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Computer-Aided Reclamation of Lost Art

Abstract

Based on previous research on super-resolution and colour correction by example, the
present project employs such techniques towards a high-quality reclamation of lost art.
The aim is to produce high-quality images of nowadays destroyed or missing paintings us-
ing the correspondence between similar artworks available in both low and high quality
images. Several approaches for both super-resolution and colour correction techniques
have been studied, implemented and tested to result to the most efficient and appro-
priate to be used. This project is an attempt that has never been done before and the
successful reclamation of lost art initialises a new area of colour imaging applications in
fine art. It reveals unlimited possibilities in the domain and establishes the potential of
further attempts in this direction.
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Summary

The present document covers the entirety of a proposed approach and an implemented
solution towards Reclamation of Lost Art. Employing a combination of example-based
super-resolution and colour correction techniques, the project attempts a unique step
in colour imaging applications in fine art. It explores the applicability and performance
of state-of-the-art techniques in super-resolution, inverse halftoning, image registration,
colour transfer and image blending methods to the demanding image set of fine art
specimens.

Firstly, in Chapter 1, the problem at hand is introduced and stated along with the mo-
tivation behind this aim. It expands on the significance of contribution of this endeavour,
the implicated considerations and relevant previous research.

Next, a background overview in Chapter 2 is completed, providing all the necessary
information and background knowledge to the reader, for an effortless comprehension of
the rest of the document. The notions of halftoning, inverse halftoning, image registra-
tion, super-resolution, colour correction and image quality metrics are defined, described
and explained with regards to the stated problem.

Proceeding to Chapter 3, related literature work is presented. Relevant theory is out-
lined, including an in-depth explanation of the selected methods to be utilised in the
project. This literature survey is divided into the three major implementation steps of the
system: inverse halftoning, super-resolution and colour correction. State-of-the-art tech-
niques are introduced for each of the domains, proceeding to more detailed explanation
of the implemented approaches.

With related work covered, the document proceeds via Chapter 4 into a description of
the implemented system. This chapter discusses all considerations that arose during de-
velopment, the selected solutions, the criteria of this selection, the necessary adjustments
towards the goal and finally the carried out evaluation.

Chapter 5 then demonstrates the outcomes of the system, restricting to only a few ex-
amples due to space limitations. It also includes a qualitative and quantitative analysis of
the results. Appendix C includes a detailed quantitative evaluation, while supplementary
material is available for visual observation and examination of the complete set of the
reclaimed images.

Finally, Chapter 6 concludes the document presenting the significance of the study’s
outcomes and the contribution to research. It further includes a discussion of possibilities
towards extension of the present work through further research, suggesting methods of
both improving and expanding it.

In the appendices, two scientific papers are available, along with program documen-
tation and supplementary material from the evaluation procedures.
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1 Introduction

Preserving the artistic heritage for present and future audiences has been traditionally
dealt with by the sciences of conservation (C) and restoration (R), aimed, respectively, at
arresting and reversing the action of such factors as aging of the materials, dirt accumu-
lation, or mechanical, biological, or chemical injuries to the work of art. These time and
skill intensive technologies have been revolutionized by computer-based methodologies,
but remain essentially operator-dependent. Art object imaging plays an ancillary, albeit
very important role, for purposes such as documentation, teaching, and mass reproduc-
tion.

A self-evident prerequisite of any C/R endeavour is the survival of that work of art,
either in its entirety, or in a sufficient ‘critical mass’ to allow appreciation of the creator’s
artistic intention and skill.

1.1 Aim

The present project aimed at exploring an apparent ‘lost cause’ - that of heritage preser-
vation as applied to paintings documented to have been destroyed at times of major
turmoil, such as WW II. The question at hand is not whether these objects can ever be
recuperated (clearly, they cannot), but rather, whether it is possible to recuperate, by
computer manipulation of existing photographs, a reasonably accurate image of the lost
original.

For this novel question, the term art reclamation (REC) was proposed. In this context,
art object imaging plays a central role, since it is, literally, an image that is reclaimed, the
original being irretrievably lost.

The underlying reasoning was that if the answer turns out to be affirmative, a high-
resolution electronic sample and a corresponding hard-copy reproduction can be ob-
tained and publicly displayed, to the interest and delight of a potentially very large au-
dience, encompassing all age and interest groups, whether technically, artistically, or his-
torically minded. This would represent the sole possibility of contact with lost creations
belonging to the core heritage of humanity.

Table 1 circumscribes two main points of difference between REC and C/R.

C/R REC
Object still existent Yes No

Methodology
Acting on the object itself

(imaging ancillary)

Acting on existing images
of the object and/or of

similar objects (imaging
essential)

Table 1: REC vs. C/R

1.2 Objectives

The basic concept is that of using pre-WW II low-quality colour and B/W photographs
of lost paintings on one hand, and contemporary high-quality photographs of surviving
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stylistically similar paintings by the same master (in our attempt, P.P. Rubens) on the
other, to endeavour an enhancement of the former to an acceptable quality standard.

This unique idea evolved from the interaction of people with different backgrounds,
sharing an equal interest in the two core manifestations of the human spirit - art and
technology. Traditionally viewed as opposites, they appeared to this team as inextricably
related.

1.3 Research

As usual with a pioneering attempt, it was important to underscore not only what our
project attempted to be, but also how it departed from similar endeavours - or, in other
words, what it was not. Emphatically, then, this work was not set as a colourisation
technology, since the target was not to recreate, but to redeem (reclaim) colour-related in-
formation, in a manner as objective, operator-independent, and art-historically accurate
as possible.

Investigating a pioneering concept, the research team was in uncharted territory, and
had no previous body of research to draw, expand, or improve upon. Most important
expectation was therefore an objective assessment as to whether the aim of this work
was achievable or not, at an adequate level of quality.

2
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2 Background

Before proceeding into the technical sectors of the work, it is necessary to firstly introduce
all terms used in the rest of the document, so that the reader is able to follow and
comprehend the material without any difficulties. The present chapter introduces all
notions that are essential for accurately and fully apprehend the involved topics and thus
the scope of this project.

2.1 Halftoning

The paintings aimed to be reclaimed in the scope of the study, are nowadays available
only in low quality prints in art books [1, 2]. As prints, the involved low quality images
are not of continuous-tone but instead, they are halftoned.

Halftoning is the physical process of converting a continuous-tone image, such as a
photograph, to black and white dots for its reproduction in a printing device [3]. Halfton-
ing is an old technique which started out with the use of halftone screens, which were me-
chanical screens of regular grids in front of high-contrast photographic film [4]. When
exposed to light, stronger light would make a larger area developable and thus produce
a larger dot on the developed film. The film would contain many dots of various sizes,
where each would be proportional to the local radiance of the original image. This would
then be used to etch the printing plate. Later on, the contact screens came up, which were
halftone screens made of photographic film. Halftone colour prints were achieved by the
use of four colour separations, usually CMYK which stands for cyan, magenta, yellow and
black inks respectively. The colour separations were individual halftone images made by
placing the opposite filter or a combination of filters in the light path of the original image
and the contact screen. A different screen angle would be used for each colour separation
(Y at 0◦, C at 15◦, K at 45◦ and M at 75◦), based on the sensitivity of the human visual
system to horizontal and vertical gratings. The four colour separations halftone images
would then be overprinted on the output medium to form the final colour image.

Nowadays, halftoning is applied using what is called digital halftoning. In this tech-
nique, the original image is digital, often with 8-bit or more grey levels. This is thresh-
olded into a binary, halftone, digital image that is then sent to a printer. Thus, digital
halftoning can be defined as the conversion from a many-bit digital image to a 1-bit bi-
nary digital image [4]. Digital printers can perform halftoning by printing dots of equal
size and uniformly spaced so that different shades of grey can be produced using N×N
dots as a halftone cell. This technique is called ordered dithering. Another technique com-
monly applied by digital printers is error diffusion, in which the size of the dots and the
ink thickness are variable.

Some of the most popular modern halftoning techniques [4] are

• Clustered-dot and dispersed-dot halftoning Both techniques involve a coverage of
the image area with halftone cells of equal area, with a black dot printed in the centre
of each cell. In the case of clustered-dot pattern, the printer cells are turned on as a
cluster of the pixel neighbourhood, while in dispersed-dot pattern the black dot is

3
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Figure 1: Error Diffusion Procedure Diagram

broken into many smaller dots which are then distributed evenly. The results of the
dispersed-dot pattern are much smoother and pleasing, while in the clustered-dot
halftoning, if the halftone cell is big enough to be visually resolvable, the patterns are
visible as halftoning noise. In the digital halftoning application of these techniques,
the halftone cell is divided into smaller printer cells and this is how the size of the
dots is controlled.

• Random Dither In this method, random noise is added to the input image signal and
then a fixed threshold is applied to convert it to binary output. This produces sharp
contours and does not provide the illusion of a continuous-tone image. This technique
is not considered of high quality, as it contains noise in all spatial frequencies and is
not pleasant to the human visual system for low frequency mottles. Nevertheless, it
is useful in applications for which contours caused by quantisation need to be made
less visible in grey level images.

• Ordered Dither Similar to random dither halftoning, ordered dither halftoning is
based on thresholding, using a deterministic, two-dimensional threshold array to gen-
erate a binary image from a grey-level image. The input image is divided to square
non-overlapping consecutive blocks. Point operations follow next, where each pixel
is compared to the threshold array and then assigned to a binary value of 0 or 1,
independent of the neighbouring pixels’ values. Naturally, the output binary image
contains a fundamental frequency of a period equal to the size of the threshold array.
Ordered dither halftoning is visible and thus it is not considered pleasant.

• Error Diffusion This method differs in the fact of taking into consideration the local
information and relation between neighbouring pixels in an image. Instead of point
operations, neighbourhood operations are performed, leading to much better looking
halftone images. The notion behind error diffusion is that when quantising a grey-
level pixel into a binary black or white dot, an error in brightness at that point in
the image is created. However, the neighbouring pixels can compensate by being
turned in the direction that will cancel the present error once all the reflectances in
the neighbourhood are integrated by the visual system. Figure 1 demonstrates the
method for error diffusion halftoning.

4
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The numerous halftoning techniques have been developed taking into consideration
the functionality of the human visual system, devices/media models, models of compu-
tational architecture and system calibration as to be able to define how the dot patterns
would be physically rendered. If halftoning is not done properly, the halftone’s texture
pattern can interfere with the observer’s perception of an image and it would therefore
not be truly invisible. This is why it is necessary to know the spatial resolution for which
a halftoning technique is good. The several implicated models are designed in parallel,
but still, the final result needs to be calibrated and optimised. If parameters cannot be
measured or controlled, the final image quality cannot be ensured.

2.2 Inverse Halftoning

The above study on halftoning techniques aimed mainly to the understanding of the
process which led to the resulting input low quality images, as well as their nature.
Realisation of the implications in the production of these images allowed a better overall
understanding of the problem itself. Moreover, it was a necessary prerequisite for the
study of inverse halftoning (IH).

Inverse halftoning (or descreening) was considered an essential preprocessing step
onto the input low quality halftones, as it is commonly accepted that image processing
cannot be applied on halftone images directly but instead, these must be converted to
continuous-tone first. This is by definition the task of inverse halftoning, i.e. the recon-
struction of the 8-bit image from its halftoned version, so that image processing opera-
tions can be performed [5]. Figure 2 demonstrates the application of halftoning and that
of inverse halftoning.

As more than one continuous-tone images can give rise to a particular halftoned im-
age, IH is a difficult task, approached by many different methods. A detailed description
of the study of inverse halftoning algorithms and the selection of the most appropriate
can be found in section 3.1.

Figure 2: An illustration of halftoning and inverse halftoning. Detail of the Lena image: original
(left), Jarvis error diffusion halftone (centre), and inverse halftone result (right). From Foi et al. [6]

2.3 Image Registration

Registration is a fundamental task in image processing, used to match and align two or
more images. Such images could be for example pictures taken at different times, from
different sensors or from different viewpoints [8]. In other words, image registration
is the alignment of two or more images which might be different in terms of rotation,
scaling, translation and further more. Figure 3 displays an example approach of image
registration (IR) from Zitova and Flusser [7].
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Figure 3: Four steps of image registration. Top row: feature detection (corners were used as the
features in this case). Middle row: feature matching by invariant descriptors (the corresponding
pairs are marked by numbers). Bottom left: transform model estimation exploiting the established
correspondence. Bottom rightŮimage resampling and transformation using appropriate interpola-
tion technique. From Zitova and Flusser [7]
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Figure 4: The same image at 72x100 pixels (right) and 288x400 pixels. From Elad [9]

The step of image registration was necessary in the training phase of super-resolution,
as the corresponding low and high quality pairs of images were not perfectly aligned.
Factors such as the resolution difference and misalignments in the scanning of the low
quality images, made image registration a necessary step before the training phase.

2.4 Super-Resolution

Resolution of an image is described in the total number of pixels of an image, or re-
garding the size of the smallest detail that can be seen in the image. As one can observe
in Figure 4, these two definitions are closely linked. Super-resolution (SR) is therefore
the enhancement of an image to higher resolution. Figure 5 displays two examples of
application of three state-of-the-art SR approaches.

Figure 5: Flower and girl images magnified by a factor of 3. Left to right: input, bicubic interpo-
lation, neighbour embedding [10], Yang et al. method [11], and the original image. From Yang et
al. [11]

While the term of super-resolution is generally defined as the enhancement of reso-
lution, it is sometimes referred to as the process of fusing a number of low resolution
images of the same scene into a high resolution image [12]. The use of ‘super-resolution’
in this document refers to the resolution enhancement definition.
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2.5 Colour Correction

The process of colour correction (CC) involves the adjustment and refinement of the
colours in an image. In the case that this approach is based on examples, the colour
correction procedure is defined according to given ‘correct’ images, which demonstrate
the desirable characteristics. Naturally, in order for the source image to be adjusted with
appealing results, the target image has to show some similarity to the source image.
Otherwise, the results will possibly be disturbing.

Applications of colour correction involve artistic experimentation with images that
give the mood of an image to another and enhancement of an image that has distor-
tions of some kind, using examples of high quality and free of distortion. An example
of the first approach is the rendering of a winter scene so as to look like a spring out-
door scene [13], or adjustments as the one in Figure 6, in which the image of a real
scene is rendered using the colour characteristics of a painting. The second application,
targeting image enhancement, includes removal of artifacts such as cast or effects from
taking pictures under different illumination conditions or viewpoints. Moreover, image
enhancement through colour correction is performed for restoration, as in the case of
restoring old photographs of which the colours have faded.

Example-based colour correction is closely related to the term of colour transfer, the
extraction of colour properties from a reference image and their transmission to the
input image. This is essentially what is performed in colour correction by example, as the
characteristics of the target image are desired onto the source image.

Figure 7 demonstrates an example of applying colour correction by example. Fig-
ure 7(a) presents the original source image while Figure 7(b) displays the target im-
age. Figure 7(c) shows the resulting colour corrected image using Reinhard et al. ap-
proach [14].

Figure 6: Applying the mood of Vincent van Gogh’s painting titled Café Terrace on the Place du
Forum, Arles, at Night (Arles, September 1888, oil on canvas; image from the Vincent van Gogh
Gallery, http://www.vangoghgallery.com) to a photograph of Lednice Castle near Brno in the
Czech Republic. The blues of the sky in both images are matched, as the yellows of the cafe and
the castle, and the browns of the tables at the café and the people at the castle separately. From:
Reinhard et al. [14]
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(a) Source Image (b) Target Image

(c) Resulting Image

Figure 7: Applying Colour Correction. From: Reinhard et al. [14]

2.6 Image Quality Metrics

Image quality metrics were introduced to support quantitative analysis and evaluation
regarding the fidelity of images. Typically, the quality of a rendered image is evaluated
against a reference image. In these cases, the metric is a full-reference metric, quantifying
the fidelity using image to image comparisons [15].

Three full-reference image quality metrics were utilised in this study: Peak signal-to-
noise ratio (PSNR), structural similarity index metric (SSIM) [16] and S-CIELAB [17].

PSNR is defined as

PSNR = 10 log10

(
2552 ·N/

∑
i

(ŷi − yi)
2

)
, (2.1)

with y, ŷ ∈ [0, 255]N. Higher PSNR scores correspond to better image quality.
SSIM improves on PSNR, providing better correlation with human judgement of im-

age quality [16]. This metric is defined as a combination of luminance, contrast and
structure components:

SSIM(a, b) = [l(a, b)]α · [c(a, b)]β · [s(a, b)]γ, (2.2)

where l(a, b) = 2µaµb+A1

µ2
a+µ2

b
+A1

, c(a, b) = 2σaσb+A2

σ2
a+σ2

b
+A2

, s(a, b) = σab+A3

σa+σb+A3
. Components µa

and µb are the mean luminance vales of windows a and b respectively; σa and σb are
the standard variance of the windows a and b respectively; σab is the auto-covariance
between a and b. Constants A1 = (0.01 ∗ L)2, A2 = (0.03 ∗ L)2 and A3 = A2/2 where
L = 255 are set to avoid dividing by zero, while α = β = γ = 1 control the weighting
between the three components. The higher value of the SSIM, the higher the structural
similarity.

Finally, S-CIELAB metric [17, 18] measures the accuracy of reproduction of a colour
against its original when this is viewed by a human observer. Lower S-CIELAB values
indicate better image quality.
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3 Literature Survey

The present project attempts to achieve a pioneering goal, a reclamation of lost artworks
in a way that has never been done before. While there is no previous study on the exact
same concept and extent, the components consisting the work: Inverse Halftoning (IH),
Super-Resolution (SR) and Colour Correction (CC), are each one on their own a section of
research that has been extended greatly, especially during the last two decades. Combin-
ing all three of these enhancement techniques allowed to accomplish the set target and
brought up opportunities in applications of colour imaging in fine art, with extends onto
the possibility of altering art knowledge as we know it.

It is key to note here that in every aspect of the project, an example-based (EB) ap-
proach was employed. This allowed to make the best out of the available high quality
images, using them as reference. In the IH process, the approach by Kim et al. [19] was
considered as the most appropriate to the goals of the necessary pre-processing. The ap-
proach illustrates a look-up table based solution for producing a continuous-tone image
from the halftone image, building upon the method by Meşe and Vaidyanathan [20]. De-
spite the fact that the approach is not considered to provide the highest performance [6],
it was selected due to its applicability to all kinds of halftoning. The higher in per-
formance algorithms are by definition applicable to only a specific type of halftoning
techniques, such as error diffusion, which in the time of production of the project’s art
material were definitely not available. Thus, a procedure that is more generic seemed as
the most promising and was therefore selected and applied.

Regarding the first step of the main process, that of SR, an extensive study of vari-
ous previous works was carried out. Although there are many approaches built for ap-
plying example-based super-resolution (EB-SR), the applicability of each one on the a
specific dataset was questionable due to the morphology of the images. Thus, the three
most promising state-of-the-art techniques [21, 22, 11] in literature were studied fur-
ther and discussed with experts in the domain of SR, leading to the selection of two
approaches [21, 11] to be implemented, applied and evaluated.

Throughout the study of related literature in the domain of CC, familiarity with the
diversity of the applications in this domain was gained. Numerous approaches have been
proposed, each dealing with different types of colour correction for either artistic pur-
poses [23], or towards a specific correction [24]. While most of these approaches are
considered to be applicable to any kind of images, the success of their performance is
arguable, as how pleasing the results appear can be subjectively evaluated.

The images involved in this project have several differences from those employed in
previous studies. First of all, the input images are not bi-level halftones but instead, they
are scanned halftones, which introduces additional considerations due to the possible
presence of misalignment. Secondly, the images are dissimilar to the standard image
datasets used in the studies of state-of-the-art techniques in terms of size and content.
Most of the previous works include experiments on natural images rather than artistic
and of much smaller size. Finally, CC is on its own a subjective domain, as the effect on
colour is sometimes user-defined [14] or automated [23]. So far, CC has limited extend to
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applications in fine art, making it impossible to define expectations regarding the output
of application of CC on the involved dataset.

Validating experiments were carried out in order to assess the efficiency of the results.
These included quantitative evaluation using image quality metrics PSNR, SSIM and S-
CIELAB against ground-truth data which were available in both low and high quality. In
addition, qualitative evaluation was performed on the same ground-truth image set and
a real-test image set of actual lost paintings.

The rest of this chapter covers the state-of-the-art techniques with reference to their
relation to the purposes of the present study.

3.1 Inverse Halftoning

Despite the fact that the IH procedure was merely a pre-processing step, its importance
to the project was vital. The input images of the project are scans of images in art books,
as these were printed over than 50 years ago. Naturally, as these images were initially
printed for the art books publication, the resulting digital images from the scanning
demonstrate the halftoning effect in a very strong fashion. Figure 8 demonstrates an
example of how the images were obtained from the scanning procedure.

It was necessary to resolve this effect so that the input images could be utilised as
continuous-tone into the next steps of the project. The presence of halftoning in the
images was unacceptable and thus IH process was deployed. In general, to ensure that
an IH technique is the most appropriate one, it is best to be aware of the followed printing
procedure. However, the age of the art books did not allow access to this information,
while the available methods at that time were limited and very different from modern
techniques.

