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Abstract

Authentication is a much used measure in order to keep impostors from getting access to
things or places that they are not supposed to get access to. Passwords/phrases, tokens,
keys and the like have been used since ancient history, but also biometric features such
as fingerprints, retina scans or even DNA have been applied. This thesis will look at the
ear as a biometric feature, and how thermal images may improve the performance of
such authentication systems.

We look at thermal images, to see if they give better results than visible images.
Thermal images have the advantage that they do not need light to give results, as they
only capture heat radiation from the ears. This project however, was done in a standard
enlightened environment to see if they could produce better results there as well.

The experiment consists of 75 participants of both students and staff of Høgskolen i
Gjøvik. Each participant had 3 sessions with 5 images per session taking the total number
of captures to 1125. Each capture produced 3 images (visible, grayscaled and colored).
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1 Introduction

To determine whether a person is who he says he is, has been important since the dawn
of man. In ancient Egypt, Pharaoh’s men measured the height of people to identify1

them. Through the different eras, new ways of authentication2 have been introduced.
All of these are based on either something you have, know or are. In computer science,
something you have can be a smart card or a token of some sort. Something you know
can be a password, pass phrase or some secret as a way of logging into a system. The
last category, something you are, is mostly biometric3 oriented and includes e.g. finger-
prints, iris and facial features. During the late 1960’s, new biometric devices were made
to measure different body parts for identification. From that time on, a lot of research
has been done in this area and today many biometric methods are commonly used for
authentication.

1.1 Topic covered by the project

To authenticate a person by something he is will be the focus of this project. Facial recog-
nition has been discussed for quite some time now, but a relatively new and undocu-
mented area in relation to this, ear recognition, will be the topic of this master thesis.
Different techniques have been defined for comparing ears. We will look into some of
them, and try to find new and better ways of using the ear as a "something you are"
measure in respect to authentication.

1.2 Keywords

Authentication, ear biometrics, ear shape, human identification, outer ear images, iden-
tification rates, thermogram, pattern recognition

1.3 Problem description

Face recognition is by now well documented and tested. This requires an image of the
entire face, and the image is in general taken from the front of the person. By just taking
the image of an ear, one reduces the size of data that needs to be verified. This is an
advantage because by reducing the size, the processing of the data will go quicker. Ear
recognition is a new field of research though, and not much work has been done on this
topic. Some of the techniques that have been described are weak and do not really give us
any reason to believe that ear recognition might be a new, accurate way of authenticating
people (Principal Component Analysis(PCA) only had a 71,6% recognition rate [1, 2]).
These methods are very dependent on the quality of the image, if the ear is covered by
hair or if the head is tilted either way. There are however some methods that produce
better results as shown in Table 1 in [3], e.g. the "Force Field Transformation method" [4,
5, 6] with a recognition rate of 99,2%. We will apply some of these techniques to thermal
images, and with this master thesis we hope to consolidate ear recognition as a reliable

1Identification is defined as establishing an identity
2Authentication is defined as verifying the person to be who he claims to be
3Greek: bios which means "life" and metron which means "measure"
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authentication method. By looking at thermal images compared to normal images, we
hope to achieve results that are feasible for authentication as well as overcoming the
current issues concerning lighting conditions and occlusion by e.g hair.

1.4 Justification, motivation and benefits

Ear recognition is a new field of interest for authentication researchers. The theories that
have already been described by different sources have results that varies from 71% to 99%
in recognition rates, depending on which theory applied [3]. By applying some of these
techniques on thermal images, we hope to present ear authentication as a possible sup-
plement to other existing authentication measures. Taking photos of ears is much more
comfortable for the person which is to be authenticated than e.g. iris/retina scans or
fingerprints. Retina scanning requires the person to look into the camera for a couple of
seconds, a process that many people find uncomfortable. Some individuals are reluctant
to put their finger on a scanner where plenty of people have had their “dirty” fingers be-
fore them. To be authenticated just by a photo of one’s ear would be much more people-
friendly. Face recognition can be argued as a solution that also fits into this category. But
there have been quite a few problems with face recognition. The major problem is that
people can have different facial expressions that makes the images very different from
one capture to the next. By taking images of the ear, we reduce the problem with facial
expressions. By using a thermal camera we also exclude the lighting condition problem.
Images taken by a normal camera will give different results as they are dependent of vis-
ible light to provide quality. The thermal camera does not take images within the visible
light spectrum, thus removing this problem.

It is also easier for the person to “remember” his ear than it is to remember a pass-
word, or to bring some sort of token with him. If we can come up with some good results
for this new method of ear authentication, a quick picture of a persons ear can be all that
is needed for entering a building, getting access to files, or whatever we are protecting.
Research has also been done on blood vessel patterns in the ears of mice [7]. This might
be interesting to look more at in the future, but will not be in the scope of this thesis.

1.5 Research questions

In order to solve these problems, several research questions need to be addressed.

1. General research questions:

• What techniques do already exist for ear authentication?

• How good are our results using thermal images vs. normal images compared to
results using existing methods?

2. Research questions related to thermal images:

• Is it possible to determine differences in peoples ears by looking at a thermal
image?

• Do environmental factors, e.g. temperature, affect our results in any way?

• How long does it take before an ear is warmed up after being cooled down for
some time?

2
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1.6 Claimed contributions

Hopefully, this master thesis will make ear authentication a hot topic in the near future.
By proposing a new method, we hope to come up with results that can be of use for later
research. We have used a thermal camera to get images of different ears. The camera
captures both visible as well as thermal images. From this we have tried to extract char-
acteristic features present in the ear. We choose to take 2D images as this does not require
expensive equipment. Time needed to analyze the images created by such a camera is
also greatly reduced because the size is smaller than that of a 3D image. A thermal image
might reduce the problem with hair covering the ear. This will be very valuable in terms
of passive identification4. During active identification5 this will be less of a problem, as
the subject can pull his hair back and proceed with the authentication process. People
with short hair might still prove difficult though, as hair can be long enough to occlude
the ear but not long enough to be pulled behind it. If these two methods can be com-
bined, and give us good results in terms of recognition rates, we will have shown that
ear recognition can be a serious competitor for any authentication process.

1.7 Outline of the report

The following chapter is an introduction to authentication, biometrics and biometric sys-
tems. The chapter is aimed at people who might not know that much about biometrics or
authentication at all, and will give a brief explanation of different terms and components
of a biometric system. In Chapter 3 we will look at previous work related to ear biomet-
rics. Chapter 4 will describe how the experiment setup was done, while Chapter 5 will
explain the pre-processing, analysis and the results we got from the experiment. Discus-
sion around the results, will be given in Chapter 6. Our final conclusions are presented
in Chapter 7, while suggestions on future work is given in Chapter 8.

4Passive identification is when the subject does not do anything actively, i.e. being passive, to be identified.
5Active identification is when the subject knows that he is being identified, and helps the process

3
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2 Biometric Authentication

Over the years, the need for keeping important information and objects from falling into
the wrong hands have lead to the introduction of authentication1. Authentication is used
in a number of places, from ATM machines to boarding a plane. As already described in
Chapter 1, authentication is proving a claimed identity. This proof can be either some-
thing you know, something you have, or something you are. The first two categories are
well known and have been used for a very long time. Passwords, PIN codes, pass phrases
and the likes are examples of something you know. Smart cards, cell phones or even
the key to your house are examples of something you have. The two categories have
something in common, the proof you bring can be changed. You can always change your
password, change the door lock and so on, but the last category is somewhat different.
This category contains things that you in most cases cannot control or alter in any way.
When using an authentication system that relies only on what you know or what you
have, you will always be accepted or rejected based on the proof. The proof you have
of your claimed identity will be the only correct answer. It will always be black or white
with these systems, either you are fully accepted or fully rejected. Biometric authentica-
tion introduces a threshold value to the mix which makes them less absolute, and this can
be seen as a negative factor. The threshold is a score defined by the administrators of the
system decided based on how strict they want the system to be. A captured image will
never be exactly the same as the original input, thus a comparison method must be used
between a saved template of the user, and the newly captured image. This comparison
is done by using a distance metric, something that we will describe in Chapter 5. If the
computed distance is below the threshold, the user is accepted by the system.

If a user of a “know- or have-system” forgets his password or misplaces his token,
this can always be corrected by renewing the password or distributing a new token and
invalidate the old ones. A biometric authentication system does not work in the same way.
The problem with these systems is that once e.g. your right index finger’s fingerprint gets
compromised, you cannot change that finger to continue to use it any longer. Fingerprints
are better than most other biometric features however, as you have 10 fingerprints, but
only 2 eyes or just one kind of DNA (unless you had a transplant). On a positive note,
a biometric feature is difficult to forge and requires alot of effort, time and money. A
password to some system can be found in a numerous different ways, but an iris pattern
is not something that can be created in a couple of minutes [8].

Jain tried to categorize the different biometric features, and give them a score of
low, medium or high in these categories [9]. He argued for 7 characteristics that each
biometric feature has, and these characteristics would determine whether or not the
biometric feature would be suitable for authentication and how well it would perform.

• Universality - Every person should have the biometric feature. If the feature is not
present, measuring it will be impossible.

