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Abstract

Intrusion detection systems have in the last years become a commonly used and important
component in the perimeter security for many organizations. Such systems often use a misuse
detection-based model for detection of known attack patterns from a finite signature database.
By applying fault-tolerant approximate search to the IDS, unknown attacks may also be detected
if they are similar enough to known attacks. This is especially efficient if the unknown attack is
based on existing, known, attack. However, as the amount of attacks increases, so does the time
needed to search through the signature database. Fault-tolerant search also adds complexity to
the search and may therefore increase the time needed to search the signature database even
further.

Approximate search often uses a distance measure in its pattern matching for finding the
distance between the input data and the signatures in the database. If the distance is below a
pre-defined threshold, the input data and the signature is considered a match. Previous research
have used the edit distance or the constrained edit distance as a distance measure for approxi-
mate search. However, both of these have a high time complexity. In this thesis we look at a fast
alternative for measuring the distance in approximate search for misuse detection-based intru-
sion detection, called the q-gram distance. The q-gram distance is known to estimate the edit
distance well for some applications. We look at how the q-gram distance can be implemented
in intrusion detection as a distance measure in approximate search. We suggest a two-stage ap-
proximate search method in which the q-gram distance can be applied to approximate search
in intrusion detection, and compare its data reduction, performance and accuracy against the
ordinary edit distance and the constrained edit distance using SNORT rules as test data. Experi-
mental results indicate that the q-gram distance can be used as an alternative to the constrained
edit distance, and by far outperform both the ordinary edit distance and the constrained edit
distance in terms of performance for intrusion detection.
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Sammendrag

Innbruddsdeteksjonssystemer har i de siste årene blitt en ofte brukt og viktig komponent i
perimetersikringen for mange organisasjoner. Denne typen systemer bruker ofte en signatur-
basert deteksjonsmodell for å oppdage spor etter kjente angrep som er lagret i en signatur-
database. Ved å benytte feil-tolerant tilnærmet søk i innbruddsdeteksjonssystemet kan også uk-
jente angrep bli oppdaget hvis disse angrepene ligner nok på eksisterende angrep. Dette er spe-
sielt effektivt i de tilfeller hvor det ukjente angrepet er basert på eksisterende kjente angrep.
Forøvrig, ettersom mengden med angrep vokser så vil også tiden som er nødvendig for å søke
gjennom signaturdatabasen øke. Feil-tolerant søk vil også legge til kompleksitet til søket og kan
derfor også ytterligere øke tiden som er nødvendig for å søke gjennom signaturdatabasen.

Tilnærmet søk benytter ofte et avstandsmål i sin mønstergjenkjenning for å finne avstanden
mellom inndata og signaturene i databasen. Hvis avstanden er under en forhåndsdefinert terskel
vil inndata og signaturen bli beregnet som like. Tidligere forskning har benyttet såkalt “edit
distance” og “constrained edit distance” som et avstandsmål for tilnærmet søk, men begge disse
avstandsmålene har høy tidskompleksitet. I denne masteroppgaven ser vi på et raskere alternativ
for å måle avstand i tilnærmet søk for signaturbasert innbruddsdeteksjon kalt “q-gram distance”.
Som avstandsmål er q-gram distance kjent for å kunne estimere vanlig edit distance for enkelte
bruksområder. Vi tar en titt på hvordan q-gram distance kan bli implementert i innbruddsdetek-
sjon som et avstandsmål for tilnærmet søk. Vi foreslår en to stegs metode hvor q-gram distance
blir benyttet i tilnærmet søk i innbruddsdeteksjon, og sammenligner ytelsen og nøyaktigheten
til denne i forhold til vanlig edit distance og constrained edit distance som avstandsmål i et
tilsvarende søk. I disse sammenligningene vil vi benytte regler fra innbruddsdeteksjonssystemet
SNORT som vår signaturdatabase. Resultater fra våre eksperimenter tyder på at vanlig q-gram
distance kan bli brukt som et alternativ til constrained edit distance, og at den med god margin
kan utkonkurrere både vanlig edit distance og constrained edit distance med tanke på ytelse for
innbruddsdeteksjon.
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1 Introduction

1.1 Topics covered

The purpose of this thesis is to look at how various methods for approximate search can be
applied for improving the performance of approximate search in misuse detection-based intru-
sion detection signature database querying. We will implement the various search methods, with
focus on one particular distance measure for approximate search, called the q-gram distance.
We will measure the approximate search performance against the SNORT signature database in
order to see how intrusion detection systems can benefit from these methods. The results will
be used to compare the efficiency of the different methods and see which method is better for
intrusion detection.

1.2 Keywords

Intrusion detection, intrusion detection system, intrusion prevention system, misuse detection,
IDS, IPS, performance analysis, algorithms, algorithm design and analysis, performance evalua-
tion of algorithms, similarity measures, query processing, search process.

1.3 Problem description

By using intrusion detection systems, operators can detect attacks against their networks. The
most commonly used type of intrusion detection systems is misuse detection-based. A misuse
detection-based intrusion detection system searches in a signature database for known attack
patterns to identify and alert the operator about attacks in the content of network traffic. In
such systems, every data packet needs to be compared in real-time against each known attack
pattern in order to guard against each and every possible known attack that the operator wishes
to detect. The problem with misuse detection-based intrusion detection systems is that they can
only detect previously known attacks. New attack signatures are added to the intrusion detection
after the attacks become known and at this point it may already have been used against the pro-
tected domain. Many new attacks are often based upon existing previously known attacks that
there already exist intrusion detection signatures for. Unfortunately, with exact pattern match-
ing, which is used in most of the current misuse detection-based intrusion detection systems,
these new attacks are not detected as they will not constitute an exact match for the existing
signatures. Furthermore, different techniques (e.g. inserting x86 NOP operations to hide known
buffer overflow attacks) for evading the intrusion detection systems [7] will not be detected by
exact pattern matching. By adding fault-tolerant search to the misuse detection, these new at-
tacks may be detected as a variation of the attacks they are based upon (i.e. detected as a match
with a certain number of errors).

Another problem with misuse detection-based intrusion detection is the size of the signature
database. Attacks that are published (e.g. on Bugtraq [8]) will often be transformed into an IDS
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signature after just a few hours [9]. The more attacks are added, the larger the IDS database
will be. As the database grows, the time needed to search it increases. Furthermore, the need
for fault-tolerant search may increase the computational complexity of the search even further.
New attacks are discovered every day and each of these attacks must get its own entry in the
signature databases if they are to be detected. With exact search, even every variation of existing
attacks must get its own entry. New network equipment with higher transfer rates also adds to
this problem since the interval between packets may become significantly lower and therefore
give the system less time to finish the search before a new packet is inspected. If the time needed
to search the database for a pattern exceeds the interval between incoming packets, then packets
may be ignored by the intrusion detection and as a result lead to false negatives where the
intrusion detection system do not alert about an attack.

Various methods for approximate search have been proposed for fault-tolerant document and
Internet searches. Some of these methods can also be applied to intrusion detection. Unfor-
tunately, the computational complexity of these methods may vary, and as a result may add a
significant amount of time to the IDS search. In this thesis we look at how some of these methods
can be applied to intrusion detection and try to find out how efficient they are for the purpose
of intrusion detection. We look particularly at one distance measure, called the q-gram distance,
that is known to be possible to compute efficiently.

1.4 Justification, motivation and benefits

Intrusion detection and prevention systems are an important part of security for many computer
networks and organizations. Such systems must analyze the incoming data in real-time in order
to detect and respond to attacks. With real-time inspection of the data, the operator or the system
itself may perform the appropriate countermeasures for attacks in progress. However, with the
rapid increase in network transmission rates and the increasing amount of attack patterns that
needs to be searched for each incoming packet, real-time processing may be difficult to achieve.
When real-time analysis fails, such attacks may go unnoticed until after it is too late to stop them.
Furthermore, when the limitations of the processing capacity are reached, the system may start
dropping packets, including packets containing attacks.

Approximate search solves the problem with misuse detection-based intrusion detection sys-
tems where only previously known attacks are detected. By adding a fault-tolerant pattern match-
ing to the search, the IDS can make sure that some unknown attacks are also detected. This is
an advantage for users and owners of such networks since the IDS will cover more attacks. Ap-
proximate search may also reduce the amount of data that needs to be searched considering
that similar attacks do not need their own entry in the signature database. However, approxi-
mate search is slow. Since the q-gram distance is known to be possible to compute very fast,
we hope to overcome the performance issues of approximate search in intrusion detection. This
may allow intrusion detection systems to include approximate search techniques while working
in real-time at high transmission rates and without dropping packets. The advantage of this is
first and foremost that the IDS will not drop packets that may contain attacks that should be
discovered. Furthermore, the ability to process more attacks in real-time will obviously benefit
the response time when an attack is launched against the network. For an organization this may
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have economical benefits as a result of less downtime as a result of attacks, or the possibility to
increase the bandwidth without risking that the IDS may ignore attacks as a consequence. We
hope to provide research that will help intrusion detection and prevention system developers to
create systems that can handle the performance issues of approximate search better and by this
also, both directly and indirectly, benefit all the users of such systems.

1.5 Research questions

To find out which approximate search method is better for intrusion detection and prevention,
the following research questions need to be answered:

1. How can the so-called q-gram distance be applied in approximate search for intrusion detec-
tion?

2. How does the q-gram distance compare with other approximate pattern matching algorithms
in terms of accuracy and performance?

1.6 Contributions

The contributions of this thesis are the results of the study on how approximate search algorithms
can be applied in order to improve the accuracy and performance of intrusion detection systems.
Our main contribution is the accuracy and efficiency comparison of various approximate search
algorithms for use with misuse detection. The results are presented in form of a chapter that can
be used as reference for later research, design, development or evaluation of intrusion detection
and prevention systems.

3
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2 State of the art

In this chapter we present the available theory that is relevant for the topic of approximate search
in misuse-based intrusion detection. By doing so we hope to provide an overview on where this
thesis belongs in the field on intrusion detection and search algorithm theory.

2.1 Intrusion detection theory

Before we can start to discuss search techniques and approximate search we briefly discuss the
basic theory of intrusion detection. This will hopefully provide a short introduction to how search
and approximate search is relevant for intrusion detection, and by this give a better understand-
ing for the later sections.

2.1.1 Classification

Intrusion detection is the process of identifying and responding to actions set to compromise or
act in contrast to the security policy. This process is often automated by one or more intrusion
detection or intrusion prevention systems placed at different locations within the protected do-
main. These systems need a stream of event records (e.g. network packets), an analysis engine
for finding attacks in the event stream, and a response component to handle detected attacks
(e.g. alerting an operator) [10]. There are many different products [11, 12] that can be used for
intrusion detection. The efficiency of these products in terms of accuracy and performance may
vary depending on what they are designed to protect and how they detect intrusions. A common
method to classify such products is according to what they protect (scope of protection), by how
they analyze the data (detection model), and how they respond to an attack.

Classification by scope of protection

Every intrusion detection system monitors a data source and detects any sign of attacks in it.
Events that occur in these data sources are later passed to the analysis engine for inspection.
The data source is generally decided by the asset that is to be protected, and often represents
the location of the IDS within the protected domain. Although an intrusion detection system
may have multiple data sources, a general classification of these can be used to categorize the
intrusion detection system [10]:

Host-based IDS A host-based IDS is an intrusion detection system that resides internally at a
specific host/computer. These systems often look at the operating system level events, and
may include data sources such as audit trails and system logs.

Network-based IDS A network-based IDS is located on the network. These systems will look at
passing network packets for any sign of an attack. These may look at data aimed at multiple
hosts rather than focusing on a single host.

Application-based IDS An application-based IDS also resides at a specific host/computer, but
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uses application generated data as data source. This includes logs and events generated by
specific applications (e.g. a Web server log).

Target-based IDS A target-based IDS differ from the other types of intrusion detection systems.
These generate their own data to monitor by looking at the state of protected objects.
These systems may for instance use cryptographic measures (e.g. hash functions) to detect
modifications in system objects (e.g. system files and processes).

The best known and most used intrusion detection systems are network-based. These systems
inspect incoming and outgoing traffic that passes through the system, and try to detect any
present patterns of attacks. As a result these systems’ efficiency is highly dependent on where in
the network they are located (i.e. how much and what type of traffic they can inspect) and the
performance and accuracy of the detection techniques. SNORT [11] is an example of a typical
network-based IDS, and is the de-facto standard for intrusion detection.

Classification by detection model

When we have a data source that feeds events into the analysis engine, we need to decide how
the IDS should examine the data when looking for attacks. Intrusion detection systems can be
classified into two main categories based on how they analyze the data [10]:

Misuse detection A misuse-based IDS will look for “known bad” patterns. This is often achieved
by comparing the events with rules that define what is considered an attack or violation
of the security policy. Misuse detection often uses pattern matching techniques to find
whether or not the event matches any of the predefined rules. As a result, misuse detection-
based systems can only find known attacks, or variations of known attacks, and are highly
dependent on a large and accurate set of rules.

Anomaly detection An anomaly-based IDS will look for events that are rare or unusual. This
is achieved by defining what is normal behavior, and events that appear abnormal will be
considered an attack. These systems often use statistical methods to find activity that is
inconsistent with what the system considers normal.

Misuse-detection is the most commonly used intrusion detection model by current commercial
intrusion detection systems because it is much easier to implement compared with anomaly
detection. Defining what is normal behaviour is difficult, and anomaly detection systems will
therefore generate a large number of false positives (i.e. false intrusion alerts). In this thesis we
will focus on misuse detection-based intrusion detection systems.

Passive and reactive systems

After an attack is detected by the analysis engine, an intrusion detection needs to decide how it
should respond to the attack. There are two main categories which define the behavior of the
intrusion detection systems after an attack is discovered [2]:

Passive A passive IDS will log any attack and alert an operator. The operator can then take a
decision how he/she wants to deal with the attack (e.g. block the source of the attack in
the firewall) based on the logs.
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Reactive A reactive IDS (or intrusion prevention system - IPS) will automate the task of re-
sponding to attacks. The IDS will automatically respond to the event by performing an
action without relying on manual inspection of the event by an operator. A reactive IDS
will be much faster than a passive IDS at responding to attacks, but will not have the intel-
ligence of a human and may therefore lead to a large number of false positives (e.g. block
an address that should not be blocked).

2.1.2 Case study: SNORT

Most misuse-based intrusion detection systems are based on exact pattern matching. This means
that when some event occurs (e.g. a network packet arrives) the content is compared with a set
of pre-defined rules. In this thesis we use the open source IDS SNORT [11] as a case study and
in our experimental work, and therefore also look at the current state of the SNORT intrusion
detection system architecture and search techniques. SNORT is currently the de-facto standard
IDS, and is commonly used in education when learning about intrusion detection. Its flexibility,
simplicity and performance makes it the perfect choice of IDS for many research and educational
purposes.

Architecture

Although SNORT is first and foremost a misuse detection-based IDS, it can be extended to sup-
port different types of intrusion detection techniques. In addition to inspecting the content of
packets using a raw pattern matching engine, different plug-ins can provide a more specific anal-
ysis which for instance can look at packets with knowledge regarding the operation of the specific
protocol. To allow such an extensible architecture, SNORT is built using several components. A
general overview of the SNORT architecture/components can be seen in Figure 1.

Figure 1: SNORT components [1]

The components are ordered as a chain where each component will produce some output
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that is used as input for the next component in the chain. The main components of SNORT are
the following [1]:

Packet Decoder After capturing packets from the network interface using the libpcap library [13],
the packet decoder will read the packets and extract all the information that is needed by
the intrusion detection into a more easy to use data structure. This information is then
passed to the preprocessor. Already at this component, malformed packets are detected
and will trigger alerts.

Preprocessor The preprocessors will take the captured data and preprocess it for later analysis.
This can be looked at as a sort of filter that will identify and store information that is
needed by the different detection engines. Examples of information that can be found
during preprocessing is for instance traffic patterns that can be used to detect denial of
service and portscanning, and can be used by the corresponding detection engines.

Detection Engine The detection engine will perform the actual intrusion detection analysis like
pattern matching against the signature database. It also utilizes different detection plug-
ins for finding more specialized attacks like portscanning, denial of service, and high-level
protocol attacks. Even though SNORT is first and foremost a misuse detection-based IDS,
even anomaly detection plug-ins can be used.

