Framework for generating IDS
benchmarking Data sets

Stian Skjglsvik

Master’s Thesis
Master of Science in Information Security
30 ECTS
Department of Computer Science and Media Technology
Gjevik University College, 2007

Avdeling for

informatikk og medieteknikk
Hggskolen i Gjgvik

Postboks 191

2802 Gjgvik

Department of Computer Science
and Media Technology

Gjgvik University College

Box 191

N-2802 Gjgvik

Norway

Framework for generating IDS benchmarking Data sets

Abstract

Benchmarking Intrusion Detection Systems, IDS, is needed for comparing different sys-
tems against each other and to determine how good a single system is. For this purpose
there is a need to generate test data set, which is based on real network data. To construct
data set that contains different attack profiles, special features of attacks are needed to be
determined. These can be extracted from analyzing network traffic. The thesis will pro-
pose a framework for processing captured network packets and establishing connection
records. We look into what features are relevant for IDS systems, by analyzing captured
network packets from an academic network and trying to extract different characteris-
tics that constitute attacks. These features can be used to uniquely identify a specific
attack from all the connections. The experiment is used to determine characteristics of
the constructed data set, and to determine the relevance of the extracted features.

iii

Framework for generating IDS benchmarking Data sets

Acknowledgements

During the work on this thesis I have received help and support in all phases. I am espe-
cially grateful to Professor Slobodan Petrovi¢, who has provided guidance, expertise and
encouragement during the work on my thesis. My fellow students also deserve thanks
for providing input during discussions. I would also like to thank my family and friends
for the patience and understanding they have shown. Last but not least, I would like to
thank my girlfriend for her love, support and understanding during the whole period of
time that went into this thesis.

Stian Skjglsvik, 25th June 2007

Framework for generating IDS benchmarking Data sets

Contents

BBSTract. o oot iii
|Acknowledgements| e v
Contents] e vii
List of Figures| e e e e ix
List of Tables| e e e xi
[1_Introductionl 1
|1.1 Topic covered by thisthesis| 1
1.2 Problem description|, 1
|1.3 Justification, motivation and benefits| 2
[1.4 Research questions| 2
[L5 Limitationsl oo v it 2
[1.6 Definitions]. o e e 2

2 _Previousworkl e 5
................................. 5
[2.2 Construction of features and models for intrusion detection systems by |

| data MINING| . . .+« v v o v e e e e e e e e e e e e e e e e 6
[2.2.1 Network connection records|. 7

I3 Teoretical background| 9
H VPOU .« v o o e e e e e e e e e e e e e e e 9

3.1.1 Honeyd| @ . e e e 9

[3.1.2 Configuring honeyd|. 10

[3.1.3 Honeypots deployment and setup|. 10

[3.2 Malicious traffic generator] 10
BT TNESSUS| -« oo e e e 11

|3.3 Network Protocol Analyzer and Editor] 11
B31 Wiresharkl 11

[3.4 Network Intrusion Detection System| 12
3.4. MOTH. . . v o o e e e e e e e e e e e e e e e e e e e 13

[3.5 Selection of features for IDS benchmarkingl 13
[3.5.1 Basic features of individual TCP connections| 13

[3.5.2 Content features within a connection suggested by domain knowl- |

| edgel e 14
[3.5.3 Time based traffic features computed using a two second time win- |

[dowl e e 14
[3.5.4 Host based tratfic features computed using a window of 100 con- |

| Nections] e e e e 15
|4 Experimentalwork| 19
Z P VD . . e e e e e e e e e e e e 19
[4.1.1 PreproCesSINE| . . . v v v v v v v v v e e e e e e e e e e e e e 19

|4.1.2 Establishing connectionrecords| 23

vii

Framework for generating IDS benchmarking Data sets

4.1.3 Computing features for each connection|

4.1.4 Identifying attacks| L o

4.1.5 Generatingthedataset]

|4.2 Program for comparing Snort alerts with attacks found in the data set|. . .
[4.3 Experiments|. i e e e e e e e
4.3.1 Methodology|

4.3.2 The attacks found in thedatasets|.

|4.3.3 Traffic captured by the honeypots|.

|4.3.4 Attacks found in the captured network packets|

4.3.5 The modifieddatasetl

4.3.6 Attacks in the modifieddatasetf

4.3.7 The generated dataset|.

|4.3.8 General statistics from the modified datasetl

|4.3.9 Statistics of the new content features|
..................................

|4.3.11 Relevant features for detecting a given attack type|

|4.3.12 Discussion regarding relevance of the features|.

5 Conclusions] e e
[6 Furtherworkl e

Bibliography| e
|IA Tables for each attack type|.,
|IA.1 Authorization basic overflow attempt|
|IA.2 Chunked-Encoding transfer attempt|{.
|IA.3 Cross site scripting attempt] v vt vt e e e e e e
[A4 HATTP directory traversall v o v v v v e i e e e e e

[A5 TCMPPINE NMAD| + « « v v v e v e e e e e e e e e e e e e e
IA.6 ICMP Superscanecho|

A7 TIS SAM Attempt] v it e e e e e e e e

IA.8 IS view source via translate header.
IA.9 MS-SQL Worm propagation attempt|

IA.13 Web /etc/passwd attempt]
|A.14 WebDAV search access| i i i i i e

viii

Framework for generating IDS benchmarking Data sets

List of Figures

|l Feature definition/extraction procedure| 7
2 Honeynetdeployment|0..oe.... 11
|3 A sample payload with “Directory traversal” equal to true.| 37

ix

Framework for generating IDS benchmarking Data sets

List of Tables
|L Attacks found in the captured trafficl 30
[2___Attacks found in the modified datasetl 31
I3 A smal sample of the generated dataset,part1| 33
|4 A smal sample of the generated dataset,part2f 34
|5 The relevance of features in identifying different attack types| 41
|6 TPR, FPR and FNR for the attacks found in the dataset|. 42
|7 Authorization basic overflow attempt] 54
|8 Chunked-Encoding transfer attempt|. 55
|9 Cross site scripting attempt]« . L e b i e e e 56
10 HTTPdirectory traversall 57
[T ICMPPINENMAD| . « « « v o v v e e e e e e e e e e e e e e e e 58
|12 ICMP Superscanecho| 59
[13 IIS SAM Attempt] v i e e e e e e e e e 60
1 IIS view rce via translate header]. 61
[15 MS-SQL Worm propagation attempt| 62
[[6 SYNSCATl - -« v v v oot e e e e e e e 63
1 Traceroute ICMP| e 64
[I8 Traceroute UDPl. i i ittt e e e e e e e e e e 65
[19 Web /etc/passwd attempt] 66
20 _WebDAV search access| e 67

Xi

Framework for generating IDS benchmarking Data sets

1 Introduction

1.1 Topic covered by this thesis

Benchmarking Intrusion Detection Systems, IDS, is needed to determine how good a sys-
tem is, and to test different systems against each other. For testing these systems data
sets are provided, which contain different attack profiles amongst benign traffic. Differ-
ent methods have been proposed to generate such data sets, by either simulating network
traffic [1] or extracting data sets based on real network flow. Both measures have advan-
tages and disadvantages. There has been some critique of using simulated network flow,
since it is not certain that it accurately represents the real world [2]. The main advan-
tage of using simulated traffic is that we know all aspects of the environment and no
unknown attacks can occur, it eliminates the problem of identifying unseen attacks when
using real traffic. Sometimes it is favorable to use data that are as close to the real world
as possible for generating benchmarking data sets.

This thesis will look into common attack features gathered from a real network envi-
ronment, using honeypots and tcpdump [3]]. We will deploy honeypots to gather network
traffic, due to legal concerns with capturing packets from a live network. The recorded
traffic will be used to develop a framework for extracting useful information from net-
work packets and to apply data mining techniques. The focus of this thesis is construction
of connection records and extracting features for detecting network attacks. We also pro-
vide an analysis of the attacks found in the data sets, and the possibility of detection
these by means of the extracted features. With the analysis, we try to determine charac-
teristics of the attacks and features that are relevant in generation of IDS benchmarking
data sets.

1.2 Problem description

As mentioned above, there is a need to generate test data sets for IDS benchmarking,
which are based on real data and can be shared openly between organizations [4]]. In
this thesis, we will look into what features of traffic are relevant for Intrusion Detection
Systems, based on gathered traffic from an academic network. The challenge is to analyze
network logs/traffic and try to extract different characteristics that constitute an attack.
This data will be analyzed and processed to find the appropriate features that should
be included in a benchmarking data set. There are at least two methods of processing
that are relevant for this thesis, using heuristic or finding sequences of events to identify
frequent episodes. In both cases different features will be extracted from the traffic and
be included in the benchmarking data set.

This thesis will focus on extracting features by using heuristic techniques, and analyze
these features and their relevance in identifying network attacks. We have used some of
the features found in the KDD 99 data set, but we have also added three new content
features that may be more relevant for detecting newer network attacks. The greatest
challenge in this thesis is the preparation of the recorded network packets, captured from
the traffic to and from the honeypots. This process also exports the captured packets to

Framework for generating IDS benchmarking Data sets

an XML file that the prototype can utilize.

1.3 Justification, motivation and benefits

Research into the field of generating IDS benchmarking data set based on real traffic is
justified by the fact that there have been some critique on using data sets generated from
simulated traffic. This solution is not always the best way to generate IDS benchmarking
data sets. A good data set based on real traffic would be very useful for the entire IDS
development community. Both practitioners in this field and researchers would benefit
from having such a data set, and this is a strong motive and challenge for research. The
stakeholders are both developers and users of IDS systems, because they get a common
reference data set that they can use and trust. Researchers in the field can also benefit
from having a new IDS test data set because there are very few good benchmarking data
sets available [[1} [5], and not all of them are publicly available [5]. These data sets are
also needed for doing theoretical research.

1.4 Research questions
The research questions we are trying to answer in this thesis, bearing in mind the previ-

ous discussion, are the following:

1. How can common properties of attacks be extracted from a large and evergrowing
set of attacks against computers networks?

2. What are the properties of an IDS benchmarking data set based on real traffic for
whose generation the methods of extraction of common properties of attacks have
been used?

1.5 Limitations

Because we use honeypots to gather network traffic, we do not know what kind of traffic
we capture and have to limit the number of protocols. In this thesis, we will focus on
extracting information from the four often used protocols ICMP, IP, TCP and UDP in the
prototype. The framework proposed in this thesis is a prototype for extracting features
and generate data sets, and can be used as a basis for implementing more sophisticated
data mining techniques.

1.6 Definitions
A more formal definition on terms used in this master thesis:
e Intrusion detection, defined by [6]],

is the process of monitoring the events occurring in a computer system or network,
analyzing them for signs of security problems.

e A threat, defined by [7]],

in a communication network is a potential event or series of events that could result
in the violation of one or more security goals.

e An attack,defined by [7],
is the actuall implementation of a threat.
e Vulnerability, defined by [8],

is a weakness that makes it possible for a threat to occur.

Framework for generating IDS benchmarking Data sets

Exploit is an actual implementation that utilizes a vulnerability to compromise a host,
much of the same meaning as an attack.

Detection rate, same as true positive rate, is the chance of detecting an attack.
False positive rate is the probability of generating an alarm when it is not an attack.

False negative rate is the probability of missing an attack, meaning no alarm is gener-
ated when an attack occurs.

Framework for generating IDS benchmarking Data sets

2 Previous work

2.1 KDD CUP 1999

As stated in the introduction, there exist several data sets for benchmarking IDS systems.
There are several problems related to these sets [2]] and one of the most widely used is
the KDD CUP data. This set is based on the results from the intrusion detection evaluation
done by the Lincoln Laboratory in co-operation with DARPA, which took place in 1998
and 1999 [9, [10]. Other data sets are often not available for the general public, which
makes it difficult for comparison.

In 1998 and 1999 the Lincoln Laboratory of MIT conducted an evaluation on certain
intrusion detection systems. The two data sets used in these evaluations were training
and test data set. Training data were gathered from a simulated network using network
traffic and audit logs. These were then given to the participants that used them to adjust
and test their algorithms using off line evaluation.

The data gathered from the test performed by MIT was used as basis for the KDD
CUP data mining competition in 1999 [1} [11]]. The data mining task was to build a
predictive model to classify and distinguish between “bad” and “good” connections using
some sort of classifiers. The attacks contained in the data set were divided into four main
categories:

e DOS: denial-of-service, e.g. SYN flood.
e R2L: unauthorized access from a remote machine, e.g. by guessing a password.

e U2R: unauthorized access to local superuser (root) privileges, e.g. various buffer over-
flow attacks.

e Probing: surveillance and other probing, e.g. port scanning.

For these general attacks, 41 features were extracted that contained properties of the
attacks in question. These were grouped into several general categories:

e Basic features related to basic TCP properties of individual connections (host based
traffic features), e.g. protocol, flags, duration.

e Content features within a connection suggested by domain knowledge, e.g. number
of failed login attempts or number of root accesses.

e Traffic features computed from a two second time window, e.g. number of connec-
tions to the same host given an interval of 2 seconds or percentage of connections
that have SYN errors using a two second window.

To construct the basic features of a TCP connection, the connection records were
sorted by destination hosts. Some probing attacks can use long period of time to com-
plete, example scanning hosts or ports using a time interval of several minutes between
requests, a time window was not used to construct these features. Instead a window of
100 connections to the same host was used to construct the host based traffic features to
not miss these attacks.

Framework for generating IDS benchmarking Data sets

Content features within a connection suggested by domain knowledge are constructed
from the information in the data portion of a network packet. Looking into the unstruc-
tured data is an area that is open for research. Finding good algorithms for mining the
payload of packets automatically is difficult. To construct features that looked for sus-
picious behavior in the packet payload domain knowledge was used together with data
mining techniques. An example of a content feature is a high number of failed login
attempts.

Time based features consist of same host and same service features of connection
records. Same host features were constructed by analyzing connection records with con-
nections to the same destination as the current connection in the past two seconds. Same
service features were constructed using the same methodology by analyzing connection
to the same service as the current in the past two seconds. Statistics related to protocol
behavior, service and so on were computed and included as time based features.

2.2 Construction of features and models for intrusion detection sys-
tems by data mining

For constructing features as found in the KDD CUP 1999 data set, a data mining frame-
work was developed for building intrusion detection models [12][13]]. This work is based
on the field of knowledge discovery in databases (KDD) and can be defined as [[14] the
nontrivial process of identifying valid, novel, potential useful and ultimately understand-
able patterns in data. The KDD process involves a number of steps: interactive, iterative
and user-driven [12][15]:

e The first step is learning the application domain by doing theoretical research in an
attempt to understand the data and the discovery task.

e The next step is preparation of the data. Removing noise and perform data cleansing
to create a target data set. Another option is to focus on a subset of variables extracted
from the whole data set. Often data reduction and projection is performed, by finding
useful features to represent the data and reduce the effective number of variables to
consider. This process involves dimensionality reduction and transformation of the
data in question.

e After the preparation of the data, data mining techniques are applied. First the func-
tion of the data mining is established. It includes deciding the purpose of the model
derived from the algorithms, e.g. classification, summarization, regression or cluster-
ing. The model depends of the data in question and the desired output from the data
mining techniques. After the model is decided, appropriate algorithm(s) are chosen
to search for patterns of interest.

e From the data mining, the results are interpreted, and the discovered patterns can be
used to possible return to any of the previous steps to remove redundant or irrelevant
information. After the results are interpreted, useful patterns are presented to the
users.

e The last step is to use the discovered knowledge, e.g. incorporating this knowledge
into a system or just document and report it to interested parties. In case of this thesis,
this step result in generating a new data set.

Framework for generating IDS benchmarking Data sets

For this thesis the greatest challenge is the step of data preparation, and here lie
the problems. Preparing the gathered information was necessary in order to be able
to extract useful features to represents attacks. The data mining [16]] process is also a
very important step in the KDD process and has been getting the most attention in the
literature. Several algorithms are particularly relevant for the field of intrusion detection:

e Sequence analysis, models sequential patterns and these algorithms can discover
what time based events are frequently occurring together.

e Link analysis, determines the relations between fields on the database records.

e C(lassification, classifies the data into one of several predefined categories. The algo-
rithms normally output “classifiers” in the form of sets, e.g. decision trees or rules.

models

o] .
connectiony/
[SOSSION ;
records evaluation
feedback

?

