

Intrusion tolerance in
Publish/Subscribe based MANET

Erland Kolstad
erlandkolstad@gmail.com

+47 907 25 635

Master thesis
Master of Information Security

Department of Computer Science and Media Technology
Gjøvik University College, 2009

Intrusion Tolerance in Publish/Subscribe based MANET

ii

Avdeling for
informatikk og medieteknikk
Høgskolen i Gjøvik
Postboks 191
2802 Gjøvik

Department of Computer Science
and Media Technology
Gjøvik University College
Box 191
N-2802 Gjøvik
Norway

Intrusion Tolerance in Publish/Subscribe based MANET

iii

Abstract

Public/Subscribe (PubSub) paradigm is a powerful abstraction for building distributed
applications and message distribution networks, and seems to be well suited model for
the type of communication which takes place at a tactical/mobile level in military
operations. Because of the hostile environment such networks have to operate in, they
have to have good information security properties, including intrusion tolerance. A
successful intrusion in tactical command and control networks can have a substantial
damage on the ongoing military operation, making it a highly valuable enemy target.

Most previous work on information distribution in MANETs focuses on how to
distribute the information and minimize the amount of data to be sent on the network,
and not on security issues introduced by an intruder.

During this master project we have performed an analysis of the intrusion tolerance of
the PubSub based MANET, i.e. the capability of a system to fulfill its mission in a
timely manner, even when the network is under different types of attacks. The analysis
shows that the PubSub protocol is vulnerable to some attacks performed by an
intruder in the network.

To deal with those vulnerabilities we have proposed enhancements to the protocol to
make it more robust and immune to these attacks. By implementing the proposed
enhancements we show that the PubSub protocol can be made very robust against the
different types of attacks studied in this thesis. These properties make the protocol
suited for usage in communication networks which operate in hostile environments.

Intrusion Tolerance in Publish/Subscribe based MANET

iv

Intrusion Tolerance in Publish/Subscribe based MANET

v

Acknowledgement

I would like to thank my supervisor, Professor Slobodan Petrovic, for feedback and
guidance throughout the work on my master thesis. I would also thank PhD Anders
Fongen for letting me use his protocol sketch, for a CBR Publish/Subscribe Ad-hoc
protocol, as a basis for the thesis. I would also give a great thank to my fellow student
Liubov Kokorina for great feedback. My wife Pia Kolstad also deserve a great thank for
supporting me and pushing me future when the work has gone slow.

- Erland Kolstad, 15 June 2009.

Intrusion Tolerance in Publish/Subscribe based MANET

vii

Table of content

Abstract .. iii
Acknowledgement ... v
Table of content ... vii
1. Introduction .. 1
1.1. TOPIC ... 1
1.2. KEYWORDS .. 1
1.3. IMPORTANCE OF FUNCTIONAL COMMUNICATION NETWORKS AND

MESSAGE DISTRIBUTION SYSTEMS IN (MILITARY-) OPERATIONS .. 2
1.3.1. The mission .. 2
1.3.2. Information supremacy ... 2
1.3.3. Information distribution ... 2

1.4. INTRODUCTION TO PUBLIC SUBSCRIBE AD-HOC NETWORKS 3
1.4.1. Mobile ad-hoc networks .. 3
1.4.2. Content-based routing ... 3
1.4.3. Information distribution in PubSub based
MANETs 4

1.5. INTRUSION TOLERANCE – WHAT IS IT? ... 5
1.5.1. How intrusion tolerance networks differ from
failing nodes. 5
1.5.2. Types of intrusions ... 6
1.5.3. Intrusion tolerance in PubSub based MANET 7
1.5.4. Intrusion tolerance in WSN ... 7
1.5.5. Intrusion tolerant PubSub Ad-hoc networks 8

2. Detailed description of PubSub Ad-hoc networks .. 9
2.1. DESCRIPTION OF PRINCIPLES IN PUBSUB AD-HOC NETWORKS 9
2.2. DIFFERENT TYPES OF PUBLISH/SUBSCRIBE AD-HOC NETWORKS 9

2.2.1. CBR ... 9
2.2.2. FT-CBR ... 9
2.2.3. RAFT-CBR .. 10
2.2.4. CBR protocol described by Fongen ... 10

2.3. CBR PUBSUB SCHEME DESCRIBED BY FONGEN .. 11
2.3.1. Message subscription ... 11
2.3.2. Message distribution .. 13

3. Intrusion tolerance in PubSub networks .. 15
3.1. JAMMING ... 15
3.2. STOP FORWARDING SUBSCRIPTIONS AND DATA-MESSAGES 15
3.3. STOP FORWARDING ONLY DATA-MESSAGES... 15
3.4. FALSE ACK-MESSAGES .. 16

3.4.1. Randomly introduce false ACK-messages 16
3.4.2. Introduce false ACK-messages based on knowledge
of the network 17
3.4.3. Sending many ACK-messages to manipulate the
ACK-count on other nodes ... 17

3.5. INTRODUCE FALSE DATA-MESSAGES ... 17
3.6. WIRETAPPING .. 17
3.7. OVERLOADING THE NETWORK .. 18

4. Description of the experiment ... 19
4.1. DESCRIPTION OF HOW THE EXPERIMENT WILL BE CONDUCTED............................. 19

4.1.1. Equipment used ... 19

Intrusion Tolerance in Publish/Subscribe based MANET

viii

4.1.2. Performing the simulation .. 19
4.2. IMPLEMENTATION OF THE PROTOCOL .. 19

4.2.1. Establish a detailed protocol design based on the
sketch 19
4.2.2. Implementing the PubSub protocol in the
simulator 22
4.2.3. Creating scenarios .. 22

4.3. DESCRIPTION OF HOW WE WILL RUN THE SIMULATIONS 22
4.4. ESTABLISHING A BASELINE ... 23

4.4.1. Normal situation .. 23
4.4.2. Radio silence nodes.. 24

4.5. SIMULATE DIFFERENT TYPES OF INTRUSION ATTACKS ... 25
4.5.1. Creating attacker nodes ... 25
4.5.2. Different types of intrusion in the protocol 25

5. Analysis of the results observed during the simulations .. 29
5.1. METHODOLOGY USED IN THE ANALYSIS .. 29
5.2. STOP FORWARDING DATA-MESSAGES ... 29

5.2.1. Observed results ... 29
5.2.2. Change in observed delivery rate compared with
baseline 29

5.3. INTRODUCE FALSE ACK-MESSAGES BASED ON KNOWLEDGE OF THE

NETWORK .. 30
5.3.1. Observed results .. 30
5.3.2. Change in observed delivery rate compared with
baseline 30
5.3.3. Differences in impact between attacking nodes 31
5.3.4. Attacker location analysis .. 32
5.3.5. Impact of different network size and shape 36

5.4. SENDING MANY ACK-MESSAGES TO MANIPULATE THE ACK-COUNT
ON OTHER NODES ... 39

5.4.1. Observed results ... 39
5.4.2. Change in observed delivery rate compared with
baseline and other attacks ... 39

5.5. INTRODUCE FALSE DATA-MESSAGES .. 40
5.5.1. Ability to introduce false DATA-messages 40

5.6. SUMMARY OF FINDINGS ... 41
6. Enhancement proposals for the protocol to make it more intrusion
tolerant ... 43
6.1. USING PUBLIC KEY CRYPTOLOGY TO SIGN MESSAGES ... 43

6.1.1. How public key cryptology can be used in the
protocol to sign the messages .. 43
6.1.2. Weaknesses in this enhancement ... 44

6.2. KEEPING TRACK OF ACK-MESSAGES .. 45
6.2.1. Concept of how to keep track of ACK-messages 45
6.2.2. Simulation using this enhancements .. 45
6.2.3. Analysis of the results .. 46

6.3. DISCUSSION OF THE NEW ENHANCEMENTS ... 46
7. Conclusions ... 47
8. Future work to be done .. 49
Bibliography ... 51
A Subscription routing updates .. 53
B Message distribution routing table usage ... 57

Intrusion Tolerance in Publish/Subscribe based MANET

ix

C Original protocol implementation ... 61
D Createsim .. 91
E Simulator control files .. 95
F Datasets ... 97

Intrusion Tolerance in Publish/Subscribe based MANET

1

1. Introduction

1.1. Topic

The advance in wireless communication enables users to access information systems
from anywhere at any time via various mobile devices. In mobile ad hoc networks
(MANETs) all nodes are capable of moving actively and dynamically connected. Due to
the lack of infrastructure, each node in a MANET also acts as a router which discovers
and maintains routes, and forwards packets to other nodes. In a collaborative work
scenario, several mobile nodes, with a small storage to store data items, may work
together and access data items stored in other nodes. Because of the dynamics in
MANET the topology and connectivity of the network often changes. This dynamic
nature of MANETs makes information distribution in MANETs more challenging than
in more static networks.

In many military applications information distribution is a key function. At a tactical
level communication is radio based and all nodes are capable of moving actively and
dynamically connect. This dynamic behavior gives them similar characteristic to
MANETs.

Publish Subscribe (PubSub) paradigm is a powerful abstraction for building
distributed applications and message distribution, and seems to be well suited model
for the type of communication which takes place at a tactical/mobile level. PubSub
networks seem to have some good qualities for use in MANETs [4]:

• Simplified protocols

• Reduced traffic used for router and mobility control

• High intrusion tolerance

In addition to these properties, the nature of how radios send messages makes them
suitable to be used in PubSub networks; radio uses broadcast to send information,
where PubSub uses multicast/broadcast.

As in any communication network an intruder in a PubSub based MANET might
represent a number of threats to the network, including breach of confidentiality,
integrity or availability.

In this master thesis we provide an analysis of the intrusion tolerance in a PubSub
based

MANET. We will do so by providing answers to the following research questions:

1. How intrusions tolerant are PubSub based MANETs?

2. Are more densely populated networks more intrusion tolerant than less
densely populated networks?

3. How will different structures of the network affect the intrusion tolerance?

1.2. Keywords

Information Security, Mobile data service, data accessibility, mobile computing, ad
hoc networks, Survivability, Intrusion tolerance.

Intrusion Tolerance in Publish/Subscribe based MANET

2

1.3. Importance of functional communication networks
and message distribution systems in (military-) operations

1.3.1. The mission

In many situations we often refer to the mission, when we describe the process of
reaching a desired goal. The mission is not limited to military settings, but also refers
to other scenarios, where the vision of their objectives is expressed implicitly or as a
formal mission statement. The decisions on whether or not a system has fulfilled its
mission are typically made in the context of external conditions that my affect the
achievement of the mission. [17]

In many military scenarios, efficient information distribution is a key factor of
conducting successful operations (missions). It is also essential that this information is
correct and kept secret, which requires high intrusion tolerance in such networks.

1.3.2. Information supremacy

When leaders have to decide the next move to achieve the objectives, the decision is
normally the result of a decision making process. The decision will be made based on
the amount and quality of the information available and the experience of the decision
maker. The quality and amount of information available for the decision maker will
thereby influence the quality of the decision; better information gives better decisions.

Accurate information and efficient distribution of relevant information is of the utmost
importance in many operations to achieve information supremacy, and thereby gain
the tactical mission by enabling:

• More efficient targeting and rapid operations

• Minimizing civilian losses, through more accurate targeting

• Minimize own losses, through rapid targeting the enemy and reducing chance

of getting hit by enemy and friendly fire.

In many military applications, information distribution is a key function. But other
services can also gain improvement when the amount and quality of available
information increase.

• Emergency services (e.g. quicker situation awareness in disaster areas, patient

information updates when patient is in transit, etc.)

• Other applications (e.g. traffic information updates to decrease traffic jam,

etc.)

1.3.3. Information distribution

In most communication networks the main mission of the network is to support
transport and exchange of information between participants in the network securely in
a timely manner. In traditional communication networks the information is routed
between nodes based on the addresses given to the nodes. At a tactical level where
communication is radio based and all nodes are capable of moving actively and
dynamically connect, the communication network has similar characteristic to
MANETs. Address based transport of information requires an underlying routing
protocol in order to transport the information through the network. Traditional
routing protocols used in more static networks are not very well suited for the dynamic
nature of MANETs, which require rapid routing updates which will increase the traffic
load in the network.

Intrusion Tolerance in Publish/Subscribe based MANET

3

Different publish-subscribe based message distribution models have been developed
for use in mobile ad-hoc environments to achieve more efficient information
distributions in such dynamic environments.

1.4. Introduction to Public Subscribe Ad-hoc networks

1.4.1. Mobile ad-hoc networks

Mobile ad-hoc networks (MANET) have some advantages over traditional networks as
they don’t need any infrastructure for operation. Due to the lack of infrastructure, each
node in a MANET also acts as a router, which discovers and maintains routes, and
forward packets to other nodes. The networks are created spontaneously as peer-to-
peer networks when two participants are within range of each other. When more
participants join, leave or change geographical position in the network, the network
seamlessly reconfigures allowing the participants to continue to communicate with
each other.

In a collaborative work scenario, several mobile nodes, with a small storage for data
items, may work together and access data items stored in other nodes. Because
MANETs are highly flexible they tend to be very dynamic; network topology can
change at a high frequency because of users joining, leaving or changing geographical
position in the network. The topology changes are also often results of failing network
links, limited bandwidth etc. Mobile nodes are normally low power, battery operated
devices with limited bandwidth compared to stationary nodes. The constrained
resources and highly dynamic environments are challenging for tightly coupled
distributed applications, where communication failures are the norm rather than the
exception. [13]. This dynamic nature of MANETs makes information distribution in
MANETs more challenging than in more static networks.

1.4.2. Content-based routing

Data-centric networking protocols use content addressing instead of host addressing
for participating nodes, thus decoupling application communication from underlying
network topology. Equally important for MANET is the possibility of routing protocols
that can provide highly selective information dissemination between peers, thus
making group communication more efficient: the routing protocol performs timely
filtering of data, thus minimizing the amount of data that needs to be communicated
between peers.

Many applications can benefit from selective and decoupled dissemination including
reporters at a news conference sending real-time photos and news to interested
readers, teammates communicating with each other, information about arriving
patients in a hospital etc.

In content based routing all messages within a given theme will be assigned a
pathname, and all themes are organized in different paths. Figure 1 shows an example
of a hierarchy of themes that can be subscribed. Any subscription covers a subtree of
themes, e.g. a node which subscribes to AB will receive messages with theme AB and
ABA, but not A or AA.

Intrusion Tolerance in Publish/Subscribe based MANET

4

Figure 1 – An example of a theme hierarchy

1.4.3. Information distribution in PubSub based MANETs

In PubSub networks the information producers are called publisher and the users of
the information are called subscribers. When a subscriber wants to get information
regarding a given topic he/she initiate a subscription of this topic from the publisher.
When other subscribers want the same information they also initiate subscriptions
from the publisher. The different subscription requests result in building multicast
trees. Figure 2 shows the principle of building one such multicast tree.

Figure 2 – A shows an example network topology with possible communication links between
nodes. The P-node denotes the publisher, the S-nodes denote subscriber nodes, while other
nodes are intermediate nodes that neither publish nor subscribe to information themselves. B
show the resulting message distribution multicast tree in this example, where the thick lines
indicate communication links used to distribute the information.

Intrusion Tolerance in Publish/Subscribe based MANET

5

A PubSub communication model has been shown well suited for wired data-centric
content-based routing (CBR). PubSub networks seem also to have some good qualities
for use in MANETs [4]:

• Simplified protocols

• Reduced traffic used for router and mobility control

• High intrusion tolerance

In addition to these properties PubSub paradigm has similar characteristics to the type
of communication which takes place at a tactical/mobile level. Radio uses broadcast to
send information, where PubSub uses multicast/broadcast.

 [13] has shown that PubSub communication models are applicable for highly dynamic
network environments like MANETs. In their article they show three different
algorithms specifically targeted for ad hoc networks; CBR, FT-CBR and RAFT-CBR. In
addition to the protocol developed by [13], [4] has developed a sketch for another
pubsub communication protocol suitable for CBR in MANETs.

1.5. Intrusion tolerance – what is it?

1.5.1. How intrusion tolerance networks differ from failing nodes.

Intrusion tolerance focuses on survivability of a network when it is under attack by an
intelligent adversary. According to [16] there are a number of definitions of
survivability. In this thesis we will use the same definition as [16] which deduced from
[15] and [3]:

Survivability is the capability of a system to fulfill its mission in a timely
manner, even in the presence of attacks or failures. Survivability goes beyond
security and fault tolerance to focus on delivery of essential services, even
when systems are penetrated or experience failures, and rapid recovery of full
services when conditions improve. Unlike traditional security measures that
require central control and administration, survivability addresses highly
distributed, unbounded network environments that lack central control and
unified security policies.

The Tree Rs: Resistance, Recognition, and Recovery The focus of
survivability is on delivery of essential services and preservation of essential
assets. Essential services and assets are those system capabilities that are
critical to fulfilling mission objectives. Survivability depends on the three key
capabilities: resistance, recognition, and recovery. Resistance is the capability
of a system to repel attacks. Recognition is the capability to detect attacks as
they occur and to evaluate the extent of damage and compromise. Recovery, a
hallmark of survivability, is the capability to maintain essential services and
assets during attack, limit the extent of damage, and restore full services
following attack.

[17] argues the traditional view of computer security as a binary term that suggests
that at any moment in time a system is either safe or compromised, ignores states
where the system is recovering from a compromised state and aspects of maintaining
services during and after an intrusion. A survivable system shall on the other hand

Intrusion Tolerance in Publish/Subscribe based MANET

6

collectively accomplish its mission even under attack and despite active intrusions that
effectively damage a significant portion of the system.

Fault tolerance relates to the statistical probability of an accidental fault or
combination of faults. This definition will however not cover failures
orchestrated by an intelligent adversary;

 e.g. an analysis may determine that a simultaneous occurrence of three
independent faults (f1, f2, and f3) will cause the system to fail. The
probability that all three independent faults occur simultaneously is
however extremely low. An intelligent adversary with knowledge of the
system’s internals can however orchestrate the simultaneous
occurrence of these three faults and bring down the system. The system
is fault tolerant, but it is not survivable because it will not continue to
fulfill its mission during (and after) the attack.

Most traditional research and practice in computer-system survivability uses a
perilously narrow, security-based view of defense against computer intrusion.
This narrow view is dangerously incomplete because it focuses almost
exclusively on hardening a system to prevent a break-in or other malicious
attacks, and very little on how to detect an intrusion or what to do once an
intrusion has occurred or is under way. [3].

1.5.2. Types of intrusions

An intruder can do a number of different tasks to achieve its mission depending on the
primary goal with the intrusion. These intrusions can be, but not limited to, jamming,
introducing false information, impersonating other nodes, disruption of the
underlying delivery system, stopping message forwarding, wiretapping and
overloading the network.

1.5.2.1. Jamming

Jamming can be performed either by an intruder using the equipment available in the
network or an extruder to continuously broadcast on the same radio spectrum used by
the nodes in the network when they communicate with each other. This continuous
broadcast makes the communication channel useless and thereby stopping the
message flow in that area.

1.5.2.2. Introducing false information

An attacker which can become a part of a communication network can introduce false
information to the message flow if there are no other mechanisms to validate the
information. Such false information can have significant impact on how the users in
the network behave if the information is being used in decision making processes.

1.5.2.3. Impersonating other nodes

By impersonating other nodes an attacker makes it harder for the other nodes to
detect which information is false and which information is true. If an attacker has not
been able to impersonate other nodes, he/she would have much more difficulties to
successfully introduce false information, because other nodes would more easily detect
the information from that source would not be trustworthy.

1.5.2.4. Distribution of the underlying delivery system

By impersonating other nodes the attacker might also try to disrupt the underlying
message delivery system (the routing protocol) by manipulating the routing
information used by the protocol. If these types of attacks are successful they can be

Intrusion Tolerance in Publish/Subscribe based MANET

7

catastrophic for any communication network as the network often will not forward
information between nodes as expected.

1.5.2.5. Stop message forwarding

If an attacker stops message forwarding in the node he/she controls, the node will stop
working as a router in the network making routes across this node unusable. If there
are no other paths between the sender and the receiver using this node as an
intermediate routing node, the attacker will succeed distrupting the message flow in
the network.

1.5.2.6. Wiretapping

If there are no end to end security between the sender and the receiver of the
information, the attacker will be able to gain access to all the information passing
though the controlled node.

1.5.2.7. Overloading the network

In a network with limited resources an attacker can try overloading the network. To
overload a network the attacker can e.g. start sending a large number of messages and
thereby make the network using a lot of resources to transport the bogus messages.
Another potential attack to overload the network is by broadcasting a lot of
subscriptions and thereby trying overload the other nodes when they have to process
the new subscription requests in addition to forwarding DATA messages
corresponding to these themes.

1.5.3. Intrusion tolerance in PubSub based MANET

There exist only a few relevant articles on security in PubSub based MANETs which
looks into intrusion tolerance of such networks. Most of the existing research on
tolerance topologies for wireless ad-hoc networks is concentrated on finding multiple
paths in the network with minimum energy usage. [17] argues that the tolerance ability
of topologies is no equivalent to connectivity of multiply connected graph. [7] and [17]
have conducted an analysis of intrusion tolerance in wireless sensor networks (WSN)
which has some similarities to PubSub based MANETs. Other articles focus on
security in routing protocols in MANETs used to create routing trees for information
distribution based on traditional message distribution, which is not relevant for this
study.

Work conducted regarding pubsub communication in MANET are primary concerned
of how well the network can support communication in normal situations and to some
extend how the network will react on failing nodes. We do not know about any work
where the PubSub communication protocols have been exposed for an intelligent
intruder, in a real world scenario this will present a significant threat to the
survivability of any communication network if not appropriate countermeasures are
in place.

1.5.4. Intrusion tolerance in WSN

Network topologies in WSN can be divided into two main categories; flat structure and
hierarchical structure. In a hierarchical structure some nodes are selected as cluster
heads, which collect and forward packets, while the others are ordinary nodes, which
only collect data. In a flat structure all nodes are selected as heads. [17] describes a
model for fault-tolerance and intrusion-tolerance in WSN with Bernoulli nodes. The
study has however a weakness as it only focuses at intrusion tolerance in scenarios
where an intruder makes the attacked node unavailable, e.g. creating failure
situations.

Intrusion Tolerance in Publish/Subscribe based MANET

8

In addition to introducing failing nodes, an intruder with sufficient resources might be
able to perform many other types of attacks, including introducing false information in
a network used for information distribution.

1.5.5. Intrusion tolerant PubSub Ad-hoc networks

In this thesis we show how the PubSub Ad-hoc protocol is vulnerable against some
types of attacks produced by an intruder. All the attacks used in the analysis of the
protocol are all attacks which are well doable in a real life scenario, and not just
theoretical attacks.

At the end of the thesis we propose a solution to make the protocol more robust and
immune to the different attacks studied in the thesis. By implementing those
enhancements, the protocol can be made very robust against intrusion attacks, making
it well suited for usage in hostile environments where the network is under attack by
an intelligent adversary.

