
Using Coloured Petri Nets in
Penetration Testing

Ole Martin Dahl

Master’s Thesis
Master of Science in Information Security

30 ECTS
Department of Computer Science and Media Technology

Gjøvik University College, 2005

Institutt for
informatikk og medieteknikk
Høgskolen i Gjøvik
Postboks 191
2802 Gjøvik

Department of Computer Science
and Media Technology
Gjøvik University College
Box 191
N-2802 Gjøvik
Norway

The MSc programme in Information Security
is run in cooperation with the Royal Institute
of Technology (KTH) in Stockholm.

Using Coloured Petri Nets in Penetration Testing

Abstract

Network penetration testing is a well-known approach used for security testing. Pen-

etrating testing can be a laborious task which relies much on human knowledge and

expertise, with various techniques employed, and an extensive amount of tools used in

the process. A methodical approach to penetration testing is therefore recommended.

The flaw hypothesis methodology, used in this thesis, represent one of the most used

models for penetration testing and have great similarities in other penetration testing

methodologies and standards used today.

Petri nets represent a graph based mathematically sound modelling technique for con-

current systems, and provide a graphically intuitive approach for modelling, simulation

and execution. A coloured Petri net is a high level Petri net that provides a significant

increase in the expressiveness and compactness of Petri net models.

The flaw hypothesis methodology used together with coloured Petri net attack mod-

els is presented in the thesis. The use of coloured Petri nets is described and analysed

through case studies elucidating several properties of Petri net variants and their suit-

ability to modelling attacks in penetration testing. Advantages of modelling attacks with

coloured Petri nets have been explored and are described. Coloured Petri nets have been

found to have many usefull mechanisms for modelling, analysing, and automatically

executing penetration attempts, e.g. through their ability to model states, transitions,

concurrency, and timing.

The overall topic of the thesis is the technical aspects of penetration testing, what it

is, and a methodical approach to it.

iii

Using Coloured Petri Nets in Penetration Testing

Sammendrag

Nettverkspenetrasjonstesting er en velkjent metode brukt innen sikkerhetstesting. Pene-

trasjonstesting kan være en omfattende oppgave som krever mye kunnskap og eksper-

tise, med mange forskjellige teknikker, og et vidt antall verktøy i bruk under prosessen.

En metodisk tilnærming til penetrasjonstesting er derfor anbefalt. "The flaw hypothe-

sis methodology", som denne oppgaven baserer seg på, representerer en av de mest

brukte modellene for penetrasjonstesting. Det finnes likheter til denne modellen i de

fleste metoder og standarder innen penetrasjonstesting brukt i dag.

Petri net er et graf basert modeleringsspråk, opprinnelig tiltenkt for modellering av

systemer med samtidighetsproblematikk. Grafene gir en intuitiv måte å modellere, simulere

og eksekvere modeller. "Coloured Petri net" er en type høynivå Petri net som gir flere mu-

ligheter til detaljmodellering og sammensetting av Petri net.

The flaw hypothesis methodology er brukt sammen med forskjellige typer coloured

Petri net for modellering av systemangrep i penetrasjonstestingsprosessen. Metoden er

beskrevet og analysert gjennom tre testscenarioer, som belyser egenskapene ved Petri

net modellering av angrep i penetrasjonstesting. Fordeler ved Petri net angrepsmodel-

leringen har blitt utforsket og beskrevet. Mange av egenskapene til coloured Petri nets

har visst seg å fungere bra til angrepsmodellering under penetrasjonstesting, for eksem-

pel egenskapene grafene har til å modelere tilstander, transisjoner, samtidighet, og tids-

bergning.

v

Using Coloured Petri Nets in Penetration Testing

Preface

This thesis started as an awoken interest in the topic of penetration testing in 2004. The

motivation was to learn more about the vast area of penetration testing and its usage in

network security. In late 2004, the actual work started. Early, I realised that penetration

testing was large and that much detailed research has been done in the area. During the

literature review an article by John McDermott, about Petri net attack modelling, caught

my interest and with eminent guidance from Dr Stephen D. Wolthusen, coloured Petri

nets became my way of further refining and using Petri nets in penetration testing.

The thesis work has been very exciting and given me many challenges. I feel that the

thesis turned out well after about six months of work, with moments of slight frustration.

My enitre graduate education in computer security, including this final master thesis, has

been a valuable personal experience for me and has extended my knowledge horizon.

This thesis work would not be possible without the help and support from many

individuals. I am especially grateful to Dr. Stephen D. Wolthusen who has provided guid-

ance, prominent expertise, valuable support and encouragement during the thesis work.

I would also like to thank my supervisor Dr. Erik Hjelmås for valuable guidance, shared

research experience, and encouragement while doing this thesis work and pursuing my

graduate education in information security.

My thanks also go to the other individuals at Gjøvik University College that have

contributed, for their help with my thesis work. Special thanks go to my fellow students

and mates, Ole Kasper Olsen, Fredrik Skarderud, Torkjel Søndrol and Anders Wiehe for

their motivation, opinions, and ideas. I also want to thank my family and friends for the

patience and understanding they have shown for my work.

Last but not least, my thanks go to my girlfriend Sonja for her love, support, and

understanding during the whole period that went into pursuing my graduate studies.

Ole Martin Dahl, 30th June 2005

vii

Using Coloured Petri Nets in Penetration Testing

Contents

Abstract . iii

Sammendrag . v

Preface . vii

Contents . ix

List of Figures . xi

1 Introduction . 1

1.1 Topics Covered by This Thesis . 1

1.2 Justification, Motivation and Benefits . 1

1.3 Problem Description . 2

1.4 Research Questions . 2

1.5 Summary of Claimed Contributions . 3

1.6 Method . 3

1.7 Terminology . 3

1.8 Outline of Chapters . 3

2 Petri Net Theory . 5

2.1 Basic Graph Theory . 5

2.2 Petri Nets . 5

2.3 Coloured Petri Nets . 6

2.3.1 Timed Coloured Petri Nets . 9

2.3.2 Interval Timed Coloured Petri Nets 11

3 Penetration Testing . 13

3.1 Current Penetration Testing Methodologies 13

3.1.1 OSSTMM . 14

3.1.2 NIST SP 800-42 . 14

3.2 Tools and Exploit Code . 15

3.2.1 Scanners . 16

3.2.2 Tool Limitations . 16

3.3 Flaw Hypothesis Methodology . 18

3.3.1 Flaw Hypothesis Methodology Theory 18

3.3.2 Methodology Limitations . 20

3.4 Fault Tree Analysis Based Methodologies 21

3.4.1 Fault Tree Analysis . 21

3.4.2 Attack Trees . 21

4 Related Work . 23

4.1 Tree Based Attack Modelling . 23

4.2 Attack Graph Modelling . 24

4.3 Petri Net Attack Modelling . 24

4.3.1 Coloured Petri Net Attack Modelling 25

5 Using Coloured Petri Nets in Penetration Testing 27

5.1 The Overall Model . 27

ix

Using Coloured Petri Nets in Penetration Testing

5.2 Motivation for Coloured Petri Net Attack Modelling 28

5.3 Coloured Petri Net Attack Model . 29

5.3.1 Timed Coloured Petri Nets . 31

5.3.2 Interval Timed Coloured Petri Nets 31

5.3.3 Development Stages . 32

5.4 Main Benefits . 34

6 Scenarios . 37

6.1 Scenario 1 – SQL Injection . 37

6.1.1 Conclusions and Observations on Scenario 1 41

6.2 Scenario 2 – Consistency of Condition Checks 41

6.2.1 Conclusions and Observations on Scenario 2 45

6.3 Scenario 3 – Race Condition . 45

6.3.1 Conclusions and Observations on Scenario 3 51

7 Conclusion . 53

8 Future Work . 55

Bibliography . 57

A Used Declarations and Net Inscriptions . 63

B Paper Submitted for Publication . 65

x

Using Coloured Petri Nets in Penetration Testing

List of Figures

1 Basics of Petri nets . 5

2 Petri net example . 6

3 Coloured Petri net example . 8

4 Timed coloured Petri net example . 10

5 Interval timed coloured Petri net example 12

6 OSSTMM overall penetration testing methodology 14

7 NIST SP 800-42 overall penetration testing methodology 14

8 The flaw hypothesis methodology . 19

9 Attack tree example . 21

10 Attack net example . 24

11 The flaw hypothesis methodology with coloured Petri net generation . . . 27

12 Overall methodology for using coloured Petri nets in penetration testing . 28

13 Disjunctive and conjunctive Petri net relationships 29

14 Coloured Petri net example for Samba attack 30

15 Interval timed coloured Petri net example for Spoofing 32

16 Petri net control structures . 33

17 Scenario 1 – Coloured Petri net attack model 39

18 Scenario 2 – Timed coloured Petri net attack model 43

19 Multi tier e-commerce system . 46

20 Scenario 3 – Interval timed coloured Petri net attack model 49

xi

Using Coloured Petri Nets in Penetration Testing

1 Introduction

Penetration testing is a fundamental area of information system security. Two of the ear-

liest published open references to penetration testing are a penetration testing method-

ology presented by Linde [42] in 1975, which is one of the seminal papers behind the

flaw hypothesis methodology, and a vulnerability analysis report of the Multics1 operat-

ing system from 1974 by Karger and Schell [33]. Multics is notable for its early emphasis

on computer security by design, it was designed as a secure system from the ground

up. In spite of this, early versions of Multics were broken into, not once, but repeatedly.

The vulnerability analysis found major flaws that had not been found during the thor-

ough system design, and major lessons were learned. To this day information systems are

tested with similar methods and many of the flaws found then are the same today [34].

1.1 Topics Covered by This Thesis

Penetration testing is a security practice during which some trusted party attempts to

detect and exploit weaknesses in an information system. Penetration testing tradition-

ally tries to break down or break into a system using different hacking techniques, and

thereby uncovering weaknesses the system.

Penetration testing has evolved into many different areas of security, from application

testing [2, 69] in different system development phases to network security testing [39]

of in-production systems. This thesis will focus on network penetration testing, although

many of the ideas presented will be adaptable to other types of penetration testing.

The thesis uses the flaw hypothesis methodology [42, 76, 77, 78] as a framework for

penetration testing and introduce an attack model using coloured Petri nets [31, 30, 32].

The flaw hypothesis methodology is a systematic and thorough approach to penetration

testing. Coloured Petri nets are a formal and graphically appealing model language for

design, specification, simulation and verification of systems.

The thesis focus on the technical aspects of penetration testing; what it is all about,

a methodical approach to it, and a proposition to use coloured Petri nets to model pene-

tration attempts.

Keywords: Technology, information security, network security, penetration testing/ethi-

cal hacking2, the flaw hypothesis methodology, attack modelling, coloured Petri nets.

1.2 Justification, Motivation and Benefits

Keeping information systems in top condition to withstand attacks from adversaries have

become vital to most organisations. In a perfect world, it would not be necessary to

1Modern operating systems, in particular the UNIX system, are in part descended from Multics
2An ethical hacker [64, 79] is often used synonymous to a penetration tester

1

Using Coloured Petri Nets in Penetration Testing

conduct penetration testing when an information system is securely configured and set

up from scratch. However, it is most often necessary to confirm security mechanisms,

and to test whether the systems really are secure from the adversary’s point of view.

Under design, implementation, maintenance and operation of today’s complex informa-

tion systems, human and system errors affecting information security will occur. Even an

immune system, if that can exist, does not provide absolute protection in the face of con-

stantly evolving adversaries [54]. Using penetration testing as a method to confirm that

the defensive measures are complete and working is important, both under development

and in production. The goal is to locate vulnerabilities that make it possible for malicious

adversaries to exploit the system, preferably finding them before an adversary do.

Finding vulnerabilities and their exploitation can be complex. Several attacks require

concurrent execution, multiple cooperating agents, combinations of system flaws and

timing by attackers to be successful. To become successfully many different methods and

a lot of different tools can be used to help with the process. When more complex attack

scenarios are hypothesised, error-prone manual testing techniques may be too resource

consuming for the penetration testers.

Research results on how to use penetration testing recourses effectively, including

when different attack scenarios appear in large-scale network environments such as

multi-tier systems, e.g. electronic commerce systems, are the main motivation for this

thesis work with the introduction of coloured Petri net attack modelling.

The stakeholders are security staff, organisations that hire security testing services

and everyone in the growing security testing business.

1.3 Problem Description

There are a lot of different techniques, methods and tools for doing penetration testing.

The flaw hypothesis methodology is a commonly used methodology for doing penetra-

tion testing. Most methods today build on such a model or methodology. However the

methodology itself only provides limited high level guidance for the derivation of pen-

etration attempts. Refining the flaw hypothesis methodology with the use of coloured

Petri net attack models should be possible. By doing this we can exert the coloured Petri

nets ability of graphically modelling concurrency and timing, and the possibility of exe-

cuting and analysing hypothesised attack scenarios. This can make coloured Petri nets a

helpful tool in precise modelling of penetration attempts, especially when complex attack

scenarios are hypothesised.

1.4 Research Questions

In order to find out whether penetration testing can benefit from attack modelling with

coloured Petri nets in a methodical approach like the flaw hypothesis methodology, the

following questions has been explored:

1. Do penetration testing need the possibility of modelling custom attack scenarios,

or do the combination of a high-level methodology and modern testing tools solve

the need for custom penetration attempts satisfactory?

2. How can we use coloured Petri nets to model penetration testing attacks?

3. How can we use coloured Petri net attack modelling inside the flaw hypothesis

methodology?

2

Using Coloured Petri Nets in Penetration Testing

4. What can we gain from doing penetration testing with the use of coloured Petri

nets for attack modelling?

1.5 Summary of Claimed Contributions

The contributions will mainly be:

• A methodical penetration testing approach with basis in the flaw hypothesis method-

ology with a mechanism for the modelling, partial analysis, and automatic execu-

tion of attacks, based on different types of coloured Petri nets.

• A study of coloured Petri nets, including the variants; timed coloured Petri nets

and interval timed coloured Petri nets, for modelling penetration testing attacks.

• Three case studies that elucidate the properties of the methodology and different

Petri net variants and their suitability to model different attacks.

1.6 Method

The method used is mainly a literature study and the development of a methodical ap-

proach to penetration testing. The methodical approach presented has evolved from pre-

vious work in the areas of penetration testing, attack modelling, and Petri net theory. The

approach is applied to three different hypothetical test scenarios to verify theory, and to

find limitations and benefits. Note that the scenarios do not represent a qualitative exper-

iment, there have not been done any live penetration tests in the amount required to get

enough statistical data for this. Conclusions and results are both based in the literature

study and the test scenarios.

The study started with a wide and open area to research. Both the area of penetration

testing and coloured Petri net theory are vast, therefore most of the time spent on the

thesis has been spend reading relevant research and literature in the area. The search

was gradually narrowed down as the author gained better understanding of the subject

matter. This method approach has lead to wide understanding of penetration testing and

its possibilities.

During the thesis work a paper [12] has been submitted for publication, co-written

with Dr. Stephen D. Wolthusen, that cover some of the topics in the thesis (available in

appendix B).

1.7 Terminology

The terms "attack" and "penetration" are used interchangeably throughout the thesis,

this also applies to "penetration tester" and "attacker". When we refere to an attack or

penetration done by an malicious adversary the term maliciuos is used. An attack or a

penetration exploit a security flaw or vulnerability in a system, which again may lead

to a system "breach", "compromise", or "intrusion" if sucessfull. The distinction between

breach, intrusion, and compromise is neither strict nor crucially important for the dicus-

sions in this thesis.

1.8 Outline of Chapters

Chapter 2 provide an introduction to different Petri nets and their background theory,

which is used later in the thesis. In Chapter 3 the topic of penetration testing and its

usage is explained. This Chapter include the theory of the flaw hypothesis methodology.

3

Using Coloured Petri Nets in Penetration Testing

Chapter 4 present the most relevant related work to the thesis research.

Chapter 5 present the proposed methodical approach to penetration testing with

coloured Petri nets for attack modelling. The testing stages of the flaw hypothesis method-

ology in combination with the coloured Petri net attack models are explained. Lastly the

main benefits of the approach are summarised. Then, in Chapter 6, three penetration

case studies are presented, where it is shown how the approach can be used in different

penetration testing scenarios. Each scenario end with a small discussion about conclu-

sions and observations found in the scenario.

Chapter 7 summarise the conclusions of the study and Chapter 8 suggests some future

work that could be done.

Appendix A explain the different declarations and net inscriptions used in the de-

signed coloured Petri nets througout the thesis. Appendix B include a paper [12] submit-

ted for publication during the thesis work.

4

Using Coloured Petri Nets in Penetration Testing

2 Petri Net Theory

This Chapter will present the necessary background theory of coloured Petri nets, which

later in the thesis will be used for attack modelling in penetration testing.

2.1 Basic Graph Theory

We begin with the formal definition of a graph [59]:

A graph G = (V, E, φ) consists of a nonempty set V called the set of nodes

of the graph, a set E called the set of edges of the graph, and a mapping φ

from a set of edges E to a set of pairs of elements of V .

An edge in a graph can be directed, that is a pair of nodes is ordered (annotated with

an arrow). If all edges in a graph are directed, then the graph itself is a directed graph

or digraph. A multigraph is a graph with multiple edges, i.e. edges that have the same

end nodes. Bipartite graph means that the graph has two types of nodes. A property of a

bipartite graph is that an edge can only connect two nodes that belong to different types.

2.2 Petri Nets

A Petri net [55, 59] also called a place/transition net [31], is a generalised graph intro-

duced by Carl Adam Petri in 1962 [56]. The motivation behind Petri nets was the need

to address problems of concurrency in systems.

A Petri net is a bipartite dircted multigraph, where the two types of nodes are places

and transitions. In graphical representations, places are shown as circles or ellipses, and

transitions as bars or rectangles. Figure 1 show the notations.

Place

Transition

Token

Figure 1: Basics of Petri nets

The edges of a Petri net are called arcs and are always directed. Arcs are subdivided

into input arcs, which connect places with transitions and output arcs, which start at a

transition and end at a place. Places are also often referred to as input and output places

when a specific transition is discussed.

5

Using Coloured Petri Nets in Penetration Testing

A marking (state) of a Petri net is shown by tokens. Pictorially, a number of black dots

(tokens) are placed in a place to mark states. Figure 2 shows a simple Petri net with two

places connected by a single transition and with three tokens in one of the places. Types

of Petri nets can be distinguished by the level of information associated with individual

tokens which can range from simple Boolean information to structured tokens.

Figure 2: Petri net example

In order to simulate the dynamic behaviour of a system, a state or marking in a Petri

net is changed according to transition rules. Firstly the transition is said to be enabled

if each input place of a transition is marked by at least one token. Secondly an enabled

transition may or may not fire depending on whether or not the event, decided by the

transition, actually took place. Lastly a firing of an enabled transition removes a number

of tokens from each input place of the enabled transition and adds a number of tokens

to each output place of the transition.

The formal definition of a Petri net graph [55] is as follows:

A Petri net graph G is a bipartite directed multigraph, G = (V, A), where

V = v1, v2, v3, ..., vn is a set of vertices and A = a1, a2, a3, ..., an is a multi-

set/bag1 of directed arcs, ai = (vj, vk), with vj, vk ∈ V . The set V can be

partitioned into two disjoint sets P and T such that V = P∪ T , P∩ T = ∅, and

for each directed arc, ai ∈ A, if ai = (vj, vk), then either vj ∈ P and vk ∈ T

or vj ∈ T and vk ∈ P.

Usage of Petri nets are widespread and diverse [41, 52, 55, 59], e.g. in network com-

munication technology and in other systems requiring concurrent processes. Murata’s

paper [52] give a comprehensive survey of Petri nets. The web page "Petri nets world"2

located at the University of Hamburg, Germany, provide a variety of online services for

the international Petri Nets community and has a collection of research on the topic.

For a more complete formal explanation of Petri nets see [55, 59]

2.3 Coloured Petri Nets

Coloured Petri nets [31, 30, 32, 36] is a modelling language aimed at systems in which

concurrency, communication, synchronisation and resource sharing play an important

role. As apposed to simple place/transition nets do coloured Petri nets provide struc-

tured tokens in the form of so called colours and provide significant increase in the

expressiveness and compactness of models. Coloured Petri nets also have an intuitive

graphical representation which makes it easy to see the basic structure of the net and to

understand how individual processes interact with each other. The nets allow the mod-

eller to make much more concise and manageable descriptions than with ordinary Petri

nets, thus coloured Petri nets are called high-level nets.

1A multi-set or bag, like a set, is a collection of elements over some domains. However, unlike a set, bags
allow multiple occurrences of elements. In set theory, an element is either a member of a set or not a member
of a set. In bag theory, an element may be in a bag zero times (not in the bag), one time or several numbers of
times.

2 �������
� ���"!�!�!
#%$'&�(*),+.-0/��0$'1
#32�&4$�5��*/6-87�2�+�9�#;:�<���=�>0?"��@�<���+4$6A�<��8B�� (Visited May 2005)

6

http://www.informatik.uni-hamburg.de/TGI/PetriNets/

Using Coloured Petri Nets in Penetration Testing

Each place in a coloured Petri net is associated with a colour set (a type), which

determines the kind of data the place may contain.

A state of a coloured Petri net is called a marking. A marking, describes how coloured

tokens are distributed among the places in a net at a specific point of net execution.

A token has or even is a colour (a value) from a colour set, and a token can only be

present on a place if the colour is from the defined colour set in the place. A place may

have several tokens with the same colour. A colour set can be quite complex, for example

union colour sets make it possible for a place to contain more than one kind of tokens.

Figure 3 shows a simple coloured Petri net. The marking of a place is written at the upper

right of the place. The black dot notation for tokens is seldom used in coloured Petri nets,

instead the marking is shown in the upper right of places by a number, i.e. the number

of a specific colour, followed by the colour itself.

The actions in a coloured Petri net are, like ordinary Petri nets (Section 2.2), repre-

sented by transitions. Transitions and places are connected by arcs. A transition can fire

when it is enabled. A transition T is enabled if and only if there is at least one token in

each input place of T . When firing a transition, tokens are removed from each of the in-

put places of T and tokens are generated in each of the output places of T , i.e. a transition

occurs. This means that there must not be any closer relationship between the removed

token in one place and the added token at another place. So saying that tokens move

from place to place are not entirely correct according to Petri net formalism, however

for our intuitive interpretation of the model we sometimes think of the token as being

moved from place to place [31]. The numbers of tokens added or removed by the en-

abled transition are determined by arc expressions. The arc expressions contain variables,

and transitions are enabled in bindings of variables.

Figure 3 show a simple example coloured Petri net. The net diverse net inscriptions are

explained in Appendix A. The net in Figure 3 contain one transition, CEDGF�H8I , which is sur-

rounded by tree places; J�KMLGNGI
O0P�L , Q�O
K�K0R�DGNES and T�UVUML
K�K . The arc expressions around the

transition C�DGF�H�I in Figure 3 contain the variables W�KMLGNVI
O�P�L and X
O�K�K0R
DGN�S , ranging over

the colour set YGZ�[�\0]�^ . Thus the possible bindings of the transition Login are W�K_LGNVI
O0P�L
→ TES4P`H�I�HVK4a�N�OMa�DGN , X�O
K�K0R
DMNES → TES4PbH�IEQ�O
KVK0R
DGNES and X
O
KVK0R
DGNES → cEN�DMIEFVQ�O
K�K0R�DGNES (→ is

read "bound to").

Transitions in coloured Petri nets may also have guards. The guard is a Boolean ex-

pression3 or a list of Boolean expressions. It may have variables in exactly the same way

that the arc expressions have. A guard is written at the upper left corner of the transition.

In Figure 3 a guard at the transition CEDGF�H�I is only enabled if the tokens from the places

J�KMLGNVI
O�P�L and Q�O�K�K0R
DGN�S has the colour TES4PbH�I�HVK4aVN�OGa�DGN and TES0P`H�IEQ�O�K�K0R
DGN�S . The pur-

pose of the guard is to define an additional constraint to the coloured Petri which must

be fulfilled before the transition is enabled.

Now the formal definition of a coloured Petri net [31]:

A non-hierarchical4 coloured Petri net is a tuple CPN = (Σ, P, T, A, N, C, G, E, I)

satisfying the requirements below:

• Σ is a finite set of non-empty types, called colour sets.

3An expression which evaluates to either true or false
4Hierarchical coloured Petri nets are not covered by this thesis. Hierarchical coloured Petri nets that make

it possible to construct very large nets that combine smaller nets, see [31, 30].