• Uniqueness - The feature should be unique from person to person.
1Authentication is from the Greek word authenticos meaning real or genuine.

5



Thermal imaging of ear biometrics for authentication purposes

• Permanence - The feature should not change over time. Aging might be a problem for
some biometric features. If the feature stays the same over a lifetime, the permanence
score will be high.

• Collectability - The feature should be easy to collect. Is it visible for the natural eye,
or do we need expensive equipment to gather the information? A high score means
that the feature is easily measured.

• Performance - This characteristic gives some information on how well the system
perform with respect to speed and results.

• Acceptability - Is collecting the biometric feature accepted by the public? Some might
have a problem using the feature as an identifier, this score determines how intrusive
the acquisition of data is.

• Circumvention - Can the system be fooled? This characteristic tells something about
how easy it is to circumvent the system.

Biometrics can then be divided into two subcategories, behavioral and physiological.
Roughly, physiological features are measures of body parts such as the face [10, 11],
fingerprint, hand, iris and even DNA. The behavioral category includes things you do
without pondering too much on what you are doing, like signature, the way you walk
[12, 13], talk, and even how you type when using your keyboard [14].

2.1 Biometric systems

Biometric systems work in many ways just like an ordinary authentication system. Users
will have to be enrolled into the system before they can use it [15]. This is done by
presenting the identity of the user and the biometric feature to the system. A template is
then created and stored in a database. After being enrolled, the user will have to present
his biometric feature each time to be matched against the enrolled template. Biometric
systems are based around a specific biometric feature e.g. fingerprints or retina scans.
They have a set of components as described in Section 2.1.1 and either verify2 or identify3

the user.

2.1.1 Components of a biometric system

Figure 1 displays a typical biometric system. The different parts of a biometric system
can be described as follows.

Sensor

The sensor is what the user is presented with to capture the biometric feature. Sensors
can be voice recorders, thermal cameras, fingerprint scanners, etc. Common features of
these devices is that they are there to gather data to be used later in the system. It is in
many ways the interface from the real world, to the system that is going to use the data.

Pre-processing

After the biometric feature has been captured, the data runs through a pre-processor.
This part of the system, is where noise is reduced from the data and some kind of nor-

2Verification in this context is the same as authentication. The biometric system captures the biometric
feature, and compares it with the template that is stored of the user in a database for verification.

3Identification is done by comparing the biometric captured with all the records in a database. The result
of the closest match is returned with a score of how close the match is. If that score is within the allowed
threshold, the user is identified as the closest match within the database.

6
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Figure 1: These are the components of a biometric system. (Based on figure from wikipedia.)

malization is done. After pre-processing, the data should be in a standardized form, so
that the system can treat each capture the same way.

Feature extractor

When the standardized data enters the feature extractor, the important features are ex-
tracted. This is perhaps the most important step of the entire system, as the features
needs to be extracted in the most optimal way to ensure that it will be of the same
quality each time.

Template generator

When the important features has been extracted from the data, a template is being gener-
ated. This template is the final piece of information that is used in the rest of the system.
Based on whether the user is a first-time user or a returning user, the template is “sent”
to either the matcher or the database for enrollment.

Stored templates

When a template is first created, the user gets enrolled in the system. The template is
stored in a database for future matching. Depending on the use of the system, these
databases can be immensely huge. Imagine a worldwide register of fingerprints from
criminals. For identification systems like these, a good search algorithm have to be im-
plemented for the system to be effective. The database needs to be secure as well, so that
no one can modify the data that is stored there. The stored template can also be located
on the token the user brings in addition to his biometric feature.

Matcher

The matcher is where the comparison between the new template and the stored tem-
plate is being done. A score is being generated based on how well the newly generated
template match with the stored one, and based on a threshold the user gets accepted or
rejected. The matcher algorithm should take into account that all capturing of biometric
features will give slightly different results since there is no absolute value like e.g. in a
password. This is where the difficulty in biometric recognition lays, the system must be
able to accept small differences, but still be able to differ between two subjects [8].

7
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Application device

Lastly, the part which is not actually inside the biometric system but still important for
the system as a whole, the application device is where the output is used. This can be
access control to different rooms, buildings, planes, etc. where the user will or will not
get access to based on the score evaluated by the system.

2.1.2 Comparison of biometric systems

Biometric systems use templates from the enrolled users as described in the previous
sections. When a user wants to authenticate himself, he needs to present the system
with his biometric feature, which will be used as input to the system. Since the template
and the input wil never be exactly the same, we need some way of comparing these
two items. The features that are being extracted from the template and input will differ,
and this implies the use of distance metrics. By using distance metrics to determine the
“distance” between a template and an input, one will get a score, telling how far apart
these two items are from each-other. When defining the system, one needs to decide
what purpose it will be used for because this has a major impact on the next step. Let us
say that we want a system of high security where only the right people should get access.
In these systems, we would like the input to be as close to the template as possible, thus
setting the threshold accordingly. If the input does not reach this threshold, the user will
be rejected. Other systems might prefer high convenience prior to security, e.g. a log-on
system of a netcafé or even toll fraud systems. If users of a netcafé gets rejected when
they try to log in, they might just run to the competitor and use their system instead.
Toll controls should neither be forcing every passing traveler to open his luggage for
control, as this would mean long queues and dissatisfied customers. If a legitimate user
trying to access the high security system gets rejected because his input image does
not match the template that was stored of him, we have a case of false rejection, i.e.
he gets rejected while he should have been accepted because the threshold was set too
high. On the opposite side, we have imposters who might get accepted into the system
because the threshold has been set too low. As we can see from this, there might be
both legitimate users getting falsely rejected as well as imposters getting falsely accepted
within the same system at a given threshold. By raising the threshold, less imposters will
be falsely accepted but more legitimate users will be shut out of the system. By lowering
the threshold, less legitimate users will be shut out of the system, but more imposters will
be falsely accepted. This tradeoff is what separates biometric systems from others based
on what you have or know. Based on a given threshold, one can start to compare the
system performance. As described there will be some users falsely accepted, and some
falsely rejected. Dividing them by the total number of users trying to access the system
we get the False Acceptance Rate(FAR)4 and False Rejection Rate(FRR)5. These rates are
the most commonly used measurements for grading a biometric system along with the
Equal Error Rate(EER). The EER is a compromise between the two values, and is the
point where the FAR and FRR are the same. The scores are often displayed as a curve
with the FAR and FRR as the axes. This curve is called a Detection Error Tradeoff(DET)

4FAR - When a user gets accepted that should not be accepted by the system, it is a case of a false acceptance.
In high security systems this is of course the most important score to keep as low as possible, as you would not
want imposters to get access.

5FRR - On the opposite, we have the FRR which is a score that shows the fraction of users that has been
falsely rejected. In high convenience systems this score will be more important, as people might get annoyed if
they are shut out.
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Figure 2: This is what a DET curve might look like with FAR as Y-axis and FRR as x-axis. [16]

curve (see Figure 2). Biometric systems do have different purposes, so it is not always the
EER score that is most convenient. Because of this, one needs to take into account what
the ups and downs are for each system before setting the threshold to where it should
be. The application point should be decided based on the relative cost of the two error
types.

9





Thermal imaging of ear biometrics for authentication purposes

3 Related Work

In 1989, Alfred Iannarelli proposed using photos of ears as a way of identifying people
[17]. He worked from an investigator’s point of view, so his “users” were prisoners. In
his publication, he showed that the ear can be used as a biometric feature because of
its uniqueness and permanence. It is easy to locate on a person, can be non-intrusive
and it can be very easily collected. The area of interest is smaller than that of a face,
so processing time is also faster compared to face recognition because of image sizes.
Another advantage as opposed to the face is that the ear does not suffer from facial
expressions [18, 19]. Different techniques have been published for authenticating people
by their ear, with different results. This section will give an overview of the different
techniques currently used in 2D images. Proposals for 3D imaging also exists [20, 21,
22, 23, 24, 2, 1] and some of the methods can be implemented on 2D images as well.
A brief description of the Iterative Closest Point (ICP) algorithm as well as the Principal
Component Analysis (PCA) will be given in this chapter. PCA will be discussed in detail in
Chapter 5.

3.1 Existing techniques of ear authentication

There are two main categories when it comes to image analysis of ears: the statistical
approach and the local features approach. The methods presented in this chapter have
come up with different results as shown in Table 1. This is the state of the art concerning
ear recognition. Little work has been done on thermal images [25], and research on
blood vessel patterns has not been done at all on humans.

3.1.1 Iannarelli’s twelve point system

As mentioned briefly, Alfred Iannarelli was the first to propose the ear as a way of au-
thenticating people. In 1949 he developed his system of twelve measurements based on
samples from 10,000 ears. In his report that was published in 1989 he also claims that

Approach Reference Dataset Size Recognition
Rate

LABSSFEM [26, 3] 77(training), 77(test), USTB
ear database [27]

85%

Neural Networks [18] 84(training), 28(validation),
56(test)

79%

Force Field Transformation [4, 5, 6,
28]

252(test), XM2VTS face
database [29]

99,2%

PCA [24, 30, 2,
1]

197(training), 88(registrant)
ND Human ID database [31]

71,6%

Adjacency Graph Matching [32, 25,
19]

n/a n/a

Genetic Local Search [33] 300(registrant), 180(unregis-
trant), 180(unknown)

100%

Table 1: Summary of different ear recognition methods.
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Figure 3: The locations of the anthropometric measurements used in the “Iannarelli System”. [17]

the structure of the ear does not change radically over the years even though the size
does so. Between the age of 8 and 70 the growth is linear thus gives us good reasons to
believe that systems can be developed to consider the changes that the ear experiences
over time [17]. The twelve measurements from Iannarellis system is illustrated in Figure
3.

