiar with cities,

and theme parks, and it is therefore easy most people to adapt to the fantasy of building
a city or constructing roller coasters in a theme park. In later versions of RCT, it is even
possible for players to become the visitor of a theme park and ride the roller coaster they
have created using in-game virtual reality ride sequences. This extends the fantasy even
further.

It is probably not just as easy to adapt to the fantasy of being a network administra-
tor, and it should be investigated how to enhance the fantasy or make the game more
appealing by other means.

5.3.3 Curiosity

Sensory curiosity relates to decoration and the use of graphics and sounds to enhance
the fantasy. In SC, one can hear cars making sounds, people shouting in riots, explosions
and other sound related to events that occur in the game. In RCT one can hear people
chatting very life-like and in a recognizable way for people who have visited theme parks.
The graphical representation is also nicely selected; a city and a theme park seen from
a bird view that includes graphical elements and animations coupled with the fantasy.
Graphical elements that could be used in a network security game could be;

• a network map showing how different hardware equipment are connected,

• equipment power status and traffic flow indicators (network card lights),

• virtual users and their happiness level,

• newsflashes when something important happens, like when new viruses are detected

• traffic-sniffing information showing packet traffic

• textual description of actions performed by virtual users along with user complaints
and compliments.

These effects will also act as feedback mechanisms that improves the cognitive sen-
sory.

It is harder to identify what kind of sound effects and background music one could
use2. Sound effects could be;

• different vignettes being played when computers are powered on and off,

• a pool of sounds including angry outbursts when virtual users gets angry or cheering
sounds when they become happy,

• sound effects from anti-virus applications when a virus is found. This could be com-
plemented with a graphical animation of the host being infected

Sounds should be exaggerated and include humor. The same applies to graphics.
In RCT it is quite interesting, and for morbid players quite funny, to observe details
like when the janitor must clean up vomit from visitors who have been sick from riding
thrilling attractions. A way to minimize this problem is to place ice-bars, hot-dog stations,
or other food facilities far away from these rides. It is also a good idea to place a public
toilet close to the roller coaster’s exit-area.

2the one that immediately comes to mind is quite annoying and is probably not something that would make
the game more attractive

24

Can Network Security be Fun? An agent-based Simulation Model and Game proposal

Curiosity is closely related to the fantasy, and by combining nicely adapted graphics
and sound effects with humor, one could enhance both fantasy and curiosity.

5.3.4 Ideas from GameFlow theory

It should be possible to complete a task. Game scenarios should be designed so that
players will always have the opportunity to finish the game successfully. “Acts of God”
events should be eliminated or kept to a minimum. A countermeasure should exist for
all events that occur in the game. Introducing random catastrophic events into the game
is therefore not a good idea unless the player have means to prevent these events from
happening in the first place.

The game should be constructed so that players feel a sense of control over actions.
The graphical interface must be easy to use. Tedious tasks should be generalized so that
actions can be performed on multiple hosts simultaneously using template techniques
and bulk-operations. For instance, when new applications are installed, the player should
be able to install on multiple computers at the same time. Performing the same action on
every host in a large network would be considered boring. An example of generalization
in the game interface can be seen in SC. Instead of constructing buildings, one bye one,
areas for different building types can be laid out as city blocks. This makes it easier and
faster to build large cities.

Another idea from GameFlow is to introduce social interactions. It should be possible
to compete or cooperate with other players. This is absent in RCT and SC due to the na-
ture of these games, but this idea should fit well into the cooperating nature of computer
networks.

Competition can be accomplished by different means;

• by having public scoreboards where players can compete on achieving the best high-
scores, and/or;

• real-time competition where players compete by trying to destroy what other has
built or steal other player’s assets, and/or;

• real-time cooperation where players build alliances with other players and cooperate
in attacking their common enemy players.

In a network security game, the simulation model should be complex enough so
that players can use different means, like crafting network packets, building probe-
applications and viruses/exploits to attack other sites.

A multi-player game requires a central server to which players can connect to join
other players. Such a server could act as an Internet node and distribute packets between
local sites managed by each player. Using real networks to distribute packets between
networks could also increase packet traffic diversity and randomness, hence enhancing
the simulation realism.

5.4 Game idea

To create a game about network security, it seems natural to place the player in a setting
where (s)he plays the role of a network administrator who must defend the network
infrastructure, including assets, from attacks. An important task, being a network admin-
istrator or network security manager, is to plan and construct the network architecture by
defining its layout and properties. A network map with connected nodes and easy access

25

Can Network Security be Fun? An agent-based Simulation Model and Game proposal

to configuration data is therefore probably the best way to construct the game interface.
Figure 7 shows the first graphical draft of the game interface idea.

Figure 7: First conceptual draft

5.5 Scope

To be able to create a game with substance, more than just networks are needed. Network
traffic is also required. To create traffic, physical and logical communication end-points
must be implemented. In practice, elements in all layers defined in the Open System
Interconnection Reference Model (OSI Model) needs to be involved.

Layer Name
7 Application Layer
6 Presentation Layer
5 Session Layer
4 Transport Layer
3 Network Layer
2 Data Link Layer
1 Physical Layer

Table 3: The OSI model.

5.6 Internet Sites

The Internet should be an essential element of the game. Attacks will typically have its
origin on the Internet and the player must take control of a site connected to the Internet.

26

Can Network Security be Fun? An agent-based Simulation Model and Game proposal

To separate the player-controlled site from other sites connected to the Internet, from
now on the player-controlled site will be referred to as the local site. Other sites will be
referred to as remote sites.

To enhance the simulation realism, remote sites should be simulated in the same
way as the local site. It should be possible to have remote sites created and removed
dynamically during the game, because the player should not be able to build a complete
knowledge on which domains and IP-ranges are trustworthy and which are not. A large
amount of remote sites should be simulated.

Using ideas from reviewed games, a network security game should include features
like resource management, network design and configuration, host and application con-
figuration and risk management. A wide variety of attacks should be simulated.

5.7 Physical Network components

To simulate the OSI communication physical network components are needed;

• ISP connections for Internet connectivity,

• switches and wiring for network connectivity,

• routers to route packets between network segments, and;

• hosts as physical communication end-points.

5.8 Network traffic

To enable traffic between inter-connected networks, the TCP/IP stack of protocols should
be used in communications. A subset of this stack should be implemented to support basic
application protocols and traffic flow. In addition, the following items are needed;

• sockets as logical communication end-points,

• applications for traffic diversity,

• software for application diversity,

• processes and threads to execute applications, handle tasks, and manage sockets,
and;

• tasks to start processes and threads.

5.9 Users

Without an engine, vehicle simulators are of little use. The same applies to network sim-
ulations. In a network context, the engine is the users who “drive” the network through
the use of client applications, maintenance of networks, and configuration of networks
and services.

To reduce the burden on the player, virtual users should use application (agents)
while maintenance and configuration tasks should be handled by player.

5.10 Resource management

If a company had unlimited resources, then security and functionality goals would eas-
ily be met. This is usually not the case in real life. Designing and configuring hosts and
networks comes at a cost. To obtain optimal results, money spent on equipment and
maintenance should not exceed the goals of protection and business needs. However,

27

Can Network Security be Fun? An agent-based Simulation Model and Game proposal

some investments could have positive effects on productivity. These are challenges the
player should be faced with. Cost is typically associated with products and maintenance,
therefore equipment and software should have a purchase and installation and/or con-
figuration cost. Two models can be used, a one-time price, or a lease cost where cost is
accumulated as time passes. Cost intervals could be any discrete interval, like day, week,
month or year.

5.11 Attacks

Security and risk management should be the most essential part of the game. Therefore,
we need to simulate attacks and other events related to network and host security.

The purpose of attacks is to bring instability to the network’s state model. The ob-
jectives of the player should be to construct and maintain a structure that is resistant to
attacks and, at the same time, satisfies functionality demands.

Entities with states in the network’s state model should include; memory, applica-
tions/software products, processes/threads, program files, data files, configuration files,
sockets, I/O buffers, network packets, routing tables, firewall filters, address resolution
tables, DNS configurations and equipment power.

Applications should be able to change the states of host by execution simulated pro-
grams. Such a feature would make it possible to construct a wide range of malicious code
attacks.

The game should include attacks like;

• Traffic attacks. Denial of Service Attacks, SYN-flooding, etcetera.

• Spam. Mails that have a negative impact on productivity.

• Viruses and Malware. Software infected with malicious code.

• Vulnerabilities and Exploits. Software with vulnerabilities attacked by content that
exploits these vulnerabilities.

5.12 Spreading mechanisms

Also a variety of mechanisms to spread malware and exploits are needed;

• E-mail services. Mail clients and SMTP and POP3 servers.

• Web services. HTTP clients and servers.

• File transfer services. FTP clients and servers.

• Remote File Services. Services like SAMBA.

The list could be much longer, and include applications like file-sharing, instant mes-
saging, VoIP3 and more. The a goal should be to design a simulation model where these
applications easily could be implemented. This should be sufficient enough to create a
game that includes (some of the) main security events experienced in the real world[23].

5.13 Countermeasures

All attacks should be associated with countermeasures, like;

3Voice over IP

28

Can Network Security be Fun? An agent-based Simulation Model and Game proposal

• Network topology design. Including defense-in-depth strategies and the ability to
compartmentalize the network design to increase the general security of the network.[6]
[7]

• Static routing. The ability to route packets between sub-nets [24].

• Static firewall configurations. The ability to filter packets on header information
[25].

• Anti-virus applications. The ability to detect viruses based on signatures.

• Patching options. The ability to repair software vulnerabilities.

• Host hardening. The ability to reduce the complexity of host state models and reduce
the number of possible attack vectors into the system.[26]

5.14 Limitations

To limit the scope, it was decided not to include physical security and data access con-
trols in the game. Many attacks on distributed systems are related to password attacks,
attacks on access control mechanisms, equipment sabotage, theft or unauthorized phys-
ical access, but these are not events that will be included in this version of the game
prototype. Later versions should be able to extend the model by involving other layers of
security. Figure 8 illustrates this idea;

Figure 8: Security Layers

Simulated users should not try to attack systems from the inside. Even if insider at-
tacks are common, these events are not directly related to the events in network and host
security described in chapter 5.11. This decision can be seen in relation to not include
access control mechanisms. To simulate insider and access-control attacks, a complicated
scripting facility is probably needed in the model.

In the next chapter a design process using the conceptual ideas described in this
chapter will be described. The purpose is to build a network and attack simulation model
upon which a game prototype will be constructed.

29

Can Network Security be Fun? An agent-based Simulation Model and Game proposal

6 Design Research

To construct the simulation model and game prototype the design research methodology
proposed by Owen [22] was used. In the realm of theory, theories on TCP/IP, networking,
information security, network security, viruses, exploits and enjoyment helped us build
the game model. In the realm of practice, engineering techniques was applied to imple-
ment the model and test, accept and/or reject ideas. The result has been a game model1

on which our game has been built.
To help building the model, object oriented analysis and design techniques, and de-

sign pattern theory[21] was used.

6.1 The Design Process

Game development is a large undertaking[27] which normally requires multiple roles,
from the designers, graphical artists, and musicians to the project managers, developers
and game testers.

Having established the conceptual ideas and the model scope, the next step was to
construct the game prototype. The challenge was to implement as much as possible in
five months. The total period for this study was six months, but one month was needed
to conduct an experiment and write this documentation. In the following chapters, the
design process will be described along with a presentation of the game model.

6.1.1 Development platform

It was decided to target the Windows 2000/XP operating system due to its wide spread
use. The Microsoft .NET 2.0 framework and the Microsoft Visual Studio 2005 (VS2005)
was installed on a computer with a 2.5 GHz Intel Pentium 4 processor and 512MB ram. At
the time of this study this was considered a medium-end system. StarUML2, a free graph-
ical design tool for the Unified Modeling Language, was installed. Other recommended
alternative could be Dia3 or Rational Rose4.

C# was selected as the programming language of choice. C# is included in the
VS2005 IDE5. In addition to the integrated help function in VS2005 (MSDN), [28], [29],
[30] and [31] was found helpful.

6.1.2 Building the executive kernel

The executive kernel[32] contains a collection of network entities and virtual users and
is the heart of the simulation. This is where the simulation loop is located (ref. appendix
D). The kernel is also responsible for managing other parameters associated with the
simulation, like the timer, event distribution and statistic accumulator. The purpose of the
first tests was to evaluate the performance of the agent-based simulation kernel. Simple
network agents, routers and hosts, were implemented with a simple protocol handler to

1knowledge base
2http://www.staruml.com/
3http://www.gnome.org/projects/dia/
4http://www.rational.com/
5Integrated Development Environment

31

Can Network Security be Fun? An agent-based Simulation Model and Game proposal

generate traffic. Tests confirmed that the model could manage large amounts of nodes
(>1000) with good performance results indicating that a complex agent state structure
could be handled by the simulation. From then on, the state model of the simulated
agents was extended in iterative development cycles.

The kernel was implemented as a multi-threaded kernel. Multi-threading introduces
randomness in data (traffic) flow because it is hard to predict when threads are executed
and context-switches occur. A Disadvantage with multi-threading is that context-switches
comes at a cost. The operating system handles the thread scheduler and performs con-
text switching at frequent intervals. Too many threads will therefore reduce the general
performance. In theory, each agent could have its own dedicated thread, but this would
require too many threads. It was decided to create a pool of sixteen threads each running
in separate loops. Agents are distributed randomly to different threads when the simu-
lation starts. Some agents, like the virtual users does not require too much processing
time, while hosts has a complex state model and need more processing time. If agents
was not distributed randomly, one could risk that virtual users resides in one thread and
hosts in another which would make the host thread execute slower than the thread with
the virtual users. As the number of agents is relatively high with more than 300 remote
sites and three agents pr. remote site, a random distribution will ensure that processing
time is evenly distributed among agents.

6.1.3 Deadlock issues

In the realm of practice deadlocks was experienced. Deadlocks can occur in multi-threaded
designs and are hard to identify due to the randomness of context-switches which makes
it hard to repeat the cause of the deadlock. As the entity state-model got more com-
plex, frequent deadlock occurred. These problems were solved by carefully placing syn-
chronization mechanisms (monitors/locks) on resources involved in the communication
between two different agents and cultivate the use of queuing patterns in the design.

6.1.4 Networking

During the first two months of the design process, focus was on modeling the networked
agents and related entities used to build the agent’s state structure. Literature found
useful in this this part of the design was [33], [34] and [35].

A sub-set of the TCP/IP and UDP/IP stack of protocols[34] was implemented, with
enough features to handle basic network traffic. This design included the routing man-
ager/table and a a sub-set of the ARP mechanism.

It was decided not to implement IP fragmentation. The simulation should transmit
data in one packet. A single communication session between two hosts could involve
multiple transmissions in both directions. This decision was made to keep the model
simple but still make it possible to simulate protocol sequences.

IGMP and ICMP were not implemented. This feature was postponed. With ICMP in
particular, there are known probing techniques and network attack types, and its im-
plementation should therefore be implemented in future work. The current model was
designed with this in mind.

Routing was achieved by including a routing manager in host, router and firewall
agents. Lower-layer nodes, like switches and WANs, uses an alternative sub-net table.
A sub-net table does not include any port/interface information and its purpose is only
to make it easier to distribute IP addresses when new network agents are connected to

32

Can Network Security be Fun? An agent-based Simulation Model and Game proposal

the network segment. A free IP address from the IP-range found in the sub-net table is
derived from all connected nodes and automatically assigned to the last connected agent.
If multiple IP-ranges are found in the sub-net table, new connections will receive multiple
free IP addresses, derived from each of the registered sub-net ranges.