Output Engine The output engine is used to present the actual alerts that are raised when an
intrusion attempt is identified. Also this component is modular so that the notifications can
for instance be issued as alerts to an operator or logged to a file/database depending on
the context.

Search technique

SNORT is a network-based intrusion detection system that first and foremost uses a misuse-based
detection model to find attacks in incoming and outgoing packets. It compares packets against a
finite set of rules that state what it should be looking for in the packets. These rules are searched
using an exact pattern matching algorithm when a packet arrives at the IDS, and an appropriate
action defined in the rule is executed if a match is found. An example of a typical SNORT rule is
presented below [14]. This particular rule will detect attempts of remote execution of perl code
on a local webserver.

alert tcp !$HOME_NET any -> $HOME_NET 80 (msg:“IDS219 - WEB-CGI-Perl access attempt”;
flags:PA; content:“perl.exe”; nocase;)

A SNORT rule consists of two parts: a rule header and the rule options [2]. The rule header
defines the scope in which the rule applies. It decides what action is to be performed (e.g. log or
alert), and what protocols (e.g. TCP/IP and UDP/IP), addresses and portnumbers (source and
destination) it should be applied to. Any incoming data are first checked against the rule header
to see if the rule applies to the specific packet. If the rule applies to the packet, then the rule
options are used to search for a match. The rule options say what content to look for and if
any parameters (e.g. packet direction, case sensitivity, etc.) are to be used when searching for
content.
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When a SNORT rule is loaded into the memory, each rule header is stored in a RTN (Rule
Tree Nodes) list that represents all the unique rule headers. Each RTN in the list contains an
OTN (Option Tree Nodes) list, which holds the different rule options for the corresponding RTN.
When an incoming packet arrives the header is first checked against the RTN list. If a matching
RTN entry is found, the OTN list for this RTN entry is searched. A result of this approach is that
if a packet does not match any entry in the RTN list there is no need for pattern matching of the
content against the OTN lists. In Figure 2 we can see an example of the lists in SNORT. We can
see that the RTN lists are organized by which action to perform and which protocol it applies
to. Each unique source/destionation pair (e.g. $HOME_NET any -> $HOME_NET 80 like in the
previous example) are added as an entry to the appropriate RTN list. Each of these RTN entries
has their own OTN list where the option content (e.g. flags:PA and content:“perl.exe” as in the
previous example) is added as an entry.

For the actual searching, SNORT initially used a sequential brute-force search algorithm. This
algorithm was later, due to performance issues, replaced by the faster Boyer-Moore [15] pattern
matching algorithm. Multiple efforts [2, 14] have been made to further improve the Boyer-Moore
based search in SNORT. For instance, in [2] a new Boyer-Moore based algorithm is applied to a
set of keywords in an Aho-Corasick [16] like keyword tree structure. Since the original Boyer-
Moore algorithm is unable to perform multi-pattern matching, this improved technique [2] is
suggested due to the great similarities between many SNORT rules.

2.2 Search techniques

In this section we introduce elements of the contemporary search theory. Although most theory
regarding searching is focused at finding words and phrases, the same techniques are relevant
for information security and intrusion detection.

Searching is about finding a given pattern inside a dataset. It may be used either to find
whether or not some data exists in the dataset or at which position in the dataset the pattern
is located. Applications of search techniques are everywhere from searching in local documents,
searching for documents on the Internet, or even searching internal datastructures stored in
memory by most programs.

When searching for a given string in a large dataset there are two main methods of searching:
sequential search and index structures [17, 18]. The advantages and cost of both approaches
depends on the size and volatility of the dataset. For medium sized datasets hybrid methods that
combine both sequential search and index structures are often used [17]. We discuss here the
most relevant research related to both methods.

2.2.1 Sequential search

The easiest search method is the sequential search (online search). In sequential search the
dataset is iterated sequentially, usually from top to bottom, and for each item in the dataset
the search string is compared for matches. The search will iterate through the dataset until a
match is found or until the entire dataset is iterated. At the end of the search we will have found
whether or not the string exists and its location within the dataset. If we want to find all matches
instead of just the first, the entire dataset needs to be iterated. In situations where no further
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Figure 2: Example of the signature lists in SNORT [2]
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# t h i s i s a t e s t s t r i n g
1 t e s t
2 t e s t
3 t e s t
4 t e s t
5 t e s t
6 t e s t
7 t e s t
8 t e s t
9 t e s t

10 t e s t
11 t e s t

Figure 3: Example of brute-force search with the search string “test”

information about the dataset is given, sequential search is the obvious approach for searching
in the dataset [19]. It is also the only choice if the dataset is very volatile (changes frequently)
or if there are strict space requirements [17]. For small datasets sequential search is sufficient.
However, since sequential search in many cases needs to search the entire dataset, the run-time
may be too slow for many applications.

We look at a few commonly used sequential search algorithms. Unfortunately, these algo-
rithms can only find exact matches, i.e. they are not fault-tolerant.

Brute-Force

The Brute-force algorithm [17, 20] is the simplest of the sequential search algorithms. The idea
is to compare the search pattern with every pattern position within the dataset in order to find
whether or not the pattern is present at each possible position. Many applications use a variation
of this algorithm in which a sliding window of length m (where m is the search pattern length)
slides over the dataset and the content of the window is compared with the search pattern. When
the search pattern has been matched against the current window the window is shifted forward
to the next position. This is an easy way to find if a given search pattern is a substring of the
dataset at a given position. An illustration of this process is described in Figure 3. Here we can
see that the algorithm needs to shift the search string “test” 11 times before finding a match in
the dataset.

If we assume a dataset of length n and a search pattern of length m the brute-force algo-
rithm needs to check O(n) positions where each position has the worst-case cost of O(m). As
a result the worst case search cost of the brute-force algorithm is O(nm), which is not efficient
enough [21]. However, since the pattern can be found anywhere in the dataset, even at the first
position, the average cost is O(n) [17].

Knuth-Morris-Pratt

Considering that brute-force search has the worst-case complexity of O(nm), this is a slow al-
gorithm. An alternative algorithm is the Knuth-Morris-Pratt algorithm [17, 20, 22]. The Knuth-
Morris-Pratt algorithm was the first sequential search algorithm with linear worst-case complex-
ity. However, on average it is not that much faster than the brute-force algorithm [17]. Like the
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# 0 1 2 3 4 5 6 7 8 9 ..
a b c a b c a b d

1 a b c a b d
2 a b c a b d

Figure 4: Example of the Knuth-Morris-Pratt algorithm [3]

brute-force algorithm, it uses a sliding window, but unlike the brute-force algorithm it reuses
information from previous checks. This information is used to decide how many positions the
sliding window can skip in case of a mismatch. As a result it does not need to check every
possible position in the dataset.

The algorithm starts by preprocessing the search pattern and building an auxiliary next table.
The next table’s i-th value then tells us which is the longest prefix in the search pattern P1,...,j−1

that is also a suffix. When we encounter a mismatch between the i-th character in the sliding
window and the i-th character in the search pattern we can then find how many positions m
the sliding window can skip, without missing the prefix of possible pattern matches, using the
expression:

m = i− next[i] + 1 (2.1)

In Figure 4 we can see an example of how the Knuth-Morris-Pratt algorithm is an improve-
ment over the brute-force algorithm. In this example we want to find the string “abcabd” inside
a dataset. In the first comparison, every character in the search string is a match at the position
in the dataset except the last character. At this point, the match will fail and if we had been using
the brute-force algorithm we would have shifted the dataset one position (e.g. one character).
However, with the Knuth-Morris-Pratt algorithm we know from our previous comparison (using
our next table) that the prefix of the string does not match any position in the dataset until posi-
tion 3. As a result, the dataset is shifted 3 positions instead of just 1, and we avoid unnecessary
comparisons.

Building the next table has the complexity of O(m), while the search given the next table has
the worst-case complexity of O(n) and takes at most 2n comparisons [17, 22]. As a result, the
total complexity of the Knuth-Morris-Pratt algorithm is O(m+n) [22]. An extension of the same
algorithm is the Aho-Corasick algorithm [16, 17, 23], which uses the same concept, but uses a
trie-like data structure in order to match a set of patterns. Like the Knuth-Morris-Pratt algorithm,
the Aho-Corasick algorithm has the search complexity of O(n) and uses at most 2n character
comparisons.

Boyer-Moore

The Boyer-Moore family of algorithms [15, 17, 20, 24] is another alternative for sequential
search. As with the Brute-force algorithm and the Knuth-Morris-Pratt algorithm, the Boyer-Moore
algorithm also uses a sliding window. The Boyer-Moore algorithm uses two different heuristics
(depending on the variant of the algorithm) for finding the longest possible shift after a mis-
match: the bad character heuristic and the good suffix heuristic. The advantage of this approach
over the Knuth-Morris-Pratt algorithm is that both heuristics can lead to shift of the sliding win-
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# 0 1 2 3 4 5 6 7 8 9 ..
a b b a d a b a c b a

1 b a b a c
2 b a b a c

Figure 5: Example of the Boyer-Moore algorithm [3]

dow one entire pattern/window length. The idea with the Boyer-Moore algorithm is that the
matching between the search pattern and the sliding window is processed backwards since this
produces more information. First of all, if it finds a character that does not exist in the pattern,
the window can be shifted all the way past the position of this character. This means that if
the last character in the window is known not to exist in the pattern, the pattern cannot occur
in the entire window, and we can slide the window forward a whole window-length after just
checking one single character. This is called the bad character heuristic and is the reason why
the performance of the algorithm increases with a longer search pattern. Like the Knuth-Morris-
Pratt algorithm, it also excludes positions from the search where the algorithm decides that the
search pattern cannot occur based on previous knowledge (information gained by a mismatch),
thus saving it from searching every position in the dataset. Since the algorithm is rather com-
plex, simpler variants have been proposed, like the Boyer-Moore-Horspool algorithm [25] and
the Sunday algorithm [26], where only bad character heuristic is used.

Furthermore, like the Knuth-Morris-Pratt algorithm, the Boyer-Moore algorithm uses prepro-
cessed jump tables in order to find how many positions to skip when a mismatch occurs. How-
ever, unlike the Knuth-Morris-Pratt algorithm it uses two tables instead of just one. The first table
holds the characteristics for each of the different characters in the alphabet used in the pattern.
If the character char does not occur in the pattern then the corresponding entry will hold the
pattern-length patlen (i.e. shift one entire pattern-length) while the entry will hold patlen − j

where j is the maximum value such that pattern[j] = char. The other table holds the charac-
teristics of the suffix occurrences in a similar manner to the Knuth-Morris-Pratt next table. If a
mismatch is found the algorithm will skip max(table1[i], i − table2[dataset[i + j]]) positions
where i is the current position in the pattern/window while j is the current position within the
dataset.

In Figure 5 we can see an example of how the improvements in the Boyer-Moore algorithm
are beneficial over the Knuth-Morris-Pratt algorithm. In the first comparison, the search string
“babac” is searched from the rightmost position to the left for a match. The match will fail straight
away since the character at that position in the dataset is not only a mismatch compared with
the search string, but it is not even in the pattern at all. A mismatch at this point will look up
the table that tells the algorithm to shift the dataset one whole window (pattern length) since
it is impossible to find this character anywhere in the pattern. If the character that causes the
mismatch had occurred somewhere else in the pattern, then the dataset would be shifted to the
position of the mismatch. We can easily see how this can improve the performance since the
sliding window will be able to shift longer distances than allowed by the Knuth-Morris-Pratt
algorithm.

For preprocessing the Boyer-Moore algorithm requires O(m + σ) time and space (where σ is
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Document Occurrences
1 The old night keeper keeps the keep in the town
2 In the big old house in the big old gown.
3 The house in the town had the big old keep
4 Where the old night keeper never did sleep.
5 The night keeper keeps the keep in the night
6 And keeps in the dark and sleeps in the light.

Figure 6: Example of a dataset with six documents with a single line of text each [4]

the size of the alphabet). The search time for the best variant of the Boyer-Moore algorithm is
in the worst case O(n) [24], while other variants of the Boyer-Moore algorithm may have the
worst case search time of O(mn) [17]. However, on average the algorithm is “sublinear”, thus
making it one of the fastest algorithms on average [17]. An interesting note is that a property of
the algorithm is that as the search pattern gets longer, the algorithm gets faster. This means that
it performs worse for short search patterns, and binary string in particular because of the short
alphabet.

2.2.2 Indexed search

The problem with sequential search is that the search may need to inspect the entire dataset,
thus making it slow. A solution to this is to use so-called index structures and indexed search.
In situations where the dataset is large and semi-static, using an index structure can speed up
the search significantly [17]. The idea behind an index is that we do not need to search the
entire dataset, but only a subset that is large enough to represent the location of data inside the
dataset. However, building and maintaining such structures can be slow, and for large datasets
with frequent updates, the overhead cost for maintaining the structure may be too high. There
are many different indexing techniques for different purposes. We will briefly look at three main
indexing techniques: inverted files, suffix arrays, and signature files.

Inverted files

Inverted files [4, 27, 28] (inverted index) are the most popular data structures for document
search [29] and are in literature described as the currently best choice for most applications [17]
due to its simplicity to maintain compared with other alternatives. The idea is to create a mapping
between some content and all its positions within a dataset. An inverted index consists of a
vocabulary and the occurrences. The vocabulary is a set of all the items in the dataset (e.g. all
words in a document) [17]. Each of the items in this vocabulary is then coupled with a set of
occurrences which represents the items positions (i.e. address) within the dataset. In [23] the
inverted index is defined as follows:

An index into a set of texts of the words in the texts. The index is accessed by some search
method. Each index entry gives the word and a list of texts, possibly with locations within the
text, where the word occurs.

In Figure 6 we see a sample dataset to be indexed using an inverted file [4]. In this sample
dataset we have six documents where each document contains one single line of text. In Figure 7
we can see the corresponding inverted file [4]. Each term (i.e. word) from the sample dataset
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Term t Frequency Inverted list for t
and 1 (6,2)
big 2 (2,2) (3,1)
dark 1 (6,1)
did 1 (4,1)
gown 1 (2,1)
had 1 (3,1)
house 2 (2,1) (3,1)
in 5 (1,1) (2,2) (3,1) (5,1) (6,2)
keep 3 (1,1) (3,1) (5,1)
keeper 3 (1,1) (4,1) (5,1)
keeps 3 (1,1) (5,1) (6,1)
light 1 (6,1)
never 1 (4,1)
night 3 (1,1) (4,1) (5,2)
old 4 (1,1) (2,2) (3,1) (4,1)
sleep 1 (4,1)
sleeps 1 (6,1)
the 6 (1,3) (2,2) (3,3) (4,1) (5,3) (6,2)
town 2 (1,1) (3,1)
where 1 (4,1)

Figure 7: Example of an inverted file [4]

has its own entry in the inverted file. Each of these entries has a frequency counter which tells us
in how many documents the term occurs. Last, but not least, each entry has a list of tuples that
tell us which documents the term occurs in, and the frequency of the term within the document.
Another variation of this list could be to replace the frequency counter with the position of each
occurrence of the term within the document. If we want to search for a certain term in this
inverted file, we can find the entry corresponding to the term. From here we know that the term
occurs in each of the documents that is listed in the inverted list of this entry. As an example we
can see that the term “big” occurs in 2 documents: 2 times in document number 2, and 1 time
in document number 3. If we want to search for the terms “big”, “had”, and “keep”, we can use
the intersection of their inverted lists that would return a set with all documents that contains
all three terms (only document is used in our example): {2, 3)} ∩ {3} ∩ {1, 3, 5} = 3. This tells us
that all three terms only occur in the third document.