7

Using Coloured Petri Nets in Penetration Testing

Username

STRING

1‘("Administrator")

Password

STRING

1‘("AdminPassword")++
1‘("WrongPassword")

Access

STRING

Login

[username="Administrator",
password="AdminPassword"]

passwordusername

1‘("Success")

Username

STRING

Password

STRING

1‘("WrongPassword")

Access

STRING

1‘("Success")

Login

[username="Administrator",
password="AdminPassword"]

passwordusername

1‘("Success")

Figure 3: Coloured Petri net example. Before and after execution.

• P is a finite set of places.

• T is a finite set of transitions.

• A is a finite set of arcs such that:

P ∩ T = P ∩ A = T ∩ A = ∅

• N is a node function. It is defined from A into P × T ∪ T × P.

• C is a colour function. It is defined from P into Σ.

• G is a guard function. It is defined from T into expressions such that:

∀t ∈ T : [Type(G(t)) = B ∧ Type(Var(G(t))) ⊆ Σ]

• E is a arc expression function. It is defined from A into expressions

such that:

∀a ∈ A : [Type(E(a)) = C(p(a))multi−set ∧ Type(Var(E(a))) ⊆

Σ] where p(a) is the place of N(a).

8

Using Coloured Petri Nets in Penetration Testing

• I is an initialisation function. It is defined from P into closed expres-

sions such that:

∀p ∈ P : [Type(I(p)) = C(p)multi−set].

For a more complete formal explanation of coloured Petri nets see [31].

Coloured Petri nets are used in many areas [32], mainly in systems in which commu-

nication, synchronisation and resource sharing play an important role. Because coloured

Petri nets make use of all the strengths of ordinary Petri nets it can be used as a substitute

that enables much more detail in the modelling. Some examples of use are in modelling

are network protocols, distributed databases, electronic chip design and more. A vast

collection of other usage of coloured Petri nets can be found at the web pages of the CPN

group at the University of Aarhus, Denmark5.

2.3.1 Timed Coloured Petri Nets

Timed coloured Petri nets is an extension to coloured Petri nets, by Jensen [30], that

deals with time and timing. It has a timing mechanism where time is associated with

tokens, i.e. time stamps.

The formal definition of timed coloured Petri nets [30]:

A timed non-hierarchical coloured Petri net is a tuple TCPN = (CPN, R, r0)

such that:

• Coloured Petri net satisfied the requirements of a non-hierarchical

coloured Petri net as defined in Section 2.3 – when in arc expression

function and the initialisation function we allow the type of E(a) and

I(p) to be a timed or an un-timed multi-set over C(p(a)) and C(p),

respectively.

• R is a set of time values, also called time stamps. It is a subset of R

closed under + and containing 0.

• r0 is an element of R, called the start time.

Timed coloured Petri nets introduce a global clock. The clock represents the model time,

also called time stamp. The time stamp describes the earliest model time at which the

token can be consumed, that is be removed by an occurring transition. The time stamps

are shown as a time list associated with each colour of a colour set. The execution of

a timed coloured Petri net is driven by time. The system remains at one time until no

more transitions are enabled at the current model time. We can say that a state of a

timed coloured Petri net consists of a marking, and the model time (the global clock).

Timed coloured Petri nets can also contain colour sets which are un-timed, thus a net

can contain both timed and un-timed colour sets and the timing concept can be added to

already modelled systems in coloured Petri nets.

The time can be manipulated by transitions and/or arc expressions under execution.

Figure 4 show an example timed coloured Petri net before and after firing of the transi-

tion CEDGF�H�I , see Appendix A for a explanation of the net inscriptions. The time is manip-

ulated by the transaction CEDGF�H�I . The bottom part shows the login net after firing of the

transition, as we can see the token success has a time stamp of 10 time units. The global

clock will then also be 10, given that it started at 0. Arc expression in output arcs can

5 �������
� ���"!�!�!
#d:�/�$e-G$M#;/,2
#d:�18��f�@�&8<��8B�� (Visited May 2005)

9

http://www.daimi.au.dk/CPnets/

Using Coloured Petri Nets in Penetration Testing

Username

STRING

1‘("Administrator")

Password

STRING

1‘("AdminPassword")

Access

STRING

Login

[username="Administrator",
password="AdminPassword"]

@+10

passwordusername

1‘("Success")

Username

STRING

Password

STRING

Access

STRING

1‘("Success")@10

Login

[username="Administrator",
password="AdminPassword"]

@+10

passwordusername

1‘("Success")

Figure 4: Timed coloured Petri net example. Before and after execution.

also manipulate with the token time stamps. For a more complete formal explanation of

timed coloured Petri nets see [30].

Usage of timed coloured Petri nets are seen for example in Mortensen et al. research

on capacity planning of web servers using timed coloured Petri nets [51]. With the use

of timed coloured Petri nets performance and capability optimalisation can be modelled

for a HTTP web server. A vast collection of other usage of timed coloured Petri nets can

be found at the web pages of the CPN group6.

An important observation to make about timed coloured Petri nets is that all time

stamps are point-values. Therefore it is not easy to take uncertainty or fuzziness into

account, e.g. if a transaction does not always consume the same amount of time. Interval

timed coloured Petri nets can take this into account, if necessary, in the model.

6 �������
� ���"!�!�!
#d:�/�$e-G$M#;/,2
#d:�18��f�@�&*<��8B��8$6&���+8)���<�g8/6-8��h�<�i8$6&�:�2
#d���.-_h (Visited May 2005)

10

http://www.daimi.au.dk/CPnets/intro/example_indu.html

Using Coloured Petri Nets in Penetration Testing

2.3.2 Interval Timed Coloured Petri Nets

In [72] van der Aalst introduces interval timed coloured Petri nets. This is an alternative

formalism to timed coloured Petri nets which represent transition time delays as closed

intervals. Like with the timed coloured Petri nets presented above, the tokens in interval

timed coloured Petri nets are time stamped and coloured. Arc expressions and guards

function in same way as with coloured Petri nets.

One of the major differences between timed coloured Petri nets and interval timed

coloured Petri nets lies with the transition delays. In interval timed coloured Petri nets

the transitions are represented by closed intervals. Transition output arcs can be assigned

with a time delay interval. The intervals provide a mechanism to model uncertainty and

nondeterminism in individual transitions.

The enabling time of an event or step is the maximum of all timestamps of the tokens

to be consumed. The model time is defined as the minimum of all enabling times. Thus

the model time advances only when an event happens. Transitions are eager to fire,

meaning they will fire as soon as possible. Thus the transition with smallest enabling

time will fire first, just as with timed coloured Petri nets.

Once a step occurs the new tokens are put into the output places. Each of the tokens

will have a timestamp calculated by adding the delay value which is required to fall into

the delay interval defined at the output arc. Figure 5 show an interval timed coloured

Petri net before and after firing of the CEDMF�H�I transition, see Appendix A for a explanation

of the net inscriptions. The closed interval on the output arc is [8, 12]. The actual delay

after the transition CEDGF�H8I is 9.4, this could of course be any time value between 8 and

12.

The definition of the interval is as follows [72]:

TS is the the time set, TS = {x ∈ R|x ≥ 0}, i.e. the set of all non-negative

reals.

INT = {[y, z] ∈ TS × TS|y ≤ z}, represent the set of all closed intervals. If

x ∈ TS and [y, z] ∈ INT , then x ∈ [y, z] if and only if y ≤ x ≤ z.

Finally the formal definition of a interval timed coloured Petri net is [72]:

A interval timed non-hierarchical coloured Petri net is a five tuple ITCPN =

(Σ, P, T, C, F) satisfying the following requirements:

• Σ is a finite set of types, called colour sets.

• P is a finite set of places.

• T is a finite set of transitions.

• C is a colour function. It is defined from P into Σ, i.e. C ∈ P → Σ.

• CT = {〈p, v〉|p ∈ P∧v ∈ C(p)} is the set of all possible coloured tokens.

• F is the transition function. It is defined from T into functions. If t ∈ T ,

then:7

F(t) ∈ CTmulti−set 9 (CT × INT)multi−set

For a more complete formal explanation of interval timed coloured Petri nets see

[72]. Usage of interval-timed coloured Petri nets are often found in modelling of real-

7A 9 B denotes the set of all partial functions from A to B.

11

Using Coloured Petri Nets in Penetration Testing

Username

STRING

1‘("Administrator")

Password

STRING

1‘("AdminPassword")

Access

STRING

Login

[username="Administrator",
password="AdminPassword"]

passwordusername

1‘("Success")@+[8,12]

Username

STRING

Password

STRING

Access

STRING

1‘("Success")@9.4

Login

[username="Administrator",
password="AdminPassword"]

passwordusername

1‘("Success") @+[8,12]

Figure 5: Interval timed coloured Petri net example. Before and after execution.

time systems. van der Aalst and Odijk use interval timed coloured Petri nets in [73] for an

analysis of railway stations and their operating schedules. This is an example where the

modelled system requires some fuzziness, which are the trains will not always operate

on schedule.

A time interval Petri net, very similar to interval timed coloured Petri nets, is used by

Bulitko and Wilkins in [9] for real time decision making for shipboard damage control.

Here they simulate how fire spreads through a ship at the same time as decisions of

compartment flooding etc. is done by humans and automated systems.

The main benefit this thesis will utilise with interval timed- as opposed to timed-

coloured Petri nets are that they allow more fuzziness in timing, e.g. in distributed sys-

tems where it is difficult to have synchronised clocks.

12

Using Coloured Petri Nets in Penetration Testing

3 Penetration Testing

Penetration testing can not prove security to a system [14, 77] or as Geer and Harthorne

puts it [24]:

Because the list of potential insecurities is unknowable and hence innu-

merable, no penetration tester can prove security, just as no doctor can prove

that you are without occult disease.

Penetration testing can only provide a limited bird-eye perspective of current system

security [8]. The effectiveness of penetration testing depends largely on the skill and

experience of the testers. To get good valid results from a penetration test, the tester

and his/hers methods and knowledge must be at its best. In spite of these requirements,

penetration testers that follow a methodology can become more effective in their use of

resources and provide more valid results [24].

Many other engineering disciplines also rely on failure data to improve their designs,

which is what penetration testing can be compared to. Just imagine what would happen

if engineering and design did not learn from disasters like space travels that goes wrong,

bridges that collapse, oil platform disasters and so on. Information system engineering

also utilise this way of improving security in systems [49] through penetration testing

and similar vulnerability testing methods. Penetration testing is about learning from se-

curity attacks and help stopping them and similar ones from happening in information

systems.

3.1 Current Penetration Testing Methodologies

Using a methodology is beneficial when doing penetration testing. Penetration testing

depend on many ad-hoc mechanisms for identifying flaws in attacks or tests, a struc-

tured approach can therefore benefit both the testers and recources used under the test.

An additional benefit is that test results with good structure are easier to re-use in the

future to ensure that no regressions occur [68]. Throughout the literature written about

penetration testing, most methodologies are similar [1, 17, 18, 24, 27, 38, 46, 47]. Each

step in the methodologies have different names, but each with similar meanings. Some

of the most used methodologies for penetration testing are now described.

Most approaches are similar to how an attacker would attack a system. A classical

example of such approaches is used in Farmer and Venemas seminal paper "Improving

security of your site by breaking into it" [19]. SANS Institutes1 guidelines for developing

penetration "rules of behaviour" [1] propose a similar penetration testing methodology:

1. Discovery

1 �������
� ���"!�!�!
#jB,/,&�BV#),+�9*� (Visited June 2005)

13

http://www.sans.org/

Using Coloured Petri Nets in Penetration Testing

2. Enumeration

3. Vulnerability mapping

4. Exploitation

This is the typical method presented for penetration testing in the current security litera-

ture [38]. Books like [35, 44] base penetration testing on this kind of methodology, with

only small differences. Differences like dividing step 4 into gain access and privileged

escalation or/and diving step 1 into initial reconnaissance and service determination are

used, e.g. in [46, 47]. Two different penetration testing standards are now presented.

3.1.1 OSSTMM

Verfication Testing

Data Collection

IN OUT

Figure 6: OSSTMM overall penetration testing methodology [27]

The Open-Source Security Testing Methodology Manual (OSSTMM)[27] cover how to

do security testing. The manual is not just specified on penetration testing but also other

aspects of security testing like risk assessment, security policy review, physical security

and more. The manual introduce a security testing methodology called Risk Assessment

Values (RAV) where key dimensions like time and frequency are included so that a test

not only become a "security snapshot" that become invalid when new vulnerabilities are

discovered or when configurations change. OSSTMM is a popular methodology used for

security testing. The overall methodology is presented in Figure 6.

The methodology is not highly specific or strict. The OSSTMM have different mod-

ules that utilise the same overall methodology. A test begins with an input (e.g. a host

address), and then collects data about the input, apply testing and at last gets an output

that may become a new input to test further.

3.1.2 NIST SP 800-42

Planning Discovery Attack

Reporting

Additonal discovery

Figure 7: NIST SP 800-42 overall penetration testing methodology [17]

National Institute of Standards and Technology (NIST) have a publication called

Guideline on Network Security Testing [17], which like OSSTMM is a methodology for

security testing. It does not just cover penetration testing but also how to make security

14

Using Coloured Petri Nets in Penetration Testing

testing a routine and a part of network and system operations. Chapter 3 of SP 800-42 is

specific about penetration testing. The penetration testing methodology is presented in

Figure 7.

The NIST SP 800-42 uses a four phase methodology with planning-, discovery-, attack-

and a reporting phase. The attack phase is done iteratively with the discovery phase since

an attack can reveal more vulnerabilities in the system, e.g. privileged escalation possi-

bilities. The reporting phase is done simultaneously with the other three phases during

the penetration test.

3.2 Tools and Exploit Code

To help the penetration testing process, tools and exploit code are necessary. Completely

manual testing in modern complex information systems are not possible within the re-

courses that normally is used for penetration testing.

Books are written about tools and methods used in penetration testing, e.g. [35, 44].

They explain the usage of many tools and propose toolkits for the penetration tester.

Pitfalls of some tool categories are also discussed. Examples are denial of service tools

that may have undesirable effects on the target and other tools that have bugs which

may unintentionally harm the target.

Different tools are widely available, and the Internet is the main source for penetra-

tion testing tools and exploits codes. Open source security testing software, commercial

tools and information on hacker sites are available, e.g. at packet storm2, K-OTik3, mal-

ware.com4, @stake5 and more.

Exploit code are also often build for proof-of-concept in reported vulnerabilities in

vulnerability databases. Mitre’s CVE is a common namespace for all vulnerabilities and

exploits, where vulnerabilities can be searched and found at their web site6. The NIST

I-cat project also provide database interface over the web that allows users to browse and

search for vulnerabilities by platform, intent and more with the CVE format 7. Bugtraq8

is another vulnerability database that provides descriptions of known vulnerabilities in

information systems. A problem with vulnerability databases alone as an information

source in penetration testing is that detailed information about the hows and whys of

vulnerabilities and their exploitations are often lacking in such databases [65].

Not only independent tools and exploit code are used for penetration testing. There

are also software suites that include several tools and exploit code. Fully automated tools

also exist, like an on-line tool that SPI Dynamics9 has build. This tool called WebInspect

is specifically designed for penetration testing Web-based applications. In [23], Garfinkel

discuss this tool and similar tools and their pros and cons. Garfinkel shows that such

tools must be used with caution and the validity of the results are not always very good.

2 �������
� ���"!�!�!
#3�*/*k.1*<��8B"�*),+.-_B,<*k.2*+0$6��l�#),+�9 (Visited May 2005)
3 �������
� ���"!�!�!
#d(�+8B*$6+���#jk�)'-4� (Visited May 2005)
4 �������
� ���"!�!�!
#m-0/�h"!*/�+�<E#jk�)'-4� (Visited May 2005)
5 �������
� ���"!�!�!
#;/��8B"��/,1*<E#jk�)'- (Visited May 2005)
6Common Vulnerabilities and Exposures. The MITRE Corporation. �������
� ����k"n�<E#m-G$6��+�<E#),+�9 (Visited May

2005)
7ICAT Metabase. NIST. �������
� ���8$,k,/���#3&4$,B"��#d9*),n (Visited May 2005)
8Bugtraq Vulnerability Database !�!�!
#jB,<*k.2�+0$6��l�(*)�k.2�BV#jk�)'- (Visited May 2005)
9 �������
� ���"!�!�!
#jB.�4$6:�l�&*/6-G$,k�BV#jk�)'-_� (Visited May 2005)

15

http://www.packetstormsecurity.org
http://www.frsirt.com/
http://www.malware.com/
http://www.atstake.com
http://cve.mitre.org
http://icat.nist.gov
www.securityfocus.com
http://www.spidynamics.com/

Using Coloured Petri Nets in Penetration Testing

Workbenches like Core Impact10, Canvas11 and Metasploit12 are other types of pop-

ular tools used to help the penetration testing process. With these tools the penetration

tester has more control over the process. This kind of tools may be said to be semi-

automated.

3.2.1 Scanners

Perhaps the most important set of tools for penetration testing are scanners. Port scanners

are used for exploring alive machines and network topologies through different kinds of

network sweeping techniques (ICMP sweeps, UDP sweeps, TCP sweeps and broadcast

sweeps), and machine services on alive hosts through service port scans (TCP connect

scans, SYN scans, ACK scans FIN scans, XMAS scans, Null scans, Idle scans, UDP scans)

[39].

Vulnerability scanners are slightly different from other scanners. A vulnerability scan-

ner uses a vulnerability database containing hundreds of known vulnerabilities, which

it scans for. SATAN (Security Administrator Tool for Analyzing Networks) [22] is one of

the first vulnerability scanners from the work of Farmer and Venema [19]. Nessus13 [15]

is an example of a current reputable widely used open-source vulnerability scanner. The

scanner systematically engages the target in an attempt to assess where it is vulnerable

to attack. Nessus also has the possibility for scripting specially grafted tests or attacks

through NASL (Nessus Attack Scripting Language). Such scripting possibilities are very

useful in an penetration test where special attacks may be necessary to be build or when

a combination of flaws are needed.

Vulnerability scanning alone relies almost entirely on automated scanning scripts.

Penetration testing relies more on the ingenuity of the penetration tester. The human

element enables the tester to go beyond the simple discovery of vulnerabilities. Individual

flaws are combined to illustrate the potential damage to the system [39]. Vulnerabilities

that result from interaction among system components that include not single flaws,

but also customised program elements and emergent properties such as timing and load

behaviour that can arise only in certain hardware and software configurations.

3.2.2 Tool Limitations

Tools used in penetration testing, like vulnerability scanners, have limitations [74]. Rely-

ing solely on automated tool will often lead to a false sense of security [21]. The reality

of vulnerability scanners on the market are that they are massively flawed [62]. Maybe

the main reason for this is that if they had tested thoroughly for every reported vulner-

ability, they would only crash computers and damage networks. That is not a good sales

product, so the scanners must act carefully. The golden mean that the tools rely upon to

be usable lead to problems. It is important to remember that scanners and other tools

have flaws, just as any other type of software. The problems with the results by current

tools are [71]:

False Positives: A false positive is a vulnerability that is reported to exist, but does not.

10Core Impact is a penetration testing workbench developed by Core Security Technologies�������
� ���"!�!�!
#jk�),+�<*B,<*k.2�+0$6��l�#jk�)'- (Visited May 2005)
11Canvas is a penetration testing workbench developed by Immunity �������
� ���"!�!�!
#%$e-�-82�&4$6��l8B,<*kV#jk�)6- (Visited

May 2005)
12Metasploit is a framework for developing, testing, and using exploit code �������
� ���"!�!�!
#m-0<���/*B.�8h�)8$6��#jk�)'-

(Visited May 2005)
13 �������
� ���"!�!�!
#3&*<*B�B.2�BV#),+�9 (Visited May 2005)

16

http://www.coresecurity.com
http://www.immunitysec.com
http://www.metasploit.com
http://www.nessus.org

Using Coloured Petri Nets in Penetration Testing

The method that the tools rely upon can not guarantee that a certain hypothesised

vulnerability exists. But the test for the vulnerability needs to be constructed suffi-

ciently well that false positives are not reported. The problem with a false positive

is that it wastes a security testers resources and time in analysing whether the prob-

lem really exists or not. If complete confidence is placed in the security assessment

tool, then resources could be wasted in testing and verifying flaws that do not exist.

False Negatives: A false negative is a vulnerability that exists, but is not reported by the

tool. This can happen even if the tool’s documentation or vulnerability database

state that the vulnerability is checked for. False negatives are more dangerous than

false positives as it gives the testers a false sense of security in a vulnerable system.

Inconsistent Results: Inconsistent results occur if we run a tool against the same system

several times and do not get the same results. The danger with inconsistent results

is that a tester never can be sure whether the tool needs to be run several more

times to ensure that he or she has found all the vulnerabilities the tool is capable

of finding. Not only the tool is to blame for inconsistent results, the environment

where the tools are ran can cause this, e.g. because of network load.

These problems arise from combinations of limitations in the tools:

Software bugs: All software has bugs. The testers should be aware of this and not place

too much trust in the tools.

Poor data collection: The data collected by the tool may not be sufficient or appropri-

ate to conclude whether a vulnerability exist or not. Another source for poor data

collection is the location in the network that the test is done, sufficient data are not

always available.

Poor data analysis: Making inference about existence of a vulnerability even with enough

data collected is not easy, and the data analysis techniques in tools can be poor.

Insufficiency of tests: Tools may claim that they test for the existence of a vulnerability,

but does not carry out several possible tests for that vulnerability. And of course

some possible vulnerability tests that exist can be missing in the tool used.

Incomplete architecture: Some vulnerabilities must be tested from several locations

and coordination between locations. Few of the current vulnerability tools use more

that a single location in the network to generate tests from.

Not only do these technical problems arise when using different kinds of tools. Tools,

e.g vulnerability scanners, do not help in building an attack for the penetration tester,

this must be done manually. When a custom attack is needed to be build the tools also

have shortcomings. For example custom vulnerabilities which may arise in system logics

are close to impossible to find with tools that rely on finding known or at best specific

classes of vulnerabilities. Building manual attack hypotheses is therefore often essential.

With the help of methodologies, attack modelling and human judgement many of

these limitations can be reduced.

17

Using Coloured Petri Nets in Penetration Testing

3.3 Flaw Hypothesis Methodology

The first work done on penetration testing in the early 1970s resulted in the flaw hypoth-

esis methodology. It was developed by Richard Linde [42] and Clark Weissman [76]. The

question behind this methodology was; how does one test for flaws that may lead to

penetration and eventual control over the entire system [43]? This methodology and its

ideas are used in almost every approach to penetration testing. RFC 2828 [63] defines

the flaw hypothesis methodology as:

An evaluation or attack technique in which specifications and documen-

tation for a system are analysed to hypothesise flaws in the system. The list

of hypothetical flaws is prioritised on the basis of the estimated probability

that a flaw exists and, assuming it does, on the ease of exploiting it and the

extent of control or compromise it would provide. The prioritised list is used

to direct a penetration test or attack against the system.

The classic example of the flaw hypothesis methodology usage is an article by Attanasio

et al. [3]. Here a team of testers use the flaw hypothesis methodology to find flaws in the

VM/37014 operating system. Here the source code of the operating system was the only

available tool for the penetration testers. The thorough penetration test generated 880

flaw hypotheses where 76 of them were studied in detail and 35 flaw hypotheses were

confirmed in the operating system. During the process the penetration testers clearly ben-

fited from following the flaw hypothesis methodology for saving resouces and providing

structure.

The flaw hypothesis methodology has been refined and has become a key method for

performing penetration testing. Its ideas are found in most of the current penetration

testing methodologies, as the ones described in Section 3.1. Because this methodology is

used in this thesis, a more detailed description of the methodology is now presented.

3.3.1 Flaw Hypothesis Methodology Theory

The methodology introduces the word "flaw". It is a subtle distinction between a flaw and

vulnerability. Apprehend a flaw as a specific occurrence of a specific vulnerability, i.e. a

penetration test discover a flaw, which then can be generalised based on the vulnerability

that was used to hypothesize the flaw. The terms are often used interchangeable.

