
Master Erasmus Mundus in
Color in Informatics and Media Technology (CIMET)

Eye Contact in Leisure Video Conferencing

Master Thesis Report

Presented by

Annick van der Hoest

and defended at

Gjøvik University College

Academic Supervisor(s): Simon J. R. McCallum

Jury Committee: Prof. Roman Bednarik
Prof. Luis Gómez Robledo

Eye Contact in Leisure Video Conferencing

Annick van der Hoest

2012/07/15

Eye Contact in Leisure Video Conferencing

Abstract

The concept of presence refers to the sensation of being in a physically distinct location. Presence
with respect to video conferencing refers to feeling as if together with the remote user rather
than being conscious of the actual separation by distance. Eye contact plays an essential role in
communication as it conveys additional nonverbal messages of the conversation. In video medi-
ated distance communication eye contact is prevented due to the offset of the camera position
to the user’s gaze. In defiance of the imposed restriction, enabling eye contact in video mediated
communication was the approach taken to improve presence in video conferencing. A particular
focus was placed on private rather than professional video conferencing. The proposed solutions
include a software based solution founded upon image processing techniques and a hardware
based solution founded upon teleprompter technology. Two experiments were conducted to test
the performance of the systems.

The first experiment was designed to measure the sense of presence within each solution,
comparing them to the conventional situation where the camera is placed on top of the screen
without correcting gaze. Evaluation of the results of the first experiment demonstrated that the
solutions generated a significantly greater perception of eye contact than the conventional setup.
The perceived eye contact was rated as an improvement by the majority of the participants.
However we could not verify that enabling eye contact improves the sense of presence with
respect to the conventional situation. This will require further experimental research. The second
experiment was designed to measure the difference in sense of presence between the solutions.
Evaluation of the results established the conclusion that the hardware solution induced a greater
sense of presence than the software solution. Albeit both systems would profit from adjustments
and improvements, both acquired positive feedback and showed great potential.

i

Eye Contact in Leisure Video Conferencing

Preface

The issue of the inability to have eye contact when video conferencing has occupied various
intellectuals [1, 2, 3, 4]. Research evaluated the importance of eye contact in conversation [5, 1]
and was used to create eye contact enabling solutions [6, 7, 8]. While to date the area has
not been exhausted, companies have developed and marketed diverse solutions [9, 10, 11]. The
main issue with the available products on the market is that they aim at professional use, which is
accompanied by a large expenditure. Driven by a personal motivation, the need for a consumer
market suitable eye contact enabling solution was the inspiration to develop low cost yet fair
quality solutions.

The proposed software solution in this work is based on image processing techniques. The
majority of the researches in software based eye contact enabling solutions employ multiple
cameras [8, 12, 7, 9]. The advantage of the proposed software solution in its current form is that
no additional hardware is required, i.e. a single camera is sufficient. In order to increase perfor-
mance a suggestion is made to include multiple cameras in future work. However in contrast to
most of the researches there will not be a need to compute a virtual camera view. Performing a
Gaussian blend to overlay template eyes requires less computing power which makes real time
processing manageable across devices of different quality. Jerald & Daily [3] discuss a single
camera solution similar to the proposed solution. A minor difference is that in their approach the
camera is placed on the side of the screen. The resulting eye contact is upon an averted face due
to excluding head position adjustment, which looks unnatural. In the proposed system this issue
is avoided by placing the camera on top of the screen. A more essential difference is that their
eye tracker is initiated by clicking on specific points in the eyes. In this work the eye capturing
is automated by blink detection. The distinction between the systems is based on prioritising
usability over precision. Our system requires limited user configuration so that users unfamiliar
with the system could use it as part of leisure video conferencing. For research purposes the
software solution was not only compared with conventional leisure video conferencing systems,
but also compared to a hardware typed solution. Commercial hardware solutions to enable eye
contact have been around longer. A low-budget hardware solution was developed in order to
compare the software solution to a hardware solution that also aimed at leisure use.

The proposed hardware solution in this work is based on teleprompter technology. A num-
ber of the existing solutions on the market are based on the same technology. An example is
TelePresence Tech [10], which is a high quality large system, suitable for professional distance
business meetings but not for leisure use due to its size and cost. Another commercial prod-
uct is the iris2iris [11], which is a computer monitor with a beam-splitter at 45 ◦ in front and
a vertical facing camera at the bottom. The product being less professional is also less costly
than TelePresence Tech, though still not within consumer market boundaries. Its cost, require-
ment for a phone connection and cumbersomeness, by including an entire additional monitor to
the hardware users already own, make the system unsuitable for consumer use. A teleprompter

ii

Eye Contact in Leisure Video Conferencing

technology based marketed solution that aims at consumer use, is the SeeEye2Eye [13] which
is a device that is to be placed over an integrated or external webcam. The device is portable
and affordable but the drawback is the size of the display. The eye contact with the remote user
is gained at the cost of losing a large part of the display area. This work proposes a hardware
solution that employs the entire display of the device used. The use of a netbook or tablet for
video communication implies user acceptance of intrinsically smaller screen sizes than laptops or
computer monitors. When using the teleprompter on these devices the user will not be sacrificing
display area to enable eye contact. The hardware solution proposed was developed with cheap
materials, maintains acceptable quality and does not involve a loss of display area. These fea-
tures combined make the solution distinct from existing teleprompter based solutions, satisfying
the intention for private use.

iii

Eye Contact in Leisure Video Conferencing

Acknowledgements

I would like to thank my supervisor Simon McCallum, Associate Professor at Gjøvik University
College. His comforting and encouraging words in the tough moments never failed to boost my
confidence and ambition. I am grateful for all the inspiration and motivation given by his two
hour lectures to short questions. Thank you.

Much gratitude and appreciation also goes out to Jayson Mackie, research assistant for the
Game Technology Group at Gjøvik University College. Not only did his contribution make ev-
erything happen, he was also always available to teach and assist me in the process of learning
C++. Without you I would not be able to look anyone else in the eye but myself. Thank you.

Finally I would like to thank my family and friends, who succeeded very well in taking my
mind off the Thesis from time to time. Cheers!

iv

Eye Contact in Leisure Video Conferencing

Contents

Abstract . i
Preface . ii
Acknowledgements . iv
Contents . v
List of Figures . vii
List of Tables . viii
1 Introduction . 1
2 Background . 3

2.1 Presence and TelePresence . 3
2.1.1 Presence in Arts . 4
2.1.2 Presence in Gaming . 5
2.1.3 Presence in Video Conferencing . 8

2.2 Body Language and Eye Contact . 10
2.3 Solutions for Eye Contact . 12

2.3.1 Hardware Solutions for Eye Contact . 12
2.3.2 Software Solutions for Eye Contact . 14

2.4 Virtual Camera View Generation . 16
2.4.1 Camera Capture . 16
2.4.2 Multiple Camera Geometry . 18
2.4.3 View Generation . 20

2.5 Eye Tracking . 21
2.5.1 Eye Tracking using Additional Hardware 21
2.5.2 Eye Tracking using Computer Vision Techniques 22

2.6 Gaze Correction . 24
3 Methodology . 27

3.1 Software Solution . 27
3.1.1 Program Architecture . 27
3.1.2 Gaze Correction Functionality . 34

3.2 Hardware Solution Teleprompter . 39
3.3 User Experience Testing . 42

3.3.1 Subjective Measurements . 42
3.3.2 Objective Measurements . 44
3.3.3 Adopted Measurement Approach . 45

4 Results . 48
4.1 Experiment 1 . 48

4.1.1 Experimental setup . 48

v

Eye Contact in Leisure Video Conferencing

4.1.2 Results . 50
4.2 Experiment 2 . 54

4.2.1 Experimental setup . 55
4.2.2 Results . 56

4.3 Experiments Conclusion . 59
5 Conclusion . 61
6 Future Work . 62
Bibliography . 64
A User Experience Questionnaires . 70

A.1 Questionnaire Experiment 1 . 70
A.2 Questionnaire Experiment 2 . 77

B Presence Questionnaire (PQ) . 84
C Slater-Usoh-Steed Questionnaire (SUS) . 86
D Experimental Data . 87
E Software Source Code . 88
F Matlab Source Code . 129

vi

Eye Contact in Leisure Video Conferencing

List of Figures

1 Motion compression . 7
2 Teleprompter setup . 13
3 Basic imaging system model . 17
4 Camera imaging model . 18
5 Two camera imaging model . 18
6 Epipolar Geometry . 19
7 Haar-like features . 23
8 Spatial warping . 25
9 Gaussian function curve . 26
10 Software solution . 28
11 Program architecture . 29
12 Program division into threads . 31
13 Circular queues . 32
14 Circular queues as array structures . 32
15 2D Gaussian curve with flatted top . 38
16 Hardware solution . 40
17 Experiment 1: Technical results . 51
18 Experiment 1: Software results . 52
19 Experiment 1: Hardware results . 53
20 Experiment 2: Immersion results . 57
21 Experiment 2: Naturalness results . 58
22 Experiment 2: Eye contact results . 59

vii

Eye Contact in Leisure Video Conferencing

List of Tables

1 Observed frequencies χ2 test . 46
2 Expected frequencies χ2 test . 46
3 Differences observed and expected values . 46
4 Critical values and confidence levels . 47
5 Statistical results experiment 1 . 50
6 Statistical results experiment 2 . 57
7 Original software data experiment 1 . 87
8 Original hardware data experiment 1 . 87

viii

Eye Contact in Leisure Video Conferencing

1 Introduction

The topic of this Master Thesis is eye contact in leisure video conferencing. This was chosen
based on a personal motivation. A passion for traveling is accompanied by a prolonged absence
from home and family. Being able to talk to and importantly see family and friends while being
great physical distances apart, makes non-professional video conferencing an invaluable tool.
The concept associated with the sensation of truly being with another person that is physically
somewhere else, is presence. In Knudsen’s extensive research in the field of presence [14], the
objective was to improve the quality of long distance communication by increasing the sense of
presence. This is followed in this work and the focus was on enhancing users’ sense of presence.
The conventional setup in leisure video conferencing prevents eye contact between users due to
the offset of the camera position to the user’s gaze. This creates a problem because eye contact
plays an important role in communication as it conveys additional nonverbal messages in the
conversation [1, 5]. In achieving a sense of presence eye contact seems to provide a substantial
contribution [14]. Therefore the topic of the Thesis concerns enhancing presence by providing
solutions that enable eye contact in video mediated communication.

Eye contact incorporated video conferencing systems exist for professional video conferenc-
ing [9, 10, 11]. However, the available systems require a large expenditure and are therefore not
suitable for leisure video conferencing. Therefore this Thesis presents two solutions that enable
eye contact in casual video conferencing:

• A software solution based on image processing techniques

• A hardware solution based on teleprompter technology

Two experiments were conducted to examine the user experience for the proposed solutions.
Evaluating the results of the experiments served to answer the following research questions:

1. Does enabling eye contact in video conferencing improve user experience with respect to
the sense of presence?

2. Does the software or the hardware solution induce the greatest sense of presence, desig-
nating this to be the preferred solution?

The structure of the paper is composed by the consecutive chapters addressing background,
methodology, results, conclusion and future work. Chapter 2 is the background chapter which
provides information on the different fields concerned with presence and telecommunication. It
discusses related works to solutions for eye contact in video conferencing. Moreover the tech-
nologies used in related works and in the proposed solutions are discussed. Chapter 3 is the
methodology chapter which describes the proposed software and hardware solutions. This in-
cludes a discussion of the various initial implementations and explanations for failures. More-
over an overview of existing user experience measurements methods is given, from which the

1

Eye Contact in Leisure Video Conferencing

employed user experience measurement method was adopted. Chapter 4 is the results chapter
and discusses the conducted experiments, including the experimental setups, the experimental
results and the evaluation of the results from which a conclusion is drawn. Chapter 5 is the
conclusion chapter which summarizes the main points and results of the presented work and
provides answers to the posed research questions based on the obtained conclusion of the ex-
perimental results. Chapter 6 is the future work chapter and poses ideas for continuation and
improvement of the presented work.

2

Eye Contact in Leisure Video Conferencing

2 Background

This paper proposes a software and hardware based solution to the problem of eye contact in the
field of video conferencing. This chapter provides the backgrounds concerning the different fields
that meet in this project. The primary aim of the project is to improve presence which is a concept
explained in Section 2.1. The approach taken to improve presence in video conferencing was
enabling eye contact, due to the role of eye contact in communication. The importance of body
language and in particular eye contact in communication will be discussed in Section 2.2. This
is followed by an overview of different existing approaches and related researches to improve
eye contact in video conferencing in Section 2.3. Next multiple camera geometry is discussed,
which is the theoretical background for a common approach to a software solution for the eye
contact problem namely generating a view from a virtual camera. This approach was used in a
number of related researches but was not the approach used in this work. The opted approach
for a software solution was gaze correction based on image processing techniques. In order to
correct the gaze in a live video stream the eyes need to be tracked in real time. Eye tracking is
discussed in Section 2.5. The location of the eye pixels and their intensity values are used for
the gaze correction. Image processing techniques that can be used for the gaze correction are
discussed in Section 2.6.

2.1 Presence and TelePresence

Presence is defined by Steuer [15] as a person’s experience of being in an environment. When
one is perceiving the world without using any media, the sense of being present in the physical
world is trivial. However, in the case of mediated perception one can be present in a physical
environment but feel present in the mediated distinct or remote environment. Steuer defines
this as telepresence. In this paper the area of interest is telepresence. In literature there is a
convention of using the term presence to refer to telepresence. This tendency will be followed in
this paper.

According to Enlund [16] there are three factors that determine the sense of presence: in-
dividual preconditions present, the characteristics of the content delivered and the sensory environ-
ment (i.e. technologies used). Individual preconditions differ among people, such as the ability
to imagine things. Due to its subjective nature, it is difficult to influence this factor. Therefore the
content and technology factors are more feasible to influence in order to produce and improve a
sense of presence.