Figure 8: Detail of scanned print of low quality image of P.P. Rubens’ painting titled ‘Madonna’.
The halftoning pattern is evident

This fact introduced difficulties in applying IH to the input images, as most of the
recently developed IH approaches aim to invert modern halftoning methods which ei-
ther provide more information about the actual halftoning, or are digitally performed.
Thus, the efficiency of the best known IH algorithms was unpredictable and this step
included detailed study and extended experimentation with various methods. Different
works focused on different input e.g. error diffusion [6, 25, 26] and/or required a priori
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Inverse halftoning technique Lena Image Peppers Image
Anisotropic LPA-ICI [6] 32.4 31.6
WinHD (Neelamani et al.) [25] 32.1 31.2
Wavelet-Vaguelette (Neelamani et al.) [28] 31.9 31.0
Wavelet (Xiong et al.) [29] 31.7 30.7
Gradient (Kite et al.) [26] 31.3 31.4
Kernel (Wong) [30] 32.0 30.3
LUT (Meşe and Vaidyanathan) [20] 31.0 -
LMS-MMSE (Chang et al.) [31] 31.4 31.2
POCS-SVD (Hein and Zakhor) [32] 30.4 -
POCS-Wavelet (Bozkurt and Çetin) [33] 32.2 30.9

Table 2: PSNR (dB) performance of restoration from Floyd-Steinberg error diffusion methods.
From: Foi et al. [6]

knowledge about the halftoning method, as for example [5] and/or demonstrated results
only on greyscale images [27].

The majority of past studies focused on error diffused halftoning, which could not
have been applied for the project’s input images simply because of the technology present
at the time. Instead of blindly researching through IH approaches, the search for the most
appropriate and efficient one used the work of Foi et al. [6] as a basis. This study provided
a complete PSNR comparison amongst state-of-the-art algorithms. Thus, it was the best
starting point in initiating research into IH algorithms and from there examining the
pre-requisites and structure of each one before concluding to the most promising ones.
Table 2 demonstrates the final PSNR comparison onto Floyd-Steinberg error diffusion
images as it was presented in the original work of Foi et al. [6].

The comparison does not include the study by Kim et al. [19], despite it demonstrating
the highest performance, as it was tested on images of bigger dimensions (1050×1050)
than the rest of the algorithms, which used the standard size of images (512×512).
Assuming that the higher performance from Kim et al. method is due to bigger input
images, this did not exclude it from our considerations, as the images that were involved
are of much larger dimensions.

From Table 2, the approaches that were selected as most promising and were consid-
ered for implementation were the LUT-based ones. This is due to the other algorithms’
special arrangements towards a specific halftoning technique and their pre-requisites.
For example, even if the algorithm by Foi et al. [6] demonstrates the best as shown in
Table 2, it assumes that the error diffusion kernel is known, which makes it inapplicable
in the present project.

The rest of this section covers in detail the two most appropriate LUT-based ap-
proaches, Meşe and Vaidyanathan’s [20] and that of Kim et al. [19]. Lastly, Section 3.1.3
covers the findings towards merging the IH procedure with SR, since IH is only a pre-
requisite to the application of SR. Merging them together makes the system less complex
and much more efficient.

3.1.1 Using a Look-Up Table

As mentioned earlier, the most appropriate method for applying IH in the concept of the
present project, was to follow an example-based approach that could be merged with the
other sections of the system and also put in use the available high quality images. The
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approach by Meşe and Vaidyanathan [20] follows an example-based strategy, based on a
look-up-table (LUT) which is built from a histogram obtained from a few sample halftone
images and their corresponding original images, a perfect fit to the present problem.

Another factor that makes this approach ideal is the fact that there is no necessity for
a priori knowledge, as it does not depend on the halftoning method. No linear filtering
is applied and no image model is assumed. The LUT is trained from sample images by
identifying a pixel’s neighbourhood and then assigning a contone value from the LUT
depending on the distribution of pixels in the neighbourhood. The approach was applied
onto binary images using a neighbourhood of pixels of size 16, while scanned halftones
were yet to be explored.

a a a a
a a a a
a a O a
a a a a

Table 3: Neighbourhood Used in IH (Rectangular Support, ‘Rect’ template)

b a a a b
a a a a b
a a O a a

a a a
a

Table 4: Neighbourhood Used in IH (‘16pels’ and ‘19pels’ templates)

The templates (a collection of pixels) for the LUT could be obtained through two
different approaches: they were either experimentally found, or designed during train-
ing. In the first case, a non-linear function is applied on the surrounding halftone pixels.
Three different forms of templates were chosen, a rectangular template ‘Rect’, one with
the use of 16 pixels ‘16pels’ in the pattern of a symmetric part and some additional pixels
and another with 19 pixels ‘19pels’ which is an extension upon 16pels. Table 3 demon-
strates the ‘Rect’ template, while table 4 demonstrates both 16pels template (formed by
letters a) and template 19pels (formed by both letters a and b). In all tables, letter O
denotes the estimated pixel. During the IH process, the pixels in the region of support
are changed in a specific order, and the contone value is obtained from the LUT. Thus,
the templates are obtained in a two-step approach:

1. Obtain expected contone value for each template pattern.

2. Assign contone value to corresponding LUT position for that pattern.

In the second method of obtaining the templates, these are designed during train-
ing using a recursive template selection algorithm. Firstly, the expected contone value
for each template pattern is obtained. This contone value is then assigned to the corre-
sponding LUT position for the specific pattern. If the number of occurrences of a pattern

(p0p1, . . . , pN−1) (3.1)

in the sample halftone images is

K (p0, p1, . . . , pN−1) (3.2)
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then the histogram value of the pattern in Equation 3.1 is denoted by Equation 3.2.
Pattern 3.1 can occur in any of the sample images, any number of times. If the contone
values in the original images’ corresponding patterns 3.1 are

C (p0, p1, . . . , pN−1, i) for i = 0, 1, . . . , K (p0, p1, . . . , pN−1) − 1. (3.3)

If a pattern occurs in a sample halftone image, the LUT value for that pattern will
be the mean of the corresponding contone values, i.e. the contone values in the original
images which correspond to the patterns. If however, the histogram value (Equation 3.2)
is equal to 0, the pattern 3.1 does not exist in the sample halftone images. Thus, for
the non-existent patterns, the contone values should be estimated from other existing
patterns. Naturally, the pattern that is chosen is the one that most closely mimics the
missing one. This pattern can be obtained through low-pass filtering, Hamming distance
or through a best linear estimator which is based on a least-squares solution. From exper-
imentation, the best predictor method proved to be subjectively performing better than
both low-pass filtering and the hamming distance approach.

The quality of the IH outcome is mainly affected from the handling of the non-existent
patterns, on the content of the training set and the template selection procedure. These
are interrelated as well, as the number of non-existent patterns depends on the defined
template and the halftoning method that it is dealt with. The training set is naturally of
great importance, with the LUT method performing better for images with high frequency
content, especially if these are included in the training. While the algorithm does not
perform as good onto smooth images, it still performs better than known algorithms,
such as Kite et al. [26].

The template selection changes drastically the nature and performance of the algo-
rithm, as the actual LUT changes. It was found that ‘Rect’ template always led to better
results than ‘16pels’ and even better with ‘19pels’. Despite the fact that adding more pix-
els to the template provides a better quality IH, it is not ideal to do so as this makes the
LUT bigger and leads to a trade-off between performance and efficiency.

The template selection procedure is the prediction of the contone value of the cur-
rent pixel from a template. The template is of fixed size M and with a fixed neigh-
bourhood. With a recursive algorithm, the mean-square error is calculated between the
contone image set and the estimate image set, searching for the minimum error value
minErr(D,De).

The algorithm is a two-step greedy method, providing a non-globally optimum tem-
plate:

1. Obtain estimated images using the pixels in the previous template and one more
candidate pixel.

2. Choose one pixel from the candidate pixels such that when that pixel is added to the
previous template in the LUT, the estimated images are closer to their corresponding
contone images.

Using the optimisation approach enables the avoidance of trial-and-error which is
applied in normal template selection. It therefore allows for obtaining the optimum tem-
plate without any requirement for human interaction and extensive experimentation.

Coloured halftones are dealt with in the same way, processing each colour plane sep-
arately. Template selection and LUT table design is performed individually for each chan-
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nel. Better results are possible by using the high correlation between the halftone values
of any colour plane and the contone value of a specific colour plane. Pixels from differ-
ent colour planes can be included in the prediction of the contone value of a particular
colour plane. In this case, it needs to be decided exactly which pixels from which colour
planes will be added to the template. The template selection algorithm can be adapted to
colour halftones by changing its search space. The pixel locations in R,G, B colour planes
can be denoted as (R, p, r), (G, p, r), and (B, p, r) for (p, r) ∈ NL. A fixed neighbourhood
around the current pixel to include pixels from all colour planes is defined as

Ncolour,L = {(c, p, r)|c ∈ {R,G, B}, p ∈ {−L/2, . . . , L/2} and r ∈ {−L/2, . . . , L/2}} (3.4)

This algorithm demonstrated good results on stochastic halftones which involve only
blue noise, while for dithered halftones, a median filter was applied after the LUT IH to
smooth the image. This improves the image quality, as periodic structures are suppressed.
An issue of low screen frequency is present, as small templates cannot cover a full cycle
and periodic frequency content appears in the image. If the templates are made big
enough though, the storage requirements are infeasible.

The matter that could have arose from the use of this approach, is the uncertainty
of its performance on scanned halftones, as it is defined to assume bi-level halftones
as input. One strong factor for this would be the alignment of the images, as these are
certainly not perfectly aligned as in the case of digital halftones.

3.1.2 By Decision Tree Learning

The approach applied by Kim et al. [19] is centred around orthographic greyscale halftone
images, as was the case in Mese and Vaidyanathan [20]. Following a decision-tree (DT)
learning, it makes it possible to reuse a number of algorithms that had already been de-
veloped. The central idea behind this work is the maximisation of entropy gain, which
allows the learning algorithm to automatically select the ideal window as the decision-
tree is constructed. Structured to deal with greyscale images, it was applied on images
of size 1050x1050, providing PSNR values of several dB above most well-known IH al-
gorithms. Not only it is of high efficiency, but it also has a very fast implementation.

A theoretic and algorithmic framework based on DT learning is used. This frame-
work, titled ID3 demonstrates two very important advantages over the tree structure
LUT approach by Meşe and Vaidyanathan [31]. Firstly, the template selection is auto-
matic, without the user needed to select explicitly a window. Instead, the attributes most
necessary to decide the output contone colour are chosen automatically. Secondly, the
initial window for DT-learning is defined as much bigger, with the appropriate peepholes
being defined in appropriate order, based on the entropy gain maximisation. Thus, its au-
thors consider this work as an improvement upon Meşe and Vaidyanathan’s work [31].

Let Qx : Z2 → 0, 1 be the set of binary images and Qy : Z2 → [0 . . . 255] be the
greyscale images’ set. Binary imageQx is mapped to a greyscale imageQy using function
Ψ. Function Ψ is defined through a window W = {W1, . . . ,Ww},Wi ∈ Z2 of w points,
and a characteristic mapping function ψ : {0, 1}w → [0 . . . 255] as

Q2(p) = Ψ(Qx)(p) = ψ(Qx(W1 + p), . . . , Q
x(Ww + p)) where p ∈ Z2. (3.5)

Each element Wi of window is called a peephole or a feature. Training input image
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Ax and training output image Ay set the training set, while Qx denotes the image to be
inverse halftoned and Qy the (supposedly unknown) ideal output image. Then axp is a
training instance denoted as the content in Ax of the window W shifted to p ∈ Z2 at
pixel p

axp = (Ax(W1 + p), A
x(W2 + p), . . . , A

x(Ww + p)) ∈ {0, 1}w. (3.6)

Each pattern axp is associated with an output-colour Ay(p) ∈ [0 . . . 255]. When all
pixels of Ax and Ay are scanned, the data obtained will be the training set

a =
{
(axp1

, Ay(p1)), . . . , (a
x
pm
, Ay(pm))

}
, (3.7)

where m is the amount of pixels of images Ax and Ay. The test set is obtained in the
same way, using images Qx and Qy as

q =
{
(qxp1

, Qy(p1)), . . . , (q
x
pn
, Qy(pn))

}
, (3.8)

where n is the amount of pixels in images Qx and Qy. Each qxpi
is a query-pattern,

while the ideal output colour is output Qy(pi) ∈ [0 . . . 255].
Applying IH, operator Ψ̂ based on Ax and Ay is constructed so that when applied to

Qx, the resulting image Q̂y = Ψ̂(Qx) is similar to the ideal output image Qy. The differ-
ence between the ideal and processed outputs is defined using a loss (error) function l.
Learning algorithmA constructs a characteristic function ψ̂ based on the training set a so
that when ψ̂ is applied to query pattern qxpi

yielding the output-colour Q̂y(Pi) = ψ̂(qxpi
),

the loss l is low with high probability.
Implemented as DT-learning, this method generalises beyond the training set, has a

fast implementation, does not need excessive memory space and the training phase does
not take long to complete. As mentioned above, the version of DT-learning that was used
is the IDE algorithm [34, 35].

The input-pattern space {0, 1}w is split into two and all sample input patterns with
black colour in the splitting attribute Ws will belong to one half-space and those with
white colour to another. For each of the two half-spaces, the splitting process continues
recursively, reducing the dimensions of the space by one {0, 1}w−1 at each iteration. At
each split, an internal node is created and the splitting attribute s is stored in it. The
recursion stops when each space contains either only samples with the same output-
colour, or only samples with the same input pattern but with two or more different
output colours. If the first case takes place, a terminal node is created and the output
colour is stored in it. In the second case, a ‘conflict’ takes place, where a terminal node is
again created, but this time the average of output-values is evaluated and stored.

In the case of no occurrences of conflicts, the training set is classified perfectly. This
could however lead to overfitting, with a hypothesis that treats the training examples
poorly, but performs better over the entire distribution of instances. In order not to com-
plicate the algorithm, overfitting was avoided by computing the average (or median)
whenever there were k or fewer samples in a pattern subspace. If k = 1 the algorithm is
performed as ID3, thus this approach can be denoted as k-ID3.

The most crucial point in the algorithm is the choice of the attribute that will be used
to perform the splitting of the input pattern space at each node of the tree, as it defines
the generation of the DT. If one of two DTs has to be chosen, it is widely accepted that

17



Computer-Aided Reclamation of Lost Art

the shorter and thus simpler one is preferred, a technique known as ‘Occam’s Razor’.
A possible way of doing so is to create all DTs and then choose the simpler one, but
this is impractical as it would take too long to compute. Therefore, a criterion similar
to ‘Occam’s Razor’ is used instead, in which high information gain attributes are placed
close to the root. The entropy of a sample set a where each sample can take one of c
different output values is defined as

Entropy(a) ≡
c∑
i=1

−pi log2 pi, (3.9)

where pi is the proportion of examples in a that belong to the class i. To compute entropy,
255 possible output values are quantised into c = 16 categories: [0 . . . 15], [16 . . . 31] etc.
The precise value is not lost however, but instead it is stored in the DT leaves. The
information gain, as defined in Equation 3.10 is the expected reduction in entropy caused
by partitioning the examples according to attribute s.

Gain(a, s) ≡ Entropy(a) −
∑

ν∈{0,1}

|aν|

|a|
Entropy(aν), (3.10)

where aν is the subset of a for which attribute s has value ν. In each internal node, the
learning algorithm chooses the attribute that maximises the information gain. Once the
DT is constructed, when given a query pattern qxp , DT is traversed from top to bottom,
until a terminal node is reached. The information contained in that leaf is then used as
the output-value Q̂y(pi).

3.1.3 Via Super-Resolution

The survey in search for the best available approach for solving IH did not cover only
well-known IH approaches, but also included literature that combined IH and SR. This is
a suited match for this project, as IH can be considered as a necessary pre-processing step
before continuing onto SR. If the two steps can be merged, this improves the structure
of the system and suggests that IH pre-processing step can be ignored all together and
employ SR directly for both IH and the actual SR solution.

The unification of the two approaches is more or less an experimental concept, but
examples of studies in literature support the possibility of applying IH via SR. Such an ex-
ample is the work of Minami et al. [36] which demonstrated good results onto halftones
obtained by error diffusion (Jarvis, Floyd&Steinberg). The results of the approach were
compared against the application of a Gaussian filter and demonstrated higher PSNR.
Upon comparison with other more popular IH approaches [32, 29, 6, 30, 26], they pro-
duce similar PSNR values, with the advantage of no a priori knowledge necessary. Table 5

IH Method Lena Image Peppers Image Prior Knowledge
Super-Resolution [36] 30.3 29.9 none
POCS [32] 30.4 - method & kernel
Wavelet [29] 31.7 30.7 method & kernel
Anisotropic LPA-ICI [6] 32.4 31.6 method
Kernel [30] 32.0 30.3 method
Gradient [26] 31.3 31.4 method

Table 5: PSNR performances of Minami et al. proposed method and previous methods
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displays these results.
The results are very encouraging towards merging the two approaches. As there is

no a priori knowledge available in this project’s concept, the trade-off to performance is
affordable and it is reasonable to expect resolution of IH when SR is applied directly on
the halftones.

3.2 Super-Resolution

Conventional super resolution (SR) is performed using a number of measured low-
quality images to produce a single higher optical resolution sample. The set of low-quality
images can include several images of the same scene [37] or even be frames extracted
from videos [38, 39, 40, 41]. SR recovers the high frequencies in the resulting image
by exploiting the given images, where each has a different aliasing effect [42]. Using
the measurements in aliased form, the high frequencies and thus the details in the final
image can be recovered.

In mathematical terms, one can consider the SR problem as the inversion of the rela-
tion in Equation 3.11.

zl = SHyh + v (3.11)

where zl represents the low resolution noisy image, S performs a decimation by an inte-
ger factor s, H describes low-pass filtering, yh is the high resolution image and v stands
for additive noise. If zl is given, the problem is to find ŷ ∈ RNh such that ŷ ≈ yh. A
maximum-likelihood estimation is done by minimising

‖SHŷ− zl‖2 (3.12)

Since SH is rectangular, the inversion cannot be stable and thus, there are many possible
solutions to the system. The difference amongst the SR approaches is the use of various
priors on the image to stabilise this inversion.

There are several circumstances under which SR can be applied. In the more trivial
cases, many instances of the same image will be available. This set of images might be of
low quality, but because of their large number, the retrievable information is large. This
happens as the low resolution images include different details and information from the
same original image and therefore, when used all together, the final image will consti-
tute of a sum of all of them. Unfortunately though, this project does not have involve
numerous available input images, as there are only a few records of these images which
are also of old age. Additionally, as the images under examination are those of paintings,
there is no availability of images from different perspective neither.

Conclusively, there was the need of an SR solution which required as input only a
single image, greyscale or coloured. This is where example-based SR (EB-SR) comes into
play, as it removes the necessity for several input images. EB-SR describes the use of
examples from both template and corresponding low quality input images for training
the SR system and then use the extracted relation to apply it onto a further low quality
images. Based on the condition that well-chosen training images that would share the
same nature as the test images, the method’s performance seemed most promising.

As there was no confirmation that EB-SR would indeed perform well or at all onto
the project’s task, the selection of the most appropriate EB-SR method did not depend on
simply the literature, but also on experimentation and visual evaluation of the resulting
output from various EB-SR approaches. Naturally though, the list of algorithms to be
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experimented with could not be extensively long. Thus, three algorithms [21, 11, 43]
were selected and then reduced to two through discussion and guidance from experts
in the domain. These two algorithms involve the works of Zeyde et al. [21] and Yang et
al. [11].

It is worth noting here that the algorithms were not applied using real low quality
images with their corresponding high quality pairs originally, but instead the low quality
images were created by scaling down the high quality images. This introduced a doubt
on the effectiveness of the algorithms’ performance, as a realistic low quality image set
introduces the further issue of image registration and the possibility of misalignment
between the low and high quality images pair in the training phase. Moreover, the images
in this project were of larger resolution than the images the algorithms were tested on.
Thus, the results from experimentation with these algorithms were unpredictable and
included various adaptations according to the project’s needs.

During research for the most appropriate method, the approach of dictionary learning
appeared the most promising and appropriate to the group, based on the recent good
results it has demonstrated.

The next sections cover the three considered techniques in the selected algorithms
applied for EB-SR. As the approach by Zeyde et al. is an optimisation of the work by Yang
et al. [11], a detailed analysis is included only for Zeyde et al. [21].

3.2.1 Subjective Evaluations of EB, TV, and Combined Regularization

Familiarity with the work of Anderson et al. [22] made the study a good starting point to
approach the solution of EB-SR. In this work, three different techniques are compared to
result in the most efficient one regarding noisy deblurring (image SR) and denoising. The
evaluations include a Total-Variation (TV) approach, an Example-Based (EB) approach
and a Combined Regularisation EB-TV approach. The study demonstrated that a joint
approach performs better when the examples are of similar structure as the test images.
If that is not the case, it is better to use overcomplete dictionaries which cover certain
common fixed patterns through images. The combined regularisation proved to perform
the best in the case of images with strong structure and when the dictionary is based on
similar example images. The evaluations of the study were based on SSIM evaluation,
which correlates best with human judgement of image quality [22].