/’_\J o

Figure 1: Feature definition/extraction procedure [12]

As it is described in [12], Figure [1} the feature definition/extracting procedure is
processing raw binary audit data into ASCII network packet information. This is in turn
summarized into connection records, containing a number of connection properties, e.g.
service, duration, flags etc. Data mining programs are then applied to the connection
records to compute the frequent patterns, which are analyzed to construct additional
features for the connection records. Then a classification program is used to learn the
detection models. This last process is of course iterative.

In this thesis, we focus on the data preparation and establishing connection records
from these packet events. We focus our attention on the three first steps of the data
mining framework in building the prototype. After we have generated a data set and
begin to analyze the results, our focus shifts to the last two steps of the process.

2.2.1 Network connection records

In this section we give a brief review of connection records, all the terms used here
will be explained more thorough in the experimental work section. A connection record

Framework for generating IDS benchmarking Data sets

contains information about one specific connection between two hosts. This connection
(or host session record) can be uniquely identified by the combination of its time (start
time), src_host, src_port, dst_host, and service (destination port) [[17]. The src_host and
src_port contain information about the host that initiated the connection, and the respon-
der host is identified by the dst_host and service fields. These attributes are essential for
network packets, and they are extracted from the packet headers. In addition to these,
other attributes are needed for doing a network analysis. These attributes are called “in-
trinsic” features, and examples of these are: src_host, src_port, dst_host, service, duration,
src_bytes and dst_bytes. The content of the network packets, which are sent in both direc-
tions between the originator (src_host) and responder host (dst_host), are also stored in
the connection record.

Features of a connection are extracted/computed from the connection records to cre-
ate additional attributes for each connection. These are computed from the “intrinsic”
features of a connection or by the payload to the packets that belong to the connection,
more details in Section [4.1]

Framework for generating IDS benchmarking Data sets

3 Teoretical background

3.1 Honeypot

Honeypots are decoys that serve several purposes. They can distract attackers from valu-
able machines on a network, can provide early warning about new attack and exploita-
tion trends or allow an in-dept analysis of computer attacks and methods. To get early
warning about new vulnerabilities we can install a honeypot. Every attempt to contact
this system via the network is suspicious, and if the honeypot is compromised we can
study the vulnerability that was used to compromise it.

In order to make the honeypot an attractive target, it can be configured to run any
operating system and any number of services. There are two kinds of honeypots, physical
and virtual. Virtual honeypots are the preferred choice, since it is possible to populate
a network with hosts running numerous operating systems on one physical machine. To
convince the attackers that the honeypot is running a given operating system, it needs to
simulate the TCP/IP stack of the target operating system. This has to be done with care,
in order to mislead TCP/IP stack fingerprint tools like Nmap [18].

Honeypots are divided into two general categories:

e Production honeypots help mitigate risks and are typically implemented to aid in
detecting computer attacks against the organization.

e Research honeypots are used to gain information about computer attacks and to an-
alyze the methods the attacker’s use, like the identity of the attackers and what kind
of tools they use.

Based on the level of interaction, honeypots can be classified by one of three categories
[19]:

e Low interaction is used primarily in production honeypots. They are easy to install
and can emulate very few services. An example of a low interaction honeypot is hon-
eyd [20].

e Medium interaction offers the attackers more ability to interact than the low, but they
have less functionality than the high interaction. They are designed to give certain
predefined responses to a number of activities and provide more information about
the attacker than the low interaction honeypot.

e High interaction is time consuming to build and maintain with the highest level of
risk. The goal is to give the attacker access to real operating systems, where nothing
is emulated or restricted. As a result, more information about computer attacks is
gathered than by implementing a medium or low interaction honeypot.

3.1.1 Honeyd

In this thesis, we use honeyd [21] to simulate a network. It is less complicated to build
and maintain and is useful for gather information about network probes or worm activity.
Honeyd is designed to reply to network packets, whose destination IP address belongs
to one of the simulated hosts. It can only process three of the major Internet protocols:

Framework for generating IDS benchmarking Data sets

ICMP, TCP and UDP. Packets containing other protocols are logged and discarded. The
personality engine makes the network stack of the honeypot behave as specified for any
given operating system. This is achieved by simulating the behavior by changing the
protocol headers of every outgoing packet to match the characteristics of the configured
operating system. For each virtual operating system hosted by the honeypot, different
TCP/IP services can be configured to be offered to an attacker. These services are emu-
lated by scripts that listen on specified ports and interact with attackers in a predefined
manner.

3.1.2 Configuring honeyd

In honeyd a virtual host is configured by creating a template of the given operating system
in the configuration file called honeyd.conf [22]. This file defines the characteristics of
the simulated host including the operating system, the port it listens to and the behavior
of the emulated services. Each template is given a name and a new template is created
by using the create command. The set command assigns a personality to the template;
block, reset or open that defines the default behavior for the network protocols. When
using the block keyword, all packets for the specified protocol are dropped by default.
Reset indicates that all ports are closed by default for the specified protocol. Open means
that all ports are open for the given protocol. By using the add command, an emulated
service can be added to the template with the behavior predefined by the given script.
The bind command is used to assign an IP address to the template.

3.1.3 Honeypots deployment and setup

In this section, we describe the setup of the honeypots we used to gather traffic for the
prototype and experiments in this thesis. We used 4 computers in deploying the honey-
pots. In addition, we obtained 8 valid IP addresses assigned to an IDS segment, which is
directly connected to the ISP of the institution [23]] in other words no traffic is blocked
by the institution’s firewall. In order to be able to capture packets and minimize the risk
of an attacker detecting it, we use transparent bridges in front of the computers run-
ning honeyd. This is realized by installing OpenBSD [24] and using the built-in bridging
functionality [25]]. By enabling the bridging functionality, we also had to enable packet
filtering on the OpenBSD hosts. We created a very simple packet filter that allowed all
inbound and outbound traffic to pass through the bridge. All traffic passing through the
bridges is logged by tcpdump [3]]. The network setup is presented in Figure

In theory, all traffic to a honeypot is regarded as suspicious traffic, but we cannot
conclude that all traffic is malicious. We need to identify the network packets that can
constitute an attack. For this purpose we use an IDS to automatically report possible
malicious packets, to the best of the selected system’s knowledge. The traffic can con-
tain other attacks that the IDS fails to identify, but given the volume of traffic it is very
cumbersome to identify the attacks manually or by some other method.

3.2 Malicious traffic generator

In order to get different types of attack we need to use malicious traffic. There exist
several vulnerability scanners that can be used for this purpose. One of the most popular
scanners is Nessus. Another program is the Metasploit framework [26]], which is a research
project for developing, testing, and using exploit code. This program was difficult to use
and we had problems with making the exploit work and capturing the packets. For this

10

Framework for generating IDS benchmarking Data sets

Bridge 1
OpenBSD 4.0 Bridge 2
Running OpenBSD 4.0
tepdump Running
tepdump
Honeynet 1
Hosting 5 virtual Honeynet
host Hosting 1 virtual

host

W1

Figure 2: Honeynet deployment and network packet gathering infrastructure

thesis we have concentrated on using Nessus and a selection of computer attacks from it.

3.2.1 Nessus

In order to control the number of attacks and the attack types, we need a vulnerability
scanner. Nessus [27] is a popular network vulnerability scanner that can be used as a
penetration testing tool. It contains a number of plugins to generate different types of
malicious traffic against the host to be scanned. This makes it easy to reproduce the traffic
flow and it has the ability to automate the process in a simple manner. It depends on
Nmap and performs various checks to determine which services and software packages
are running on a remote host. By determining the versions of the software in question,
it can determine if they are subject to known vulnerabilities. After Nessus is finished with
scanning the remote host, it produces a report of its findings and explains what can be
done to fix possible vulnerabilities.

The Nessus architecture consists of a client and a server. The server launches all the
scans, while the client controls the process and views the report. This makes Nessus flex-
ible and useful. Since the IDS segment is totally separated from the rest of the network
in this organization, we need to either be on the same segment as they are or from a
connection outside the organization in order to contact the honeypots. With Nessus both
options are possible, due to the client-server architecture.

3.3 Network Protocol Analyzer and Editor

The captured network traffic is stored in a binary tcpdump file. All the information about
network packets and payload are stored in this manner, and we need to parse this file
in order to extract useful and valuable information. Reading a binary file containing
network packets with different protocols is cumbersome, and to reduce the workload we
need a network protocol analyzer. Wireshark [28] is such a tool and it is based on the
source code from Ethereal [[29].

3.3.1 Wireshark

Wireshark is a free network protocol analyzer for Unix and Windows systems. It can also
be used as a packet sniffing application, and it uses the pcap library to capture packets.

11

Framework for generating IDS benchmarking Data sets

In addition to capture live traffic, Wireshark can read many different capture file formats.
Wireshark can capture data from numerous physical media and many network protocols
are supported, including decryption support for some protocols e.g. IPsec, SSL/TLS , etc.
It can also export network packets to XML (PDML), PostScript, CVS or plain text files. This
feature is necessary for the prototype, as it reads an XML file containing all the packets.

In addition to exporting a tcpdump file, other features of Wireshark are used to pro-
cess the network packets. We have modified the protocol dissectors of Wireshark to only
decode the following protocols:

e Ethernet, Protocol for the physical protocol of the transmission medium, needed for
decoding higher layer protocols.

e ICMP, Internet Control Message Protocol.
e [P, Internet Protocol.

e TCP, Transmission Control Protocol.

e UDP, User Datagram Protocol.

In this thesis, we focus on these protocols and the prototype is designed with these
protocols in mind, since these are a selection of the often used protocols for launching
network computer attacks. Information about other protocols will not be extracted in the
prototype, and therefore these protocols are not decoded in Wireshark.

Wireshark has also a method of filtering out packets we do not need, and this is
useful in removing packets that do not belong to any connection. These packets are not
included in the data set, since many of the extracted features are based on different
properties of a connection. Unwanted packets must be filtered out manually and this
task can be time consuming, if the number is relatively large. Wireshark seems to have a
limitation on the length of the filtering string and we were not able to remove more than
140 packets simultaneously. To remove all unwanted packets we had to run Wireshark
multiple times and remove 140 packets at the time. The prototype identified all packets
not belonging to any connection and created a file with the filtering string for each time
we had to run Wireshark. After all unwanted packets were removed from the tcpdump
file, we exported the file to the PDML format and executed the prototype to verify that
all unwanted packets were removed and no other packets had been removed.

Another feature of Wireshark we need in order to construct the data for the prototype,
is the ability to merge tcpdump files together to one file. This allows us to mix different log
files and files containing computer attacks that we have launched against the honeypots.
The network packets are merged chronologically by the individual timestamp and stored
in a new file.

3.4 Network Intrusion Detection System

In order to test the data set produced from the processing of captured data from the
honeypots and running vulnerability scanner, we need an IDS. In this thesis, we have
chosen Snort [[30]. It can also be used in identifying computer attacks launched against
the honeypots and reduce the time spent on investigating the gathered network flow.

12

Framework for generating IDS benchmarking Data sets

3.4.1 Snort

Snort is an open source network IDS, first published in 1998 and has become one of the
widest deployed IDS. It is mainly a misuse detection system, but it also has some anomaly
detection capabilities. The signatures required by Snort are expressed by a lightweight
rule description language, which is easy to understand and allow users to modify or
create customized rules. New rule sets are provided by an update service and to get the
freshest rules users need to subscribe. Snort is capable of monitoring 100Mbit networks,
but experience packet loss on higher bandwidth network links. To reduce packet loss
on higher bandwidth networks Snort can be deployed using a distributed architecture.
By deploying multiple Snort sensors and configuring these to only look at portions of
the traffic flow through a high speed link, together they can monitor the entire network
traffic [31]].

Snort has the ability to read from captured network flow and identify possible com-
puter attacks in the provided tcpdump file. This feature is needed for analyzing and test-
ing the generated data set in this thesis. The log file containing the findings from Snort
is compared against the information in the data set, in order to determine the character-
istics of the data set.

3.5 Selection of features for IDS benchmarking

As mentioned in previous work, the KDD 99 benchmarking data set contains 41 features
for each connection. These features are grouped into four categories.

3.5.1 Basic features of individual TCP connections

Duration

The duration of the connection measured in seconds, continuous feature. Calculated
from the time elapsed between the last and the first packet in the connection.

Protocol type

This feature indicates the type of transport protocol used in the connection, e.g. TCP,
UDP.

Service

It indicates the destination service for the connection, e.g. 80 = HTTP or 22 = SSH.
Flag

Status flag of the connection. Indicates in which state the connection was ended.

Source bytes

Number of bytes sent from the source to the destination host, by summarizing all packets
sent from the source.

Destination bytes

Number of bytes sent from the destination to the source host of the connection.

Land

Indicate if land attack is attempted. 1 if connection is from/to the same host or port, 0
otherwise.

Wrong fragments

The number of wrong fragments in the connection.

13

Framework for generating IDS benchmarking Data sets

Urgent

The number of urgent packets in the connection.

3.5.2 Content features within a connection suggested by domain knowledge
Hot

Number of “hot” indicators. We have omitted all of the content features found in the
KDD CUP 99 data set in our prototype, since these indicators are rather old and are not
relevant any more.

Failed logins

The number of failed login attempts.

Logged in

Indicates if the connection was a successful login, 1 if successfully logged in or O other-
wise.

Number of compromised

The number of “compromised” conditions.

Root shell

Indicates if root shell is obtained, 1 if true otherwise 0.

Su attempted

Indicates if the command “su root” is attempted in the connection, 1 if true otherwise 0.

Number of root accesses

A counter of the number of root accesses by the duration of the connection.

Number of file creations

The number of file creation operations by the duration of the connection.

Number of access files

The number of operations on access control files.

Number of outbound cmds

The number of outbound commands in an ftp session, given that the connection is an ftp
session.

Is hot login

Indicates if the login belongs to a defined “hot” list, 1 if true otherwise O.

Is guest login

Indicates if the user attempting to login is using a guest account, 1 if that is the case
otherwise 0.

3.5.3 Time based traffic features computed using a two second time window
Count

The number of connections to the same host as the current connection in the past two
seconds.
Srv count

The number of connections to the same service as the current connections in the past
two seconds.

14

Framework for generating IDS benchmarking Data sets

Serror rate

The rate of connections to the same host as the current connection in the past two sec-
onds that have “SYN” errors.

Srv serror rate

The rate of connections to the same service as the current connections in the past two
seconds that have “SYN” errors.

Rerror rate

Same as with “Serror rate” only with “REJ” errors instead of “SYN.”

Srv rerror rate

Same as with “Srv serror rate” only with “REJ” errors instead of “SYN.”

Same srv rate

The rate of connections to the same service in the past two seconds as the current con-
nection.

Diff srv rate

The rate of connections to different services in the past two seconds as the current con-
nection.

Srv diff host rate

The rate of connections to different hosts in the past two seconds using the same service
as the current connection.

3.5.4 Host based traffic features computed using a window of 100 connections
Dst host count

The number of connections to the same destination host.

Dst host srv count

The number of connections to the same destination host using the same service.

Dst host same srv rate

The rate of connections to the same destination host using the same service.

Dst host diff srv rate

The rate of connections to different services on the current destination host.

Dst host same src port rate

The rate of connections to the current destination host, having the same source port.
Dst host srv diff host rate

The rate of connections to the same service coming from different hosts.

Dst host serror rate

The rate of connections to the current destination host that have an “S0” error.

Dst host srv serror rate

The rate of connections to the current destination host and the specified service that have
an SO error.

Dst host rerror rate

The rate of connections to the current destination host that have an RST error.

15

Framework for generating IDS benchmarking Data sets

Dst host srv rerror rate
The rate of connections to the current destination host and with the specified service that
have an RST error.