Both UDP and TCP were implemented. Data associated with a protocol request, or
response, is sent in one packet/datagram. Therefore, the TCP sub-set was not designed
to include flow-control, window size, or sequence and acknowledgment numbers.

To activate UDP and TCP functionality, a general socket class for receive and send op-
erations was implemented in two specialized classes, one for handling UDP functionality
and another for TCP. These sockets work in close relation with the transport layer and
socket manager. The TCP socket class’ state model ensures that a session is set up and
shut down according to rules defined in [36].

6.1.5 Building the Application Protocols

At this point, all entities needed to simulate traffic between two logical endpoints were
available in the model. Several tests were conducted with dummy protocol units using
UDP and TCP sockets to send and receive data between hosts. A set of topologies were
constructed and saved as template files, each topology represented different hops be-
tween hosts.

A more “intelligent” and life-like application protocol generator was needed. It was
identified that hosts needed entities like processes and files to simulate these protocols.
Handling code execution is a complicated task in real-life systems. Different approaches
were considered, and the best solution was to introduce threads as the smallest unit
of simulated code execution. Server applications in particular, often use multi-threading
techniques to handle multiple sessions with remote clients. Different classes were defined
to accomplish simulated code execution in host agents;

• Application. This class contains methods and properties associated with an appli-
cation in general terms6, and defines the algorithm, the name of the application, a
reference to the protocol name7, and other application specific properties. Specialized
application classes inherits from the base application class and overrides the proce-
dure method to implement their own algorithm. This algorithm is used by the thread
class to simulate the application protocol.

• Command. The application class has a collection of command-objects used to create
application-specific tasks. Each command object has a coded string which resembles
an API8 reference including the procedure name, its parameters, an entry-point in the
application algorithm and a description of the command. The description is used in
feedback messages.

• Software. The Software class contains information about a specific software prod-
uct. While the application class contains information common to all products of a
specific type, the software class contains information for a specific product, like per-
formance properties, pricing, product name, etcetera. These properties can be used
by the application algorithm and are accessible through the thread-object passed in as
parameter to the application algorithm. Even if the application algorithm is common

6web-server, mail-client, etcetera
7HTTP, FTP, etcetera
8Application Programming Interface

33

Can Network Security be Fun? An agent-based Simulation Model and Game proposal

for all products of the same application type, it could still behave differently based on
different product characteristics.

• ProgramFile. A program file is a host-instance of a software product. The software
class can create new program files which are then added to a host’s file-system. A
program file has a reference to the software product. Other properties can be found
in the program file, like the current patch. If the program file is infected by malware,
a reference to this malware can be found in this class. Program files are involved in
the creation of host processes.

• Task. A task is an instance of the command object found in the application class.
While the command class defines a method in the application algorithm, the task
holds the actual parameters for this method. Tasks are created by applications. Task
parameters are calculated randomly and to some extent calculations are based on
user-characteristics.

• Process. Processes are entities executing one or multiple instances of a program file.
When a process is started, a main-thread is created and executed by the applica-
tion class. Each application type can define its own startup-algorithm. For example,
server applications could start listening on a specific TCP port or spawn threads that
should loop infinitely while the process is running. The process class manages mul-
tiple threads responsible for executing the algorithm defined by their corresponding
tasks.

• Thread. The thread-object contains the internal state of a thread, like the run-pointer,
sleeping state, a socket reference, blocking state, the associated task, etcetera. Threads
uses sockets to generate network traffic through as set of socket methods. The thread
object can access all host-states, enabling these states to be changed by the applica-
tion code.

Designing these classes was a complex process, but it was necessary to achieve some
of the diversity and complexity seen in real-life systems. Not only are the means available
to simulate application protocols, but also the capability to simulate a wide range of code-
attacks intended to bring instability to the host’s state model. The motivation behind the
thread-execution design was that this pattern could make it easier to later convert it into
a linked-list of execution-blocks. This way, it would be possible to move from hard-coded
application algorithms, to dynamically defined algorithms enabling players to construct
their own set of algorithms and malwares. The linked-list design was not implemented
in this study, but design choices described in this chapter would make this feature easier
to implement in the future.

6.1.6 Simulating Attacks

So far, works have been focused on building a stable running network simulation. Now,
attacks were needed to bring instability to the system. [37], [38] and [23] were useful
resources in identifying model topics related to attacks.

A malware class was defined. The purpose of this class was to extend the definition
of malware tasks. A task is normally associated with application functionality and user-
activity, while a malware references a task pointing to some malicious block of binary
code. Malwares are referenced by infected program files. When an infected program file
starts a new process, a malware thread is automatically spawned and starts executing

34

Can Network Security be Fun? An agent-based Simulation Model and Game proposal

the malicious code in the program file’s process.
A malware-factory class was designed. This class is managed by the executive kernel,

and depending on the malware frequency setting in the executive kernel, new random
malwares and exploits are created by the factory class in random intervals. A random
trust value is calculated when new malwares are created. This random value decides how
distributed the malware would be (low-spread/high-spread). The malware-factory then
distributes new malwares by creating a program file with a random name and marks it
as infected by setting the program-file’s malware reference to the newly created malware
object. Then each site is iterated and server hosts receive a copy of the infected file if the
site’s trust level is lower than the random trust value.

Exploits are malware but extends its definition by including references to software
products and patch-ranges. A process, and its program file, is infected only if the exploit
matches the associated program-file’s software product and patch version. Two types of
exploits were defined; file exploits and packet exploits. File exploits are distributed as
data-files9 to remote sites. Vulnerabilities in products are simulated by having exploit-
tasks creating a new malware-thread in the infected software-process when a file associ-
ated with this process is opened.

Packet-exploits are simulated in the interface between the thread and the socket dur-
ing send and receive operations. Packet exploits do not use files, instead the malware-
factory distributes these exploits to a site’s exploit-knowledge collection much in the
same way it distributes infected program and data files. When users connect to a server
at one of these sites, the server will randomly mark returned packets with exploits having
the same protocol as the server. This resembles a packet being crafted at the remote site
with the intention of exploiting vulnerabilities in client software products. If the client
application matches the exploit’s product and patch properties, the client process will
start a new thread and execute the associated exploit task/procedure.

Server applications was also designed to have vulnerabilities. Virtual users at remote
sites visit servers at the local site at frequent intervals and packets can be crafted at the
remote site to exploit vulnerabilities in server applications at the local site.

In addition to malwares and exploits, an attack-tool application was constructed.
Some remote sites uses this application to probe the local site and attack private ser-
vices. It tries to attack all protocols known by the simulation in random sequences and
at random intervals. One can never know when, from where, and against what such at-
tacks occur. Finally, spam mails were introduced. Mails could also contain infected files
in attachments.

Virtual users uses different application to download (or receive) files. Some of these
files can contain malware. Different countermeasures like anti-virus applications, backup
tools, firewall configurations, host-hardening, network design, etcetera must be applied
by the player to prevent or reduce the impact from attacks.

6.1.7 Building the graphical front end

Building the graphical front-end was accomplished in multiple steps. Both top-down and
bottom-up approaches was used in building the game model and prototype. Experiences
in the front-end gave more insight in how to design the model, while changes in the
model gave new ideas on how to build the front-end.

9image-files, word processing-files, HTML-files, etcetera

35

Can Network Security be Fun? An agent-based Simulation Model and Game proposal

A new binary component was added for the graphical classes and functions. It was de-
signed to poll state information from the simulation model and represent agent-states by
different graphical means. Normally, a game uses OpenGL or DirectX to create the graph-
ical representation. These libraries enhances the graphical performance but are hard and
time-consuming to use. Instead, it was decided to create the graphical front-end using
the GDI+10 library included in the .NET framework. GDI+ extends the GDI capabilities
of Windows but does not perform as well as OpenGL and DirectX. GDI+ does not include
library functions for 3D graphics, but was sufficient enough to create the network map
seen in the game. The 2D capabilities of DirectX or OpenGL could improve performance
by some magnitude, and should be considered implemented in future versions. The sim-
ulation model and graphical library was built in separate components with this in mind;
to make it easier to change the graphical platform if neccessary. By looking at games like
CyberCIEGE and newer versions of SimCity and RollerCoaster Tycoon, one can see that
these game uses 3D in their graphical representation. This seems logical, as these games
strive to represent the physical world (offices, towns and theme-parks). A network map
does not need to be represented in 3D.

An interesting article about the increasing complexity of building computer games
can be found in [27].

Music and sound effects are considered to be important elements in creating an enjoy-
able game [14]. There was not enough time to include sound and it should be expected
that this would have some negative impact on the game experience.

Using ideas from existing games, and GUI11 coding standards, the main game window
was designed to include a toolbar with graphical icons, general game information and
an editable network map. The network map was designed to handle actions defined by
the simulation model, like;

• creating and destroying network nodes,

• reorganizing and moving nodes in the network map,

• connecting and disconnecting nodes,

• changing node-states like routing information, firewall filters, installed applications,
etcetera

• monitoring network-traffic and socket activities

In addition to graphical functions, the model component included classes to represent
agents visually. Different approaches in creating a network map was tested, and the most
effective one was a rectangular representation with nodes located in grids. The grid
model made it possible to fine-tune the algorithm responsible for converting the data
structure into a screen representation so that the updating speed, when the player scrolls
the map, is the same regardless of the number of columns and rows used by the map.

Efforts were made to make the graphical interface easier to use and understand. One
goal was to keep it as simple as possible requiring only as few mouse-clicks to access in-
formation. A right-click pop-up menu was added to make easier access to node properties
and actions. A pop-up menu is illustrated in figure 9.

Shortcut keys were introduced to give easy access to frequently used game functions.

10Graphical Device Interface
11Graphical User Interface

36

Can Network Security be Fun? An agent-based Simulation Model and Game proposal

Figure 9: Processes and Threads

By double-clicking any node, a suitable dialog box for that node type is shown. This idea
was collected from RollerCoaster Tycoon.

A set of icons12 was created for the game toolbar, network map and dialog boxes.
It was important to design these icons so that they gave the user an intuitive feeling of
what they represented. Some icon ideas was collected from other games and the Cisco
set of “standard” icons.

6.1.8 Converting a Network Editor into a Game

At this time a network simulation, and a graphical front end able to configure it, was
available. To create a game, a few more elements were needed. A game would need
objectives, and a set of mechanisms to define these objectives and means to find out if
they were met had to be implemented. Two types of mechanisms were implemented; sta-
tistical counters and triggers that checks if some statistical threshold has been reached.
A large number of statistical counters were identified and implemented in the model
where their associated events occurred. The identified counter-types (statistical enumer-
ators) are listed in appendix C. The code sample in appendix D and E, includes code that
shows how values are accumulated for some of these counter types. For each simulation
loop iteration, preset triggers are compared with accompanying statistical counters. If
a counter is below or above a given trigger value, the trigger will increase the value
of another statistical counter, for example, the GAME_End counters. GAME_Failures
and GAME_Successes can be used to count the successes and failures of meta-goals.
Two statistical counter types were created to end the game; GAME_EndFailure and
GAME_EndSuccess. A value other than zero in these counters will end the game.

Triggers and statistical counters are contained in a collection maintained by the ex-
ecutive kernel. Counters maintained by the executive are the sum of all statistics from
the simulation. In addition, each agent and the local site have its own set of statistical
counters. This way, it was possible to figure out how many mails was being sent from a

12Small graphical images

37

Can Network Security be Fun? An agent-based Simulation Model and Game proposal

remote site to the local site by subtracting statistics on mails sent from the local site with
all mails sent found in the executive statistics. In the current model, triggers are designed
to target the total statistics found in the executive, but it should be possible to change
this in the future so that triggers can act upon any agent and/or site.

6.1.9 Designing the Game

A game menu was created to introduce players to different game scenarios. The names
of each scenario are presented as a list in the game menu as seen in fig. 10.

Figure 10: Game menu

The player starts the game by selecting any of the available game levels and pressing
the play button. No restrictions were made in the order these levels could be played.

6.1.10 Brazilian Dance

The first game included a simple network connection with one host; a home computer
connected to the Internet. In addition to storing infected data and program files, and
crafting exploit data packets, some hostile remote sites run attack-applications that try to
explore and penetrate network services at the local site. The remote file server (Samba)
is one of them. The objectives are to harden the host so that remote script kiddies don’t
get access to the local host’s remote file system through the Samba protocol. When the
game starts, a dialog box is displayed and describes the game objectives along with the
game characteristics. The dialog, for the Brazilian Dance level is shown in fig.11

38

Can Network Security be Fun? An agent-based Simulation Model and Game proposal

Figure 11: The Brazilian Dance introduction dialog

The game ends if a remote attacker succeeds with more than five attacks (failure) or
the player can withstand more than five attacks within fifteen simulated days (success).
When the game ends, a new dialog box is shown containing the statistical results and
a final score. During the game, the score increases when events considered as positive
occur in the simulation. These are events associated with a functional network, like the
number of mails sent, or web pages downloaded successfully, etcetera. Negative scores
based on negative events are not calculated. Instead, negative results are shown in the
end-game dialog box as penalty values reducing the final score. The end-game dialog box
can be seen in fig.12. The motivation behind this approach was to make the game more
realistic. If the player was able to notice a decrease in score during game play, it would
indicate that something was wrong. But, even with this approach, a covert channel is
introduced. If the player notices a slow-down in score increments, this could indicate
that the network is not working as well as it should.

6.1.11 Small Office Paranoia

In this scenario, objectives are to manage a small company network with one sub-net,
a firewall connected to the Internet, and two servers; one for internal services (intranet
servers) and another for public services. The player will need to take extra care in select-
ing the most suitable applications to reduce the impact of viruses and exploits. The best
virus applications are not necessarily the most cost-effective ones. Other applications,

39

Can Network Security be Fun? An agent-based Simulation Model and Game proposal

Figure 12: The game result dialog

like backup-tools can be installed to improve file integrity. A local mail server can be set
up so that mail-filter applications can be installed, reducing the impact spam mails have
on user productivity. As in the first scenario, the player must prevent probing and attacks
on server protocols.

6.1.12 Wrong Turn

In Wrong Turn, the player is introduced to a network with multiple sub-nets. The objec-
tives are much the same as in the two previous scenarios. In addition, one of the routers
has a bad configuration where the default route is missing. The player must remember
to, first, configure the network in a safe way before attempting to identify and fix the
problem.

6.1.13 Netrepreneur

In Netrepreneur 13, the player starts with a network with one sub-net connected to the
Internet. The player will need to use all his/her skills to build a functional and secure net-
work. Employees are hired at frequent intervals forcing the player to extend the network
and plan for growth. A low number of successful attacks will lead to failure.

6.1.14 Free Play

In this scenario, a network must be built from scratch and (a) Internet connection(s) must
be established by the player. The objective is to build the network as large as possible.
New employees (virtual users), are hired when new client-computers are purchased.

13Intended word-play

40

Can Network Security be Fun? An agent-based Simulation Model and Game proposal

6.1.15 Calculation Scores

Some model configurations had to be configured using heuristics. This was related to
how game scores were calculated from statistical results and simulation speed, including
the distribution of events.

As mentioned in chapter 6.1.10, scores are calculated for positive events during game
play, and the negative events and their score penalties are represented in the end-game
dialog. A metric on how to calculate scores had to be created using heuristics. Events
defined by the statistical enumerators were weighted with positive or negative values for
each of the three security definitions; confidentiality (C), integrity (I) and availability (A)
(see fig.12). The intention was not to create a perfect metric, but for gaming purposes it
seemed to work well after a short trial and error period. In addition, this metric used im-
portance values for C, I and A collected from the dynamic scenario settings so that score
calculations also had dependencies to how the played scenario weighted the importance
of these definitions.

