
Anonymization of real data for
IDS benchmarking

Vidar Evenrud Seeberg

Master’s Thesis
Master of Science in Information Security

30 ECTS
Department of Computer Science and Media Technology

Gjøvik University College, 2006

Institutt for
informatikk og medieteknikk
Høgskolen i Gjøvik
Postboks 191
2802 Gjøvik

Department of Computer Science
and Media Technology
Gjøvik University College
Box 191
N-2802 Gjøvik
Norway

Abstract

Most IDS evaluation approaches use simulated network traffic as
base for the test data sets used in the evaluation. Simulated net-
work traffic lacks the diversities characteristic to a real world net-
work. These diversities may be caused by non-standard imple-
mentations of protocols or abnormal protocol behavior, like un-
finished threeway TCP handshakes and teardowns.
For realistic IDS evaluations, there is a need for test data sets
based on real recorded network traffic. Such data sets must also
be distributable since a valid test should be possible to reproduce
by other evaluators. Due to legal concerns test data sets based on
real recorded traffic must be anonymized.
This thesis presents a methodology for anonymization of real net-
work data. The methodology focuses on information at the ap-
plication layer, and HTTP/1.1 in particular. A prototype, called
Anonymator, is implemented based on the methodology. A data
set anonymized using such a methodology can be used in IDS
evaluations, providing more realistic evaluations. It can also be
distributed since identifying information is anonymized. This way
evaluations can be validated by third parties.
The methodology and prototype are tested thoroughly through
experiments using a data set consisting of HTTP traffic mixed
with attacks. The prototype implements different anonymization
strengths that can be chosen by the operator. The experiments
show the differences between the anonymization schemes. The
differences are carefully explained. Results show that the two
strongest anonymization schemes give good level of anonymity
without losing too much realism.

Anonymization of real data for IDS benchmarking

Contents

Abstract . ii

Contents . iii

List of Figures . v

List of Tables . v

List of Symbols . v

1 Introduction . 1

1.1 Topic . 1

1.2 Justification, motivation and benefits . 1

1.3 Research methodology . 2

2 Previous Work . 3

2.1 IDS evaluations . 3

2.2 Sensitivity, privacy and identity . 3

2.3 Known methodologies for anonymizing real network data 4

3 The new anonymization methodology . 7

3.1 Methodology introduction . 7

3.1.1 Classification scheme . 7

3.1.2 How to anonymize . 8

3.2 Identifying information . 8

3.3 Identifying information in network and transport protocols 9

3.3.1 IPv4 Header . 9

3.3.2 TCP Header . 12

3.3.3 UDP Header . 13

3.4 Identifying information in application headers and payload 13

3.4.1 HTTP 1.1 . 13

3.5 Correlation of headers and other data . 28

3.6 Methodology conclusion . 29

4 Experimental Work . 31

4.1 Introduction . 31

4.2 Prototype . 31

4.2.1 Architecture and implementation 32

4.2.2 Pseudocode . 33

4.2.3 Using Anonymator . 34

4.2.4 Testing Anonymator . 35

4.3 Expectations . 40

4.4 Infrastructure and resources . 44

4.4.1 Preparations . 44

4.5 Revised expectations . 45

4.6 Experiments . 46

4.6.1 Exp. 1: No anonymization . 46

4.6.2 Exp. 2: Weak scheme . 47

iii

Anonymization of real data for IDS benchmarking

4.6.3 Exp. 3: Strong scheme . 47

4.6.4 Exp. 4: Strongest scheme . 47

4.6.5 Exp. 5: Customized: Weak URI, no headers anonymized 47

4.6.6 Exp. 6: Customized: Strong URI, no headers anonymized 47

4.6.7 Exp. 7: Customized: Strongest URI, no headers anonymized 48

4.6.8 Exp. 8: Customized: Weak URI, all headers anonymized 48

4.6.9 Exp. 9: Customized: Strong URI, all headers anonymized 48

4.6.10 Exp. 10: Customized: Strongest URI, all headers anonymized . . . 48

4.7 Results . 48

4.7.1 Weak related schemes . 49

4.7.2 Strong related schemes . 50

4.7.3 Strongest related schemes . 54

4.8 Conclusions regarding experimental work 59

5 Conclusions . 61

5.1 Methodology . 61

5.2 Prototype . 62

5.3 Experiments . 63

5.4 Recommendations . 64

6 Further Work . 65

6.1 Methodology . 65

6.2 Prototype . 65

6.3 Experimental . 66

Bibliography . 67

A Classification table . 71

B Number of positives . 73

C Non-disclosure agreement . 77

iv

Anonymization of real data for IDS benchmarking

List of Figures

1 IPv4 header[1] . 9
2 TCP header[1] . 11
3 UDP header[1] . 13
4 No anonymization 36
5 Weak anonymization 36
6 Strong anonymization 37
7 Strongest anonymization 37
8 Weak URI + no headers 38
9 Strongest URI + all headers 38
10 Strong URI + some headers 39
11 Experimental infrastructure 44

List of Tables

1 Fields used in Snort and Nessus 41
2 Fields in Snort and Nessus subject to anonymization 42
3 Nessus-generated URI-levels for revised expectations 46
4 Number of positives reported by Snort 49
5 Strong: drop in number of positives 51
6 Strongest: retention of attacks 55
7 Conclusions for experimental work 60
8 Classification . 72
9 Number of positives 75

List of symbols

←↩ Breaks long URL or filename in running text
Number/Count

v

Anonymization of real data for IDS benchmarking

1 Introduction

1.1 Topic

Benchmarking of Intrusion Detection Systems (IDSs) is necessary for determining how

good IDSs are. Current IDS benchmarking efforts are mainly based on simulated test

data sets. Traffic generators are used to generate traffic in which attacks are injected. For

more realistic benchmarking, real recorded traffic is needed as a base for the test data

set used in the evaluation.

There are at least two problems with the generation of test data sets using real prere-

corded traffic. First, when recording real data, sensitive data for identifiable subjects may

also be recorded. Due to legal concerns, test data sets containing this type of information

cannot be distributed. If a data set used in testing cannot be distributed the evaluation

will lose its validity. A main property of testing is reproducibility. It should be possible

to validate an evaluation through a reevaluation using the same infrastructure, test data

and so on. For this to be possible, test data sets must be distributable. This property may

be accomplished through anonymization of the recorded traffic.

The second problem depends on the first one. When anonymizing a data set, impor-

tant traffic characteristics may be lost. A main goal is therefore to keep the traffic as

realistic as possible. The goals of anonymity and realism are unfortunately conflicting

and a trade-off has to be made.

This thesis presents a methodology for anonymization of prerecorded network traffic

in order to generate distributable test data sets for IDS benchmarking. The anonymi-

zation process will also be considered in regard to the goal of keeping the traffic as

realistic as possible. There have been great work done in the area of link, network

and transport layer anonymization. For anonymization of application layer protocols,

however, much work has to be done. This thesis focuses on application layer anonymi-

zation, and HTTP/1.1 in particular. A software prototype, called Anonymator, based on

this new anonymization methodology is implemented for anonymizing network data.

Experiments using Anonymator have been conducted in order to explore the influence

different levels of anonymization have on the recorded traffic.

1.2 Justification, motivation and benefits

When using simulated traffic generated by network traffic generators in IDS bench-

marking, many characteristic properties of network behavior will be left out. Also, differ-

ent networks have different characteristics. To find out which IDS suits a specific network,

different IDSs must be tested with a network traffic pattern characteristic to that specific

network.

Traffic generators cannot produce traffic that is close enough to the real world for real-

istic testing. Also, traffic generators are good at producing traffic conforming to protocol

specifications. Due to nonstandard implementations of protocols in many applications,

and other deviating protocol behaviors (like unfinished TCP handshakes and teardowns),

network traffic may contain varying levels of abnormal traffic patterns. For realistic IDS

1

Anonymization of real data for IDS benchmarking

benchmarking, test data sets must be generated based on real traffic from the network

type in question. This thesis will present a methodology and a prototype software able to

produce anonymized test data sets for any environment. Network data may be recorded

in any type of environment, for later to be anonymized using the system to be developed.

This data set can be used in IDS benchmarking. Such a data set may also be distributed

since it is anonymized. In this way it may also be possible to build a library of anonymized

data sets to be used for different purposes. The methodology and prototype developed

in this thesis focus for the current version on HTTP data.

More realistic IDS benchmarking may be helpful for vendors producing IDSs, for cus-

tomers buying them and for administrators tuning them. Vendors may get better infor-

mation of what their products are good at and not so good at. This may help vendors im-

prove their products and even enable the vendors to tune their IDSs for specific network

types. Customers may better be able to determine which IDS to purchase, and adminis-

trators may have more detailed information at hand when tuning the performance of the

systems.

1.3 Research methodology

The research for this thesis is of quantitative nature. Literature study has been performed

throughout the entire research period. However, literature study has been more empha-

sized in the first part of the project, which is common for most research processes[2]. The

bibliography lists the bibliographic resources relevant for this thesis. Deduction based on

premises found in literature and source code are made in order to devise the metho-

dology.

Prototyping has been conducted, implementing the methodology devised. The proto-

type can be considered a "proof-of-concept" one, demonstrating how a methodology im-

plementation can be made. Generally, a prototype can be further developed into a fully

functional product or it can be discarded. If discarded, the knowledge derived from the

prototype can be used to further enhance the methodology or to develop other software

based on the knowledge.

Finally, experiments for evaluating the methodology and the prototype have been

conducted. The goal of the experimental part was to explore what influence the prototype

had on a data set regarding retention of attacks.

For a thorough description of the methodologies, see [2] and [3].

2

Anonymization of real data for IDS benchmarking

2 Previous Work

2.1 IDS evaluations

Most current IDS evaluations use artificially generated network traffic as basis for the test

data sets. Examples of such evaluations are [4-10]. [11] criticises The DARPA evaluations

[4, 5] among other things for lack of realism in the test data sets. [4, 5] simulated the

network at an Air Force military base and used this simulated traffic as background in

which attacks were injected. [11] questions the test network being used for generating

the background traffic. The main concern was that the test network was not able to

produce the diversity and quantity characterizing a military network.

[12] states clearly the need for test data sets based on sanitized network traffic. This

will provide better and more reliable and valid results when testing IDSs. However, [12]

does not provide any solution or methodology for the topic.

2.2 Sensitivity, privacy and identity

Research regarding anonymization of network traffic has been conducted for some time.

However, most of the work has been done for network and transport protocols, like IPv4,

TCP and UDP. Research in the area of application protocol anonymization is not so well

established.

An important question to elaborate when conducting research in the area of anonymi-

zation is what information should be considered subject to anonymization. To answer this

question some terms must be defined. When handling the topic of anonymity, and the

need for an anonymization methodology, several terms have been used. "Sensitive" and

"privacy"[12-15 and others] are some of them. The Norwegian privacy legislation[16,

§2] defines "sensitive" as (translated by the author of this thesis):

Sensitive personal information Information regarding:

a) racial or ethnic heritage, or political, philosophical or religious belief

b) a person being suspect, accused, indicted or convicted for a legal offence

c) personal health

d) sexual preferences

e) labor union membership

[17] has defined "Privacy":

Privacy is the interest that individuals have in sustaining a ’personal space’, free from

interference by other people and organisations.

One premise for these definitions is that the person associated with sensitive infor-

mation and privacy must be positively and unmistakably identified[16, §2, no. 1]. The

terms "sensitive" and "privacy" may therefore not be precise enough for defining what to

3

Anonymization of real data for IDS benchmarking

anonymize. A better term derived from [16, §2, no. 1] may be "identifiable information",

a term, which more precisely characterizes information of interest for this thesis. There-

fore, when terms like "sensitive" and "private" are used throughout the report, they are

meant in the context of sensitive or private information for an identifiable person.

The problem of revealing identity regarding distribution of test data sets is clearly

stated in [12, p. 17]. [13, 14, 18] provide good descriptions of what type of information

should be subject to anonymization in regard to link, network and transport protocols.

Some application protocols are also considered, however not as thoroughly as lower layer

protocols. [13] states that information subject to anonymization fall into two categories:

identities, including identity of users, hosts and data, and confidential attributes like

passwords and specifics of sensitive user activity. [13] and [18] also give examples of

how different types of information may be correlated to reveal a subject’s identity.

There is, however, lack of a complete and comprehensive methodology for anonymi-

zation of real network data. A methodology should, in addition to a comprehensive

description of fields in different protocols, contain considerations regarding the fields’

significance to intrusion detection. Considerations regarding how to anonymize while

retaining as much information as possible should therefore be included.

2.3 Known methodologies for anonymizing real network data

Earlier anonymization work have concentrated on anonymizing packet headers belong-

ing to network and transport protocols. [19] presents a method based on cryptogra-

phy for IP address anonymization while still preserving a common prefix of the ad-

dress space. [20] presents a scheme for packet trace anonymization where the results

are stored in a compressed format. Most such approaches have completely removed the

payload[13, Sec. 1].

More recent approaches have also taken the payload into consideration. [13] de-

scribes an anonymizer developed as an extension to the Bro Intrusion Detection Sys-

tem [21]. The paper describes several techniques including

• constant substitution, e.g. any password may be substituted with the string
�����������
	���
�

.

• sequential numbering, e.g. file names may be substituted, like
�����������������������������

and so on.

• hashing, i.e. payload is replaced with its HMAC-MD5 hash value.

• prefix-preserving mapping, e.g. the first part of IP-addresses or directory components

of file names are hashed, indicating common values.

• adding random noise to numeric values.

Another interesting approach is the Network Dump data Displayer and Editor

(NetDude)[22]. NetDude is a framework for packet trace manipulation. The implemen-

tation of NetDude described in [23] includes an API1 the author of NetDude claims could

be used to develop an anonymization plugin to NetDude.

One of the main goals of this thesis is to describe how identifying information can be

removed from recorded traffic in a way that

1Application Programming Interface

4

Anonymization of real data for IDS benchmarking

1. no information needed for intrusion detection is removed and

2. assurance is attained that no private and sensitive information remain.

There will always be a possibility that information needed for intrusion detection is re-

moved. This is especially true regarding unknown attacks. Anonymization may therefore

make detection of such attacks even more difficult. [13] and [18] have made significant

contributions to this topic in regard to known attacks.

Techniques used in data mining may also be used for anonymization. [24] gives a

good overview over terminology in this field. [15] mentions several techniques for pri-

vacy preserving data mining, including heuristic-based, cryptography-based and

reconstruction-based techniques. Heuristic-based techniques may use perturbation

(adding noise) or blocking (substitution). Cryptographic techniques are mostly used in

distributed data mining as techniques to partition data. Reconstruction-based techniques

use reconstruction of objects (e.g. aggregation) in the data mining approach.

A problem regarding anonymization is to what extent assurance that no sensitive in-

formation remains in the data set can be made. It is not possible to be completely sure

that all identifying information is anonymized without doing manual inspection. [13]

approaches this using a fail-safe filter-in method where everything that need to be in the

clear is explicitly stated and everything else is anonymized. This thesis’ anonymization

methodology will try to improve existing methodologies in such a way that manual in-

spection is kept at minimum.

5

Anonymization of real data for IDS benchmarking

3 The new anonymization methodology

3.1 Methodology introduction

The new methodology has to handle two conflicting goals. On one hand it is important to

keep the anonymized data set as realistic as possible. On the other hand it is important to

anonymize recorded data to ensure that identification of subjects is not possible in order

to comply with privacy legislation. The new methodology is a trade-off between these

goals.

The new methodology presented is intended to be the start of a comprehensive

methodology encompassing most, if not all, protocols present in data networks. The

analysis of protocols is a time consuming task. It would be impossible in a Master’s The-

sis to devise a complete methodology and at the same time ensure that every aspect is

covered. This thesis will therefore focus on the HTTP/1.1 protocol and conduct a thor-

ough analysis of this. Some network and transport layer protocols are also presented

in this chapter. However, the analysis is not conducted as thoroughly as for the HTTP

protocol. Among else, while HTTP header fields are classified according to the suggested

classification system, this has not been done for the network and transport protocols.

The considerations of these protocols are still included since they have significance to

the prototype implementation. The presentation may also serve as a basis for a more

thorough analysis.

The common way to operate when information is going to be changed, is to mark

the information being subject to alterations and work on the marked information. The

methodology presented here attacks the problem from the opposite direction by marking

the information that should be preserved. All other information will be anonymized. This

approach is presented in [13] as a "filter-in" method, and ensures that no identifying

information is revealed by accident.

An important point is to decide what information to alter and what information to

preserve. In a stringent filter-in methodology the operator of the anonymizing software

will make all decisions about what to leave in clear. All information not marked will be

anonymized. A not so stringent approach would be to leave some information in clear

even though it is not marked by the operator. This information is of course considered

not to endanger privacy in any way. Also, some information providing a high possibility

of identification could be anonymized without the operator’s interference. The metho-

dology presented here will take such a semi-stringent approach.

3.1.1 Classification scheme

To classify what information should automatically be left in the clear and what infor-

mation the operator should decide to be left in the clear, a classification scheme consisting

of four classes is devised. The four classes are:

Must . . . be anonymized. This is information with the highest potential to identify a

person. This information is always anonymized by the anonymization software.

Should . . . be anonymized. This is information with a limited potential to identify per-

7

Anonymization of real data for IDS benchmarking

sons. The decision for leaving in the clear or anonymizing is left to the operator of

the anonymization software.

Could . . . be anonymized. This is information most unlikely to identify a person. Under

certain conditions identification may be possible. The decision for leaving in the

clear or anonymizing is left to the operator of the anonymization software. The

information placed in this class should be anonymized if complete assurance of

anonymity is needed.

No . . . anonymization necessary. This information has no potential to identify persons.

The information is always left in the clear by the anonymization software.

The boundaries between the four classes are not strictly defined. This classification

scheme is meant to support different legal requirements found in different countries.

Clearly identifiable information is anonymized, and information not susceptible to identi-

fication of persons is left in the clear by default. The process of anonymization/non-

anonymization is also carried out without human intervention. The operator must make

decisions about not so obvious information based on the legislation of the country he or

she resides in. The reason for leaving two classes for operator decision is to give a hint to

the operator about the likelihood of identification. The class Should indicates a greater

likelihood for identification than the class Could.

3.1.2 How to anonymize

There are two methods to choose between when performing the anonymization process.

First, the information subject to anonymization may be entirely or partially removed.

The drawback with this approach is that this will render the the data set more unre-

alistic than alterations to another possible value. The other approach is to alter the in-

formation to a value not having identifying properties. This is the approach used in the

presented methodology. There are also different alteration possibilities, e.g. randomiza-

tion, sequence, prefix-preserving. These are presented in Section 2.3. The methodology

alters the values to new values not likely to occur in a real data set. Using a realistic

value could lead to faulty identification of subjects. Instead, information is altered to

values reflecting the type of value that should be present.

Altering information to other values makes it possible to retain the length of the

original information. The methodology acknowledges the possibility that preserving the

lengths may enable an attacker to deduce the original value. In most cases this will not

be a big threat, since the information with the greatest potential of identification may

represent a big number of possible values when altered.

3.2 Identifying information

Several parts of a network packet may contribute to the identification of a person. In

some cases just a single field, like IP address, is enough to enable identification. In other

cases a combination of fields may reveal identity. Identifying information in link, net-

work, transport and application level headers are easier to consider than plain payload

and body data. This is of course because the contents of header fields must follow a

specific syntax and their semantics are well defined. In the present methodology, recog-

nizable information, like header fields defined in RFCs1, are thoroughly ivestigated for

1Request For Comments

8

Anonymization of real data for IDS benchmarking

Figure 1: IPv4 header[1]

identifiable information and classified according to the methodology. Information not be-

ing recognized (e.g. body data) is placed in the Must class for automatic anonymization.

While some identifying information is easy to reveal, others may be hard to spot. Such

information enables an attacker to conduct inference attacks. Examples are fingerprinting

of operating systems, software, files, servers and clients etc. This has been accounted for

in the present methodology. Such information is placed in appropriate classes according

to its likelihood of identification.

The process of anonymization may lead to loss of information needed for attack de-

tection. While an important goal in the anonymization process is to preserve as much

information as possible, it is important to realise that the process in many cases is a

trade-off between these goals. However, due to legal and ethical concerns the anonymi-

zation process should always prioritize anonymization in the case of a conflict between

the two goals. At the implementation level, the decision of what to filter may be left to

the user of the anonymizing software. [13] describes a filter-in methodology where all

fields are anonymized except those explicitly stated by the operator. This thesis will also

use this approach.

In this chapter the IP, TCP, UDP and HTTP headers will be examined for identifying

information. While IP, TCP and UDP headers are considered more superficially, HTTP

headers are subject to a thorough analysis. HTTP headers will also be classified accord-

ing to the suggested classification system. How the different HTTP header values should

be altered is also discussed. It is important to consider the importance of the fields in re-

gard to intrusion detection. This knowledge is necessary for making adequate decisions

regarding the trade-off between anonymity and realism. Snort[25] rules have been in-

vestigated to find out what kind of information it uses in the process of detecting attacks.

This makes it possible to say something about how anonymization of the information

influences the number of positives detected by Snort.

3.3 Identifying information in network and transport protocols

3.3.1 IPv4 Header

This subsection examines all fields of the IP header, of which several fields could reveal

person’s identity. Discussion of the importance of the fields for intrusion detection is also

provided where a conflict between anonymization and intrusion detection is present.

9

Anonymization of real data for IDS benchmarking

Version

The 4-bits version number is either 0100 for IPv4 or 0110 for IPv6 and is needed for an

IDS to correctly interpret a packet. This field is considered not necessary to anonymize.

Internet Header Length

The 4-bits Internet Header Length is necessary because the Option field can be of ar-

bitrary length. In some cases specific header lengths may reveal specific applications in

that these applications use specific options. This may identify both an application and an

operating system. Header lengths shorter than 5 may trigger an IDS to alert for scanning

attacks[26].

Type of Service

The 8-bits type of service (TOS) field consists of a 3-bit "Precedence" field, a 4-bit "Type-

of-Service" field, and a 1-bit "MBZ" (must be zero) field. Due to bad implementations, the

IP precedence field in ICMP error messages can reveal the operating system[27, 28]. The

"Type-of-Service" field can help an attacker to identify possible applications[29]. In the

case where the TOS value is unique to an application the application can be identified.

Total Datagram Length

The 16-bits total length field gives the total length of the datagram including headers,

options and payload. As for the header length field, applications can be identified based

on unique options and payloads. [30] states that the operating system can be identified

due to miscalculations of this field. In rare cases this may lead to the identification of

the user of the application. This is, though, considered so rare that anonymization of this

field is not necessary.

The payload length, which can be calculated by subtracting header length from the

total datagram length, can also indicate the application. However, the payload length

alone is not enough for complete identification. An IDS may identify some attacks based

on the payload size (e.g. Tiny Fragment, where the first fragment is so small that the

complete TCP header does not fit into the packet, and nmap ping, where the payload is

of size 0).