Intrusion Tolerance in Publish/Subscribe based MANET

9

2. Detailed description of PubSub Ad-hoc
networks

2.1. Description of principles in PubSub Ad-hoc networks

In PubSub Ad-hoc networks the information consumers (subscribers) subscribe to
different information themes of interests from the information producers (publishers).
Each subscriber will then inform the publisher of its interest, and request a
subscription for the information. Using different subscription requests, the
information is sent to different subscribers using multi-cast.

Information of available information themes, and who publishes those themes, is often
made available to the subscribers in a directory service within the network. The
subscribers can then use this directory service to look up from which it shall request
the information of interest. In PubSub Ad-hoc networks the available information
themes and the associated publishers can also be distributed to the subscribers using
other methods than using a directory service; e.g. the publishers can broadcast the
message themes they provide to all the other nodes in the network at a regular basis.

2.2. Different types of Publish/Subscribe Ad-hoc networks

[13] show in their article three different algorithms specifically targeted for ad
hoc networks; CBR, FT-CBR and RAFT-CBR. In addition [4] has developed a
sketch for another pubsub communication protocol suitable for CBR in
MANETs.

2.2.1. CBR

In CBR every node periodically broadcast the contents of the advertisement and
subscription tables to their neighbors. Entries in these tables are expired if they have
not been refreshed for a specified time. This gives an efficient way of learning new
routes and forgets old ones without having to explicitly delete routes that are no longer
valid.

The CBR algorithm provided by [13] is based on existing distributed publish/subscribe
algorithms in wired networks, but is extended to use soft state and use a new metric
appropriate for ad hoc networks. In this protocol every publisher sends an
advertisement message indicating the types of events it will publish. The
advertisement message which is flooded and stored in an advertisement table
(AdsTable) in all nodes contains the number of hops it has propagated. When a node
wants to subscribe to an event type it will send a subscription message expressing its
interest. Based on the information in the AdsTable the subscription is forwarded to the
publisher. As subscription messages are routed toward the publisher each node stores
the subscription in their subscription table (SubsTable). Events published by the
publisher can then be sent along the reverse path of subscriptions to interested
subscribers.

The CBR algorithm proposed by [13] enables subscribers to be anonymous in the
system.

2.2.2. FT-CBR

In the CBR protocol it is possible that a node’s set changes during a beaconing interval
when a node moves, e.g. a node n sends event e to a neighboring subscriber c, if c has
moved out of transmission range of n, then n has no way of finding c. In fault-tolerant
CBR (FT-CBR) it is assumed that c is not moved far from n during the beaconing
interval. Node n will then flood the message over a pre-determined number of hops to
try to find c. In order to allow n to know whether or not c has properly received e, and
thereby has to flood e, FT-CBR requires all events to be acknowledged hop by hop. [13]

Intrusion Tolerance in Publish/Subscribe based MANET

10

2.2.3. RAFT-CBR

Even FT-CBR cannot guarantee that an event is distributed to all interested
subscribers in a MANET because information about the set of subscribers is
distributed over several nodes. Failure in one of these nodes can get information loss
that cannot be reliably recovered. To guarantee reliable delivery of events RAFT-CBR
requires the publisher to know all subscribers interested in event it publishes and that
the publisher will not fail. It is also assumed that there are no prolonged partitions
between the publisher and the subscriber; i.e. there is or will eventually be a routing
path from publisher to subscriber.

In RAFT-CBR, publishers flood advertisements throughout the network as in CBR and
FT-CBR. Subscribers unicast subscriptions to those publishers whose advertisements
intersect the subscription interest. Unlike the CBR and FT-CBR subscriptions are not
used to maintain the multicast tree from publisher to subscribers. Instead the
publisher uses reliable xcast to disseminate events.

When a publisher multicasts an event e, e is tagged with a locally unique sequence
number, allowing the (publisher id, sequence number) pair to form a globally unique
identifier for e, and the addresses to the set of subscribers C, which subscribe to the
event. When a node receives an event it queries the underlying routing protocol to

determine the next hop to reach every c ∈ C. The node then forwards e to each of these
next hops, modifying the set C in e to include only those subscribers that a particular
next hop is responsible for forwarding to. This process is repeated until an event
reaches all interested subscribers. When a subscriber receives an event it responds
with an ACK if the event is an in-order event or else it responds with an NACK
specifying the missing events. To achieve the reliability of the event distribution the
publisher maintains a table that stores the sequence number of the last
acknowledgement event for each subscriber.

If the publisher does not receive an ACK or NACK from a subscriber during a specified
time it multicasts a PING to these subscribers in order to force the subscribers to
respond with an ACK or NACK. [13]

2.2.4. CBR protocol described by Fongen

The different CBR protocols proposed by [13] are all based on the assumption that
each theme originates from a simple source1 and that the other participants are only
subscribers. This limitation will however inflict great limitations in many scenarios. In
scenarios where a publish/subscribe scheme is used for information exchange between
nodes where several nodes can generate and hence publish information within the
same topic, e.g. in a tactical operation one or more nodes are interested in opponent
movements, in such a scenario several nodes can detect movements and hence publish
this information to the other nodes in the network.

The new content based PubSub information exchange scheme described by [4] permit
any node to publish information regarding any topic, even if another node already
published information covering this topic. This property makes the protocol
interesting for usage in communication networks to support decision making
processes and (military-) operations.

1
 The CBR protocols proposed by [13] will support more than one source, but they require

generation of dedicated distribution trees for each source. This requirement gives this

approach clear scaling problems and limitations when the number of sources that publish

information within the same theme increases.

Intrusion Tolerance in Publish/Subscribe based MANET

11

2.3. CBR PubSub scheme described by Fongen

When a message is transmitted all nodes within radio coverage of the transmitting
node will receive the message and retransmit this message if necessary. In this scheme
each node describes which theme it wants to subscribe. This information, marked with
a random number, is periodically transmitted to all neighboring nodes together with
subscription information received from other neighbors. To prevent loops all
subscription information is only valid for a limited time.

When a node receives a message the node transmits an acknowledge (ACK) message if
it has any subscription to this message. In addition the node has to decide if the
message shall be retransmitted to other nodes; there are other nodes, which subscribe
to this message and have not yet received it. Given the fact that the node knows its
neighbors’ subscriptions and that all nodes transmit an ACK-message on reception of
subscribed messages, the node makes the decision by waiting a given time and
counting ACK-messages. If at least one neighboring node with subscription to this
message does not send an ACK-message, the message shall be retransmitted. Chapter
2.3.2 shows an example on how messages will be distributed in the example network
with subscriptions which will be described in detail in chapter 2.3.1.

2.3.1. Message subscription

In PubSub based message distribution protocols, the message subscription element
plays a key role, since this feature is used to build the multicast trees, which are used
to route the messages themselves from publisher(s) to subscriber(s).

An example network of 6 nodes, {N1, N2, … , N6}, where each node has a radio cover
indicated by the dashed line surrounding each node, will be used to show how this
protocol works.

In the following example all nodes routing tables are initially empty.

Figure 3 - Example network

Intrusion Tolerance in Publish/Subscribe based MANET

12

Figure 4 - Subscription in example network

Figure 4A: If N4 wants to subscribe to a theme, it will announce the subscription to all
its neighbors, in this case N3. N3 confronts its routing table and check if it has seen
this subscription before, meaning there exist a better route to the subscriber than via
node 4. In this case this is a new subscription, so the routing table gets updated.

Figure 4B: Node 3 will now broadcast the subscription to all its neighbors, in this case
N2, N4 and N5. N2, N4 and N5 will now confront their routing tables. N2 and N5 will
update, while N4 already has this routing information in its own table and thereby
does not do anything about the information.

Intrusion Tolerance in Publish/Subscribe based MANET

13

Figure 4C: N2 will now broadcast the subscription to all its neighbors, in this case N1,
N3 and N5. N1, N3 and N5 will now confront their routing table and update their
routing table if this is a fresh subscription. N5 will also broadcast to all its neighbors
N1, N2, N3 and N6, which in turn confront and eventually update their routing tables.
N1 will receive the update from both N2 and N5 within the time interval, meaning
there exist two routes to the subscriber which has initiated the subscription.

Figure 4D: N1 and N6 broadcast the subscription to their neighbors, but all receiving
nodes (N2 and N5) treat it as an old subscription and will therefore not broadcast it
further.

Figure 4E: Suppose N2 will also subscribe to the same message theme as the earlier
subscription. N2 broadcast its subscription to all its neighbors, which confront and
update their routing table since this is a new subscription despite they already know of
subscription covering the theme (subscription ID is different)

Figure 4F: The new subscription from N2 will propagate through the network in the
same manner as the subscription form N4.

Detailed subscription tables for each of the steps are provided in appendix A

2.3.2. Message distribution

Given the routing table established in the previous example.

Figure 5A: N6 broadcasts a message within the theme subscribed by N2 and N4.

Figure 5B: N5 checks its subscription table and sees it has subscriptions for this
message theme. N5 broadcasts ACK-message for the message. N6 ignores the ACK-
message because it has already sent the message. N1, N2 and N3 ignore the ACK-
message because they have no subscriptions learned from N5 for the message theme.

Figure 5C: N5 broadcasts the message because it has not received ACK-messages from
all the nodes which N5 has received subscriptions for the message theme.

Figure 5D: N6 ignores the message because it has already sent the message, and the
message is thereby an old message. N1, N2 and N3 check their subscriptions table and
see they all have subscriptions for the message. They all send ACK-messages for the
message. N5 will ignore all the ACK-messages because it has already sent the message.
N2 will ignore the ACK-message from N1 because it does not have any subscription
from N1 for the theme. N1 receive the ACK-message from N2 and update its ACK-
count for the message. N2 receive the ACK-message from N3 and update its ACK-
count for the message. N3 receives the ACK-message from N2 and updates its ACK-
count.

Figure 5E: N3 broadcasts the message, because the ACK-count has not reached the
number of subscriptions for this theme. N1 and N2 will not forward the message
because they have ACK-count the number of subscriptions for this theme.

Figure 5F: N4 broadcast ACK-message for the message received.

Detailed message distribution tables for each of the steps are provided in appendix B

Intrusion Tolerance in Publish/Subscribe based MANET

14

Figure 5

Intrusion Tolerance in Publish/Subscribe based MANET

15

3. Intrusion tolerance in PubSub networks

If the protocol shall be intrusion tolerance, it has to achieve similar message delivery
rates under attacks, as under normal situations with no attacking nodes. In the thesis
we will therefore compare the delivery rate observed in the different attack scenarios
with the baseline delivery rate for the protocol.

By analyzing the protocol we have found a number of different types of attacks an
intruder can try to use in the network to achieve its goal;

• Jamming

• Stop forwarding subscriptions and DATA-messages

• Stop forwarding only DATA-messages

• Randomly introduce false ACK-messages

• Introduce false ACK-messages based on knowledge of the network

• Sending many ACK-messages to manipulate the ACK-count on other nodes

• Introduce false DATA-messages

• Wiretapping

• Overloading the network

Below we discuss how vulnerable the protocol is to the different types of attacks.

3.1. Jamming

In radio based communication networks, jamming is normally some sort of disturbing
of the communication channel. It can be achieved by a powerful radio transmitter
which transmits on the same frequency used by the communication network, and
thereby introduces enough disturbances in the frequency to make it useless as a
communication channel. In order to make the communication network robust against
this type of attacks, the communication network has to relay on robust radio
communication, which is handled by an underlying protocol and hence outside the
scope of this analysis, or the protocol has to be able to reroute the information around
the affected area. Because ad hoc protocols are designed to find the path between two
nodes in the network, if there exist any, we assume the publish/subscribe ad hoc
protocol will be able to find the alternative path if it exists.

In ad-hoc radio networks the effect of the jamming attack will therefore most likely be
connected to how well the underlying radio equipment can handle jamming and not
that much on how the routing protocol performs. The publish/subscribe ad hoc
protocol will see the part of the network, which is under jamming attack, as if there
was no path between the nodes on either side across the jammed part.

3.2. Stop forwarding subscriptions and DATA-messages

The network will basically see this attack identical to situations with radio silent
nodes, because the network will not receive any subscriptions from this node, and
hence this node will not be part of the communication path between the publisher and
the subscriber.

3.3. Stop forwarding only DATA-messages

This attack is a bit different from the previous attack and radio silent nodes, because
the node will forward subscription messages, and thereby try to become a transit node
on the communication path between the publisher and the subscriber. If the attacker
is on the only path between the publisher and the subscriber the attack will be
successful. If there however exists another path between the publisher and the
subscriber the attack is not likely to succeed, as the message will be forwarded along
this path. In a real life communication network, formed by nodes acting as a group, we

Intrusion Tolerance in Publish/Subscribe based MANET

16

expect to see more than one communication path between nodes in the network. We
therefore expect this attack to have little impact on the message delivery rate in the
protocol.

3.4. False ACK-messages

Nodes using the PubSub protocol use the ACK-messages to decide if they shall forward
messages or not. By sending false ACK-messages to fool the neighboring nodes to
believe that all their neighbors have received the DATA-message, the attacker can stop
them from forwarding the DATA-message to other nodes.

3.4.1. Randomly introduce false ACK-messages

To produce false ACK-messages the attacker has to produce ACK-messages which
correspond to actual messages with correct theme and message id. In addition the
attacker has to set the sender address to the address of the node the forwarding node
has learned the subscription from. If we should choose all the parameters, message
theme, message id and sender address randomly we get the following complexity of
the task:

Given a optimal situation where the message theme is described in binary
using only
16-bit, 16-bit message id number and 32-bit address we get:

64321616 22*2*2

**

==
=

complexity

eddressSpacdressesInAnumberOfAdsnumberOfIdemesNumberOfThcomplexity

This complexity is all too high to be doable in a real life network. We therefore tries to
reduce the complexity by only produce false ACK-messages when the attacker receives
a DATA-message or an ACK-message from another node. This way the attacker will
know both the message theme and message id, and hence the complexity will be
reduced to:

complexity = numberOfAddressesInAddressSpace e.g. in a 32-bit
address space the
complexity will be 232

This complexity is still very high, so the attacker will not be able to cover all possible
addresses in the address space in a real life scenario:

Given the same ideal situation as above where the message theme is described
in binary using only 16-bits, 16-bits message id number and 32-bits address
space.

Using a 2 Mbit/s communication link we get:

Intrusion Tolerance in Publish/Subscribe based MANET

17

%00076,0
2

1

2

2

eddressSpacdressesInAnumberOfAd

n
eragecov

packets2s5.0*
packet/bit64

s/bit2*2

ForwardtimeBefore*
izeACKpacketS

bandwith
n

1732

15

15
20

====

=

=

=

As shown above the complexity involved in this attack is very high making it very little
likely doable in a real life situation.

3.4.2. Introduce false ACK-messages based on knowledge of the
network

This attack is identical to the previous attack, but instead of randomly generating false
ACK-messages, the attack uses knowledge of the network to produce false ACK-
messages only from nodes that are active in the network and thereby potential
subscribers. The attacker builds the database of node addresses by listening to all the
traffic passing through the node and collecting sender addresses.

In a network with n nodes the attacker will at most learn n addresses using this
approach, which is satisfactory within what is doable in a real life scenario.

The attack is performed by letting the attacking node produce false ACK-messages for
all the learned node addresses. Because the neighbor nodes are not able to distinct the
false ACK-messages from the real ACK-messages received from other nodes, the
attacker can make all nodes within his/her radio coverage believe all their neighbors
have received the message, and they will thereby not forward the message.

3.4.3. Sending many ACK-messages to manipulate the ACK-count
on other nodes

This attack is feasible because the nodes only count ACK-messages from subscribers,
and do not keep track of which nodes they have already received an ACK-message
from. This enables a node to send more than one ACK-message and making the
receiving node count all of them.

The attack can be performed by letting the attacking node subscribe to all the top
themes, and thereby subscribe to all message themes. The attacker will now be able to
send ACK-messages for all messages generated in the network using his own source
address.

3.5. Introduce false DATA-messages

By introducing false information into the network the attacker can manipulate the
information used by other nodes to make decisions. If an attacker in addition can
impersonate other nodes it will be harder for the other nodes to detect which
information is false and which information is true because it will be difficult to detect
which sources are trustworthy and which are not.

The attack is feasible because the protocol does not give the nodes in the network a
method to verify the source of a message, and thereby distinct the false messages from
real messages.

3.6. Wiretapping

If there is no end to end security between the sender and the receiver of the
information, an attacker will be able to gain access to all the information passing
though the controlled node. The PubSub ad hoc protocol is designed to be a protocol to
efficiently distribute messages between nodes, and is not designed to provide any end

Intrusion Tolerance in Publish/Subscribe based MANET

18

to end security for the data sent over the protocol so we have therefore not done any
analysis to cover this topic.

3.7. Overloading the network

In attacks created to overload the network, the attacker will try to use as much
resources as possible in the network for his activity, and thereby limit the network
ability to perform its mission. These attacks will mostly focus on other parts of the
communication system (i.e. computation power, available memory, available
bandwidth) and not that much on the protocol itself. We have therefore not done any
analysis to cover this topic in the thesis.

Intrusion Tolerance in Publish/Subscribe based MANET

19

4. Description of the experiment

Building a full scale real life testing facility would be very difficult within this project
boundary because the cost and complexity involved in such facilities would be too
high. We will therefore use simulations of the problem, which are more easily
accessible and require fewer resources than a real world experiment, to provide us
with the required data. In this thesis we used the NS-2 simulator [12] to perform the
required simulations.

In simulated environments we can keep control over all variables that may influence
with the result, even variables we are not even aware of which may be important to the
performance of the network in a real world environment. In our project we are
primary interested in how the protocol used for message distribution in PubSub
MANET is performing when it is under different types of attacks from an intelligent
intruder in the network, and not that much how the protocol performs under influence
by other physical phenomena that would be a natural focus when simulating lower
level protocols.

4.1. Description of how the experiment will be conducted

4.1.1. Equipment used

The experiments conducted in this thesis are conducted using the open source NS2
network simulator running on a standard PC. Since there is no known implementation
of the protocol in NS2 we had to implement the protocol as an extension to the NS2
simulator as described in 4.2.

4.1.2. Performing the simulation

In our experiment we will create several simulations to simulate different scenarios in
order to give answers to the research questions in section 1.1. The different simulated
scenarios will be exposed to different types of attacks from an attacker with different
levels of resources available, ranging from simple jamming attacks to attacks where
the attacker has full control over one or more nodes in the network. The attacker
might also be able to manipulate the software for nodes he has overtaken. The
different simulations will give us required data to answer research question 2 and 3.
By analyzing the results from research question 2 and 3 we will be able to give an
answer to the research question 1.

4.2. Implementation of the protocol

4.2.1. Establish a detailed protocol design based on the sketch

Because this project is based on analysis of a sketch for a protocol and not an already
implemented and working protocol, we first have to develop a detailed protocol design
for a working protocol based on the sketch.

4.2.1.1. Subscription handling

When a node wants to initiate a subscription for a new message theme it will inform its
neighbors by broadcasting a subscription message containing the message theme and
a subscription id. Because subscriptions will age and be removed from the routing
tables after a period of time, the subscribing node has to refresh the subscription by
sending a new subscription message for the theme with the same id before the
subscription ages out if it will continue to subscribe to the theme.

When a node receives a subscription message, it will check if it is an old subscription
(subscription recently sent by the node), if it is a new subscription or an update of an
already received subscription. The node has to ignore subscriptions it receives which it
has recently sent because this will most likely be a neighbor node forwarding the
subscription. If the nodes do not ignore these messages the subscriptions will never
expire and thereby stay in the network forever, even after the subscribing node has

Intrusion Tolerance in Publish/Subscribe based MANET

20

stopped updating subscriptions for this theme. When a node receives a new
subscription it will update its routing table before it will broadcast the subscription to
all its neighbor nodes. If the received subscription is an update of an old subscription
the node will refresh the timer before it broadcasts the subscription.

When a subscription is aged out, it will simply be removed from the node’s routing
table.

4.2.1.2. Data forwarding

In the protocol two message types are used to forward data, DATA and ACK. The
DATA messages contain the actual data which are sent, while the ACK message is used
to control the message flow and decide if it is necessary to forward the message as
described in 2.3. In the protocol each node waits a defined period of time before the
message is forwarded in order to give neighbor nodes time to send ACK-messages if
they have received the message. Because the ACK-message can arrive before the actual
DATA message the nodes also have to handle this situation by creating an ACK-count
for the message based on the information in the ACK-message.

4.2.1.3. Problem with the protocol described in the sketch

The sketch [4] describes three different messages (packets) used by the protocol,
SUBSCRIPTION, DATA and ACK.

In the sketch [4] the SUBSCRIPTION messages contain a message theme and an id to
identify the subscription in the network. Because this message does not contain any
information on who sends the packet, on a hop by hop basis receiving nodes will not
know from where it has learned the subscription. This lack of knowledge makes the
protocol not working as intended, because there are situations where the messages will
not be forwarded to the subscribing node, as illustrated in Figure 6.

To solve this problem we introduce a sender id, which is updated on a hop to hop
basis. This information is sufficient to give receiving nodes enough information to
solve this problem, as shown in Figure 7.

Figure 6
A – Given nodes A, B, C and D where D subscribes to a message theme
B – Node A generates a message in the message theme subscribed by D, A broadcasts the
messages to all neighbouring nodes
C – Node B see it has subscriptions for the theme, and thereby broadcasts ACK for the message
to A and C. A ignores the ACK because it has already sent the message, C stores the ACK in its

Intrusion Tolerance in Publish/Subscribe based MANET

21

ACK-count for this message
D – Node B forward the message because it has not received ACK-messages making the ACK-
count for this message equal or higher than number of subscriptions for this theme. Node A will
again ignore the message because it has already forwarded the message. Node C will also ignore
the message because its ACK-count is equal to the number of subscriptions for this theme, based
on the ACK-message received from B. D which is the node that subscribes to this theme will
thereby never receive the message

Figure 7
A – Given nodes A, B, C and D where D subscribes to a message theme
B – Node A generates a message in the message theme subscribed by D, A broadcasts the
messages to all neighbouring nodes
C – Node B sees it has subscriptions for the theme, and thereby broadcasts ACK for the message
to A and C. A ignores the ACK because it has already sent the message, C ignores the ACK
because it has not any subscriptions learned from B for this message theme
D – Node B forwards the message because it has not received ACK-messages making the ACK-
count for this message equal or higher than the number of subscriptions for this theme. Node A
will again ignore the message because it has already forwarded the message. Node C will store
the message because it has subscriptions for the message theme and the ACK-count for this
message is not higher or equal to the number of subscriptions for the theme
E – Node C broadcasts ACK message to B and D. B ignores the ACK because it has already sent
the message, D ignores the ACK because it dos not have any subscriptions learned from B for
this message theme
F – Node C broadcasts the message because it has not received ACK-messages making the ACK-
count for this message equal or higher than number of subscriptions for this theme. D receives
the message, and the protocol has successfully delivered the message to the recipient

4.2.1.4. Description of the packets used by the protocol

The protocol uses three different packets to handle subscriptions and forward data.
Bellow we will describe what each packet contains and what the information is used
for.

Intrusion Tolerance in Publish/Subscribe based MANET

22

SUBSCRIPTION

� Message theme – Used to describe the theme of the data the node wants to

subscribe

� Subscription ID – Used to identify the subscription

� Sender address – The address of the node sending the packet, when a node

forwards a subscription it will update this address with its own address.