To build an inverted file the dataset needs to be scanned and the position of each item in
the vocabulary is then added to the set of occurrences. The cost of building such an index is
O(n) (where n is the size of the dataset). Inverted files can hold different levels of addressing
granularity. Each occurrence in the set can represent which documents contain the item, a specific
block within a document (e.g. the i-th block), a specific word within a document (e.g. the i-th
word), or a specific character position in a document (e.g. the i-th character) [17]. With a finer
level of granularity more accurate searches like phrase searches can be achieved. The space
requirements of such a structure are according to Heaps’ law that the vocabulary will grow as
O(nβ) where β is a constant between 0 and 1 dependent on the text (in practice between 0.4
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# Suffix
1 AACCACG
2 ACCACG
3 CCACG
4 CACG
5 ACG
6 CG
7 G

Figure 8: Suffixes for string s = “AACCACG”

and 0.6) [17]. However, the occurrences will take up more space as each word in the dataset
will be pointed to once. The occurrence space overhead will in practice be between 30% and
40% of the text size. Searching an inverted file is as simple as searching the vocabulary for
a match and retrieving the set of occurrences when a match is found. These occurrences can
then be processed as locations where the search query was found. Although one can search the
vocabulary by iterating a list sorted in lexicographical order, different techniques and structures,
like hashing [29], tries, or trees [30], can be used to speed up the search. The use of such
techniques gives a search cost of O(m) (where m is the search pattern size) while the use of
lexicographical ordered lists gives a cost of O(log n).

Suffix trees

Suffix trees [31, 32, 33] are another category of index structures. It is more costly to build the
index compared with inverted files, but it allows for answering complex queries really fast. The
idea is that the dataset is a long string of data. The substrings between each position and the end
in this string are then called suffixes. All positions used in suffix trees are called index points, and
those positions which are not index points cannot be retrieved. Suffix trees work on either entire
words or single characters. When the set of all suffixes is found, a suffix tree, containing all the
suffixes, is built where each path from the root to a leaf represent one unique suffix. Suffixes
that have a similar beginning will share a path down the tree until they differ. At the point they
differ they will split into different subtrees. When a path can uniquely represent a suffix (i.e. it
will no longer fork into multiple subtrees since no other suffixes share the same beginning) no
more characters from the suffix need to be stored in the tree. The leaf node at the end of each
path will contain a pointer to the position in the dataset where the suffix the path represents is
located.

Let us assume we want to build a suffix tree for the string s = “AACCACG”. First we need
to find all suffixes. The suffixes for string s are presented in Figure 8. These suffxies are then
inserted into a tree so that each of the unique suffixes have their own unique path from the root
and down to a leaf node. This leaf node will then hold the position for the suffix within the
dataset. The compact suffix tree for string s is presented in Figure 9.

A suffix tree will in many cases produce a space overhead of 120% to 240% over the dataset
size and therefore uses a lot of memory [17]. For large datasets the entire tree may not even fit
in memory. To solve this problem, a suffix array can be used instead of a suffix tree. A suffix array
is simply an array that contains pointers to all suffixes sorted in lexicographical order. A suffix

16



Approximate search in misuse detection-based intrusion detection by using the q-gram distance

Figure 9: Compact suffix tree for the string s = “AACCACG” [5]

Figure 10: Example of signature files with blocks of 2 words [6]

array will use about the same space as an inverted file index which is around 40% of the size of
the dataset [17]. While suffix trees can search the structure in O(m) time by a simple trie search,
a suffix array can perform the same search in O(log n) time by doing a binary search [17].

Signature files

Signature files [6, 27, 28] is yet another indexing structure. Unlike inverted files or suffix trees,
signature files have a very low storage overhead with only 10% to 20% overhead over the dataset
size [17]. However, as a result the search complexity is increased to linear instead of sublinear
like the other approaches. Signature files are suitable for small datasets, but are often outper-
formed by inverted files [17]. When using signature files the dataset is divided into blocks of
the same number of words. Each of the words in a block is then mapped to a fixed size bitmask
(signature) by using a hash function. All the bitmasks inside a block are then OR’ed together
by using boolean algebra, thus creating the signature of the entire block. An example of such
a bitmask signature can be seen in Figure 10.The idea is that if a word is in a block then the
signature of the block should have the same bits set to 1 as the signature of the search word. In
some cases the same bits will be set to 1 even though the block does not contain the search word
and as a result creates false matches. The accuracy of this index is therefore dependent on the
quality of the hash function and the size of the blocks [17]. Signature files were mostly used in
the 1980’s and are today mostly replaced by inverted files [17].

2.3 Approximate search

As we have seen, search techniques with sublinear complexity have been found by researchers
decades ago and are today widely deployed in modern applications. Algorithms like the Knuth-
Morris-Pratt algorithm and the Boyer-Moore algorithm as previously discussed can be very ef-
ficient, but will only find exact matches. For situations where fault-tolerant search is needed,
these regular search methods cannot be used. The solution is to use approximate string/pattern
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matching.
One situation where approximate search is helpful over regular search is for Internet search.

With regular search methods the search algorithm can give a list of webpages that contain the
exact search pattern. If the user has misspelled the search query then this may ignore all the
relevant webpages. By using approximate search, the user may also get all the similar pages.
This scenario also applies in other situations like data communications where some data may
be lost during transfer, in spam e-mail messages where the text is deliberately distorted in order
to evade the automated spam filters, in spellcheckers where the program can make suggestions
that resemble the misspelled word, and in molecular biology where even the same proteins may
differ slightly within the same species [34].

In approximate search the idea is to find one or more matches for a short pattern P in the
dataset T that only contains a maximum number of k errors. This means that if the distance
between the search pattern P and some substring of the dataset T is lower than or equal to
the threshold k, the substring will be accepted as a match. If the distance is higher than k, the
substring will be rejected as a mismatch. Although approximate search is a newer problem than
exact string matching, researchers have already suggested multiple solutions [35, 36, 37] to the
problem.

2.3.1 Measures

The central concept of approximate search is to find a way to measure distance between two
strings. This distance is later tested against the threshold value to see if the strings are similar
enough to accept them as a match. If we were dealing with integer values we could subtract the
two values and use the result as the difference. However, finding the distance between strings
is a more complicated procedure. Many measures have been suggested as a way of finding the
distance between two strings. A distance function D(X, Y), where X and Y are two strings, is
required to satisfy the following conditions:

• D(X, Y) > 0 (non-negativity)

• D(X, Y) = 0 iff X = Y (identity of indiscernibles)

• D(X, Y) = D(Y,X) (symmetry)

• D(x, z) 6 D(x,y) +D(y, z) (triangle inequality)

Perhaps the most commonly used distance functions are the Hamming distance and edit dis-
tance, but other measures may in many situations prove to be better for certain problems. We
look at a few existing distance measures that were shown to be suitable for string comparison.

Hamming distance

The Hamming distance [38] is perhaps the easiest way to measure the distance between two
strings. The idea is that for two strings of equal length, the distance between these are the
number of positions in the strings where the characters at that position do not match [17]. In
other words, for two strings of equal length, the Hamming distance is the number of substitutions
that is required in order to transform one of the strings into the other, e.g. it adds one to the
distance for each position in the strings where the characters at this position are not equal. This
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A 1 0 1 0 0 1 1
B 1 1 0 0 0 0 1

|Ai − Bi| 0 1 1 0 0 1 0∑
|Ai − Bi| = 3

Figure 11: Example of Hamming distance between two binary strings

A s e n a t o r
B s e m i n a r

|Ai − Bi| 0 0 1 1 1 1 0∑
|Ai − Bi| = 4

Figure 12: Example of Hamming distance between two character strings

means that for two completly different strings with no equal characters, the distance is the same
as the length of the strings. As a result, to compute the Hamming distance we only need to
compare n characters at most, where n is the length of the strings.

In Figure 11 we can see an example of using the Hamming distance to find the distance
between two binary strings. The bits that differ will add 1 to the distance while bits that are equal
will add 0 to the distance. The Hamming distance can also be used between character strings.
In Figure 12 we can see an example where the Hamming distance concept is implemented on
character strings. Like the binary strings, each character is matched and if they differ 1 is added
to the distance while 0 is added to the distance if they are equal. When a mismatch is found the
actual character values are of no importance, only that they differ.

Hamming distance is easy to implement and its computation is quite fast. However, it can
only work with equally sized strings. This limits the number of situations where the Hamming
distance can be used to implement approximate searches. Hamming distance is often used for
bit-level analysis in telecommunication, information theory, coding theory and cryptography.

Edit distance

To solve the problem with Hamming distance and its inability to find the distance between strings
of different lengths, the edit distance (often called Levenshtein distance) is often used. The edit
distance can be defined as follows [23]:

The edit distance is the smallest number of insertions, deletions, and substitutions required to
change one string or tree into another.

Unlike the Hamming distance that only counts substitutions (and as a result only can work on
equally long strings), the edit distance also counts insertions and deletions. This means that two
strings of any two lengths can be matched. If no substitutions, insertions or deletions are needed
to transform one string into the other the distance will be zero. Furthermore, the distance will
never be a greater value than the size of the longest of the two strings, and will always be at least
the difference in length between the two strings. For two strings of equal length, the Hamming
distance will be an upper bound of the edit distance.
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A t u e s d a y
B t h u r s d a y

+ =

Edit operations = 2

Figure 13: Example of Edit distance between two character strings

t u e s d a y
0 1 2 3 4 5 6 7

t 1 0 1 2 3 4 5 6
h 2 1 1 2 3 4 5 6
u 3 2 1 2 3 4 5 6
r 4 3 2 2 3 4 5 6
s 5 4 3 3 2 3 4 5
d 6 5 4 4 3 2 3 4
a 7 6 5 5 4 3 2 3
y 8 7 6 6 5 4 3 2

Figure 14: Example of Edit distance matrix between two character strings

The Levenshtein distance algorithm can be computed by means of a bottom-up dynamic pro-
gramming [17] method for finding the distance. Dynamic programming is a method to solve
problems by dividing the problem into simpler subproblems. When these subproblems are solved
the results can be combined to solve the original problem.

When the algorithm for finding the edit distance begins, a matrix consisting of n rows and
m columns, where n and m are the lengths of the two strings A and B, respectively, is created.
Each of the cells in this matrix represents the comparison between the two characters located
at the corresponding positions in the strings. The first row is then initialized to 0 . . .n and the
first column to 0 . . .m. Once the matrix is initialized, each character in the two strings (positions
1 to n and 1 to m) are examined by the algorithm. If both characters A[i] and B[j] are equal
(A[i] == B[j]) then the cost of the transformation is set to 0 and if they differ (A[i] != B[j])
to 1. The value of the cell d[i, j] (the cell corresponding to the match between the character at
positions i in the string A and j in the string B) is then set to the minimum/lowest value of the
following three computations:

• d[i− 1, j] + 1 (deletion)

• d[i, j− 1] + 1 (insertion)

• d[i− 1, j− 1] + cost (substitution)

Once each of the characters in the string A is matched against each of the characters in the
string B, the entire matrix has been populated. At this point, d[n,m] (i.e. the bottom right cell)
contains the minimum number of operations needed to transform one of the strings into the
other.

In Figure 13 we can see an example of the computation of the edit distance between two
character strings. The minimal number of basic edit operations needed in this example is 2 as
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only one insertion (or deletion depending on which string is being transformed into the other)
and one substitution are needed to transform A to B. In the example, the letter “h” is inserted
into the string (denoted in Figure 13 as “+”) and the letter “e” is replaced with the letter “r”
(denoted in Figure 13 as “=”). There are of course other edit operation combinations that can
achieve the same result (e.g. substitution of all characters), but the two operations described
is the absolute minimum. The corresponding populated distance matrix for the example can be
seen in Figure 14.

Another variation of the edit distance is the Damerau-Levenshtein distance [39, 40]. This is
really only an extension of the original Levenshtein distance where another elementary edit op-
eration is counted. In addition to substitution, insertion and deletion, the Damerau-Levenshtein
distance has a character transposition operation that swaps two characters in the string as one
operation. In his paper [39] about the Damerau-Levenshtein distance, the author states that
the four elementary edit operations correspond to 80% of human misspellings. Other possible
variations of the edit distance include adding different penalty costs to the different edit opera-
tions [41] or to the different characters.

The edit distance (with different variations) is one of the most common measures used today
in approximate string matching and are often used in areas such as text databases and molecular
biology. Unfortunately, its computation is rather slow with the time complexity O(mn). This is
because each character in the first string needs to be compared with each character in the second
string during the population of the matrix.

One of the ways to increase the efficiency of the approximate search is to apply a special index
structure called a V-tree [34]. Instead of computing the distance between the entire dataset or
a vocabulary in an inverted index and the search pattern sequentially word by word, a V-tree
can discard parts of the dataset. Because computing the distance is a slow procedure, reducing
the number of items in the dataset that needs to be compared will increase the performance
significantly. A V-tree solves this by using a tree structure and a filtering technique. By partitioning
the dataset into subgroups and clustering these by distance from each other in a tree structure,
the search algorithm can skip all items from the dataset that are not likely to match. In [34] this
method proved to be very successful in increasing the performance of approximate search.

Constrained edit distance

Depending on the context and application, different variations of the edit distance may provide
better results than the original Levenshtein distance. One of the variations is the constrained edit
distance [42, 43]. This distance uses constraints to the edit distance regarding the maximum
number of consecutive insertions and deletions. Like with the ordinary edit distance we use
three elementary edit operations substitution, insertion and deletion. However we also add the
following constraints to the operations [42, 43]:

C1 The number of insertions belongs to a set T given in advance.

C2 The maximum lengths of runs of deletions and insertions are F and G, respectively.

C3 The edit sequence is ordered in a sense that every substitution is preceeded by at most one
run of deletions followed by at most one run of insertions.
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Given these constraints, the constrained edit distance is defined as the minimum number of
elementary edit operations needed to transform one string into another. The elementary dis-
tances associated with the edit operations deletions, insertions and substitutions can then be
defined as follows, given the alphabet A and the “empty” symbol φ, where A∗ = A ∪ {φ} [42]:

• d(a,φ) is the elementary distance when deleting a symbol a ∈ A.

• d(φ,b) is the elementary distance when inserting a symbol b ∈ A.

• d(a,b) is the elementary distance when substituting a symbol a with b, where a,b ∈ A

We can also define a compression operator C(Z ′) that will transform an edit sequence Z ′

into a string Z by removing all empty symbols φ. An edit sequence is every permitted editing
transformation (from string X to string Y) as a sequence of editing operations, that are allowed by
the constraints C1,C2,C3. An edit sequence is denoted as S = (X ′, Y ′), where (X ′, Y ′) ∈ A∗×A∗

(X ′ and Y ′ are the strings X and Y where φ has been inserted to denote edit operations), and
where the following rules hold:

• C(X ′) = X,C(Y ′) = Y.

• | X ′ |=| Y ′ |= L, max{N,M} 6 L 6 N+M.

• for all i, 1 6 i 6 L, the characters x ′i and y ′i cannot both have the value φ simultaniously.

• S satisfies the constraints C1,C2,C3.

Furthermore, GT is the set of all permitted edit sequences S, where S transforms the string
X into the string Y. The constrained edit distance can then be computed using the following
expression [42]:

D(X, Y) = min

{
L∑
i=1

d(x ′(i),y ′(i))|(X ′, Y ′) ∈ GT (X, Y)

}
, (2.2)

where max{N,M} 6 L 6 N+M.
Like the ordinary edit distance, the constrained edit distance also populates a matrix while

computing the distance, and as a result also has the same time complexity problem. The con-
strained edit distance was also suggested for use with digital computer forensics [42] and intru-
sion detection [43].

q-gram distance

Although the performance of the edit distance computation is rather slow, it is still one of the
most commonly used approximate search distance measures. However, for many applications
where performance is important the computation of the edit distance is too slow. As a result, an
alternative measure called the q-gram distance [44, 45, 46] has been found to estimate the edit
distance quite well [47].
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The q-gram distance between two strings is the difference between the occurrence count for
each substring of length q (a q-gram) within the strings. This means that the two strings count
the occurrences of every possible substring of length q and the difference between the count for
each of these substrings are added to the distance between the strings. The idea is that similar
strings will share a lot of common q-grams. The accuracy of the q-gram distance is dependent on
the value for q and a higher value will give more accurate results. When using q-grams of length
1, we will only be counting individual letters. Since the q-gram distance only counts occurrences
with no regards to their position within the strings, two strings may have a low distance without
actually being similar. As a result, the q-gram is only considered a pseudo-metric considering
that two different strings with the same q-gram occurrence count will have a distance of 0.

The advantage with the q-gram distance over edit distance is that it is possible to compute
it quite fast. With a complexity of O(n +m) the computation of the q-gram distance will by far
outperform the edit distance that has a quadratic complexity O(nm) where n and m are lengths
of two strings X and Y.