Iannarelli took photographs of the right ear and normalized them by resizing and
rotating to match a template. Then he measured the twelve distances and tried to identify
the ear against the templates of the prisoners. The system requires that the photographs
are in this standardized form, in a “Iannarelli Inscribed easel”. To normalize and align the
images, they are projected onto a standard “Iannarelli Inscribed” enlarging easel which is
moved horizontally and vertically until the ear image projects onto a prescribed space on
the easel. Such alignment process is typically performed manually and the measurement
is taken in units of 4 mm and assigned an integer distance value. Since the photographs
are scaled to fit this frame, Iannarelli could easily extract the different values. These
values, in addition to sex and race were then used for identification. The weakness in
this system was, as Iannarelli himself was very aware of, that if the normalizing of the
image is a bit off, the twelve measurements would be completely wrong.

3.1.2 Principal Component Analysis

Principal Component Analysis (PCA) was one of the first techniques that was presented
for ear recognition since it is derived from a well known technique used in face recogni-
tion [34, 35]. The extraction of "eigen-faces" has been done for quite some time, and is
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Figure 4: The first four eigenvectors of an ear image. [4]

a great way of reducing the size of the images that are to be validated. An image of size
256 by 256 describes a point in 65,536-dimensional space. Different images will have
different points in this huge space. Using the "eigen-face" method, one tries to define
those set of vectors that describes the image of a face the most. This is a pretty complex
method but once you have defined the vector-set to work with, finding another image
that describes a face is done very quickly. Since ear recognition has much in common
with face recognition, the PCA method has been applied here as well [24, 30, 2, 1, 4].
The first four eigen vectors from a 111 by 73 pixel image are illustrated in Figure 4 [4].

PCA is by far the most widely adopted method used in ear biometric research [36].
Research done by Chang et al. [2] showed that this technique is as good for ear recogni-
tion as it is for face recognition. By combining these two, the authors came up with even
better scores (recognition rates of 70,5% and 71,6%. When combined they got 90,9%). It
is well known that when individuals are imprisoned they take photographs both frontal
and from the side. Considering the recognition rates from Chang et al they would have
a good way of identifying the prisoners by using this method in such cases. PCA will be
deeper explained in Section 5.2.3 as we are using this algorithm in our

3.1.3 Iterative Closest Point

The Iterative Closest Point (ICP) algorithm is also a quite useful method of comparing
data. This method has been used by many in the world of face/ear recognition and is
a great way of comparing two 2D or 3D images with each other [21, 23, 24, 22, 2].
This algorithm was used as early as in 1992 by Besl and Mckay [37] and through a few
modifications it has become very effective. The algorithm itself is not very advanced.
Given a set of source points P and a set of model points X, the goal of ICP is to find
the rigid transformation T that best aligns P with X [23, 24]. By transforming the image
iteratively, the algorithm calculates the differences until the model converge with the
source. This method is much used in 3D imaging, but can also be applied in 2D.

3.1.4 Adjacency graph matching

Burge et al. tried to use a graph matching algorithm for ear identification [32, 25, 19].
By generating a "neighbor graph" from the curve segments of a Voronoi diagram, the
authors got images that could be matched against the templates in their database. The
Voronoi diagram is extracted from the ear by edge detection in the image as illustrated
in Figure 5.

As the Voronoi diagram is extracted by edge detection, several questions were raised.
Hair of subjects were sometimes occluding the ear, thus creating extra edges in the image
and making the wanted edges difficult to detect. Different lighting settings also proved to
be a big problem for Burge et al. as the light caused shadows which in turn was detected
by the Voronoi diagram extraction. The angle from where the photograph was taken
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Figure 5: Stages in building the ear biometric graph model. [25]

Figure 6: Field line, channel, and well formation for an ear. [4]

from also had major impact. No experimental results were given in their literature, but
the authors suggested the use of thermal images to remove the impact hair would have
on the results. Because hair has a lower temperature than the rest of the ear this could
easily be removed in a final image.

3.1.5 Force field transformation

Instead of extracting feature vectors to describe the ear Hurley et al. came up with a new
idea by using force field transformations [4, 5, 6, 28]. The ear image is treated as an
array of mutually attracting particles in a Gaussian force field [38]. The pixels that are
projected then flow naturally towards the potential wells under the influence of force,
thus forming channels on their way. The points of the wells are then extracted to form
the basis of the feature vector as seen in Figure 6.

Hurley et al. got great initial results using this method (99,2% recognition rate). Their
result also showed that the feature vector is highly immune to initialization, rotation,
scale and noise [5].
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Figure 7: Considered feature points in outer ear images. [18]

3.1.6 Genetic local search

By looking at the theory of "the survival of the fittest", Yuizono et al. came up with
the idea of applying a "Genetic Algorithm" (GA) to a local search method to obtain the
input ear image [33]. This method is often applied to problems where the computational
complexity explodes exponentially, like the traveling salesman. In addition to the GA
they added local search to the method, thus naming it genetic local search. In GA, the
fitness of each individual is obtained in every generation. By applying some basic genetic
operations like selection, crossover and mutation, a new set replaces the first one. This
genetic operation is then repeated. In their study, they had 110 participants which were
image captured six times each. By applying different selection methods the authors came
up with a registrant recognition rate of approximately 100%.

3.1.7 Neural networks

The shape of the outer ear was the research base of Moreno et al. when they tried to apply
the use of neural network for ear identification [18]. As well as giving valid reasons to
look at ear recognition instead of face recognition, the authors extracted important parts
of the ear and combined the classification results with different methods described in
their article. Figure 7 shows the location of considered feature points that the authors
used to define the biometric vector.

The results the authors came up with were decent (79% recognition rate using the
compression network classification technique).
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(a) Long axis segmentation of the outer ear contour. (b) Feature points of the inner ear

Figure 8: Long axis based shape and structural feature extraction method. (a) shows how the outer
ear edges are defined, while (b) shows different feature points of the inner ear. [3]

3.1.8 LABSSFEM

Another structural feature extraction method was proposed by Mu et al. in 2004 [26].
LABSSFEM is the acronym the authors used and by this they mean long axis based shape
and structural feature extraction method. The shape feature vector of the outer ear and the
structural feature vector of the inner ear form the local feature vectors. The vectors were
gathered by measuring the longest distance between two points in the ear and using the
perpendicular axis to find feature points in the inner ear as shown in Figure 8.

The unique feature vector that was extracted by combining the two vectors, was
matched against the template. With a recognition rate of 85% one could argue that this
was not a success, but it still proved better than ordinary PCA and the study also provided
a new way of thinking based on Iannarelli’s old system.

3.2 Thermal imaging

Burge et al. suggested that taking thermal images of ears might reduce the error rates
when the individuals have parts of their ear occluded by hair [25, 19]. They propose that
since hair has a lower temperature than the ear, the ear should be detectable with the
use of such images, and that the hair can be masked away in the process. Since there
has not been any work done on this in the area of ear biometrics, this will be one of our
challenges. A thermogram image of an ear is shown in Figure 9.

Thermal equipment has been used by the army for quite some time. Heatseeking
missiles are used on a large scale. The technology that lies inside these missiles is very
similar to that within a thermal camera. A company called MIKOS has developed thermal
equipment to be used in different areas [39, 10]. MIKOS have also entered the area of
authentication by thermal images of the face with their system, called FACESTM[40]. In
their studies, they have found that each persons thermal face is even more reliable than
fingerprints. Even identical twins have distinct differences in their thermal patterns. The
only problem with their system is that alchohol makes a huge difference on the result.
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Figure 9: A thermogram of an ear. As seen here, the hair has a lower temperature than the inner
parts of the ear.

People that have consumed alchohol prior to entering the biometric system, will not get
the wanted results and will most likely be rejected by the system. Suggestions concerning
a merging of both the ordinary image and thermal image of the face has also been done
[41]. Since other technologies that has been used on faces has been adapted to the ear,
this would also be something that should not go untried. Prokoski and Riedel has also
written a chapter in the book on biometrics concerning infrared identification [42]. Here
the authors argue that thermal images are both unique, easily collected and are immune
to forgery.
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4 Experiment

In this chapter we describe the experiment that we have performed. Due to the fact that
we had limited availability of the equipment, this setup had to be strictly defined to be
able to have as few photo sessions as possible.

4.1 Experiment setup

The experiment was done in the following way:

• Each participant was seated in a chair.

• The camera was held on a stand at a fixed distance (30cm) to the ear.

• 5 images of the right ear were taken in this position. For each of the five images the
person either stood up, shook his head or looked up and down to make sure that no
two images were identical.

