
Secure Offsite Backup at CERN

Katrine Aam Svendsen

Master’s Thesis
Master of Science in Information Security

30 ECTS
Faculty of Computer Science and Media Technology

Gjøvik University College, 2007

Avdeling for
informatikk og medieteknikk
Høgskolen i Gjøvik
Postboks 191
2802 Gjøvik

Faculty of Computer Science
and Media Technology
Gjøvik University College
Box 191
N-2802 Gjøvik
Norway

Secure Offsite Backup at CERN

Abstract

An incident which results in the loss of data can be devastating for an organization,
especially a large research organization. It is therefore important to store the vital data
in an offsite location, in case the original data for some reason is rendered unavailable.

CERN – the European Organization for Nuclear Research – is such an organization. To
protect themselves against this vulnerability, the IT department, situated at the Meyrin
site of the organization, have installed an offsite backup server at the Prevessin site, about
3 kilometers away. A live copy of the vital data is backed up to this server regularly.

Some of the groups and services at CERN handle confidential information, such as
information about personnel and salaries, and it was therefore desirable to encrypt the
data stored on the offsite backup server. This thesis presents the development and im-
plementation of this system, by the use of existing components, as well as policies and
procedures needed to administrate and manage the system.

The system incorporates AFS, with Kerberos authentication, which is already in use at
CERN. For encryption, TrueCrypt is installed on the backup server. This provides on-the-
fly encryption of the transferred data in encrypted volumes mounted as virtual disks. The
system ensures that the data is transferred securely, that one user does not have access
to any other user’s data, and that a physical attack on the server, e.g. theft, do not give
an adversary any access to data.

The thesis presents the system design, designed with basis in the initial requirements
to the system, and a version adapted to the situation at CERN at the time of implemen-
tation. It is shown that the system is adaptable to several different situations.

iii

Secure Offsite Backup at CERN

Sammendrag

En hendelse som resulterer i tap av data kan være ødeleggende for en organisasjon, og
dette gjelder også store forskningsinstitusjoner. Det er derfor viktig å ha en offsite backup
løsning, på et område som er fysisk adskilt fra stedet der dataene i utgangspunktet opp-
bevares, der man kan lagre vitale, driftsnødvendige data i tilfelle de opprinnelige dataene
av en eller annen grunn blir utilgjengelige.

CERN, den europeiske organisasjonen for kjernefysisk forskning, er en slik organisas-
jon. For å sikre seg mot denne sårbarheten har IT-avdelingen, som befinner seg i den
delen av CERN som ligger i Meyrin, Sveits, installert en offsite backupserver i den delen
av CERN som ligger i Prevessin, Frankrike, ca. 3 kilometer unna. En gjeldende kopi av
de driftskritiske dataene kopieres til denne serveren regelmessig.

Noen av gruppene og tjenestene ved CERN håndterer konfidensiell informasjon, slik
som personell- og lønnsopplysninger, og det er derfor ønskelig å kryptere dataene som la-
gres på den eksterne backupserveren. Denne rapporten presenterer utviklingen og imple-
menteringen av et sikkert system for å beskytte disse dataene, ved å bruke eksisterende
løsninger, i tillegg til nødvendige policyer og prosedyrer som trengs for å administrere
systemet.

Systemet benytter AFS, med Kerberos autentisering, som allerede benyttes på CERN.
For kryptering er TrueCrypt installert på backupserveren. Dette muliggjør “on-the-fly”
kryptering av dataene som overføres og lagres på krypterte volumer som monteres som
virtuelle disker. Systemet sikrer at dataene overføres sikkert, at en bruker ikke har tilgang
til en annen brukers data, og at et fysisk angrep på serveren, for eksempel tyveri, ikke vil
gi angriperen tilgang til dataene.

Rapporten presenterer systemdesignet, som er utviklet på grunnlag av de opprin-
nelige systemkravene, i tillegg til en versjon som er tilpasset situasjonen ved CERN i
skrivende stund. Det er vist at systemet kan tilpasses flere forksjellige situasjoner.

v

Secure Offsite Backup at CERN

Preface

I would like to thank my supervisor, Chik How Tan, for much help when formulating
the project description, feedback on the proposed solution and help with the final report.
Also, my colleagues in the IT-DES-SIS section at CERN and the rest of the IT-DES group, as
well as personnel responsible for the information security and disaster recovery planning
at CERN, have helped in the process of designing and developing the solutions presented
in this thesis.

Finally, many thanks to my fellow students Roger and Line, for valuable help, feedback
and input on my project and thesis.

Katrine Aam Svendsen, 31st October 2007

vii

Secure Offsite Backup at CERN

Contents

Abstract . iii
Sammendrag . v
Preface . vii
Contents . ix
List of Figures . xi
1 Introduction . 1

1.1 Topic . 1
1.2 CERN . 1
1.3 Problem Description . 1
1.4 Delimitations . 2
1.5 Research questions . 2

2 Choice of method . 3
3 Related work . 5

3.1 Threats and vulnerabilities . 5
3.2 State of the art . 6
3.3 Writing policies . 12
3.4 Key management . 13
3.5 Disaster recovery . 14

4 System analysis . 17
4.1 Offsite Backup Service . 17
4.2 AFS – Andrew File System . 18
4.3 Kerberos . 19
4.4 TrueCrypt . 20
4.5 Vulnerabilities and assumptions . 21

5 System design . 23
5.1 Secure Offsite Backup . 23
5.2 Simplified system design . 26

6 Development and implementation . 29
6.1 Scripts for the secure offsite backup service 30
6.2 Scripts used in the version in production at CERN 36

7 Policy – key management and administration 39
7.1 Policy for the secure offsite backup service 39
7.2 Policy for the version in production at CERN 42

8 Procedures . 45
9 Discussion . 47
10 Further Work . 51
11 Conclusions . 53
Bibliography . 55
A Scripts . 59

A.1 createvol.sh . 59

ix

Secure Offsite Backup at CERN

A.2 createC.sh . 63
A.3 check.sh . 68
A.4 mount.sh . 69
A.5 unmount.sh . 71
A.6 backup.sh . 73
A.7 changekey.sh . 75

B User guidelines for version in production at CERN 77
C Correspondence with OpenAFS mailing list 81

x

Secure Offsite Backup at CERN

List of Figures

1 The process of the project . 3
2 Simplified illustration of TrueCrypt volume 12
3 Structure of Kerberos . 20
4 The system design; mounting a volume . 24
5 Process when taking backup . 25
6 The version put in production at CERN; mounting a volume 26
7 Creating a TrueCrypt volume. 31
8 Mounting a TrueCrypt volume. 32
9 The structure of the configuration file. 33
10 backup.sh without parameters . 34
11 backup.sh with parameters . 34
12 Changing the keyfile and password of a TrueCrypt volume 35

xi

Secure Offsite Backup at CERN

1 Introduction

1.1 Topic

This thesis concerns the implementation of encryption on an offsite backup server at
CERN in Geneva, Switzerland. Areas covered are to choose and implement the encryption
scheme, design policies and procedures for key generation, -distribution and -handling
as well as other administrative tasks, develop a user interface and evaluate the overall
security of the implemented system.

1.2 CERN

CERN – The European Organization for Nuclear Research – is the world’s largest particle
physics centre. It was founded in 1954, as one of Europe’s first joint ventures, and do
now have 20 member states. At the moment, just under 3000 people are employed by
CERN, this being everything from physicists to secretaries. In addition to this, there are
about 6500 visiting scientists who come to CERN to do their research.

The laboratory and its physicists have received the physics Nobel price several times.
The first time was in 1976, for the discovery of a new kind of elementary particle, and
two CERN physicists got the price in 1984 for their contribution in the discovery of two
field particles. Another researcher at the laboratory got the price in 1988, and the last
Nobel price, so far, received by a CERN physicist was is 1992, for his work on particle
detectors [1].

Currently, the main focus at CERN is on completing and starting the LHC, the Large
Hadron Collider. This is a particle accelerator that will accelerate particles almost to the
speed of light. Different detectors are built to make the particles visible. The goal of the
accelerator is to recreate the environment as it was at the origin of our universe, and
answer such questions as “why do elementary particles have mass?” and “why is their
masses different?” [2].

CERN is located on the border between Switzerland and France, with its main site
(Meyrin site) in Switzerland, near Geneva. This is where the main computer centre is
located. There are also a site in France (Prevessin site), where, among other things, the
control centre to the accelerators is located.

The computer facilities at CERN hold a lot of information which is fundamental for
the day-to-day run of the organization, such as personnel information and databases
holding information about different experiments. This is backed up in a central network
backup system (IBM’s Tivoli Storage Manager).

1.3 Problem Description

An offsite backup server, placed at the CERN site in Prevessin, France, is available for the
users of the CERN network to store data that is vital for the operation of the institute. The
main function of this backup service is to serve as a part of a disaster recovery plan, so
that the operation of the organization may proceed as normally as possible if a disaster
should occur which results in corruption of the main computer facilities.

1

Secure Offsite Backup at CERN

Several different types of data may be stored on the backup servers, and it is desirable
to keep this data confidential. A good way to ensure this confidentiality is to encrypt the
data. However, the information should be available for the users to retrieve at any time,
and it should not be too cumbersome to carry out the backups.

When implementing encryption, a scheme for how to distribute and manage keys is a
crucial part of the system. The design of this scheme, with guidelines and policies, is an
important part of the implementation itself.

Following the implementation of the encryption itself and the key management poli-
cies, it is desirable to have a user interface that makes the utilization of the backup server,
with the encryption, easy for the users. This apply to both the users administrating the
service – creating new encrypted spaces, generating and managing keys etc. – and those
using the service to backup their critical data.

Status of the system at the start of the project

The backup server is a computer running Scientific Linux CERN 4.4 (SLC4), situated at
the Prevessin site of CERN, in France, approximately 3 km from the main computing
central. It is mostly intended to hold remote live backups to use in case of a disaster, or
in other situations where the data stored in the main computing center and on regular
local backup systems have been destroyed.

At the start of this project, the system is in use, but there is no encryption of the data
stored. Users can log on to the machine via SSH1 to manage the files already backed up,
and on Linux machines, files may be backed up using standard Linux commands such
as rsync2 (via SSH) or scp3. It is desired that this kind of functionality is preserved after
the encryption is implemented. Also, it is desired that the solution can be used from both
Linux and Microsoft Windows machines, as CERN use both operating systems.

1.4 Delimitations

This thesis will not consider the overall network security of CERN, but simply the process
of securing the data stored on the backup machine and the administrative procedures
connected to this process.

Also, it will not be attempted to produce any full information security policy for CERN.
The policy presented in chapter 7 is specific for the system presented in this thesis.

1.5 Research questions

1. Is it possible to develop a transparent and secure offsite backup solution within the
current systems at CERN?

• How is the encryption best implemented?

• How should key management policies and guidelines, and a policy regarding dis-
aster recovery be designed?

• Is it possible to create a user interface which makes the solution transparent to
the user?

2. If so, is the security satisfactory with regards to the requirements to the system?

1RFC4251 – The Secure Shell (SSH) Protocol Architecture [3]
2rsync is a tool for transferring files, that enables incremental backups. More information in [4, 5]
3Secure Copy – file transfer protocol used to copy files safely between computers in a network, via SSH. [6]

2

Secure Offsite Backup at CERN

2 Choice of method

This project consisted of three phases: a literature study, a development phase consisting
of the creation of a system design, installation of TrueCrypt and development of scripts,
and design of policies and procedures. This chapter will give a brief description of the
different phases.

The project is carried through using an iterative and incremental approach. An iter-
ative process is, according to Robey et al. [7], “designed to include repetition so that
work completed in an earlier cycle can be refined and corrected.” Further, they assert
that an iterative-incremental process is based “on the assumption that it is possible to
identify and meet system needs more accurately by continuously revisiting requirements
with users.” The process of the project is illustrated in figure 1, and how the iterative-
incremental approach was carried through in this project is described in chapter 6.

The first period of this project was dedicated to the study of related literature. The
main focus was on existing storage solutions, and different kinds of encryption file sys-
tems. Information about other ways to solve the problem of this project was also ex-
plored. After exploring the state of the art in the technical field of the project, it was
also important to obtain information about the writing of policies, key management and
disaster recovery planning.

Different sources were examined in this phase, mostly articles available from the ma-
jor databases, like IEEExplore1 and ACM2, and from different books relating to the sub-
ject. The outcome of this phase is presented in chapter 3.

During the course of the literature study, it was also important to obtain an accurate
knowledge of the situation and current system at CERN, to get a good basis before the
development phase. The outcome of this survey is presented in chapter 4.

Based on this knowledge, the development and implementation phase was com-
menced, starting with the creation of the system design and key management scheme.
An important part of this phase was to test possible tools to use in the system design,
and make a decision about which to use. This also included some discussions with the
relevant people at CERN. After the choice was made, the chosen tool was installed on
the backup server and some time was used to get to know it and do some initial tests.

Figure 1: The process of the project

1http://ieeexplore.ieee.org
2http://portal.acm.org

3

Secure Offsite Backup at CERN

In parallel with the next part of the development phase, the development of scripts,
was also the design of a key management and administration policy and procedures.
Different ideas had to be discussed with the relevant people at CERN, and different
opinions had to be taken into consideration.

The resulting system design is presented in chapter 5, the results of the development
phase are presented in chapter 6. The policies are presented in chapter 7, followed by
the procedures in chapter 8.

4

Secure Offsite Backup at CERN

3 Related work

Several solutions to similar problems have been presented in the past. After a presenta-
tion of different vulnerabilities of such backup systems, this chapter will present different
cryptographic file systems, different file encryption programs (on-the-fly encryption), the
writing of policies, ways to handle the key management, and disaster recovery.

3.1 Threats and vulnerabilities

One of the main abilities of a backup solution such as the one presented in this report
is that the information may be stored over a long time period. This opens for several
vulnerabilities, in addition to those relevant for general purpose storage systems. Storer
et al. [8] present several vulnerabilities concerning secure storage, and many of them
are applicable to this situation. It is vital to understand these threats to make a long term
storage system work.

One example of such a threat is the key management when considering encrypted file
storage. The encryption keys need to be stored for an indefinite time period. Compared
to a single session key corresponding to one single transmission, this opens for several
security threats. This is one of several problems in the area identified by Storer et al.
as “long-term secrecy”. Other examples are the problem with re-encryption and the fact
that nobody knows the future development.

Another area of problems is that of authentication and user accounts. What happens
when an employee leaves the organization, or for some other reason is no longer avail-
able? It is necessary to have proper mechanisms in place so that when e.g. an employee
leaves his/her job, the user(s) taking over his/her responsibilities receives the necessary
privileges and keys. In addition to this, it is important that the users remember where
they stored the information, or else it is as good as lost.

The integrity of stored data is very important, and this is also crucial for long-term
storage. It is therefore necessary with regular integrity checks to ensure the quality of the
information stored in long-term storage systems. Storer et al. asserts that cryptographic
hashes may not be sufficient for integrity checks in these situations, since an adversary
might find collisions in the hash function and thereby alter the file without the integrity
check noticing the change. This leads to another problem, which is the increased possi-
bility of slow attacks on a long-term storage system. An attacker may use several years
to complete an attack. Intrusion detection may be hard to accomplish, since the attack
may be distributed over a long period of time.

Graf and Wolthusen [9] also present different threats to a storage system. They di-
vide them into on-line and off-line threats, where on-line is defined as “occurring while a
trusted OS is providing mediation to storage resources”, and off-line is when there is “no
trusted mediation of access to storage resources.” Examples of on-line threats are imper-
sonation, subversion (making privileged users perform the desired action) and privilege
escalation (gain access to privileged resources accessible only to the OS). An example of
an off-line attack is theft of removable media, e.g. a flash disk or even a laptop.

5

Secure Offsite Backup at CERN

Riedel et al. [10] present a framework for evaluating the security of a storage system.
Their framework consists of five components, spanning from the different users of the
system to the granularity of the protection. The most important factors of their frame-
work in this situation are:

• the users; file owners and those with read and write access,

• attacks,

• security primitives; authentication, authorization, key distribution and data protec-
tion.

It is also relevant to consider the user inconvenience – what level of inconvenience are
the users willing to tolerate? This is important to see in connection with the desired
level of security. Whitten and Tygar [11, 12] state that security software is only usable
when certain criteria are met: the users should be aware of the necessary security tasks,
they should be able to find out how to perform these tasks, no dangerous errors should
be made, and the users should be comfortable enough with the system to use it again.
Even though their work is mainly focused on the user interface of the system, the same
principles will apply to a command based system.

To use the situation covered by this thesis as an example: if the scheme used to encrypt
the information is too difficult for the users to understand, or in other ways create too
much inconvenience, the users may avoid using the solution, and just use the onsite
backup. As stated in [11], “if security is too difficult or annoying, users may give up on it
altogether.” In this situation, this will of course cause a massive loss of data in the event
of a disaster.