DATA

� Message theme – Used to describe the theme of the data contained in the

message

� Message ID – Used to identify the message

� Data – The actual data sent

� Sender address – The address of the node originating the message

ACK

� Message theme – Used to describe the theme of the data contained in the

corresponding DATA message

� Message ID – Used to identify the corresponding DATA message

� Sender address – The address of the node sending the packet

4.2.2. Implementing the PubSub protocol in the simulator

Before we can do any simulation of the Fongen PubSub message distribution protocol
it has to be implemented in the simulator. Since there are no known implementations
of the Fongen PubSub message distribution protocol used in this project for the NS-2
simulator we had to develop an extension to the simulator ourselves. The simulator
requires new protocol to be written in C++ followed by a recompilation of the entire
simulator packet to make them available for use in simulations.

Full source code for the Fongen PubSub protocol is available in Appendix C

4.2.3. Creating scenarios

To create realistic simulations we have to create scenarios to reflect the real world
environment we are simulating. In our simulations however, we will use a basic
environment to keep the simulations as clean as possible to be able to study the
desired properties of the protocol without being influenced by other components.

Manipulating the density of nodes (the average distance between two neighbor nodes)
in the network we simulate will give us data to answer research question 2. By
performing different simulation where we change the topology of the network we will
achieve data to answer research question 3.

4.3. Description of how we will run the simulations

Each of the scenarios will be repeated a number of times with different input
parameters to generate representative datasets. The different input data are achieved
by changing the location of each node within the simulated area, or by changing the
node acting as an intruder.

Some of the simulator parameters however will be kept the same for all the
simulations. These are:

� Radio range is set to 200 meters

Intrusion Tolerance in Publish/Subscribe based MANET

23

� We will be using a flat grid as the simulation environment. We are interested

in how the protocol will react on different attacks from an intruder, and not

how the protocol will be affected by the environment

� The nodes will not move around, since this will make it harder to determinate

if changed delivery rate is caused by the attacker or temporary formation of

communication islands

� When we simulate attacks, we are using only one node as attacker node in
each simulation run

The NS-2 simulator uses a TCL-script to control the behavior of the simulator. To
perform the simulations we therefore have to create the TCL-scripts for each of the
simulations we will run. To create the necessary scripts we have developed a program
which creates TCL-scripts with random node positions within the simulation grid. The
program will also create random message subscriptions and creation of new messages
in the network. The source code for the program can be found in Appendix D.

To create the other simulation scenarios where we introduce different types of attacks
we are using modified variants of the baseline scripts created with the simulation
creation program.

All the scripts used to run the simulations can be found in Appendix E

4.4. Establishing a baseline

Because we are analyzing a new protocol with no known studies to show how well the
protocol distributes messages in the network, we first have to establish a baseline for
the protocol. The baseline we establish here will be used as reference when we
introduce different intrusion attacks. The design criteria for the protocol require the
protocol to handle nodes that enter radio silence mode, e.g. they will not forward any
subscriptions, data messages or respond with ACK messages.

4.4.1. Normal situation

To establish a baseline for normal situations, we run several simulations where we
change the number of nodes, how they are distributed in the simulation area and using
different size and shape of the simulation area. In the simulations we used a random
generator to randomly distribute the nodes in the area, and the same random
generator to randomly generate message subscriptions and message generation. This
data was then fed into the simulator as input data.

Area size Number
of nodes

Average Mean Standard
derivation

500 x 500 m 10 0.8633 0.9085 0.1240

500 x 500 m 25 0.9978 0.9980 0.0011

250 x 1000
m

25 0.9978 0.9986 0.0018

750 x 750 m 25 0.9509 0.9783 0.0630

750 x 750 m 50 0.9666 0.9654 0.0102

Table 1 – Delivery rate under normal situations. The datasets and calculations are given in
Appendix F

Intrusion Tolerance in Publish/Subscribe based MANET

24

As we can see from the data in Table 1, some of the simulations have significantly
worse delivery rate and higher standard derivation than the others. If we look closer to
the data in those situations we see that node density is too low to prevent
communication islands to form, Figure 8. If we choose to use those formations in
simulations where we introduce different types of attacks, we will get a lot of noise in
the experiment data, because it will be very difficult to decide if the lower delivery rate
is because of the attacker or because of the formation of communication islands. In the
following experiments we will therefore not use those simulation configurations.

Figure 8 – Example of formation of communication islands. In this simulation the nodes
location of each node are plotted in a 500 by 500 meter grid, with the radio coverage of each
node indicated by the dotted lines. The formation of communications islands occurs because
none of the nodes in the “green island” have radio coverage, which includes any node in the “red
island” and vice versa

4.4.2. Radio silence nodes

To analyze how radio silence nodes affected the delivery rate of the protocol, we
modified the same input data as used in the normal situations by randomly choosing
nodes that entered radio silence mode in each simulation. In the experiment we used
simulations with one radio silent node and simulations where approximately 10 % of
the nodes were radio silent. The results of those simulations are shown in Table 2.

Intrusion Tolerance in Publish/Subscribe based MANET

25

Area size Number
of nodes

Number of
silent nodes

Average Mean Standard
derivation

500 x 500 m 25 1 0.9974 0.9977 0.0009

500 x 500 m 25 3 0.9975 0.9977 0.0009

250 x 1000
m

25 1 0.9965 0.9973 0.0021

250 x 1000
m

25 3 0.9867 0.9971 0.0592

750 x 750 m 50 1 0.9642 0.9670 0.0138

750 x 750 m 50 5 0.9655 0.9691 0.0139

Table 2 - Delivery rate radio silent nodes

Using the observed results from the simulations and comparing theme with the
observed results from the baseline simulations (Table 3), we can clearly see that there
are almost no changes in the delivery rate between the two simulated datasets.

Area size Number of
nodes

Number
of
silent
nodes

Baseline
delivery
rate

Delivery
rate
with
radio
silent
nodes

Delivery
rate
change

500 x 500 m 25 1 0.9978 0.9977 -0.0001

500 x 500 m 25 3 0.9978 0.9977 -0.0001

250 x 1000 m 25 1 0.9978 0.9973 -0.0005

250 x 1000 m 25 3 0.9978 0.9971 -0.0007

750 x 750 m 50 1 0.9666 0.9642 -0.0024

750 x 750 m 50 5 0.9666 0.9655 -0.0011

Table 3 - Observed change in delivery rate with introduction of radio silent nodes

4.5. Simulate different types of intrusion attacks

4.5.1. Creating attacker nodes

In order to simulate scenarios where the network is under attack by an intruder, we
have to implement those functions in the simulator. In our experiment we have
achieved this by extending the node design so that we could instruct any given node in
the network to start behave as an intruder with different types of attacks.

4.5.2. Different types of intrusion in the protocol

By analyzing the protocol we have found a number of different types of attacks an
intruder can launch against the protocol to disrupt the message delivery in the
network;

• Stop forwarding subscriptions and DATA-messages

• Stop forwarding only DATA-messages

Intrusion Tolerance in Publish/Subscribe based MANET

26

• Introduce false ACK-messages based on knowledge of the network

• Sending many ACK-messages to manipulate the ACK-count on other nodes

• Introduce false DATA-messages

Below we describe how the different attacks work and how they are implemented in
the experiment.

4.5.2.1. Stop forwarding subscriptions and DATA-messages

The network will basically see this attack identical to situations with radio silent
nodes, because the network will not receive any subscriptions from this node, and
hence this node will not be part of the communication path between the publisher and
the subscriber.

We will therefore not do any simulations using this type of attack.

4.5.2.2. Stop forwarding only DATA-messages

This attack is a bit different from the previous attack and radio silent nodes, because
the node will forward subscription messages, and thereby try to become a transit node
on the communication path between the publisher and the subscriber.

In order to simulate this type of attack we instruct the node controlled by the intruder
to not forward any DATA-messages. In the simulations we choose the node controlled
by the attacker randomly among the nodes in the network for each of the simulations.
We will run each simulation several times where we choose different nodes to be
controlled by the attacker to get a statistical significant result.

4.5.2.3. Introduce false ACK-messages based on knowledge of the
network

The idea behind this attack is identical to the previous attack, but instead of randomly
generating false ACK-messages, it uses knowledge of the network to produce false
ACK-messages only from nodes that are active in the network and thereby potential
subscribers. The attacker builds the database of node addresses by listening to all the
traffic passing through the node and collecting sender addresses.

In a network with n nodes the attacker will at most learn n addresses using this
approach, which is satisfactory within what is doable in a real life scenario.

In the simulations we choose the node controlled by the attacker randomly among the
nodes in the network for each of the simulations. We will run each simulation scenario
a number of times where we choose different nodes to be controlled by the attacker to
get a statistically significant result.

4.5.2.4. Sending many ACK-messages to manipulate the ACK-count on
other nodes

This attack is feasible because the nodes only count ACK-messages from subscribers,
and do not keep track of which nodes they have already received an ACK-message
from. This enables a node to send more than one ACK-message and making the
receiving node count all of them.

The attack will be performed by letting the attacking node subscribe to all the top
themes, and thereby subscribe to all message themes. The attacker will now be able to
send ACK-messages for all messages generated in the network using his own source
address. Again the attacker is chosen randomly among the nodes in the network for
each simulation.

Intrusion Tolerance in Publish/Subscribe based MANET

27

4.5.2.5. Introduce false DATA-messages

By introducing false information into the network the attacker can manipulate the
information used by other nodes to make decisions. If an attacker in addition can
impersonate other nodes it will be harder for the other nodes to detect which
information is false and which information is true because it will be difficult to detect
which sources are trustworthy and which are not.

In the simulations we will randomly introduce false messages for themes with
subscriptions, and analyze how many of those are successfully delivered to the
subscribers. We will also randomly change source address for the information sent
during this attack to hide the identity of the attacker. The attacking node will again be
chosen randomly among the nodes in the network for each simulation.

Intrusion Tolerance in Publish/Subscribe based MANET

29

5. Analysis of the results observed during the
simulations

5.1. Methodology used in the analysis

To analyze how well the protocol handle the different types of attacks described above
we use statistical methods on the data collected from the simulations described in 4.5.
In the analysis we especially focus on how well the network can deliver messages to all
nodes subscribing to the corresponding message theme when the network is under
attack by an intruder.

In the following paragraphs we present the results from the analysis as well as give an
explanation of the observed behavior. The corresponding datasets and tables used to
create the graphs are presented in appendix F.

For each of the attack types we will describe the message delivery rate observed when
the network is under attack and compare it with the delivery rate observed in the
baseline simulations in 4.4. In situations where we observe significant changes in the
delivery rate we will in addition analyze how the network topology and location of the
attacker influence the observed message delivery rate.

5.2. Stop forwarding DATA-messages

5.2.1. Observed results

In these simulations we used a subset of the simulation scenarios used in the baseline
simulations, and introduced the stop forwarding DATA-messages attack described in
4.5.2.2, by letting a random node act as the intruder. The results from the simulations
are presented in Table 4.

Area size Number
of nodes

Average

Mean Standard
derivation

500 x 500 m 25 0.9973 0.9977 0.0011

250 x 1000 m 25 0.9900 0.9969 0.0352

750 x 750 m 50 0.9629 0.9647 0.0120

Table 4 – Observed delivery rate when the network is under nodata forwarding attack

5.2.2. Change in observed delivery rate compared with baseline

To be able to give an estimate of how successful the attack was, we used the observed
results from the simulations and compare them with the observed results during the
baseline simulations in 4.4 (Table 5). This comparison shows that there are almost no
changes in the delivery rates between the two simulated datasets giving this attack a
very low success rate, and hence the protocol is very little affected by the attack.

Intrusion Tolerance in Publish/Subscribe based MANET

30

Area size Number of
nodes

Baseline
delivery
rate

Delivery rate
observed
under
attack

Delivery
rate
change

500 x 500
m

25 0.9978 0.9973 -0.0005

250 x 1000
m

25 0.9978 0.9900 -0.0078

750 x 750 m 50 0.9666 0.9629 -0.0037

Table 5 - Change in observed average delivery rate when the network is under nodata
forwarding attack

5.3. Introduce false ACK-messages based on knowledge of
the network

5.3.1. Observed results

In these simulations we used a subset of the simulation scenarios used in the baseline
simulations, and introduced the false ACK-messages attack described in 4.5.2.3, by
letting a random node act as the intruder. The results from the simulations are
presented in Table 6.

Area size Number
of nodes

Average Mean Standard
derivation

500 x 500 m 25 0.8782 0.90815 0.1031

250 x 1000
m

25 0.7815 0.78775 0.1347

750 x 750 m 50 0.9268 0.9324 0.0306

Table 6 – Observed delivery rate when under false ack attack

5.3.2. Change in observed delivery rate compared with baseline

To be able to give an estimate of how successful the attack was, we again use the
observed results from the simulations and compare them with the observed results
from the baseline simulations (Table 7). This comparison shows that there are some
changes in the delivery rates between the two simulated datasets making this type of
attack a partial success, and hence the protocol are vulnerable to this attack.

Intrusion Tolerance in Publish/Subscribe based MANET

31

Area size Number of
nodes

Baseline
delivery
rate

Delivery rate
observed
under
attack

Delivery
rate
change

500 x 500
m

25 0.9978 0.8782 -0.1196

250 x 1000
m

25 0.9978 0.7815 -0.2163

750 x 750 m 50 0.9666 0.9268 -0.0398

Table 7 - Change in observed average delivery rate when the network is under false ack attack

5.3.3. Differences in impact between attacking nodes

The observed delivery rates in Table 6 shows a high standard derivation in the results,
indicating there are differences in the impact of the attack between the attacking
nodes. By analyzing the histograms of the simulation data sets, the assumption of
differences of delivery rate impact between the attacking nodes is verified, Figure 9 -
Figure 11.

Histogram

0
5

10
15
20
25
30
35
40
45
50

0,
5

0,
54

0,
58

0,
62

0,
66 0,

7
0,

74
0,

78
0,

82
0,

86 0,
9

0,
94

0,
98 M

er

Interval

F
re

q
u

en
cy

Figure 9 - False ACK-message attack using 25 nodes in a 500 x 500 m area

Intrusion Tolerance in Publish/Subscribe based MANET

32

Histogram

0

5

10

15

20

25

0,
5

0,
54

0,
58

0,
62

0,
66 0,

7
0,

74
0,

78
0,

82
0,

86 0,
9

0,
94

0,
98 M

er

Interval

F
re

q
u

en
cy

Figure 10 - False ACK-message attack using 25 nodes in a 250 x 1000 m area

Histogram

0

20

40

60

80

100

120

140

160

180

0,
7

0,
72

0,
74

0,
76

0,
78 0,
8

0,
82

0,
84

0,
86

0,
88 0,
9

0,
92

0,
94

0,
96

0,
98 1

M
er

Interval

F
re

q
en

cy

Figure 11 - False ACK-message attack using 50 nodes in a 750 x 750 m area

5.3.4. Attacker location analysis

In this analysis we take a closer look at why some attacker nodes have a much higher
impact of the delivery rate than other nodes. We performed this analysis by looking at
how the location of the attacker within the network influences how successful the
attack becomes. To perform this analysis we have plotted the location of the attacker

Intrusion Tolerance in Publish/Subscribe based MANET

33

and give each node color based on how much that node was able to change the delivery
rate of the network when it was acting as the attacker node, for each of the simulation
scenarios above. Each set of simulation scenarios is plotted in the same plot to
visualize any connection.

To analyze where the attacker should place himself within the simulation grid area to
get the highest success rate, we simply plot each simulation within a scenario set using
the same coordinates, as when we run the simulation, [Figure 12 - Figure 14].

The network center might however not be located at the center of the simulation grid.
To analyze how the attacker location within the network influences the success rate,
we place the center of the network in each simulation set as origin of the plot. Figure
15 - Figure 17 show the resulting plots from this analysis.

From the plots in Figure 12 and Figure 13 we observe that the attacker is more likely to
have a higher impact on the delivery rate if he is located close to the center of the
simulation area, than when he is located at the edges. For the larger simulation area,
Figure 14, however, there is no such clear indication.

Figure 15 and Figure 16 shows even more clearly that the attacker is more likely to
have a higher impact of the delivery rate if he is located close to the center of the
network, than when he is located at the edges. Using this knowledge we assume the
location within the network is more important than the location in the simulation
area. In a defined area where the nodes are randomly placed within that area, the
center of the network will most likely be close to the center of the simulation area.

For the larger simulation area however, Figure 17, there is again no such clear
indication. To provide an explanation of this behavior we have analyzed these
properties further in 5.3.5.

Figure 12 - Delivery rate impact false ACK-message attack based on location in the simulation
scenario area, 25 nodes in 500 x 500 m

Intrusion Tolerance in Publish/Subscribe based MANET

34

Figure 13 - Delivery rate impact false ACK-message attack based on location in the simulation
scenario area, 25 nodes in 250 x 1000 m

Figure 14 - Delivery rate impact false ACK-message attack based on location in the simulation
scenario area, 50 nodes in 750 x 750 m

Intrusion Tolerance in Publish/Subscribe based MANET

35

Figure 15 - Delivery rate when false ACK-message attack is introduced in the network for
attacker location in the network, 25 nodes in 500 x 500 m

Figure 16 - Delivery rate when false ACK-message attack is introduced in the network for
attacker location in the network, 25 nodes in 250 x 1000 m

Intrusion Tolerance in Publish/Subscribe based MANET

36

Figure 17 - Delivery rate when false ACK-message attack is introduced in the network for
attacker location in the network, 50 nodes in 750 x 750 m

5.3.5. Impact of different network size and shape

As we have seen by the results in Table 7 there are quite large differences in how much
the attack change the delivery rate in the network. The analysis in 5.3.4 gives a clear
indication that the size and shape of the network area have significant influence in
how well the network resists the attack.

Before we can give an analysis of the differences in delivery rate impact between the
different scenarios we need to have an understanding of the radio coverage of the
nodes in the network. Figure 18 - Figure 20, which show how the nodes are distributed
in the simulation area and their radio coverage, will be used as an example to explain
the observed differences. The data used to create those examples are taken from one of
the simulations in each of the data sets.

In the smaller simulation areas, the attacker can affect all the communication paths
between the two ends of the network when he is located close to the center of the
network, and thereby cut off the communication between them, Figure 18. In the
larger simulation area however the attacker is not able to efficiently cut off these
communication paths (the nodes which are located in the radio range of the attacker
will not forward messages because they believe all their subscribing neighbors have

Intrusion Tolerance in Publish/Subscribe based MANET

37

received the message) when he is located in the center of the network, as there are
different communication paths around the affected nodes, Figure 19. The attacker
might however be able to affect parts of the network as illustrated in Figure 20 where
the red attacker cuts off the communication path between the blue nodes and the rest
of the network.

Based on these observations, and the results from the simulations, we can assume the
shape and size of the network will have significant influence on the success rate of the
attacker using the false ACK-message attack. We can clearly see that smaller networks
where the attacker can cover a large portion of the communication paths in the
network are more vulnerable than larger network where there exist communication
paths around areas which are affected by the attack. The attacker might however be
able to disturb the message delivery rate in parts of the networks and even create
communication islands also in larger network as shown in Figure 20.

Figure 18 - Radio coverage for 25 nodes in a 1000 x 250 m area. In the figure the radio coverage
of each node is represented with the dashed lines. The red dashed lines indicate the radio
coverage of the attacker.

Intrusion Tolerance in Publish/Subscribe based MANET

38

Figure 19 - Radio coverage for 50 nodes in a 750 x 750 m area. In the figure the radio coverage
of each node is represented with the dashed lines. The red dashed lines indicate the radio
coverage of the attacker.

Intrusion Tolerance in Publish/Subscribe based MANET

39

Figure 20 - Radio coverage for 50 nodes in a 750 x 750 m area. In the figure the radio coverage
of each node is represented with the dashed lines. The red dashed lines indicate the radio
coverage of the attacker. The blue nodes (and dashed lines) indicate the nodes, which are cut off
from the rest of the network during this attack.

5.4. Sending many ACK-messages to manipulate the ACK-
count on other nodes

5.4.1. Observed results

Area size Number
of nodes

Average Mean Standard
derivation

500 x 500 m 25 0.8474 0.88135 0.1068

250 x 1000
m

25 0.7659 0.77375 0.1351

Table 8 - Observed delivery rate when the network is under attack where the attacker sends
many ACK messages

5.4.2. Change in observed delivery rate compared with baseline
and other attacks

To be able to give an estimate of how successful the attack was, we use the observed
results from the simulations and compare them with the observed results from the
baseline simulations [Table 7]. This comparison Table 9 shows the attack can change

Intrusion Tolerance in Publish/Subscribe based MANET

40

the delivery rates making this type of attack a partial success, and hence the protocol is
vulnerable to this attack.

Area size Number of
nodes

Baseline
delivery
rate

Delivery rate
observed
under
attack

Delivery
rate
change

500 x 500
m

25 0.9978 0.8474 -0.1504

250 x 1000
m

25 0.9978 0.7738 -0.2250

Table 9 - Change in observed average delivery rate when the network is under many ACK attack

When we analyze how successful the attack is reducing the delivery rate compared
with the results from the false ACK-message, impersonating other nodes, attack in 5.3,
we observe this attack is even more successful. To give an explanation of these
observations we have to take a closer look at how the attacker gains sufficient
knowledge required launching the attack.

In the false ACK-message, impersonating other nodes, attack the attacker need to
learn the identity of the other nodes before he/she can start producing false ACK-
messages. This gives a possible timeframe between when a node starts subscribing to a
theme and when the attacker learns the identity of this node. Messages send during
this timeframe will not be affected by the attack, because the attacker has no
knowledge of the subscribing or intermediate node’s identity. In the other attack, the
attacker does not need this information as he/she already has all the required
information available to launch the attack, when he/she receives the first ACK or
DATA-message containing the correct message theme and message ID.

5.5. Introduce false DATA-messages

5.5.1. Ability to introduce false DATA-messages

In the simulations the attacker created false DATA-messages when he received a new
subscription. The created DATA-message was given the same message theme as the
subscription. To analyze the success of this attack we analyze the delivery rate of the
false messages to subscribers which subscribe to the corresponding message theme.
Table 10 show the observed delivery rate of the false messages.

Area size Number
of nodes

Average Mean Standard
derivation

500 x 500 m 25 0.9956 0.9979 0.0075

250 x 1000
m

25 0.9939 0.99665 0.0092

Table 10 - Delivered false data messages to node subscribing to the corresponding theme

As shown by the observed results in Table 10 the attacker has a very high success rate
to introduce false messages in the network, and the delivery rates are similar to the
delivery rate we observed in the baseline simulations in Table 1.

Intrusion Tolerance in Publish/Subscribe based MANET

41

5.6. Summary of findings

During the analysis of the behavior of the Fongen PubSub Ad Hoc protocol we have
shown the protocol is vulnerable against some types of attacks from insiders in the
network. All the observed weaknesses regarding DATA-message delivery rate are
related to how the protocol handles and verifies ACK-messages, as the attacker can
significantly influence the delivery rate of the protocol by impersonating other nodes
or sending many ACK-messages himself when he subscribes to all the top-level
themes.