Given a low-resolution image y, it can be defined as y = DH̃x where H̃ describes an
ideal anti-aliasing filter which is applied onto an unknown high resolution image x. D
describes a decimation operator, i.e. reduction of the image in the number of samples.
One can consider the non-decimated image as z = H̃x, where x can be decomposed into
x = xLR + xHR. The low-resolution part xLR lies in the row space of H̃, while the high
resolution part xHR lies in the null-space of H̃ such that

H̃x = H̃xLR + H̃xHR = H̃xLR. (3.13)

Single-frame SR is aiming to estimate xHR given y = Dz, D, H̃, and a set of high
resolution example-images. As the solution to example-based deblurring is the estimation
of xHR given z = Hx + w, H, and a set of high resolution images. Therefore, SR can be
considered as a special case of deblurring, via up-sampling y to obtain z:

z = Hx+w,w = 0,H = H̃ (3.14)
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Based on work by Freeman et al. [44], the approach towards SR evolves around
nearest-neighbour patches. Image xHR can be estimated by comparing blocks of y (or z),
to blocks of example images after anti-aliasing and down-sampling. The nearest neigh-
bour match is found and y’s missing high-frequencies are estimated to be the same as
the nearest neighbour example image block. High-frequencies can be estimated from im-
age blocks with similar mid-frequencies, because edges induce correlation of adjacent
frequency bins [45, 46]. As the approach deals with the image in blocks, the continuity
of the image was ensured via a boundary condition between adjacent blocks, e.g. finding
the nearest-neighbour selection in raster-scan order and overlap each new patch with
previously reconstructed image pixels [44]. However, the approach by Freeman et al.
created objectionable artifacts in the reconstructed image, overfitting to noise in the test
image. Later on, Anderson et al. applied this approach to deblurring and observed sim-
ilar reconstruction artifacts [43]. Conclusively, Anderson et al. proposed a cost function
for deblurring which uses a joint total variation and example-based regulariser while re-
maining faithful to the observed image, similar to Datsenko and Elad’s approach [47, 48].

Via experimentation, the researchers found that it is better to learn the EB regulari-
sation reconstruction jointly with the estimated restored image x. Following Chambolle’s
work [49], an auxiliary image was also introduced in terms of efficiency. The cost func-
tion thus solves for a restored image x ∈ RMN, an auxiliary image v ∈ RMN, and weights{
αi ∈ Rk

}B
i=1

for which

min
x,v,{αi}

B
i=1

‖Hv− z‖22 + λ1‖x− v‖22 + λ2
∥∥∥∥∥x−

∑
i

Tiαi

∥∥∥∥∥

2

2

+ λ3‖x‖TV , (3.15)

where λ1,λ2 and λ3 are regularisation parameters, the columns of each Ti ∈ RMN×k con-
tain the kmost similarm×m training blocks to the ith block of the input image z. The ith
training blocks are weighted by the corresponding vector αi, and the αi are jointly solved
to minimise the error between x and the nearest neighbour reconstruction

∑
i Tiαi. The

term ‖ · ‖TV denotes total variation as

‖x‖TV ,
∑
j,k

√
|(Ovx)j,k|2 + |(Ohx)j,k|2, (3.16)

where the subscripts v and h describe vertical and horizontal gradients respectively, and
the subscript (j, k) indexes the ((k− 1)N+ j)th entry of the vector.

Equation 3.15 demonstrates the objective function. Term ‖Hv − z‖22 ensures that the
auxiliary image v matches the measured signal if blurred by H, making the operation
faithful to the observations through a standard least-squares approach to deblurring. De-
tail enhancing is handled by term ‖x−∑i Tiαi‖2 by inferring high resolution information
from middle-resolution information using training examples. Smoothness of the recon-
struction and sharp edges are treated by term ‖x‖TV . Finally, term ‖x− v‖22 forces a close
relation between the auxiliary image v and the estimated image x.

While based on Datsenko and Elad [48, 47], the regulariser differs on three points:
the regularisation is carried out towards a linear combination of neighbourhood blocks
instead of summed regularisations to each block, a more sophisticated method is used to
adaptively regularise depending on the quality of the examples and the example-based
regularised is coupled with the total variation regularisation.
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The rest of the section shall now cover the most important aspects and an overall
description of the approach. For further technical procedures and mathematical back-
ground, the reader is directed to the documentation of the original study [22].

As previously mentioned, this approach is block-based and so to ensure the continuity
of the image, overlapping is used. Based on Freeman et al. [50], subsequent blocks are
overlapped by one row (or column) of pixels. The distance calculation between the blocks
used is the same as in the original work, involving Euclidean distance and a scalar factor
α = 0.1.

The parameters λ1, λ2 and λ3, as defined in Equation 3.15, can lead to a variety of
reconstructions when adjusted to different values. For example, if λ2 = λ3 = 0, Equa-
tion 3.15 leads to a least-squares reconstruction x = v, whereas if only λ2 = 0, then
x is the TV reconstruction as this was implemented by Bresson and Chan [51]. In the
case though that λ1 = λ3 = 0, it gives a reconstruction based on the blockwise k-nearest
neighbour reconstruction s, analogous to Freeman et al. approach [44].

In general, it is hypothesised that the setup of λ1 > 0, λ2 > 0, λ3 > 0 will give the best
reconstruction. Nevertheless, a manual setting of the optimal values for the parameters
appropriate in each case of image is impractical for many applications. Instead, the choice
of parameters is based on the following hypothesis: that a good set of parameter choices
for an image is possible by finding good parameters for similar images and then use
these similar images to train the parameters. The ideal case would be if both test and
training images have similar edge content since human perceptual quality is generally
scene dependent. The training images used for setting the deblurring parameters should
be similar to the test images in a psycho-visual sense. The definition of similarity of
two images is debatable, but in this case this is done according to coarse image content
categories, such as ‘face’ and ‘houses’. Aside from the content of the training images,
the number of the images included in the training phase also affects, as using a fewer
number of training images will result in greater diversity in the nearest neighbours. This
leads to overfitting and artifacts in the resulting image.

Conclusively, the severity of the artifacts depends on how well the training blocks
match image blocks in the image z and thus the selected training set is of great im-
portance for the efficiency of the system. To result in the most appropriate parameters
setting, each instance is evaluated using human judges and five-full reference image
quality metrics (IQMs). Evaluation of the performance with a choice of the parameters
based on a full-reference IQM would allow the automation of the parameters selection.
Parameters would get cross-validated by applying reconstruction on one of the training
images. With ground-truth data available, this way the selection of parameters would be
evaluated correctly.

Leave-one-out cross-validation was employed for the optimisation of λ1, λ2 and λ3 in
the training set. This ensures that the nearest neighbour blocks Ti for a given training
image are extracted from the other images.

In the experiments of this study, each sharp image is blurred via convolution with a
Gaussian blur kernel with a 2.25 pixel bandwidth and adding Gaussian white noise so
that the PSNR between the image and the original sharp image is 34 dB PSNR. In the
λ2 reconstructions and the case of a test image reconstruction, example image blocks
from all the images in the training set were used. If the reconstruction was applied on
a training image (e.g. for parameters cross-validation), then example image blocks were
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extracted only from those images in the training set that were not being reconstructed.
For simplification, instead of a colour-plane-dependent TV deblurring [52], the study

involved the conversion of RGB colour images to the YCbCr colour space and the deblur-
ring of only the Y plane. The Y plane corresponds to human perception of luminance
and luminance edges are most visible, therefore the approximation was considered rea-
sonable for a full deblurring. Colour space YCbCr was chosen over more perceptually
accurate colour spaces such as CIELAB, as channel Y is a linear function of the original
RGB channels and thus the blur affecting Y is still H. Once the deblurring of Y channel
was completed, the YCbCr resulting image was converted back to a RGB image, proceed-
ing with visual comparisons between RGB images. In the IQM’s evaluation however, only
the Y colour plane was used.

In the evaluation of the results, three expert observers provided scores on 36 images in
11 experiments of random order. The evaluation of the reconstructions was categorised
as very good (score=5), good (score=4), fair (score=3), unsatisfactory (score=2) and
objectionable (score=1). The scoring was averaged to obtain the ‘human score’ for each
reconstruction. While the scores were highly correlated, they were not a perfect match,
as each one of the experts evaluated differently in terms of blur, overall noise and objec-
tionable artifacts.

Displayed in Figure 9 are example results from reconstructions with no TV application
(middle-left), TV reconstruction with the highest quality as judged by the three observers
(middle-right) and the EB-TV reconstruction with the highest quality as judged by the
observers (far-right). The reconstruction with no TV creates objectionable artifacts in the
reconstruction, while the EB-TV reconstruction is sharper but noisier.

The study concluded that overall, example-based regularisation can sometimes pro-
vide better performance than TV alone and that it is possibly more useful when the test
image is better matched to the training images. Moreover, the hypothesis of use of similar
images was supported by the results, leading to the conclusion that if a test image is sim-
ilar to the training set, parameters preferred for image reconstruction of training images
may be applied to the test image to obtain a reconstruction close to that produced by
the optimal parameter set for that test image. Automation of the parameter set selection
was found to be best supported by SSIM, which provided the strongest correlation to hu-

Figure 9: A noisy blurred image (far left), an example-based reconstruction that exhibits crisp
edges at the expense of objectionable artifacts (second from left), total-variation (TV) reconstruc-
tion (second from right), and example-based TV (EB-TV) reconstruction (far left). Regularization
parameters for TV and EB-TV were optimized over a finite set of parameter choices by maximizing
the average score of three independent observers
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mans’ perspective and thus performed better than the rest of the examined IQMs (PSNR,
∆E of CIELAB, ∆E of s-CIELAB [17], structural similarity index (SSIM) [16] and visual
information (VIF) [53]). Thus, the comparison between the reconstruction for param-
eters cross-validation involved SSIM, selecting the parameter set (λ1, λ2, λ3) for which
the SSIM is maximised on the training set of images. However, the parameters selected
from SSIM cross-validation led to worse results, sometimes dramatically worse, than the
results obtained from human cross-validated parameters.

Conclusively, these experiments demonstrated that good deblurring parameters are
learnable by cross-validation with human scores, especially if the training and test data
are well-matched and in the case of EB-TV, if the images have structure. Compared to
TV deblurring, EB-TV deblurring was found to be significantly better when the test and
training images were matched in structural content and given parameters cross-validated
by humans. Most importantly, the effect of the selection of the training set appeared to
be crucial, as the edge content and the appropriate set of parameters for different images
may differ and thus lead to different results if not appropriately chosen.

The work concludes that the use of a joint approach performs better when the train-
ing examples have similar structural elements as the test image. If that is not the case,
the authors suggested using an overcomplete dictionary which includes certain common
fixed patterns in actual images.

3.2.2 Single Image Scale-Up Using Sparse-Representations

The major EB-SR technique which was applied was that of Zeyde et al. [21]. This ap-
proach builds upon the work of Yang [11], with modifications and simplifications re-
garding its computational complexity and the algorithm’s architecture. The present sec-
tion covers in detail the approach in [21].

In comparison to Yang et al. method, Zeyde et al. approach follows a different training
approach for the dictionary pair and also approaches the ability to operate without a
training set by bootstrapping the scale-up task from the given low-resolution image.

This approach is based on dictionary learning, relying on two toolboxes, ‘OMP’ [54]
and ‘K-SVD’ [55] to achieve a faster algorithm through sparse representations. A Sparse-
Land local model is the main tool in the process, assuming that each patch from the
considered images can be well represented using a linear combination of few atoms
from a dictionary. In other words, assuming that each patch from the images can be
represented with the multiplication of a dictionary by a sparse vector of coefficients [11,
56, 57, 58].

As common in SR studies, in the original works of these algorithms, the input low
quality images were obtained by scaling down the high quality images. Since the scale-
down of an image might result to a blurry result, the process of scale-down includes a
pre-filtering that averages local pixels, so that aliasing effects are reduced.

The proposed enhancement, operates on patches extracted from scaled-up image yl ∈
RNh , aiming to estimate the corresponding patch from yh.

Let pkh = Rkyh ∈ Rn be a high resolution image patch of dimensions
√
n × √n,

extracted using Rk : Rnh → Rn extraction operator from high resolution image yh in
location k. The locations considered, k, are only these centred around true pixels in
the low-resolution image yl (as opposed to filled-in pixels due to interpolation). The
resulting set of samples will be from now on referred to as set Ω.
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Using the sparse-land model, it is assumed that pkh ∈ Rn can be sparsely represented
by qk ∈ Rm over dictionary Ah ∈ Rn×m as

pkh = Ahq
k, (3.17)

where ‖qk‖0 � n, where the l0-pseudo-norm counts the number of non-zeros in the
vector qk. Matrix Ah thus describes the high resolution patches (dictionary). A given
low-resolution patch pkh can be represented by the same sparse vector qk over the ef-
fective dictionary Al = LAh, with a controlled error ε. This implies that for a given
low-resolution patch pkl , its sparse representation is found and the pkh can be recovered
by multiplying this representation by the dictionary Ah.

The algorithm applies the above concept using a simple structure, split into the train-
ing phase and the reconstruction (scale-up) phase. The training phase is done off-line
and thus it is unnecessary to repeated it on every application of the algorithm. The re-
construction phase uses the trained model which is saved in a file after the completion
of the training phase.

In the training phase, a training set is firstly constructed from a set of high resolu-
tion training images {yjh} and the low resolution images training set yjl is constructed by
scaling-down the high resolution images by a pre-defined scale-down operator. Through
this process, pairs of matching patches of high and low resolution training images P =

{pkh, p
k
l } are extracted. Each of these patch-pairs undergoes a pre-processing stage which

extracts the luminance channel Y by transforming the image to YCbCr colour space [59,
60]. After that, high-pass filtering is applied onto pkh to focus the training on character-
ising the relation between the low-resolution patches and the edges and texture content
within the corresponding high resolution images. Then, features are extracted from pkl
by applying a Laplacian and a Gradient high-pass filters. Local patches are then extracted
based on {k}, forming P = {pkh, p

k
l }k. For every position k ∈ Ω, pkh patch of size

[√
n,
√
n
]

is extracted from the high resolution images and from the filtered images, pkl is extracted
correspondingly. Every R corresponding low resolution patches are concatenated into
one vector p̃kl of length nR. Next, dimensionality reduction is applied using Principal
Component Analysis (PCA) on the features of the low resolution patches pkl , making the
dictionary training step much faster and saving from computations in the subsequent
algorithms.

A dictionary Al is then trained for the low resolution patches, so that they can be rep-
resented sparsely. The Al ∈ Rnl×m dictionary is obtained by applying K-SVD dictionary
training [55]. Dictionary Ah is also constructed at this stage, formed to match the low
resolution dictionary. As patch pkh is recovered by pkh ≈ Ahqk approximation, the found
sparse representation vector for the low resolution patch is multiplied by the high reso-
lution dictionary to recover pkl . The approximation must be as exact as possible and this
is why the Ah dictionary is defined as the one that minimizes the mean approximation
error

Ah = argmin
Ah

∑
k

∥∥pkh −Ahq
k
∥∥2
2
= argmin

Ah

‖Ph −AhQ‖2F , (3.18)

where matrix Ph contains the high resolution training patches {pkh}k as its columns and
Q contains {qk}k as its columns. This is the same approach that appears in the study of
Wang et al. [57] as well. Given that Q has full row rank, the solution to the problem is
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obtained by applying the Pseudo-Inverse expression in

Ah = PhQ
+ = PhQ

T (QQT )−1. (3.19)

Note that overlap is not taken into consideration. Ah should be optimised so that the
resulting image is as close as possible to the original, as the reconstructed high resolution
image is constructed from the positioning and averaging of high resolution patches.

Each patch of size n× n from the high resolution image is extracted by a pre-defined
operator Rk at location k. Reconstructed high resolution image ŷh is constructed using
Equation 3.21 and Equation 3.22

ŷh = yl +

[∑
k∈Ω

RTkRk

]−1 [∑
k∈Ω

RTkAhq
k

]
. (3.20)

The high resolution patch is built by term RTkAhq
k and then it positions it in the k-th

location of the high resolution image. The term W =
∑
k R

T
kRk ∈ RNh×Nh describes

a weight diagonal matrix, which weights every pixel in the high resolution outcome,
based on the number of contributions it gets from the overlapped patches. The error
computation includes yl, as the patches in Ph are constructed from the difference image
eh = yh − yl. For the construction of image ŷh though, the algorithm should return
these low-frequencies. Thus, the best dictionary Ah is defined as the solution to the
optimisation task

Ah = argmin
Ah

‖yh − ŷh‖22 = argmin
Ah

∥∥∥∥∥∥
yh − yl −

[∑
k∈Ω

RTkRk

]−1 [∑
k∈Ω

RTkAhq
k

]∥∥∥∥∥∥

2

2

.

(3.21)
Defining Wk = RkW

−1 ∈ Rn×Nh and writing ŷh = yl +
∑
kW

T
kAhq

k, minimisation
of ‖yh − ŷh‖22 is performed with respect to Ah. If eh = yh−yl, dictionary Ah is obtained
by the minimisation of

Ah = argmin
Ah

∥∥∥∥∥yh − yl −
∑
k

WT
kAhq

k

∥∥∥∥∥

2

2

= argmin
Ah

∥∥∥∥∥eh −
∑
k

WT
kAhq

k

∥∥∥∥∥

2

2

. (3.22)

Given X ∈ Rn×m, define x ≡ cs(X) as the column-stack version of X (where xi+nj =
Xij). Using the Kronecker product property

cs(BAC) = (CT ⊗ B)cs(A) = (C⊗ BT )Tcs(A), (3.23)

we reach

cs(eh) = eh =
∑
k

WT
kAhq

k =

(∑
k

qk ⊗Wk
)T

cs(Ah) =M · cs(Ah), (3.24)

where M ∈ RNh×mn is defined as MT =
∑
k q

k ⊗Wk. Thus, the direct formula M†eh
can be used to obtain the optimal Ah. In the study of this algorithm [21], the authors
also propose an alternative approach to avoid too large matrices, based on an iterative
scheme (Conjugate Gradient method).
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Once the dictionaries have been constructed, the reconstruction phase can be applied.
Given a test low resolution image zl, the reconstruction phase will scale it up. In the
original implementations of the algorithm, zl is assumed to have been generated from
a high resolution image yh by the same blur and scale-down operations as used in the
training phase. The trained dictionaries Ah and Al are used to migrate from the low
resolution domain to high resolution, applying K-SVD for the low resolution images and
Pseudo-Inverse for the high resolution ones.

The first step in the reconstruction phase is zl’s scale-up to the destination size yl by
scale factor s and using bicubic interpolation Q. The image is then filtered by the same
R high-pass (Laplacian and Gradient) filters that were used in feature extraction step in
training. Then, pkl patches of size

√
n ×√n are extracted from the R images at each lo-

cation k ∈ Ω. The corresponding to the same location patches are concatenated to form
a patch vector p̃kl leading to a collection of patches, the set

{
p̃kl
}
k
. Dimensionality re-

duction is then applied, multiplying
{
p̃kl
}
k

by projection operator B to obtain set
{
pkl
}
k
,

where each patch is of length nl. Orthogonal Matching Pursuit (OMP) algorithm is next
applied to obtain sparse-coded

{
pkl
}
k

[54]. L atoms are allocated to their representation
and the sparse representation vectors {qk}k are calculated. These representation vectors
{qk}k are multiplied by the high resolution dictionary Ah to obtain the approximated
high resolution patches {Ahq

k}k = {p̂kh}k. Finally, the resulting super-resolved image ŷh
is constructed from p̂kh through the solution of the minimisation problem with respect to
ŷh in

ŷh = argmin
ŷh

∑
k

∥∥Rk (ŷh − yl) − p̂
k
h

∥∥2
2
. (3.25)

The extracted patches from the resulting difference image ŷh − yl should be as close
as possible to the approximated patches p̂kh. The solution to this problem is a closed-form
Least-Squares solution of

ŷh = yl +

[∑
k

RTkRk

]−1∑
k

RTkp̂
k
h, (3.26)

which describes the positioning of patches p̂kh to their appropriate locations, averaging
in overlap regions and the addition of yl to obtain the final image ŷh.

Finally, this approach also proposes a technique where the training set is extracted
from the test image itself. If cases where there no access to an external set of images for
training, a ‘bootstrapping’ technique as proposed by Glasner et al. [61] is possible. For
the training process, zl is used as the ‘high resolution’ image and its scaled-down version
xll as the low resolution image. The trained dictionaries enable the reconstruction phase
which will scale zl up to yh. This means that if the training data from the test image
itself are enough to build a valid sparse-land model, scale-up of a single image using a
sparse-land model is possible using one single image.

3.3 Colour Correction

This section covers an overview of different approaches towards colour correction. As
done in most cases, the methods have been developed with a specific aim, therefore the
section is divided according to the theme of each approach. The approaches included
here spread over the categories of colour transfer and image blending, both of which
consist the term of colour correction [62].
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(a) Source Image (b) Target Image

(c) RGB Corrected Image (d) lαβ Corrected Image

Figure 10: Colour correction in different colour spaces. From: Reinhard et al. [14]

3.3.1 Utilisation of Colour Space

One of the baseline approaches of colour transfer is that of Reinhard et al. [14]. In this
approach, the authors use perception-based colour space lαβ as this was developed by
Ruderman et al. [63]. The motivation behind using colour space lαβ is its minimisation
of correlation between the colour channels for many natural scenes. It was developed
based on human visual system understanding and provides little correlation between its
axes. Reinhard et al. used the specific colour space to be able to apply different operations
to different colour channels without dealing with the correlations between them.

The three different channels correspond to
l: Achromatic Channel
α: Chromatic Yellow-Blue Opponent Channel
β: Chromatic Red-Green Opponent Channel

This approach is based on the Gray World Assumption, which assumes that the average
of all colours in an image is grey and thus the amount the image average differs from
grey can be used to determine the illuminant’s RGB [64]. Initially, both the source and the
target image are transformed from RGB colour Space to lαβ colour Space. From there,
the mean and standard deviation along each of the colour space axes are calculated for
both images and in the case of source image, the mean is subtracted from the original
image. The colour correction is then performed by adding the averages of the target
image onto the mean-subtracted source image values.