6.1.16 Balancing the game

Having a good balance is important for the overall game play. If events occur too fast,
or too slow, the player will get frustrated and lose interest[15]. A network game will
probably be too boring if it was simulated in true-speed. To speed up events, simulated
dates were introduced. Even if data traffic and user activity seems to be happening in
real-time, the game-time is accelerated with simulated dates changing every few sec-
onds. This idea is also seen in the reviewed games. Heuristic was used to find what was
considered the best day-change interval. Intervals are static and equal for all scenarios.
Simulated time relates to budgets and running costs, and are used by triggers to end
the game at a given date. When the executive kernel finishes a loop, a time counter
is increased, and currently, a simulated day correlates to 300 agent executions. Having
established the kernel timer and number of executions per simulated day, it was easier
to find out how to balance the other elements in relation to resource management, and
network and user events.

Dynamic values can be configured for each scenario to fine-tune the frequency at
which events occur, like how often new malwares and exploits are introduced, etcetera.
By changing dynamic parameters in the executive kernel new events are introduced at
different frequencies for different scenarios. Even more specific, virtual users can be pre-
configured with different characteristics. A scenario can be made more challenging if
virtual user’s awareness and efficiency characteristics are lowered. This would result in
more virus infected applications being downloaded and installed by these users.

6.2 The Game Model

In the next chapters the simulation model will be presented. This section starts with a
description of the main components, and a short introduction to the UML notation.

6.2.1 General model issues

It was necessary to separate the logic dealing with the simulation, the graphical layout
and front end, and a decision was made to construct three separate software components;

• Net. This is the inner-most module containing the executive simulation kernel, enti-

41

Can Network Security be Fun? An agent-based Simulation Model and Game proposal

ties, statistical module and timing facilities (implemented as a DLL 14 file)

• Net.Model. This component wraps entities in the Net component for graphical repre-
sentation purposes. It also contains a library of graphical functions used by the game
component. (DLL)

• Net.Model.Game. The executable game component which uses the other two como-
ponents (EXE)

Figure 13 illustrates the components and their dependencies.

Figure 13: Component architecture

6.2.2 A short UML notation introduction

In order to better understand the notation used in the following chapters, a short intro-
duction to UML will be given. A more detailed description can be found in [20].

UML defines several diagrams to represent a system;

• Class Diagrams. Describes the static structure of a system.

• Package Diagrams. Package diagrams organize classes into related groups to reduce
the dependencies between packages.

• Object Diagrams. Diagrams that describes the static structure at a specific time. Ob-
jects are instances of classes.

• Use Case Diagrams. Models the functionality of a system using actors (roles) and
use cases (activities). Use case diagrams are the “glue” all other diagrams must relate
to.

• Sequence Diagrams. Describes the interaction among classes in terms of exchange
of messages over time.

• Collaboration Diagrams. Represents interactions between objects as a series of se-
quenced messages.

• State Diagrams. Diagrams that are useful in modeling reactive objects whose states
are triggered by specific events.

• Activity Diagrams. Used to model work-flow or business processes and internal op-

14Dynamic Link library

42

Can Network Security be Fun? An agent-based Simulation Model and Game proposal

eration.

• Component Diagrams. Describes the physical software components.

• Deployment Diagrams. Describes the physical resources in a system.

To describe the relation between classes in class diagrams, there are some major dif-
ferences;

Is-a relation. This type of relation illustrates inheritance in a class model. Fig.14
shows this type of relation. In this figure, an inheritance relation between specific types
of vehicles and the abstract vehicle class can be seen. This figure reads “a car is a vehicle”.

Figure 14: Class inheritance notation

Uses-a relation. This relation, also called aggregation, defines a direct relation be-
tween two classes. An arrow can be used to show which class is responsible in main-
taining the structure. The one responsible is always the class pointing to another class.
Multiplicity can be used to show the cardinality of relations. An example of aggregation
can be seen in figure 15.

Figure 15: Class aggregation notation

Has-a relation. This type is a uses-a relation but it also defines that the classes in-
volved represent a whole. If the whole is deleted, all referenced objects15 will be deleted.
If a car is being destroyed, the engine will be destroyed too (fig.16). This type of relation
is also called a composition.

6.2.3 The Net component

The Net component contains the executive simulation kernel, entities (classes) and rela-
tions (associations), the clock, distribution handler and statistics. Fig.17 illustrates how
these elements are organized;

The important entities in the model are the agents being simulated.

15class instances

43

Can Network Security be Fun? An agent-based Simulation Model and Game proposal

Figure 16: Class composition notation

Figure 17: Simulation components

6.2.4 Agent based simulation

Agent based simulation is a type of discrete simulation where agents16, have their own
internal state updated at frequent intervals. A metaphor describing an agent, could be a
central processing unit (the agent) in a computer which has its internal state, its regis-
ters, updated at sub-sequent clock cycles (intervals). The same applies to most computer
games. Agents, like visitors in a park and a train in the commuter system, have states like
positions and feelings updated at frequent intervals.

Most computer games uses agent based simulation to simulate the dynamics of the
game environment, therefore this will also be the model adopted by the game model in
this project.

The main agents will be the network nodes and the virtual users who are using appli-
cations to perform network activities. These agents have their own internal states, like
active processes, sockets, user feelings, application preferences, etcetera.

6.2.5 The Executive Kernel

The simulation is managed by the executive kernel. The main component of the executive
kernel is the simulation loop. Within this loop, the agents are executed once pr. iteration.

16simulated entity objects

44

Can Network Security be Fun? An agent-based Simulation Model and Game proposal

The loop also manages the timer, distributions of viruses and exploits, and other attacks
designed into the model. A decision was made to run the simulation loop on multiple
threads to increase the random simulation behavior and also to separate the simulation
thread(s) from the main thread intended for managing graphics, forms and dialog boxes.
The simulation loop code can be found in appendix D.

Description of the simulation loop in pseudo-code;

1. Exit loop if simulation has been flagged to stop.

2. Update the agent collection if agents has been added or removed since the last itera-
tion.

3. Iterate through, and execute, agents assigned to the loop (thread)

4. If current thread is the main thread (index = 0);

1. Increase time

2. If time is a new (simulated) day, accumulate economical statistics and distribute
new attacks according to scenario probabilities.

3. For every 20’th main thread iteration, change score and time statistics

4. Accumulate trigger statistics

5. Check end-game trigger flags

6. Sleep a short while and start from the beginning

The static properties of the executive kernel are;

• Max threads. The number of threads used to simulate agents.

• Default timeout. The default timeout period used by communication protocols. Equals
to a pre-defined number of agent executions (kernel iterations).

• Default ARP timeout. The number of iterations an ARP entry exists in the resolution
manager until it is dropped. A new ARP request will be sent if an entry is missing,
and a new entry will be registered with this timeout when a response returns.

• Ticks pr Day. The number of kernel iterations that defines a simulated day.

• Read-mail time. The number of iterations (time) virtual users spend reading a mail.

The dynamic kernel properties are;

• Confidentiality importance. A weighted number indicating how important confiden-
tiality is for a given scenario.

• Integrity importance. A weighted number indicating how important integrity is for
a given scenario.

• Availability importance. A weighted number indicating how important availability
is for a given scenario.

• Initial Money. The amount of money the player will have when the game starts.

• Monthly budget. The amount of money the player receives at the end of each month.

• Popularity. A value indicating how popular the player’s site is. The frequency of
inbound requests from remote sites depends on this property.

45

Can Network Security be Fun? An agent-based Simulation Model and Game proposal

• Maleware frequency. A value used by the kernel to calculate the probability of new
malwares.

• Local user speed. The speed at which virtual users at the local site operates.

• Remote user speed. The speed at which virtual users at remote sites operates (will
also have an influence on the frequency of inbound requests).

• Spam frequency. A value used by remote sites to calculate the probability of a spam
mail being created and sent to virtual users at the local site.

• Recruitment frequency. Used by the kernel to calculate the frequency at which new
employees are hired by the company (local site).

• Retirement frequency. The probability that employees quit the company.

• Remote mail frequency. The probability that virtual users at a remote site creates
mails (create-mail tasks).

• Intranet requests. The probability that local users want to access a intranet service
(in scenarios with a single host connected to the Internet, this value will typically be
zero).

• Initial Malwares. The number of already existing malwares when the game starts.

• Auto-create users. A flag indicating that virtual users (employees) should be created
automatically when a new client computer is bought by the player.

• Description. A text describing the game objectives.

• Trigger collection. A collection of triggers that validates statistical enumerators for
end-game and meta-goal situations.

6.2.6 Agents

In the conceptual discussion two types of agents were identified; the network node and
the virtual user. These classes were generalized in a base class named Agent. The Agent
class contains base properties and methods associated with the execution of agents; The
enabled/disabled property tells the executive kernel if the agent should be simulated, and
it maintains a collection of associated statistics. Fig.18 illustrates the relations between
agents and the executive kernel;

6.2.7 Network agents

Network agents are agents that handles network traffic by routing packets using a sub-set
of the TCP/IP stack. To simplify the model two distinct types of nodes were identified;
Upper-layer and lower-layer agents. Upper-layer agents implements the full OSI stack,
while lower-layer nodes contains simple functions for passing packets between upper-
layer agents using a sub-set of the ARP and ethernet mechanisms. The Node base class
maintains common characteristics and functionalities for lower- and upper- layer agents,
like;

• Ports. A collection of ports and network interface cards used to connect nodes.

• Packet queues. Input and output queues/buffers for packets/datagrams.

• Common properties. Common properties like a product reference, serial number,
name, etcetera.

46

Can Network Security be Fun? An agent-based Simulation Model and Game proposal

Figure 18: Agents

6.2.8 Virtual Users

“Stupid is what stupid does” -F.Gump.
In addition to net-node agents, virtual users were defined as agents. For simplicity,

and to make it easier to distinguish players from virtual users, virtual users will be called
Gumps in the following chapters. The motivation behind implementing Gumps is to have
some means to simulate network traffic. Gumps have different characteristics, like;

• Work Efficiency. How reluctant the Gump is to surf work related web sites and cre-
ating useful documents (assets) for the company. This also indicates the Gump’s ten-
dency to work with the computer.

• Equipment efficiency. The Gump’s rate of speed working with the computer.

• Awareness level. The Gump’s tendency to do secure things, like thinking twice before
installing a downloaded program file or visit suspicious web sites.

• Happiness level. The happiness level says something about how happy the Gump is.
The happiness level will have an impact on what application it wants to use.

Other characteristics was tested, but the one described were found the most useful
for the purpose of simulating attacks and user productivity related to Gump behaviors.

The first three characteristics are static values set when the Gump is created. In the
future, other parameters could influence these settings. Like when the player, spends
budget money on awareness and equipment training, a group of Gumps could have their
characteristics improved. This functionality was not implemented in the current version.
The happiness level is variable. If the Gump is able to complete tasks it will compliment
the system administrator and increase its happiness level. Otherwise, it will complain
and get less happy.

Each Gump has it’s own state-machine. This is illustrated in fig.19.
State transitions and how long the Gump stays in a given state depends on its char-

47

Can Network Security be Fun? An agent-based Simulation Model and Game proposal

Figure 19: User states

acteristics. When entering the start task state, the Gump will try to use an application to
create a new task.

The application class has the same characteristic types as the Gump; work efficiency,
equipment efficiency, awareness and happiness level. In applications, these values are
considered characteristics of a typical application user. For example, a file-sharing appli-
cation could have a lower awareness value than a web browser application. Now follows
a pseudo representation of the algorithm used to decide which application the Gump will
use to create a task;

1. A Gump mood-characteristic is calculated using a random value and the Gump’s char-
acteristics as threshold values. The random value is transformed using a log-function
so that mood values, in most cases, will stay close to the “normal” Gump characteris-
tics.

2. Each application known by the executive kernel is iterated and the application with
characteristics closest to the Gump’s mood characteristics is selected. If more than
one application has the same characteristic, a random application among these is
selected. A simple distance metric is used to find the closest-match.

3. Then, a method on the selected application called CreateRandomTask is executed
(fig.30). This method uses the Gump’s characteristics to create a task specific for that
application. For a web browser a task could be to surf a web page and parameters
for this task could be which web page the Gump want to visit. For Gumps with low
awareness levels the random web site selected by this method is more likely to be

48

Can Network Security be Fun? An agent-based Simulation Model and Game proposal

“dangerous” than for Gumps with higher awareness. Dangerous sites typically has
domain names like nakedpeople.com, warez.com, etcetera.

4. A task is returned with a application specific command, task parameters and a refer-
ence to the application and task procedure with the task program code.

5. If the application for some reason fails to create a task, the user will complain and
get less happy. The algorithm ends and the user will enter the finish task state and
wait for a while until attempting to start a new task or leaving the computer. Failing
to create tasks could have a large impact on productivity.

6. When a task has been created successfully, all installed products at the host used by
the Gump are iterated and products matching the application associated with the
task are stored in a collection17. A random product is selected to run the task. If no
matching product is found, the Gump will complain about a missing application, and
the player will need to install a software product for this application on the Gump’s
computer.

7. If the product already has a process running, the task is handed over to that process
and a new thread is initiated to execute the task. If no process is running, a new
process will be created first.

8. If the thread fails, the user will complain, otherwise its happiness level will increase.

6.2.9 The Base Node

A base node was designed with a collection of ports. A multiple port design made it
possible to have more than one connection from one node to another. Typically, routers
could have more than one port, or interface, to connect multiple network segments.
A WAN-agent was designed to handle traffic between the local site and the Internet.
This node also contains information about the external IP-address range, and the service
provider’s DNS, POP3 and SMTP server addresses. Multiple WAN nodes could be used
simultaneously, thus enabling more than one IP-range per site. Also, interface cards can
be associated with more than one IP address. This gives a more realistic model dealing
with the configuration of IP-addresses and setting up routing tables, and introduces the
ability to use different multi-homing[35] techniques to introduce network redundancy.

6.2.10 Lower-layer Nodes

Lower-layer nodes are nodes that only uses the layers up to, and not including, the
network layer. Two different lower-layer nodes were designed; switches and wide area
networks (WAN). The abbreviation WAN might be a bit misleading. From a network
designer’s point of view, the cloud-image in a network map represents a WAN, often a
Internet connection. From a site’s point of view, this can be seen as an ISP 18 connection,
therefore, when the abbreviation WAN is used this can also be interpreted as an ISP
connection19.

A switch is responsible for passing packets between upper-layer nodes, nodes that
include the network layer and sometimes all layers of the OSI model (hosts). A switch
has a number of ports available, and packets can only be sent between nodes if ports are

17a host can have more than one product of a specific client application type installed
18Internet Service Provider
19A WAN cloud can also mean that a network is connected to a remote LAN using other connection routes,

but in this model, all communications between different sites goes via the Internet

49

Can Network Security be Fun? An agent-based Simulation Model and Game proposal

connected.
When a node sends a packet to the switch, the switch will check the packets broadcast

status. If it is an ethernet broadcast packet it will pass the packet on to every connected
port. If not, it will pass the packet to the node having its connected network card match-
ing the destination MAC 20 address of the ethernet packet. IP and MAC address mapping
is simulated using a simple implementation of the ARP protocol. The use of ARP and
MAC addresses will be discussed further in chapter 6.2.13.

An Internet connection is simulated through the use of WAN connections. The WAN
connection class sends packets between the different site border routers. Each WAN ob-
ject has a unique IP address range maintained by a single instance of the Internet class.
When packets are sent from a router or host to the WAN, the WAN passes this packet on
to the Internet object. The Internet object maintains a table of WAN connections and its
IP ranges. The packet’s destination IP is then compared with each WAN’s address range.
When a match is found, the Internet object passes the packet on to the correct WAN
which in turn will pass it on to the node connected to the WAN (a router, firewall or
host). The Internet is not a agent, its function is to maintain a structure of sites and IP
address ranges. Other responsibilities for this object is to create new sites and keep track
of, and assign, IP addresses to WANs.