Bishop presents the Flaw Hypothesis Methodology in a four step method in [6] which

is equal to Weissman and Linde’s original methodology presented in [42, 77, 78]. Bishop’s

presentation of the methodology will be used and further refined in this thesis:

1. Information gathering.

2. Flaw hypothesis.

3. Flaw testing.

4. Flaw generalisation.

There are some steps that are natural to add in this presentation, namely a goal

definition and flaw elimination. Originally goal definition is left out of the listing of the

methodology, but is presented as a background study by Weissmann [78]. Since goal

definition is an important part of testing it is added to our listing. Flaw elimination is a

14IBM Virtual Machine Facility/370

18

Using Coloured Petri Nets in Penetration Testing

natural part that is done after flaws have been verified in a penetration test. This step

was also added as an extra step by Weissmann in 1995 [78].

The following list briefly explains each step in the complete flaw hypothesis method-

ology [42, 77, 78]:

1. Goal definition. The test starts with setting the scope, establishing ground rules

and objectives, and defining the purpose of the test. Overall goals may be time

limit of the test, number of flaws to be found, etc.

2. Information gathering. The system’s functioning, design, implementation, operat-

ing procedures, and its use are examined as thoroughly as possible. Limited by

the information available in the test scenario. A firm understanding of the target

system is important.

3. Flaw hypothesis. The knowledge from the former step is used together with knowl-

edge of vulnerabilities in other similar systems to hypothesize flaws of the system

under study.

4. Flaw testing. The hypothesised flaws are tested. If the flaw does not exist or is

unexploitable, the tester go back to step 2. If the flaw is confirmed, they proceed

to the next step.

5. Flaw generalisation. The testers try to generalise the vulnerability and find similar

ones. Other hypotheses may be yielded from successful tests. The new understand-

ing is used in an iterative process back to step 2.

6. Flaw elimination. This step proposes how the found flaws can be patched or fixed,

so that they cannot be exploited again. Here the testers must have in mind that

fixing a flaw may introduce additional flaws.

Flaw Generators

Cerebral Filter

Rejected
Hypotheses

Feasible Hypotheses

Live Test Sieve

Desk Checking

Flaw GeneralizationFlaw Elimination

Vulnerabilities

Confirmed Flaws

Figure 8: The flaw hypothesis methodology [77, 78]

Figure 8 is a reproduction of the original Figures by Weissman with slight modifica-

tions. A collection of vulnerabilities is used to generate flaws, this is typically done with

the use of a vulnerability database [71]. Other information is also used to generate flaws

like system design documentation, source code, user documentation, and results of unit

and integration testing. The level and amount of information depends on what is avail-

19

Using Coloured Petri Nets in Penetration Testing

able under the test, e.g. if the test is white, grey15, or black box. This is the second step,

information gathering. The flaw generator is then used to hypothesize flaws. The cere-

bral filter applies human judgement to the hypothesized flaws. These filters evaluate and

rate each flaw in terms of its probable existence and how significant it is. Now we are

in the flaw hypotheses step. The feasible flaws from the cerebral filter are desk checked

and tested live in the live test sieve if necessary. Here the mapping of the flaw into a test

happens, which can be a difficult task. This is the flaw testing step. Flaws that are found

unlikely or non-existent are rejected, preferably before live testing. Now we enter the

flaw generalisation step. Confirmed flaws in the tested system are generalised, that is an

assessment of the found flaws is done, the reasons why they exist are explored and the

flaws are analysed for patterns that may be repeated other places in the system. The flaw

elimination stage considers the generalised flaws and recommends ways to repair the

flaws, which is flaw elimination. Another possible outcome of this step are generation of

new flaws, these are used to further hypothesis flaws.

Any penetration testing process is unavoidably dependent upon the flaw hypothe-

sis methodology model [45]. We can see many similarities with other methods used in

penetration testing, as discussed in the beginning of this Chapter.

3.3.2 Methodology Limitations

The job of following the steps in the flaw hypothesis methodology is hard work and can

fast become over-complex.

The traditional method of hypothesising flaws is with the use of brainstorming of

some kind. Brainstorming is the method proposed in the original flaw hypothesis method-

ology [42, 77, 78]. The expertise using the target system and experience in security

testing is important to yield good results [29]. Using brainstorming is important in any

penetration test, but systematising and visualising the attacks in a more formal manner

are useful.

Gupta and Gligor, [25], argue that the flaw hypotheses in the flaw hypothesis method-

ology are generated in an ad-hoc manner, this because there is generally no systematic

ways to generate and test flaw hypotheses are available in the methodology. Knowing

the ways to reach and exploit the flaw is nontrivial. The knowledge and experience of

the testers are vital. Gupta and Gligor argue that the abstraction at which the method-

ology is meant to be used is too high. The flaw hypothesis methodology can be said to

only provide high level guidance for derivation of actual penetration attempts. Defined

attack models and tools to help the process will make it easier to use the flaw hypothesis

methodology. In fact in the same article by Gupta and Gligor, they propose a theory on

how to formalise the notion of penetration-resistant systems.

The flaw generalisation step makes inferences about the existence of a vulnerability

based on the results on the test for a flaw. Flaws found are often tested manually, espe-

cially to verify results that may be returned by used network security assessment tools.

Relying on the results from such tools can give false positives, false negatives and incon-

sistent results, as discussed in Section 3.2, that may reduce the reliability and validity of

a penetration test.

The coloured Petri net attack modelling approach presented in Chapter 5 will try to

15Grey box testing represent a test with system knowledge in the area between a fully black or white box
testing. Most penetration tests is grey box [24].

20

Using Coloured Petri Nets in Penetration Testing

address some of these limitations.

3.4 Fault Tree Analysis Based Methodologies

This Section briefly presents an alternative methodological approach to the flaw hypoth-

esis methodology, which is largely based on fault tree analysis [53]. Today attack trees

[61] and threat trees [68] are widely used, both are descendent from fault tree analy-

sis. The tree structure is helpful in organising penetration tests, and is considered as an

alternative to the flaw hypothesis methodology, however they both do have properties

in common. Trees provide a goal oriented methodology to system penetration testing,

mostly focused on black box testing.

3.4.1 Fault Tree Analysis

Fault trees was originally developed for system analysis of the Minuteman strategic mis-

sile system [40] in 1962. Fault trees are widely used in dependability analysis [53]. A

fault tree consists of all sequences of individual component failures, which could make

a system stop functioning. The root node of a fault tree is often referred to as system

failure. Each level in a fault has events that are divided into combinations of sub events

using logical gates. The detail level is then extended from parent nodes and at the end a

complete tree present all the possible ways to system failure.

Fault tree analysis have been used in many different systems [53], e.g. in complex

systems like space shuttle design. Attack trees can be seen as a refinement of fault tree

analysis for attack modelling in penetration testing.

3.4.2 Attack Trees

Attack trees offer a goal-oriented perspective on the attacks [61]. Threat trees [68] are

treated as the same as attack trees in this thesis, the distinction between them are small.

It can be difficult to limit the trees to just discussing threats and not drift away into

specific attacks [48]. The attack tree formalism is mostly used in penetration testing,

where the system attacks are the main focus.

In an attack tree the goal of the test is the root node. Thus attack trees are mostly

modelled as a top-down approach. Sub-goals are then represented at the next level. This

is repeated until a detailed tree is created on how to attack the system under scrutiny.

Gain privledge
access to Web server

Exploit Web server
vulnerabilities

Probe TCP/IP
stack for OS

characteristic information

Access sensitive
data from priveledge

account on Web server

Access sensitive
shared recources

directly

Scan OS services’
banners for OS

identification

Identify Web
server OS and type

and

oror

Figure 9: Attack tree example

A small attack tree is described in Figure 9. Here an attack of a web server to gain priv-

21

Using Coloured Petri Nets in Penetration Testing

ilege access is sketched. As we can see from Figure 9 the tree is build with disjunctive (or)

and conjunctive (and) node relationships. Disjunctive means that the attack or action is

accomplished if any of the actions described by its children are accomplished. Conjunc-

tive nodes however mean that both child actions or attacks must be accomplished before

the attack can be done successfully.

Attack trees have been refined and applied to many different penetration testing cases

[48, 49, 70]. Examples of refinement are assigning values to the leafs of the tree, e.g.

attack cost and probability of success weighting, which can be propagated up the tree,

thus minimum cost or maximum probability of reaching the root node can be calculated.

22

Using Coloured Petri Nets in Penetration Testing

4 Related Work

This Chapter present related work in the topic of attack modelling. The fault tree based

methodologies presented in Section 3.4 offer a graph based attack model, however this

methodology is not closely related to the coloured Petri net attack modelling presented

in this thesis. However some research that refine the attack tree approach are presented

below. There are different kinds of specific attack graphs that are more closely related to

this thesis’ approach. The third and closest related graphical attack model is done with

different kinds of Petri nets. All these graphical models are more or less in family, that

is they use different kind of graphs to visualise an attack. There are also other attack

models, but these three models represent the most relevant for our research.

Attack modelling is not only used in penetration testing. Other areas of usage are in

intrusion detection and computer forensics. Intrusion detection is the area where attack

modelling is closely related to how it is done in penetration testing, mostly because

intrusion detection and penetration testing both focus on how the attack is performed

and what is done under the attack. The different relevant research are now presented.

4.1 Tree Based Attack Modelling

In Section 3.4 we describe the attack tree methodology for penetration testing. The

methodology uses a graphical tree to show how the penetration tester can approach

an attack or penetration attempt to a system, it is therefore somewhat related to our

coloured Petri net based attack modelling approach. However the detail level of which

the trees are meant to be modelled are not equal to the coloured Petri net approach,

for example the actual behaviour of the attackers and the functioning of the attack are

not modelled in trees. Some refinements of attack tree modelling have been done to

more closely model the attack process and the attacker’s actions. Daley et al. [13] in

2000 presented an extention to the attack tree paradigm that supports incident correla-

tion, analysis, and prediction, but there are no possibilities in their model to simulate or

execute attacks.

The attack tree structure has limitations in modelling sequence or dependency be-

tween conjunctive and disjunctive nodes, e.g. it is not always clear in what order nodes

must be reached or done. Also there are often good reasons for nodes to be both disjunc-

tively and conjunctively connected. Sequence and dependencies can be better visualised

by other types of graph modelling. The attack trees ability to model sequence and depen-

dency is a problem when closely modelling information system attacks, as McDermott

[45] points out.

The structure of the attack tree can be difficult to edit and extend dynamically. Adding

a conjunctive branch to an existing disjunctive node can require restructuring existing

23

Using Coloured Petri Nets in Penetration Testing

child nodes, which can be very inconvenient and confusing. The structure of a tree also

make it difficult to model cycles [57], e.g. reuse of graph strucures in attacks.

Another difficulty with attack trees is that both actions and resulting states are rep-

resented in a single node. This can lead to unclear node labels [65]. In Figure 9 back in

Section 3.4 the root node gain privileged access to web server express that an attacker

both gain capabilities and has to perform some action achieve it. However it can be hard

to clearly define both the actions and capabilities in one node, or even differentiating

between them. Attack trees and fault trees also miss the possibility to simulate attacks.

4.2 Attack Graph Modelling

Another way to model attacks is with use of simple directed graphs. One approach to

this has been developed by Philips and Swiler [57] in 1998. They use a graph based

approach to help in a network vulnerability analysis similar to a penetration test. Their

weighted graph focuses on finding the easiest attacks in a network. It is meant to go

beyond typical scanning tools that check laundry lists of services or conditions to find

vulnerabilities. The graph type in use is a simple graph with one type of node. It is used

in a similar way as attack trees, where the root node is the goal and sub nodes are sub-

goals. The edges represent transitions between the nodes. The graph is primarily aimed

for use in automated network analysis of large networks, using a database of known

attacks. Graphs can help in identifying linked attacks that are potentially more harmful

than individual attacks and it can model cyles in attacks. The models are however missing

possibilities to model states and concurrency in attacks, and a possibility to simulate

attacks, i.e. execute models.

4.3 Petri Net Attack Modelling

The main source for Petri net attack modelling comes from McDermott [45], published

in the year of 2000. He identifies limitations and disadvantages in attack tree modelling

and propose the use of Petri net attack modelling, the nets are called attack nets.

Owner seated at bugged
table in restaurant

Accomplice discussing
safe combinations

Listen to conversation

Get owner to state combo

Combo eavesdropped

Conversation being
recorded

Figure 10: Attack net example [45]

McDermott uses simple disjunctive Petri nets as a mechanism for structuring the pen-

24

Using Coloured Petri Nets in Penetration Testing

etration testing process. The attack nets represent larger-scale states of the system under

attack. In this model, attack steps are represented by places similar to nodes in attack

trees. Transitions are used for modelling the attackers actions which extends the expres-

siveness of this model compared to attack trees. Figure 10 show a simple example taken

from McDermott’s article [45]. As we can see the tokens represent current control states

of the attack, that is tokens represent a marking (state) of the attack, and the movement

of the tokens represent every step the penetration tester must take in order to achieve

his objective. The net uses the Petri net or place/transition net formalism without addi-

tional constraints (as described in Section 2.2). The transition C�HVK4aELMIoa�DpUMDMIEq�LMN�KMOGa�H4DMI
in Figure 10 will only fire if both input places have a token present, this implies that only

then can the attacker successfully record the conversation in progress and hopefully get

the owners safe combinations.

The attack net is used as a part of penetration testing with the flaw hypothesis

methodology where the attack net is developed during the flaw hypothesis step in the

methodology. The nets are used to design the attacks. The development is done itera-

tively and McDermott recommends building initial subnets and then complete the attack

net by combining these initial subnets. The subnets are single commands or actions that

take a product or system into an undesirable state, represented by two places connected

by a single transition.

The mechanism in the attack net provides the tester with the ability to model

• concurrency and attack progress in the form of tokens

• intermediate and final objectives as places, and

• commands or inputs as transitions.

As note by McDermott, the attack net mechanism is not intended to model actual be-

haviour of attackers and does not provide the requisite level of detail for such a process.

This thesis will further refine the McDermott attack net mechanism.

Another example of usage of Petri nets in attack modelling is Steffan and Shcumach-

ers published work from 2002 on collaborative attack modelling [65]. They present a

Wiki Wiki Web system1 to enable groups of persons to collaborate on the same attack

models. The models make use of conditions (corresponding to places in Petri nets) and

transitions, both different types of web pages in the Wiki Wiki Web system. Arcs are sim-

ply hyperlinks between the Wiki Wiki Web pages. The Petri net provide a solid framework

for their collaborative attack model. However they do not use features in Petri nets like

tokens and execution possibilities.

4.3.1 Coloured Petri Net Attack Modelling

Literature on usage of high-level Petri nets, like coloured Petri nets, to model attacks is

scarce. However some studies have been done.

A small article by Zhou et al. [80] published in 2003 discuss coloured Petri net based

attack modelling. They identify limits in attack tree modelling and explain how to map an

attack tree to coloured Petri nets. They also argue that coloured Petri net attack models

can be beneficial for identifying controlling functions against modelled attacks. This can

be used for intrusion detection systems to allow active response and defence.

Kumar and Spafford [37] and Helmer et al. [26] uses coloured Petri nets to model in-

1The WikiWikiWeb �������
� ����k,rE#jk�)'-4��k"90$"�"!4$'14$"s"t4$'1_$'t4$614$'t*<�7 (Visited May 2005)

25

http://c2.com/cgi/wiki?WikiWikiWeb

Using Coloured Petri Nets in Penetration Testing

trusion detection for intrusion detection systems. Kumar and Spafford developed a model

with pattern matching for intrusion detection that uses coloured Petri net attack patterns

in 1994. Helmer et al. presented their multi-agent intrusion detection system which uses

a coloured Petri net design to detect attacks in 2002. Agents are modelled as places or

transitions. Hierarchical coloured Petri net models are used for correlation of individual

attacks that detect intrusions. Token colours contain placeholders for the objects of an

attack, e.g. target and source address. Transitions use logical conditions to make use of

these placeholders. The coloured Petri nets are designed from fault trees (see Section

3.4) and must be build according to a framework so it can be implemented into the

intrusion detection system. A difference found in attack modelling within the intrusion

detection domain as opposed to in penetration testing, is that intrusion detection mostly

focus on classes of attacks and not specific attack scenarios.

Stephenson, in [66, 67] from 2003/2004, uses coloured Petri nets to model attacks

for use in computer forensics. E.g. to model how a worm or virus infection has been

spread through an enterprise network structure. This approach is not too relevant for

attack modelling in penetration testing.

26

Using Coloured Petri Nets in Penetration Testing

5 Using Coloured Petri Nets in Penetration
Testing

The penetration testing approach presented here is based on the concept of coloured

Petri nets as a methodical way of hypothesising and analysing attacks on an information

system and the ideas of the flaw hypothesis methodology as a guideline for the penetra-

tion testing process. The steps in the flaw hypothesis methodology, see Section 3.3, are

used and coloured Petri nets are designed to visualise and simulate hypotheses of system

vulnerabilities. Results from vulnerability assessment tools (see Section 3.2), like Nessus,

are meant to be used to both find individual vulnerabilities and help with the process of

verifying the hypothesised vulnerabilities, e.g. through NASL (see Section 3.2.1).

5.1 The Overall Model

Figure 11 shows where in the original flaw hypothesis methodology Figure by Weissman

[77, 78] the coloured Petri net will be developed.

Flaw Generators

Cerebral Filter

Rejected
Hypotheses

Feasible Hypotheses

Live Test Sieve

Desk Checking

Flaw GeneralisationFlaw Elimination

Vulnerabilities

Confirmed Flaws

Coloured Petri net
generation

Figure 11: The flaw hypothesis methodology with coloured Petri net generation (marked with gray
background)

Figure 12 shows our use of coloured Petri nets as an attack model together with the

flaw hypothesis methodology steps. This approach is similar to McDermott’s high level

organisation in [45]. The flaw hypothesis methodology is done iteratively and the tester

will have to do the flaw hypothesis steps several times when found flaws are investigated.

This is also what Linde [42] and Weissman [76, 77, 78] proposed in the original flaw

hypothesis methodology without a graphical attack model. During the iterative process

27

Using Coloured Petri Nets in Penetration Testing

the coloured Petri net attack model are created to help understand, control and simulate

the hypothesised system attack.

In the iterations of the methodology the information gathering step is the most im-

portant, which is true in any penetration test, without target knowledge it is almost

impossible to find a valid vulnerability. In flaw hypothesising, flaw testing and flaw gen-

eralisation it can always happen that we need more information and thus we must iterate

back to the information gathering step. Even back to other steps if that is more accom-

modated. The coloured Petri net attack model will be developed within the steps.

Goal definition

Information gathering

Flaw generalization

Flaw elimination

Flaw testing

Flaw hypothesis

No

More detail?

More detail?

More detail?

No

No

Yes

Yes

Yes

Coloured Petri net attack
model development

Figure 12: Overall methodology for using coloured Petri nets in penetration testing

5.2 Motivation for Coloured Petri Net Attack Modelling

Attack modelling is based on taking the viewpoint of an attacker. This is also true in

penetration testing. Attack modelling together with penetration testing give possibilities

of modelling advanced attack scenarios and have close to full control over the test in

progress. Especially when modelling attacks with coloured Petri nets we gain the advan-

tage of modelling attacks where the mental image capacity of the penetration tester is

breached.

28

Using Coloured Petri Nets in Penetration Testing

The main quality of an attack model is that it must characterise every step of attacks

accurately and point out how the attacking process continues [70]. The model will help

analyse how an attack might be accomplished through attack paths [68]. The attack path

is a route from one condition to another. Different methods exist for modelling attacks,

see chapther 4. However in this thesis coloured Petri nets are explored for the modelling

purpose, which has mechanisms for detailed modelling.

5.3 Coloured Petri Net Attack Model

Petri net as an attack model are both state and action oriented, which is clearly ad-

vantageous when modelling computer attacks. Places represent attack or system states.

Transitions represent actions, commands or attacks. Put in another way the places are

the passive components, while transitions represent the active components in the model.

Tokens show the progress of the attack and carry colours that are used under execution

of the net.

McDermott [45] and Zhou et al.[80] both specify two different arc/transition rela-

tionships used in their Petri net based attack models. The two different basic node rela-

tionships in Petri nets are disjunctive and conjunctive. Figure 13 show these relationships

modelled in Petri nets. Disjunctive relationships means that one of the former places must

be reached by the token before state change can happen or the transition can be fired,

or that one of the output places receives tokens after firing. Conjunctive means that both

of the former places must be visited before the state change can happen, or that both

output places of a transition receives tokens. Both similar to what is used in attack trees,

as shown in Section 3.4. Figure 13 show these relationships.

(a-1) (b-1)

(a-2) (b-2)

Figure 13: Disjunctive (b-1,b-2) and conjunctive (a-1,a-2) Petri net relationships

29

Using Coloured Petri Nets in Penetration Testing

By adding colour to Petri nets, more detail can be inserted into a net based attack

model. Because each place has different colour sets (types), modelling of attacks can be

done in much greater detail. The colour of the tokens in one place may differ, and is not

limited to a single value. A simple example that shows this can be with the declarations

as follows (see Appendix A for net inscription and declaration explanation):

u*v a�wGX
L u UMDExVD_WENpKMLGa�K�yzSELV{�H�I�H0a�H_DMI�K v y
UMD�xVDMWEN|Y�O�P
}
OGT�aVa�O
U4~��oR�H�aV��K*P
}���\��������G����K�P
}���\0�E���0�����
UMD�xVDMWEN|Y�O�P
}
OGT�aVa�O
U4~�YVLExVL�U0aELVSz��Y�O0P
}
OMT�a�a�O
U0~��
u*v q�OMN�H_OM}�xGL�SEL
UGxVOMN�OGa�H_D_I�K v y
q�OMN�OMa�a�O
U4~���Y�O0P�}
OGT�a�aEO
U4~��
This shows an simple attack on a Samba1 server. The server have been found vulnerable

to two different vulnerabilities; a buffer overflow (Bugtraq ID 72942) and a race con-

dition (Bugtraq ID 71013). Figure 14 show the initial stages of how this attack can be

modelled.

smb server atttack

SambaAttack

1‘(smbBID7294)++1‘(smbBID7107)

attack initiated

AttackSelected

select attack

launch RC
attack

[attack=smbBID7107]

launch BO
attack

[attack=smbBID7294]

attack

attack

attack

attack

Figure 14: Coloured Petri net example for Samba attack

The place K�P
}�KMLGN�q�LMN|OGa�a�O
U0~ has the colour set Y�O�P
}
OGT�aVa�O
U4~ with the possible

colours K*P
}���\��������G� and K*P
}V��\0��������� . Of course the naming of these definitions can be

just as the penetration testers wish, the most important is that they are good mnemonic

names that are easy to understand [31]. The colour sets can hold different objects of an

attack, e.g. attack type, target host, source host and others, or they may also hold objects

that are not directly a part of the attack, e.g. process states, system status information

and others. The colours used here represent attack type or what vulnerability that is

going to be exploited.

1Samba provide file and print services to SMB/CIFS clients, see �������
� ���"!�!�!
#jB,/6-87*/E#),+�9 (Visited May 2005)
2 �������
� ����B,<*k.2�+0$6��l�(*)�k.2�BV#jk�)6-4�"74$.:*����r���� (Visited May 2005)
3 �������
� ����B,<*k.2�+0$6��l�(*)�k.2�BV#jk�)6-4�"74$.:*�����"��� (Visited May 2005)

30

http://www.samba.org
http://securityfocus.com/bid/7294
http://securityfocus.com/bid/7107

Using Coloured Petri Nets in Penetration Testing

Different actions or processes can easily be modelled within the coloured Petri net,

e.g. the attacker’s actions and the relevant workings of the attacked system.

The two tokens in the above example, one with the colour K*P
}���\0�������M� and the other

K�P
}���\0�E���0��� can take different directions in the coloured Petri net and change in both

amount and colour. This can be manipulated by arc expressions and transition guards

(see Section 2.3). The arc expressions can control which tokens that are removed from

input places and which is added to output places. The transition guards are used to con-

trol the enabling by Boolean expressions. In Figure 14, guards are used on the transitions

xGOMW�I�U0�o[���OGaVa�O
U4~ and xGOMW�I�U0���
�|OGaVa�O
U4~ , to make sure that the tokens are removed

and added to the correct attack path in the coloured Petri net. The last tree nodes, two

transitions and one place, represent a disjunctive relationship where tokens take one di-

rection, not both, thus guards or arc expressions are used to constrain correct tokens for

each transition.

5.3.1 Timed Coloured Petri Nets

Using timing is a feature in coloured Petri nets that can be useful in attack modelling.

Timing does appear in different computer vulnerabilities and timed coloured Petri nets

can model such attacks. The tokens in a timed coloured Petri net can be time stamped,

see Section 2.3.1.