The characteristics of the content is an important factor in creating a sense of presence. This
is addressed by Knudsen [17] who states that presence is established by storytelling rather than
by using advanced technologies. This becomes clear when looking at examples of dreaming or
reading a good book. One can be completely engaged in the story by a gripping story or dream.
An example of an experimental project that demonstrates this point is Knudsen’s dance perfor-
mance project BOOM [18]. In this project the audience was situated in a physical space, facing

3

Eye Contact in Leisure Video Conferencing

a stage with two percussionists. In another physical space the dancer was present together with
the producer Knudsen of the project. The performance composed of the dancer and the percus-
sionists was set in another space, namely a virtual environment. The synchronous performances
were captured by video and put in a virtual room which was then displayed on screen visible to
the audience. This project uses telepresence technologies as a medium for art creation. A sense
of presence is obtained because the story is captivating. Distance education is another exam-
ple where experiments show that the technology can become transparent and the students feel
present in ‘class’, depending on the content of the class [16].

The sensory environment is made up by the technologies used. Presence technologies include
all technologies that are used to make a user feel present in a remote environment. This involves
technologies such as mp3 players when used to listen to a spoken book, head mounted displays
used in gaming and Voice over IP to deliver voice communications over internet protocol. The
Sections 2.1.1, 2.1.2 and 2.1.3 address the content and technology factors to induce presence in
arts, gaming and video conferencing respectively.

2.1.1 Presence in Arts

The example of Knudsen’s dance performance project BOOM [18] is mentioned in Section 2.1,
which demonstrates the importance of content to induce a sense of presence. The example uses
art to induce presence rather than advanced technology. Conversely, technologies are also used to
improve the sense of presence in arts. For example, at the Coachella Music Festival the deceased
Tupac performed live on stage. This was the latest digital resurrection carried out at the time of
writing, using technology patented by Musion [19]. This technology is based on Pepper’s ghost.
Pepper’s ghost is a technique used to create the illusion of a person or object being in a location
that it is not [20].

It was used in the 1860’s in theatres to materialize people or objects in a scene [21]. The
illusion involves two rooms, a main room and a hidden room. The hidden room is not visible for
the viewers. A piece of glass is placed between the viewers and the main room. This piece of glass
shows the reflection of the hidden room. When the hidden room is dark there is no reflection
visible, then the main room is brightly lit such that it is clearly visible to the viewers. When the
hidden room is lit there is a reflection visible and the main room is dimmed slightly in order to
compensate for the extra light coming from the reflection of the hidden room. In this state the
viewers can see the main room with the reflection of the hidden room. To create the illusion of a
person or ghost or object to appear out of nowhere in the main room, there are two approaches.
The first approach is to make the hidden room as a mirrored image of the main room. Then when
the reflection of the hidden room is visible, the viewer sees only that what is additionally present
in the hidden room. The other approach is to make the hidden room entirely black with only
light-coloured objects in it. Only the objects will have a reflection in the mirror, because black
does not reflect light. The result is that viewers see people or objects appear in the main room,
when these are not physically there [20]. The more real this illusion is perceived by the viewers,
the greater their sense of presence because they are then more engaged in the spectacle. Musion
uses more advanced technology but the principle is based on the Pepper’s ghost illusion. A high
definition projector is placed above and in front of the ceiling. An high definition image or video

4

Eye Contact in Leisure Video Conferencing

stream is then projected onto a reflective surface that is placed in front of the stage. The viewers
are unable to see the reflective surface. The image is then reflected onto the Musion Eyeliner
foil, which is placed at a 45 ◦ angle across the stage. The viewers see the projected video in the
reflection of the foil. However the foil is sufficiently thin and smooth such that it is imperceptible
to the viewers. The result being that the viewers perceive what is being projected as 3D images
on stage [21]. A similar setup is used to build teleprompters, which enable a newsreader to si-
multaneously read the news and look into the camera. Teleprompter technology is also used in
video conferencing to enable eye contact between users and is discussed in Section 2.3.1. Mu-
sion Systems [19] technology create the illusion of displaying 3D holographic images on stage.
Holography and photography differ in their approach to capture an object or scene. Photogra-
phy captures the light or the electro-magnetic radiation, whereas holography captures the light
scatter coming from the object. Digitally a photographic image is stored as pixel values that re-
semble the colour and light intensity (for example the red, green and blue intensity values for
an RGB image). Holography registers the amplitude and phase of the wave fronts (J. Campos,
personal communication, May 24, 2011). Because a hologram contains light scatter information,
the appearance of the image changes when it is seen from a different perspective. This defines a
hologram as 3 dimensional (J. Campos, personal communication, May 24 ,2011). A photograph
shows the same image, regardless of the perspective of the viewer and thus is 2 dimensional.
The Musion Eyeliner systems use 3D HD images and project them as 2D HD images. Just as an
image in a mirror appears to be 3D, the images reflected by the foil appear to be 3D. Looking
at these seemingly 3D images displayed on a 3D stage, causes the viewers’ minds to create the
3D illusion [21]. The success of using Musion Eyeliner technologies lies both in the content and
the technology. The technology has been used to have deceased artists perform again, for alive
artists to perform with animated characters or for alive artists to perform in different locations in
the world at the same time [21]. The content in these examples is highly captivating and induces
presence. However, the technology used in the examples is of high quality and therefore assists
the content in inducing presence.

2.1.2 Presence in Gaming

In gaming the content of the game plays an apparent important role in the sense of presence of
the gamer. In an article named What Makes a Game Good? [22] there are many aspects described
that point to the content of the game. The story should be original, stay fresh when played
repeatedly and contain surprises. The structure should be such that at the start all players have
an equal chance of winning, the rules should be consistent and in the case that the game is not
based on chance the players should be given the ability to affect the progress of the game. The
tension caused by the game should be a balance between difficulty and skill of the player. When
the game is too difficult, the player gets frustrated and when the game is too easy the player gets
bored (S.J.R. McCallum, personal communication, October 19, 2011).

The technology factor of presence applied to gaming spans a broad field because theoretically
anything can be turned into a game and anything can be used as game inputs. Computer games
include many different types such as sports, racing, war and social games. Many games can be
played either as a single player against the game or as a multi-player game against other people.

5

Eye Contact in Leisure Video Conferencing

Many gaming devices use joysticks or button controls as inputs for the game but there are other
possibilities. In car racing games a control can be used in the shape of a steering wheel. For
shooting games a toy gun can be used as input. Nintento’s Wii uses body movements as input,
where the player holds a wireless device which can detect movements in three directions. Thus in
a tennis game the player holds the device and makes an arm movement such as one would make
when playing real tennis. This is thus closer to reality which means the player it likely to feel
more like playing real tennis than when using a number of keys or joystick as input. Microsoft
has introduced the Kinect which approaches presence even more than the Wii.

Kinect

Microsoft KinectTM [23] is equipped with an infrared (IR) projector, an IR camera and a RGB
camera. The IR projector projects a known IR light pattern at a certain depth. The objects in
the scene distort this pattern which is recorded by the IR camera. The offset of the recorded
IR pattern compared to the known pattern gives information about the depth of the objects.
In this way the foreground and background can be distinguished from each other. By deducting
sequential frames from each other, information is gathered about the motion that occurred in the
scene. The Kinect also does object recognition which means it can recognize whether there is a
person in front of the camera. The combination of these features enables the Kinect to recognize
the movement a person is making. The result is a control-free system that uses body movement
as input. On top of this the Kinect does voice recognition which means that the player can use
his voice to give commands to the Kinect. Using voice and body movement as input for the game
makes the game feel more real, thus presumably increases presence, but presence goes further.

Controlling Avatar Motion

In first person games the player experiences the game from the perspective of the avatar. The
Wii and Kinect are able to detect motions performed by the player but the avatar motion cannot
be controlled completely by the movement of the player. This is because the setting of the games
is a virtual environment which is potentially infinitely large whereas the player is in a room
with limited dimensions. An approach to let the player control the avatar motion completely is
to capture the motions of the player and apply motion compression [24]. This maps the motion
performed by the player in the limited space to the avatar motion in the infinite space and is
explained by Groenda et al [24] as follows. The player wears a head mounted display that shows
the virtual game world to the player and is equipped with four microphones and a gyroscope.
In the room there are four speakers mounted in different locations, each generating a unique
sound. This setup enables knowing where the player is located in the room and where his head
is directed to. The first step in the motion compression algorithm is path prediction. Humans
tend to look in the direction they want to go thus a target path can be predicted based on the
head motion. The target path is where the avatar in the virtual world wants to go. This path is
then mapped onto a user path in the user environment. In the mapping the distances and turning
angles are kept locally equal but the curvature is adjusted such that the user path stays within
the dimensions of the room. The last step involves guiding the player to follow this mapped user
path, which then results in the intended target path in the virtual environment. The user should
not notice that he is actually walking a different path than the avatar is walking in the game

6

Eye Contact in Leisure Video Conferencing

environment. Humans constantly adjust their direction in order to walk straight to their target.
By slightly rotating the gaze of the avatar the player automatically compensates for this rotation.
The result is that the player is walking in a curved transformed path in the user environment as
shown in Figure 1a) but the avatar follows a straight path to the target as shown in Figure 1b).
Groenda et al. [24] discuss the application of controlling avatar motion to the games Quake and
PacMan, resulting in respectively MCQuake and PaMCan.

Figure 1: Motion compression. a) The transformed target path resulting in a curved user path
in the user environment b) The corresponding target path in the virtual environment. Reprinted
with permission from “Telepresence Techniques for Controlling Avatar Motion in First Person
Games” by Groenda et al. (2005) [24].

Battlefield 3 Simulator

The Gadget Show took feeling present in gaming to a whole different level [25]. They built a
simulator for the first person shooter game Battlefield 3. Battlefield 3 uses the graphics engine
Frostbite 2, which had the best graphics and sound to date available. Moreover it uses a character
and animation technique that make the characters in the game appear as realistic as possible to
date. The Gadget Show created a simulator for the game with the intention to make the player
really feel present in the game. The game was projected in a 360 ◦ video dome provided by Igloo
Vision. The game shows a field of 180 ◦ and by tracking the direction in which the gun is pointing
that the player holds, the game is always projected in front of the player. When the player turns
around the game is projected there, leaving the player to always see the game. The dome has
limited dimensions unlike the virtual world of Battlefield 3 but instead of using a motion com-
pression algorithm they used a hardware solution namely an omni-directional treadmill designed
by MSE Weibull. For every direction at every speed, the treadmill corrects for the player motion
by moving him back to the centre. In this way the player can walk and run anywhere without
actually moving more than a certain distance and without noticing the correction. Furthermore
they used an appBlaster gun. This is a wireless toy gun with a mobile smart phone mounted on
top. The gun has two triggers where the front one is used for aiming and the rear one for shoot-
ing. The information is then sent from the mobile phone to the computer that runs the game.

7

Eye Contact in Leisure Video Conferencing

They use infrared cameras for motion detection and hacked the Kinect in order to also detect
jumping and crouching motions from the player. A pixel mapping algorithm is used to control
the lighting in the dome, which consists of 800 LEDs. Thus, the ambient lighting corresponds to
the displayed pixel values on the screen. Apart from controlling the lighting, the pixel mapping
algorithm is used to control a number of paintball guns located at different positions around
the dome. When the player is shot the screen lights up red from the blood, which is used as an
input to trigger those paintball guns located at more or less the position where the shot in the
game came from. Having the game displayed 360 ◦ around the player, with corresponding ambi-
ent lighting in the entire playing area, the ability to move around freely without limitations and
actually being shot when being shot in the game leads to a truly immersive game. The problem
with this simulator is that it is not built for mass sale and for every game lover to have at home.
The approach taken in this paper to improve presence in gaming therefore focuses on the eye
contact problem, which can reach and thus help improve gaming for a greater public.

2.1.3 Presence in Video Conferencing

In leisure video conferencing the content can be assumed to be sufficiently captivating to be
maximising the influence of the content factor on the sense of presence. Participation is voluntary
and the content is controlled by the users themselves. Therefore in the field of leisure video
conferencing the only factor that can be influenced in order to improve presence is the sensory
environment. Similar reasoning is true for work related video conferencing. Participation might
be voluntary or not but the content of the telecommunication being work related is sufficiently
engaging for a presence sensation. In video conferencing the content is not in the control of the
providers but should nevertheless be inducing presence.

The technology factor for video conferencing has evolved from telecommunication, which
started centuries ago with using smoke signals to convey information over distance. Around the
1870’s telephones were introduced, which over time evolved to mobile telephones. With the
improvement of technology the sense of presence in distance communication has improved as
well. Hearing the voice clearly of the other participant without any delay helps the sense of
presence in the communication. But presence in telecommunication did not stop there. Apart
from audio data transmittance arose the ability to send live video feed of the participants during
the conversation and video conferencing was born. Conventionally computers and internet are
used as the means for video conferencing but some smart phones like the iPhone can be used
as well. Examples of video conferencing systems that are broadly used by the public are Skype,
Google+ hangout and MSN messenger. In these systems participants can either chat with their
contacts using written text, audio only or audio and video feed. These systems can be used for
one-to-one chat or can involve more participants. In the case of more participants the video
feed of the other participants are shown next to each other on the screen. Although the sense
of presence in these systems is greatly improved with respect to regular phone calls, it is still
a different experience than actually being present in the same room as the other users. There
are more professional systems on the market that come closer to real communication between
people. Examples are TelePresence by Cisco, HALO by HP and RPX HD by Polycom [26]. These
systems support multi-user and multi-site videoconferencing setups. Users at one site sit at a

8

Eye Contact in Leisure Video Conferencing

table directed at a number of screens, each of which displaying the participants at a distant site.
Especially if the tables are matching, this can look like and feel as if all participants are sitting
at one large table, regardless of their geographic location. However there are still obstacles in
the way to a true presence sensation in communication. The first problem is not being able to
touch the distant communication partner. The next problem is that video telecommunication is
displayed in 2D while real life communication takes place in 3D. Finally there is the problem of
not being able to have eye contact in video telecommunication due to the offset position of the
camera. Providing a solution for the latter problem is the aim of this paper.