• Room tempearture was recorded.

• These four steps were repeated 3 times on different days to see if there were any
changes over time.

All the images were taken with a Fluke TI-25 thermal imager. This is a handheld camera
(see Figure 10) that came bundled with a software called SmartViewTM. The camera
has a thermal lens as well as an ordinary lens. The thermal lens takes images of 320 x
240 pixels while the ordinary lens produced 640 x 480 pixels (VGA quality images). The
camera captures images with both lenses at once, which is quite useful later when we
compare the performance of the thermal images versus the ordinary ones. Furthermore,
the thermal sensitivity of the camera is 6 0, 1◦C at 30◦C which is acceptable for our
purpose. What this means is that at 30◦C, the camera displays the correct degree value
down to the tenth of a degree.

A part of the images are used for making a template, while the rest will be matched
against these templates.

(a) The Fluke Ti-25 hand-
held thermal camera

(b) Package contents of
the Ti-25

Figure 10: The thermal camera (a), along with package contents (b). [43]
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Figure 11: The gender and age distribution for the main experiment.

In addition to the above described experiment, we conducted another experiment with
the same chair and distances but with the following differences:

• 2 reference images were taken initially.

• A bag of ice was held against the right ear for 10 minutes.

• Photos were taken each 15 seconds for 15 minutes, producing 61 images not includ-
ing the 2 reference images.

• Room temperature was recorded.

This experiment was set up to try to find out how much time is needed indoors before the
ear is back to its normal body temperature state. The experiment included 5 participants
that were chosen among fellow information security students.

4.2 Volunteer crew

The participants of the main experiment were picked by random selection from the stu-
dents and staff of Høgskolen i Gjøvik of different nationalities. Both female (11 partic-
ipants) and male (64 participants) took part in the experiment which in total counted
75 participants. The age of the participants ranged from 19 to 65 years old so we got a
broad spectrum of different ages. The mean value for the female participants was µ = 27
and µ = 28 for the male participants. The standard deviation for both groups was σ = 9.
In Figure 11, the age distribution is illustrated.

4.3 Environment

The room used for the experiment was the authentication lab of NISLAB, room A-113
at Høgskolen i Gjøvik. The temperature in this room varied from between 22, 0◦C to
23, 9◦C. Temperature was measured after each photo taking session of the experiment,
to be sure that the indoor temperature would have little or no effect on the testing.
SmartViewTMhad options to set the background temperature, but doing so for the given
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temperatures gave no effect in the image. The chair was 30 centimeters away from the
tripod to have a fixed distance from the camera. We made marks on the floor to have
the chair and tripod in the same position at all times. By doing this, we had nearly
no variation in distance between the camera and the ear. We also had the participants
staying indoors for a while before the image captures, so they would have a normal body
temperature.

Some problems came up with this setup, as we discovered along the way. First of all,
some participants who claimed they had been indoors for the required amount of time
before image capture, just came in from the outside where the temperature was much
lower than indoors. This was discovered when looking at the images in SmartViewTM.
Because they were not consistent in whether or not they just came from the outside, two
sessions would be completely different in the thermal spectrum (see Figure 15 on Page
25). For the ordinary images, this made no impact since the ear looks more or less the
same. They might have been a little bit red, but not close to the impact it had for the
thermal images. If we look at this problem in the context of real-life applications, this
problem is something that would come up sooner or later since users are not treated
as strict when using a real-life application. Another problem which was discovered after
capture, was the fact that some of the images were out of focus. We had little experience
with this type of camera before we started out, and due to the fact that it is a handheld
camera with no possibilities to mount it on the tripod (just hold it there as a reference),
some of the images were not as sharp as we wanted them to be. This may have had an
impact on the results which we will come back to in Chapter 5.

21





Thermal imaging of ear biometrics for authentication purposes

5 Analysis and Results

This chapter will describe our methods when conducting the pre-processing and analysis.
The programs we have used will also be described in short detail.

5.1 Preprocessing and standardizing

Pre-processing became a large part of this project. We got 1125 images in total from the
initial experiment (75 participants x 5 images x 3 sessions) and to get our results, we
had to go through each and every image several times.

Step one - SmartViewTM

First of all, the images had to be imported to the program that came bundled with the
camera. SmartViewTM might lack a few features when it comes to image processing, but
for the initial pre-processing it was more than enough. SmartViewTM lets you change
the palette used in the image. Figure 13 displays the different palettes you can choose
from in SmartViewTM. We decided to go for the high contrast palette because this has the
most number of colors in contrast, which will give an image in which it is easier to see
the differences than in any of the other palettes. In addition to this, we made another set
with the grayscale palette and one with the ordinary images (see Figure 12). The Ti25
has two lenses as described in Chapter 4, so the ordinary images were taken and are used
as our third set.

The next thing that was done in SmartViewTM, was setting the scale. This is most
important for the colors in the images, as changing this would change the colors of
the image. After taking a few sample images we found that in an ear with a normal
body temperature, the temperatures ranged from 28◦ to 38◦ Celsius. This makes sense,
because or body temperature is normally at 37◦ Celcius. Since the ear stands out a bit
from the body, the regular ear tempearture might be a bit lower but not lower than
10◦. For good measure we added 0,5◦ on both sides, thus setting the scale to 27,5◦ to
38,5◦ Celsius. All temperatures above the given scale would turn out white, while all
temperatures below the scale would be displayed as black. The scale adjustment toolbox
can be seen in Figure 14. The motivation behind setting this fixed scale was that all
temperatures will have the same given color in all the images. This is good for reference,
as the images can be matched by the temperature pattern as well as the shape of the
ear. After some sessions though, we discovered that some of the participants came for
the photo session after just being outside. This made the ears much colder which in turn
showed during the pre-processing as big black parts in the image, see Figure 15. After
discovering that some of the ears were below the scale, we decided that the grayscale-
dataset would have its scale revised. We went through all the images, setting a custom
scale for each and every one of them. In Figure 15 the same image can be seen with the
fixed and the custom scale for the high contrast palette1. By letting the max temperature
in the image be the top of the scale, none of the ears would have equal grayscale values
for temperatures over a certain threshold and the same for lower temperatures. We still

1Hereby referred to as the colored image set
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(a) Thermal image of the right ear
using the high contrast palette

(b) The same image, using the
grayscale palette

(c) The same image, using the ordi-
nary image capture

Figure 12: Different palettes might give different results. These are the three datasets we used for
analysis.

wanted to keep the fixed scale images though, to compare the performance of these with
the customized scale images.

Finally, we exported all the images (1125 images x 3 datasets) to a standard image
format (jpeg) for further processing.

Step two - MatLab

When you are working with 3375 images, some sort of automation tool is necessary.
After the initial pre-processing done in SmartViewTM, we now had the images in a format
where such a tool could be used. For this purpose, we found that using MatLab was the
best option [44].

Since the images had variations in how the ear was positioned, we had to normalize

Figure 13: The different palettes that can be chosen in SmartViewTM.
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Figure 14: In this toolbox, you can change the scale by adjusting the sliders.

(a) The fixed scale used on all im-
ages.

(b) Image taken from the same sub-
ject from a different session where he
just came from outside. (Using the
fixed scale)

(c) Same image as (b) but with a
custom set scale of 25,2◦ to 35,9◦

Celsius.

(d) The same image as (c), but with
the grayscale palette which was used
for our analysis.

Figure 15: Figure (a) displays a “perfect” ear, where the temperatures matches the fixed scale.
Figures (b) and (c) are from the same subject, taken from a different session where the user just
came from outside. Setting a fixed scale for all images made some ears black (b), so we made a
grayscale dataset with custom values for the scale (c) and (d).
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the ear somehow. By clicking manually on the two parts of the outer ear that formed the
longest axis, we were able to rotate the image such that this axis became the y-axis. After
the rotation, we cropped the images to remove unwanted information. This was done
by taking the longest axis as a basis, and cutting horizontally at the two selected points.
The vertical cropping was done by taking a percentage of the longest axis on each side
of it (30% on the left side and 20% on the right side). Finally, to get all the images on the
same size, they were resized to 50 x 100 pixels. These five steps can be seen in Figure 16.
At the beginning of the pre-processing phase, we wanted to do everything automatically
and tried to come up with a way of detecting the edge by using mathematical measures.
After working on this for a couple of weeks, we found it too problematic because of the
hair creating edges in the images as well as the edge of the ear. We therefore stuck to the
manual method of clicking on the ear to create the longest axis.

This preprocessing was done for all images, so we could have a starting point for the
analysis which were to follow. For some of the methods that we have used in the analysis,
the images had to be modified even more but this will be explained in the sections where
it applies. The code we made for the image cropping can be found in Appendix B

Feature extraction

Images such as the ones we have captured, can be treated in different ways. We chose to
look at the color value of each pixel in the image, saving the images as vectors of length
n = 50x100. We chose the image values, as they can be compared to each-other by the
means of distance metrics in order to find differences and similarities in the images.

5.2 Analytical methods

Now that all the images were on the same format, we could start doing some analysis on
the dataset. We have decided to use both commercial tools as well as easy to implement
algorithms in our analysis. The following tools were used:

• Algorithmic measures

• Distance metrics

• Principal Component Analysis

• Commercial tools

• ImageFinder

• Image Comparer

These tools will be described in detail in the following sections.