One important application of the q-gram distance is that it can be used as a filter to speed up
the edit distance [47] by first applying the q-gram distance and later increase the accuracy by
inspecting the results that got accepted by the q-gram distance using the edit distance. During
the filtering, the q-gram distance will reject any data that has a distance above the threshold
value. When a data item is rejected by pattern matching using the q-gram distance we know
that this would also be rejected by pattern matching using the edit distance. However, all items
accepted by pattern matching using the q-gram distance will not be accepted by pattern matching
using the edit distance. As a result, all items accepted by the q-gram distance pattern matching
will therefore be further inspected by the edit distance pattern matching in order to reject false
matches. This is possible since the q-gram distance can be used as a lower bound of the edit
distance as Dq(X, Y)/2q 6 Ded(X, Y) for two strings X and Y [44, 47].

Like the edit distance, also the q-gram distance can be coupled with index structures to in-
crease the performance. In [47] a so-called Monotonous Bisector Tree (MBT) is used to store the
words from a vocabulary in an inverted index file. This tree structure is then used to ignore parts
of the vocabulary, thus reducing the number of items where the q-gram distance needs to be
computed. This allows us to quickly find any matches without computing the distance between
the pattern and every item in the dataset. In [48], the q-gram distance has also been imple-
mented by researchers as user-defined functions in DBMS in order to implement approximate
string processing without major changes in the underlying database system.

We look further into the concept of q-grams, and how to apply this in approximate search for
misuse detection-based intrusion detection systems in the next chapter.

2.3.2 Information security and intrusion detection

Although research on approximate search for many decades had focused on document and
database search, more recent research has extended this effort to other fields of computer sci-
ence. Information security is one of the areas where approximate search techniques can be highly
beneficial.

In [49] approximate search techniques have been applied to computer forensics in order to
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study the problem of data reduction. As the amount of data in modern computer systems in-
creases, more data needs to be processed when performing computer forensics. This is especially
a problem since investigators often need to manually inspect the data. By using the Levenshtein
distance algorithm, approximate search could be used to filter the data and significantly reduce
the dataset for further inspection manually or with the help of slower algorithms. The tests
showed that the amount of data could be reduced by approximately 50% using the Levenshtein
distance as a filter.

In [42] this concept was studied further by applying the constrained edit distance instead
of the Levenshtein distance as in [49]. A two stage indexless search procedure was suggested
where the first stage was using the constrained edit distance for data-reduction and the second
stage used a slower exhaustive search for fine grained inspection of the data. Using approximate
search can in this setting find data that have been deliberatly distorted in an attempt to prevent
the data from being detected by means of ordinary search methods. By applying constrained
edit distance instead of the edit distance, the amount of data that needs to be inspected by a
exhaustive search method is significantly reduced and as a result the search time is also reduced.
Experimental work showed that by applying constrained edit distance it was possible to achieve
up to 80% dataset reduction over the ordinary edit distance.

The same two stage approximate search procedure was in [43] applied to intrusion detection.
The Snort IDS signature set was used as test-data in the experimental work, and by using the
constrained edit distance on the dataset a 70% data reduction was achieved during the first
stage of the two stage search procedure. The first stage of the procedure will find the packets
that are candidates for a closer inspection, and the second stage will use slower exhaustive search
mechanisms to further inspect the data. For intrusion detection, fault-tolerant search is efficient
to find new variations of existing attacks without the need for explicit signatures preloaded. This
is especially useful when attacks have been deliberatly distorted in order to bypass the intrusion
detection pattern matching. As intrusion detection needs to complete pattern matching as fast
as possible in order to process all data on time, reducing the dataset is an excellent way of
increasing the performance.
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3 Approximate search in misuse-detection using the q-gram
distance

In this chapter we introduce an approach to approximate search in misuse-based intrusion detec-
tion using the q-gram distance. The approach makes use of the previously suggested two stage
indexless approximate search algorithm [42, 43] in a combination with the q-gram distance for
pattern matching. This represents the theoretical contribution of this master thesis, and is the
basis for our experimental work. Our focus is mainly on the q-gram distance for pattern match-
ing. However, we will also use both the ordinary edit distance and the constrained edit distance
as references for our results.

3.1 Approximate search for misuse detection

A general misuse-based intrusion detection system often receives some activity data (e.g. network
packets), processes this data in an analysis engine using pattern matching against a set of rules
(e.g. a signature database), and if a match is found alerts the operator or log the result. In Figure
15 we can see such a system where an analysis engine compares the incoming activity with every
signature in the signature database in an attempt to find a match. A simple method to implement
approximate search could then be just to replace the analysis engine’s exact pattern matching
algorithm (in Snort’s case the Boyer-Moore sequential search algorithm) with an approximate
search algorithm. Such an approximate search could use a sliding search window over the dataset
where the content of this window could be compared with the input data using a fault-tolerant
pattern matching algorithm. This search could then be considered exhaustive.

However, signature databases are often large, and grow at a rapid rate in order to include
all currently known attacks. This makes the exhaustive search on the entire database a rather
slow process, especially considering that intrusion detection systems may have problems already
at high transfer rates with exact pattern matching. The solution to this problem is to reduce the

Figure 15: Architecture of a generic misuse-based IDS
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Figure 16: Architecture for two-stage approximate IDS search

signature dataset that needs exhaustive search to include only the signatures that are likely to
match, or in other words, exclude all signatures that are unlikely to match.

The method to achieve this is to implement a two-stage pattern matching process. Figure 16
shows a system based on this two-stage search procedure. Like the misuse-based intrusion de-
tection system in Figure 15, the system reads activity data as input. In the first stage, the system
compares the activity data with every signature in the entire signature database using approxi-
mate pattern matching based on the q-gram distance. If the signature from the database matches
the activity data with a distance lower than the error treshold k, the signature is accepted into
the filtered signature dataset for further inspection in stage two. If the distance between the
signature and the activity data is above the error threshold k, the signature is rejected and does
not qualify for the second stage. In the second stage, the reduced dataset that was accepted in
previous stage will be matched against the activity data once again, but this time using a finer,
exhaustive, pattern matching algorithm.

The advantage of this method is that the q-gram distance is fast with a complexity ofO(n+m),
while exhaustive search is slow. By using a fast algorithm to reduce the dataset, much less data
needs to be processed by the exhaustive search algorithm, and as a result the entire search should
be faster. In this thesis we focus on the first stage as exhaustive search is straightforward.

This concept can further be enhanced by using index and tree structures (e.g. Monotonous
Bisector Trees [47] and inverted index files). However, this is beyond the scope of this thesis.
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3.2 q-gram distance pattern matching

Different variations of the edit distance are some of the most common measures for finding the
distance between two strings. Unfortunately, the edit distance is computed in quadradic time and
as a result its computation is slow. For situations where the running time of the computation is
important, quadratic time is too slow. One alternative that has been proposed as a simpler alter-
native to the edit distance is the q-gram distance, which is reported to estimate the ordinary edit
distance well [44]. Unlike the edit distance whose complexity is quadratic, the q-gram distance
is computed in linear time [47].

The q-gram (sometimes also known as n-gram [44, 46]) distance is used to measure the
difference between two strings of variable length. Given a generic string S, a q-gram is any
substring of length q within this string. The idea behind the q-gram distance is that similar
strings will have a lot of common q-grams while strings that differ will have fewer common q-
grams. The q-gram distance is found by counting the number of occurrences of all q-grams and
find the difference in the q-grams occurrence count between the two strings. Because we find
the q-gram distance by counting occurrences of q-grams without regard to their position, the q-
gram distance is considered a pseudo-metric [44]. This means that although equal strings always
will have zero distance, zero distance will not always mean that the strings are exact matches.
In cases where two distinct strings have exactly the same q-gram count for all q-grams but at
different locations within the strings (i.e the strings are anagrams to each other), the q-gram
distance will also say that they are exact matches (i.e. have 0 distance). Furthermore, if we use
q = 1 we will only count occurrences of single letters.

More formally a q-gram can be defined as follows [44]:

Definition 1 Let A be a finite alphabet. Let A∗ denote the set of all strings in A and Aq denote the
set of all strings of length q over A, sorted in lexicographical order, where q equals a positive integer
q = 1, 2, . . . ,n. A q-gram is any string v = a1,a2, . . . ,aq in Aq.

Following the definition of the q-gram, we can formally define the q-gram distance. However,
we first need to define the q-gram profile, which is used to compute the q-gram distance:

Definition 2 Let S be a string in A∗. The q-gram profile Gq(S) is a vector of length z = | A |
q

whose i-th element equals the number of occurrences of the i-th q-gram of Aq in the string S. E.g.
Gq(S)[i] equals the number of occurrences of Aq[i] where i is a integer between 0 and | A |

q. The
value i is then called the fingerprint of the q-gram it corresponds to in Aq.

Now that we have defined the prerequisites we can formally define the q-gram distance:

Definition 3 Let S1 and S2 be two arbitrary strings. The q-gram distance Dq(S1,S2) between S1

and S2 is defined as the L1-distance (absolute distance, Manhattan distance or city block distance)
between their corresponding q-gram profiles Gq(S1) and Gq(S2).

We will later take a closer look at how we can generate q-gram profiles and how we can
compute the distance between these.
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3.2.1 Generating q-gram profiles

When computing the q-gram distance between two strings we are in reality computing the dis-
tance between two vectors called q-gram profiles. A q-gram profile Gq(S) is a vector in which
each item corresponds to the occurrence count of a unique q-gram in Aq. As a result, a q-gram
profile contains the occurrence count for each possible q-gram in Aq even for the q-grams that
the string does not contain.

In [48] the process of obtaining the q-grams from a string is described as using a “sliding
window” technique. This concept is perhaps the easiest abstraction of the process of creating a
q-gram profile. The idea is that for any character at position 1, 2, . . . ,n − q + 1 (where n = |S|)
in a string S we can fetch q consecutive characters from this position. The way to do this is to
iterate the string from the start to the length n of the string minus the last q − 1 characters.
For each of these iterations we fetch the character at position i plus the next q − 1 consecutive
characters. The sliding window abstraction can be seen in Figure 17.

Figure 17: A sliding window technique for counting q-grams (q = 3)

To find the mapping between a specific q-gram and the corresponding item in the q-gram
profile vector the fingerprint of the q-gram is computed. The fingerprint is a unique numerical
representation for the specific q-gram and represents the number (index) in which the corre-
sponding q-gram appears in Aq when sorted in lexigraphic order. As a result, this fingerprint can
identify the position of the specific q-gram occurrence count in the q-gram profile vector. The
fingerprint of a q-gram v = (v1, v2, . . . , vq) can be interpreted as an integer f(v) in base-z (where
z =| A |) notation using the following expression:

f(v) =

q∑
i=1

v̄iz
q−i (3.1)

where v̄ = j if vi = ai, i = 1, 2, . . . ,q, j = 0, . . . , z− 1. f(v) is a bijection since f(v) = f(v ′) if and
only if v = v ′.

Computing a q-gram profile Gq(S) is all about extracting all q-grams from a string, finding
the index for each q-gram in the q-gram profile by using the fingerprint, and setting the value
at this index to the number of occurrences of the q-gram. Using the sliding window technique
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(Figure 17) we can compute the fingerprints of all q-grams Wi = si, si+1, . . . , si+q where i =

1, . . . ,n − q + 1 in string S = s1, . . . , sn (n = |S|). The concept of finding the fingerprint of a
q-gram using expression 3.1 is illustrated in Figure 18.

Figure 18: Finding a fingerprint using expression 3.1

Although expression 3.1 is sufficient to find all the q-grams alone by just iterating each po-
sition in S for i = 1, . . . ,n − q + 1, this is a process that has a a lot of duplicate computations.
Instead, we will use another method that is similar, but spares us for unnecessary computations.
We start by finding the first fingerprint W1 in the string S = s1, s2, . . . , sn by applying the above-
mentioned expression f(W1) =

∑q
i=1 s̄iz

q−i. When this fingerprint is found, it is used to increase
the corresponding counter in the q-gram profile by 1 in order to say that “this q-gram occurred”.
After the first q-gram is found we can find the rest of the fingerprints using the following expres-
sion for 1 <= i <= n− q+ 1:

f(Wi+1) = (f(Wi) − s̄iz
q−1)z+ s̄i+q (3.2)

For each and every one of these q-gram fingerprints f(Wi) we increase the occurrence counter
value Gq(S)[f(Wi)] by 1. When all q-grams have been iterated the q-gram profile should contain
the number of occurrences of all possible q-grams in the alphabet, even those that are not found
in the string S.

Figure 19: Re-use of previous q-gram fingerprint

As mentioned before, using a combination of these two expressions to compute the finger-
prints rather than only expression (3.1) alone we will save a lot of duplicate computations. The
expression 3.2 will re-use the fingerprint for the previous q-gram since they will share q − 1
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characters. Since consecutive q-grams share q − 1 characters, this method is especially benefi-
cial for higher values of q. The concept of q-gram fingerprint re-use can be seen in Figure 19.
In order to transform the previous q-gram fingerprint into the next q-gram fingerprint Wi+1 all
that is needed is the previous fingerprint Wi, the previous character s̄i, and the new character
s̄i+q that is not already a part of the previous fingerprint. Expression (3.2) then removes the
character that is no longer a part of the fingerprint, multiplies the remaining q − 1 characters
by z in order to shift all letters one spot to the left, and then add the new character. When this
process is complete the previous fingerprint is transformed into the current fingerprint without
the need to do unnecessary computations.

3.2.2 Finding the distance

After we have established the q-gram profiles for the strings we wish to compare, these can
be used to compute the distance between the two strings. The q-gram algorithm uses the L1-
distance [50] (also known as the absolute distance, Manhattan distance or city block distance)
between the two q-gram profiles. Since both of the q-gram profiles Gq(S1) and Gq(S2) for strings
S1 and S2 must be computed using the same alphabet and q-value, they will both be vectors of
the same length where identical index values represent the same exact q-gram within the vectors.
This makes the vectors easy to iterate and sum the absolute distance between the q-grams.

Given two strings X and Y represented as q-gram profiles Gq(S1) and Gq(S2), the q-gram
distance Dq(S1,S2) can be formally defined as follows:

Dq(S1,S2) =
∑
v∈Aq

| Gq(S1)[v] −Gq(S2)[v] | (3.3)

The algorithm for computing the q-gram distance will iterate through the q-gram profiles
Gq(S1) and Gq(S2), and for each item finds the absolute value of the difference between the two
profiles using the absolute distance. Each item in the profile is a numerical value that represents
the number of times a specific q-gram occurs in the string the profile represents. Getting the
same item from two different profiles allows us to find the difference in the number of times the
corresponding q-gram occurs between the two strings. This distance will then be added to the
total distance, thus yielding the total q-gram distance between the strings S1 and S2 at the end
of the algorithm.

3.2.3 Examples

To fully understand how q-gram works we will take a quick look at a couple of q-gram examples.
In these examples we will adjust the alphabet and q in order to provide a better understanding
of the possibilities with q-grams. To keep the examples understandable we will use small values
for q.

Example 1 — 2-gram with binary alphabet
Let us assume that we want to find the 2-gram (q-gram where q = 2) of two strings X and
Y using the binary alphabet. The first string S1 = 10101010 and S2 = 1101100. Because we
are using the binary alphabet and the only two allowed characters are 0’s and 1’s, the alphabet
A = {0, 1} with cardinality |A| = 2. Both S1 and S2 consist only of 0’s and 1’s, and are both
therefore also in the set A∗ as required. This means that the set of all possible 2-grams (every
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variation of q = 2 consecutive characters) Aq = {00, 01, 10, 11}. The first thing we need to
do is to compute the 2-gram profiles for both strings S1 and S2. We can see that S1 contains 0
occurences of 00, 3 occurences of 01, 4 occurences of 10, and 0 occurences of 11. This results
in the 2-gram profile G(S1) = (0, 3, 4, 0). If we repeat the procedure for S2 we see that S2’s
2-gram profile G(S2) = (1, 1, 2, 2). At this point all that remains is to compute the L1-distance
between the two 2-gram profiles Gq(S1) and Gq(S2). Using Gq(S1) and Gq(S2) we find that
Dq(S1,S2) = |0 − 1| + |3 − 1| + |4 − 2| + |0 − 2| = 7.

As we can see, computing the 2-gram distance of a small alphabet like the binary is rather
simple to do manually by hand. Each 2-gram profile is a vector of | A |

q = 22 = 4 elements.