Sense of Touch

It seems impossible to be able to touch a distant person, just like it seemed impossible many
years ago to be able to see and hear a distant person live, like we can do now with video chat.
Although it is impossible to send your hand through the screen and stroke the other person, some
approaches to simulating touch over distance exist. An example is the BEAMING [27] project.
This project creates a shared virtual space for the participants who then interact as avatars. The
participant perceives the conferencing session as being in a shared virtual environment with
remote participants, however there is the possibility for users to be embodied as a physical robot
at a distant site. This enables the user to have the physical robot touch objects at the distant site
for the user. Moreover haptic technology is able to give touch feedback, in the sense of applying
force, vibration or motion as a result to particular cues in order to simulate touch for the user.
The advantage is that the avatars are able to move around freely in a shared 3D space and can
have eye contact. Moreover the aim is to add body gesture translations to the system to account
for cultural differences. The avatars will automatically adapt gestures made by the participant
it represents, to the appropriate gesture understood by the other participants. A disadvantage
of using avatars in a shared virtual space is that the look-and-feel of avatars in a virtual world
does not consort with a professional business meeting. Even out of a professional context the
question remains if people would appreciate speaking to the avatars of their friends and family
rather than their real selves.

3D Display Technology

In reality we perceive the world as 3 dimensional but most of what we display on screens is done
in 2 dimensions. However it is possible to display footage evoking the illusion of depth. This is
done by recording the scene in stereoscopic view, which means recording the same scene from
two slightly different perspectives. When displaying the views they are alternated rapidly, such
that the viewer does not notice the change of the perspective of the views but perceives depth.
Using 3D display technologies could greatly enhance the sense of presence both in gaming and
video conferencing activities, however this is not the focus of this paper. The approach used
to improve presence in this paper deals with the ability of having eye contact. 3D technology
involves the use of glasses which prevents the users from having eye contact. Therefore the use
of 3D technology is not included in the proposed solutions in this paper.

Eye Contact in Video Conferencing

A pressing problem in video conferencing is the inability to have true eye contact among partic-
ipants [1, 2, 3, 4]. In common video chat sessions the user is looking at the screen, where the

9

Eye Contact in Leisure Video Conferencing

other person is displayed, but the camera is located on top of the screen. The user is therefore
not looking straight into the camera which prevents eye contact. Moreover in multiple user video
conferencing participants are unable to tell which participant someone is looking at, causing a
gaze awareness problem. The more professional systems available on the market present differ-
ent solutions to this problem. These solutions involve hardware solutions such as see-through
displays or half-silvered mirror systems. These are able to place the camera behind the displayed
participants such that eye contact is achieved. Other solutions are based on software approaches.
Multiple camera setups are used in order to either compute images as if they were recorded from
a virtual camera placed in the centre of the screen, or to adjust the eye position taking the off-
set of the camera into account in order to simulate eye contact. These hardware and software
solutions are discussed in more detail in Section 2.3.

2.2 Body Language and Eye Contact

People use body language in communication, in fact nonverbal communication reveals more in-
formation than verbal communication [28]. According to Mehrabian [29], the pioneer researcher
in body language, only 7% of the message is conveyed strictly by words. Another 38% is influ-
enced by paralinguistic aspects, which means the tone in which things are said. An example of
this is sarcasm where one says one thing but means another, expressed by the tone in which it is
said. The remaining 55% is captured in body language.

Body Language Gestures

In ‘The Definitive Book of Body Language Pease and Pease [28] discuss the meaning of several body
language gestures. They state that people are for a large part unaware of their use and reading of
body language. Although body language can be learned and observed consciously, people acquire
body language skills by subconscious copying and learning from the people around them. This
leads to cultural differences in body language, such as the thumbs up gesture which means
‘good’ to Westerners but it means ‘up yours’ to the Greeks (and it means ‘1’ to Italians whereas
it means ‘5’ to Japanese). People do not analyze the gestures but merely copy them, knowing
how and when to use them and knowing what others around them mean when they use them.
Apart from learning body language by observing, there are also inborn and genetic gestures.
Eibl-Eibesfeldt [30] found that children that were born deaf and blind use smiling expressions
which could not have been learned or copied. Smiling is therefore an inborn gesture. People form
60% to 80% of their initial opinion about a person they meet for the first time within 4 minutes,
which is merely based on body language. Even when giving a handshake, the person who has
the upper hand and thus having the palm down is the dominant authoritative person of the two,
leaving the person with the palm up to be submissive. An equal status is manifested in equally
upright positions of the hands. The non-threatening meaning of showing the palms stems from
back in the days when weapons were normally hidden at the wrists, thus showing the palms
shows there are no weapons hidden. The ‘Heil Hitler’ gesture was a palm down gesture, showing
authority. The showing of the palms is one of many body language aspects people are unaware
of, yet use them in daily life. For example in meetings where one tries to dominate the other the
handshake is unwittingly given in a palm down fashion.

10

Eye Contact in Leisure Video Conferencing

Lying

Lies are detected by reading body language signals that contradict the words spoken by the lier.
Gestures such as covering the mouth, or touching the nose among others indicate a person might
be lying. Children cover their mouth with their hands when they lie, which is a gesture continued
in adulthood more subtly by using a finger or a position where the hand touches the face covering
the mouth slightly. When the listener covers the mouth this indicates a suspicion of the speaker
telling a lie. The brain subconsciously tries to stop the deceitful words coming out of the mouth.
A person that rubs the nose might have an itchy sensation in the nose as a defense rather than
lying being the cause. However telling a lie releases chemicals that cause tissues in the nose to
swell. This leads to an increase in blood pressure which makes the nerve endings in the nose
tingle. Moreover it physically inflates the nose, even though it is not perceivable with the naked
eye it is visible when using special imaging cameras [31]. This is known as the ‘Pinocchio Effect’.

Eye Signals

Women are better at reading body language. Magnetic Resonance Imaging (MRI) brain scans
show that women have between fourteen to sixteen areas of the brain to evaluate people’s be-
haviour whereas men have four to six [28]. This is possibly due to the natural mother role of
women to nurse babies with whom she only has nonverbal communication. Even though women
are better than men at reading body language, the difference becomes much smaller when it
comes to reading facial expressions. The face and facial expressions play an important role in
body language as it is one of the primary sources to identify emotions in people [32]. In par-
ticular the eyes are important to recognise emotions [1]. A research was conducted to measure
the accuracy in reading emotions from a person’s eyes [33]. A photograph was shown that only
revealed a thin strip of the face which included the eyes and men scored 76% and women
88% accuracy. People are in general better at decoding eye signals than body signals [28]. Eye
contact can provide information attributes as attentiveness, competence and credibility of the
speaker [5]. When a speaker engages in more eye contact, the audience perceives the speaker
as more attentive, competent and credible. Different gazing behaviour conveys social, intimacy
or power messages [28]. Social gazes remain in a triangle between the other person’s eyes and
mouth. Intimate gazing at close distance goes from the eyes to the chest and at greater distance
goes down to the groin. In the case of power gazing the gaze is directed at a triangle from the
eyes up to a point at the forehead. Subconsciously we sense the message people convey with
their gazing behaviour. Women lowering their head and looking up communicates humbleness,
because it is associated with a child’s gaze. Since children are much smaller than adults they tend
to look up. Raised eyebrows send a submissive message as well, in contrast to lowered eyebrows
which send an aggressive message. When women use make-up to their eyebrows they tend to
draw raised eyebrows which helps to provoke men’s protective feelings for her. Dilated pupils
indicate a state of excitement whereas negative stimulation causes a contraction of the pupils.
Romantic atmospheres are associated with dimly lit places, which causes pupils to dilate. This
sends the message of being interested in each other. In poker games a player’s pupils dilate when
seeing a good hand. Wearing dark glasses helps to prevent giving away the excitement about the
good cards.

11

Eye Contact in Leisure Video Conferencing

Body language is an important part of the conversation, where the eyes in particular convey
additional messages about the emotional state of the conversationalists [1]. Eye contact needs
to be established in order to be able to perceive these messages. Video conferencing in its con-
ventional setup does not allow for eye contact, due to the offset of the camera location to the
user’s point of gaze. However Grayson & Monk [2] have shown that video conferencing users
can learn to distinguish between the remote user looking at them or looking somewhere else.
Grayson & Monk make the assumption that when a user can make this distinction, the user will
interpret the image of the remote user looking down as eye contact as if it were mutual gaze
in a face-to-face conversation. Our conviction is that knowing that the person is looking at your
image does not provide the same information as eye contact. The first research question aims at
investigating the influence of enabling eye contact on a user’s sense of presence, based on the
objective raised by Knudsen [14] that increasing the sense of presence improves the quality of
the long distance communication.

2.3 Solutions for Eye Contact

The approach taken to improve presence in leisure video conferencing was enabling eye contact
because eye contact seems to provide a substantial contribution to improve presence [14]. This
section discusses existing solutions and related researches to enabling eye contact in video con-
ferencing. Hardware solutions have been around longer and existing solutions are discussed in
Section 2.3.1. Software solutions are more novel and related researches and existing solutions
are discussed in Section 2.3.2.

Enabling eye contact to improve presence is not necessarily limited to the field of video con-
ferencing. The field of gaming has focused on improving presence by improving the graphics,
improving and using different technologies as discussed in Section 2.1.2 and making the charac-
ters and avatars more realistic, but no work has been done on obtaining eye contact. A software
solution being hardware independent could be suitable for multi-player games to improve play-
ers’ sense of presence.

2.3.1 Hardware Solutions for Eye Contact

There are commercial hardware based solutions in order to obtain eye contact in telecommunica-
tion. Most of these solutions are limited to professional use of the systems by cost and portability.
The hardware used is expensive and can require a specific setup that is not practical in home
situations but are preferred to be set in a conferencing room devoted to video conferencing. A
simplistic but effective approach is to use large screens and have the user sit far away. For this
to be effective the angle between the user’s gaze and the camera location must be less than 6
seconds of arc. This is about the minimum disparity that the human eye can detect, which is
called vernier acuity [34]. If the angle is smaller than the vernier acuity, the remote user will not
notice the difference between the user looking at their image on the screen or looking straight
into the camera and thus perceive eye contact. The most common hardware solution used to
obtain eye contact while video conferencing is based on teleprompter technology. Other solutions
involve display technologies.

12

Eye Contact in Leisure Video Conferencing

Teleprompters

Teleprompters are used in newsreading. A newsreader looks straight into the camera, in front
of which text is displayed which the newsreader can read while the camera only sees the news-
reader. This is achieved by placing a display under the camera at a 90 ◦ angle and placing a beam
splitter in between with a 45 ◦ to both the camera and the display. The beam coming from the
display is reflected by the beam splitter towards the newsreader. The beam coming from the
newsreader does not get reflected and goes straight through to the camera. A half-silvered mir-
ror can be used as a beam splitter, or simply a piece of glass. The setup is visualised in Figure 2
where the newsreader sees the reflection of the display (the bottom beam in red) in the glass
and the camera sees the newsreader through the glass (the top beam in green).

Figure 2: Typical teleprompter setup. 1) Camera. 2) Display. 3) Beam splitter.
Adapted reprint from http://en.wikipedia.org/wiki/Teleprompter.

TelePresence Tech [10] offers a number of products in different sizes and quality that are
based on teleprompter technology. A camera is aligned at the eye level of the users such that
eye contact is achieved, while the image is perceived by the means of a beam splitter, just like a
teleprompter. The products can have life-sized dimensions, of which the purpose is professional
telecommunication where the product is placed in a conferencing room without being moved
around. TelePresence Tech delivers desktop products as well, where the device can be used as a
regular monitor to a computer when not being used for telepresence. The focus of the products is
professional use which means it exceeds the price range for regular consumers. The iris2iris is a
smaller desktop device that can be plugged into a computer or laptop by a USB connection [11].
This device is based on the same principle of a teleprompter and though more compact its aim is
still professional use and is also too expensive for the consumer market. An alternative solution
for consumers is the SeeEye2Eye device [13]. This is an affordable device that is a teleprompter
for webcams. It is placed over a webcam such that the user looks straight into the webcam while
seeing the reflection of the display. Although made for consumer use, the disadvantage is that
the display is rather small. Another disadvantage of teleprompter technology based solutions is
that selective eye contact is not possible. When video conferencing with multiple participants,
the user cannot have eye contact with one participant and not with the others. Looking straight
into the camera gives the perception of eye contact to all the other users.

13

Eye Contact in Leisure Video Conferencing

Display Technologies

Based on the idea of placing a camera in the user’s gaze direction, other solutions to the eye con-
tact problem use see-through display technologies. The camera sees through the display whereas
the user sees what is being displayed on the display. Shiwa and Ishibashi [35] demonstrated a
technology that can be used to create see-through screens. Switchable liquid crystal diffusers
that quickly switch between a transparent and diffuse state. When the diffusers are in a trans-
parent state, the camera captures images of the user and in the diffuse state the user sees the
images rendered by a projector on the display. Izadi et.al [36] have advanced on this technology,
introducing SecondLight. They use a switchable projection screen as an interactive surface. In
diffuse state an image can be displayed on the screen and captured by a camera. The diffuse
state enables touch detection much easier due to the light scattering property in this state. In
the transparent state images can be displayed and captured by a camera on a surface above or
in front of the screen. Object tracking can be used to find objects onto which the information is
to be displayed. Motion detection can be used to recognise hand gestures that trigger a certain
response. The state of the switchable projection screen can be altered sufficiently quickly such
that it is imperceptible to the human eye. This means that distinct images can be displayed and
recorded by camera simultaneously on a screen and on a surface above or in front of the screen.
This type of screen could be used in telecommunication such that the participants can have eye
contact. The camera is located behind the switchable projection screen and records the images in
the transparent state, whereas the users see the displayed images when the screen is in the dif-
fuse state. Another approach is to use wavelength multiplexing as done by Tan et al. [37]. In this
approach the light that is projected on the display consist of wavelengths outside the sensitivity
of the camera. Meaning the camera cannot observe these wavelengths and thus looks through
the display, whereas the user can observe the wavelengths and perceive the displayed image. Re-
genbrecht & Hoermann [38] proposed a telepresence setup using a see-through screen as well.
The images displayed on the transparent screen are known and can therefore be subtracted from
the image recorded by the camera. Thus the user perceives the displayed image on the screen
whereas the camera records through the screen which enables the participants to have eye con-
tact. This latter approach is based on image processing techniques as well as display technology.
The different solutions involving see-through screens are plausible solutions for the eye contact
problem, however the technology is too expensive for consumer use and thus not the focus of
this paper.