In this thesis, we concentrate on extracting most of the features found as basic features
of individual TCP connections, and a selection of traffic features. The selection of have
taken into considerations the work done by [32]], were they look into the relevance of
the features found in the KDD Cup 99 data set. In addition, we have created three new
features that may be relevant for detecting network attacks. These are content features
that are relevant for detecting newer attacks, than the attacks found in the KDD data set.
The following features are extracted from each connection by the prototype:

e Duration, basic feature of time elapsed for the whole connection.
e Protocol, either: ICMP, TCP or UDP.
e Service, port number of the responding host in the connection.

e Src Bytes, number of bytes, including header information, received by the responding
host.

e Dst Bytes, number of bytes, including header information, received by the originating
host in the connection.

e Land, indicates if the source and destination host are the same or the port numbers
are the same. This is used to create Denial of Service attack, called the Land attack.

e Urgent, number of packets in the connection with the urgent flag enabled.

e Access to passwd attempted, new content feature indicating if someone is attempting
to request the passwd file.

e Cross site scripting attempted, new content feature indicating if cross site scripting
attack is attempted.

e Directory traversal attempted, new content feature indicating if a user attempt to
traverse directories on a remote host.

e Count, traffic feature indicating the number of connections to the same service as the
current connection in the past two seconds.

e Same srv_rate, rate of connections to the same service with the same host as the
current connection in the past two seconds.

e Diff srv rate, rate of connections to different service with the same host as the current
connection in the past two seconds.

e Srv_count, count of connections to the same service with the same host as the current
connection in the past two seconds

e Srv_diff host rate, rate of connections to different host and with the same service as
the current connection in the two past seconds.

Most of these features are the same as found in the KDD CUP 99 data set, but we have
also added three new content features. Many of the content features found in the KDD

16

Framework for generating IDS benchmarking Data sets

data set are relevant for Unix systems and some of the features are difficult to determine,
the content features used in the KDD CUP data set. Therefore we have excluded all
content features found in KDD data set, and replaced them with three new ones. The
new content features are designed with an idea of aiding to identify newer attacks found
in today’s network computer attacks [33]]. These content features are selected based on
statistics related to attacks captured by the honeypot, as well as having in mind the
current hacker trends [34].

We have focused on attacks directed against web applications, which is one of the
types of attacks we have obtained by deploying the honeypots. In addition to the captured
attacks, we have added newer attacks on web applications. These have been chosen
based on the findings from reports, such as [133} (34} [35]], and the possibility of launching
the attack against our honeypots. We have added cross site scripting attacks, which is one
of the often used attacks against web servers according to the papers. In an attempt to
identify the connections containing these attacks, we have added the “Cross site scripting
attempt” features. The “Directory traversal attempt” feature has been added to identify
the connections, which contains the “HTTP directory traversal” attack captured by the
honeypots. The last feature has been added for detection attacks that tries to access the
passwd file in the /etc directory. This attack, if successfully executed, allows an attacker
to access the passwd file, which in turn can possible compromise user accounts on the
attacked system. More details on these three new content features are provided in Section

17

Framework for generating IDS benchmarking Data sets

4 Experimental work

In order to process network logs, containing traffic flow to and from the honeypots, we
developed a prototype for extracting useful information from individual network packets.
Such a framework is essential to perform data mining techniques and experiments, using
the processed network packets. The main idea was to develop a prototype to use as a
framework for extracting features. It can also be used as a basis for generating frequent
episodes and generalized episodes [36} (37} [38] from network connections, by looking
into sequence of events.

4.1 Prototype

The prototype was developed for doing preprocessing of network packets, establishing
connection records based on the previous preprocessing and calculating features for each
connection to be included in the data set. The data set produced by the prototype also
contains a label, to indicate if the connection contains an attack or is part of the normal
traffic.

4.1.1 Preprocessing

The preprocessing of network packets, include extracting relevant and useful information
about network packets. Before the prototype can perform this task, we must export the
binary tcpdump file containing all the network packets to another format. The prototype
we have developed reads the packets from a PDML file, which stands for Packet Details
Markup Language and is an XML file containing the most important information about the
fields and protocols in a packet. This file is created by Wireshark (for more information
see the Section[3.3.1}) The prototype reads the provided PDML file and depending on the
protocols in each packet different information is extracted.

Generic information for all packets

All the packets captured by tcpdump contain some general fields in the PDML file. From
this information, some fields are extracted in order to identify each individual packet:

e Packet number. Used as an ID for each packet, a consecutive number generated by
Wireshark.

e Size. Size of the captured packet.

e Timestamp. Time of capture for the packet. Timestamp of when the packet was cap-
tured by tcpdump running on the OpenBSD bridges in front of the honeypots.

e Protocols. Name of all the protocols in the packet, used for identifying protocols and
extracting the appropriate information.

Depending on the protocols in the packet the appropriate information is extracted.

Internet Protocol

The Internet Protocol version 4 is defined in RFC 791[39]] and has a minimum size of 20
octets, or 160 bits. The protocol header has the following fields:

19

Framework for generating IDS benchmarking Data sets

Version

Indicates the version number, which is either 0100 for IPv4 or 0110 for IPv6. This infor-
mation is not extracted as it does not provide any information in terms of detection of
network computer attacks.

Internet header length

Length of header in 32 bits words. According to the specification the minimum value is
five, for a minimum header length of 20 octets.

Type of service

It is a field of eight bits to provide guidance to end system and routers along the path, in
selection of the actual service parameters.

Total length

This 16 bits filed indicates the total length of the IP packet including the header length.

Identification

A 16 bits field containing a sequence number that, together with the source address,
destination address and user protocol is intended to uniquely identify a packet.

Flags

Only two bits of this three bit field are currently defined. When a packet is fragmented,
the More bit indicates whether this is the last fragment in the original packet. The Don’t
Fragment bit prohibits fragmentation when set. This bit may be useful if it is known that
the destination host does not have the capabilities to reassemble fragments. By setting
this bit and the packet exceeds the maximum size permited in the network, the packet
will be discarded.

Fragment offset

It is a 13 bits field that indicates where in the original packet this fragment belongs,
measured in 64-bit units. This implies that fragments other than the last fragment must
contain a data field that is a multiple of 64 bits in length.

Time to live

The eight bits field that specifies how long, in seconds, the packet in question is allowed
to live. Every router that processes the packet must decrease this counter by at least one,
so it is quite similar to a hop count.

Protocol

This eight bits field indicates which higher level protocol follows in the packet after the
IP header.

Header checksum

The 16 bits field that contains output from an error detection code performed on the
header.

Source address

This 32 bits field identifies the source of the IP datagram.

Destination address

This 32 bits field identifies the destination of the IP datagram.

20

Framework for generating IDS benchmarking Data sets

Options

This is a variable size field to encode options requested by the sending user.

Padding

Variable size field used to ensure that the packet header is a multiple of 32 bits in length.

User Datagram Protocol

The User Datagram Protocol is defined in RFC 768, [40]], and is designed to allow applica-
tions to exchange messages over a packet-switched computer network using a minimum
number of protocol mechanisms. This protocol is connection-less, meaning no connec-
tion is initiated before the transfer of information begins. The protocol header contains
the following fields:

Source port

It is a 16 bits field that identifies the source port. This field is not required, but in order
to be able to receive any meaningful message it must the set. If it is not used, it must be
set to zero.

Destination port

This is a 16 bits field that identifies the destination port and it is required to be set.

Length

It is a 16 bits field that specifies the length of the whole datagram in bytes. The minimum
length is eight bytes, which is the minimum size of the header. The maximum theoretical
length of an UDP datagram is 65 527 bytes.

Checksum

This is a 16 bits field used for error-checking of both the header and data of the UDP
datagram.

All these fields are extracted from the packet, in case of a UDP datagram. If the data-
gram contains a payload, this is also extracted.

Transmission Control Protocol

The Transmission Control Protocol is defined in RFC 793 [41]], and is one of the core
protocols of the internet suite. The protocol is connection oriented, unlike its counter-
part UDP, and a connection must be initiated before any data can be transmitted across
the network. It supports most of the popular internet application protocols and it is
also widely used for transfer of information between applications. Because TCP supports
many application protocols and only one header version is defined, the header must in-
clude all the protocol mechanisms needed. This leads to the header being rather large,
with a minimum length of 20 octets, 160 bits. The header fields are the following:

Source port
This is a 16 bits field that identifies the source port on the source host of the datagram.
Destination port

It is a 16 bits field similar to the source port, only identifying the destination port. This
field is equal to the service on the destination host.

21

Framework for generating IDS benchmarking Data sets

Sequence number

This is a 32 bits field with a dual role. If the SYN bit is set the initial sequence number
and the first data byte is the sequence number plus one, otherwise the sequence number
is the first data octet in this datagram.

Acknowledgment number

It is a 32 bits field with the sequence number of the next data octet the sender of the
datagram expects to receive next. The acknowledgment flag must be set if the datagram
contains an acknowledgment number.

Data offset

This four bits field specifies the length of the TCP header in 32 bits word. The minimum
length of the header is five, giving a header length of 20 bytes.

Reserved

It is a six bits field reserved for future use, should be set to zero.

Flags

This is a six bits flags vector.

e URG: Urgent pointer field is significant.

e ACK: Acknowledgement field is significant.
e PSH: Push function.

e RST: Reset the connection.

e SYN: Synchronize the sequence numbers.
e FIN: No more data from the sender.

Window
This is a 16 bits field used for flow control. It contains the number of data octets, bytes,
beginning with the one indicated in the acknowledgment field that the sender is willing
to accept.
Checksum
It is a 16 bits field that contains a checksum for both the header and data used for error
checking.
Urgent pointer
This is a 16 bits field that points to the last octet in a sequence of urgent data, allows the
receiver to know the amount of urgent data.
Options
It is a field of variable size with different kinds of options. The length of this field must
be a multiple of 32 bits.

All the previous fields are extracted from the packet descriptions, except Urgent
pointer and Options. In addition the data, or payload, of the TCP datagram is extracted.
Internet Control Message Protocol

The Internet Control Message Protocol differs from both TCP and UDP, since it is not de-
signed to transfer messages between user applications in the same manner as the other
protocols. It is designed in mind of providing feedback about problems in the communi-

22

Framework for generating IDS benchmarking Data sets

cation environment. [CMP messages are typically used to report errors in processing of
IP datagrams. The protocol is defined in RFC 792 [42].

ICMP messages are sent using the basic IP header. The message format of the protocol
is added to the data portion of the IP datagram. Depending on the message type, dif-
ferent message format is added to the payload of the IP datagram. The first field in the
message format is the ICMP Type. This value determines the remaining of the message
format. Usually the message format also contains a Code field to indicate a more accu-
rate description of the ICMP Type. Depending on the type of ICMP message the following
information is extracted:

e Type, what kind of message this is.

e Code, a more detailed description of the message type.
e Identifier, in aid of matching echos and replies e.g. ping.
e Data, payload of the ICMP message.

Some messages are responses to connection attempts made by other host. In these
cases the payload of the message includes other protocols, like TCP or UDP. The proto-
type also extracts the necessary information about the protocol in the payload, for later
identification of the right connection.

4.1.2 Establishing connection records

After all the packets have been processed and the appropriate information have been
extracted, packets are gathered into connection records. This process involves checking
each packet against all others to see if there are packets that belong to the same connec-
tion. The conditions for a packet to be in the same connection as others: the source and
destination host must be the same and the source and destination port must be the same
in case of TCP or UDP packets. A connection must contain packets in both directions,
meaning each host must at least have sent one packet to the other. For TCP connection
the next packet in the connection must have been received before a defined timeout ex-
pires. The value used is as defined in the TCP protocol, which should be 2 times MSL
(maximum segment lifetime). On most systems MSL is 120 seconds, resulting in a time-
out value of 240 seconds. Only TCP connections have this defined timeout, and this is
not taken into account when establishing connection records for other protocols. Each
connection has the following properties:

e The start time of the connection.

e The end time of the connection.

e Originating host. The host that initiated the connection.

e Originating port. The port on host that initiated the connection.
e Responding host. The host that responded to the connection.

e Service. The port on the host that responded to the connection.
e All the captured packets in the connection.

The process of creating connection records is a time consuming task that grows signif-
icantly by the number of packets needed to be examined. Therefore the prototype can
load a previously saved file, which contains packets, connection records and information

23

Framework for generating IDS benchmarking Data sets

about attacks to label the data set.

4.1.3 Computing features for each connection

After all the packets have been gathered into connection records, the prototype can com-
pute different features for each connection. As mentioned in Section most of the
features are related to properties of a basic TCP connection. Some traffic features are
extracted and we have added three new content features. Since the KDD CUP 99 data set
is based on attacks from the Lincoln Laboratory IDS evaluation performed in 1998 and
1999, the attacks found in this set are well known and not so much in use today. There-
fore we have replaced the content features found in the KDD CUP 99 data set with three
new ones, which may be more appropriate for identifying newer attack types. These
content features are determined by decoding the payload of each packet in a connec-
tion. Since each payload is represented using hex numbers, the information must first be
transformed to the equivalent ASCII character, if the hex value is a valid character, before
it can be examined. All these new features are limited to web attacks, meaning the attack
is against a host running a web server. In this thesis, all web traffic uses port 80 for the
communication.

Access to passwd attempted

As mentioned in Section this feature indicates if someone is attempting to access
the passwd file by sending a request to a web server of the remote host. This feature
is relevant for Unix based operating systems, which can store the password file in the
directory /etc. All Unix based systems running a web server can be vulnerable to this
attack. A positive value indicates that the payload of a packet in the connection, with the
destination port 80, contains the following request: “/etc/passwd”.

Cross site scripting attempted

This feature is used to indicate if someone is attempting to use cross site scripting tech-
niques, in an attempt to inject code of their choice. By sending a specially crafted input
to a web application that accepts this without filtering and use it as part of the HTML
of a new page, an attacker can exploit this vulnerability by cross site scripting attack.
The input can be designed in many different ways, but we have focused on one of the
simplest types. A positive value indicates that the payload of a packet in the connection,
with destination port 80, contains the following characters: “<script”. Many older web
servers and various web applications are vulnerable to this attack, and the attack is rel-
ative simple to launch as automated exploit code exists. This feature can generate false
positives, if a web application is designed to accept input that contain scripts. False posi-
tives are not generated in this thesis, as all connections with a positive value do contain
an attack.

Directory traversal attempted

This is the last content feature in the data set, it indicates if someone is attempting
to traverse directories by sending a request in the payload of a packet. This technique
can also be part of a lager attack, e.g. someone attempting to obtain a native shell by
using directory traversal vectors. A positive value indicates that a packet in a connection,
with destination port 80, contains characters for traversing directories, e.g. “..\” or “../”.
These attack vectors are very simple to launch and do not require any exploit software.
Bad links in web pages can contain such a sequence, and can therefore generate false

24

Framework for generating IDS benchmarking Data sets

positives with this feature. All the connections in our data sets, which contain a positive
value for this feature, contain some sort of attack vectors to attempt directory traversal
and therefore we have no false positives concerning this feature.

In addition, 12 other features are extracted as listed in Section of the total 15
extracted features for any given connection.

4.1.4 Identifying attacks

The task of identifying all attacks in the captured traffic log is cumbersome. This can be
done manually, by inspecting all the individual packets gathered from the honeypots. The
other option is to use an IDS, like Snort, to inspect the log file and use the classification
of attacks that it produces as a means of identification. We have chosen the latter option,
since it is less time consuming and manually inspecting packets is not really an option
when we have such high amounts of packets to investigate. To produce the alert file from
Snort, we have used the official Snort rule set for registered user as 10.01.2007 and the
following options:

Snort.exe -e -1 c:\Snort\log\<directory to save log>
-c c:\Snort\etc\snort.conf -r <tcpdumpfile to replay>

For identifying connections that contain computer attacks, the alert file is processed
and necessary information for uniquely identifying the network packet that contains the
attack is extracted. This information is stored in an attack file, where we also can add new
attacks if needed. The prototype processes the attack file to find the time of attacks. The
timestamp of the attack is used together with other relevant information from the alert.
To successfully identify an attack in a connection, several conditions must be fulfilled.
The first one is related to time of the attack. Since there are no discrepancies between
timestamps of packets and alert time, the packet in the connection has to have the same
timestamp as the alert. All the packets in the connection that match the timestamp of
the alert and have the same source and destination address as the attack will be further
analyzed. There are several other factors that identify the right packet:

e Sequence and Acknowledgement number, in case of TCP packet.
e Source and Destination ports.
e ICMP Code and Type.