3.2 State of the art

When storing data on a remote server, it is often desired to encrypt these data, either be-
cause the server is inherently untrusted, or because there is a chance that the server may
be compromised [10]. As stated by Blaze [13], the use of remote file systems opens the
possibility for an adversary to gain access simply by compromising a single component of
a large system. This is the main reason of implementing encryption – it makes the data
unreachable to those that do not have the correct key.

Here we will present some possible solutions to this problem, to show how similar
situations have been solved in the past. At the end of the section there will also be a
presentation of the tool implemented in the solution of this master’s project.

CFS - Cryptographic File System

CFS was presented by Blaze [13] in 1993 and was “designed on the principle that the
trusted components of a system should encrypt immediately before sending data to un-
trusted components.” He states that the system is situated somewhere between the low-
level (the cryptographic services are part of the system) and the user-level (the user
directly controls the encryption/decryption) cryptography. The purpose of the system is
to “protect exactly those aspects of file storage that are vulnerable to attack”, and that
the use of the system shall be convenient enough to be used on a regular basis. Some of
the design goals of the system were:

6

Secure Offsite Backup at CERN

• rational key management and natural key granularity;
the user should not need to enter the key more than once. Also, it should be easy to
protect related files using the same key.

• protection of file contents;
in addition to the data in the files, the structural data related to the file’s contents
should also be protected.

• protection of sensitive meta-data;
the (possibly sensitive) file names and other structural data should be protected as
much as possible, and should not be readable without the correct key.

• protection of network connections;
it should not be possible to read data by observing the network traffic.

• compatibility with underlying system services;
e.g. administrators should be able to back up the data without knowing the key and
without special tools.

• portability;
encrypted files should be possible to read wherever and whenever the key is sup-
plied, and the system should not be based upon special-purpose or otherwise unusual
system features.

To encrypt a directory using CFS, the user issues a simple attach command. When writ-
ing files to this directory, these will then be automatically encrypted. Likewise, the file
is decrypted when it is read. This is done using a “virtual” file system, where entries
associating cryptographic keys with directories residing anywhere in the system name
space are created. The virtual file system is typically mounted on /crypt, and to the user
originally issuing the attach-command, all the files appear in cleartext here.

The keys can either be entered by the user directly through the keyboard, or be pro-
vided by hardware, such as smart cards. When using the keyboard, the key is generated
from arbitrary-length passphrases. If the system utilizes smart cards, the keys are copied
from the card to the computer after the user has entered his password to get access to
the card itself.

The user may then create files and directories as usual, and when he is finished, he
can simply detach the /crypt mount point. The underlying directory will of course still
be there, but in encrypted form, and it must be attached at a later time to get the data in
cleartext.

CFS uses DES to encrypt the data. Obviously, the development of the cryptography
has, as any other part of the computing world, been substantial since 1993. Today, DES
is not recommended to be used for encryption, because its relatively short key (56-bit)
makes it vulnerable to brute-force attacks. This is especially not suitable for a long-term
backup solution.

SFS – Secure File System [14]

The SFS “provides end-to-end encryption and key management support to users access-
ing file across the Internet on HTTP or FTP servers” [14]. The system was developed to
be independent of operating system and applications. The access rights to a file are kept

7

Secure Offsite Backup at CERN

with the file as an attribute. The system supports decentralized access control, so that
small groups of users can define who is allowed to read the data, without the help of a
system administrator. With SFS, the information is protected both when it is stored and
when it is transferred. As stated in [14]: “SFS encrypts from the information producer to
the information consumer”.

SFS uses a Group Server to manage the keys used to encrypt files. In addition to this,
each user has a smart card where his private keys are stored. These cards are used to
digitally sign and encrypt all communication with the Group Server.

A header is stored with every encrypted file. This header holds an access control
list related to the file, as well as the public key of the Group Server. When a file is
accessed, the access list is forwarded (signed and encrypted) to the Group Server, which
then determines whether the attempted access should be allowed or not. If the access is
permitted, the server returns the file key to the user in encrypted form. Using his private
key from the smart card, the user may now decrypt the file key, and is further able to
decrypt the file. All encryption and decryption is executed internally in the smart cards.

To “provide fine-grain control of file accesses” [14], SFS uses separate keys for each
file. Also, the directories are treated as files, so they have unique keys as well.

Farsite [15]

Farsite is “a serverless distributed file system that logically functions as a centralized file
server but whose physical realization is dispersed among a network of untrusted desktop
workstations” [15]. The goal while designing Farsite was to manage the unreliable ma-
chines of a network to provide a file-storage service that was logically centralized, secure
and reliable. Cryptography and replication techniques are used to protect file data and
directory metadata.

Since the Farsite system is developed to run on the workstations of large corporations
or institutions like a university, it is not directly applicable to our situation. Furthermore,
it is not suited to function as a backup service. However, it is nevertheless useful to
investigate how the key distribution and management is solved.

To manage the trust issues in distributed file system, Farsite uses certificates. The
certificates are signed using private keys generated for that purpose, and each certificate
holds the public key of the relevant user. When the certificate is signed, the user name is
associated with the public key in the certificate. Also, each machine has a public/private
key pair and a certificate connecting the machine to the public key.

Farsite encrypts both the contents of the file and the metadata. A symmetric file key
is generated when a client creates a new file. This key is used for the encryption, and
further the key itself is encrypted using the public keys of all users authorized to read the
file. Finally, the encrypted keys are stored with the file, so all users with a corresponding
private key are able to decrypt the file key and further decrypt the file itself.

TCFS – Transparent Cryptographic File System [16]

One thing which is desirable at CERN is that the solution is transparent to the user, except
for the process of providing the user credentials. CFS was the initial motivation when
TCFS was designed. Functionality such as transparency and the possibility to choose
which file in the directory should be encrypted, instead of encrypting all files in the
directory, was added.

8

Secure Offsite Backup at CERN

When an application requests a block of data, this is sent in encrypted form from the
server. The client workstation decrypts the data before it is passed to the application.
Similarly, if an application is to write something to the server, this is encrypted on the
workstation before it is sent to the server, where it is stored. This way, there is no need
for the server to be trusted, because it never handles the data in cleartext. Also, the data
is always encrypted when sent over the network.

TCFS users generate their own keys, which then are stored in encrypted form in a
database where the user’s login password is the key. The users need to be registered as
a user of the key database to benefit from this. To access his files, the user extracts his
key from the database and presents it to TCFS. Finally, the user himself needs to run a
command to make sure the key is erased from the kernel when he is finished.

There is also a solution utilizing Kerberos, where the users first authenticate them-
selves and receives a session key and a ticket. The ticket, and a request (e.g. to get a user
key), is then sent to a TCFS key server (encrypted), where the message is decrypted and
responded to.

Each file is encrypted with a randomly chosen file key, which again is encrypted with
the user’s master key and stored in the file’s header. The files are encrypted in blocks –
each block by a different block key. These block keys are created by hashing the file key
concatenated with the block numbers. Each file block can also hold an authentication
field, which is computed by hashing the block data concatenated with the block key.

This modular encryption scheme makes it impossible to break the encryption by
checking if two encrypted files, or if two blocks in the same file, correspond to the same
cleartext. The authentication fields also ensure that modification of the data on the server
is detected.

OpenSSL [17]

Thompson [18] presents a solution for encrypted backups using scripts. His first approach
is to use OpenSSL. OpenSSL is an open source toolkit that enables the user to implement
the SSL (Secure Sockets Layer) or TLS (Transport Layer Security) protocols, as well as
providing a strong general purpose cryptography library.

The cryptography library provides the users with a wide range of algorithms, and
provides functionalities such as symmetric and asymmetric cryptography, cryptographic
hash functions and pseudo-random number generators. Examples of available algorithms
are blowfish, DES, IDEA, RC4, RSA, HMAC and SHA. OpenSSL also supports certificate
handling, with x509 and x509v3 certificates.

Thompson’s approach when using OpenSSL for backup encryption is suited for those
already using scripts to carry out their backup services. By adding an extra OpenSSL
command to the script, the data will be encrypted before it is backed up. Similarly, a
command added to the script for restoring the backups will enable the decryption of the
data.

GPG – the GNU Privacy Guard [19]

Thompson’s second approach is to use GPG, or GnuPG. GPG is a free implementation of
the OpenPGP standard presented in RFC24401. It gives its users the ability to encrypt
and sign data and communication. It is a command line tool, and supports algorithms

1RFC2440 – OpenPGP Message Format [20]

9

Secure Offsite Backup at CERN

such as ElGamal, RSA, AES, 3DES, Blowfish, MD5 and SHA-1.
As with OpenSSL, Thompson includes the GPG encryption/decryption commands in

the backup scripts. Even though GPG originally is a public-key (asymmetric) system, it is
also possible to use symmetric algorithms such as AES to encrypt the data.

Neither the OpenSSL nor the GPG solution would be easy to implement in a sys-
tem that requires incremental backup, since each part is encrypted before the backup is
stored. To make the backup incremental, the existing backup file would then have to be
restored, decrypted, the files synchronized and the new backup file encrypted.

Amanda

Amanda was developed in 1991, to solve the problems regarding backups from client
workstations to backup tapes, especially the need to get the backup done between the
end of one work day and the beginning of the next [21].

According to Garcia and Pragin [22], Amanda is “flexible, secure and scalable to dy-
namic computing environments.” It has been used in all kinds of environments, from a
standalone machine to systems with hundreds of clients. The software gives the system
administrator the ability to back up “multiple networked clients to a tape- or disk-based
storage system” [23]. Also, the system is claimed to be easily and rapidly set up.

The system uses standard operating utilities such as dump and GNUtar, and this makes
it possible to recover the data at any time with standard tools that are always available
[24]. Encryption of the backups can be done with symmetric or asymmetric encryption
algorithms, either on the client- or the server side. The system administrator may specify
which encryption program to use, and a sample program is provided with the software.
This sample program for symmetric encryption supports AES-128, AES-192 and AES-256,
using SHA-256, SHA-385 or SHA-512 respectively [25].

Amanda was originally developed for Linux and Unix platforms, and is available for
several of these. However, since October 2006, an installation package for Microsoft
Windows is also available [26].

dm-crypt/cryptsetup [27]

dm-crypt is included in the Linux kernel, and is a tool to create “layers of virtual block
devices” and encrypt these devices. Cryptsetup is a command line user interface used to
create and manage such encrypted devices. Upon creation of an encrypted partition, the
user can specify such things as encryption algorithm, hash algorithm and key length. The
hash algorithm is used to create the encryption key from the passphrase provided by the
user.

Cryptsetup and dm-crypt have some functionalities which are advantageous, such as
the possibility to resize the devices and the support of keyfiles. However, the available
documentation is very limited. In addition to this, it is necessary with root (administra-
tor) privileges to create new devices. Based on this, cryptsetup is not considered as the
overall best tool to use for this project.

BestCrypt [28] and TrueCrypt [29]

BestCrypt and TrueCrypt create virtual, encrypted disks and mount these as real, plain
text disks [28, 29, 30]. The functionality of the two is very similar, so we will first give a
general introduction of the concepts.

10

Secure Offsite Backup at CERN

First, a volume, or container, is created. This may be an ordinary file, which can be
copied, e-mailed, removed etc. just like any other file, or it may be a device, e.g. a USB
flash disk, or a hard disk partition [31]. In these volumes, the data is stored in encrypted
form. The user only has to provide the key once to access the encrypted contents within
the volume. The functionality is similar to that of CFS, as the user mounts the volume on
a desired mount point, and, after providing the appropriate user credentials, all the data
in the volume is available as plain text to the user.

After mounting, the files can be accessed as any other files, and any modification,
removal, synchronization, etc., of files can be done. The software provides so called “on-
the-fly-encryption”, where the data is automatically encrypted without any user inter-
vention. When data is read, it is decrypted in memory before it is displayed, and when
data is written, it is encrypted in memory before writing to disk. Data is never stored in
plain text [28, 29].

Both TrueCrypt and BestCrypt are available for both Linux and Windows platforms,
and create portable platform independent volumes.

BestCrypt is available on the Internet, and is called “open architecture”. The source
code is freely available, but there are restrictions on modification etc., and there is a
license fee.

When a volume, or container, is created using BestCrypt, the password/passphrase
for the container file is obtained from the user. BestCrypt then collects a random seed
value from the Linux file /dev/random2. SHA-256 is then used to generate a key, using
the seed from /dev/random as input. This key will be used to encrypt the data stored in
the container. A key data block is created, where, among other things, the encryption key
for the container file is stored. This key data block is then encrypted using the SHA-256
hash of the password from the user [33].

So, when a user requests to mount a volume, he or she is asked for the password, the
key data block is decrypted using the hash value of the password; thereby the key to the
data in the container is obtained. The key is then loaded to the Encryption Module, and
the data is encrypted and decrypted on-the-fly [28].

Obviously, this can make BestCrypt vulnerable to brute force attacks, and it is highly
necessary with long passphrases that are as random as possible.

TrueCrypt is open source software freely available to anyone. When a TrueCrypt vol-
ume is created, the software collects random data and generates random number se-
quences which are used to generate the master key and secondary master key used for
the encryption. These keys are stored in encrypted form in the header of the volume.
To decrypt these, a user must provide the correct password, and/or the correct keyfiles.
The content of the keyfiles and the password are combined and hashed, and the result-
ing hash value is used to derive the header key through the function PBKDF2 (PKCS #5
v2, presented in [34]), using the hash algorithm specified by the user when creating the
volume [29]. A simplified illustration of a TrueCrypt volume is shown in figure 2.

TrueCrypt has a random number generator that is used to generate the key to encrypt
the volume, salt and random keyfiles. This generator “creates a pool of random values in
RAM (memory).” This pool is 320 bytes long, generated using data from mouse move-

2“The character special files /dev/random and /dev/urandom (present since Linux 1.3.30) provide an in-
terface to the kernel’s random number generator. (...) The random number generator gathers environmental
noise from device drivers and other sources into an entropy pool. (...) /dev/random should be suitable for uses
that need very high quality randomness such as one-time pad or key generation” [32].

11

Secure Offsite Backup at CERN

Figure 2: Simplified illustration of TrueCrypt volume

ments, keystrokes (on Linux only when the mouse is not connected to the computer) or
values from /dev/random or any other specified source file.

TrueCrypt supports three encryption algorithms (as of March 2007) – AES-256, Ser-
pent and Twofish, all with 256 bits key size and 128 bits block size, in LRW mode. Several
combinations (cascade) of these three are also supported [29]. In the updated version
released in March 2007, the support for the creation of new volumes encrypted by algo-
rithms with blocks of 64 bits was removed, as the use of 128 bits blocks are more secure
[35].

TrueCrypt also supports the use of keyfiles, which enables the user to store the key in
a file instead of, or in addition to, entering a password. This is very useful in a system
such as the one presented in this thesis, since it enables the use of scheduled, automatic
backups.

We have chosen to use TrueCrypt to solve the initial task in this project. This is because
the software meets the requirements set, and also because of the support of keyfiles,
which is very suitable in this situation. Further reasons for this choice are given in section
4.4.

3.3 Writing policies

According to the Information Security Forum (ISF)’s “Standard of Good Practice for In-
formation Security” [36], an organization should have a comprehensive and documented
information security policy. This should be communicated to all relevant employees to
“document top management’s direction on and commitment to information security”.
Also, they state that the information security responsibilities of the staff should be de-
scribed in staff agreements.

Bowden [37] describes a security policy as a “well written strategy on protecting and
maintaining availability to your network and it’s resources.” He mentions several areas
this policy should cover, including risk assessment, password policies, e-mail policies and
disaster recovery.

According to Wills [38], “policies should be written to minimize the effort to main-
taining them, yet be clear in the objective, boundaries and procedures to enforce them.”
It is also important to include possible exceptions to the rules, and clearly define these.

12

Secure Offsite Backup at CERN

Policies that are system-specific, such as the one presented in this thesis, are often writ-
ten with the particular product in mind. These policies may have to be revised more
frequently than others, following the development in the technology.

It is important that the policies are written so that everybody has the possibility to un-
derstand its purpose, and they should be easily available to all the relevant staff [38]. The
document should be meaningful, practical and inviting, address the users directly and be
able to convince them of the necessity of secure handling of information resources. Dif-
ferent policy documents in one organization should follow the same guidelines, to create
an overall communication style to the organization. Consequently, the information secu-
rity policy and other policies relating to it should also be using the same style, to avoid
the risk of being alienated [39].

According to Menezes et al. [40], a security policy should define the threats a spe-
cific system is intended to counter. Such a specific security policy is for example usually
employed to provide the key management.

3.4 Key management

Menezes et. al [40] states that key management “is the set of techniques and procedures
supporting establishment and maintenance of keying relationships between authorized
parties”. According to Schneier [41], it is a critical part of cryptography, and also the
hardest.