Timing is useful as an additional constraint in attacks where order is important, e.g.

when an attack is done by multiple hosts and time is used to arrange the order, or other

types of collaborative attack scenarios. However the most useful area of the timing is

when an attack must happen between exact interleaving in a system operation time, e.g.

local race conditions and other attacks that require time synchronisation of events. For

local attacks, timed coloured Petri nets works great for modelling.

When the timing attacks are used in distributed environments it can become difficult

to model with timed coloured Petri nets, this because of the variation in time often found

when dealing with multiple agents in networked environments. Then intervals in the

modelled time can be used.

5.3.2 Interval Timed Coloured Petri Nets

The time intervals provide a mechanism to model uncertainty and nondeterminism in in-

dividual transitions. Timing-dependent attacks, particularly executed by multiple agents

in a distributed environment, can be modelled in interval timed coloured Petri nets.

Examples of relevant attacks are race conditions and resource contention attacks in dis-

tributed enviroments. Network latency and load conditions can provide significant distor-

tions in the timing and sequencing of events and actions in order to successfully exploit

vulnerability.

A simple example is presented in Figure 15, Appendix A explin the inscriptions. A

race between the injection of a forged package and a true response usually happens in a

spoofing situation. The attacker must send a forged response package to a client, before

the real server respond. Then the attackers forged package hopefully will be accepted

as a real server response by the client, that is if the system has a flawed or breakable

server authentication mechanism. As we can se from the time intervals the injection will

not always be successful, e.g. if the server response is sent between time values 2 and 3

the attacker may fail if the injection consume more time, load conditions and network

latency can be one of the causes behind the nondeterminism in the communication.

31

Using Coloured Petri Nets in Penetration Testing

attacker

Package

1‘("Malicious")

server

Package

1‘("Valid")

client

Package

send forged
reply

send
seply

str str

str @+[1,3] str @+[2,8]

Figure 15: Interval timed coloured Petri net example for Spoofing

The time intervals provide a straight forward mechanism for both simulation and

execution of the time intervals found in timing attacks. However interval timed coloured

Petri nets do use the simplified assumption of a single global time and point-value time

representations, which is not entirely appropriate for distributed where such cannot be

determined. However, for the purposes of modelling described in this thesis, the interval

time properties provide sufficient abstraction even for fuzziness of timing in multi-agent

distributed environments when used in simulation.

5.3.3 Development Stages

In the limited experience in attack modelling in this thesis, the following describe our

recommended method of developing the differnet coloured Petri net attack models, based

on the recommendations by Jensen [31]:

1. Start by identifying the most important components of the attack. This can be done

by listing objects, processes, states and actions that are vital to attack. It can also

be beneficial to categorise these components, e.g. into objects, processes, states

and actions.

2. Consider the purpose of the model and determine adequate level of detail. As many

actions may consist of a number of sub actions, we have to decide if these sub

actions are relevant to model as separate actions. E.g. preparation actions done by

an attacker may not be necessary to model in great detail.

3. Try to find good mnemonic names for objects, processes, states and actions. All nodes

in the net should be easy to understand and possible to distinguish. It becomes

much easier to model the attack if the name of the nodes makes the penetration

tester immediately remember what the nodes represent.

4. Do not attempt to cover all aspects of the attack in the first version of the model.

The detail should come naturally through the iterations in the flaw hypothesis

methodology (see Section 5.1). Starting with a simplified version of the attack

makes it easier to see where the detail in model should be.

5. Choose one and one part of the processes in the attack and try to make an isolated net

for this process. Represent each state by a place and each possible change from one

state to another by a transition. States that are identical and has the same logical

32

Using Coloured Petri Nets in Penetration Testing

properties can be uncovered and designed together.

6. Use the net structure to model control and the net inscriptions to model data manip-

ulations. It can be a good idea to use the net structures in a similar way as the

control structure of an ordinary programming language, see Figure 16 for how

to model some useful control structures. Also always having the disjunctive and

conjunctive relationships in mind is useful when modelling attacks, see Figure 13.

IF

if clause

Else
clause

If
clause

IF-ELSE

DO-WHILE

condition

loop block

WHILE/FOR

loop block

condition

Figure 16: Petri net control structures

7. Distinguish between different kinds of tokens. The tokens can represent many differ-

ent phenomenas in a net, e.g. some tokens may represent physical actions while

others represent shared data.

8. Use different kinds of colour sets. There are many possible colour sets that can be

33

Using Coloured Petri Nets in Penetration Testing

used in coloured Petri nets, e.g. indexed sets, Cartesian products and lists. Enumer-

ation colour sets are used to name objects by means of mnemonic names. Indexed

colour sets are similar, but we can have a class of objects which can be denoted by

class name and object number. Product and record colour sets are used to repre-

sent sets of attributes, e.g. the source IP, destination IP, and the data of a message.

Union colour sets are used when the same place may contain more than one kind

of tokens. List colour sets can be used in the same way as arrays. CPN ML4, which

is the modeling language used in coloured Petri, based on standard ML5 , explain

the complete notations.

9. Augment the individual process net by describing how the process communicates/in-

teracts with other processes. This can be done by merging transitions or places. It

can be necessary duplicate both places and transition to make it work.

10. Investigate whether there are classes of similar processes. When this is the case it

is often convenient represent these by a single net, which has a token for each

process. The colour of the token identifies the process, while the position tells the

state of the process or attack.

11. Combine the subnets of individual processes to a large attack model. At the end, that

is the last iterations of the flaw hypothesis methodology, we combine loose subnets

into the complete attack model. To do this it is possible to use hierarchical coloured

Petri nets, however this is not covered by this thesis and are mostly used when the

modelled system are very large and complex. Simply connecting the subnets with

conjunctive and disjunctive relationships in mind can build the complete attack

scenarios from subnets of individual processes. These connections can be done

with equal transitions or places.

12. Making a coloured Petri net attack model is very similar to the construction of a

program. Qualities of good programming are also desirable qualities of coloured

Petri net modelling [36].

All these steps represent good guidelines for coloured Petri net attack model devel-

opment. They are not meant to be followed strictly, but they hopefully make the attack

model development within the flaw hypothesis methodology more unconstrained.

5.4 Main Benefits

The main benefits with using coloured Petri nets combined with the flaw hypothesis

methodology in penetration testing are:

• The model are graphically made and presented. An attack is intuitive to under-

stand when represented graphically in a coloured Petri net.

• Coloured Petri nets have well-defined semantics which unambiguously defines the

behaviour of an attack modelled.

• We can model concurrency and attack progress with tokens.

• Coloured Petri nets builds upon well defined mathematics and a programming

4Coloured Petri Net Modelling Language, see �������
� ���"!4$'14$M#d:�/�$e-G$M#;/,2
#d:�18�*k.��&��8)�)�h8B*5,��<�h"�8�*k.��&8i6-4h�#d!4$'14$
(Visited May 2005)

5The Standard ML Basis Library �������
� ���"!�!�!
#jB"��/,&�:�/�+�:.-4h�#),+�98�,��/*B8$,B�� (Visited May 2005)

34

http://wiki.daimi.au.dk/cpntools-help/cpn_ml.wiki
http://www.standardml.org/Basis/

Using Coloured Petri Nets in Penetration Testing

language which make it possible to model diverse attack scenarios.

• Coloured Petri nets model both states and actions. This is in contrast to other

graphical attack models and system description languages which describe states

and actions the same way or only one of them.

• Intermediate and final stages and states of the attack are modelled as places.

• Commands, inputs or actions are modelled as transitions.

• Individual nets can be reused in larger attack scenarios.

• Coloured Petri nets are stable towards changes in the model. Different subnets

describing different sequential processes can be combined into larger coloured

Petri nets.

• Timed coloured Petri nets are useful for modelling penetration attempts that re-

quire timing.

• Interval timed coloured Petri nets can introduce fuzziness into the model, this

helps us to model more advanced timed attack scenarios.

• The model can be executed. Simulations make it possible to debug large attack

scenarios while the attack is being hypothesised and the complete attack is clearly

visualised through net execution.

• Coloured Petri nets refine the flaw hypothesis methodology.

35

Using Coloured Petri Nets in Penetration Testing

6 Scenarios

This Chapter will present three penetration scenarios that use coloured Petri nets for at-

tack modelling and the flaw hypothesis methodology as penetration testing methodology,

as described in Chapter 5. The reason for these three scenarios is to illustrate the ben-

efits of using the proposed approach with the coloured Petri nets. One scenario without

timing, one with ordinary timing, and the last with interval timing. The scenarios are

not live penetration tests, they are arranged cases that are chosen to demonstrate the

approach. They are not meant to be quantitative experiments, this has not been done in

the thesis work, as described in Section 1.6.

Some assumptions are made regarding information available during the penetration

test scenarios, the focus is on the key elements of the attacks that are useful for demon-

strating the theory. The assumptions are stated in each scenario.

All verification testing is done in a controlled environment. A public beta version of

VMware Workstation 51 is used as platform for various hosts. To design and simulate the

coloured Petri net attack models, CPNtools2 [4, 58] have been used. The vulnerability

scanner Nessus [15] have also been used to compare and verify results. Other necessary

software used are all based on open source.

6.1 Scenario 1 – SQL Injection

This scenario is based on typical web application input validation vulnerability. The sce-

nario study is similar in many of today’s web application vulnerabilities that are reported

daily at Bugtraq and other vulnerability reporting sites. It is a simple attack that use

coloured Petri nets as an attack model.

Here an input validation vulnerability in PHP-Nuke3 version 6.0 are exploited. The

input validation vulnerability has been patched in newer versions of PHP-Nuke.

Goal Definition

The overall goal is to gain administrative privileges to the content management system.

The penetration tester has an ordinary user account to the system, meaning he can post

comments etc. to articles presented in the system.

Information Gathering

By visiting the web site in question much information can be gathered. The content

management system in use is the open source application PHP-Nuke. Therefore docu-

1VMware Workstation is a software for running virtual machines and networks, see�������
� ���"!�!�!
#dn.-8!*/�+�<E#jk�)'- (Visited May 2005)
2CPNtools are a reputable tool for editing, simulating and analysing coloured Petri nets, available at�������
� ���"!4$'14$M#d:�/�$e-G$M#;/,2
#d:�18�*k.��&��8)�)�h*B (Visited May 2005)
3PHP-Nuke is a popular open source content management system, available at �������
� ���"������&�2�1*<E#),+�9*� (Vis-

ited May 2005)

37

http://www.vmware.com
http://wiki.daimi.au.dk/cpntools
http://phpnuke.org/

Using Coloured Petri Nets in Penetration Testing

mentation and source code is freely available on the Internet. In this scenario, searching

vulnerability databases are useful. PHP-Nuke, like most web applications, has many vul-

nerabilities reported.

The version of PHP-Nuke used is version 6.0. This version is vulnerable to SQL injec-

tion in the search module of the web application (Bugtraq ID 68874). This vulnerability

may be exploited to cause sensitive information to be disclosed to a remote attacker.

From a simple code review and web searching we can determine that each user’s login

credentials are stored in a SQL database. The passwords are stored using a MD5 hash

function. For session handling and ease-of-use, the user credentials (username and MD5

hashed password) are stored in a client-side cookie, as many web applications do.

Flaw Hypothesis

This is the step where flaws are hypothesised and attacks are modelled using coloured

Petri nets. This step is done iteratively with the flaw testing and generalisation step until

enough detail is modelled in the coloured Petri net, as described in Chapter 5.

There are some obvious approaches that may be possible to reach the overall goal of

this penetration study; brute-force guess administrator credentials, elude the authenti-

cation and/or identification mechanisms, or acquire valid administrator credentials. The

former method seems possible through the reported vulnerability found during the in-

formation gathering. If the password hash of a privileged user can be extracted from the

backend database we can build a cookie with administrator credentials and successfully

reach the overall goal. So the operative flaw is that an attacker can Figure out an admin-

istrator’s password hash through SQL injection [28], and then build a valid client-side

cookie, that permits the attacker to login as the administrator.

Starting by hypothesising some key places and transitions are useful, including control

states that are important to reach during the attack:
Key places: Key transitions:
OGS4P`H�I�HGK4a�N�OGaEDGN�W�K_LGNVI
O0P�L GW�LGN�w|SEOGa�O_}
O
KML
X�O
K�K0R
DMNES��
O
K0� xVDMF�H�IoR�H0aV��OVS0P`H�I�HVK0a�N�OGa�DMN|U4NELVSELMIEa�H_OEx�K
qEOEx
H4S|OVS4PbH�I�HVK4aVN�OGa�DGNoU4N�LGSELMIEa�H4OEx�K
X�N�H0q�HMxGLGF�LVS�O�U�UML
K�K

Then we hypothesise initial subnets from single commands or actions that can be used

under the attack. Most individual actions can be divided into such subnets. These can be

modelled as (the smallest possible nonempty) disjoint Petri net [45], that is two places

connected by a single transition. In a real world scenario with several penetration testers,

such nets can be developed by individual team members or in brain storming sessions.

The idea is that these subnets then can be correlated in complete attack coloured Petri

nets, as described in seciton 5.3.3.

Subnet 1:

• ¡EOEx
H4SoOVS0P`H�I�U4N�LVS�LMIEa�H_O�x�K
• �VW�HMxGSoOMIES�W�KML�OGS4P`H�I¢UMDVDG~�H_L
• QVN�H0q�HMxGLGF�LVS�O
U�UML
KVK
Subnet 2:

• £ELG¤¢U0�
OGNoa�D�a�L
K4a
4 �������
� ���"!�!�!
#jB,<*k.2�+0$6��l�(*)�k.20BV#jk�)6-4�"74$.:*��¥�¦�¦���� (Visited May 2005)

38

http://www.securityfocus.com/bid/6887/

Using Coloured Petri Nets in Penetration Testing

• §_W
LGN�w|SEOMa�OM}
O
K_L
• [�LGa�N�H4LGq�LVS�X�O
K�K0R
DMNES��
O
K��¨U��
OGN�O
U0a�LGN
Now when key places, transitions and some initial subnets are hypothesised, we can

start to develop a coloured Petri net for the complete attack. Figure 17 show the complete

hypothesised coloured Petri net.

retrived password
hash char

Priv_information

1‘""

passwd hash

Passwd_index

1‘(0)
test hex char

Hex_index

1‘(0)

password hash
known

Credentials

admin
username

Credentials

1‘("olem")

valid admin
credentials

Credentials

privledge
access

Successful

query database
"1+or+mid(a.pwd,j,1)"[j<passwd_len]

get complete
password hash[String.size str1=passwd_len]

concatinate with
admin username

build and use
admin cookie

if substring(passwd,j,1)=substring(hex,i,1)
then str0^substring(passwd,j,1)
else str0

j

if substring(passwd,j,1)=substring(hex,i,1)
 then 1‘(j+1)
else 1‘(j)

str0

i

if substring(passwd,j,1)=substring(hex,i,1)
 then 1‘(0)
else 1‘(i+1)

str1

str1

str1str2

str2^":"^str1

str3

1‘("ADMINcookie")

Attacker Database record

Figure 17: Scenario 1 – Coloured Petri net attack model

The global declarations of the attack model are as follows (see Appendix A for syntax

explanation):
©V© a�wGX
L u UMDExVD_WEN�KMLGa�KEyªSELV{�H�I�H0a�H_DMI�K
U_DExVDMWEN�£ELG¤
«
H�IESELG¤���H�IEa��

39

Using Coloured Petri Nets in Penetration Testing

UMD�xVDMWEN�Q�O�K�K0R�S�«�H�I�SELG¤���H�IEa��
UMD�xVDMWEN�Q�N�H0q
«
H�IE{EDGN_P�OMa�H_D_I���K4a�N�H�I�F��
UMD�xVDMWENo�VNELVSELMIEa�H_OEx�K¬��K4aVN�H�IEF��
UMD�xVDMWEN|YMW�U�UML
K�K4{GW�xª�¢K4a�N�H�IEF��
©�© q�OMN�H_OM}�xGL�SEL
UGxVOMN�OGa�H_D_I�K
q�OMN�K0a�N��­�®QVN�H0q
«
H8I�{EDGN_P�OGa�H_DMI¯�
q�OMN�K0a�N
��°±K4aVN���°²K4a�N�³­�®�VN�LVS�LMIEa�H_O�x�K`�
©�© q�O�x_W
L�SEL
UGxGOGN�OGa�H4DMI�K
q�O�x���LG¤|�µ´0���0��³G��¶V·���¸���O_}�U_SELV{�´��
q�O�x�X�O
K�K0R�S �µ´*}�³G�
�8�V}�O�O�·�O���¸����_}���³V���G�
U4S���LV�VSV��·V�_}
L�´

The main working of the attack is presented by the four upper nodes in Figure 17,

which is a conjunctive relationship. The place a�L
K0ao��LG¤¢U0�
OGN contain an index to a hex-

adecimal character the attacker whish to test, associated with the colour set £�LG¤�«
H�I�SELM¤
and an initial token with the colour 0 (an integer), which is an index to the hexadecimal

character 0.

The place X
O
KVK0R�S��
O
K�� is the password record in the database which the attack wish

to read, its initial token is an index to the first character in the password. The attack

starts by guessing the first character in the password.

The transition MW
LGN�woSEOMa�OM}
O
K_L represent the SQL injection query where the attacker

can use a specially crafted SQL statement to compare the hexadecimal character 0 with

the first hexadecimal character in the secret password hash. If these characters are alike

the attacker will get a positive result from the query, i.e. a result from the search engine,

and know one character of the password hash. This is done by the arc expressions on the

output arcs of GW
LGN�woS�OGa�OM}
O�KML , with a simple H4{�¹0aG�
LMI�¹_L�x�KML control structure.

The place NELGa�N�H0qELVS�X
O
KVK0R
DGNES|U0�
OGN with the colour set Q�N�H�q
«
H�I�{�DGN_P�OGa�H_D_I contain

an initial token with an empty string colour. If the guessed hex character is equal to the

password character the token will be concatenated with the password character. As the

attacker keep on guessing/trying hexadecimal characters the complete password hash

slowly appear at the place NELGa�N�H_LMq�LVS�X
O�K�K0R
DGN�S�U0�
OGN . When the attacker has guessed

all 32 hex characters (128 bit MD5 hash) password correct the guard at the transition

 GW�LGN�woSEOGaEOM}
O
KML will stop the transition firing.

The transition F�LGa�UMD0P
X
xVLGa�LªX�O
K�K0R
DMNES will fire when a token with the complete

password string is at the place NELGa�N�H_LMq�LVS�X
O�K�K0R
DGN�S�U0�
OGN . Then when both the place

OVS0P`H�I�W�KMLMNVI
O0P�L and X
O�K�K0R
DGN�S��
O
K0� has a token, the two tokens, with the password

and username as colour, are concatenated in the output arc of the transition UMDMI�U_OGa�LMI
OMa�L
R�H�aV��OVS4P`H�I�W�KMLGNVI
O�P�L .

Now we have valid admin credentials and can build the administrator cookie and

use it in a web browser, i.e. reach the place X�N�H0q�HMxGLGF�L�O�U�UML
K�K with the colour set

YMW�U�UML
K�K4{GW�x .

Flaw Testing

Using the hypothesised coloured Petri net we can now execute an attack and verify the

hypothesised flaw to achieve administrative privileges in the web application. Doing the

same through a script or manually against the real web application produce the same

40

Using Coloured Petri Nets in Penetration Testing

results as the hypothesised coloured Petri net attack.

Flaw generalisation

The nature of this flaw comes from bad or lacking input validation. This can probably

also be found in other places in the application as well.

Another flaw or at least weakness is the way that the credentials are used in the web

application. The use of MD5 hashing of the password has small effect since we can use

this hash together with a username in a cookie. Another user’s login cookie can be used

by an adversary that can gain access without ever knowing the clear text password.

Flaw Elimination

The main flaw is the lack of input validation. All client input must be checked before

it is allowed. Newer versions of the application have better input validation, so keeping

updated are important.

Using a more secure type of authentication may be desirable. A keyed hash based MAC

function in the client-server side authentication scheme, e.g. with a HMAC, can make the

credential handling on the client more secure. Moreover a more secure authentication

mechanism is called for.

6.1.1 Conclusions and Observations on Scenario 1

This scenario is not an advance attack, but it illustrates some of the benefits of using

coloured Petri nets. The detail level necessary to illustrate the attack is available within

the coloured Petri net semantics. Concurrency of the attackers actions and the attacked

system are also shown. The tokens in the net make it easy to both build the attack and

visualise how it should be done in live testing.

In this kind of attack timing is not an issue and there are not any difficult concurrent

activities happing, which is where coloured Petri nets has additional advantages. The

complexity of the attack alone is not too high, and can be done without attack modelling

like this. However this scenario shows the working of a real attack inside a coloured Petri

net. Because of the detail level, we clearly see the workings of the net. The execution

of the net clearly show what actions the penetration testers have to do to reach the test

goal. The net structure also opens for re-use in other penetration tests which require the

same mechanisms or as a part of a larger attack model.

6.2 Scenario 2 – Consistency of Condition Checks

Consistency of condition checks or Time-of-Check,Time-Of-Use (TOCTOU) is making

sure that conditions (or validations) that existed before a system call is called are the

same when the system call is actually performed [43]. Lack of such checks may lead to

race conditions [75]. When exploiting these types of attacks timing is important. The

most common way of exploiting is automating an attack, run it multiple times, and ad-

justing timing to hit just the right interleaving.

On the UNIX platform these vulnerabilities appear frequently, the most common ones

are symbolic link5 attacks. These attacks are often used by attackers to gain or use other

users privileges locally on a UNIX system. The typical TOCTOU vulnerability is a program

5A symbolic link is a file or directory that points to a different file or directory.

41

Using Coloured Petri Nets in Penetration Testing

running EUID6 of another user, preferably root, for the duration of the race condition

exists.

This scenario show how we can use coloured Petri nets to model such an attack. This

scenario is based on a historical scenario of a TOCTOU vulnerability, described by Bishop

and Dilger [7]. This attack is a local attack on a vulnerable version of X
O
KVK0R�S in UNIX.

X
O�K�K0R�S is a utility program in UNIX that allows someone to change a password entry,

usually their own.

Goal Definition

The goal is to be able to login to the UNIX computer as another user in the system.

Information Gathering

We know that the X
O
KVK0R�S program is vulnerable to a symbolic link attack, e.g. through a

Nessus vulnerability scan. A precondition for the attack is a penetration tester with local,

nonprivileged shell access to the UNIX computer. This access could have been gained

through another attack during a larger penetration test study. This is however irrelevant

to this scenario, since its main mission is to show how to use timed coloured Petri net in

an attack that requires timing of events.

Flaw Hypothesis

The underlying flaw hypothesis here is the ability to masquerade as another user in the

system. Investigating the flawed program, X
O�K�K0R�S , the following processing steps can

either be deducted or hypothesised:

1. Open the password file, read it, and retrieve the entry for the running user.

2. Create and open a temporary file (called X�a_P
X) in the same directory as the pass-

word file.

3. Open the password file, copy its contents into XEa_P�X , and update modified informa-

tion.

4. Close password file and XEa4P
X , then rename X�a_P
X to be the password file.

The attacker will try to execute his/hers symbolic link attack between the processing

steps. Since we have no way to cause the X
O
K�K�R�S program to stop between each step, we

must time an attack. Modelling the X�O
K�K0R�S steps (transitions) in a coloured Petri net is

straight forward, see the right part of Figure 18. A more detailed model of these process

steps are of course possbile, but keeping the detail level sufficent and not to complex are

benifical when modeling, as described in Section 5.3.3.

The attacker must do some initial preparation to exploit the vulnerability:

1. Create a password directory.

2. Create a º»NV�
D
K4a 7 file in that directory.

3. Insert login credentials into º'NV�
D�K4a
4. Make a symbolic link that links to the password directory.

6Effective User Identification, e.g. the �*/*B�B.!�: process runs with real-UID = attacker and effective-UID =

root so it will be able to access ��<��8k��"�*/*B�B.!�: and change the password for the user "attacker" when "attacker"
runs the �*/*B�B.!�: program.

7 +*h�),90$'& is a UNIX software utility that allows users to log in on another host via a network, the #d+��8)�B"� file,
located in each system users’ home directory, contain the login credentials of a spesific +*h�),90$'& user.

42

Using Coloured Petri Nets in Penetration Testing

These steps are just done for preparation and can be modelled as one transition in

the coloured Petri net, with two conjunctive places as input, which is the fake login

credentials and shell access to the computer.