2.3.2 Software Solutions for Eye Contact

Common hardware that users have at their disposal is a PC with a single camera or a laptop
with an integrated web cam. A solution proposed to the eye contact problem that does not
involve more hardware than the commonly owned hardware is GazeMaster [6]. This is a software
approach that first detects the head pose of the user and segments the eyes. The eyes are replaced
by synthetic eyes and the face is texture-mapped on a head model which allows for rotation of
the head. When a user looks at the screen while the camera is located on top of the screen, the
head is tilted downwards. When one looks straight into the camera or straight into the other
user’s eyes the head is not tilted. Thus this is corrected by rotating the head model to a straight

14

Eye Contact in Leisure Video Conferencing

position. Using a general head model leads to the loss of personal features of the user, causing the
user to slightly appear as an avatar. Moreover using synthetic eyes might remove the nonverbal
content of the conversation contained in the participant’s eyes. The idea of not using additional
hardware in achieving eye contact between participants is appealing, however the tracking of
the eyes proved to be too difficult with a single camera (J. Gemmell, personal communication,
Januari 24, 2012). The system is not applicable for real time use in video conferencing.

The system proposed by Jerald & Daily [3] is a one camera system like the GazeMaster system.
Jerald & Daily argue that vertical eye contact is more important than horizontal eye contact.
Therefore the camera is placed beside the monitor, in order to have genuine vertical eye contact
and they correct for the horizontal offset. In their system the user manually sets the angular offset
for which the gaze should be corrected, by first looking at the remote user and pressing a key
followed by looking at the camera and pressing another key. The user manually selects feature
points in the eyes that are tracked and corrected when the user looks at the remote person, as
if the user was looking in the camera. The correction is done by spatial warping. This technique
is discussed in Section 2.6. The user configuration required to make the system work is not
acceptable in a final product as mentioned in their paper, but it is sufficient for research purposes
to demonstrate potential and try slight variations that give immediate feedback. The system does
not correct for the head position which means that even though the eyes look into the camera
the head is turned sideways, which looks unnatural. Both eyes have a different distance to the
camera and therefore the amount of warping is different for both eyes and must be computed
seprately.

The system proposed by Yang & Zhang [8] uses a pair of calibrated stereo cameras, one po-
sitioned on top and one below the display. The images obtained by the cameras are matched
against a template which is a personalised face model of the user. In this fashion the head pose is
tracked. Then the views of the cameras are matched, in order to match those parts of the images
that are not included in the face model. Sufficient information is now available to generate a
view as if a camera was placed in the centre of the screen, providing eye contact. The disad-
vantage of this system is the use of already calibrated cameras and a personalised face model.
Videoconferencing users already own one camera already. It would maintain the ease of use to
merely plug in an additional camera and be able to have eye contact with the remote participant.

When using two cameras at either side of the screen the disparity of the images is quite
big. The number of reliable correspondence points that can be found in these images is quite
low, which is why a personalised head model is used by Yang & Zhang to which the points are
mapped. Civit & Montserrat [12] propose a system that involves four cameras, with two cameras
at both sides of the screen. The small disparity of the optical centres of the cameras on the same
side of the screen allow for a good search of correspondences. The positioning of cameras on
opposite sides of the screen allows for correctly synthesizing the view from the virtual camera in
the centre of the screen. When using only one camera on each side of the screen some parts of
the image are not captured in the two views due to occlusion for example. The synthesized image
then contains holes. By using two camera pairs these holes are eliminated. The system includes a
camera calibration step, which means the user does not need to use already calibrated cameras.
The greatest advantage of the system is that it runs in real time, thus it can be used while

15

Eye Contact in Leisure Video Conferencing

video conferencing. However to achieve real time performance 3D lookup tables are used for
the camera pairs to generate the synthesized image, without considering temporal consistency
between frames. This results in an unpleasant fluctuation effect in the video stream.

Dumont et al. [7] proposed another multi-camera system. The setup consists of six cam-
eras arranged on a metal frame, possibly to be integrated into the monitor frame. The software
framework is similar to that of Civit & Montserrat. Based on the captured images, a view is gen-
erated such that it is rendered from the centre of the screen. The view interpolation provides
a dense depth map, due to the use of six cameras. The difference with the system proposed
by Civit & Montserrat is that the depth information is computed dynamically. Thus there is no
movement restriction nor fluctuation effect in the video stream, yet the system runs in real time.
This is because Dumont et al. do the main processing on the Graphics Processing Unit (GPU)
which has sufficient powerful computational resources to achieve real time performance. An eye
tracking module runs concurrently on the Central Processing Unit (CPU) in order to find out
where the virtual camera should be placed exactly. This is a promising system since it runs in
real time and restores eye contact between participants. The disadvantage is that it involves six
cameras, six times as many as users normally own. We would prefer a minimum of additional
hardware to the standard hardware consumers have at their disposal.

The Fraunhofer Heinrich-Hertz Institute [9] has developed a software module called the Vir-
tual Eye Contact Engine that uses two or three cameras to enable eye contact in video confer-
encing. A 3D model of the user’s head is computed, using the different views of the cameras. A
view is generated as if it was taken from where the remote participant is being displayed on the
screen, enabling eye contact. The module performs in real time and renders high quality images.
One of the objectives of the Fraunhofer Heinrich-Hertz Institute is to release a version in the
future that runs on consumer laptops [39]. Being a research institute, the development of the
products depends on financing by industry partners.

2.4 Virtual Camera View Generation

Several of the discussed software solutions in Section 2.3.2 that enable eye contact, use the ap-
proach of generating a view from a virtual camera [8, 12, 7, 9]. The virtual camera is rendered
by generating a view from the given perspective, composed of the captured views by the mul-
tiple cameras. The theoretical discussion of camera view capture is discussed in Section 2.4.1,
followed by merging multiple camera views in Section 2.4.2 and view generation from a different
perspective in Section 2.4.3.

2.4.1 Camera Capture

A real world scene to be captured by a camera is 3 dimensional, whereas the image captured
by a camera is 2 dimensional. Thus a camera maps a 3D scene to a 2D image plane which is
called a perspective transformation [40]. Figure 3 shows a basic imaging system model which
is a simplified representation of the mapping process. An object point in the 3D world scene is
denoted by (X,Y,Z) which are its coordinates in the x, y and z direction. The corresponding image
point is denoted by (x,y), where x,y is the location in the image plane to which the object point
is mapped.

16

Eye Contact in Leisure Video Conferencing

Figure 3: Basic imaging system model. Reprinted with permission from Digital Image Processing
by Pratt (2007) [40].

The object and image point are related by an address mapping which depends on the intrinsic
parameters of the camera. This means that the perspective transformation mapping is camera
specific. The matrix P holds the perspective transformation corresponding to the camera and is
called a camera matrix [41]. In mathematical form the mapping is represented as:

w̃ = Pṽ (2.1)

Where ṽ is the homogeneous vector corresponding to v which holds the coordinates of the
object point. Then w̃ is the homogeneous vector corresponding tow which holds the image point
coordinates.

For each location in the 3D scene the corresponding location in the image plane can be found.
However for each location in the image plane there are several corresponding locations in the
3D scene. This is visualised in Figure 3 where all locations along the direction of the line drawn
between the image and object point correspond to the same location in the image plane. Con-
sequentially it is impossible to extract depth information of a scene layout from a single camera
captured image. Depth information is necessary to generate a view from a different perspective
and can be extracted when using multiple cameras to capture the scene.

However before continuing to multiple camera geometry the simplified basic imaging system
model is extended to a more realistic model. In the basic imaging system model the centre of
the image plane corresponds to the centre of the world reference. In real life situations this
is generally not the case. The position of the camera is relative to the reference world and its
perspective to the scene must be taken into account. These are called extrinsic parameters [41].
Extrinsic parameters do not depend on the specific camera but on the position of the camera
with respect to the 3D scene. The new camera imaging model is shown in Figure 4.

A camera is mounted on a gimbal centre such that the gimbal is fixed but the camera can
rotate and tilt freely. The gimbal centre has an offset with respect to the reference world centre
thus its position is denoted by (Xg,Yg,Zg). Equation 2.1 is based on the basic imaging model
which merely takes the perspective transformation into account. In order to account for the offset
of the gimbal centre to the world centre a translation matrix TG is included in the expression. The

17

Eye Contact in Leisure Video Conferencing

Figure 4: Camera imaging model. Reprinted with permission from Digital Image Processing by
Pratt (2007) [40].

rotation in the horizontal direction and the tilt in the vertical direction of the camera is captured
by a rotational matrix R. Finally, the offset of the image plane centre of the camera to the gimbal
centre is contained in another translation matrix TC. This results in the expression:

w̃ = PTCRTGṽ (2.2)

2.4.2 Multiple Camera Geometry

In order to retrieve depth information from a scene multiple camera views on the scene are re-
quired. Figure 5 shows the camera imaging model for two cameras. An object point X is mapped
onto the image planes resulting in image point u for the first and image point u ′ for the second
camera. The points u and u ′ are called correspondence points.

Figure 5: Two camera imaging model. Image coordinates u and u ′ for object point X [41].

Epipolar Geometry

Hartley and Zisserman [42] explain the use of epipolar geometry to relate image views. For each
image point X for which exist a correspondence pair the epipolar geometry can be visualised as

18

Eye Contact in Leisure Video Conferencing

shown in Figure 6 where the correspondence pair is denoted by x and x’. The camera centres
are denoted by C and C’ and the line connecting the centres is called the baseline. Connecting
the camera centres and the point X results in the epipolar plane π. When capturing the scene by
cameras C and C’ the point X is mapped into the image plane of camera C resulting in x and it is
mapped into the image plane of C’ resulting in x’. The points where the image planes cross the
baseline are the epipoles. An epipole is the image in the view of one camera of the other view.
The intersection of the image planes with the epipolar plane is denoted by the epipolar lines l
and l’. The epipolar geometry holds for any pair of images that capture the same scene from a
different viewpoint and have their camera centres appear in each others’ view. It describes the
relation between two views, such that for a point x in an image view the corresponding point x’
can be geometrically derived because x’ has to lie somewhere along the epipolar line l’. When
mapping a 2D image point to a 3D scene, a point x is mapped somewhere along the line CX. The
corresponding point x’ is mapped onto the 3D scene somewhere along the line C’X. These lines
will intersect at X, which is the object point with coordinates that include depth.

Figure 6: Epipolar Geometry. Reprinted from Multiple View Geometry by Hartley and Zisserman
(2004) [42].

Fundamental Matrix

The fundamental matrix F is the algebraic representation of the epipolar geometry in the case
that the intrinsic parameters of the camera are unknown [43]. It holds the perspective of the
second image view with respect to the first image view and is defined as in Equation 2.3.

l ′ = Fx (2.3)

By applying the fundamental matrix to an image point in the first image, the corresponding
epipolar line is found. The correspondence point x’ must lie somewhere along the epipolar line
l’. The fundamental matrix includes the relative position of the camera centre with respect to the
world centre and the relative position with respect to the other camera centre. Image pixel coor-
dinates are used for its derivation. When the intrinsic camera parameters are known it is possible
to work with normalised image coordinates. The matrix used to describe the epipolar geometry

19

Eye Contact in Leisure Video Conferencing

between the image views is then the essential matrix E. In order to estimate the fundamental
matrix F a number of known correspondence points are used. Single Value Decomposition is a
technique that finds the best fit for a matrix such that the error is minimised and is used when
mapping the correspondence points using the matrix F.

Correspondence Points

A number of known correspondence points are required to determine the fundamental matrix F.
In order to obtain correspondence points in image views without applying epipolar geometry,
distinctive feature points in the images are used. Feature points are detected in the images sepa-
rately. An example of a feature detector is the Harris corner detector, which has a strong invari-
ance to rotation, scale, illumination variation and image noise [44]. The Harris corner detector
detects corners as features, based on a specific intensity structure of a local neighbourhood by
applying a local auto-correlation function on Gaussian smoothed images [45]. Other feature de-
tectors are possible such as SURF and SIFT which find distinctive features based on different
characteristics. Matching the feature points of the first image to the feature points of the sec-
ond image determines the correspondence points. For all combinations of feature points a match
strength is assigned by obtaining the cross-correlations of their image intensities. The feature
pair with the highest correlation is elected as a match [45] which defines a correspondence pair.

2.4.3 View Generation

To generate a view as if taken from a different perspective or camera position with respect to
the scene, merely one camera view is required. A 3D scene point is mapped to a 2D image point
by applying matrices containing the intrinsic and extrinsic parameters of the camera. This is
discussed in Section 2.4.1 and the obtained expression is shown in Equation 2.2. This expression
is useful for understanding how views are generated from perspectives other than that of the
capturing the camera [40]. Suppose that two views on a scene are obtained by using one camera.
Then two expressions can be defined in which the matrices P and Tc are equal because the views
were taken with the same camera. Moreover, ṽ is equal because it resembles the same object
points. R and TG describe the positioning (location and rotation) of the camera, thus these differ
for the two views which leads to different w̃ vectors.

w̃1 = PTCR1TG1ṽ (2.4a)

w̃2 = PTCR2TG2ṽ (2.4b)

Let w̃1 be the image points of the view that will be used to generate the virtual camera view.
Then Equation 2.4a can be rewritten to express ṽ in w̃1.

ṽ = [TG1]
−1[R1]

−1[P]−1w̃1 (2.5)

The expression obtained in the above Equation 2.5 can be used to replace ṽ in Equation 2.4b.

w̃2 = PTCT2TG2[TG1]
−1[R1]

−1[P]−1w̃1 (2.6)

When the intrinsic parameters (i.e. matrix P) and the extrinsic parameters (i.e. matrices TC,
TG1 and R1) for the camera capturing the scene are derived, the only unknown parameters on the

20

Eye Contact in Leisure Video Conferencing

right side of Equation 2.6 are matrices TG2 and R2. These are the matrices containing the location
and rotation of the other camera. These parameters can be selected accordingly to generate a
view at the desired perspective. Using a single camera to capture the scene it is impossible to
view parts of the scene that were not captured by the view used for the rendering of the new
perspective. When rendering the new perspective the parts of the scene that were not captured
by the camera are left out and appear as black. Therefore generating a virtual view on a scene
requires the use of multiple views, such that there is data information in the whole scene as if
taken from the virtual camera. The depth information of the scene shows which objects are to be
displayed in the generated view, if the virtual camera was placed such that an object is occluded
by another.