The analysis has shown there are some significant differences between the different
shapes and sizes of the network. Small networks, or other networks where the attacker
can cover a large portion of the communication paths between different parts of the
network is more vulnerable than larger networks where there will normally be other
communication paths around the affected area.

During the analysis of the attacker location within the simulation grid area and the
location within the network we have also shown differences between small and larger
network regarding how the location of the attacker influence the success rate of the
attack. In smaller network the attacker is more likely to become successful if he is
located close to the center of the network, where he covers a large portion of the
communication paths in the network. In larger network however there are no such
clear indications, as there are often other communication paths around the area
covered by the attacker.

We have also shown how an attacker can introduce false DATA-messages in the
network, impersonating other nodes, making it hard for the other nodes in the
network to distinct the false information from the correct information.

In the next chapter we propose enhancements to the protocol, which make the
protocol more robust against these attacks, and thereby give the protocol high
intrusion tolerance for attackers within the network.

Intrusion Tolerance in Publish/Subscribe based MANET

43

6. Enhancement proposals for the protocol to
make it more intrusion tolerant

As we have seen in the previous chapter, there is especially one type of attacks that is
devastating for the message delivery rate in the protocol, as only one node which
introduces false ACK-messages can stop a significant part of the messages sent in the
network. In addition, the protocol is vulnerable to false DATA-messages since the
attacker can introduce a lot of false information, and still hide his identity using other
nodes’ source addresses.

In this chapter we will try to introduce enhancements to the protocol to make those
attacks less successful and hopefully stop the attack completely.

6.1. Using public key cryptology to sign messages

Since the attacker forges the sender address in both attacks, the primary focus is on
how to prevent the attacker from being able to produce false messages, which appears
valid for the other nodes in the network.

6.1.1. How public key cryptology can be used in the protocol to
sign the messages

To prevent the attacker from being able to produce false messages where he
impersonates other nodes we need a mechanism to validate the originator (sender) of
the messages. This verification can e.g. be achieved by adding a digital signature
scheme. Public key cryptology is a well documented method used to achieve such
validation where the sender uses his private key to sign the message. The receivers can
verify the sender and integrity of the message using the corresponding public key.
Figure 21 shows an example of a signature scheme using a public key cryptosystem.

This signing and verification of messages makes it harder, it not impossible, for the
attacker to create false ACK-messages and thereby introduce false DATA-messages
impersonating other nodes. To ensure the verification of the messages, the nodes are
required to be able to verify the owner of the key-pair used in the signing process.

In public key cryptology system it is common to use certificates to provide proof of
ownership for a given public key. In order to verify the authenticity of the certificate,
the certificates are signed by a trusted third party, using the trusted third party’s
private key. The nodes can now use the public key belonging to the trusted third party,
which is preloaded into the nodes in the network, to verify the ownership of a given
key pair.

In smaller networks it is also possible to preload the identity and corresponding public
key for the nodes in the network offline into each of the node before they start
communicating.

Intrusion Tolerance in Publish/Subscribe based MANET

44

Figure 21 - Example of signing and verification of messages using public key cryptosystem

6.1.2. Weaknesses in this enhancement

The asymmetric cryptology scheme will give good protection against false data being
introduced into the network [Figure 21], as it provides good protection against attacks
where the attacker impersonates other nodes. A digital signature scheme will however
not stop the attack in 4.5.2.4 where the attacker is using his own source address, as the
signature verification will validate all the messages send by the attacker.

The enhancement does not come for free as the resources required to handle each
message increase. In Ad Hoc networks the nodes are normally battery operated and
equipped with limited computational and memory resources to keep the power
consummation low, this increase can influence the overall performance of the
communication system.

The signing of messages, especially subscription and ACK-messages, will also
significantly increase the message size [Figure 22], requiring more bandwidth or time
to send the messages. Increased bandwidth or sending time will again increase the
power consumption of the nodes, which can reduce the overall performance of the
network using battery operated nodes.

The distribution of the certificates used to verify the public key belonging to a node
will in addition increase the complexity of the network design and increase the
administrative workload required to operate the network. This is especially the truth
where different organization units are going to cooperate in the same network, and
there are no or little trust established between them before they start cooperating in
the same network.

Given node A and B, message M containing both the data and the source address of
the sender, A’s private key Apriv, A’s public key Apub, a hash function H and a random
number nonce, we get the following signature and verification scheme:

If A wants to send a verifiable message M, we get:

1. A generate a random number nonce to ensure freshness.

2. A generates hashvalue = H(M,nonce)
3. A encrypt the hashvalue using his/hers private key Apriv and send this and

the nonce as the signature of the message:

4. A send (M,signature)

Node B can now use A’s public key to verify the message:

1. B generates hashvalueB = H(M,nonce)
2. B decrypt the encrypted hashvalue received in the signature using A’s public

key:

3. The message is verified if and only if hashvalueB = hashvaluerecv since only A
is able to create the encrypted version of the hashvalue using the
corresponding private key to Apub.

If an attacker tires to generate a false message impersonating A, the signature
verification will fail as the attacker is not able to create the correct encrypted
version of the hashvalue.

Intrusion Tolerance in Publish/Subscribe based MANET

45

If we use the same binary message description method as used in 3.4.1, and a
160-bit message hash with a 32-bit random number used to provide freshness,
we get:

%4004
bit64

bit256

ACKmessage

ACKmessage_new
ACKsize_Increased

bit256bit32bit160bit64

randomsignatureACKmessageACKmessage_new

====

=++
=++=

Figure 22 - Increae in message size with digital signatures, compared with orginal message size

6.2. Keeping track of ACK-messages

6.2.1. Concept of how to keep track of ACK-messages

To make the protocol more robust against attacks where the attacker sends many
ACK-messages, we need to change how the nodes in the network count the number of
subscriptions and received ACK-messages and keep track of which node has received
the message and which has not. We can achieve this enhancement by changing the
message count from a simple number of ACK-messages to a list of nodes. The list
contains an entry for all the nodes, the node are missing ACK-messages for a given
DATA-message.

In this scheme, the node will attach a list of all the nodes from which the node has
learned subscriptions, which correspond to the message theme when it receives a
DATA-message, or an ACK-message, with a previously unseen message ID. When the
node receives an ACK-message for a given message ID, the sending node is removed
from the list. The message will now be forwarded if there are still nodes in the list,
when the message “wait timer” expires.

The necessary changes to the simulator implementation are described in appendix G.

6.2.2. Simulation using this enhancements

To analyze how successful the enhancement is, we have performed simulations with
the enhanced protocol using the same input data as for the simulations in 4.5.2.4. The
observed results from the simulations are shown in Table 11.

Area size Number
of nodes

Average Mean Standard
derivation

500 x 500 m 25 0.9260 0.9259 0.0200

250 x 1000
m

25 0.9175 0.9222 0.0357

Table 11 - Observed delivery rate in enhanced protocol when the network is under attack where
the attacker sends many ACK messages

Intrusion Tolerance in Publish/Subscribe based MANET

46

6.2.3. Analysis of the results

To give an analysis of the enhancement we have compared the observed results in
Table 11 with the baseline and the observed results for the attack in the original
protocol. As we have shown in Table 12 the improvement reduces the effect of the
attack and makes the protocol more tolerant against this type of attack.

Area size Number of
nodes

Baseline
delivery
rate

Delivery
rate

when under
attack
with
original
protocol

Delivery rate
when under
attack
with

improved
protocol

500 x 500 m 25 0.9978 0.8474 0.9260

250 x 1000 m 25 0.9978 0.7738 0.9175

Table 12 - Analyzing effect of improvements in the enhanced protocol

6.3. Discussion of the new enhancements

Introducing public key cryptology to sign the messages will stop an attacker from
introducing false messages in the system impersonating other nodes. Public key
cryptology alone will however not stop all the attacks, as the attacker can launch the
many ACK-message attack described in 4.5.2.4. To make the protocol more resistant
against this type of attack we have proposed a solution where the nodes keep track of
which node has send ACK-message for the different DATA-messages. As shown in this
chapter, we can make the protocol very robust against the different attacks we have
analyzed, by introducing a digital signature scheme and the enhancement to keep
track of ACK-messages in 6.2.

The improvements will however introduce additional resource requirements as the
computation complexity involved in sending and receiving the messages will increase.
In addition, the introduction of digital signatures will increase the message size,
especially for the subscription and ACK messages. The increased message size will
require more bandwidth or time to send the messages, which will increase the power
consumption of the nodes. The increase in power consumption can reduce the overall
performance of the network where the nodes are battery operated.

The nodes will also require more memory to keep track of the ACK-message it has
received in the enhanced protocol than in the original protocol where the nodes only
has to keep track of a counter. The increase in memory requirements can however be
kept small, and have little or no significant impact on modern communication devices
since the increase will require only a few bytes of memory to keep track of each
subscription per message.

Introduction of public key cryptology will require distribution and administration of
certificates to prove the relation between the public key and the owner of this key. Any
communication network used to communicate sensitive information will however
need some sort of crypto mechanism to protect the data sent in the network, which
will also require distribution and administration of crypto keys and/or certificates. We
will therefore assume distribution and administration of certificates will not
significantly increase the complexity and workload to administer the network

Intrusion Tolerance in Publish/Subscribe based MANET

47

7. Conclusions

In many scenarios efficient information distribution is a key factor to conduct
successful missions. It is also essential that this information is correct and kept secret,
which requires high intrusion tolerance in networks used to distribute information
used in decision making processes.

Publish/Subscribe (PubSub) Ad-hoc networks have been introduced as an effective
mechanism to distribute information, where several nodes are interested in the same
information. The information in PubSub networks is organized in information trees,
where a given information theme covers its own theme as well as all sub themes within
the theme. To get access to the information in the network consumers (subscribers)
subscribe to different information themes of interests from the information producers
(publishers), i.e. the subscribers inform the publisher(s) of their interest, and request a
subscription for the information. The network uses the different subscription requests
to send the information to different subscribers using multi-cast.

[13] show in their article three different algorithms specifically targeted for Ad Hoc
networks; CBR, FT-CBR and RAFT-CBR. All those algorithms are primarily focused on
scenarios where there are a few publishers, which publish information within a given
theme. This assumption will however not hold in many scenarios, including tactical
military scenarios, where all the nodes can be subscribers and publishers for all the
different themes at the same time. To enable such communication [4] has developed a
sketch for another PubSub communication protocol suitable for CBR in MANETs.

In this master thesis we have implemented the protocol described by [4] in the NS-2
simulator to analyze the protocol behavior when it is under different types of attacks.
The analysis has shown some weaknesses in the protocol for some attack types where
the attacker can impersonate other nodes or manipulate how the protocol keeps track
on from which nodes it has received the messages and from which it has not. These
attacks seems however to be most effective for small networks or other network
topologies where the attacker can cover a large portion of the communication paths
between different parts of the network.

To make the protocol more intrusion tolerant against these types of attacks we have
provided proposals to solve the weaknesses we observed in the protocol. By
introducing a digital signature scheme to verify the integrity and authenticity of the
messages the attacker will not be able to impersonate other nodes and thereby
effectively stop those types of attacks. In addition, we have changed how the nodes
keep track of which nodes have received the DATA-messages, and thereby send ACK-
messages, to stop the attack where the attacker can send many ACK-messages to
manipulate the ACK-counters in the neighbor nodes.

By introducing those improvements to the protocol, we have shown that the protocol
can be very robust against all the different attacks we have analyzed, making it very
intrusion tolerant. The intrusion tolerant behavior makes the protocol a good
candidate for a information distribution protocol in tactical military scenarios or other
scenarios with many to many communication in hostile environments.

The protocol is however still in an early stage of development, so additional work has
to be done before the protocol is ready to be implemented in real life scenarios. This
additional work includes, but is not limited to, performance analysis, protocol
optimization and finding a more effective message signature scheme for small
messages.

Intrusion Tolerance in Publish/Subscribe based MANET

49

8. Future work to be done

As shown in the thesis, the protocol described in [4] is a good candidate for an
intrusion tolerant protocol used to distribute data/messages in networks where several
nodes publish and subscribe to the same themes. There is however still a lot of work
that has to be done before the protocol can be used in a live network where critical
operations depend on it.

All the work done in this thesis is based on simulations of the protocol in a flat
environment with relatively few stationary nodes. It will therefore be necessary to
perform some real life experiments to verify the simulation results. It will also be
necessary to perform analysis of how the network will operate in a more dynamic
environment, where the different nodes move around.

The simulations in the thesis only analyze the basic behavior of the protocol as a
baseline, and when it is under different types of attacks from an insider. Before the
protocol can be implemented and used in a live network, it will be necessary to
optimize the protocol to minimize the delay introduced by the network and how the
protocol will handle subscriptions and forward messages.

As we have seen in the simulations, the protocol is vulnerable against certain types of
attacks if we do not introduce message authentication to verify the sender of different
messages. These enhancements will however significantly increase the message size
for the control messages used in the network, and thereby most likely reduce the
network throughput in busy networks. Because of this increased messages size, it will
be necessary to perform analysis on how the enhancements will influence the network
performance and eventually design a more effective signature scheme.

Intrusion Tolerance in Publish/Subscribe based MANET

51

Bibliography

[1] Altman, E. and Jiménez, T. NS Simulator for beginners, Lecture notes

2003-2004, University de Los Andes, Mérida, Venezuela and ESSI, Sophia-

Antipolis, France, http://www-

sop.inria.fr/mistral/personnel/Eitan.Altman/COURS-NS/n3.pdf, last visited

2009-05-07.

[2] R.Baldoni, R.Beraldi, G.Cugalo, M.Migliavacca and L.Querzoni.

Structure-less Content-Based Routing in Mobile Ad Hoc Networks, 2005

IEEE

[3] Ellison, R. J., et al. Survivable Network Systems: An Emerging Discipline.

Software Engineering Institute, Carnegie Mellon University. Pittsburgh, PA

15213, USA : Software Engineering Institute, Carnegie Mellon University,

1997. s. 48, Technical report. CMU/SEI-97-TR-013.

[4] Fongen, Anders. Pubsub distribusjon i manet - skisse. Oslo : Norwegian

Defence Rescearch Establishment, 2007.

[5] Gollmann, Dieter. Computer Security. John Wiley & Sons Ltd, The Atrium,

Southern Gate, Chichester, West Sussex PO19 8SQ, England, 2004, ISBN

0 471 97844 2, Chapter 12

[6] Huang, Jiun-Long og Chen, Ming-Syan. IEEE On the Effect of Group

Mobility to Data Replication in Ad Hoc Networks. 5, May 2006, IEEE

Transactions on mobile computing, Vol. 5.

[7] Jing Deng, Richard Han and Shivakant Mishra. Intrusion Tolerance

and Anti-Traffic Analysis Strategies For Wireless Sensor Networks,

Porceedings of the 2004 International Conference on Dependable Systems

and Networks (DSN’04)

[8] Jiun-Long Huang and Ming-Syan Chen, Fellow, IEEE On the Effect of

Group Mobility to Data Replication in Ad Hoc Networks, IEEE Transactions

on mobile computing, vol.5, no.5, may 2006

[9] Paul D. Leedy and Jeanne Ellis Ormrod Practical Research, Pearson

Prentice Hall, 2005, ISBN: 0-13-124720-4

[10] Liang-min Wang, Jian-feng Ma, Chao Wang and Alex Chichung Kot.

Fault and Intrusion Tolerance of Wireless Sensor Networks, 2006 IEEE

[11] Mead, Nancy R., et al. Survivable Network Analysis Method. Pittsburg, PA

15213, USA : Carnegie Mellon University, Software Engineering Institute,

September 2000. p. 58, Technical report. CMU/SEI-2000-TR-013.

[12] NS-2 Wiki. http://nsnam.isi.edu/nsnam/index.php/Main_Page last visited:

2009-05-07

[13] Milenko Petrovic, Vinod Muthusamyy, Hans-Arno Jacobsen,

Content-Based Routing in Mobile Ad Hoc Networks, Department of Electrical

Intrusion Tolerance in Publish/Subscribe based MANET

52

and Computer Engineering Department of Computer Science, University of

Toronto

[14] Schäfer, Günter. Security in fixed and wireless networks. John Wiley &

Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ,

England, 2003.

[15] Software Engineering Institute, Carnegie Mellon University Survivable

Network Analysis,

http://www.sei.cmu.edu/pub/documents/00.reports/pdf/00tr013.pdf last

visited 2009-05-07

[16] J.P.G.Sterbenz, R.Krishnan, R.R.Hain, A.W.Jackson, D.Levin,

R.Ramanathan and J.Zao Survivable Mobile Wireless Networks: Issues,

Challanges, and Research Directions, WiSe’02, September 28, 2002, Atlanta,

Georgia, USA.

[17] US Joint Chief of Staff, Joint publication 3-60, Joint Targeting, US Joint

Chief of Staff, 2007-04-13.

[18] Wang, Liang-min, et al. Fault and Intrusion Tolerance of Wireless Sensor

Networks. 2006, IEEE.

Intrusion Tolerance in Publish/Subscribe based MANET

53

A Subscription routing updates
A:

Node 1

Theme SubID FromNode

Node 2

Theme SubID FromNode

Node 3

Theme SubID FromNode

A 123 4

B:

Node 1

Theme SubID FromNode

Node 2

Theme SubID FromNode

A 123 3

Node 3

Theme SubID FromNode

A 123 4

Node 4

Theme SubID FromNode

A 123 4

Node 5

Theme SubID FromNode

Node 6

Theme SubID FromNode

Node 4

Theme SubID FromNode

A 123 4

Node 5

Theme SubID FromNode

A 123 3

Node 6

Theme SubID FromNode

Intrusion Tolerance in Publish/Subscribe based MANET

54

C:

Node 1

Theme SubID FromNode

A 123 2

A 123 5

Node 2

Theme SubID FromNode

A 123 3

Node 3

Theme SubID FromNode

A 123 4

D:

Node 1

Theme SubID FromNode

A 123 2

A 123 5

Node 2

Theme SubID FromNode

A 123 3

Node 3

Theme SubID FromNode

A 123 4

Node 4

Theme SubID FromNode

A 123 4

Node 5

Theme SubID FromNode

A 123 3

Node 6

Theme SubID FromNode

A 123 5

Node 4

Theme SubID FromNode

A 123 4

Node 5

Theme SubID FromNode

A 123 3

Node 6

Theme SubID FromNode

A 123 5

Intrusion Tolerance in Publish/Subscribe based MANET

55

E:

Node 1
Theme SubID FromNode

A 123 2

A 123 5

A 234 2

Node 2

Theme SubID FromNode

A 123 3

A 234 2

Node 3

Theme SubID FromNode

A 123 4

A 234 2

F:

Node 1
Theme SubID FromNode

A 123 2

A 123 5

A 234 2

Node 2

Theme SubID FromNode

A 123 3

A 234 2

Node 3

Theme SubID FromNode

A 123 4

A 234 2

Node 4

Theme SubID FromNode

A 123 4

Node 5

Theme SubID FromNode

A 123 3

A 234 2

Node 6

Theme SubID FromNode

A 123 5

Node 4

Theme SubID FromNode

A 123 4

A 234 3

Node 5

Theme SubID FromNode

A 123 3

A 234 2

Node 6

Theme SubID FromNode

A 123 5

A 234 5

Intrusion Tolerance in Publish/Subscribe based MANET

57

B Message distribution routing table usage
A:

Node 1

Theme MsgID ACKcount

Node 2

Theme MsgID ACKcount

Node 3

Theme MsgID ACKcount

B:

Node 1

Theme MsgID ACKcount

A 65 -1

Node 2

Theme MsgID ACKcount

Node 3

Theme MsgID ACKcount

Node 4

Theme MsgID ACKcount

Node 5

Theme MsgID ACKcount

A 65 2

Node 6

Theme MsgID ACKcount

A 65 BC

Node 4

Theme MsgID ACKcount

Node 5

Theme MsgID ACKcount

A 65 2

Node 6

Theme MsgID ACKcount

A 65 BC

Intrusion Tolerance in Publish/Subscribe based MANET

58

C:

Node 1

Theme MsgID ACKcount

A 65 1

Node 2

Theme MsgID ACKcount

A 65 1

Node 3

Theme MsgID ACKcount

A 65 2

D:

Node 1

Theme MsgID ACKcount

A 65 ARECV

Node 2

Theme MsgID ACKcount

A 65 ARECV

Node 3

Theme MsgID ACKcount

A 65 1

Node 4

Theme MsgID ACKcount

Node 5

Theme MsgID ACKcount

A 65 BC

Node 6

Theme MsgID ACKcount

A 65 BC

Node 4

Theme MsgID ACKcount

Node 5

Theme MsgID ACKcount

A 65 BC

Node 6

Theme MsgID ACKcount

A 65 BC

Intrusion Tolerance in Publish/Subscribe based MANET

59

E:

Node 1

Theme MsgID ACKcount

A 65 ARECV

Node 2

Theme MsgID ACKcount

A 65 ARECV

Node 3

Theme MsgID ACKcount

A 65 BC

Node 4

Theme MsgID ACKcount

A 65 ARECV

Node 5

Theme MsgID ACKcount

A 65 BC

Node 6

Theme MsgID ACKcount

A 65 BC

Intrusion Tolerance in Publish/Subscribe based MANET

61

C Original protocol implementation

C-1 Introductions

This appendix describes how the Fongen Pub-Sub ad-hoc routing protocol Feil! Fant
ikke referansekilden. described in the master thesis are implemented, as well as
the source code of the actual implementation.

Intrusion Tolerance in Publish/Subscribe based MANET

62

C-2 High level design of the implementation

C-2.1 Introduction

This part defines the principles of the protocol and the necessary procedures to
implement the protocol.