5.2.1 General analysis technique

We applied the algorithms to our dataset by letting MatLab select random templates from
each user, and match them against all the remaining images. If the image was matched
against the template from the same participant, the result was saved as a genuine attempt.
If the image was matched against the template from a different participant, the result
was saved as an impostor attempt. The FAR, FRR and EER were then calculated from
these results. For PCA2, this was repeated 100 times to compute a mean EER as well
as a confidence interval. PCA also required that we selected one template in addition

2PCA was first used by Turk and Pentland for face recognition in 1991 [34]. They called the Principal
Components eigenfaces because they resembled faces.
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(a) Step one - initial image (b) Step two - clicking the ear to cre-
ate the longest axes in the ear.

(c) Step three - rotating the image based on
the selected axis.

(d) Step four - cropping the image
based on the length of the longest
axis.

(e) Step five - resizing the image to
50 x 100 pixels

Figure 16: This is the pre-processing that was done on the images, using MatLab. Figure (a) shows
the initial image, (b) displays the two manually selected points, (c) is the rotated image while (d)
shows the cropping. Finally, (e) shows the normalized image as it was used for analysis. The same
steps were done for the grayscaled and normal images as well.

27



Thermal imaging of ear biometrics for authentication purposes

P Images
1 2 3 4 5 6 7 8 ... 15

1 x o
2 o x
3 x o
4 o x
5 o x
6 o x
7 x o
8 o x
...
75 x o

Table 2: PCA template selection. This table is just for illustration, participants vertically and their
images horizontally. The x and o shows that two images were selected randomly from each partic-
ipant, one for PCA training (x) and the other for template generation (o).

to an image for training the system. This was done by selecting one random image for
a template, and one random image for the PCA training from the 15 images of each
participant. The template images from each participant would then be matched against
the remaining images, i.e. 13 images per person (13 ∗ 75 = 975 in total) are matched
against the template images from all participants.(see Table 2)

5.2.2 Distance metrics

Since all our images were on the same format, it was rather easy to implement some
simple distance metrics on the datasets. A distance metric calculates distances between
a template and an input sample. This can be done in numerous ways, but we chose the
most common ones, Manhattan distance and Euclidean distance.

• Manhattan distance: This is also known as absolute distance and the formula is
shown in Equation 5.1. Manhattan distance is a very simple metric that only takes the
absolute value between all the values in the template with the corresponding values
in the input sample. As a result of this, Manhattan distance requires that the template
and the input sample have equal length. This gives us no problems though, since all
our images are on the same format. This distance metric is the computationally least
expensive one.

• Euclidean distance: This is a slight modification from Manhattan distance, see Equa-
tion 5.2. Instead of taking the absolute distance, we now take the square root of the
sum of all distances squared.

distManh.(X, Y) =

n∑
i=1

(|xi − yi|) (5.1)

distEucl.(X, Y) =

√√√√ n∑
i=1

(xi − yi)2 (5.2)
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5.2.3 Principal Component Analysis

We have already described Principal Component Analysis method briefly in Section 3.1.2,
but it needs a deeper understanding before applying it to our dataset. PCA is widely used
in face recognition, and it has been applied for ear recognition as well, for normal images.

Under the surface

To further understand how the PCA algorithm works, we need to dig deeper and look at
some of the details behind it. The PCA algorithm embraces standard deviation, covari-
ance, eigenvectors3 and eigenvalues4 [45, 46]. Some of these elements are described in
statistical mathematics, while the last two falls into the matrix algebra category. PCA is
therefore a mix of the two categories as it contains all these features. We will not go
into details concerning the statistical methods, as these are covered in basic mathematic
courses. The matrix algebra however, is more interesting. Two matrices can be multiplied
with each other as long as they are of compatible sizes. This is well known, and eigen-
vectors are just a particular case of such a matrix. Let’s say we have the multiplication of
two matrices like this:(

2 3
2 1

)
×
(

3
2

)
=

(
12
8

)
= 4×

(
3
2

)
The result can be seen as a multiple of the vector {3,2} thus making this vector an

eigenvector to the matrix it was multiplied with. These eigenvectors can only be found in
square matrices of n × n. Some square matrices do not even have eigenvectors and if the
size of the matrices that do have eigenvectors grows to more than 3 × 3, it is very hard
to determine what they are unless you use an iterative computational method, i.e. not
doing it by hand. This is why the PCA is mostly used by just letting a program compute
the different vectors from a matrix. An n × n matrix that does have eigenvectors will
always have n eigenvectors. A 3 × 3 matrix has 3 eigenvectors if any. Another feature of
eigenvectors is that they are perpendicular to each other no matter how many dimensions
you are working with. These new axes then servers as a baseline when processing the
data and makes it very easy to work with instead of having to use the x, y and z axis
when describing the expression. For each eigenvector, an eigenvalue exist in relation to
the eigenvector. As for the eigenvector given above, we can see how the eigenvalue is
found. Let us define x and y from the two values in the eigenvector. x = 3 and y = 2.
This gives x = 3

2 y and y = 2
3 x. By multiplying these values with the original matrix we

get the following:(
2x + 3y
2x + 1y

)
⇒
(

2x + 3( 2
3x)

2( 3
2y) + 1y

)
=

(
4x
4y

)
= 4×

(
x

y

)
By looking at an example to further prove this, we multiply the eigenvector by an

arbitrary value (i.e. 2). The result of the multiplication will be 4 times the scaled vector
as shown below. Thus the eigenvalue of this particular eigenvector is 4. This stands as
long as the relation between x and y equals the original one.(

2 3
2 1

)
×
(

6
4

)
=

(
24
16

)
= 4×

(
6
4

)
3An eigenvector is a vector used in the context of transformation. A linear transformation is done by using

vectors that usually change in direction and length. A vector that multiplied with a certain value gives the result
of this transformation is called an eigenvector.

4Eigenvalues are the values that the eigenvectors need to be multiplied with to get the result of the linear
transformation. The direction of the eigenvector is unchanged or reversed (for positive or negative eigenvalues)
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Eigenvalues and eigenvectors always come in pairs, so when implementing PCA on a
computer the program normally extracts the value along with the vector when computed.
In addition, the vector is normalized to have length 1 even if this gives fractions in either
value x or y.

PCA explained

Now that we have explained a bit about the matrix algebra behind the PCA algorithm,
a bit more detail concerning the algorithm itself follows. PCA is a way of identifying
patterns in data, and expressing the data in such a way as to highlight their similarities
and differences [45]. Another huge advantage with PCA is that once you have found
these eigenvectors and patterns in the data, you can remove some of the dimensions
without loosing too much of the information. PCA contains a six-step process as follows:

1. Get some data

2. Subtract the mean

3. Calculate the covariance matrix

4. Calculate the eigenvectors and eigenvalues of the covariance matrix

5. Choosing components and forming a feature vector

6. Deriving the new data set

In the first step, all we need to do is converting an image into a matrix. This can be
done in several ways which will be covered in later sections. Once we have that matrix,
we can subtract the mean of all the values and then calculate the covariance matrix (see
Figure 17).

By using two of the eigenvectors as axes, all we do is rotating the output. If we further
reduce the data set to only the single eigenvector with the highest eigenvalue, we will
loose one dimension. This gives us only data on a single line as shown in Figure 17(c).

If you compare Figure 17(c) with Figure 17(a), you will see that the values are all
the same in one dimension, and are now easily comparable to each other based on this
dimension. When using this technique on images we might first normalize all images to
be of a fixed size. Then we create image vectors from each image by taking each row of
pixels consecutively. Each image vector is then placed in a huge image matrix for all the
images in our data set. If we now run the procedure as explained above, we can easily
decide if a new image is close or far from one of the images in the set.

5.2.4 ImageFinder

Attrasoft Inc. have made an image comparing tool, called ImageFinder. This tool is a
commercial product that lets you run through entire folders while trying to match images
with each other. We downloaded a trial version, which is actually the same as the full
version but only lasts for 30 days. The documentation states that the program can be
used for:

• Image verification (1:1 matching)

• Image identification (1:N matching)

• Image search or retrieval (1:N matching)

• Batch processing (N:N matching or N:M matching)
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(a) A plot of some data using the stan-
dard x and y axis.

(b) The same plot as in (a) but now with
the eigenvectors of the covariance matrix
overlaid on top.

(c) The reconstruction from the data that
was derived using only a single eigenvec-
tor.

Figure 17: These figures illustrates how PCA works. (a) shows a plot with standard x and y axis.
(b) and (c) then illustrates how PCA changes the axis and representation of the values.
[45]
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Since the last point is of our utmost interest, we gave it a try to see what it could produce.
By setting up a small part of the dataset for training, the program can either run through
the dataset using a Bio filter or neural filter. Neural filters are best for huge datasets, so
after some consultation with an Attrasoft employee we decided to go for the Bio filter
and Neural filter. The problem with such programs is that you do not always know what
is going on behind the scenes, but we wanted yet another resource for results so we went
along with it. First of all we had to create match and training files to feed the program
with. This is more or less telling the program which images that should match, and a
small part of them which will be used for training the filters. MatLab did this job for
us as well, so once we had the files ready, we let the program to the job. Training and
matching was rather easy to walk through once we had the needed files. Results were
saved in a .txt file. To be able to extract the values that we needed, MatLab again came
to the “rescue”. Output from MatLab can be seen in Section 5.3.2.