In order to identify an attack, the timestamp, source and destination and one of the
factors in the previous list must match with a packet. Since a connection consists of
several packets, in theory one connection can contain several attacks of the same type.
We do not distinguish on the number of attacks in a connection, only the classification of
the connection is important in this thesis.

4.1.5 Generating the data set

After packets have been gathered into connection records, the prototype can generate the
data set. This process involves identifying all the attacks found in the connections and
calculate features for each connection. Each of the connections obtains a label indicating
if it is a part of the normal traffic or it contains one or more packets that is an attack. The
data set is stored on a text file for further analysis.

25

Framework for generating IDS benchmarking Data sets

4.2 Program for comparing Snort alerts with attacks found in the
data set

We have also developed a small program to aid in the experiments on the generated
data set. The purpose of the program is to compare the alerts generated by Snort when
processing the tcpdump file containing the data set, with the attacks we have identified.
This way we can determine the detection rate to Snort when using the benchmarking
data set. Snort stores the alert (alarms) in the form of an alert file, which is processed
in the same way as with identifying attacks in the prototype. The program compares
the time of the alert, reported by Snort, and finds the corresponding attack. Attacks that
Snort fails to identify are stored in a file for manual analysis.

4.3 Experiments

The prototype generates a labeled data set, represented by the extracted features. This
data set is based on the traffic gathered at the honeypots, but we have also added our own
attacks to the data set. From analysis of the traffic captured by the honeypots, we found
that it did not contain a broad range of attacks, and the attacks consisted of automatic
scans. As a result, we have added some other types of attacks to generate a more versatile
data set. We have used Nessus for this task and have generated two data sets, which
are the basis for the experiments. One contains only the network packets and attacks
gathered by the honeypots, while the other is a modified version where we have added
other attacks to the data set.

4.3.1 Methodology

In order to analyze and test the generated data sets, we need to perform some experi-
ments. We have concentrated on two methods of analyzing the data sets:

1. Compare the attacks found in the data sets with alarms from Snort to determine
detection rates.

2. Analyze the three new content features, and their abilities to identify attacks.

The first method is an experiment for determining the detection rate of Snort on the
data sets. Since the first data set only contains attacks already identified by Snort, we
expect that all attacks are classified as attacks. In the modified data set we are interested
in comparing the results from running Snort with the knowledge about the generated
data set. The purpose of this experiment is to determine some properties of the generated
data set in relation to benchmarking of IDS, in this case Snort.

The second part is more an analysis of the new features, and their relevance in detect-
ing network attacks. Since these are new features, there is a need for determining their
characteristics. By determining their characteristic, we can determine if they are useful
content features to identify attack. The main goal is to analyze which attacks can be
identified by these features, and determine a value for the detection rate of these attacks
compared to normal traffic.

4.3.2 The attacks found in the data sets

In the data sets, several different attack types are included. Ideally the data set should
only contain attacks captured by the transparent bridges in front of the honeypots. After
analyzing the logged network traffic we decided to launch some additional attacks in

26

Framework for generating IDS benchmarking Data sets

order to get more attack types and improve the attack characteristics of the data set.
Different attack types are needed for benchmarking network intrusion detection systems
and to determine detection rate on the system in question.

Since we have deployed honeypots to gather network traffic, the number of different
attack types is rather limited. The main reason is the use of low interaction honeypots
that limits the possibility of capturing more sophisticated attacks. Most of the captured
attacks are results of automatic scans, rather than designated attacks that target the
honeypots directly. This is the reason for adding more attacks to the data set. These
attacks have been mixed with captured traffic in the same time period, in order not to
create any bias in the data set. Most of the attacks found in the data set have been
classified according to the classification name Snort uses for the attack. The attacks can
therefore have another name than the one used in this thesis. We have chosen to use the
Snort classification name, because it simplifies the process of determining which of the
attacks are detected when running Snort on the data set.

Authorization basic overflow attempt

This attack is an exploit attempt on a known vulnerability in the Oracle database server.
There are multiple buffer overflows in the XML database functionality that may pro-
vide remote execution of arbitrary code with the user privileges as the user running the
database. An alert is generated based on an attempt to exploit the HTTP Basic Authoriza-
tion mechanism for Oracle Web Services by means of a buffer overflow. The exploit can
allow local users to cause denial of service or hijack user sessions [43]]. This attack has
been added to the generated traffic and is only present in the modified data set.

Chunked-Encoding transfer attempt

This attach is directed at a web server, and exploiting a known vulnerability and possible
gaining administrative access to the server. The exploits and vulnerabilities depend on
the web server in question, but the basis for the attack is the same. Some web applications
do not perform a stringent check when validating the credentials of the host connection
to the web service. This can lead to unauthorized access and data stored on the web
server can be compromised.

The honeypots are emulating virtual host running Microsoft Internet Information Server,
so the actual exploit found in the data set is an attempt to cause a buffer overflow in the
chunked encoding transfer mechanism. This can cause denial of service or allow an at-
tacker to execute arbitrary code [44].

Cross site scripting attempt

This is an attack technique, rather than an attack on a known vulnerability. Cross site
scripting targets users of a web site. Malicious code can be inadvertently executed by
running scripts written by an attacker when users follow untrusted links on webpages,
emails etc. User can also be vulnerable to cross site scripting when viewing dynamically
created content based on some content provided by users. A successful attack can steal a
user’s cookie or session ID, which can be used to impersonate the user. The attacker may
also get access to the information submitted on the targeted web site [45]. This attack
has been added and is only present in the modified data set.

27

Framework for generating IDS benchmarking Data sets

HTTP directory traversal

The purpose of this attack is to gain unauthorized access to information on a web server
or web application. This is possible on applications that do not check that the path of
the request is correct, and allowing a remote user to traverse directories. An attacker
can use directory traversal technique to browse directories outside the designated direc-
tory, which can disclose useful information that may be used to further attack the host
[46]. This attack is present in both data sets, while we have added more connections
containing this attack in the modified data set.

ICMP Ping NMap

This attack is a probing scan originating from Nmap, using the ICMP protocol. The attack
is used to gather information about host on a given network. This can be part of a full
Nmap port scan, to determine what services are running [[18]. This attack is present in
both data sets.

ICMP Superscan echo

This attack is also a probing scan that originates from a Windows based network scanner
from Foundstone named Superscan. By default configuration the scanner sends an ICMP
Echo Request message before proceeding with the scan. This packet has a payload of eight
bytes with the character zero. Other tools can use the same payload as Superscan, and
can therefore be labeled as Superscan, but the classification name has very little impact
on the general characteristics of the data set [47]. This attack is present in both data sets.

IIS SAM attempt

This attack is an attempt to access the Windows Security Accounts Manager, SAM, the
password file, using a web request. The password file contains Windows login informa-
tion, which is stored as NTLM or LANMAN hashes on Windows NT, 2000 or XP host. If an
attacker is successful in obtaining the password file, the login information can be cracked
in minutes or hours if the passwords are weak. Then the attacker can use the local ad-
ministrator login to compromise the host further [48]. The attack is present in both data
sets.

IIS view source via translate header

The attacker crafts a special URL containing the keyword “Translate: f” in an attempt
to view the source of the requested file. The affected system is IIS version 5 that allows
remote attackers to view source code of files and other scripts that normally is not avail-
able for viewing. Some Microsoft applications use the “Translate: f” header, but since
we do not use such application there are no false positives relating to this attack [49].
This attack is present in both data sets and we have added some more occurences in the
modified set.

MS SQL worm propagation attempt

This attack is a part of the “Slammer” worm, with the goal to compromise MS SQL Server
2000 or Microsoft Desktop Engine [50]. The worm contains self propagation code that
attempts to exploit a vulnerability in the Resolution Service of the two products. The
exploit consists of sending too many bytes in the version request, resulting in a buffer
overflow and can allow an attacker to cause denial of service or execution of arbitrary
code [51]]. This attack is present in both data sets.

28

Framework for generating IDS benchmarking Data sets

SYN Scan

SYN Scan is a probing attack to determine what kind of services are running on a remote
host. It is one of the most popular TCP scanning techniques and relies on generating own
IP packets and monitor the responses, rather than using the operating system network
functions. The scan never opens a full TCP connection and closes the connection before
the handshake is completed, therefore it is more stealthy than a connect scan. The down-
side of using a SYN scan is that it can lead to denial of service attack since it does not
terminate the connection properly. The benefit is that it works well through firewalls and
normally do not generate many alarms on IDS or firewall, as it looks like a failed con-
nection attempt [52]]. This attack had been added to the modified data set, and is only
present there.

Traceroute ICMP

This is a part of the Traceroute attack, and contains the ICMP messages issued in the scan.
The reason for splitting the attack is that Snort only detected the ICMP packets, and not
the whole scan. For more details see Traceroute UDP. Both Traceroute connection types
have been added, and are only present in the modified data set.

Traceroute UDP

This attack is used to determine the physical layout of network devices of an organi-
zation. The purpose is to determine the route taken by packets across the network. It
uses UDP packets on Unix and Linux systems with modifying the Time to live value
to determine which host it travels through. Traceroute can be used by hackers to map
and identify a company’s network architecture. This information can identify vulnerable
nodes or hosts, which the attacker can exploit to gain access to the network [52].

Web /etc/passwd attempt

This attack is similar to the “IIS SAM”, that an attacker attempts to access the passwd
file located on Unix and Linux host in the /etc directory. If shadow password files are not
enabled, an attacker can gain valid login information for the host in question by using
cracking tools on the obtained passwd file. This attack has been added to the modified
data set.

WebDAV search acces

This attack exploit vulnerabilities in the Web Distributed Authoring and Versioning (Web-
DAV) search of a misconfigured IIS with Index Server enabled. The attacker can receive a
complete listing of the web server root directory, and can potentially launch a denial of
service attack if the provided search string is too long [53]]. This attack is present in both
data sets.

4.3.3 Traffic captured by the honeypots

We have gathered traffic from both honeypots in the period from the 23th of February
to the 27th of March 2007, in the form of a tcpdump file. There are approximately 177
thousand individual network packets with the following protocol hierarchy:

e Internet Protocol (100 %)
e Transmission Control Protocol (79,73 %)

e User Datagram Protocol (6,36 %)

29

Framework for generating IDS benchmarking Data sets

e Internet Control Message Protocol (13,91 %)

There has been some preprocessing of the captured data, with removing packets that did
not belong to any connection, as mentioned above. To perform the experiment, the binary
tcpdump file is replayed by Snort to identify computer attacks, in the same manner as it
would with processing live traffic. The result from Snort is compared with the knowledge
of the attacks.

4.3.4 Attacks found in the captured network packets

The captured traffic has been analyzed automatically with Snort to identify all the at-
tacks, to the best of our knowledge. There is no way to guarantee that we have identified
all the possible attacks, since there can be never before seen attacks in the network logs.
The attacks captured by the honeypots after removing unwanted packets, classified by

Snort are presented in Table

Attack name Attack type | Number of | Number of at- | DR
occurences | tacks detected
by Snort

Chunked-Encoding trans- | U2R 1 1 100 %
fer attempt
HTTP directory traversal | Information | 9 9 100 %

disclosure
ICMP Ping NMap Probing 8 8 100 %
ICMP Superscan echo Probing 6 6 100 %
IIS SAM attempt R2L 12 12 100 %
IIS view source via trans- | Information | 13 13 100 %
late header disclosure
MS SQL worm propaga- | U2R 765 765 100%
tion attempt
WebDAV search access DOS 1 1 100 %

Table 1: Attacks found in the captured traffic

As seen in Table |1} all the attacks present in the data set are identified by Snort. This
is as we expected, since we also use Snort to classify the network packets captured by
the honeypots. We have used the same attack groups as the KDD CUP 99 data set, with
one addition. None of the groups fit the class of attacks, which has the goal of gathering
information on a remote system. This process is quite different from probing attack,
whose goal is surveillance of a remote system. We have added information disclosure
as its own group, where the goal is to attack a remote system in order to receive some
information the attacker normally would not see or obtain. An example is to try to obtain
the source code or files on a web server that are normally not available for public viewing
(IIS view source via translate header.)

In addition to the attacks mentioned in Table[1] there are also some network packets
that have truncated TCP options. It is the Snort decoder that generates these alerts on
packets where a certain TCP option was set, but the corresponding length was not used
or the reported length was incorrect. These alerts do not report an attack, and are there-
fore not included in the table. Snort can also be configured to not report this alert by
modifying the “snort.conf” file and including this line: “config disable tcpopt alerts”.

30

Framework for generating IDS benchmarking Data sets

4.3.5 The modified data set

This data set is based on the previous set, but we have added other attacks to make a
benchmarking data set for IDS. Adding attacks was necessary as the captured network
traffic did not contain as many attacks as we had hoped for. The time period is the same
as the previous set, but the total number of packets is increased to 222 462 network
packets, divided on the following protocols:

e Internet Protocol (100 %)
e Transmission Control Protocol (83,83 %)
e User Datagram Protocol (5,08 %)
e Internet Control Message Protocol (11,09 %)

4.3.6 Attacks in the modified data set

In the modified, data set we have added additional attacks to the ones already present.
These attacks have been added manually, without Snort first classifying the packets. Here
we expect to find some discrepancy in the total number of attacks and the result from
Snort, as a result of using Nessus to generate some of the additional attacks. The packets
sent from Nessus may not in fact be the intended attack, but more like a probing attack
if the vulnerability is present on the remote host(s). This fact is taken into consideration
when analyzing the result from the experiment. As with the previous set, only packets
that can be used in establishing a connection are added to the data set. The following
attacks are present in the modified data set:

Attack name Attack type | Number of | Number of at- | DR
occurences | tacks detected
by Snort
Authorization basic over- | U2R, DOS 4 4 100 %
flow attempt
Chunked-Encoding trans- | U2R 1 1 100 %
fer attempt
Cross site scripting at- | Information | 7 7 100 %
tempt disclosure
HTTP directory traversal | Information | 14 14 100 %
disclosure
ICMP Ping NMap Probing 8 8 100 %
ICMP Superscan echo Probing 6 6 100 %
IIS SAM attempt R2L 12 12 100 %
IIS view source via trans- | Information | 15 15 100 %
late header disclosure
MS SQL worm propaga- | U2R 768 765 100 %
tion attempt
SYN Scan Probing 22295 0 0%
Traceroute ICMP Probing 1 1 100 %
Traceroute UDP Probing 8 0 0%
Web /etc/passwd attempt | Information | 7 7 100 %
disclosure
WebDAV search access DOS 1 1 100 %

Table 2:

Attacks found in the modified data set

Framework for generating IDS benchmarking Data sets

Only two attacks were not detected by Snort, when processing the data set. SYN scan
as mentioned above, is a probing attack. To do a complete SYN Scan on a remote host,
results in the creation of many individual TCP connections. Each port scanned has its
own TCP connection, and in the data set we have scanned five hosts with this attack.
Resulting in 22 295 connections being added to the data set. We have used the SYN Scan
plugin in Nessus to perform this attack. This plugin has been removed in the new version
of Nessus.

Traceroute UDP packets are also not detected by Snort. We used the traceroute plugin
in Nessus to perform this attack. Snort only detected the ICMP packets issued by the scan,
which is not directly a part of the scan.

4.3.7 The generated data set

The second part of the experiment is an analysis of the new content features we have
added to the data set. In this analysis, we use the modified data set that contains several
attack types, which are not present in the captured traffic from the honeypots. We have
included a sample of the generated data set, but because of size limitations we had to
split the data set into two tables, Table |3 and Table |4 As we can see from the tables
each connection is given an ID, which is only the packet number assigned by Wireshark
to the packet that initiated the connection. Packet numbers are assigned based on the
timestamp of the packets, meaning the network packets are sorted chronologically. This
ID is not part of the features of the data set, merely for identification purposes.