C-2.2 Subscription principles

1 Each message is associated with a theme

2 Each node’s community of interest is defined by its theme subscriptions

C-2.3 Routing protocol principles

The Publish/Subscribe routing protocol proposed by Fongen Feil! Fant ikke
referansekilden. is characterized by the following principles:

1 Each node’s subscriptions describe messages of interest for this node

2 Each node broadcast their subscriptions to neighbor nodes

3 The broadcast of subscription is done on a regular bases to prevent old routes
to persist in the network

4 In order to send transit messages each node has to exchange subscription
information with their neighboring nodes

a. have to prevent loops in the routing protocol

b. subscription information have a aging time to prevent old routes to
persist in the network

5 Each node broadcast

a. own subscription, marked with a random number

b. subscriptions received from neighbor nodes

C-2.4 Message distribution principles

Defined rules for message forwarding

1 All nodes know their neighbors and their subscriptions, and thereby know if a
message has to be forwarded

2 Each node wait a period of time before the message is forwarded because the
neighbor nodes might have received the same message, and thereby
forwarding would waist of resources

3 During the wait period each node count received “ack”-messages from
neighbor nodes

a. The “ack”-message might arrive prior the received message

4 If one or more nodes with subscription to a message has not send a “ack”-
message stating they have received the message, the message has to be
forwarded

Intrusion Tolerance in Publish/Subscribe based MANET

63

C-2.5 Protocol high level design

Intrusion Tolerance in Publish/Subscribe based MANET

64

C-3 Implementation

C-3.1 File overview

fongenpubsub.h - Headerfile for the main part of the protocol
fongenpubsub.cc - Source code for the main part of the protocol
fongenpubsub_pkt.h - Implementation of the message packets used
in the protocol
fongenpubsub_rtable.h - Headerfile for the routing table
fongenpubsub_rtable.cc - Source code for the routing table
fongenpubsub_msgtable.h - Headerfile to handle message forwarding
fongenpubsub_msgtable.cc - Source code to handle message forwarding

C-3.2 Fongenpubsub.h
1. #ifndef __fongenpubsub_h__
2. #define __fongenpubsub_h__
3.
4. #include "fongenpubsub_pkt.h"
5. #include <agent.h>
6. #include <packet.h>
7. #include <trace.h>
8. #include <timer-handler.h>
9. #include <random.h>
10. #include <classifier-port.h>
11. #include <map>
12. #include "fongenpubsub_rtable.h"
13. #include "fongenpubsub_msgtable.h"
14.
15. #define CURRENT_TIME Scheduler::instance().clock()
16. #define JITTER (Random::uniform()*0.5)
17.
18. #define DEBUG 0
19. #define FONGENTRACE 1
20.
21. #define NORMALFORWARD 0
22. #define NOFORWARD 1
23. #define NODATA 2
24.
25. #define NORMALACK 0
26. #define RADIOSILENCE 1
27. #define FALSERANDOMACK 2
28. #define FALSELEARNEDACK 3
29. #define MANYACK 4
30.
31. #define ATTACKMAXNODEAGE 3600
32. #define ATTACKMAXADDR 254
33. #define ATTACKNUMOFACK 30
34. #define NUMOFACK 100
35.
36. #define FALSENODERANGE 25
37.
38. struct nodetable {
39. int id_;
40. float time_;
41. };

Intrusion Tolerance in Publish/Subscribe based MANET

65

42.
43. typedef std::map<int, struct nodetable> nodetable_t;
44.
45. class Fongenpubsub; // forward declaration
46.
47. /* Timers */
48. class Fongenpubsub_Timer : public TimerHandler {
49. public:
50. Fongenpubsub_Timer(Fongenpubsub* agent) :

TimerHandler() {
51. agent_ = agent;
52. }
53. protected:
54. Fongenpubsub* agent_;
55. virtual void expire(Event* e);
56. };
57.
58. class attack_nodetable {
59. public:
60. nodetable_t nt_;
61. attack_nodetable();
62. void rm_entry(int);
63. void attack_add_node(int);
64. };
65.
66. /* Agent */
67. class Fongenpubsub : public Agent {
68. friend class Fongenpubsub_Timer;
69.
70. nsaddr_t ra_addr_;
71. int forward_;
72. int ack_;
73. u_int8_t seq_num_;
74. fongenpubsub_rtable rtable_;
75. fongenpubsub_msgtable msgtable_;
76. attack_nodetable nodetable_;
77. int createfalsemsg_;
78.
79. protected:
80. PortClassifier* dmux_; // For passing packets up to

agents
81. Trace* logtarget_; // For logging
82. Fongenpubsub_Timer fongen_timer_; // Timer for

updating queues
83.
84. inline nsaddr_t& ra_addr() { return ra_addr_; }
85. inline int& forward() { return forward_; }
86. inline int& ack() { return ack_; }
87. inline int& createfalsemsg() { return

createfalsemsg_; }
88.
89. void forward_data(Packet*);
90. void recv_fongenpubsub_pkt(Packet*);
91. void send_fongenpubsub_sub_pkt(char*, int);
92. void send_fongenpubsub_data_pkt(char*, char*,

nsaddr_t, int);

Intrusion Tolerance in Publish/Subscribe based MANET

66

93. void send_fongenpubsub_ack_pkt(char*, int);
94. void fongenpubsub_update();
95. void recv_sub_pkt(Packet*);
96. void recv_data_pkt(Packet*);
97. void recv_ack_pkt(Packet*);
98. void new_sub(char*);
99. void remove_sub(char*);
100. void new_data(char*, char*);
101. void send_to_agent(char*, char*, nsaddr_t, int);
102. void reset_fongenpubsub_timer();
103. void set_forwardstatus(int);
104. void set_ackstatus(int);
105. void send_fongenpubsub_false_ack(char*, int,

nsaddr_t);
106. void create_fongenpubsub_false_msg(char*);
107. public:
108. Fongenpubsub(nsaddr_t);
109. int command(int, const char*const*);
110. void recv(Packet*, Handler*);
111.
112. };
113.
114.
115. #endif

C-3.3 Fongenpubsub.cc
116. #include "fongenpubsub.h"
117. #include <cmu-trace.h>
118. #include <address.h>
119. #include <string.h>
120.
121. int hdr_fongenpubsub_pkt::offset_;
122. static class FongenpubsubHeaderClass : public

PacketHeaderClass {
123. public:
124. FongenpubsubHeaderClass() :

PacketHeaderClass("PacketHeader/Fongenpubsub",
sizeof(hdr_fongenpubsub_pkt)) {

125. bind_offset(&hdr_fongenpubsub_pkt::offset_);
126. }
127. } class_rtProtoFongenpubsub_hdr;
128.
129. static class FongenpubsubClass : public TclClass {
130. public:
131. FongenpubsubClass() : TclClass("Agent/Fongenpubsub")

{}
132. TclObject* create(int argc, const char*const* argv)

{
133. assert(argc == 5);
134. return (new

Fongenpubsub((nsaddr_t)Address::instance().str2addr(ar
gv[4])));

135. }
136. } class_rtProtoFongenpubsub;
137.

Intrusion Tolerance in Publish/Subscribe based MANET

67

138. void Fongenpubsub_Timer::expire(Event* e) {
139. agent_->fongenpubsub_update();
140. agent_->reset_fongenpubsub_timer();
141. }
142.
143. Fongenpubsub::Fongenpubsub(nsaddr_t id) :

Agent(PT_FONGENPUBSUB), fongen_timer_(this) {
144. bind("forward_", &forward_);
145. bind("ack_", &ack_);
146. ra_addr_ = id;
147. createfalsemsg_ = 0;
148. }
149.
150. int Fongenpubsub::command(int argc, const char*const*

argv) {
151. if (argc == 2) {
152. if (DEBUG) {
153. fprintf(stderr, "Command: %s, argc: %d\n",

argv[1], argc);
154. }
155. if (strcasecmp(argv[1], "start") == 0) {
156. fongen_timer_.resched(0.0);
157. return TCL_OK;
158. }
159. else if (strcasecmp(argv[1], "print-rtable") == 0)

{
160. if (logtarget_ != 0) {
161. sprintf(logtarget_->pt_->buffer(), "P %f _%d_

Routing Table", CURRENT_TIME, ra_addr());
162. logtarget_->pt_->dump();
163. rtable_.print(logtarget_);
164. }
165. else {
166. fprintf(stdout, "%f _%d_ If you want to print this

routing table "
167. "you must create a trace file in your tcl

script",
168. CURRENT_TIME,
169. ra_addr());
170.
171. }
172. return TCL_OK;
173. }
174. }
175. else if (argc == 3) {
176. if (DEBUG) {
177. fprintf(stderr, "Command: %s, argc: %d, argv2:

%s\n", argv[1], argc, argv[2]);
178. }
179. // Obtains corresponding dmux to carry packets to

upper layers
180. if (strcmp(argv[1], "port-dmux") == 0) {
181. dmux_ =

(PortClassifier*)TclObject::lookup(argv[2]);
182. if (dmux_ == 0) {
183. fprintf(stderr, "%s: %s lookup of %s failed\n",

Intrusion Tolerance in Publish/Subscribe based MANET

68

184. __FILE__,
185. argv[1],
186. argv[2]);
187. return TCL_ERROR;
188. }
189. return TCL_OK;
190. }
191. // Obtains corresponding tracer
192. else if (strcmp(argv[1], "log-target") == 0 ||

strcmp(argv[1], "tracetarget") == 0) {
193. logtarget_ = (Trace*)TclObject::lookup(argv[2]);
194. if (logtarget_ == 0)
195. return TCL_ERROR;
196. return TCL_OK;
197. }
198. else if (strcmp(argv[1], "fongen-new-sub") == 0) {
199. // Add new subscription
200. char* theme_;
201. theme_ = (char *)malloc(sizeof(argv[2]));
202. strcpy(theme_, argv[2]);
203. new_sub(theme_);
204. return TCL_OK;
205. }
206. else if (strcmp(argv[1], "fongen-remove-sub") ==

0) {
207. // Remove subscription
208. char* theme_;
209. theme_ = (char *)malloc(sizeof(argv[2]));
210. strcpy(theme_, argv[2]);
211. remove_sub(theme_);
212. return TCL_OK;
213. }
214. else if (strcmp(argv[1], "fongen-set-forward") ==

0) {
215. forward() = atoi(argv[2]);
216. return TCL_OK;
217. }
218. else if (strcmp(argv[1], "fongen-set-ack") == 0) {
219. ack() = atoi(argv[2]);
220. return TCL_OK;
221. }
222. else if (strcmp(argv[1], "fongen-create-falsemsg")

== 0) {
223. createfalsemsg() = atoi(argv[2]);
224. return TCL_OK;
225. }
226. }
227. else if (argc == 4) {
228. if (strcmp(argv[1], "fongen-data") == 0) {
229. // Handle new message from node
230. char* theme_ = (char*)malloc(sizeof(argv[2]));
231. char* data_ = (char*)malloc(sizeof(argv[3]));
232. strcpy(theme_, argv[2]);
233. strcpy(data_, argv[3]);
234. new_data(theme_, data_);
235. return TCL_OK;

Intrusion Tolerance in Publish/Subscribe based MANET

69

236. }
237. }
238. // Pass the command to the base class
239. return Agent::command(argc, argv);
240. }
241.
242. void Fongenpubsub::recv(Packet* p, Handler* h) {
243. struct hdr_cmn* ch = HDR_CMN(p);
244. struct hdr_ip* ih = HDR_IP(p);
245.
246. if (ih->saddr() == ra_addr()) {
247. // If there exists a loop, must drop the packet
248. if (ch->num_forwards() > 0) {
249. drop(p, DROP_RTR_ROUTE_LOOP);
250. return;
251. }
252. // else if this is a packet I am orginating, must

add IP header
253. else if (ch->num_forwards() == 0)
254. ch->size() += IP_HDR_LEN;
255. }
256.
257. // If it is a Fongenpubsub packet, must process it
258. if (ch->ptype() == PT_FONGENPUBSUB)
259. recv_fongenpubsub_pkt(p);
260.
261. // Otherwise, must forward the packet (unless TTL

has reached zero)
262. else {
263. ih->ttl_--;
264. if (ih->ttl_ == 0) {
265. drop(p, DROP_RTR_TTL);
266. return;
267. }
268. forward_data(p);
269. }
270. }
271.
272. void Fongenpubsub::recv_fongenpubsub_pkt(Packet* p) {
273. struct hdr_ip* ih = HDR_IP(p);
274. struct hdr_fongenpubsub_pkt* ph =

HDR_FONGENPUBSUB_PKT(p);
275.
276. assert(ih->sport() == RT_PORT);
277. assert(ih->dport() == RT_PORT);
278.
279. if (DEBUG) {
280. fprintf(stderr, "Node %d recieved packet type

%d\n", ra_addr(), ph->message_type());
281. }
282.
283. /* ... processing of packet ... */
284. if (ph->message_type()== SUBSCRIPTION)
285. Fongenpubsub::recv_sub_pkt(p);
286. else if (ph->message_type() == DATA)
287. Fongenpubsub::recv_data_pkt(p);

Intrusion Tolerance in Publish/Subscribe based MANET

70

288. else if (ph->message_type() == ACK)
289. Fongenpubsub::recv_ack_pkt(p);
290. else
291. fprintf(stderr, "Unknown packet recieved.");
292.
293. // Release resources
294. Packet::free(p);
295. }
296.
297. void Fongenpubsub::fongenpubsub_update() {
298.
299. /* ... update subscriptions ... */
300. float time = CURRENT_TIME;
301. int id_;
302. while ((id_=rtable_.update_table(time, ra_addr()))

!= RESERVED_ID) {
303. struct rtabledata *rtableelement =

rtable_.lookup(id_);
304. if (rtableelement->src_ == ra_addr()) {
305. rtableelement->time_ = CURRENT_TIME;
306. send_fongenpubsub_sub_pkt(rtableelement->theme_,

id_);
307.
308. // Make a Log entry about the subscription

update
309. if (logtarget_ != 0 && FONGENTRACE) {
310. sprintf(logtarget_->pt_->buffer(),

"FONGEN_SUB_OWN_UPDATE %f %d %s %d", CURRENT_TIME,
ra_addr(), rtableelement->theme_, id_);

311. logtarget_->pt_->dump();
312. }
313.
314. }
315. else {
316. // Make a Log entry about the removal of

subscription
317. if (logtarget_ != 0 && FONGENTRACE) {
318. sprintf(logtarget_->pt_->buffer(),

"FONGEN_SUB_REMOVE %f %d %s %d", CURRENT_TIME,
ra_addr(), rtableelement->theme_, id_);

319. logtarget_->pt_->dump();
320. }
321.
322. rtable_.rm_entry(id_);
323. }
324. }
325.
326. /* ... update message queue and forward if necessary

... */
327. while ((id_=msgtable_.update_table(time)) !=

RESERVED_ID) {
328. struct msgtabledata *msgtableelement =

msgtable_.lookup(id_);
329. if (msgtableelement->data_ == NULL) {
330. // Make a Log entry about the removal of msg

metadata

Intrusion Tolerance in Publish/Subscribe based MANET

71

331. if (logtarget_ != 0 && FONGENTRACE) {
332. sprintf(logtarget_->pt_->buffer(),

"FONGEN_DATA_REMOVE %f %d %s %d", CURRENT_TIME,
ra_addr(), msgtableelement->theme_, id_);

333. logtarget_->pt_->dump();
334. }
335. msgtable_.rm_entry(id_);
336. }
337. else {
338. if (forward() == NORMALFORWARD) {
339. if (msgtableelement->send_) {
340.
341. }
342. else {
343. // Make a Log entry about forwarding message
344. if (logtarget_ != 0 && FONGENTRACE) {
345. sprintf(logtarget_->pt_->buffer(),

"FONGEN_DATA_FORWARD %f %d %s %s %d %d", CURRENT_TIME,
ra_addr(), msgtableelement->theme_, msgtableelement-
>data_, id_, msgtableelement->src_);

346. logtarget_->pt_->dump();
347. }
348.
349. send_fongenpubsub_data_pkt(msgtableelement-

>theme_, msgtableelement->data_, msgtableelement-
>src_, id_);

350. msgtableelement->data_ = NULL;
351. msgtableelement->send_ = true;
352. msgtableelement->time_ = CURRENT_TIME;
353. }
354. }
355. else {
356. if (logtarget_ != 0 && FONGENTRACE) {
357. sprintf(logtarget_->pt_->buffer(),

"FONGEN_ATTACK_DATA_NOTFORWARD %f %d %s %s %d %d",
CURRENT_TIME, ra_addr(), msgtableelement->theme_,
msgtableelement->data_, id_, msgtableelement->src_);

358. logtarget_->pt_->dump();
359. }
360.
361. msgtableelement->data_ = NULL;
362. msgtableelement->send_ = true;
363. msgtableelement->time_ = CURRENT_TIME;
364.
365. }
366. }
367. }
368.
369. // Update attacker learned nodes
370. if (ack() == 3) {
371. float time_ = CURRENT_TIME;
372. for (nodetable_t::iterator it =

nodetable_.nt_.begin(); it != nodetable_.nt_.end();
it++) {

373. if ((time_ - (*it).second.time_) >
ATTACKMAXNODEAGE) {

Intrusion Tolerance in Publish/Subscribe based MANET

72

374. nodetable_.rm_entry((*it).first);
375. }
376. }
377. }
378. }
379.
380.
381. void Fongenpubsub::forward_data(Packet* p) {
382.
383. // Insert code to forward other packets
384.
385. }
386.
387. void Fongenpubsub::reset_fongenpubsub_timer() {
388. fongen_timer_.resched((double)0.1);
389. }
390.
391. void Fongenpubsub::recv_sub_pkt(Packet* p) {
392. struct hdr_cmn* ch = HDR_CMN(p);
393. struct hdr_ip* ih = HDR_IP(p);
394. struct hdr_fongenpubsub_pkt* ph =

HDR_FONGENPUBSUB_PKT(p);
395. if (DEBUG) {
396. fprintf(stderr, "Node(%d) recv_sub_pkt(%d, %s)\n",

ra_addr(), ph->pkt_id(), ph->pkt_theme());
397. }
398.
399. // Store address of source node(s)
400. if (ack() == 3) {
401. nodetable_.attack_add_node(ph->pkt_src());
402. }
403.
404. // Handle subscription packets
405. struct rtabledata new_rdata_;
406. if (DEBUG) {
407. fprintf(stderr, "Node %d new_sub %s\n", ra_addr(),

ph->pkt_theme());
408. }
409. strcpy(new_rdata_.theme_, ph->pkt_theme());
410. new_rdata_.src_ = ph->pkt_src();
411. new_rdata_.time_ = CURRENT_TIME;
412. if (rtable_.add_entry(ph->pkt_id(), new_rdata_,

CURRENT_TIME)) {
413. // Make a Log entry about the new recieved sub

data
414. if (logtarget_ != 0) {
415. sprintf(logtarget_->pt_->buffer(),

"FONGEN_SUB_RECV_NEW %f %d %s %d %d", CURRENT_TIME,
ra_addr(), ph->pkt_theme(), ph->pkt_id(), ph-
>pkt_src());

416. logtarget_->pt_->dump();
417. }
418.
419. // Create a false message with the theme recieved

in sub msg if we are instructed to do so
420. if (createfalsemsg() == 1) {

Intrusion Tolerance in Publish/Subscribe based MANET

73

421. create_fongenpubsub_false_msg(ph->pkt_theme());
422. }
423. if (forward() == NORMALFORWARD || forward() ==

NODATA) {
424. send_fongenpubsub_sub_pkt(ph->pkt_theme(), ph-

>pkt_id());
425. }
426. else {
427. sprintf(logtarget_->pt_->buffer(),

"FONGEN_ATTACK_SUB_STOP %f %d %s %d %d", CURRENT_TIME,
ra_addr(), ph->pkt_theme(), ph->pkt_id(), ph-
>pkt_src());

428. logtarget_->pt_->dump();
429.
430. }
431. }
432. }
433.
434. void Fongenpubsub::recv_data_pkt(Packet* p) {
435. struct hdr_cmn* ch = HDR_CMN(p);
436. struct hdr_ip* ih = HDR_IP(p);
437. struct hdr_fongenpubsub_pkt* ph =

HDR_FONGENPUBSUB_PKT(p);
438.
439. // Handle data packets
440. int subs;
441. if (DEBUG) {
442. fprintf(stderr, "Node(%d): Recieved packet

datapacket, FORWARDSTATUS: %d\n", ra_addr(),
forward());

443. }
444.
445. // Store address of source node(s)
446. if (ack() == 3) {
447. nodetable_.attack_add_node(ph->pkt_src());
448. }
449.
450. if (msgtable_.exist(ph->pkt_id())) {
451. if (msgtable_.oldmsg(ph->pkt_id())) {
452. // Make a Log entry about the new data which are

dropped
453. if (logtarget_ != 0 && FONGENTRACE) {
454. sprintf(logtarget_->pt_->buffer(),

"FONGEN_DATA_RECV_DROP %f %d %s %s %d %d OLD_PACKET",
CURRENT_TIME, ra_addr(), ph->pkt_theme(), ph-
>pkt_data(), ph->pkt_id(), ph->pkt_src());

455. logtarget_->pt_->dump();
456. }
457.
458. return;
459. }
460. else {
461. // Make a Log entry about the new data
462. if (logtarget_ != 0 && FONGENTRACE) {
463. sprintf(logtarget_->pt_->buffer(),

"FONGEN_DATA_RECV %f %d %s %s %d %d UPDATE",

Intrusion Tolerance in Publish/Subscribe based MANET

74

CURRENT_TIME, ra_addr(), ph->pkt_theme(), ph-
>pkt_data(), ph->pkt_id(), ph->pkt_src());

464. logtarget_->pt_->dump();
465. }
466.
467. msgtable_.add_data(ph->pkt_id(), ph->pkt_data(),

ph->pkt_src(), CURRENT_TIME,
rtable_.num_of_sub_from_source(ph->pkt_theme(),
ra_addr()));

468.
469. if (rtable_.num_of_sub_from_source(ph-

>pkt_theme(), ra_addr()) > 0) {
470. // Own subscription for data
471. send_to_agent(ph->pkt_theme(), ph->pkt_data(), ph-

>pkt_src(), ph->pkt_id());
472. }
473.
474. }
475. }
476. else if ((subs = rtable_.num_of_sub(ph-

>pkt_theme())) > 0) {
477. struct msgtabledata new_msgdata_;
478. int ack = rtable_.num_of_sub_from_source(ph-

>pkt_theme(), ra_addr());
479. // Make a Log entry about the new data
480. if (logtarget_ != 0 && FONGENTRACE) {
481. sprintf(logtarget_->pt_->buffer(),

"FONGEN_DATA_RECV %f %d %s %s %d %d", CURRENT_TIME,
ra_addr(), ph->pkt_theme(), ph->pkt_data(), ph-
>pkt_id(), ph->pkt_src());

482. logtarget_->pt_->dump();
483. }
484.
485. if (ack > 0) {
486. // Own subscription for data
487. send_to_agent(ph->pkt_theme(), ph->pkt_data(),

ph->pkt_src(), ph->pkt_id());
488. }
489.
490. strcpy(new_msgdata_.theme_,ph->pkt_theme());
491. new_msgdata_.num_sub_ = subs;
492. new_msgdata_.num_ack_ = ack;
493. new_msgdata_.time_ = CURRENT_TIME;
494. new_msgdata_.oldmsg_ = true;
495. if (ack >= subs) {
496. new_msgdata_.send_ = true;
497. new_msgdata_.data_ = NULL;
498. }
499. else {
500. new_msgdata_.send_ = false;
501. new_msgdata_.data_ = (char*)malloc(sizeof(ph-

>pkt_data()));
502. strcpy(new_msgdata_.data_, ph->pkt_data());
503. }
504. new_msgdata_.src_ = ph->pkt_src();
505. msgtable_.addmsg(ph->pkt_id(), new_msgdata_);

Intrusion Tolerance in Publish/Subscribe based MANET

75

506. }
507. else {
508. // Make a Log entry about the new data which are

dropped
509. if (logtarget_ != 0 && FONGENTRACE) {
510. sprintf(logtarget_->pt_->buffer(),

"FONGEN_DATA_RECV_DROP %f %d %s %s %d %d
NO_SUBSCRIPTIONS", CURRENT_TIME, ra_addr(), ph-
>pkt_theme(), ph->pkt_data(), ph->pkt_id(), ph-
>pkt_src());

511. logtarget_->pt_->dump();
512. }
513. return;
514. }
515.
516. // Send ACK
517. if (ack() == NORMALACK) {
518. send_fongenpubsub_ack_pkt(ph->pkt_theme(), ph-