5.2.5 Image Comparer

Our last effort for getting results was another commercial product called Image Com-
parer. As with ImageFinder, this program is available on a 30 day evaluation version. The
program is pretty simple in use, with not a lot of functionality. It lets you open a folder
with images to save it as a gallery. You then have the option to compare the gallery with
itself, or compare it with another gallery. Results are exported to a .txt file with each line
stating a template image, a matching image and a score between those two images. This
is a relatively quick way of getting results but the problem with this program, more so
than with the ImageFinder, is that you do not know what is going on in the background.
Another limiting problem with the program is that you can only set the lowest similarity
threshold to 70%, i.e. all matching done that gives a lower score is not included in the
report. See Section 5.3.3 for reults.

5.3 Results

This section will provide the results from the different methods used for analyzing the
data. In Chapter 6 we will discuss these results in deeper detail.

5.3.1 PCA

As all the images that were taken produced three layers of information (red, green and
blue), we wanted to look at how they would do compared to each-other with PCA. We
also had the option of grayscaling the images before comparing, and this can be done
in different ways. We chose the “easy” way of doing it by letting each color layer count
equally, as well as converting the values based on YIQ vector quantization [47], which in
basic weights the red value with 0.3, the green 0.59 and the blue value by 0.11.

By looking at these 5 set-ups for the 3 datasets, we will have 15 different results in
total. As mentioned in the section of distance metrics, we used the manhattan distance
as well as the euclidean distance to see which of those that produced the best results.
We also had a look at the eigenvalues when applying these distance metrices. In these
cases each of the terms in Equations 5.1 and 5.2 is multiplied by the eigenvalue of the
corresponding eivenvector.

• 3 image sets (ordinary, colored and grayscaled)

• 5 color layers (red, green, blue, gray equal and gray YIQ)
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Figure 18: Equalization of a histogram. By stretching the histogram to include all values in the
spectrum, we may get better results from our analysis. (Figure taken from Wikipedia.org)

• Manhattan distance

• Manhattan distance on eigenvalues

• Euclidean distance

• Euclidean distance on eigenvalues

We also applied histogram equalization on the images, a method that stretches the color
values over the entire grayscale spectrum in order to get clearer lines in the image. If a
lot of the values are concentrated around a small part of the spectrum, this method will
in short stretch the values, creating more space between each value (see Figure 18) 5.

This obviously produced a lot of EER values which are given in Table 3. They are all
mean values computed by taking the mean of 100 generated EER values. As can be seen
in the table, the Manhattan distance metric proved to be the best with respect to EER
values. It can also be seen that for the best results, the histogram equalization did not
make our results any better.

5.3.2 ImageFinder

We applied both a bio filter as well as a neural filter to the images in ImageFinder. The
DET curves can be seen in Figure 19, and the corresponding EER values are given in
Table 4. ImageFinder seems to produce more or less equal results for all the datasets
(between 29 and 35% EER). The DET curves are not complete, (see Figure 19) and the
reason for this is that ImageFinder does not compute values for all the matches and non-
matches. Instead it sets the value to 0. This will obviously raise the number of false rejects
as these scores are below any threshold that we set. The output from ImageFinder was
easy to work with but as mentioned, not complete. The first line of the file would display
the filename of the template, then the following line would display the sample image
that was matched against this template. The third line would display the “score” that
was calculated by ImageFinder. The following lines would also display sample images
that was matched against the template and their matching score. By separating with a
blank line, the next template would then come with the following sample matches and
scores. We applied the same technique as was done on the results from PCA, i.e. picking
a random template from each participant to fill a matrix of dimension 75x1050, calculate
the EER, and repeat this 100 times to get a statistical significant EER value.

5Histogram equalization is a rather trivial operation, and a description can be found at Wikipedia.org
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(a) Grayscaled images with bio-filter. (b) Grayscaled images with neural-filter.

(c) Colored images with bio-filter. (d) Colored images with neural-filter.

(e) Ordinary images with bio-filter. (f) Ordinary images with neural-filter.

Figure 19: DET curves derived from the ImageFinder results. The curves are not complete, because
the program did not compute scores for all matches/non-matches.
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Grayscaled Colored Ordinary
Bio filter 0,3557 (σ = 0, 0115) 0,3122 (σ = 0, 0098) 0,3163 (σ = 0, 0122)

Neural filter 0,2905 (σ = 0, 0089) 0,3552 (σ = 0, 0087) 0,3272 (σ = 0, 0109)

Table 4: EER values generated from the ImageFinder results. These values does not differ very
much from each-other.

(a) FAR curve from the ordinary image set. (b) FRR curve from the ordinary image set..

Figure 20: FAR (a) and FRR (b) curves from the ordinary image set. The curves never intersect,
thus will not give EER values.

5.3.3 Image Comparer

ImageFinder was a bit tricky, because we did not now what was going on behind the
scores it gave us. But still to some degree, we were able to adjust some settings and
have some control of how the values were computed. The Image Comparer was more
user-friendly, but that made it less transparent. We were only able to adjust a few things
like the “similarity threshold” and what folders to look for images in. The output from
Image Comparer was given in a .txt file on the format <template,sample,score> on each
line. Results were given by integers from 0-100 for each image matched against another.
Since the similarity threshold could only be set to minimum 70, all scores below this
value were discarded in the result-file it produced. Because of this, the program did not
give us any EER values since the FAR would never intersect with the FRR (at 70, the FAR
would already be above the FRR. Figure 20 illustrates this, and you can see there that
the FAR starts at 0.13 and decreasing when the threshold is set to 70, while the FRR is
at 0.66 and rising at the same threshold. The same technique for template selection as
done on PCA and ImageFinder was applied here as well. The only thing we can draw
out of this, is that the EER must be between 0.13 and 0.66. If we had been able to tune
the minimum threshold even further back than 70, we would have seen the two curves
getting closer and finally intersect. Based on what we got from other sources, this seems
to be a valid conclusion.

5.4 Sub experiment

For the sub experiment with the cooled ears, we wanted to appy PCA. By doing so, we
could see if PCA scores are computed by shape or color in the images. Three image sets
were made for this experiment as well, but slightly different. The first image set was with
the high contrast (colored) palette and scale from 27,5◦ to 38,5◦ Celsius. In other words,
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just like the “colored” image set from the main experiment. The second image set had the
same palette but with a widened scale from 10◦ to 38,5◦ Celsius. By doing this, none of
the images would have black spots in them because of the temperature being below the
scale. This way we could see when the ears were back to normal temperature. The last
image set we made was like the second image set of the main experiment, i.e. grayscaled
images with each its own custom scale. In our analysis of the sub-experiment we will not
calculate DET curves with their EERs like we did in the main experiment. Instead, we
will look at each participant on its own and see how the thermal images changes as time
goes by. We wanted to see how long it would take before the ear was back to its normal
state, so we looked at the distances between the images compared to the two reference
images that were taken of each subject. This gave us two graphs per subject on each of
the image sets.

5.4.1 Results

We chose to use the setup that produced the best scores for our main experiment, that
is Manhattan distance on the YIQ converted images. If our proposed hypothesis was
correct, the curve would have a high starting point and would decrease in value as time
goes by when the ear is warming up. For some of the participants, this proved to be true
but two of the participants had quite a different result. We also saw different results for
the different image sets. Figure 21 displayes curves from two of the five participants.
The red and black curves are real data points, where the data is the distance between
the cooled images and the two reference images. The blue and green curves are linear
approximations of the two curves where the blue corresponds to the red curve and the
green corresponds to the black curve.
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(a) The colored palette with the fixed scale from the
main experiment (participant 1).

(b) Same as (a), but a different participant (partici-
pant 5).

(c) The widened scale (participant 1). (d) Same as (c), but a different participant (partici-
pant 5).

(e) The custom grayscale (participant 1). (f) Same as (e), but a different participant (partici-
pant 5).

Figure 21: The distances from the sample images to the reference images in each of the image sets.
The red and black lines represents the distances from each sample image to the reference images.
The green and blue lines are the regression lines formed by the red and black lines.
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6 Discussions

In this chapter we will discuss problems that came up during the project, as well as
reviewing the results we got in the previous chapter.

6.1 Problems

There were some problems that came up during the project period, some which we were
prepared for, and some which were a bit frustrating. This section will go through them
and discuss what could have been done differently in order to control their impact on
the results.