The algorithm can be performed either directly globally on the source image as in
Figure 10, or using only parts of the target image for the desired effect, as in Figure 6.
The latter removes the requirement of composition similarity between the source and
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target images. One can notice that the results in lαβ colour space (Figure 10(c)) are
significantly better than those in RGB (Figure 10(d)).

An extension to the above approach was performed by Xiao and Ma [65], to result to
an approach that can directly deal with the colour transfer in any 3D space. The approach
follows the same translation and scaling procedures as Reinhard et al., while rotation
follows a matrix obtained by decomposing the covariance matrix using SVD algorithm.
Based on the fact that straightforward colour statistics can capture subjective notions of
style and appearance in images [66], Xiao and Ma developed a statistics-based method
that can perform colour transfer in RGB colour space by the simple use of mean and
covariance matrix. The transformations between the source and target image simulate
morphing an ellipsoid to fit another one. The mean value is the centre of an ellipsoid,
while the eigenvalues and eigenvectors of the covariance matrix indicate the length and
orientation of the three axes of the ellipsoid.

3.3.2 Naturalness Constraints

Zhang et al. [67] approached colour correction using the colour adaptation model RLAB
by Fairchild and Berns [68], which simulates incomplete adaptation to a coloured tar-
get illuminant. The authors chose RLAB against other colour adaptation models due to
its calculations in the form of matrix multiplication sequence, which allows real-time
implementation. Moreover, through its strong luminance-dependent colour adjustment
element, RLAB enables colour saturation adjustment of an image in a way that is consis-
tent with variations people might see under different illuminant changes.

This approach is divided in the following steps

1. Characterisation of source image colours with a limited number of parameters. In this
step, the source image is characterised using illumination-related properties, namely
the scene CCT and the scene luminance level.

2. The source image is adjusted by applying the colour adaptation model RLAB.

3. ‘Tone transfer’ is performed on top of the colour transfer using the mean and standard
deviation of the L* values of the image pixels.

Figure 11: Example of images with colour adjustment to a specified CCT and luminance.
Starting from the left column: original images, colour adjusted images to cct=2000K and
luminance=3000cd/m2, colour adjusted images to cct=11000K and luminance=0.1cd/m2. From:
Zhang et al. [67]
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The motivation behind this work is to enable several images in the same composi-
tion to share common colour properties. In the approach, a ‘focal’ image is selected as
the target and the colours of all the other images are adjusted towards this target. This
way, compositions like collages could be transformed to have a more uniform and ap-
pealing presentation, while still enforcing naturalness. Figure 11 displays some results
of applying colour transformation using this method, based on the CCT and luminance
levels.

3.3.3 Image stitching

A common example where colour correction is required is panorama construction [69,
64]. As many images are stitched together to create a panorama, the differences be-
tween these images give undesired artifacts to the resulting panorama. The ordering,
orientation, scale and illumination in these images can be different, which often leads
to a panorama such as the one presented in Figure 12. These artifacts are mainly due
to different viewpoints and scales, as well as the use of different capturing devices. Dis-
tortions are evidently noticeable, especially at points where the illumination changes
rapidly. Figure 13 displays an example of a colour corrected panorama.

Tian et al. [64] approached such colour discontinuities in panoramas using colour
histograms matching. For each pair of images that would be stitched for creating the
panorama, the maximising overlapping area in the two stitching images is firstly iden-
tified. Then, a histogram mapping is applied over the overlapping areas, resulting to
an estimated transformation matrix which is then applied to the two stitching images.
In simple words, the first image is altered by using the colour histogram of the second
image.

Figure 12: Registered images for a panorama. From: Brown et al. [69]

Figure 13: Registered images rendered with multi-band blending. From: Brown et al. [69]

Brown et al. [69] on the other hand, targeted a multi-band blending strategy, as this
was proposed by Burt and Adelson [70]. Smooth transitions between images with dif-
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ference overall intensities was enabled, preserving sharp details. A weight function is
assigned to each image w(x, y) = w(x)w(y), where w(x) varies linearly from 1 at the
centre of the image to 0 at the edge. Low frequencies are blend over a large spatial range
using a linear weighted sum, while high frequencies are blend over a short range from
the image with the maximum weight. In this manner, blurring high frequency details in
the case of small registration errors between the images of the panorama is avoided.

Nevertheless, illuminant variation does not only occur on outdoors images. A study
by Bascle et al. focused specifically on indoors illuminants [71]. Since the choices of
indoors illuminants can somewhat be defined, the study involved fluorescent, incandes-
cent light sources and natural light which describe what is usually used in offices and
houses. Goal of the study was to deal with shadows, sunlight variation and changes due
to the artificial illumination, i.e. switching lights on and off. The most important aspect
of this approach is its automation. Using a modified multi-layer perceptron (MLP), the au-
thors implemented a learning automatic colour image correction method. Since it works
pixel-wise, the approach has real-time performance which makes it a complete automatic
system. However, as it is the case with MLPs, for a given specific input there are multiple
possible outputs. Thus, the authors defined a fourth input, other than the three RGB in-
puts, which defines the desired output luminance and is inserted into the middle layer of
the network. Therefore, the input image can be transformed as it would be seen under
the desired illumination.

An application that demonstrates similar considerations to image stitching is that of
multiview video, a technique where an object or a scene is recorded using a setup of sev-
eral synchronous cameras from different positions, making it possible to record moving
objects or scenes. Due to the calibration differences, heterogeneous cameras and the dif-
ference in appearance from different angles, the recorded multiview video data demon-
strate significant variations regarding the chrominance and luminance components [72].
These differences between the recorded camera views leads to incorrect illumination and
colour reproduction after view interpolation. Fecker et al. [73] implemented the idea of
Hekstra et al. [74] for applying histogram matching to adapt all camera views to a refer-
ence view in the centre of the camera setup. The cumulative histogram of the distorted
image is basically adapted to match the cumulative histogram of the reference image.
This simple approach allows for no assumptions on the type of distortion, the considera-
tion of non-linear operations and correction of global discrepancies in the luminance and
chrominance components, while preserving the local illumination changes that originate
from surface orientation differences. In the approach by Fecker et al. [73], the reference
image is chosen from the camera views that are closer to the centre of the camera setup
and all the other camera views are corrected so that their histograms fit the histogram
of the chosen reference view. Since the reference and the target camera views have a
displacement, the calculation of the histograms is purely based on the overlapping area
between them. This process is applied individually on each channel of the colour space
that describes the camera view recordings.

3.3.4 Underwater Images

The work of Torres-Mendez and Dudek [24] focused on underwater images with the
purpose of implementing image restoration for use in aquatic robots. Underwater im-
ages appear bluish, or as officially defined ‘colour depleted’, blurry and out of focus.
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Figure 14: The training pairs are indicated by the squares in the original and input images. From:
Torres-Mendez and Dudek [24]

These distortions take place because of the ambient light underwater and also because
of the frequency-dependent scattering and absorption between the camera itself and the
environment, as well as between the light source and the local environment [24].

Building on the work of Freeman [50], Torres-Mendez and Dudek utilised a Markov
Random Fields’ model to train learning relationships between each of the colour training
images (reference images) with a corresponding colour depleted image. The system is
trained on the relationship of the corresponding images, instead of only the reference
images.

The authors describe two different scenarios on how the model can be used. Firstly,
ground truth data are used to create simulated effects of the water using an attenuation
filter. The training set is then defined by small image regions which are extracted from
the ground truth data and the simulated depleted image. The training images correspond
to regions of interest in terms of the variations in pixel colour values, so as to capture
intrinsic statistical dependencies between the colour depleted and the ground truth pixel
values. The resulting corrected image, an example of which can be seen in Figure 14,
appears good, with no over-smoothing and no sudden changes in colour. The second
scenario of use of the model was defined for aquatic robots real-time processing. While
an aquatic robot is in the ocean, it captures video images. Being equipped with its own
source of white light, the robot will stop in certain time intervals, turn its light on and
take an image. As these images will be better in both clarity and colour, they can be used
in the algorithm for colour correction of neighbouring frames.

3.3.5 Using Content-Based Image Retrieval

Qiu et al. approached the problem of selecting appropriate training images by using
content-based image retrieval [13]. This way, one can get clusters of homogeneous im-
age statistics and then use those as examples for example-based image processing, or
specifically in this case, colour correction. The cluster of images to be used as examples
can be selected according to the processing effects.

This work is based on Reinhard et al. [14], working in lαβ colour space. As men-
tioned in Section 3.3.1, the colour statistics from one image can be transferred to the
colour appearance of another image. This approach achieves optimisation of the process
of finding correct reference images, as it identifies appropriate examples which guaran-
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tee non-failure of the system and also helps to avoid manual selection of the example
images.

(a) Thumbnail images in a cluster

(b) Colour distorted images (c) Colour corrected image

Figure 15: CBIR Approach Results. From: Qiu et al. [13]
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4 Implementation

~The present section covers all the implementation steps along with the necessary adap-
tations to available software, the testing procedure and the difficulties that were encoun-
tered. All processes were carried out on Intel Core 2 Duo at 2.66GHz with 3.25GB of
RAM, using the environment of Matlab R2010a.

The diagram in Figure 16 outlines the implemented system. The initial steps involved
the preparation and pre-processing of the datasets. Once the training and test images
were defined, SR was applied starting with the training phase and continuing with ap-
plication of it onto the test set. The super-resolved images would then be input to the CC
phase, obtaining thus the final super-resolved colour corrected images. These were then
evaluated, concluding on the efficiency of the implementation.

Figure 16: Outline of the implemented system

4.1 Training and Test Image Sets

Initial step in the implementation was naturally the gathering of the training and test
sets. The training set included two corresponding subsets: one of low quality images
which resembles the problem at hand and a ‘correct’ reference high quality image set.
The test image set involved two subsets as well, one of which included ground-truth data,
in order to later be able to quantitatively evaluate the performance of the system, and
a real-test set which constituted by images of three paintings which are now considered
lost.

Five ground-truth images were gathered in low and high quality by scanning pre-
WWII artbooks [1, 2] and from Bridgeman Art Library Limited respectively. The high
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quality images were provided at a resolution of 300dpi, while the low quality images
were scanned using a Microtek ScanMaker 9800XL at a resolution of 1600dpi with no au-
tomatic adjustments, as to preserve the originality of the image, especially the halftoning
pattern. These paintings were - as titled - ‘The Rape of the Daughters of Leukippos’, ‘Putti
playing with garlands of fruit’, ‘The Judgement of Paris’, ‘Madonna’ and ‘Liebesgarten’,
all by P.P. Rubens.

The training set was defined by 59 patches of dimensions 540×540 pixels, all extracted
from one of the ground-truth images, more specifically, the ‘Rape of the Daughters of
Leukippos’. These patches were manually chosen, as to cover all the variations present
in the image. Being a ground-truth image, the corresponding subsets of the training set
were extracted from the low and the high quality version respectively. This image, along
with the rest of the ground-truth images also consisted the ground-truth test set. The
real-test images were scanned following the same process as for the ground-truth data
and included three paintings, also by P.P. Rubens: the ‘Resurrection of Lazarus’, ‘Diana
At Her Bath, Surprised by Satyrs’ and ‘Satyrs and Bacchants’.

The same artbook [1], was used for obtaining the low quality sets both for training
and testing. Only one real-test image, that of ‘Satyrs and Bacchants’ was not available
from the same source, and was thus scanned from a different artbook [2]. Therefore,
considerations regarding the printing technology, such as the form of the ink and the
used paper, were minimised, ensuring the same conditions on almost all the gathered
low quality images.

The scanning process of the low quality images was performed at high resolution,
leading to large sized images. Due to the memory demanding handling that this intro-
duces and the inability of Matlab environment to handle such large data, the scans were
scaled down to ease the processing. The five ground-truth low quality images were scaled
down to match the dimensions of their corresponding high quality pairs in a range of
[3898..10197, 3408..10917, 3]. On the other hand, the real-test images were scaled down
to dimensions in the range of [1000..1500, 1000..1500, 3].

4.2 Pre-processing Steps

Apart from the major processes of the implementation, those of super-resolution and
colour correction, there were two necessary pre-processing tasks to be carried out: in-
verse halftoning and image registration. These were applied to prepare the data for suit-
able image processing, avoiding artifacts from external conditions in the system setup.

As mentioned before, the low quality training images demonstrated a halftoning pat-
tern evidently. Therefore, before being able to proceed to image processing, it was essen-
tial to perform inverse halftoning (IH) to convert the halftone images to continuous-tone.

As described in Section 3.1, the most appropriate IH baseline techniques to this
concept were the example-based approaches. In specific, the proposals of Kim and de
Queiroz [19] and Meşe and Vaidyanathan [20] were concluded as the best suiting ap-
proaches. As the approach by Kim and de Queiroz [19] extends the work of Meşe and
Vaidyanathan [20], it was solely selected to be applied, disregarding the original pro-
posal by Meşe and Vaidyanathan. The software of the approach is freely available and it
was used as on the author’s website [19].

In parallel to the application of IH by Kim and de Queiroz [19], a joint solution
to halftoning was attempted via SR directly. As discussed in Section 3.1.3, EB-SR has
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been successfully used in a small extend to resolve inverse halftoning. Based on the en-
couraging results of Minami et al. [36], IH was also approached directly via the EB-SR
procedure of the implementation. As the approach by Kim and de Queiroz [19] provided
incomplete continuous-tone images, the inverse halftoning was in the end resolved com-
pletely through the EB-SR step.

A different pre-processing was performed in the gathering of the training set. As men-
tioned, the training set consists of two corresponding subsets, of images of the same
scene, but different quality. In the implementation, the sources of the two subsets were
different, unlike most of previous studies. Most of past studies obtain the low quality
image set by manipulating the high quality images. However, as this would not be pos-
sible in a real-world occurrence of the problem at hand, the low quality images were
obtained from a source that would be available in any instance, the artbooks. Due to
this difference between the sources of the training subsets, the corresponding patches in
the training subsets were misaligned. It was thus necessary to perform image registration
(IR).

The 59 patches of the low quality training subset underwent image registration, to
be aligned with their high quality corresponding patches. Due to the uncertainty of the
extent this issue could have in the final results of the implementation, the research for
image registration techniques was short and concise. From research on the available
techniques, image registration was in the end performed in a supervised fashion. An
approach by Sheikh and Bovik [53] was applied under supervision. The method per-
formed affine, translation, rigid and projective transforms to register the input images.
This method was carried out for each of the 59 training patches, with the results from
each of the transforms being subjectively evaluated and then selected.

4.3 Example-Based Super-Resolution

Through consultation and discussion with experts in the domain of EB-SR [43], it was
concluded that the best approach for its implementation was dictionary-based. As re-
ferred to in Section 3.2, the selected dictionary-based method was that of Zeyde et
al. [21] known for its performance and efficiency.

The implementation by Zeyde et al. [21] optimised the algorithm of Yang et al. [11].
It improved the execution times using the toolboxes K-SVD [55] and OMP [54], while
maintaining the high performance of the original algorithm. This approach was embod-
ied in the present implementation, adjusted from the original to the needs of this project,
as this was provided from the authors [21]. Both the implementations of Zeyde et al. and
Yang et al. were experimented with. However, as the implementation of Yang et al. is time
and memory demanding, with similar performance to the optimised implementation of
Zeyde et al., it was finally discarded.

All steps of the original implementation, except for the core of SR, were adjusted to
fit the purposes of the project. From the training to the evaluation phase, the implemen-
tation was different due to the different conditions of the present problem.

One major extension to the original algorithm that affected the structure of the imple-
mentation was the application of EB-SR onto coloured instead of greyscale images that
were targeted in the original studies of Zeyde et al. [21] and Yang et al. [11]. Following
the baselines of previous works, EB-SR was performed only on the luminance channel Y
of the colour space YCbCr. Before any processing in the training or testing phase, the in-
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volved images were transformed from RGB colour space to YCbCr. Any processing in the
terms of EB-SR was performed only on the luminance channel, while the channels Cb,
Cr were interpolated. The channels were then merged together into one single image,
which was converted back to RGB colour space.

Next, the training set was gathered differently, which on its own introduced additional
considerations. In the original works, the low quality training subset was obtained by
scaling down and degrading the high quality training subset, simulating the problem
under examination. This removed considerations such as image registration and size
relation between the corresponding high and low quality images. Since the low quality
training subset in the present terms is obtained from a different source and not the high
quality image, it varies in alignment and resolution. It has no apparent relation to its
high quality corresponding images, except for the scenes of the images.

By scaling down the low quality images as described in Section 4.1, a set of corre-
sponding ground-truth data with matching dimensions between low and high quality
data was obtained. However, this does not necessarily mean the alignment of the cor-
responding pairs. This is the reason why the pre-processing as described in Section 4.2
was necessary at this point. By completing image registration on the low quality train-
ing subset, both of the two training subsets included 59 corresponding patches, each of
which were aligned to their corresponding pair. The size of all training patches was set
at 540 × 540, for both the low and the high quality subsets. Once the training subsets
preparation was completed, the training was carried out as proposed by Yang et al. [11]
and described in Section 3.2.2.

The parameter setting was decided via experimentation and observation of the re-
sults. These parameters were common in both the training and the test phase of the
implementation, therefore the efficiency of the parameter setting was evaluated from
the final super-resolved image. The experimentation led to the definition of the overlap
window, the window for partial overlap for speeding the system, to [1 1], the number
of scale-ups to be performed to 1 and the window in the low resolution images to [3 3].
The scale-up factor s was set to s = 3. The parameters regarding the pre-processing in
the training phase were selected as in the base study, applying high-pass filtering on the
high quality images and local feature extraction from the low quality images. The filters
used were the same as defined in the original works, employing a gradient [1 0 −1] and
a laplacian [1 0 −2 0 1]/2 filter.

In the training phase, around 470,000 training patch-pairs were collected, with patches
of size n = 81. Principal component analysis was applied to reduce the feature dimen-
sions to nl = 26. The dictionary included 1,000 atoms of nl = 26. With the above
settings, the low-resolution dictionary learning takes approximately 28 minutes for 40
iterations of the K-SVD algorithm.

After the training, the core process of the SR was used as originally implemented
by Zeyde et al. [21]. Nevertheless, the testing phase was different, mainly because of
the nature of the test image set. As described in Section 4.1, the dimensions of the test
images were notably large. This large size of the files, uncommon when compared to
standard image sets, introduced memory handling issues in the implementation. Being
memory demanding, the images could not be processed as a whole in the EB-SR proce-
dure. Therefore, each test image was split into row extracts, with full width but a length
of 600 pixels. SR was applied individually in a sequential manner on these row extracts.
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Figure 17: Boundary effect as a result of SR application

The resulting super-resolved extracts were then merged back together following the orig-
inal image’s format to obtain the complete super-resolved image. This reveals the reason
behind the setting of another parameter, that of the border of the image to be ignored,
which was set to [0 0], to preserve the border information in the image.

Despite the above arrangements, there was one artefact of the original implementa-
tion that had to be dealt with. In the implementation of Zeyde et al. [21], the application
of the overlap-and-add method produces a boundary effect in the resulting image. Fig-
ure 17 demonstrates this artefact on a detail of an example result. In the previous study,
this is resolved by cropping the resulting images’ boundary. However, this solution is not
applicable to the problem at hand, as that information cannot be discarded but instead,
it is essential for the correct reconstruction of the complete super-resolved image. In-
stead, the problem was resolved using the overlapping between the row extracts of the
image, discarding the erroneous pixels of a specific row extract and replacing them with
erroneous-free pixels from the overlapping area of another row extract.

Reconstructing the original image as a whole after the EB-SR had been applied to the
images, lead to a set of super-resolved images of the test set images. These were of the
same dimensions as the original test images, as the EB-SR was applied targeting the de-
tails in the image and not a scale-up. Thus, before the application of EB-SR, these images
were scaled down by the inverse of the set scale-up factor s of the EB-SR, as to target
details enhancement. Therefore, the resulting super-resolved images had dimensions of
range [3898..10197, 3408..10917, 3].

4.4 Colour Correction

Application of colour correction required the loading of both the target and reference
images at the same time. Since the involved images were of large dimensions, loading
two images of over 3000× 3000 pixels was not possible in the environment of Matlab. To
go around this problem, the super-resolved images from the previous stage were scaled
down to dimensions of range [1000..1500, 1000..1500, 3]. As mentioned in Section 4.1, the
above range was also the selected one for the real-test image set.

Once all test images and reference images were scaled down, CC was carried out.
Six different approaches were applied onto the test set, covering a selection of colour

39



Computer-Aided Reclamation of Lost Art

correction techniques from both colour transfer and image blending. For the selection
of the approaches, the evaluation study of Xu and Mulligan [62] was employed as a
baseline for the top performing colour correction algorithms. The selected approaches
included standard baseline techniques [14] and latest techniques of colour correction.
Both model-based parametric approaches [69, 14, 65] and model-less non-parametric
approaches [73] were applied, involving both global [14, 65] and local [69, 73] ap-
proaches, as well as operations in different colour spaces (RGB, lαβ, CIECAM). The
selected approaches are listed in Table 6.