Identification

The 16-bits identification field is used in the reassembly of datagrams[31]. Some oper-

ating systems may echo this field incorrectly[30], making OS identification possible. An

IDS may detect some flooding attacks where the identification field is part of the attack’s

signature.

Flags

The 3 flags are used in the reassembly of datagrams. Some operating systems may echo

this field incorrectly, making OS and application identification possible. Invalid flags may

be detected by IDSs because such packets can be used to fingerprint some operating

systems and to get past firewalls[32].

Fragmentation Offset

The 13-bits offset field is used in the reassembly of datagrams. Some operating systems

may echo this field incorrectly, making OS identification possible.

10

Anonymization of real data for IDS benchmarking

Figure 2: TCP header[1]

Time To Live

The 8-bits TTL field tells how many hops between nodes a packet is allowed to travel.

At each node the value is decremented by one. An attacker can use this field to estimate

how many hops the packet has travelled from the source host.

Upper Layer Protocol

This 8-bits field usually identifies the upper transport protocol. However, in the case of

tunnelling, other level protocols may also be used (e.g. IP tunnelling). This may con-

tribute to identify the application used.

Header Checksum

This 16-bits field is used to detect errors in the IP datagram. Some operating systems may

calculate the checksum incorrectly. An IDS should trigger on packets with bad checksums

since this may indicate an insertion attack[33].

Source IP Address

This 32-bits field may clearly identify a person, since the address may be linked to a

specific host used by only one person. IDSs may also detect attacks based on source IP

address.

Destination IP address

This 32-bits field may clearly identify a person, since the address may be linked to a

specific host used by only one person. IDSs may also detect attacks based on destination

IP address.

Options

There may be zero or more options. For example, the Bro anonymizer[13] anonymizes

all options except maximum segment size, window scaling, SACK negotiation and time-

stamps, which are preserved.

11

Anonymization of real data for IDS benchmarking

3.3.2 TCP Header

Source and Destination Ports

Port numbers may be used to identify a particular machine that runs a particular set of

services, if the set of port numbers is in some way unique[14]. If that machine is only

used by a single person, the person will be identified. IDSs use port numbers to detect

many types of attacks.

Sequence Number

The sequence number may leak information in a way that the operating system may be

fingerprinted[14, 34]. A person being the only one using this operating system may be

identified. [35] states that an attack can exploit flaws in the interpretation of sequence

numbers.

Acknowledgement Number

The acknowledgement number is the last received sequence number plus one, and is

used to tell the receiving party that a packet is received and what the expected sequence

number of the next segment is. Since the acknowledgement number may be derived from

the sequence number, fingerprinting the operating system may occur. [36] states that the

acknowledgement numbers may be used to create covert channels, which stateful IDSs

should be able to detect.

TCP Header Length

The header length can indicate the application if the application uses unusual options.

An IDS might trigger on TCP headers of unusual sizes.

Reserved

The reserved field is reserved for future use and should not be used. If some operating

system or application use this field it could be identified, especially if unique values are

used. IDSs could trigger on use of this field since it could be used for covert channels.

Flags

If an application uses a unique combination of flags, the application may be identified.

Certain combinations of flags may be used in attacks such as Denial of Service and to

bypass firewalls and IDSs.

Window Size

The windows size does not contribute to any kind of identification.

Checksum

Like for the IP header checksum, some operating systems may calculate the checksum

incorrectly. This may lead to the identification of the operating system.

Urgent Pointer

If the URG flag is set to 1, the urgent pointer is used as an offset from the sequence

number to indicate where urgent data can be found. If only certain applications use

these fields, they may give an attacker an indication of the application used.

Options

The TCP options Loose Source Routing or Strict Source Routing gives routing information

and may identify the communicating hosts. An attacker may use source routing as part

of an attack, e.g. to get replies back to a known host if he spoofs an IP address.

12

Anonymization of real data for IDS benchmarking

Figure 3: UDP header[1]

[14] rewrites the timestamp option due to clock drift manifestations. This may fin-

gerprint a specific host, leading to eventual identification in the future[37]. An IDS use

the timestamps for analyzing TCP dynamics in order to detect duplications and reorder-

ing of packets. [14] solves these conflicting goals by transforming the timestamp into a

monotonically increasing counter without relation to time. This is done independently

for each host. This way the uniqueness and transmission order of segments are preserved

even though the actual timing information is lost.

Padding

Padding is used to align a header at a 32-bit boundary. An operating system or application

could give the padding an unusual value. This may be used to fingerprint the operating

system or application.

3.3.3 UDP Header

Source and Destination Ports

Like TCP port numbers, UDP port numbers may also be used to identify a particular

machine that runs a particular set of services, if the set of port numbers is in some way

unique[14]. If that machine is only used by a single person, the person will be identified.

IDSs use port numbers to detect many types of attacks.

Length

UDP length may indicate the application level protocol, identifying an application.

Checksum

If all IP header fields are known, with the exception of the IP addresses, the checksum

can be used to produce a possible list of IP addresses.

3.4 Identifying information in application headers and payload

3.4.1 HTTP 1.1

HTTP 1.1 is defined in RFC2616[38]. The following fields are part of this definition.

Some additional header fields presented in other papers are also included due to their

common appearance. The references for these will be given where appropriate.

RFC3864[39] describes registration procedures for additional header fields. RFC4229[40]

lists 81 more HTTP header fields, many being provisional. The inclusion of these is left

to the next version of the methodology.

To devise the methodology, Snort[25] rules are inspected to see which headers Snort

uses in the process of detecting attacks.

There are two types of HTTP messages: requests and responses. Some HTTP message

headers can be general for both requests and responses. Other message headers belong

to either requests or responses. Yet other headers belong to HTTP entities (see page 26).

13

Anonymization of real data for IDS benchmarking

General headers

Cache-Control

This header field prevents adverse interference of requests or responses by caches along

the path between two communicating hosts. Two cache-directive values have a small

potential to make an identification. These response directives,
�������
���
�

and � 	��������
	�� ,
can include some optional field names. Although such field names seldom contain a per-

sonal identifier, there is a slight possibility for this. Also, [38, p. 72] enables additional

extensions to be written. For example, [41] presents an extension for group caching.

This extension enables a server administrator to define groups for which caches will act

differently. Usually such naming will not make it possible to identify a single individual.

There may however be situations where identification is possible. Other not yet written

extensions may also make it possible to identify users in the future. The conclusion for

this field is that identifying information may occur, although the probability is very small.

The header is not present in any Snort rule[42] and is not considered having any signif-

icance in the task of detecting intrusions. Anonymization of this field should therefore

have no influence on the number of positives.

Class: Could.

Substitution: Iterations of the string "cache".

If an operator chooses to anonymize the
������	�������	 � ���
	�� directive, only those specific

values mentioned will be anonymized in addition to all extensions added in the future.

Connection

This header field enables the sender to specify options needed for that specific connec-

tion. No options defined can compromise privacy. The header is not present in any Snort

rule and is considered not to have significance regarding intrusion detection.

Class: No.

Date

The date represents the time at which the message was created. It is sent in RFC1123[43]-

date format. [18] states that � ���
� may reveal sensitive information although no explana-

tion for this is mentioned. In the present methodology this header field is not considered

endangering privacy. No indication has been found suggesting other classification than

No. This header is not mentioned in the Snort rule set and is not considered significant

for detecting intrusions.

Class: No.

Pragma

This field enables implementation-specific directives applicable to any recipient along

the request/response chain. As for ���
	���� 	 � ���
	�� this field is also meant to be exten-

sible. However, [38, p. 84] states that no new directives will be defined. This field is

considered no danger to privacy. � �
������� is not used in the current Snort rule set and is

not considered significant for detecting intrusions.

Class: No.

Trailer

This header field says that the header fields listed in its option part are found in the

trailer of a message, after the message body. � �
��� ����� is only used when
�
	�� ��� �� 2

2The message body is transferred as a series of chunks, each with its own size indicator.

14

Anonymization of real data for IDS benchmarking

� �
� � � ����� � � � ��	��� � � is applied to the message. This field has no implication regarding

privacy. However, it must be accounted for in an implementation of the anonymizer, since

some header fields may be found after the entity body. The
�
	 � � � �� encoding also im-

plies that the message must be decoded before parsing. � �
��������� is not found in the Snort

rule set and is not considered significant in intrusion detection.

Class: No.

Transfer-Encoding

This field indicates the type of transformation a message body is subject to. No options

defined for this field are threatening privacy. However, as mentioned for the former

header, it might have an influence on the implementation of the anonymizer.

� �
� � � ����� � � � ��	��� � � is used in Snort to detect certain web-application attacks (e.g. sid3

1618r17, 1806r11 and 1807r11), against Microsoft Internet Information Services.

Class: No.

Upgrade

The client can tell the server about the additional communication protocols it supports if

the server will switch protocol. The server uses � �����
���� to tell the client what protocol

it switches to. The values for this field are not considered making positive identification

possible. � ���������� does not occur in the Snort rule set and is not considered important in

detecting intrusions.

Class: No.

Via

This field is meant to be used for tracking message forwards, avoiding request loops

and identifying the protocol capabilities of all senders along the request/response chain.

The option-part
���������
���� �����

annotates the receiving host, leading to a possible user

identification. The rest of the values are not a threat to privacy. There may be several
� � �

fields in a message.
� � �

does not occur in the Snort rule set and is not considered

important in detecting intrusions. Anonymization of this field should have no effect on

the number of positives for an IDS.

Class: Must.

Substitution: www.foo...foo.bar

When anonymizing, only the
�
�������
�
�� �����

option needs to be altered.

Warning

The 	 ��� � � � � header is used to carry additional information about the status or trans-

formation of a message. The
����� � � ���
� � � value, declaring the host name, may lead to

the identification of a user. The
����� � �
�
��
�� value consisting of a quoted string in natural

language could also, if poorly designed, be the cause of identification. This is, however,

such an unlikely situation that it is not considered a problem. The 	 ��� � � � � header might

appear several times in a message. 	 ��� � � � � does not occur in the Snort rule set and is not

considered important in detecting intrusions. Anonymization of this field should have no

effect on the number of positives for an IDS.

Class: Must.

Substitution: www.foo...foo.bar

When anonymizing, only the
����� � � ���
� � � value need to be altered.

3Snort rule identifier

15

Anonymization of real data for IDS benchmarking

Request messages

A request message has this format[38, p. 24]:

���������	��
 ����������	��

− ����� �

∗ ����� � � �������− ���"!����
|
�#����������

− ���"!$�$�
|
� �
 �
&% − ���"!$�$�('*)+� �-, ').� �-,/10 �	���2� � � − 3�4 !$%65

The request line has the format:

���������	��

− ����� �7�89�:
 �4 !<;1=>������������

− ? �A@-;1=>BDC+CE=
− F ���#� � 4��)+� �-,

The method can be one of the following:

8G�	
 �4 ! �IH�J � �LK J�M�NLH
|
H�O � � H

|
H�P �RQ � H

|
H � J�N � H

|
H ����� H

|
H � �-S�� � � H

|
H �RT Q � H

|
H J$M�M � �� H

|
�:U�
�� � � � 4�� − 0 �	
 �4 !�VU�
�� � � � 4�� − 0 �:
 �4 !W�X
 4�Y � �

Altogether this means that an HTTP request consists of a method followed by a space

(SP), followed by a URI (Uniform Resource Identifier, e.g. www.hig.no), followed by

HTTP-version (e.g. HTTP/1.1), followed by CRLF (Carriage Return - Line Feed). The

subsequent lines are headers with their corresponding values. The character "|" means

"or". Several headers are divided by CRLF. After the last header with its corresponding

values and CRLF comes another CRLF indicating the end of headers and the start of

the message body. This format makes it fairly easy to parse an HTTP message. [38] also

opens for the addition of other methods (
��
 �
� � ��� 	 � � ������	�	�).

MethodZ
� ��	�	�

is a directive the client uses to instruct the server to give a certain type of re-

sponse. No method values are considered sensitive.

Some request methods may in conjunction with a specific
��	 � �
� � � or

������� 	 � �
� � � 4 be

used in Snort rules to detect suspicious activity. Examples of this are � �-S�� � � and �RT Q �
used in Snort rules sid 1603r7 and 2056r4 respectively.

O � � ,
P �RQ � and � J�N � are methods

used in conjunction with specific values in the
� 	 � �
� � � or

������� 	 � �
� � � parts of some

Snort rules to detect possible attacks. Here are some examples:

GET is in Snort used in conjunction with "/" (sid 306r10 and 1881r6) and "x" (sid

1375r6) as T ��[�������� � ��TLK to detect suspicious activity.

4 \^]`_:a:b2_:a and c:d�e \^]`_:a:b2_:a are Snort rule options

16

Anonymization of real data for IDS benchmarking

HEAD is used in Snort rule sid 1139r7 in conjunction with the T ��[������
� � ��TLK "/./".

POST is used in sid 939r11 with the
��������	 � �
� � ��� H�� � � ��	�	 ���
��� H and in sid 3629r3 in

combination with
� 	 � �
� � ��� H�� � ����� �
	 � �
���
��� ����� ��� � H .

� ��� and J$M�M � �� are not associated with any Snort rule.

Class: No.

Request-URI

The T ��[�������� � ��TLK is the address of the resource requested by the client. The generic

syntax and semantics for URIs are defined in RFC2396[44]. Parameters of the URI are

also included in the T ��[������� � ��TLK . A URI may identify a user both by itself or if a specific

SQL5 query string is part of the URI. This speaks for anonymization of this field.

Different anonymization strengths of the T ��[������
� � ��TLK are classified this way:

Must : The domain part (if present, e.g. www.mydomain.com) of the T ��[������� � ��TLK is

always anonymized.

Should : The T ��[�������� � ��TLK is anonymized until the second to last "/" (e.g. until

/etc/passwd).

Could : The entire T ��[����
��� � ��T�K is anonymized.

The domain part should, according to [38], only be part of the T ��[������
� � ��TLK in requests

to proxies and between proxies. Servers should also understand a URI with a leading

domain part, even though no client or proxy should issue request including the domain

to a server. This means that in most cases no anonymization of the T ��[����
��� � ��T�K will

occur when implementing Must T ��[������
� � ��TLK anonymization.

The reason for anonymizing the path until the second to last "/", as suggested for

Should T ��[����
��� � ��T�K anonymization, is that many attack signatures use the last 2 levels

of the path to detect attacks. Table 1 in page 41 shows the distribution of path levels

used in Snort signatures.

Chapter 4 describes experiments conducted for evaluating the methodology and the

prototype. A data set consisting of real network traffic mixed with Nessus generated

attacks was prepared for the experiments. After analysing the Nessus attacks it was

found that many attacks were looking for /etc/passwd on the server. Also, many at-

tacks were cross site scripting attacks, including a <script> tag in the URI. The script

tag was in some cases also given in hexadecimal form as "%3cscript%3e", capitalized or

not. Because of the large occurrence of these attacks, the methodology treats these at-

tacks specifically. In an implementation of the Could T ��[��
����� � �-TLK anonymization, being

the strongest anonymization provided, these patterns will be searched for. When found,

the T ��[������
� � ��TLK will be anonymized until the occurrence of these patterns. For Should

T ��[������
� � ��TLK anonymization only the script-tag is treated specifically since /etc/passwd

will be preserved by the scheme itself. It could be argued that the two types of attacks

could also be treated specifically for Must T ��[�������� � ��TLK anonymization. This anonymi-

zation scheme is however invented to preserve as many attacks as possible. In case a

Snort rule would trigger on parts of the URI coming before the script- or passwd-parts,

theses attacks would be rendered ineffective.

5Structured Query Language

17

Anonymization of real data for IDS benchmarking

A URI can also be formed in a way that an attacker may be able to execute code on the

server remotely. An example is a number of "../" sequences followed by

"/winnt/system32/cmd.exe?...", followed by a command to be executed by cmd.exe. Sig-

natures for such attacks are present in most signature-based IDSs. Snort rules use the

option
��������	 � �
� � � to detect such suspicious values. An example is Snort rule sid 1002r8

using
��������	 � �
� � ��� H � �� � �
�� H to warn for

H
	 ��� � KRK N � �� � ��

� ��� ������� H

.

Alterations of the T ��[������
� � ��TLK will influence on the number of positives since the

attack will be removed when anonymizing the URI.

Class: Must.

Substitution: Iterations of the string "n".

The anonymization should retain the path levels using "/" or "\".

HTTP-VersionP ��� � � � ������� 	 � is used to tell the server how to interpret the packet. It is not considered

sensitive and is therefore not candidate for anonymization.
P � � � ���
��������	 � is used in

some Snort rules in combination with other
��	 � ��� � � values to detect suspicious activity.

Examples on this are sid 2090r11 ("WEB-IIS WEBDAV exploit attempt") and sid 1881r6

("WEB-MISC bad HTTP/1.1 request, Potentially worm attack").

Class: No.

The following is a list of headers bound to request messages:

Accept

This header field specifies which media types are acceptable to receive in the response.

No values for this header field are expected to contribute to the identification of a user.

There may be several
Q � � �����

header fields in a message. Snort rule 2090r11 use
Q ���������

as part of
��	 � �
� � � to detect suspicious activity.

Class: No.

Accept-Charset

This header indicates which character sets are acceptable for the response. In some cir-

cumstances character sets rare for the environment may contribute to the identification

of a user. An example might be the presence of ISO-8859-11 in an environment typical

for a Sami environment, which normally would use ISO-8859-1 or Windows-Sami-2. This

is maybe a far-fetched situation, although possible.
Q � ��� ��� � 	
��������� is not found in any

standard Snort rule and is therefore not considered significant for detecting intrusions.

Anonymization of this field should have no influence on the number of positives.

Class: Should.

Substitution: Iterations of the string "charset".

Accept-Encoding

The
Q � ����� � � � � � 	��� � � header states which content encodings are acceptable to be present

in a response. No values belonging to this header are of any concern regarding privacy.

This field is not found in the standard Snort rule set and is therefore not considered sig-

nificant for detecting intrusions.

Class: No.

18

Anonymization of real data for IDS benchmarking

Accept-Language

This header states the languages being acceptable for the response to the request. The

header is explicitly stated in [38, p. 94] as a header field subject to privacy issues.

With the same arguments as
Q � ����� � � 	���������� this field should also be anonymized.Q � ������� � S � � �������
� is not found in any standard Snort rule and is therefore not considered

significant for detecting intrusions. Anonymization of this field should have no influence

on the number of positives.

Class: Should.

Substitution: Iterations of the string "l".

Authorization

This header is used in a request to authenticate the client to the server. The credentials

following this header contain among else username, password and the URI copied from

the T ��[������
� � ��TLK [45, p. 12]. It is necessary to anonymize this header.
Q ����	�	������������ 	 �

occur in several
� 	 � �
� � � and

� ����� 6 options in Snort rules, often along with other values.

Anonymization of this field may therefore have influence on the number of positives.

Class: Must.

Substitution: Iterations of the string "credentials".

Cookie

The 	�	 � � � header field is defined in RFC2965[46]. It is used to maintain and handle

state in HTTP. 	�	 � � � has several options, many of them mirroring the
N ��� � 	�	 � ����� re-

sponse header. The options defined in [46] are
��	�	 � �����
�
������� 	 � ,

������	
,
�	
����� � and

�
	�� �
.

Of these,
������	

and
�	
����� � must be anonymized. 	�	 � ��� can also be extended with other

options. One extension,
��	���� � ��� , is also used in Snort rule 2441r4. This particular value

should not be anonymized since it represents no danger to privacy.

Class: Must.

Substitution: Iterations of the string "cookie".

Options
��	�	 � � �����
��������	 � ,

��	�� �
and

��	���� � ��� are kept in clear. Other options are anony-

mized.

Cookie2

This header field is defined in [46]. If the client does not support the cookie version set

by a server, the client sends a request with the 	�	 � � ��� header set to the highest version

the client understands. There is only one option defined, being the cookie version. This

header is not subject to anonymization.

Class: No

Expect

This header indicates that particular server modes of behavior are required by the client.

Although this header is extensible, new extension will hardly enable identification of

users. No value-parts of this field are considered being a danger to privacy.
�
��������

is not

part of any Snort rule, and is therefore not considered significant for detecting intrusions.

Class: No.

6Regular expressions library

19

Anonymization of real data for IDS benchmarking

From

This header contains, if used, an e-mail address of the user controlling the user agent.

This field is clearly subject to anonymization. � �
	
� is not part of any default Snort rule,

and is therefore not considered significant for detecting intrusions. However, customized

rules may be defined to include specific addresses. In such cases anonymization will

affect detection based on these rules.

Class: Must.

Substitution: Iterations of the string "email".

Host

The
P 	
���

field gives the host and port number of the resource requested. This may on

its own give positive identification of a user and is therefore subject to anonymization.P 	
���
is used in Snort rule 2091r9 to alert for an attempted-admin classtype attack. If

anonymized this rule will not be triggered.

Class: Must.

Substitution: www.foo...foo.bar

If-Match

This field is used by a client to verify that one or more of its previously received enti-
ties are current. The value for this field includes the entity tag (

� �
� �
), showing which

entity the client wants to verify. In most cases entity tags are not designed in a way that
makes identification of a user possible. However, some HTTP implementations may in-
clude some identifying information. One example is [47], implementing usernames as
part of the

� �
� �
:

. . . the current implementation adds the remote user name to the ETag[48].

Although such a situation is not common, this methodology acknowledges the threat

and suggests anonymization of this field. The final decision is though left to the operator.

K ���
Z
��� ��	

is not part of any Snort rule, and is therefore not considered significant for

detecting intrusions.

Class: Should.

Substitution: Iterations of the string "ifmatch".

If-Modified-Since

This field causes an entity update only if the entity is updated on the server after the

date present as value in the header field. This field is, as the general � ���
� header field,

considered not a threat to privacy. K � �
Z
	���������� � N � � � � is not part of any Snort rule, and

is therefore not considered significant for detecting intrusions.

Class: No.

If-None-Match

K ��� M 	 � ���
Z
��� ��	

has the same syntax as K � �
Z
� � �
	

and is used for the verification that

none of the provided entities given by the entity tag values are current. This header ends

up in the same class as K � �
Z
��� �
	

with the same reason. K � � M 	 � ���
Z
��� �
	

is not part of

any Snort rule, and is therefore not considered significant for detecting intrusions.

Class: Should.

Substitution: Iterations of the string "ifnonematch".

20

Anonymization of real data for IDS benchmarking

If-Range

This header is used to complete an entity if the client has just a part of the entity in its

cache. Its syntax includes the entity tag associated with the entity. As for K � � M 	 � ���
Z
� � �
	

and K ���
Z
��� ��	

this option could reveal identity if the HTTP implementation includes sen-

sitive information. K � � T � � �
� is not part of any Snort rule, and is therefore not considered

significant for detecting intrusions.

Class: Should.

Substitution: Iterations of the string "ifrange".