Figure 20: The Executive kernel, the Internet, Sites and WAN

The executive kernel is responsible for creating the Internet object when the simula-
tion starts. The Internet will then create a number of simulated remote sites and a local
site that must be maintained by the player.

A decision was made not to include hubs in the model. The reason was the amount
of processing needed to broadcast every transmitted packet on to connected upper-layer
nodes. A solution to this problem could be to involve a subscription mechanisms for
nodes that need to sniff hub-traffic. This solution was not implemented in the current
model.

20Media Access Control

50

Can Network Security be Fun? An agent-based Simulation Model and Game proposal

6.2.11 The Physical Layer

Nodes are connected using ports and interfaces. Nodes can have a variable number of
ports installed. Interfaces, or NICs21, are specialized ports with MAC addresses, while
ports are merely “dumb” connection points. Interfaces are typically used by upper-layer
nodes to connect to other nodes, thus involving the ARP mechanism.

Figure 21: Ports and Network Interface Cards

6.2.12 Upper-layer nodes

These are the nodes that implements the network layer and maintain a complex state
structure. Typical upper-layer nodes are; client computers, servers, routers and firewalls.
The state structure for upper-layer nodes is shown in fig.22.

Figure 22: Host model

By enabling and disabling layers in this structure, it was possible to create;

21Network Interface Cards

51

Can Network Security be Fun? An agent-based Simulation Model and Game proposal

• Routers. Operates at the link and network layers. Contains a route manager/table
with a variable number of route definitions. Routers have layer-entities above the
network layer disabled. Routers does not activate the firewall mechanism.

• Firewalls. An advanced router with the firewall mechanism activated.

• Clients and Servers. Activates all layers but not the firewall mechanism and operates
as physical end points in network communications.

• Clients and Servers with firewall. Activates all layers including the firewall mecha-
nism.

6.2.13 The Network layer

In the network layer, the routing and address resolution mechanism can be found.
Properties of the routing table;

• Net. The network address.

• Gateway. The gateway IP address. The net address belongs to the local host if the
gateway is 127.0.0.1 (loopback address). Otherwise, if another IP is used, this would
be the forward IP for IP packets matching the net address. If not set, the net ad-
dress belongs to the local sub-net and the packets destination IP and ARP are used to
address the destination node.

• Port. The local port associated with the net address

• Metric. This was not implemented. Reserved for future use to decide which route
should be selected when multiple routes are available.

• Route protocol. Dynamic routing was not implemented.

• Flags. Not implemented. Reserved.

Sub-net table entries only use the net and gateway properties. The gateway property is
always the IP address of the router en-route to the given net address. If the gateway IP
is not set, the net address should be considered being a local sub-net IP range.

The address resolution manager was included to make it easier to handle changes
in IP addresses and connections during the simulation. If a connected node changes its
IP address(es), or disconnects, communication sessions will time out until the IP and
MAC address mapping times out and gets removed from the mapping table. When a
packet is about to be forwarded to another IP address and the IP address is not found in
the address resolution mapping table, an ARP request will be broadcasted on connected
network segments. When a node receives an ARP request and the queried IP address is
found at the receiving node, a ARP response will be sent back to the requesting node.
Finally, a new address map will be registered with a new defined time out value. When
the ARP mechanism send an ARP request, the packet waiting to be forwarded is placed
in a pending table. If this request times out, the pending packet will be marked as un-
reachable and dropped. This sub-set functionality of the ARP was found sufficient for the
simulation. Other ARP and RARP mechanisms was not implemented.

The firewall maintains two collections of filters organized in chains. Filters contains
rules and can be added, deleted or reorganized by moving them up and down the filter
chain. The main purpose of this chain is to allow or deny an IP packet to pass. When
a packet from the link layer is received at the network layer, it will be checked against

52

Can Network Security be Fun? An agent-based Simulation Model and Game proposal

the firewall’s inbound rule chain. Packets sent from the network layer to the link layer
will be checked against the outbound rule chain. The default rule can be used if no
match is found in the filter chain. The default rule can be to deny or allow the packet in
these cases. Separate rules can be set for inbound and outbound filters. Fig.23 shows the
classes involved in the network layer.

Figure 23: Layer 3 classes

When a packet arrives at the host and the best matching route has a gateway IP equal
to 127.0.0.122, the packet has reached the receiving end-point and is handed over to the
transport layer.

6.2.14 The Transport Layer

The transport layer is enabled in host-nodes. Two types of host nodes was defined; clients
and servers. The state model for these are the same, but they are threated differently in
the way they are managed. Servers are handled by the player only, while client computers
are managed by Gumps and the player.

The transport layer manages the state of connections and maintains a collection of
sockets. Sockets are logical units used by threads in application processes to receive and
send data packets.

If a packet using the TCP protocol is received from the network layer, and the SYN flag
is set, a TCP socket in listen state listening on the same port as the packet’s destination
port will be used as the destination socket. Otherwise, the transport layer will try to
match the address/port-pair of the packet with any of the active sockets using the same
protocol. If a matching socket is found, the packet will be passed on to the socket’s input

22Also known as the localhost or loopback interface

53

Can Network Security be Fun? An agent-based Simulation Model and Game proposal

queue, otherwise the packet will be dropped.
When a process is sending a new data packet using a socket, this packet will be sent

to the transport layer, wrapped with the corresponding protocol header, placed in the
output-queue and passed over to the network layer to be routed to its destination.

6.2.15 Data

Data can be anything. It was decided to define an abstract data class to include common
properties like size and a description of data. Two main classes was defined to contain
data; packets and files. In addition a packet data class was defined, a type of data class
defined as a structure that could be used by applications to transmit application protocol
data, including a command string, data related to the command and a reference to an
exploit (packet-exploit), if any.

6.2.16 Packets

To simulate the TCP/IP stack, different types of packets was defined, each representing
specific layers. At the application layer, processes can send and receive data, files and
packets, using send and receive operations on sockets. The send sequence is;

1. The process creates a data packet containing the protocol command and associated
data, if any, and

2. uses the socket’s write operation to send the data packet.

3. A transport packet is created in the transport layer using the protocol defined by
the socket (UDP or TCP). This packet contains the information about the source and
destination ports used by the communicating hosts. The data packet becomes the
payload of the transport packet. Typically, ephermal ports are used by client sockets.

4. In the network layer, an IP packet is created and the transport packet becomes the
payload of this IP packet.

5. When the routing mechanism in the network layer has found the forward IP, it’s MAC
address and the physical port to transmit the packet on to, an ethernet packet is
created using the IP packet as payload.

6. The ethernet packet is sent to the physical port and onto the connected unit, typically
the switch, which in turn passes it on to the connected node with the interface card
matching the destination MAC address of the ethernet packet.

The sequence when receiving a packet;

1. The ethernet packet is received at the physical layer (interface card)

2. The payload (IP packet) of the ethernet packet is passed on to the network layer along
with information on which port it was received on.

3. If the destination IP matches the node’s IP address, the payload of the IP packet (the
transport packet23) is passed on to the transport layer.

4. The transport layer maintains a collection of active sockets, and locates the socket us-
ing port and protocol information from the transport packet. The data packet (inner-
most packet) is passed on to the socket’s input-queue.

23TCP or UDP packet

54

Can Network Security be Fun? An agent-based Simulation Model and Game proposal

5. The process receives the first data packet in the input-queue at the next socket read-
operation.

The onion-design, wrapping different protocol packets as payloads, made it easier to
duplicate packets with the same inner payload. This comes in handy when packets are
broadcasted and handled by multiple stacks simultaneously. Another design, using one
class with properties from all layers in one packet was tested, but the idea was soon
discarded due to lack of flexibility.

Fig.24 shows the inheritance relation between data, packets, data packets and files,
and the packet onion-design.

Figure 24: The Packet Structure

6.2.17 Data flow

Agents create data packets using applications and processes. Processes uses sockets to
transmit data packet on to the communication stack. Data packets are not agents, but ob-
jects used, and transmitted, by agents. Packets are sent from node to node using queues.
Figure 25 illustrates this concept.

6.2.18 The File System

An important part of the host-state model is the use of files as non-volatile state objects.
This means that parts of the host state is restored when a host is powered on after being
shut down. These states are the reason why viruses and other malware resides, and a
simple file system had to be implemented.

Four file types was defined;

• Program files. Defines a relation with a software product (ref. chapter 6.2.20), the

55

Can Network Security be Fun? An agent-based Simulation Model and Game proposal

Figure 25: Traffic Flow

latest patch, a reference to a malware object if the program file is infected, and a
reference to its configuration file.

• Config files. Configuration files contains non-volatile configuration properties used
by processes created using the associated program file.

• Data files. These are files containing data. Data could be a spreadsheet, a word doc-
ument, a drawing, a database, etcetera. Some applications creates or uses data files
(assets).

• Folders. Folder files maintains a collection of files (or folders), creating the hierarchy
seen in real-life file systems. Typically, when a program file is installed, a new folder
will be created containing the program file and configuration file.

Figure 26: Files and the File System

Some folders are created automatically when a new host is created. These are;

• Downloads. Gumps uses different applications to download data and program files.
When program files have been downloaded it will be placed in this folder. Later,
Gumps might install programs found in this folder.

• Documents. This is where documents (data files) downloaded or created by Gumps

56

Can Network Security be Fun? An agent-based Simulation Model and Game proposal

are stored.

• Installed. A folder containing a list of soft-links to installed program files.

• Services. Contains a list of soft-links to installed server-application program files

6.2.19 Sockets

Sockets are the logical end-points used by processes to communicate with other hosts
(or processes) using the TCP/IP stack. It was decided to implement both the UDP24 and
TCP25 protocol. When a thread creates a socket it must decide which one of these two
protocols it should use to communicate with a remote process. There is no reason to go
into detail on how these protocols operates. Excellent resources are [34], [39] and [36].

Figure 27: Threads and Sockets

IANA26 is the responsible authority for managing UDP and TCP ports in the range
0-1023. In addition they provide a list of registered ports in the range of 1024-49151 for
the convenience of the community. The full list can be found on web page

http://www.iana.org/assignments/port-numbers.
Other ports can be used at the user’s discretion, but using well-known ports defined

by IANA is recommended.
To simulate basic TCP functionality, the full state diagram for TCP was implemented.

This state model is shown in fig.28, an illustration borrowed from [34, p 241] and [36].
Processes should now be able to act as both servers and clients. Server processes

typically creates TCP sockets and starts listening on a standard, or registered, port specific
for the application.

24User Datagram Protocol
25Transmission Control Protocol
26Internet Assigned Numbers Authority

57

Can Network Security be Fun? An agent-based Simulation Model and Game proposal

Figure 28: The TCP state model

A simple version of the TCP transmission functionality was implemented. The imple-
mentation did not include;

• IP fragmentation,

• the use of TCP window size, and;

• sequence and acknowledge numbers.

Data is transmitted in one packet regardless of the data size. A typical session would
be like this;

1. Connect to remote host using the handshake mechanism.

2. Send and receive data using one data packet to transmit the complete data packet and
wait for response. This sequence can be repeated as many times as the application
protocol requires.

3. Tear down the connection, either by letting the server close the connection, or more
commonly, letting the client close it.

The UDP protocol is connection-less. Processes must send the destination IP and port
along with the data packet when sending data to a remote host.

58

Can Network Security be Fun? An agent-based Simulation Model and Game proposal

6.2.20 Running applications

Host agents are able to run a variety of applications. Three different classes were defined
to run applications;

• Application. This base class defines the algorithms and characteristics of specific
types of applications, the name of the application type27, and other characteristics
associated with the application type.

• Software Product. Defines a specific software application, the product name28, per-
formance values for characteristics defined by the associated application, and other
properties like version and vendor.

• Program file. A program file is an host-instance of a software product. These are the
objects that can be infected by malware. Program files are installed into the host’s file
system.

Fig.29 shows the relations between application, software and program-file classes.

Figure 29: Applications

6.2.21 Processes and Threads

Processes and threads are part of the host’s volatile state structure. Processes are auto-
matically created for installed server applications (services) when a host is powered on.
Client application processes are created by Gumps when they want to execute a task.
Gumps tend to shut down processes when they have been idle for a while.

When a program file has been installed in the file-system, a reference is put in the
installed folder. When a virtual user need to start an application, a program file associated
with a software product and the application in question are used to create a new process.
If there are more than one software product, a random program file (product) is used.
This could be the case if, for instance, more than one web browser is installed. When
the process starts for the first time, a loading task is initiated, creating a thread for the
initialization code. Any pending tasks are queued until this task ends. Then a new thread
is created for every queued task. Sub-sequent tasks requested by Gumps are converted
to threads and executed by the process.

With these specifications, the model should be able to simulate advanced process
and thread handling. Every time a host-agent is executed by the executive kernel, each
process and its threads will be executed, moving the thread’s running-pointer forward
one instruction at the time.

The thread procedure is located in the application class. This way, all software prod-
27Web server, Web browser, Mail Client, etcetera
28Internet Explorer, Opera, FireFox, etcetera

59

Can Network Security be Fun? An agent-based Simulation Model and Game proposal

Figure 30: Processes and Threads

ucts associated with the same application uses the same procedure. Even so, products can
have different capabilities as each product have their own distinct performance charac-
teristics. For instance, a WebServer application defines the “MaxConnections” capability.
Different web server products can have their own values for max connections. Typically,
the more expensive a product is, the better it will perform. A sample of such a procedure
can be found in appendix E.

6.2.22 Memory

Threads can read and write data to a Memory class. Memory is a part of host’s volatile
state structure. This class maintains a collection of key-value pairs. This mechanism is
useful when a thread needs to remember a value between consecutive thread-executions.

6.2.23 Malware and Exploits

Virus applications and exploits are created by the malware factory class. The Internet
holds a reference to this factory and malwares and exploits are created at random inter-
vals with a frequency defined by the executive kernel. The executive kernel calls the mal-
ware factory’s CreateRandomMalware method which in turn creates a random malware
task with random behavior parameters. Parameters can be how many files a malware
task should try to delete or send pr. e-mail to a remote receiver. Only a few malware
tasks were built for the game prototype;

• Delete Random Files. Deletes a random number of files from the infected host. Files
are marked as deleted using a shadow-deleted flag on the file. If the Gump tries to
open a shadow-deleted file, it will complain that the file is missing.

• Send documents to any. A random number of documents (assets) are sent to random
users at remote sites.

60

Can Network Security be Fun? An agent-based Simulation Model and Game proposal

• Crash a process. Infected processes crashes at random intervals with a random prob-
ability.

• Infinite Loop. Takes a task as a parameter and runs this in a new thread at random
intervals.

It is possible for a thread to spawn new threads. A thread can also wait until another
thread has finished. This makes it possible to build complex sets of malware structures.

The attack diversity could have been much higher if there had enough time to imple-
ment other more sophisticated malwares, but the current design should make it relatively
easy to extend this set in future projects. The application-process model should make it
possible to create malwares that use sockets to connect to and infect other services on
internal servers. Also, malwares acting as servers (trojans) and malwares that downloads
malicious programs from remote sites, could be implemented. Having these types of mal-
ware it would be more important for players to use design principles[6] [7] to prevent
malwares from spreading between hosts on the internal network.

When a new malware or exploit has been created, three (or four) different random
milestones are registered;

• Created Date. The simulated day the new malware is created.

• Detection Date. The day the malware is detected.

• Signature Date. The day a signature will be available for typical, average, anti-virus
products (delta signature day=0).

• Patch Date. The day when a patch will be available for the product targeted by the
exploit.