The key management is important to meet relevant threats to the system, such as the
possibility of the confidentiality and authenticity of keys being compromised, and possi-
ble unauthorized use of the keys. As previously mentioned, a security policy is a common
way to present the key management. In addition to defining possible threats, such poli-
cies specify practices and procedures, responsibilities of different parties involved, and
which different records to be kept [40]. The policy defines the organizational aspects of
the key management, such as who is allowed to issue keys, to whom they may be issued,
how the identity of those requesting a key is verified, how the stored keys are secured,
which mechanisms are in place to control that the policy is being adhered to, etc [35].

In addition to the policy describing the organizational aspects of the system, other
aspects must also be defined. How to handle the keys is a fundamental part of the key
management [40], and this includes:

• key generation

• key distribution

• updating of keys

• revocation of keys

• destruction of keys

• storage of keys

• backup/recovery of keys

Many of these tasks may be handled and automated by the system itself, but the ba-
sic structure should nevertheless be defined. Although all of the tasks to some degree
are important in all cryptographic systems, some are more relevant to this project than
others:

13

Secure Offsite Backup at CERN

Key generation is the process of creating the keys that are going to be used. This
must be done randomly, or at least pseudo-randomly3, to reduce the risk of an adversary
being able to deduce the key. For symmetric cryptography, the output from the (pseudo)
random number generator can be used as the key.

Key distribution is the task of placing the key where it is needed in the system. In
some cases, this can be done personally – one person giving the key to another – in
others, there is need for an encrypted communication channel to transfer the key.

Stored keys must be protected from access by unauthorized users. One way to do this
is to generate the key from a password or passphrase that is sufficiently long but easy to
remember. Another option is to use a trusted entity to hold and hand out the keys.

3.5 Disaster recovery
The disaster recovery plan (...) describes the exact steps and procedures personnel
in key departments, specifically the IT department, must follow in order to recover
critical business systems in the event of a disaster that causes the loss of access to
systems required for business operations. [43]

According to Fallara [44], disaster planning is smart for those who desire to protect
valuable assets. The plan’s purpose is to protect against anything that threatens “the func-
tion or existence of a business”. This may be anything from earthquakes and tornadoes
to a computer virus.

Before the disaster recovery plan is developed, it is important to identify the processes,
resources and data that are critical for the organization. These must then be backed up
to a remote location, so that they are available at all times. Then, the disaster recovery
plan is formulated to define the strategy to recover those processes and data, and how
to keep the production running as continuously as possible [43]. It is also important to
establish the prioritization in case of a disaster, what should be recovered first?

For a system such as the one covered by this thesis, the disaster recovery plan should,
among other things, cover:

• where are the keys stored

• who is in charge of restoring the keys

• how should the restoring of the backed up data be done

After the disaster recovery plan has been designed, it is important to run the necessary
tests and to do the necessary training. This must be done to make sure that if there is
ever the need for the disaster recovery plan, those responsible for different tasks are
aware of their responsibility, and they know how to carry out the task. The testing is also
important to be sure that the systems work properly.

Merkow and Breithaupt [43] assert that the CISSP, the Certified Information Systems
Security Professional, identify five ways to test a disaster recovery plan:

• Walk-throughs: tracing the steps through the plan, looking for inaccuracies and things
left out.

• Simulations: performing “dry runs” of an emergency, trying to make the response as
close as possible to that of a real emergency.

3A pseudo random number generator takes as input a seed of binary numbers and produces a sequence of
seemingly random bits as output. However, this output is not really random. [35, 42]

14

Secure Offsite Backup at CERN

• Checklist: key personnel “check off” the tasks they are responsible for and report on
the status. “This is typically a first step toward a more comprehensive test” [43].

• Parallel testing: “The backup processing occurs in parallel with production services
that never stop.” [43]

• Full interruption: The systems are stopped as if a disaster has occurred, and the per-
formance of the backup services is observed. If the test fails, the result may be as
expensive as a true disaster would be.

15

Secure Offsite Backup at CERN

4 System analysis

The system design proposed in this thesis is based on an existing offsite backup system
available to the users at CERN. This chapter will present this system, and an analysis of
the vulnerabilities of this system, which leads to the implementation of a secure backup
system. The secure backup system design, which is presented in chapter 5, is based on
several components already available in the existing computer infrastructure at CERN.
These components will also be presented in this chapter. At last, there will be a brief
presentation of TrueCrypt.

4.1 Offsite Backup Service

The Offsite Backup project at CERN was started in March 2006, to provide a service
where a current copy of vital data could be stored. This is necessary as part of a disaster
recovery plan, in the event that both the relevant production servers and the regular
backup servers are destroyed. The service is not intended as any kind of archival backup
service, and only holds a live copy of the most important data [45].

The offsite backup servers are located on the CERN site in Prevessin. This is about
three kilometers from the Meyrin site, where the computer center with the different
servers and the regular (archival) backup servers are located. The server is Intel based,
with two Intel Xeon 2,66 GHz CPUs, 2GB RAM and disk controllers and disks providing
∼3TB of disk space. The operating system is SLC4 (Scientific Linux CERN 4), which is a
Linux distribution based on Red Hat Enterprise Linux [46].

The initial requirements to the system were:

• The system must offer the possibility of scheduled backups, but it must also be possi-
ble to accept backup data from client machines at any time.

• The system must be portable.

• The system must be easy to operate. The user must not need to enter a password to
perform the backup.

• The data must be transferred securely.

• The data stored by one client must not be visible by any other client.

• The client must be able to restore the data at any time.

• The solution must be inexpensive, and must use as much CERN standard material as
possible, and software used must be Public Domain.

A service account is created for each client associated with the offsite backup server.
In this context, a client is not a single user (person), but a group or service that needs
a current offsite backup. Consequently, the number of clients is relatively low. Using the
service accounts, the clients may then transfer data to the backup server using SSH, e.g.
by the use of scp or rsync over SSH (Linux). It is the clients’ responsibility to build the
set of files which composes the backup, to organize the data, and to regularly restore the
backed up data to validate it. There is no global monitoring of the validity of the backups.

17

Secure Offsite Backup at CERN

After the initial introduction of the system, the clients expressed a desire to have the
backup stored on the server encrypted. This is necessary to secure the data against:

• physical attacks from the outside, e.g. if an intruder is able to steal the backup server

• attacks where an intruder gets physical access to the backup server inside the com-
puter center, or is able to remotely access the server

• attacks from insiders

4.2 AFS – Andrew File System

When a new service account is created, this also includes the creation of an AFS account
corresponding to the offsite backup client. AFS is a distributed computing environment.
The development was first started at Carnegie Mellon University in 1983. It is now devel-
oped by the IBM Pittsburgh Labs, and was open sourced in 2000 [47, 48, 49]. The AFS
client software is available for several UNIX platforms, including Linux, SUN and IBM,
as well as for MS Windows and Mac OS X. “This makes AFS the ideal file system for data
sharing between platforms across local and wide area networks” [50].

The purpose of a distributed file system is to “make access to distributed files indis-
tinguishable from access to the local disk” [51]. In an AFS environment, data can be
replicated to several locations. Read-only clones can be stored on different servers, and if
one server goes down, the clients can transparently change to read the files from another
server. This is also possible because the AFS system uses a globally unique name space
– the client does not need to know on which file server the file is located, only the file’s
pathname. The client then contacts a data location database to find the data. In this way,
the system also allows administrators to move data from one server to another without
the user noticing this.

AFS client machines store data copied from the server(s) in a local cache. This reduces
network traffic, since the data does not have to be retransmitted over the network fre-
quently. The data is requested from the servers by a cache manager process. To maintain
consistency, “the file server keeps track of which clients have cached copies and tells the
client to invalidate its copy should data change” [51]. This is done when a file is closed.

AFS also supports traffic encryption between a single client and the AFS server. This
is enabled by a simple command, and do not require the client machine to be restarted
when initialized. The encryption is done using an algorithm called FCrypt, and a descrip-
tion of this can be found in [52]. Basically, it is a DES based block cipher, using a 64-bit
key and 64-bit block size. According to Marcus Watts from Michigan University, an AFS
development contributor, the mode of operation is CBC, and the Kerberos session keys
are used directly, without any further key generations. He asserts that the algorithm was
probably obsolete already when it was first implemented in AFS, but its advantage was
speed.

FCrypt is a weak encryption algorithm, and this is also discussed in chapter 9. How-
ever, Russ Allbery from Stanford University, who also contributes to the development of
AFS, ensures that the area of traffic encryption is the top priority of the AFS development
group, and that substantial progress has been made the past year. The correspondence
with the OpenAFS mailing list can be found in appendix C.

For authentication and security, AFS uses Kerberos. This will be covered next.

18

Secure Offsite Backup at CERN

4.3 Kerberos

Kerberos is a network authentication protocol, “designed to provide authentication for
client/server applications” [43]. It was invented in the late 1980’s at the Massachusetts
Institute of Technology (MIT) in Boston, and have since then become a widely used key
management system [35].

The main objectives of Kerberos are (from [42]):

• Security: No attacker should be able to impersonate someone else or eavesdrop on
information.

• Reliability: The Kerberos service must always be available, since all use of a service
requires authentication.

• Transparency: The user should need to enter his/her password only once in the be-
ginning of a session, the rest of the authentication process should be transparent.

• Scalability: “Kerberos must have the ability to support a large number of users, work-
stations, services and servers.”

Other requirements to the design were that (from [53]):

• The authentication must be two-way: The server can be certain of who the client is,
and the client can, if it is required, be certain that it is the correct server.

• No cleartext passwords should be transmitted or stored on servers.

• On the client side, “cleartext passwords should be handled for the shortest possible
time and then destroyed.”

• Authentication has a limited lifetime

Kerberos is described in a number of books, such as [41, 42, 54, 55]. A brief descrip-
tion will be given here, more information is available in the referred sources.

Kerberos has a client/server architecture, where a client can be both users and soft-
ware. The structure of the protocol is shown in figure 3. In this situation, user A wants to
securely communicate with the server S. First, A authenticates himself to the system, ob-
taining a Ticket Granting Ticket (TGT). This is done by sending a request to the Kerberos
authentication server, holding the client’s identity and the identity of the corresponding
Ticket Granting Server (TGS). After looking up the client in its database, the authen-
tication server generates a session key to be used between the user and the TGS. This
is called the TGT, and is encrypted with the user’s secret key. The authentication server
also creates a TGT for A to use when authenticating himself to the TGS, and encrypts
this with the secret key of the TGS. The TGTs are returned to A, who is able to decrypt
the session key using his password. The TGT and session key are valid for a given time
period, e.g. 25 hours.

Now, A can get tickets for the services he wants to make use of, by sending requests
to the TGS. Using the TGT from the authentication server (encrypted with the TGS’s
secret key), the TGS is able to authenticate the client. When the request is validated, the
TGS returns a ticket for A to present to the server S, as well as a session key to be used
between A and S, encrypted with the session key shared by A and the TGS.

A can now authenticate himself to S, by sending a similar message, holding authenti-
cation information, the ticket received from the TGS and the session key encrypted with

19

Secure Offsite Backup at CERN

Figure 3: Structure of Kerberos

S’s secret key (also received from TGS). By validating this, the server knows that the user
is who he says he is.

If mutual authentication is needed, the server then returns a message holding a time-
stamp encrypted with the session key, proving that it was able to decrypt the previous
message.

4.4 TrueCrypt

A brief description of TrueCrypt and its functionalities is given in section 3.2. As stated
there, TrueCrypt is an open source software tool used to encrypt volumes of data. Virtual,
encrypted disks are created, and these can be mounted as normal file systems, to be
accessible in the same way as plain text disks. Here we give a short explanation of why
TrueCrypt was chosen as the tool for this project, and how it is used. The TrueCrypt
source code is available from [56].

As mentioned in section 3.2, dm-crypt/cryptsetup is a good alternative for this project.
However, the lack of documentation makes it less attractive. That leaves BestCrypt as the
main alternative. BestCrypt is a product similar to TrueCrypt, which is also available on
the web. The choice was made in March 2007, and the main reasons why TrueCrypt was
chosen were:

• TrueCrypt supported LRW mode of operation, while BestCrypt did not.

• TrueCrypt did not allow encryption keys shorter than 256 bits. This decreases the risk
of a user creating a volume with a less secure algorithm without being aware of it.

• TrueCrypt supports the use of keyfiles.

20

Secure Offsite Backup at CERN

• TrueCrypt is open source and free.

• The documentation of the Linux version of TrueCrypt is better than the documenta-
tion of the Linux version of BestCrypt. TrueCrypt also has a considerable user forum
where it is possible to search for answers to possible problems.

The version of TrueCrypt used in this project is v4.3, released March 19, 2007, which
is installed on the offsite backup server. A partition on the server is dedicated to the offsite
backup, on which the TrueCrypt volume is created and formatted to ext3. The volume
creation and formatting takes a substantial amount of time. The size of the partition used
at CERN is 3725GB, and the creation of the volume, with formatting, took approximately
55 hours. There is, however, the possibility of a “quick” volume creation, but this is not
recommended since it does not fill the volume with random data.

4.5 Vulnerabilities and assumptions

The main security issue for CERN, concerning the offsite backup server, is if an adversary
gets physical access to the machine, e.g. by stealing it. In such a case, the information
will be protected if it is encrypted.

There is always the risk of insiders attacking a system. In the system design presented
in section 5.1 this is taken into consideration, by keeping the TrueCrypt volumes un-
mounted when they are not used. However, at CERN, it would probably be easier, and
more advantageous, for a malicious insider to get access to the servers where the data
is originally stored, in plain text, and perform an attack there (e.g. stealing or manipu-
lating data). Therefore, it is at this point regarded as “safe enough” to have the volumes
mounted all the time. Further information about this is given in section 5.2.

It is assumed that a user logging into a remote backup server via SSH from a ma-
chine in the CERN network, holding a valid Kerberos ticket that allows him to do so, is
authorized to do this.

It is further assumed that the computers situated in the computer center on the Meyrin
site are secure.

When a client requests the opportunity to encrypt the data stored on the backup
server, it is assumed that all the data shall be encrypted. It is therefore presumed that
there is no need for an opportunity to choose which files to store in encrypted form and
which to store in plain text. When considering the design presented in section 5.1, it is
also assumed that no one without the permission to decrypt the data needs access to any
of it.

The users of the remote disaster recovery backup service are themselves responsible
for validating the backup: checking that the backups are indeed carried through, that
the correct data is backed up, etc. Hence there will be no integrity check or monitoring
included in the system design.

21

Secure Offsite Backup at CERN

5 System design

In this chapter, the system design for the secure offsite backup is presented. Section 5.1
presents the complete system design, which provides security based on the different users
of the service, and the requirements presented in 4.1. Section 5.2 presents a simplified
version of this system design, which is the one being put into production at CERN. This
is more based on management by administrators and simplified use, and concentrates on
the security of the backup if the backup server is stolen.

5.1 Secure Offsite Backup

The system for secure offsite backup makes use of several services that are already avail-
able at CERN (presented in chapter 4). Its focus is on securing each backup user’s data,
both from other users of the service and from outsiders. Another important focus is user
inconvenience, to have as little interaction, and to make the solution as transparent, as
possible.

The data, before backup, is stored on computers inside the CERN Meyrin site. As
stated in section 4.5, these machines are regarded as secure. The servers providing AFS
are also located on the Meyrin site, and these are also regarded as secure.

For this thesis, we disregard the aspect of space-limitations and possible maximum
volume sizes. Initial tests show that TrueCrypt volumes (file containers) may be up to
2TB, and that TrueCrypt partitions seem to have no size limit. We therefore see this as
irrelevant in the context of this thesis.

Figure 4 shows the components of the system, as well as the basic information flow
when a user mounts a volume.

TrueCrypt is chosen as the tool to encrypt the data on the backup server. The reasons
for this are given in sections 3.2 and 4.4. It was chosen to install the software on the
backup server, leaving a limited number of machines to configure and maintain, at the
time of writing only one. An alternative is to install the software on each client, and then
mount the volumes locally on the client machines, but this requires the installation of
additional software, and the configuration of, possibly, a vast amount of machines. The
main advantage of installing TrueCrypt on every client machine is that the data are then
sent in encrypted form and decrypted/encrypted in the memory of the client computer.
Since it is necessary for the users to log in to the backup server using SSH anyway, this
advantage is not seen to be outweighing the disadvantage of the increased maintenance.

The system uses the TrueCrypt keyfile functionality. This decreases the necessary in-
teraction between the backup server and the user to a minimum, and it is also an extra
security against such threats as keyloggers, since no password is entered.

The keyfile itself is stored in the service account’s AFS account. AFS uses Kerberos
authentication to mutually authenticate both the client and the server, by the use of
tickets generated when the user log in [51]. Therefore, the keyfile will be inaccessible to
anyone that is not logged in as the correct user.