If-Unmodified-Since

A server will, if this header is present, perform the requested operation only if the re-

quested resource has not been modified since the date provided in the value part. This

field is not considered a problem regarding privacy. K � � � � ��	������� �� � N � � ��� is not part of

any Snort rule, and is therefore not considered significant for detecting intrusions.

Class: No.

Max-ForwardsZ
��
 � � 	����������� defines the number of proxies or gateways that can forward the request.

This header presents no danger to the identification of a user.

Z
��
 � � 	����������� is not part

of any Snort rule, and is therefore not considered significant for detecting intrusions.

Class: No.

Proxy-Authorization

This field has the same functionality as
Q ����	
	�������� ��� 	 � , but for a client to authenticate

to a proxy or for authentication between proxies. The values include also here username,

password and URI. � �
	
 � � Q � ��	�	���� ��������	 � is not part of any Snort rule, and is therefore

not considered significant for detecting intrusions.

Class: Must.

Substitution: Iterations of the string "credentials".

Range

The T � � �
� header enables a client to request parts of the entity in question. The values

include no information being a threat to privacy. T � � �
� is not part of any default Snort

rule, and is therefore not considered significant for detecting intrusions.

Class: No.

Referer

The T �������
��� header enables the client to specify the URI of the resource where the

request-URI was obtained. This field is subject to anonymization because it contains an

absolute or relative URI to a resource. T ����������� is not part of any default Snort rule, and

is therefore not considered significant for detecting intrusions. One might think, though,

that customised rules may be created containing specific
�
�������
���

values. In such cases,

anonymization will affect the number of positives.

Class: Must.

Substitution: www.foo...foo.bar".

In some cases the T �������
��� value might contain scripts, indicated by a <script> tag. In

such cases the value will be anonymized until the tag occurrence.

21

Anonymization of real data for IDS benchmarking

TE

This field states which extension transfer encodings the client will accept and if it accepts

trailer fields in a chunked transfer encoding. � � has no values being a danger to privacy.

� � is not part of any default Snort rule, and is therefore not considered significant for

detecting intrusions.

Class: No.

Translate

The � �
� � �������
� header is added by Microsoft for IIS7 websites enabling WebDAV8. The

header is described in [49] and [50]. Snort uses � �
� � ��������� to detect attacks directed at

IIS servers. The header has a boolean value of either "T" or "F".

Class: No

User-Agent

The � � ��� � Q ��� � � field states which user agent originates the request. This field may in

rare circumstances identify a user if the user uses an uncommon [version of a] user

agent. This situation is not a big problem due to huge IDS test data sets, although it is a

possibility. Attackers can use this field to determine if a host uses a vulnerable user agent.

� � ��� � Q ��� � � is used in some Snort rules to detect suspicious activity. One example on this

is sid 1436r5 (
��	 � �
� � � � H � ����� � Q ��� � ����� Q ��� ����� � ��� ��� H). Anonymization of this field may

have influence on the number of positives.

Class: Could.

Substitution: Iterations of the string "browser".

Response messages

A response message has this format[38, p. 26]:

������� 4�� �`� � ;R
���
V���
− ����� �

∗ ����� � � �������− ���"!����
|
�#�	��� 4�� ��� − ���"!$�$�

|
� �
 �
&% − ���"!$�$�('*)+� �-, ').� �-,/10 �	���2� � � − 3�4 !$%65

The response line has the format:

;�
���
V���
− ����� �G�BDC+CE=

− F ���#� � 4�� ;L= ;�
���
V���
−
) 4 !��7;L=>������� 4�� − = �������7).� �-,

The status code is a three digit code where the first digit defines the class of response.

The classes are:

� U�U
	 @ ��� 4 � 0 ��
 � 4�� ��� U�U
	 ;������	�	���
� U�U
	 ����! � � ���V
 � 4��� U�U
) � � � �
����&� 4 �� U�U
	 ;R�$�����������&� 4 �

7Internet Information Services
8Web-based Distributed Authoring and Versioning

22

Anonymization of real data for IDS benchmarking

The next two digits give the exact status message. The reason phrases defined in

RFC2616[38, p. 27] are only recommendations, so the phrases might differ from those

stated in the RFC.

Altogether this means that an HTTP response consists of the HTTP version, followed

by a space, followed by a status code, followed by a space, followed by a reason phrase,

followed by CRLF. The subsequent lines are headers with their corresponding options.

Several headers are divided by CRLF. After the last header with its corresponding values

and CRLF, another CRLF comes indicating the end of headers and the start of the message

body. This format makes it fairly easy to parse an HTTP message. The RFC also opens for

the addition of other status codes and reason phrases.

HTTP-VersionP � � � � � ������� 	 � is used to tell the client how to interpret the packet. It is not considered

sensitive and is therefore not candidate for anonymization.
P � � � �
��������� 	 � is not used in

any Snort rule for
���
	����
�������
���

activity, and is therefore considered not important for

intrusion detection.

Class: No.

Status-Code

The
N ����������� 	��� field is used to tell the client the status of the response. This field is not

considered sensitive. Snort rule sid 1045r9 uses the
N �
������� � 	��� 403 to detect attacks

leading to a "Forbidden" reply from the server.

Class: No.

Reason-Phrase

The T ������	 � � � 	��
��� � is used to give a textual explanation in addition to the
���
������������	���

.

This field is not considered sensitive. Although these values are only recommendations,

reason-phrases constructed in a way that could endanger privacy are considered a far-

fetched situation. The only T ������	 � � � 	��
��� � used in the default Snort rule set is � 	�� ������� �
(sid 1045r9). This field is not considered important to intrusion detection.

Class: No.

The following is a list of headers bound to response messages:

Accept-RangesQ � ������� � T � � ����� is used by a server to tell what byte ranges it accepts in a request. This

field represents no problems regarding privacy.
Q � ����� � � T � � �
��� is not part of any default

Snort rule, and is therefore not considered significant for detecting intrusions.

Class: No.

Age

This field represents the sender’s time estimate of the time passed since the response was

generated. Normally this field would not represent any danger regarding privacy. A far-

fetched situation could occur if this field would be compared with the � ���
� field of other

messages with the aim to pinpoint a server. This situation is not considered a significant

threat. However, the decision will be left to the operator.
Q �
�

is not part of any default

Snort rule, and is therefore not considered significant for detecting intrusions.

23

Anonymization of real data for IDS benchmarking

Class: Could.

Substitution: Iterations of the string "age".

ETag

This header defines the value of the entity tags (Etags) used in the headers K � �
Z
� � �
	

,

K ��� M 	 � ���
Z
��� ��	

and
� ��� �

. In most cases entity tags are not constructed in a way that

makes identification of a user possible. However, some HTTP implementations may in-

clude some identifying information. One example is [47], implementing usernames as

part of
� � � � . Although such a situation is not common, this methodology acknowledges

the threat and suggests anonymization of this field. However, the final decision is left to

the operator.
� � ��� is not part of any default Snort rule, and is therefore not considered

significant for detecting intrusions.

Class: Should.

Substitution: Iterations of the string "etag".

LocationS 	�������� 	 � is used for redirection to another resource necessary to fulfil the request. The

value is an absolute URI and is therefore necessary to anonymize.
S 	���� ��� 	 � is used in

the default Snort rule 2577r4. It is also highly possible that customizable rules include

specific values. Anonymization of this field may for the default rule set have no significant

consequences.

Class: Must.

Substitution: www.foo...foo.bar

Proxy-Authenticate

If a client must authenticate to a proxy, or a proxy to another proxy, but the receiv-

ing proxy does not receive credentials, the proxy sends a
� ��� � �
	�
 � Q ����	�� � ����������� 	 �

T ��[�� ���
�� with a � ��	�
 � � Q ����	�� � ����� � �
� header back to the client. This header includes

the realm value with the name of the host performing the authentication and also the

domain value, listing URIs related to the resource. Clearly this header must be anony-

mized. � ��	�
 � � Q ����	�� � ������� �
� is not part of any default Snort rule, and is therefore not

considered significant for detecting intrusions.

Class: Must.

Substitution: www.foo...foo.bar

Retry-After

This field gives a client either a date and time or a number-of-seconds value to indicate

when the service again should be available. It should be no problem regarding privacy.

T � ��� � � Q ���
��� is not part of any default Snort rule, and is therefore not considered signi-

ficant for detecting intrusions.

Class: No.

Server

The value of the
N ��� �
���

header field contains information about the software used by

the server to handle the request. In a test data set with a low number of servers this

might pinpoint a particular server. However, the threat is not considered as dangerous as

the Must class, and the decision is left to the operator.
N ��� �����

is not part of any default

Snort rule, and is therefore not considered significant for detecting intrusions.

Class: Should.

24

Anonymization of real data for IDS benchmarking

Substitution: Iterations of the string "server".

Set-CookieN ��� � 	�	 � � � is defined in RFC2109[51]. Of the options defined,

Z
��
 � Q �
�

,
N �������
�

and
� ������� 	 � have no possibilities to identify a subject. The � 	
����� � option is the header with

highest identifying properties. Also, it is possible to define other options for
N ��� � 	�	 � � � .

The
N ��� � 	�	 � � � header is not present in any Snort default rule.

Class: Must

Substitution: Iterations of the string "setcookie".

All options, with the exceptions of

Z
��
 � Q ���

,
N ���
���
�

and
� ��������	 � , must be anonymized.

Set-Cookie2N ��� � 	�	 � � ��� is defined in RFC2965[46]. [46, p. 5] allows the option values to be "any-

thing the origin server chooses to send". However, the options � ��� ������ ,

Z
��
 � Q �
�

, � 	���� ,N ���
���
�
(having no value) and

� ������� 	 � are information not needed to anonymize. Other

options may be defined and should be anonymized. The default Snort rule set does not

have any rules containing
N ��� � 	�	 � ����� .

Class: Must

Substitution: Iterations of the string "setcookie".

All options, with the exceptions of � ���������� ,

Z
�
 � Q �
�

, � 	�� � ,
N ���
���
�

and
� ������� 	 � , must

be anonymized.

Vary

The
� ��� �

field gives the set of request-header fields that fully determines if a cache

is allowed to use this response to reply to a subsequent request without revalidation.

Since the values are only header field names this header is not subject to anonymization.
� ��� �

is not part of any default Snort rule, and is therefore not considered significant for

detecting intrusions.

Class: No.

WWW-Authenticate

If a client should authenticate to a server, but the server does not receive credentials,

the server sends a
� ��� ��� � ����	�	��������� with a 	 	 	 � Q ����	�� � ����������� back to the client. This

header includes the realm value with the name of the host performing the authentication

and also the domain value, listing URIs related to the resource. Clearly this header must

be anonymized. 	 	 	 � Q ����	�� � ����������� is not part of any default Snort rule, and is therefore

not considered significant for detecting intrusions.

Class: Must.

Substitution: www.foo...foo.bar

Authentication-Info

This header field is defined in RFC2617[45, p. 15] and is used by the server to convey

information about the successful authentication to a client. The values for this field are

not considered subject to anonymization.
Q ����	�� � ����������� 	 � � K � ��	 is not part of any de-

fault Snort rule, and is therefore not considered significant for detecting intrusions.

Class: No.

25

Anonymization of real data for IDS benchmarking

Proxy-Authentication-Info

This header field is defined in RFC2617[45, p. 19] and is used by the server to convey

information about the successful authentication to a proxy. The values for this field is not

considered subject to anonymization. � ��	�
 � � Q ����	�� � ����� � ��� 	 � � K � ��	 is not part of any

default Snort rule, and is therefore not considered significant for detecting intrusions.

Class: No.

Entity headers

The entity is defined as the information transferred as the payload of a request or

response[38, p. 8]. An HTTP entity consists of entity-headers and the entity-body. Some

entities will only contain the entity headers.

The following is a list of headers bound to an entity:

Allow

This header lists the request methods supported by the resource given in the request-URI.

Since the value only lists methods, this header has no privacy implications.
Q ����	��

is not

part of any default Snort rule, and is therefore not considered significant for detecting

intrusions.

Class: No.

Content-Disposition

This header field is defined in RFC2183[52] and is not a part of the HTTP/1.1 pro-

tocol. Although a lot of security implications are associated with this header, it is of-

ten found in HTTP messages. The header is used for telling the client how the content

should be presented. The only value-part being subject to anonymization is � ����� � �
��� .
Even though the user agent should not respect any path information given as part of

the � ����� � �
��� option, [52, p. 4] at the same time it implies that such information may

be present. A filename by itself should be anonymized and this decision is strength-

ened by the possible inclusion of a path. 	 � �
� � � � � ������	���� ����	 � appears in some de-

fault Snort rules, e.g. sid 2589r4 (
H
	 ��� � S K � M � 	 � ��� � � � � ������	���������	 � S N K
� ��	�� ��� �

�����
�
����� H
). Anonymization of this field may have some influence on the number of posi-

tives.

Class: Must.

Substitution: Iterations of the string "file".

Only the "Filename" option value should be anonymized.

Content-Encoding

 	 � �
� � � � � � ��	��� � � tells the receiving party which encoding is used for the entity. En-

coding is mostly used to compress the document to be sent. The values will not reveal

identifying information. 	 � �
� � � � � � ��	��� � � is not part of any default Snort rule, and is

therefore not considered significant for detecting intrusions.

Class: No.

Content-Language

This field states the natural language(s) of the intended audience for the entity. As for

the headers
Q ��������� � 	������ ��� and

Q ��������� � S � � ���
���
� this header may contribute to the

identification of a user. 	 � �
� � � � S � � �������
� is not part of any default Snort rule, and is

26

Anonymization of real data for IDS benchmarking

therefore not considered significant for detecting intrusions.

Class: Should.

Substitution: Iterations of the string "l".

Content-Length

This field gives the size of the entity-body. It is not considered a danger to privacy.

 	 � �
� � � � S � � � ��	 is part of some Snort default rules, e.g. sid 2090r11 (
H
	 ��� � KRK N 	 � � � Q �

�
�����	���� ��� �
�
�
��� H
) and sid 2278r9 (

H
	 ��� �

Z
K N ����� � � � � ���
�������
� 	 � �
� � � � S � � � ��	

� � �
�
��� � H
). Since 	 � �
� � � � S � � � ��	 is significant for detecting intrusions this methodology

will preserve the payload lengths of the packets. This implies that when altering infor-

mation, the substitution must be of the same length as the original data.

Class: No.

Content-Location

This field is used when the entity is found at another location than given in the URI. The

value of this field is an absolute or a relative URI. As stated before, a URI might reveal

identifying information. 	 � �
� � � � S 	�� ����� 	 � is not part of any default Snort rule. How-

ever, it is easy to imagine situations where a system administrator wants to implement

customized rules for this header. Employees fetching unwanted web page contents via

this header may be detected by such a rule. Anonymization of this field is not considered

to have a significant influence on the number of positives when using the standard rule

set. The influence may be bigger if the rule set contains customized rules.

Class: Must.

Substitution: www.foo...foo.bar

Content-MD5

The value for the 	 � �
� � � �
Z
��� is an MD5 message digest of the entity body. The value

poses no problems regarding privacy. If values in an entity are altered the MD5 must

be recalculated. 	 � �
� � � �
Z
��� is not part of any default Snort rule, and is therefore not

considered significant for detecting intrusions.

Class: No.

Content-Range

This header specifies where the partial entity body should be applied to the body it

belongs. No values belonging to this header are considered to be a danger to privacy.

 	 � �
� � � � T � � �
� is not part of any default Snort rule, and is therefore not considered

significant for detecting intrusions.

Class: No.

Content-Type

The 	 � �
� � � � � ���
� header indicates the media type of the entity body. The value for

this header includes also the character set used for the body. With the same arguments

as
Q � � ����� � 	�������� � and

Q � ����� � � S � � �������
� this field should also be anonymized. There

are several Snort rules using 	 � �
� � � � � ���
� , e.g. sid 2925r3 (
H K M �

J ��� � � ��� ��
 � �����
� � �
�
��� � H

) and sid 3473r3 (
H
	 ��� � S K � M �>T ����� � �����
��� N Z K S ������� 	��
�����
��	��

� � �
�
��� � H
). Anonymization of this field may influence on the number of positives.

Class: Should.

Substitution: Iterations of the string "type".

27

Anonymization of real data for IDS benchmarking

Expires

This header gives the date and time after which the response is considered invalid. The

value is in HTTP date format and is not considered a threat to privacy.
�
�� �������

is not

part of any default Snort rule, and is therefore not considered significant for detecting

intrusions.

Class: No.

Last-Modified

This header indicates the time when the server believes the entity was last modified. The

value is a HTTP date and is not considered a threat to privacy.
S ���
� � Z 	������� ��

is not

part of any default Snort rule, and is therefore not considered significant for detecting

intrusions.

Class: No.

Message body

The message body carries the entity body of a request or response message. The message

may in some circumstances be empty, e.g. when the request method is "HEAD".

It would be hard for an anonymizing program to intelligently parse and understand

the content of the message body. For this reason this methodology will anonymize the

message body completely. It is, however, important to remember that there may be a

trailer containing headers following the message body. This is indicated by the � �
���������
header. In such cases

�
	 � � � �� � ��� � � ����� � � � � 	��� � � is used, implying that the message

must be decoded before parsing.

The message body may contain values used in an attack. An example of this is Snort

rule 3552r4:

��� b d a a�\������
	
�
����
�
�����
�
�������
�
�������������������������������
�
� � _��
�! #"�$&%('() �
*+��,�+-.�
�
�/���
��0
1��������
� � "�2 c b d �3 b � aVa:b �:a '5476 �]�8 % a]
�:\ � e b2_:a:9 b " a ��;�� e "�< b 3 46 �]�8 ; e a "=% e " _�]2a " b^a:9 < aVa�?> < a � 4 \^]`_:a:b2_:a %(' �A@!B
B&@�]:@!B
B&@�]:@!B
B&@#a?@!B
B?@�@!B
B&@C�?@!B
B&@ _A@!B
B&@ a?@!B
B&@

←↩d @!B
B&@C�?@!B
B&@ '54 _�]:\ � " b 4 \^]`_:a:b2_:a %(' @ED�FHG�I?@C��B&@C*�JHK
F�,�G�L
LM*
*�F
1�B
B��
�NB
BO*DH,��B*?@ '54
8 e a < e _ % L�P 4 3 e " a � _�\2b % P
B 4 d b 6 b d b2_�\2b % ; c $ a d � 2 9(L�0QL�0
1 4 d b 6 b d b2_�\2b % \�R:bS9T1
B
B
JQ��B
B
P
0 4d b 6 b d b2_�\2b % c:d � 9!8
8
8?> e \ d] "] 6 aA>�\^] #U a:b�\ < _	bVa U�" b	\ c:d�e a
� U ; c ��� b^a e _ UV #" B
JQ��BQL�P:> #" ��W 4\ �� "
" a
��	b % � aVa:b �:a:b 3 � c " b d 4X" e 3 % 0
J
J
1 4 d bR % I 4(Y

Since the message body has to be anonymized, this may influence the number of posi-

tives.

Class: Must.

Substitution: Iterations of the string "x".

3.5 Correlation of headers and other data

The identification of users based on correlations of header fields not being anonymized

as described in the methodology is not considered a problem. No remaining headers

kept in clear can contribute to user identification when correlated to other headers kept

in the clear. If, however, user behavior patterns could be analysed, these could be corre-

lated with fields containing HTTP-dates (e.g. the � ���
� and
S ����� � Z 	����������

header fields).

However, such positive user identity deduction should not be possible to conduct, since

28

Anonymization of real data for IDS benchmarking

IP-addresses and other identifying information are altered. The threat will increase if a

prefix-preserving IP-address mapping is used, and if the part of the IP address not being

part of the prefix is always mapped to the same value.

Another threat to privacy may occur if the user uses an uncommon operating system

or application and these may be pinpointed due to non-standard protocol implementa-

tions. Such bad implementations could lead to certain values erroneously calculated (e.g.

IP header 	 � �
� � � � S � � ����	 and HTTP 	 � �
� � � � S � � � ��).

As a conclusion, correlating headers and other data may contribute to the identi-

fication of a user. There are however so many conditions that must hold for this to happen

that this methodology does not consider this a problem.

3.6 Methodology conclusion

A new methodology for anonymization of network traffic is presented in this chap-

ter. The methodology focuses on application layer anonymization. The HTTP proto-

col is thoroughly analyzed and the recognizable information is classified according to

the devised classification system. The classes used are Must, Should, Could and No.

Appendix A gives an overview over the classification of HTTP/1.1 fields presented in this

chapter.

The methodology also analyzes the known header fields belonging to IPv4, TCP and

UDP. Since this thesis focuses on application layer information, the analysis for network

and transport protocols are not so thorough. Also, the information in network and trans-

port layers are not classified. This is handed over to further research. The information

regarding these protocols is provided as a basis for future research.

29

Anonymization of real data for IDS benchmarking

4 Experimental Work

4.1 Introduction

The idea for the experiments was to find out what influence differently anonymized data

sets have on intrusion detection in comparison with a non-anonymized data set. Different

anonymization schemes were applied to the non-anonymized data set in order to produce

data sets with different anonymization strengths. The number of attacks retained in the

different anonymized data sets were estimated using Snort. This way an approximation

could be made of how large percentage of attacks were retained. Note that the number

of positives detected by Snort was measured, not the true positive or false positive rates.

This way no ROC1 curves have been calculated.

Using Snort for counting attacks in the data set may be considered a weak measure-

ment. The best way would of course be to inspect the data set manually. This would be a

much too laborious task for a data set of 85 megabytes. This is the reason for using Snort

to give an estimate of the level of attack retention. See Section 4.4.1 on how Snort was

configured.

4.2 Prototype

The prototype is called Anonymator. It is "terminating" (or rather altering) information

having the potential to identify users. The prototype is built to demonstrate how this type

of software might work. It could be further developed into a fully functional product or

it could be discarded. If discarded, the knowledge derived from developing and using

the prototype could be used in building a functional model from scratch or devising a

theoretical model.

The goal was to implement a prototype proving the concept of the methodology. Since

this methodology concerns payload anonymization, only payload data is anonymized in

Anonymator. Link, network and transport level information is copied to the new packet,

with the exception of those fields being dependent on the payload, e.g. the TCP check-

sum. Such fields are recalculated to contain the correct values for the packet. When not

implementing anonymization of the lower layers, conducting experiments will make it

easier to interpret the results of the experiments. Examples are the interpretations of dif-

ferences in the number of positives for testing IDSs using a raw recorded data set in one

experiment and using an anonymized data set in another experiment. The anonymizer

should in such a case optimally produce the same number of positives. However, it is ex-

pected that the experiment using the anonymized data set will produce a lower number

of positives since information needed for detecting suspicious activity is altered. If lower

layer protocols are not anonymized it is more likely that the difference in the number

of positives is caused by alterations of the payload. If lower layer protocols are anony-

mized the difference could be caused by alterations made to this information as well as

alterations done to the payload.