Index# Name of approach Colour Space
1 Gain Compensation [69] intensity
2 Global Colour Transfer [14] lαβ
3 Global Colour Transfer [14] RGB
4 Global Colour Transfer [14] CIECAM
5 Global Colour Transfer in correlated colour space [65] RGB
6 Cumulative Histogram Mapping [73] YCbCr

Table 6: Selected colour correction approaches [62]

The implementation for the CC approaches was adapted from the implementation
of Xu and Mulligan [62], as this was available on the author’s website. Every super-
resolved test image was colour corrected by all six methods and using all ground-truth
high quality images as references individually. Therefore, for each super-resolved image,
the application of CC resulted in 30 super-resolved colour corrected versions for each
test image. It should be noted here that CC was performed using the corresponding
high quality image of the test image as well, providing the highest barrier to the CC
performance.

Experimentation with collages of images as reference was also carried out, but the
results were not as good as when using a single image as reference and the approach
was thus discarded.

4.5 Evaluation

Completion of the CC step concluded the reclamation system, allowing for evaluation.
The selection of the evaluation criteria followed the guidelines of Wang et al. [16]. Ac-
cording to this study, image quality evaluation of colour altered images should not only
include colour coherence, but also structural coherence, as colour correction may also
affect the structure of an image. Thus, measuring the fidelity of the resulting images
against the ground truth images was of double importance, both for pure evaluation of
the SR application, as well as for CC.

Evaluation was carried out using three full-reference image quality metrics. Peak
signal-to-noise ratio (PSNR) and structural similarity index metric (SSIM) [16] were
used for computing the overall structural enhancement, while S-CIELAB metric [17] tar-
geted the reproduction accuracy of the colours in the resulting images. Higher scores for
PSNR and SSIM correspond to better image quality, while S-CIELAB denotes the colour
difference between two images. SSIM improves on PSNR, combining the components
of luminance, contrast and structure, correlating in this way better with human judge-
ment of image quality [43]. S-CIELAB metric measures the accuracy of reproduction of
a colour against its original when this is viewed by a human observer. Lower S-CIELAB
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values indicate lower difference between two images and thus higher colour coherence.
The five ground-truth test images were evaluated using the image quality metrics,

as a reference was available. However, for the real-test image set, for which the actual
paintings are lost, a reference image was naturally not available. These were therefore
evaluated subjectively.

An additional section of the evaluation session included an assessment of the perfor-
mance of the original super-resolution algorithm against the consideration of misalign-
ment, as this was described in Section 4.2. The effect of misalignment in training was
evaluated by simulating it in the training phase of the original implementation by Zeyde
et al. [21]. The image sets included the standard dataset of natural images as in the
original implementation. Since in the original implementation, the low quality training
subset is obtained directly from the high quality training subset, there is no misalignment
present between the subsets. For the purposes of misalignment simulation, the patches
of the low quality training subset were misaligned before the training phase. Two ex-
perimental settings were included in this simulation: (a) anti-clockwise rotation of 5◦

and (b) anti-clockwise rotation of 10◦. The low quality training subset would still consist
of patches directly obtained from the high quality training subset, but before proceed-
ing to training, the low quality training patches would be transformed according the
simulation’s settings. The rest of the procedure was performed as in the original imple-
mentation.
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5 Results and Discussion

5.1 Misalignment Simulation

The carried out experimentation towards evaluation of the effect of misalignment in the
training phase was performed on both a test image from the original standard set of the
original implementation by Zeyde et al. [21] and a ground-truth test image from the
present project.

Examination of the robustness of the original implementation against a simulated
misalignment showed that the algorithm is strongly affected by misalignment in training.
In Table 7, the performance of the algorithm seems to strongly decrease as the level of the
(rotational) misalignment increases. Figure 18 demonstrates examples of super-resolved
images as these were obtained from the original application of the algorithm and the two
simulated misalignment applications.

Image Original Rotation +5◦ Rotation +10◦

Baboon 23.5 20.8 20.4
Barbara 26.8 22.3 21.2
Bridge 25.0 19.8 19.0
Coastguard 27.1 23.0 22.1
Comic 24.0 18.1 17.3
Face 33.5 27.5 26.6
Flowers 28.4 20.8 19.8
Foreman 33.2 23.4 21.8
Lena 33.0 24.3 22.9
Man 27.9 21.7 20.6
Monarch 31.1 21.4 20.3
Pepper 34.0 24.1 22.4
ppt3 25.2 17.3 16.3
Zebra 28.5 18.2 17.2
Average 28.66 21.62 20.56

Table 7: PSNR Measurements for simulated misalignment in training of SR

Including misalignment in the EB-SR of a ground-truth test image from the problem
at hand demonstrated similar behaviour, with strong artifacts present in the resulting
image. For comparison, the same image was tested with alignment corrected by image
registration. Figure 19 demonstrates an extract from an example result of the applica-
tion of EB-SR when the training set involves misalignment (middle) and when image
registration is employed to resolve the misalignment issue (right). The left-most image
in Figure 19 displays the ground-truth high quality image. In order to focus on the ef-
fects on SR, only the luminance channel (which was super-resolved in implementation)
is presented.

5.2 Super-Resolution

The performance of SR was evaluated separately, before proceeding to the completion
of the system through CC. In other words, the resulting super-resolved images were

43



Computer-Aided Reclamation of Lost Art

Figure 18: A subset of the resulting SR-ed images, displaying starting from the left column: the
original test image, the original application of the algorithm on the image, application with training
misalignment by rotation of 5◦ and application with misalignment with rotation of 10◦.

evaluated before being sent to the CC procedure. This set of measurements focused on
structural coherence and thus PSNR and SSIM image quality metrics were computed for
each of the super-resolved results for the ground-truth test images. Table 8 displays the
evaluation scores of the super-resolved images in comparison to the scores obtained by
the original input, the low quality test images, in terms of both PSNR and SSIM, testing
against the original high quality ground-truth image.

Image
PSNR SSIM

Original Super-Resolved Original Super-Resolved
Leukippos 16.059 16.427 0.449 0.347
Liebesgarten 15.542 15.599 0.375 0.396
Madonna 15.462 16.133 0.342 0.393
Paris 13.475 13.616 0.424 0.447
Putti 13.953 14.100 0.326 0.346

Table 8: Super-Resolution evaluation for ground-truth test set

5.3 Colour Correction

Upon completion of the CC step, the final images of the implementation were gathered.
Thus, the evaluation of the output of the CC step did not only evaluate the CC as is, but
also the application as a whole.

As mentioned in Section 4.5, the application of CC was expected to affect not only the
colour coherence of the test images, but also their structural coherence [16]. Therefore,
measurements in terms of the structural metrics of PSNR and SSIM were repeated for
the colour correction results as well.
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Figure 19: Effect of misalignment in training of SR. The image is a detail from painting ‘Madonna’
by P.P. Rubens. The left-most image is the original high-quality image in greyscale, the middle im-
age is the resulting image from SR when there is rotational misalignment of 10◦ counter-clockwise
in the training low-quality set and the right-most image displays the resulting image from SR when
image registration is applied on the low-quality training set to correct the misalignment
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For each of the eight test images, both real-test and ground-truth, 30 colour corrected
super-resolved resulting images were gathered. Quantitative evaluation using the three
full-reference image quality metrics of PSNR, SIIM and S-CIELAB was executed only on
the ground-truth data for which an actual reference image existed. Qualitative and sub-
jective evaluation was carried out for the total of the resulting images, both to evaluate
the real-test images and to compare the resulting conclusions to the quantitative evalua-
tion’s results.

Due to space limitations, it was impossible to include here the whole of the results.
The reader is directed to Appendix C, which includes all the detailed quantitative mea-
surements. Table 9 presents the mean and standard deviation statistics of the results
from the CC procedure, categorised by CC algorithm. As previously described, these data
include only the ground-truth test set. The results have been categorised according to
the CC method applied, due to their common input, the super-resolved images. Each CC
method lead to a sum of 25 resulting images: five ground-truth test images, each colour
corrected using each of the five ground-truth high quality images as reference. To ease
the reader, Table 9 is sorted from higher overall performance to lower.

Method
PSNR SSIM S-CIELAB

µPSNR σPSNR µSSIM σSSIM µS−CIELAB σS−CIELAB
Alg. 4 [14] 14.974 1.147 0.347 0.045 22.816 3.774
Alg. 3 [14] 14.942 1.180 0.347 0.043 22.442 3.849
Alg. 6 [73] 14.814 1.191 0.333 0.054 22.937 3.714
Alg. 5 [65] 14.705 1.165 0.341 0.043 24.378 4.381
Alg. 2 [14] 13.800 1.696 0.319 0.056 29.984 4.623
Alg. 1 [69] 10.563 3.089 0.274 0.066 27.470 6.355

Table 9: PSNR, SSIM and S-CIELAB mean (µ) and standard deviation (σ) statistics per CC algo-
rithm

The statistics show a large variation among the test set, especially regarding the colour
reproduction. The results for each of the algorithm vary vastly, probably because of the
large variation between the reference images. The two algorithms that performed the
best (Alg. 3 and Alg. 4) [14] demonstrated similar scores both regarding structural and
colour coherence. Alg. 3 showed the best performance in colour coherence, but Alg. 4
performed slightly better in terms of structural coherence. However, apart from the two
best performing algorithms, an absolute ranking of the rest of the algorithms is not pos-
sible, as they vary in performance for structural and colour coherence.

The metrics of PSNR and SSIM correlate with each other, except for the case of Alg. 5
and Alg. 6, in which have an interchangeable performance. The ranking of colour co-
herence followed the same ranking as for the structural coherence in overall, except for
Alg. 1 - Alg. 2 and Alg. 3 - Alg. 4 which were switched in order.

One might observe that the average values for the obtained S-CIELAB scores in Table 9
are reportedly high. Therefore, the results were also studied in terms of enhancement
instead of solely a colour coherence evaluation. Table 10 demonstrates the change in
colour difference against the high quality ground-truth image for (a) the initial input
test set and (b) the super-resolved colour corrected output. These values coincide to the
best cases of the super-resolved colour corrected results for each of the ground-truth
test images, excluding the cases where the corresponding high quality image was used
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Figure 20: An example colour difference map, demonstrating ground-truth test image ‘The Judge-
ment of Paris’ at a difference threshold T = 10. The white parts of the image correspond to differ-
ence <T

for colour correction of a specific test image. The colour difference across the images
demonstrates a drop in colour difference of the range [1.549..6.901].

Test Image
S-CIELAB

Original image SR+CC result Improvement
Leukippos 22.330 18.291 4.039
Liebesgarten 18.708 15.438 3.270
Madonna 22.826 21.277 1.549
Paris 24.152 17.251 6.901
Putti 30.347 23.501 6.846

Table 10: S-CIELAB scores between (a) original low quality test images and (b) super-resolved
(best) colour corrected images against ground truth high quality images

The evaluation of the results from the application onto the ground-truth test set was
not limited to quantitative scores. In order to verify that the numerical results corre-
sponded to a stronger change in the significant parts of the test image (e.g. faces and
skin tones), difference maps were obtained for each of the resulting images. The dif-
ference threshold was set to 10 and 15 in two individual experiments. Figure 20 shows
an example difference map, for the best result regarding ground-truth test image ‘The
Judgement of Paris’.

The difference maps supported the quantitative measurements, with the quantita-
tively best cases demonstrating the least difference in the area of faces, difficult shading
textures and skin surfaces. This evaluation also revealed results that while quantitatively
they were considered of low performance, they produced very low difference specifically
on areas of skin tones. Such an observation contributed to further consideration towards
better utilisation of difference maps.

A full-reference evaluation was inapplicable for the results from the set of real-test
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Figure 21: Detail of the image from the P.P. Rubens’ lost painting ‘Satyrs and Bacchants’, as origi-
nally in low quality (left) and after SR+CC (right)

images, as a reference for these was unavailable. Instead, they were qualitatively, subjec-
tively evaluated via observation. Figure 21 displays an example result from the process
applied on the image of the lost painting by P.P. Rubens, titled ‘Satyrs and Bacchants’.

The evaluation of these images was performed subjectively. Due to space limitations,
the images cannot be included in this document, but the total of the image sets is pro-
vided at the author’s website: http://www.stud.hig.no/~101530/. The low quality im-
ages, the high quality images, the super-resolved results and the colour-corrected images
are all included for supportive observation of the results on both the real-test images as
well as the ground-truth test images.
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6 Conclusions and Further Work

6.1 Contributions

Through this study, the endeavour towards reclamation of lost art has been successfully
completed. Most importantly, the present work proves that such an attempt is possible
with numerous possibilities in this direction. Initialising a novel branch of colour imaging
applications in fine art, the results of this work and their evaluation are strong motivation
for further studies. Not only regarding the possibilities in reclamation of lost art, but also
into utilisation of the outcomes of the work for the domains of super-resolution, inverse
halftoning and colour correction.

By applying this unique image dataset to state-of-the-art techniques of different do-
mains, it extends their applicability and performance evaluation to a brand new, highly
demanding dataset. It brings on board the necessity of image registration in the case
the training sets are misaligned, as well as the application of super-resolution to a real-
world problem. It confirms the efficiency of the colour correction technique by Reinhard
et al. [14], despite its simplicity. It demonstrates however, that in the given context, the
colour space of lαβ does not provide the best results as in the case of different datasets,
but instead, it is less efficient than the colour spaces of RGB and CIECAM.

The method moreover questions the ranking of colour correction well-known ap-
proaches and certifies the efficiency of dictionary-based super-resolution. It furthermore
verifies the applicability and efficiency of super-resolution based approaches towards in-
verse halftoning, extending the work of Minami et al. [36].

6.2 Conclusions

Firstly, the study extends current knowledge of super-resolution efficiency, by examining
the robustness of EB-SR technique against misalignments in the training set. As discussed
in Section 5.1, the degree of misalignment in the training set causes severe artifacts
in the resulting image. As the level of misalignment increases, the performance of the
algorithm decreases drastically. This effect is evident both visually as one can observe
from the resulting images (see Figure 19) and also quantitatively (see Table 7). With this
issue brought up, further research works onto real-world problems in which the training
subsets of low and high quality are from different sources can attend this matter. Proving
that image registration is more than sufficient to resolve this artefact, also gives a solution
to the raised matter. Thus, the contribution to the domain of super-resolution technique
not only covers evaluation of its robustness against misalignment, but also proposes and
verifies a solution via image registration.

Secondly, a more demanding dataset is employed, extending the applicability of EB-
SR by demonstrating the efficiency of the technique on a new type of images. This study
involved the first application of EB-SR on images of fine art and verified the successful
completion of the technique onto these exclusive images.

Furthermore, the experimental application of EB-SR directly on halftone images sup-
ported and extended the attempt by Minami et al. [36] towards an IH method via SR.
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The halftoning pattern was absent from the resulting super-resolved images, successfully
producing continuous-tone images with IH being embedded in SR instead of being a
separate pre-processing step.

A set of colour correction techniques was additionally utilised towards a solution to
the problem at hand, evaluating methods from both colour transfer and image blending.
The colour corrected images demonstrated a significant enhancement regarding colour
coherence in the originally distorted low quality images. The scores of S-CIELAB, eval-
uating the fidelity of the results in colour, showed a vast decrease in colour difference,
which was supported by visually pleasing results.

The state-of-the-art techniques that were selected for the completion of this task were
evaluated and then ranked according to their performance. It was concluded that while
the top performing algorithms, Reinhard et al. in RGB and CIECAM colour space, were
evidently the most efficient ones, an absolute and definite general ranking of the tech-
niques in terms of both structural and colour coherence was not possible to be stated.

Observation of the results and experimentation in the implementation lead to the be-
lief that the training set plays a critical role regarding the performance of the technique.
This was naturally expected, due to the example-based approach of the implementation.
It became even more evident in the application of CC, where the effect of the selected
reference was strongly affecting the resulting image. Therefore, the study identified the
high importance of correct ‘examples’ and their significant effect on the final output.

The above point is closely related to a consideration that arose from the beginning
of the project, that of ‘similarity’ between the context of two images. Since a reference
image is not available for real-test images, a good reference would have to represent a
different scene and naturally, a different painting. Initially, this similarity was targeted
via the selection of the same theme (mythology) and the same artist (P.P. Rubens). How-
ever, these two factors are not enough to absolutely secure the similarity of two images
of paintings. The best result for a real-test image could be obtained only if the reference
image and the training image were similar enough. The question of how to judge this
similarity is not easy to answer. It is not possible to quantify, but is more subjective and
only art experts would be able to identify a perfect match to a given test image. Appli-
cation of the implementation onto ground-truth data though, revealed similarities in the
images of ‘Leukippos’-‘Madonna’, ‘Paris’-‘Liebesgarten’ and others. Use of specific images
as reference performed better for some test images, revealing an underlying relation. Use
of this relation to support the selection of the perfect reference image is a strong extend
to the present work.

6.3 Future Work

The current work is a first step in an entirely new area of computer-assisted heritage
preservation, and suggests extensive possibilities for further study.

As a first step, future work would attempt a more extensive evaluation of image qual-
ity, through a combination of both structure and colour coherence metrics [62]. It would
also explore the notion of similarity between two artworks, in order to automate and op-
timise the selection of a reference image for a specific test image. Additional approaches
could be applied and tested towards both SR and CC, based on the revelation of the
efficiency of state-of-the-art algorithms in the present concept.

Identification of the importance of training motivates an approach of a more complete
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training, employing a cross-validation training to better generalise the solution. Such
an extension of the training phase would cover a much bigger image set, with better
applicability.

Upon gathering of the results from EB-SR, it was observed that the colours were al-
tered, changed towards the colours included in the training set. This suggests a possibility
of applying colour correction via super-resolution completely. Further work towards this
direction could involve the examination of efficiency of colour correction via SR.

As mentioned in Section 5.3, difference maps were estimated to display the areas
at which colour difference was handled in a better fashion. While the best performing
algorithms covered most of the images’ area, there were some less efficient ones which
performed exceptionally well on the areas of faces or skin tones. Utilisation of this knowl-
edge could lead to a combined approach of colour correction, which deals with the input
image locally and adapts accordingly.

Another important limitation in the project was the minimal evaluation of the results
for the real-test images. Qualitative evaluation was not possible and there is not a non
full-reference image quality metric that is perfectly applicable in the context of this prob-
lem. A more complete evaluation of the outcome could be performed via psychophysical
experiments involving a large group of observers, both experts and non-experts.

A concluding step of this work would be the high quality printing of the resulting
images and their extensive evaluation via psychophysical experiments. Such experimen-
tation would support the resulting quality of the artworks and define whether their qual-
ity is high enough for such a print to be displayed alongside surviving, ‘real’ paintings.
Demonstrating that it is possible to do so would be the ultimate milestone for this work.
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A Scientific Papers

The present chapter includes two scientific papers which resulted from the research
carried out in the project. The first paper ‘Computer-Aided Reclamation of Lost Art’
was submitted to ECCV Visart Workshop in 2012, (http://printart.isr.ist.utl.pt/
visart/). It includes a description of the system as a whole, focusing on the contribu-
tion to cultural heritage. It is therefore the official paper submission for the purposes of
CIMET evaluation.

The second paper that is included here was submitted to CVMP 2012 (http://www.
cvmp-conference.org/), as ‘Learning Super-Resolution from misaligned examples’. This
paper concentrates specifically on extended evaluation of SR approaches when misalign-
ment is present between the low and high quality training sets.
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Abstract. There are numerous approaches towards restoration of art,
including computer applications as aid to manual performance. How-
ever, to our knowledge, it has not been attempted to recuperate high
quality images of missing or presumably destroyed works of art. While,
by definition, these works will never again be available in their original
form, it may be feasible to considerably enhance the quality of preserved
photographic reproductions. In this paper a pioneering approach to re-
claim high quality images of lost works of art is presented, employing
a combination of super-resolution and colour correction. The techniques
are performed by example, utilising correspondence between artworks of
similar nature, which are currently available both in low and high qual-
ity. With extensive prior knowledge in the domains of super-resolution
and colour correction, specific applicable approaches were studied, imple-
mented and tested, concluding to the most efficient. Experimental results
are highly promising and encouraging, revealing a new research path in
colour imaging for fine art.

1 Introduction and Motivation

There has not been a previous attempt as the present endeavour towards recla-
mation of lost art. We propose a novel strategy for making the images of selected
pieces of our lost artistic heritage accessible to the public, an endeavour we term
‘lost art reclamation’. To have the ability to regain paintings considered to have
been lost forever was an unrivalled motivation for this study.

With no background studies to support this effort, the possibilities and ex-
pectations of the work were unpredictable. The efficiency of a chosen technique
was uncertain, not only due to the question at hand, but also because of the na-
ture of the involved images. Being a fine art application, the images of paintings
that were included demonstrated major characteristic differences with standard
datasets of natural images, against which most image processing approaches were
tested. Thus, the reported performance of state-of-the-art techniques was under
examination, in parallel to the search for a solution.

The most important records of these lost works are colour photos published in
period art books, especially between the two World Wars. At publication, these
were at the cutting age of printing technology, but as compared to contemporary
images, these samples are of low quality, with obvious halftoning patterns, er-
roneous colours, and low resolution. As the only records of significant artworks,
these samples are of inadequate quality regarding their importance. They are
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however the only available starting point to work towards a high quality image
of a lost artwork, aiming to obtain good enough quality for the reclaimed artwork
to be exhibited alongside surviving works.

With halftoned, erroneously coloured prints of low resolution as a starting
point, the study targeted a combined solution which resolves these matters.
Super-resolution (SR) was concluded as the most appropriate technique towards
resolution enhancement. More specifically, example-based super-resolution (EB-
SR) [1, 2] was the selected approach, incorporating art images available in both
low and high quality.