To further secure the keyfile when transferred between the AFS server and the backup
server, the traffic is encrypted. Traffic encryption in AFS is presented in section 4.2. The

23

Secure Offsite Backup at CERN

Figure 4: The system design; mounting a volume

encryption is turned on when the backup server is booted, and remains on at all times.
Because the amount of traffic between AFS servers and the backup server will be very
limited, decreased performance because of this is not an issue. Constant traffic encryption
eliminates any possible uncertainty about whether or not the traffic is encrypted imme-
diately after the encryption is enabled. As mentioned above, the encryption algorithm
used is rather weak, and this is discussed further in chapter 9.

When a user wants to make an (interactive) backup, he/she uses either scp or rsync
for this. Instead of using the commands directly, a script is called. Files/folders to be
backed up are provided, either as parameters to the script or interactively when the
script is called. Using SSH, the volume is then mounted, the requested backup command
is run, and the volume is unmounted. To minimize the user inconvenience, the SSH
connection is using cryptographic keys, so there is no need for the user to supply a
password. Consequently, the session will, to the user, appear as when simply running
scp/rsync, except for the actual command.

An automatic backup will be done in much the same way. The user, or an adminis-
trator, creates a backup script that will run at a given time or interval. This will contain
commands to mount, copy/synchronize, and unmount the volume. Figure 5 shows the
process when taking a backup.

For disaster recovery, the information needed to mount the volumes must also be
stored somewhere away from the Meyrin site. There are four possible solutions:

1. To store the keyfile in a safe in a secure location.

2. To encrypt the keyfile with public/private key encryption, storing the public key on

24

Secure Offsite Backup at CERN

Figure 5: Process when taking backup

the backup server, and the private key in a safe in a secure location.

3. To encrypt the keyfile with symmetric encryption, using e.g. OpenSSL with a strong
password, and store this password in a secure location.

4. Create a volume with a strong password. Backup the volume header and store the
password in a secure location. Then change the volume so a keyfile is used instead of
a password. In the event of a disaster recovery where the current keyfile is lost, the
original header can be restored, and the volume can be mounted with the password
retrieved from the secure location.

When focusing on decreasing user inconvenience, option 2 and 4 are those best
suited, since these do not require any additional user interaction when changing key-
files besides some simple key strokes. Option 1 makes it necessary to physically transport
the keyfile to the secure location when it is changed, and option 3 makes it necessary to
enter a password or passphrase.

For simplistic reasons, we have chosen to use the forth option, since that only re-
quires creating a strong password/passphrase, and printing this, instead of integrating
an asymmetric key encryption scheme. This also simplifies a possible disaster recovery,
since it is only necessary to restore the original header and then use the stored pass-
word to change to a new keyfile. In this way, it is only necessary to use functions already
available through TrueCrypt, instead of creating separate programs.

To secure against data corruption on the remote backup server, the backed up header
file is also stored in the service account’s ∼/private folder in AFS. If both the header of
the volume and the header file backed up on the backup server is corrupted, the copy
stored in AFS can be used to restore the header in an attempt to rescue some or all of
the data stored in the volume. However, the users of the offsite backup service are made

25

Secure Offsite Backup at CERN

Figure 6: The version put in production at CERN; mounting a volume

aware of the fact that the data stored here are not further backed up and may be lost if
the disk crashes.

To use header file and password stored in a secure location also secures against the
loss of the keyfiles stored in AFS. If this occurs, the password can be retrieved, the header
restored and the volume mounted using the password.

5.2 Simplified system design

After several discussions with the responsible section at CERN, it was decided that a
simplified version of the system design was more suitable for the current situation in the
organization. This section describes the system put in production at CERN. TrueCrypt is
still installed on the remote backup server, as in the solution described above, and is used
to encrypt one large partition. It was decided that there should only be one large volume,
and that each user should have their dedicated area on this volume, where access was
controlled using the normal Linux file permissions. For this to be possible, it was also
necessary to format the volume to ext3, since FAT do not support these file permission.
This means that administrator privileges are needed to create a new volume, but since
this will be done by offsite backup administrators, this is not a problem. Secondly, it
was decided that it was sufficiently secure to keep the volume mounted at all times.
The reason for this decision is that all the information stored on the backup server is
also stored in cleartext elsewhere in the CERN network, both the original files and in
other backup locations. There is therefore no need to protect this backup any better. It
is assumed that those being able to get access to the server this way are also able to get
access to other cleartext versions of the data.

Following this, it is only necessary to manually mount the volume when the backup
server is rebooted. This could then be done by a person with administrator privileges in

26

Secure Offsite Backup at CERN

the server, and it is not necessary for any of the ordinary users to be affected at all. It
also decreases the demand for less user inconvenience, since it is not likely to happen
very often, and since administrators and IT personnel often will be more willing to such
things as offering an extra password. Therefore, it was chosen to use only a password for
the TrueCrypt volume, instead of a keyfile.

Figure 6 shows the components of the system put in production at CERN, as well as
the basic information flow when a user (obadmin) mounts a volume.

The choice of using a password eliminates the use of AFS, and keeping the volume
mounted at all times makes the system totally transparent to the users. The only advis-
able change in their procedures is a simple check in the beginning of the backup scripts
of whether or not the volume is mounted correctly. (If it is not, the backup should be
aborted, the user alerted and a message sent to an offsite backup administrator.)

This solution gives the system administrators some more responsibility for the secure
operation of the system. When creating a volume, it is necessary to print or write down
several copies of the password. One must be kept safe and available for those system
administrators that might need them (e.g. locked in a drawer in somebody’s office), and
the others must be kept in secure locations away from the Meyrin site. It is desirable to
employ the same solution here as in the system design presented above, by using a safe to
store the password to use for disaster recovery. However, CERN is composed of a number
of different departments and groups, and it would be difficult to introduce policies and
procedures that would ensure that no one without the right privileges would get access
to the password stored in the safe. Therefore, it was decided that the offsite backup
administrators would be responsible for securing the different copies of the password.
This introduces some shortcomings both when concerning disaster recovery and general
security, and this will be discussed in chapter 9.

For disaster recovery, the same approach is taken as in the complete solution. The
volume header is backed up, and in the event that the copy of the password stored
locally is destroyed, one of the other copies must be retrieved. If the password has been
changed since the creation of the volume, the volume header must be restored before the
volume can be mounted. If not, one can simply use the obtained password to remount
the volume. In this way, the password of the volume may be changed without the need
of printing and redistributing the new password to the holders.

As with the system design presented above, the use of password and header for dis-
aster recovery ensures the ability to recover the data stored on the encrypted volume if
the current password is lost.

27

Secure Offsite Backup at CERN

6 Development and implementation

This chapter describes the development phase in more detail. First, a description of the
process of the system design and installation of the tools to be used is provided. Then
the results of the script development process are described. The design of policies is
presented in chapter 7, and procedures in chapter 8.

As mentioned in chapter 2, the process of the project followed an iterative-incremental
approach, which means that one can go back to an earlier phase of the project to change
something or correct an error, and that the requirements to the system, and how to meet
these requirements, are continuously revised with those who are going to use the system.

When the work on this project was commenced, the requirements to the functionality
of the system were already established. However, it was important with a dialog with the
users when establishing the system design and the key management scheme. This was
done in several iterations. First, some proposals of which tool to use for the encryption
were prepared, with a recommendation, and this was presented to the users (mainly
offsite backup administrators). Feedback was given, and a decision was made based on
this. The resulting proposal was also presented to personnel responsible for the computer
security at CERN. At this point, it was decided that there was only need for one large
volume, and that the standard Linux file permissions were sufficient to control the access
to the data.

The next step was the key management scheme; first, a proposal was made and pre-
sented to the offsite backup administrators, then to the users of the system, and at last to
the computer security personnel. The feedback from the different sessions resulted in the
decision that since only offsite backup administrators would mount the volume, it was
sufficient to use a password for this, instead of a keyfile. This again led to the alteration
of the system to the simplified version presented in section 5.2.

The first part in the development phase was to install TrueCrypt on the backup server.
This did not involve any major problems. Since there was no version available that would
install on SLC4, the source code had to be compiled, and a kernel header file had to be
added to the kernel source code folder. This was an issue reported by other users too, who
were trying to install on Linux distributions based on Red Hat Enterprise (e.g. Fedora).
After this, the software was compiled and installed without problems.

Some time was used to study the tool and test the speed of transmission and that there
was no problems writing large amounts of data to the volume. Some troubleshooting
was necessary when creating and formatting large volumes, to eliminate an issue of
the computer freezing and making it necessary to reboot. Because of the good on-line
documentation and the active user forum provided by TrueCrypt1, these problems were
solved fairly quickly.

When the software was installed and the necessary testing was done, the development
of a command line-based user interface was commenced. Scripts are used to decrease
the need for user interaction, and to decrease the users’ necessary knowledge of the

1http://forums.truecrypt.org

29

Secure Offsite Backup at CERN

system and the command syntax. This was the main part of the development phase of
this project. Here too, there are some differences between the complete system and the
system put in production at CERN. The theory behind the scripts used in the complete
system is presented in section 6.1, while the differences and the scripts used at CERN are
presented in section 6.2. The scripts are provided in appendix A.

6.1 Scripts for the secure offsite backup service

There are two main functions available in this system, and that is to create new volumes,
and to initiate backups to already existing volumes. Both functions also need to be able
to mount and dismount a volume, and to control that these actions are successful. In
addition to this, it is necessary to have scripts to change the keyfile and to restore the
volume header. In this section, the script to create a new volume is presented first, fol-
lowed by the script used to check whether a volume is mounted, the scripts to mount
and unmount a volume and the script to create the random password. Then, the script
for taking a backup using rsync is presented, and finally, the scripts for changing keyfile
and restoring the header. It is also necessary with a script on the backup server to read
from the configuration file when taking a backup. This will not be presented here.

createvol.sh

The creation of a volume requires much information that in many cases should be de-
cided by the system administrators. Examples of this kind of information is the name
(and path) of the volume and the path of the keyfile. Other information needed is volume
type, size of volume (if it is not a partition), file system and which hash- and encryption
algorithms to use. It is also necessary to collect random information, and this is normally
done by mouse movement or keystrokes. Figure 7 shows the normal process of creating
a TrueCrypt volume.

This is a lot of information for the users to learn and to remember. Also, a password
must be generated, and a configuration file holding volume path and mount point must
be created. In addition to this, the header must be backed up, a keyfile must be created
and the volume must be changed so that it is mounted with the keyfile instead of the
password. Because the password and header is used for the disaster recovery, it is nec-
essary with some user interaction in this script. The TrueCrypt command for changing
password/keyfiles also requires input from the user.

This script has five main tasks:

• Create volume using password from random.sh

• Back up volume header

• Create configuration file holding information about volume name and mount point

• Create keyfile

• Change volume to use keyfile instead of password

In this script, it is already decided which algorithms should be used for the hash and
the encryption. In other environments it may of course be desirable for the users to make
this decision themselves, and the options may then be removed from the command.
TrueCrypt will request the options that are not stated in the command interactively.

30

Secure Offsite Backup at CERN

Figure 7: Creating a TrueCrypt volume.

31

Secure Offsite Backup at CERN

Figure 8: Mounting a TrueCrypt volume.

TrueCrypt also requests random data to use as seed in the key generation and when
generating the keyfile. Normally, this is done with mouse movement, or, when there is no
mouse connected to the computer, keystrokes. In this situation, since the volume is cre-
ated on a remote machine, this input would be keystrokes. There are two possible prob-
lems related to this: The user may make the wrong choice and answer “yes” when asked
if there is a mouse connected to the computer, and thereby need to restart the whole
process, or the same letter may be typed 320 times as input from the keyboard. To avoid
this, the commands are run using /dev/urandom (for keyfile creation) or /dev/random
(for volume creation) as random seed. This also reduces the need of user interaction.

This script always formats the volume to FAT, because that does not require adminis-
trator privileges (root) to the computer where the volume is created. However, it may be
desirable to format the volume to e.g. ext3. Even though this requires root privileges, it
is done in the system in production at CERN, and the script used for this is presented in
section 6.2.

chech.sh

This script performs a simple check of whether or not a specific volume is mounted, based
on the standard TrueCrypt listing command (truecrypt -l). Listing the mounted volumes,
the script checks if the relevant volume is represented in the list. The script is called
from other scripts, with the username as parameter, and the result is read into a variable.
chech.sh returns 1 if the volume is mounted and 0 if it is not.

mount.sh

Figure 8 shows the command to mount a TrueCrypt volume using a keyfile and an empty
password, without any further interaction. This command requires that the user knows
the volume name, the name and path of the keyfile, and the desired mount point, in
addition to the syntax of the command. In an environment such as CERN, it is a possibility
that different people will be making backups to the same service account on the offsite
backup server. It is therefore a benefit if all prospective individuals do not have to know
all these details.

To solve this, there is a configuration file stored in the AFS ∼/private folder of the
service account, holding the volume name and the mount point. The structure of this
file is shown in figure 9. The keyfile, which is also stored in this folder, has a name that
corresponds to the volume name. The script then reads the configuration file, and fills
in the relevant parameters in the command. The user can in this way mount the volume
simply by running this script. The keyfile and configuration file are created when the
volume is created, see the paragraph about create.sh.

Before mounting the volume, the script checks that it is not already mounted. It also
controls that the mounting was successful. In addition to this, the utilized space on the

32

Secure Offsite Backup at CERN

Figure 9: The structure of the configuration file.

volume is checked, and if this is over a defined threshold, the user and the offsite backup
administrators are notified of this.

unmount.sh

To unmount one specific volume, the user either needs to know the mount point, the de-
vice number or the name of the mounted volume. It is also important to know the correct
syntax, so that no other volumes are unmounted. By using a script to enable the users
to unmount, one also avoids users using the standard Linux “umount” command, which
would leave the volume mapped to the device, and thereby still accessible, unencrypted,
without the keyfile.

In the same way as mount.sh, unmount.sh collects the necessary information from the
configuration file, and runs the necessary command to unmount the volume. In addition
to this, it calls check.sh to control that the volume was unmounted properly.

random.sh

This script simply generates 20 random characters, from a field defined in the script, and
prints these. If random.sh is called from another script, the resulting string is returned to
a variable.

backup.sh

This script takes as input from the user the files/directories that should be backed up
(synchronized) using rsync. SSH is used to log into the backup server and mount the
volume. Then, rsync is run, synchronizing the requested files. When finished, the volume
is unmounted. The scripts mount.sh and unmount.sh are used in the process, and these
again use check.sh to see that their tasks were performed properly.

Figure 10 and 11 show the process when a user takes a backup using backup.sh. Figure
10 shows a backup where the user does not send the parameters when calling the script,
and is prompted for the necessary information, and figure 11 shows the same backup,
but here the necessary information is provided as parameters.

A similar script could be developed to do the same with scp – in that case the files
would be copied instead of synchronized. This will, however, not be presented in this
thesis, since the basis will be the same as backup.sh.

This script can be used for both automatic and interactive backups.

33

Secure Offsite Backup at CERN

Figure 10: backup.sh without parameters

Figure 11: backup.sh with parameters

34

Secure Offsite Backup at CERN

Figure 12: Changing the keyfile and password of a TrueCrypt volume

changekey.sh

It is desirable to change the keyfile with regular intervals. If this is done manually, it is
necessary to first create a new keyfile, and then run the correct command to change the
keyfile. Figure 12 shows the change of keyfile using the TrueCrypt command. changekey.sh
does this automatically, by collecting the name of the volume from the previously men-
tioned configuration file, and thereby deriving the name of the keyfile. It then creates a
new keyfile, changes which keyfile is associated with the volume, and renames this to the
same as the original keyfile. In this way mount.sh, and other relevant scripts, still refer to
the correct path. The old keyfile is deleted, as it is no longer of any use. As when creating
volumes, the random information source is set to be /dev/random and /dev/urandom.

This script requires some user interaction, as the TrueCrypt command has no option
for providing the new password (which in this situation will be empty). The user there-
fore needs to press enter twice when running this script. This issue is discussed in chapter
10.

restoreheader.sh

This script automates the restoring of the volume header, to the original header stored
when the volume was created. To restore a header, the user needs to know the correct
command and syntax, as well as the volume name and the path to the header file. re-
storeheader.sh automates this action, by reading the information about the volume from
the configuration file, generating the name of the header file based on the volume name
and restoring the header.

This script can be used as a part of the disaster recovery, and also in the event that
the keyfile stored in AFS is lost, to regain access to the volume.