Example 2 — 3-gram with ASCII alphabet
Let us assume we want to find the 3-gram (q-gram where q = 3) of two strings S1 and S2

using the US-ASCII alphabet. The first string S1 = “Kitten” and S2 = “Sitting”. The regular 7-
bits US-ASCII alphabet consists of 128 different characters. However, because 33 (the first 32
and the last one) of the characters are control characters and not used in simple text strings
without linefeeds and carriage returns, these can be discarded. This leaves an alphabet consist-
ing of lower case letters (a-z), upper case letters (A-Z), numbers (0-9) and special characters
(mathematical symbols, comma, question mark, exclamation mark, etc.). As a result the alpha-
bet A = { , . . . ,a,b, . . . , ∼} with cardinality |A| = 95. With this alphabet and q=3 we get the set
of all 3-grams Aq = { , . . . ,aaa,aab, . . . , ∼∼∼} consisting of all possible 3-gram permutations
in the alphabet A. For the 3-gram profile Gq(S1) we see that it contains “Kit”, “itt”, “tte”, “ten”
with only one occurrence of each thus giving the 3-gram profile vector for X the value 1 in the
fields belonging to each of these 3-grams, while all other fields are set to 0. For the 3-gram profile
Gq(S2) we see that it contains “Sit”, “itt”, “tti”, “tin”, “ing” with only one occurrence of each, thus
giving the 3-gram profile vector for Y the value 1 in the corresponding fields while all other fields
are set to 0. When calculating the Dq(S1,S2) using the previously calculated Gq(S1) and Gq(S2)

profiles we see that they have different values for 7 fields where each has the value 1, thus giving
the distance Dq(S1,S2) = 7.

Computing the 3-gram distance with a large alphabet like the US-ASCII is a much more te-
dious task to do manually by hand, compared with the 2-gram distance with the binary alphabet
in the first example. The reason is that as the alphabet and the q-value increases in size, so does
the vectors used to represent the q-gram profile. In example 2 each of the profiles Gq(S1) and
Gq(S2) needs to store | A |

q = 953 = 857375 items each. Although this may seem like a lot of
numbers, this is still no problem for a computer to handle. As we will see later, this problem can
be reduced using the so-called compact q-profile.

3.2.4 Performance

The biggest advantage of the q-gram distance is the performance of the algorithm for its com-
putation compared with the performance of computation of other distance measures used in
approximate pattern matching algorithms. When using the q-gram distance the performance
will be heavily dependent on the generation of the q-gram profile.

The suggested algorithm for creating q-gram profiles generates a vector of zq elements (where
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z is the size of the alphabet used) although each string can contain only a minimum number of
1 and maximum number of n− q+ 1 (where n is the length of the string) distinct q-grams. As a
result most elements in the q-gram profile will hold the value 0 (i.e. there are 0 occurrences of
most of the possible q-grams). This means that the time and space complexity of computing the
q-gram profile are as follows [47]:

Lemma 1 The q-gram profile Gq(S) of a string S with length n can be computed in O(n) time
and occupies O(zq) space.

We can see that storing all the 0’s is inefficient with regards to space complexity, and inefficient
with regards to computing the L1-distance as the Dq(S1,S2) would have to iterate through all
the zq possible q-grams even though most of them are not used. This can be solved by using
the so-called compact q-gram profile [47] where only the q-grams that occurred within the
string (i.e. elements that have a value higher than zero) are stored in the q-gram profile. This
can be implemented using standard hashing techniques and data structures. As a result the
space needed to store the profile and the time needed to iterate the profile will be significantly
reduced [47]:

Lemma 2 The compact q-gram profile Gq(S) of a string S with length n can be computed in
O(n) expected time and occupies O(n) space.

We can see that the time/space complexity efficiency of computing the q-gram distance is
highly dependent on which method we use to store the q-gram profile. If we assume we use the
more efficient compact q-gram profile, the time complexity of computing the distance between
two strings is linear [47]:

Lemma 3 Given the q-gram profile of two strings X and Y with length n and m respectively,
the q-gram distance Dq(X, Y) between X and Y can be computed in O(n+m) time.

Performance advantages for misuse detection

In addition to the lower time complexity and thus faster running time of the q-gram distance
over the edit distance, the separation between the computation of the profiles and the distance
is a huge performance advantage. This means that the q-gram profiles can actually be generated
at any point before the distance is computed. The computation of the q-gram profiles is time
consuming, and by doing this only once for each string rather than for each time the distance
is computed, we can save a lot of time. This is especially the case when the same strings (e.g.
input data and signatures) are used multiple times in different distance computations. Since the
q-gram profiles only need to be computed once, this can for static strings be done when loading
the strings into memory or even be loaded from a file on the harddrive containing strings and
pre-computed q-gram profiles. For intrusion detection, this ability can be highly beneficial since
the signatures/rules can have their q-gram profiles computed when they are inserted into the
database. Furthermore, for incoming data that are to be checked for intrusion, the q-gram profile
can be computed only once when the data is received instead of each time it is compared against
a new signature/rule.

3.2.5 Disadvantages

Although computation of the q-gram distance has performance advantages over the computation
of alternative distances, it has one big disadvantage. Unlike the edit distance, the q-gram distance
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cannot be computed for strings that have a length less than the q-value. The reason is that
such strings will have no q-grams (substrings of length q) since the entire string is shorter than
q. Although this most definitely is a problem since the algorithm is incapable of processing
such a string, there are ways to circumvent this. Perhaps the most obvious way to solve the
problem is to pad the string until it is of length q (i.e. holds exactly 1 q-gram/substring of
length q). Another suggestions to circumvent the problem may be to process these short strings
with another pattern matching algorithm that is capable of processing such strings. Another
disadvantage is, as mentioned, that the q-gram distance is considered a pseudo-metric. This
means that the q-gram distance may be less accurate than alternative distance metrics. However,
how much of a problem this really is in our particular case is open for discussion. Since our
search is approximate, such inaccuracies should be found by the second stage of our two-stage
approximate search algorithm, and as a result have little effect on the number of false positives.

3.3 Exhaustive pattern matching

When the first stage in our two-stage approximate search algorithm has reduced the dataset,
an exhaustive search algorithm may inspect the reduced dataset closer. As previously explained,
an exhaustive search over the dataset may use a sliding search window where the content of
the entire window is compared with the input data. The pattern matching algorithm used for
comparing the window with the input data may vary depending on the application. Perhaps
the simplest algorithm for exhaustive pattern matching is the brute-force algorithm discussed
in the state of the art chapter. However, considering that the brute-force algorithm is an exact
search algorithm without fault-tolerance, this may not be sufficient for approximate search. For
fault-tolerant search, the window could for instance use one of the previously suggested dis-
tance measures (e.g. the edit distance) for comparing the content of the window with the input
against a pre-defined threshold. Other possibilities for exhaustive fault-tolerant search include
data mining techniques such as dtSearch [51]. The exhaustive search in the second stage of our
approximate search algorithm is straightforward and because of that it is not discussed here.

3.4 The IDS data reduction algorithm

At this point we have presented the theoretical concepts of the general two-stage approximate
search intrusion detection and the q-gram distance pattern matching. We now look at how the
q-gram distance can be implemented into the first stage of the two-stage intrusion detection
analysis engine.

3.4.1 Generating q-gram profiles

The complete algorithm for computing the q-gram profile Gq(S) for a string S is given in pseudo-
code as follows:

Algorithm 1 QProfile(S) - Get the q-gram profile
Input:

• S - An arbitrary string of which we want to find the q-gram profile.

• q - Size of the q-grams used.
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Output:

• A vector that contains the q-gram profile of the string S.

begin

profile[] = new Vector[zq]

wi = 0

comment Computing the first q-gram fingerprint

for i←− 1 to q do

begin

wi = wi+ (S[i] ∗ z(q−i))

end

comment Count the occurrence of the first q-gram fingeprint

profile[wi] = 1

comment Computing the rest of the q-gram fingerprints

for i←− 1 to n− q+ 1 do

begin

wi = wi+ ((((wi− S[i]) ∗ z(q−1)) ∗ z) + S[i+ q])

comment Count the occurrence of the next q-gram fingeprint

profile[wi] = profile[wi] + 1

end

return profile

end

The algorithm above is a conceptual implementation of the previously discussed expres-
sion (3.1) and expression (3.2) for finding, and counting, each q-gram in string S. The idea
is to, for each q-gram, compute the fingeprint, which is used as the position within the q-gram
profile to increase when counting the specific q-gram. The algorithm can be summarized with
the following steps:

1. Initialize a new empty q-gram profile (all fields equal to zero).

2. Compute the first q-gram fingerprint in S using the expression (3.1).

3. Count the first q-gram using the q-gram fingerprint.

4. Compute the next q-gram fingerprint in S using the expression (3.2).

5. Count the next q-gram using the q-gram fingerprint.
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6. Repeat the steps 4–5 until all q-grams are counted.

7. Return the q-gram profile.

3.4.2 Computing the q-gram distance

The algorithm for computing the L1-distance given two q-gram profilesGq(X) andGq(Y) is given
below as pseudo-code:

Algorithm 2 QDist(px,py,q) - Get the q-gram distance

Input:

• px - The q-gram profile Gq(X) of the string X.

• py - The q-gram profile Gq(Y) of the string Y.

• q - Size of the q-grams used.

Output:

• A positive integer that holds the q-gram distance between the strings X and Y.

begin

dist = 0

for i←− 0 to | A |
q − 1 do

begin

comment Finding the distance between the strings for each q-gram

dist = dist + Abs(px[i] − py[i])

end

return dist

end

The algorithm above is used to find the distance between two strings X and Y by using their
q-gram profiles px and py. This algorithm is basically just an implementation of the L1-distance
over two equally sized vectors. We assume that the two q-gram profiles have already been pre-
computed using the previous algorithm. The idea is that the algorithm will iterate the two q-
gram profiles at the same time and for each element (which represents the occurrence count of a
unique q-gram) find the difference between the values stored in the two profiles. The algorithm
can be summarized in the following steps:

1. Set the initial distance dist to 0, so that if all q-gram counts are equal we have 0 as distance.

2. Find the absolute difference between the first q-gram in the two profiles and add it to the
total distance dist.
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3. Repeat step 2 for all possible q-grams (i.e. every possible q-gram in Aq).

4. Return the distance between the strings X and Y.

3.4.3 The search algorithm

Now that we have defined the algorithms for generating the q-gram profiles and finding the
distance between these, we can finally define the search algorithm:

Algorithm 3 - Finds which signatures are eligible for the exhaustive search

Input:

• P - Traffic packet/activity data.

• D - Signature database denoted as a list of IDS rules.

• q - Size of the q-grams.

Output:

• A sorted list F of accepted signatures for finer, exhaustive, inspection.

begin

comment Computing the q-gram profile of P

pp = QProfile(P,q)

comment Comparing P with every signature in D

for i←− 1 to | D | do

begin

S = D[i]

comment Compute the q-gram profile of the current signature

ps = QProfile(S,q)

d = QDist(ps,pp,q)

comment Store the distance and the position of the signature into F

Store (d, i) into F sorted ascending by d

end

return F

end

This algorithm represents the first stage in our two-stage approximate search process as de-
scribed in figure 16. It takes the content of the incoming packet and matches it against the
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complete signature database. The distance between the packet P and the signature S is then
saved together with the position of the signature in the database into a list. This list is sorted in
ascending order based on the value of d, thus making a ranked list where better results come
first. The list is then returned for use with a finer, exhaustive, search algorithm. The exhaustive
algorithm can then check all items in the list until the d value exceeds the error threshold k. We
can summarize the algorithm in the following steps:

1. Compute the q-gram profile pp for the input P.

2. Fetch a signature S from the signature database D.

3. Compute the q-gram profile ps for the signature S.

4. Find the distance between their q-gram profiles pp and ps.

5. Store a tuple consisting of the position/index of the signature within the database and the
distance in a list sorted by the distance.

6. Repeat the steps 2–5 for all the signatures in the signatures.

7. Return the sorted list for use in the exhaustive search in the second stage.

One important part of this algorithm is that the q-gram profile of P is computed before the
signature database iteration. As the q-gram distance of P remains the same for each comparison,
this only has to be computed once, and as a result will save us some time. This concept can
also be applied to the signature database. The q-gram profiles of all the signatures could be pre-
computed and stored with the signatures. As a result we could also avoid the time needed to
compute the profile of all the signatures for each incoming packet.
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4 Experimental work

In this chapter we present our experimental work based on the theoretical basis presented in the
previous chapter. The experimental work is first and foremost designed in order to answer our
research questions, and will hopefully tell us how efficient approximate search using the q-gram
distance is for misuse-based intrusion detection.

4.1 Scope

In this thesis we have looked at how the q-gram distance and approximate search can be applied
to misuse-based intrusion detection from a theoretical point of view. In order to find the efficiency
of q-gram distance and approximate search as a method for intrusion detection we need to carry
out several experiments. We look at the accuracy and performance of the algorithm for distance
computation in order to gain a better understanding of how well it is suited for approximate
search in intrusion detection. The results are matched against other previously suggested meth-
ods for approximate search as a reference. Our focus in this experiment is on the first stage in the
two-stage approximate search procedure. Furthermore, we limit our experiments to sequential
searches.

4.2 The method

In order to find the efficiency of approximate search for misuse-based intrusion detection we
need to conduct several experiments. The method we have chosen is to implement the previously
discussed algorithms and let them process actual signatures from an intrusion detection system
against a set of input data. We will discuss each of our different experiments in further detail
later, but first we give a general overview of our chosen method.

We implement the following three algorithms for distance measures for pattern matching
algorithms and compare their properties against a signature database and an input dataset:

• q-gram distance

• ordinary edit distance (for comparison)

• constrained edit distance (for comparison)

Our primary focus in the experiments is on the q-gram distance. However, we also need to
implement the edit distance and the constrained edit distance for comparison. For the q-gram
distance, the q-value (i.e. the size of the q-grams) is in our experiments adjusted to different
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values in order to see how this value influences the results. The same applies for the parameter
of the constrained edit distance: the maximum number of consecutive deletions constraint vari-
able F. Since the input data in our experiments is always shorter than the rules, the insertion
constraint variable G is not needed in the constrained edit distance. As a result we will have a
lot of different variations of the algorithms that need to be compared. In our experiments we
used q-grams of sizes 1, 2 and 3. If we were to use larger q-grams we would have to use another
q-gram algorithm due to memory constraints. Furthermore, larger q-gram would have had is-
sues with shorter search patterns, and thus excluded a lot of patterns from the search. We also
adjusted the constrained edit distance’s deletion constraint F between 1 and 5 in order to allow
the length of runs of deletions to be between 1 and 5. This particular range was chosen because
1 is the minimal value if we are to allow deletions while 5 is a rather long length of runs of
deletions which should account for all patterns that are “similar enough”. As a result, a deletion
constraint between 1 and 5 should cover the most realistic cases of the constrained edit distance.
Furthermore, the threshold values ∆ were adjusted between 0 and 3 in order to allow both few
and many errors. For the q-gram distance, this was later increased to 15 for reasons we will look
into in our results chapter.

We have previously presented the concept of approximate search for misuse-based intrusion
detection where a signature was accepted as a candidate for finer inspection in the second stage
if it matched the input data with no more than k errors. In our experiment we use this concept
to match each rule in the signature database against each item in an input dataset. This means
that we perform approximately 43 000 comparisons (i.e. each input matched against each rule).
Since the SNORT rules are much longer than the input data (i.e. contain a lot more data than
just the content field), we useN−M+∆, whereN is the length of the rule,M is the length of the
input, and ∆ is the predefined threshold value, as our threshold in order to take this difference
in lengths into account. This concept is presented in Figure 20. If the distance between the input
data and the rule is less than or equal to N −M + ∆, we accept the rule for further inspection.
In our experiments we vary the ∆ threshold between 0 and 3 in order to see how the threshold
value affects the results.