1Receiver Operating Characteristic

31

Anonymization of real data for IDS benchmarking

The prototype does not implement IP defragmentation and TCP reassembly. This

should be done in a real anonymization product in order to provide a more intelligent

anonymization. If for instance an attack consists of a specific payload and this payload

is scattered over two or more datagrams, the anonymizer could reassemble the payload,

detect that the payload contains an attack and then preserve the payload. In Anonymator

the scattered payload will be anonymized.

4.2.1 Architecture and implementation

Anonymator is a console application providing four anonymization schemes:

1. Strongest implements the classes Must, Should and Could with no other user inter-

action than giving input and output file names.

2. Strong implements the classes Must and Should with no other user interaction than

giving input and output file names.

3. Weak implements the class Must with no other user interaction than giving input and

output file names.

4. Customized implements the class Must. The decision of wether to anonymize or not

the header fields in the classes Should and Could is left to the operator of Anonyma-

tor. Compliant to the methodology, the operator chooses which Should and Could

fields should be left in clear. The other Should and Could fields will be anony-

mized. The operator also chooses which anonymization strength to apply to the

T ��[������
� � ��TLK .
Header fields classified as No will not be altered in any scheme.

Anonymator is coded in C and can be run on any Linux system having the
������� � ���

[53]

library installed. A port to Microsoft Windows is also implemented, requiring the
� � � � ����� [54] library installed. C is chosen because

������� �����
/
��� � � ��� � includes functions,

which can be used directly in C. There are Java and C# wrappers available for
� � � � ����� .

However, none of these provide the functionality needed for the prototype. The
������� �����

/
� � � � � ��� libraries provide an application interface to the physical layer. Through

*pcap, applications can sniff packets from the network and send packets into the net-

work. *pcap can also read from and write to files using the
������� � ���

format. The current

version of Anonymator uses this approach, taking a non-anonymized data set as input,

and producing an anonymized data set as output.

The source consists of these files:

AnonMain.c is the driver for the application. It provides the main user interface, iterates

through packets fetched from the input file and saves the anonymized packets to

the output file.

LoadSave.c is responsible for loading the input file. As the file name suggests it should

also be responsible for saving the output file. This specific functionality was moved

to AnonMain.c.

HeaderChoices.c provides a user interface used when the Customizable anonymization

scheme is chosen. The file lists all headers subject to choosing, with explanations

and hints. Choices and hints regarding the T ��[������
� � ��TLK are also given.

AnonEngine.c is the main engine for anonymization. Here each packet will be parsed

32

Anonymization of real data for IDS benchmarking

and inspected, and sent to appropriate anonymization functions residing in other

files, such as AnonHttp.c. Link, Network and Transport layer information is kept

as they are, with the exception of information dependent on the application layer

information. An example is the TCP checksum, which must be recalculated due to

alterations in the payload.

AnonHttp.c is responsible for anonymization of HTTP traffic. The anonymization is

done according to the choices made by the operator.

anonheaders.h provides access to functions in other files than the present.

Printing.c is implemented to display on screen the contents of the packets. This file is

provided as a testing facility. To enable the printing function, the line
��� ����� � � � � ����	����� � � � ���� ������� in AnonMain.c must be uncommented.

The header fields 	�	 � � ��� , N ��� � 	�	 � � � , N � � � 	�	 � � ��� and � �
� � �������
� are not imple-

mented in Anonymator because they were discovered after the experiments were con-

ducted. They are put on the to-do list for further development. The headers are, though,

included in the methodology, Section 3.4.1.

Acknowledging that Anonymator is just a prototype, some parts of the methodology

have not been implemented. An example is anonymization of the T ��[������
� � ��TLK , where

path-level separation using "/" is not retained. The anonymized part is anonymized using

iterations of the letter "n", regardless of how many levels the URI encompasses.

4.2.2 Pseudocode

This thesis will not include the entire source code for Anonymator. The source code

will, though be provided to anyone who requests it. Instead of listing the source code, a

shorter pseudocode is presented here:

3 � �R���� � ��
 � ��4�� % 0 � � ��
 � 4�� � � � 0 �	���� ;�
V� 4���� �	��
�� ;�
V� 4��������	 ��� Y� �)D����
 4 0 � � ��!4 ��������
 4 � 0 � Y �	� ���$� ���V
 � 4����� Y � 4 � ��� ����
�
L� �4 ��������
 4 � �R� ���	� ��� ����
�
L� �
� ���)D����
 4 0 � � ��!W� ��4�� % 0 � � ��
 � 4�� '
{ � � ��
 ? �A@− � ��4�� % 0 � � ��
 � 4�� � � � 0 ���4 ��������
 4 � 0 � Y �	� ���$� ���V
 � 4��64 � ? �A@− � ��4�� % 0 � � ��
 � 4��� � ��
 ���"!����(� ��4�� % 0 � � ��
 � 4�� � �4R� �	�	�4 ��������
 4 � ����� ���V
�� ���"!����#�
 4 Y �	� � ��� �"� �����
}

��� Y � 4 � 4 ��
 ����

L� �4 ��������
 4 � �R� ���	� 4 ��
 ����
�
L� �

33

Anonymization of real data for IDS benchmarking

� ��� � ��� ����
�
L� �� 4R4 � � � 4 � �����$� % ����� Y � � ��'
{ � ��� ���	%�� 4 �"! � �6BDC+CE=1'

{ � 4�4 � � � 4 �1����� � ��� � � �"�$� �`� �"�	%�� 4 �"! 3 ���`��! 4�� H�� � � � H�'`'
{ � ��� ;�
V� 4���� ����
 ? �A@− � ��4�� % 0 � � ��
 � 4�� '

{ � ��� H � H�� H�� ��� H���H�� � H 4 � H�� ��� � � ������� �
 H � � �#��� 4$���$� � ��!�'� ��4�� % 0 � � �9� �
 � �$
 �	��� 4 �������&�#� � �:�	���� �`�
� ��4�� % 0 � � � � �
 � �#� ? �A@
	 �
 �VU �:� ��
 � 4��64 � � ���"! ����� H���H

}��� ��� � ��� ;�
V� 4���� ? �A@ '
{ � ��� H � H�� H�� ��� H 4 � H�� � H � � � ��� 4$����� � ��!R'� ��4�� % 0 � � �9� �
 � �$
 �	��� 4 �������&�#� � �:�	���� �`�

� ��4�� % 0 � � �9� �
 � ������� 4�� !9
 4 � ����
6H���H�	 �
 �VU �:� ��
 � 4��74 � � ���"! ����� H���H
}��� ��� � 	 ��� Y ? �A@ '
{ � ��4�� % 0 � � � 4�� � %G! 4 0 � ��� �"�$�
�� � � ���#�	��� �

}

� ��� ;�
V� 4���� ����
 ���"!����A� ��4�� % 0 � � ��
 � 4�� '� ��4�� % 0 � � �W8 ����
���; �4 ��� !W� � !) 4 ��� ! ���"!$�$� ���� ��� � ��� ;�
V� 4���� ���"!���� � ��4�� % 0 � � ��
 � 4�� '� ��4�� % 0 � � �W8 ����
 � � !<; �4 ��� ! ���"!$�$� ���� ��� � ��� 	 ��� Y ���"!���� � ��4�� % 0 � � ��
 � 4�� '� ��4�� % 0 � � �W8 ����
 ���"!����#�
}

}�$� ��� � �"�:%�� 4 �"! � � ��4
 BDC+CE=1'
{ � ������� �"��� Y �	
 ��� 4�� �
}

�#������� �"��� ��
��6C) = � ��� Y �:� 0���`��� 0 3 � � �"��� Y � � ��2����� �"��� Y �:
 ���W� ��	
�� �
}� � !

4.2.3 Using Anonymator

Anonymator is started from the command line without arguments. The program will ask

which scheme to use for the anonymization. The first three schemes, Strongest, Strong

and Weak implements varying levels of anonymization according to the methodology.

34

Anonymization of real data for IDS benchmarking

Section 4.2.1 explains how the classification is implemented with respect to the anonymi-

zation schemes.

If the Customized scheme is chosen, Anonymator will first ask which type of T ��[����
��� �
�-TLK -anonymization to use. These types are presented in Section 3.4.1. Next, the opera-

tor must choose which headers should be kept unaltered. Only the headers classified as

Should and Could can be chosen. The Must headers are automatically anonymized be-

cause of their sensitive nature. The No headers are always left in the clear. The Should

and Could headers not chosen will automatically be anonymized. The operator is given

hints on the severity of the different choices through the interface.

Anonymator also asks for the input and output file names to be used. The input file

must be in
������� �����

format. The output format is also
������� �����

.

4.2.4 Testing Anonymator

To investigate if Anonymator works as expected, several tests have been conducted. The

following screenshots will show some examples of the influence Anonymator has on

one particular packet in a data set when different anonymization schemes are applied.

The screenshots are taken from Ethereal[55] representations of the packet in question.

For the record, the packet is not part of the data set provided by the IT department of

Gjøvik University College[56]. It is part of a data set recorded in non-promiscuous mode,

recording the authors web requests to this thesis’ project web page. The package and its

relevant URIs have been inspected and found not to endanger privacy for any person.

Figure 4 shows the packet without any anonymization applied. Figure 5 shows the

same packet when the Weak anonymization scheme has been applied. Note that only

the
P 	����

and T �������
��� header fields are anonymized. According to the policy and imple-

mentation, it is only Must headers that are anonymized under the Weak anonymization

scheme. Weak T ��[������� � ��TLK anonymization is applied through anonymizing only the do-

main part, if present, of the URI.

Figure 6 shows the packet after the Strong anonymization scheme has been applied.

In addition to the Must headers mentioned above, the Should headers
Q ��������� � S � � ���
���
�

and K � � M 	 � ���
Z
��� �
	

are anonymized. Since the T ��[������� � ��TLK consists of only two path

levels, no anonymization is applied to the present URI. If the URI has three or more

levels, the parts preceding the last two levels would have been anonymized.

Figure 7 shows the influence the Strongest anonymization scheme has on the packet.

In addition to the above mentioned headers, the � ����� � Q �
� � � header is also anonymized.

This header is classified as Could and implemented in the Strongest anonymization

scheme. It can also be seen how the Strongest T ��[�������� � ��TLK -anonymization influences

the packet. This scheme anonymizes the whole URI, with the exception of URIs contain-

ing a script tag or the string "/etc/passwd", where the URI is anonymized until these oc-

currences. Note that the current version of Anonymator does not retain path-separations.

Figure 8 shows an example of anonymization applying the Customized anonymization

scheme using Weak T ��[�������� � ��TLK anonymization and no anonymization of Should and

Could headers. As expected, the URI is presented as the original. Also, only the Must

headers are anonymized. In fact, this is the same anonymization as the plain Weak

anonymization presented in Figure 5.

Figure 9 shows the result after a Customized anonymization scheme using Strongest

T ��[������
� � ��TLK anonymization and all Must, Should, and Could headers anonymized. If

35

A
n

o
n

ym
izatio

n
o
f

real
d

ata
fo

r
ID

S
b
en

ch
m

ark
in

g

Figure4:Noanonymization

Figure5:Weakanonymization

3
6

A
n

o
n

ym
izatio

n
o
f

real
d

ata
fo

r
ID

S
b
en

ch
m

ark
in

g

Figure 6: Strong anonymization

Figure 7: Strongest anonymization

3
7

A
n

o
n

ym
izatio

n
o
f

real
d

ata
fo

r
ID

S
b
en

ch
m

ark
in

g

Figure8:WeakURI-anonymization+nocustomizableheadersanonymized

Figure9:StrongestURI-anonymization+allcustomizableheadersanonymized

3
8

A
n

o
n

ym
izatio

n
o
f

real
d

ata
fo

r
ID

S
b
en

ch
m

ark
in

g

Figure 10: Strong URI-anonymization + all customizable headers, except Accept-Language and User-Agent anonymized

3
9

Anonymization of real data for IDS benchmarking

compared with Figure 7, these figures show, as expected, exactly the same. The two

schemes are anonymizing the same fields.

The last example is depicted in Figure 10. This is the result when the Customized

anonymization scheme using the Strong T ��[������
� � ��TLK anonymization scheme and all

Must, Should, and Could headers with the exception of
Q � ������� � S � � �������
� and � ����� �Q ��� � � are anonymized. This is applied by the operator by selecting fields 2 and 11 when

choosing fields to retain in clear. When comparing Figure 10 to Figure 7, the differing

fields are the T ��[����
��� � ��T�K , Q � � ����� � S � � ����� �
� and � ����� � Q �
� � � , which is exactly what to

expect according to the methodology and implementation.

4.3 Expectations

As mentioned, Snort is used to detect attacks during the experiments. During devising

the methodology, Snort rules[42] were inspected to find out what information triggered

an alarm. The distribution of header fields used in HTTP-related Snort rules are listed

in Table 1. The majority of HTTP-related Snort rules trigger on parts of the URI. Table

1 also shows the distribution of URI-levels in Snort rules. Here will for instance "URI

2-level" mean that Snort uses the last two levels of the directory path to detect attacks

(e.g. /etc/passwd).

The test data set provided by the IT department at Gjøvik University College includes

only three HTTP-related attacks. These attacks were all portscans on port 80. Because of

this Nessus was used to generate attacks. These attacks were inserted into the data set.

Note that when deriving the numbers predicted in this subsection, a precondition is

made that Snort detects all attacks generated by Nessus. The numbers may not hold if

Snort fails to detect some attacks.

HTTP header fields

Table 1 shows that HTTP header fields are not heavily used in detecting attacks. For a

total of 1206 rules, only 43 header fields are present in the signatures. Only some of

these fields (superscript g) are subject to anonymization according to the methodology.

Table 2 summarizes which fields are both present in Snort rules and at at the same time

subject to anonymization.

It is expected that if these fields originally contain information triggering an alert, and

the fields are anonymized, the attacks will not be retained in the anonymized data set.

This will cause a drop in the number of positives reported by Snort when anonymization

is applied to these fields.

The HTTP header fields present in the Nessus attacks are enumerated in the last col-

umn of Table 1. Here we see that only the header fields
Q ����	�	������������ 	 � , 	 � �
� � � � � �����

and � � ��� � Q ��� � � are used both by Snort and Nessus and are subject to anonymization

(superscript h). To find out if these attacks would trigger any Snort rules the following

questions had to be answered:

1. Can the
Q ����	�	�������������	 � values generated by Nessus trigger an alert based on a Snort

rule? The answer to this question is no. The Snort rules containing
Q ����	�	������������ 	 � in

�
� � ������� � ���������
and

�
� � � � ��� � � ���������
do not match any

Q ����	�	������������ 	 � value gener-

ated by Nessus.

2. Can the 	 � �
� � � � � ����� values generated by Nessus trigger an alert based on a Snort

rule? The answer to this question is no. The Snort rules containing 	 � �
� � � � � ����� in

40

A
n

o
n

ym
izatio

n
o
f

real
d

ata
fo

r
ID

S
b
en

ch
m

ark
in

g

Snort rule files

Header fieldsa

at
ta

ck
-r

es
p
o
n
se

s

b
ac

k
d
o
o
r

d
o
s

in
fo

m
u
lt

im
ed

ia
p
2
p

p
o
rn

sc
an

vi
ru

s

w
eb

-c
g
i

w
eb

-c
li
en

t
w

eb
-c

o
ld

fu
si

o
n

w
eb

-f
ro

n
tp

ag
e

w
eb

-i
is

w
eb

-m
is

c

w
eb

-p
h
p

To
ta

l

Nessus
of related rules 6 1 1 1 5 3 21 1 2 353 173 35 35 119 323 127 1206 -

URI 1-levelb,f 1 5 3 2 324 5 4 13 62 183 111 713 254

URI 2-levelc,f 23 3 21 20 61 8 136 1177

URI 3-leveld,f 2 11 1 13 14 4 45 132

>URI 4-levele,f 4 6 2 4 16 188
Accept 1 1 1736

Accept-Charsetf 1726
Accept-Encoding 3

Accept-Languagef 1729

Authorizationf 2g 5g 7g 2h

Connection 1733

Content-Dispositionf 2g 1g 3g

Content-Length 1 2 3 8

Content-Typef 1g 11g 2g 14g 8h

Cookie 1 1 10

Hostf 2 2 1747

Locationf 1g 1g

Pragma 1728
Referer 4
Transfer-Encoding 2 1 3
Translate 2 2 1

User-Agentf 3g 3g 6g 1742h

a The table shows only those fields occurring in Snort rule files and/or Nessus generated attacks.
b Attack signature occurs after last "/"
c Attack signature occurs after second to last "/"
d Attack signature occurs after third to last "/"
e Attack signature occurs after fourth to last "/" or more
f These fields are anonymized in one or more of the anonymization schemes
g Used by Snort AND subject to anonymization
h Used by Snort AND subject to anonymization AND used by Nessus

Table 1: Header fields and part of URI used in Snort rules and Nessus attacks

4
1

Anonymization of real data for IDS benchmarking

Header field Occurences in
Snort rules

Anonymization Snort + Nessus +
AnonymizationQ ����	�	������������ 	 � � 7 Must *

 	 � �
� � � � � ������	���� ��� 	 � � 3 Must
 	 � �
� � � � � ����� � 14 Should *S 	�������� 	 � � 1 Must
� ����� � Q �
� � � � 6 Could *
Total: 31 3 header fields

Table 2: Fields subject to anonymization and occurring in Snort rules and Nessus attacks

� � ��	 � ��������� , ��� � ������� � � ��� �������
� and
��� � ������� � ���������

do not match any 	 � �
� � � � � �����
value generated by Nessus.

3. Can the � ����� � Q �
� � � values generated by Nessus trigger an alert based on a Snort

rule? The answer to this question is no. The Snort rules containing � ����� � Q �
� � � in
�
��� � ���������

and
��� � � � ��� � � ���������

do not match any � ����� � Q �
� � � value generated by

Nessus.

Since the answer is no to these questions, anonymization of the fields will not affect

the number of positives. Note that these answers are related to this particular data set.

For instance, the attacks generated by Nessus contain mostly the value "Mozilla/4.75

[en] (X11, U; Nessus)", a value, which Snort through the default rule set does not trigger

on. If the value were recognized as an attack by Snort, the attack would be rendered

ineffective by the anonymization process, leading to a lower number of positives.

Conclusions

The conclusions regarding anonymization of HTTP headers are:

• For the current data set, anonymization of any field will not result in lower
number of positives.

• The number of header fields used in Snort rules is so low that the influence on
the number of positives should be insignificant for any data set recorded from
any network (at least in comparison to anonymizing the request-URI).

HTTP Request-URI

Table 1 also shows that most Snort rules trigger on the T ��[������� � ��TLK . Of 1206 HTTP-

related rules, 910 rules trigger on the T ��[�������� � ��TLK . Note that some of the rules trigger

both on T ��[������
� � ��TLK and one or several header fields. However, this is not shown in the

table. 1-level URIs, where the signature is present in the last part of the URI-path, has a

significantly higher representation than URIs with more levels. E.g. 1-level URIs are used

in 713 rules in comparison to 136 rules containing 2-level URIs.

The numbers for each URI-level present in the Nessus attacks are listed in the last

column of Table 1. Contrary to the Snort rules, the 2-level URIs have a significantly

higher representation in the Nessus attacks.

To analyze the influence anonymization has on the attacks when looking at the

T ��[�������� � ��TLK , a summary of the methodology for anonymization of the T ��[������� � ��TLK
is given:

Must : The domain part (if present, e.g. www.mydomain.com) of the T ��[������� � ��TLK is

always anonymized. Must is implemented in Anonymator as Weak T ��[������
� � ��TLK

42

Anonymization of real data for IDS benchmarking

anonymization.

Should : The T ��[�������� � ��TLK is anonymized until the second to last "/" (e.g. until

/etc/passwd). Should+Must is implemented in Anonymator as Strong T ��[��
����� � �-TLK
anonymization.

Could : The entire T ��[�������� � ��TLK is anonymized. Could+Should+Must is implemented

in Anonymator as Strongest T ��[����
��� � ��T�K anonymization.

For a more thorough discussion of T ��[��
����� � �-TLK anonymization, see Section 3.4.1.

When applying the Weak anonymization scheme, only the domain part of the T ��[������� �
�-TLK is anonymized. No specific domains are used in the default Snort ruleset. Because

of this, the number of positives should be the same for a dataset anonymized with Weak

URI anonymization as for the non-anonymized dataset.

Based on the URI-level counts in Table 1 Nessus generated 1751 URIs. Of these 1431

are of level 1 or 2. This is about 81% of the complete URI set. In cases where a script tag

occurs in a URI, it appears after the path-part of the T ��[������
� � ��TLK . This means that also

cross site scripting attacks are preserved.

Still based on the URI-level counts in Table 1, one should believe that no attacks

would be preserved using the Strongest scheme for T ��[������
� � ��TLK -anonymization. Note

however that the methodology treats cross site scripting and /etc/passwd attacks specifi-

cally. When counting the amount of such attacks, Snort should detect 221 attacks, which

represents about 13% of the attacks. This might seem like a very low number. However,

due to the strict legal requirements for handling sensitive information for identifiable

subjects in many countries, a scheme where the entire URI is anonymized is necessary to

be included in anonymizing software.

As mentioned in the former subsection, these numbers relate only to the present

data set. If, however, another data set has the same distribution of attacks (however

an unlikely situation) the numbers should be about the same. It could also occur that

a data set has no script- or /etc/passwd-attacks. In such a case the number of positives

could be significantly lower.

Conclusions

The conclusions regarding anonymization of the T ��[��
����� � �-TLK are:

• For the current data set, using the Weak T ��[��
����� � �-TLK anonymization scheme
should retain about 100% of the attacks.

• For the current data set, using the Strong T ��[��
����� � �-TLK anonymization scheme
should retain about 81% of the attacks.

• For the current data set, using the Strongest T ��[�������� � ��TLK anonymization
scheme should retain about 13% of the attacks.

• For other data sets with other attack distributions, using the Weak anonymi-
zation scheme, should retain about 100% of the attacks.

• For other data sets with other attack distributions, using the Strong or Strongest
anonymization schemes could produce other numbers.

43

Anonymization of real data for IDS benchmarking

4.4 Infrastructure and resources

4.4.1 Preparations

Four machines were set up with RFC1918[57] addresses. All machines had Ubuntu 5.10

Breezy installed with kernel 2-6-12-10. Ethereal 0.10.12 was also installed. Additional

programs are listed as follows:

• PC1, IP:192.168.0.2, tcpreplay, Nessus 2.2.4-2 with updated plugins as of 28th of

March 2006. This PC was used for creating HTTP attacks to mix with real network

traffic. It was also used for replaying tcpdump files.

• PC2, IP:192.168.0.3. This PC was used for Ethereal sniffing.

• PC3, IP:192.168.0.4, Snort 2.3.2-5 with rule set 2.3 as of 8th of March 2006, con-

taining 4409 rules. This PC was used for intrusion detection to record the number of

positives.