The modified data set consists of 42 841 connections constructed from 222 462 cap-
tured network packets. From all these connections, 23 144 have one or more packets
that contain a specific network attack. Based on the modified data set, we have calcu-
lated some statistics for each of the features.

4.3.8 General statistics from the modified data set

Basic features

Duration

The longest duration found in the set is 2 599 376,16 seconds, with the ICMP protocol
where there is no defined time out for the connection. The shortest duration is zero
seconds, meaning the connection only lasted less than a millisecond. By summarizing all
the durations, we calculated the average to be 6 404,7 seconds.

Protocol

There are three protocols in the data set spread on the following number of connections:
e ICMP with 5 233 connections, 12,2 % of the total number of connections.

e TCP with 32 145 connections, 75 % of the total number of connections.

e UDP with 5 463 connections, 12,8 % of the total number of connections.

Service

As described in the Section this feature represents the port number on the host that
responded to the connection attempt. In case of connections that use the ICMP protocol,
they do not use port numbers, with the result of the service field being zero in the data
set. The smallest value of the service field is one, while the largest recorded is 65 534.
The most often used service port is 80, belonging to 4 716 connections.

32

Framework for generating IDS benchmarking Data sets

1 11ed 95 eiep pajerauad a1 jo o[duies [ews v :g J[qeL,

osTed osTed osTed 0 osTeq 08¢ 8¢ C¢l101 dan Pr1‘e 89S
osTed osTed osTed 0 osTeq orl (44! ¢l101 dan 0 ¥SS
osTed osTed osTed 0 osTeq 08¢ 8¢ Cl101 dan L6T°E 0SS
osTed osTed osTed 0 osTed 08¢ 8¢ ¢ii01 dan (AN 9%S
osTed osTed osTed 0 osTeq 09¢ CLE £96¢ dOL L96°T ves
osTed osTed osTed 0 osTeq 80¢¢€ 80SY 08 dDL 9/1°0 10S
osTed osTed osTed 0 osTeq 80¢€¢ 80SY 08 dDL Se0 89
osTed osTed osTed 0 osTed 890¢ Ce91 08 dDL ¥60°0 vy
osTed osTed osTed 0 osTed 890¢ €91 08 dOL S60°0 viv
osTed osTed ONI], 0 osTeq 890¢ T1€0T 08 dOL 962°1 0L¢
osTed osTed ONI], 0 osTeq 890¢ €801 08 dOL el cve
ONIL osTed oNIJ, 0 osTed 890¢ 80¢CI 08 dDL 90T €ee
ONIL osTed osTed 0 osTed 890¢ 6901 08 dDL 880°T 68C
ONIL, osTed osTed 0 osTed 890¢ 201 08 dOL STC1 6.C
oNI, osTed osTed 0 osTeq 890¢ 0¢0T 08 dOL P1€1 144
osTed osTed osTed 0 osTeq 890¢ 8SL 08 dOL 89¢°0 L1T
ONIL osTed osTed 0 osTed 890¢ ce0l 08 dDL 201 861
ONIL osTed osTed 0 osTed 890¢ 0¥0T1 08 dDL TLET TLT
osTed osTed osTed 0 osTed 890¢ 8S/ 08 dOL 88¢£°0 12748
osTed osTed osTed 0 osTed 1 7A 4! viL 08 dOL TLOT 66
osTed oNIy, osTed 0 osTeq 17441 S1L 08 dOL 99¢°1 6
osTed NIy, osTed 0 osTeq 1744} L1L 08 dDL TLET cL
osTed oniy, osTed 0 osTeq 17448 004 08 dDL €T1 89
osTeq oniy, osTed 0 osTeq 17A4) 018 08 dDL 800°T €9
osTed oniy, osTed 0 osTed 1 7A 4! V1L 08 dOL AN 89S
osTed CLRN osTed 0 osTed 17A 4! 8SL 08 dOL AN} €S
oNI], osTed ONI], 0 osTed 17441 clL 08 dOL 12°1 144
ONIL osTed oNiJ, 0 osTeq 1744} YL 08 dDL L6T°T 61
ONIL osTeq oNiy, 0 osTeq 17A4) 0SL 08 dOL 691°T P1
osTed osTed ONI], 0 osTed 1 ZA4" (474 08 dOL 4N T
[esivaen A10309a1q | Sundrids 211s sso1) | pmssed 03 SS90y | Juadin | pueT | s914g IS | S9IAG 21§ | IJIAISS | [020301d | uonBIN(g dai

SHINIVAS INJILNOD

SHINIVAA DISVA

33

Framework for generating IDS benchmarking Data sets

TRAFFIC FEATURES

Count

Same_srv_rate

Diff_srv_rate

Srv_count

Srv_diff host_rate

Status of connection

APONRFRFRPRPRRRONFEFNR,ONNNFRERPNOOOODRNONRFRE WOWN ==

1

Il e T e N e T e R e R R R e e e e N e T o T = SRy e

0

[eNeoNeoNolololololololooloNololoNolololoNoRoh oo oo oo Nal

DWOWNRRRERERRRFNNRRNNENNFRNNAERDNOONRENRNRS &

0
0
0,5
0,333333333
0
0
0,666666667
0,5
0,4
0,5
0,428571429
0
0
0
0,5
0,333333333
0
0
0
0,5
0,333333333
0

[eNeoNoNololoNeNe]

Web /etc/passwd attempt
Web /etc/passwd attempt
Web /etc/passwd attempt
Web /etc/passwd attempt
Cross site scripting attempt
Cross site scripting attempt
Cross site scripting attempt
Cross site scripting attempt
Cross site scripting attempt
Cross site scripting attempt
Cross site scripting attempt
IIS view source via translate header
HTTP directory traversal
HTTP directory traversal
IIS view source via translate header
HTTP directory traversal
HTTP directory traversal
HTTP directory traversal
Web /etc/passwd attempt
Web /etc/passwd attempt
Web /etc/passwd attempt
Authorization basic overflow attempt
Authorization basic overflow attempt
Authorization basic overflow attempt
Authorization basic overflow attempt
normal
normal
normal
normal
normal

Table 4: A smal sample of the generated data set, part 2

34

Framework for generating IDS benchmarking Data sets

Src_bytes

As described in Section this feature is the number of bytes sent from the source
host of the connection. The lowest value of bytes being sent from the originating host is
60 bytes, in 22 559 connections. The largest volume of bytes being sent is 74 204. The
average source bytes for the data set are 212,9 bytes.

Dst_bytes
This feature is the opposite as Src_bytes, and is the number of bytes sent from the re-
sponder host of the connection. The lowest value of bytes sent from the responder host

is 60 bytes, in total 23 073 connections. The largest value of bytes sent is 15 028, in two
connections. The average destination bytes for the data set are 346,1 bytes.

Land

This feature is used to indicate if some packets in the connection contain the land attack.
This attack was more popular before, and is not so relevant any more. since manufactur-
ers of operating systems and other network equipment have patched vulnerable systems.
This fact is also present in the data set, as only 11 connections have been labeled with
true for the land feature. About half of these connections have been identified to belong
to the Traceroute UDP attack, five connections. These connections contained UDP packets
that originated from running the Traceroute plugin in Nessus.

Urgent

This is the last basic feature that is calculated for each connection. It indicates the number
of packets in the connection with the Urgent pointer enabled. In the generated data set,
no connections contained packets with the Urgent pointer enabled. This feature cannot
be used for identifying any network attacks in this data set, since for all connections the
value is zero.

Traffic features
Count

This feature is the number of connections to the same host as the current connection,
calculated by using a time window of two seconds. The lowest value in the data set is
one and the largest value is 3 290. The calculated average value is 1 634, 6.

Same_srv_rate

It is the rate of connections to the same service as the current connection in the past
two seconds. The lowest value is 0,0015 and the highest value is one, with a calculated
average of 0,47.

Diff srv_rate

This feature is the rate of connections to different services in the past two seconds as
the current connection. The lowest value is zero and the highest value is 0,998, with the
calculated average of 0,530.

Srv_count

It is the number of connections to the same service as the current connection in the past
two seconds. The lowest value is one and the highest value is 58, with an computed
average of 3,1.

35

Framework for generating IDS benchmarking Data sets

Srv_diff host rate
This feature is the rate of connections to different host in the past two seconds using the
same service as the current connection. The lowest value is zero and the highest value is
0,994, with an computed average of 0,552.

All the previous features are the same features as found in the KDD CUP 99 data set.
In the next section, we analyze the properties of the new content features, and try to
determine if they can be used for identification of network attacks.

4.3.9 Statistics of the new content features
Access to passwd attempt

This feature indicates if one or more packets in the connection have attempted to access
the passwd file. As with all the content features we have added in this thesis, they are
based on traffic to a web server, connection with port 80 in the service field. In the
modified data set, seven connections have been marked with true for this feature. All the
other connections have the value false. “Access to passwd attempted” managed to identify
all the occurrences of the attack with the classification: “Web /etc/passwd attempt.”

Cross site scripting attempt

As with the previous feature, this is also based on web traffic. It indicates if one or more
packets in the connection contain a cross site scripting attack. In the data set we find
six occurrences of connections with a positive value, while all other connections have a
negative value. The connections with a positive value have all been labeled as a “Cross
site scripting attempt.”

Directory traversal attempt

The goal of this feature is to try to identify attacks that can lead to information disclosure
by traversing directories in an attempt to access files or information. The data set contains
1 879 connections with a positive value, and not all of these connections are labeled as
an attack. Only 30 of these connections are computer attacks, and the attack types are:
“HTTP directory traversal”, “IIS SAM attempt” and “Web /etc/passwd attempt.” The rest
of these connections are, as far as we know, normal traffic. After deeper analysis of the
traffic labeled as normal by Snort, we have found that it is in fact some old attacks on
IIS. The attack target is FrontPage Extension, using old attack vectors that in past versions
of IIS offered a method for executing commands using the native shell in Windows. An
example payload of the whole connection is presented in Figure

After manual inspection of the payload for the connections with a positive value of the
“Directory traversal attempt”, we have concluded that these connections are all old attack
vectors. There are some variations in the vector, but all have the string “../winnt/system32/cmd.exe
?/c+dir+c:\”, which is an attempt to get access to the native shell on Windows systems.
According to a post on SecurityFocus forum [54], these attack vectors are about 3-4 years
old and the vulnerabilities have been removed several years ago.

We have chosen not to modify the classifications for the connections in questions,
since these attack vectors are old and the system has been patched. This is probably the
reason why Snort does not generate a report on these occurrences. The result of the
feature is that all the connections with a positive value are attacks, even though not all
are labeled as attacks in the data set.

Some occurrences of the “Web /etc/passwd attempt” attack trigger both the “Access to

36

Framework for generating IDS benchmarking Data sets

i Follow TCP Stream E]@

Stream Content

HEAD /scripts/..%25%35%63. . /winnt/system32/cmd. exe?/c+dir+c:\, HTTP/1.0
Host: 128.39.44.5

HTTP/1.1 404 NOT FOUND

Server: Microsoft-II5/5.0

P3P: CP="ALL IND DSP COR ADM CONo CUR CUSo IVAO IVDO PSA PSD TAIL TELO OUR SAMo CNT COM
INT NAV ONL PHY PRE PUR UNI'

Icontent-Location: http://cpmsftwbw2? /default.htm

Date: Thu, 04 Apr 2002 06:42:18 GMT

Icontent-Type: text/html

|laccept-Ranges: bytes

<html=<titlexyou are in Error</title=

<body=

<hl=you are in Error</hl=

o strange and inconceivable thing! we did not really die, we were not really buried, we
were not really crucified and raised again, but our imitation was but a figure, while
our salvation is in reality. Christ was actually crucified, and actually buried, and
truly rose again; and all these th'in?s have been vouchsafed to us, that we, by imitation
[communicating in His sufferings, might gain salvation in reality. 0 surpassing loving-
kindness! christ received the nails in His undefiled hands and TY'eet, and endured
anguish; while to me without suffering or toil, by the fellowship of His pain He
vouchsafed salvation.

<p:'-

5t. Cyril of Jerusalem, on the christian Sacraments.
</ body=

</htmls

Entire conversation {1151 bytes) w ||@ ascrn O eBCDIC O Hex Dump O C Arrays () Raw
I Cloze l ’ Filter Out This Stream]

Figure 3: A sample payload for a normal connection with an positive value for the “Directory
traversal attempt” feature.

passwd attempted” and “Directory traversal attempted” features. Four of the total seven
connections with the attack have positive values for both features. In these connections,
the remote host using directory traversal techniques in an attempt to access the passwd
file on the target host. No other attacks trigger multiple content features.

4.3.10 Results

Snort managed to detect all attacks in the original data set, as we expected, by failed
to identify two attacks in the modified data set. The detection rate, true positive rate,
is for the original data set 100 %. For the modified data set the number of connections
marked as some sort of attack is: 23 144. The SYN scan contains 22 295 of these attacks,
and is the attack type with the most occurrences (96,3 %). Snort managed to detect 841
connections with attacks, and giving it a detection rate of 3,6 %. The main reason is that
Snort failed to identify the SYN scan; if we exclude it from the computation we get a
detection rate of 99,1 %. The only attack that is not detected is eight connections that
contain the Traceroute UDP scan. The base rate, rate of attacks, for the original data set
is 4,0 %, while the base rate for the modified data set is 54 %. Excluding the SYN scan
from the data set, give a base rate of 4,1 %.

Based on the general statistics of the modified data set, we analyze the features and
the attacks in order to try to determine some characteristics of the attacks. Identifying
features that are relevant for identifying each of the attacks is the main goal. The basis
for these analyses is the modified data set. Tables for all attacks found in the data set is
provided in the appendix, and for a few attacks we only provide an excerpt as the attack
consist of too many connections to include all in the report.

37

Framework for generating IDS benchmarking Data sets

4.3.11 Relevant features for detecting a given attack type
Authorization basic overflow attempt

In the data set, four connections contained this attack type, and after analyzing these
connections we have found they have some features in common. The service field is
80, meaning HTTP traffic with the three traffic features: “Count”, “Same_srv_rate” and
“Srv_count”. These three features have all the same value, one, and with the service field
they uniquely identify only the connections with this attack type. No other connections
have the same combination of feature values, giving this combination a detection rate of
100 %.

Chunked-Encoding transfer attempt

Only one connection contains this attack type. As a consequence, we cannot conclude
which features are best suited for detecting this attack. We need more occurrences of this
attack to do a more thorough analysis.

Cross site scripting attempt

In the data set we find seven occurrences of this attack. Six of these have a positive value,
true, for the “Cross site scripting attempted” feature. After analyzing the connection with
a negative value for this feature, we found that the character ‘<’ had been replaced with
its equivalent hex number ‘%3C’. This is a technique to avoid detection by IDS and we
had not programmed the prototype to deal with this event in checking the payload. By
fixing this in the prototype all the seven connections with cross site scripting attack, will
have a positive value of the feature. No other connections have a positive value of the
feature, and it is very useful in detection of this attack with a detection rate of 100 %.

HTTP directory traversal

The data set contains 14 connections with this attack type, but the directory traversal
technique can be used as a part of a more sophisticated attack. The features with the
same values these connections all have in common are “Directory traversal attempt” and
“Same_srv_rate”. All connections with this attack trigger the new content feature, and
they also have a “Same_srv_rate” of one, which is the highest obtainable value. This
combination is not unique for this specific attack and 1 855 connections are identified
in the data set. The other connections contain one of the following attack types: “IIS
SAM attempt” and “Web /etc/passwd attempt”, with the remaining connections labeled
as “normal” traffic. But as mentioned in Section these connections are in fact
old attack vectors on FrontPage Extensions in older version of IIS. Since these attacks
use directory traversal techniques, the combination of features can be used to detect
this specific attack, and also other attacks that use this technique as part of their attack
strategy. The detection rate of the “HTTP directory traversal” connections is 0,75 %, and
the rest of the connections identified contain another attack type that uses the directory
traversal technique as part of their attack.

ICMP Ping NMap

This probing attack occurs in eight connections in the data set. Determining the values
for the features that uniquely identify these connections is a more complicated task, com-
paring to the previous attacks. With the value of the “Protocol” feature equal to ICMP, the
“Srv_diff host rate” value greater or equal to 0,94 and the “Src_bytes” and “Dst_bytes”
equal to 60, we managed to identify seven out of the eight “ICMP Ping NMap” attacks.