Figure 20: Difference in length between rule and input

4.3 The dataset

We have chosen to use standard predefined Snort rules as our signature database considering
that SNORT is not only the de-facto standard intrusion detection system, but also because it is
freely available. More specifically we have chosen the standard web-misc ruleset (web-misc.rules)
as this set contains a large number of rules and all of the rules have a content field representing
the actual signatures. As SNORT can detect many types of attacks, including those that do not
use signatures, the web-misc ruleset is a safe bet since all the rules have this content field. This
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allows us to perform our experiment on real signatures that are actually in use, thus making our
results more illustrative. The rules are also padded (using the character “#”) to equal length (i.e.
all rules have the same length as the longest rule) to make sure that a shorter rule does not get
an unfair advantage (i.e. shorter distance) over the others when computing the distance.

In addition to the signature database we also need to have input data to match against the
signature database. The input will represent the content (i.e. body) of a network packet. Because
the headers of the packet are irrelevant for our pattern matching we only care about the actual
content. We have chosen to use the content of the selected rules as the input data. We extract each
unique content field (124 in total) from the web-misc rules and use these as our input/content.
That way we get at least one match for every rule in the dataset, but also get a lot of situations
where a specific input does not match the specific rule. The advantage of this approach rather
then using real network traffic is that random packets do not influence our results (i.e. we have
complete control over the data and environment), and that the experiment is easily repeatable.

4.4 The experiments

In order to highlight different aspects of the efficiency we have implemented the described exper-
imental method in different experiments. We look at the distance computation algorithms both
isolated and compared with each other. As a result we hope to present the selected algorithms
differences in performance and accuracy.

4.4.1 Data reduction

In our first experiment, we look at the data reduction properties of the q-gram distance. The
results we want to find are how much the q-gram distance reduces the dataset in the first stage of
the approximate search procedure. A larger reduction (i.e. a smaller dataset in the second stage)
is obviously better for performance as the exhaustive search will have fewer records to search.
The goal is not only to see how much data that can be removed from the exhaustive search, but
also how well the q-gram distance does this compared with the ordinary edit distance and the
constrained edit distance. A general diagram of this experiment can be seen in figure 21.

Figure 21: Data reduction experiment

In the experiment we compare each input item with each rule in the signature database (i.e.
the Snort web-misc.rules) using the q-gram distance for pattern matching. If the distance is less
than or equal to the threshold N−M+∆ we will, as described earlier, accept the rule for further
inspection. We count the number of comparisons that the pattern matching accepts as items
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for the reduced dataset. This count is used to compute the data reduction compared with the
original signature database. This experiment is repeated for all values of q and all values of ∆ in
order to see the reduction for different variations of the algorithm and with different acceptance
threshold. It is also repeated for the ordinary edit distance and the constrained edit distance (with
all selected variants of deletion constraint F) to find the difference in data reduction properties.

4.4.2 Accuracy comparison

Another experiment tests accuracy of the approximate search methods implementing q-gram and
edit distance. As we have seen, the ordinary edit distance and the constrained edit distance have
been successfully applied in [43]. In this experiment, we look at how accurate q-gram distance
is for pattern matching when compared with these two algorithms. We use the ordinary edit
distance and the constrained edit distance as the “correct” answer to what should be accepted in
the first stage, and measure the q-gram distance’s accuracy accordingly. If the q-gram distance
can provide results similar to the ordinary edit distance and the constrained edit distance we
can use previous theory to see the q-gram distance’s accuracy and data reduction capabilities. A
general diagram of this experiment can be seen in Figure 22.

Figure 22: Algorithm accuracy comparison experiment

In the experiment we compare each input item with each rule in the signature database
using the q-gram distance and compare the result with the edit distance. As with the previous
experiment, the rule will be accepted if the q-gram distance is less than or equal to the threshold
N−M+∆q. Furthermore, the same input item and rule is also matched using the edit distance
with its independent threshold value N−M+ ∆e.

We use the Hamming distance as a metric for comparing the algorithms. If both algorithms
(using the q-gram distance and the edit distance) accept or reject the rule (i.e. have the same
result) the comparison will add 0 to the Hamming distance. If one algorithm accepts while the
other does not (i.e. have different results) the comparison will add 1 to the Hamming distance.
After comparing all input items with all rules we have the Hamming distance between the vectors
corresponding to the algorithms, telling us for how many comparisons they differ. This allows us
to see how similar results the algorithms produce with regard to data reduction and which rules
they accept.

The experiment is repeated for all combinations of the q-value, and the threshold values ∆q
and ∆e. Furthermore, it is also repeated for the q-gram distance compared with the constrained
edit distance for all values of q, deletion constraint F, threshold value ∆q and threshold value ∆e.
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After using all the variations of the experiment we are able to tell if the q-gram distance can for
any q, F, ∆q or ∆e provide similar results as either the ordinary edit distance or the constrained
edit distance.

4.4.3 Performance comparison

The previous experiments have looked at the data reduction and accuracy properties of the
algorithms. The data reduction increases performance in the exhaustive search phase. However,
we also wish to find the raw performance of the different algorithms in the first stage in order to
reduce the overall execution time of the entire two-stage procedure. In this experiment we look
at the difference in performance between the different pattern matching algorithms used in the
first phase. A general diagram of this experiment can be seen in Figure 23.

Figure 23: Algorithm performance comparison experiment

In this experiment, each input item is matched against each rule in the signature database
and the execution time used for the comparisons is measured using a “stop watch”. Before we
start the process of comparing all input with all the rules we store the current timestamp of the
system. After storing the timestamp we start execution of the pattern matching algorithm for all
inputs and rules as described earlier. Once all input items are compared with all rules we repeat
this process 19 more times so each input item and each rule is compared 20 times in total. The
reason for this is that we wish to reduce random noise (e.g. unfortunate process scheduling) that
may influence the results. After finishing the processing 20 times the new current timestamp
is stored. The difference between the timestamps represents the elapsed time in the processing
interval and tells us how much time was spent processing. Since we repeat the pattern matching
20 times we divide the result by 20 in order to get the average runtime. This experiment is
repeated for the ordinary edit distance, the constrained edit distance, and for the q-gram distance
for all previously chosen values of q.

Since we are only interested in the performance difference between the algorithms, we only
run the pattern matching on the data without checking whether rules are accepted or rejected.
After the moment at which the distance is computed, the rest of the search algorithm is the same
for all the pattern matching algorithms and as a result will not vary in execution time between
the algorithms, and can therefore be discarded from our experiment.

The problem with short strings is also taken into consideration by removing strings shorter
than 3 characters (our biggest q-gram size) from the dataset. The reason for this is that all
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algorithms should process exactly the same amount of data, and since the q-gram distance cannot
process these strings we need to remove them from our benchmark so that the q-gram distance
does not get an unfair advantage by skipping these. Furthermore, all data is preloaded into
the memory so that the IO performance of the test environment should not slow down the
algorithms. It is a well known fact that IO is a bottleneck in modern computer systems, and we
do not want the performance of the algorithms to be slowed down by waiting for IO operations.
For the q-gram distance, all the q-gram profiles for all the rules are pre-computed (as this is one
of the performance benefits), but the input data’s q-gram profile is computed once during the
processing. Furthermore, we will use the compact q-gram profiles so that we can keep all q-gram
profile in memory coupled with the rules they represents. We believe that this will well represent
the way the q-gram distance would be used in an intrusion detection setting and consequently
will give us the most illustrative results.

4.5 The environment

Many intrusion detection products, like Snort, run as software on regular computers. For our
experiments we use a computer with components that should have about the same processing
power and resources as current computer systems. The major components and software versions
are listed below:

• AMD X2 3800+ 2.0 GHz, Dual Core processor

• 2 GB of internal memory

• 74 GB Western Digital Raptor 10 000 RPM hard drive

• Windows XP Pro SP2 (32 bits) with all current updates

• .NET Framework version 3.5

Both the speed of the processor, amount of internal memory, and the speed of the harddrive
are properties that will influence the performance of the algorithms. It is therefore important
to keep in mind that these components should roughly represent a normal computer system by
today’s standards. Windows XP SP2 with .NET Framework 3.5 should also represent the current
software versions (i.e. XP being the most popular OS at the time of this writing and .NET 3.5
being the latest .NET Framework being released on windows update). During the experiments,
no other applications are running except built-in services and drivers. All of the experiments have
been implemented using the C# language running on the .NET Framework with no additional
debugging information attached to the processes.
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4.6 Reliability

Since our method of choice for this thesis is to implement different algorithms and compare
their properties, we must make sure the algorithms work as intended. If the algorithms do not
work correctly, our results and our conclusions will be wrong as a consequence. In order to make
sure we have the maximum level of reliability, every algorithm is implemented as described
formally according to their original papers or papers describing improvements and applications
for the algorithms. In addition, we have used the Visual Studio.NET debugging capabilities to step
by step make sure each statement and control sequence within the algorithm implementation
behave as intended with a given input and an expected output. Furthermore, we have used the
algorithm implementations on test data described in the papers and compared the results with
the expected results (i.e. reimplemented previous experiments described in previous papers). We
have also tested the algorithms with small data items that can, and have been, verified manually.
This should all help making sure that our experiments and results have the required level of
reliability.

4.7 Expectations

Based on the properties of the different pattern matching algorithms we have certain expecta-
tions for the results based on the known theory. First and foremost we know that the q-gram
distance has successfully been used to estimate the edit distance as a lower bound. We believe
that, based on this theory, it is reasonable to believe that the q-gram distance can be used in our
method as a means for approximate search. However, there has been no such comparison with
regards to the constrained edit distance. Furthermore, the q-gram distance is said to have a time
complexity of O(n+m) while the edit distance’s time complexity is O(nm) so it is safe to expect
that q-gram will be faster than the edit distance. Considering that the constrained edit distance
is built upon many of the same principles as the edit distance, we also expect that the q-gram
distance should be faster than the constrained edit distance.
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5 Results

In this chapter we present the results from our experiments. Because of the large amount of
results generated from all the variations of the algorithms in our experiments (in some cases
several hundreds) we have to limit the amount of data to present to only the best and the worst
cases in some of the experiments.

5.1 Data reduction

In our data reduction experiment we wanted to see how many comparisons we could discard
from exhaustive search in the second phase of the two-stage approximate search algorithm. The
more comparisons we can remove from the search, the better the performance of the entire
search algorithm. As a result, a higher data reduction is better for approximate search with
regards to performance. We have looked at the data reduction properties for all three algorithms,
but our primary focus is on the q-gram distance. The edit distance and the constrained edit
distance are included as a reference. The data reduction R is the percentage of the number of
accepted input/rule comparisons a out of the total number of input/rule comparisons c:

R = (1 −
a

c
) ∗ 100 (5.1)

In Figure 24 we can see the amount of data that is accepted by the q-gram distance, and
thus selected to be searched using the exhaustive search in the second stage of our approximate
search algorithm. What we can see here is that using a low threshold value ∆will give us a 99.3%
data reduction for q-grams of size 3, and 99.2% data reduction for q-grams of size 2, in the first
stage. This means that only 0.7% and 0.8% of the original data needs to be inspected by a slow,
exhaustive, search algorithm in the second stage. By increasing the threshold, the amount of data
will be slightly increased. With a threshold of 2 and 3, q-grams of size 2 and 3 will accept 4.9%
and 4.2% of the original dataset for finer inspection in the second stage. For q-grams of size 1,
the results differ a bit. For a low threshold value (0 and 1), 23.9% of the original data remains in
the second stage. This is only a 76.1% data reduction. Compared with the 99.3% reduction for
q-grams of size 3, this is not very good. It becomes even worse when increasing the threshold to
2 and 3. At this point, 55.5% of the original dataset is accepted for the second stage, thus only
giving a 49.5% data reduction. The unsatisfactory results from q-grams of size 1 may be related
to the fact that when using 1 letter q-grams we are only counting characters, thus making the
filter much more inaccurate. However, despite the fact that q-grams of size 1 give a rather low
data reduction, the larger q-gram sizes give us a high data reduction. This should be considered
a good result and thus should improve the performance of the exhaustive search in the second
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Figure 24: Data needed to be searched with exhaustive algorithm after data reduction

stage significantly. Another observation that can be made from this figure is that two and two
threshold values give the same amount of data reduction.

However, although the data reduction is high, the results from the q-gram distance looks
slightly different when compared with the other distance measures. In Figure 25 we can see the
amount of data that is removed during the first stage for all the different distance measures at
different threshold values. Here we can clearly see the data reduction properties of the different
measures compared with each other. The q-gram distance has the highest data reduction of all
the measures at low threshold values, which is good. The q-gram distance gives a 99.7% data
reduction at this threshold, while the constrained edit distance and the ordinary edit distance
follow with 98.4% and 91.9% respectively. Considering that all distance measures accept all
the items that would be a match when using an exact match, the q-gram distance provides the
best data reduction at this threshold. However, as we increase the threshold, and by this expect
more data to be accepted and thus get a lower data reduction, the q-gram distance keeps a
high data reduction. The ordinary edit distance and the constrained edit distance, on the other
hand, have a steady decrease in the data reduction as we increase the threshold. As we can see
from Figure 25, the constrained edit distance and the ordinary edit distance will give us a data
reduction of 63.7%–71.3% (depending on F) and 40.9% when using 3 as our threshold value.
The q-gram distance, on the other hand, will at the same threshold give us a 95.1%–95.8% data
reduction depending on the size of the q-grams.

The point of the threshold value is to allow data with more errors to be accepted, and thus a
behavior like the ordinary edit distance and the constrained edit distance seems desirable. One
theory is that the q-gram distance is more strict, and thus could achieve the same behavior by
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Figure 25: Data reduction comparison

increasing the threshold value further beyond 3.

In Figure 26 we have increased the threshold value from 3 to 15 for the q-gram distance (with
q-gram size 2 and 3). As we can see, the q-gram distance will, like the ordinary edit distance and
the constrained edit distance, accept much more data. If we compare Figure 26 with Figure 25
we can see that the q-gram distance using the threshold 8 or 9 is roughly comparable with the
constrained edit distance using the threshold 3. This further strengthens our belief that the q-
gram distance is stricter than the other two distance measures. This may be a positive property as
this will allow the q-gram distance to be adjusted more fine grained than the other measures, as
each step on the threshold scale will have a smaller impact on the amount of data to be accepted.

As we can see from the figures, all three algorithms provide a significant data reduction. In
all cases the threshold value is a key variable that significantly influences the size of the data re-
duction. Unfortunately, the q-gram distance is not as good as the other two algorithms at scaling
with the threshold value ∆. What this means is that when increasing the threshold value to allow
a more fault-tolerant search, the q-gram distance becomes more strict than the other algorithms,
and accepts far less input/rule comparisons for further inspection. This can, however, be adjusted
by increasing the threshold even further, and as a result get a reduction behavior that is more
similar to the constrained edit distance and the ordinary edit distance. In the case of the q-gram
distance, the q-value also seems to have an impact on the results, especially for q-grams of size 1
compared with higher values. Although 40% to 60% data reduction results (i.e. the worst cases
from all algorithms) may appear to be bad, this still means that the second stage of our intru-
sion detection approximate search algorithm will have to search 40% to 60% less data, and may
therefore still be significantly better than searching the entire dataset. Unfortunately, although
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Figure 26: Data reduction for the q-gram distance with higher threshold

the data reduction properties will benefit the performance, this fact says little about the accuracy
of the algorithms. For fault-tolerant search we want to accept signatures that resemble a match
with no more than ∆ errors, so the highest possible data reduction will not necessarily mean that
all similar matches will be accepted. As a result it may be beneficial to find a compromise where
we trade part of our data reduction (and therefore the performance) for better accuracy.

5.2 Accuracy comparison

In our accuracy comparison experiment, we wanted to find out how well the q-gram distance
could be used to accurately estimate the edit distance and the constrained edit distance for
approximate search in misuse detection. The accuracy in this case is defined as the number of
input/rule comparisons that give the same result when using the q-gram distance as when using
the ordinary edit distance and constrained edit distance. In this experiment we looked at for
how many such input/rule comparisons the q-gram distance gives a different result compared
with the other two distance measures. The error percentage is defined as the percentage of the
number of accepted input/rule comparisons that differ dH (i.e. the Hamming distance) between
the two distance measures out of the total number of input/rule comparisons c:

E = (1 −
dH

c
) ∗ 100 (5.2)
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5.2.1 Constrained edit distance

First we look at how accurate the q-gram distance is when used in pattern matching compared
with the constrained edit distance. In Table 1 we can see the results of the comparison between
the different variations of the q-gram distance and constrained edit distance. Since all the vari-
ations would give us a table with hundreds of different entries we have chosen to look only at
the best results for each variation of the constrained edit distance, considering that this is the
measure we wish to estimate using the q-gram distance.