6.1.1 Outside to inside

Probably the biggest impact on our results was the fact that some of the participants
came directly from the cold outside, to our experiment lab. As mentioned in Section 4.3,
the outside temperature was much lower than indoors. By looking at the images in the
main experiment we found out that the time needed indoors in order to have a normal
temperature was much higher than what was being followed by the participants. Figure
22 illustrates a participant that in one session had been indoors for some time, while in
the following session he just came from outside. This problem occured because we looked
at a few participants before setting the fixed scale for the first dataset. All the images we
looked at, were in between the two thresholds we set (27,7 to 38,5 ◦ Celsius). To make
up for this, we made a different dataset with a custom scale for every image and by
looking at the results, this helped alot. If all the images that were captured had a normal
body temperature, we might even have seen better results. But the fact that this was
not discovered earlier made it hard to do anything with, other than to make an adjusted
dataset. This problem was not really something that undermined our results though, as
one could imagine a reallife application where people use such a system in different
weather-conditions. In such a case, the ear would indeed have different temperature

(a) An ear in a normal body temper-
ature state.

(b) The same participant at a differ-
ent session where he just came from
outside.

Figure 22: The outside to inside problem. (a) Displays an image of a participant who has been
inside for sometime, while (b) displays the same participant at a different session where he just
came from outside.

39



Thermal imaging of ear biometrics for authentication purposes

values which has to be taken into account by the system.

6.1.2 Thermal camera technical issues

The thermal camera and thermal imaging in principle, is something that is not learned
in one day. We did not have a lot of time to play around with the camera before using
it for the experiment. Since no expert in thermal imagery was present, we might have
had better results if that was the case. The camera has manual focus so this had to be
adjusted for each image, as mentioned in Section 4.3, some of the images were out of
focus because of this. A proficient thermographer would probably have taken images of
better quality. In the end, the quality may have played its part on the results. Due to
the fact that the camera was handheld, made it difficult to keep it at the fixed distance
from the ear. If the camera had had the option of mounting it to a tripod, the focus,
distance and position would be much easier to control. To beat this problem, we used
a tripod for reference by holding the camera on top of it. A different problem, which
was more practical than technical, was the fact that the thermal camera arrived at a late
stage. We therefore did not have a lot of time to conduct the experiment and analyze the
results. This should have been handled a lot better than it was, but due to restrictions
in different policies when dealing with thermal equipment, things went extremely slow
before we finally were able to get a hold of a camera. Future projects in this area should
consider this at a much earlier time because getting a camera such as these can take
some time.

6.1.3 Pre-processing

Since clicking on the bottom and top of the ear is not done automatically, this part of the
experiment also is a cause of concern. By clicking just a little bit inaccurate may make
a huge impact on the results, as the rotation of the image would be incorrect and the
cropping of the image would also suffer from this. In Section 5.1, we mentioned that
we had tried to do the entire process manually. This proved to be too time consuming
though, and since we had limited time in which to conduct the analysis, we had to stick
with a “quick and dirty” way of standardizing the images. Still, the result were not that
much off because the same person clicked on all the images and would therefore have a
certain idea of where the bottom and top would be for each participant.

6.2 Results

In this section we will discuss the results we got from the different experiments, before
we discuss the feasibility of an authentication system based on thermal images of ears.

6.2.1 Results from the experiment

We will first discuss the results from the main experiment and the different data sets,
before moving on to the sub-experiment with the cooled ears. We wanted to present
thermal images as a better way of authentication than ordinary images (see Section 1.3).
We therefore ran all our analysis on all three image sets to see what produced the best
results.

Colored images

The colored image set was the set that performed worst in all our test. The best results
were achieved by applying PCA and looking at the red channel with Manhattan distance
metric (25% EER). Before we started our analysis, we more or less knew this would
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happen, since a lot of the images fell outside the scale we set in SmartViewTM(see Section
5.1). Because of this, the intra-person distance1 became rather big which in turn made
the matching of these images worse than they should have been. Even though this image
set performed worst in our tests, it is worth mentioning that in the ImageFinder test it
did not perform that much worse than the other two sets. It actually outperformed both
the sets when the Bio filter was selected. The reason for this is hard to argue, because
of the fact that ImageFinder was not as configurable as we would have liked it to be.
More thorough testing with this program might have given even better results, but as
mentioned we did not run specifically suited tests for each image set. We wanted to
make standardized tests for them in order to be able to compare the results.

Ordinary images

This image set was more or less what we were trying to “beat” with the thermal camera.
It still produced quite good compared to the colored image set though. PCA proved yet
again to give the best results, although this set performed better when converting the
colors to the YIQ grayscale format, than looking at the red channel as proved to be the
best for the colored images. An EER of 14% is actually a lot better than the 25% we got
from the colored set, but as mentioned we expected the colored set to perform worse
than the other two. Looking at earlier results made by using PCA on ordinary images,
our results were pretty good (see section 3.1.2). This is a good reference to have for the
future, because we have in this thesis tried to compare how ordinary images perform in
relation to thermal images. The same methods are used on all the image sets, and going
back to the table presented in Section 3.1, one could try to apply different techniques to
thermal images that have proved to give good results for ordinary images.

Grayscaled images

After looking at how well the ordinary images did compared to the colored ones, we were
very excited to find out that the grayscaled thermal images produced results that could
compete with the ordinary images. By applying PCA to the image set, we got 15% EER,
which is not that bad related to the ordinary images. The Neural filter in ImageFinder
actually produced better results than the ordinary images as seen in Section 5.3.2. This
gives us reason to believe that thermal images absolutely can give good results by using
other techniques. One major positive thing with the thermal images that we presented
in Section 1.4, is the fact that they do not require light to be captured. Since these
images performed more or less equally to the ordinary images, they would be much
more suitable for such systems that may be in use at night or with no light present. It
would be interesting to set a custom scale for the colored image set as well, to see how
it would perform compared to this set. This would mean that the colors do not represent
specific temperatures, but as we have seen with the grayscale image set that does not
seem to be the decisive factor.

Sub-experiment

From our sub-experiment it is hard to draw any conclusions based on our limited number
of participants. The widened scale image set however, had some similarities over the
different participants. It seems as the ear is very suddenly warmed up, and continues
to heat up even after it has returned to its normal state. This image set was the only

1Intra-person distance is the difference between images of the same participant. Obviously this is something
we want to keep as low as possible.
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one to include all the temperatures in the scale, so we thought beforehand that this
set was the one to produce the best results. While the other two image sets had some
participants come closer to their reference images and some go further away, the wide
scale image set had all participants grow further away from their reference images, i.e.
getting much warmer than the original reference image. If we take a closer look at the
images, and move away from the graphs, we can see just that trend. Figure 23 displays
the first image taken after the cooling pack was removed, the reference image, and the
last image taken from subject 5. As seen in this figure it looks like the ear warms up from

(a) The reference
image

(b) First image after
removing the cool-
ing pack.

(c) The ear, cap-
tured 5 minutes
after removing the
cooling pack

(d) The last image,
taken after 15 min-
utes.

Figure 23: Four stages of the ear during the cooling experiment.

its center, which is reasonable since it is attached to the head there. But this warming
up works much quicker in the inner ear than in the outer ear. After 5 minutes, the inner
ear is more or less back to its normal state, but the outer ear still is much colder than it
should be at its normal state. As the inner ear continues to warm up, the distance from
the sample to the reference image just rise. If we had observed the ear over a longer
period than just 15 minutes we might have seen the ear cooling down a bit after the
warming up, to enter its “normal” state once again.

6.2.2 Feasibility

Burge et al. suggested that by using thermal images one could reduce the impact hair had
on an image, since the hair “obviously” has a lower temperature than the ear [25, 19].
While that is true, the statement does not seem to hold, as the thermal camera can not
see through hair that is in front of the ear. The best thing it can do will be to remove the
hair, but this would leave a “hole” in the image where the hair should have been.

Still, by comparing the performance of our grayscaled images with the ordinary im-
ages, one can see that they give more or less the same results. This gives us reason to
believe that thermal images might be able to co-exist in addition to normal images since
they can be used at night or at places with poor lighting conditions.

What Burge et al. did not look at, is a setting where the individual has been out a cold
winter day, and then comes in for immediate authentication. How will this affect such an
image? That is what we tried to look at in our sub-experiment. More extensive testing
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would be needed to prove its feasibility, and testing of the inter-person distance2 as well
as the intra-person distance needs to be addressed.

2Inter-person distance is the difference between images of different participants
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7 Conclusions

During the project period we have looked at a lot of ears. By trying to apply some of the
methods used in earlier projects, we have compared the performance of thermal images
with the performance of normal images. In order to get the information we wanted we
conducted an experiment with 75 participants, each taken 15 images over 3 different
days. This produced 1125 images in total, but we did not stop there. By creating two
thermal image sets as well as a set with ordinary images, we got 3375 images to work
with. We applied different commercial tools to our images, to get a “quick and dirty”
look at how they performed. In addition to these tools, we also applied previous tested
algorithms to see how our experiment would perform compared to results from other
sources. PCA gave us a well tested algorithm [24, 30, 2, 1, 4] that we could use as
a measure. Based on our results using PCA we can easily say that for this method, it
is possible to look further into the area of thermal images. Chang et al. proved that
PCA is as good for images of ear than it is for faces [2]. In this thesis we have proven
that this method can be applied to thermal images as well with almost the same result.
By achieving an EER of 14% (see Table 3 on Page 34), we have shown that the ear is
absolutely worth looking more into.