38

Framework for generating IDS benchmarking Data sets

The last attack contained the value 440 for the “Src_bytes” and “Dst_bytes” features. The
reason for this discrepancy compared to the other attacks is that since the ICMP protocol
does not have a timeout value, multiple Nmap scans can be stored in the same connec-
tion. A remote host has most likely scanned a host multiple times and as a result the
connection contains all these scans, as long as the IP and port numbers are the same.
The combination of features has also identified 11 connections labeled as “normal”, re-
sulting in a detection rate of 38,9% for this data set. The false positive rate is 61,1% and
the false negative rate is 12,5 %.

ICMP Superscan echo

This is also a probing attack and it occurs six times in the data set. The attack consists
of sending a payload of eight bytes with zeros, but after analyzing the attack we see that
five of the six connections have twice the total size as it should have been. The simple
reason is that for the five connections, two requests have been sent instead of only one.
To successfully identify these attacks, we have based the combination of features with
the five connections in mind. The combination of features is the same as the previous
attack: “Protocol”, “Src_bytes” , “Dst_bytes”, and we have added “Count”. The protocol
is “ICMP” but the “Src_bytes” and “Dst_bytes” equals 120. For the “Count” feature, we
have used the range [50 , 60>. This combination identifies five out of the six occurrences
of this attack. The last occurrence is not identified because the connection only consists
of one request. The detection rate of this combination is 100 % and the false negative
rate is 16,67 %.

IIS SAM attempt

We find 12 connections with this attack in the data set. After analyzing these connec-
tions we cannot find any combination of features that only identifies these attacks. The
combination of “Directory traversal” equal to true, “Same_srv_rate” equal to one and the
“Duration” value between the range [0,157 , 0,215], identifies 1574 connections in the
data set. Most of these connections is labeled as “normal” and only 12 are the attack.
The attack has close resemblance to normal traffic, and we conclude that this attack is
hard to filter out based on the features we have calculated in this thesis. Adding more
content features to the data set, could possibly filter out more of the normal traffic and
only identify the attack. Since the attack is based on sending a special payload, most of
the basic and traffic features offer little help in uniquely identifying it. The detection rate
of the proposed combination is 0,76 %, and the false positive rate is 99,24 %.

IIS view source via translate header

The data set contains 15 connections with this attack type. This attack is as the previ-
ous one content based, since the attacker crafts a special payload to send. We had also
the same problem as with the previous attack to uniquely identify only the connections
containing the attack in the data set. The attack resembles normal traffic when analyze
the features in the data set, and only with adding more content features to the data
set can we possible differentiate between the attack and normal traffic. The best combi-
nation we obtained, included the “Protocol” feature equal to TCP, the “Srv_count” and
“Same_srv_rate” features equal one, all content features equal false and the “Count”
value between the range [122 , 124]. This combination identifies 35 connections, which
four contains the attack. The resulting detection rate is 11,43 % and the false positive
rate is 88,57 % for the combination. The false negative rate is in this case 73,33 %.

39

Framework for generating IDS benchmarking Data sets

MS SQL worm propagation attempt

This attack is present in 765 connections and the attack is simple to identify, when us-
ing the “Service” feature and the value 1 434. This identifies all occurrences of this at-
tack, and additional five connections containing the “SYN Scan” attack are identified. By
including the “Protocol” feature with the value UDP, we only identify the connections
containing this attack. No normal connection is identified by this value for the feature,
giving it a detection rate of 100 %.

SYN Scan

This is the attack type that has the most occurrences in the data set, and to successfully
identify these we use a combination of basic and traffic features. The purpose is to iden-
tify as many as possible without obtaining “normal” connections. By using the “Duration”
feature in the range [0, 0,016] with equal “Src_bytes” and “Dst_bytes” value in combi-
nation with the traffic feature “Diff srv_rate” in the range [0,5, 1], we identify 22 292
out of the total 22 295. No other connections are identified and we only missed three
connections. The detection rate for this combination is 99, 99 % and the false negative
rate is 0,013 9Yo.

Traceroute ICMP

This connection is not the essential part of the Traceroute, but it is issued in order to ping
host(s). Traceroute uses TCP or UDP packets to determine the layout of a network, and
they constitute the attack. But since the ICMP packets were also issued when the scan was
executed, they are included as a connection in the data set. All the ICMP packets being
stored in one connection and we cannot use the features to try to find a combination to
identify this connection, we require at least two connections for this task.

Traceroute UDP

The connections issued by launching this scan, by using Nessus, can be divided into two
groups. One group is connections that contain the destination service netbios-ns (137).
These connections are probably not a direct part of the Traceroute, merely packets for
determining NetBIOS name of the host. To identify these connections, we can use a
combination of the “Protocol” and “Land” features. With the “Protocol” equal to UDP
and the “Land” value equal to true, we identify the five connections with the destination
service equal 137.

The second group contains connections with the “Service” feature in a much higher
port range. Normally Traceroute uses the port range 33 434 to 33 534, but in this data
set the “Service” field contains the value 32 768. The port range Traceroute uses can be
manually configured, as we assume is the case for these connections. In order to identify
these, we use the combination of the “Protocol” feature and the “Service” feature. The
“Protocol” value is UDP and the “Service” value is 32 768, in this special case. Normally
we would have used the port range mentioned above. This combination identifies all
three connections and no other, giving it a detection rate of 100 %.

Web /etc/passwd attempt

In the data set there are seven connections, which contain this attack type. The attack is,
as some other mentioned above, a content attack. The attacker crafts a special payload
in an attempt to disclose information. To uniquely identify these connections, we use
the content feature “Access to passwd” with the value true. This identifies all the seven

40

Framework for generating IDS benchmarking Data sets

connections and no normal connections, giving the feature a detection rate of 100 %.

WebDAV search access

The last attack type is the “WebDAV search access”, and only occurs in one connection in
the data set. This makes it impossible to determine a combination of features to uniquely
identify this attack from the normal traffic.

4.3.12 Discussion regarding relevance of the features

After analyzing how to identify different attack types by using a combination of the
features found in the data set, we determine the relevance of the chosen features. We also
discuss the possibility of adding other features, that can be better suited for identification
of network attacks. We plot the attacks and features in the same table to determine their
relevance in detecting different attacks, see Table|5| All considerations are based on the
modified data set.

Attack

Authorization basic overflow attempt
Chunked-Encoding transfer attempt
IIS view source via translate header
MS SQL Worm propagation attempt

Cross site scripting attempt

Web /etc/passwd attempt
WebDAV search access

HTTP directory traversal
ICMP Ping NMap

ICMP Superscan echo
IIS SAM attempt
Traceroute ICMP
Traceroute UDP

Feature

Duration
Protocol
Service
Src_bytes
Dst_bytes X | X X
Land X
Urgent
Access to passwd X
Cross site scritping X
Directory traversal X
Count X
Same srv rate X X
Diff srv_rate X
Srv_count X
Srv_diff host rate X | x

> || SYN Scan

M
M
»
>

»
™
>

M
M
>

Table 5: The relevance of features in identifying different attack types

The only feature that cannot be used to identify any of the attacks found in the data
set, is the “Urgent” feature. None of the packets in any of the connections in both data
sets have the Urgent flag enabled. As a consequence, it can be removed from the data
sets without causing any alterations to the characteristics of the data sets.

41

Framework for generating IDS benchmarking Data sets

We did not find any combinations of features that uniquely identified the attacks:
“IIS SAM attempt” and “IIS view source via translate header.” Many normal connections
would also be identified by a combination of the features found in the data set. In order to
reduce the number of normal connections identified by the current feature combination,
we need more content features. As mentioned in a previous section, these attacks are
content based and closely resemble normal traffic, web traffic in these cases. Both basic
and traffic features are not designed with this type of attack in mind, and offer little
aid in detecting these attacks. Adding other content features can reduce the number of
normal connections being identified and increase the detection rate of these attacks.

In the group of basic features, the “Protocol” feature is used, in combination with
others, to identify four attacks. It is the most frequent feature used to identify attacks,
and three out of four are probing attacks. “Service”, “Src_byte” and “Dst_byte” are all
used to identify three attacks. The “Service” feature is used to identify two of the total
three U2R attacks, while both “Src_byte” and “Dst_byte” only identifies probing attacks.

Most of the traffic features are only used once to identify attacks, a part from “Same_srv_rate”
and “Srv_diff host rate.” “Srv_diff host rate” is used to identify two probing attacks,
while “Srv_diff host rate” is used in identification of one information disclosure and one
U2R/DOS attack.

The Table [6] contains the detection rate, as well as both false positive rate and false
negative rate for the best combination of features to uniquely identify a specific attack.
Three of the attacks were only present in one connection, making it impossible to de-

| Attack |DR,TPR| FPR | FNR |

Authorization basic overflow attempt | 100 % - -
Chunked-Encoding transfer attempt NA NA NA
Cross site scripting attempt 100 % - -
HTTP directory traversal 0,75 % * *
ICMP Ping NMap 38,0% | 61,1% | 12,5%
ICMP Superscan echo 100 % - 16,67 %
IIS SAM attempt 0,76 % 99,24 % -

IIS view source via translate header 11,43% | 88,57 % | 73,33 %
MS SQL worm propagation attempt 100 % - -
SYN Scan 99,99 % | 0,013 %o -
Traceroute ICMP NA NA NA
Traceroute UDP 100 % - -
Web /etc/passwd 100 % - -
WebDAV search access NA NA NA

Table 6: Detection rate, false positive rate and false negative rate for the attacks found in the
modified data set

termine appropriate features to uniquely identify the specific attack from all the other
connections in the data set. Because of this fact, we neither could compute detection
rate, false positive rate and if possible false negative rate. These three attacks have been
marked with the value ‘NA, not available, for all the rates. The detection rate for the
“HTTP directory traversal” attack is very low, but we have not computed false positive
rate or false negative rate. The best combination of features we obtained also identified
other attacks than the specific “HTTP directory traversal” attack. The reason is that the
combination detects all occurrences of the directory traversal technique, which can be a

42

Framework for generating IDS benchmarking Data sets

part of an larger attack. These other attacks are not normal traffic, and cannot be used in
computing the false positive rate. The definition of the false positive rate, is the chance
of generating an alarm caused by normal traffic and not an attack. Therefore it would be
wrong to compute false positive rate for combination of features that are used identify
the “HTTP directory traversal” attack, so we use

[

to instead. For all other attacks, the
character -’ means that the value is zero or does not exist for the attack in question. An
attack with a detection rate of 100 %, has not a false positive rate.

Three of the attacks in the data set are represented only once, making it impossible
to determine appropriate features for identification. More occurrences of these attacks
are needed in order to determine, if a combination of features can uniquely identify
the attack in question. There is some uncertainty with the combination of features for
identifying some of the cases of attacks, those with a low number of occurrences in
the data set. More attacks of the same type would reduce this, as the probability of
discovering other features that can be more relevant in detecting a specific attack would
be reduced. Based on the features and attacks found in the modified data set, only one
feature does not contribute any information in relevance to detecting the attacks, and
this feature can therefore be removed without any consequence. As mentioned above,
adding other content features can aid in the task of identifying some of the attacks.

43

Framework for generating IDS benchmarking Data sets

5 Conclusions

We have constructed a framework for processing network packets, stored in the XML
format, to construct connection records. These connection records can be labeled and
different statistics computed for each one. The statistics are used to construct features,
which present various characteristics of these connections and the relationship between
them in the provided data. We have deployed honeypots, using honeyd, for capturing
traffic, since it is difficult to capture traffic on the institution’s network due to legislation
and laws. This solution has not provided a wide range of network attacks, and we have
been forced to generate attacks to include in the data set.

One of the main reasons for generating a new benchmarking data set is to include
more updated attacks. We managed to add some new attack techniques, which are not
present in the KDD CUP data set from 1999. The selection of new network attacks is
rather limited mostly due to the fact that we have used a low interaction honypots to
capture the network traffic. More sophisticated attacks usually require more interaction
with the target host, making it harder if not impossible to launch the attack against
the honeypots. All of the attacks added to the data set, was created with running Nessus.
Nessus is not the best tool to generate malicious traffic, since its purpose is a vulnerability
scanner and not an attack generator. There exist other applications that are possibly more
suited for this task, like the Metasploit framework, but their use is very complicated and
time consuming.

The prototype has some limitations regarding processing of network packets. Not all
network protocols are processed, only the protocols that are frequently used in network
communications and on the Internet. Other protocols are not that important when it
comes to IDS, as the bulk of the traffic that is relevant for such systems are the TCP and
UDP transport protocol.

The constructed prototype generates a data set, based on processing of network pack-
ets and establishing connection records. As mentioned in Section [2.2] the greatest chal-
lenge in this thesis has been the preparation of the data mining process. This process
has consumed most of our time and construction of a framework for this task is essen-
tial in order to be able to utilize KDD techniques. The algorithm we chose for the data
mining task was a form of classification. All network packets were gathered into connec-
tion records, which were classified as either normal traffic or a specific network attack.
The interpretation step included, computing statistics and extracting features based on
the connection records. And the last step in the KDD process is to use the discovered
knowledge, in this case creation of an IDS benchmarking data set.

We return to the research questions, to summarize the result for this thesis:

1. How can common properties of attacks be extracted from a large and evergrowing
set of attacks against computers networks?

We have constructed a framework for processing network packets captured by tcp-
dump, to extract common properties for all connections. Many of these properties

45

Framework for generating IDS benchmarking Data sets

are closely related to computer network attacks and they can be used to successfully
identify these attacks.

2. What are the properties of an IDS benchmarking data set based on real traffic for
whose generation the methods of extraction of common properties of attacks have
been used?

To answer this question we have performed some experiments on the modified data
set and analyzed the results as well as an analysis of the data set in general. We have
determined the detection rate for Snort, by running it on both data sets, and calcu-
lated statistics for each feature and attack type. The relevance of each feature has
also been determined, in regards to detection of network attacks. The detection rate
for each attack by the best combination of features is also determined, as well as false
positive rate and false negative rate if possible.

46

Framework for generating IDS benchmarking Data sets

6 Further work

We have developed a framework for processing captured network packets and using
these to construct connection records. There are several aspects that can be improved as
further work:

Add more attack types, gather more sophisticated attacks that are present in the
wild. This can be done by utilizing a honeypot with a higher level of interaction
than honeyd. Other attack tools can also be used to generate other attacks that are
representative for today’s threats.

Add more web traffic to the data set, by hosting multiple sites. A possible solution can
be to use a higher level interaction honeypot.

Determine frequent episodes by finding sequences of events for feature generation
and extraction. This process can yield other appropriate features, given the sequential
nature of attacks.

Add more content features to the data set that can better identify newer types of
network attacks.

Test the benchmarking data set against other intrusion detection systems.

47

Framework for generating IDS benchmarking Data sets

[1]

(2]

(3]

(4]

[5]

(6]

(71
(8]
(91

[10]

[11]

[12]

[13]

[14]

Bibliography

Stolfo, S. J., Fan, W., Lee, W., Prodromidis, A., & Chan, P. Kk KDD CUP
data set from the knowledge discovery and data mining tools competition.
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html [Last visited March
2007].

McHugh, J. 2000. Testing intrusion detection systems: a critique of the 1998
and 1999 darpa intrusion detection system evaluations as performed by lincoln
laboratory. ACM Trans. Inf. Syst. Secur., 3(4), 262-294.

tcpdump. http://www.tcpdump.org [Last visited May 2007].

Mell, P., Hu, V., Lipmann, R., Haines, J., & Zissman, M. An overview of issues in
testing intrusion detection systems.

Rieck, K. & Laskov, P. DIMVA 2006. PESIM 2005 data set from - detecting unknown
network attacks using language models.

Bace, R. G. 2000. Intrusion detection. Macmillan Publishing Co., Inc., Indianapolis,
IN, USA.

Schdfer, G. 2003. Security in Fixed and Wireless Networks. Wiley.
Bishop, M. 2003. Computer Security - Art and Science. Addison Wesley.