2.5 Eye Tracking

Eye tracking is used to find information about the interest of the viewer. The applications of the
technology are mainly to use gaze as a control device for severely disabled people or to analyze
the user attention while driving [46]. In this work eye tracking is used to locate the eyes such that
the gaze can be corrected to be directed at the camera. Eye tracking measurements can either
find the position of the eyes relative to the head or the position of the eyes in space. The latter
is also called “point of regard” [47]. There are different ways to find the point of regard when
the measurements give eye positions relative to the head. The first is to fixate a known head
position such that the eye positions coincide with the point of regard. The second is to track the
head position as well as the eye positions. Finally multiple ocular features can be measured to
disambiguate head movement from eye rotation. The approaches in eye tracking can be divided
into methods using additional hardware and computer vision image processing techniques. The
Sections 2.5.1 and 2.5.2 discuss the relevant approaches belonging to the respective groups.

2.5.1 Eye Tracking using Additional Hardware

In this section three approaches to eye tracking are discussed, each using different special hard-
ware in their method: electro-oculography, scleral contact lens with search coil and video-based
combined pupil location with corneal reflection. Oculography means methods of recording eye
position and eye movements.

Electro-OculoGraphy

In electro-oculography sensors are placed on the skin around the eyes of the viewer [47]. Electric
potential differences are then measured which differ depending on the eye movement of the
viewer. This measurement finds the eye positions relative to the head. In order to find the point
of regard the head position should also be tracked.

Scleral Contact Lens with Search Coil

The sclera and the cornea form the outer cover of the eye ball. The cornea covers the iris and
pupil and the sclera the rest. The sclera is therefore in human eyes the white of the eye. In this
approach a contact lens is worn on the eye, where the lens extends over the sclera in order to
prevent the lens from slippage [47]. A wire coil is embedded in the lens such that an alternating
current electric field can be used to determine the induction current in the coil. In other words,
by positioning the subject in an AC magnetic field, the position of the eyes and the eye move-

21

Eye Contact in Leisure Video Conferencing

ments are determined [48]. This is the most precise and most intrusive method available for eye
movement measurements.

Video-Based Combined Pupil Location with Corneal Reflection

This approach measures the relative location of the corneal reflection of a light source to the
pupil centre [47]. The light source used is usually an infra-red light source because it is invisible
to the human eye and therefore less intrusive. The light source is placed at a fixed location with
respect to the eye which causes the corneal reflection (called Purkinje reflection) to be relatively
stable. The pupil centre is in different respective locations to the reflection, depending on the
point of regard of the viewer. A calibration process captures the point of regard corresponding
to the different relative positions of the pupil centre locations and the Purkinje reflections. This
approach is able to measure the point of regard by measuring multiple ocular features (i.e.
pupil location and corneal reflection). The positional difference between pupil centre and corneal
reflection remains relatively constant with minor head movements, however the allowed head
movement is limited. Furthermore there is the need for a calibration step and due to the use of
an infra red light source the measurements cannot be carried out under daylight.

2.5.2 Eye Tracking using Computer Vision Techniques

The advantage of using image based features for eye tracking is that there is no need for addi-
tional equipment such as sensors, lenses or light sources.

Template Matching

Template matching finds the correlation between a template and fragments of the image by pass-
ing through pixel blocks in the image. The higher the correlation between template and fragment
the higher the potential of a match. This is an approach generally used in object tracking and in
the case of eye tracking images of the eye are used for the template [49]. The template consists
of different gaze directed eye images. In this approach it is possible to use a personalised tem-
plate where images of the user’s eye gaze are used as a template. The advantage of this method
is that it is easy to implement. However template matching is not robust against variations in
illumination, scale, pose and shape. If the eyes in the image are in the shadow, small because
the person is far away, rotated because the head is tilted or squeezed together, the performance
decreases considerably and eyes might not be detected at all.

Model Based

In model based eye tracking a model is defined for the eyes which is then used as a template.
Circles or ellipses can represent the pupil or the limbus (i.e. the border between the iris and
the sclera which is the white of the eye) [50]. Parameters of the model can then be iteratively
adjusted in order to fit the contour of the circle or ellipse better. A model can describe a circle
and a coarse-to-fine gradient which represents the limbus, iris and pupil [51]. Geometrical shapes
can be defined and serve as models for other facial features in order to find the eyes such as two
parabolas modeling the eye lids [52]. Model based tracking is computationally expensive.

Feature Based

Feature based methods use the characteristic features of the eyes such as color, edges, and inten-
sity distributions and gradients to locate the eyes [53]. In this approach a threshold is needed

22

Eye Contact in Leisure Video Conferencing

to decide whether a feature is present or absent in the image, which is generally left as a free
parameter to be adjusted by the user [50]. This method can be combined with the use of in-
fra red light sources to extract the pupil contour based on the intensity distribution [50]. Scale
Invariant Feature Tracking (SIFT) [54] is an algorithm that locates points of interest in the im-
age invariant to scale, rotation, change in illumination and noise. To increase robustness against
these variations SIFT can be used to find the features to be used to track the eyes.

Haar-like features can be used for face detection [55]. A classifier is trained with positive
samples (images with faces) and negative samples (images without faces). Distinctive features
are extracted that describe faces. Applying the classifier to a region of interest of an image,
discovers whether it is likely that there is a face in the region of interest in the image and where.
The algorithm can be used to detect eyes in an image. The positive samples used to train the
classifier are then eye images. Figure 7 shows an image that Zhou et al. [56] use to visualise
the similarity of three Haar-like features to the structure of the eye. Applying Haar-like feature
based face detection first sets the boundaries of the region of interest in an image for the Haar-
like feature based eye detection.

Figure 7: Comparison of Haar-like features and eye image. Reprinted with permission
from “Haar-like Features Based Eye Detection Algorithm and Its Implementation on TI
TMS320DM6446 Platform” by zhou et al. (2009) [56].

Appearance Methods

This method is based on the appearance of the image and uses machine learning to detect eyes.
A classifier is trained by a large amount of training data consisting of images of eyes, in order to
‘recognize’ eyes in input images. The images used for training include eyes of different people,
faces in different orientations and different illumination conditions. A neural network or the
Support Vector Machine is used as a classifier [53]. In this approach an image is represented
as a point in a high-dimensional space, thus an image can be considered as a n-component
vector [57]. An example of this is discussed by Pentland et al [58] which is based on Principal
Component Analysis. The images used for training are decomposed into principal components
called “Eigeneyes”. The eigeneyes of the training set images form the orthogonal basis vectors of
the “Eyespace” subspace [49]. The eigeneyes of a query image is compared to the eyespace in

23

Eye Contact in Leisure Video Conferencing

order to locate eyes in the query image.

2.6 Gaze Correction

When the location of the eyes is known, image processing techniques can be used to correct
the user gaze. The software approach to enable eye contact in video conferencing proposed by
Jerald & Daily [3] discussed in Section 2.3.2 uses a technique called spatial warping. The tracked
eye feature points are warped onto the feature points of the eyes looking into the camera. In
this work a Gaussian blend is used as the image processing technique to correct the gaze. The
techniques are discussed in more detail.

Spatial Warping

Spatial warping is a technique used to map pixels in a source image to different pixel locations
in the target image. The following explanation of the technique is based on the explanation pro-
vided by Pratt [40]. Mapping pixels to different locations is an address mapping that is denoted
as shown in Equation 2.7.

x = X(u, v) , y = Y(u, v) (2.7)

The input location of the pixel u,v is mapped by function X to obtain the x-location in the
target image and by a function Y to obtain the y-location in the target image. In the case of
mapping the pixels of the captured eye gaze to the desired pixel locations of an eye gaze directed
at the camera, the mapping functions are unknown and must be estimated. To estimate the
mapping functions a set of known data points and control points are used. Known data points are
the u,v locations of a number of pixels in the source image that are to be mapped to different
locations in the target image. The x,y locations to which the known data points are mapped
are the control points. Linear address mapping functions are easily extracted however in spatial
warping and in the case of eye gaze correction the address mappings are higher order mappings.
Representing the mappings between the known data points and the control points in matrix form
enables the application of the Single Value Decomposition technique. This technique finds the
best fitting coordinates for the mapping functions X and Y such that the error is minimised for all
known data point - control point pair mappings. The process of spatial warping is visualised in
Figure 8. For a number of known data points in the source image, the control point locations are
found in the destination image. The address mapping functions are derived. Then the address
mappings are applied to all pixels in the source image, resulting in the warped image.

With respect to eye gaze correction in videoconferencing, warping is applied solely on the
eye pixels. In the video stream eye features are detected and tracked which are the known data
points in the source image. In the calibration process the user looks straight into the camera and
the same eye features are detected which are the control points. The mapping functions from the
eye feature locations from the known data points to the control points are established. Then all
pixels that the eye includes are mapped using these mapping functions. The result is an image
where the user’s head position and pose is the same as the captured video stream but the eyes
are warped such that the eyes are directed straight at the camera. Note that the control points
remain stable but the user can move his or her head and therefore the known data points can

24

Eye Contact in Leisure Video Conferencing

(a) Known data points (b) Control Points (c) Warped Image

Figure 8: The process of spatial warping. For a number of known data points in the source image,
the control point locations are found in the destination image. Address mappings are applied to
all pixels in the source image, resulting in the warped image. Reprinted with permission from
Digital Image Processing by Pratt (2007) [40].

have different locations which means the mapping functions can be different. Thus every frame
the mapping functions should be calculated and the eyes warped. However a video conferencing
user tends to have a quite stable gaze. Therefore in order to reduce computation time, the frame
difference between subsequent frames can be taken first. If the frames differ in more than one
pixel per tracked point then the mapping functions should be derived. If the frames differ in at
most one pixel per tracked point then the mapping of the previous frame can be reused. This
approach was used by Jerald & Daily [3] because they argue that a user does not notice a single
pixel change. Moreover more than 50% of the frames differed by at most 1 pixel per tracked
point which means this approach greatly improves performance of the system.

Blending

In image processing blending can be used to smoothen an edge transition. For example if there is
a sharp edge between a light area and a dark area and this transition is desired to be smooth, then
blending can be used. The pixel intensity values of the light area are mixed with the intensity
values of the dark area along the edge in a certain ratio. A possibility is to use 50% of the
light pixel intensity and 50% of the dark pixel intensity value. In this work blending is used to
smoothen the transition from the template eye pixels to the current frame pixels. The template
eyes are captured at the start of the session and are static, whereas the current frames can have
changes in illumination. In order to make the overlaying of the template eyes obscure, blending
is used. Not only the edges of the template eyes are blended with the current frame image, but all
overlaying eye pixels are blended. In the centre of the eyes are the pupils and thus in the centre
of the eyes the template eye pixels should have higher priority. At the edges of the template eyes
the pixels should be closer to the current frame pixels in order to make the transition obscure.
A Gaussian blending function was applied in calculating the pixel values of the gaze corrected
image. The Gaussian function describes a symmetrical bell-shaped curve and the mathematical
expression is shown in Equation 2.8 [59]. The A defines the height, µ defines the centre of the
curve, σ defines the width of the curve and e ≈ 2.7183 which is Euler’s number. The curve is

25

Eye Contact in Leisure Video Conferencing

shown in Figure 9 with values A = 1, µ = 0 and σ = 1.

y = Ae−
(x−µ)2

2σ2 (2.8)

Figure 9: The symmetrical bell-shaped curve of a Gaussian function.

26

Eye Contact in Leisure Video Conferencing

3 Methodology

This chapter describes the methodologies used for the proposed solutions to provide eye contact
while video conferencing. Two solutions were proposed. The first solution is a software based
solution based on image processing techniques described in Section 3.1. The second solution
is a hardware based solution based on teleprompter technology described in Section 3.2. The
performance of the solutions were determined by conducting user experience testing to measure
users’ sense of presence. Section 3.3 discusses several presence measurement approaches and
the adopted approach in this work.

3.1 Software Solution

The software approach to enabling eye contact between video conferencing users consists of a
program that detects the user’s eyes and replaces them with template eyes. The source code
can be found in Appendix E. An illustration of the program is given by a captured frame shown
in Figure 10. The template eyes are obtained by having the user look straight into the camera
and press a key, such that the frame is captured and the eyes are extracted. It is desirable for
the program to be entirely automatic and unobtrusive for the user. However the thesis is time
limited and therefore trade-offs must be made. The emphasis was placed on the replacement of
the eyes since this is what enables eye contact, which is the topic of the thesis. The other parts of
the program must function well enough to demonstrate the potential of the eye replacement and
test the performance, however there was not sufficient time to perfect all parts of the program.
The program is a continuation and extension to the Real Time Eye Tracking and Blink Detection
with OpenCV software, provided by Nash Ruddin [60].

The aim is to obtain eye contact while video conferencing, thus the (gaze-corrected) pro-
cessed images need to be transmitted over a network and received at another end. Video confer-
encing tools such as Skype can capture, send and receive images from a webcam between users.
However they do not allow access and manipulation of the image data after it is captured by
a webcam. Eye gaze correction is performed by altering the eye pixels. Therefore a networking
application was developed by Jayson Mackie research assistant for the Game Technology Group
at Gjøvik University College that allows image manipulation before sending it over the network.
The architecture of the software as a whole is generally discussed in Section 3.1.1. The gaze
correction functionality is the main concern of the presented work and is therefore discussed in
more detail in Section 3.1.2.

3.1.1 Program Architecture

The software architecture is shown in Figure 11, which exhibits the program flow from capturing
an image by webcam to displaying the processed image. The components above the dotted line
take place at one user’s end and the components below the dotted line take place at another user’s
end. The process displayed in Figure 11 is one-directional. In video conferencing the process is

27

Eye Contact in Leisure Video Conferencing

Figure 10: The software solution. A screen capture of the video stream. Left top shows the un-
corrected frame. Right top shows the corrected frame. Left bottom shows the captured eyes used
as template eyes to overlay on the current video frame. Right bottom shows the uncorrected
current frame, with augmented green rectangles (inner rectangles) to indicate the eyes and aug-
mented red rectangles (outer rectangles) to indicate the search window. The receiving party
solely receives the corrected frame displayed at the right top.

bi-directional thus the same program flow occurs vice versa as well.
Images are captured by a webcam after which they are placed into a queue. The local pro-

cessing component refers to the image processing applied to correct the eyes. The processed
images are stored in another queue, after which they are send to the network. These images
are received by the remote participant. The received images are stored in a queue and are then
displayed. In order for the software solution to be applicable to video conferencing, the program
is restricted to run in real time. The combination of storing images in queues and using parallel
programming speeds up the processing and aids to meet the requirement to run in real time.
The following subsections address the topics parallel programming, queues and networking. The
gaze correction functionality of the program is discussed more in depth in Section 3.1.2.