If we look back at our research questions given in Section 1.5, we have in this thesis
presented different methods that have been used for ear recognition. We have applied
some of these techniques and shown that the thermal images perform just as good as
the ordinary images. By getting an EER of 14%, we have shown that the ear might be
worth looking more into as a way of authentication and that it is possible to determine
differences in peoples ears by looking at such images. Because of the “outside to inside”
problem described in Section 6.1.1, we have seen that a system that looks for heat radia-
tion might be vulnerable to environmental factors like outdoor temperature even though
we have not analyzed to what extent it influenced our results.

In this thesis we have also looked at how long time it takes before the ear is warmed
up to its normal state. We had the participants hold a cooling pack against their ear for
10 minutes before recording the changes in the ear each 15 seconds for 15 minutes.
We only had 5 participants in this experiment, as this was only conducted to see if it
is worth looking more at in the future. In order to determine how long time it would
take before the ear was back to normal, we applied the same methods of analyzing the
distance between images taken before the cooling down started and to the images taken
during the warming up. This is described in more detail in Section 5.4. The results from
this sub-experiment were a little bit surprising, as the ear did not stop heating up after
returning to its normal state. When you have been outside and your ears are very cold,
they will start to “glow” and feel very warm when you get inside again. This may be just a
feeling, but it seems from our experiments that there might be something in that feeling.
Due to the low number of participants however, we can only look at these results as an
indication of what may be and to be able to draw full worthy conclusions one should
perform a more elaborate experiment with this setup.
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8 Future Work

Ear authentication is a rather new area and because of this, there is a lot of things that
would need further research. By looking at topics directly related to this thesis, we find
quite a few that can be researched further. One thing that we could not get to work
properly was an automatic way of detecting the edges in the ear. We mentioned in Section
5.1 that we tried to make this work but more time is needed to make somthing that can
work automatically. This can also be combined with an automated way of finding the
longest axis in the ear and rotate the image based on that. By creating an automatic way
of detecting the ear in an image, the system will no longer need people doing manual
pre-processing. This will speed up the analysis quite a lot. The thermal images might
perform better over time if one can get an automatic edge detection to work as just by
looking at the images in Figure 12 on Page 24 one can see that the edges seem to be
more clearly present in those images.

As with all other experiments like this there is always a possibility to add more partic-
ipants, having more sessions and more images taken of each participant. In addition to
this, one might also look at both ears from each participant to see if they will give better
results combined than only looking at one ear. Chang et al. combined images of faces and
one ear and got an increase in their recognition rates because of this [2]. Adding more
information to the analysis might give better results, but it needs more research before
any conclusions can be drawn from this. One might also look at differences between each
participants two ears to see if a mirrored right ear can pose as a left ear and vice versa.

Standardizing the experiment with an even more strict set up could also give better
results. Controlling the environment is important in such experiments, and one should
not have to deal with problems such as the “outside to inside” problem described in
Section 6.1.1. By conducting the experiment when the outside temperature is the same
as indoors, or having the subjects stay supervised inside for some time, one could reduce
the influence the surroundings have on the results. On the other hand one could look
more at to what degree outside temperature affect the system, by letting some people
come from outside in some sessions while others having their normal body temperature
ears captured in all sessions. If they are known to come from the outside, it will be easier
to just leave them out for one part of the analysis and to include them when one wants
to look at the feasibility of the system in a real world setting.

The camera we used in our project was not a state of the art thermal camera. There
are cameras that have autofocus, and this would produce more precise information to be
analyzed. This might give better results and is worth looking at in the future when these
types of cameras become cheaper and easier to get a hold of.

In our sub-experiment, we looked at how long time the ear needed to warm up
again to a normal body temperature state. In this experiment we saw that the ear ac-
tually continued to heat up even after the normal state was reached (see Figure 23).
For future research one could look at the ears over a longer period of time, to see when
the ear stabilises itself to a normal state. This could be done automatically by having a
camera mounted on a tripod and setting it to capture images at certain intervals. This
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would make it easier to have the experiment running for longer than 15 minutes like
we did. One could also look at it the other way from a heated ear, having its temper-
atures reduced. Imagine you have just talked on your cell phone. The ear feels warm
and this might affect an authentication procedure using ear authentication. From our
sub-experiment we have shown that the body warms up the ear very quickly, but this
might be because the body itself is alot warmer that the outside of the ear. When the ear
is warmer than the body, like after taking a phone call, it would be interesting to see if
the ear cools down at the same speed.

Ear authentication by looking at blood vessel patterns has been done on mice [7].
Could this also be done on humans? We have noticed that people have small blood vessel
patterns in the ear, but our ear is a lot thicker than that of mice and they do not stand
out from the body in the same way they do on animals. Therefore it might be difficult to
look at this, but it might be something worth looking at because blood vessels in general
are very unique from person to person, e.g. retina patterns in the eye.
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A Participant Agreement Declaration

Participation in acquisition of ear biometric data in MSc project

I am participating in the acquisition of ear biometric data on a voluntarily basis. The ear
biometric data is collected by the use of a photo camera, and will only be used in this
MSc project. This project is done by Knut Steinar Watne and is related to information
security.

With my signature I confirm the following:

1. I have been informed in oral and written form about the content and purpose of the
collected data that is in relation to my person.

2. My data will only be used to serve this purpose. In case of future experiments, a new
permission should be given.

3. I allow that ear biometric data from me are collected.

4. The data will not be displayed in possible future publications on this experiment,
unless I give my permission.

5. I have been informed that I can reject to sign the agreement.

6. I have been informed that I can request to receive insight in the collected data at any
time.

7. I know that I can withdraw my participation anytime I want without giving any ex-
planation and all data collected from me will be deleted permanently.

All data will be deleted respectively the link between the data and my name will be de-
stroyed as soon as it is not necessary to maintain it. This will happen as the research
experiment has been completed in June 2008.

First name - family name:_________________

Gjøvik, date_________________ signature:_________________
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B MatLab code

%This code opens all images in the folder, and lets you click on them

%to mark the location of the longest axis. This information is then

%saved in the file EarCoordinates.txt.

feye=fopen('EarCoordinates.txt','a');

directory=('C:\subjectimages');

d=dir('C:\subjectimages\');

for i=4:numel(d) %not counting "." ".." and "Thumbs.db"

filename=d(i).name;

I=imread([directory,filename]);

imshow(I);

title(d(i).name);

h=gcf;

[x,y]=getpts(h);

fprintf(feye,['%s %.0f %.0f %.0f %0.f \n'],filename,round(x),round(y));

end

end

end

fclose(feye);
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%This code opens the images in the folder, and rotates them based on info from

%EarCoordinates.txt. Then cropping and rezising at the end.

fname=fopen('EarCoordinates.txt','r');

pathname='C:\subjectimages';

d=dir('C:\subjectimages');

for i=4:numel(d) %not counting "." ".." and "Thumbs.db"

filename = fscanf(fname,'%s',1);

xbottom = fscanf(fname,'%d',1);

xtop = fscanf(fname,'%d',1);

ybottom = fscanf(fname,'%d',1);

ytop = fscanf(fname,'%d',1);

I = imread([pathname,'/',filename]);

ycenter = round(ybottom*0.5+ytop*0.5);

xcenter = round(xbottom*0.5+xtop*0.5);

It=zeros(1000,1000);

It(501-ycenter:500-ycenter+size(I,1),501-xcenter:500-xcenter+size(I,2),1:3)=I;

xcenter = 501; ycenter =501;

xtop = xtop+501-xcenter; ytop = ytop+501-ycenter;

xbottom = xbottom+501-xcenter; ybottom = ybottom+501-ycenter;

It = uint8(It);

phi = atan((xtop-xbottom)/(ybottom-ytop));

phi = (phi/pi)*180;

It = imrotate(It,phi,'crop');

longestaxis = round(dist([xbottom,ybottom],[xtop,ytop]'));

nxtop = 501;

nxbottom = 501;

nytop = round(501-longestaxis/2);

nybottom = round(501+longestaxis/2);

x1 = 501 - round(0.3*longestaxis);

x2 = 501 + round(0.2*longestaxis);

y1 = nybottom;

y2 = nytop;

It = It(y2:y1,x1:x2,1:3);

It = imresize(It,[100 50]);

imwrite(It,[pathname,'_small/',filename]);

end % for

fclose(fname);
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C Sub-experiment graphs

(a) The colored palette with the fixed scale from the
main experiment (participant 1).

(b) The widened scale (participant 1).

(c) The custom grayscale (participant 1).

Figure 24: Participant 1
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(a) The colored palette with the fixed scale from the
main experiment (participant 2).

(b) The widened scale (participant 2).

(c) The custom grayscale (participant 2).

Figure 25: Participant 2
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(a) The colored palette with the fixed scale from the
main experiment (participant 3).

(b) The widened scale (participant 3).

(c) The custom grayscale (participant 3).

Figure 26: Participant 3
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(a) The colored palette with the fixed scale from the
main experiment (participant 4).

(b) The widened scale (participant 4).

(c) The custom grayscale (participant 4).

Figure 27: Participant 4
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(a) The colored palette with the fixed scale from the
main experiment (participant 5).

(b) The widened scale (participant 5).

(c) The custom grayscale (participant 5).

Figure 28: Participant 5
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