Haines, J., Lippmann, R., Fried, D., Zissman, M., Tran, E., & Boswell, S. 1999 darpa
intrusion detection evaluation - design and procedures. Technical report, Lincoln
Laboratory - MIT, 2001.

Lippmann, R., Fried, D., Graf, 1., Haines, J., Kendall, K., McClung, D., Weber, D.,
Webster, S., Wyschogrod, D., Cunningham, R., & Zissman, M. 2000. Evaluating in-
trusion detection systems: The 1998 DARPA off-line intrusion detection evaluation.
In Proceedings of the DARPA Information Survivability Conference and Exposition, Los
Alamitos, CA. IEEE Computer Society Press.

Salvatore J. Stolfo, Wei Fan, W. L. Cost-based modeling for fraud and intrusion
detection results from the jam project.

Lee, W. A Data Mining Framework for Constructing Features and Models for Intrusion
Detection Systems. PhD thesis, Columbia University, 1999.

Lee, W., Stolfo, S. J., & Mok, K. W. 1999. A data mining framework for building
intrusion detection models. In IEEE Symposium on Security and Privacy, 120-132.

Fayyad, U., Piatetsky-Shapiro, G., & Smyth, P. 1996. From data mining to knowl-
edge discovery: An overview.

49

Framework for generating IDS benchmarking Data sets

[15]

[16]

[17]

(18]
[19]
[20]
[21]

[22]

[23]

[24]
[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

Fayyad, U., Piatetsky-Shapiro, G., & Smyth, P. 1996. The kdd process for extracting
useful knowledge from volumes of data. Commun. ACM, 39(11), 27-34.

Mannila, H. 1996. Data mining: Machine learning, statistics, and databases. In
Statistical and Scientific Database Management, 2-9.

Lee, W., Stolfo, S., & Mok, K. 1999. Mining in a data-flow environment: Experience
in network intrusion detection. In Proceedings of the Fifth International Conference
on Knowledge Discovery and Data Mining (KDD-99), Chaudhuri, S. & Madigan, D.,
eds, 114-124.

Insecure.org. Nmap. http://www.insecure.org/nmap [Last visited May 2007].
Spitzner, L. 2002. Honeypots: Tracking Hackers. Addison Wesley Professional.
Provos, N. Honeyd. http://www.honeyd.org [Last visited January 2007].
Provos, N. 2004. A virtual honeypot framework.

Sadasivam, K., Samudrala, B., & Yang, T. A. 2005. Design of network security
projects using honeypots. J. Comput. Small Coll., 20(4), 282-293.

UNINETT - The Norwegian Research Network. http://www.uninett.no [Last visited
November 2006].

OpenBSD. http://www.openbsd.org [Last visited January 2007].
Artymiak, J. 2003. Building Firewalls with OpenBSD and PF.

The Metasploit Project. Metasploit framework. http://www.metasploit.com [Last
visited February 2007].

Nessus - the network vulnerability scanner. http://www.nessus.org [Last visited
May 2007].

Combs, G. Wireshark - network protocol analyzer. http://www.wireshark.org [Last
visited March 2007].

Combs, G. Ethereal - a network protocol analyzer. http://www.ethereal.com [Last
visited November 2006].

Snort - open source network intrusion prevention and detection system.
http://www.snort.org [Last visited May 2007].

Northcutt, S. & Novak, J. 2002. Network Intrusion Detection - Third Edition. New
Riders.

Kayacik, H. G., Zincir-Heywood, A. N., & Heywood, M. I. 2005. Selecting features
for intrusion detection: A feature relevance analysis on kdd 99. In PST.

Symantec. Internet Security Threat Report, Trends for July - December 06. Techni-
cal report, Symantec, 2007.

SANS Institute. 2006. Sans top-20 internet security attack targets (2006 annual
update). https://www.sans.org/top20/ [Last visited May 2007].

50

Framework for generating IDS benchmarking Data sets

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

OWASP. 2007. The ten most critical web application security vulnerabilities 2007.
http://www.owasp.org/index.php/Top_10 2007 [Last visited May 2007].

Mannila, H., Toivonen, H., & Verkamo, A. I. 1995. Discovering frequent episodes
in sequences. In Proceedings of the First International Conference on Knowledge Dis-
covery and Data Mining (KDD-95), Fayyad, U. M. & Uthurusamy, R., eds, Montreal,
Canada. AAAI Press.

Mannila, H., Toivonen, H., & Verkamo, A. I. 1997. Discovery of frequent episodes
in event sequences. Data Mining and Knowledge Discovery, 1(3), 259-289.

Mannila, H. & Toivonen, H. 1996. Discovering generalized episodes using minimal
occurrences. In Knowledge Discovery and Data Mining, 146-151.

Postel, J. September 1981. RFC 791 - Internet Protocol Specification version 4.
Postel, J. August 1980. RFC 768 - User Datagram Protocol.

Postel, J. September 1981. RFC 793 - Transmission Control Protocol.

Postel, J. September 1981. RFC 792 - Internet Control Message Protocol.

Cve-2003-0727 - multiple buffer overflows in Oracle database.
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-0727 [Last visited
March 2007].

CVE-2002-0079 - 1IS remote buffer overflow. http://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2002-0079 [Last visited March 2007].

Carnegie Mellon University. CERT Advisory CA-2000-02 Malicious HTML tags em-
bedded in client web requests. http://www.cert.org/advisories/CA-2000-02.html
[Last visited March 2007].

Hoglund, G. & McGraw, G. 2004. Exploiting Software - How to break code. Addison-
Wesley.

Foundstone. Superscan - a free tcp port scanner, pinger, resolver.
http://www.foundstone.com [Last visited March 2007].

CIAC. Windows NT SAM permission vulnerability.
http://www.ciac.org/ciac/bulletins/h-45.shtml [Last visited March 2007].

CVE-2000-0778 - Microsoft IIS 5.0 "Translate: f' source disclosure vulnerabil-
ity. http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-0778 [Last visited
March 2007].

Carnegie Mellon University. CERT Advisory CA-2003-04 MS-SQL Server worm.
http://www.cert.org/advisories/CA-2003-04.html [Last visited March 2007].

CVE-2002-0649 - Microsoft SQL Server 2000 Resolution Service vulnerabili-
ties. http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0649 [Last vis-
ited March 2007].

51

Framework for generating IDS benchmarking Data sets

[52] McClure, S., Scambray, J., & Kurtz, G. 2005. Hacking Exposed - Network Security
Secrets & Solutions. McGraw-Hill.

[53] CVE-2000-0951 - Microsoft IIS 5.0 Indexed Directory disclosure vulnerabil-
ity. http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-0951 [Last visited
March 2007].

[54] SecurityFocus. http://www.securityfocus.com [Last visited March 2007].

52

Framework for generating IDS benchmarking Data sets

A Tables for each attack type

53

Framework for generating IDS benchmarking Data sets

A.1 Authorization basic overflow attempt

BASIC FEATURES CONTENT FEATURES
ID | Duration | Protocol | Service | Src_Bytes | Dst_Bytes | Land | Urgent | Access to passwd | Cross site scripting | Directory traversal
414 0,095 TCP 80 1632 3068 False 0 False False False
441 0,094 TCP 80 1632 3068 False 0 False False False
468 0,35 TCP 80 4508 3308 False 0 False False False
501 0,176 TCP 80 4508 3308 False 0 False False False
TRAFFIC FEATURES
Count | Same_srv_rate | Diff srv_rate | Srv_count | Srv_diff host_rate Status of connection

1 1 0 1 0 Authorization basic overflow attempt

1 1 0 1 0 Authorization basic overflow attempt

1 1 0 1 0 Authorization basic overflow attempt

1 1 0 1 0 Authorization basic overflow attempt

Table 7: Authorization basic overflow attempt

54

Framework for generating IDS benchmarking Data sets

1dwalie 19jsuen Surposuy-payuny) :g S[qel,

1dwaiie 19jsuen) UIpodUF-payuny) 0 2 0 1 €9
UOI129UUO0D JO Sniels 91kl I1S0Y JJIpP AIS | JUNOD AIS | 9JBI AIS JJIJ | 9Bl AIS oUWIBS | JUNOD
SHANIVAL DIddAVY.L
os[eq osTed os[eq 0 osTeq ¥60L 0948 08 dDL 886t 90¥891
[es12aeI) A1030311q | “3dLIds 931s Ss01) | pmssed 01 ss200y | Juadin | pueT | S91AG IS | S9IAG 9IS | IIIAISS | [090101d | uonIRINQ ail

SHINIVAA INJILNOD

SHINIVAA DISVd

jdurane 19jsueny Surpooug-payunyd gy

55

Framework for generating IDS benchmarking Data sets

A.3 Cross site scripting attempt

BASIC FEATURES CONTENT FEATURES
ID | Duration | Protocol | Service | Src_Bytes | Dst_Bytes | Land | Urgent | Access to passwd | Cross site scripting | Directory traversal
53 1,12 TCP 80 758 1474 False 0 False True False
58 1,374 TCP 80 714 1474 False 0 False True False
63 1,008 TCP 80 810 1474 False 0 False True False
68 1,23 TCP 80 700 1474 False 0 False True False
73 1,372 TCP 80 717 1474 False 0 False True False
94 1,366 TCP 80 718 1474 False 0 False True False
99 1,072 TCP 80 714 1474 False 0 False False False
TRAFFIC FEATURES
Count | Same_srv_rate | Diff srv_rate | Srv_count | Srv_diff host_rate Status of connection
1 1 0 1 0 Cross site scripting attempt
2 1 0 2 0 Cross site scripting attempt
3 1 0 1 0,666666667 Cross site scripting attempt
4 1 0 2 0,5 Cross site scripting attempt
5 1 0 3 0,4 Cross site scripting attempt
6 1 0 3 0,5 Cross site scripting attempt
7 1 0 4 0,428571429 Cross site scripting attempt

Table 9: Cross site scripting attempt

56

Framework for generating IDS benchmarking Data sets

[es1aaen) £1030911p d1I1H 01 2[qelL

[es1aAeD) A1030911p d1.LH £9999991+°0 L 0 I zel
[es1oAeI) A1010211p dLIH £99999999°0 8 0 T 124!
[es1oAen) £1010911p dILLH G9L1T¥62S0 91 0 1 <1
[es1aAen) A1010211p dLLH GSE61YLLI0 0¢ 0 1 81
[es12AeD) A1030211p d1.LH 8886808250 (44 0 1 60¢
[es1oAen A1010311p dLILH 6888888€9°0 6¢€ 0 1 8¢C
[es1oaen A1010911p dLLH 8€T¥TLISS0 6¢€ 0 1 £L0T
[es12AeI) A1010211p dILH 6888888850 LE 0 T 01c
[es1oAeI} A1030211P dLLH 0 op 0 I 091
[es1oAen) A1010911p dLLH 0 4 0 I 4
[es1aABT) A1010211p dLIH 0 T 0 I I
[es1aAeD) A1030211p d1.LH €EEEEEEEED [4 0 1 €
[esIaaeIl A1010911p dI.LH 0 4 0 1 e
[esIaaeIl A1010911p dL.LH 0 1 0 1 1
UOI129UUO0D JO Sniels 9kl 1S0Y JJIpP AIS | JUNOD AIS | 9JBI AIS JJIJ | 9Bl AIS oUIBS | JUNOD
STINIVHA DIHAVYL
oniL, os[eq oseq 0 osTeq 8t6¢C CLIT 08 do.L 910 S19611
onliL, os[eq os[eq 0 osTeq 8Y6¢C 0LTT 08 dOL 141°0 SLL801
oniL, os[eq os[eq 0 os[ed 86T 8¢€0T 08 dOL 2910 9%1101
oniL os[eq oseq 0 osTeq 8v6¢C CLIT 08 dO.L 991°0 6S6C6
oniL os[eq osreq 0 osteq 968S 96S¢C 08 doL 9¥€‘69 91818
oniL, os[eq os[eq 0 osTeq 8t6¢C CLIT 08 doL 1120 8899
onliL, os[eq oseq 0 osTeq 890¢ CLIT 08 dOL 8L1°0 91¥¥9
oniL, os[eq oseq 0 os[ed 1ZA4! 98s 08 dOL 2910 8stES
onliL, os[eq oseq 0 os[ed (44744 99/1 08 dO.L cTIvey 809¢t
oniL os[eq osTeq 0 osTeq 890¢ 6901 08 dOL 880°T 68¢C
oniL os[eq oseq 0 osTeq 890¢ 7201 08 doL STTl 6L¢C
onif, os[eq os[eq 0 osTeq 890¢ 0€0t 08 do.L 1€l 1494
onliL, os[eq oseq 0 osTeq 890¢ ceot 08 dOoL ToeT 861
SN[, os[ed os[ed 0 osTed 890¢ 001 08 dO.L TLET VA
[esivAen 1030911 | -3d1Ids 911S sso1) | pmssed 03 ss900y | Juadin | pueT | s914g IS | S9IAG 2IS | 9IAISS | [090101d | uonRINg dal
SHINIVHA INAZLNOD SHINIVHA DISVd

[esiaaen) A10302.1p dLIH +'V

57

Framework for generating IDS benchmarking Data sets

A.5 ICMP Ping NMap

BASIC FEATURES CONTENT FEATURES
ID Duration | Protocol | Service | Src_Bytes | Dst_Bytes | Land | Urgent | Access to passwd | Cross site scripting | Directory traversal
150851 | 2628,717 ICMP 0 444 444 False 0 False False False
162135 0,001 ICMP 0 60 60 False 0 False False False
173428 0,002 ICMP 0 60 60 False 0 False False False
173430 0 ICMP 0 60 60 False 0 False False False
173432 0,001 ICMP 0 60 60 False 0 False False False
173434 0,001 ICMP 0 60 60 False 0 False False False
173436 0 ICMP 0 60 60 False 0 False False False
173438 0 ICMP 0 60 60 False 0 False False False
TRAFFIC FEATURES
Count | Same_srv_rate | Diff srv_rate | Srv_count | Srv_diff host_rate | Status of connection

160 0,5 0,5 1 0,992647059 ICMP PING NMAP

171 1 0 1 0,993464052 ICMP PING NMAP

58 1 0 1 0,941176471 ICMP PING NMAP

58 1 0 1 0,941176471 ICMP PING NMAP

59 1 0 1 0,944444444 ICMP PING NMAP

60 1 0 1 0,947368421 ICMP PING NMAP

61 1 0 1 0,95 ICMP PING NMAP

62 1 0 1 0,952380952 ICMP PING NMAP

Table 11: ICMP Ping NMap

58

Framework for generating IDS benchmarking Data sets

oyos uedsadng JIANDI (2T 9[qeL

oyod uedsiadng JINDI TL¥9L11¥6°0 T 0 T 9s
oyd9 uedsiadng dINDI GLE€6°0 T 0 T SS
oyd9 uedsiadng dINDI €EEEEEEE60 T 0 T ¥S
oyas uedsiadng JINDI 6TH1LS8T60 I 0 I €S
oys uedsiadng dINDI €269L0€T60 I 0 T zs
oyo? uessiadng JNDI €269L0£T60 I 0 I zs
UONO2UUO0D JO sSNjelS | 3kl 1SOY JJIp AIS | JUNOD AIS | 9jel AIS JJIJ | 9kl AIS dWeS | Juno)
STYNIVAA DLLIVYL
osTed as[eq as[eq 0 os[eq 0zI1 0z1 0 dINDI 0 97921
asTed as[eq as[eq 0 osed 0zI (/741 0 dINDI 0 TToTt
asTed as[eq as[eq 0 osred 0zI (/41 0 dINDI 0 819C1
osTed as[eq as[eq 0 asred (/41 ozl 0 dINDI 100°0 | ¥192T
osTed os[eq as[eq 0 asTed 0TI 0TI 0 dINDI 100°0 | 019ZT
osed os[eq as[eq 0 osed 09 09 0 dINDI 100°0 | 9SSTI
[es12aeI) A1030311q | “3dLIds 931S Ss01) | pmssed 01 ss200y | Juadin | pueT | S91Ag IS | S9IAG 9IS | IIIAISS | [090101d | uonRINQ a
SHYNIVHA LNALNOD SHYNIVAA DISVE

oyod uedstadng JINDI 9V

59

Framework for generating IDS benchmarking Data sets

A.7 1IIS SAM Attempt

BASIC FEATURES CONTENT FEATURES
ID Duration | Protocol | Service | Src_Bytes | Dst Bytes | Land | Urgent | Access to passwd | Cross site scripting | Directory traversal
41225 0,163 TCP 80 554 1474 False 0 False False True
41253 0,164 TCP 80 554 1474 False 0 False False True
41281 0,159 TCP 80 554 1474 False 0 False False True
41309 0,163 TCP 80 554 1474 False 0 False False True
46686 0,157 TCP 80 1108 2948 False 0 False False True
46741 0,157 TCP 80 1108 2948 False 0 False False True
46797 0,158 TCP 80 1108 3068 False 0 False False True
46855 0,206 TCP 80 1108 2948 False 0 False False True
47523 0,215 TCP 80 1108 2948 False 0 False False True
47627 0,158 TCP 80 1108 2948 False 0 False False True
47685 0,157 TCP 80 1108 2948 False 0 False False True
47741 0,158 TCP 80 976 2948 False 0 False False True
TRAFFIC FEATURES
Count | Same_srv_rate | Diff srv rate | Srv_count | Srv_diff host rate | Status of connection