Parallel Programming

Conventionally programs are written in a sequential manner, such that statements are executed
one after another. The central processing unit (CPU) is where the processing takes place. The tra-
ditional approach to make computers faster was to increase the processing speed of the CPU [61].
The CPU performs a number of operations, which include arithmetic computations and transi-
tioning to different parts of the program. A statement in a program tells the CPU with which

28

Eye Contact in Leisure Video Conferencing

Figure 11: Program architecture. The one-directional program flow between user A and user B.
Components above the dotted line take place at user A’s end. Components below the dotted line
take place at user B’s end. Images are captured by user A’s webcam. The images are stored in a
queue. Image processing is applied to correct user A’s eye gaze. The corrected images are stored
in another queue and then send to the network. User B receives the processed images, which are
stored in a queue. The images are then displayed to user B.

arguments it needs to perform which operation. The CPU consists of transistors, which are semi-
conductor devices able to switch and amplify electrical current [62]. The transistors that make
up the CPU and together perform the operations, are thus connected by electricity. Electricity
propels at a set speed, thus in order to increase the processing speed of the CPU the distance be-
tween the transistors was reduced. The maximum processing speed of the CPU has been reached
because the transistors are positioned at a minimal distance to each other. Reducing the distance
more would disrupt the electrical current. Therefore the approach taken to make computers
faster is parallel programming. Parallel programming processes parts of the program in paral-
lel rather than in sequence. This is done by using more than one processing unit. Multi-core
systems contain a single chip with multiple processing units, which are called cores. Multi-CPU
systems contain multiple chips, which each have one or multiple processing units (i.e. cores)
integrated [63]. The processing units need to communicate with each other, because different
threads can employ the same memory resource. The communication between processing units
costs time. Therefore using multiple cores on the same chip rather than multiple processing chips
with one core is faster because the distance between the units is smaller.

Traditionally a program is send to the CPU for processing as a whole, where the operating
system (OS) divides it down into indivisible units of processing called threads [63]. These units
of processing consist of code statements that cannot be split up and must be processed together.
The code statements within one thread are processed sequentially in the order given. However,
when the CPU is processing a thread and it awaits a response of network or hard drive access,
it can start processing statements of different threads. The CPU can process one statement at
a time, but the order in which threads are processed depends on how the OS schedules the
processing. Not restricting the CPU to start processing another thread when one thread has been
processed completely, prevents the CPU from being in an idle state when it needs to await a
callback. However, different threads can require reading or writing access to the same memory
resource. In the reading case this does not cause any conflict. However when different threads
use and change the values in the same memory resource, ‘mutexes’ are used [64]. Mutex stands

29

Eye Contact in Leisure Video Conferencing

for mutual exclusion. When two threads share a mutex, then when one opens access to a shared
memory resource, the memory resource is locked for the other thread. It remains locked until
the thread that initiated access to the memory, no longer employs the resource. This is called
thread synchronization and is the communication that is necessary to be able to process multiple
threads on one core simultaneously. When using one core for processing the operating system
handles the threading and thread synchronization. However using one core for processing, code
cannot be processed truly in parallel because one core can process merely one statement at the
time. In parallel programming multiple cores are used for processing. The programmer becomes
responsible for dividing the program into threads that can be processed in parallel and assigning
mutexes. The operating system handles which thread is processed by which core in order to
achieve maximum efficiency.

The application programming interface (API) that is used to influence the threading in the
provided software program is the widely used POSIX threads or Pthreads in short [64]. Pthreads
are used to create, join and detach threads. A created thread can be given attributes such as
whether or not it can be joined with other threads. Furthermore the API includes functionality
to deal with synchronization. Threads can be assigned to share a mutex. Two threads that share
a mutex cannot access the same memory location at the same time. This communication is
accomplished by condition variables that signal when the memory location is occupied, which
implies other threads are denied access [65].

The software solution provided to enable eye contact makes use of parallel programming
and is divided into 6 threads. Figure 12 shows the one-directional program flow as shown in
Figure 11 and the threads in which the program is divided. The tasks of the separate threads are:

1. The main function which includes camera capture, image processing and displaying the
image.

2. Placing captured images into a circular queue.

3. Placing processed images into a circular queue.

4. Sending images to the network.

5. Receiving the images from the network.

6. Placing received images into a circular queue.

The queues in which the images are placed, prevent the program to slow down due to mu-
texes. Conflicting changes should not be applied to the same memory location at the same time,
therefore memory that is being accessed by a thread is locked for other threads. When images
are not placed into queues, the threads are paused until the memory access is unlocked. This
means that the camera capture or image processing is paused until the previous image has been
send to the network. By placing the images into queues, the mutex is placed on the queue. Thus
the image processing of the next image can continue, while the previous image awaits its turn to
be send to the network. Different data structures can be used as queues.

30

Eye Contact in Leisure Video Conferencing

Figure 12: Program architecture of the program divided into 6 threads. One-directional program
flow between user A and user B. The numbers indicate the thread number the component belongs
to. The letter indicates the user’s end on which the process occurs. 1: main function including
image capture, image processing and image display. 2: captured image is placed in a circular
queue. 3: processed image is placed in a circular queue. 4: processed image is sent to the network.
5: processed image is received from the network. 6: processed image is placed in a circular queue.

Queues

A queue is a data structure whose name and structure are analogous to a queue in the physical
world. Data is stored in a ‘first in first out’ manner [66]. Each new image joins the queue at the
end and leaves the queue when all the images in the queue in front have been taken out of the
queue. In this way the order of the images is preserved, preventing the video stream to display
nonconsecutive image frames.

A straightforward way to build a queue is linear, like in the physical world. In a linear queue
the data can be arranged in an array, such that the front elements are removed and new elements
are added at the end. The problem with an array is that it uses sequential memory locations. Con-
sidering that a video conferencing session can take longer periods of time, requiring a big chunk
of sequential memory is not optimal. Therefore linked lists can be used. Linked list preserve the
order in which images are added to the list, by pointing towards the memory location of a next or
a previous element [66]. The elements are not physically stored in sequential memory, but stored
wherever there is free memory available. Although linked lists use free memory more efficiently
than arrays, it will still use up all the free memory after a period of time.

A solution to conserve a set chunk of memory that is allocated to the queue, is to use a circular
queue. A circular queue is represented as a circle, such that when the last position in the circle is
occupied a new element is added to the first position [67]. A visualization of a circular queue is
shown in Figure 13.

A circular queue never exceeds the initial number of locations allocated to the queue. Physi-
cally the queue still has the shape of a linear array, but the theoretical shape of a circle is obtained
by the means of pointers [67]. This is shown in Figure 14. There is a pointer that points to the
start of the data, one that points to the end of the data and one that indicates the last position of
the array, after which the next element should be added to the first position in the array. When
the start and end pointers both point to the same element, this can mean the array is either
entirely empty or entirely full. This ambiguity can be resolved in several ways, of which one

31

Eye Contact in Leisure Video Conferencing

Figure 13: Visualization of circular queues. a) Insert four elements b) Insert two more elements
at the end and remove an element from the start c) When the elements reach the end of the
circle, new elements are inserted at the first positions of the circle d)When the circle is full,
adding a new element will overwrite the oldest element in the queue.

example is to have the restriction to always keep one space open. One should be cautious about
the characteristics of circular queues. When all possible positions in the array are occupied and
a new element is to be added, the element will overwrite an older element in the queue.

In the provided software program circular queues are chosen as the data structure to store
the images. The size of the circular queue is set to 2. If two images were stored in the queue
and another image is added before an image is taken out, a frame is skipped when displaying
the image frames. However the program runs sufficiently fast such that in practice the size of the
queue does not exceed 1. Recall that the queues are used for mutexing threads, such that locked
memory resources do not slow the program down.

Figure 14: Circular queues structured as arrays, defined as circular by the means of pointers. a)
Insert new elements at the end and remove from the beginning b) When the end pointer points
to the last position of the array, insert new element at the first position of the array.

Networking

The gaze correction software is developed to be applied in video conferencing sessions, such
that the users can perceive eye contact. Video conferencing is used to be able to communicate

32

Eye Contact in Leisure Video Conferencing

over distance. The devices used for the video conferencing sessions must be connected to each
other to be able to send and receive data over distance. This connection is established by a
network such as the widely used internet. A network application consists of a client side which
initiates the communication process, and a server side which responds to an incoming client
request [68]. A standard method for computer process communications is using sockets. A socket
is a communication connection point that holds an IP address, a port number and defines which
transport protocol is used [68].

On the server side a socket is created that holds the IP address belonging to the server device,
and the port number used for the communication. The server socket has an open connection
to the network and waits for a request to connect from a client socket. On the client side of
the network a socket is created with the port number and IP address of the server it wants to
connect to. A request to connect to that specific server is send over the network. The listening
server socket receives a request to connect and determines that the IP address matches its own.
The connection between the client and the server is now established. The client sends data to
the server, which is then read by the server. In return the server sends data to the client (the
echo) which the client reads. Either the client or the server can send a wish to terminate the
connection, which is then acknowledges by the other connection endpoint. When both ends
have sent a termination and acknowledgment message, the connection is aborted.

Sockets define which transport protocol is followed for sending the data over the network.
A protocol is a set of rules used to exchange data. There are a number of different protocols
available, one of which is the widely used internet protocol (IP). The data that is send over the
network (i.e. internet) is generally too large to be send as a whole. The protocol divides the data
into separate packets. A packet consists of a header and a payload. The header holds the source
IP address, the destination IP address and other metadata. The payload holds the data that is to
be transmitted [69]. The IP is responsible for locating the destination IP address and for routing
the packets across the network. The packets are sent separately and thus can follow different
routes in the network. This implies that packets can arrive in a different order than they were
sent. Moreover packets can get corrupted, lost or delivered at the wrong IP address. To ensure
reliable and ordered delivery of a data stream the Transmission Control Protocol is used [70].

The Transmission Control Protocol (TCP) requires an acknowledgment of reception for each
packet that is sent, within a timer value [68]. If the timer expires before the good reception
has been acknowledged, the TCP retransmits the packet. Finally the TCP is responsible for as-
sembling all the packets in the correct order. Using TCP guarantees accurate delivery, however
due to having to retransmit packets at times the delivery can be delayed by some seconds. Other
protocols such as User Datagram Protocol (UDP) prioritize real-time delivery over accuracy [70].

The provided software program uses sockets, TCP and a local area network. On both ends
of the video conferencing session there is a client socket and a server socket opened. The client
socket requests a connection. When the IP address and port number of the client matches those
that the server is waiting for, and the client is searching for the IP address and port number
of that server socket, the connection is established. The server socket responds by sending the
processed images to the client. The participants both receive the other participant’s processed
images. The IP address and port number of the remote participant’s server socket are manually

33

Eye Contact in Leisure Video Conferencing

given as a command argument when executing the program.

3.1.2 Gaze Correction Functionality

The gaze correction functionality is contained in a class, such that for each captured camera
frame an eye correcting method is called. The functionality consists of different parts which are
discussed in chronological order, namely eye detection, eye tracking, template capture and gaze
correction.

Eye Detection

At the start of the program users can see the live video stream of each other. This is equivalent
to the conventional leisure video conferencing systems such as Skype. The first step is to locate
the eyes of the users for which blink detection is used. Motion analysis techniques are used to
detect blinking activity. The program keeps track of the difference between the current frame
and the previous frame. The difference between the frames is stored in a difference image which
is then thresholded. The resulting binary difference image is evaluated. If it contains exactly two
connected components that are of approximately the same size (i.e. similar height and width),
that have a small vertical distance and the horizontal distance between the components is rea-
sonable in comparison to the components’ widths then the connected components are assumed
to be a pair of eyes. The eyes are defined as rectangles where the centres of the rectangles are the
centres of the connected components. The width and height of the rectangles are hard coded,
selected by testing out different sizes. The eye rectangles contain the location of the eyes within
the frame.

The Real Time Eye Tracking and Blink Detection with OpenCV software provided by Nash
Ruddin [60] provided a set of rules to determine whether the connected components are eyes
or not. The rules were extended by restraining the position of the components; the connected
components are not eyes if their position is at the far top or far bottom of the screen. This
is inspired by the observation that video conferencing users tend to place their entire face in
the image. This additional restriction decreases the false positives but can increase the false
negatives. The position thresholds were chosen in an experimental approach by trying different
values and evaluating the results, such that the performance was optimized. Thus the connected
components in the difference image resulted from the eyes moving (i.e. blinking) where all
other parts of the image were kept still. The difference image contains noise which is reduced by
applying a convolution kernel which performs an opening morphological operation. The opening
operation smooths the object contours of the components, breaks narrow connections between
parts and eliminates small fragments [71]. Detecting the blinking of the eyes thus requires no
movement except for the eye blinking motion, which is a limitation. However in leisure video
conferencing situations users do not tend to move much, except for the lips when speaking and
blinking out of reflection. Thus being still at the initialization stage is a reasonable requirement
because blink detection to locate the eyes has the advantage that it is automated. The first round
of experiments showed that having the blink detection as the single possibility to locate the eyes
was an issue at times. With some participants the eyes were located correctly only after a couple
of tries, which creates a feeling of annoyance. The program was extended with a non-automated
approach to locate the eyes as a back-up if the blink detection failed. Users can manually click

34

Eye Contact in Leisure Video Conferencing

on the eye centres in the calibration stage, the clicked points will then be used as the location of
the eye centres.

A different approach was considered namely Haar-like feature based eye detection, discussed
in Section 2.5.2. The computer vision library OpenCv that was used for the implementation of
this project, comes with Haar Cascade Classifiers. A Haar cascade classifier is a large number of
Haar features together to form a stronger classifier. However in the presented implementation
blink detection is not merely used for eye detection but also used to determine whether the
gaze correction should be applied to the current frame. When the user blinks, the original frame
image with closed is displayed. Due to the multiple use of blink detection, the choice was made
to avoid the additional implementation of Haar-like feature based eye detection and simply use
blink detection to detect the eyes. This choice was justified by the conviction that the performance
of Haar-like feature based eye detection and blink detection would be analogous with respect to
efficiency and accuracy.