35

Secure Offsite Backup at CERN

6.2 Scripts used in the version in production at CERN

As stated in chapter 5, the IT staff at CERN decided that at this point, it is not necessary
with one volume for each user, and not necessary to unmount the volume after each
use. Therefore, the basis for the script development is different. It is still desirable with
a script to create a volume, and also a script for mounting. In this situation too, it is
desirable with a script to create a random password, a script to check if a volume is
mounted and a script to restore the header of a volume. These scripts are the same as
those presented above, and will therefore not be covered here. Finally, a script used to
change the password of a volume is presented.

createC.sh

The main differences between this script and createvol.sh is that here the volume is not
changed to accept keyfiles instead of a password, and that the file format is set to ext3.
At CERN there will only be offsite backup system administrators, people who can log in
as root on the offsite backup server, who will create new volumes. Therefore, it is no
problem to format these to ext3. However, this requires knowledge about the necessary
actions to do this, among other things it is necessary to export an environment variable
to prevent the system from freezing during the formatting. There are some issues related
to this point which are discussed in chapter 9.

createC.sh performs four actions:

• Create new volume using password from random.sh

• Format volume

• Backup volume header

• Create configuration file

• Mount volume

It is then the responsibility of the person creating the volume to store the password
according to the key management policy presented in chapter 7. Also, the different user
spaces on the volume must be created and the correct permissions must be set.

mountC.sh

This does the same as the script mount.sh presented above, except checking the remain-
ing capacity of the volume. The only difference is that instead of reading a keyfile, the
user is prompted for a password. This password is created by the use of random.sh either
when the volume was created, or if the password has been changed since the creation of
the volume.

backupC.sh

This script is fairly similar to backup.sh, except that it only checks if the volume is
mounted before running the backup, instead of mounting it and unmounting when the
backup is done. If the volume is not mounted when the request is made, an e-mail is sent
to the offsite backup administrators, the user is notified, and the backup is aborted.

Scripts for automated backups running during the night may in principle remain un-
changed, since there is no need to mount and unmount the volume every time. However,

36

Secure Offsite Backup at CERN

it is also in this case wise to check if the volume is mounted before running the backup,
and to send an alert and abort the backup if the volume is not available. The structure of
this will be very much like backupC.sh.

changepass.sh

As with the change of keyfile in the previous section, it is desirable to be able to change
the password in this system design. This script consists of the actions to create a new
password, using random.sh, and to change the password of the volume, using the previ-
ously described TrueCrypt command. The process of changing password is like the one
presented in figure 12, except for the options provided. The user has to perform the
action of manually entering or copying the new password when prompted. He is also
responsible for the printing and secure storage of this password.

37

Secure Offsite Backup at CERN

7 Policy – key management and administration

This chapter will present the key management policy corresponding to both the system
design presented in section 5.1, and the version presented in section 5.2. First, there
will be a clarification of what is necessary to take into consideration when designing key
management policies for a system like this. Next, the key management policy itself is
presented. The chapter is completed with a description of the necessary actions to take
with regards to a disaster recovery plan, and what actions should be taken in the event
of an actual disaster.

Information specific for CERN, such as e-mail addresses, computer names and file
paths are not included.

For a system like the one presented in this thesis, a policy regarding the key manage-
ment – key generation, key distribution etc. – and guidelines to administrators and users
of the backup system, as well as policies on how the backups should be recovered in the
case of an disaster is important aspects.

The aspects that are addressed in this chapter are:

• Who is allowed to generate new volumes and keys?

• What is the process of generating new volumes and keys?

• How is the generated keyfile/password distributed and stored?

• Who is allowed to access the volumes and keyfile/password?

• How should the offsite backup service be used?

• How is disaster recovery handled?

• Where is the password and header file stored?

• Who is allowed access to the password?

• How is the data restored?

• How should it be handled when a user leaves the organization?

• Who is responsible for testing the disaster recovery plan?

• Who is responsible for the maintenance of the policy?

7.1 Policy for the secure offsite backup service

This policy clarifies the use of the secure offsite backup service. The service is available
to give the users the opportunity to secure a live copy of their data to be able to recover
from a prospective disaster which renders the data in ordinary storage unavailable.

Creation of volume

All users have permission to create new volumes. However, when a new volume is cre-
ated, the old one will not be accessible for script-based backups any more. The scripts

39

Secure Offsite Backup at CERN

will mount the volume represented in the current configuration file corresponding to the
service account user name.

It is desirable that an offsite backup administrator is contacted before a new volume
is created. Information about who the offsite administrators are can be obtained by con-
tacting the relevant IT section.

New volumes are created by using the script createvol.sh, available in the folder
∼/private of the relevant service account. The scripts are also available in CVS.

If the scripts for some reason are unavailable, the volume should be created by care-
fully following the directions found in the documentation.

If the volume is created using the provided script, a strong password is generated
automatically. However, if the volume is created manually, the password should be gen-
erated before the creation of the volume is started. This can be done using the script
random.sh, or some equivalent method. The password must be written down/printed,
put in an envelope marked with the service account name and transported to the secure
location. When running create.sh, the user is prompted to do this, and confirm that it is
done.

NOTE: If the password is not written down and transported to the secure location,
the data will be lost in the case of a disaster.

The keyfile needed to mount the volume is generated by TrueCrypt, and stored in the
AFS ∼/private folder of the service account.

During the creation of the volume, the volume header is also backed up, one copy is
stored on the offsite backup machine and one is stored in AFS.

Mounting and unmounting volumes

The volume can be mounted and unmounted by a user logged in to the remote backup
server using a valid service account.

Mounting is done by using the script mount.sh, which is available in the ∼/private
folder of the relevant service account. If the script is not available, the volume must be
mounted manually. The procedure of a manual mount is described in the documentation.
Necessary information is volume name, keyfile path and mount point.

Unmounting is done by using the script umount.sh, which is available in the ∼/private
folder of the service account. If the script is not available, the volume must be unmounted
manually. The procedure of a manual unmount is described in the documentation. It is
very important to pay attention to the syntax of the command, and to control that the
volume was unmounted.

Taking backups

Backups using rsync are taken using the script backup.sh, available in CVS. This script is
run on the local client machine, and automatically mounts and unmounts the required
volume on the offsite backup server.

To manually take a backup, it is necessary first to logon to the offsite backup server,
mount the volume, transfer the data and unmount the volume. This process is described
in the documentation. To ensure the security of the data, it is very important to unmount
the volume before closing the connection to the remote backup server.

40

Secure Offsite Backup at CERN

Accessibility

The volumes are accessible to those who hold a valid service account user name and are
able to connect to the offsite backup server by the use of SSH. The service account must
also correspond to the permissions set on the volume.

The passwords (one for each volume) located in the offsite secure location is only
accessible by offsite backup administrators. A full disaster recovery of the volumes is
therefore only possible for these individuals. In the event of a disaster, the users should
contact the relevant IT section to enable the recovery of their volumes.

Disaster recovery

In the event of a disaster, where the keyfile stored in AFS has been destroyed, the pass-
word stored in the secure location must be retrieved. This must be done by an offsite
backup administrator. The script restoreheader.sh is used to restore the header file stored
on the backup server. The volume must then be mounted manually, providing the original
password when prompted. After this, assuming that AFS is again available, the volume
must be changed from the use of password to the use of keyfile. The password must then
be returned to the secure location.

Testing

The disaster recovery plan should be tested to see that the process is feasible and correctly
adapted to the users’ needs. This should be done by the offsite backup administrators,
in cooperation with the persons responsible for each service account’s backups and the
person(s) who control the access to the secure safe. The launching of the test is the
responsibility of the offsite backup administrators.

Testing should be done regularly, to see that the requirements to the service is still
satisfied, and to ensure that the different contributors know their tasks.

Keyfile revocation

The keyfile should be changed with regular intervals, at least once every six months.
In addition to this, the keyfile should be changed when an individual who has had

access to it should no longer have this access. Reasons for this may be that the person
leaves the organization or that his/her responsibilities change.

Responsibility for policy maintenance

The offsite backup administrators are responsible for keeping this policy up to date.
However, other individuals using the service must report any shortcomings or mistakes
in the policy.

Possible threats and how they are countered

Eavesdropping on transmission:
The data is transferred using SSH, and thereby encrypted.

Malicious insiders
The data is stored in encrypted form on the backup server, and is only accessible to those
holding a valid Kerberos ticket for the service account. The data is also secure against an
attacker who gains root (administrator) access to the server.

41

Secure Offsite Backup at CERN

Physical attacks
The data is not available in cleartext without the correct keyfile. The keyfile is not stored
on the backup server. The data is secured against a physical attack on the server (e.g.
theft), since the data will be inaccessible.

7.2 Policy for the version in production at CERN
Creation of volume

Only offsite backup administrators are allowed to create new volumes and generate new
keyfiles. Information about who are the offsite administrators can be obtained by con-
tacting the relevant IT section. The creation process requires root-access to the relevant
backup server.

New volumes are created with the script createC.sh, available in the folder ∼/private
of the obadmin service account. The scripts are also available in CVS.

If the script for some reason is unavailable, the volume should be created by carefully
following the directions found in the TWiki documentation page.

If the volume is created using the provided script, a strong password is generated
automatically. However, if the volume is created manually, the password should be gen-
erated before the creation of the volume is started. This can be done using the script
random.sh, or some equivalent method. After creating the volume, the password must be
written down or printed in 5 – five – copies. Four copies are given to trusted personnel,
preferably offsite backup administrators, to keep secure. These must be kept away from
the CERN Meyrin site. One copy should be kept securely on the site. This can e.g. be
done by locking a note in a drawer, or by keeping the password in an encrypted file on
the desktop computer of one of the administrators. This copy should be available if the
offsite backup server needs to be rebooted.

If there shall be different user spaces in the volume, these must be created when the
volume is created, and the correct permissions must be set: the service account must be
set as owner of the directory, and the permissions should be set to 0600; the owner, and
no one else, is able to read and write, and no one is allowed to execute code.

Mounting the volume

If the server is rebooted, or if the volume for some other reason has been unmouted,
there is a script – mountC.sh – which should be used to remount the volume. Instructions
on how to manually mount a volume is found in the TWiki documentation page. Nec-
essary information is volume name and mount point, and the correct password must be
provided for the mounting to be successful.

Accessibility

The volume is accessible to those who hold a valid service account user name and pass-
word, and can connect to the offsite backup server by the use of SSH.

Disaster recovery

In the event of a disaster, where the onsite copy of the password has been destroyed, one
of the copies of the original password held by the administrators must be obtained. If the
password has been changed since the volume creation, the script restoreheader.sh is used

42

Secure Offsite Backup at CERN

to restore the header file. mountC.sh can then be used to remount the volume, providing
the original password when prompted.

Testing

The disaster recovery plan should be tested to see that the process is feasible and cor-
rectly adapted to the users’ needs. This should be done by the offsite backup administra-
tors, in cooperation with the persons responsible for each service account’s backups. The
launching of the test is the responsibility of the offsite backup administrators.

Testing should be done regularly, to see that the requirements to the service are still
satisfied, and to ensure that the different contributors know their tasks.

Password revocation

The system is based on “lacy revocation”: The password must be changed when someone
who has had access to the password for some reason should not have this access any
more. Reasons for this may be that the person is leaving the organization, or that his/her
responsibilities have changed.

In addition to this, the password should be changed every six months. When the
password is changed, the onsite copy of the old password must be destroyed.

Responsibility for policy maintenance

The offsite backup administrators are responsible for keeping this policy up to date.
However, other individuals using the service must report any shortcomings or mistakes
in the policy.

Possible threats and how they are countered

Eavesdropping on transmission
The data is transferred using SSH, and thereby encrypted.

Malicious insiders
The data stored on the offsite backup server is protected by the standard Linux file per-
missions. This is the same level of protection as used where the data is otherwise stored
at CERN, and is regarded as safe enough.

Physical, off-line attacks
The data is not available in clear text without the correct password. This password is not
stored on the backup server. The data is secured against a physical, off-line, attack on the
server (e.g. theft), since the data will be encrypted, and thereby inaccessible, when the
machine is rebooted.

43

Secure Offsite Backup at CERN

8 Procedures

This chapter presents the procedures necessary to carry out the policies presented in the
previous chapter.

It must be clearly defined who holds the different responsibilities related to the offsite
backup:

• Who are the offsite backup administrators?

• Who is responsible for the creation of new service accounts and new volumes?

• Who is responsible for the access to the safe in the secure location?

• What are the procedures for the disaster recovery process, and who is responsible for
testing them and carrying them through in the event of a disaster?

The offsite backup administrators are chosen members of the IT-DES-SIS section at
CERN. In the system design put in production at CERN (see section 5.2), these individuals
have the responsibility of creating new volumes, and all tasks related to this, and to
request the creation of new service accounts from the user registration office.

In addition to this, these, especially the one who creates a new volume, are responsi-
ble for the proper handling of the new password. This must be printed or written down
without any risk of exposure, in the correct number of copies, and given to the chosen
individuals to be kept securely off the Meyrin site. These copies must as soon as possible,
preferably immediately, be transported to their new locations. Also, one copy should be
kept on the Meyrin site, secure but available when needed. This would be in the case of a
reboot of the offsite backup machine, which would require the volume to be remounted.
This is also the responsibility of the offsite backup administrators, and should be done
using the dedicated script.

In the complete system design, the offsite backup administrators are responsible for
creating new volumes and requesting the creation of new service accounts. When a new
volume is created, the individual creating it is responsible for transporting the password
to the secure location safe. There should be a limited number of people having access
to the safe, and one of these must be contacted to be able to deposit the password. The
password should be put in a sealed envelope, and marked with the name of the volume.
Information about which persons are allowed to retrieve the envelope(s) holding volume
passwords must be clearly stated to the individuals who have access to the safe.

For each group or service holding a service account, there must be one person ap-
pointed as responsible, and a substitute in case the responsible person is not available.
These persons must be trained to handle the different problems that may arise during
use of the system. Testing of the backup/restore functionality is an important part of
this training. When there is a problem with the backups, e.g. if the volume can not be
mounted or unmounted, these persons are notified, as well as the offsite backup admin-
istrators.

All users should also be given instructions and training on how to use the system:
How to make a backup manually and how to manually mount and unmount the volume

45

Secure Offsite Backup at CERN

to manage the data stored on the offsite backup server.
When a person having access to the keyfile of a volume should no longer have this

access, the keyfile must be changed. If this person at some point had access to the pass-
word stored in the secure location, to be used for disaster recovery, this password must
also be changed, and the volume header backed up again.

Similarly, in the system used at CERN, the current password of the volume must be
changed when a person having had access to the onsite copy of the password should not
have this access anymore. If this person has also had access to one of the offsite copies
of the password, this password must also be changed, and the volume header backed up
again.

It is important that the disaster recovery plan is clearly defined and thoroughly tested.
This way, a disaster will be handled more efficiently, since different actions and respon-
sibilities are known beforehand. In the case of the offsite backup system at CERN, the
responsibility of the offsite administrators will be to recover the password and remount
the volume, if the backup server is shut down as a result of the disaster. After that, or if
the offsite backup server is not shut down (i.e. the data is still accessible), the respon-
sibility of recovery from the data stored on the backup server lies on the different users
and should be a part of the different group’s disaster recovery plan.

In the complete system design, the offsite backup administrators will, on the request
from the different users, need to travel to the secure location to retrieve the different
passwords from the safe. After this, the different headers must be restored and the vol-
umes mounted using the correct passwords. The different users must then restore their
data, in accordance with their group’s disaster recovery plan. The offsite backup system
presented in this thesis will not function properly before AFS is running again, and in
the meantime, the password will be needed to mount the volume if it is necessary to
take new backups. Depending on the length of this time period, and the amount of peo-
ple handling the password, it may be desirable to change the password and take a new
backup of the volume header when AFS is functioning again, before changing the volume
to accept keyfiles again. The current password must then be transported to the secure
safe, following the same procedure as with the initial password.

There must be a defined line of responsibility in the event of a disaster. It must be
clear who have the permission and responsibility of retrieving the key(s) from the secure
location if all offsite backup administrators are unavailable.

46

Secure Offsite Backup at CERN

9 Discussion

In this chapter, the previously presented system design is discussed. The discussion will
first consider the complete system design presented in section 5.1, with regards to user
inconvenience and overall security. Afterwards, the version put in production at CERN is
discussed (presented in section 5.2), considering the alterations made to the complete
system design to adapt it to the current situation at CERN.

It is often a challenge to keep the user inconvenience to a minimum when developing a
secure system. The introduction of security to a system often increases the inconvenience
experienced by the users. The system presented in this thesis makes the action of taking
encrypted backups totally transparent to authorized users. The volumes are automati-
cally mounted and unmounted when a user runs the backup script and thereby logs into
the remote backup server using SSH. The data is encrypted on-the-fly when transmitted.
The only noticeable change for the users, except of the change of command used when
running the backup, is that the transmission to a file container volume are slower than
a transmission to unencrypted space on the disk. The consequence of this will differ de-
pending on the amount of data transmitted. Table 1 shows the time differences when
transmitting 5GB of data using scp and rsync. When transmitting to a partition container
volume, there was no significant difference in the transmission time.

plain text encrypted %
rsync ≈ 11min ≈ 13min +18.2%
scp ≈ 9 : 15min ≈ 12 : 50min +36.6%

Table 1: Time spent transmitting 5GB of data

The users can still use SSH to connect to the offsite backup server as before to manage
the backed up data. The only additional action needed by the user is to run mount.sh to
make the data available, and to run umount.sh when finished, before logging out. It
is, however, crucial that the volume is unmounted, since a mounted volume would be
available to anyone holding the right permissions, e.g. an adversary that has acquired
root access to the machine. As mentioned in section 3.1, it will in this kind of a situation
be necessary for the user to know what to do and why it has to be done, as well as
to know how to do it. Proper training and information must be given to ensure this.
Furthermore, it is desirable with a function that unmounts a volume after a certain time
of no activity, to decrease this vulnerability.