When an infected data file is opened or an infected program file is started, the associated
malware will automatically spawn a new thread running the malicious code in the callers
process. If the malware is set to infect running processes, active processes will also be
marked as infected with the malware and new malware threads will be spawned for
these processes when they restart.

6.2.24 Script-kid attacks

A script kid application was created. This application is installed on servers at randomly
selected remote sites, typically sites with a low trust-level. At random intervals these
application instances tries to connect to a random non-public services at the local site.

Port-scanning scripts was not implemented, instead the script-kid tool uses model-
data to find, and target intranet servers. If intrusion detection equipment and software,
other than the implemented anti-virus products, are implemented in the future, port-
scanning scripts could also be implemented to extend the attack simulation.

6.2.25 Spam

Mail server and mail client applications were implemented to handle mail traffic. When
Gumps at remote sites send e-mails, a random number of these are marked as spam.
When a local Gump receives mail, it will spend some time reading it, time that could
have been used to create assets. Hence, spam reduces the overall Gump productivity.

61

Can Network Security be Fun? An agent-based Simulation Model and Game proposal

Figure 31: Malware and Exploit distribution

6.2.26 Countermeasures

The first line of defense is how the player designs his/her network. The player should
use design principles found in [8] and [6] to prepare for attacks. In the prototype this
is not as important as it should have been due to the low number of malware tasks
implemented, but still, script-kid events could be stopped by using firewalls correctly.

From the time a malware is created and until it is detected, the player must rely on the
design of the network. When a malware is detected, a news-flash occur which describes
what the malware intends to do (see fig. 32.

Knowing what the malware does, the player could use host-hardening techniques,
like shutting down related services or hosts to tighten security.

An anti-virus application was defined together with a set of products having different
capabilities. Each product has its own distinct delta-signature value. This value is used
along with the maleware’s signature day property to decided when new viruses are de-
tected. Anti-virus products with a low, negative, delta value will detect viruses earlier
than cheaper products with a higher delta value. Another capability is the false rejection
rate. Cheaper anti-virus products will more often raise false virus alerts.

Scenarios can be defined to have their own POP3 and SMTP services. If not, the ISP
associated with the Internet connection provides these services. By design, an ISP does
not offer spam-filter services, so players should consider to install their own mail servers
and spam-filters. Spam-filter capabilities are related to false rejection rates (FRR) and
false accept rates (FAR). Cheaper spam-filter products with high false acceptance and
rejection rates will more often accept spam mails and reject good mails.

Finally, for exploits, a patch is released some time after the virus signature has been
updated. The player could then patch installed software to remove any vulnerabilities

62

Can Network Security be Fun? An agent-based Simulation Model and Game proposal

Figure 32: News flash

associated with an exploit. But, patching comes at a cost. The player should have in mind
that new exploits could introduce vulnerabilities targeted by future exploits. Exploits
could target specific ranges of service packs, not only up to a given service pack.

The player should carefully consider to use different products, or the same product,
for any given application. Using different products could reduce the overall damage of
an infection, but might cause host to be infected more often. Using the same product will
possibly cause less frequent infections but might cause greater damage.

Finally, the player can use a remote file server to store documents and other files
created or downloaded by the Gumps. This introduces a single point of failure so these
servers needs to be secured using firewalls, host-hardening techniques and anti-virus
products. By installing a backup-tool the player will gain more points because files are
stored on a secure medium. If the player chooses not to use a central backup facility,
documents will be stored at client hosts. When reaching a certain amount of files, the
user will attempt to extract files and store it on less secure medium. Cheaper backup
tools will back up files less frequently.

6.3 Summary

In this chapter the process of building the game model and prototype has been described.
To evaluate the results from this research an experiment was conducted. This experiment
is described in the next chapter.

63

Can Network Security be Fun? An agent-based Simulation Model and Game proposal

7 The experiment

To investigate to what extent the game satisfied the theoretical characteristics for being
a fun game, a user trial was initiated and a feedback questionnaire was constructed.
Finally, telephone interviews and personal interviews was arranged.

7.1 User Trials

After five months of development, a setup kit was constructed and a user trial was ar-
ranged. The setup kit was made available at the project’s web site1. In addition to mea-
sure how the experienced enjoyment was, knowledge about the game’s face and content
validity was needed; if the game looked like a network and host security game and if it
included elements associated with this topic. Due to the complexity of the game, a set
of candidates with prior experience in network administration and information security
was identified and contacted.

Participants was asked to download and play the game. The trial period was variable
in length, some participants were contacted immediately after the setup kit was made
available and these were able to play the game for a couple of weeks. Some were able
to play for a few days. There were no restrictions on how much (or little) they played.
During the trail-period, the researcher’s role was to help the participants with technical
issues.

A FAQ2 section was created at the project’s web site and participants had access to an
on-line user manual during the trail period. The user manual can be found in appendix
B.

7.2 The Feedback Questionnaire

A feedback questionnaire was made available along with the setup kit so that participants
could prepare for the interview. The feedback questionnaire can be found in appendix A.
Ordinal questions was constructed in relation to Malone’s intuitions, categories from the
GameFlow theory, and topics related to the face and content validity of the game. Finally,
questions were added to catch open-ended answers related to the game experience.

7.3 The Interviews

During the interview the researcher’s role was to clarify any questions participants had
regarding the statements and questions found in the questionnaire. Interviews were con-
ducted as a structured interview, and questions were asked in sequential order as defined
by the questionnaire. To reduce the bias in answers, participants were explicitly told to
be honest in their responses. Both telephone interviews and personal interviews was
arranged.

1http://www.stud.hig.no/(tilde)040673
2Frequently Asked Questions

65

Can Network Security be Fun? An agent-based Simulation Model and Game proposal

8 Results

In this chapter, results from the interviews are presented.

8.1 The Participants

Six candidates agreed to participate in the experiment. Demographic data and prior
knowledge in network administration and network security for those who participated
were;

• Subject 1 [S1]. Male, Age:34, MSc, Network: 10 years, Security: 8 years

• Subject 2 [S2]. Male, Age:34, MSc, Network: 15 years, Security: 5 years

• Subject 3 [S3]. Male, Age:24, MSc, Network: 2 years, Security: 2 years

• Subject 4 [S4]. Male, Age:24, MSc, Network: 2 years, Security: 2 years

• Subject 5 [S5]. Male, Age:29, MSc, Network: 1 years, Security: 2 years

• Subject 6 [S6]. Male, Age:35, Bachelor, Network: 2 years, Security: 1 year

8.2 Ordinal questions

In fig.33, quantitative values for the ordinal statements are presented (ref. appendix A).
This figure also includes the actual response values. Response values represents;

• 1 = Not at all

• 2 = No

• 3 = Maybe (neutral)

• 4 = Yes

• 5 = Absolutely

• (blank) = Don’t know

The mode, median and average values for ordinal responses can be found in figure 34.

8.3 Open-ended questions

The participants were presented with seven open-ended questions. Responses to these
questions are described in the following chapters. [Blank] indicates that the participant
failed to respond.

8.3.1 The negative properties of the game?

• S1: The phase or speed was too fast. Events like new viruses and exploits occurred to
frequently. The Graphical user interface could be improved even more.

• S2: I was able to play, but experienced a crash. The speed should be adjustable.

• S3: A little too much information for beginners.

• S4: Much information. Steep learning-curve.

67

Can Network Security be Fun? An agent-based Simulation Model and Game proposal

• S5: To much information. Should be able to hide the network-traffic sniffer window.
Missing help-functionality regarding router and firewall configuration. Too many events
occurred and too frequently. Simulated dates should change at a slower phase. Maybe
the game should be paused during configuration tasks.

• S6: The game has a pretty steep learning curve. It result might be that some players
give up before they have really got started at all.

8.3.2 The most negative property of the game?

• S1: The game speed.

• S2: The game crashed.

• S3: A little too much information.

• S4: To much happening at the same time. It should be possible to delay the simula-
tion.

• S5: To much information.

• S6: [blank]

8.3.3 The positive properties of the game?

• S1: The graphical user interface. The game concept.

• S2: The user interface. When you connected nodes things started to work.

• S3: Funny and fascinating. A good way to learn employees about data security.

• S4: Many fundamental network elements included and that it is close to the real
thing.

• S5: The user interface. Virtual users are close to the real thing.

• S6: The graphical user interface awesome. It is also positive that the game is loaded
with humor.

8.3.4 The most positive property of the game?

• S1: The game concept.

• S2: The interface. Icons looked appropriate

• S3: The graphical interface.

• S4: It felt real. Figures and icons were recognizable.

• S5: It felt real.

• S6: The graphical user interface.

8.3.5 Ideas to make the game more fun and interesting?

• S1: Create an on-line multi-player version. Include a game-level editor so that players
can create their own scenarios. Include physical security. Make it possible for players
to create their own services, applications and communication protocols. It should be

68

Can Network Security be Fun? An agent-based Simulation Model and Game proposal

possible to construct hardware components (network nodes) too.

• S2: A lot of fancy and funny graphics. Visualizing attacks.

• S3: Include a multi-player option. Reduce the amount of information, especially the
sniffing-information. More hardware types like IDS and VPN components.

• S4: More hardware and software elements. Background music. One should be able
to view the network at different abstractions using a zoom-function.

• S5: Multi-player option where new exploits could be downloaded from a game server
and be used to attack other players. The game should include music and sound effects.

• S6: It would be great to be able to choose side (security responsible or hacker), and
then be able to play this as a multi-player game via the Internet.

8.3.6 Ideas to make the game more motivational?

• S1: [blank]

• S2: [blank]

• S3: [blank]

• S4: By including a multi-player option in a learning-environment. Players should be
able to construct their own scenarios.

• S5: [blank]

• S6: There should be some kind of bonuses when you achieve your goals. Either a nice
picture, a short movie, or maybe a cinema ticket discount.

8.3.7 Other comments

• S1: [blank]

• S2: [blank]

• S3: [blank]

• S4: [blank]

• S5: [blank]

• S6: [blank]

69

Can Network Security be Fun? An agent-based Simulation Model and Game proposal

Figure 33: Results

70

Can Network Security be Fun? An agent-based Simulation Model and Game proposal

Figure 34: Mode, Median and Average

71

Can Network Security be Fun? An agent-based Simulation Model and Game proposal

9 Discussion

In this chapter results from the design research and results collected from the user trails
and feedback interviews will be discussed.

To test the hypothesis stating that the game prototype should be fun to play, results
will be discussed using Malone’s[14] intuitions and the categories found in GameFlow[15].
Each category receives a grade in accordance to the results received in the experiment.
Finally, a conclusion will be made from these grades.

But first a short discussion on experiences from the design research phase.

9.1 Design and development

The design research method was found suitable in building the game model and proto-
type where model ideas was accepted and rejected in an iterative process using theory
and engineering skills.

A total of 1270 man-hours was spent on developing the game model and prototype
within a period of five months.

9.1.1 Model Issues

Developing a model for simulating networks and hosts with complex state structures
proved to be hard and time-consuming. Theory from the literature had to be selected
carefully as the work progressed and the model was extended. Considerations had to
be made in balancing the model between simplicity and the need for a structure that
was complex enough to simulate attacks. This structure showed that a wide range of
malicious tasks could be constructed. A small number of malwares and exploits were
introduced to create attacks, but even more of these could have been constructed to add
more challenge to the game.

9.1.2 Sensory Issues

The decision not to use accelerated graphic technologies, made it easier and faster to
implement the graphical interface, but accelerated graphics could have improved the
animation-rate and graphical effects, which are crucial elements in enhancing the game
fantasy, and should therefore be considered in future versions.

The most difficult and time-consuming item to implement, related to the graphical
interface, was the interactive network map. This part required some skills in creating
graphical editors, and artistic and creative skills in designing the graphical symbols. To
achieve better results, graphical artists should be involved in this part of the process.

Music and sound effects were not implemented. Sound is an important element in
games, but require extra resources with knowledge on how to create music and sound
effects and how to adapt this in the best way to enhance the fantasy.

9.2 Feedback results

The following chapters discusses the results from the questionnaires in the context of
Malone’s intuitions[14] and the characteristics of GameFlow[15]. Using user-trails and

73

Can Network Security be Fun? An agent-based Simulation Model and Game proposal

feedback questionnaires seemed appropriate for this research. Only six volunteers partici-
pated in the interviews, which is not sufficient enough to draw any statistical conclusions.
Instead results will be discussed qualitatively which could give an indication of the levels
of experienced enjoyment. The second intention was to measure the face and content
validity of the game in relation to network security. Therefore, using participants with
prior knowledge seemed to be appropriate. This was not a part of the research question,
but relevant to show that the game indeed was valid in a network security context.

The open-ended questions about ideas to make the game more motivational and the
question requesting other comments was a bit confusing and should have been left out.

9.2.1 Malone: Identifying with the Fantasy

The game was designed so that players should act as network administrators and security
managers. In question 8, participants were asked if they identified with this role when
they were playing. Answers were equally distributed between yes and absolutely.

Responses were almost identical in question 30, where we asked if the concept was
good and well suited for network security.

This indicates that participants experienced the game as valid for network administra-
tion and security management, and thus confirming the game’s face and content validity.
Results also indicates that players with prior knowledge in this area could adapt to the
game fantasy quite easily. Due to the participants’ background, we can not tell if players
with no prior knowledge would adapt to the fantasy in the same way. This could be a
topic for future studies.

Does fantasy contribute to enjoyment? Yes.

9.2.2 Malone: Sensory

The game did not include music and sound effects, but questions related to the game’s
graphical representation was asked (question 13 to 16).

Most participants meant that the graphical representation was very important for
them to catch interest in a game. The overall feeling was that our game’s visual presen-
tation was good.

Question 14 could have been split in two parts to give a separate value for first im-
pression, but still, answers indicate that the first impression was good. First impression is
an important factor in having the player’s curiosity satisfied so that (s)he want to spend
more time learning how to play the game in the first place. Impression was that the
graphics was well suited for the tasks involved in the game. The game seems to have suc-
ceeded in creating a graphical appealing interface, but responses to how fascinated the
players were gave slightly lower scores. As the graphical representation is very important,
the graphics and animations seen in the game still have room for improvements.

Does the graphical interface contribute to enjoyment? Yes.

9.2.3 GameFlow:Concentration

The GameFlow theory states that a game should require concentration and that the
player should be able to concentrate on the game. Questions 17 to 19 are related to
this issue.

Participants experienced that tasks they had to concentrate on seemed relevant to
finish the game successfully. When asked if the amount of tasks could have been more
appropriate, everyone confirmed, except for one participant who disagreed. This could

74

Can Network Security be Fun? An agent-based Simulation Model and Game proposal

indicate that more options are needed, like more diversity in hardware and software
products.

The overall feeling was that players wanted to concentrate on tasks to solve the objec-
tives. More stimuli (sensory curiosity) and challenging events could improve the overall
feeling on concentration.

Does concentration contribute to enjoyment? Yes.

9.2.4 GameFlow:Challenge

Games should be sufficiently challenging and match the player’s skill level. Questions 3
to 7 are related to challenge.

In general, participants did not feel that there was too much variation in difficulties.
During the analysis it was identified that question three could have been rephrased by
excluding “too much” from the statement. This would have made it easier to conclude if
the variation was appropriate, too low or too high. Still, results indicate that the players
wanted more variation both in the scenarios and during game play.

Another indication that players wanted more variation could be identified in ques-
tion 5. More variation could be accomplished by designing more scenarios with more
objectives and better balanced scenario-settings.

Players agreed that levels were adapted to their prior skills, which enhances the as-
sumption that the game is appropriate for network and network attacks (ref: fantasy).

Some players felt that they mastered the game, at least none disagreed. The feeling
of mastering the game could be improved by implementing better feedback mechanisms
and progressive levels of difficulties during game play.