• PC4, IP:192.168.0.5, Apache httpd 2.0.54-5ubuntu4 webserver, Mysql 4.1.12-1←↩

ubuntu3.1 database and PHP 5.0.5-2ubuntu1.2 and tcpreplay. This PC was set up as a

web server implementing PHP and MySql functionality. It was also used for replaying

tcpdump files. The attacks generated by Nessus at PC1 were directed at PC4.

The infrastructure can be viewed in Figure 11.

Real test data was gathered in the format of a tcpdump file from the main router of

the wireless network of Gjøvik University College[56] (for Non Disclosure Agreement,

see Appendix C). Attacks were collected by running Nessus with a collection of web

related attacks. The plugin categories used in Nessus were:

• CGI Abuses

• CGI Abuses: XSS

• Gain a shell remotely

• Gain root remotely

• General

Figure 11: Experimental infrastructure

44

Anonymization of real data for IDS benchmarking

• Misc

• Web Servers

Altogether 1751 attacks were generated. Using Nessus to generate attacks for use in

a thesis handling the topic of realistic data sets might seem contradictory. The author

acknowledges this, but had to choose such a solution because the data set provided by

Gjøvik University College contained only 3 attacks, all of them being portscans on port

80. More attacks were needed to conduct the experiments, and Nessus was chosen to

provide the attacks.

Since Anonymator is a prototype handling only HTTP traffic, this type of traffic was

extracted from the routerdump and attackdump. The two tcpdump files were replayed

simultaneously to generate a testfile containing both HTTP traffic and HTTP related at-

tacks. It could be argued that for the experiments it would be necessary just to replay

the Nessus attacks. However, it is also important to see how the prototype affects real

network traffic in order to evaluate if the traffic retains its reality.

The open source IDS Snort was used to give an indication of how many attacks were

retained in the data sets when different anonymization schemes were applied. A prepa-

ration experiment showed that Snort reported 587 positives when replaying the non-

anonymized attackdump. The positives could without further ado be classified as true

positives since these were generated by Nessus. However, a preliminary test showed

fewer true positives. A basic tuning of Snort, among else enabling the HTTP-inspect pre-

processor, resulted in the number of 587 true positives. It is noted that this number is

significantly lower than the actual number of attacks generated by Nessus. Because of

this, the expectations discussed in Section 4.3 had to be adjusted. See Section 4.5 for

this. Due to time constraints, Snort was not tuned further to produce a higher number

of true positives. The HTTP routerdump was also replayed to see if Snort detected any

attacks in this data set. Snort reported 3 alerts. After inspecting the logs, these alerts

could be classified as true positives, being portscans on port 80.

Note that the the number of positives reported by Snort gives just an indication of how

Anonymator affects the number of attacks in a data set. If time had not been a factor,

the data sets should have been manually examined to count the real number of attacks

retained after anonymization. With 10 experiments, each consisting of 1751 attacks, this

is considered a much too laborious undertaking. Snort is therefore used as an indicator

of the number of retained attacks in the different anonymized data sets.

4.5 Revised expectations

As noted, Snort reports only 587 true positives when replaying the Nessus attacks. In

Section 4.3 it was concluded that for the present attacks, anonymization of header fields

should have no influence on the number of positives. The conclusions presented on page

42 still hold. The difference, represented by the 1164 missing attacks, is caused by non-

matching T ��[������� � ��TLK s. If the same distribution between the different URI-levels as in

the original attacks are used, the numbers presented in Table 3 should be used when

deducing the expected experimental results.

Revised expectations for Weak-related anonymization schemes

The expectations from Section 4.3 still hold with the same arguments. About 100% of the

attacks should be retained in the anonymized data sets. The cause for this percentage is

45

Anonymization of real data for IDS benchmarking

URI-level Original Distribution Revised

1 254 14.51% 85
2 1177 67.22% 395
4 132 7.54% 44

>4 188 10.74% 63
Total 1751 ≈ 100% 587

Table 3: Nessus-generated URI-levels for revised expectations

that only the domain part of the T ��[�������� � ��TLK is anonymized, leaving the parts matching

Snort rules in clear.

Revised expectations for Strong-related anonymization schemes

Recall from Section 3.4.1 and 4.2.1 that the Strong T ��[��
����� � �-TLK anonymization anony-

mizes the URI until the second to last "/". Also, if Anonymator finds signs of a cross site

scripting attempt, it anonymizes the URI until the script tag. According to Table 3 the

total number of URIs causing true positives is reduced to 587. Adding the 3 port scans

gives a total of 590 attacks. When keeping the distribution between attacks, level 1 and

2 count for 480 attacks, representing 81.4% of the attacks. This means that 81.4% of the

attacks should be preserved using Strong-related anonymization schemes.

Revised expectations for Strongest-related anonymization schemes

In the Strongest-related anonymization schemes, the whole URI is anonymized. However,

cross site scripting- and /etc/passwd-attacks are still preserved. As mentioned in Section

4.3 these attacks count 221, now representing about 37,5% of the attacks. This means

that 37.5% of the attacks should be preserved using Strongest-related anonymization

schemes.

Conclusions for revised expectations

The revised conclusions regarding anonymization of the T ��[��
����� � �-TLK are:

• For the current data set, using the Weak T ��[����
��� � ��T�K anonymization scheme
should retain about 100% of the attacks.

• For the current data set, using the Strong T ��[����
��� � ��T�K anonymization scheme
should retain about 81.4% of the attacks.

• For the current data set, using the Strongest T ��[������� � ��TLK anonymization
scheme should retain about 37.5% of the attacks.

• For other data sets with other attack distributions, using the Weak anonymi-
zation scheme, should retain about 100% of the attacks.

• For other data sets with other attack distributions, using the Strong or Strongest
anonymization schemes could produce other numbers.

4.6 Experiments

Ten experiments have been conducted to provide material for studying the operation of

the methodology and the prototype. A summary of the results is given in Table 4.

4.6.1 Exp. 1: No anonymization

The result from this experiment will serve as a basis for interpreting the results of the

subsequent experiments. The non-anonymized test file was replayed. Snort reported 590

46

Anonymization of real data for IDS benchmarking

positives for this experiment. This shows that all 587 positives from the preliminary ex-

periment replaying the attackdump and the 3 positives from the preliminary experiment

replaying the routerdump were detected by Snort.

4.6.2 Exp. 2: Weak scheme

This experiment was conducted to see how the Weak anonymization scheme influenced

the number of positives. The Weak anonymization scheme implements the Must class

of the methodology, that is, all headers classified as Must, and the domain part of the

T ��[������
� � ��TLK are anonymized. The non-anonymized test file was fed to Anonymator

and the Weak anonymization scheme was applied. The resulting anonymized file was

replayed. In this experiment Snort reported 590 positives.

4.6.3 Exp. 3: Strong scheme

This experiment was conducted to see how the Strong anonymization scheme influenced

the number of positives. The Strong anonymization scheme implements the Must and

Should classes of the methodology. The T ��[��
����� � �-TLK is anonymized until the next to

last "
�
" to retain the many 2-level path attacks. If the T ��[�������� � ��TLK contains a script tag,

the URI is anonymized until this occurrence. The non-anonymized test file was fed to

Anonymator and the Strong anonymization scheme was applied. The resulting anony-

mized file was replayed. In this experiment Snort reported 472 positives.

4.6.4 Exp. 4: Strongest scheme

This experiment was conducted to see how the Strongest anonymization scheme influ-

enced the number of positives. The Strongest anonymization scheme implements the

Must, Should and Could classes of the methodology. The whole T ��[�������� � ��TLK is anony-

mized except if the URI contained a script tag or an /etc/passwd-attack. In these cases the

URI was anonymized until these occurrences. The non-anonymized test file was fed to

Anonymator and the Strongest anonymization scheme was applied. The resulting anony-

mized file was replayed. In this experiment Snort reported 246 positives.

4.6.5 Exp. 5: Customized: Weak URI, no headers anonymized

This experiment was conducted to see how the Customizable anonymization scheme

influenced the number of positives when Weak T ��[��
����� � �-TLK anonymization was applied

in addition to leaving all customizable header fields in clear. The non-anonymized test

file was fed to Anonymator and the mentioned Customizable anonymization scheme

was applied. All customizable headers were marked. The filter-in methodology leaves

all marked header fields in clear. The resulting anonymized file was replayed. In this

experiment Snort reported 590 positives.

4.6.6 Exp. 6: Customized: Strong URI, no headers anonymized

This experiment was conducted to see how the Customizable anonymization scheme in-

fluenced the number of positives when Strong T ��[������� � ��TLK anonymization was applied

in addition to leaving all customizable header fields in clear. The non-anonymized test

file was fed to Anonymator and the mentioned Customizable anonymization scheme was

applied. All customizable headers were marked, leaving all customizable header fields in

clear. The resulting anonymized file was replayed. In this experiment Snort reported 472

positives.

47

Anonymization of real data for IDS benchmarking

4.6.7 Exp. 7: Customized: Strongest URI, no headers anonymized

This experiment was conducted to see how the Customizable anonymization scheme

influenced the number of positives when Strongest T ��[�������� � ��TLK anonymization was ap-

plied in addition to leaving all customizable header fields in clear. The non-anonymized

test file was fed to Anonymator and the mentioned Customizable anonymization scheme

was applied. All customizable headers were marked, leaving all customizable header

fields in clear. The resulting anonymized file was replayed. In this experiment Snort re-

ported 246 positives.

4.6.8 Exp. 8: Customized: Weak URI, all headers anonymized

This experiment was conducted to see how the Customizable anonymization scheme in-

fluenced the number of positives when Weak T ��[��
����� � �-TLK anonymization was applied

in addition to anonymization of all customizable header fields. The non-anonymized test

file was fed to Anonymator and the mentioned Customizable anonymization scheme was

applied. No customizable headers were marked. The filter-in methodology will anony-

mize all non-marked header fields. The resulting anonymized file was replayed. In this

experiment Snort reported 590 positives.

4.6.9 Exp. 9: Customized: Strong URI, all headers anonymized

This experiment was conducted to see how the Customizable anonymization scheme in-

fluenced the number of positives when Strong T ��[������� � ��TLK anonymization was applied

in addition to anonymization of all customizable header fields. The non-anonymized test

file was fed to Anonymator and the mentioned Customizable anonymization scheme was

applied. No customizable headers were marked, resulting in anonymization of all cus-

tomizable header fields. The resulting anonymized file was replayed. In this experiment

Snort reported 472 positives.

4.6.10 Exp. 10: Customized: Strongest URI, all headers anonymized

This experiment was conducted to see how the Customizable anonymization scheme

influenced the number of positives when Strongest T ��[�������� � ��TLK anonymization was ap-

plied in addition to anonymization of all customizable header fields. The non-anonymized

test file was fed to Anonymator and the mentioned Customizable anonymization scheme

was applied. No customizable headers were marked, resulting in anonymization of all

customizable header fields. The resulting anonymized file was replayed. In this experi-

ment Snort reported 246 positives.

4.7 Results

Table 4 gives a summary of the results from the experiments in the form of total numbers

of positives reported by Snort. Table 9 listed in Appendix B gives a more detailed view

over the distribution of attacks detected by Snort.

The results are produced by replaying a data set with traffic recorded at the wireless

LAN at Gjøvik University College. Attacks generated by Nessus are mixed into the data

set. The results mentioned in this section relate only to this data set. Other data sets

may produce different results. However, the present results will give an indication of

the numbers to be expected and the relationship between the results. This section will

therefore explain thoroughly the differences between the test results. This is done first

of all to evaluate the methodology and the prototype implementation. Secondly, it will

48

Anonymization of real data for IDS benchmarking

Experiment Positives

Exp.1: Raw dataset 590
Exp 2: Weak anonymization 590
Exp 3: Strong anonymization 472
Exp 4: Strongest anonymization 246
Exp 5: Customized/Weak URI, no headersa 590
Exp 6: Customized/Strong URI, no headers 472
Exp 7: Customized/Strongest URI, no headers 246

Exp 8: Customized/Weak URI, all headersb 590
Exp 9: Customized/Strong URI, all headers 472
Exp 10: Customized/Strongest URI, all headers 246
a "No" means Should and Could headers are kept in clear.

Must headers are always anonymized.
b "All" means Should and Could headers are anonymized.

Must headers are always anonymized.

Table 4: Number of positives reported by Snort

give other users of the methodology and users of Anonymator, or other anonymization

software, directions for what to look for when interpreting future test results.

4.7.1 Weak related schemes

As can be seen from Table 4, Snort reports the same number of positives in experiments

1, 2, 5 and 8, where the last three being Weak related anonymization schemes. Table 9

listed in Appendix B shows almost the same numbers for each attack type for the four

experiments. The only exception is the number reported for SID 1147r7 for experiment 8,

compared to experiments 1, 2 and 5. In experiment 8, Snort logs 15 alerts for SID 1147 in

its alert logfile. In experiments 1, 2 and 5 Snort logs 12 alerts in its alert logfile. Although

Snort logs three more alerts for SID 1147r7 in experiment 8, Snort still reports a total

of 590 alerts for experiments 1, 2, 5 and 8. When looking at the attacks containing the

signature related to SID 1147r7, "cat%20", there are 15 requests containing this pattern.

After comparing the alert logfiles for experiments 1, 2, 5 and 8 these requests trigger SID

1147r7:

These are found for experiment 1, 2, 5 and 8

� �
� U \ $ e � �]:\ ��� U b "�<]��?>C� � U�" b e a:b�� 4 \ � a���1
B:b "�<]��?>C� � @� �
� U \ $ e � ; e _ U b "�<]��?>C� � U�" b e a:b�� 4 \ � a���1
BVb "�<]��A>C� � @� �
� U�" \ d�e �:a "U b "�<]��?>C� � U�" b e a:b�� 4 \ � a���1
BVb "�<]��A>C� � @� �
� U b "�<]��?>C� � U�" b e a:b�� 4 \ � a���1
BVb "�<]��?>!� � @� �
� U \ $ e � ; e _ U � < �5�V� e _ $ >C� < ���:\^] c _:a��+L	����1
P���\ � a���1
B U b^a�\ U � � "
" 8 3 ����1�P�
 " c ; e a��
� e _ $ ��1+L� �
� U�" \ d�e �:a "U � < �5�V� e _ $ >C� < ���:\^] c _:a��+L	����1
P���\ � a���1
B U b^a�\ U � � "
" 8 3 ����1�P�
 " c ; e a��
� e _ $ ��1+L� �
� U � < �5�V� e _ $ >C� < ���:\^] c _:a��+L�����1
P���\ � a���1
B U b^a�\ U � � "�" 8 3 ����1
P�
 " c ; e a��
� e _ $ ��1QL� �
� U \ $ e � �]:\ ��� U�"�<]��?>C� � U � � $ b�� 4 \ � a���1
B "�<]��?>!� � @� �
� U \ $ e � ; e _ U�"�<]��?>C� � U � � $ b�� 4 \ � a���1
B "�<]��A>C� � @� �
� U \ $ e � ; e _ U�"�<]��?>C� � U � � $ b�� 4 \ � a���1
B "�<]��A>C� � @� �
� U�" \ d�e �:a "U�"�<]��?>C� � U � � $ b�� 4 \ � a���1
B "�<]��A>C� � @� �
� U�"�<]��?>C� � U � � $ b�� 4 \ � a���1
B "�<]�� >C� � @
Additional for experiment 8:

� �
� U \ $ e � ; e _ U 3 e�d b	\`a] d �&>C� < ��� 3 e`d ����0
*�\ � a���1
B U b^a�\ U � � "
" 8 3� �
� U�" \ d�e �:a "U 3 e�d b	\`a] d �&>C� < ��� 3 e`d ����0
*�\ � a���1
B U b^a�\ U � � "
" 8 3� �
� U 3 e�d b	\`a] d �&>C� < ��� 3 e�d ����0*�\ � a���1
B U b^a�\ U � � "�" 8 3

49

Anonymization of real data for IDS benchmarking

Snort rule SID 1147r7:

��� b d a a�\������
	
�
����
�
�����
�
� � _�� ���������
�
������������� �����
�
�������������
�! #"�$&%('() �
*+�V�5-��
, \ � a���1
B � \V\2b "
"�'5476 �]�8 % a]
� " b d R:b d 9 b " a ��;�� e "�< b 3 4\^]`_:a:b2_:a %(' \ � a���1
B '54 _�]:\ � " b 4 d b 6 b d b2_�\2b % ; c $ a d � 2 9T0��I 4 d b 6 b d b2_�\2b %\�R:bS9(L�K
K
KQ��B
B
0
K 4 \ �� "
" a
��	b % � aVa:b �:a:b 3 � d b	\V]`_ 4O" e 3 % L
L.I�� 4 d bR % � 4(Y

The three requests not being detected in experiments 1, 2 and 5 use the hexadecimal

representation "%3B" of the ";" character. In some way Snort fails to recognize the pattern

"cat%20" when the URI contains "%3B". The only difference between the experiments is

that all Must, Should and Could header fields are anonymized in experiment 8. The

T ��[�������� � ��TLK is however unchanged. This strange occurrence has not been investigated

further. A possible explanations could be that there is a bug in Snort. This explanation

may be supported by the fact that the counts of positives are as shown in Table 9 in

Appendix B. Snort counts three more positives for SID 1147r7 in experiment 8, but still

keeps the total number of 590 positives.

Experiment 1 provides the basis for all comparisons, applying no anonymization at all.

The following are the similarities and differences between these experiments:

• Experiments 2, 5 and 8 use the Weak anonymization scheme for the T ��[��
����� � �-TLK .
• Experiments 2, 5 and 8 anonymize Must headers.

• Experiment 8 anonymizes all Should and Could headers.

• Experiments 2 and 5 do not anonymize Should and Could headers.

These results indicate that using Weak anonymization of the T ��[������� � ��TLK has no

influence on the number of positives. This is in accordance with the conclusions for

the revised expectations listed in Section 4.5. There are also equal results for applying

anonymization to all Must, Should and Could headers (experiment 8) as to only applying

anonymization to Must headers (experiments 2 and 5). Also, since the results for the

Weak related anonymization schemes are equal to the result using the non-anonymized

data set, it can be concluded that anonymization of the header fields have no influence on

the number of positives. This is in accordance with the predictions listed in Sections 4.3

and 4.5. The prediction for the Weak related schemes was that about 100% of the attacks

would be retained. This prediction seems to hold.

Conclusions

The conclusions based on the Weak related anonymization schemes are:

Conclusion 1 The Weak anonymization scheme and the Customizable anonymi-
zation scheme applying Weak T ��[������� � ��TLK anonymization retain all attacks
in the data set.

Conclusion 2 Anonymization of Must, Should and Could header fields have no
influence on the number of positives.

4.7.2 Strong related schemes

As can be seen from Table 4, Snort reports the same number of positives in experiments

3, 6 and 9. Table 9 listed in Appendix B also shows the same numbers for each attack

50

Anonymization of real data for IDS benchmarking

Ty
pe

O
cc

ur
re

nc
es

Ex
pl

an
at

io
n

Rul
es

fa
ili

ng
(#

fa
ili

ng
)

Script-tag 30 Script tag makes Anonyma-
tor anonymize everything un-
til the tag

1875r5(1), 1998r4(3),
2208r5(3), 1406311(1),
1997r4(1), 1592r6(1),
2410r2(3), 1637r8(3),
1534r8(1), 1602r9(3),
2326r4(3), 882r5(3),
1654r7(4)

3-level signature 3 Snort rule use 3-level URI 1827r7(1), 1829r5(1),
908r9(1)

/ 78 Several "/" occurring after the
content Snort is looking for

2565r1(3), 3465r2(3),
1969r4(3), 901r10(3),
1396r9(3), 1395r9(3),
1815r5(3), 1590r7(1),
3463r2(6), 1591r6(1),
900r11(3), 1816r3(3),
1106r11(3), 1522r10(8),
1523r10(8), 2060r1(1),
2484r1(1), 2002r5(4),
2328r3(3), 1862r7(6),
1300r7(3), 2366r4(3),
1301r11(3)

%3-flaw 5 Anonymator searches for
"%3", when it should search
for "%3c" or "%3C", both
being hex for "<"

1376r5(5)

http_inspect 2 2 attacks slipped by Snort as
a result of anonymization

119:18:01

Total 118 Total amount of attacks rendered ineffective

Table 5: Information causing drop in number of positives for Strong related schemes

type for the three experiments. Numbers are about as predicted since 472 is 80% of the

590 attacks from experiment 1. The prediction was about 81.4%.

Table 5 shows the types of information causing the lower number of positives for the

Strong related schemes. When Anonymator finds a script tag, indicated by "<", "%3c" or

"%3C" it anonymizes the entire T ��[�������� � ��TLK until the tag. The following shows such a

situation:

Attack:

� �
� U�"�$ 3 �^_ �]S>�bW:b������
�
�������� " \ d�e �:a�� 6]V]
Snort rule:

��� b d a<a�\�� ���
	
�
����
�
�����
�
� � _������������
�
������������� �����
�
�������������

51

Anonymization of real data for IDS benchmarking

�! #"�$&%('() �
*+�
-
-�� "�$ 3 �^_ �]S>�bW:b � \V\2b "
"�'54 6 �]�8 % a]
� " b d R:b d 9 b " a ��;�� e "�< b 3 4 c:d�e \^]`_:a:b2_:a %'�U�"�$ 3 �^_ �]S>�bW:b '54 _�]:\ � " b 4 d b 6 b d b2_�\2b % ; c $ a d � 2 9 I��
1
B 4 d b 6 b d b2_�\2b % \�R:bS9T1
B
B
1Q��B
0��
J 4d b 6 b d b2_�\2b % _	b "
" c " 9(L
L�K
J
J 4 \ �� "
" a
��	b % 8	b ; � � �
� � e \ � a e]`_#� � \2a e R e a
� 4O" e 3 % 1
0
1
P 4 d bR % I 4(Y

Here Anonymator anonymizes "/sgdynamo.exe?HTNAME=", retaining "<script>foo".

The Snort rule looks for "/sgdynamo.exe". Since this part is anonymized, the rule is not

triggered. Such cases cause 30 fewer positives reported by Snort.

Some Snort rules use 3-level URIs or more to look for attack patterns. Since the

Strong related anonymization schemes anonymizes everything until and including the

third level, these attacks are rendered ineffective. Here is an example of such a rule:

Snort rule::

��� b d a a�\������
	
�
����
�
�����
�
� � _�� ���������
�
������������� �����
�
�������������
�! #"�$&%('() �
*+�V�5-��
,��] \ � aN� d] c ;�� b
� <]V]2a:b d " b d R � b^a � \V\2b "
"�'54 6 �]�8 % b " a ��;�� e "�< b 3 9a]
� " b d R:b d 4 c:d�e \^]`_:a:b2_:a %('�U bW � � � b "U�" b d R � b^a U � d] c ;�� b
� <]V]^a:b d '#4 d b 6 b d b2_�\2b %
; c $ a d � 2 9 I�J��
J 4 d b 6 b d b2_�\2b % _	b "
" c " 9(L
L�BI�P 4 \ �� "
" a
��	b % 8	b ; � � �
� � e \ � a e]`_ � � \`a e R e a
� 4" e 3 % L�F
1
K 4 d bR % J 4(Y

In this example Anonymator will anonymize "examples", but leave the leading "/" and

"/servlet/TroubleShooter" intact, resulting in this request line: "GET /nnnnnnnn/←↩

servlet/TroubleShooter HTTP/1.1". Since this is a pattern Snort has no rule to recog-

nize, Snort will not report a true positive. Also, the attack will be rendered ineffective.