Now we hypothesis some key places and transitions for the attackers actions:
Key places: Key transitions:
OMa�a�O
U4~ELGNzP
W�K0a�U��
OMIEF�Lox�H�IE~ SEL�xVLGa�Lox
H8IE~�OMI�S¢U4N�L�OGaEL�I
LMRpx
H�IE~
x�H�IE~¢U0�
OMI�F�LVS

start
passwd

Process

user entry
read

Process

ptmp
created

Process

ptmp include
passord information

Process

passwd
finished

Process

login credentials

Target_user

1‘("IP USER :::::")

link to pwd
created

Attack

attacker
must change link

Attack

link changed

Attack

User access

Access

1‘("ShellAccess")

open password file
read entry for running user

@+2

create and open
ptmp in password

directory

@+2

open password
again, copy unchanged
contents to ptmp while

updating modified information

@+2

close password file and ptmp
rename ptmp to password file

@+2

create pwd/.rhosts
write credentials to .rhosts

ln -s pwd link

run passwd on
link/.rhost

delete link
create new link

@+2

next action

ProcessAction

1‘(UserEntry)

ProcessAction

1‘(PtmpCreated)

ProcessAction

1‘(PasswdInPtmp)

ProcessAction

1‘(PtmpInPasswd)

str0

1‘(LinkToPwd)

AttackAction

AttackAction

if AttackAction = LinkToTarget
then 1‘(LinkToPwd)
else 1‘(LinkToTarget)

AttackAction@+1

AttackAction

AttackAction

1‘(Start)

str1

Passwd processAttackers actions

Figure 18: Scenario 2 – Timed coloured Petri net attack model

43

Using Coloured Petri Nets in Penetration Testing

Figure 18 show the complete attack model, which use the declarations below (see

Appendix A for syntax explanation):

©�© a�wGX
L u UMDExVD_WENpKMLGa�K�yzSELV{�H�I�H0a�H_DMI�K
UMD�xVDMWEN�Z�OMN�F�LGa
«4W�KMLGN���K4aVN�H�IEF��
UMD�xVDMWEN�T�UVUML
K�Kª�¢K4a�N�H8IEF��
UMD�xVDMWEN�T�aVa�O
U4~o��R�H0aV��C�H8IE~�Z�DGZEOGN�F�LGa­�¼C�H�IE~�ZEDGQVR�S�a�H�P�LVS¯�
UMD�xVDMWEN�Q�NED
UML
K�K½�oR�H�aV��YGa�OGN�a¾�¿J�KMLGNVÀVIEa�N�wÁ�¼Q�a4P
X��VN�LVOGa�LVS­�
Q�O�K�K0R�S�\8IEQ�a_P
X��ÂQ�a_P
X�\8IEQ�O
K�K�R�S�a�H�P�LVS¯�
©�© q�OMN�H_OM}�xGL�SEL
UGxVOMN�OGa�H_D_I�K
q�OMN�K0a�N��­�®ZEOGN�F�LGa�«_W�KMLGN¯�
q�OMN�K0a�N
�µ�®T�U�UML
K�Kb�
q�OMN|TVa�a�O
U4~VT�U4a�H_D_IÃ�®T�a�a�O
U0~��
q�OMN|QVN�D
UML
KVK4T�U4a�H4DMIÃ�ÄQ�N�D�UML
K�K`�

There are two colour sets in the coloured Petri net which are timed, TVa�a�O
U4~ and

Q�NED
UML
K�K . Both colour sets use the R�H0aV� syntax where we can define a list of colours to be

used. The symbolic link state are represented by the colour set T�a�aEO
U4~ , while the system

state is represented by the colour set Q�N�D�UML
K�K . For illustrative purposes, a simplified

assumption of the net in Figure 18 is that each transition or step in the X�O
K�K0R�S process

consume the same amount of CPU time. The actions of the attacker are then modelled as

a parallel net within the same time window.

The TOCTOU or symbolic link attack starts by starting the X
O
K�K0RES process on the link

to the attackers X�R�S directory. Then when the process action has a token with the colour

J�K_LGN�ÀVIEaVN�w at the place W�KMLGN�LMIEa�NVw�N�L�OVS the attacker must change the symbolic link to

point to the target directory. Since the net are timed the token coloured J�KMLMN�ÀVIEa�NVw will

have a time stamp of 2 and the token coloured C�H�I�~�Z�DGQVRES at the place OGa�a�O�U4~�LGNzP�W�K4a
U0��OMIEF�Lox
H8IE~ have a time stamp of 1. This happens because the input arc of the place

OGaVa�O
U4~�LMNzP
W�K4a¢U0��OMIEF�Lox
H8IE~ adds 1 time unit and the transition D_X
LMIoX
O
K�K�R
DGNES�{�HMxVL
N�LVOVS|LMIEa�N�wo{�DGNoNVW�I�I�H8IEF�W�KMLGN uses 2 time units. The differences in time stamps imply

that the token with lowest time stamp will fire first, thus the transition S�LExVLGa�Lox�H�IE~
U4NEL�OGa�L�I
L_R¢x�H�IE~ will be enabled first. This is how the timed coloured Petri net contin-

ues, the model remain at a specific model time until no more transitions are enabled at

the current model time. The model time increases as the tokens change time stamp. The

attacker must change the symbolic link between every transition in the X�O
K�K0R�S process.

This attack will end when the model time has reached 7. Then the X
O
K�K0RES process is fin-

ished and the attacker has successfully changed the target users º'NV�
D
K0a file by exploiting

the lack of proper condition checks in X
O
K�K0RES .

Flaw Testing

With the attack model, we can easily build attack code that uses the same interleavings

that are necessary to reach the time windows. Firstly we have to know how much time

the X
O�K�K0R�S process consumes and then we can make a simple attack script that use the

time interleaving from the attack model. It will of course be necessary with some minor

manual time justifications in the exploit code.

When the º»NV�
D
K4a file is successfully changed the attacker can log in as the target user

to the UNIX machine, thus the goal is reached.

44

Using Coloured Petri Nets in Penetration Testing

Flaw Generalisation

This vulnerability comes from a typical TOCTOU flawed UNIX program. Similar symbolic

link attacks appear in many programs in UNIX systems. The model can be used in other

similar TOCTOU flaws, with only small justifications.

In this attack we focused on writing over some other user’s º'NV��D
K4a file so we could

login as that user. The vulnerability could be used just as easily to write over some other

system file.

Flaw Elimination

Updating the X
O
K�K0RES process will eliminate this specific vulnerability. To help avoid sim-

ilar TOCTOU problems in other applications we can try to avoid file system calls that

takes a filename as input, instead use file handler or a file descriptor.

The main recommendation for avoiding this kind of local vulnerabilities is to keep

software updated and properly patched at all time, especially programs that run with

EUID as another user.

6.2.1 Conclusions and Observations on Scenario 2

This local penetration testing exercise demonstrate the possibilities and limitations of

modelling timed attacks using timed coloured Petri nets. The complexity of such attacks

done manually can become difficult to control if several conditions must be true at one

time, as can be seen clearly in the attack described here, even though only two main

concurrent processes were present. Other, similar attacks may have three or more con-

current processes, e.g. attacker actions, a process that writes to a file, and another that

reads the file. Modelling such attacks in a timed coloured Petri net helps the penetration

test to become successful without too many manual and time-consuming operations and

interventions.

A problem, however, is obvious when vulnerabilities like this appear in a distributed

environment, i.e. not on a single computer where one may use or at least model using

a single global time. For distributed systems, there not only is no such global time (at

most a partial order), but also a number of variations owing e.g. to load and latency

conditions within the distributed system. In such an environment, timed coloured Petri

nets are inadequate since one must take the uncertainties immanent in the model into

account both for the modelling and the simulation/execution stages.

The following scenario therefore demonstrates the use of interval-timed coloured Petri

nets.

6.3 Scenario 3 – Race Condition

This is a hypothetical scenario that illustrate the use of interval timed coloured Petri nets

for modelling and execution of a race condition-type attack. This type of attack is not

to often exploited by attackers or penetration testers, but similar vulnerabilities exist.

Application systems constructed in the form of multi-tiered architectures can have race

conditions just as any other application, but they can be very difficult to exploit remotely

in an effective manner.

The attack scenario is an attack on a distributed system, i.e. a multi-tier e-commerce

system, where time is not fully synchronised and an unintended race condition appear.

We assume a three-tier electronic commerce site, with a back end database system and

an intermediate application layer, running on multiprocessor or at least a multithreading

45

Using Coloured Petri Nets in Penetration Testing

system. Figure 19 shows the multi-tiered system, which has a design similar to many

large scale e-commerce systems in use today. There are several distributed processes that

can read and write to a database in the database back end. These processes write and

update different records in the database tables, some times even to the same records

concurrently. This require a locking mechanism, so that a process should not be able to

read or write to a spesific database record at the same time that another process writes

to this record, e.g. with row locking or table locking for exclusive writing [11].

Webservers

Clients

Database

Servlets/processes

Figure 19: Multi tier e-commerce system

Goal Definition

The objective of the penetration test is to modify back end data, specifically modifying

order data of another customer’s order.

Information Gathering

It has been ascertained that all connections to the application layer are secured via SS-

L/TLS [16, 60], with server certificate authentication and username and password client

authentication, i.e. without mutual SSL/TLS authentication on the transport layer. This

approach is used by almost every e-commerce site today. A strong perimeter defence, e.g.

a firewall mechanism, separates the presentation layer (client side) from the application

and back end layers effectively.

We assume that an attacker is able to obtain data from customer identification cookies

from legimate customers, as is commonly accomplished through e.g. cross-site scripting

[10]. The penetration tester has, moreover, also identified a construction rule for legi-

mate transaction identifiers, in many electronic commerce applications these are simple

sequence numbers and therefore trivial to predict. This is assumed done before or as a

former part of this penetration test.

The penetration tester can either through deduction from existing commerce back

ends or study of design documentation identify the final step in performing a purchase,

that is the confirmation steps on the part of the customer. These steps are done after a

46

Using Coloured Petri Nets in Penetration Testing

customer has signed in, been authenticated onto the commerce site, selected the mer-

chandise, and confirmed shipping and payment details by communicating with both in-

ternal and external databases and services.

When the customer has confirmed his order, the final confirmation steps in the system

are done, without customer interaction, as follows:

1. Inventory update. In this step, an update of the inventory database table is per-

formed.

2. Payment confirmation. A final confirmation of customer credit standing is sent to

the banking service, e.g. confirming withdrawal from already reserved credit. Then

the payment is recorded in the local credit database table.

3. Shipping registration. The shipping details are written to the shipping information

database table.

4. Order fulfilment. Based on the previous information, the shipping process pickup

data and shipping addresses are collated and sent to the shipping agent.

Flaw Hypothesis

The operative flaw hypothesis is that developers have, in order to obtain maximum

throughput, in the various databases accesses during the course of the transaction, are

performed with locking at each stage, but not across multiple stages of the above trans-

action.

An attack is hypothesised where an authenticated attacker is able to inject data with

valid customer and transaction identification into the application layer, to perform modi-

fication to the shipping information database table after the completion of the third stage

and prior to the commencement of the fourth stage, resulting in goods being diverted to

an attacker’s address of choice. In this attack scenario it is not necessary for the attacker

to learn payment information details of a customer, or to compromise the back end. Thus

the hypothetical flaw lies in the application logic and its implementation in accessing the

database back end layer. The attacker will simply inject a database write with customer

identification, transaction identification and shipping details just after the system does

this, and by this changes the address that the shipping department will read for finally

shipping of the order.

We assume that the attacker has an injection channel (modelled separately) into the

database communication between step three and four. The SQL injection itself are not

modelled in this hypothetical scenario, the lack of input validation that the injection is

based in can for example be similar to the flaw exploited in scenario 1 (see Section 6.1).

The channel can be a specially crafted (timing independent) HTTP POST request [20]

that utilize the information gained from victim customer. Since the attacker is authenti-

cated as a valid customer to the SSL/TLS application, no traffic protection or perimeter

defence will be likely to see this injection as a malicious act.

The interval timed coloured Petri net attack model will focus primary on the applica-

tion layer and with the timing dependency on the progress through the four confirmation

steps.

Each of the four final confirmation steps, as described above, is framed by a beginning

and ending transition associated with a time interval, along with similar time interval for

intermediate processing between the steps, e.g. simulating how much time it can take to

47

Using Coloured Petri Nets in Penetration Testing

acquire a table or row lock.

We hypothesis the following places and transitions for the attack:
Key places: Key transitions:
U_DMI�{�H0N4P�LVS�DGN�SELGN H�I
ÅVL
U4a�H_D_IpU0�
OMIVI
LEx
H8IEq�LMIEaEDGN�w�a�O_}�xVL N�LV MW
L
K4a¢H�I�q�LMIEa�DMN�w�W�XESEOGa�L
U0N�LVS�H0aoa�O_}�xVL W�X�S�OGa�L�H�IEqELMIEa�DGNVw
K���H�X�X�H8IEF�a�OM}�xGL N�LV MW
L
K4a�X
OMw_P�LMIEa�{GW�xG{�H_x�P�LMIEa
K���H�X�X�H8IEFoSELMX
OMN�a_P�LMI�a REN�H�a�L�X
OGw_P�L_IEa

N�LV MW
L
K4apK0��H�X�X�H�I�F�N�LGF�HGK4a�N�OGa�H_DMI
REN�H�a�L�K0��H�X�X�H�IEF
N�LV MW
L
K4ao{GW
xG{�HMx�P�LMIEa
N�L�OGS¢K���H�X�X�H8IEF�SELGaEO�HMx�K

The attack model is shown in Figure 20, that uses the global declarations as follows

(see Appendix A for syntax explanation):

©�© a�wGX
L u UMDExVD_WENpKMLGa�K�yzSELV{�H�I�H0a�H_DMI�K
UMD�xVDMWEN�J
\�����H�IEa¯� ©V© J�K_LGN�H4SELMIEa�H4{�HVUMOMa�H_DMI
UMD�xVDMWEN�Z�Æ�\0�|�¨H�I�a�� ©�© Z�N�OMI�K_O
U4a�H_D_IpH4SEL_IEa�H4{�HGUMOGa�H_D_I
UMD�xVDMWEN�Q�NEDVS���K4a�N�H�IEF��
UMD�xVDMWEN�Q�N�HVUML��¢K4a�N�H�I�F��
UMD�xVDMWEN�TESVSVN|��K4aVN�H�IEF��
UMD�xVDMWEN¢\�I�q�LMIEa�DMN�w��oXEN�DVSGW�U4a�J
\0� v Z�Æ�\0� v Q�N�DVSza�H�P�LVS¯�
UMD�xVDMWENo�VNELVS�H0ao��XEN�DVSMW�U4a�J
\�� v Z�Æ�\�� v Q�N�HGUMLza�H�P�LVS¯�
UMD�xVDMWEN|YM��H�X�X�H�I�F��oX�N�DVSGW�U0a�J
\0� v ZVÆ�\0� v T�S�SVNªa�H�P�LVS��
UMD�xVDMWEN|Y�L_I�SEYM��H8X�X�H�IEF���XEN�DVSGW�U4a�J
\0� v Z�Æ�\0��a�H�P�LVS¯�
UMD�xVDMWEN��MN�SELGNo��XEN�DVSGW�U4a�J
\0� v Z�Æ�\0� v Q�N�DVS v Q�N�HVU4L v T�S�SGNza�H�P�LVS¯�
UMD�xVDMWEN��V��N�L
Kª�¢K4a�N�H�I�F��
UMD�xVDMWENoCED�U4~|��K4aVN�H�IEF�a�H�P�LVS¯�
©�© q�OMN�H_OM}�xGL�SEL
UGxVOMN�OGa�H_D_I�K
q�OMN|~¯°%PÇ�ÈJ
\����
q�OMNpx	°6IÉ�®Z�Æ�\0���
q�OMN�K0a�N��­�®QVN�DVS¯�
q�OMN�K0a�N
�µ�®QVN�HVUML��
q�OMN�K0a�N��­�®T�S�SVN��
q�OMNpxEU4~Á��CED�U4~��
q�OMN|NEL
KÊ�®�V��N�L
K`�
This interval timed coloured Petri net uses a product colour sets [31] (\�IEq�LMI�a�DGN�w , �VN�LGS�H0a ,

YM��H�X�X�H�I�F , Y�L_I�SEYM��H8X�X�H�IEF , �_NESELGN), which combines other colour sets to represent the in-

formation written to the back end database. These product colour sets and the colour set

CED�U4~ are timed.

Prior to the attack steps shown in the attack model in Figure 20, the customer has fin-

ished and confirmed his order. The attack models the system confirmation steps in paral-

lel with the attacker’s injection action. The place UMD_I�{�H0N_P�LVS�DGN�SELGN represents the system

state where a customer has confirmed his order in the presentation layer. From this point

in time the penetration tester must time his injection. The timing will vary because of

the distributed nature of the system, hence the interval timing. The first transaction, N�LG
H�I�q�LMIEa�DMN�w�W�XESEOGa�L , will update the inventory table in the back end database. The entire

48

Using Coloured Petri Nets in Penetration Testing

Inventory
 table

Inventory

1‘(0,0,"")

in use
Lock

1‘("lock")

sql

Inventory

credit
table

Credit

1‘(0,0,"")

res
DBres

payment
confirmation

external
STRING

res
DBres

res
DBres

shipping
table

Shipping

1‘(0,0,"")

shipping
department

Shipping

sql
Credit

sql

Shipping

confirmed
order

Order

1‘(1,20,"Rolex Watch","$1000","Bob Town")

wait for
res

Order

wait for
res

Order

wait for
res

Order

sql

SendShipping

attacker

Shipping

1‘(1,20,"Eve City")

available
Lock

available
Lock

available
Lock

in use
Lock

1‘("lock")

in use
Lock

1‘("lock")

update
inventory

write
payment

write
shipping

read shipping
details

req shipping
registration

req payment
fulfillment

req inventory
update

req
fulfillment

injection
channel rel lock

rel lock

rel lock

(k,l,str0)

(m,n,str)

(k,l,str1)

(m,n,str)

1‘("paymentOK")

str1

(k,l,str0)
1‘("lock")

1‘("InventoryOK")

(k,l,str2)

(m,n,str)

1‘("shippingOK")

(m,n,str)

(m,n,str)

res

(k,l,str0) @ +[1,6]

(k,l,str1) @ +[1,6]

(k,l,str1)

res

(k,l,str2) @ +[1,6]

(k,l,str2)

(k,l,str0,str1,str2)

(k,l,str0,str1,str2)

(k,l,"",str1,str2)

(k,l,"","",str2)

(k,l,str0,str1,str2)

(k,l,str0,str1,str2)
res

(k,l) @ +[1,6]

(k,l)

(k,l,"","",str2)

(k,l,str2) @+[3,54]

(k,l,str2)

lck lck @ +[0,12]

lck

1‘("lock")

lck lck @ +[0,10]

lck

lck lck @ +[0,14]

lck1‘("lock")

Figure 20: Scenario 3 – Interval timed coloured Petri net attack model

transaction is modelled to consume time, which is between 1 and 6 ([a, b]) time units

(here: milliseconds). The minimum time, 1, represents how long the entire transaction

may take if there are no delays. Acquiring the database table lock is modelled to take

49

Using Coloured Petri Nets in Penetration Testing

between 0 and 12 ([c, d]) time units, depending on database load. The minimum time

of 0 is chosen because the lock may be available immediately for the transaction W�X�SEOGaEL
H�I�q�LMIEa�DMN�w . The transaction will not fire before there is at least one token in all input

places. The fuzzy timing is represented by closed intervals in the interval timed coloured

Petri net. The first confirmation step – inventory update of a customer order – can by this

use all between 1 and 18 ([a + c, b + d]) time units in the attack model.

The second confirmation step, payment confirmation, is modelled similarly to the

former. However, this step uses a slightly different timing, simulating that the loads on the

credit database table are different from the more heavily loaded inventory table. At the

same time as the payment is written to the credit table, a payment confirmation is sent to

the external financial service, confirming credit withdrawal. In the next confirmation step

the address is written to the shipping database table. It is here that the race condition the

penetration tester is trying to exploit appears. The N�LV o{GW
xG{�HMx�x8P�LMIEa transition will wait

for the results from the database table write to finish, and then the shipping fulfilment

will read from the shipping table and finish the order. The transaction N�L�OVSpK0��H�X�X�H�I�F
SELMa�O�HMx�K will in most database systems acquire a shared read lock that prevents the row

or table to be updated at the same time as another client attempts to read. However,

because of the time window that appear between the write to the database table and

the read from this database table by the two last fulfilment processes (and an imprudent

lapse of the surrounding lock), the attacker can gain a exclusive write lock before the

transaction N�LVOVSpK0��H�X�X�H�IEF�SELMa�O�HMx�K commences reading.

Flaw Testing

Immediately after the customer has placed his order, the attacker will inject the changed

shipping address, leaving the remaining data untouched. The available time window for

the attack appears after the shipping details has been written to the database shipping

table and the final fulfilment step is initiated. Thus, if the attacker can inject a new

record into the shipping table before the transaction NEL�OVSpK0��H�XVX�H�IEF�S�LGa�O�HMxEK is fired,

the attack is successful. By calculating the minimum and maximum time this could take,

we can obtain an interval where the injection is most likely to be successful. This interval

must start from the starting point, which is from where the customer confirms his order

in the presentation layer, to the maximum time it can take for the customers shipping

details to be written to the database table. In the attack model this time interval can be

calculated to be in the closed time interval [3, 54]. In this time interval the attack will be

most likely to succeed. This means however that the attack not always will succeed, but

it is likely to succeed after a small number of (automated) attempts.

Flaw Generalisation

The main flaw hypothesis investigated here is the race condition situation between the

confirmation steps. The small time window which appears between the release of a lock

and the next confirmation step make the injection possible. Another underlying flaw

in the system that becomes clear from this penetration test is the weak user identifi-

cation mechanism. The system design has weaknesses in separating user that has been

authenticated against the server by username and password and subsequently through a

cookie mechanism. The internal processes assume that a message with specific customer

identification always comes from the correct client. This assumption can be imprudent,

especially when the transaction identification can be intercepted or guessed by an ad-

50

Using Coloured Petri Nets in Penetration Testing

versary, meaning that an adversary may have all information that identifies an order in

the back end database. The flaw of being able to guess transient transaction identifiers

in combination with the customer identifiers make this vulnerability (present in quite a

few shopping-cart type applications) dangerous.

Flaw Elimination

If the system had not released the database table or row lock between each stage in the

final confirmation steps, the attacker would not be capable of injecting arbitrary infor-

mation and thereby change a customer’s order that has already been properly approved

by the customer, application and external systems. However, for performance reasons,

and because of the distributed nature of the system, such locks are frequently not used in

such a conservative way. A downgrade from the exclusive write lock to a read lock could

help in the two last steps of the confirmation transaction, but this is again difficult to

realise in a distributed environment. In addition, the elimination of all HTTP POST injec-

tions would also stop this attack, but in complex multi tier e-commerce systems like this,

it is difficult to prevent all such injection possibilities and may again result in significant

performance penalties.

6.3.1 Conclusions and Observations on Scenario 3

This attack scenario has demonstrated the use of an interval timed coloured Petri net

for modelling a moderately complex time-dependent vulnerability and exploits of such

vulnerabilities. Even in such a limited scenario, however, the benefits of a more rigid

modelling approach and the ability to perform a round-trip modelling, simulation, and

execution flaw hypothesis penetration test have become apparent.

This attack show that the combination of many system flaws can lead to a dangerous

system vulnerabilty. The principal system flaws are exploited:

• weak customer identification and authentication within the system

• easy to guess and predict transaction identificators

• SQL injection flaw through the presentation layer

• race condition between internal processes, because of the lock releasing between

final confirmation steps.

The flaw hypothesis methodology together with the interval timed coloured Petri net

attack model make this attack easier to understand, visualise and apply in a real world

scenario. The closed intervals add a nice feature to coloured Petri nets that can be used

when timing is necessary in penetration testing. However getting the intervals right ac-

cording to the attacked system can be difficult. Without thorough knowledge of the e-

commerce system attacked in the above example the timing can be difficult to know

correctly. Some time benchmarking of the system before modelling may be necessary.