Does the challenge contribute to enjoyment? Maybe.

9.2.5 GameFlow:Player Skills

Questions 20 to 22 is related to player skills. GameFlow state that games must support
player skill development and mastery. The need to read the user manual should be kept
to a minimum.

Feedbacks show that participants needed to read the user manual to understand how
to play the game. This could be due to the complexity of the user interface or the player’s
lack of prior knowledge in this type of game interface. Instructional scenarios could be
implemented to make the introduction easier. The game interface could be made even
easier to handle by introducing additional helper-functions, wizards and other template
mechanisms.

The participants found it interesting to figure out how to play the game, so even if
they had to read the user manual, they were motivated to do so. This motivation could
be explained by the participant’s background and their interest in the game’s topic.

The way they felt rewarded by playing successfully seemed unclear. We should put
more effort into providing better feedback or other sensory mechanisms to enhance the
feeling of reward (or penalty). The score system should be reconsidered using alternative
metrics and maybe provide mechanisms so that players get a better sense on how well
they are playing during the game instead of presenting a final score when the game has
ended.

Does the player skill factor contribute to enjoyment? Maybe.

75

Can Network Security be Fun? An agent-based Simulation Model and Game proposal

9.2.6 GameFlow:Control

Control is related to the player’s feeling of control over their actions in the game. This is
covered by questions 23 to 28.

None disagreed on the statement of mastering the game elements, but responses
seemed a bit unclear. The responses were almost identical in question 24, but one partic-
ipant felt he did not master the graphical interface. To improve the feeling of mastering
the game elements and graphical interface, the dialog boxes used to configure these items
could be made easier to handle. The tasks of editing network connections, routing tables,
installing applications and configuring firewalls should be made simpler to handle. The
ability to store firewall filter rules globally should be implemented. An auto-configuration
function to ease the task of editing routing tables was implemented, but it could be hard
to recognize the correct procedure to benefit from this function. Other approaches, like
the use of template-functions for some of these tasks should be considered.

There was a strong feeling that it was not easy to recover from mistakes. This is
something that should be solved. The simulation used by the game only works in one
time-direction. Storing a number of full states of the complex state model at frequent
intervals would be too costly. A way to solve the recovery-problem is to log every action
related to the user-interaction. Every logged action, for example adding or connecting a
network unit, should have a counter-action, in this case; removing or disconnecting the
network unit. By using a log, with a selected number of undo steps, actions could be
inverted by removing the last log and executing a counter action. Full state models could
be stored by letting the user save his/her game to a file so that (s)he later can restore it
by loading the game back from the file.

Players agreed that the actions they performed were meaningful and not boring.
Does the feeling of control contribute to enjoyment? Maybe.

9.2.7 GameFlow:Clear Goals

According to question number one, all players felt that it was easy to understand the
game objectives. Goals are presented for each scenario every time the player starts a new
game. Does clear goals contribute to enjoyment? Yes.

9.2.8 Feedback

Players must receive appropriate feedback at appropriate times (questions 9 to 12).
Some of the participants was negative to the way traffic-sniffing information was

presented, and felt that this gave too much feedback. Therefore, players should be able
to enable or disable this window at their own discretion.

When asked if feedback helped them achieve their goals, most responses were posi-
tive.

Responses were unclear when asked if the feedbacks were surprising. In the game’s
current state, it is hard to identify how feedbacks could be surprising, but if attack and
multi-player options are implemented in the future this could give access to a wide range
of surprising events and feedbacks. Another option could be to construct more sophisti-
cated malware tasks.

Most participants felt that feedbacks were constructive. The news-flash function seems
to be appropriate in informing the player about important events.

Does feedback contribute to enjoyment? Maybe.

76

Can Network Security be Fun? An agent-based Simulation Model and Game proposal

9.2.9 GameFlow:Immersion

Players should experience deep but effortless involvement in the game. Question 29 is
related to this issue. Results from this questions does not given any clear indications that
players felt any deep involvement. The question could have been a little too vague. More
questions could have been added being more direct on the immersion characteristics.

Does the immersion contribute to enjoyment? Maybe.

9.2.10 GameFlow:Competition

Neither a multi-player option nor a global high-score list was implemented, but it was in-
teresting to know, to what extent, a multi-player option could have improved the game’s
enjoyment level. Everyone meant this would, or absolutely would, have a positive impact
on their interest in the game. The current model was designed with a multi-player option
in mind. The idea is to let the Internet node manage the WAN objects on a remote game
server and let multiple clients connect to this server. Information global to the network
security game could be handled by this server. The server would also be responsible
for sending packets between networks created by connected players. Additionally, the
thread-model could be converted to a linked-list of code instructions, making it possible
for players to construct their own set of malwares and exploits used in attacks on other
players’ networks.

Can competition contribute to enjoyment? Absolutely.

9.2.11 Other results

Results from the open-ended questions indicates that players think the game speed is too
high and that events occur too frequently. Also, players feel overwhelmed by the amount
of information they receive. Some say that the game speed should be adjustable. This is
a good idea and something that should be considered in future versions.

Complaints about the steep learning curve could be solved by introducing scenarios
with interactive instructions using animations, voice and/or text windows.

Participants were very positive regarding the graphical interface which they felt re-
sembled “the real thing”. Remarks on the positive game properties confirms the game’s
face and content validity in relation to network and host security.

By showing a prototype of something, this often sparks new ideas in peoples mind.
This was also the intention with the open-ended question about ideas to make the game
more fun and interesting. A multi-player option is requested by many participants show-
ing that a competitive factor would probably improve the experienced enjoyment quite
a lot. Also more sophisticated graphics are requested which resembles the findings in
chapter 9.2.2. And not surprisingly, music and sound effects is also something the partic-
ipants want to see. More product variation is wanted, and another good idea is to have
the players construct scenarios and software/hardware products themselves.

9.2.12 Summary

Table 4 represents the results from discussions on enjoyment.
Only two categories, according to GameFlow contributes to the feeling of enjoyment;

the ability to concentrate in the game, and the use of game objectives. At the other cat-
egories, participants had a more or less neutral attitude. Even though the results could
have been better, these are not bad results. Results seems to indicate that players felt
some degree of enjoyment, possible due to the use of graphics on which received high

77

Can Network Security be Fun? An agent-based Simulation Model and Game proposal

Topic Fun?
Malone: Fantasy Yes
Malone: Sensory Yes
GameFlow: Concentration Yes
GameFlow: Challenge Maybe
GameFlow: Player Skills Maybe
GameFlow: Control Maybe
GameFlow: Clear Goals Yes
GameFlow: Feedback Maybe
GameFlow: Immersion Maybe

Table 4: Results from the different enjoyment categories

scores. The high score on fantasy could partially explained by the players prior knowl-
edge with computer networks.

The game includes the basic simulation elements; the executive kernel, entities1 and
its relations, distributions, a timer, and the result collector (statistics and triggers). There-
fore, it could be classified as a simulation. By using entities like virtual users and net-
worked equipment as simulated agents it could also be classified as agent-based[32].

Using NarayanaSamy’s taxonomy[3], we can say that a virtual environment is present2.
The user is engaged interactively in the simulation. It provides some entertaining ele-
ments, and includes challenges. Game-patterns vary due to the randomness of events
occurring in the simulation. The network simulation, upon which the game has been
constructed, has no obvious end-state, but goal-oriented scenarios have been introduced
to establish end-game objectives. This allows the game to be classified as a simulation
game.

According to Saunders[5], the game could be classified in the canned attack/defend
scenarios category.

1including agent-entities
2the local site network and the Internet

78

Can Network Security be Fun? An agent-based Simulation Model and Game proposal

10 Future work

10.1 Determine enjoyment

Due to the low number of participants in this study and because results indicates that the
game could be fun to play, a new study should be conducted. It is recommended that the
game is enhanced with new challenges and and sensory items like better graphics and
sounds before such a study takes place.

10.2 Additional Features

Additional malware tasks should be constructed to take full advantage of the attack
simulation and add new challanges to the game. New network equipment should be
added to the model, like NAT routers, stateful firewalls, VPN concentrators, modems,
VLANs, wireless units, etcetera. This would give the player more options to design a
secure network. A new study could be conducted to map these nodes into the existing
model and by doing so, increasing the model’s diversity.

10.3 Validity as a Learning Tool

The game should be validated as a learning tool. A set of documents to teach different
aspects of network security should be constructed and game scenarios related to this
learning material should be developed. A randomized pretest-post-test control group
design, with one group using the learning material only, another group using the game
only, and a third group using both instruments, could be conducted to see if the game
has any positive impact on the learning process.

10.4 Multiplayer gaming

It should be investigated if the model can be split into a client-server model. An idea is
to move the Internet-node to a separate server and have multiple clients connected to
this server. As seen in this study, a multi-player version could increase the interest in the
game.

10.5 Dynamic Construction

The process-thread mechanism could be reorganized so that threads are executed in
a linked list of code instructions. This way, players should be able to construct their
own algoritms and malwares and use their algoritms to attack remote sites played by
other clients connected to the game server. Some work is needed to figure out how
to accomplish this. A multi-player model could also increase the random behavior of
networks as real networks are involved in the transmission of simulated packets.

10.6 Fine tuning

In the current version, the game model depends heavily on the construction and de-
struction of .NET objects. These are CPU expensive operations. One issue is the use of
the .NET garbage collector. In simulated networks with a lot of traffic, a large amount

79

Can Network Security be Fun? An agent-based Simulation Model and Game proposal

of packets are created and destroyed. A change in the model could rely more on global
memory structures and arrays using memory pointers.

10.7 Better Graphics

The graphic handling is separated from the simulation engine. A new graphic handler
based on OpenGL or DirectX could be created to improve performance and animations.
As seen in this study, the use of graphics to enhance the fantasy.

80

Can Network Security be Fun? An agent-based Simulation Model and Game proposal

11 Conclusion

Having received feedbacks from participants with prior skills in network administration
and network security and some with many years experience, results from the experiment
shows that the game should be valid for network security gaming according to the fantasy
measurements and open-ended feedbacks related to game properties.

This study concludes that it is possible to build a network and host security game,
with the same complexity as seen in this study, in five months on the assumption that
the developer have prior skills in network and host security, multi-threading program-
ming, object oriented analytical skills, and know-how in building advanced graphical
editors. The developer must also expect to use more than 1200 man-hours to complete
the game within this time period. A copy of the final prototype can be downloaded from
http://www.stud.hig.no/(tilde)040673. This concludes the first research question.

The degree of enjoyment, does not seem to be high enough for people to keep playing
the game for a longer period of time. Further studies must be conducted with more par-
ticipants to tell with enough degree of confidence that a network security game is fun to
play. But first, the game should be extended with more challenges and fantasy-enhancing
features like better graphics, music and sound effects. In addition, further studies should
focus on competitive elements, like multi-player and real-time attack/defend scenarios,
to make it even more enjoyable.

There are indications that people with prior skills finds the game fun to play, to some
extent. But further studies must be conducted with enough participants to confirm this
by statistical means. This concludes the second research question.

81

Can Network Security be Fun? An agent-based Simulation Model and Game proposal

Bibliography

[1] C.E.Irvine & M.Thompson. 2003. Teaching objectives of a simulation game for
computer security. http://cisr.nps.navy.mil/downloads/03paper_cciege.pdf.

[2] C.E.Irvine, M. & K.Allen. 2005. Cyberciege: An infor-
mation assurance teaching tool for training and awareness.
http://cisr.nps.navy.mil/cyberciege/downloads/FISSEA_CyberCIEGE_PreConf.pdf.

[3] V. Narayanasamy, K. W. Wong, C. C. F. & Rai, S. 2006. Distinguishing games and
simulation games from simulators. ACM Computers in Entertainment, 4(2).

[4] M.Prensky. 2002. Why not simulation. http://www.marcprensky.com/writing/Prensky%20-
%20Why%20NOT%20Simulation.pdf.

[5] Saunders, J. H. 2002. Simulation approaches in information security education.
http://cisse.info/CISSE%20J/2002/saun.pdf.

[6] J.Saltzer & M.Schroeder. 1975. The protection of information in computer systems.
Proceedings of the IEEE, 4(2), 1278–1308.

[7] M.Bishop. 2002. Computer Security: Art and Science chap 13. Addison-Wesley.

[8] G.Stoneburner, C. & A.Feringa. 2001. Engineering principles for information tech-
nology security (a baseline for achieving security. National Institue of Standard and
Technology Special Publication 800-27.

[9] International Standard. ISO/IEC 17799 - Information Technology - Code of practice
for information security management, 1 edition, 12 2000.

[10] 2005. Iso 20000.

[11] Landwehr, Bull, M. & Choi. 1994. A taxonomy of computer program security flaws.
ACM Computing Surveys, vol 26, Issue 3 (september 1994)(0360-0300), 211 – 254.

[12] Criteria, C. Common criteria for information technology security evaluation.
http://www.commoncriteriaportal.org/public/consumer/index.php?menu=2.

[13] N.Weaver, V.Paxon, S. & R.Cunningham. 2003. A taxonomy of computer worms.
http://www.cs.berkeley.edu/ñweaver/papers/taxonomy.pdf.

[14] T.W.Malone. 1980. What makes things fun to learn? heuristics for designing in-
structional computer games. Proceedings of the 3rd ACM SIGSMALL Symposium and
the First SIGPC Symposium on Small Systems, Palo Atlo, California, USA, ACM Press,
162–169.

[15] Sweetser, P. & Wyeth, P. 2005. Gameflow: A model for evaluating player enjoyment
in games. ACM Computers in Entertainment, 3(3).

83

Can Network Security be Fun? An agent-based Simulation Model and Game proposal

[16] Csikszentmihalyi, M. 1990. Flow: The Psychology of optimal experience. Harper
Perennial; Rep edition (March 13, 1991).

[17] K.Näckros. 2002. Empowering users to become effective information se-
curity and privacy managers in the digital world through computer games.
http://smg.media.mit.edu/cscw2002-privacy/submissions/kjell.pdf.

[18] M.Prensky. 2004. Digital Game-Based Learning. Paragon House, 1 edition.

[19] B.Schneier. 2000. Secrets and Lies. Wiley.

[20] Group, O. M. 2003. Unified modeling language specification.
http://www.omg.org/cgi-bin/doc?formal/03-03-01.

[21] E.Gamma, R.Helm, R. & H.Vlissides. 2000. Design Patterns - Elements of Reusable
Object-Oriented Software. Addison-Wesley.

[22] C.L.Owen. 1998. Design research - building the knowledge base. Design Studies,
No.1 Jan. 1998, 9–20.

[23] D.Turner. 2005. Symantec internet security threat report. trends for january 05-
june 05.

[24] B.A.Forouzan. 2004. Data Communications and Networking. McGraw Hill, 3 edi-
tion.

[25] W.R.Cheswick & S.M.Bellovin. 1994. Firewalls and Internet Security. Addison-
Wesley, 3 edition.

[26] K.Kent, S. L. S. & R.W.Ritchey. 2005. Inside Network Perimeter Security. Sans
Institute, 2 edition.

[27] J.Blow. 2004. Game development. harder than you think.

[28] C.Petzold. 2002. Programming Microsoft Windows with C#. Microsoft Press.

[29] E.White, C. & S.Robinson. 2002. GDI+ Programming: Creating Custom Controls
using C#. Wrox.

[30] P.Drayton, B. & T.Neward. 2003. C# In a Nutshell. A Desktop Quick Reference.
O’Reilly.

[31] A.L.Dennis. 2003. .NET Multithreading. Manning Publications, 1 edition.

[32] S.M.Sanchez & T.W.Lucas. 2002. Exploring the world of agent-based simulations:
Simple models, complex analysis. Proceedings of the 2002 Winter Simulation Con-
ference, 116–126.