Such cases cause a drop of 3 in the number of positives.

The largest influence on the number of positives is caused by several "/" occurring

after what represents the attack signature. One such example is:

Attack:
� �
� U \ $ e � ; e _ UV d a $ >�\ $ e �:\ 6
$ � U >
> U >�> U >�> U >
> U >
> U >
> U >
> U >�> U >�> U 8 e _V_:a U 8 e _ > e _ e
Snort rule:

��� b d a a�\������
	
�
����
�
�����
�
� � _�� ���������
�
������������� �����
�
�������������
�! #"�$&%('() �
*+��, � - d a $ >�\ $ e 3 e�d b	\`a] d � a d � R:b d " ���H� aVa:b �:a '54 6 �]�8 % a]
� " b d R:b d 9 b " a ��;�� e "�< b 3 4c:d�e \^]`_:a:b2_:a %('�UV d a $ >�\ $ e '54 \^]`_:a:b2_:a %(' \ 6
$ � U >
> UQ'54 d b 6 b d b2_�\2b % ; c $ a d � 2 9 I�BQL � 4 d b 6 b d b2_�\2b %\�R:bS9T1
B
B
1Q��B
1
0
1 4 d b 6 b d b2_�\2b % _	b "
" c " 9(L
L�B
BQL 4 \ �� "
" a
��	b % 8	b ; � � �
� � e \ � a e]^_5� � a:a � \�� 4" e 3 % L�F
P
1 4 d bR % � 4(Y

In this example the attack signature is "/mrtg.cgi" and "cfg=/../". Since Anonymator in

the Strong T ��[��
����� � �-TLK anonymization anonymizes until the second to last "/", just

"/winnt/win.ini" remains in the clear. This renders the attack ineffective. Such cases

cause 78 fewer positives reported by Snort.

Snort rule 1376r5 revealed a flaw in Anonymator:

Snort rule:

52

Anonymization of real data for IDS benchmarking

��� b d a<a�\�� ���
	
�
����
�
�����
�
� � _������������
�
������������� �����
�
�������������
�! #"�$&%('() �
*+�V�5-��
,�� d^c _ 3 e�d b	\`a] d � ; d]�8 " b � aVa:b �:a '5476 �]�8 % a]
� " b d R:b d 9 b " a ��;�� e "�< b 3 4c:d�e \^]`_:a:b2_:a %('�U �S>�� " � '54 d b 6 b d b2_�\2b % ; c $ a d � 2 9T0
J
K
1 4 \ �� "
" a
��	b % 8	b ; � � �
� � e \ � a e]2_5� � a:a � \�� 4" e 3 % L�0��
P 4 d bR % J 4(Y

In this rule Snort is looking for the pattern "/?.jsp". Due to the inner workings of Snort,

the pattern "/%3f.jsp", where "%3f" is hexadecimal for "?", is also looked for. Anonymator

is constructed to look for "%3c" or "%3C" to reveal cross site scripting attacks. However,

an occurrence of oversight made Anonymator only look for "%3", leaving out the "c"

or "C". The anonymization regarding script tags will anonymize everything before "<" or

"%3". In regard to rule 1376r5 this also leads to anonymizing the leading "/" in "/%3f.jsp".

This was enough to render these attacks ineffective. This explanation holds for five of the

attacks, where the T ��[����
��� � ��T�K have 2 levels. The explanation for the one remaining

1376r5-attack is that the T ��[������� � ��TLK is of 1 level, and that the URI starts with a "/". All

URIs starting with a "/" will retain the leading slash. The "%3" flaw will be corrected to

"%3c" and "%3C" in a newer version of Anonymator.

The http_inspect type of attacks are detected by the http_inspect preprocessor of

Snort. These attacks do not use any rule in the detection process. The alert file gen-

erated by Snort names these attacks "WEBROOT DIRECTORY TRAVERSAL". Here are

two examples of attacks being retained:

Attacks:

� �
� U � ��; c 5U �] 3 b�� ����; c
 ����; c �A>
> ��1G?>
> ��1�G?>�> ��1�GA>
> ��1�G?>
> ��1�G?>�> ��1G?>
> ��1�G?>
> ��1 ←↩

G	b^a�\
 3 e " � " e�� b���PI�B�
 " a � d a���B����
�
� U L > L
� �
� U b dVd] d U ��J	\ ��1Vb���1Vb���J	\ ��1Vb���1Vb���J	\ ��1Vb���1:b���J�\ ��1Vb���1Vb���J	\ � c a]^b
W:b	\S> ;�� a/���
�
� U L > L

If the hex representation "%2F" had been written as the ASCII character "/", Anonymator

would have anonymized the URI. Since hex representation is used, Anonymator left the

URI in clear, keeping the attack intact. In the second example "%5c%2e%2e" represents

"\..". This is also kept intact by Anonymator. If the URI had been represented in ASCII,

it would also have been kept as is because the directory separator is implemented as "/"

and not "\". This is considered a flaw and put on the to-do list for improving Anonymator.

In Table 5 two http_inspect attacks are noted as being rendered ineffective. These are the

original attacks being rendered ineffective after anonymization:

Attacks:

� �
� U � < � d]:\ �	b^a �3
3 e _ U ��� � $ b��&>
> U >
> U >�> U >
> U >
> U >
> U >
> U >
> U >�> U >
> U >
> U >
> U >
> U ←↩

>
> U >
> U b^a�\ U � � "
" 8 3
� �
� U � < � d]:\ �	b^a �3
3 e _ U ��� � $ b��&>
> U >
> U >�> U >
> U >
> U >
> U >
> U >
> U >�> U >
> U >
> U >
> U >
> U >�> U >�> U�) -��
�
� U ←↩" � " a:b 0
1 U e ��\^]`_ 6 e $ >�bW:b

These URIs consist of repeating the pattern "../". In the first request we also see that /etc/-

passwd is present. This makes Anonymator anonymize the URI until /etc/passwd occurs,

53

Anonymization of real data for IDS benchmarking

resulting in this URI: "/nn←↩

nnnnnnnnnnnnnnnnn/etc/passwd". This will preserve the passwd-attack, but render the

directory traversal attack ineffective. In the second request only

"/system32/ipconfig.exe" will be kept in clear. Every character before that, except the

leading "/" will be anonymized. This will also render the directory traversal attack inef-

fective. This way two attacks are rendered ineffective, while the rest of the "WEBROOT

DIRECTORY TRAVERSAL" attacks are retained.

These results indicate that using Strong anonymization of the T ��[������� � ��TLK results in a

loss in the number of positives of about 20%, retaining 80%. This is in accordance with

the conclusions for the revised expectations listed in Section 4.5. There are also equal

results for applying anonymization to all Must, Should and Could headers (experiment

9) as to only applying anonymization to Must and Should headers (experiment 3) and

Must headers (experiment 6). This means it can be concluded that anonymization of

the header fields has no influence on the number of positives using the Strong related

anonymization schemes. This is in accordance with the predictions listed in Section 4.3.

The prediction for the Strong related schemes, listed on page 46, was that about 81.4% of

the attacks would be retained. This percentage is considered to be within an acceptable

fault tolerance compared to the actual result of 80%.

Conclusions

The conclusions based on the Strong related anonymization schemes are:

Conclusion 3 Cross site scripting attacks are retained, but will cause signature pat-
terns preceding the script tag to be altered.

Conclusion 4 2-level signatures are retained and work as expected. More levels
will be anonymized.

Conclusion 5 Attacks having more than two slashes ("/") after the pattern searched
for by Snort are rendered ineffective.

Conclusion 6 A "%3"-flaw is discovered and put on the to-do list.

Conclusion 7 A backslash-flaw, where "\" is used for directory-separation, is dis-
covered. This is put on the to-do list.

Conclusion 8 Anonymization of header fields has no influence on the number of
positives when Strong related anonymization schemes are used.

4.7.3 Strongest related schemes

As can be seen from Table 4 Snort reports the same number of positives in experiments

4, 7 and 10. Table 9 listed in Appendix B also shows the same numbers for each attack

type for the three experiments. The experiments report that 246 (41.7%) of the attacks

are preserved while the expected percentage was 37.5.

Instead of explaining these results by explaining why attacks are lost, as in Section

4.7.2, the results for the Strongest related anonymization schemes will be explained from

the point of view why the attacks are retained. This can be done after examining the

anonymized T ��[������� � ��TLK s after applying the Strongest T ��[������
� � ��TLK anonymization.

The basis for this anonymization scheme is that the entire URI is anonymized, except in

the special cases where the URI contains a script tag, indicated by "<", "%3c" or "%3C"

54

Anonymization of real data for IDS benchmarking

Snort SID Occurrences Explanation

1497r6 119 Script tag found
1122r5 105 /etc/passwd found
1147r7 3 %3-flaw in Anonymator
1201r7 11 Response lines are not anonymized

119:18:1a 1 http_inspect retains leading "/"
1376r5 1 %3-flaw in Anonymator

122:03:3a 3 Portscan retained
1042r13 1 Translate header remains in clear
2056r4 1 TRACE method left in clear
2441r4 1 "Cookie: login=0" left in clear

Total 246

a These numbers are not actual SIDs referring to Snort rules. The
numbers are alert codes belonging to specific types of attacks.

Table 6: Information causing retention of attacks using the Strongest related anonymization

schemes

or it contains /etc/passwd. This is an example of anonymization where no special cases

are present:

Attack:
� �
� U \ $ e � ; e _ U B���,�8) �
	 6 P
1
K �:>�\ $ e ���
�
� U L > L

Anonymized:
� �
� U _V_ ���
�
� U L > L

In this example the entire URI is anonymized, with the exception of the leading "/". This

anonymization renders the attack ineffective. Such cases are entirely responsible for the

drop in the number of positives when the Strongest related anonymization schemes are

used. This includes both attacks detected by means of Snort rules and to the use of the

http_inspect preprocessor.

Table 6 lists the type of information responsible for the retention of attacks when the

Strongest related anonymization schemes are applied. When a script tag or the string

/etc/passwd is found, the URI is anonymized until these occurrences, with the exception

of an eventual leading "/". This renders attack signatures present in the part before the

occurrence ineffective, but retains the part necessary to trigger a cross site scripting at-

tempt, respectively a passwd attempt. The attacks in themselves are rendered ineffective

because of the altered path. This will make the anonymized data set less real. However,

since a URI path may identify subjects, the choice regarding the Strongest scheme is

easy. In the trade-off between attack retention and anonymization, the choice is to favor

anonymization.

For SID 1147r7 9 positives are missed. The 3 attacks retained are caused by the "%f3"

flaw mentioned in Section 4.7.2. These are the retained requests at which Snort triggers:

55

Anonymization of real data for IDS benchmarking

Original:
� �
� U \ $ e � ; e _ U 3 e�d b	\`a] d �&>C� < ��� 3 e�d ����0*�\ � a���1
B U b^a�\ U � � "
" 8 3� �
� U�" \ d�e �:a "U 3 e�d b	\`a] d �&>C� < ��� 3 e�d ����0*�\ � a���1
B U b^a�\ U � � "
" 8 3� �
� U 3 e�d b	\`a] d �&>C� < ��� 3 e�d ����0*�\ � a���1�B U bVa�\ U � � "
" 8 3
Anonymized:
� �
� U _V_	_V_V_V_���0*�\ � a���1
B U b^a�\ U � � "
" 8 3 ���
�
� U L > L
� �
� U _V_	_V_V_V_���0*�\ � a���1
B U b^a�\ U � � "
" 8 3 ���
�
� U L > L
� �
� U _V_V_V_V_V_V_V_V_V_V_V_V_V_V_V_V_V_���0*�\ � a���1�B U bVa�\ U � � "
" 8 3 ���
�
� U L > L

As can be seen, the T ��[������
� � ��TLK is anonymized until "%3". In the corrected version of

Anonymator, the 3 requests will be anonymized until /etc/passwd, altering the attack

signature "cat%20". The true positive count for SID 1147r7 would in that case have been

0. This is also an example of a trade-off situation where the choice is to anonymize.

The Strongest
�
��[����
��� � ��T�K anonymization is after all made for removing information

endangering identification of subjects.

The positives reported for SID 1201r7 are retained because nothing that Snort looks

for is anonymized. SID 1201r7 belongs to the Attack-Responses rules:

Snort rule:
��� b d a a�\��������
�
������������� �����
�
���������������������
	
�
����
�
�����
�
� � _��
�! #"�$&%(' �
�
�
��,��+�V���������������/I�B
0XG�] d ; e 3
3 b2_ '54 6 �]�8 %!6 d] � " b d R:b d 9 b " a ��;�� e "�< b 3 4\^]`_:a:b2_:a %(' ���
�
� U L > L�I�B
0 '54 3 b��:a <?% L�1 4 \ �� "
" a
��	b % � aVa:b �:a:b 3 � d b	\^]`_ 4O" e 3 % L�1
BQL 4 d bR % � 4(Y
Triggered by:
���
�
� U L > LXI�B
0XG�] d ; e 3
3 b2_

The anonymization methodology does not anonymize response lines. As can be seen, a

match will be found by Snort. This way all the 403-responses are retained and so are the

positives reported by Snort.

The http_inspect detected attack being retained in regard to alert code 119:18:1 is:

Request:

� �
� > U
←↩

> U > U
←↩

> U >�> U >�> U >
> U >
> U >
> U >
> U >�> U >�> U

The T ��[����
��� � ��T�K here starts with a dot. Due to a flaw in Anonymator T ��[��
����� � �-TLK s not

starting with a slash or an "h" (as in http://) are kept in clear. Implemented correctly,

there would have been reported zero positives for this http_inspect detected attack.

The one retained attack pertaining to SID 1376r5 is caused by the "%3"-flaw in Anony-

mator. The discussion for this flaw presented in Section 4.7.2 is also current here.

Table 6 shows 3 retained attacks with code 122:03:3. These attacks are the TCP

portscans contained in the data set provided by the IT department at Gjøvik University

College.

Snort rule 1042r13 searches for the Translate header in the network traffic:

56

Anonymization of real data for IDS benchmarking

Snort rule:

��� b d a<a�\�� ���
	
�
����
�
�����
�
� � _������������
�
������������� �����
�
�������������
�! #"�$&%('() �
*+�
-
-��HR e b�8 "] c:d \2bNR e � a d � _ " �� a:b < b �3 b d '54 6 �]�8 % a]
� " b d R:b d 9 b " a ��;�� e "�< b 3 4\^]`_:a:b2_:a %(' � d � _ " �� a:b&@!0�?@7G '54 _�]:\ � " b 4 d b 6 b d b2_�\2b % � d � \ < _ e 3 " 9T0
B
J 4 d b 6 b d b2_�\2b %
; c $ a d � 2 9(L.I��
PI 4 d b 6 b d b2_�\2b % ; c $ a d � 2 9(L�J��
F 4 d b 6 b d b2_�\2b % \�R:bS9T1
B
B
BQ��B����
F 4 d b 6 b d b2_�\2b %_	b "
" c " 9(L�BI�KQL 4 \ �� "
" a
��	b % 8	b ; � � �
� � e \ � a e]`_5� � \`a e R e a�� 4 " e 3 % L�BI�1 4 d bR % L�0 4(Y
Original request:
� �
� U�$ �] ;���� > � " ��� ���
�
� U L > B
� d � _ " �� a:b % 6
Anonymized request:
� �
� U _V_V_V_V_V_V_V_V_V_V_����
�
� U L > B
� d � _ " �� a:b % 6

The methodology always retains the header field name. When anonymization is applied,

only the values are altered. This means that this request is considered an attack by

Snort and a positive is reported. However, the attack is rendered ineffective due to the

T ��[������
� � ��TLK -anonymization.

Rule SID 2056r4 relates to the TRACE request method. This is the rule, followed by

the request triggering the true positive, both the original and the anonymized versions:

Snort rule:

��� b d a<a�\�� ���
	
�
����
�
�����
�
� � _��������������������
�
� �����
�
�������������
�! #"�$&%('() �
*+�V�5-��
,������,� � aVa:b �:a '5476 �]�8 % a]
� " b d R:b d 9 b " a ��;�� e "�< b 3 4 \^]`_:a:b2_:a %(' �����,� '54
3 b��:a <?% J 4 d b 6 b d b2_�\2b % ; c $ a d � 2 9TK
J
PQL 4 d b 6 b d b2_�\2b % _	b "
" c " 9(L
L�1QL�0 4 d b 6 b d b2_�\2b % c:d � 9
8
8
8?>C8 < e a:b < � a " b	\=>�\^] 5U � d b "
" � d b � b � " b "U�) �#�.��#��1
B
B�0
BQL�1
B:>C� 3 6:4\ �� "
" a
��	b % 8	b ; � � �
� � e \ � a e]`_5� � aVa � \ � 4X" e 3 % 1
B
J
P 4 d bR % I 4(Y
Original and anonymized request:

�����,� U �:b "
" c " L�B
F
P��
B��I�F
B:> < a �
�����,� U _V_

The rule searches for the string "TRACE". Since the request methods are not anonymized

the anonymized request will still trigger an alert. The attack is however rendered inef-

fective since the T ��[����
��� � ��T�K is anonymized.

The Snort rule SID 2441r4 pertains to the Cookie request header. This is the Snort

rule and the original and anonymized versions of the complete request:

Snort rule:

��� b d a<a�\�� ���
	
�
����
�
�����
�
� � _������������
�
������������� �����
�
�������������
�! #"�$&%('() �
*+�V�5-��
,��:b^a�� ; " b d R:b � c a < b2_:a e \ � a e]`_ ; �� � "
" � aVa:b �:a '54 6 �]�8 % a]
� " b d R:b d 9b " a ��;�� e "�< b 3 4 \^]`_:a:b2_:a %(' �] $ e _���B '54 _�]:\ � " b 4 \^]`_:a:b2_:a %(' ,:]V]�� e b&@!0�?@ '54 _�]:\ � " b 4
��\ d b %('�U�� ,:]V]�� e b � W�0 � � � "�� @ � "�� � d � � _ � " � Y���� � _�� � � �] $ e _���B U�"V e '54 d b 6 b d b2_�\2b % ; c $ a d � 2 9TK
0QL�K 4\ �� "
" a
��	b % 8	b ; � � �
� � e \ � a e]`_5� � aVa � \ � 4X" e 3 % 1I
I+L 4 d bR % I 4(Y
Original request:

57

Anonymization of real data for IDS benchmarking

����� U�" b2_ 3 b 3 e a 6 e � b����
�
� U L > L
��\V\2b��:a % �
U �
�	b 6 b d b d % < aVa� %TU
U L�K
1:> L�P
F:> B:> J % F
B U b 3 e a 6 e � b����
, % �) -.�
�
� � 8 e _?> ;�� a��
,:]`_:a:b2_:a+�.�
��	b % � �
� � e \ � a e]`_ U W+�V8
8
85� 6] d � c	d � b^_�\^] 3 b 3
��] " a % L�K
1:> L�P
F:> B:> J % F
B
,:]`_V_	b	\`a e]`_ % \ �] " b
,:]`_:a:b2_:a+�.�:b2_ $ a <?% 1
J
,:]V]�� e b % �] $ e _���B
Anonymized request:

����� U _V_V_V_V_V_V_V_V_V_V_V_H���
�
� U L > L
��\V\2b��:a % �
U �
�	b 6 b d b d % < aVa� %TU
U 8
8
8?> 6]V] 6]V] 6]V] 6]V] 6]:] 6]V] 6]V] 6]V] 6]V] 6]:] 6]:] 6 > ;�� d
,:]`_:a:b2_:a+�.�
��	b % a
��	b^a
��	b^a
��	b^a
��	b^a
��	b^a
��	bVa
���b^a
���b^a
��] " a % <] " a <] " a <] " a <]
,:]`_V_	b	\`a e]`_ % \ �] " b
,:]`_:a:b2_:a+�.�:b2_ $ a <?% 1
J
,:]V]�� e b % �] $ e _���B

As for the cross site scripting attacks and the /etc/passwd-attacks, the value "login=0" is

treated specifically by Snort. The 	�	 � � � header may consist of several options. Accord-

ing to the Snort rule a login-option with the value 0 is considered an attack. As for the

present version of Anonymator, other 	�	 � � � -options are anonymized.

These results indicate that using Strongest anonymization of the T ��[�������� � ��TLK results in

a loss in the number of positives of about 58.3%, retaining 41.7%. There are equal results

for applying anonymization to all Must, Should and Could headers (experiment 4 and

10) as to only applying anonymization to Must headers (experiment 7). This means it can

be concluded that anonymization of the header fields has no influence on the number of

positives using the Strongest related anonymization schemes. This is in accordance with

the predictions listed in Section 4.3. The prediction for the Strongest related schemes,

listed on page 46, was that about 37.5% of the attacks would be retained. This percentage

is considered to be withing an acceptable fault tolerance compared to the actual result

of 41.7%.

Conclusions

The conclusions based on the Strong related anonymization schemes are:

Conclusion 9 Anonymization of the entire T ��[������� � ��TLK has significant influence
on the number of positives.

Conclusion 10 When anonymizing until "<", "%3c", "%3C" and "/etc/passwd" pos-
itives are still reported. However, the positives must be considered false since
the path is anonymized, rendering the attack ineffective.

Conclusion 11 A leading character flaw is found. When a T ��[������
� � ��TLK starts with
other characters than "/" or "h" the T ��[������� � ��TLK is kept as is. This flaw is put
on the to-do list for Anonymator’s further development.

Conclusion 12 Anonymization of header fields has no influence on the number of
positives when Strongest related anonymization schemes are used.

58

Anonymization of real data for IDS benchmarking

4.8 Conclusions regarding experimental work

The conclusions based on the experiments are listed in Table 7. The first thing to notice

is that the anonymization schemes work almost as expected. The Weak related schemes

retain all attacks in the data sets. The Strongest related anonymization schemes work

almost opposite to this, rendering all attacks ineffective, with the exception of those being

specifically treated. The Strong related schemes work almost as expected, anonymizing

until the second to last "/" of the T ��[������� � ��TLK . This leads in some cases to anonymization

of the 2-level URI reflected in a Snort rule when e.g. a path is provided as parameter to

the T ��[������� � ��TLK .
Secondly, anonymization of header fields has no influence on the number of positives.

Note that this pertains only to the present test data set. Other data sets having header

field values matched by a Snort rule will trigger an alert. Those headers present in the

current data set and which Snort triggers on have values not subject to anonymization.