Eye Tracking

After initially establishing the eye locations, the eye positions need to be tracked such that when
the user moves his head the eye locations are updated to the current locations. The eye tracking
method used was template matching. When the eyes are initially located, the images within
the rectangles that define the boundaries of the pixels describing the eyes are stored and used
as the templates for template matching. There is a short delay because at the time the user
blinks the eyes are closed. A search window is defined around the eye rectangles and relative
to the size of the eye rectangles, which are displayed as red rectangles. The search window
defines the image to which template matching is applied with the stored templates. Template
matching is performed by calling the OpenCV function cvMatchTemplate. This fuction takes a
grayscale image and a grayscale template image and for each position of the template in the
image it calculates the correlation based on pixel values. The output is a result image, which is a
grayscale image where the lighter the intensity the higher the correlation. Thus this means that
when a template image of an object is given, the result image shows the likelihood of the object
appearing in the image and where. The index of the result image with the highest value indicates
that placing the eye template at that location in the search window, gives the highest correlation.
This means that the eyes will have moved to that location. Thus the best match returned by
template matching gives the updated eye locations. The templates used as eye templates for
the tracking are not updated during the tracking. Only when the eyes are lost and the eyes are
localized afresh, the eyes at the time of the renewed capture will be used as templates.

The Ruddin’s blink detection software [60] included eye tracking by template matching. How-
ever the eye tracking was improved and extended. The eye locations are only updated if the
value of the best match returned is above a threshold. In the original blink detection software
the threshold was hard coded, in the adjustments of the program the threshold depends on the
first template match executed by the program. This was done to account for different quality
cameras when running the program. The different qualities will result in different values for
template matching. By making the threshold relative to the first match, the performance does
not depend on the quality of the camera. The first match can be used to establish the threshold
because the user can be assumed not to have moved in the time frame between localizing the

35

Eye Contact in Leisure Video Conferencing

eyes and performing the first template match. Thus the first template match can be considered
a perfect match and the threshold is set to half the value of the first match. Moreover the blink
detection software merely included one eye, which was extended to including the other eye. By
including the other eye in the detection and tracking, the restriction could be added that the
right eye can only be located at specific locations in the image. When requirements are not met,
it can be assumed that the eyes are lost and the program resets. Then the eyes will have to be
localized afresh. This was not included in the original blink detection software.

Alternative eye tracking software were examined. Opengaze is an open source gaze tracker
for ordinary webcams [72], however it requires a Linux system and was therefore not suitable
for this project. OpenEyes is an open source toolkit for eye tracking [73]. They provide Matlab
eye tracking software that operate in combination with infrared or visible spectrum illumination.
The requirement of additional hardware is a drawback of these software, as the aim is to merely
use hardware users already own. The toolkit includes another eye tracker which makes use
of two cameras, where a firewire camera is used to monitor the eye and a second camera is
used to provide a frame of reference. The specific use of firewire cameras together with the
requirement of an additional camera limit the generality of the tracker. TrackEye [49] is another
open source eye tracker. The TrackEye implementation starts with a face detection. The face
detection is either carried out by a continuously adaptive means-shift algorithm or by Haar face
detection method. The continuously adaptive mean shift algorithm is based on climbing density
gradients, which is not discussed in this work. The Haar face detection method is based on
Haar-like feature detection explained in Section 2.5.2. The next step is eye detection, either by
template matching like in the presented implementation or by adaptive eigeneye method which
is an appearance method discussed in Section 2.5.2. Although openly online available there were
issues with using the TrackEye software. TrackEye was built with Microsoft Visual C++ 6.0 and
OpenCV b3.1 version. These are out-dated and in order make it compatible with Microsoft Visual
Studio 2010 and the to date latest version OpenCv 2.4.0. the software would require a lot of time
intensive modifications. Other open eye trackers found were SSIP2009 [74] and iGaze [75],
which was written in C# using the EMGU library, but due to lack of programming experience
the author was not able to get them to compile and run. Moreover with an eye on the future the
author preferred to learn C++ over C# and OpenCV over EMGU as they are widely used with
many applications. Before the start of the project the author was merely familiar with Matlab
programming, therefore the choice was made to start from the simpler open source eye tracker
blink detection which the author was capable of modifying to get it working. In this manner the
author was able to learn to program in C++, learn to work with the OpenCV library and learn to
use Microsoft Visual Studio 2010. The eye tracker provided by the blink detection was improved
and performed sufficiently to demonstrate the potential of the gaze correction software.

Template capture

Now that the eyes are being tracked and thus their location is known in each frame, the template
eyes are captured. These template eyes differ from the eye images used for template matching
to track the eyes. The eye tracking template eyes are extracted automatically after the initial
eye location establishment. The template eyes that are captured here will be used for the gaze
correction in the next step. The user is required to look into the camera and press the ’t’ key.

36

Eye Contact in Leisure Video Conferencing

The image of the user looking into the camera is stored as a still frame image, from which the
rectangles representing the eyes are extracted. The extracted eyes are stored as templates for the
left and right eye and will be used for the gaze correction.

An attempt was made to restrict the gaze correction to only being applied when the user
actually looks at the image of the remote user. The approach used was to capture 5 additional
templates of the eyes, of the user looking at different locations on the screen. The 5 templates
were captured by pressing the keys ’1’, ’2’, ’3’, ’4’ and ’5’ which captured templates of the eyes
looking at the left top of the screen, the right top, the centre, the left bottom and the right
bottom respectively. These templates were used to estimate which part of the screen the user
was looking at. When the calibration process had been completed, the current frame eyes were
compared to the 5 template eyes by the means of template matching. If the best match would
be with the template eyes looking at the centre, then the gaze would be corrected and otherwise
the original frame image would be displayed. The attempt failed due to the inaccuracy of the eye
tracker. The current frame eye images differed from the template eye images not only by the eyes
being focused on different screen locations, but also because the eye centres did not correspond
exactly. One eye image could include the entire eyebrow whereas another could exclude the
entire eyebrow, due to the eye tracker returning relatively differing eye centres. However when
the eye tracker is improved, this approach could be included to apply gaze correction solely
when the user looks at the image of the remote user. Another variation to this approach would
be to only use template eyes of the user looking at the displayed image of the remote user. When
template matching returns a value above a certain threshold the gaze correction is applied, if
it is below the threshold the original unprocessed image is displayed. The threshold should be
determined by testing different thresholds and evaluate the performance.

Gaze Correction

The gaze of the user is corrected by Gaussian blending the current frame eyes with the tem-
plate eyes of the user looking into the camera. The first approach tried was by merely using the
template eyes instead of the current frame eyes in the current frame image. This resulted in an
unnatural looking image, because there was a sharp transition at the edges of the rectangles
defining the eyes. Next a linear blend was attempted. At the centre of the eye rectangles merely
pixels from the template eyes were displayed. At the edges of the rectangles merely pixels of the
current frame eyes were displayed. In between the centre of the rectangle and the outer edges, a
mixture between pixels of the template eyes and the current frame eyes was used. This mixture
was defined by giving weights to the template eye pixels and the current frame eye pixels that
for corresponding indexes added up to 1. The intensity value of the pixels were multiplied with
the weight. When for an index both the template and current frame eye had a weight of 0.5 then
the pixel in the resulting image consisted for 50% of the template eye pixel value and 50% of the
current frame eye pixel value. The weights depended on the distance from the centre, the further
away the smaller the weights of the current frame eye pixels and vice versa for the template eye
pixels. Using a linear blend was an improvement to merely using the template eyes, however the
result was not satisfactory yet. The linear blend was adjusted to a Gaussian blend.

Enabling eye contact by using pixels of the template eyes is a trade off with conservation of
expression in the current frame eyes. In order to maximize conservation of expression in the

37

Eye Contact in Leisure Video Conferencing

(a) Gaussian curve with flatted top (b) Gaussian curve tilted to visualise shape of the eye

Figure 15: 2D Gaussian curve with flatted top

eyes of the current frame image a Gaussian blend was used. The Gaussian blend uses a greater
amount of template eye pixels in the area of the pupil and a greater amount of current frame
eye pixels in the outer areas of the eyes with respect to a linear blend. The Gaussian function is
discussed in Section 2.6. The template eyes are 2 dimensional and therefore the expression in
Equation 2.8 is adjusted to a 2D Gaussian function, which is the expression given in Equation 3.1.

f(x, y) = Ae−
(
√
x2+y2−µ)2

2σ2 (3.1)

Figure 15 displays the shape of the 2D Gaussian curve with flatted top with the values A = 1,
µ = 3.2 and σ = 2.5 which was used as the blending function to blend the template eye pixels
with the current frame pixels. The figure is rotated to visualise that the curve has the shape of
an eye. Values of the Gaussian curve were stored in a 2D matrix of the same size as the eye
rectangles. Each value is a number between 0 and 1 defining the weight of the template eye
pixels. The values of the weights of the current frame eye pixels is obtained by subtracting the
Gaussian value in the matrix from 1. The flatted top consists of a number of centre eye pixels
with the value 1. This ensures that the centre of the eyes consist of pixel values of the template
eyes only. This ensures that the perceived gaze direction after processing is to the camera. The
values further away from the centre quickly decay to 0, thus the influence of template eye pixels
quickly decreases to nullity ensuring maximum possible conservation of expressions in the eyes.

A different attempt was made to preserve expressions of the current frame eyes, which in-
volved detecting skin pixels. Those pixels in the eye rectangles of the current frame image that
consisted of skin pixels were not replaced. Those pixels in the eye rectangles of the current frame
image that consisted of non-skin pixels were replaced by the template eye pixels. The desired re-
sult was that merely the white of the eye ball and the pupils would be replaced, conveying gaze
direction while the eye lids were not replaced which would maintain the expressions. The skin
detection algorithm discussed by Oliveira & Conci [76] is based on specific values in the Hue
plane. The RGB image is converted to the HSV color space where those pixels in the H plane
having values ranging between 6 and 38 are labeled as skin pixels. While the algorithm achieves
good results in distinguishing between skin and non skin like clothes or objects, the edges sepa-
rating the skin and non skin areas are not sharp transitions. This resulted in a failure to use skin
detection in the eye rectangles in order to determine which pixels were to be replaced, due to an
insufficient accuracy of the algorithm. The accurateness of skin detection needed to determine
which pixels are to be replaced in the eye rectangles.

38

Eye Contact in Leisure Video Conferencing

3.2 Hardware Solution Teleprompter

The hardware based solution is based on teleprompter technology which is discussed in Section
2.3.1. The idea is to have a teleprompter box suitable for tablets. This section is divided into two
parts where the first part discusses the built model, namely a teleprompter box suitable for an
Acer Aspire One netbook. The second part is a proposal for adjusting the built model such that it
is compatible with tablets. Common used tablets such as the iPad or Android tablet do not have
drivers for external cameras. Using an external camera is a requirement for the teleprompter
based hardware solution. Therefore the netbook teleprompter model serves to demonstrate the
potential of a tablet teleprompter model, provided that tablets will be congruent with external
cameras. Due to the similarities of the netbook teleprompter to a tablet teleprompter, like the
ease of sliding the device into the box and the size of the display, the netbook teleprompter is
sufficient to test the performance of a potential teleprompter based solution for tablets.

The Model

The built model is a black wooden box that enables eye contact when the device used for video
telecommunication is placed inside the box. The model is shown in Figure 16 and is based on
teleprompter technology discussed in Section 2.3.1. Thus the display is laid down flat and a beam
splitter is placed with a 45 ◦ angle to the display. Behind the beam splitter a camera is placed.
In addition to holding the beam splitter and the camera in place, the box functions to keep out
light coming from other sources than the display. The box is a teleprompter custom-built to an
Acer Aspire One netbook. The material chosen was wood because it is resistant, cheap and easy
to build with. The box has been painted black because black does not reflect light, which means
that the beam splitter only reflects light coming from the display and not from the box, resulting
in a better image of the reflected display. The material chosen for the beam splitter was glass. This
is not the optimal material because glass does not produce the best reflection. It is see through
and both sides of the glass generate a reflection of the display. This results in a double image of
the display with a small offset, which means the image is not perceived as sharp. However the
advantage of glass is that it is cheap and reflective and therefore the chosen material. The best
material is a one sided mirror, which is see through with respect to the camera and a perfect
reflection with respect to the display. An option is to use a regular mirror and to scratch out a
little hole at the height of the camera. In this way the camera sees through the mirror and the
user looks at the mirror which has a little hole sufficiently small not to be disturbing.

The difference between a netbook and a tablet is that a netbook has a keyboard and a tablet
does not. In the model the keyboard is used as the back side of the box. This is a disadvantage
because it is inconvenient to use the keyboard unless an external keyboard is used. Using an
external keyboard increases the amount of effort which makes the step bigger to use the hard-
ware. Using the keyboard as the backside of the box means that the backside cannot be used
to support the camera thus the camera is mounted on a bar that is attached to the sides of the
box. The external camera is connected to the netbook by USB. Having the camera at a fixed
position means that the remote participant’s eyes should always be in the same position on the
screen, namely such that the reflection is directly in front of the camera. However the remote
participant can have different heights, have their webcam at different distances to the face, have

39

Eye Contact in Leisure Video Conferencing

Figure 16: The hardware solution teleprompter model. The display laid flat, its reflection shown
in the glass. The camera placed at the location of the remote user’s eyes in the image. The
black wooden casing keeps out other illuminations, preventing the desired reflection from being
disturbed.

different postures, etcetera. These different possibilities cause the participant to appear in dif-
ferent positions on the screen, resulting in different locations of the eyes. A solution would be
to have a model such that the position of the camera can be adjusted. In this model a different
solution is chosen. Eye tracking is part of the software approach discussed in Sections 3.1 and
the technology is discussed in Section 2.5. Using eye tracking to track the eyes of the remote
participant, the position of the eyes can be send along with the video stream to the other user.
When using full screen display of the remote participant the window cannot be moved around.
However a minimized window can be displayed at different screen locations. The window can
then be placed in front of the camera such that the eyes of the remote participant appear directly
in front of the camera, because the position of the eyes of the remote participant is known and
the camera position is fixed. This means that this approach uses additional software in order to
guarantee eye contact and is thus not exclusively a hardware solution. However the component
responsible for enabling eye contact is the teleprompter box. The software merely corrects for
movements or different positioning of the remote participant’s eyes.