Super-resolution involves three different categories: interpolation approaches,
reconstruction-based approaches and learning (example-based) approaches. In
the concept of the stated problem however, only a learning approach is appli-
cable. Interpolation and reconstruction-based families of techniques require as
input a series of low resolution images of the same scene. This is impossible
in the examined case, as the scene of a painting’s image cannot change. No-
tions as obtaining several low resolution images of the same scene from different
perspectives, or under different viewing conditions are unsuitable in this case.

A learning based method involves the training of two corresponding dictio-
naries, one of low quality Al and one of high quality Ah [3, 4]. The included
patches correspond to the exact same scene in an image. Given a low resolution
image, the learning is employed to correctly replace patches of the test image
with the most appropriate ones from the dictionary. Identifying a training patch
in the dictionary Al as the closest match to the given test patch, its correspond-
ing high quality patch from dictionary Ah will be returned as the SR result
for that specific patch. Repeating this method for all patches in the test image
results in a complete, super-resolved high quality image.

Naturally, the low quality training dictionary includes halftones, erroneously
coloured low resolution patches which correspond to continuous-tone high qual-
ity patches in the high quality dictionary, mimicking the problem at hand. The
application of EB-SR on the low quality test image, enhances the resolution
and also, due to the example-based approach, resolves the matters of halfton-
ing and incorrect colours automatically. The process of inverse halftoning [5] is
thus merged with the SR approach [6]. Upon completion of SR, the resulting
images are of continuous-tone, high resolution images with attempted corrected
colours. Nevertheless, to ensure the colour correctness of the test image, further
processing is necessary. A crucial reason to that is the patch-oriented applica-
tion of EB-SR, which leads into inconsistencies of colour in the general image.
Colour correction is necessarily applied next to ensure the global correction of
the image.

Colour correction (CC) [7] has been developed in various studies, either as
colour transfer [8, 9], which relates to the artistic transformation of an image to-
wards the appearance of another, or image blending [10, 11], which is a common
notion amongst image stitching techniques. The extensive set of implemented ap-
proaches and their large variety of applications account for the lack of extensive
evaluation regarding the performance of CC approaches.
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Combining the above techniques, the present work attempted to resolve the
problems identified in the low quality images: the halftoning in the images, their
low resolution and erroneous colours. The joint solution followed an example-
based approach, utilising ground-truth data in low and high quality and applying
this learning to given input.

2 Methodology

The proposed method for a complete system of lost art reclamation involves two
major steps: example-based super-resolution and colour correction. Before the
processing however, the training and test sets are gathered. The training set
involves two corresponding subsets: one of low quality images which resembles
the problem at hand and a ‘correct’ reference high quality image set.

The test image is transformed to colour space Y CbCr and EB-SR is applied
on the luminance channel Y, while channels CbCr are interpolated. The resulting
super-resolved images are transferred to the CC subsystem.

2.1 Super-Resolution

Due to the large amount of possible solutions to a high quality image that
corresponds to a given test low quality image, regularisation is necessary in SR.
The proposed regularisation involves the use of a local sparse-land model on
image patches as performed by Zeyde et al. [4]. The main concept is that each
patch of the test images can be well represented using a linear combination
of few atoms from a dictionary. In other words, it can be represented by the
multiplication of the dictionary by a sparse vector of coefficients. The algorithm
approaches the problem as the minimisation of

‖SHŷ − zl‖ , (1)

where zl is the low quality image, ŷ is the reconstructed high quality image, S
is the blurring factor and H is the decimation operator.

Firstly, image zl is scaled up, using bicubic interpolation Q, to bring it to
the dimensions of the high quality image yh. This results in yl = Qzl, from
which patches are extracted, estimating the corresponding patch of yh. A set of
k locations of true pixels (which have not been obtained by interpolation) define
the position of patches in the image yl to be extracted by operator Rk. The same
operation is carried out onto yh, resulting to setΩ of patches pkh. According to the
sparse-land model [12, 13], patches pkh can be represented sparsely by qk vectors of
dictionary Ah, as pkh = Ahq

k. Obtaining the same sparse representation against
yl, the set pkh corresponds to set pkl = Rkyl. Operator Lall = QSH transforms the
complete high resolution image yh to the low resolution one yl. It can therefore
be assumed that pkl = Lpkh + ṽk, where L is a local operator being a portion of
Lall and ṽk is the additive noise in this patch. As pkh = Ahq

k,

Lpkh = LAhq
k. (2)
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Utilising the relation between the low and high resolution patches pkl = Lpkh+ ṽk,
it can be stated that

LAhq
k = Lpkh = pkl − ṽk, (3)

implying that
∥∥pkl − LAhq

k
∥∥
2
≤ ε, (4)

where ε is related to the noise power σ of v. Thus, patch pkl can be represented
by qk over the dictionary Al = LAh, and patch pkh can be recovered from qk

multiplied by Ah.
In the training phase, sets {yjh} and {yjl } are constructed from the high and

low quality images respectively. Before proceeding to the processing of these sets,
it has to be noted, that the training set consists of extracted parts of the training
images. The training low and high quality images are firstly resized to match in
physical resolution. Image registration is applied onto the low quality training
images so that they match their corresponding high quality images, in order to
avoid artifacts due to misalignment in training. Image registration is applied in
a supervised fashion to ensure that the most efficient transformation is applied.

Once sets {yjh} and {yjl } are gathered, patches are extracted from them,
leading to P = {pkh, pkl }. Pre-processing is performed on pkh to remove low fre-
quencies and feature extraction is performed on pkl as to extract local features
that correspond to their high-frequency content. Two filters are involved in this
feature extraction, a gradient and a Laplacian filter. Next, principal component
analysis is performed onto the pkl features to reduce the feature vector, resulting
to {p̃kl }. Dictionary Al is then trained so that pkl can be represented sparsely.
Finally, dictionary Al is trained so that it matches Al.

Given a test image zl, this is interpolated to yl and sharpened by spatial non-
linear filtering. Then, for every location k ∈ Ω, patches pkl are sparse-coded using
Al resulting to {qk}. These qk are then used to recover pkh, by multiplying with
Ah. Merging {pkh} to obtain ŷh, the overlapping areas are averaged to get the
final resulting image. This last step is performed as the following minimisation
with respect to ŷh :

argmin
yh

∑

k

∥∥Rk(ŷh − yl)− p̂kh
∥∥2
2
. (5)

As the involved painting images are highly memory demanding, they cannot
be processed as a whole. Therefore, the image to be tested is firstly split into
row extracts of full width but length of 600 pixels. EB-SR is performed on these
extracts individually and the resulting super-resolved extracts are merged to
obtain the complete image.

An additional consideration is the boundary effect when the patches are
overlapped and added. In the proposed method, cropping the boundary to ignore
the effect is not possible [4], as the boundary of an extract is necessary for the
final composition of the image as a whole. Instead, the overlap between the
extracts is arranged so that this effect is dealt with.
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2.2 Colour Correction

Upon gathering of the super-resolved results, CC process is carried out. The
ground-truth high quality images are used one by one as reference for each test
image. Depending on the similarity of the test image with the reference image,
the performance of CC varies for each application.

Upon completion of the image processing procedures, evaluation of the results
follows, using image quality metrics which correspond to both the structure and
the colours of the resulting images.

3 Evaluation Setup

3.1 Selection of approaches

In our experimental setup, EB-SR followed the implementation of Zeyde et al. [4],
who optimised the algorithm by Yang et al. [3] using toolboxes K-SVD [14] and
OMP [15]. The implementation of Zeyde et al. enhanced the algorithm both in
terms of computational complexity and algorithm architecture. The final results
were obtained from this optimised implementation due to the long execution
time and demanding memory handling of the original by Yang et al.

Regarding the application of CC, the selected algorithms covered a variety of
approaches, incorporating six methods from both colour transfer and image bal-
ancing. These included standard baseline approaches [9] and latest techniques of
colour correction. Both model-based parametric approaches [10, 9, 8] and model-
less non-parametric approaches [11] were applied, involving both global [9, 8] and
local [10, 11] approaches, as well as operations in different colour spaces (RGB,
lαβ, CIECAM).

The first applied approach was an exposure/gain compensation technique by
Brown and Lowe [10] (Alg. 1). In this colour balancing approach the intensity
gain level of the component images was adjusted to compensate for appearance
differences caused by different exposure levels. The second approach was the
standard colour correction method by Reinard et al. [9], which deals with global
colour transfer (Alg. 2). Despite the simplicity of this approach, its reported
efficiency is significant, making it a baseline work which was extended in later
works [8]. Its structure is centred around a linear transformation based on the
mean and standard deviation of the global colour distributions of the source and
target images in the uncorrelated lαβ colour space. Developed by Ruderman et
al. [16], lαβ colour space minimises correlation between channels. The colour
value of a target pixel was defined as:

g(Gt) = µs +
σs
σt

(Ct − µt). (6)

This approach was also applied in the colour spaces RGB (Alg. 3) and CIECAM
(Alg. 4). Based on the work by Reinhard et al. [9], Xiao et al. [8] (Alg. 5) extended
to a correlated RGB global colour approach which makes use of an ellipsoid
mapping scheme. Lastly, the cumulative colour histogram mapping approach by
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Fecker et al. [11] (Alg. 6) was applied. This involved a closest neighbour mapping
scheme to select the corresponding colour level of the source image to each level
of the target image.

3.2 Training and Test Image Sets

Five ground-truth data, both in low and high quality were obtained by scanning
pre-WWII artbooks [17] and from Bridgeman Art Library Limited respectively.
The artworks involved were all by Peter Paul Rubens, titled ‘Madonna’, ‘The
rape of the daughters of Leukippos’, ‘Liebesgarten’, ‘The Judgement of Paris’
and ‘Putti’. These ground-truth data were divided in a training and a test set.
Four of the images formed the test set in order to quantitatively evaluate the
performance of the processes, while the fifth image was used for training.

Additionally, a real-test image set was defined from images of paintings by
P.P. Rubens which are nowadays lost, namely the ‘Resurrection of Lazarus’,
‘Diana At Her Bath, Surprised by Satyrs’ and ‘Satyrs and Bacchants’.

The total of the scans except for image ‘Satyrs and Bacchants’ was gathered
using the same artbook [17] to minimise effects from different printing technolo-
gies on the input data. The scans were performed using a Microtek ScanMaker
9800XL at a resolution of 1600dpi with no automatic adjustments, as to preserve
the originality of the image, especially the halftoning pattern. The ground-truth
data were scaled, using bicubic interpolation, to match their corresponding high
quality pairs’ dimensions in a range of [3898..10197, 3408..10917, 3], while the
images of the lost paintings were scaled down to dimensions in the range of
[1000..1500, 1000..1500, 3].

3.3 Evaluation Criteria

As stated by Wang et al. [18], image quality evaluation of colour altered im-
ages should not only include colour coherence, but also structural coherence, as
colour correction may also affect the structure of an image. Thus, measuring the
fidelity of the resulting images against the ground truth images was of double
importance, both for pure evaluation of the SR application, as well as for CC.

Three full-reference image quality metrics were used in the evaluation of
the ground-truth test set. The metrics of peak signal-to-noise ratio (PSNR)
and structural similarity index (SSIM) [18] were used to evaluate the overall
structural enhancement evaluation, while the metric S-CIELAB [19] targeted the
reproduction accuracy of the colours in the resulting images. Higher scores for
PSNR and SSIM correspond to better image quality, while S-CIELAB denotes
the colour difference between two images. SSIM improves on PSNR, combining
the components of luminance, contrast and structure, correlating in this way
better with human judgement of image quality [20]. S-CIELAB metric measures
the accuracy of reproduction of a colour against its original when this is viewed
by a human observer. Lower S-CIELAB values indicate lower difference between
two images and thus higher colour coherence.
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3.4 Implementation details and parameter settings

The code for SR was adapted from the original implementation of Zeyde et
al. [4], as this is available on the author’s website. The CC approaches were also
used directly from the implementation by Xu and Mulligan [7]. The system was
implemented as a complete process, merging the steps of EB-SR and CC along
with the evaluation.

The approaches and the evaluation criteria in the implementation use the
same parameters as stated in the original papers. The only exception regards
the dimensions of the involved images, which are larger than the standard input.

4 Results and Discussion

The ground-truth test and real-test sets were inserted in the application, result-
ing with 30 super-resolved, colour corrected images per input test image. The
single output of SR was colour corrected by six different approaches, using all
five ground-truth high quality images as reference. It can be noted here that CC
was performed using the corresponding high quality image of the test image as
well, providing the highest barrier to the CC performance. Table 1 presents the
resulting performance measurements for the ground-truth test data. The results
have been categorised according to the CC method applied, due to their com-
mon input, the super-resolved images. Each CC method included evaluation of
25 resulting images of five ground-truth data, each colour corrected using each
of the five ground-truth high quality images as reference.

Table 1. PSNR, SSIM and S-CIELAB mean (µ) and standard deviation (σ) statistics
per CC algorithm

Method µPSNR σPSNR µSSIM σSSIM µS−CIELAB σS−CIELAB

Alg. 1 [10] 10.563 3.089 0.274 0.066 27.470 6.355
Alg. 2 [9] 13.800 1.696 0.3194 0.056 29.984 4.623
Alg. 3 [9] 14.942 1.180 0.347 0.043 22.442 3.849
Alg. 4 [9] 14.974 1.147 0.347 0.045 22.816 3.774
Alg. 5 [8] 14.705 1.165 0.341 0.043 24.378 4.381
Alg. 6 [11] 14.814 1.191 0.333 0.054 22.937 3.714

First of all, a large variation among the test set is observed, especially con-
cerning the colour reproduction of the images. Such variation is natural, as the
results is strongly dependent on the reference image. Moreover, the overall top
performing algorithms (Alg. 3 and Alg. 4) have very similar scores, with Alg. 3
having obtained the best performance in colour coherence, but with Alg. 4 proved
the best in structural coherence. One can observe that in PSNR terms, the lowest
performance was given by Alg. 1, but the same algorithm performed better in
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S-CIELAB terms. Therefore, while the top performing algorithms are evident, a
definite general ranking amongst the rest of the algorithms cannot be stated.

Moreover, the obtained S-CIELAB scores are reportedly high. However, when
compared to the initial difference between the original low quality test image
and the high quality image as demonstrated in Table 2, the enhancement on
colour reproduction is significant. There is a colour difference drop of a range
of [1.549..6.901]. The S-CIELAB values for the super-resolved colour corrected
images correspond to the best performing case in terms of S-CIELAB, when the
reference image is of a different scene than the test image.

Table 2. S-CIELAB scores between (a) original low quality test images and (b) super-
resolved (best) colour corrected images against ground truth high quality images

Test Image Original S-CIELAB SR+CC S-CIELAB

Leukippos 22.330 18.291
Liebesgarten 18.708 15.438
Madonna 22.826 21.277
Paris 24.152 17.251
Putti 30.347 23.501

The real test images could not be evaluated using the full-reference metrics
as a reference does not exist. Instead, they were subjectively evaluated. Figure 1
displays an example result from the process applied on the image of the lost
painting by P.P. Rubens, titled ‘Satyrs and Bacchants’.

5 Conclusions and Further Work

The present work is the first study that attempts a reclamation of lost art. Not
only it proves that such an endeavour can indeed be successful, but it also reveals
the possibilities of further exploration of the domain. The results of the work,
along with their evaluation, suggest the feasibility of an entirely novel branch of
colour imaging applications in fine art, as well as observations and considerations
for the domains of super-resolution, inverse halftoning and colour correction.

Applying this unique image dataset to state-of-the-art techniques, it extends
their applicability and performance evaluation to a brand new, more demanding
dataset. It brings on board the necessity of image registration in the case the
training sets are misaligned, as well as the application of super-resolution to a
real-world problem. It proves that in this case the colour correction technique by
Reinhard et al. [9], is the most effective, despite its simplicity. It questions the
ranking of colour correction well-known approaches and verifies the efficiency of
dictionary-based super-resolution. It furthermore certifies a solution of inverse
halftoning via super-resolution, extending the work of Minami et al. [6].
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Fig. 1. Detail of the image from the P.P. Rubens’ lost painting ‘Satyrs and Bacchants’,
as originally in low quality (left) and after SR+CC (right)

The current work is a first step in an entirely new area of computer-assisted
heritage preservation, and suggests extensive possibilities for further study. Firstly,
future studies could attempt a better evaluation of image quality, through a
combination of both structure and colour coherence metrics [7]. It could fur-
ther explore the notion of similarity between two artworks, in order to automate
and optimise the selection of a reference image for a specific test image. Fur-
ther approaches could be applied and tested both towards SR and CC, based
on the revelation of the efficiency of state-of-the-art algorithms in the problem’s
concept.

A concluding step of this work would be the printing of the resulting images
and their extensive evaluation via psychophysical experiments. Such experimen-
tation would support the resulting quality of the artworks and define whether
their quality is high enough for such a print to be displayed alongside surviving,
‘real’ paintings. Demonstrating it is possible to do so would be the ultimate
milestone for our work.
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ABSTRACT
This paper examines the applicability and performance of Example-
Based Super-Resolution (EB-SR) techniques to problems in which
the low-quality training set is not constructed from the high-quality
training set, but instead, it is obtained from a different source. This
is the case when EB-SR is applied on images that, by their specific
nature, cannot be perfectly simulated by processing high-quality
images towards the gathering of the low-quality training images.
Applying EB-SR to printed images can represent such a problem.
The low-quality training images will in that case be gathered from
scanning actual halftones, leading to a somewhat incoherent rela-
tion between the low- and high-quality training sets, despite their
image scene correspondence. Assembling the corresponding train-
ing sets from different sources, gives rise to one major considera-
tion, that of misalignment. The present work examines the effect
of misalignment in the corresponding low- and high-quality pairs
of the training set in an EB-SR approach.

Two sets of experiments were carried out. In the first phase of
experimentation, EB-SR was performed including simulated mis-
alignment on standard datasets on which a selected EB-SR method
has previously reported high performance. Then, experiments were
extended to a real-world problem in which the high-quality im-
ages are digitally available, but low-quality images are available
as scanned prints. The conceptual framework for this particular
choice is that of Reclamation of Lost Art (RLA). In the second
experiment, image registration is enforced on the RLA to identify
at what degree it reduces the effects of misalignment.

Being a pioneering research step, the present work explores a new
dimension in the robustness of EB-SR approaches. It examines this
in terms of a simulated problem and a real-world problem. Image
registration is also employed in the real-world problem to examine
whether it can eliminate the effects caused by misalignment.

Keywords
Super-Resolution, Fine Art, Image Registration, Misalignment

1. INTRODUCTION
The investigations reported in this paper were initially suggested as
part of the feasibility assessment of an original idea, that of virtual
recovery of lost paintings [2]. It was considered that surviving low-
resolution colour prints of paintings subsequently lost in conflagra-
tions such as World War II could theoretically be much enhanced,
in an objective, fact-based manner, to yield better-quality images.
Such images would make available, for the first time in decades,
at least a fair approximation of the original aspect of physically
destroyed core pieces of our cultural heritage. Additionally, the
paradigm could be extended to other types of low-quality, cultur-
ally or historically important images.

While this concept, termed as reclamation of lost art, theoretically
encompasses large number of (presumedly) destroyed artworks, for
the purposes of the project, three paintings by Peter Paul Rubens
were selected, titled ‘The Resurrection of Lazarus’, ‘Satyrs and
Bacchants’, and ‘Diana At Her Bath, Surprised by Satyrs’. These
three paintings, from the inventory of the Kaiser-Friedrich Art Mu-
seum in Berlin, are thought to have been lost during the last days
of World-War II. All that is available regarding their original aspect
are images from art books published in the 1930s [3]. Naturally,
the quality of these images (at the time of publication, at the cut-
ting edge of printing technology) appears, to the contemporary eye,
poor indeed, with low resolution and distorted colours. The physi-
cal resolution at which these are available is also very small.

It soon became obvious that one very important (though not the
only) task when tackling the problem at hand is that of super-resolution
(SR). Conversely, it appeared that Image Reclamation could be an
especially interesting context for discussion of the concept of SR.
For completeness and perspective, the team endeavoured to discuss
SR both on a simulated and a real-world concept. It is desirable
to make the point of the dual relationship between an exciting new
idea and a well-established theoretical concept.

The rest of the paper covers an overview of SR approaches in Sec-
tion 2 including a discussion regarding the approach selection most
suitable for the purposes of the present project. Next, the imple-
mentation of the simulation and the real-world problems is covered
in Section 3. Section 4 then presents the results from the implemen-
tation, while Section 5 completes the paper with final observations
and conclusions.

2. METHODOLOGY
The notion of enhancing the resolution of an image is closely re-
lated to numerous applications. Satellite imaging, medical imaging



and surveillance videos analysis have made it necessary to be able
to increase the resolution, without producing any visual artifacts.
Mechanical approaches cover the adjustment of the image acquisi-
tion technologies by reducing the size of the pixels on the sensor or
increasing the size of the chip. These techniques however, produce
undesirable artifacts or in the case of the chip’s size increase, im-
plicate very high cost. Therefore, instead of a physical solution, an
image processing one was preferable, leading to the rapid develop-
ment of the super-resolution methods over the last three decades.