As long as the volumes are properly unmounted after use, the data will be protected.
To access the keyfile necessary to mount a volume, a valid Kerberos ticket is needed. To
get this ticket, the user must first be authorized to log in to the remote machine using
SSH with cryptographic keys. In this way, it is never necessary to enter a password.
This security is also dependent on the users’ ability to remember to lock their screens
when leaving their desks. If an adversary is able to get access to a computer where an
authorized user is logged in, this gives him the opportunity to connect to the remote

47

Secure Offsite Backup at CERN

backup server and mount the volume, and thereby have access to the data. One way to
handle this vulnerability is to use only a password, or both a password and a keyfile, to
mount the volume. This is discussed further in chapter 10.

Another benefit of storing the keyfile in AFS is that even though an adversary gains
root access to the remote backup machine, he will still not be able to read the keyfiles
necessary to mount the volumes, because he will not have the correct Kerberos creden-
tials. As a result of this, the data stored in the encrypted volumes will still be secure.

The volumes and keyfiles are created using /dev/random and /dev/urandom as ran-
dom input instead of the default mouse movement or keystrokes. The reasons for this
are stated in chapter 6. The use of mouse movements is not possible when TrueCrypt
is run on the remote server, which only would leave the option of keystrokes. This in-
troduces a substantial increase of user inconvenience, since the entering of 320 “ran-
dom” characters is quite troublesome, and the actual randomness of the characters is
very questionable. According to the /dev/random Linux manual page [32], the output
“should be suitable for uses that need very high quality randomness”. Some sources, such
as [57, 58], do however state that this is not always the case. Nevertheless, the random-
ness of /dev/random and /dev/urandom is in this case regarded as good enough and
also more ensured than the randomness of the user entering keystrokes.

The reason why /dev/random is used as the source when creating volumes and
/dev/urandom is used when creating keyfiles, is simply because of efficiency. When the
pool is already used to provide 320 bytes, it will take some time before there are 320
new bytes available and controlled by /dev/random. /dev/urandom will use these bytes
without controlling the entropy, and therefore without delay. One may argue that when
using several hours to create a volume, a few seconds extra for the keyfile will not make
a difference. It is, however, also a case of giving the user proper feedback, when the soft-
ware waits for input from /dev/random, it may seem like the process have stalled, and
the user may try to abort and start over. By using /dev/urandom, this is avoided.

The keyfile created using TrueCrypt’s −−keyfile-create function is a 64-bit binary file,
randomly generated. This gives 264 ≈ 1.8 ∗ 1019 different possibilities. The script ran-
dom.sh generates a password consisting of 20 characters from a field of 72. This gives
7220 ≈ 1, 4 ∗ 1037 possible results. When considering a brute force attack, where all pos-
sibilities are attempted to break the password/keyfile, and taking into the consideration
that the same data is stored unencrypted elsewhere at CERN, the strength of the keyfile
and password is regarded as very good. The users are also requested to change the key-
file or password approximately every six months. In addition to this, the strong password
generated when creating the volume ensures that an adversary is not able to use the
backed up header file stored on the server to access the data.

Another issue concerning key lengths is the encryption algorithm used for the traffic
encryption between AFS servers and the client (in this case the offsite backup server). As
mentioned in section 4.2, this algorithm uses a rather short key length, and is therefore
vulnerable of attacks. Since this is an integrated part of AFS, it is difficult to change
it before it is changed in the AFS system. Changing the keyfiles on a regular basis is
important to minimize this vulnerability.

It might be argued that this system design puts too much confidence in the users.
They are able to create their own volumes, and also to change keyfiles of the existing
volume. However, by using the provided scripts, these actions should be possible without

48

Secure Offsite Backup at CERN

problems. If the keyfile of a volume is changed, this simply replaces the original one, and
thereby ensures that the volume can still be mounted. The main problem is where user
interaction is necessary, especially where the user needs to press enter twice to set the
new password. If the user does anything but press enter in this situation, the volume will
need the password to be mounted, and the system will not function as intended. This
issue is also discussed further in chapter 10.

Another vulnerability that is a result of the freedom of the users is that the backed
up header file is available to anybody logged in with the correct service account. This
makes it possible for an insider to corrupt the header file, and thereby make the disaster
recovery impossible. It may be desirable to store the header file in the safe location with
the password, or to alert an offsite backup administrator when a new volume is created,
so that the header file can be copied to a location on the backup server only accessible
by root users.

The IT department at CERN has, in their contingency planning, decided that the CERN
site in Prevessin is sufficiently far away to be the location of the offsite backup facilities.
The distance between the Meyrin site and the Prevessin site is about three kilometers.
On the one hand, this rather short distance simplifies the process of recovery in the event
of a disaster, since the necessary information and equipment is close at hand. On the
other hand, it increases the possibility of both sites being affected e.g. if a severe natural
disaster should occur. This is, however, a decision that was made before the start of this
project, and it will most likely never be a problem that the two sites are not further apart.

As mentioned, the requirements to the system at CERN changed during the progress of
this project. It was decided that there was only need for one large volume, and that the
volume did not need to be unmounted after each use. These alterations affect the overall
security of the system. That is also the case when concerning the decision of keeping the
password for disaster recovery in the possession of the different offsite backup adminis-
trators. These issues will be discussed next.

The fact that the volume remains mounted at all times leaves it vulnerable to insiders
and other adversaries somehow getting access to the machine without cutting the power.
This is, however, not seen as too big a risk, because all the data stored on this server is
stored in cleartext other places at CERN, and are therefore equally vulnerable there.

An important issue about the system put in production at CERN is the management
of the password needed for disaster recovery. Since it was not feasible to find a secure
safe or other location to store the password in, it was decided that each offsite backup
administrator would bring one copy of the password home with him, and store it securely
there. First of all, this opens for insecure storage of the password, since it is not easy to
monitor that the different persons stores the password according to the policies and
procedures. It may also be possible that one or more of the copies are lost, since they are
not stored in a controlled environment.

Temporarily, while the system is put in production, the password is also stored in a
text file in the obadmin AFS account. To connect via SSH to this service account on the
backup server, a password is needed. Without this password, it is not possible to log in
to the server, and the proper Kerberos tickets are not obtained. The text file holding the
password is then not accessible. This solution can also be used as the way of keeping
the password available on site, maybe combined with OpenSSL or something similar

49

Secure Offsite Backup at CERN

to encrypt the file, with a password that is easier to remember. It may be argued that
protecting a strong password with a weaker password is the first step in weakening
the total security, and that it would be better to use a smart card, biometrics or other
authentication means. However, the file holding this password will be protected by three
other passwords: First, it is necessary for the user to log in to a local computer. Then,
he/she must log in to the remote backup server using SSH. And at last, it is necessary
with a password to access the file. This can in most cases be assessed to be as secure as
locking a note in a drawer.

In extreme situations, personnel may be rendered unavailable. If this includes the
individuals keeping the password in their homes, and the password stored onsite is also
unavailable, the result may be that the volume can not be mounted. Although this is
unlikely to happen, it should be considered. Since the situation at CERN does not enable
the storage of the password securely, this risk must be taken in this case.

This key management solution is chosen by those responsible at CERN as the most
feasible solution.

Finally, there are some general aspects of the system design that should be commented,
especially concerning the adaptation of the system design to other situations.

In the complete system design, the volume is formatted to FAT. However, in many
situations, it may be desirable to use other file formats. In those cases, it is necessary to
have administrator rights – root access in Linux – on the computer where the volume is
created. In the version of the system design put in production at CERN, this was possible
because offsite backup administrators would be the ones creating the volumes. The com-
plete system design makes it possible for users to create new volumes for themselves.
Obviously, it is not desirable to give root access to all the users.

Also, if an administrator logs in as root to create a new volume, the corresponding
keyfile should be stored in the AFS account of the correct service account. Since the root
user does not have the correct Kerberos ticket, he will not have permission to store the
keyfile there.

Both these issues can be solved by giving the service accounts the permission to use
the sudo-command; to be able to perform one single command with administrator privi-
leges. It can be specified which functions should be allowed, and if the user should enter
a password or not to do this.

A final disadvantage of the system is that if it is desirable to re-encrypt the volumes
with a different encryption algorithm, or use another hash algorithm to encrypt the vol-
ume header, a new volume must be created and all the data must be transferred to the
new volume. In an environment where large amounts of data is held, this would both
leave the data inaccessible for the time it takes to transfer it, and it would not be possible
to take new backups while the process is in progress.

50

Secure Offsite Backup at CERN

10 Further Work

This thesis presents a secure offsite backup system utilizing AFS with Kerberos, SSH and
TrueCrypt. There are some areas where the design may still be improved. These areas
are presented in this chapter.

• To secure the keyfile better, it may be desirable to encrypt it when stored in AFS,
e.g. by the use of OpenSSL, with a password to decrypt it when needed. This would
remove the vulnerability of an adversary getting access to a computer where an au-
thorized user is already logged in. It is also possible to require both a keyfile and a
password when mounting a volume. This would serve the same purpose.

• It may be desirable to develop a solution to transfer the keyfile in encrypted form,
without using the traffic encryption of AFS.

• In the version of TrueCrypt released since this project was commenced, the possibility
for non-root users to mount volumes is removed, because it was detected that there
was a possibility of denial of service attacks, since there is no check of where the
volumes are mounted. This can be solved by giving the users the permission to run
the sudo-command. The commands allowed can be specified, so volume name and
mount point may be added to the permission, to make it impossible for a user to
mount the volume anywhere else.

• There should be a function controlling the use of mounted volumes. If there has been
inactivity for a given amount of time, e.g. an hour, it can be assumed that the user
has forgotten to unmount the volume when logging out, and the volume should be
unmounted.

• At this point, the backup script is only made for Linux machines. It is desirable with
scripts that can also be used on a computer running Microsoft Windows.

• For small organizations, it is possible to install TrueCrypt on each client computer, and
use e.g. SSHFS [59] to mount a volume stored on the remote server to a directory
on the local client machine. The data on the volume would then be transferred in
encrypted form, and decrypted in the memory of the client. In organizations not
using AFS, the keyfile could also be stored on a smart card, protected by a pin code
or password.

• The system presented in this thesis only has a command line user interface. It would
be desirable to develop a graphical user interface, e.g. a web interface. This may for
instance be done using PHP, where the different scripts presented in this thesis can be
run from PHP using the shell_exec-function.
Kerberos supports authentication delegation, or authentication forwarding. This means
that an intermediary machine, such as a web server, is able to access remote resources
on behalf of the user [60]. This can be used in a system such as this: By the use of
a web interface, user A can forward his/her Kerberos ticket to the web server, which

51

Secure Offsite Backup at CERN

is then able to authenticate to the remote backup server. This way, the system would
still have the Kerberos authentication which much of the security in this system de-
sign is based on, in addition to a user interface which is comprehensive also to users
who are not comfortable with command line-based user interfaces.

• In the script createkey.sh, the user is prompted for password. In the solution presented
in this thesis, the user then needs to press enter twice. By using an “expect” script,
it is possible to avoid this. This script are configured to “listen” for specific requests,
and then respond to this request with a predefined value.

52

Secure Offsite Backup at CERN

11 Conclusions

This thesis presents a secure offsite backup system that can be used in large organiza-
tions, combining the AFS distributed file system, using Kerberos for authentication, with
TrueCrypt for encryption. The system design presented in section 5.1 is the one best
suited for the purpose, but the version put in production at CERN also shows that there
is several ways to change the system to adapt it to different requirements.

It is shown that software tools such as TrueCrypt can be successfully used for system
designs like the one described in this thesis. Combined with AFS, Kerberos authentication
and the use of SSH it can (in most situations) be part of a system that provides an
organization with a secure offsite backup to be incorporated in a disaster recovery plan.

One of the main goals of this project was to design and develop a secure offsite backup
system that would be as transparent as possible to the users. This is done by developing
scripts to carry out the different functions; mount/unmount, make backups and recover
in the event of a disaster. To minimize the necessary user interaction, the system utilizes
SSH using cryptographic keys and the TrueCrypt keyfile functionality. This gives total
transparency to the user when making backups.

Some user interaction is needed when creating new volumes, changing keyfiles and
recovering from a disaster. However, these are actions where some need for interaction
is expected, and the scripts presented in this thesis reduce the necessary interaction sub-
stantially.

The main requirements to the security of the offsite backup system, presented in
section 4.1 was:

• The data must be transferred securely.

• The data stored by one client must not be visible by any other client.

In addition to this, it was important to ensure the security of the data if an adversary
gains physical access to the server.

All these requirements are satisfied in the system design presented here, and the
security is therefore assessed to be satisfactory.

The system design presented in this thesis may be used in different kinds of organiza-
tions, with different requirements to security. One variation of the system are presented
in this thesis, while suggestions to other adaptations are presented in chapter 10. This
opens many possibilities for the use of the system.

53

Secure Offsite Backup at CERN

Bibliography

[1] What are CERN’s greatest acievements? Nobel Prizes. Available from
http://public.web.cern.ch/public/Content/Chapters/AboutCERN/Achievements/
NobelPrizes/NobelPrizes-en.html Last visited 25.10.07.

[2] All about CERN... in 7 questions! Available from
http://press.web.cern.ch/public/Content/Chapters/AboutCERN/AboutCERN-
en.html Last visited 31.10.2007.

[3] Ylonen, T. & Lonvick, C. jan 2006. The Secure Shell (SSH) Protocol Architecture.
Available from ftp://ftp.rfc-editor.org/in-notes/rfc4251.txt Last visited 25.10.2007.

[4] Bauer, M. 2003. Paranoid penguin: rsync, part i. Linux J., 2003(107), 10.

[5] Bauer, M. 2003. Paranoid penguin: rsync, part ii. Linux J., 2003(108), 13.

[6] Smith, T. 2004. Using scp (secure copy) to transfer files. Dig-
ital Library of Information Science and Technology. Available from
http://dlist.sir.arizona.edu/326/Using%5Fscp.html Last visited 25.10.2007.

[7] Robey, D., Welke, R., & Turk, D. 2001. Traditional, iterative, and component-based
development: A social analysis of software development paradigms. Inf. Tech. and
Management, 2(1), 53–70.

[8] Storer, M., Greenan, K., & Miller, E. 2006. Long-term threats to secure archives.
In StorageSS ’06: Proceedings of the second ACM workshop on Storage security and
survivability, 9–16, New York, NY, USA. ACM Press.

[9] F. Graf, S. W. nov 2005. A capability-based transparent cryptographic file system.
In Proceedings of the 2005 International Conference on Cyberworlds (CW’05).

[10] Riedel, E., Kallahalla, M., & Swaminathan, R. 2002. A framework for evaluating
storage system security. In FAST ’02: Proceedings of the 1st USENIX Conference on
File and Storage Technologies, Berkeley, CA, USA. USENIX Association.

[11] Whitten, A. & Tygar, J. 2005. Why Johnny can’t encrypt: a usability evaluation of
PGP 5.0. In Proceedings of the 8th USENIX Security Symposium, 679–702. O’Reilly.

[12] Whitten, A. & Tygar, J. dec 1998. Usability of security: A case study. Technical
Report CMU-CS-98-155, Carnegie Mellon University.

[13] Blaze, M. 1993. A cryptographic file system for UNIX. In CCS ’93: Proceedings of
the 1st ACM conference on Computer and communications security, 9–16, New York,
NY, USA. ACM Press.

[14] Hughes, J., Feist, C., Hawkinson, S., Perraut, J., O’Keefe, M., & Corcoran, D. 1999.
A Universal Access, Smart-Card-Based, Secure File System. Atlanta Linux Showcase.

55

Secure Offsite Backup at CERN

[15] Adya, A., Bolosky, W., Castro, M., Cermak, G., Chaiken, R., Douceur, J., Howell, J.,
Lorch, J., Theimer, M., & Wattenhofer, R. December 2002. FARSITE: Federated,
Available, and Reliable Storage for an Incompletely Trusted Environment. In 5th
Symposium on Operating Systems Design and Implementation (OSDI), Boston, Mas-
sachusetts.

[16] Cattaneo, G., Catuogno, L., Sorbo, A. D., & Persiano, P. 2001. The design and im-
plementation of a transparent cryptographic file system for UNIX. In Proceedings of
the FREENIX Track: 2001 USENIX Annual Technical Conference, 199–212, Berkeley,
CA, USA. USENIX Association.