In Table 1 we see all the different variations of the constrained edit distance (i.e. all variations
of the threshold value ∆e and the F constraint) and which variations of the q-gram distance (i.e.
variations of the q-gram size and threshold value ∆q) can provide the most similar results. Each
entry in Table 1 represents one of the different constrained edit distance variations with the q-
gram distance variation that gives the best result when comparing the q-gram distance with this
particular variation of the constrained edit distance. The first two columns, q and ∆q, represent
the parameters used in the q-gram distance variation that best estimated the current constrained
edit distance variation. The next two columns, ∆e and F, represents the parameters the current
constrained edit distance variation uses. The last column is the percentage of the input/rule
comparisons that give a different result when using the q-gram distance. An entry in the table
can thus be read as: “the q-gram distance with q-grams of size q and a threshold ∆q can be
used to estimate the constrained edit distance with deletion constraint F and threshold ∆e, with
no more than E percent errors”. In Figure 27, these results are presented visually as the lowest
percent of errors we can achieve when using the q-gram distance instead of the constrained edit
distance.
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Figure 27: q-gram/constrained edit distance accuracy comparison differences
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What we can see from Table 1 is that for any threshold value ∆e and deletion constraint F,
the constrained edit distance can be replaced by at least one variation of the q-gram distance
with less than 10% errors (i.e. less than 10% input/rule comparisons with different result). If we
look at the best result, we can see that this is achieved when using a threshold value ∆e = 0 and
when using large q-grams. In this case only 6 out of more than 43 000 input/rule comparisons
were wrong compared to the constrained edit distance. This is no more than 0.014% of the total
amount of input/rule comparisons. As observed during our data reduction experiment, we need
a higher threshold value ∆q than the threshold value ∆e in order to achieve a good estimate of
the constrained edit distance when using the q-gram distance. As an example we can see that
when using ∆e = 3 we need to set the q-gram distance’s threshold value ∆q = 8 in order to get
the best estimate.

In addition to the results in Table 1, which represent only the best cases, we have som gen-
eral statistics about the rest of the q-gram/constrained edit distance comparisons The best re-
sults were achieved when we used low threshold value ∆e. In the complete results table, 20
of the q-gram/constrained edit distance combinations only differed in less than 0.025% of the
input/rule comparisons. Furthermore, 40 of the q-gram/constrained edit distance combinations
only differed with less than 5% errors. In addition, more than 150 of the q-gram/constrained
edit distance combinations managed to differ in less than 10% of the input/rule comparisons.
An interesting observation from the results is that only q-grams of size 2 and 3 would provide
the best estimates. In the complete results table, q-grams of size 1 were dominating the results
with the highest amount of errors compared with the constrained edit distance. This does not
come entirely as a surprise since we know that the q-gram distance with q-grams of size 1 is
just a matter of counting single letters, and after seeing the results (Figure 25) in our data re-
duction experiment. Since q-grams of size 1 already in the data reduction experiment appeared
to be inaccurate, and allowed a lot more data to be accepted compared with the other distance
measures, it is certainly no surprise that it differs too much from the constrained edit distance.

5.2.2 Ordinary edit distance

In comparison with the constrained edit distance we saw that the q-gram distance in many
cases could produce similar results as the constrained edit distance with only a few errors. In
addition to the constrained edit distance, we compared the q-gram distance with the ordinary
edit distance to see whether or not the q-gram distance could be used to estimate the ordinary
edit distance. In Table 2 we can see the results of the comparison between the different variations
of the q-gram distance and ordinary edit distance. As with the q-gram/constrained edit distance
accuracy comparison, we have also chosen here to only look at the best results for each variation
of the ordinary edit distance, considering that this is the measure we wish to estimate using the
q-gram distance.

In Table 2 we see all the different variations of the ordinary edit distance (i.e. all variations
of the threshold value ∆e) and which variations of the q-gram distance (i.e. variations of the
q-gram size and threshold value ∆q) can provide the most similar results. Each entry in Table 2
represents one of the different ordinary edit distance variations with the q-gram distance varia-
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q ∆q F ∆e E %
3 0 0 1 0,014
3 0 0 2 0,060
3 0 0 3 0,118
3 0 0 4 0,150
3 0 0 5 0,208
2 2 1 1 5,060
2 2 1 2 5,152
3 2 1 3 5,949
2 4 1 4 6,118
2 4 1 5 6,679
2 4 2 1 5,035
3 4 2 2 6,752
3 4 2 3 8,929
3 6 2 4 9,433
3 6 2 5 9,068
3 6 3 1 3,758
2 8 3 2 4,659
2 8 3 3 5,506
2 8 3 4 7,308
2 8 3 5 7,583

Table 1: Accuracy comparison between q-gram and constrained edit distance (best results)

tion that gives the best result when comparing the q-gram distance with this particular variation
of the ordinary edit distance. The first two columns, q and ∆q, represent the parameters used
in the q-gram distance variation that best estimated the current constrained edit distance varia-
tion. The next column, ∆e, represents the threshold value that the current ordinary edit distance
variation uses. The last column is the percentage of the total number of input/rule comparisons
that gave a different result when using the q-gram distance. An entry in the table can thus be
read as: “the q-gram distance with q-grams of size q and a threshold ∆q can be used to estimate
the ordinary edit distance with threshold ∆e, with no more than E percent errors”. In Figure 27,
these results are presented visually as the lowest percent of errors we can achieve when using
the q-gram distance instead of the the ordinary edit distance.

What we can see from Table 2 is that unlike the q-gram/constrained edit distance comparison,
the q-gram distance has quite a few errors when estimating the ordinary edit distance. Although
the ordinary edit distance with a threshold value ∆e can be estimated with less than 6.6% errors,
an increase in the threshold value will significantly increase the number of errors. For all the
variations of the ordinary edit distance with a threshold greater than 0, the percent of errors
is between 16%–19%. This is almost twice as many errors as the worst case when comparing
the q-gram distance with the constrained edit distance. However, we can see that although the
results are worse than the comparison with the constrained edit distance, there are still q-grams
of size 2 and 3 that gives the best estimate. Furthermore, as with the constrained edit distance
comparsion, also when compared against the ordinary edit distance, the q-gram distance needs
to increase the threshold value ∆q significantly in order to best estimate a much lower threshold
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Figure 28: q-gram/ordinary edit distance accuracy comparison differences

∆e for the ordinary edit distance.

q ∆q ∆e E %
3 2 0 6,598
2 8 1 18,756
2 10 2 18,065
2 14 3 15,697

Table 2: Accuracy comparison between q-gram and ordinary edit distance (best results)

5.3 Performance comparison

In our previous experiments we compared the data reduction and accuracy properties of the
algorithms. However, the known advantage of the q-gram distance for pattern matching is its
time complexity. In our performance comparison experiment we wanted to find the difference
in performance between the distance measure algorithms for our particular use case: intrusion
detection. In this experiment we measured the running time of each distance measure algorithm
when comparing all input data with all rules. This was done 20 times for each algorithm so that
any noise, like unfortunate processor scheduling, would not influence the results significantly.

Table 3 and Figure 29 present the total elapsed time and the average elapsed time for all
algorithms during the experiment. In the Table 3, each of the different variations (q-gram size
and deletion constraint F) are treated as individual algorithms. The threshold value is of no
importance in this context as this will influence all the algorithms equally and are therefore
not a part of the benchmark. Since the threshold computation is the same for all algorithms
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and is built in the same manner on top of the actual distance measure algorithms it is of no
importance for highlighting the differences in running time between the algorithms. The table
is sorted in ascending order with the shortest total elapsed time and shortest average elapsed
time at the top. The elapsed time is presented as minutes, seconds, and milliseconds, which
should provide a sufficient level of detail. From Figure 29 we can see that the q-gram distance
is, as expected, significantly faster than the other algorithms. In the best case where we use
q-grams of size 1, the average elapsed time for comparing all inputs with all rules is only 30
milliseconds. Even when increasing the size of the q-grams to 3 we use on average less than a
second for all comparisons. In comparison, the ordinary edit distance uses more than 10 seconds
on average while the constrained edit distance uses a minute more than the other algorithms on
average. Based on these results and previous theory there should be no doubt that q-gram holds
an enourmous advantage over the other algorithms for real-time approximate pattern matching
when using typical intrusion detection rules as input.

Name Total Average
q-gram distance (q = 1) 00:00,696 00:00,034
q-gram distance (q = 2) 00:02,417 00:00,120
q-gram distance (q = 3) 00:14,134 00:00,706
Edit distance 03:32,510 00:10,625
Constrained edit distance (F = 1) 23:18,723 01:09,936
Constrained edit distance (F = 2) 24:05,748 01:12,287
Constrained edit distance (F = 3) 24:54,024 01:14,701
Constrained edit distance (F = 4) 25:39,548 01:16,977
Constrained edit distance (F = 5) 27:04,763 01:21,238

Table 3: Performance comparison results
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Figure 29: Performance comparison results
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6 Discussion

In this chapter we summarize and discuss the results and possible explainations for the re-
sults found in our experiments. The different experiments look at different aspects of the al-
gorithms that are all important for the feasibility of our approach for approximate search in
misuse detection-based intrusion detection.

6.1 Performance

In our approximate search algorithm we used the q-gram distance as a means for gaining better
performance in an exhaustive search within the dataset. Performance is vital in any intrusion
detection system, and any problems in processing data fast enough will lead to reduced reliability
(i.e. false negatives).

In our data reduction experiment we wanted to find out how large data reduction we could
expect from the q-gram distance used in the pattern matching algorithm in the first stage of the
two-stage search procedure. A larger data reduction will allow the exhaustive search algorithm
to process a smaller dataset, and as a result lead to a huge performance gain in the second stage.
What we found was that all the algorithms, both the q-gram distance and our reference algo-
rithms, provided a significant data reduction. The amount of data that needs to be searched in
the second stage of the algorithm, after the data reduction using the q-gram distance, can be
seen in Figure 24. What we can see is that the amount of data that needs to be searched by the
exhaustive algorithm is significantly decreased. Previous work [42, 43] has shown that the con-
strained edit distance provides better data reduction properties than the ordinary edit distance.
In our experiment we could see that the q-gram distance at low threshold values and for large
q-gram sizes would provide an even larger data reduction than the constrained edit distance,
and especially the ordinary edit distance. However, when we increased the threshold value (i.e.
tried to make the algorithms accept more data and therefore have a smaller data reduction), the
q-gram distance would not scale at the same rate as the other algorithms. However, by increas-
ing the threshold value even further we were able to get the same data reduction as the other
distance measures. This may indicate that the q-gram distance is much more strict (i.e. rejects
more items) compared with the other distance measures. However, by increasing the threshold
value for the q-gram distance far beyond the threshold values used in the other two algorithms
we actully managed to achieve the same effect, and thus the same amount of data reduction.
The possibility of scaling the dataset using the threshold value is useful when we decide how
tolerant the intrusion detection system should be for errors. To see that the q-gram distance ac-
tually needs a higher threshold for reaching the same level of accuracy as the other algorithms
makes us believe that the threshold value for the q-gram distance can be adjusted more fine
grained compared with the other two distance measures, thus giving us more control of what is
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accepted and what is not. This is, of course, yet to be proven as there is no guarantee that the
data reduction procedure actually removes the correct items by just looking at the amount of
data alone.

Unlike the data reduction experiment where we wanted to improve the performance in the
second stage of the search algorithm, our performance comparison experiment looked at im-
proving the performance in the first stage. Since we already have algorithms that can perform
the data reduction properly, the performance in the first stage is the core of our thesis. The q-
gram distance is already known for its linear time complexity of O(n + m) so we wanted to
know exactly how much performance gain we could expect. We found that the q-gram distance
could outperform the other algorithms by a significant amount of time (i.e. matter of seconds)
using our IDS dataset. In our experiment we managed to check 124 input data items in about
two thirds of a second (710 ms) on average using the q-gram distance in the worst case. The
same amount of data took almost 10.5 seconds using the edit distance. To further refine the
results we see that the q-gram distance for q = 3 can process more than 190 input items on
average while the edit distance can process only 11 items on average in the same time period.
To make matters even worse, the constrained edit distance spend more than a minute on av-
erage to compare the 124 input items against our ruleset. What this tells us is that the q-gram
distance is superior to other algorithms if we only look at the raw performance alone and not
the accuracy. The constrained edit distance, which has shown to have excellent data reduction
properties, was much slower than the alternatives. This can perhaps be explained partially by
the fact that both the ordinary edit distance and the q-gram distance have been subject to much
research regarding optimizations during the last decades, while the constrained edit distance
computation algorithm as defined in [42, 43] is a rather new algorithm that has been proposed
just recently. The research regarding this algorithm has focused only on the accuracy, so it is pos-
sible that this algorithm has a disadvantage over the other algorithms regarding the performance
optimizations. We have used the reference implementation used in the previously discussed ac-
curacy experiments [42, 43]. It should also be noted that we did not use any index structures to
further optimize the performance. We do not know how implementation of suitable index struc-
tures would affect the results. It could be especially interesting to to see whether or not such
index structures would make our reference algorithms perform closer to the q-gram distance, or
if this would make the difference even greater.

6.2 Accuracy

Although the advantage of the q-gram distance is its low time complexity and therefore high
performance, the method is useless if it has a low accuracy. It is difficult to make a formal
definition for which rules it is correct to accept and which should be rejected in order to have high
accuracy in approximate search. The whole concept is that similar items should be recognized,
but we don’t have an absolute definition of what characteristics should be present in order to be
“similar enough”. In our accuracy comparison experiment we used our reference algorithms as
the basis for our accuracy definition. We compared the results from the q-gram distance with both
of these algorithms to see how much they differed. We experiment under the assumption that the
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ordinary edit distance and the constrained edit distance is the “correct” way to do approximate
search and that the q-gram distance should perform as close to these as possible in terms of
accuracy. In our results we could see that for large q-grams and low threshold values, the q-
gram distance could provide the same results as the constrained edit distance with only a few
errors (only 6 out of 43 000 comparisons disagreed). In 20 of the cases the q-gram distance
could be used to estimate the constrained edit distance with less than 1% errors, in 40% of the
cases with less than 5% errors, and in more than 150 of the cases with less than 10% errors. This
indicates that the q-gram distance could actually be used instead of the constrained edit distance
in some very important cases. If we only look at only the best results when trying to estimate
each variation of the the constrained edit distance we see that the q-gram distance actually can
give the same results with less than 10% errors for all variations of the constrained edit distance.
This is a really good result, and is a clear indication that the q-gram distance has potential as a
replacement or addition to the constrained edit distance.

For the ordinary edit distance, the results were not quite as good. In the best case the q-
gram distance and the edit distance would differ in about 6.6% of the cases. This was a bit
disappointing considering that the q-gram distance is known to estimate the edit distance well.
This may be a result of the method we used to check the distance against the threshold value
(d 6 N − M + ∆) since this was designed for the ordinary edit distance and constrained edit
distance, and may not be as suitable for the q-gram distance. One observation was that for
higher values of q, the q-gram distance was more strict than either of the other algorithms, and
most errors were items that the other algorithms accepted and the q-gram distance rejected.
When using lower values for q on the other hand, the q-gram distance would become very
inaccurate (since its only counting occurrences of single letters) and accept much more items
than any of the other algorithms. Another observation we made during our experiments was the
fact that all algorithms would accept every comparison that would match if we had used exact
pattern matching instead of approximate search. This is a desirable property considering that the
algorithms will not wrongly reject perfect matches.