The term of Super-Resolution is often used to describe the fu-
sion of several low-resolution images of the same scene to obtain
a high-resolution image [6] instead of the more general concept of
the increase of resolution in an image. Overall, the SR methods can
be divided into two categories according to their general approach,
either as frequency domain based, or as spatial domain based.
Frequency domain techniques are not used in practical applications
though, due to their inefficiency in embodying prior knowledge.
There are three different subcategories of SR in the spatial domain,
based on their baseline as this falls in the concept of interpolation,
reconstruction or learning.

2.1 Selecting the SR method
The criterion behind the selection of the SR approach to be ap-
plied in this work, was its applicability to the real-world problem of
reclamation of lost art, as this was mentioned previously. Dealing
with images of paintings brings on board its own several difficul-
ties and limitations into play. The nature of the scenes is completely
different than that of a standard dataset’s, raising the doubt of ap-
plicability of known methods simply because of the structure of the
images themselves. Additionally, the availability of several images
of the same scene, which are often employed in methods such as SR
is not present in this context. A painting’s scene describes one and
only one scene and does not provide the possibility of manipula-
tions the same way natural images, for example, do. Concepts such
as the use of images from different view points or different capture
times are absent when dealing with archival images of paintings.

Therefore, in the processing of a fine art image, there is only one
specific scene that incorporates all available information. This is
a major constraint especially in terms of SR, as the methods of
SR of both interpolation and reconstruction require as input a se-
ries of low resolution images. This fact solely makes these two
SR methods inapplicable to the problem at hand. Luckily, the last
possible method of SR, that of learning (or example-based) SR is
indeed applicable. With the original painting being lost, the ‘gold
standard images’ in an EB-SR approach were high-quality contem-
porary images of stylistically similar, but still-existent, paintings by
the same artist. An EB-SR approach is the most appropriate solu-
tion to this problem, as it can utilise the correspondence between
low- and high-resolution images of paintings that still exist. Learn-
ing from a database of low- and high-resolution images (or from
a single image), EB-SR can be applied to reclaim a high-quality
image of a painting even if there is only a low-quality sample avail-
able.

There are numerous studies in the field of EB-SR, but it was im-
possible to examine each one against the identified implications of
the project. Completing a survey on the state-of-the-art in EB-SR
and through discussion with experts in the field, a single EB-SR
approach was chosen and applied. This approach was chosen not
only based on the evaluation purposes of the present work, but also
as the most promising one for a complete system for the RLA prob-

lem. The selected approach is that of Zeyde, Protter and Elad [8].
The specific study optimises the implementation of the algorithm
by Yang et. al. [7] through the use of toolboxes K-SVD [1] and
OMP [4]. The dictionary-based technique incorporated by this ap-
proach appeared as the most promising and practical one. Its short
execution times and high performance ensured it as the optimal
choice. Despite the fact that in preliminary results the original al-
gorithm by Yang et. al. performs visually better on art images, its
long execution times made it difficult to apply it on the images im-
plicated in the project, as these are very memory demanding due to
their high physical resolution.

3. IMPLEMENTING SUPER-RESOLUTION
The main consideration in the referred algorithm is the employ-
ment of Sparse Representation towards EB-SR. The positioned
hypothesis is that each patch from a given image can be well rep-
resented using a linear combination of few atoms from a dictio-
nary, i.e. the multiplication of the dictionary by a sparse vector
of coefficients [8]. Therefore, obtaining two dictionaries, one of
high-quality Ah and one of low-quality Al , with related sparse rep-
resentation, this information can be used to enhance the resolution
of a test low-quality image, using the corresponding information in
the dictionaries.

An overview of the implementation of the EB-SR approach as adapted
from the original implementation by Zeyde et. al. [8] follows in the
rest of this section. The description covers the adaptation of the al-
gorithm towards its application to the RLA problem as previously
defined. The misalignment simulation implementation follows the
same approach, with the only difference involving the assembly
of the training images. The low-quality training images were ob-
tained as in the original studies, by scaling down the high-quality
images. To then introduce misalignment in the simulation imple-
mentation, the low-quality training images were rotated by 5◦ and
10◦ in the counter-clockwise direction, while retaining the original
dimensions of the image.

3.1 Training Phase
In the original implementation of the algorithm, the learning phase,
i.e. obtaining the trained two dictionaries Ah and Al was done us-
ing the relation between the two dictionaries. The images used as
input to EB-SR in the original work were simulated low-quality im-
ages, obtained by scaling down by the inverse of the desired SR’s
level, s= 3. In the present case however, the low-quality images are
different from the high-quality images in many aspects, including
physical resolution. All low-quality images, both training and test
images, were scanned from art books at a resolution of 1600dpi,
without any processing, in order to preserve the original nature of
the images as much as possible. Once the training low-quality set
was obtained, its images were scaled down to match the dimen-
sions of the high-quality training images. Despite the fact that scal-
ing down low-quality images to match the high-quality ones might
seem unusual, it should be noted that the low-quality images were
obtained by scanning at a resolution of 1600dpi, while the high-
quality images were originally scanned at 300dpi, which explains
the above difference in the images’ physical resolution.

Having gathered the corresponding training images’ pairs of {y j
h}

and {y j
l }, 59 square patches of dimensions 540× 540, to which

we will referred to as extracts from now on, were selected. The
selection of these extracts was done manually, so that they cover a
large spectrum of the images’ information.



The training phase was applied as in the original implementation,
using the selected extracts as the final training set. Patches were
extracted from these images, leading to set P = {pk

h, pk
l }, where k

describes the defined locations of the patches to be extracted from
the training extracts by operator Rk. Pre-processing is applied to
the patches, with low frequencies being removed from pk

h and fea-
tures extracted from pk

l . The extracted features were local and cor-
respond to their high-frequency content. There were two filters
used in the feature extraction, a gradient filter G = [1 0 −1] and
a Laplacian filter L = [1 0 −2 0 1]/2. Once the patches’ sets had
been established, Principal Component Analysis (PCA), reducing
the patch size from n = 81 to a feature dimension of nl = 30 was
performed. The dictionary training procedure was applied in 40
iterations of the K-SVD algorithm, with m = 1,000 atoms in the
dictionary, and allocating L = 3 atoms for each representation vec-
tor. Dictionary Ah was trained as to match Al and it was defined so
that it minimises mean approximation error

Ah = argmin
Ah

∑
k

∥∥∥pk
h−Ahqk

∥∥∥
2

2
= argmin

Ah

‖Ph−AhQ‖2
F (1)

where qk is the sparse representations vectors of pk.

3.2 Reconstruction Phase
Due to the high physical resolution of the test images, it was im-
possible to process a complete image as a whole in the EB-SR re-
construction process. Therefore, the input test images were firstly
split in rows of full width and length of 600 pixels. These row
parts of the image were processed individually in EB-SR and upon
completion, they were merged back together to the original image.

Given a test image zl , this was firstly scaled down by the inverse of
the desired scale s = 3, so that the application of SR would target
the details of the image and not a simple scale-up. Before proceed-
ing to SR application, the image was converted to YCbCr colour
space, and EB-SR was applied on the luminance Y channel only.
The channels CB and Cr were interpolated and then added to the
super-resolved image. Regarding the EB-SR application onto Y
channel, the image was interpolated to yl to match the desired res-
olution and was then sharpen by spatial non-linear filtering. For
every defined location k, patches pk

l were sparsely coded using dic-
tionary Al and OMP was applied to obtain the sparse representa-
tion vectors {qk}k. Multiplying qk with Ah, the patches’ set pk

h
was recovered. Merge of patches {pk

h} provided the reconstructed
high-quality image ŷh.

In the approach by Zeyde et. al., the resulting boundary effect in the
image is simply ignored, by cropping the boundary and using the
rest of the image. In the present real-world problem this was not
applicable, as if the boundary was ignored at every reconstructed
image, which represents a row of the actual test image, this would
result in a strong line artefact in the final image. Therefore, an
overlapping area of 20 pixels was included in the rows consisting
the final image, which was later used to overwrite and remove the
boundary artefact in the image.

It is worth noting here another consideration present in the solu-
tion towards the real-world problem. Firstly, the input low-quality
images, both in terms of training and testing, were scanned images
of prints from the early 1930’s. Scanned at the high resolution of
1600dpi, their halftone pattern was evident and strong in the im-
ages. Encouraged by research performed by Minami [5], the nec-
essary Inverse Halftoning was left to be dealt with through the

Table 1: PSNR Measurements
Image Original Rotation +5 Rotation +10
Baboon 23.5 20.8 20.4
Barbara 26.8 22.3 21.2
Bridge 25.0 19.8 19.0
Coastguard 27.1 23.0 22.1
Comic 24.0 18.1 17.3
Face 33.5 27.5 26.6
Flowers 28.4 20.8 19.8
Foreman 33.2 23.4 21.8
Lena 33.0 24.3 22.9
Man 27.9 21.7 20.6
Monarch 31.1 21.4 20.3
Pepper 34.0 24.1 22.4
ppt3 25.2 17.3 16.3
Zebra 28.5 18.2 17.2
Average 28.66 21.62 20.56

EB-SR solution itself.

4. RESULTS
Examination of the robustness of the original implementation against
a simulated misalignment showed that the algorithm is strongly af-
fected by the misalignment. As one can observe in the PSNR mea-
surements in Table 1, the performance of the algorithm decreases
as the level of misalignment, in this case rotational misalignment,
increases. Figure 1 demonstrates examples of super-resolved im-
ages as these were obtained from the original application of the
algorithm and the two simulated misalignment applications.

Applying EB-SR to the real-world problem demonstrated a similar
behaviour, with strong artifacts present in the resulting images. To-
wards a solution to reduce the effect of misalignment in the train-
ing sets, Image Registration was applied. Unfortunately, PSNR
measurements cannot be applied to the results, since PSNR is a
full-reference metric. Nevertheless, as it can be observed in Fig-
ure 2, the algorithm’s performance increases if image registration
is applied. The figure displays the extracts from the original high-
quality image on the left, the super-resolved image with misalign-
ment in the middle and the super-resolved image after image regis-
tration has been applied on the right. It is worth mentioning here,
that colour is actually an important component of reclamation of
lost art, since it is an essential element in the art of painting. It was,
however abstracted away from at this early stage, in order to bet-
ter focus on the crucial issue of misalignment and allow for better
comparison between the misalignment simulation experimentation
and the results from the original works.

5. CONCLUSIONS
Examining the results of the evaluation of the EB-SR approach,
the importance of misalignment in the training set was considered
as crucial. Since the method is an example-based one, erroneous
matches of low-quality extracts to mismatched high-quality ones
leads to artifacts in the image and lower performance of the al-
gorithm. This is supported by the results, both qualitatively and
quantitatively.

These conclusions also apply to the practical application of lost art
reclamation. Thus, encouragingly, this novel idea appears amenable



 

 

 

 

 

 

 

 

Figure 1: A subset of the resulting SR-ed images, displaying starting from the left column: the original test image, the original ap-
plication of the algorithm on the image, application with training misalignment by rotation of 5◦ and application with misalignment
with rotation of 10◦.



 

Figure 2: Effect of misalignment in training of SR, for the RLA problem. The image is a detail from painting ‘Madonna’ by
P.P. Rubens. The left-most image is the original high-quality image in greyscale, the middle image is the resulting image from SR
when there is rotational misalignment of 10◦ counter-clockwise in the training low-quality set and the right-most image displays the
resulting image from SR when image registration is applied on the low-quality training set to correct the misalignment.



to a methodological approach involving existing concepts, innova-
tively applied. In this context, image registration appears necessary,
in order to ensure the elimination of misalignment effects on the al-
gorithm’s performance. Future work in this context will address the
present and other challenges.
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Computer-Aided Reclamation of Lost Art

B Program Documentation

This chapter includes information on how to utilise the system’s implementation to re-
produce the results and/or experiment further. This code will soon be freely available on
the author’s website, and data will be available upon request.

The system is centralised in the main function. All procedures are accessed from there.
The individual steps are included in different folders in the same directory as main,
namely ‘SR’, ‘CC’, ‘IR’, ‘IH’, ‘Tests’ for super-resolution, colour correction, image regis-
tration, inverse halftoning and testing procedures respectively. Two additional folders,
‘Data’ and ‘Results’ are also included, containing the training and test data in the first
and the resulting images from each step of the system in the latter. The access to the
training and test data is defined in function main and can be adjusted.

Implementation of SR as provided by Zeyde et al. [21] on the authors’ website should
be included in the folder ‘SR’. Folder ‘CC’ must include the implementations for the six
selected CC methods, as these are provided by Xu and Mulligan [62] on their webpage.
Each approach shall be included in a different folder named after the first author of
each CC approach. Finally, calculations of image quality metrics as defined by their au-
thors [16, 17] should be included in folder ‘Tests’, under a sub-folder named ‘PSNR’,
‘SSIM’, ‘SCIELAB’ respectively.

The following functions are necessary for the execution of the program:
pathsSetup establishes the environmental setup for the execution.
imgcut performs the split of input image in square patches or row patches. The di-

mensions of the square and the length of the row patches are defined as an argument to
the function. This function is applied by default to every test image before carrying out
the procedure.

imgstitch is used after completion of SR to merge the super-resolved extracts from
imgcut together and obtain the super-resolved image as a whole.

training is the function responsible for the training of SR method.
load_YCbCr transforms the input image to the YCbCr colour space.
scaleup performs SR on the input image using the approach by Zeyde et al. [21].
CC_Reinhard executes CC using the colour transfer method by Reinhard et al. [14].

The colour space of the transfer can be specified as ‘rgb’, ‘lαβ’ or ‘ciecam’.
CC_Brown executes CC using the image blending technique by Brown et al..
CC_Xiao performs CC using the colour transfer technique proposed by Xiao et al. [65].
CC_Fecker applies CC via the cumulative histogram mapping approach by Fecker et

al. [73].
calc_PeakSNR calculates the PSNR scores between the input target and source im-

ages.
SSIMcolor computes the SSIM values for a given target and source colour images’

pair.
batchSCIELAB computes the S-CIELAB colour difference between two given images.
The next functions are necessary as pre-processing and can also be executed via the

main by setting to 1 the appropriate flags. These functions are not necessary for every
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execution of the system.
img_scaledown is responsible for the scale down of the input images by the input

scale.
alignPair performs image registration using the method by Sheikh et al. [53]. The

resulting registered images are presented to the user for supervision.
getDiffMap calculates the difference map between two images of S-CIELAB differ-

ence, with white pixels corresponding to a difference lower than the defined threshold.
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C Evaluation Scores

This chapter includes all quantitative evaluation results for purposes of verification and
validation of the testing of the ground-truth test data. The measurements are grouped
according to the image quality metrics in the following order: PSNR, SSIM, S-CIELAB.
Each ground-truth test image is presented in a separate table sorted from best perfor-
mance to worst, with details regarding the CC method applied and the reference image
used.
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CC method Reference Image PSNR
Brown [69] The rape of the daughters of Leukippos 17.2355
Xiao [65] The rape of the daughters of Leukippos 17.1179
Reinhard [14] in RGB The rape of the daughters of Leukippos 17.0979
Fecker [73] The rape of the daughters of Leukippos 17.056
Reinhard [14] in CIECAM The rape of the daughters of Leukippos 17.0269
Brown [69] Liebesgarten 16.9446
Reinhard [14] in CIECAM Putti 16.8511
Reinhard [14] in RGB Putti 16.8415
Brown [69] The Judgement of Paris 16.734
Fecker [73] Putti 16.6966
Xiao [65] Putti 16.6092
Reinhard [14] in RGB The Judgement of Paris 16.0707
Xiao [65] The Judgement of Paris 16.0359
Reinhard [14] in CIECAM The Judgement of Paris 16.014
Reinhard [14] in lαβ Putti 15.9515
Fecker [73] The Judgement of Paris 15.8753
Brown [69] Putti 15.8406
Reinhard [14] in lαβ The rape of the daughters of Leukippos 15.4097
Reinhard [14] in CIECAM Liebesgarten 15.2546
Reinhard [14] in RGB Liebesgarten 15.2369
Reinhard [14] in CIECAM Madonna 14.9999
Reinhard [14] in RGB Madonna 14.8852
Fecker [73] Liebesgarten 14.8029
Brown [69] Madonna 14.6702
Fecker [73] Madonna 14.6244
Xiao [65] Liebesgarten 14.4611
Reinhard [14] in lαβ Madonna 14.2951
Xiao [65] Madonna 14.0223
Reinhard [14] in lαβ Liebesgarten 13.6397
Reinhard [14] in lαβ The Judgement of Paris 13.337

Table 11: Test image ‘The rape of the daughters of Leukippos’: PSNR scores for the structural
coherence between the resulting super-resolved colour corrected images against the ground-truth
high quality image
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CC method Reference Image PSNR
Reinhard [14] in CIECAM Liebesgarten 16.4212
Fecker [73] Liebesgarten 16.3569
Reinhard [14] in RGB Liebesgarten 16.2992
Reinhard [14] in CIECAM Madonna 16.134
Reinhard [14] in RGB Madonna 16.1197
Fecker [73] Madonna 15.8458
Xiao [65] Liebesgarten 15.7904
Xiao [65] Madonna 15.481
Reinhard [14] in lαβ Madonna 15.3082
Reinhard [14] in CIECAM Putti 15.1852
Reinhard [14] in RGB Putti 15.1308
Xiao [65] Putti 15.0608
Fecker [73] Putti 14.9603
Reinhard [14] in CIECAM The rape of the daughters of Leukippos 14.7607
Xiao [65] The rape of the daughters of Leukippos 14.4966
Reinhard [14] in RGB The rape of the daughters of Leukippos 14.4834
Reinhard [14] in lαβ Putti 14.4296
Fecker [73] The rape of the daughters of Leukippos 14.3909
Reinhard [14] in CIECAM The Judgement of Paris 14.1941
Xiao [65] The Judgement of Paris 14.0577
Reinhard [14] in RGB The Judgement of Paris 14.0142
Reinhard [14] in lαβ Liebesgarten 13.7745
Fecker [73] The Judgement of Paris 13.702
Reinhard [14] in lαβ The rape of the daughters of Leukippos 13.4487
Reinhard [14] in lαβ The Judgement of Paris 12.2475
Brown [69] The rape of the daughters of Leukippos 9.6462
Brown [69] Liebesgarten 8.6708
Brown [69] The Judgement of Paris 8.4365
Brown [69] Putti 8.1958
Brown [69] Madonna 7.3969

Table 12: Test image ‘Liebesgarten’: PSNR scores for the structural coherence between the resulting
super-resolved colour corrected images against the ground-truth high quality image
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CC method Reference Image PSNR
Reinhard [14] in RGB Madonna 15.9315
Reinhard [14] in CIECAM Madonna 15.8105
Fecker [73] Madonna 15.7642
Reinhard [14] in RGB Liebesgarten 15.2912
Xiao [65] Madonna 15.2837
Reinhard [14] in CIECAM Liebesgarten 15.2551
Fecker [73] Liebesgarten 15.1515
Reinhard [14] in lαβ Madonna 14.8689
Xiao [65] Liebesgarten 14.847
Reinhard [14] in CIECAM Putti 14.6519
Reinhard [14] in RGB Putti 14.5864
Fecker [73] Putti 14.5789
Xiao [65] Putti 14.5213
Reinhard [14] in CIECAM The rape of the daughters of Leukippos 13.854
Reinhard [14] in lαβ Putti 13.6085
Reinhard [14] in RGB The rape of the daughters of Leukippos 13.5816
Xiao [65] The rape of the daughters of Leukippos 13.5624
Fecker [73] The rape of the daughters of Leukippos 13.5372
Reinhard [14] in CIECAM The Judgement of Paris 12.8825
Reinhard [14] in RGB The Judgement of Paris 12.6974
Xiao [65] The Judgement of Paris 12.6971
Reinhard [14] in lαβ The rape of the daughters of Leukippos 12.6634
Fecker [73] The Judgement of Paris 12.6395
Reinhard [14] in lαβ Liebesgarten 12.0215
Brown [69] The rape of the daughters of Leukippos 11.6967
Reinhard [14] in lαβ The Judgement of Paris 10.7269
Brown [69] Liebesgarten 10.471
Brown [69] Putti 10.3271
Brown [69] The Judgement of Paris 10.209
Brown [69] Madonna 9.4265

Table 13: Test image ‘Madonna’: PSNR scores for the structural coherence between the resulting
super-resolved colour corrected images against the ground-truth high quality image
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CC method Reference Image PSNR
Reinhard [14] in CIECAM The Judgement of Paris 16.1844
Xiao [65] The Judgement of Paris 16.1319
Fecker [73] The Judgement of Paris 16.1245
Reinhard [14] in RGB The rape of the daughters of Leukippos 16.0885
Reinhard [14] in CIECAM The rape of the daughters of Leukippos 16.0688
Reinhard [14] in RGB The Judgement of Paris 16.0633
Xiao [65] The rape of the daughters of Leukippos 16.0484
Fecker [73] The rape of the daughters of Leukippos 16.0058
Reinhard [14] in RGB Putti 15.5114
Fecker [73] Putti 15.3772
Xiao [65] Putti 15.3439
Reinhard [14] in CIECAM Putti 15.333
Reinhard [14] in lαβ The rape of the daughters of Leukippos 14.9855
Reinhard [14] in lαβ Putti 14.6466
Reinhard [14] in RGB Liebesgarten 14.4181
Fecker [73] Liebesgarten 14.38
Reinhard [14] in CIECAM Liebesgarten 14.3725
Xiao [65] Liebesgarten 14.064
Reinhard [14] in lαβ The Judgement of Paris 13.8664
Reinhard [14] in RGB Madonna 13.7637
Reinhard [14] in lαβ Liebesgarten 13.718
Reinhard [14] in CIECAM Madonna 13.6467
Fecker [73] Madonna 13.5716
Xiao [65] Madonna 13.3464
Reinhard [14] in lαβ Madonna 13.2867
Brown [69] The rape of the daughters of Leukippos 9.8685
Brown [69] Liebesgarten 8.99
Brown [69] Putti 8.9216
Brown [69] The Judgement of Paris 8.8103
Brown [69] Madonna 8.1935