[17] OpenSSL: The open source toolkit for SSL/TLS. http://www.openssl.org/ Last vis-
ited 25.10.2007.

[18] Thompson, K. 2007. Backup encryption. Sys Admin, 16(3), 12–17.

[19] The GNU Privacy Guard - GnuPG.org. http://www.gnupg.org/ Last visisted
25.10.2007.

[20] Callas, J., Donnerhacke, L., & H. Finney, R. T. nov 1998. RFC2440: OpenPGP
message format. Available from ftp://ftp.rfc-editor.org/in-notes/rfc2440.txt Last
visited 25.10.2007.

[21] da Silva, J. & Guthmundsson, O. 1993. The Amanda network backup manager. In
LISA ’93: Proceedings of the 7th USENIX conference on System administration, 171–
182, Berkeley, CA, USA. USENIX Association.

[22] Garcia, L. & Pragin, P. Secure Network Backups in a Heterogeneous Environment
in the Time it Takes to Have Pizza Delivered (All Using Open Source Software!).
Available from http://amanda.zmanda.com/quick-backup-setup.html Last visited
25.10.2007.

[23] Amanda: Open source backup. http://amanda.zmanda.com/ Last visited
25.10.2007.

[24] Zmanda, Inc. Open source backup software Amanda. Available from
http://network.zmanda.com/pdf/amanda-whitepaper.pdf Last visited 25.10.2007.

[25] Zmanda, Inc. The Open Source Backup Wiki.
http://wiki.zmanda.com/index.php/Main_Page Last visited 25.10.2007.

[26] Windows client. http://wiki.zmanda.com/index.php?title=Windows_client Last
visited 25.10.2007.

[27] Howto use cryptsetup with luks support. Available from
http://feraga.com/node/51 Last visited 24.10.2007.

[28] Security products from Jetico. http://www.jetico.com/ Last visited 25.10.2007.

[29] TrueCrypt. http://www.truecrypt.org/ Last visited 25.10.2007.

[30] Doernhoefer, M. sept 2006. Surfing the net for software engineering notes. ACM
SIGSOFT Software Engineering Notes, 31(5), 6–15.

56

Secure Offsite Backup at CERN

[31] Bauer, M. 2002. Paranoid penguin: BestCrypt: cross-platform filesystem encryption.
Linux J., 2002(98), 9.

[32] Manual reference pages - RANDOM (4). Available from http://www.squarebox.
co.uk/cgisquarebox/manServer/usr/share/man/man4/random.4 Last visited
25.10.2007.

[33] BestCrypt source code. Available from http://www.jetico.com.

[34] RSA Laboratories, R. D. S. I. March 1999. PKCS #5 v2.0: Password-Based
Cryptography Standard. Available at ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-
5v2/pkcs5v2-0.pdf Last visited 25.10.07.

[35] Ferguson, N. & Schneier, B. 2003. Practical Cryptography. Wiley Publishing, Inc,
Indianapolis, IN, USA.

[36] Information Security Forum. The standard of good prac-
tice for information security, 2005. Available from
http://www.isfsecuritystandard.com/SOGP07/pdfs/SOGP_2007.pdf Last vis-
ited 25.10.2007.

[37] Bowden, J. feb 2003. Security policy. What it is and why - The Basics. Avail-
able at https://www2.sans.org/reading_room/whitepapers/policyissues/488.php
Last visited 25.10.07.

[38] Wills, L. dec 2002. Security policies: Where to begin. Available from
http://www.sans.org/reading_room/whitepapers/policyissues/919.php Last vis-
ited 25.10.2007.

[39] Höhe, K. & Eloff, J. 2002. What makes an effective information security policy?
Network Security, 14–16.

[40] Menezes, A., Vanstone, S., & Oorschot, P. V. 1996. Handbook of Applied Cryptogra-
phy. CRC Press, Inc., Boca Raton, FL, USA.

[41] Schneier, B. 1996. Applied Cryptography. Protocols, Algorithms and Source Code in
C. John Wiley & Sons, Inc., New York, NY, USA.

[42] Schäfer, G. 2003. Security in fixed and wireless networks - an introduction to securing
data communications. Wiley Publishing, Inc., West Sussex, England.

[43] Merkow, M. & Breithaupt, J. 2007. Information Security: Principles and Practices.
Pearson Education, Upper Saddle River, NJ, USA.

[44] Fallara, P. 2004. Disaster recovery planning. IEEE Potentials, 22(5), 42–44.

[45] OffSiteBackup < DESgroup < TWiki. Available from
https://twiki.cern.ch/twiki/bin/viewauth/DESgroup/OffSiteBackup Last vis-
ited 31.10.2007.

[46] Scientific Linux CERN 4 (SLC4). Available from
http://linux.web.cern.ch/linux/scientific4/ Last visited 31.10.2007.

57

Secure Offsite Backup at CERN

[47] OpenAFS. Available from http://www.openafs.org/main.html Last visited
31.10.2007.

[48] Mullender, S., ed. Distributed Systems, chapter 9. Addison Wesley Publishing Com-
pany, 1989.

[49] GeneralFAQ < AFSLore < TWiki. Available from
http://www.dementia.org/twiki/bin/view/AFSLore/GeneralFAQ Last visited
31.10.2007.

[50] Wachsman, A. april 2005. Part III – A Secure Distributed File System. Linux Journal.
Issue 132.

[51] Többicke, R. 1994. Distributed file systems: Focus on Andrew File Sys-
tem/Distributed File Service (AFS/DFS). In Proceedings of the thirteenth IEEE Sym-
posium on Mass Storage Systems.

[52] Anderson, T. Specification of FCrypt: Encryption for AFS Remote Procedure Calls.
Available from http://surfvi.com/∼ota/fcrypt-paper.txt Last visited 02.10.2007.

[53] Miller, S., Neuman, B., Schiller, J., & Saltzer, J. 1987. Section e.2.1: Kerberos
authentication and authorization system. Technical report, MIT Project Athena.

[54] Trappe, W. & Washington, L. 2006. Introduction to Cryptography with Coding The-
ory. Pearson Education International, Upper Saddle River, NJ, USA, 2 edition, Pear-
son International Edition.

[55] Gollmann, D. 1999. Computer security. John Wiley & Sons, Inc., New York, NY,
USA.

[56] TrueCrypt source code. Available from www.truecrypt.org/downloads.php.

[57] Barak, B. & Halevi, S. 2005. A model and architecture for psudo-random gener-
ation and applications to /dev/random. In CCS ’05: Proceedings of the 12th ACM
conference on Computer and communications security, 203–212, New York, NY, USA.
ACM Press.

[58] Viega, J. 2003. Practical random number generation in software. In ACSAC ’03: Pro-
ceedings of the 19th Annual Computer Security Applications Conference, 129, Wash-
ington, DC, USA. IEEE Computer Society.

[59] SSH FileSystem. Available from http://fuse.sourceforge.net/sshfs.html Last visited
31.10.2007.

[60] Clercq, J. D. 2004. Kerberos advantages. Available from
http://searchwindowssecurity.techtarget.com/originalContent/0,289142,sid45_gci
1009961,00.html Last visited 30.10.2007.

58

Secure Offsite Backup at CERN

A Scripts

This appendix presents the script described in section 6.1, except random.sh and re-
storehead.sh, because of the simplicity of those scripts. In addition to this createC.sh is
presented, to show the differences in the creation process in the version put in production
at CERN.

Information specific for CERN, such as e-mail addresses, computer names and file
paths have been excluded.

A.1 createvol.sh

#!/bin/sh

#####

#

Script to simplify the creation of a new TrueCrypt volume.

#

Run on the remote backup server.

#

It is assumed that the new volume is not a partition.

Folder where volume is to be stored (/volumes/) and mountpoint

(/obhome/username) must be created before creation of volume.

#

Name of the service account can be provided as a parameter to the script.

If no name is provided, the user is prompted for it.

#

####

Path to be used for backed up header and config file

afs_path="~/private/"

random=$afs_path"random.sh" # Script to generate password

check=$afs_path"check.sh" # Script used to check if volume is mounted.

Path for backup up volume header on backup server

head_local="/user/truecrypt/"

volfolder="volumes" # Folder for volumes

mountpath="/obhome/" # Path for mounting

volpath="/"$volfolder"/" # Path for volumes

Check parameters.

if test -z $1 # Name of new volume is based on username

then

echo "Service account: "

read name

else

if ["$1" == "quick"] # In case name is not provided but quickformatting

59

Secure Offsite Backup at CERN

then quick=1

else name="$1"

fi

fi

if test -z $2 # Check if quickformatting is to be used

then

quick=0

else

if ["$2" == "quick"]

then quick=1

else quick=0

fi

fi

mountpoint=$mountpath$name

exist=$(ls / | grep $volfolder 2> /dev/null)

if ["$exist" != "$volfolder"]

then echo "Folder $vol_path does not exist. Please create it before trying again."

exit;

fi

exist=$(ls $mountpath | grep $name 2> /dev/null)

if ["$exist" != "$name"]

then echo "Folder $mountpoint does not exist. Please create it before trying again."

exit;

fi

password=$($random)

volume=$volpath$name # Path for volume

info=afs_pathname".txt" # Path for configurationfile, with filename

printf "$volume" > $info # Store volume name to use when mounting

Creation of new volume - the new password is provided in the command

The creator must also chose the size of the volume.

clear;

echo "A new TrueCrypt volume will now be created. Some interaction is necessary."

echo "Depending on the size of the volume, this process may take several hours.

To avoid this, use 'quick' option (may lead to decreased security). See the

documentation for more information."

echo "Press enter to continue, to abort press Ctrl+c."

read inn

if ["$quick" == "1"]

then

truecrypt --quick --random-source /dev/random -p $password --filesystem

60

Secure Offsite Backup at CERN

fat --type normal --encryption AES --hash SHA-1 -c $volume;

else

truecrypt --random-source /dev/random -p $password --filesystem fat

--type normal --encryption AES --hash SHA-1 -c $volume;

fi

echo "Backing up the volume header...."

afs=afs_pathname".hea" # Header file in AFS

local=$head_local$name".hea" # Header file on backup server

exist=$(ls $local 2> /dev/null) # Check if there is already a header file on

the backup server

if ["$exist" == "$local"]

then

printf "\n\n\nA header file corresponding to this volume already exists.

\nWould you like to overwrite, rename or cancel? (o/r/c): "

read inn

valid=0

while [$valid == 0]

do

case $inn in

o) truecrypt --backup-headers $local $volume; # Backup header

truecrypt --backup-headers $afs $volume;

valid=1;;

r) date=$(date +%m-%d-%Y)

rename_l=$local"_"$date

mv $local $rename_l # Rename file

printf "\n\nThe old local header file is renamed to $rename_l.\n"

exist=$(ls $afs 2> /dev/null) # Check if there is also an

existing header file in AFS

if ["$exist" == "$afs"]

then

rename_a=$afs"_"$date

mv $afs $rename_a # Rename file

printf "The old AFS header file is renamed to $rename_a.\n"

fi

truecrypt --backup-headers $local $volume; # Backup header

truecrypt --backup-headers $afs $volume;

valid=1;;

c) printf "\n The volume header has not been backed up. This must

be done to ensure disaster recovery. Please see the

documentation for more information. \n\n "

printf "The password to the new volume is:\n\n "

echo $password

61

Secure Offsite Backup at CERN

printf "\n\nPrint/write down the password and transport it to

the secure location according to the policies and

procedures, and keep a copy available for future use.

\nPress enter to continue.\n\n"

read inn

exit;;

*) echo "Invalid choice."

echo "Would you like to overwrite, rename or cancel? (o/r/c):"

read inn;;

esac

done

else

truecrypt --backup-headers $local $volume; # Backup header

truecrypt --backup-headers $afs $volume;

fi

printf "\n\nThe password to the new volume is:\n\n "

echo $password

printf "\n\nPrint/write down the password and transport it to the secure

location according to the policies and procedures, and keep a copy

available for future use. Press enter when ready.\n"

read inn

printf "\n\nA keyfile to mount the volume will now be created. Please press

'Enter' when prompted for existing keyfile and new password.\n"

keyfile=afs_pathname".key"

truecrypt --random-source /dev/random --keyfile-create $keyfile;

truecrypt --random-source /dev/urandom -p $password --keyfile-add $keyfile -C $volume;

printf "$volume \n$mountpoint\n" > $info; # Write info to file, to

use with mount.sh++

62

Secure Offsite Backup at CERN

A.2 createC.sh

#!/bin/sh

#####

#

Script to simplify the creation of a new TrueCrypt volume

in the CERN system design.

#

This script must be run by root!!

#

If the volume should be a separate partition, the hard disk must be

partitioned before this process is started.

#

Name of the new volume can be provided as a parameter to the script.

If no volume name (name of partition) is provided, the user is

prompted for it.

#

####

if ["$USER" != "root"]; # Check if the user is root. If not, quit.

then

echo "You have to be root to create new volume."

exit

fi

path="~/private/"

random=$path"random.sh" # Script to generate password

check=$path"check.sh" # Script used to check if volume is mounted.

Path for backup up volume header on backup server

head_local="/root/truecrypt/"

Check parameters.

if test -z $1 # Name of new volume / name of partition

then

echo "Full path of new volume (name of partition): "

read volume

else

if ["$1" == "quick"]

then quick=1

else volume="$1"

fi

fi

if test -z $2 # Check if quickformatting is to be used

then

quick=0

63

Secure Offsite Backup at CERN

else

if ["$2" == "quick"]

then quick=1

else quick=0

fi

fi

password=$($random)

Creation of new volume - the new password is provided in the command

Hash and encryption algorithms must be chosen.

If the volume is not a partition, the creator must also chose the size

of the volume.

clear;

echo "A new TrueCrypt volume will now be created. Some interaction is necessary."

echo "Depending on the size of the volume, this process may take several

hours. To avoid this, use 'quick' option (may lead to decreased security).

See the documentation for more information.

Press enter to continue, to abort press Ctrl+c."

read inn

if ["$quick" == "1"]

then

truecrypt --quick --random-source /dev/random -p $password --filesystem

none --type normal -c $volume;

else

truecrypt --random-source /dev/random -p $password --filesystem none

--type normal -c $volume;

fi

name=$(basename $volume) # Strip volume name from path

info=$path$name".txt" # Path for configuration file, with filename

printf "$volume" > $info # Store volume name to use when mounting

echo "The volume will now be formatted to ext3. This will take some time.

Press enter to continue, to exit press x and enter".

read inn

if ["$inn" == "x"]

then

printf "\n\nThe password to the new volume is:\n\n "

echo $password

printf "\n\nPrint/write down the password and transport it to the secure

location, and keep a copy available for future use.

64

Secure Offsite Backup at CERN

Press enter to continue.\n\n"

read inn

printf "The volume is not formatted, the header file is not backed up and

the information file is not created. Please see the instructions

the documentation about manually creating a volume for information

on how to complete the process.\n"

exit

fi

export MKE2FS_SYNC=10;

truecrypt --device-number 99 -p $password $volume;

Set devicenumber 99 to ensure that no taken device numbers are used

control=$($check $name);

if ["$control" == "1"]

then

/sbin/mkfs.ext3 /dev/mapper/truecrypt99;

truecrypt -d;

else

echo "Volume was not mapped. Formatting canceled. Press enter to continue

with header backup. See the documentation for more information."

read inn

fi

echo "Backing up the volume header...."

afs=$path$name".hea" # Header file in AFS

local=$head_local$name".hea" # Header file on backup server

Check if there is already a header file on the backup server

exist=$(ls $local 2> /dev/null)

if ["$exist" == "$local"]

then

printf "\n\n\n A header file corresponding to this volume already exists.

\n Would you like to overwrite, rename or cancel? (o/r/c):"

read inn

valid=0

while [$valid == 0]

do

case $inn in

o) truecrypt --backup-headers $local $volume; # Backup header

truecrypt --backup-headers $afs $volume;

valid=1;;

r) date=$(date +%m-%d-%Y)

65

Secure Offsite Backup at CERN

rename_l=$local"_"$date

mv $local $rename_l # Rename file

printf "\n\nThe old local header file is renamed to $rename_l.\n"

Check if there is also an existing header file in AFS

exist=$(ls $afs 2> /dev/null)

if ["$exist" == "$afs"]

then

rename_a=$afs"_"$date

mv $afs $rename_a # Rename file

printf "The old AFS header file is renamed to $rename_a.\n"

fi

truecrypt --backup-headers $local $volume; # Backup header

truecrypt --backup-headers $afs $volume;

valid=1;;

c) printf "\n The volume header has not been backed up. This must

be done to ensure disaster recovery. Please see the

documentation for more information. \n\n "

printf "The password to the new volume is:\n\n "

echo $password

printf "\n\nPrint/write down the password and transport it to

the secure location, and keep a copy available for future

use. Press enter to continue.\n\n"

read inn

exit;;

*) echo "Invalid choice."

echo "Would you like to overwrite, rename or cancel? (o/r/c):"

read inn;;

esac

done

else

truecrypt --backup-headers $local $volume; # Backup header

truecrypt --backup-headers $afs $volume;

fi

printf "\n\nThe password to the new volume is:\n\n "

echo $password

printf "\n\nPrint/write down the password and transport it to the secure

location, and keep a copy available for future use. Press enter to

continue.\n\n"

read inn

if ["$control" == "1"]

then

66

Secure Offsite Backup at CERN

echo "The volume will now be mounted. Please specify mountpoint:"

read mountpoint

truecrypt $volume -p $password $mountpoint

printf "$volume \n$mountpoint\n" > $info

Write info to file, to use with mountC.sh++

else

printf "The volume was not formatted, and can not be mounted. Please

format and mount the volume manually. See the documentation for

more information.\n Press enter to exit."

read inn

fi

67

Secure Offsite Backup at CERN

A.3 check.sh

#!/bin/sh

#####

Script to control if a specific volume is mounted.