Third, some values are treated specifically by Anonymator. For the current version of

Anonymator the specific strings are: "<", "%3", "/etc/passwd" and "login=0". Especially

the first three are responsible for retaining a large amount of attacks when the Strong and

Strongest related schemes are applied. The "%3" string represents a flaw in Anonymator,

which will be corrected in a newer version of Anonymator.

Fourth, two additional flaws were found during testing. The only directory path sep-

arator character implemented in Anonymator is "/". Some requests, mostly related to

Windows path traversal, use the "\" character. This is also put on the to-do list for further

development of Anonymator. The other flaw is that T ��[������� � ��TLK s starting with another

character than "/" or "h" are not anonymized at all. This is also put on the to-do list.

The last thing to draw attention to is when applying anonymization to a request being

an attack, the attack may be rendered ineffective while still keeping the information

Snort is looking for. This might for example be an /etc/passwd-attack where the path

before "/etc/passwd" is anonymized. This will still trigger a positive by Snort. However,

instead of being a true positive, this must be considered a false positive. The reason for

anonymizing this way is to prioritize anonymity in the trade-off between anonymity and

reality.

Conclusion

Conclusion 1 The Weak anonymization scheme and the Customizable anonymi-
zation scheme applying Weak T ��[�������� � ��TLK anonymization retain all
attacks in the data set.

Conclusion 2 Anonymization of Must, Should and Could header fields have no
influence on the number of positives.

Conclusion 3 Cross site scripting attacks are retained, but will cause signature pat-
terns preceding the script tag to be altered.

Conclusion 4 2-level signatures are retained and work as expected. More levels will
be anonymized.

Conclusion 5 Attacks having more than two slashes ("/") after the pattern searched
for by Snort are rendered ineffective.

Conclusion 6 A "%3"-flaw is discovered and put on the to-do list.
Conclusion 7 A backslash-flaw, where "\" is used for directory-separation, is discov-

ered. This is put on the to-do list.
Conclusion 8 Anonymization of header fields has no influence on the number of

positives when Strong related anonymization schemes are used.
Continued on next page

59

Anonymization of real data for IDS benchmarking

Conclusion

Conclusion 9 Anonymization of the entire T ��[����
��� � ��T�K has significant influence
on the number of positives.

Conclusion 10 When anonymizing until "<", "%3c", "%3C" and "/etc/passwd" pos-
itives are still reported. However, the positives must be considered
false since the path is anonymized, rendering the attack ineffective.

Conclusion 11 A leading character flaw is found. When a T ��[����
��� � ��T�K starts with
other characters than "/" or "h" the T ��[������� � ��TLK is kept as is. This
flaw is put on the to-do list for Anonymator’s further development.

Conclusion 12 Anonymization of header fields has no influence on the number of
positives when Strongest related anonymization schemes are used.

Table 7: Conclusions for experimental work

60

Anonymization of real data for IDS benchmarking

5 Conclusions

This thesis has presented a methodology for anonymization of payload data present in

recorded traffic. Such anonymized data sets can freely be distributed for use in evalu-

ations of intrusion detection systems. A prototype called Anonymator based on the metho-

dology is also implemented.

5.1 Methodology

There have been more previous work on network and transport layer anonymization

than on application layer anonymization. Anonymity considerations for some network

and transport protocols are listed in Sections 3.3.1, 3.3.2 and 3.3.3. These are only su-

perficially considered for the current version of the methodology, and have not been

classified according to the classes devised. The methodology presented focuses on HTTP

traffic. The author encourages further research to include more application layer proto-

cols to the methodology and also to classify the listed network and transport protocols.

There are also more network and transport protocols to be added to the methodology.

A classification system has been devised to classify protocol header fields and other

information. The devised classes are:

Must ...be anonymized. Information classified as Must has the greatest potential to iden-

tify a subject and must be anonymized.

Should ...be anonymized. Information classified as Should has medium potential to

identify a subject, but are in most cases not a threat to privacy.

Could ...be anonymized. Information classified as Could has low potential to identify a

subject, and are very seldom a threat to privacy.

No ...anonymization necessary. Information classified as No cannot in any way be used

to identify a subject.

The information related to a HTTP packet can be divided in request line, response

line, header fields and other data. For the request line only the T ��[��
����� � �-TLK is anony-

mized. The schemes are as follows:

Must The domain part of the URI is anonymized to provide a basic anonymization

scheme.

Should The URI is anonymized until the second to last "/" to preserve the many 2-level

attacks.

Could The entire URI is anonymized to provide the highest level of anonymity.

The response lines are not anonymized at all since they do not contain information

revealing subject’s identity.

Each header field is considered carefully and classified as Must, Should, Could or No.

Table 8 in Appendix A lists the headers defined in [38, 46, 49, 52] with the appropriate

61

Anonymization of real data for IDS benchmarking

classifications. The header field names are not anonymized, but the options and values

are, where appropriate. In some cases only some options are anonymized, leaving other

options in clear. This is however not implemented in Anonymator, which in the current

version anonymizes all options.

Other data not recognized by the methodology is anonymized entirely. This is data

we do not know anything about. Since such data may contain identifying information it

must be anonymized.

Due to differing legislation between countries regarding privacy, the methodology leaves

much of the decisionmaking to the operator of the anonymizing software. The Must

headers and domain part of the T ��[������� � ��TLK are always anonymized. Anonymization

of other information can be chosen by the operator using a filter-in approach, suggested

in [13], where the operator chooses the headers to be kept in clear. Other headers will

be anonymized. This approach is chosen to minimize accidental revelation of identifying

information.

5.2 Prototype

The prototype, called Anonymator, is an implementation of parts of the methodology.

Anonymator anonymized only HTTP data. Other application layer protocols and link,

network and transport protocols are left as they are. The exception are fields dependent

on application layer data, such as the TCP checksum, requiring a recalculation in order to

be correct. Other data are copied without further ado to the new packet. It is adviced to

extract other data than HTTP data with adherent link, network and transport data from

the data set before feeding the data to Anonymator. Anonymator may not work correctly

for other protocols. This is said with the knowledge that Anonymator is just a prototype,

subject to throwing away or to further development.

The classifications are implemented as different anonymization schemes. In Anony-

mator the operator can choose between these anonymization schemes:

Strongest This scheme implements anonymization to the Must, Should and Could head-

ers and the T ��[����
��� � ��T�K . For the T ��[�������� � ��TLK this means anonymizing the en-

tire URI. To preserve some positives, Anonymator treats cross site scripting and

/etc/passwd attacks specifically. When Anonymator detects patterns adhering to

these attacks, it only anonymizes the T ��[�������� � ��TLK until these occurrences.

Strong This scheme implements anonymization to the Must and Should headers and

the T ��[��
����� � �-TLK . For the T ��[����
��� � �-TLK this means anonymizing the URI until the

second to last "/". The reason for this is to preserve the many positives relating to

2-level attack signatures. Also here Anonymator will preserve the signature of cross

site scripting attempts.

Weak This scheme implements anonymization to the Must headers and the T ��[�������� � ��TLK .
For the T ��[����
��� � ��T�K this means anonymizing only the domain part of the URI.

Customized This scheme leaves the decision to the operator. All Must headers are anony-

mized by default. The operator chooses which fields belonging to the classes Should

and Could should be anonymized. The operator also chooses which T ��[������
� � ��TLK -
anonymization scheme to use.

62

Anonymization of real data for IDS benchmarking

Some values are treated specifically in Anonymator, due to their frequent use in

attacks. Current the specific strings are "<", "%3" (which should have been "%3c and

"%3C"), "/etc/passwd" and "login=0" (pertaining to the 	�	 � � � header). These strings

are fetched from Snort rules after analyzing the attacks. More specific values can be

added. Optimally all the Snort content-values should have been included. A way to do

this is presented in Chapter 6.

Since Anonymator is a prototype, not all aspects of the methodology are implemented.

One aspect not implemented is the anonymization of a subset of options for a header

field. An example of this is anonymization of the
� � �

general header field, where only

the
�
�������
�
�� �����

option needs to be anonymized. The current version anonymizes all

options. Further fine-graining of option anonymization is on the to-to list.

5.3 Experiments

The experiments conducted demonstrate correctness of the methodology and the im-

plementation in major part. A thorough analysis of the expected behaviour was done

before the experiments. After the preparation of the experiments the expectations were

adjusted due to Snort reporting true positives for only about a third of the attacks gener-

ated by Nessus. After conducting the experiments, the results were within an acceptable

fault tolerance range of the expected results. The main conclusions for the experiments

are that the Strongest, Strong, Weak and Customized anonymization schemes work as

expected, with the exception of some minor unpredicted behaviours and flaws in Anony-

mator. One example is the case when applying Strong T ��[������� � ��TLK anonymization to an

URI having another URI as parameter. In such cases the attack signature present in the

start of the URI will be overwritten because Anonymator counts the "/" in the URI being

the parameter.

The flaws detected are:

"%3" Anonymator shall search for the strings ">", "%3c" and "%3C" to reveal cross site

scripting attacks. A typo makes Anonymator only look for "<" and "%3", leaving

out the "c" and "C". The solution will be to include the "c" or "C" after "%3".

"\" Anonymator treats only "/" as the directory path separation character. This might for

Windows systems be the character "\". The solution will be to treat "\" the same

way as "/".

Leading Request-URI character Leading T ��[������
� � ��TLK characters other than "/" and "h"

leads to keeping the URI in clear, no matter what anonymization scheme is applied.

The solution will be to accept all characters as leading characters for the URI.

These flaws are put on the to-do list for the next version of Anonymator.

It is important to note that even if Snort reports a number of positives when replaying

an anonymized data set, the positives must not necessarily be true positives. The point

is that when Anonymator anonymizes a T ��[������
� � ��TLK it may anonymize a part of the

path, but retain the information triggering an alert. This means that Snort will count

a positive. However, the attack itself is rendered ineffective since a part of the path is

altered in the anonymization process. The positive must in such a case be considered

a false positive. Such situations are occurring most often when applying the Strongest

anonymization related schemes. This may counter the goal of keeping the data set as

63

Anonymization of real data for IDS benchmarking

realistic as possible. However in the trade-off between reality and anonymization, the

Strongest anonymization scheme must have focus on anonymization.

5.4 Recommendations

Since there are different legislation rules regarding privacy among countries, it is difficult

to give an exact advise of which level of anonymization to choose. It should be noted that

this methodology is not finalized, being just in its early stages. More protocols must be

added, and link, network and transport layer anonymization must be implemented. To

adhere to the legislation in Norway, the Strongest scheme will be the safest choice. How-

ever, the Strong choice would in most cases be adequate. If using the Strong scheme, the

data set could be manually inspected to find out if any identifying information remains.

As stated in [12], one can never be completely sure that any such information remains.

The need for methodologies for automatic inspection of data sets in order to reveal un-

wanted information should be a topic for further research. So far simple scripting could

be done to extract information from the anonymized data sets in order to present the

information in a more readable format for manual inspection.

The Weak anonymization scheme is not recommended to use in a production en-

vironment. This scheme should be regarded as a research anonymization scheme with

the property of retaining as many attacks as possible. The anonymization is however not

considered good enough to provide unquestionable anonymity.

64

Anonymization of real data for IDS benchmarking

6 Further Work

This thesis describes a methodology for anonymizing network traffic in order to provide

distributable data sets for IDS testing. The limited time available for the thesis made

it possible only to focus on a small part of the methodology. To devise a complete and

comprehensive methodology further research is necessary. The following sections provide

some guidelines for further work, first of all for developing the methodology, but also for

the development of Anonymator. Some recommendations regarding experimentations

are also included.

6.1 Methodology

This thesis focuses on payload anonymization of network traffic, in particular HTTP

anonymization. These are the recommendations for further development of the metho-

dology:

• [40] contains additional HTTP headers not included in this methodology. These head-

ers should be carefully considered and added to the methodology.

• Add more application layer protocols to the methodology. The protocols must be

carefully considered regarding information revealing subject’s identity. Header in-

formation and other information must be classified according to the classes Must,

Should, Could and No for easier implementation. Ways to anonymize different data

must be considered while at the same time keeping in mind the importance of re-

taining reality for the data set. In the Strongest anonymization schemes the trade-off

must favor anonymization.

• Classify and add link, network and transport protocols to the methodology. The same

considerations as mentioned in the former item apply also here.

• As noted, many attacks are rendered ineffective even though the anonymization pro-

cess retains the attack signatures. Research should be conducted for ensuring the

attacks to retain their full functionality without endangering privacy.

• This thesis has analyzed Snort rules to find out what information Snort searches for

when trying to detect attacks. It would have been interesting to see how other IDSes

uses different information to detect attacks.

• The current version of the new methodology focuses on altering information it explic-

itly can recognize. It would have been interesting to see if heurisitics could be applied

to the payload of a packet in order to discover more known patterns.

6.2 Prototype

The current version of the prototype implements most of the methodology. However,

some functionality present in the devised methodology is not implemented. In addition

some flaws were found as a result of the experiments. The prototype should also be

developed in parallel with the methodology. These are the recommendations for the

65

Anonymization of real data for IDS benchmarking

further work regarding the prototype:

• Correct the flaws found during the experiments:

• The "%3"-flaw should be corrected by searching for "%3c" and "%3C" instead of

just "%3".

• The "\"-flaw should be corrected by implementing "\" as directory path separator

in addition to the present "/".

• The "leading T ��[��
����� � �-TLK character"-flaw should be corrected by allowing any

character to be the first in the T ��[��
����� � �-TLK .
• Implement partial header anonymization for those header fields having many options,

of which only a subset is subject to anonymization.

• Implement headers defined in [40] after adding them to the methodology.

• Implement additional application layer protocols added to the methodology.

• Implement anonymization of link, network and transport layer information.

• Optimal anonymization combined with the retention of a high number of positives

could be accomplished by letting Anonymator build a data structure over the
��	 � �
� � � -

and
��������	 � �
� � � values present in Snort rules. Such a technique has been used in the

traffic generator Mucus[58, 59]. The data structure could be used for searching data

sets for these values.

• Research with the goal of providing automatic checking for unwanted information in

anonymized data sets would provide the operator with an additional level of assur-

ance that the data set produced is adequately anonymized.

6.3 Experimental

The experiments conducted for this thesis use Snort to count attacks when differently

anonymized data sets are replayed. It would have been interesting to see how other IDSes

react on the anonymized data. This might also be used to improve the methodology.

66

Anonymization of real data for IDS benchmarking

Bibliography

[1] Tanenbaum, A. S. 2003. Computer Networks. Pearson Education International,

Vrije Universiteit, Amsterdam, The Netherlands.

[2] Creswell, J. W. July 2002. Research Design: Qualitative, Quantitative, and Mixed

Methods Approaches. SAGE Publications.

[3] Leedy, P. & Ormrod, J. E. 2003. Practical Research : Planning and Design. Prentice

Hall, 8 edition.

[4] Lippmann, R. P., Fried, D. J., Graf, I., Haines, J. W., Kendall, K. R., McClung, D.,

Weber, D., Webster, S. E., Wyschogrod, D., Cunningham, R. K., & Zissman, M. A.

2000. Evaluating intrusion detection systems: The 1998 darpa off-line intrusion

detection evaluation. discex, 02, 1012.

[5] Lippmann, R., Haines, J. W., Fried, D. J., Korba, J., & Das, K. 2000. The 1999 darpa

off-line intrusion detection evaluation. Comput. Networks, 34(4), 579–595.

[6] Lippmann, R., Haines, J. W., Fried, D. J., Korba, J., & Das, K. 2000. Analysis

and results of the 1999 darpa off-line intrusion detection evaluation. In RAID ’00:

Proceedings of the Third International Workshop on Recent Advances in Intrusion De-

tection, 162–182, London, UK. Springer-Verlag.

[7] Durst, R., Champion, T., Witten, B., Miller, E., & Spagnuolo, L. 1999. Testing and

evaluating computer intrusion detection systems. Commun. ACM, 42(7), 53–61.

[8] Shipley, G. Dragon claws its way to the top.
	 � ��� � � � ����� � � ������	�� � ��	
�
� ����� � � � � 	
� �

����� � � ����� ����� � 	�� ���
, last visited 20th June 2006.

[9] Yocom, B. & Brown, K. October 2001. Intrusion battleground evolves.
	�� ��� � ���

����� � � �
������� 	 � � � 	
� � ������� ����� � � � ��� � � � � � ����� 	���� �
, last visited 20th June 2006.

[10] The NSS Group Ltd. August 2003. Intrusion detection systems group test (edition

4). http://www.nss.co.uk/ids/edition4/index.htm. New edition of this report is

published every year.

[11] McHugh, J. November 2000. Testing intrusion detection systems: a critique of

the 1998 and 1999 DARPA intrusion detection system evaluations as performed by

Lincoln Laboratory. 3(4), 262–294.

[12] Mell, P., Hu, V., Lippmann, R., Haines, J., & Zissman, M. An overview of issues

in testing intrusion detection systems. Technical Report NIST IR 7007, National

Institute of Standards and Technology, August 2003.

[13] Pang, R. & Paxson, V. 2003. A high-level programming environment for packet

trace anonymization and transformation. In SIGCOMM ’03: Proceedings of the 2003

conference on Applications, technologies, architectures, and protocols for computer

communications, 339–351, New York, NY, USA. ACM Press.

67

http://www.networkcomputing.com/1217/1217f2.html
http://www.networkcomputing.com/1217/1217f2.html
http://www.nwfusion.com/reviews/2001/1008bg.html
http://www.nwfusion.com/reviews/2001/1008bg.html

Anonymization of real data for IDS benchmarking

[14] Pang, R., Allman, M., Paxson, V., & Lee, J. October 2005. The devil and packet trace

anonymization. Under submission.

[15] Verykios, V., Bertino, E., Fovino, I., Provenza, L., Saygin, Y., & Theodoridis, Y. 2004.

State-of-the-art in privacy preserving data mining.

[16] Justis- og politidepartementet. January 2001. Lov om behandling av person-

opplysninger (lov-2000-04-14-31).
	�� ����� ��� ��	�������
� � � 	 � ����� ��� ����� � � ��������
�������

�	�� � � ����� � ����� � ��	 ������
� � ����� � � ����� � � � � � � � ��� ��� � 	�� � � � & ���� ��������� � & � 	�� ��� �
�����
� ����������� 	 � 	������ ��� � � � ������	���� � � &, last visited 20th June 2006.

[17] Clarke, R. Introduction to dataveillance and information privacy, and definitions of

terms. Oak Ridge National Laboratory,
	�� ��� � ��� ����� � � � � � ���� � � � � ����	������ � T 	��
�����

 ����� � � � � � � K � ���
	 � 	�� ����� � ���
� , last visited 20th June 2006.

[18] Tan, C. 2003. Unpublished document.
	�� ��� � ��� ����� � ���
� � 	�� � � Q �����
���
������� � ���
� � �

���� � ���������� � � � � � � � � � � �
�
������� ��	 � ��
����� � � 	�� � � , last visited 20th June 2006.

[19] Xu, J., Fan, J., Ammar, M., & Moon, S. B. 2001. On the design and performance of

prefix-preserving ip traffic trace anonymization. In IMW ’01: Proceedings of the 1st

ACM SIGCOMM Workshop on Internet Measurement, 263–266, New York, NY, USA.

ACM Press.

[20] Peuhkuri, M. 2001. A method to compress and anonymize packet traces. In IMW

’01: Proceedings of the 1st ACM SIGCOMM Workshop on Internet Measurement, 257–

261, New York, NY, USA. ACM Press.

[21] Bro intrusion detection system. Lawrence Berkeley National Laboratory,
	 � ��� � � �

����� � ���
	������� � 	���� �
, last visited 20th June 2006.

[22] Kreibich, C. 2005. Netdude, the hacker’s choice.
	�� ����� ��� � ���� �
�� � ��	 ��� ������	�� �
� �

� ��� � , last visited 20th June 2006.

[23] Kreibich, C. 2004. Design and implementation of netdude, a framework for packet

trace manipulation (awarded best student paper!). In USENIX Annual Technical

Conference, FREENIX Track, 63–72.

[24] Clifton, C., Kantarcioglu, M., & Vaidya, J. 2002. Defining privacy for data mining.

[25] Snort.
	�� ��� � ��� ������� � � 	�� ��� 	�� � � , last visited 20th June 2006.

[26] Dubrawsky. May 2002. Portsentry for attack detection.
	 � ��� � � � ����� �

�����
�����
� ����	��
��� � ��	
� � � � ��	������ � � � � �
, visited 20th June 2006.

[27] Arkin, O. August 2000. Nmap hackers: Tosing oss out of the window /

fingerprinting windows 2000 with icmp.
	 � ��� � � � �
������� � � � � ���
���
� � 	�� � � ��������� �

� ����� � 	���� � ����� � � � � � ��� ����� N ��� � � � ��� � 	�� � � , visited 20th June 2006.

[28] Arkin, O. October 2000. Nmap hackers: Precedence field value in icmp error

messages with linux.
	�� ��� � ��� �����
��� � � � �����
���
� � 	�� � � �
������� � � ����� ��	
��� � ����� � � � � � �J ��� � � ��� � � � ��� � 	 � � � , visited 20th June 2006.

68

http://lovdata.no/cgi-wift/wiftldles?doc=/usr/www/lovdata/all/nl-20000414-031.html&dep=alle&kort+,+titt=personopplysningsloven&
http://lovdata.no/cgi-wift/wiftldles?doc=/usr/www/lovdata/all/nl-20000414-031.html&dep=alle&kort+,+titt=personopplysningsloven&
http://lovdata.no/cgi-wift/wiftldles?doc=/usr/www/lovdata/all/nl-20000414-031.html&dep=alle&kort+,+titt=personopplysningsloven&
http://www.anu.edu.au/people/Roger.Clarke/DV/Intro.html#Priv
http://www.anu.edu.au/people/Roger.Clarke/DV/Intro.html#Priv
http://www.cra.org/Activities/craw/dmp/awards/2003/Tan/research/draft1.html
http://www.cra.org/Activities/craw/dmp/awards/2003/Tan/research/draft1.html
http://www.bro-ids.org/
http://www.bro-ids.org/
http://netdude.sourceforge.net/
http://netdude.sourceforge.net/
http://www.snort.org/
http://www.securityfocus.com/infocus/1580
http://www.securityfocus.com/infocus/1580
http://lists.insecure.org/lists/nmap-hackers/2000/Jul-Sep/0037.html
http://lists.insecure.org/lists/nmap-hackers/2000/Jul-Sep/0037.html
http://lists.insecure.org/lists/nmap-hackers/2000/Oct-Dec/0009.html
http://lists.insecure.org/lists/nmap-hackers/2000/Oct-Dec/0009.html

Anonymization of real data for IDS benchmarking

[29] Internet Assigned Numbers Authority. October 2005. Ip tos parameters.
	�� ��� � ���

����� � � � � � � 	���� � �
�����
� � ��� � ��� � � � �������
�
�����
����� , visited 20th June 2006.

[30] Arkin, O. & Yarochkin, F. August 2001. Phrack volume 11, issue 57.
	 � ��� � � � ����� �

� 	��
��� � � 	�� � � �
	�	���� � 	�� ��� � � � � & � ��� , visited 20th June 2006.