>pkt_id());
519. }
520. else if (ack() == RADIOSILENCE) {
521.
522. }
523. else if (ack() == FALSERANDOMACK) {
524. nsaddr_t src_;
525. for (int i=0; i < ATTACKNUMOFACK; i++) {
526. src_ =

(nsaddr_t)ATTACKMAXADDR*((float)rand()/(float)RAND_MAX
);

527. send_fongenpubsub_false_ack(ph->pkt_theme(), ph-
>pkt_id(), src_);

528. }
529. }
530. else if (ack() == FALSELEARNEDACK) {
531. for (nodetable_t::iterator it =

nodetable_.nt_.begin(); it != nodetable_.nt_.end();
it++) {

532. send_fongenpubsub_false_ack(ph->pkt_theme(), ph-
>pkt_id(), (*it).second.id_);

533. }
534. }
535. else if (ack() == MANYACK) {
536. for (int i=0; i < NUMOFACK; i++) {
537. send_fongenpubsub_ack_pkt(ph->pkt_theme(), ph-

>pkt_id());
538. }
539. }
540. else {
541. fprintf(stderr, "Error: Node(%d): Wrong

acktype\n", ra_addr());
542. }
543. }
544.
545. void Fongenpubsub::recv_ack_pkt(Packet* p) {
546. // Handle ack packets
547. struct hdr_cmn* ch = HDR_CMN(p);

Intrusion Tolerance in Publish/Subscribe based MANET

76

548. struct hdr_ip* ih = HDR_IP(p);
549. struct hdr_fongenpubsub_pkt* ph =

HDR_FONGENPUBSUB_PKT(p);
550.
551. int subs;
552.
553. // Make a Log entry about the recieved ACK msg
554. if (logtarget_ != 0 && FONGENTRACE) {
555. sprintf(logtarget_->pt_->buffer(),

"FONGEN_ACK_RECV %f %d %s %d %d", CURRENT_TIME,
ra_addr(), ph->pkt_theme(), ph->pkt_id(), ph-
>pkt_src());

556. logtarget_->pt_->dump();
557. }
558.
559. if (ack() == 3) {
560. nodetable_.attack_add_node(ph->pkt_src());
561. }
562.
563. if (msgtable_.exist(ph->pkt_id())) {
564. msgtable_.new_ack(ph->pkt_id(),

rtable_.num_of_sub_from_source(ph->pkt_theme(), ph-
>pkt_src()));

565. }
566. else if ((subs = rtable_.num_of_sub(ph-

>pkt_theme())) > 0) {
567. struct msgtabledata new_msgdata_;
568. strcpy(new_msgdata_.theme_,ph->pkt_theme());
569. new_msgdata_.num_sub_ = subs;
570. new_msgdata_.num_ack_ =

rtable_.num_of_sub_from_source(ph->pkt_theme(), ph-
>pkt_src());

571. new_msgdata_.time_ = CURRENT_TIME;
572. new_msgdata_.send_ = false;
573. new_msgdata_.data_ = NULL;
574. new_msgdata_.oldmsg_ = false;
575. msgtable_.addmsg(ph->pkt_id(), new_msgdata_);
576. }
577. }
578.
579. void Fongenpubsub::send_fongenpubsub_data_pkt(char*

theme_, char* data_, nsaddr_t src, int id_) {
580. Packet* p = allocpkt();
581. struct hdr_cmn* ch = HDR_CMN(p);
582. struct hdr_ip* ih = HDR_IP(p);
583. struct hdr_fongenpubsub_pkt* ph =

HDR_FONGENPUBSUB_PKT(p);
584.
585. ph->pkt_src() = src;
586. ph->pkt_len() = (8 + (int) strlen(theme_) + (int)

strlen(data_));
587. ph->pkt_id() = id_;
588. ph->pkt_theme() = theme_;
589. ph->pkt_data() = data_;
590. ph->message_type() = DATA;
591.

Intrusion Tolerance in Publish/Subscribe based MANET

77

592. ch->ptype() = PT_FONGENPUBSUB;
593. ch->direction() = hdr_cmn::DOWN;
594. ch->size() = IP_HDR_LEN + ph->pkt_len();
595. ch->error() = 0;
596. ch->next_hop() = IP_BROADCAST;
597. ch->addr_type() = NS_AF_INET;
598.
599. ih->saddr() = ra_addr();
600. ih->daddr() = IP_BROADCAST;
601. ih->sport() = RT_PORT;
602. ih->dport() = RT_PORT;
603. ih->ttl() = IP_DEF_TTL;
604.
605. Scheduler::instance().schedule(target_, p, JITTER);
606. }
607.
608. void Fongenpubsub::send_fongenpubsub_ack_pkt(char*

theme_, int id_) {
609. Packet* p = allocpkt();
610. struct hdr_cmn* ch = HDR_CMN(p);
611. struct hdr_ip* ih = HDR_IP(p);
612. struct hdr_fongenpubsub_pkt* ph =

HDR_FONGENPUBSUB_PKT(p);
613.
614. ph->pkt_src() = ra_addr();
615. ph->pkt_len() = (8 + (int)strlen(theme_));
616. ph->pkt_id() = id_;
617. ph->pkt_theme() = theme_;
618. ph->message_type() = ACK;
619.
620. ch->ptype() = PT_FONGENPUBSUB;
621. ch->direction() = hdr_cmn::DOWN;
622. ch->size() = IP_HDR_LEN + ph->pkt_len();
623. ch->error() = 0;
624. ch->next_hop() = IP_BROADCAST;
625. ch->addr_type() = NS_AF_INET;
626.
627. ih->saddr() = ra_addr();
628. ih->daddr() = IP_BROADCAST;
629. ih->sport() = RT_PORT;
630. ih->dport() = RT_PORT;
631. ih->ttl() = IP_DEF_TTL;
632.
633. Scheduler::instance().schedule(target_, p, JITTER);
634. }
635.
636. void Fongenpubsub::send_fongenpubsub_sub_pkt(char*

theme_, int id_) {
637. Packet* p = allocpkt();
638. struct hdr_cmn* ch = HDR_CMN(p);
639. struct hdr_ip* ih = HDR_IP(p);
640. struct hdr_fongenpubsub_pkt* ph =

HDR_FONGENPUBSUB_PKT(p);
641.
642. ph->pkt_src() = ra_addr();
643. ph->pkt_len() = (8 + (int) strlen(theme_));

Intrusion Tolerance in Publish/Subscribe based MANET

78

644. ph->pkt_id() = id_;
645. ph->pkt_theme() = theme_;
646. ph->message_type() = SUBSCRIPTION;
647.
648. ch->ptype() = PT_FONGENPUBSUB;
649. ch->direction() = hdr_cmn::DOWN;
650. ch->size() = IP_HDR_LEN + ph->pkt_len();
651. ch->error() = 0;
652. ch->next_hop() = IP_BROADCAST;
653. ch->addr_type() = NS_AF_INET;
654.
655. ih->saddr() = ra_addr();
656. ih->daddr() = IP_BROADCAST;
657. ih->sport() = RT_PORT;
658. ih->dport() = RT_PORT;
659. ih->ttl() = IP_DEF_TTL;
660.
661. Scheduler::instance().schedule(target_, p, JITTER);
662. }
663.
664. void Fongenpubsub::new_sub(char* theme_) {
665. int id_ = rand();
666. struct rtabledata new_rdata_;
667. if (DEBUG) {
668. fprintf(stderr, "Node(%d) new_sub(%s)\n",

ra_addr(), theme_);
669. }
670. strcpy(new_rdata_.theme_, theme_);
671. new_rdata_.src_ = ra_addr();
672. new_rdata_.time_ = CURRENT_TIME;
673. rtable_.add_entry(id_, new_rdata_, CURRENT_TIME);
674.
675. // Make a Log entry about the new subscription
676. if (logtarget_ != 0 && FONGENTRACE) {
677. sprintf(logtarget_->pt_->buffer(),

"FONGEN_AGENT_SUB_NEW %f %d %s %d", CURRENT_TIME,
ra_addr(), new_rdata_.theme_, id_);

678. logtarget_->pt_->dump();
679. }
680.
681. send_fongenpubsub_sub_pkt(theme_, id_);
682. }
683.
684. void Fongenpubsub::remove_sub(char* theme_) {
685. int id;
686. if (DEBUG) {
687. fprintf(stderr, "Node(%d) remove_sub(%s)\n",

ra_addr(), theme_);
688. }
689. id = rtable_.find_own_entry(theme_, ra_addr());
690. if (DEBUG) {
691. fprintf(stderr, "Node (%d) theme_subID(%d)\n",

ra_addr(), id);
692. }
693. if (id != RESERVED_ID) {

Intrusion Tolerance in Publish/Subscribe based MANET

79

694. // Make a Log entry about the removale of
subscription

695. if (logtarget_ != 0 && FONGENTRACE) {
696. sprintf(logtarget_->pt_->buffer(),

"FONGEN_AGENT_SUB_REMOVE %f %d %s %d", CURRENT_TIME,
ra_addr(), theme_, id);

697. logtarget_->pt_->dump();
698. }
699. rtable_.rm_entry(id);
700. }
701. }
702.
703. void Fongenpubsub::new_data(char* theme_, char* data_)

{
704. int id_ = rand();
705.
706. // Store metadata in msg queue
707. struct msgtabledata new_msgdata_;
708. strcpy(new_msgdata_.theme_,theme_);
709. new_msgdata_.num_sub_ = 0;
710. new_msgdata_.num_ack_ = 0;
711. new_msgdata_.time_ = CURRENT_TIME;
712. new_msgdata_.send_ = true;
713. new_msgdata_.oldmsg_ = true;
714. new_msgdata_.data_ = (char*)malloc(sizeof(data_));
715. strcpy(new_msgdata_.data_, data_);
716. new_msgdata_.src_ = ra_addr();
717. msgtable_.addmsg(id_, new_msgdata_);
718.
719. // Make a Log entry about the new data
720. if (logtarget_ != 0 && FONGENTRACE) {
721. sprintf(logtarget_->pt_->buffer(),

"FONGEN_AGENT_DATA_NEW %f %d %s %s %d", CURRENT_TIME,
ra_addr(), theme_, data_, id_);

722. logtarget_->pt_->dump();
723. }
724.
725. // Send ack msg for this data packet
726. send_fongenpubsub_ack_pkt(theme_, id_);
727.
728. // Send data packet
729. send_fongenpubsub_data_pkt(theme_, data_, ra_addr(),

id_);
730.
731. }
732.
733. void Fongenpubsub::send_to_agent(char *theme_, char

*data_, nsaddr_t src_, int id_) {
734. if (logtarget_ != 0 && FONGENTRACE) {
735. sprintf(logtarget_->pt_->buffer(),

"FONGEN_AGENT_DATA_RECV %f %d %s %s %d %d",
CURRENT_TIME, ra_addr(), theme_, data_, id_, src_);

736. logtarget_->pt_->dump();
737. }
738. }
739.

Intrusion Tolerance in Publish/Subscribe based MANET

80

740. void Fongenpubsub::send_fongenpubsub_false_ack(char*
theme_, int id_, nsaddr_t src_) {

741. Packet* p = allocpkt();
742. struct hdr_cmn* ch = HDR_CMN(p);
743. struct hdr_ip* ih = HDR_IP(p);
744. struct hdr_fongenpubsub_pkt* ph =

HDR_FONGENPUBSUB_PKT(p);
745.
746. ph->pkt_src() = src_;
747. ph->pkt_len() = (8 + (int)strlen(theme_));
748. ph->pkt_id() = id_;
749. ph->pkt_theme() = theme_;
750. ph->message_type() = ACK;
751.
752. ch->ptype() = PT_FONGENPUBSUB;
753. ch->direction() = hdr_cmn::DOWN;
754. ch->size() = IP_HDR_LEN + ph->pkt_len();
755. ch->error() = 0;
756. ch->next_hop() = IP_BROADCAST;
757. ch->addr_type() = NS_AF_INET;
758.
759. ih->saddr() = src_;
760. ih->daddr() = IP_BROADCAST;
761. ih->sport() = RT_PORT;
762. ih->dport() = RT_PORT;
763. ih->ttl() = IP_DEF_TTL;
764.
765. Scheduler::instance().schedule(target_, p, JITTER);
766. }
767.
768. void Fongenpubsub::create_fongenpubsub_false_msg(char*

theme_) {
769. char *data_ = "False";
770. int id_ = rand();
771. int src_ = rand()%FALSENODERANGE;
772.
773. // Store metadata in msg queue
774. struct msgtabledata new_msgdata_;
775. strcpy(new_msgdata_.theme_,theme_);
776. new_msgdata_.num_sub_ = 0;
777. new_msgdata_.num_ack_ = 0;
778. new_msgdata_.time_ = CURRENT_TIME;
779. new_msgdata_.send_ = true;
780. new_msgdata_.oldmsg_ = true;
781. new_msgdata_.data_ = (char*)malloc(sizeof(data_));
782. strcpy(new_msgdata_.data_, data_);
783. new_msgdata_.src_ = src_;
784. msgtable_.addmsg(id_, new_msgdata_);
785.
786. // Make a Log entry about the new data
787. if (logtarget_ != 0 && FONGENTRACE) {
788. sprintf(logtarget_->pt_->buffer(),

"FONGEN_AGENT_DATA_NEW %f %d %s %s %d", CURRENT_TIME,
ra_addr(), theme_, data_, id_);

789. logtarget_->pt_->dump();
790. }

Intrusion Tolerance in Publish/Subscribe based MANET

81

791.
792. // Send ack msg for this data packet
793. send_fongenpubsub_ack_pkt(theme_, id_);
794.
795. // Send data packet
796. send_fongenpubsub_data_pkt(theme_, data_, src_,

id_);
797.
798. }
799.
800. attack_nodetable::attack_nodetable() { }
801.
802. void attack_nodetable::rm_entry(int id) {
803. nt_.erase(id);
804. }
805.
806. void attack_nodetable::attack_add_node(int id_) {
807. struct nodetable curr_element;
808. nodetable_t::iterator it = nt_.find(id_);
809. if (it == nt_.end()) {
810. curr_element.time_ = CURRENT_TIME;
811. curr_element.id_ = id_;
812. nt_[id_] = curr_element;
813. }
814. else {
815. (*it).second.time_ = CURRENT_TIME;
816. }
817. }

C-3.4 Fongenpubsub_pkt.h
1. #ifndef __fongenpubsub_pkt_h__
2. #define __fongenpubsub_pkt_h__
3.
4. #define SUBSCRIPTION 1
5. #define DATA 2
6. #define ACK 3
7.
8.
9. #include <packet.h>
10.
11. #define HDR_FONGENPUBSUB_PKT(p)

hdr_fongenpubsub_pkt::access(p)
12.
13. struct hdr_fongenpubsub_pkt {
14. nsaddr_t pkt_src_;
15. u_int16_t pkt_len_;
16. int pkt_id_;
17. char* pkt_theme_;
18. int message_type_;
19. char* data_;
20.
21. inline nsaddr_t& pkt_src() { return pkt_src_; }
22. inline u_int16_t& pkt_len() { return pkt_len_; }
23. inline int& pkt_id() { return pkt_id_; }

Intrusion Tolerance in Publish/Subscribe based MANET

82

24. inline char*& pkt_theme() { return pkt_theme_; }
25. inline int& message_type() { return message_type_; }
26. inline char*& pkt_data() { return data_; }
27.
28. static int offset_;
29. inline static int& offset() { return offset_; }
30. inline static hdr_fongenpubsub_pkt* access(const

Packet* p) {
31. return (hdr_fongenpubsub_pkt*)p->access(offset_);
32. }
33. };
34.
35. #endif

C-3.5 Fongenpubsub_rtable.h
1. #ifndef __fongenpubsub_rtable_h__
2. #define __fongenpubsub_rtable_h__
3. #define MAX_THEME_LENGTH 10
4. #define RESERVED_ID 0
5. #define PROTECT_TIME 2
6.
7. #define OWNSUBAGE 30
8. #define SUBAGE 100
9.
10. #include <trace.h>
11. #include <map>
12. //#include "fongenpubsub.h"
13.
14. struct rtabledata {
15. char theme_[MAX_THEME_LENGTH];
16. nsaddr_t src_;
17. float time_;
18. };
19.
20. typedef std::map<int, struct rtabledata> rtable_t;
21.
22. class fongenpubsub_rtable {
23.
24. rtable_t rt_;
25.
26. public:
27. fongenpubsub_rtable();
28. void print(Trace*);
29. void clear();
30. void rm_entry(int);
31. bool add_entry(int, struct rtabledata, float);
32. struct rtabledata *lookup(int);
33. u_int32_t size();
34. int find_own_entry(char*, nsaddr_t);
35. int update_table(float, nsaddr_t);
36. int num_of_sub(char*);
37. int num_of_sub_from_source(char*, nsaddr_t);
38. };
39.

Intrusion Tolerance in Publish/Subscribe based MANET

83

40. #endif

C-3.6 Fongenpubsub_rtable.cc
1. #include "fongenpubsub_rtable.h"
2.
3. fongenpubsub_rtable::fongenpubsub_rtable() { }
4.
5. void fongenpubsub_rtable::print(Trace* out) {
6. sprintf(out->pt_->buffer(),

"P\tID\ttheme\tsource\ttime");
7. out->pt_->dump();
8. for (rtable_t::iterator it = rt_.begin(); it !=

rt_.end(); it++) {
9. sprintf(out->pt_->buffer(), "P\t%d\t%s\t%d\t%f",
10. (*it).first,
11. (*it).second.theme_,
12. (*it).second.src_,
13. (*it).second.time_);
14. out->pt_->dump();
15. }
16. }
17.
18. void fongenpubsub_rtable::clear() {
19. rt_.clear();
20. }
21.
22. void fongenpubsub_rtable::rm_entry(int id) {
23. rt_.erase(id);
24. }
25.
26. bool fongenpubsub_rtable::add_entry(int id, struct

rtabledata data, float time) {
27. rtable_t::iterator it = rt_.find(id);
28. if (it == rt_.end()) {
29. rt_[id] = data;
30. return true;
31. }
32. else {
33. if ((time - (*it).second.time_) > PROTECT_TIME)

{
34. (*it).second = data;
35. return true;
36. }
37. else {
38. return false;
39. }
40. }
41. }
42.
43. struct rtabledata *fongenpubsub_rtable::lookup(int id)

{
44. rtable_t::iterator it = rt_.find(id);
45. if (it == rt_.end()) {
46. return NULL;

Intrusion Tolerance in Publish/Subscribe based MANET

84

47. }
48. else {
49. return &(*it).second;
50. }
51. }
52.
53. u_int32_t fongenpubsub_rtable::size() {
54. return rt_.size();
55. }
56.
57. int fongenpubsub_rtable::find_own_entry(char* theme,

nsaddr_t own_addr) {
58. for (rtable_t::iterator it = rt_.begin(); it !=

rt_.end(); it++) {
59. if (strcmp((*it).second.theme_, theme) == 0 &&

(*it).second.src_ == own_addr) {
60. return (*it).first;
61. }
62. }
63. return RESERVED_ID;
64. }
65.
66. int fongenpubsub_rtable::update_table(float time,

nsaddr_t own_addr) {
67. for (rtable_t::iterator it = rt_.begin(); it !=

rt_.end(); it++) {
68. if ((*it).second.src_ == own_addr) {
69. if ((time - (*it).second.time_) > OWNSUBAGE) {
70. return (*it).first;
71. }
72. }
73. else {
74. if ((time - (*it).second.time_) > SUBAGE) {
75. return (*it).first;
76. }
77. }
78. }
79. return RESERVED_ID;
80. }
81.
82. int fongenpubsub_rtable::num_of_sub(char* theme) {
83. int sum = 0;
84. for (rtable_t::iterator it = rt_.begin(); it !=

rt_.end(); it++) {
85. if (strncmp(theme, (*it).second.theme_,

(int)strlen((*it).second.theme_)) == 0) {
86. sum++;
87. }
88. }
89. return sum;
90. }
91.
92. int fongenpubsub_rtable::num_of_sub_from_source(char*

theme, nsaddr_t src) {
93. int sum = 0;

Intrusion Tolerance in Publish/Subscribe based MANET

85

94. for (rtable_t::iterator it = rt_.begin(); it !=
rt_.end(); it++) {

95. if ((*it).second.src_ == src) {
96. if (strncmp(theme, (*it).second.theme_,

(int)strlen((*it).second.theme_)) == 0) {
97. sum++;
98. }
99. }
100. }
101. return sum;
102. }

C-3.7 Fongenpubsub_msgtable.h
1. #ifndef __fongenpubsub_msgtable_h__
2. #define __fongenpubsub_msgtable_h__
3.
4. #define MSGAGE 0.5
5. #define KEEPAGE 10
6.
7. #include <trace.h>
8. #include <map>
9. #include "fongenpubsub_rtable.h"
10.
11. struct msgtabledata {
12. char theme_[MAX_THEME_LENGTH];
13. int num_sub_;
14. int num_ack_;
15. float time_;
16. bool send_;
17. char* data_;
18. nsaddr_t src_;
19. bool oldmsg_;
20. };
21.
22. typedef std::map<int, struct msgtabledata> msgtable_t;
23.
24. class fongenpubsub_msgtable {
25.
26. msgtable_t mt_;
27.
28. public:
29. fongenpubsub_msgtable();
30. bool oldmsg(int);
31. bool exist(int);
32. void addmsg(int, struct msgtabledata);
33. void add_data(int, char*, int, float, int);
34. void new_ack(int, int);
35. int update_table(float);
36. struct msgtabledata *lookup(int);
37. void rm_entry(int);
38. };
39. #endif

Intrusion Tolerance in Publish/Subscribe based MANET

86

C-3.8 Fongenpubsub_msgtable.cc
1. #include "fongenpubsub_rtable.h"
2.
3. fongenpubsub_rtable::fongenpubsub_rtable() { }
4.
5. void fongenpubsub_rtable::print(Trace* out) {
6. sprintf(out->pt_->buffer(),

"P\tID\ttheme\tsource\ttime");
7. out->pt_->dump();
8. for (rtable_t::iterator it = rt_.begin(); it !=

rt_.end(); it++) {
9. sprintf(out->pt_->buffer(), "P\t%d\t%s\t%d\t%f",
10. (*it).first,
11. (*it).second.theme_,
12. (*it).second.src_,
13. (*it).second.time_);
14. out->pt_->dump();
15. }
16. }
17.
18. void fongenpubsub_rtable::clear() {
19. rt_.clear();
20. }
21.
22. void fongenpubsub_rtable::rm_entry(int id) {
23. rt_.erase(id);
24. }
25.
26. bool fongenpubsub_rtable::add_entry(int id, struct

rtabledata data, float time) {
27. rtable_t::iterator it = rt_.find(id);
28. if (it == rt_.end()) {
29. rt_[id] = data;
30. return true;
31. }
32. else {
33. if ((time - (*it).second.time_) > PROTECT_TIME)

{
34. (*it).second = data;
35. return true;
36. }
37. else {
38. return false;
39. }
40. }
41. }
42.
43. struct rtabledata *fongenpubsub_rtable::lookup(int id)

{
44. rtable_t::iterator it = rt_.find(id);
45. if (it == rt_.end()) {
46. return NULL;
47. }
48. else {

Intrusion Tolerance in Publish/Subscribe based MANET

87

49. return &(*it).second;
50. }
51. }
52.
53. u_int32_t fongenpubsub_rtable::size() {
54. return rt_.size();
55. }
56.
57. int fongenpubsub_rtable::find_own_entry(char* theme,

nsaddr_t own_addr) {
58. for (rtable_t::iterator it = rt_.begin(); it !=

rt_.end(); it++) {
59. if (strcmp((*it).second.theme_, theme) == 0 &&

(*it).second.src_ == own_addr) {
60. return (*it).first;
61. }
62. }
63. return RESERVED_ID;
64. }
65.
66. int fongenpubsub_rtable::update_table(float time,

nsaddr_t own_addr) {
67. for (rtable_t::iterator it = rt_.begin(); it !=

rt_.end(); it++) {
68. if ((*it).second.src_ == own_addr) {
69. if ((time - (*it).second.time_) > OWNSUBAGE) {
70. return (*it).first;
71. }
72. }
73. else {
74. if ((time - (*it).second.time_) > SUBAGE) {
75. return (*it).first;
76. }
77. }
78. }
79. return RESERVED_ID;
80. }
81.
82. int fongenpubsub_rtable::num_of_sub(char* theme) {
83. int sum = 0;
84. for (rtable_t::iterator it = rt_.begin(); it !=

rt_.end(); it++) {
85. if (strncmp(theme, (*it).second.theme_,

(int)strlen((*it).second.theme_)) == 0) {
86. sum++;
87. }
88. }
89. return sum;
90. }
91.
92. int fongenpubsub_rtable::num_of_sub_from_source(char*

theme, nsaddr_t src) {
93. int sum = 0;
94. for (rtable_t::iterator it = rt_.begin(); it !=

rt_.end(); it++) {
95. if ((*it).second.src_ == src) {

Intrusion Tolerance in Publish/Subscribe based MANET

88

96. if (strncmp(theme, (*it).second.theme_,
(int)strlen((*it).second.theme_)) == 0) {

97. sum++;
98. }
99. }
100. }
101. return sum;
102. }

Intrusion Tolerance in Publish/Subscribe based MANET

89

C-4 References

[1] Fongen, Anders. Pubsub distribusjon i manet - skisse. Oslo :
Norwegian Defence Rescearch Establishment, 2007.