Table 14: Test image ‘The Judgement of Paris’: PSNR scores for the structural coherence between
the resulting super-resolved colour corrected images against the ground-truth high quality image
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CC method Reference Image PSNR
Reinhard [14] in RGB Putti 14.6861
Reinhard [14] in CIECAM Putti 14.6676
Fecker [73] Putti 14.6551
Xiao [65] Putti 14.6316
Reinhard [14] in CIECAM The rape of the daughters of Leukippos 14.2355
Reinhard [14] in RGB The rape of the daughters of Leukippos 14.0975
Xiao [65] The rape of the daughters of Leukippos 14.0515
Fecker [73] The rape of the daughters of Leukippos 13.9382
Reinhard [14] in RGB Madonna 13.841
Fecker [73] Madonna 13.8013
Reinhard [14] in CIECAM Madonna 13.7328
Reinhard [14] in RGB Liebesgarten 13.6121
Reinhard [14] in CIECAM Liebesgarten 13.5459
Reinhard [14] in lαβ Putti 13.507
Fecker [73] Liebesgarten 13.488
Xiao [65] Madonna 13.458
Xiao [65] Liebesgarten 13.3285
Reinhard [14] in CIECAM The Judgement of Paris 13.2764
Reinhard [14] in RGB The Judgement of Paris 13.1885
Xiao [65] The Judgement of Paris 13.1812
Reinhard [14] in lαβ Madonna 13.0874
Fecker [73] The Judgement of Paris 13.0141
Reinhard [14] in lαβ The rape of the daughters of Leukippos 12.7376
Reinhard [14] in lαβ Liebesgarten 11.119
Reinhard [14] in lαβ The Judgement of Paris 10.8082
Brown [69] The rape of the daughters of Leukippos 9.5881
Brown [69] Liebesgarten 8.7208
Brown [69] Putti 8.647
Brown [69] The Judgement of Paris 8.5426
Brown [69] Madonna 7.8858

Table 15: Test image ‘Putti’: PSNR scores for the structural coherence between the resulting super-
resolved colour corrected images against the ground-truth high quality image
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CC method Reference Image SSIM
Brown [69] The rape of the daughters of Leukippos 0.3801
Fecker [73] The rape of the daughters of Leukippos 0.3604
Reinhard [14] in CIECAM The rape of the daughters of Leukippos 0.3532
Xiao [65] The rape of the daughters of Leukippos 0.3523
Reinhard [14] in RGB The rape of the daughters of Leukippos 0.3521
Reinhard [14] in lαβ Madonna 0.3481
Reinhard [14] in lαβ The rape of the daughters of Leukippos 0.3473
Reinhard [14] in RGB Putti 0.347
Brown [69] Liebesgarten 0.3428
Xiao [65] Putti 0.3414
Reinhard [14] in RGB Liebesgarten 0.3369
Brown [69] Madonna 0.3368
Brown [69] The Judgement of Paris 0.3354
Fecker [73] Madonna 0.3341
Reinhard [14] in CIECAM Liebesgarten 0.3319
Brown [69] Putti 0.3316
Reinhard [14] in RGB Madonna 0.3268
Xiao [65] Liebesgarten 0.3222
Reinhard [14] in lαβ The Judgement of Paris 0.3221
Reinhard [14] in CIECAM Putti 0.3191
Reinhard [14] in lαβ Liebesgarten 0.3173
Reinhard [14] in RGB The Judgement of Paris 0.314
Xiao [65] Madonna 0.3135
Xiao [65] The Judgement of Paris 0.3121
Fecker [73] Putti 0.3112
Reinhard [14] in CIECAM Madonna 0.3101
Reinhard [14] in CIECAM The Judgement of Paris 0.3096
Reinhard [14] in lαβ Putti 0.3073
Fecker [73] Liebesgarten 0.3056
Fecker [73] The Judgement of Paris 0.2874

Table 16: Test image ‘The rape of the daughters of Leukippos’: SSIM scores for the structural
coherence between the resulting super-resolved colour corrected images against the ground-truth
high quality image
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CC method Reference Image SSIM
Xiao [65] Liebesgarten 0.3797
Reinhard [14] in CIECAM Liebesgarten 0.3786
Fecker [73] Liebesgarten 0.3749
Reinhard [14] in RGB Liebesgarten 0.371
Reinhard [14] in lαβ Liebesgarten 0.3565
Fecker [73] The rape of the daughters of Leukippos 0.3492
Xiao [65] Madonna 0.3409
Reinhard [14] in CIECAM The Judgement of Paris 0.3338
Fecker [73] The Judgement of Paris 0.333
Reinhard [14] in CIECAM The rape of the daughters of Leukippos 0.3304
Xiao [65] The Judgement of Paris 0.3293
Reinhard [14] in lαβ The Judgement of Paris 0.3292
Reinhard [14] in CIECAM Madonna 0.3287
Reinhard [14] in RGB Madonna 0.3283
Reinhard [14] in RGB The Judgement of Paris 0.3207
Fecker [73] Madonna 0.32
Reinhard [14] in RGB The rape of the daughters of Leukippos 0.3185
Xiao [65] The rape of the daughters of Leukippos 0.3168
Reinhard [14] in lαβ The rape of the daughters of Leukippos 0.2889
Fecker [73] Putti 0.2755
Reinhard [14] in lαβ Madonna 0.2728
Reinhard [14] in CIECAM Putti 0.2724
Reinhard [14] in RGB Putti 0.2656
Xiao [65] Putti 0.2563
Brown [69] The rape of the daughters of Leukippos 0.251
Brown [69] Madonna 0.2327
Brown [69] Liebesgarten 0.2256
Brown [69] The Judgement of Paris 0.2225
Brown [69] Putti 0.2213
Reinhard [14] in lαβ Putti 0.1767

Table 17: Test image ‘Liebesgarten’: SSIM scores for the structural coherence between the resulting
super-resolved colour corrected images against the ground-truth high quality image
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CC method Reference Image SSIM
Reinhard [14] in lαβ Madonna 0.4091
Reinhard [14] in CIECAM Madonna 0.4069
Reinhard [14] in RGB Madonna 0.4064
Fecker [73] Madonna 0.4058
Reinhard [14] in CIECAM Putti 0.3858
Reinhard [14] in RGB Putti 0.3798
Xiao [65] Madonna 0.3745
Xiao [65] Putti 0.3681
Fecker [73] Putti 0.3666
Reinhard [14] in CIECAM Liebesgarten 0.3657
Reinhard [14] in lαβ The rape of the daughters of Leukippos 0.3652
Reinhard [14] in RGB Liebesgarten 0.3613
Xiao [65] Liebesgarten 0.3592
Reinhard [14] in RGB The rape of the daughters of Leukippos 0.3591
Xiao [65] The rape of the daughters of Leukippos 0.3529
Reinhard [14] in CIECAM The rape of the daughters of Leukippos 0.35
Reinhard [14] in lαβ Liebesgarten 0.3423
Reinhard [14] in lαβ Putti 0.3404
Fecker [73] The rape of the daughters of Leukippos 0.3343
Reinhard [14] in lαβ The Judgement of Paris 0.3236
Reinhard [14] in RGB The Judgement of Paris 0.3192
Xiao [65] The Judgement of Paris 0.3185
Brown [69] Putti 0.3106
Reinhard [14] in CIECAM The Judgement of Paris 0.309
Fecker [73] Liebesgarten 0.3032
Brown [69] The rape of the daughters of Leukippos 0.2934
Brown [69] Madonna 0.2869
Fecker [73] The Judgement of Paris 0.2615
Brown [69] Liebesgarten 0.238
Brown [69] The Judgement of Paris 0.2319

Table 18: Test image ‘Madonna’: SSIM scores for the structural coherence between the resulting
super-resolved colour corrected images against the ground-truth high quality image
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CC method Reference Image SSIM
Xiao [65] Liebesgarten 0.4413
Reinhard [14] in CIECAM Liebesgarten 0.4389
Reinhard [14] in RGB Liebesgarten 0.4365
Fecker [73] The rape of the daughters of Leukippos 0.4334
Fecker [73] The Judgement of Paris 0.4232
Fecker [73] Liebesgarten 0.421
Reinhard [14] in CIECAM The rape of the daughters of Leukippos 0.4163
Reinhard [14] in CIECAM The Judgement of Paris 0.4157
Reinhard [14] in lαβ The Judgement of Paris 0.4155
Xiao [65] The Judgement of Paris 0.412
Reinhard [14] in RGB The Judgement of Paris 0.4098
Reinhard [14] in lαβ Liebesgarten 0.4051
Reinhard [14] in RGB The rape of the daughters of Leukippos 0.4042
Xiao [65] The rape of the daughters of Leukippos 0.3957
Reinhard [14] in RGB Madonna 0.3737
Xiao [65] Madonna 0.3715
Reinhard [14] in CIECAM Madonna 0.3664
Reinhard [14] in lαβ The rape of the daughters of Leukippos 0.3589
Fecker [73] Madonna 0.3539
Brown [69] The rape of the daughters of Leukippos 0.3467
Brown [69] Putti 0.3402
Reinhard [14] in CIECAM Putti 0.3375
Brown [69] Madonna 0.3371
Fecker [73] Putti 0.3329
Reinhard [14] in RGB Putti 0.3216
Brown [69] Liebesgarten 0.3174
Xiao [65] Putti 0.3162
Brown [69] The Judgement of Paris 0.3139
Reinhard [14] in lαβ Madonna 0.2914
Reinhard [14] in lαβ Putti 0.2145

Table 19: Test image ‘The Judgement of Paris’: SSIM scores for the structural coherence between
the resulting super-resolved colour corrected images against the ground-truth high quality image
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CC method Reference Image SSIM
Reinhard [14] in RGB Putti 0.3784
Reinhard [14] in CIECAM Putti 0.3765
Xiao [65] Putti 0.3689
Reinhard [14] in CIECAM Madonna 0.3563
Reinhard [14] in RGB Madonna 0.3557
Fecker [73] Madonna 0.3453
Fecker [73] Putti 0.3439
Xiao [65] Madonna 0.3284
Reinhard [14] in lαβ Madonna 0.3246
Reinhard [14] in RGB The rape of the daughters of Leukippos 0.32
Xiao [65] The rape of the daughters of Leukippos 0.3181
Reinhard [14] in CIECAM The rape of the daughters of Leukippos 0.3156
Reinhard [14] in lαβ Putti 0.3115
Reinhard [14] in lαβ The rape of the daughters of Leukippos 0.3054
Reinhard [14] in CIECAM Liebesgarten 0.3003
Reinhard [14] in RGB Liebesgarten 0.2939
Xiao [65] Liebesgarten 0.2829
Fecker [73] The rape of the daughters of Leukippos 0.2787
Xiao [65] The Judgement of Paris 0.2623
Reinhard [14] in RGB The Judgement of Paris 0.2615
Brown [69] Putti 0.2581
Reinhard [14] in lαβ Liebesgarten 0.2568
Reinhard [14] in CIECAM The Judgement of Paris 0.2544
Reinhard [14] in lαβ The Judgement of Paris 0.254
Fecker [73] Liebesgarten 0.2527
Brown [69] Madonna 0.2264
Fecker [73] The Judgement of Paris 0.2183
Brown [69] The rape of the daughters of Leukippos 0.1889
Brown [69] Liebesgarten 0.1405
Brown [69] The Judgement of Paris 0.1375

Table 20: Test image ‘Putti’: SSIM scores for the structural coherence between the resulting super-
resolved colour corrected images against the ground-truth high quality image
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CC method Reference Image S-CIELAB
Reinhard [14] in RGB The rape of the daughters of Leukippos 16.94633
Fecker [73] The rape of the daughters of Leukippos 17.01028
Xiao [65] The rape of the daughters of Leukippos 17.039
Reinhard [14] in CIECAM The rape of the daughters of Leukippos 17.16043
Fecker [73] The Judgement of Paris 18.29091
Reinhard [14] in CIECAM The Judgement of Paris 18.53061
Reinhard [14] in RGB The Judgement of Paris 18.98055
Xiao [65] The Judgement of Paris 19.3154
Fecker [73] Putti 19.52252
Reinhard [14] in CIECAM Putti 19.53027
Brown [69] The Judgement of Paris 19.53167
Reinhard [14] in RGB Putti 19.90329
Xiao [65] Putti 20.85254
Reinhard [14] in RGB Liebesgarten 21.81857
Reinhard [14] in CIECAM Liebesgarten 22.07612
Fecker [73] Liebesgarten 22.10175
Reinhard [14] in CIECAM Madonna 23.17844
Reinhard [14] in lαβ The rape of the daughters of Leukippos 23.67672
Fecker [73] Madonna 23.8792
Reinhard [14] in RGB Madonna 23.89826
Reinhard [14] in lαβ The Judgement of Paris 26.16369
Reinhard [14] in lαβ Liebesgarten 26.4703
Xiao [65] Liebesgarten 27.31326
Reinhard [14] in lαβ Putti 28.42991
Reinhard [14] in lαβ Madonna 28.48176
Xiao [65] Madonna 29.55819
Brown [69] Madonna 31.02939
Brown [69] Putti 32.88975
Brown [69] Liebesgarten 35.7924
Brown [69] The rape of the daughters of Leukippos 37.34785

Table 21: Test image ‘The rape of the daughters of Leukippos’: S-CIELAB scores for the colour
difference between the resulting super-resolved colour corrected images against the ground-truth
high quality image
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CC method Reference Image S-CIELAB
Brown [69] The Judgement of Paris 15.43763
Reinhard [14] in RGB Liebesgarten 15.95823
Fecker [73] Liebesgarten 15.99388
Reinhard [14] in CIECAM Liebesgarten 16.28374
Reinhard [14] in RGB Madonna 19.02853
Reinhard [14] in CIECAM Madonna 19.4754
Xiao [65] Liebesgarten 19.73947
Reinhard [14] in CIECAM The Judgement of Paris 19.91066
Xiao [65] The Judgement of Paris 20.36514
Fecker [73] Madonna 20.62259
Reinhard [14] in RGB The Judgement of Paris 20.67187
Fecker [73] The Judgement of Paris 21.03328
Reinhard [14] in RGB The rape of the daughters of Leukippos 21.25687
Reinhard [14] in CIECAM The rape of the daughters of Leukippos 21.30221
Brown [69] Madonna 21.86493
Xiao [65] The rape of the daughters of Leukippos 22.00864
Reinhard [14] in lαβ Liebesgarten 22.32485
Fecker [73] The rape of the daughters of Leukippos 22.61512
Brown [69] Putti 22.75221
Xiao [65] Madonna 23.20874
Reinhard [14] in RGB Putti 23.54283
Xiao [65] Putti 24.25135
Brown [69] Liebesgarten 24.64488
Reinhard [14] in lαβ Madonna 25.34362
Reinhard [14] in CIECAM Putti 25.48326
Brown [69] The rape of the daughters of Leukippos 25.72361
Reinhard [14] in lαβ The Judgement of Paris 26.35416
Fecker [73] Putti 26.82046
Reinhard [14] in lαβ The rape of the daughters of Leukippos 32.28415
Reinhard [14] in lαβ Putti 36.64407

Table 22: Test image ‘Liebesgarten’: S-CIELAB scores for the colour difference between the resulting
super-resolved colour corrected images against the ground-truth high quality image
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CC method Reference Image S-CIELAB
Reinhard [14] in RGB Madonna 20.78423
Brown [69] Madonna 21.27462
Brown [69] Putti 21.2771
Fecker [73] Madonna 21.87578
Reinhard [14] in CIECAM Madonna 22.216
Fecker [73] Liebesgarten 23.13826
Reinhard [14] in RGB Liebesgarten 23.3081
Reinhard [14] in CIECAM Liebesgarten 23.32694
Brown [69] The rape of the daughters of Leukippos 23.33348
Brown [69] Liebesgarten 23.68315
Xiao [65] Madonna 24.60183
Reinhard [14] in RGB Putti 25.77445
Reinhard [14] in CIECAM The rape of the daughters of Leukippos 25.78278
Xiao [65] Liebesgarten 25.82488
Reinhard [14] in RGB The rape of the daughters of Leukippos 26.30583
Fecker [73] The rape of the daughters of Leukippos 26.31856
Reinhard [14] in lαβ Madonna 26.56547
Xiao [65] Putti 27.13883
Xiao [65] The rape of the daughters of Leukippos 27.23304
Reinhard [14] in CIECAM Putti 27.26577
Fecker [73] Putti 27.73048
Reinhard [14] in CIECAM The Judgement of Paris 27.85441
Brown [69] The Judgement of Paris 28.20637
Fecker [73] The Judgement of Paris 28.31664
Reinhard [14] in RGB The Judgement of Paris 28.63891
Xiao [65] The Judgement of Paris 29.40506
Reinhard [14] in lαβ Liebesgarten 29.96567
Reinhard [14] in lαβ The rape of the daughters of Leukippos 32.13543
Reinhard [14] in lαβ The Judgement of Paris 34.00861
Reinhard [14] in lαβ Putti 37.66694

Table 23: Test image ‘Madonna’: S-CIELAB scores for the colour difference between the resulting
super-resolved colour corrected images against the ground-truth high quality image
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CC method Reference Image S-CIELAB
Reinhard [14] in RGB The Judgement of Paris 16.86876
Xiao [65] The Judgement of Paris 17.00878
Brown [69] The Judgement of Paris 17.21829
Reinhard [14] in RGB The rape of the daughters of Leukippos 17.25156
Fecker [73] The Judgement of Paris 17.29789
Reinhard [14] in CIECAM The Judgement of Paris 17.54533
Xiao [65] The rape of the daughters of Leukippos 18.00943
Reinhard [14] in CIECAM The rape of the daughters of Leukippos 18.69222
Fecker [73] The rape of the daughters of Leukippos 18.83801
Reinhard [14] in RGB Putti 20.6368
Xiao [65] Putti 21.2709
Reinhard [14] in RGB Liebesgarten 21.46166
Fecker [73] Liebesgarten 21.96408
Reinhard [14] in CIECAM Liebesgarten 22.18017
Reinhard [14] in CIECAM Putti 22.74743
Fecker [73] Putti 23.32192
Reinhard [14] in lαβ The Judgement of Paris 23.623
Reinhard [14] in lαβ Liebesgarten 23.74451
Reinhard [14] in RGB Madonna 24.46477
Xiao [65] Liebesgarten 24.48991
Reinhard [14] in CIECAM Madonna 25.34758
Fecker [73] Madonna 25.8368
Brown [69] Madonna 27.60301
Xiao [65] Madonna 28.34111
Brown [69] Putti 28.69085
Reinhard [14] in lαβ The rape of the daughters of Leukippos 29.59106
Brown [69] Liebesgarten 30.35176
Reinhard [14] in lαβ Madonna 30.67331
Brown [69] The rape of the daughters of Leukippos 32.40809
Reinhard [14] in lαβ Putti 34.27688

Table 24: Test image ‘The Judgement of Paris’: S-CIELAB scores for the colour difference between
the resulting super-resolved colour corrected images against the ground-truth high quality image
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CC method Reference Image S-CIELAB
Reinhard [14] in RGB Putti 23.50144
Fecker [73] Putti 23.71506
Reinhard [14] in CIECAM Putti 24.45673
Xiao [65] Putti 24.51938
Reinhard [14] in CIECAM The rape of the daughters of Leukippos 24.72682
Fecker [73] The rape of the daughters of Leukippos 24.74931
Reinhard [14] in RGB The rape of the daughters of Leukippos 25.42769
Xiao [65] The rape of the daughters of Leukippos 26.17275
Brown [69] The Judgement of Paris 26.46324
Fecker [73] The Judgement of Paris 27.19918
Fecker [73] Madonna 27.36245
Reinhard [14] in RGB Madonna 27.41521
Reinhard [14] in CIECAM The Judgement of Paris 27.72311
Fecker [73] Liebesgarten 27.87417
Reinhard [14] in RGB The Judgement of Paris 28.26109
Reinhard [14] in CIECAM Madonna 28.50174
Xiao [65] The Judgement of Paris 28.62188
Reinhard [14] in RGB Liebesgarten 28.93468
Reinhard [14] in CIECAM Liebesgarten 29.09675
Xiao [65] Madonna 31.2578
Brown [69] Madonna 31.73253
Reinhard [14] in lαβ The rape of the daughters of Leukippos 31.73528
Xiao [65] Liebesgarten 31.9035
Reinhard [14] in lαβ Madonna 32.26575
Brown [69] Putti 33.12741
Reinhard [14] in lαβ Putti 34.70046
Reinhard [14] in lαβ The Judgement of Paris 36.2189
Reinhard [14] in lαβ Liebesgarten 36.2467
Brown [69] Liebesgarten 36.87095
Brown [69] The rape of the daughters of Leukippos 37.4875

Table 25: Test image ‘Putti’: S-CIELAB scores for the colour difference between the resulting super-
resolved colour corrected images against the ground-truth high quality image
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