Takes name of the volume as parameter.

Information about the script is provided by the file

~/private/$volumename.txt

#

Returns 1 if the volume is mounted, 0 if it is not.

#

Run on the remote backup server.

#

This script is the same for both system designs.

#

Complete version: To be used by create.sh, mount.sh and umount.sh.

CERN version: To be used by createC.sh and mountC.sh

#

#####

volumename=$1

info="~/private/"$volumename".txt" # Path to configuration file.

Read information about volume from file.

read volume < $info

Check if volume is mounted

check=$(truecrypt -l 2>/dev/null | grep $volume | /usr/bin/awk '{print $2}');

if ["$check" == "$volume"]

then

echo "1"

else

echo "0"

fi

68

Secure Offsite Backup at CERN

A.4 mount.sh

#!/bin/sh

####

Script to mount volume.

#

Reads name of volume from the file $volume.txt

Generates name of keyfile - $volume.key.

Mounts the volume using the keyfile.

Checks the capacity of the volume.

#

Run on the remote backup server.

#

#####

path="~/private/"

check=$path"check.sh"

obmail=""

if test -z $1 # Name of volume

then

echo "Service account: "

read name

else

name=$1

fi

volinfo=$path$name".txt" # Path to configuration file

count=1

while read input; do # Read configuration file

if test $count -eq 1

then

volume=$input

fi

if test $count -eq 2

then

mount=$input

fi

count=$[$count + 1]

done < $volinfo

keyfile=$path$name".key" # Path to keyfile

Mounting volume:

69

Secure Offsite Backup at CERN

truecrypt -u $volume -k $keyfile -p "" $mount;

Check that mount was successful

result=$($check $name);

if ["$result" == "1"]

then

echo "Mount successful!"

else

echo "Mount not successful. Please try again."

fi

Check capacity

utilized=$(/bin/df -k $volume | /usr/bin/tail -1 | /usr/bin/awk '{print $5}');

thresh="75%" # Set threshold for usage

used=${utilized%%%} # Trim %-sign from end of utilized and thresh.

limit=${thresh%%%}

if [$used -gt $limit] # Check if the usage is larger than the threshold.

then

echo "ALERT!!! The volume is $utilized full!"

echo "An e-mail is sent to the obadmins. Please consider creating a new

volume, or future backups may be lost."

echo ``Volume $name is $utilized full. A new volume should be created for

this user.'' | mail -s ``Volume $name is $utilized full''

$obmail;

fi

70

Secure Offsite Backup at CERN

A.5 unmount.sh

#!/bin/sh

####

Script to unmount volume.

#

Reads name of volume from the file $volumename.txt

#

Unmounts the volume.

#

Run on the remote backup server.

#

#####

path="~/private/"

check=$path"check.sh"

if test -z $1 # Name of volume

then

echo "Name of volume: "

read name

else

name=$1

fi

volinfo=$path$name".txt" # Path to configuration file

count=1

while read input; do # Read configuration file

if test $count -eq 1

then

volume=$input

fi

if test $count -eq 2

then

mount=$input

fi

count=$[$count + 1]

done < $volinfo

Unmounting volume

truecrypt -d $mount;

Check that unmount was successful

result=$($check $name);

71

Secure Offsite Backup at CERN

if ["$result" == "0"]

then

echo "The volume has successfully been unmounted!"

else

echo "The volume was not unmounted. Please try again manually. See

documentation for further information"

fi

72

Secure Offsite Backup at CERN

A.6 backup.sh

#!/bin/sh

#####

Script to mount volume, run rsync command and unmount volume.

#

Check if volume is mounted. If not, mount. If mounted, then procede with rsync.

Takes username and directory to synchronize as parameter...

#

Run on local (client) computer, connects to remote server via SSH

#

#####

path="~/private/"

check=$path"check.sh"

obmail=""

observer=""

if test -z $1

then

echo "Service account: "

read name

else

name="$1"

fi

if test -z $2

then

echo "Directory to synchronize: "

read dir

else

dir="$2"

fi

Check if volume is mounted. If not, mount it.

echo "Checking if volume is mounted..."

read=$path"read.sh" # Script to read from file

volinfo=$path$name".txt" # Name of configuration file

keyfile=$path$name".key"; # Name of keyfile

Read information from configuration file on remote backup server

volume=$(ssh $name@$observer "$read $user $volinfo 1") #volumepath

mount=$(ssh $name@$observer "$read $user $volinfo 2") #mount point

mounted=$(ssh $name@$observer "$check $name");

if ["$mounted" == "1"]

73

Secure Offsite Backup at CERN

then

echo "Alert!! The volume was already mounted!!"

echo "Synchronizing..."

rsync -av $dir $name@$observer:$mount;

Unmount volume

echo "Unmounting volume..."

ssh $name@$observer "truecrypt -d $mount";

else

echo "Mounting volume..."

ssh $name@$observer "truecrypt -u -k $keyfile -p '' $volume $mount";

Checking result of mounting, if not successful, nothing more happens.

If successful, rsync is run.

mounted=$(ssh $name@$observer "$check $name");

if ["$mounted" == "1"]

then

echo "Synchronizing..."

rsync -av $dir $name@$observer:$mount;

Unmount volume

echo "Unmounting volume..."

ssh $name@$observer "truecrypt -d $mount";

else

echo "Mounting did not succeed. Please try again...."

fi

fi

mounted=$(ssh $name@$observer "$check $name")

if ["$mounted" == "1"]

then

echo "The volume was not unmounted properly. The offsite backup

administrators have been alerted."

echo ``Volume $name not unmountd'' | mail -s ``The volume $name was

not unmounted properly. Please do this manually.'' $obmail;

fi

74

Secure Offsite Backup at CERN

A.7 changekey.sh

#!/bin/sh

#####

Script to change keyfile of a volume.

#

Takes username as parameter...

#

Creates new keyfile and change keyfile related to volume.

#

Run on remote server.

#

#####

path="~/private/"

volpath="/volumes/"

if test -z $1

then

echo "Service account: "

read name

else

name="$1"

fi

volume=$volpath$name

keyfile=$path$name".key"

current=$keyfile"_old"

mv $keyfile $current

truecrypt --random-source /dev/random --keyfile-create $keyfile

truecrypt --random-source /dev/urandom --keyfile-add $keyfile

-k $current -p "" -C $volume

rm $current

75

Secure Offsite Backup at CERN

B User guidelines for version in production at CERN

Procedure for mounting volume (e.g. after reboot)

• retrieve password

• login as “obadmin” on offsite backup server, using SSH.

• either

• a) run script: mount.sh. Provide password when prompted. OR

• b) mount manually using the following command:
truecrypt <volumename> <mountpoint>
where volumename is the name of the partition holding the encrypted data, and
mountpoint is the desired access point for the information. Provide password
when prompted.
To check if the volume is correctly mounted, type
truecrypt -l
to list the mounted volume(s).

Procedure for changing password

• retrieve current password

• login as “obadmin” on offsite backup server, using SSH.

• Either:

• run script: changepass.sh. OR

• run command
truecrypt −−random-source /dev/random -C [volumename]
If not providing the volume name, enter it when prompted.

• When prompted for keyfile path, press enter.

• When prompted for current password, enter this.

• When prompted for new keyfile path, press enter.

• Enter new password when prompted. (Generate a random password of 20 char-
acters using the script random.sh)

• Confirm new password

• Wait for confirmation

The new password are to be printed and kept securely by at least one person with
privileges to log in as obadmin.

77

Secure Offsite Backup at CERN

Procedure for unmounting volume

Either:
Unmount one specific volume:

• truecrypt -d /dev/mapper/truecryptX
where X is a number for 0-9 and /dev/mapper/truecryptX is the device corresponding
to the relevant volume. OR

• truecrypt -d <mountpoint>
where mount point is the directory in which the data stored on the volume is accessi-
ble.)

OR
Unmount all volumes:

• truecrypt -d

NOTE: As long as there is only one volume on each backup server, truecrypt -d is suffi-
cient.
Run the command
truecrypt -l
to check that the volume was successfully unmounted.

Procedure for creating a new volume

NOTE: This must be done as root, to be able to format the volume. If a partition is to be
encrypted, the partition must be created before starting the TrueCrypt volume creation.

Either:

• Run script “createC.sh”

OR

• Create a password e.g. by using the script “random.sh”

• Run the command
truecrypt −−random-source /dev/random −−filesystem none −−type normal -c <vol-
umename>

• If the new volume is not a partition, provide the size of the volume when prompted.
(<2TB)

• Chose hash- and encryption algorithm

• Provide the password generated previously when prompted, then re-enter it to
confirm.

• When prompted for keyfile, press enter.

• Format the volume to ext3:

• set the environment variable MKE2FS_SYNC to avoid the system freezing:
export MKE2FS_SYNC=10

• map volume:

• truecrypt −−device-number 99 <volumename>

78

Secure Offsite Backup at CERN

• Provide password when prompted

• format volume:
/sbin/mkfs.ext3 /dev/mapper/truecrypt99

• unmount volume (see Procedure for unmounting volume)

• Back up the volume header:
Run the command:
truecrypt −−backup-headers header_<name>.bac <volumename>
where "name" is the name of the volume, but not the entire path (e.g. if the volume
is /dev/mapper/volume, the name is "volume").

• Create a file “<volumename>.txt” with the contents
<volumename>
<mountpoint>

• Mount the volume (see Procedure for mounting volume)

• Print/write down the password and transport it to the secure location. Also keep a
copy available (securely) for later use.

Possible issues when creating a new volume using “createC.sh”

Error message: "Volume was not mounted. Formatting canceled."
There was a problem when mapping the volume to /dev/mapper/truecrypt0. To format
the volume, the device must be mapped. Map the volume manually, using the command
truecrypt –device-number 0 <volumename>
providing the password when prompted. To check that the volume was properly mapped,
use the command truecrypt -l to list mapped/mounted volumes.
When the volume is mapped, format it using the command
/sbin/mkfs.ext3 /dev/mapper/truecrypt0
Unmap the volume (truecrypt -d) and mount it. (See Procedure for mounting volume.)

Using “quick” option when creating volume
When using the “quick” option, the volume is created without filling it with random
data. This may be regarded as less secure because it will then be possible to retrieve such
information as where data is written, how much data is written, etc. However, it does
decrease the amount of time needed to create a new volume to that needed to enter the
correct information and formatting the filesystem.

Restoring header

If the header of the volume is corrupted, it is possible to restore it from the backup.
Run the command

truecrypt −−restore-header <header file> <volumename>
Press enter when asked about volume type (normal).

79

Secure Offsite Backup at CERN

C Correspondence with OpenAFS mailing list

Re: [OpenAFS] Encryption of traffic?

From: Russ Allbery (rra@stanford.edu)

Sent: Tuesday, June 26, 2007 6:39:14 PM

To: Katrine Svendsen (kat_svendsen@hotmail.com)

Cc: openafs-info@openafs.org

Katrine Svendsen <kat_svendsen@hotmail.com> writes:

> I'm trying to find some details about the traffic encryption between an

> AFS client and server (fs setcrypt on/off), but this seems to be very

> difficult.I would like to know about such things as keylength, mode of

> operation, key generation/distribution etc. Does anybody have a good

> source for this?

AFS uses an encryption method called fcrypt, which is a modified DES. Google

for fcrypt will return a lot of hits, although I don't know if anyof them

have detailed analyses. This encryption method is fairly obsolete at this point.

> It also seems to me that not too much have happened in this field (when

> considering AFS) the last years. Am I right when I think that the

> network traffic-encryption in AFS is somewhat "ancient"? Why is there

> not more focus on this?

On the contrary, this is our top development priority apart from keeping

things generally working, and is the focus of both the rxk5 and rxgk work.

The difficulty is that replacing the encryption algorithm in AFSrequires

substantial protocol changes and ideally one wants to generalizethe encryption

layer and support all GSSAPI encryption types at the sametime, as well as

provide a framework for stronger authentication ingeneral. Both rxk5 and rxgk

have made substantial progress in the past year.

--

Russ Allbery (rra@stanford.edu) <http://www.eyrie.org/~eagle/>

81

Secure Offsite Backup at CERN

Re: [OpenAFS] Encryption of traffic?

From: Marcus Watts (mdw@spam.ifs.umich.edu)

Sent: Tuesday, June 26, 2007 7:23:57 PM

To: Katrine Svendsen (kat_svendsen@hotmail.com)

Cc: openafs-info@openafs.org

> Date: Tue, 26 Jun 2007 09:39:13 PDT

> To: Katrine Svendsen <kat_svendsen@hotmail.com>

> cc: <openafs-info@openafs.org>

> From: Russ Allbery <rra@stanford.edu>

> Subject: Re: [OpenAFS] Encryption of traffic

>

> Katrine Svendsen <kat_svendsen@hotmail.com> writes:

>

> > I'm trying to find some details about the traffic encryption between an

> > AFS client and server (fs setcrypt on/off), but this seems to be very

> > difficult.I would like to know about such things as keylength, mode of

> > operation, key generation/distribution etc. Does anybody have a good

> > source for this?

>

> AFS uses an encryption method called fcrypt, which is a modified DES.

> Google for fcrypt will return a lot of hits, although I don't know if any

> of them have detailed analyses. This encryption method is fairly obsolete

> at this point.

>

> > It also seems to me that not too much have happened in this field (when

> > considering AFS) the last years. Am I right when I think that the

> > network traffic-encryption in AFS is somewhat ``ancient`''? Why is there

> > not more focus on this?

>

> On the contrary, this is our top development priority apart from keeping

> things generally working, and is the focus of both the rxk5 and rxgk

> work. The difficulty is that replacing the encryption algorithm in AFS

> requires substantial protocol changes and ideally one wants to generalize

> the encryption layer and support all GSSAPI encryption types at the same

> time, as well as provide a framework for stronger authentication in

> general.

>

> Both rxk5 and rxgk have made substantial progress in the past year.

>

> --

> Russ Allbery (rra@stanford.edu) <http://www.eyrie.org/~eagle/>>

> OpenAFS-info mailing list

82

Secure Offsite Backup at CERN

> OpenAFS-info@openafs.org

> https://lists.openafs.org/mailman/listinfo/openafs-info

Fcrypt is described here: http://surfvi.com/~ota/fcrypt-paper.txt

it was probably obselete when deployed; its only real advantage is speed.

It's used in cbc mode, and there's some sort of not terribly convincing

checksum algorithm happening as well. AFS also supports ``integrity

without privacy'' (rxkad_auth), which does not encrypt the payload but can

detect changes, and ``rxkad_clear'', which is what you get for fileserver

traffic if you say ``fs setcrypt off''.

As designed and originally deployed, AFS used kerberos 4 - DES + pcbc.

There are lots of references out there for kerberos 4 & pcbc. AFS uses

the des session key straight with fcrypt; there's no further key

generation happening.

Current distributions of AFS also support kerberos 5 - but only with DES.

That is the service key & the session key must both be DES. The rest of

rxkad works exactly as before.

A patch for rxk5 is here:

/afs/umich.edu/group/itd/build/mdw/openafs/patches/afs-rxk5-r1518-m50.patch.bz2

it adds in support for kerberos 5 with mit or heimdal, and supports current

kerberos 5 encryption types. The token interface between the kernel & userland

will change slightly shortly (at the request of the rxgk folks), and there

is still some other cleanup to happen. rxk5 generates a different key for each

packet sent & received, and uses straight kerberos 5 encryption protocols to

either encrypt (rxk5_crypt) or do integrity but no privacy (rxk5_auth).

rxk5 does not by default support ``no integrity'' (rxk5_clear) and the small

bits of the fileserver & cache manager that known about this select rxk5_auth

for rxk5 in place of rxkad_clear for rxkad.

Help, I'm being dragged off to a meeting! Hope this helps...

-Marcus Watts

83