[2] NS-2 Wiki. http://nsnam.isi.edu/nsnam/index.php/Main_Page last
visited: 2009-05-07

[3] Ros, F.J. and Ruiz, P.M. Implementing a New Manet Unicast Routing
Protocol in NS2, Dept. of Information and Communications Engineering,
University of Murcia, December 2004.

Intrusion Tolerance in Publish/Subscribe based MANET

91

D Createsim

D-1 Introductions

This appendix describes the program used to create random simulation sets used in
the simulations in the thesis.

D-1.1 Description

The program is created to automatically create different random simulation
scenarios based on different user input parameters.

D-1.2 Usage

createsim <x> <y> <nodes> <time> <tracefile> [<subs> <msgs> <maxsublen>
<outputfile> <numberOfFiles>]

x,y - size of simulation area
nodes - number of nodes in the simulation
time -
tracefile - name of output file from simulations
subs - number of total subscriptions in simulation
msgs - number of total messages created in simulation
maxsublen - maximum length of subscriptions
outputfile - basename of resulting simulation script
numberOfFiles - number of simulation files to produce

Intrusion Tolerance in Publish/Subscribe based MANET

92

D-2 Implementation

1. #include <string.h>
2. #include <stdio.h>
3. #include <stdlib.h>
4.
5. #define SUBS 10
6. #define MSGS 100
7. #define MAXSUBLENGTH 50
8.
9. const char* themes[] = {"A", "AA", "AB", "AC",
10. "AAA", "AAB", "AAC",
11. "ABA", "ABB", "ABC",
12. "ACA", "ACB", "ACC",
13. "B", "BA", "BB", "BC",
14. "BAA", "BAB", "BAC",
15. "BBA", "BBB", "BBC",
16. "BCA", "BCB", "BCC",
17. "C", "CA", "CB", "CC",
18. "CAA", "CAB", "CAC",
19. "CBA", "CBB", "CBC",
20. "CCA", "CCB", "CCC"};
21.
22. void createsim(int x, int y, int nodes, int time,

char* tracefile, int subs, int msgs, int maxsublength,
FILE* output) {

23. // Create new simulator and trace file
24. fprintf(output, "set ns_ [new Simulator]\nset

tracefd [open %s w]\n$ns_ trace-all $tracefd\n\n",
tracefile);

25.
26. // Create topography
27. fprintf(output, "set topo [new Topography]\n$topo

load_flatgrid %d %d\n\n", x, y);
28.
29. fprintf(output, "create-god %d\n\n $ns_ node-

config -adhocRouting Fongenpubsub \\\n
-llType LL \\\n -macType
Mac/802_11 \\\n -ifqType
Queue/DropTail/PriQueue \\\n -
ifqLen 50 \\\n -antType
Antenna/OmniAntenna \\\n -
propType Propagation/TwoRayGround \\\n
-phyType Phy/WirelessPhy \\\n
-channelType Channel/WirelessChannel \\\n
-topoInstance $topo \\\n -
agentTrace OFF \\\n -
routerTrace OFF \\\n -macTrace
OFF \\\n -movementTrace
OFF\n\n for {set i 0} {$i < %d } {incr i} {\n
set node_($i) [$ns_ node]\n $node_($i)
random-motion 1 ;# enable random motion\n
}\n\n", nodes, nodes);

30.
31.
32.

Intrusion Tolerance in Publish/Subscribe based MANET

93

33. // Generate start positions
34. for (int i=0;i<nodes;i++) {
35. fprintf(output, "$node_(%d) set X_ %.1f\n", i,

x*((float)rand()/(float)RAND_MAX));
36. fprintf(output, "$node_(%d) set Y_ %.1f\n", i,

y*((float)rand()/(float)RAND_MAX));
37. fprintf(output, "$node_(%d) set Z_ 0.0\n\n");
38. }
39.
40. // Generate subscriptions
41. for (int i=0;i<subs;i++) {
42. const char* theme_ =

themes[(int)((38*((float)rand()/(float)RAND_MAX)))];
43. int node =

(int)(nodes*((float)rand()/(float)RAND_MAX));
44. float start =

time*((float)rand()/(float)RAND_MAX);
45. float duration =

maxsublength*((float)rand()/(float)RAND_MAX);
46. float stop = start + duration;
47. fprintf(output, "$ns_ at %.1f \"[$node_(%d) agent

255] fongen-new-sub %s\"\n", start, node, theme_);
48. if (stop < time) {
49. fprintf(output, "$ns_ at %.1f \"[$node_(%d)

agent 255] fongen-remove-sub %s\"\n", stop, node,
theme_);

50. }
51. }
52.
53. // Generate datamessages
54. for (int i=0;i<msgs;i++) {
55. const char* theme_ =

themes[(int)((38*((float)rand()/(float)RAND_MAX)))];
56. int node =

(int)(nodes*((float)rand()/(float)RAND_MAX));
57. float start =

time*((float)rand()/(float)RAND_MAX);
58. fprintf(output, "$ns_ at %.1f \"[$node_(%d) agent

255] fongen-data %s Valid\"\n", start, node, theme_);
59. }
60.
61.
62. // Standard data to the end of file
63. fprintf(output, "for {set i 0} {$i < %d} {incr i} {

$ns_ at %.1f \"$node_($i) reset\";\n}\n\n", nodes,
time);

64.
65. fprintf(output, "$ns_ at %d.0 \"stop\"\n$ns_ at

%d.01 \"puts \\\"NS EXITING...\\\" ; $ns_ halt\"\nproc
stop {} {\n global ns_ tracefd\n $ns_ flush-
trace\n close $tracefd\n}\n\nputs \"Starting
Simulation...\"\n$ns_ run\n", time, time);

66. }
67.
68.
69. int main(int argc, char* argv[]) {

Intrusion Tolerance in Publish/Subscribe based MANET

94

70. int x,y,nodes,time;
71. FILE* output;
72.
73. if (argc == 6) {
74. x = atoi(argv[1]);
75. y = atoi(argv[2]);
76. nodes = atoi(argv[3]);
77. time = atoi(argv[4]);
78. char* tracefile = argv[5];
79. output=stdout;
80. createsim(x, y, nodes, time, tracefile, SUBS,

MSGS, MAXSUBLENGTH, output);
81. }
82. else if (argc == 10) {
83. int subs, msgs, maxsublength, files;
84. x = atoi(argv[1]);
85. y = atoi(argv[2]);
86. nodes = atoi(argv[3]);
87. time = atoi(argv[4]);
88. subs=atoi(argv[5]);
89. msgs=atoi(argv[6]);
90. maxsublength=atoi(argv[7]);
91. files = atoi(argv[9]);
92. for (int i=0;i<files;i++) {
93. char filename[100];
94. char tracefile[100];
95. sprintf(filename, "%s_%d_%d_%d_%d.tcl", argv[8],

nodes, x, y, i);
96. sprintf(tracefile, "%s_%d_%d_%d_%d.tr", argv[8],

nodes, x, y, i);
97. output = fopen(filename, "w");
98. createsim(x, y, nodes, time, tracefile, subs,

msgs, maxsublength, output);
99. fclose(output);
100. }
101. }
102. else {
103. fprintf(stderr, "Usage: createsim x y nodes time

tracefile <subs msgs maxsublen outputfile
numberOfFiles>\n");

104. }
105. }

Intrusion Tolerance in Publish/Subscribe based MANET

95

E Simulator control files
This appendix contains about 3000 TCL-scripts used to control the simulator in the
simulations. These files are supplied as an external gzip file.

Intrusion Tolerance in Publish/Subscribe based MANET

97

F Datasets

F-1 Baseline

F-1.1 500 x 500 meter, 10 nodes

F-1.1.1 Dataset from simulations

From the simulations we get the following dataset of delivery rates:

0.9078 0.9085 0.7057 0.9108 0.4052

0.9111 0.9173 0.9060 0.9066 0.9103

0.9136 0.9192 0.9112 0.9041 0.7740

0.9065 0.9100 0.5811 0.9024 0.9078

0.9162 0.9114 0.9105 0.9200 0.9060

F-1.1.2 Analysis of dataset

 Value

Average 0.8633

Standard error 0.0248

Mean 0.9085

Standard derivation 0.1240

Minimum 0.5148

Maximum 0.9200

Number of elements in dataset 25

F-2.1 500 x 500 meter, 25 nodes

F-1.2.1 Dataset from simulations

From the simulations we get the following dataset of delivery rates:

0.9979 0.9972 0.9980 0.9981 0.9989

0.9979 0.9954 0.9984 0.9968 0.9984

0.9992 0.9969 0.9977 0.9970 0.9965

0.9987 0.9986 0.9980 0.9950 0.9982

0.9990 0.9988 0.9989 0.9975 0.9970

Intrusion Tolerance in Publish/Subscribe based MANET

98

F-1.2.2 Analysis of dataset

 Value

Average 0.9978

Standard error 0.0002

Mean 0.9980

Standard derivation 0.0011

Minimum 0.9950

Maximum 0.9992

Number of elements in dataset 25

F-3.1 250 x 1000 meter, 25 nodes

F-1.3.1 Dataset from simulations

From the simulations we get the following dataset of delivery rates:

0.9986 0.9989 0.9986 0.9999 0.9939

1.0001 0.9972 0.9979 0.9990 0.9923

0.9982 0.9958 1.0000 0.9970 0.9967

0.9982 0.9986 0.9987 0.9979 0.9958

0.9990 0.9993 0.9988 0.9977 0.9978

F-1.3.2 Analysis of dataset

 Value

Average 0.9978

Standard error 0.0004

Mean 0.9982

Standard derivation 0.0018

Minimum 0.9923

Maximum 1.0001

Number of elements in dataset 25

Intrusion Tolerance in Publish/Subscribe based MANET

99

F-4.1 750 x 750 meter, 25 nodes

F-1.4.1 Dataset from simulations

From the simulations we get the following dataset of delivery rates:

0.9827 0.9654 0.9764 0.9883 0.9797

0.8795 0.9546 0.9864 0.9110 0.8451

0.9922 0.9870 0.9857 0.9844 0.9221

0.9808 0.9862 0.9783 0.9795 0.9618

0.9773 0.8860 0.9884 0.7162 0.9767

F-1.4.2 Analysis of dataset

 Value

Average 0.9509

Standard error 0.0126

Mean 0.9783

Standard derivation 0.0630

Minimum 0.7162

Maximum 0.9922

Number of elements in dataset 25

F-5.1 750 x 750 meter, 50 nodes

F-1.5.1 Dataset from simulations

From the simulations we get the following dataset of delivery rates:

0.9475 0.9802 0.9685 0.9641 0.9688

0.9475 0.9688 0.9654 0.9802 0.9557

0.9654 0.9557 0.9479 0.9732 0.9618

0.9745 0.9618 0.9654 0.9645 0.9806

0.9641 0.9806 0.9745 0.9802 0.9685

Intrusion Tolerance in Publish/Subscribe based MANET

100

F-1.5.2 Analysis of dataset

 Value

Average 0.9666

Standard error 0.0020

Mean 0.9654

Standard derivation 0.0102

Minimum 0.9475

Maximum 0.9806

Number of elements in dataset 25

Intrusion Tolerance in Publish/Subscribe based MANET

101

F-2 Radio silent nodes

F-1.2 500 x 500 meter, 25 nodes, 1 radio silent node

F-2.1.1 Dataset from simulations

From the simulations we get the following dataset of delivery rates:

0.9977 0.9977 0.9972 0.9949 0.9976 0.9979 0.9982 0.9962 0.9982 0.9979

0.9976 0.9985 0.9980 0.9955 0.9976 0.9989 0.9987 0.9964 0.9975 0.9969

0.9978 0.9981 0.9981 0.9956 0.9974 0.9983 0.9978 0.9968 0.9981 0.9968

0.9979 0.9985 0.9972 0.9957 0.9975 0.9984 0.9974 0.9958 0.9982 0.9971

0.9972 0.9979 0.9980 0.9959 0.9977 0.9987 0.9985 0.9963 0.9981 0.9965

F-2.1.2 Analysis of dataset

 Value

Average 0.9974

Standard error 0.0001

Mean 0.9977

Standard derivation 0.0009

Minimum 0.9949

Maximum 0.9989

Number of elements in dataset 50

F-2.2 500 x 500 meter, 25 nodes, 3 radio silent nodes

F-2.2.1 Dataset from simulations

From the simulations we get the following dataset of delivery rates:

0.9972 0.9985 0.9979 0.9958 0.9980 0.9985 0.9981 0.9959 0.9981 0.9973

0.9974 0.9973 0.9973 0.9955 0.9980 0.9989 0.9980 0.9970 0.9982 0.9972

0.9976 0.9984 0.9975 0.9955 0.9973 0.9989 0.9981 0.9974 0.9987 0.9967

0.9977 0.9982 0.9979 0.9948 0.9979 0.9985 0.9981 0.9975 0.9973 0.9973

0.9978 0.9977 0.9976 0.9966 0.9966 0.9990 0.9982 0.9969 0.9978 0.9971

F-2.2.2 Analysis of dataset

 Value

Average 0.9975

Standard error 0.0001

Mean 0.99765

Standard derivation 0.0009

Intrusion Tolerance in Publish/Subscribe based MANET

102

Minimum 0.9948

Maximum 0.9990

Number of elements in dataset 50

F-3.2 250 x 1000 meter, 25 nodes, 1 radio silent node

F-2.3.1 Dataset from simulations

From the simulations we get the following dataset of delivery rates:

0.9974 0.9976 0.9973 0.9979 0.9979 0.9945 0.9906 0.9971 0.9955 0.9983

0.9984 0.9979 0.9978 0.9976 0.9985 0.9944 0.9919 0.9968 0.9958 0.9982

0.9983 0.9983 0.9964 0.9984 0.9957 0.9933 0.9925 0.9972 0.9963 0.9982

0.9987 0.9981 0.9947 0.9977 0.9978 0.9950 0.9917 0.9971 0.9957 0.9983

0.9984 0.9972 0.9973 0.9979 0.9977 0.9934 0.9928 0.9971 0.9961 0.9987

F-2.3.2 Analysis of dataset

 Value

Average 0.9965

Standard error 0.0003

Mean 0.9973

Standard derivation 0.0021

Minimum 0.9906

Maximum 0.9987

Number of elements in dataset 50

F-4.2 250 x 1000 meter, 25 nodes, 3 radio silent node

F-2.4.1 Dataset from simulations

From the simulations we get the following dataset of delivery rates:

0.9972 0.9981 0.9980 0.9942 0.9977 0.9952 0.9918 0.9976 0.9831 0.9980

0.9988 0.9979 0.9976 0.9977 0.9982 0.9934 0.9918 0.9965 0.9862 0.9988

0.9980 0.9884 0.9948 0.9812 0.9948 0.9937 0.9841 0.9982 0.9838 0.9978

0.9979 0.9974 0.9975 0.9970 0.9965 0.9926 0.9929 0.9979 0.9968 0.9976

0.9982 0.9968 0.9982 0.9985 0.9969 0.9937 0.9898 0.9976 0.5776 0.9991

Intrusion Tolerance in Publish/Subscribe based MANET

103

F-2.4.2 Analysis of dataset

 Value

Average 0.9867

Standard error 0.0084

Mean 0.9971

Standard derivation 0.0592

Minimum 0.5776

Maximum 0.9991

Number of elements in dataset 50

F-5.2 750 x 750 meter, 50 nodes, 1 radio silent node

F-2.5.1 Dataset from simulations

From the simulations we get the following dataset of delivery rates:

0.9479 0.9708 0.9737 0.9678 0.9498 0.9712 0.9556 0.9646 0.9784 0.9659

0.9420 0.9672 0.9720 0.9611 0.9813 0.9697 0.9599 0.9643 0.9829 0.9696

0.9398 0.9647 0.9688 0.9575 0.9715 0.9739 0.9547 0.9562 0.9830 0.9688

0.9236 0.9682 0.9748 0.9664 0.9693 0.9711 0.9575 0.9510 0.9829 0.9691

0.9131 0.9657 0.9655 0.9657 0.9773 0.9726 0.9573 0.9580 0.9821 0.9668

F-2.5.2 Analysis of dataset

 Value

Average 0.9643

Standard error 0.0019

Mean 0.9670

Standard derivation 0.0138

Minimum 0.9131

Maximum 0.9830

Number of elements in dataset 50

F-6.2 750 x 750 meter, 50 nodes, 5 radio silent nodes

F-2.6.1 Dataset from simulations

From the simulations we get the following dataset of delivery rates:

Intrusion Tolerance in Publish/Subscribe based MANET

104

0.9411 0.9711 0.9761 0.9693 0.9675 0.9642 0.9587 0.9619 0.9843 0.9707

0.9515 0.9714 0.9763 0.9711 0.9757 0.9669 0.9557 0.9568 0.9818 0.9643

0.9313 0.9660 0.9772 0.9656 0.9482 0.9630 0.9577 0.9606 0.9837 0.9688

0.9608 0.9719 0.9777 0.9741 0.9741 0.9772 0.9631 0.9394 0.9771 0.9719

0.9263 0.9714 0.9760 0.9716 0.9840 0.9634 0.9520 0.9285 0.9848 0.9699

F-2.6.2 Analysis of dataset

 Value

Average 0.9655

Standard error 0.0020

Mean 0.96905

Standard derivation 0.0139

Minimum 0.9263

Maximum 0.9848

Number of elements in dataset 50

Intrusion Tolerance in Publish/Subscribe based MANET

105

F-3 Stop forwarding DATA-messages attack

F-1.3 500 x 500 meter, 25 nodes

F-3.1.1 Dataset from simulations

From the simulations we get the following dataset of delivery rates:

0.9977 0.9980 0.9971 0.9952 0.9979 0.9982 0.9986 0.9970 0.9980 0.9966

0.9962 0.9985 0.9979 0.9957 0.9978 0.9984 0.9982 0.9973 0.9976 0.9970

0.9974 0.9983 0.9966 0.9947 0.9979 0.9986 0.9981 0.9966 0.9973 0.9965

0.9977 0.9976 0.9977 0.9963 0.9975 0.9988 0.9985 0.9970 0.9979 0.9969

0.9977 0.9970 0.9977 0.9945 0.9975 0.9988 0.9983 0.9933 0.9979 0.9970

F-3.1.2 Analysis of dataset

 Value

Average 0.9973

Standard error 0.0002

Mean 0.99765

Standard derivation 0.0011

Minimum 0.9933

Maximum 0.9988

Number of elements in dataset 50

F-2.3 250 x 1000 meter, 25 nodes

F-3.2.1 Dataset from simulations

From the simulations we get the following dataset of delivery rates:

0.9975 0.9959 0.9979 0.9872 0.9982 0.7531 0.9921 0.9964 0.9963 0.9975

0.9977 0.9969 0.9881 0.9980 0.9951 0.9951 0.9917 0.9970 0.9939 0.9969

0.9980 0.9980 0.9974 0.9985 0.9979 0.9957 0.9911 0.9973 0.9950 0.9985

0.9974 0.9973 0.9953 0.9978 0.9981 0.9950 0.9927 0.9967 0.9964 0.9986

0.9984 0.9982 0.9968 0.9981 0.9939 0.9934 0.9909 0.9966 0.9399 0.9979

Intrusion Tolerance in Publish/Subscribe based MANET

106

F-3.2.2 Analysis of dataset

 Value

Average 0.9900

Standard error 0.0050

Mean 0.99685

Standard derivation 0.0352

Minimum 0.7531

Maximum 0.9986

Number of elements in dataset 50

F-3.3 750 x 750 meter, 50 nodes

F-3.3.1 Dataset from simulations

From the simulations we get the following dataset of delivery rates:

0.9315 0.9691 0.9647 0.9633 0.9817 0.9618 0.9440 0.9588 0.9811 0.9637

0.9451 0.9704 0.9732 0.9631 0.9704 0.9607 0.9565 0.9602 0.9827 0.9650

0.9406 0.9668 0.9745 0.9647 0.9696 0.9713 0.9554 0.9367 0.9777 0.9634

0.9341 0.9653 0.9734 0.9639 0.9729 0.9722 0.9563 0.9435 0.9602 0.9702

0.9524 0.9662 0.9745 0.9618 0.9554 0.9665 0.9553 0.9661 0.9751 0.9701

F-3.3.2 Analysis of dataset

 Value

Average 0.9629

Standard error 0.0017

Mean 0.9647

Standard derivation 0.0120

Minimum 0.9315

Maximum 0.9827

Number of elements in dataset 50

Intrusion Tolerance in Publish/Subscribe based MANET

107

F-4 False ACK-messages attack

F-1.4 500 x 500 meter, 25 nodes

F-4.1.1 Dataset from simulations

From the simulations we get the following dataset of delivery rates:

0.9054 0.8372 0.9868 0.7599 0.9983 0.9081 0.9686 0.9961 0.8393 0.8486

0.9652 0.8900 0.8384 0.8686 0.9704 0.9705 0.9483 0.6790 0.9135 0.9104

0.9060 0.7397 0.6654 0.9538 0.9513 0.8523 0.7529 0.6828 0.9649 0.9448

0.9014 0.9529 0.8871 0.9949 0.9686 0.7556 0.9329 0.9718 0.6709 0.9552

0.9613 0.9942 0.8388 0.9965 0.9880 0.8643 0.7615 0.7394 0.9082 0.7659

0.9637 0.9018 0.9409 0.6852 0.9537 0.8472 0.7858 0.9858 0.6996 0.9512

0.8159 0.7369 0.9811 0.9643 0.9718 0.9931 0.9963 0.9959 0.9722 0.9610

0.9022 0.7477 0.8161 0.9234 0.9662 0.9758 0.7095 0.9821 0.8991 0.8178

0.7009 0.8347 0.8289 0.7984 0.9182 0.9665 0.9656 0.9361 0.9451 0.9904

0.8651 0.8003 0.9863 0.9616 0.6444 0.9660 0.9204 0.9577 0.9376 0.8562

0.7756 0.8071 0.9387 0.8609 0.8386 0.9961 0.9609 0.9079 0.9686 0.9902

0.9166 0.9196 0.8436 0.9450 0.8691 0.9417 0.7192 0.9520 0.8921 0.7576

0.6989 0.7775 0.9975 0.9893 0.9043 0.9938 0.9167 0.9825 0.9788 0.7825

0.8468 0.8920 0.9968 0.8690 0.7740 0.9018 0.8629 0.9473 0.9352 0.9862

0.8702 0.9477 0.7021 0.8960 0.7642 0.9528 0.8116 0.6781 0.9666 0.9306

0.9472 0.9927 0.8605 0.9267 0.8914 0.8442 0.7740 0.7546 0.8280 0.9811

0.9962 0.6977 0.6560 0.7062 0.6173 0.9939 0.7546 0.9181 0.9940 0.9282

0.9627 0.8979 0.9311 0.7626 0.9970 0.9981 0.6750 0.8719 0.9944 0.9099

0.7369 0.9437 0.8821 0.9239 0.7193 0.9662 0.9665 0.9860 0.8113 0.9951

0.7115 0.9630 0.9429 0.9307 0.7932 0.8928 0.8452 0.9642 0.9099 0.7672

0.6556 0.9465 0.9242 0.7362 0.9335 0.9458 0.7333 0.8385 0.8978 0.9887

0.6936 0.9173 0.7793 0.9876 0.7182 0.6901 0.8751 0.6849 0.9684 0.7678

0.9984 0.9970 0.7927 0.6978 0.9878 0.9977 0.9945 0.9754 0.9928 0.8462

0.7865 0.7511 0.6531 0.9383 0.8614 0.9056 0.7115 0.9105 0.9951 0.6467

0.8977 0.8578 0.9919 0.7961 0.6533 0.9383 0.7245 0.8792 0.8210 0.9426

Intrusion Tolerance in Publish/Subscribe based MANET

108

F-4.1.2 Analysis of dataset

Descriptive statistical analysis

 Value

Average 0.8782

Standard error 0.0065

Mean 0.90815

Standard derivation 0.1031

Minimum 0.6173

Maximum 0.9984

Number of elements in dataset 250

Frequency analysis

Interval Frequency Interval Frequency

0.62 1 0.82 7

0.64 0 0.84 10

0.66 6 0.86 10

0.68 5 0.88 13

0.70 9 0.90 12

0.72 9 0.92 22

0.74 7 0.94 17

0.76 8 0.96 23

0.78 11 0.98 30

0.80 7 1.00 43

Intrusion Tolerance in Publish/Subscribe based MANET

109

F-2.4 250 x 1000 meter, 25 nodes

F-4.2.1 Dataset from simulations

From the simulations we get the following dataset of delivery rates:

0.7002 0.6482 0.9193 0.5388 0.9877 0.7562 0.8247 0.9935 0.8676 0.7927

0.9547 0.8038 0.6220 0.7559 0.9641 0.9858 0.8373 0.5841 0.6395 0.9547

0.8093 0.7676 0.5597 0.9913 0.8267 0.8234 0.7053 0.7327 0.7784 0.8093

0.6872 0.6977 0.5830 0.9337 0.9682 0.7061 0.7166 0.8954 0.5926 0.6872

0.9915 0.8898 0.6655 0.9953 0.9000 0.9168 0.8407 0.6664 0.5258 0.9915

0.9421 0.8886 0.5541 0.6191 0.9668 0.7878 0.7225 0.7284 0.5927 0.9421

0.8193 0.6910 0.9933 0.9341 0.8634 0.7984 0.8397 0.9922 0.8881 0.8193

0.7942 0.6975 0.9205 0.9662 0.7059 0.8469 0.6874 0.9572 0.8676 0.7942

0.6048 0.6961 0.5585 0.7556 0.9260 0.8975 0.9522 0.8119 0.8654 0.6048

0.9737 0.7791 0.7210 0.9675 0.5348 0.7385 0.8906 0.9126 0.5954 0.9737

0.7199 0.6906 0.8870 0.5929 0.5558 0.9021 0.9910 0.8887 0.7893 0.7199

0.8225 0.8689 0.7952 0.8690 0.7309 0.9648 0.6390 0.8702 0.5144 0.8225

0.6621 0.8100 0.9602 0.6512 0.6766 0.8152 0.7635 0.6921 0.5934 0.6621

0.9130 0.8661 0.9610 0.6200 0.6301 0.8251 0.7257 0.8107 0.5853 0.9130

0.7359 0.9440 0.5881 0.8640 0.7402 0.9149 0.8390 0.6677 0.8528 0.7359

0.9094 0.9307 0.7757 0.6507 0.9600 0.7293 0.7119 0.7316 0.8580 0.9094

0.9752 0.6778 0.5916 0.5478 0.5696 0.8962 0.7138 0.7132 0.7984 0.9752

0.9412 0.7689 0.8740 0.7575 0.5462 0.9935 0.6871 0.6699 0.9942 0.9412

0.7212 0.9603 0.8034 0.9315 0.6773 0.7287 0.7365 0.8524 0.7940 0.7212

0.5983 0.7722 0.9128 0.8997 0.7137 0.7670 0.7044 0.9560 0.6041 0.5983

0.6186 0.9952 0.8699 0.6692 0.7332 0.7266 0.7230 0.7792 0.5887 0.6186

0.6520 0.9340 0.7210 0.7562 0.7327 0.7396 0.9389 0.5901 0.8836 0.6520

0.9097 0.9908 0.5569 0.5773 0.9039 0.7877 0.9741 0.9952 0.9508 0.9097

0.5964 0.6527 0.5412 0.8397 0.8976 0.7956 0.7991 0.6751 0.8661 0.5964

0.6134 0.7117 0.6698 0.5362 0.6653 0.7887 0.6240 0.8299 0.5140 0.6134

Intrusion Tolerance in Publish/Subscribe based MANET

110

F-4.2.2 Analysis of dataset

Descriptive statistical analysis

 Value

Average 0.7815

Standard error 0.0085

Mean 0.78775

Standard derivation 0.1347

Minimum 0.5140

Maximum 0.9953

Number of elements in dataset 250

Frequency analysis

Interval Frequency Interval Frequency

0.50 0 0.76 6

0.52 2 0.78 9

0.54 4 0.80 13

0.56 8 0.82 10

0.58 2 0.84 11

0.60 16 0.86 5

0.62 9 0.88 12

0.64 5 0.90 13

0.66 6 0.92 13

0.68 13 0.94 8

0.70 10 0.96 12

0.72 13 0.98 14

0.74 21 1.00 15

Intrusion Tolerance in Publish/Subscribe based MANET

111

F-3.4 750 x 750 meter, 50 nodes

F-4.3.1 Dataset from simulations

From the simulations we get the following dataset of delivery rates:

0.8910 0.8619 0.9593 0.9242 0.9537 0.9563 0.9252 0.9242 0.9507 0.9432

0.9263 0.8695 0.9486 0.9133 0.9081 0.9318 0.9097 0.9084 0.9558 0.9527

0.9001 0.9324 0.9241 0.9433 0.9452 0.9474 0.9052 0.9405 0.9530 0.9531

0.9032 0.8940 0.9613 0.9313 0.9150 0.9456 0.9023 0.9524 0.9640 0.9455

0.8856 0.9214 0.9521 0.8263 0.9188 0.9287 0.9452 0.9212 0.9584 0.9389

0.9233 0.8574 0.9207 0.9403 0.9346 0.9073 0.9359 0.9405 0.9777 0.9610

0.8952 0.9475 0.9541 0.8968 0.8731 0.9505 0.8976 0.9369 0.9608 0.9473

0.9047 0.8238 0.9562 0.9528 0.9413 0.9391 0.9146 0.9266 0.9703 0.9472

0.8946 0.8806 0.9320 0.9376 0.9601 0.9405 0.9411 0.9288 0.9283 0.9322

0.9334 0.9030 0.9555 0.9284 0.9490 0.9448 0.9193 0.8860 0.9557 0.9518

0.8909 0.8691 0.9515 0.8916 0.9375 0.9407 0.9358 0.9221 0.9642 0.9510

0.9194 0.8705 0.9540 0.8889 0.9194 0.9283 0.9134 0.9537 0.9659 0.9419

0.8524 0.9350 0.8958 0.9173 0.9663 0.9486 0.9089 0.9583 0.9703 0.9340

0.8881 0.8668 0.9451 0.9348 0.9308 0.9448 0.9329 0.9572 0.9737 0.9571

0.9298 0.8883 0.9527 0.9405 0.9081 0.9423 0.9102 0.9503 0.9710 0.9478

0.8726 0.9049 0.9578 0.9481 0.8902 0.9300 0.9288 0.9454 0.9693 0.9385

0.8708 0.8630 0.9557 0.9556 0.9148 0.9256 0.9011 0.9540 0.9307 0.9464

0.9250 0.8438 0.8781 0.9486 0.9010 0.9434 0.9127 0.9556 0.9452 0.9464

0.8665 0.8848 0.8963 0.9133 0.9531 0.9320 0.9311 0.9571 0.9660 0.9556

0.8945 0.9250 0.8527 0.9465 0.9036 0.9303 0.9117 0.9498 0.9554 0.9367

0.7144 0.9232 0.9416 0.9523 0.9305 0.9349 0.9336 0.8836 0.9325 0.9453

0.9161 0.8890 0.9640 0.8994 0.8970 0.9292 0.9412 0.9280 0.9644 0.9682

0.9262 0.9014 0.9217 0.9303 0.9673 0.9619 0.9308 0.9458 0.9571 0.9179

0.9174 0.9050 0.9573 0.9454 0.9208 0.9293 0.9242 0.9536 0.9648 0.9394

0.9146 0.9323 0.8864 0.9501 0.9612 0.9335 0.9364 0.9008 0.9643 0.9579

0.9172 0.8790 0.9037 0.8890 0.9521 0.9141 0.9227 0.9449 0.9344 0.9561

0.8138 0.9532 0.9693 0.8889 0.9026 0.9466 0.9186 0.9295 0.9728 0.9605

0.8751 0.9068 0.9495 0.9429 0.9293 0.9380 0.9178 0.9109 0.8999 0.9338

0.9277 0.9096 0.9494 0.8822 0.9483 0.9132 0.9391 0.9164 0.9691 0.9490

0.9174 0.9348 0.9496 0.9524 0.9085 0.9226 0.9134 0.9397 0.9701 0.9421

0.9199 0.9225 0.9694 0.8997 0.9210 0.9381 0.9347 0.9366 0.9575 0.9616

0.8603 0.9076 0.9316 0.9227 0.9199 0.9267 0.9023 0.9363 0.9560 0.9556

0.8978 0.9263 0.9500 0.8994 0.8952 0.9332 0.9289 0.9473 0.9490 0.9169

0.8710 0.9398 0.9019 0.8752 0.9599 0.9421 0.9087 0.9140 0.9584 0.9486

0.9120 0.9320 0.9175 0.9472 0.9397 0.9431 0.9286 0.9139 0.9498 0.9426

0.9109 0.9084 0.9309 0.9451 0.9349 0.9163 0.9191 0.9412 0.9709 0.9688

0.8816 0.9098 0.9065 0.9591 0.9315 0.9170 0.9073 0.9532 0.9054 0.9326

0.8447 0.8352 0.9467 0.9539 0.9355 0.9494 0.9465 0.9402 0.9633 0.9196

0.8848 0.9258 0.9431 0.9188 0.8935 0.9071 0.9345 0.9440 0.9626 0.9283

0.8706 0.9563 0.9473 0.9312 0.8768 0.9401 0.9357 0.9120 0.9500 0.9455

0.8884 0.9134 0.9125 0.9019 0.8906 0.9363 0.9365 0.9299 0.9052 0.9345

Intrusion Tolerance in Publish/Subscribe based MANET

112

0.8787 0.9262 0.9575 0.8120 0.9241 0.9411 0.9358 0.9214 0.9611 0.9510

0.8343 0.9568 0.9615 0.9304 0.8343 0.9379 0.9174 0.8621 0.9647 0.9255

0.9069 0.9058 0.9224 0.9604 0.9179 0.9335 0.9110 0.9364 0.9683 0.9452

0.9155 0.9455 0.9090 0.9297 0.9136 0.9541 0.9377 0.9405 0.9572 0.9486

0.9172 0.9507 0.9255 0.9425 0.9335 0.9395 0.8130 0.9290 0.8856 0.9411

0.9085 0.9235 0.9465 0.9504 0.9392 0.9291 0.8918 0.9378 0.9701 0.9353

0.9308 0.8707 0.9369 0.9345 0.9276 0.9472 0.9096 0.9356 0.9587 0.9234

0.8977 0.9679 0.9547 0.8701 0.9442 0.9530 0.9323 0.9476 0.9567 0.9239

0.9186 0.8492 0.9543 0.9579 0.9139 0.9253 0.9435 0.9019 0.9457 0.9426

F-4.3.2 Analysis of dataset

 Value

Average 0.9268

Standard error 0.0014

Mean 0.93235

Standard derivation 0.0306

Minimum 0.7144

Maximum 0.9777

Number of elements in dataset 500

Frequency analysis

Interval Frequency Interval Frequency

0.70 0 0.86 6

0.72 1 0.88 22

0.74 0 0.90 40

0.76 0 0.92 93

0.78 0 0.94 136

0.80 0 0.96 153

0.82 3 0.98 41

0.84 5 1.00 0

Intrusion Tolerance in Publish/Subscribe based MANET

113

F-5 False DATA-messages attack

F-1.5 500 x 500 meter, 25 nodes

F-5.1.1 Dataset from simulations

From the simulations we get the following dataset of delivery rates:

0.9983 0.9946 0.9578 0.9987 0.9994

0.9993 0.9976 0.9982 0.9986 0.9990

0.9966 0.9990 0.9979 0.9981 0.9979

0.9988 1.0004 0.9977 0.9981 0.9996

0.9984 0.9982 0.9973 0.9982 0.9727

0.9962 0.9992 0.9955 0.9974 0.9968

0.9983 0.9847 0.9969 0.9978 0.9978

0.9972 0.9825 0.9982 0.9965 0.9974

0.9981 0.9974 0.9973 0.9882 0.9838

0.9968 0.9984 0.9991 0.9990 0.9991

F-5.1.2 Analysis of dataset

 Value

Average 0.9956

Standard error 0.0011

Mean 0.9979

Standard derivation 0.0074

Minimum 0.9578

Maximum 1.0004

Number of elements in dataset 50

F-2.5 250 x 1000 meter, 25 nodes

F-5.2.1 Dataset from simulations

From the simulations we get the following dataset of delivery rates:

0.9986 0.9935 0.9986 0.9951 0.9930

0.9968 0.9982 0.9965 0.9452 0.9950

0.9993 0.9985 0.9967 0.9952 0.9919

0.9963 0.9975 0.9970 0.9681 0.9941

0.9947 0.9958 0.9977 0.9966 0.9944

0.9954 0.9972 0.9870 0.9983 0.9835

0.9971 0.9958 0.9737 0.9984 0.9983

0.9957 0.9990 0.9969 0.9844 0.9954

0.9972 0.9980 0.9968 0.9973 0.9982

0.9978 0.9965 0.9969 0.9965 0.9971

Intrusion Tolerance in Publish/Subscribe based MANET

114

F-5.2.2 Analysis of dataset

 Value

Average 0.9939

Standard error 0.0013

Mean 0.99665

Standard derivation 0.0092

Minimum 0.9452

Maximum 0.9993

Number of elements in dataset 50

F-6

Intrusion Tolerance in Publish/Subscribe based MANET

115

F-7 Multiple ACK-messages attack

F-1.7 500 x 500 meter, 25 nodes

F-7.1.1 Dataset from simulations

From the simulations we get the following dataset of delivery rates:

0.8935 0.8178 0.8656 0.9232 0.9423 0.8848 0.9533 0.6474 0.8827 0.8250

0.9376 0.9689 0.7883 0.9669 0.9357 0.8345 0.9368 0.9679 0.8800 0.8931

0.8842 0.7165 0.9679 0.9047 0.9441 0.7246 0.7437 0.9479 0.6724 0.9332

0.8781 0.7309 0.6712 0.9598 0.9010 0.9746 0.9533 0.9455 0.9465 0.9578

0.8486 0.7749 0.8386 0.8995 0.6090 0.9496 0.9485 0.6326 0.9505 0.9604

0.7508 0.9000 0.6317 0.8924 0.8446 0.9831 0.7942 0.7258 0.9601 0.7188

0.9621 0.8762 0.8610 0.7090 0.8906 0.9336 0.7367 0.8368 0.9172 0.7380

0.6333 0.6630 0.9046 0.9686 0.7333 0.8093 0.6552 0.9309 0.7709 0.9055

0.6648 0.7289 0.7474 0.6420 0.8717 0.9802 0.7145 0.8082 0.8425 0.9602

0.9674 0.8408 0.7733 0.9091 0.6911 0.9473 0.8561 0.9554 0.7906 0.8989

F-7.1.2 Analysis of dataset

 Value

Average 0.8474

Standard error 0.0107

Mean 0.88135

Standard derivation 0.1068

Minimum 0.6090

Maximum 0.9831

Number of elements in dataset 100

F-2.7 250 x 1000 meter, 25 nodes

F-7.2.1 Dataset from simulations

From the simulations we get the following dataset of delivery rates:

0.9431 0.7670 0.6311 0.7427 0.9607 0.9067 0.7817 0.7133 0.6190 0.7771

0.6805 0.7378 0.8829 0.9658 0.8979 0.8709 0.8396 0.9856 0.5720 0.9295

0.7934 0.8573 0.5305 0.5938 0.7909 0.7749 0.9833 0.9344 0.5714 0.7885

0.8926 0.6581 0.7726 0.9026 0.9437 0.8026 0.7439 0.7582 0.5667 0.7634

0.9312 0.7398 0.7387 0.9284 0.9322 0.9200 0.6997 0.8972 0.5515 0.9431

0.6819 0.6555 0.8543 0.5488 0.8086 0.7886 0.6661 0.8440 0.7421 0.6805

0.5621 0.8342 0.7794 0.5080 0.6598 0.8729 0.6977 0.6643 0.5765 0.7934

0.6128 0.9271 0.8684 0.6508 0.4749 0.7123 0.6925 0.6398 0.8211 0.8926

0.5559 0.9162 0.6839 0.7323 0.4880 0.7493 0.8983 0.9345 0.8963 0.9312

0.5838 0.9663 0.6458 0.8092 0.6889 0.7079 0.5971 0.9672 0.8215 0.5930

Intrusion Tolerance in Publish/Subscribe based MANET

116

F-7.2.2 Analysis of dataset

 Value

Average 0.7659

Standard error 0.0135

Mean 0.77375

Standard derivation 0.1351

Minimum 0.4749

Maximum 0.9856

Number of elements in dataset 100

F-8 Multiple ACK-messages attack in the enhanced
protocol

F-1.8 500 x 500 meter, 25 nodes

F-8.1.1 Dataset from simulations

From the simulations we get the following dataset of delivery rates:

0.9064 0.9430 0.9233 0.9193 0.9428 0.9500 0.9508 0.9139 0.9233 0.9350

0.9206 0.9461 0.9166 0.9444 0.9497 0.9438 0.9406 0.9534 0.9084 0.9391

0.9266 0.9192 0.9353 0.9334 0.9504 0.9232 0.9147 0.9317 0.8815 0.9442

0.9091 0.9211 0.8863 0.9197 0.9445 0.9727 0.9498 0.9310 0.9426 0.9393

0.8958 0.9119 0.9194 0.9308 0.8983 0.9670 0.9482 0.8976 0.9295 0.9404

0.9051 0.9311 0.9045 0.9243 0.9304 0.9633 0.9192 0.9275 0.9252 0.9214

0.9230 0.9317 0.9322 0.9026 0.9369 0.9551 0.9071 0.9167 0.9122 0.9177

0.8859 0.8970 0.9342 0.9400 0.9165 0.9369 0.9104 0.9245 0.9126 0.9466

0.8743 0.9232 0.8928 0.9106 0.9447 0.9596 0.9095 0.9348 0.8922 0.9458

0.9340 0.9386 0.9071 0.9178 0.9156 0.9645 0.9267 0.9376 0.8851 0.9096

Intrusion Tolerance in Publish/Subscribe based MANET

117

F-8.1.2 Analysis of dataset

 Value

Average 0.9260

Standard error 0.0020

Mean 0.9259

Standard derivation 0.0200

Minimum 0.8743

Maximum 0.9727

Number of elements in dataset 100

F-2.8 250 x 1000 meter, 25 nodes

F-8.2.1 Dataset from simulations

From the simulations we get the following dataset of delivery rates:

0.9519 0.9360 0.8645 0.9273 0.9294 0.9104 0.8915 0.9119 0.8634 0.9265

0.9162 0.9371 0.9257 0.9620 0.9006 0.9458 0.8235 0.9702 0.9036 0.9529

0.9332 0.9521 0.8989 0.8997 0.9148 0.9194 0.9550 0.9421 0.9032 0.9281

0.9505 0.9228 0.9145 0.9343 0.9565 0.9055 0.7252 0.9301 0.8940 0.9107

0.9557 0.9092 0.8799 0.9437 0.9398 0.9439 0.8906 0.9589 0.8363 0.9519

0.9126 0.9246 0.9370 0.8979 0.9234 0.9158 0.8683 0.9569 0.9098 0.9162

0.9131 0.9430 0.9201 0.9430 0.9121 0.9494 0.8864 0.9131 0.8402 0.9332

0.8998 0.9596 0.9142 0.9486 0.9215 0.9251 0.9118 0.8943 0.9105 0.9505

0.8899 0.9401 0.8882 0.9271 0.8178 0.9317 0.8924 0.9433 0.9147 0.9557

0.9226 0.9595 0.8947 0.9445 0.9263 0.9203 0.8728 0.9507 0.9218 0.9293

Intrusion Tolerance in Publish/Subscribe based MANET

118

F-8.2.2 Analysis of dataset

 Value

Average 0.9175

Standard error 0.0036

Mean 0.9222

Standard derivation 0.0357

Minimum 0.7252

Maximum 0.9702

Number of elements in dataset 100