137 1 0 17 0 IIS SAM Attempt

137 1 0 17 0 IIS SAM Attempt

137 1 0 17 0 IS SAM Attempt

138 1 0 18 0 IIS SAM Attempt

179 1 0 17 0,711864407 IS SAM Attempt

180 1 0 18 0,7 IIS SAM Attempt

181 1 0 19 0,68852459 IS SAM Attempt

182 1 0 20 0,677419355 IIS SAM Attempt

193 1 0 18 0,75 IS SAM Attempt

194 1 0 18 0,753424658 IS SAM Attempt

193 1 0 18 0,75 IIS SAM Attempt

192 1 0 19 0,732394366 IS SAM Attempt

Table 13: IIS SAM Attempt

60

Framework for generating IDS benchmarking Data sets

JIopeay die[sue} BIA 92IN0S MIIA ST T 9[qeL

IS9pEaY 2IB[SUBII BIA 9DINOS MIIA SI] 0 1 0 1 8¢
Iopeay 21e[SUBI] BIA 92INOS MIIA SI] S0 1 0 1 A
Iopeay 9le[stiel] Bl 901IN0S MITA ST] £99999999°0 1 0 T 184
I9peaY 91B[SURI] BIA 9DINOS MIIA SI] S0 1 0 1 6
I9peaY 9IB[SURI) BIA 9DINOS MIIA SI] 0 1 0 1 691
ISpEaY 21B[SUBII BIA 9DINOS MIIA SI] 0 1 0 1 91
I9peay 21e[SUBI} BIA 92INOS MIIA SI] 0 1 0 1 7¢€1
1opeay 9le[stel] Bl 901IN0Ss MITA ST] £99999999°0 1 0 T 144
Topeay 9le[stiel] Bl 901IN0s MITA ST] £99999999°0 1 0 1 174!
19peay SJE[SURI] BIA 90IN0S MIIA S]I £99999999°0 1 0 T 144!
ISpEaY 21B[SUBII BIA 9DINOS MIIA SI] S0 1 0 1 Al
I9pEaY 2I1B[SUBII BIA 9DINOS MIIA SI] 0 1 0 1 721
I9peay 21e[SUBI] BIA 92INOS MIIA SI] S0 1 0 1 Z
I9peaY 21B[SUBI BIA 9DINOS MIIA SI] 0 1 0 1 1
I9peaY 91B[SUBI] BIA 9DINOS MIIA SI] 0 1 S0 S0 99
UOII29UUO0D JO SnIels 9kl 1S0Y JIP AIS | JUNO0d AIS | 9Bl AIS JJIJ | 91l AIS owWeS | JUNO0D
SHINIVHA DIIAVIL
osTeq osTed osTed 0 osTeq el e 08 ddL 9610 6680L1
osTeq osTed osTed 0 asTeq el e 08 dOL 61°0 €680L1
osTed osTed osTed 0 osTeq 1444! 6¢S 08 dDL 890 6L80LT
osreq os[eq osreq 0 osreq 14841 6€S 08 dDL 990 ¥980L1
osTeq osTed osTed 0 osTeq 144! 66S 08 dDL L989ST | /8091
osTeq osTed osTed 0 osTed 144! 66S 08 dDL TPT'S8T | €101ST
osTeq osTed osTed 0 osTed 9.CC ceL 08 dD1L €69°S yceovt
osTeq osTed osTed 0 osTed 89¢C 89 08 dDL 8820 8€S0¢
osTeq osTed osTed 0 osTed 89¢ 289 08 dDL LSTO 8CS0¢
osreq as[eq osreq 0 osTeq 8¢8¢ 9901 08 dDL 91€29 7870¢
osTeq osTed osTed 0 osTeq 8¢8¢ 8611 08 dDL 86529 8.¥0¢
osteq osTed osTed 0 asTeq 144! €es 08 dD1L 9969 8E¥0¢
osTeq osTed osTed 0 osTed 890¢ 8SL 08 dDL 89€°0 L1T
osTeq osTed osTed 0 osTed 890¢ 8SL 08 dDL 88¢‘0 124!
osTed osTed osTed 0 osTed 1 484! 66S 08 dOL LY1°€9 | 966491
[esioAen) A1030911q | -3d1I0s 911S Sso1) | pmssed 01 ss900y | Juadin | pueT | s914g IS | S9IAG 9IS | 92IAISS | [090101d | uoneINg dai

SHINIVAA INJLNOD

SHINIVAA DISVd

Jopeay 9je[sue.] BIA 92IN0S MIIA ST 8V

61

Framework for generating IDS benchmarking Data sets

A.9 MS-SQL Worm propagation attempt

BASIC FEATURES CONTENT FEATURES
ID Duration Protocol | Service | Src_Bytes | Dst Bytes | Land | Urgent | Access to passwd | Cross site scripting | Directory traversal
656 0 UDP 1434 836 140 False 0 False False False
678 1079007,107 UDP 1434 6688 1120 False 0 False False False
696 709226,038 UDP 1434 3344 560 False 0 False False False
732 0 UDP 1434 836 140 False 0 False False False
792 801431,163 UDP 1434 2508 420 False 0 False False False
976 0,001 UDP 1434 836 380 False 0 False False False
980 0 UDP 1434 836 380 False 0 False False False
1099 | 1702213,853 UDP 1434 3344 70 False 0 False False False
1112 0 UDP 1434 836 140 False 0 False False False
1164 | 427509,639 UDP 1434 3344 560 False 0 False False False
TRAFFIC FEATURES
Count | Same_srv_rate | Diff srv_rate | Srv_count | Srv_diff host_rate Status of connection

1 1 0 1 0 MS-SQL Worm propagation attempt

1 1 0 1 0 MS-SQL Worm propagation attempt

2 1 0 1 0,5 MS-SQL Worm propagation attempt

3 1 0 1 0,666666667 MS-SQL Worm propagation attempt

3 1 0 1 0,666666667 MS-SQL Worm propagation attempt

4 1 0 1 0,75 MS-SQL Worm propagation attempt

4 1 0 1 0,75 MS-SQL Worm propagation attempt

4 1 0 1 0,75 MS-SQL Worm propagation attempt

5 1 0 1 0,8 MS-SQL Worm propagation attempt

5 1 0 1 0,8 MS-SQL Worm propagation attempt

Table 15: MS-SQL Worm propagation attempt

62

Framework for generating IDS benchmarking Data sets

ueds NAS 9T 9]qBL

ueds NAS 0 1 80 z0 €S

ueds NAS GL0 1 80 zo €L

ueds NAS GL0 T 80 zo €L

ueds NAS GL0 1 80 T0 €L

ueds NAS GL0 1 80 Z0 €L

ueds NAS S0 T 0] S0 99

ueds NAS £99999999°0 T S0 S0 99

ueds NAS S0 1 0 T S

ueds NAS 0 T 0 1 6V

ueds NAS 80 T 0 T v/

UOMID9UUO0D JO SNIel§ | el IS0y JJIP AIS | JUNOD AIS | Il AIS JJIJ | 918l AIS owWeS | Juno)
STANIVAA DIIAVIL
osTed osTed osTeq 0 osTeq 09 09 €020¢ dD1L 100°0 86€SLT
osTed osTed osTed 0 osTeq 09 09 €020¢ dDL 2000 6CPSLT
osTed osTed osTed 0 osTeq 09 09 TLLT dOlL 200°0 LTVSLT
osTed osTed osTeq 0 osTeq 09 09 CLLT dOlL 200°0 9CvSL1
osTed osTed osTeq 0 as[eq 09 09 €020¢ dDL €00°0 TEPSLT
osTed osTed osTeq 0 osTeq 09 09 €LLT dD1L 100°0 LOPSLT
osTed osTed osTed 0 osTeq 09 09 vLLT dDL 1000 90¥SLT
osTeq osTeq osTeq 0 osTeq 09 09 vLLT dOlL 0 YO¥SLT
osTed osTed osTeq 0 osTeq 09 09 YLLT dOlL 100°0 ¥6E£SL1
osTed osTed os[eq 0 asteq 09 09 YLLT dDL 200°‘0 8EVSLI
[es12aeI) A1030211q | “3dLIds 931s Ss01) | pmssed 01 ss200y | Juadin | pueT | S91AG IS | S9IAG 9IS | IIIAISS | [090101d | uonRINQ dal
STINIVAA LNHINOD SHUNIVHAL DISVI

ueds NAS OLV

63

Framework for generating IDS benchmarking Data sets

A.11 Traceroute ICMP

BASIC FEATURES

CONTENT FEATURES

ID Duration | Protocol | Service | Src_Bytes | Dst Bytes | Land | Urgent | Access to passwd | Cross site scripting | Directory traversal
220024 13,992 ICMP 0 70 240 False 0 False False False
TRAFFIC FEATURES
Count | Same_srv_rate | Diff srv rate | Srv_count | Srv_diff host rate | Status of connection
50 1 0 1 0,954545455 Traceroute ICMP

Table 17: Traceroute ICMP

64

Framework for generating IDS benchmarking Data sets

ddn @moisdel], 18T 9[qeL

dd[2INOJIadRI], 0 T 0 T (614

dd[) 2INOIadRI], S0 1 0 1 SS

dd[) 2INOI3deI], 80 1 0 T €S

ddn 2INoIaded], 80 1 0 1 €S

ddn 2InoIadel], 80 1 0 1 €S

dd[) 2INOJIadRI], S0 1 0 T 0S

dd[2INOoIadRI], S0 T 0 T 0s

dd[] 2INOJIRI], 0 T S0 S0 S

UOMID9UUO0D JO SNIel§ | el IS0y JJIP AIS | JUNOD AIS | Il AIS JJIJ | 918l AIS owWeS | Juno)
SHUNIVAA DIIIVIL

osTeq osTed osTed 0 osTeq 0L 0c1 89.4¢C¢ ddan €10°0 €200¢¢
osTeq osTed osTed 0 asTeq 0L 09 89.4¢C¢ ddan 0 1200¢2¢
osTeq osTed osTed 0 oniy, ovl 9/¢C LET ddan ST0‘e 66661C
osTeq osTeq osTed 0 oniy, ov1 9LC LET ddan ST0‘e 86661C
osTeq osTed osTed 0 oniy, ov1 9.¢C LET ddan STo‘e L6661C
osTeq osTed os[eq 0 oniy, 09¢ 9.¢C LET ddan 920°c 96661¢
osTeq osTed osTed 0 onip, 0L 9LT LET ddan S20‘e ¥6661C
osTed osTed osTed 0 asTeq 04 09 894¢C¢ ddan 0 6100C¢C
[es12AeI) A1030311q | -3d1Ios 931s ss01) | pmssed 01 ss200y | Juadin | pueT | S91Ag IS | S9IAG 9IS | IIIAISS | [090101d | uonRINQ a1

SHANIVAS INHINOD

SHINIVAA DISVd

ddn @anoidei], I’V

65

Framework for generating IDS benchmarking Data sets

A.13 Web /etc/passwd attempt

BASIC FEATURES CONTENT FEATURES
ID | Duration | Protocol | Service | Src Bytes | Dst Bytes | Land | Urgent | Access to passwd | Cross site scripting | Directory traversal
1 1,12 TCP 80 752 1474 False 0 True False False
14 1,169 TCP 80 750 1474 False 0 True False True
19 1,197 TCP 80 744 1474 False 0 True False True
24 1,21 TCP 80 713 1474 False 0 True False True
333 1,406 TCP 80 1208 3068 False 0 True False True
343 1,342 TCP 80 1083 3068 False 0 True False False
370 1,296 TCP 80 1031 3068 False 0 True False False
TRAFFIC FEATURES
Count | Same_srv_rate | Diff srv_rate | Srv_count | Srv_diff host_rate Status of connection

1 1 0 1 0 Web /etc/passwd attempt

1 1 0 1 0 Web /etc/passwd attempt

2 1 0 1 0,5 Web /etc/passwd attempt

3 1 0 2 0,333333333 Web /etc/passwd attempt

1 1 0 1 0 Web /etc/passwd attempt

2 1 0 1 0,5 Web /etc/passwd attempt

3 1 0 2 0,333333333 Web /etc/passwd attempt

Table 19: Web /etc/passwd attempt

66

Framework for generating IDS benchmarking Data sets

$S9J08€ [JoIeas AVA]SM -0¢ °[9elL

§5900® [oIeas AVAGSM 0 ! £99999999°0 | EEEEEEEEED ¥9
UOII29UUO0D JO SNielS | 3jel ISoy JJIP AIS | JUNOD AIS | 3kl AIS JJIJ | 9Bl AIS SweS | Juno)
SHINIVHA DIJAVYIL
oSTed osTed os[ed 0 osTed 1d%%4% Y0ThL 08 doL 1¥6°0C | 66€891
[es1oAen) A10109a1q | “3dLIOS 911s sso1) | pmssed 0] Ss900y | U1 | pueT | sa1Ag IS | S91AG 9IS | 9JIAIAS | [000310id | uoneIng al

SHANIVAS INHINOD

SHINIVAA DISVd

$S9J0® JoJeos AVAGPM VIV

67

	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Introduction
	Topic covered by this thesis
	Problem description
	Justification, motivation and benefits
	Research questions
	Limitations
	Definitions

	Previous work
	KDD CUP 1999
	Construction of features and models for intrusion detection systems by data mining
	Network connection records

	Teoretical background
	Honeypot
	Honeyd
	Configuring honeyd
	Honeypots deployment and setup

	Malicious traffic generator
	Nessus

	Network Protocol Analyzer and Editor
	Wireshark

	Network Intrusion Detection System
	Snort

	Selection of features for IDS benchmarking
	Basic features of individual TCP connections
	Content features within a connection suggested by domain knowledge
	Time based traffic features computed using a two second time window
	Host based traffic features computed using a window of 100 connections

	Experimental work
	Prototype
	Preprocessing
	Establishing connection records
	Computing features for each connection
	Identifying attacks
	Generating the data set

	Program for comparing Snort alerts with attacks found in the data set
	Experiments
	Methodology
	The attacks found in the data sets
	Traffic captured by the honeypots
	Attacks found in the captured network packets
	The modified data set
	Attacks in the modified data set
	The generated data set
	General statistics from the modified data set
	Statistics of the new content features
	Results
	Relevant features for detecting a given attack type
	Discussion regarding relevance of the features

	Conclusions
	Further work
	Bibliography
	Tables for each attack type
	Authorization basic overflow attempt
	Chunked-Encoding transfer attempt
	Cross site scripting attempt
	HTTP directory traversal
	ICMP Ping NMap
	ICMP Superscan echo
	IIS SAM Attempt
	IIS view source via translate header
	MS-SQL Worm propagation attempt
	SYN scan
	Traceroute ICMP
	Traceroute UDP
	Web /etc/passwd attempt
	WebDAV search access