[33] Williams, R. 2001. Computer System Architecture. A Networking Approach. Addson-
Wesley.

[34] W.R.Stevens. 1994. TCP/IP Illustrated Volume 1 - The Protocols. Addison-Wesley.

[35] J.F.Kurose & K.W.Ross. 2003. Computer Networking. A Top Down Approach Featur-
ing the Internet. Addison Wesley).

84

Can Network Security be Fun? An agent-based Simulation Model and Game proposal

[36] J.Postel. 1981. Transmission control protocol - darpa internet program protocol
specification std7 rfc793.

[37] J.Viega & G.McGraw. 2001. Building Secure Software. Addison-Wesley.

[38] C.E.Landwehr & D.Goldschlag. 1997. Security issues in networks with internet
access. Proceedings of the IEEE, Volume 85, Issue 12, Dec. 1997, 2034–2051.

[39] J.Postel. 1980. User datagram protocol std6 rfc768.

85

Can Network Security be Fun? An agent-based Simulation Model and Game proposal

A Feedback questionnaire

Age: years
Sex: Female or Male
Education: select one of the following;

• Primary School - Elementary

• Middle School - Junior High

• Secondary School - High School/Gymnasium

• Post-secondary - University/College

• Post-graduate - Masters degree

• PhD or higher

Experience with network administration (years):
Experience with network security (years):

A.1 Statements and responses

The following statements must be answered with one of the following responses;

• 1 = Not at all

• 2 = No

• 3 = Maybe (neutral)

• 4 = Yes

• 5 = Absolutely

• (blank) = Don’t know

1. It was easy to understand the game objectives:

2. The outcome was sure when I played the game:

3. There was too much variation in levels of difficulty:

4. Levels of difficulties was adapted to my prior skills:

87

Can Network Security be Fun? An agent-based Simulation Model and Game proposal

5. The game soon became boring due to lack of levels of difficulty:

6. There was too much randomness in the game:

7. I got I feeling that I mastered the game:

8. I managed to identify in the role as a network administrator:

9. The amount of feedback received fitted the purpose of the game:

10.Feedbacks helped me find solutions to succeed in reaching the goal successfully:

11.Feedbacks was surprising:

12.Feedbacks was constructive:

13.The graphical representation means a lot to me to catch my interest in games:

14.The game’s visual representation was good. It got me interested at first-sight:

15.The visual representation was nicely adapted to the tasks I had to conduct:

16.I was fascinated by the graphical representation:

17.The tasks I had to do seemed to be relevant to finish the game successfully:

18.I got a feeling that I wanted to concentrate on the tasks to solve the objectives:

19.The amount of tasks I had to do was appropriate:

88

Can Network Security be Fun? An agent-based Simulation Model and Game proposal

20.I did not have to read the user manual to understand how to play the game:

21.It was interesting to find out how to play the game:

22.I was well rewarded by playing successfully:

23.I got a sense that I mastered the elements I had to work with:

24.I got a sense that I mastered the graphical game interface:

25.I was easy to recover from errors made during the game:

26.I got a sense that the tasks I conducted was meaningful:

27.Tasks were boring:

28.I got a sense that the tasks I had to do were predetermined. I had few alternatives
to solve the objectives:

29.I felt a deep involvement in the game:

30.I think the concept of the game is good and well suited for network security:

31.I think the game can motivate me to learn more about network security on my
own:

32.If this game was used in a learning environment, together with literature, it
would have a very positive impact on my motivation to learn more about network
security:

33.It is important for me to share my game experience, what I construct, and my
results with a game community:

89

Can Network Security be Fun? An agent-based Simulation Model and Game proposal

The next questions relates to multi-player gaming. There is a theory that this game
could be constructed as a multi-player game with multiple players having their networks
connected via a central game-server acting as the Internet node.

34. This would have a positive impact on my interest for the game:

35. This would have a positive impact on my motivation to learn more about net-
work security on my own:

A.2 Open ended questions

What do you think was the negative properties of the game?

What was the most negative property of the game?

What do you think was the positive properties of the game?

What was the most positive property of the game?

Do you have some ideas on how to make the game more fun and interesting to
play?

How could the game make you more motivated to learn more about network secu-
rity?

Other comments:

90

Can Network Security be Fun? An agent-based Simulation Model and Game proposal

B Simposter User manual

B.1 About the game

Simposter is a game based on a simplified network simulator. Data packets are sent
back and forth between applications on different hosts connected together via the local-
or Internet- network. Like in real life, packets need to be routed to get from one host
to another (and back again) and firewalls need to be configured to stop traffic from
reaching protected services.

Traffic is generated by virtual users using applications installed on their client com-
puters. These users have different characteristics and moods that influence the type of
applications they prefer to use and the activities they conduct.

B.2 Game Objectives

You are the administrator of a local network. The objectives of this game is to create an
effective, functional and secure network. Documents (assets) created or downloaded by
network users must be protected from confidentiality and integrity breaches. You have
different tools at your disposal, like different types of network components (switches,
routers, firewalls) and software tools (backup, anti-virus, spam-filter, office-tools and
various server applications). How you design your network, what software you choose
to install and how hardware and software are configured will have an impact on your
final score. Everything comes at a cost. Your resource management skills are important
to achieve high scores.

B.3 Network design

The network map
Network design is an important game element in Simposter. The main screen displays

a two-dimensional map with cells representing the components of your local network.
To keep you oriented, a vertical and horisontal coordinate system is displayed on the left
side and at the top of the map view. To scroll, use the arrow keys on your keyboard, or
left-click on a free cell and move your mouse in any direction.

B.4 Mouse operations

Right-click on any component to display the short-cut menu. Short-cut menus makes it
easier to access the functionality and properties of network components.

Simposter has five different mouse operation modes - select, move, scroll, connect and
delete. The select-mode is the base mode of all operations. To cancel any operation other
than select, press the CTRL key on your keyboard. If you are in select-mode, pressing
(and holding) the CTRL key will enter the connect-mode. While in connect-mode, each
component shows a variable number of dots. These are the interfaces (network card/-
port) for each component. Dots with a light green color is already connected to another
component. If all dots show a light-green color, there are no free interfaces left on this
component. To connect, select the node you want to connect from (typically a switch).

91

Can Network Security be Fun? An agent-based Simulation Model and Game proposal

Figure 35: Simposter Game Screen

Press, and hold, the CTRL key and click on each component you want to connect.
Tip: If you have created a new switch (sub-net) and numerous clients, select the

switch first, then press CTRL and click on each client in sequence. Clicking a new node
while in connect-mode will not select the new node.

B.5 Key Controls

B - Buy new hardware item
DEL - Sell selected component
CTRL (tap once) - Enter the select-mode (mouse)
CTRL (hold) - Enter the connect-mode (mouse)
ESC - Close dialog box / abort game

B.6 The tool bar

This is a description of the tool-bar buttons (from left to right)
Button Key Description Select Tool CTRL Select this button (or press CTRL) to enter

select-mode. In select mode, existing components can be selected and moved. To move
an item, left click to select an item and drag it to the cell where you want to have it. Buy
Hardware B Select this button (or press B) to buy new hardware components (clients,
servers, firewall, etc) Software Management Select this button to buy or un-install soft-
ware on multiple clients/servers simultaneously. Server Management Select this button
to manage your servers and set public/private services. FireWall Configuration If you
have selected a firewall component this button will be enabled and you will be able to

92

Can Network Security be Fun? An agent-based Simulation Model and Game proposal

change the firewall’s filter rules. Scenario Opens a dialog box that shows you the game
level objectives and game configurations Connect Clicking this button will enable the
special connect mouse-mode where you will not need to press and hold the CTRL key to
connect. Cancel this mode by pressing the select-tool or press CTRL. Show Component
Press this button to display the property dialog for the selected component. The property
dialog can be used to configure items, route tables, applications (client/server compo-
nents) and show process, connection and program/asset status. You can also double-
click on any node to display this dialog. Delete Press this button to enter the delete/sell
mouse-mode. Click on any component to delete/sell it. Cancel this operation by pressing
the select-tool or press the CTRL key. Help Click this button to show this user manual
Quit Press this button to abort the game.

B.7 Route table/Sub-net configuration

Figure 36: Simposter Routing table Screen

A routing table can be configured for routers, firewalls, clients and servers. Use this
table to register local IP addresses, interfaces, sub-nets and default gateways (0/0). The
network simulation uses this information to route packets between two hosts.

B.8 Sub-net configuration

The process of creating routing tables are semi-automated in Simposter. Switches (net-
segments) have an alternative registration form where sub-net ranges can be regis-
tered, so that subsequent client connections will receive available IP-addresses from these
ranges.

A range can be changed at any time. After changing the sub-net address range, right-
click on the net-segment and select to auto-configure client connections. This will update
the IP-addresses of connected components (this will change the routing table configu-
ration for connected components). The local sub-net address range(s) is/(are) the one
with no registered gateway. The other registrations are used by connected routers (rout-
ing information between local sub-nets).

93

Can Network Security be Fun? An agent-based Simulation Model and Game proposal

Figure 37: Simposter Sub net dialog box

B.9 Setting up firewall rules

Use the firewall to create a chain for rule filters to allow or deny inbound and/or out-
bound packets on any interface.

B.10 Installing software

Software can be installed in two ways; single host or batch-install on multiple hosts.
Single host installation can be achieved by right clicking the host component and select
Install -> Software Category -> Product from the pop-up menu. Batch-install can be
done through the Software Managment dialog box available from the game toolbar.

B.11 Creating public services

By default, when a server application is installed, only local network users are aware of
this service - only local users will try to connect to these services (be aware that remote
attackers might also attempt to connect to these services!!!).

To make a private service public (like public web service, FTP service, etc), enter the
server managment dialogbox from the toolbar.

On the left site, only internal (private) services are shown as service and machine
name. Private/public services will not be influenced by changes in host IP-adresses (that’s
why the name, and not the IP address is shown in this dialog).

At lower edge of the dialogbox, the default protocol server of selected protocols can
be changed. This will change the configuration on already installed client applications
and it will be the default value for new installations.

By default, the default DNS, POP3 and SMTP server will set to the ISP’s (WAN com-
ponents’) IP address.

DNS, POP3 and SMTP services can also be installed in the local network. Then, change
the default server to this/these hosts.

94

Can Network Security be Fun? An agent-based Simulation Model and Game proposal

Figure 38: Simposter Server Management dialog box

B.12 Hints and tips

Ensure that all public (and private) services has enough capacity to handle requests.
Select a product and read the description to understand its capabilities.

To receive mails locally, POP3 and SMTP must be installed at the same host and the
SMTP server must be set public. Having a local mail server makes it possible to install
spam-filters thus increasing user productivity.

Add a SQL server service and configure Web (HTTP) servers to use this SQL server.
This will improve the network functionality and you will get higher scores.

Listen to user requests.
Install anti-virus software to reduce the damage caused by malware.
Remember to patch software products to reduce vulnerability and malware infections.
Use a remote file server. Install a backup tool on this server. You will get more points

by using a centralized backup facility instead of backing up data locally (less secure).
Keep you network secure and functional the best you can - Good luck!

95

Can Network Security be Fun? An agent-based Simulation Model and Game proposal

C Statistical enumerators

pub l i c enum StatTypes : in t {
GAME_Failures ,
GAME_Successes ,
GAME_EndFailure ,
GAME_EndSuccess ,

USER_PowerUps ,
USER_PowerDowns ,
USER_NoPowerDowns ,
USER_Logins ,
USER_Logouts ,
USER_ForgotLogout ,
USER_EnterComputerOwn ,
USER_EnterComputerOther ,
USER_UsesWrongLogin ,
USER_LogoutOther ,
USER_StartsWorking ,
USER_LeavingComputer ,
USER_WasLoggedInForgotLogout ,
USER_TerminalOccupied ,
USER_ClaimsNoComputer ,
USER_Deleted ,
USER_Created ,
USER_IntranetNotFoundComplaints ,

NODE_ClientsAdded ,
NODE_ServersAdded ,
NODE_HubsAdded ,
NODE_SwitchesAdded ,
NODE_RoutersAdded ,
NODE_FirewallsAdded ,
NODE_WANsAdded,
NODE_ClientsRemoved ,
NODE_ServersRemoved ,
NODE_HubsRemoved ,
NODE_SwitchesRemoved ,
NODE_RoutersRemoved ,
NODE_FirewallsRemoved ,
NODE_WANsRemoved,

HOST_DataFilesDownloaded ,
HOST_ProgramFilesDownloaded ,
HOST_ProgramsInstalled ,
HOST_ProgramsInstalledMalware ,
HOST_ProgramsUninstalled ,
HOST_DataFilesCreated ,
HOST_ForgottenFormatsBeforeSale ,

97

Can Network Security be Fun? An agent-based Simulation Model and Game proposal

LINK_Connected ,
LINK_Disconnected ,

FILE_DataFi lesSaved ,
F ILE_DataF i lesExp lo i tSaved ,
F ILE_DataF i lesDele ted ,
FILE_DataFilesShadowed ,
FILE_DataFilesShadowDeleted ,
FILE_ProgramFilesSaved ,
FILE_ProgramFilesMalwareSaved ,
FILE_ProgramFi lesDeleted ,
FILE_ProgramFilesShadowed ,
FILE_ProgramFilesShadowDeleted ,
FILE_ProgramFilesOpened ,
FILE_DataFilesOpened ,

SAMBA_ClientPutFileRequests ,
SAMBA_ClientGetFileRequests ,
SAMBA_ClientFi lesReceived ,
SAMBA_ClientPutFileSucceeded ,
SAMBA_ClientGetFileSucceeded ,
SAMBA_ClientGetFi leFai led ,
SAMBA_ClientPutFi leFai led ,
SAMBA_ClientMissingRemoteAddress ,
SAMBA_ServerNoFilesAvailable ,
SAMBA_ServerSaveFileFailed ,

REMOTEBACKUP_Files ,
REMOTEBACKUP_Count ,
REMOTEBACKUP_Failed ,
LOCALBACKUP_Files ,
LOCALBACKUP_Count ,

BACKUPTOOL_Backups ,
BACKUPTOOL_DocumentsStored ,
BACKUPTOOL_ProgramsStored ,

ANTIVIRUS_ProgramFilesScanned ,
ANTIVIRUS_DataFilesScanned ,
ANTIVIRUS_DataFilesMatch ,
ANTIVIRUS_DataFilesFalseMatch ,
ANTIVIRUS_ProgramFilesMatch ,
ANTIVIRUS_ProgramFilesFalseMatch ,
ANTIVIRUS_DownloadedProgramsDeleted ,
ANTIVIRUS_VirusDeletedAndFileOpened ,
ANTIVIRUS_ProcessesInfected ,
ANTIVIRUS_ProcessesInfectedMiss ingSignature ,
ANTIVIRUS_ProgramFilesMissingSignature ,
ANTIVIRUS_DataFi lesMissingSignature ,

EXPLOIT_ExploitsDuringOpen ,
EXPLOIT_F i leExp lo i t sAc t iva ted ,

98

Can Network Security be Fun? An agent-based Simulation Model and Game proposal

EXPLOIT_PacketExplo i t sAct ivated ,
EXPLOIT_NotOpenedProgramPatched ,

MALWARE_MailsSent ,

SCRIPTKID_Attacks ,
SCRIPTKID_DNSLookups ,
SCRIPTKID_ConnectedToFTP ,
SCRIPTKID_ConnectedToPOP3 ,
SCRIPTKID_ConnectedToSAMBA ,
SCRIPTKID_ConnectedToSMTP ,
SCRIPTKID_ConnectedToSQL ,
SCRIPTKID_ConnectedToHTTP ,
SCRIPTKID_SuccessfulAttacks ,