51

Using Coloured Petri Nets in Penetration Testing

7 Conclusion

Penetration testing tools and high-level penetration testing mehtodologies alone do not

solve the problem of finding all types of computer attacks in our modern complex infor-

mation systems, thus the ingenuity of the penetraiton testers are important. This thesis

has described a mechanism for the modelling, partial analysis, and automatic execution

of attacks, based on different types of coloured Petri nets. This has been done together

with a penetration testing model, the flaw hypothesis methodology, that together provide

a detailed way of hypothesising and modelling system attacks in penetration testing. The

coloured Petri nets provide a detail level that makes modelling of multi-stage and multi-

agent attacks with and without time constraints possible. This help penetration testers to

model attacks that are mentally difficult to hypothesis and visualise. Using the coloured

Petri net attack models togheter with the flaw hypothesis methodology make it possible

to model custom attack scenarios graphically before attacks are tested live, and by this

helping out with designing attack hypotheses and the difficult step of mapping attack

hypotheses into real system attacks. Therefore the colured Petri nets can be a valuable

modelling tool for the penetration tester.

Coloured Petri nets have been found to have many features of modelling that adapt

well into attack modelling. Coloured tokens and Petri net structure can model concurrent

actions. With the use of guards, arc expressions, timing, and conjunctive and disjunctive

relationships we can easily control the progress of an attack with tokens and thereby

model and simulate complex attack scenarios before they are tested live. In network-

based environments, where TOCTOU- and race condition- type attacks are difficult to

identify, interval timed coloured Petri nets provide a mechanism to model the fuzziness

in timing that appear in such distributed environments.

Coloured Petri nets are very powerful in modelling computer attacks, but they can

be complicated. A penetration tester must not only have adequate knowledge in the

penetration testing domain, but also have knowledge in modelling coloured Petri nets.

However with the help of coloured Petri net design tools and a methodical way of devel-

oping the nets in the penetration testing process, this limitation should be outweighed

by the coloured Petri nets ability to model complex attack scenarios.

This thesis do not conclude the research on the coloured Petri net penetration testing

approach, further research and refinement are therefore called for.

53

Using Coloured Petri Nets in Penetration Testing

8 Future Work

The chosen topics, penetration testing and Petri nets, are both large areas of research

and much have been done in both categorise separately. However using both areas to-

gether have not been greatly explored yet. Much of the research done in the area of

coloured Petri nets can refine the results from this study and may be used in other areas

of computer security.

Following this thesis, the next step should be large-scale live penetration testing or

quantitative penetration testing with the proposed approach. The results from this could

be further refinement of this thesis work. This study could also introduce the use of hier-

archical coloured Petri nets for large scale attack models. New theory maybe necessary,

e.g. with the use of other research results available in Petri net research, to further adapt

the approach. This can be the next step in proving or rejecting the proposals done in this

thesis.

Another area of research is to make a Petri net application tool designed for the

penetration tester. This tool could be build with basis in the CPNtools1 and the standard

Petri net markup language [5]. The main feature missing in the tools available today are

the support for interval timed coloured Petri nets.

Proposing a structured method for building attack scripts from coloured Petri net at-

tack models are also open for research. In other areas of Petri net usage such mechanisms

do exist, e.g. looking into Mortensen work on automatic code generation from coloured

Petri nets [50].

State space analysis methods [30] for attack models in coloured Petri nets are also a

possible next step from this thesis work. However the need for such thorough analysis in

attack models used in Penetration testing are not entirely clear at this point.

1 �������
� ���"!4$'14$M#d:�/�$e-G$M#;/,2
#d:�18��k.��&��*)�)�h�B��*k.��&��8)�)�h8BV#3!4$614$ (Visited June 2005)

55

http://wiki.daimi.au.dk/cpntools/cpntools.wiki

Using Coloured Petri Nets in Penetration Testing

Bibliography

[1] SANS Institute 2001. Guidelines for Developing Penetration Rules of Behavior.

�Ea�aVXË� ©�© R�R�RÌº�KMOMI�K`º.DGNGF © N�N © X
O4X
LMN�K © ��� © �V¶���º»X�SG{ Visited May 2005, 2001.

[2] Brad Arkin, Scott Stender, and Gary McGraw. Software Penetration Testing. IEEE

Security & Privacy, 3(1):84–87, January/February 2005.

[3] Clement R. Attanasio, Peter W. Markstein, and Ray J. Phillips. Penetrating an op-

erating system: a study of VM/370 integrity. IBM Systems Journal, 15(1):102–116,

1976.

[4] Michel Beaudouin-Lafon, Wendy E. Mackay, Peter Anderson, Paul Janecek, Mads

Jensen, Michael Lassen, Kasper Lund, Kjeld Mortensen, Stephanie Munck, Anne

Ratzer, Kartrine Ravn, Søren Christensen, and Kurt Jensen. CPN/Tools: A Post-

WIMP Interface for Editing and Simulating Coloured Petri Nets. In J.-M. Colom

and M. Koutny, editors, Proceedings of the 22nd International Petri Net Conference

(ICATPN 2001), volume 2075 of Lecture Notes in Computer Science, pages 71–80,

Newcastle upon Tyne, England, June 2001. Springer-Verlag.

[5] Jonathan Billington, Søren Christensen, Kees van Hee, Ekkart Kindler, Olaf Kum-

mer, Laure Petrucci, Reinier Post, Christian Stehno, and Michael Weber. The Petri

Net Markup Language: Concepts, Technology, and Tools. In W.v.d. Aalst and E. Best,

editors, Proceedings of the 24th International Conference on the Application and The-

ory of Petri Nets (ICATPN 2003), volume 2679 of Lecture Notes in Computer Science,

pages 483–505, Eindhoven, The Netherlands, August 2003. Springer-Verlag.

[6] Matt Bishop. Computer Security Art and Science. Addison Wesley, 2003.

[7] Matt Bishop and Michael Dilger. Checking for Race Conditions in File Accesses.

Computing Systems, 9(2):131–152, 1996.

[8] Rahmat Budiarto, Sureswaran Ramadas, Azman Samsudin, and Salah Noor. Devel-

opment of penetration testing model for increasing network security. In Informa-

tion and Communication Technologies: From Theory to Applications, pages 563–564,

April 2004.

[9] Vadim Bulitko and David Wilkins. Real-time Decision Making For Shipboard Dam-

age Control. In Proceedings of the AAAI/KDD/UAI-2002 Joint Workshop on Real-Time

Decision Support and Diagnosis Systems, pages 37–46. AAAI Press, 2002.

[10] CGI Security. The Cross Site Scripting FAQ.

�Ea�aVXË� ©�© R�R�RÌº�U4F�HVK4L
U0WVN�H�a�w�º�UMD8P © OGNGa�HVU_xVL�K © ¤�K�KV¹�{�OG �º,K0�Va_P�x Visited June 2005,

August 2003.

[11] Thomas Connolly and Carolyn Begg. Database Systems: A Practical Approach to

Design, Implentation, and Management. Addison Wesley, 3 edition, 2002.

57

http://www.sans.org/rr/papers/42/259.pdf
http://www.cgisecurity.com/articles/xss-faq.shtml

Using Coloured Petri Nets in Penetration Testing

[12] Ole Martin Dahl and Stephen D. Wolthusen. Modeling and Execution of Complex

Attack Scenarios using Interval Timed Colored Petri Nets. In ACSAC ’05: Proceedings

of the 21st Annual Computer Security Applications Conference, Tucson, Arizona, USA,

December 2005. Submitted for publication.

[13] Kristopher Daley, Ryan Larson, and Jerald Dawkins. A Structural Framework for

Modeling Multi-Stage Network Attacks. In Proceedings of the International Confer-

ence on Parallel Processing Workshops (ICPPW’02), pages 1530–2016, 2000.

[14] Tina Darmohray. hacking for fun and profit. ;login, April 2003.

[15] Renaud Deraison, Noam Rathaus, HD Moore, Raven Alder, George Theall, Andy

Johnston, and Jimmy Alderson. Nessus Network Auditing. Syngress, Rockland, MA,

USA, 2004.

[16] Tim Dierks and Christopher Allen. The TLS Protocol Version 1.0. RFC 2246 (Pro-

posed Standard), January 1999. Updated by RFC 3546.

[17] Computer Security Division. NIST Special Publication 800-42: Guideline on Net-

work Security Testing, August 2003.

[18] Deborah D. Downs and Ranwa Haddad. Penetration Testing – The Gold Standard

for Security Rating and Ranking. In Workshop on Information-Security-System Rat-

ing and Ranking, March 2001.

[19] Dan Farmer and Wietse Venema. Improv-

ing Security of Your Site by Breaking Into It.

�Ea�aVXË� ©�© R�R�RÌº.OEx_RËº%I�H8�Ëº%F�DMq © YVL
U8WEN�H8a�w © ��D
U�K © OGS4P
H�I�¹MFVW�H0SEL
¹GaED�¹
U0N�O
U�~�H8I�F�º*�0���bº%��a4P�x
Visited May 2005, December 1993. Visited 2005.

[20] Roy T. Fielding, James Gettys, Jeffrey C. Mogul, Henrik Frystyk Nielsen, Larry Mas-

inter, Paul J. Leach, and Tim Berners-Lee. Hypertext Transfer Protocol – HTTP/1.1.

RFC 2616 (Draft Standard), June 1999. Updated by RFC 2817.

[21] Jane Frankland. Automated Penetration Testing – False Sense of Security. eBCVG

IT Security, August 2004.

[22] Martin Freiss. Protecting Networks with Satan. O’Reilly Press, 1997.

[23] Simson Garfinkel. Under Attack: Can your systems really benefit from penetration

testing? �Ea�aVXÌ� ©�© R�RVRËº�U�KMDVDMI�x�H8I�L�º"UMD0P © NEL�OMS © ���V���0��³ © P�O�U���H�IEL�º%��a4P�x Visited May

2005, October 2003. Visited 2004.

[24] Daniel Geer and John Harthorne. Penetration Testing: A Duet. In Proceedings of

the 18th Annual Computer Security Applications Conference (ACSAC 2002), pages

185–198, Las Vegas, NV, USA, December 2002. IEEE Press.

[25] Sarbari Gupta and Virgil D. Gligor. Towards a Theory of Penetration-Resistant Sys-

tems and Its Applications. Journal of Computer Security, 1(2):133–158, 1992.

[26] Guy Helmer, Johnny Wong, Mark Slagell, Vasant Honavar, Les Miller, Yanxin Wang,

and Robyn Lutz. Software Fault Tree and Colored Petri Net Based Specification,

Design and Impementation of Agent-Based Intrusion Detection. Technical report,

Iowa State University, Ames, IA, USA, June 2002.

58

http://www.alw.nih.gov/Security/Docs/admin-guide-to-cracking.101.html
http://www.csoonline.com/read/100103/machine.html

Using Coloured Petri Nets in Penetration Testing

[27] Pete Herzog. OSSTMM 2.1.: Open-Source Security Testing Methology Manual.

ISECOM Institute for Security and Open Methologies, August 2003.

[28] Sverre H. Huseby. Innocent Code: A Security Wake-Up Call for Web Programmers.

Wiley, 2004.

[29] Cynthia E. Irvine. Security: Where Testing Fails. ITEA Journal, pages 53–57, June

2000.

[30] Kurt Jensen. Coloured Petri Nets: Analysis Methods (Volume 2). Monographs in

Theoretical Computer Science. Springer Verlag, Heidelberg, Germany, 1997.

[31] Kurt Jensen. Coloured Petri Nets: Basic Concepts (Volume 1). Monographs in Theo-

retical Computer Science. Springer Verlag, Heidelberg, Germany, 1997.

[32] Kurt Jensen. Coloured Petri Nets: Practical Use (Volume 3). Monographs in Theoret-

ical Computer Science. Springer Verlag, Heidelberg, Germany, 1997.

[33] Paul A. Karger and Roger R. Schell. Multics Security Evaluation: Vulnerability Anal-

ysis. Technical Report ESD-TR-74-193, Vol. II, Information Systems Technology Ap-

plication Office, Deputy for Command and Management Systems, Electronic Sys-

tems Division (AFSC), L. G. Hanscom AFB, MA, USA, June 1974.

[34] Paul A. Karger and Roger R. Schell. Thirty Years Later: Lessons from the Multics Se-

curity Evaluation. In ACSAC ’02: Proceedings of the 18th Annual Computer Security

Applications Conference, Washington, DC, USA, 2002. IEEE Computer Society.

[35] Thomas J. Klevinsky, Scott Laliberte, and Ajay Gupta. Hack I.T.: Security Through

Penetration Testing. Addison-Wesley Professional, February 2002.

[36] Lars M. Kristensen, Søren Christensen, and Kurt Jensen. The practitioner’s guide to

coloured Petri nets. International Journal on Software Tools for Technology Transfer

(STTT), 2(2):98–132, December 1998.

[37] Sandeep Kumar and Eugene H. Spafford. A Pattern-Matching Model for Instrusion

Detection. In In Proceedings of the National Computer Security Conference, pages

11–21, Baltimore, MD, USA, October 1994.

[38] George Kurtz and Chris Prosise. Penetration Testing Exposed. Information Security

Magazine, September 2000. RVR�RËº�H�IE{ED
KML
U�WEN�H0aGw_P�OMF�º,UMD8P Visited May 2005.

[39] Kevin Lam, David LeBlanc, and Ben Smith. Assessing Network Security. Microsoft

Press, 2004.

[40] W. Lee, D. Grosh, and F. Tillman. Fault tree analysis, methods, and applications.

IEEE Transactions on Reliability, 34(3):194–203, August 1985.

[41] Woo Jin Lee, Sung Deok Cha, and Yong Rae Kwon. Integration and analysis of use

cases using modular Petri nets in requirements engineering. IEEE Transactions on

Software Engineering, 24(12):1115–1130, December 1998.

[42] Richard R. Linde. Operating System Penetration. In Proceedings of the AFIPS Na-

tional Computer Conference, volume 44 of AFIPS Conference Proceedings, pages 361–

368, Anaheim, CA, USA, May 1975. AFIPS Press.

59

www.infosecuritymag.com

Using Coloured Petri Nets in Penetration Testing

[43] Daniel Lowry Lough. A Taxonomy of Computer Attacks with Application to Wireless

Networks. Doctor of Philosophy in Computer Engineering, Faculty of the Virginia

Polytechnic Institute and State University, Blacksburg, Virginia, April 2001.

[44] Stuart McClure, Joel Scambray, and George Kurtz. Hacking Exposed: Network Se-

curity Secrets & Solutions, Fourth Edition. McGraw-Hill Osborne Media, 4 edition,

February 2003.

[45] John P. McDermott. Attack net penetration testing. In Proceedings of the 2000

workshop on New security paradigms, pages 15–21. ACM Press, October 2000.

[46] Paul Midian. Perspectives on Penetration Testing – Black Box vs. White Box. Net-

work Security, 2002(11):10–12, November 2002.

[47] Paul Midian. An Insight White Paper – Penetration Testing. Insight Consulting,

January 2004. R�RVRËº�H�I�K�H0FV�EaÌº,UMD�º%W�~ Visited May 2005.

[48] Fredrik Moberg. Security analysis of an information system using an attack tree-

based methodology. Master’s thesis, Chalmers University of Technology, November

2000.

[49] Andrew P. Moore, Robert J. Ellison, and Richard C. Linger. Attack Modeling for

Information Security and Survivability. Technical report, CMU/SEI-2001-TN-001,

Carnegie Mellon Universtiy, March 2001.

[50] Kjeld H. Mortensen. Automatic Code Generation Method Based on Coloured Petri

Net Models Applied on an Access Control System. In M. Nielsen and D. Simpson,

editors, Proceedings of Application and Theory of Petri Nets 2000: 21st International

Conference, volume 1825 of Lecture Notes in Computer Science, Aarhus, Denmark,

June 2000. Springer-Verlag.

[51] Kjeld H. Mortensen, Søren Christensen, Lars M. Kristensen, , and Jan S. Thomasen.

Capacity Planning of Web Servers using Timed Hierarchical Coloured Petri Nets.

In In Proceedings of HP Openview University Association (HP-OVUA’99) 6th Plenary

Workshop, 1999.

[52] Tadao Murata. Petri Nets: Properties, Analysis and Applications. In Proceedings of

the IEEE, volume 77, pages 541–580, April 1989.

[53] NASA. Fault Tree Analysis: A Bibliography, July 2000.

[54] Andrew Odlyzko. Economics, Psychology, and Sociology of Security. In Proceed-

ings of the 7th International Conference of Financial Cryptography, volume 2742 of

Lecture Notes in Computer Science, pages 182–189. Springer-Verlag, 2003.

[55] James Lyle Peterson. Petri Net Theory and the Modeling of Systems. Prentice Hall

PTR, Upper Saddle River, NJ, USA, 1981.

[56] Carl A. Petri. Kommunikation mit Automaten. PhD thesis, Technische Hochschule

Darmstadt, Darmstadt, Germany, 1962. Published in Schriften des Instituts für

Instrumentelle Mathematik 3,1-128, University of Bonn, Germany.

60

www.insight.co.uk

Using Coloured Petri Nets in Penetration Testing

[57] Cynthia Phillips and Laura Painton Swiler. A graph-based system for network-

vulnerability analysis. In NSPW ’98: Proceedings of the 1998 workshop on New se-

curity paradigms, pages 71–79, Charlottesville, Virginia, United States, 1998. ACM

Press.

[58] Anne Vinter Ratzer, Lisa Wells, Henry Michael Lassen, Mads Laursen, Jacob Frank

Qvortrup, Martin Stig Stissing, Michael Westergaard, Søren Christensen, and Kurt

Jensen. CPN Tools for Editing, Simulating and Analysing Coloured Petri Nets. In

W.v.d. Aalst and E. Best, editors, Proceedings of the 24th International Conference

on the Application and Theory of Petri Nets (ICATPN 2003), volume 2679 of Lec-

ture Notes in Computer Science, pages 450–462, Eindhoven, The Netherlands, June

2003. Springer-Verlag.

[59] Wolfgang Reisig. Petri Nets: An Introduction. Monographs in Theoretical Computer

Science. Springer Verlag, Heidelberg, Germany, 1985.

[60] Eric Rescorla. HTTP Over TLS. RFC 2818 (Informational), May 2000.

[61] Bruce Schneier. Attack Trees. Dr. Dobb’s Journal, 24(12):21–29, December 1999.

[62] Bruce Schneier. Secrets and Lies, Digital Security in a Networked World. Wiley

Computer Publishing, 2000.

[63] Robert W. Shirey. Internet Security Glossary. RFC 2828 (Informational), May 2000.

[64] Bryan Smith, William Yurcik, and David Doss. Ethical Hacking: The Security Justi-

fication Redux. In IEEE International Symposium on Technology and Society (ISTAS),

Raleigh NC USA, June 2002.

[65] Jan Steffan and Markus Schumacher. Collaborative attack modeling. In SAC ’02:

Proceedings of the 2002 ACM symposium on Applied computing, pages 253–259. ACM

Press, March 2002.

[66] Peter Stephenson. Modeling of Post-Incident Root Cause Analysis. International

Journal of Digital Evidence, 2(2), 2003.

[67] Peter Stephenson. The Application of Formal Methods to Root Cause Analysis 0f

Digital Incidents. International Journal of Digital Evidence, 3(1), 2004.

[68] Frank Swiderski and Window Snyder. Threat Modeling. Microsoft Press, 2004.

[69] Herbert H. Thompson. Application Penetration Testing. IEEE Security & Privacy,

3(1):66–69, January/February 2005.

[70] Terry Tidwell, Ryan Larson, Kenneth Fitch, and John Hale. Modeling Internet At-

tacks. In Proceedings of the 2001 IEEE Workshop on Information Assurance and

Security, United States Military Academy, West Point, NY, June 2001.

[71] Mahesh V. Tripunitara and Partha Dutta. Security Assessment of IP-Based Networks:

A Holistic Approach. In Ninth Annual Conference of the Internet Society (INET’99),

San Jose, CA, June 1999.

61

Using Coloured Petri Nets in Penetration Testing

[72] Wil M. P. van der Aalst. Interval Timed Coloured Petri Nets and their Analysis. In

Marco Ajmone Marsan, editor, Proceedings of Application and Theory of Petri Nets

1993, 14th International Conference, volume 691 of Lecture Notes in Computer Sci-

ence, pages 453–472, Chicago, IL, USA, June 1993. Springer–Verlag.

[73] Wil M. P. van der Aalst and M. A. Odijk. Analysis of Railway Stations by Means of

Interval Timed Coloured Petri Nets. In Real-Time Systems, volume 9, pages 1–23.

Kluwer Academic Publisher, 1994.

[74] Hein S. Venter and Jan H. P. Eloff. Assessment Of Vulnerability Scanners. Network

Security, pages 11–16, February 2003.

[75] John Viega and Gary McGraw. Building Secure Software: How to avoid security

problems the right way. Addison-Wesley, 2002.

[76] Clark Weissman. System Security Analysis/Certification Methodology and Results.

Technical Report SP-3728, System Development Corporation, Santa Monica, CA,

USA, October 1973.

[77] Clark Weissman. Security Penetration Testing Guideline, U.S. Navy Handbook on

Security Certification. Technical Report TM-8889/000/00, Paramax Systems Corp.,

Camarillo, CA, USA, December 1992. Prepared under contract to the U.S. Naval

Research Laboratory.

[78] Clark Weissman. Penetration Testing. In Abrams and Jajoida and Podell, editor,

Information Security: An Integrated Collection of Essays, pages 269–296. IEEE Com-

puter Society Press, 1995.

[79] Nick Wingfield. It Takes a Hacker. Wall Street Journal, March 2002.

[80] Shijie Zhou, Zhiguang Qin, Feng Zhang, Xianfeng Zhang, Wei Chen, and Jinde

Liu. Colored Petri Net Based Attack Modeling. In Proceedings of Rough Sets, Fuzzy

Sets, Data Mining, and Granular Computing: 9th International Conference (RSFD-

GrC 2003), volume 2639 of Lecture Notes in Computer Science, pages 715–718,

Chongqing, China, May 2003. Springer-Verlag GmbH.

62

Using Coloured Petri Nets in Penetration Testing

A Used Declarations and Net Inscriptions

This appendix briefly explain the main syntax used in the net inscriptions for the coloured

Petri net attack models in the thesis. The inscriptions explained here are used in ex-

planatory examples found in chapter 2 and 5, and in the penetration testing scenarios

described in chapter 6. A more thorough explanation of the syntax and other possible

declarations in the coloured Petri net modelling language can be found in [31], at the

CPNtools web site1 and in the standard ML basis library2.

Colour Sets

Each colour set declaration introduce a new colour set, whose elements are called colours.

Thus each colour set declaration implicitly declares a set of constants [31]. The basic

coloured Petri net ML colour sets used in the thesis are:

U_DExVDMWEN�TVT���H�IEa��
U_DExVDMWEN��V�p�¢K4a�N�H8IEF��
The first colour set, T�T , can have integers as colours and the second, ��� , can have text

strings as colours. A subset colour set, i.e. a subset of a basic colour set, used in this

thesis are:

U_DExVDMWENo�V����R�H0aV�µ´MK0a�N�H�IEF���´Í�±´MK4a�N�H8IEF���´��
The colour set �V� can have two colours; the colours K4a�N�H�I�F
� and K4aVN�H�IEF�� . The last colour

set inscription used in this thesis are:

U_DExVDMWEN��V����XEN�DVSMW�U4a�T�T v �����
The colour set declare all pairs (O�°6}) where O ∈ T�T and } ∈ �V� . The XEN�DVSGW�U4a syntax

can inevitably be used in combination of more than two previously declared colour sets.

This inscription uses colour sets from already declared colour sets by means of a built-in

colour set constructor, several other built-in colour set constructors exist.

Timed Colour Sets

All colour sets can be timed and are declared as follows:

U_DExVDMWEN�ÀVÀ��Áº�º�º�ºÈa�H�P�LVS¯�
A colour set is timed by appending the keyword timed to the end of its declaration. At

least one colour set must be timed in order to run a simulation with time.

1 �������
� ���"!4$'14$M#d:�/�$e-G$M#;/,2
#d:�18��k.��&��*)�)�h�B*5��*<�h,�8��k.��&8i'-Mh�#3!4$614$ (Visited May 2005)
2 �������
� ���"!�!�!
#jB"��/,&�:�/�+�:.-4h�#),+�9*����/*B8$,B�� (Visited May 2005)

63

http://wiki.daimi.au.dk/cpntools-help/cpn_ml.wiki
http://www.standardml.org/Basis/

Using Coloured Petri Nets in Penetration Testing

Variables and Values

Each variable declaration introduce one or more variables, with a type which must be an

already declared colour set. These variables are used in guards and in arc expressions.