In our experiment we have used real intrusion detection rules as our data, and used input
data we knew would be accepted for at least one rule each. We believe that this makes our
experiment more reliable since we know each input item should be accepted at least once, and
should be rejected by most other rules. Considering we have used real IDS rules (Snort) for our
signature database, we also believe that our results should reflect real life usage. However, we
have only looked at one ruleset (i.e. the web-misc.rules), but our results should not differ that
much for other rulesets from SNORT as the structure of the rules remains the same with only the
actual content field replaced. However, our experiments works only with SNORT rules, and it is
difficult to say whether or not we would achieve the exactly same results when using another IDS
as our case study. However, considering that SNORT is one of the most commonly used intrusion
detection systems, we still believe that our results should represent a typical IDS environment.
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6.3 Approximate search algorithm

We have looked at both the performance properties on the first and second stage of our two
stage approximate search, and compared the accuracy of our pattern matching algorithm with
the algorithms it is supposed to replace. As we can see, the q-gram distance will in terms of
performance do an excellent job, but with regards to the accuracy it will vary depending on
which distance measure we compare against and their provided variables. In some cases the q-
gram distance will produce almost the same accuracy as the constrained edit distance, but much
faster. In the cases where the q-gram distance is tweaked (using the q-value and the threshold
value) to accept a lot of the rules for further inspection, the benefit of using the q-gram distance
will be directly linked to the performance of the exhaustive algorithm in the next phase. The
question is whether or not the time penalty of matching the input with all the rules in the first
phase is less than it would be to just use exhaustive search on the rules that are filtered. If we
can achieve a 50% data reduction (which was the case when using q-grams of size 1), then the
exhaustive algorithm needs to spend at least twice as much time processing the data compared
with the q-gram distance for it to be beneficial. In such cases perhaps we could extend our two-
stage approximate search with yet another stage. In this case the q-gram distance could first filter
the dataset, then followed by the constrained edit distance or the ordinary edit distance, which
again filters the data before an exhaustive search in the last stage. As a result the exhaustive
search would only have to search the data that has been accepted by both the q-gram distance
and the edit distance.

A point that should be mentioned is the obvious possibility of distorting the data to such an
extent that the distance becomes too large for the approximate search to accept, and as a result
avoid the exhaustive search. By inserting enough extra data into the data packet, the distance will
be too great and thus not considered similar enough for a more thorough search. However, this
is not a flaw that exists exclusively when using q-gram as our distance measure for fault-tolerant
pattern matching. As long as we even use a distance metric for fault-tolerance, this will be a pos-
sible problem, regardless of the choice of distance measure. However, how easy the approximate
search algorithm is to circumvent is dependent on the threshold value. A higher threshold value
will allow more distorted attacks to be subject for further inspection. At this point, it is depen-
dent on the exhaustive algorithm whether such attacks are detected or not. As a result, to which
extent such distorted attacks will be accepted or not is really a matter of finding the best balance
between a high data reduction and sensitivity (i.e. adjusting the threshold). Furthermore, our
approximate search algorithm will to a larger extent, compared with exact search, find such dis-
torted attacks, which is the whole point of approximate search in IDS. Compared with the other
distance measures like the ordinary edit distance and the constrained edit distance, our data
reduction and accuracy experiments indicates that the q-gram distance would perform similar to
these with regards to such distorted attacks.

We believe that our approximate search algorithm using the q-gram distance will be feasible
considering that the q-gram distance would perform more than ten times faster than the edit
distance and even more compared with the constrained edit distance on average, while still
managing to achieve a large data reduction. Furthermore, considering that the q-gram distance
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could, in comparison with the constrained edit distance, achieve a rather good accuracy, this
further strengthen our belief that this is a feasible distance measure for approximate search in
IDS. However, the concept of using the q-gram distance as a measure for approximate search is
still in its initial phase and should probably be subject to more research before implementing it
in a corporate environment.
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7 Conclusions

As time goes by, more and more attacks towards computer systems are discovered. All of these
attacks must be added to the intrusion detection systems in order for them to be detected when
using a misuse dection-based IDS. The increase in the signature database size will also increase
the amount of data that needs to be searched every time the IDS receives activity data. Adding
fault-tolerant search techniques to the IDS may allow new variations of known attacks to be de-
tected without a pre-defined entry in the signature database. However, such techniques are often
time consuming, and this adds complexity to the already time constrained search procedure.

In this thesis we have looked at how we can apply the q-gram distance as a means for distance
measure in approximate search for misuse detection-based intrusion detection systems. We have
described a two-stage search procedure where the first stage uses a fast q-gram distance based
pattern matching for filtering the signature database. In the second stage the filtered dataset can
be further inspected with a slower, exhaustive, algorithm. The first stage will reduce the dataset
by removing rules that it finds to differ too much from the input data for it to be accepted
in the second stage. A large data reduction will increase the performance of the second stage
as the amount of data that needs to be inspected will be significantly reduced. Furthermore,
by applying the fast q-gram distance as a distance measure instead of the ordinary edit distance
and the constrained edit distance, the performance in the first stage will be significantly reduced,
thus making the overall performance of the two-stage procedure much better.

In our experimental work we looked at exactly how efficient the q-gram distance was as
a measure for distance in our approximate search algorithm, compared with the ordinary edit
distance and the constrained edit distance. In our first experiment we could see that we could
achieve a high data reduction using the q-gram distance and large q-grams. We could also see
that by increasing the threshold value of the q-gram distance, we could achieve about the same
data reduction as the other distance measures for any of the tested thresholds. In our next exper-
iment we looked at the accuracy of the q-gram distance compared with the other distances. This
is probably our most significant result since we could see that in some very important cases the
q-gram distance would only differ from the constrained edit distance in 6 out of almost 43 000
input/rule comparisons (i.e. 0.014%). Furthermore, for 40 of our variations of the algorithms, it
would differ in less than 5% of the cases. This makes us believe that the q-gram distance can for
many variations of the algorithms computational parameters be used as an improvement over
the constrained edit distance for approximate search in intrusion detection. Unfortunately, we
did not get the same significant results when we compared the q-gram distance with the edit dis-
tance when using our algorithm. As a result we believe that the q-gram distance is most suitable
for replacing the constrained edit distance as a distance measure in the first phase of our ap-
proximate search algorithm. This impression was further enhanced in our third experiment, the
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performance comparison, since our implementation of the q-gram distance was able to compare
all the input data with all the SNORT rules in about 2

3 of a second on average, while the imple-
mentation of the constrained edit distance used more than a minute. Our results indicate that the
q-gram distance will perform the search many times faster than the constrained edit distance. At
the same time it can in many cases estimate the constrained edit distance very well for misuse
detection. As a result we believe that the q-gram distance could actually replace the constrained
edit distance as a measure for finding the distance in approximate search for intrusion detection.
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8 Further work

In this thesis we have seen results that indicate that the q-gram distance can be used as a distance
measure for approximate search in misuse detection-based intrusion detection systems. The use
of approximate search in IDS is definitely an interesting topic, and q-gram distance may be a
solution for the performance problems associated with such search methods. However, although
our research looks promising, there are many areas that should be looked further into when
using q-gram distance as an approximate search distance measure.

Perhaps the most interesting topic to look further into when using the q-gram distance for IDS
is to see exactly which records are accepted and which are not. From this, one could manually
map which input should really match which rules and as a result see exactly how accurate all the
different variants of the distance measures really are in our approximate search. This is, however,
a rather tedious task considering that it would involve manually inspecting tens of thousands of
input/rule comparisons.

In our experiments we have used rules from the SNORT intrusion detection system as our test
dataset. A suggestion for further work could be to look at whether or not the q-gram distance
would provide the same results when using rules from another intrusion detection system than
only SNORT. This could be further enhanced by testing real network traffic or other well known
IDS test-datasets (e.g. KDD cup 99 [52]) as input data. Another suggestion is to try another
programming language/architecture for the experiments. Considering that we have used the C#
programming language running on the .NET Common Language Runtime (CLR) during our ex-
periments, it could be interesting to see how well the algorithms perform on the same language/-
platform as real intrusion detection systems. An even more interesting variant of this suggestion
would be to implement the approximate search in the analysis engine of an actual IDS. We also
briefly mentioned that the q-gram distance was incapable of processing short strings. This is also
a topic that could be studied further, and especially the accuracy of the approximate search when
using our previously mentioned suggestions for avoiding the problem (i.e. padding the data, or
using another algorithm for short strings).

To gain a better overview of the performance of the entire two-stage approximate search
algorithm, an improvement to the performance experiments could also be to include the second
stage (i.e. an exhaustive search algorithm) in the benchmark. This would allow us to see how
fast our search is, not only the first stage using the q-gram distance, but also how fast the second
stage is, given the data reduction of the q-gram distance from the first stage. It could also be
interesting to see how index structures would influence the performance results in the first stage,
and whether or not such structures could increase or decrease the difference in performance
between the q-gram distance and the reference algorithms. Examples of such index structures
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could be to implement a MBT [47] or a V-tree [34] as briefly mentioned in the state of the art
chapter.
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A Source code

In this chapter we present samples of the q-gram distance source code used in our experiments.
All code is written using the C# programming language. The source code presented is the actual
implementation of the concept pseudo-code presented in the approximate search chapter, and
will therefore not be given a further explanation. For a description of the concept please refer
to the approximate search concept chapter. Some of the source code samples have been slightly
changed compared with our actual experiments in order for them to look better in this thesis.
In case of the approximate search itself we have only included a sample from the q-gram data
reduction experiment considering that this is the easiest source code of any of our experiments.
This source code should still be sufficient to see an actual implementation of our approximate
search concept.

A.1 Generating a q-gram profile

using System ;

namespace ApproximateSearchIDS
{

p a r t i a l c lass Program
{

s t a t i c in t [] GQ( s t r ing s , in t q)
{

const in t z = 95; // the l a s t 95 c h a r a c t e r s are used in
the o r i g i n a l a s c i i t a b l e

in t s i z e = Power(z , q) ;
in t [] vec to r = new int [ s i z e ] ;

in t maxpow = q − 1;
in t n = s . Length − q ;

in t x = 0;
for ( in t j = 0; j < q ; j++)
{

x += (( s [ j ] − 32) ∗ Power(z , maxpow − j ) ) ;
}
vec to r [x]++;

for ( in t i = 0; i < n ; i++)
{

x = (( x − ( ( ( s [ i ] − 32) ∗ Power(z , maxpow) ) ) ) ∗ z ) + ( s [ i + q
] − 32) ;

vec to r [x]++;
}
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return vec to r ;
}

}
}

A.2 Finding the q-gram distance

using System ;

namespace ApproximateSearchIDS
{

p a r t i a l c lass Program
{

s t a t i c in t DQ( in t [] v1 , in t [] v2 )
{

in t d i s t ance = 0;
for ( in t i = 0; i < v1 . Length ; i++)
{

in t x = v1[ i ] − v2 [ i ] ;
d i s t ance += ( x < 0 ? −x : x ) ;

}
return d i s t ance ;

}
}

}

A.3 Data reduction experiment

using System ;
using System . C o l l e c t i o n s . Generic ;
using System . Text ;
using System . IO ;

namespace ApproximateSearchIDS
{

p a r t i a l c lass Program
{

c lass Summary
{

public in t q , DeltaQ ;
public in t count ;
public in t accept_count ;

}

s t a t i c in t MinDelta = 0 , MaxDelta = 15;
s t a t i c in t MinQ = 1 , MaxQ = 3;

s t a t i c void Main( s t r ing [] args )
{

StreamReader srRecord , s rSearch ;

L i s t <Summary> summaryList = new L i s t <Summary>() ;
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// t r y i n g e v e r y combinat ion o f the q−gram d i s t a n c e with d i f f e r e n t
t h r e s h o l d s

for ( in t DeltaQ = MinDelta ; DeltaQ <= MaxDelta ; DeltaQ++)
{

for ( in t q = MinQ; q <= MaxQ; q++)
{

srSearch = new StreamReader ( " content s . t x t " ) ;

in t searchNo = 0;

in t to ta l_compar i son_count = 0;
in t t o t a l _accep t_coun t = 0;

while ( ! s rSearch . EndOfStream )
{

searchNo++;
s t r ing search = srSearch . ReadLine () ;

srRecord = new StreamReader ( " padded_rules . t x t " ) ;

in t [] vec to r = GQ( search , q) ;

in t recordNo = 0;
while ( ! srRecord . EndOfStream )
{

recordNo++;
s t r ing record = srRecord . ReadLine () ;

tota l_compar i son_count++;

in t d = DQ(GQ( record , q) , vec to r ) ;
in t l i m i t = record . Length − search . Length +

DeltaQ ;

i f (d <= l i m i t )
{

to ta l _accep t_coun t++;
}

}
srRecord . Close () ;

}
srSearch . Close () ;

Summary sum = new Summary() ;
sum . q = q ;
sum . DeltaQ = DeltaQ ;
sum . count = tota l_compar i son_count ;
sum . accept_count = to ta l _ac cep t_coun t ;

// i n s e r t i n g the summary i n t o a s o r t e d l i s t
bool i n s e r t e d = f a l se ;
for ( in t i = 0; i < summaryList . Count ; i++)
{
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i f (sum . accept_count < summaryList [ i ] . accept_count )
{

summary . I n s e r t ( i , sum) ;
i n s e r t e d = true ;
break ;

}
}
i f ( ! i n s e r t e d ) summaryList . Add(sum) ;

}
}
writeSummary ( summaryList ) ;

}
}

}
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B Dataset

In this chapter we present samples of the dataset used in our experiments. These data are stored
in plain textfiles, with one entry on each line. Since the amount of data is far beyond what
we can present here, we only present a very limited sample in order to give an impression of
how the data looks like. In the case of the SNORT rules, these are presented unpadded. In the
experiments, the character “#” was added at the end of each rule until they were of the same
length as the longest rule in the dataset.

B.1 Unpadded SNORT web-misc.rules

a l e r t tcp $EXTERNAL_NET any −> $HTTP_SERVERS $HTTP_PORTS (msg : "WEB−MISC c ro s s
s i t e s c r i p t i n g HTML Image tag s e t to j a v a s c r i p t attempt " ; f low : to_server

, e s t a b l i s h e d ; content : " img s r c=j a v a s c r i p t " ; nocase ; r e f e rence : bugtraq
,4858; re f e rence : cve ,2002−0902; c l a s s t y p e : web−app l i ca t i on −a t t a ck ; s i d
:1667; rev : 7 ; )

a l e r t tcp $EXTERNAL_NET any −> $HTTP_SERVERS 443 (msg : "WEB−MISC PCT
C l i en t_He l l o overf low attempt " ; f low : to_server , e s t a b l i s h e d ; f l o w b i t s :
i s n o t s e t , s s l v 2 . s e r v e r _ h e l l o . reques t ; f l o w b i t s : i s n o t s e t , s s l v 3 . s e r v e r _ h e l l o
. reques t ; f l o w b i t s : i s n o t s e t , t l s v 1 . s e r v e r _ h e l l o . reques t ; content : " | 0 1 | " ;
depth : 1 ; o f f s e t : 2 ; b y t e _ t e s t :2 , > ,0 ,5; b y t e _ t e s t : 2 , ! , 0 , 7 ; b y t e _ t e s t
: 2 , ! , 1 6 , 7 ; b y t e _ t e s t :2 , > ,20 ,9; content : " |8 F | " ; depth : 1 ; o f f s e t :11 ;
b y t e _ t e s t :2 , > ,32768 ,0 , r e l a t i v e ; r e f e rence : bugtraq ,10116; re f e rence : cve
,2003−0719; re f e rence : nessus ,12205; re f e rence : ur l ,www. mic roso f t . com/
technet / s e c u r i t y / b u l l e t i n /MS04−011.mspx ; c l a s s t y p e : attempted−admin ; s i d
:2515; rev :14 ; )

a l e r t tcp $EXTERNAL_NET any −> $HTTP_SERVERS $HTTP_PORTS (msg : "WEB−MISC /
e c s c r i p t s /ecware . exe acces s " ; f low : to_server , e s t a b l i s h e d ; u r i con ten t : " /
e c s c r i p t s /ecware . exe " ; nocase ; r e f e rence : bugtraq ,6066; c l a s s t y p e : web−
app l i ca t i on −a c t i v i t y ; s i d :1944; rev : 3 ; )

B.2 Input data

l s%20− l
/ e t c /passwd
cd . .
/ . . . .
ca t%20
////////
/GWWEB. EXE
hdr=/
form=
template = . . / . . / . . /
HEAD/ . /
Author i za t ion |3A|
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icatcommand=
GET x HTTP/1.0
i n c l u d e d i r=
pccsmysqladm/ i n c s / dbconnect . inc
DELETE
s ec u r e_ s i t e , ok
b2inc
query=%00
/ . . / . . /
whois|3A|//
/ ns te lemetry . adp
|EB|_|9A FF FF FF FF 07 FF C3|^1|C0 89|F|9D|
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