FTP_ProgramFilePutRequests ,
FTP_DataFi lePutRequests ,
FTP_Fi leGetRequests ,
FTP_RemoteSiteSuccessful lyDownloadedFi le ,
FTP_ProgramFilePutSucceeded ,
FTP_DataFilePutSucceeded ,
FTP_ProgramFileDownloadedMalware ,
FTP_ProgramFileDownloaded ,
FTP_DataFileDownloadedExploit ,
FTP_DataFileDownloaded ,

MAIL_GetMailRequests ,
MAIL_GetMailRequestsSucceeded ,
MAIL_MailsReceived ,
MAIL_MailsWithAttachments ,
MAIL_AttachmentsReceived ,
MAIL_ProgramFilesReceivedMalware ,
MAIL_ProgramFilesReceived ,
MAIL_DataFi lesRece ivedExplo i t ,
MAIL_DataFilesReceived ,
MAIL_GetMailRequestsReturnedNoMails ,
MAIL_SpamMails ,

SPAM_AcceptedFalsely ,
SPAM_Rejected ,
SPAM_RejectedFalsely ,

MAIL_SendMailRequests ,
MAIL_MailsSent ,
MAIL_SendMailAttachments ,

POP3_MailRequests ,
POP3_MailsReturnedToUser ,
POP3_NoMailsReturnedToUser ,

SQLCLIENT_Requests ,
SQLCLIENT_RequestsSucceeded ,
SQLSERVER_RequestsHandled ,

99

Can Network Security be Fun? An agent-based Simulation Model and Game proposal

HTTP_UrlRequests ,
HTTP_ProgramFilesDownloadedMalware ,
HTTP_ProgramFilesDownloaded ,
HTTP_DataFilesDownloadedExploit ,
HTTP_DataFilesDownloaded ,

HTTPSERVER_RequestsHandled ,
HTTPSERVER_SqlRequests ,
HTTPSERVER_SqlRequestsFailed ,
HTTPSERVER_FilesSent ,

HOST_FormatsInit iated ,
HOST_FormatsSucceeded ,

PROCESSES_Created ,
PROCESSES_Terminated ,
PROCESSES_TerminatedCrash ,
PROCESSES_TerminatedSystemShutdown ,
PROCESSES_TerminatedUninstall ,
PROCESSES_TerminatedUserShutdown ,
PROCESSES_CreatedWithMalware ,

THREADS_Created ,
THREADS_Exceptions ,
THREADS_Terminated ,

ROUTING_RoutesAddedStatic ,
ROUTING_RoutesAddedDynamic ,
ROUTING_RoutesDeletedStatic ,
ROUTING_RoutesDeletedDynamic ,
ROUTING_PacketsForwarded ,
ROUTING_DropProcessedBySystem ,
ROUTING_DropSocketBufferFull ,
ROUTING_DropSwitchCantRoute ,
ROUTING_DropHostCantRoute ,
ROUTING_DropAddressNotFound ,
ROUTING_DropTimedOutPending ,
ROUTING_DropRouteNotAvailable ,
ROUTING_DropTooManyHops ,
ROUTING_DropNotExpectedInCurrentState ,
ROUTING_DropSocketTerminated ,
ROUTING_DropMaxConnectionRequestsReached ,
ROUTING_DropOther ,
ROUTING_DropDeniedByFirewall ,
ROUTING_DropTotal ,

FIREWALL_FiltersAdded ,
FIREWALL_FiltersUpdated ,
FIREWALL_FiltersRemoved ,
FIREWALL_PacketExploitsStoppedOutbound ,
FIREWALL_PacketExploitsStoppedInbound ,
FIREWALL_PacketsCheckedInbound ,

100

Can Network Security be Fun? An agent-based Simulation Model and Game proposal

FIREWALL_PacketsCheckedOutbound ,
FIREWALL_PacketsOutboundDenied ,
FIREWALL_PacketsInboundDenied ,

DNSCLIENT_Requests ,
DNSCLIENT_AddressFound ,
DNSCLIENT_AddressNotFound ,

DNSSERVER_AddressesFound ,
DNSSERVER_AddressesNotFound ,

SOCKETS_UDP_Created ,
SOCKETS_UDP_Registered ,
SOCKETS_UDP_Unregistered ,
SOCKETS_UDP_PacketDataSent ,
SOCKETS_UDP_PacketDataReceived ,

SOCKETS_BoundToLocalPort ,
SOCKETS_BindFailed ,
SOCKETS_PacketsReadByProcess ,

SOCKETS_TCP_Created ,
SOCKETS_TCP_Registered ,
SOCKETS_TCP_Unregistered ,
SOCKETS_TCP_ConnectRequests ,
SOCKETS_TCP_ConnectionRequestAttempts ,
SOCKETS_TCP_ConnectionsRequested ,
SOCKETS_TCP_ConnectionResets ,
SOCKETS_TCP_ConnectionResetsByRemote ,
SOCKETS_TCP_ConnectionsAccepted ,
SOCKETS_TCP_ConnectionRequestsLimitReached ,
SOCKETS_TCP_Listen ,
SOCKETS_TCP_ListenSucceeded ,
SOCKETS_TCP_PacketsSent ,
SOCKETS_TCP_PacketsReceived ,
SOCKETS_TCP_PacketDataSent ,
SOCKETS_TCP_PacketDataReceived ,
SOCKETS_TCP_HandshakesCompleted ,

MONEY_Amount ,
MONEY_MonthlyBudget ,
MONEY_MoneyUsed ,
MONEY_MoneyUsedPenalty ,
MONEY_SpentHardwareInstall ,
MONEY_SpentSoftwareInstall ,
MONEY_SpentDailyHardware ,
MONEY_SpentDailySoftware ,
MONEY_PatchCost ,

SCORE_Points ,
SCORE_FinalScore ,
SCORE_Confident ia l i ty ,
SCORE_Integrity ,

101

Can Network Security be Fun? An agent-based Simulation Model and Game proposal

SCORE_Avai labi l i ty ,
SCORE_Penality ,
SCORE_Bonus ,

SCENARIO_Confidential i tyImportance ,
SCENARIO_IntegrityImportance ,
SCENARIO_Avai labi l i tyImportance ,
SCENARIO_InitialMoney ,
SCENARIO_MonthlyBudget ,
SCENARIO_SitePopularity ,
SCENARIO_MalwareFrequency ,
SCENARIO_LocalUserSpeed ,
SCENARIO_RemoteUserSpeed ,
SCENARIO_SpamFrequency ,
SCENARIO_RecruitmentFrequency ,
SCENARIO_RetirementFrequency ,
SCENARIO_RemoteMailFrequency ,
SCENARIO_IntranetRequests ,

ENGINE_Time ,
ENGINE_NodesExecuted ,
ENGINE_ThreadRoundtrips ,
ENGINE_UserOperationsExecuted ,
S ta tTypesLas t

} ;

102

Can Network Security be Fun? An agent-based Simulation Model and Game proposal

D The simulation Loop

/// <summary>
/// Main loop f o r each thread
/// </summary>
void __SimulationLoop (o b j e c t th read In fo) {

ThreadInfo in fo = (ThreadInfo) thread In fo ;
L i s t <Executable> threadNodes = in fo . Executab les ;
in t threadIndex = in fo . ThreadIndex ;

Executable [] simnodes = threadNodes . ToArray () ;

// S to r e i n i t i a l number o f e x e c u t a b l e s
in t count = simnodes . Length ;

// Enter loop . Exe cu t e loop whi l e s imu la t i on i s running
while (_running) {

// Compare number o f o ld and c u r r e n t i t ems .
// Update thread e x e c u t a b l e c o l l e c t i o n
// i f s i z e has changed (a node has been
// added / removed e x t e r n a l l y)
lock (threadNodes) {

i f (count != threadNodes . Count) {
simnodes = threadNodes . ToArray () ;
count = simnodes . Length ;

}
}

// Exe cu t e each node in the c o l l e c t i o n
for (in t i = 0; i < count ; i++) {

simnodes [i] . Execute () ;
System . Threading . Thread . Sleep (0) ;

}

// I n c r e a s e t ime and s l e e p f o r a few m i l l i s e c o n d s
i f (threadIndex == 0) {

DateTime oldDate = CurrentDate ;

_time++;
_dayChanged = (_time % TICKS_PR_DAY) == 0;

i f (_dayChanged) {
DateTime newDate = CurrentDate ;
_ s t a t . Accumulate (

StatTypes . MONEY_SpentDailyHardware ,
(in t)(_ i n t e r n e t . L o c a l S i t e . CurrentHardwareCost / 30)) ;

103

Can Network Security be Fun? An agent-based Simulation Model and Game proposal

_ s t a t . Accumulate (
StatTypes . MONEY_SpentDailySoftware ,
(in t)(_ i n t e r n e t . L o c a l S i t e . CurrentSoftwareCost / 30)) ;

_ s t a t . Accumulate (StatTypes . MONEY_Amount ,
−(in t)((_ i n t e r n e t . L o c a l S i t e . CurrentHardwareCost +
_ i n t e r n e t . L o c a l S i t e . CurrentSoftwareCost) / 30)) ;

__CheckTriggers (oldDate , newDate) ;

}

i f (_time % 20 == 0) {

_ s t a t . SetValue (
StatTypes . SCORE_Points ,
_ i n t e r n e t . L o c a l S i t e . Score) ;

_ s t a t . SetValue (
StatTypes . ENGINE_Time ,
(in t) _time) ;

lock (_ t r i g g e r s) {
for (in t i = 0; i < _ t r i g g e r s . Count ; i++) {

i f (! _ t r i g g e r s [i] . HasBeenTriggered) {
in t s t a t V a l = _ s t a t . GetValue (_ t r i g g e r s [i] . Tr iggerType) ;
i f (_ t r i g g e r s [i] . CompareType == CompareTypes . LargerThan) {

i f (s t a t V a l > _ t r i g g e r s [i] . Tr iggerValue) {
_ s t a t . Accumulate (

_ t r i g g e r s [i] . S ta t i s t i c sToAccumula te ,
_ t r i g g e r s [i] . S t a t i s t i c s V a l u e) ;

_ t r i g g e r s [i] . HasBeenTriggered = true ;
}

} else {
i f (s t a t V a l < _ t r i g g e r s [i] . Tr iggerValue) {

_ s t a t . Accumulate (
_ t r i g g e r s [i] . S ta t i s t i c sToAccumula te ,
_ t r i g g e r s [i] . S t a t i s t i c s V a l u e) ;

_ t r i g g e r s [i] . HasBeenTriggered = true ;
}

}
}

}
}
i f (_ s t a t . GetValue (StatTypes . GAME_EndFailure) > 0 ||

_ s t a t . GetValue (StatTypes . GAME_EndSuccess) > 0) {
_endGame = true ;
_running = f a l s e ;

}
}

}

104

Can Network Security be Fun? An agent-based Simulation Model and Game proposal

System . Threading . Thread . Sleep (20) ;

// Add thread round−t r i p s t a t i s c s
Accumulate (StatTypes . ENGINE_ThreadRoundtrips) ;

}
}

105

Can Network Security be Fun? An agent-based Simulation Model and Game proposal

E Code sample - Web browser client

/// <summary>
/// The Web C l i e n t ta sk procedure found in the WebCl ient a p p l i c a t i o n c l a s s
/// </summary>
/// <param name=" thread ">The Task thread </param>
/// <re turns >True i f code was execu t ed , f a l s e i f out−of−sequence </re turn s >
pub l i c over r ide bool TaskProcedure (SimThread thread) {

// Uses the thread−s t a t e v a r i a b l e RunPointer to de te rmine which
// e x e c u t i o n sequence to run in t h i s i t e r a t i o n .
// Threads are e x e cu t ed in a round−Robin f a sh i on . For each i t e r a t i o n
// a smal l po r t i on o f a procedure w i l l be e x e cu t ed . Th i s f u n c t i o n
// d e f i n e s t h i s chunks us ing a swi t ch − i n s t r u c t i o n and the
// c u r r e n t RunPointer .

switch (thread . RunPointer) {

case 1: // Th i s (1) i s the d e f a u l t en t r y po in t f o r a l l new thr ead s

// Crea t e s e s s i o n s o c k e t (TCP) . Exe cu t e l i n e 10 on next e x e c u t i o n

thread . SocketCreate (P ro toco l s . TCP , 10) ;
return t rue ;

case 10:

// Get remote web addr e s s from thread ta sk
// and connec t to tha t addr e s s . Move run−p o i n t e r to l i n e 20
// when the conne c t i on has been e s t a b l i s h e d . Socke tConnec t
// w i l l b l o ck t h i s thread u n t i l c onne c t i on has f i n i s h e d

o b j e c t address = thread . Task . Parameters [0] ;
ushort remotePort = (ushort) thread . Task . Parameters [1] ;
thread . SocketConnect (address , remotePort , Scenar io . DEFAULT_TIMEOUT , 20) ;

return t rue ;

case 20:

// Send page r e q u e s t and move run−p o i n t e r to l i n e 30

thread . Host . Accumulate (StatTypes . HTTP_UrlRequests) ;
thread . SocketSendPacket ("GET /SOMEDATA" , nul l , 30) ;

return t rue ;

case 30:

107

Can Network Security be Fun? An agent-based Simulation Model and Game proposal

// Read r e p l y and add r e s u l t to the ta sk

PacketData response =
(PacketData) thread . SocketRead (Scenar io . DEFAULT_TIMEOUT , t rue) ;

i f (response != n u l l) {
i f (response . Content != n u l l) {

SimFi le f i l e = (SimFi le) response . Content ;
i f (f i l e i s SimFileProgram) {

i f (((SimFileProgram) f i l e) . Malware != n u l l)
thread . Host . Accumulate (

StatTypes . HTTP_ProgramFilesDownloadedMalware) ;
else

thread . Host . Accumulate (
StatTypes . HTTP_ProgramFilesDownloaded) ;

} else i f (f i l e i s SimFi leData) {
i f (((SimFi leData) f i l e) . E x p l o i t != n u l l)

thread . Host . Accumulate (
StatTypes . HTTP_DataFilesDownloadedExploit) ;

else
thread . Host . Accumulate (

StatTypes . HTTP_DataFilesDownloaded) ;
}

}

// Move run−p o i n t e r to l i n e 31 i f web c l i e n t i s running
// on a hos t at the l o c a l s i t e , o t h e r w i s e move to l i n e 40

i f (thread . Host . S i t e . I s L o c a l) {
// S to r e any r e p l y c on t en t (html− f i l e) in memory
thread . Se tVa r i ab l e (" r e s u l t " , response . Content) ;
thread . Task . Resu l t = response . Content ;
thread . Goto (31) ;

} else {
// Remote S i t e , s u c c e ed ed in download web page
thread . Goto (40) ;

}
}

return t rue ;

case 31:

// Read the reponse−c on t en t from memory and s t o r e in
// ‘ ‘ documents ’ ’ .

SimTask task = thread . Save (thread . GetVar iab le (" r e s u l t ")) ;
i f (ta sk != n u l l) {

// The save ta sk f i n i s h e d . Cont inue to l i n e 40
thread . Task . Resu l t = task . Resu l t ;
thread . Goto (40) ;

}

return t rue ;

108

Can Network Security be Fun? An agent-based Simulation Model and Game proposal

case 40:

// C l o s e the s o c k e t s e s s i o n . Move to l i n e 50 when the
// s e s s i o n has been c l o s e d . S o c k e t C l o s e w i l l b l o ck t h i s thread
// u n t i l the s o c k e t has been c l o s e d or f a i l e d due to a t imeout .

thread . SocketClose (50) ;

return t rue ;

case 50:

// E x i t and t e rmina t e the thread

thread . Return () ;

return t rue ;
}

return f a l s e ;

}

109