Variables are declared as follows:

q�OMN�O��ÄT�T��
q�OMNo}
��°Ä}
�Á�È�����
This mean that the variable O can contain colours from the colour set TVT , i.e. integers.

The variables }b� and }
� can contain colours from the colour set �V� , i.e. strings.

Value declarations introduces a constant, with a type which must be an already de-

clared colour set. In the thesis only simple string constants are used:

q�O�x�ÎVÎ��Ï´8a�LG¤VapK4a�N�H�I�F
´��
The declared constants can be used by arc expressions and guards.

Net Expressions

Net expressions are built from a number of variables, values and colours. Used by arc

expressions, guards and initialisation functions. The expressions used in the coloured

Petri nets in this thesis can be explained by the following examples:

¤E�V u ¤¯°*H�y
��Ð u ¤�°*H�y
H4{�¤E�V |aV��LMIµ��Ð u ¯°�H4Ñ��Gy¬LEx�KMLoL0P
X�a�w
K0WV}�K4a�N�H8IEF u }b��°*Hb°8�My
}b�_Ò0}
�
The first expression above simply compares a variable ¤ and a constant , evaluating to

true or false. The second expression show a tuple-construction in an operation, where

¤ and H are variables. ��Ð u ¤¯°*H�y show these variables with the constant 1, where ‘ (read

"n of") and the tuple-construction are operations. The if-then-else control structure use

two variables, ¤ and H , and the constants , � and empty. ‘, =, +, the tuple-construction

and the if-else construction are operations. The K0WV}�K4a�N�H8IEF operation extract a substring

of length � starting at position H in }b� , first position is 0. The last operation, }b�VÓ8}
� ,

concatenate the strings }b� and }
�
The expressions used that has to do with time in arc expressions and guards can be

explained by the following examples:

K4aVN�H�IEF|Ô�a
O|Ô|Ñ�Å
}
�oÔ|ÑÖÕ.x	°%P�×
A colour followed by an @ symbol and a integer, e.g. the time stamp a above, denote a

time stamped colour. The expression O�Ô|Ñ�Å mean that an expression add the integer

time delay Å to each of the colours in variable a, the expression returns a timed colour.

The last timed expression is the same however, the time added is represented by a closed

interval Õ.xØ°%P�× , meaning that the timed colour returned will be in between a and P .

64

Using Coloured Petri Nets in Penetration Testing

B Paper Submitted for Publication

65

Modeling and Execution of Complex Attack Scenarios using Interval Timed
Colored Petri Nets

Ole Martin Dahl
Department of Computer Science

Gjøvik University College
Gjøvik, Norway
ole.dahl@hig.no

Stephen D. Wolthusen
Department of Computer Science

Gjøvik University College
Gjøvik, Norway

swolthusen@ieee.org

Abstract

The commonly used flaw hypothesis model (FHM) for
performing penetration tests provides only limited, high-
level guidance for the derivation of actual penetration at-
tempts. In this paper, a mechanism for the systematic model-
ing, simulation, and exploitation of complex multi-stage and
multi-agent vulnerabilities in networked and distributed
systems based on stochastic and interval-timed colored
Petri nets is described and analyzed through case studies
elucidating several properties of Petri net variants and their
suitability to modeling this type of attack.

1. Introduction

The design and deployment of large-scale internet-
worked systems such as multi-tier database and elec-
tronic commerce systems, particularly when consisting
of a large number of independent off-the-shelf compo-
nents rarely proceeds from a precise specification or model
of system behavior. In addition to vulnerabilities in in-
dividual components of such systems, however, this can
also result in vulnerabilities that result from interac-
tions among system components that include not only the
off-the-shelf elements but also customized program ele-
ments and emergent properties such as timing and load
behavior that can arise only in certain hardware and soft-
ware configurations.

While basic configuration errors and implementation
flaws in individual components such as host operating sys-
tems and network components can be identified both lo-
cally through debuggers, in-circuit emulators, custom de-
vice drivers and proxies and in part also remotely using au-
tomated tools such as fuzzers, port scanners, and network
sniffers as well as tool suites such as Nessus [3], Metasploit,
and Core Impact based on research and knowledge about

such relatively standardized components, there are obvious
limits to re-using such common attack scenarios for large
composite systems that may well be unique.

Given the above, the problem of assurance for larger sys-
tems for which no formal specification and proof of security
models and implementations existed [11, 10] has mainly
been approached through custom penetration test exercises,
i.e. by attempting to demonstrate the identification of flaws
that could be found with a fixed but arbitrary work factor by
skilled individuals [18, 21]. However, such testing clearly
neither demonstrates the absence of critical defects or vul-
nerabilities nor does it necessarily even provide a satisfac-
tory predictive value for the work factor of an (unknown)
adversary, as is amply demonstrated by continuous discov-
ery of vulnerabilities in off-the shelf components such as
standard operating systems.

In addition to the issue of overall complexity of large in-
formation systems, application systems – particularly those
exposed to clients – provide multiple potential vulnerabil-
ity areas [9, 31]. Not only do such systems by definition
also provide access paths to adversaries, but such systems
are typically customized from off-the-shelf components or
contain elements of customization or site-specific compo-
nents. Moreover, unlike vulnerabilities in operating systems
or other standard application programs, vulnerabilities in
application systems can often be associated with quantifi-
able monetary risks (e.g. through embezzlement, pilferage,
or by denial of service leading to losses in revenue and rep-
utation), leading to increased interest in penetration testing
and securing application systems. However, as is frequently
the case in the absence of codified scientific or engineering
practices and doctrine, this type of penetration testing has
mainly been characterized as an art [9]. In this paper we ar-
gue that the modeling and analysis of expected and desired
system behavior, in parallel with the modeling and analy-
sis of complex multistage attacks can be performed effec-
tively within a framework provided by Petri nets, which has
been demonstrated to scale to very large environments.

It should be noted that Petri nets, particularly the vari-
ants discussed in this paper, are suited to both the model-
ing of desired or required system behavior and its limita-
tions and also to the modeling, simulation, and ultimately
execution of attacks as well. Unfortunately, the information
flowing into these two types of models are somewhat dis-
parate and it is not immediately possible to derive usable at-
tack models from system models and vice versa in the gen-
eral case. Therefore, the focus of this paper is solely on the
perspective of attack modeling.

To this end, section 2 briefly reviews the background
of pertinent Petri net variants, while section 3 provides
an overview of penetration testing models currently in use
as well as the positioning of Petri net-based attack mod-
els within a variant on a commonly found generic penetra-
tion testing methodology. Section 4 reviews two case stud-
ies applying colored and interval timed colored Petri nets
for modeling, simulation, and execution of attack scenar-
ios. Subsequently, section 5 briefly reviews related work in
the area of complex attack modeling, and section 6 provides
an outlook on ongoing and future research.

2. Petri Nets and Interval Timed Colored
Petri Nets

Petri nets were originally introduced as a modeling tech-
nique for concurrent systems and provide a rich and graph-
ically intuitive approach for modeling, simulation, and exe-
cution [25, 24, 26].

Elementary Petri nets can be considered as bipartite
graphs with distinct node types that consist of vertices
(places and transitions) and edges (arcs) connecting these.
Arcs are further subdivided into input arcs, which connect
places with transitions and output arcs, which start at a tran-
sition and end at a place. Places can contain tokens; the cur-
rent state of the modeled system (referred to as a marking)
is given by the number and type of tokens in each place.
Transitions model activities through firing when enabled
and thereby inducing changes in the marking. Several types
of Petri nets can be distinguished by the level of informa-
tion associated with individual tokens which can range from
simple boolean information to structured tokens.

Colored Petri nets provide structured tokens in the form
of so-called colors and provide a significant increase in the
expressiveness and compactness of models [15, 14, 16]. To
support time-dependent environments such as real-time sys-
tems or multi-agent interactions such as those considered in
this paper, a number of extensions to both general Petri nets
and colored Petri nets have been proposed, including time
interval colored Petri nets [15] and stochastic colored Petri
nets [38].

Timed colored Petri nets (TCPN) introduced by Jensen
[14] uses a global clock and time stamps associated with to-

kens. The time stamp represent an aditional constraint in
CPNs which describes the earlist model time at which to-
kens can be consumed by an occuring transition.

Interval timed colored Petri nets (ITCPN) were intro-
duced by van der Aalst [32] and subsequently applied in
a number of areas, particularly in real-time control systems
[33]. In this model, time stamps are associated with tokens
in addition to the token color and the firing delay of tran-
sitions is specified by bounded time intervals, providing a
mechanism to model uncertainty and nondeterminism in in-
dividual transitions that cannot be captured adequately in
models providing deterministic delay models. Formally, an
ITCPN can be defined as follows:

Definition 1 An ITCPN is a 5-tuple (Σ, P, T, C, F) such
that

1. Σ is a finite set of types; the types in Σ are also re-
ferred to as colors, where multiple colors can be asso-
ciated with a given type.

2. P is a finite set of places, and
3. T is a finite set of transitions such that P ∩ T = ∅.
4. C is a color function C : P 7→ Σ,
5. CT = {(p, v)|p ∈ P ∧ v ∈ C(p)} is the set of all pos-

sible colored tokens, and
6. F is the transition function such that given a time set

TS = {x ∈ R|x ≥ 0} and the set of all closed in-
tervals INT = {[y, z] ∈ TS × TS|y ≤ z}, the mul-
tiset (denoted by the superscript X◦) of consumed to-
kens and the multiset of produced tokens for a transi-
tion t is mapped by F (t):

F : CT ◦ 9 (CT × INT)◦

domF (t) is the condition under which a given tran-
sition t ∈ T is enabled.

The following definition provides a rudimentary descrip-
tion of the dynamic semantics of ITCPN:

Definition 2 The state of a ITCPN (Σ, P, T, C, F) is de-
fined as a multiset of colored tokens, such that the state
space is

S = (CT × TS)◦.

The marking of an ITCPN in state s ∈ S is the token dis-
tribution M(s) ∈ CT ◦ such that

M(s) =
∑

〈〈p,v〉,x〉∈CT×TS

s(〈〈p, v〉, x〉)〈p, v〉

.
An event in an ITCPN is a 3-tuple 〈t, bin, bout〉 repre-

senting the firing of transition t, removal of tokens in bin

and addition of tokens in bout where the event set E is given
as

E = T × (CT × TS)◦ × (CT × TS)◦

.
A relation on tokens b C b′ is defined as

b C b′ ⇐⇒





b = ∅ ∧ b′ = ∅ or
∃〈〈p, v〉x〉 ∈ b∃〈〈p, v〉[y, z]〉 ∈ b′•
(x ∈ [y, z])∧
(b− 〈〈p, v〉x〉) C (b′ − 〈〈p, v〉[y, z]〉)

An event 〈t, bin, bout〉 ∈ E is enabled in a state s ∈ S if
and only if the following conditions are met:

1. bin ≤ s,

2. M(bin) ∈ domF (t), and

3. bout C F (t)(M(bin))

It should be noted that a token residing in a given place
p ∈ P must have a value v such that v ∈ C(p), i.e. a to-
ken color must match one of the place colors. For a detailed
description of the dynamic behavior model of ITCPN re-
fer to [32].

ITCPN uses the simplified assumption of a single global
time and point-value time representations, which is not en-
tirely appropriate for distributed systems where such cannot
be determined. However, for the purposes of modeling de-
scribed in this paper, the interval time properties provide
sufficient abstraction even for multi-agent attack environ-
ments when used in simulation. Both this simplification and
the semantics for ITCPN described in this sections imply a
limited suitability for analytical purposes such as exhaus-
tive reachability graphs; this would require a severe restric-
tion in the supported semantics [32]. However, as the main
purpose of the mechanisms described in this paper lie in the
simulation and execution of generated models, the simplic-
ity and effectiveness of the semantics described here appear
to outweigh this drawback.

3. Penetration Testing Models

While ad-hoc mechanisms for identifying flaws and ex-
ploiting such flaws in attacks or penetration tests are still
prevalent, some of the earliest results in the area of penetra-
tion testing introduced a structured approach that was also
used in practice early on, with a primary focus on operat-
ing system penetration testing [35, 21, 8, 7]. The Flaw Hy-
pothesis Model (FHM) by Linde and Weissman has been re-
fined since [36, 2, 37] and is widely used as a mechanism
for structuring penetration-type testing, primarily in the area
of certification and accreditation. It consists of four interre-
lated and iterative stages:

1. Flaw generation: Generation of hypothetical or sus-
pected flaws in the system under test.

2. Flaw confirmation: Classification of flaw hypotheses
as true, false, or untested.

3. Flaw generalization: Attempt at identifying common
underlying weaknesses from confirmed flaws and gen-
eralization into flaw classes.

4. Flaw elimination: Removal or mitigation of flaws
through external controls.

The steps in the FHM are solely based on heuristics and
do not lend themselves to automation to a significant ex-
tent. In particular, the flaw generation step is confined to
perusal of all documentation and source code available (de-
pending on whether a red-team or blue-team penetration test
is intended) and informal techniques for the creation of at-
tack or flaw scenarios.

An alternate methodology, based largely on fault tree
analysis, originally developed for systems analysis by Bell
Telephone Laboratories for use on the Minuteman strate-
gic missile system [20], is the use of tree-based mecha-
nisms [27, 28]. This methodology, similar to FHM, pro-
vides a mechanism for structuring and guiding an informal
and heuristic-based approach to the identification and con-
firmation of flaws and attack scenarios.

McDermott proposed the use of simple disjunctive Petri
nets as a mechanism for structuring the penetration test-
ing process, called attack nets [23]. Attack nets represent
larger-scale states of the system under attack as places and
model operations such as events and data flows as transi-
tions within the attack net with multiple tokens represent-
ing the steps an attacker must take in order to achieve his
objective (e.g. control over the system under attack). In this
model, the constraints on transitions provide the requisite
coordination in case multiple tokens are required for a given
action.

This mechanism provides testers with the ability to
model

• concurrency and attack progress in the form of tokens
• intermediate and final objectives as places, and
• commands or inputs as transitions.

As noted by McDermott, the attack net mechanism is not
intended to model actual behavior of attackers and does not
provide the requisite level of detail that would be necessary
for such a process.

3.1. Interval Timed Colored Petri Nets

We argue that the attack net model can be further refined
to address the challenges of identifying several classes of
flaws in penetration testing that cannot be identified with
justifiable effort using the previously described informal
heuristics.

To this end, we extend the attack net mechanism by Mc-
Dermott to provide a level of detail sufficient for the simula-
tion and execution of attacks as part of an overall methodol-
ogy such as the flaw hypothesis methodology. This mecha-
nism is, however, not intended to supplant the larger, holis-
tic methodologies such as the FHM, Attack Trees, or re-
lated approaches such as the InfoSec Assessment Method-
ology as defined by the U.S. National Security Agency.

One of the key benefits of Petri nets in addition to their
graphical nature and hence their appeal to visual compre-
hension and to some extent intuition is that well-defined se-
mantics exist for Petri nets which permit the seamless in-
tegration of modeling, simulation, and execution. It is par-
ticularly in the latter two elements that the results reported
in this paper extend the approach found in [23]. Based on
the overall methodical framework of the FHM, Petri nets
and particularly ITCPN can be used for the stepwise refine-
ment in the identification, exploration, and analysis of at-
tacks and flaws within information systems.

In the basic case, Petri nets (not necessarily with time
components) can be used to structure attack elements, in-
cluding documenting the need for concurrent actions, reac-
tions by the system under attack and its operators, and the
codification of preconditions for attack steps to proceed; in
this, even basic binary Petri nets provide a mechanism for
effectively modeling of multi-agent attacks and the interac-
tions between multiple attacking agents and defenders.

This mechanism can subsequently be refined consider-
ably by using colored Petri nets (CPN) for including details
on the attack steps to be conducted; the context provided by
the token color as well as other annotations provides suf-
ficient information to permit both the simulation and, more
importantly, a direct mapping onto an execution element for
an attack.

The execution mechanism itself can e.g. be constituted
by a Nessus module or custom-written code element. How-
ever, the general framework for sequencing the attack com-
ponents and providing information gained in the course of
the attack to other components is retained within the gen-
eral CPN simulation tool. This provides a significant bene-
fit both in the structure and the reusability of individual at-
tack elements.

Moreover, the Petri net mechanism lends itself well to
a hierarchical structuring of attacks as well as the factor-
ing and parameterization of attack components for reuse. If
a sufficient level of detail is provided, a CPN model can also
be used for a direct reachability analysis for certain classes
and vulnerabilities, thereby automating at least in part one
of the steps that is typically based on heuristics within the
FHM. However, both the computational complexity of such
reachability analyses and the level of detail required for the
creation of a CPN model suitable for such analysis clearly
delineate the limits of the approach [17].

The class of attacks this paper is primarily concerned
with, however, is not immediately amenable to reachability
analysis. Timing-dependent attacks, particularly executed
by multiple agents in a networked environment and typi-
cally also executed against multiple targets or networked
components of a target system constitute a large class of
attacks that are promising to attackers since some of the
fault conditions that render such systems susceptible to at-
tacks are difficult to eliminate through static analysis and
software engineering practices and may in some cases be
ephemeral properties of system configurations that were not
anticipated by system designers even if such systems were
designed with due diligence. Examples of relevant classes
include TOCTOU (time of check to time of use) attacks,
race conditions and resource contention attacks.

While such vulnerabilities are frequently identified and
both exploited and corrected for local systems (e.g. in case
of temporary file or lock creation), they are significantly
mode difficult to identify in distributed environments where
network latency and load conditions can provide signifi-
cant distortions in the timing and even sequencing of events
and actions relevant for the successful conclusion of an at-
tack. Attackers therefore are forced to rely mainly on brute
force type approaches to identify vulnerabilities even if suf-
ficient knowledge of the system under attack such as com-
ponent source code is available. This, in combination with
the effort required to construct multiple-agent type attacks
has presumably limited the success in identifying signifi-
cant numbers of vulnerable systems and configurations.

Moreover, since the systems exhibiting this type of
timing-based vulnerabilities are frequently exposed to
public networks and must let application network traf-
fic pass through network defense mechanisms (e.g. in case
of web services or electronic commerce sites), threat mit-
igation strategies such as limiting network traffic is inef-
fective if the attack can be framed in terms of legitimate
or legitimate-appearing traffic following application se-
mantics. In addition, the systems susceptible to these
timing-based attacks are also typically custom-built with
significant configurations and custom software added to un-
derlying standard components such as web servers,
databases, and programming environments, therefore mak-
ing the elimination of this class of attack through generic
defect or threat removal becomes exceedingly diffi-
cult.

The addition of time intervals to the model of transitions
and events in Petri networks in the form of ITCPN provides
a simple, elegant, and powerful mechanism to model such
timing relations, even in the presence of uncertainty over
the precise nature of the relation (as may be the case even
when performing full white-box penetration testing).

While the ability to perform static reachability analysis
on larger-scale systems is even more limited than in the case

of CPN without timing elements [29], the interval timed net
nevertheless provides a natural mechanism for both simu-
lation and execution of the time intervals through the sam-
pling of the time intervals (which may be further supple-
mented by approaches and semantics commonly found in
stochastic Petri nets [22]). It should be noted that while the
Petri net framework provides partial automation of such at-
tacks, it is still necessary particularly for larger networks
to guide the simulation and execution using heuristics since
exhaustive sampling of all permutations even over a suit-
ably constrained partial reachability tree may well exceed
the time available even for automated penetration testing.
Nevertheless, the benefits of automation in conjunction with
the use of the general Petri net modeling tool framework for
reusability and refinement of attack models including hier-
archical models at different levels of detail in modeling pre-
viously mentioned provide significant benefits over the de
novo creation of attack scripts.

4. Scenarios

The following section demonstrates the types of attack
scenarios of primary interest for this methodology in the
form of case studies, beginning with an elementary net.

4.1. Consistency of Condition Checks

The class of Time-of-Check-to-Time-Of-Use (TOC-
TOU) vulnerabilities provides a large number of opportu-
nities for attackers not only for operating systems but par-
ticularly also in case of application systems. While such
attacks can occur in case of logical flaws, the more com-
mon root cause is a race condition (see also section 4.2).
In the latter case, timing becomes relevant. The most com-
mon way of exploiting such vulnerabilities, particularly for
local exploits, is to automate an attack and run it multi-
ple times in a brute force approach, adjusting timing to hit
just the right interleaving of operations. On the UNIX plat-
form, the canonical example of application TOCTOU
vulnerabilities are symbolic link attacks. A TOCTOU vul-
nerability in a program running EUID1 of another user,
preferably root, for the duration of the race condi-
tion.

The following penetration test study show how we can
use TCPN to model such an attack. This case is based on a
historical case of a TOCTOU vulnerability of passwd(1),
described by Bishop and Dilger in [4]. Precondition for the
attack is a penetration tester with local, nonprivileged shell
access. The underlying flaw hypothesis here is the ability
to masquerade as another user in the system. Investigating

1 Effective User Identification, e.g. the passwd process runs with the
real UID of attacker and effective UID of root so it will be able
to access /etc/passwd and change password for user attacker.

the flawed program, passwd, the following steps can be ei-
ther deduced or hypothesized:

1. Open password file, read it, retrieve the entry for the
running user

2. Create and open a temporary file (called ptmp) in the
same directory as the password file.

3. Open password file, copy contents into ptmp, update
modified information.

4. Close password file and ptmp, then rename ptmp to
be the password file.

Without the ability to halt passwd between each
step, a timed attack model becomes relevant. Model-
ing the passwd steps (transitions) in a colored Petri net is
straightforward, see the right of figure 1 on page 8.

The attacker must do some initial preparation to exploit
the vulnerability:

1. Create a password directory.

2. Create a .rhost file in that directory.

3. Insert login credentials into .rhost

4. Make a symbolic link that links to the password direc-
tory.

These steps are just done for preparation and can be mod-
eled as one transition in the colored Petri net, with two con-
junctive places as input, which is the fake login credentials
and shell access to the computer.

There are two color sets in the TCPN which are timed,
Attack and Process. The symbolic link state are rep-
resented through the color set Attack, while the system
state is represented by the color set Process. For illustra-
tive purposes, a simplified assumption of the net in figure 1
is that each transition or step in the passwd process con-
sumes the same amount of CPU time. The actions of the at-
tacker are then modeled as a parallel net within the same
time window.

The TOCTOU or symbolic link attack starts by start-
ing the passwd process on the link to the attackers pwd di-
rectory. Then when the process action has a token with the
color UserEntry at the place user entry read the
attacker must change the symbolic link to point to the tar-
get directory. Since the net are timed the token colored
UserEntry will have a time stamp of 2 and the to-
ken colored LinkToPwd at the place attacker must
change link have a time stamp of 1. This happens be-
cause the input arc of the place attacker must
change link adds 1 time unit and the transition open
password file read entry for running
user uses 2 time units. The differences in time stamps im-
ply that the token with lowest time stamp will fire first,
thus the transition delete link create new link

will be enabled first. This is how the TCPN contin-
ues, the model remains at a specific time until no more tran-
sitions are enabled at the current model time. The model
time increases as the tokens change time stamp. The at-
tacker must change the symbolic link between every transi-
tion in the passwd process. This attack will end when the
model time has reached 7. Then the passwd process is fin-
ished and the attacker has successfully changed the target
users .rhost file.

This local penetration testing exercise demonstrate the
possibilities and limitations of modeling timed attacks us-
ing TCPNs. The complexity of such attacks done manually
can become difficult to control if several conditions must be
true at any one time, as can be seen clearly in the attack de-
scribed here, even though only two main concurrent pro-
cesses were present. Other, similar attacks may have three
or more concurrent processes, e.g. attacker actions, a pro-
cess that writes to a file, and another that reads the file.
Modeling such attacks in a TCPN helps the penetration test
to become successful without too many manual and time-
consuming operations and interventions. A problem, how-
ever, is obvious when vulnerabilities like this appear in a
distributed environment, i.e. not on a single computer where
one may use or at least model using a single global time.
For distributed systems, there not only is no such global
time (at most a partial order), but also a number of varia-
tions owing e.g. to load and latency conditions within the
distributed system. In such an environment, TCPN are in-
adequate since one must take the uncertainties immanent in
the model into account both for the modeling and the simu-
lation/execution stages.

The following section therefore briefly demonstrates the
use of interval-timed colored Petri nets.