[31] Andreasson, O. 2005. Iptables tutorial 1.2.0, ip headers.
	�� ��� � ���

� ���
� ���������������
	���� ��� � ���
	 ��� � ���
�� � ��� � �
	 � ��� ��	���� � �
 � � � � 	 � � � , visited 20th June

2006.

[32] Symantec attack signatures.
	�� ��� � ��� �����������
� ���
������	 � � � � � � ��� � �
����� � 	
� �

��� ��� � �
��� � � ��� ������ � last visited 20th June 2006.

[33] Ptacek, T. H. & Newsham, T. N. Insertion, evasion, and denial of service: Eluding

network intrusion detection. Technical report, Secure Networks, Inc., Suite 330,

1201 5th Street S.W, Calgary, Alberta, Canada, T2R-0Y6, 1998.

[34] Sun, Q., Simon, D. R., Wang, Y.-M., Russell, W., Padmanabhan, V. N., & Qiu, L. 2002.

Statistical identification of encrypted web browsing traffic. In SP ’02: Proceedings of

the 2002 IEEE Symposium on Security and Privacy, 19, Washington, DC, USA. IEEE

Computer Society.

[35] U.S. Department of Energy. October 1998. Freebsd tcp rst denial of service

vulnerability.
	�� ��� � ��� ��� ��� � ��� � � � �
	�� � ��� ��� � � ����������� � � ��� � � � � � �
	�� ���

last visited

20th June 2006.

[36] Abdulla, A. What is covert channel and what are some examples?
	�� ��� � ���

����� � ��� � ��� 	���� � ������	 ��������� � �������[� ��	������ � ���
	�� � � ��	�� ������� � �
��� ��� visited 20th June

2006.

[37] Kohno, T., Broido, A., & Claffy, K. May 2005. Remote physical device fingerprinting.

In SP ’05: Proceedings of the 2005 IEEE Symposium on Security and Privacy.

[38] Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., & Berners-Lee,

T. June 1999. Hypertext transfer protocol – HTTP/1.1. RFC 2616.
	 � ��� � � � ����� �

� ����� � 	�� � � ����� � ������� � � � � �
 �
.

[39] Klyne, G., Nottingham, M., & Mogul, J. 2004. Registration procedures for message

header fields.

[40] Notingham, M. & Mogul, J. December 2005. Http header field registrations.

[41] Manoj, G. January 2006. An extension to cache-control, http/1.1 for group caching.

[42] Snort. 2006. Sourcefire VRT Certified Rules - The Official Snort Ruleset (registered

user release), ver. 2.3.
	 � ��� � � � ����� � � � 	�� � � 	���� � ��� � ����� � � �	�� � ��	������� ����� , last vis-

ited 8th of March 2006.

[43] Braden, R. October 1989. Requirements for internet hosts - application and sup-

port.

[44] T.Berners-Lee, R.Fielding, L. 1998. Uniform resource identifiers (uri): Generic

syntax. RFC 2396.

69

http://www.iana.org/assignments/ip-parameters
http://www.iana.org/assignments/ip-parameters
http://www.phrack.org/show.php?p=57&a=7
http://www.phrack.org/show.php?p=57&a=7
http://iptables-tutorial.frozentux.net/chunkyhtml/x167.html
http://iptables-tutorial.frozentux.net/chunkyhtml/x167.html
http://securityresponse.symantec.com/avcenter/nis_ids/
http://securityresponse.symantec.com/avcenter/nis_ids/
http://ciac.llnl.gov/ciac/bulletins/j-008.shtml
http://www.sans.org/resources/idfaq/covert_chan.php?printer=Y
http://www.sans.org/resources/idfaq/covert_chan.php?printer=Y
http://www.ietf.org/rfc/rfc2616.txt
http://www.ietf.org/rfc/rfc2616.txt
http://www.snort.org/pub-bin/downloads.cgi

Anonymization of real data for IDS benchmarking

[45] Franks, J., Hallam-Baker, P., Hostetler, J., Lawrence, S., Leach, P., Luotonen, A., &

Stewart, L. June 1999. HTTP authentication: Basic and digest access authentica-

tion. RFC 2617.
	������ � ��� ����� � � � ��� � 	�� � � ����� � ����� � � � � � �
��

.

[46] Kristol, D. & Montulli, L. October 2000. Http state management mechanism. RFC

2965.
	�� ��� � ��� ����� � � ����� � 	�� � � ����� � ��������� � � � �
 � .

[47] trac, integrated scm & project management.
	������ � ��� ����	 � ������� � ����
� ������� � � 	
� �

���
��� �
, last visited 20th June 2006.

[48] Lenz, C. December 2004. Http caching in trac 0.9.
	�� ��� � ��� �����
��� � ����
� ������� � � 	
� �

��� �
	 ���
� � ���
��� � � � � � � � �����
� �
��� � � ��� � � � � 	 � � �
, last visited 20th June 2006.

[49] Internet protocol details. Microsoft Exchange Server TechCenter,
	 � ��� � � �

����� � � �����
	
��	������ ��	
� � �
���
	 � ��� � ���
	���
���
	 � 	�� � �
 �
	�� � �
� � ��� ������ � � � � � � ���
	 T ��� �
��� � � ��� � � ��� � ����� � � � � ����� � ����� ����� � � ������� � � � ����
 � ����� �������
�

, last visited

20th June 2006.

[50] Hill, B. August 2003. Using web dav with iis 5.0.
	�� ��� � ��� �����������
� �����
	 � � ��� �

��	
� � �
� � �����
�����
� � � ��� � ��� ����� � � � � � � � � ��� � � 	 � � � Q � ���
��	 KRK N � � � 	�� � � , last visited

20th June 2006.

[51] Kristol, D. & Montulli, L. 1997. Http state management mechanism.

[52] Troost, R., Dorner, S., & Moore, K. August 1997. Communicating presentation

information in internet messages: The content-disposition header field.

[53] libpcap.
	�� ��� � ��� ������� � � �
�� ����� 	�� � �

, last visited 20th June 2006.

[54] Winpcap: The windows packet capture library.
	�� ��� � ��� ����� � � � � � ����� � 	�� � � , last

visited 20th June 2006.

[55] Ethereal.
	������ � ��� ����� � � ��	����
����� � ��	
� �

, last visited 20th June 2006.

[56] Høgskolen i Gjøvik, Postboks 191, Teknologivn. 22, 2802 Gjøvik.

[57] Rekhter, Y., Moskowitz, B., Karrenberg, D., de, G. J., & Lear, E. Address allocation

for private internets. RFC 1918, Internet Engineering Task Force, February 1996.

[58] Mutz, D., Vigna, G., & Kemmerer, R. December 2003. An Experience Developing an

IDS Stimulator for the Black-Box Testing of Network Intrusion Detection Systems.

In Proceedings of the 2003 Annual Computer Security Applications Conference, Las

Vegas, Nevada.

[59] Mucus.
	�� ��� � ��� ����� � ��� � � ��� ��� ���� ��� ����� �

Z
� �
��� � � � ���
 � 	���� � , last visited

20th June 2006.

70

http://www.ietf.org/rfc/rfc2617.txt
http://www.ietf.org/rfc/rfc2965.txt
http://projects.edgewall.com/trac/
http://projects.edgewall.com/trac/
http://lists.edgewall.com/archive/trac/2004-December/001389.html
http://lists.edgewall.com/archive/trac/2004-December/001389.html
http://www.microsoft.com/technet/prodtechnol/exchange/guides/E2k3TechRef/fbc63ab6-f17c-4526-a96a-2013b5baf08d.mspx?mfr=true
http://www.microsoft.com/technet/prodtechnol/exchange/guides/E2k3TechRef/fbc63ab6-f17c-4526-a96a-2013b5baf08d.mspx?mfr=true
http://www.microsoft.com/technet/prodtechnol/exchange/guides/E2k3TechRef/fbc63ab6-f17c-4526-a96a-2013b5baf08d.mspx?mfr=true
http://securitypronews.com/it/security/spn-23-20030814UsingWebDAVwithIIS50.html
http://securitypronews.com/it/security/spn-23-20030814UsingWebDAVwithIIS50.html
http://www.tcpdump.org/
http://www.winpcap.org/
http://www.ethereal.com/
http://www.cs.ucsb.edu/~rsg/Mucus/index.html

Anonymization of real data for IDS benchmarking

A Classification table

This table is a summary of the methodology and the classification

Header Classification Snort rules Substitution

HTTP 1.1 - General headers
 ���
	���� 	 � ����	�� Could N cache
 	 � � ���
��� 	 � No N
� ���
� No N
� �
��� ��� No N
� �
��������� No N
� �
� � � ����� � � � ��	��� � � No Y
� �����
���� No N� � �

Must N www.foo...foo.bar
	 ��� � � � � Must N www.foo...foo.bar

HTTP 1.1 - Request headersZ
����	�	�

No YT ��[������
� � ��TLK Must Y nP � � � � � ������� 	 � No YQ � �������
No YQ � ������� � 	���������� Should N charsetQ � ������� � � � ��	��� � � No NQ � ������� � S � � �������
� Should N lQ ����	�	�������������	 � Must Y credentials

 	�	 � � � Must Y cookie
 	�	 � � ��� No N�
��������

No N
� �
	
� Must N emailP 	����

Must Y www.foo...foo.barK � �
Z
�����
	

Should N ifmatchK � �
Z
	������� ���� N � � ��� No NK � � M 	 � ���

Z
�����
	

Should N ifnonematchK � � T � � �
� Should N ifrangeK � � ��� ��	���������� � N � � � � No NZ
��
 � � 	����������� No N

� �
	�
 � � Q ����	�	������������ 	 � Must N credentialsT � � �
� No NT �������
��� Must N www.foo...foo.bar
� � No N
� �
� � �������
� No Y
� ����� � Q �
� � � Could Y browser

HTTP 1.1 - Response headersP � � � � � ������� 	 � No NN �
������� � 	��� No Y

Continued on next page

71

Anonymization of real data for IDS benchmarking

Header Classification Snort rules SubstitutionT ������	 � � � 	��
��� � No YQ ��������� � T � � �
�
� No NQ ���
Could N age� � ��� Should N etagS 	�������� 	 � Must Y www.foo...foo.bar

� ��	�
 � � Q ����	�� � ����� � ��� Must N www.foo...foo.barT � ��� � � Q ���
��� No NN ��� �
���
Should N serverN � � � 	�	 � � � Must N setcookieN � � � 	�	 � � ��� Must N setcookie� ��� �
No N

	 	 	 � Q ����	�� � ����������� Must N www.foo...foo.barQ � ��	�� � ������������	 � � K � ��	 No N
� ��	�
 � � Q ����	�� � ����� � ��� 	 � �K�� ��	 No N

HTTP 1.1 - Entity headersQ ����	��
No N

 	 � �
� � � � � � ��	��� � � No N
 	 � �
� � � � S � � ��������� Should N l
 	 � �
� � � � S � � ����	 No Y
 	 � �
� � � � S 	���� ��� 	 � Must N www.foo...foo.bar
 	 � �
� � � �

Z
��� No N

 	 � �
� � � � T � � ��� No N
 	 � �
� � � � � ����� Should Y type�
�� ���
���

No NS �
��� � Z 	������� ��
No N

 	 � �
� � � � � �����
	���������	 � Must Y file

HTTP 1.1 - Message bodyZ
�
�������
� � 	� �

Must Y x
Table 8: Classification

72

Anonymization of real data for IDS benchmarking

B Number of positives

This table is a summary of the number of positives reported by Snort during the experi-
ments

positives reported in experiment...
Snort SID Attack 1 2 3 4 5 6 7 8 9 10

1497 WEB-MISC cross site scripting
attempt

119 119 119 119 119 119 119 119 119 119

1122 WEB-MISC /etc/passwd 105 105 105 105 105 105 105 105 105 105
1165 WEB-MISC Novell Groupwise

gwweb.exe access
16 16 16 16 16 16 16

1147 WEB-MISC cat%20 access 12 12 12 3 12 12 3 15 12 3
1301 WEB-PHP admin.php access 12 12 9 12 9 12 9
1201 ATTACK-RESPONSES 403 For-

bidden
11 11 11 11 11 11 11 11 11 11

2281 WEB-PHP Setup.php access 11 11 11 11 11 11 11
1540 WEB-COLDFUSION

?Mode=debug attempt
10 10 10 10 10 10 10

1555 WEB-CGI DCShop access 10 10 10 10 10 10 10
119:18:01 (http_inspect) WEBROOT DI-

RECTORY TRAVERSAL
10 10 8 1 10 8 1 10 8 1

3463 WEB-CGI awstats access 10 10 4 10 4 10 4
1774 WEB-PHP bb_smilies.php access 8 8 8 8 8 8 8
1614 WEB-MISC Novell Groupwise

gwweb.exe attempt
8 8 8 8 8 8 8

1523 WEB-MISC ans.pl access 8 8 8 8
1522 WEB-MISC ans.pl attempt 8 8 8 8
2565 WEB-PHP modules.php access 7 7 4 7 4 7 4
1470 WEB-CGI listrec.pl access 6 6 6 6 6 6 6
1668 WEB-CGI /cgi-bin/ access 6 6 6 6 6 6 6

884 WEB-CGI formmail access 6 6 6 6 6 6 6
1602 WEB-CGI htsearch access 6 6 3 6 3 6 3
1969 WEB-MISC ion-p access 6 6 3 6 3 6 3

882 WEB-CGI calendar access 6 6 3 6 3 6 3
2326 WEB-IIS sgdynamo.exe access 6 6 3 6 3 6 3
1376 WEB-MISC jrun directory

browse attempt
6 6 1 1 6 1 1 6 1 1

1862 WEB-CGI mrtg.cgi directory
traversal attempt

6 6 6 6

1566 WEB-CGI eshop.pl access 4 4 4 4 4 4 4
3813 WEB-CGI awstats.pl configdir

command execution attempt
4 4 4 4 4 4 4

2152 WEB-PHP test.php access 4 4 4 4 4 4 4
2002 WEB-PHP remote include path 4 4 4 4
1654 WEB-CGI cart32.exe access 4 4 4 4

122:03:00 (portscan) TCP Portsweep 3 3 3 3 3 3 3 3 3 3
1096 WEB-MISC Talentsoft Web+ in-

ternal IP Address access
3 3 3 3 3 3 3

823 WEB-CGI cvsweb.cgi access 3 3 3 3 3 3 3
1016 WEB-IIS global.asa access 3 3 3 3 3 3 3
1149 WEB-CGI count.cgi access 3 3 3 3 3 3 3
2241 WEB-MISC cwmail.exe access 3 3 3 3 3 3 3

812 WEB-CGI webplus version access 3 3 3 3 3 3 3
1078 WEB-MISC counter.exe access 3 3 3 3 3 3 3
1824 WEB-CGI alienform.cgi access 3 3 3 3 3 3 3
1825 WEB-CGI AlienForm af.cgi ac-

cess
3 3 3 3 3 3 3

1560 WEB-MISC /doc/ access 3 3 3 3 3 3 3
Continued on next page

73

Anonymization of real data for IDS benchmarking

SID Attack 1 2 3 4 5 6 7 8 9 10
1054 WEB-MISC weblogic/tomcat .jsp

view source attempt
3 3 3 3 3 3 3

1875 WEB-CGI cgicso access 3 3 2 3 2 3 2
1106 WEB-CGI Poll-it access 3 3 3 3
2328 WEB-PHP authentica-

tion_index.php access
3 3 3 3

901 WEB-CGI webspirs.cgi access 3 3 3 3
1396 WEB-CGI zml.cgi access 3 3 3 3
1816 WEB-PHP directory.php access 3 3 3 3
1300 WEB-PHP admin.php file upload

attempt
3 3 3 3

1815 WEB-PHP directory.php arbi-
trary command attempt

3 3 3 3

2366 WEB-PHP PhpGedView PGV au-
thentication_index.php base di-
rectory manipulation attempt

3 3 3 3

3465 WEB-CGI RiSearch show.pl
proxy attempt

3 3 3 3

1637 WEB-CGI yabb access 3 3 3 3
900 WEB-CGI webspirs.cgi directory

traversal attempt
3 3 3 3

1998 WEB-PHP calendar.php access 3 3 3 3
2410 WEB-PHP IGeneric Free Shop-

ping Cart page.php access
3 3 3 3

1395 WEB-CGI zml.cgi attempt 3 3 3 3
2208 WEB-CGI fom.cgi access 3 3 3 3
1521 WEB-MISC server-status access 2 2 2 2 2 2 2
2585 WEB-MISC nessus 2.x 404 probe 2 2 2 2 2 2 2
1770 WEB-MISC .FBCIndex access 2 2 2 2 2 2 2
1520 WEB-MISC server-info access 2 2 2 2 2 2 2
1852 WEB-MISC robots.txt access 2 2 2 2 2 2 2
1213 WEB-MISC backup access 2 2 2 2 2 2 2
2066 WEB-MISC Lotus Notes .pl script

source download attempt
2 2 2 2 2 2 2

835 WEB-CGI test-cgi access 2 2 2 2 2 2 2
1847 WEB-MISC webalizer access 2 2 2 2 2 2 2
1145 WEB-MISC / root access 2 2 2 2 2 2 2
2484 WEB-MISC source.jsp access 2 2 1 2 1 2 1
2060 WEB-MISC DB4Web access 2 2 1 2 1 2 1
2441 WEB-MISC NetObserve authen-

tication bypass attempt
1 1 1 1 1 1 1 1 1 1

2056 WEB-MISC TRACE attempt 1 1 1 1 1 1 1 1 1 1
1042 WEB-IIS view source via trans-

late header
1 1 1 1 1 1 1 1 1 1

1848 WEB-MISC webcart-lite access 1 1 1 1 1 1 1
1564 WEB-MISC login.htm access 1 1 1 1 1 1 1
1551 WEB-MISC /CVS/Entries access 1 1 1 1 1 1 1

976 WEB-IIS .bat? access 1 1 1 1 1 1 1
1660 WEB-IIS trace.axd access 1 1 1 1 1 1 1

993 WEB-IIS iisadmin access 1 1 1 1 1 1 1
1554 WEB-CGI dbman db.cgi access 1 1 1 1 1 1 1
1773 WEB-PHP php.exe access 1 1 1 1 1 1 1
1769 WEB-MISC .DS_Store access 1 1 1 1 1 1 1
1402 WEB-IIS iissamples access 1 1 1 1 1 1 1
1493 WEB-MISC RBS ISP /newuser

access
1 1 1 1 1 1 1

1872 WEB-MISC Oracle Dynamic
Monitoring Services dms access

1 1 1 1 1 1 1

1857 WEB-MISC robot.txt access 1 1 1 1 1 1 1
1826 WEB-MISC WEB-INF access 1 1 1 1 1 1 1

971 WEB-IIS ISAPI .printer access 1 1 1 1 1 1 1
1040 WEB-IIS srchadm access 1 1 1 1 1 1 1

887 WEB-CGI www-sql access 1 1 1 1 1 1 1
1230 WEB-MISC VirusWall FtpSave

access
1 1 1 1 1 1 1

Continued on next page

74

Anonymization of real data for IDS benchmarking

SID Attack 1 2 3 4 5 6 7 8 9 10
1880 WEB-MISC oracle web applica-

tion server access
1 1 1 1 1 1 1

1154 WEB-MISC Domino names.nsf
access

1 1 1 1 1 1 1

2238 WEB-MISC WebLogic Console-
Help view source attempt

1 1 1 1 1 1 1

1286 WEB-IIS _mem_bin access 1 1 1 1 1 1 1
1212 WEB-MISC Admin_files access 1 1 1 1 1 1 1
1242 WEB-IIS ISAPI .ida access 1 1 1 1 1 1 1
1214 WEB-MISC intranet access 1 1 1 1 1 1 1
2242 WEB-MISC ddicgi.exe access 1 1 1 1 1 1 1
1125 WEB-MISC webcart access 1 1 1 1 1 1 1
1288 WEB-FRONTPAGE /_vti_bin/ ac-

cess
1 1 1 1 1 1 1

1385 WEB-MISC mod-plsql adminis-
tration access

1 1 1 1 1 1 1

1874 WEB-MISC Oracle Java Process
Manager access

1 1 1 1 1 1 1

896 WEB-CGI way-board access 1 1 1 1 1 1 1
1997 WEB-PHP read_body.php access

attempt
1 1 1 1

1406 WEB-CGI agora.cgi access 1 1 1 1
908 WEB-COLDFUSION administra-

tor access
1 1 1 1

1534 WEB-CGI agora.cgi attempt 1 1 1 1
1591 WEB-CGI faqmanager.cgi access 1 1 1 1
1592 WEB-CGI /fcgi-bin/echo.exe ac-

cess
1 1 1 1

1827 WEB-MISC Tomcat servlet map-
ping cross site scripting attempt

1 1 1 1

1829 WEB-MISC Tomcat Trou-
bleShooter servlet access

1 1 1 1

1590 WEB-CGI faqmanager.cgi arbi-
trary file access attempt

1 1 1 1

Total number of positives 590 590 472 246 590 472 246 593 472 246
Table 9: Number of positives

75

Anonymization of real data for IDS benchmarking

C Non-disclosure agreement

77

Anonymization of real data for IDS benchmarking

78

	Abstract
	Contents
	List of Figures
	List of Tables
	List of Symbols
	Introduction
	Topic
	Justification, motivation and benefits
	Research methodology

	Previous Work
	IDS evaluations
	Sensitivity, privacy and identity
	Known methodologies for anonymizing real network data

	The new anonymization methodology
	Methodology introduction
	Classification scheme
	How to anonymize

	Identifying information
	Identifying information in network and transport protocols
	IPv4 Header
	TCP Header
	UDP Header

	Identifying information in application headers and payload
	HTTP 1.1

	Correlation of headers and other data
	Methodology conclusion

	Experimental Work
	Introduction
	Prototype
	Architecture and implementation
	Pseudocode
	Using Anonymator
	Testing Anonymator

	Expectations
	Infrastructure and resources
	Preparations

	Revised expectations
	Experiments
	Exp. 1: No anonymization
	Exp. 2: Weak scheme
	Exp. 3: Strong scheme
	Exp. 4: Strongest scheme
	Exp. 5: Customized: Weak URI, no headers anonymized
	Exp. 6: Customized: Strong URI, no headers anonymized
	Exp. 7: Customized: Strongest URI, no headers anonymized
	Exp. 8: Customized: Weak URI, all headers anonymized
	Exp. 9: Customized: Strong URI, all headers anonymized
	Exp. 10: Customized: Strongest URI, all headers anonymized

	Results
	Weak related schemes
	Strong related schemes
	Strongest related schemes

	Conclusions regarding experimental work

	Conclusions
	Methodology
	Prototype
	Experiments
	Recommendations

	Further Work
	Methodology
	Prototype
	Experimental

	Bibliography
	Classification table
	Number of positives
	Non-disclosure agreement