4.2. Race Condition Attack

Race conditions, particularly in application systems con-
structed in the form of multi-tiered architectures, are both
common and difficult to exploit remotely in an efficient
manner. To illustrate the use of ITCPN for modeling and ex-
ecution of a race condition-type attack, we assume a three-
tier electronic commerce site in the following scenario (this
scenario is a composite of multiple typical application-layer
attacks and does not correspond to a single existing system).
Without loss of generality, we assume a back end database
system and an intermediate application layer (e.g. running
on web servers with servlets), running on multiprocessor or
at least multithreading systems.

The objective of the penetration test is to modify back
end data, in this case to modify the shipping data of a cus-
tomer’s order. It is not necessary for the attacker to compro-
mise either the application or back end layer for this attack
to succeed.

We further assume that, during the information gather-
ing phase, it has been ascertained that all connections to the
application layer are secured via a TLS channel and that
the firewalling mechanism separating the presentation layer
(client side) from the application and back end layers are
effective. However, an attacker is able to obtain data from
customer identification cookies from legitimate customers,
as is commonly accomplished through e.g. cross-site script-
ing. The penetration tester has, moreover, also identified a
construction rule for legitimate transaction identifiers2.

Subsequently, the penetration tester can either through
deduction from existing commerce back ends or through
study of design documents identify the final step in perform-
ing a purchase, namely the confirmation on the part of the
customer (after having signed onto the commerce site, se-
lected the merchandise and entered shipping and payment
details) and the recording of purchase data with both inter-
nal and external databases and services.

The elements of the order confirmation transaction thus
obtained are as follows:

Inventory update In this step, an update of the inventory
database table is performed.

Payment confirmation A final confirmation of customer
credit standing is performed by an banking service and,
on success of this step, the payment is recorded in the
local credit database.

Shipping processing The shipping details are written to
the shipping information database table.

Order fulfillment Based on the previous informa-
tion, merchandise pickup data and shipping addresses
are collated and sent to the shipping agent.

The operative flaw hypothesis is that developers have, in
order to obtain maximum throughput, the various databases
accesses during the course of the transaction, are performed
with row-locking at each stage, but not across multiple
stages of the above transaction. Only the entire transaction
can be rolled back in case of a failure at an individual stage.

An attacker able to inject data with valid customer and
transaction identification to the application layer as de-
scribed above can perform modifications to the shipping in-
formation database table after the completion of the third
stage and prior to commencement of the fourth stage, re-
sulting in goods being diverted to an attacker’s address of
choice. In this type of attack scenario it is not necessary for
the attacker to learn payment information details of a cus-
tomer, or to compromise the back end; the hypothetical flaw
lies solely within the application logic and its implementa-
tion in accessing the database back end.

To model an application-level penetration, an ITCPN can
therefore be constructed that focuses the primary level of

2 In many electronic commerce applications these are simple sequence
numbers and therefore trivial to predict.

detail and timing dependency on the progress through the
transaction stages outlined above. Each of the four steps de-
scribed above is framed by a beginning and ending tran-
sition associated with a time interval, along with a similar
time interval for intermediate processing between the steps.
The same structure can then be used – with different col-
ors – for a transaction initiated but not completed by the at-
tacker.

To simplify the network sufficiently so it will fit on a sin-
gle page, we assume that the attacker has an injection chan-
nel (modeled separately) into the database communication
between steps three and four. Such an attack can be a (tim-
ing independent) HTTP POST request that utilizes the in-
formation gained as described above. Since the attacker is
authenticated as a valid customer through the TLS layer,
perimeter defenses are unlikely to register this injection as
a malicious act.

Figure 2 on page 9 shows the attack model. This in-
terval timed colored Petri net uses product color sets
(Inventory, Credit, Shipping, SendShipping,
Ordr), which combines other color sets (strings and inte-
gers) to represent the information written to the back end
database. These product color sets and the color set Lock
are timed.

Prior to the attack steps shown in the attack model in
figure 2 on page 9, the customer has finished and con-
firmed his order. The attack models the system confirma-
tion steps in parallel with the attacker’s injection action.
The place confirmed order represents the system state
where a customer has confirmed his order in the presenta-
tion layer. From this point in time the penetration tester must
time his injection. The timing will vary because of the dis-
tributed nature of the system, hence the interval timing. The
first transaction, req inventory update, will update
the inventory table in the back end database. The entire
transaction is modeled to consume time, that is between
1 and 6 ([a, b]) time units (here: milliseconds). The min-
imum time, 1, represents how long the entire transaction
may take if there are no delays. Acquiring the database ta-
ble lock is modeled to take between 0 and 12 ([c, d]) time
units, depending on database load. The minimum time of
0 is chosen because the lock may be available immediately
for the transaction update inventory. The transaction
will not fire before there is at least one token in all input
places. The fuzzy timing is represented by closed intervals
in the interval timed colored Petri net. The first confirma-
tion step – inventory update of a customer order – can by
this use all between 1 and 18 ([a + c, b + d]) time units in
the attack model.

The second confirmation step, payment confirmation, is
modeled similarly to the former. However, this step uses a
slightly different timing, simulating that the loads on the
credit database table are different from the more heavily

loaded inventory table. At the same time as the payment is
written to the credit table, a payment confirmation is sent to
the external financial service, confirming credit withdrawal.
In the next confirmation step the address is written to the
shipping database table. It is here that the race condition
the penetration tester is trying to exploit appears. The req
fulfillment transition will wait for the results from the
database table write to finish, and then the shipping fulfill-
ment will read from the shipping table and finish the or-
der. The transaction read shipping details will in
most database systems acquire a shared read lock that pre-
vents the row or table to be updated at the same time as an-
other client attempts to read. However, because of the time
window that appear between the write to the database ta-
ble and the read from this database table by the two last ful-
fillment processes (and an imprudent lapse of the surround-
ing lock), the attacker can gain a exclusive write lock before
the transaction read shipping details commences
reading.

Immediately after the customer has placed his order, the
attacker will inject the changed shipping address, leaving
the remaining data untouched. The available time window
for the attack appears after the shipping details has been
written to the shipping database table and the final fulfill-
ment step is initiated. Thus, if the attacker can inject a new
record into the database shipping table before the transac-
tion read shipping details is fired, the attack is
successful. By calculating the minimum and maximum time
this could take, we can obtain an interval where the injec-
tion is most likely to be successful. This interval must start
from the starting point, that is from where the customer con-
firms his order in the presentation layer, to the maximum
time it can take for the customers shipping details to be writ-
ten to the database table. In the attack model this time in-
terval can be calculated to be in the closed time interval
[3, 60]. In this time interval the attack will be most likely
to succeed. This means however that the attack will not al-
ways will succeed, but it is likely to succeed after a small
number of (automated) attempts. The main flaw hypothe-
sis investigated here is the race condition situation between
the confirmation steps. The small time window which ap-
pears between the release of a lock and the next confirma-
tion step make the injection possible. Another underlying
flaw in the system that becomes clear from this penetration
test is the weak user identification mechanism. The system
design has a weaknesses in separating user that has been
authenticated against the server by username and password
and subsequently through a cookie mechanism. The internal
processes assume that a message with a specific customer
identification always comes from the correct client. This as-
sumption can be imprudent, especially when the transac-
tion identification can be intercepted or guessed by an ad-
versary, meaning that an adversary may have all information

start
passwd

Process

user entry
read

Process

ptmp
created

Process

ptmp include
passord information

Process

passwd
finished

Process

login credentials

Target_user

1‘("IP USER :::::")

link to pwd
created

Attack

attacker
must change link

Attack

link changed

Attack

User access

Access

1‘("ShellAccess")

open password file
read entry for running user

@+2

create and open
ptmp in password

directory

@+2

open password
again, copy unchanged
contents to ptmp while

updating modified information

@+2

close password file and ptmp
rename ptmp to password file

@+2

create pwd/.rhosts
write credentials to .rhosts

ln -s pwd link

run passwd on
link/.rhost

delete link
create new link

@+2

next action

ProcessAction

1‘(UserEntry)

ProcessAction

1‘(PtmpCreated)

ProcessAction

1‘(PasswdInPtmp)

ProcessAction

1‘(PtmpInPasswd)

str0

1‘(LinkToPwd)

AttackAction

AttackAction

if AttackAction = LinkToTarget
then 1‘(LinkToPwd)
else 1‘(LinkToTarget)

AttackAction@+1

AttackAction

AttackAction

1‘(Start)

str1

Passwd processAttackers actions

Figure 1. Symbolic link attack. Time constraints are in upper right-hand corner in transitions and
after @ symbol in arcs. Color sets are in lower right-hand corner, initial markings in upper right-hand
corner of places.

Inventory
 table

Inventory

1‘(0,0,"")

in use

Lock

1‘("lock")

sql

Inventory

credit
table

Credit

1‘(0,0,"")

res

DBres

payment
confirmation

external
STRING

res

DBres

res

DBres

shipping
table

Shipping

1‘(0,0,"")

shipping
department

Shipping

sql

Credit

sql

Shipping

confirmed
order

Order

1‘(1,20,"Rolex Watch","$1000","Bob Town")

wait for
res

Order

wait for
res

Order

wait for
res

Order

sql

SendShipping

attacker

Shipping

1‘(1,20,"Eve City")

available

Lock

available

Lock

available

Lock

in use

Lock

1‘("lock")

in use

Lock

1‘("lock")

update
inventory

write
payment

write
shipping

read shipping
details

req shipping
registration

req payment
fulfillment

req inventory
update

req
fulfillment

injection
channel

rel lock

rel lock

rel lock

(k,l,str0)

(m,n,str)

(k,l,str1)

(m,n,str)

1‘("paymentOK")

str1

(k,l,str0)
1‘("lock")

1‘("InventoryOK")

(k,l,str2)

(m,n,str)

1‘("shippingOK")

(m,n,str)

(m,n,str)

res

(k,l,str0) @ [1,6]

(k,l,str1) @ [1,6]

(k,l,str1)

res

(k,l,str2) @ [1,6]

(k,l,str2)

(k,l,str0,str1,str2)

(k,l,str0,str1,str2)

(k,l,"",str1,str2)

(k,l,"","",str2)

(k,l,str0,str1,str2)

(k,l,str0,str1,str2)

res

(k,l) @ [1,6]

(k,l)

(k,l,"","",str2)

(k,l,str2) [8,54]

(k,l,str2)

lck
lck @ [0,12]

lck

1‘("lock")

lck lck @ [0,10]

lck

lck lck @ [0,14]

lck
1‘("lock")

Figure 2. Race condition attack. The interval timing constraints are denoted as closed intervals in
the arc expressions of output arcs, i.e. an @ followed by the interval.

that identifies an order in the back end database. The flaw of
being able to guess transient transaction identifiers in com-
bination with the customer identifiers make this vulnerabil-
ity (present in quite a few shopping-cart type applications)
dangerous. If the system had not released the database ta-
ble or row lock between each stage in the final confirmation
steps, the attacker would not be capable of injecting arbri-
tary information and thereby change a customer’s order that
has already been properly approved by the customer, ap-
plication and external systems. However, for performance
reasons, and because of the distributed nature of the sys-
tem, such locks are frequently not used in such a conser-
vative way. A downgrade from the exclusive write lock to
a read lock could help in the two last steps of the confir-
mation transaction, but this is again difficult to realize in a
distributed environment. In addition, the elimination of all
HTTP POST injections would also stop this attack, but in
complex multi tier e-commerce systems like this it is dif-
ficult prevent all such injection possibilities and may again
result in significant performance penalties.

This attack scenario has demonstrated the use of a in-
terval timed CPN for modeling a moderately complex time-
dependent vulnerability and exploits of such vulnerabilities.
Even in such a limited scenario, however, the benefits of a
more rigid modeling approach and the ability to perform
a round-trip modeling, simulation, and execution flaw hy-
pothesis penetration test have become apparent.

5. Related Work

Tool-based flaw identification mechanisms for penetra-
tion testing were investigated in parallel with the develop-
ment of penetration testing methodology for operating sys-
tems [13, 5, 1], but were not pursued further. The main use
of tool-based mechanisms currently is in the identification
of network topologies, system services, and network host
configurations [34]; the confirmation of flaws’ existence is
also facilitated by tools such as Nessus, Metasploit, and
Core Impact.

As noted in section 3, the use of Petri networks for the
description and modeling of abstract attack approaches was
proposed by McDermott [23]. Subsequently, Steffan and
Schumacher [30] proposed a similarly abstract knowledge-
sharing approach to attack modeling that combines the free-
form mechanisms of Wiki publishing systems with condi-
tional transitions as may be found in Petri nets, albeit with-
out formalized semantics.

Petri nets and Colored Petri nets have, however, been
used extensively in the design and implementation of intru-
sion detection systems such as those by Kumar and Spafford
[19] and Helmer et al. [12] along with related formalisms
based on timed finite state machines such as the approach

proposed by Chang et al. [6], which may be considered as
complementary to the approach described in this paper.

6. Conclusion and Future Work

This paper has described a mechanism for the mod-
eling, partial analysis, and automatic execution of multi-
agent, multi-stage attacks based on interval timed colored
Petri nets. The ability to construct partial and hierarchical
models using an intuitive yet mathematically sound mech-
anism and a graphically oriented toolkit permits the ex-
ploration of several types of attacks, particularly based on
TOCTOU and race conditions, which are difficult to iden-
tify in network-based environments. By coupling an execu-
tion mechanism based on sampling interval times and pa-
rameterizing attack code fragments, such attacks can be au-
tomatically conducted based on the model constructed once
the iterative development of attack scenarios has reached
a sufficient level of specificity. Moreover, both attack frag-
ments and elements of attack scenarios can be reused either
in part or as components of larger-scale attacks.

Such mechanisms should provide the ability to expose
vulnerabilities particularly for network-based application
systems that are difficult to identify in the course of manual,
heuristic-driven penetration testing given the effort required
in manually constructing attack scripts that are specific to
a given application system and which may not be transfer-
able to other sites without major modification or complete
revision.

Future work will include investigations into the use of
generalized stochastic Petri nets Monte Carlo-based sam-
pling strategies for coverage of the state space; in addition,
the composition of partial attack models from heteroge-
neous sources in which data structures and data types need
to be reconciled for use in larger-scale ITCPN requires fur-
ther investigation to permit the use of this attack and pene-
tration testing model for collaborative efforts. Another sub-
ject of future work that should prove useful is the integra-
tion of multiple subnets (and, where necessary, their ho-
mogenization through renaming and intermediate networks
to reconcile naming and token cardinality conflicts) and the
semi-automated documentation of full FHM roundtrip anal-
yses that so far need to be conducted manually, leading to
less than consistent documentation of the penetration test-
ing processes.

References

[1] R. P. Abbott. Security Analysis and Enhancement of Com-
puter Operating Systems. Technical Report NBSIR 76-
1042, National Bureau of Standards ICST, Gaithersburg,
MD, USA, Apr. 1976.

[2] M. D. Abrams, S. Jajodia, and H. J. Podell, editors. Infor-
mation Security: An Integrated Collection of Essays. IEEE
Press, 1995.

[3] J. Beale, H. Meer, R. Temmingh, C. van der Walt, and R. De-
raison. Nessus Network Auditing. Syngress, Rockland, MA,
USA, 2004.

[4] M. Bishop and M. Dilger. Checking for Race Conditions in
File Accesses. Computing Systems, 9(2):131–152, 1996.

[5] J. Carlstedt, R. Bisbey, and G. Popek. Pattern-Directed Pro-
tection Evaluation. Technical Report ISI/RR-75-31, Univer-
sity of Southern California Information Sciences Institute,
Marina del Rey, CA, USA, June 1975.

[6] H.-Y. Chang, S. F. Wu, and Y. F. Jou. Real-Time Proto-
col Analysis for Detecting Link-State Routing Protocol At-
tacks. ACM Transactions on Information and System Secu-
rity, 4(1):1–36, Feb. 2001.

[7] L. M. Galie and R. R. Linde. Security Analysis of the IBM
VS2/R3 Operating System Scientific Computer. Technical
Report TM-WD-7203/000/00, System Development Corp.,
Washington D.C., USA, Jan. 1976.

[8] L. M. Galie, R. R. Linde, and K. R. Wilson. Security Analy-
sis of the Texas Instruments Advanced Scientific Computer.
Technical Report TM-WD-6505/000/00, System Develop-
ment Corp., Washington D.C., USA, June 1975.

[9] D. Geer and J. Harthorne. Penetration Testing: A Duet. In
Proceedings of the 18th Annual Computer Security Applica-
tions Conference (ACSAC 2002), pages 185–198, Las Vegas,
NV, USA, Dec. 2002. IEEE Press.

[10] S. Gupta and V. D. Gligor. Experience with a Penetration
Analysis Method and Tool. In Proceedings of the 15th Na-
tional Computer Security Conference, pages 165–183, Balti-
more, MD, USA, Oct. 1992.

[11] S. Gupta and V. D. Gligor. Towards a Theory of Penetration-
Resistant Systems and Its Applications. Journal of Computer
Security, 1(2):133–158, 1992.

[12] G. Helmer, J. Wong, M. Slagell, V. Honavar, L. Miller,
Y. Wang, and R. Lutz. Software Fault Tree and Colored
Petri Net Based Specification, Design and Implementation
of Agent-Based Intrusion Detection Systems. Technical re-
port, Iowa State University, Ames, IA, USA, June 2002.

[13] D. Hollingsworth, S. Glaseman, and M. Hopwood. Secu-
rity Test and Evaluation Tools: An Approach to Operating
System Security Analysis. Technical Report P-5298, RAND
Corporation, Santa Monica, CA, USA, Sept. 1974.

[14] K. Jensen. Coloured Petri Nets: Analysis Methods (Volume
2). Monographs in Theoretical Computer Science. Springer
Verlag, Heidelberg, Germany, 1997.

[15] K. Jensen. Coloured Petri Nets: Basic Concepts (Volume 1).
Monographs in Theoretical Computer Science. Springer Ver-
lag, Heidelberg, Germany, 1997.

[16] K. Jensen. Coloured Petri Nets: Practical Use (Volume 3).
Monographs in Theoretical Computer Science. Springer Ver-
lag, Heidelberg, Germany, 1997.

[17] E. Y. T. Juan, J. J. P. Tsai, and T. Murata. Compositional Ver-
ification of Concurrent Systems Using Petri-Net-Based Con-
densation Rules. ACM Transactions on Programming Lan-
guages and Systems, 20(5):917–979, Sept. 1998.

[18] P. A. Karger and R. R. Schell. Multics Security Evaluation:
Vulnerability Analysis. Technical Report ESD-TR-74-193,
Vol. II, Information Systems Technology Application Office,
Deputy for Command and Management Systems, Electronic
Systems Division (AFSC), L. G. Hanscom AFB, MA, USA,
June 1974.

[19] S. Kumar and E. H. Spafford. A Pattern-Matching Model for
Instrusion Detection. In In Proceedings of the National Com-
puter Security Conference, pages 11–21, Baltimore, MD,
USA, Oct. 1994.

[20] W. Lee, D. Grosh, and F. Tillman. Fault tree analysis, meth-
ods, and applications. IEEE Transactions on Reliability,
34(3):194–203, Aug. 1985.

[21] R. R. Linde. Operating System Penetration. In Proceedings
of the AFIPS National Computer Conference, volume 44 of
AFIPS Conference Proceedings, pages 361–368, Anaheim,
CA, USA, May 1975. AFIPS Press.

[22] M. A. Marsan, G. Balbo, G. Conte, S. Donatelli, and
G. Franceschinis. Modelling with Generalized Stochastic
Petri Nets . John Wiley & Sons, New York, NY, USA, 1995.

[23] J. P. McDermott. Attack Net Penetration Testing. In Pro-
ceedings of the 2000 Workshop on New Security Paradigms
(NSPW 2000), pages 15–21, Ballycotton, Ireland, Oct. 2000.

[24] J. L. Peterson. Petri Net Theory and the Modeling of Systems.
Prentice Hall PTR, Upper Saddle River, NJ, USA, 1981.

[25] C. A. Petri. Kommunikation mit Automaten. PhD thesis,
Technische Hochschule Darmstadt, Darmstadt, Germany,
1962. Published in Schriften des Instituts für Instrumentelle
Mathematik 3,1-128, University of Bonn, Germany.

[26] W. Reisig. Petri Nets: An Introduction. Monographs in Theo-
retical Computer Science. Springer Verlag, Heidelberg, Ger-
many, 1985.

[27] C. Salter, O. S. Saydjari, B. Schneier, and J. Wallner. Toward
a Secure System Engineering Methodolgy. In Proceedings
of the 1998 Workshop on New Security Paradigms (NSPW
1998), pages 2–10, Charlottesville, VA, USA, Sept. 1998.

[28] B. Schneier. Attack Trees. Dr. Dobb’s, 24(12):21–29, Dec.
1999.

[29] R. H. Sloan and U. Buy. Stubborn Sets for Real-Time Petri
Nets. Formal Methods in System Design, 11(1):23–40, July
1997.

[30] J. Steffan and M. Schumacher. Collaborative Attack Model-
ing. In SAC ’02: Proceedings of the 2002 ACM Symposium
on Applied Computing, pages 253–259, Madrid, Spain, Mar.
2002. ACM Press.

[31] H. H. Thompson. Application Penetration Testing. IEEE Se-
curity & Privacy, 3(1):66–69, Jan./Feb. 2005.

[32] W. M. P. van der Aalst. Interval Timed Coloured Petri Nets
and their Analysis. In M. A. Marsan, editor, Proceedings
of Application and Theory of Petri Nets 1993, 14th Inter-
national Conference, volume 691 of Lecture Notes in Com-
puter Science, pages 453–472, Chicago, IL, USA, June 1993.
Springer-Verlag.

[33] W. M. P. van der Aalst. Analysis of Railway Stations by
Means of Interval Timed Coloured Petri Nets. Real-Time
Systems, 9(3):241–263, Nov. 1995.

[34] J. Wack, M. Tracy, and M. Souppaya. Guideline on Net-
work Security Testing. Technical Report Special Publication
SP 800-42, U.S. National Institute of Standards and Technol-
ogy, Gaithersburg, MD, USA, Oct. 2003.

[35] C. Weissman. System Security Analysis/Certification
Methodology and Results. Technical Report SP-3728, Sys-
tem Development Corp., Santa Monica, CA, USA, Oct.
1973.

[36] C. Weissman. Security Penetration Testing Guideline,
U.S. Navy Handbook on Security Certification. Technical
Report TM-8889/000/00, Paramax Systems Corp., Camar-
illo, CA, USA, Dec. 1992. Prepared under contract to the
U.S. Naval Research Laboratory.

[37] C. Weissman. Penetration Testing. In Abrams et al. [2],
pages 269–296.

[38] A. Zenie. Colored Stochastic Petri Nets. In Proceedings of
the International Workshop on Timed Petri Nets, pages 262–
271, Torino, Italy, July 1985.

	thesis.pdf
	Abstract
	Sammendrag
	Preface
	Contents
	List of Figures
	Introduction
	Topics Covered by This Thesis
	Justification, Motivation and Benefits
	Problem Description
	Research Questions
	Summary of Claimed Contributions
	Method
	Terminology
	Outline of Chapters

	Petri Net Theory
	Basic Graph Theory
	Petri Nets
	Coloured Petri Nets
	Timed Coloured Petri Nets
	Interval Timed Coloured Petri Nets

	Penetration Testing
	Current Penetration Testing Methodologies
	OSSTMM
	NIST SP 800-42

	Tools and Exploit Code
	Scanners
	Tool Limitations

	Flaw Hypothesis Methodology
	Flaw Hypothesis Methodology Theory
	Methodology Limitations

	Fault Tree Analysis Based Methodologies
	Fault Tree Analysis
	Attack Trees

	Related Work
	Tree Based Attack Modelling
	Attack Graph Modelling
	Petri Net Attack Modelling
	Coloured Petri Net Attack Modelling

	Using Coloured Petri Nets in Penetration Testing
	The Overall Model
	Motivation for Coloured Petri Net Attack Modelling
	Coloured Petri Net Attack Model
	Timed Coloured Petri Nets
	Interval Timed Coloured Petri Nets
	Development Stages

	Main Benefits

	Scenarios
	Scenario 1 -- SQL Injection
	Conclusions and Observations on Scenario 1

	Scenario 2 -- Consistency of Condition Checks
	Conclusions and Observations on Scenario 2

	Scenario 3 -- Race Condition
	Conclusions and Observations on Scenario 3

	Conclusion
	Future Work
	Bibliography
	Used Declarations and Net Inscriptions
	Paper Submitted for Publication

	CPNappendix.pdf