The teleprompter should be positioned in a fixed place at home, there where the user usually
video conferences. Although the box is portable it is likely that a user will not move the hard-
ware around too much and therefore a comfortable fixed place is preferred. The intended use
is personal rather than professional thus the location to place the hardware is at home. When
engaging in video communication, the user can simply slide the netbook into the teleprompter
box and have eye contact with the remote participant. (Note: when only one user possesses the
teleprompter box, only that user can look at the other participant’s eyes while looking in the
camera. The result is that the remote participant perceives the user to be looking straight at him,
however the user still sees that the remote participant is looking down or any direction depend-
ing on the positioning of the camera, but at least not looking in his eyes. True eye contact by the
means of teleprompter boxes is achieved when both participants use such a teleprompter box).

40

Eye Contact in Leisure Video Conferencing

Proposal for Extension to Tablets

Tablets are becoming more and more popular. They are smaller and lighter than laptops which
makes them more mobile and their batteries last longer. Tablet owners can take them anywhere
and use them any time. Tablets have a bigger screen than mobile phones and these features make
tablets suitable for video telecommunication. The teleprompter box is not a necessity to use all
the time but positively influences the user experience when using it. Thus when the user happens
to be at home and engages in a video chat conversation, the quality of the call can be improved
with minor effort. Slide the tablet in the teleprompter box and plug in the external camera
which is embedded in the box. The main obstacle to overcome in order to use a teleprompter
with tablets is the disability to use external cameras with tablets. This is not in my control and
thus this section aims to show the potential of teleprompters for tablets, assuming they have the
appropriate drivers.

The design of a teleprompter box for tablets is similar to that of the model as shown in
Figure 16. It will be a black box with a beam splitter, such that the tablet can be slided in laid
flat from the bottom and eye contact is enabled. Tablets have the advantage that they do not
have a keyboard, but the keyboard is displayed on the display. This keyboard can still be used
when the tablet is placed in the teleprompter. The typing is done on the actual display and the
keys are shown in the mirrored reflection. Not having a keyboard as the backside of the box
means that the camera can then be embedded on the backside of the box. The tablet could then
simply slide in from the front. A straightforward manner to attach an external camera to a device
is by USB. In the proposed model this is the case. However many common tablets do not have
USB ports. In this case the tablet can be placed into a docking station which has USB ports. The
docking stations for tablets are generally designed to have the tablet standing up vertically. The
compound of the docking station and the tablet should be turned horizontally and slided into
the teleprompter box such that the docking station closes one of the sides of the box. The box
should be closed on all sides except for the front in order to minimize external reflections from
entering the box which maximizes the perception of the reflection of the screen. The use of a
docking station means that when sliding the compound in from the front, a part of the reflection
of the screen is occluded by the docking station. Therefore to be able to view the entire screen the
compound should be applied from one of the sides. When applying the compound from the left
or right side the viewed display is rotated and this needs to be corrected. Therefore the preferred
option is to apply the compound from the back. In this case the display is still mirrored but it is
not upside down nor rotated. In order to correct for the mirroring a driver should be included.
When sliding the device into the teleprompter it connects to the hardware, then the included
driver automatically handles mirroring of the display.

The usage of the teleprompter box with a tablet will be similar to that of the netbook. In
fact, the tablet model will be more convenient to use due to the difficulty with keyboard use
in the netbook model. The results of the user experience test for this solution are discussed in
Chapter 4.

41

Eye Contact in Leisure Video Conferencing

3.3 User Experience Testing

The aim of providing eye contact while video telecommunicating is to improve the sense of
presence. The concept of presence is discussed in Section 2.1. Presence is a user sensation and
due to this complex nature there is not a standard approach to measure presence. A distinc-
tion can be made between subjective and objective measurements. Subjective measurements
assess a user’s conscious evaluation of his psychological state. Objective measurements assess
automatically produced user responses, without conscious deliberation of the user. Van Baren
and Ijsselsteijn [77] have performed extended research in presence measurement approaches.
Based on their research the Sections 3.3.1 & 3.3.2 briefly explain the subjective and the objective
measurement approaches respectively. From this overview the measurement method used in this
Thesis is adopted and described Section 3.3.3.

3.3.1 Subjective Measurements

Subjective measurements assess users’ conscious evaluation with respect to their sense of pres-
ence. The disadvantage is that subjective measures are user biased. The advantage is that the
concept to be measured, namely presence, is a user sensation and thus inherently subjective to
the user. The majority of the approaches to measure presence are presence questionnaires, which
fall under subjective measurement methods. Apart from questionnaires there are other subjective
measurements such as continuous assessment, qualitative measures and subjective corroborative
measures.

Presence Questionnaires

Presence concerns the state of a user, whether a person feels emerged and present in a remote
location. In the case of video conferencing the sense of feeling present refers to feeling as if the
communication takes place face to face rather than by the means of any media. Questionnaires
are the most common approach used to measure presence, because they directly address the
state of the user. Presence is a subjective sensation and different questions can examine different
aspects of presence. Section 2.1 discusses the concept of presence and the means by which to
induce presence, namely by using a captivating content, advanced technology or both. Different
methods used to improve presence require different questions to test their performance. For ex-
ample questionnaires researching the performance of using 3D displays or avatars in a virtual
environment (VE) setting to increase the sense of presence in video conferencing will contain
different questions. Therefore there are a great number of experiment specific presence ques-
tionnaires available. An attempt has been made by Witmer & Singer [78] to create a general
presence questionnaire, valid across media and content. Their Presence Questionnaire (PQ) is
based on addressing factors that influence involvement and immersion, which they established
as conditions for presence [78, 77]. The factors are:

• Control factors: The extent of user control and whether the consequences of user actions
are logical and as expected, influence the immersion of the user.

• Sensory factors: Coherent stimulation of the senses and controlling the relation of the
environment to the senses (such as changing viewpoint, which demonstrates the control of
the relation of the environment to vision) stimulates immersion and involvement.

42

Eye Contact in Leisure Video Conferencing

• Distraction factors: Isolation of the user by blocking physical world stimuli, the user’s own
ability to focus on the virtual environment and the quality of the interface influence the
easiness with which a user gets distracted from the virtual world. This affects the immersion
and involvement of the user.

• Realism factors: The realism of the scene, its consistency to reality and the meaningfulness
to the user influence involvement.

The PQ questionnaire can be found in Appendix B.

Another popular general presence questionnaire is the Slater-Usoh-Steed Questionnaire (SUS)
proposed by Slater et al. [79]. The questions used to measure presence are based on three indi-
cators (from Slater et al. [79]):

• The subject’s sense of “being there” - a direct attempt to record the overall psychological
state with respect to an environment.

• The extent to which, while immersed in the VE, it becomes more “real or present” than
everyday reality.

• The “locality”, that is the extent to which the VE is thought of as a “place” that was visited
rather than just as a set of images.

The SUS questionnaire can be found in Appendix C.

Continuous Assessment

In continuous assessment the user continuously rates the experienced presence, during the ses-
sion. The advantage is that the ratings are not based on a memory of the presence feeling, but
based on how the user is feeling at that exact moment. This means that changes in feeling present
can be recorded as well. However, having to do the ratings during the session interrupts the user
from the activity and can thus interfere with the sensation of presence.

Qualitative Measures

Qualitative measures do not quantify the user experience. Users do not have to choose an answer
that best resembles their experience, but are given the freedom to express the experience in their
own way and words. This results in a more accurate understanding of the user experience. How-
ever, the approach involves content analysis which is biased by the researcher’s interpretation.
Therefore the main purpose of qualitative measures is to explore and orientate in the field.

Subjective Corroborative Measures

Subjective corroborative measures do not directly assess presence, but evaluate attributes that
indicate presence. For example a user might be asked after the session to describe the t-shirt
the remote participant was wearing, or to recall which music was playing at the background.
Another example is to have the user estimate a time duration, because different levels of engage-
ment result in a different perception of how much time has passed. The difficulty is that certain
attributes are assumed to indicate presence whereas in reality they might not.

43

Eye Contact in Leisure Video Conferencing

3.3.2 Objective Measurements

Objective measurements address automatically generated user responses. Objective presence
measurements are corroborative measurements, meaning that attributes are measured that in-
dicate a sense of presence but do not directly assess presence. Presence is the concept of feeling
present in a remote location which can only be directly addressed by asking the user the extent
to which a state of presence is experienced. In order to do objective measurements, corroborative
measurements are required. The advantage of objective measurements is that they are not prone
to user bias, which is the case with subjective measurements. Examples of objective corrobo-
rative measures used to measure presence are psychophysiological measures, neural correlates,
behavioural measures and task performance measures. These approaches are briefly discussed as
explained by van Baren [77].

Psychophysiological Measures

Psychophysiological measures measure physiological attributes such as heart rate, skin temper-
ature, skin conductance and potential difference of the skin of the face. These physiological
responses are among others associated with emotion. In this paper solutions are proposed to
enable eye contact in video communication, and it was hypothesized that this will increase the
sense of presence. Being able to have eye contact might affect the emotions experienced by the
user, but it will be small with respect to the effect of the content of the conversation.

Ocular measures are psychophysiological measures concerning the eyes which makes it in-
herently more appropriate to measuring user experience of video conferencing with enabled eye
contact. Examples of ocular measures are measuring the amplitude of saccades (the series of
small movements of the eyes when changing focus), fixation length or pupil response. Pupil re-
sponses are entirely uncontrollable by the user, which makes it a strictly objective measure. The
idea is that the closer the physiological response of the user to a physiological response in a real
world setting, the greater the sense of presence. However these methods are too obtrusive to use
with the participants, which might influence the sense of presence.

Neural Correlates

Neural correlates include electroencephalogram (EEG) and functional magnetic resonance imag-
ing (fMRI) techniques that measure the electrical activity and blood flow changes to the brain
respectively. They are used to assess brain processes and activity to address presence. However
there is little known about the neural processes concerning the sense of presence. This measure
approach is therefore not suitable for this research.

Behavioural Measures

Behavioural measures intend to measure naturalistic behaviours such as facial expressions, re-
flexes or postural responses like a user’s response of body sway when watching a clip taken from
a moving car. In behavioural methods there is no user bias but there might be observer bias.
For example if the number of smiles is used as an indication of presence, it can be hard to tell
whether something counts as a smile or not.

44

Eye Contact in Leisure Video Conferencing

Task Performance Measures

In task performance measures the users are given a task and the completion time or error rate
is used to indicate presence. In remote learning environments the ability of the user to transfer
the learned skill to the real world is used as a performance measurement. The disadvantage of
this measurement is that there are other influences on a user’s ability to perform a task, such as
motivation and tiredness. These are uncontrollable factors.

3.3.3 Adopted Measurement Approach

The approach taken to improve the sense of presence in video telecommunication is enabling eye
contact between the users. The subjective nature of the concept of presence indicates the need for
a subjective measurement. The ease of use and unobtrusiveness for the user combined with the
flexibility of a questionnaire to be experiment specific, have led to the choice of using a presence
questionnaire as the subjective measurement. Existing general presence questionnaires such as
Witmer & Singer’s PQ and Slater et al.’s SUS cannot not be used per se, because many questions
address irrelevant aspects. A question such as “How well could you localize sounds?” [78] does not
give any information about the influence of eye contact on presence. Thus a questionnaire has
been assembled by selecting and adjusting relevant questions from the popular presence ques-
tionnaires PQ and SUS, combined with experiment specific questions. The advantage of using
questions from existing popular questionnaires is that the questionnaires have been developed
and tested extensively and therefore consist of well-defined questions. The advantage of de-
veloping own questions is that they are experiment specific regarding the topic of this project.
The questionnaires used to measure user experience after experiments 1 & 2 can be found in
Appendix A. The presence questionnaires PQ and SUS can be found in Appendices B & C respec-
tively.

Data Evaluation

The questions of the user experience survey were designed to measure a sense of presence. A
statistical evaluation of the gathered data is necessary to be able to draw conclusions. When
the scale used for answering the questions is a linear scale, the underlying data can be assumed
to be linear with a normal distribution. Mean, standard deviation and a ttest are then suitable
statistics to describe the data and draw conclusions. However the experiments conducted in this
work measured a personal perception of to which extent the participant experienced a state of
being. The difference between two distances on the scale are not necessarily equal, meaning
that the scale is not necessarily linear and thus the underlying data cannot be assumed to be
of a normal distribution. Therefore each possibility on the scale is treated as a category on its
own. For categorical data the statistic used to determine whether two groups have significantly
different opinions is the χ2 (chi squared) test[80]. Thus the χ2 test was performed for each survey
question comparing two groups, either the group testing the hardware to the group testing the
software or a group testing eye contact enabled to a group testing eye contact disabled. The χ2

test was manually implemented in Matlab and the code can be found in Appendix F.
The mechanics of the χ2 test are explained conjointly with an example. First the data is rep-

resented in a cross-tabulation. The first questions of the second experiment was “How engaged
were you in the conversation?”. The cross-tabulation is constructed by placing the groups under-

45

Eye Contact in Leisure Video Conferencing

Observed 1 2 3 4 5 total
H 1 1 1 8 14 25
S 0 0 11 11 4 26

total 1 1 12 19 18 51

Table 1: Frequencies of each answer category and the sums of the rows and columns.

Expected 1 2 3 4 5 total
H 0.49 0.49 5.88 9.31 8.82 25
S 0.51 0.51 6.12 9.69 9.18 26

total 1 1 12 19 18 51

Table 2: Expected frequencies of each answer category and the sums of the rows and columns.

neath each other (i.e. the group testing the hardware and the groups testing the software) and
calculating the sum of each row and the sum of each column as shown in Table 1.

The gathered data from the experiment is the actual observed data. If the groups did not have
different opinions then the data would probably be distributed such that the frequencies are in
proportion to the number of participants and the total frequency that the category occurred.
Knowing the total number of times each category occurred and the total number of participants
in each group, one can calculate the expected frequency per group for each category. This is
visualised in Table 2.

Next the differences between the observed and expected values are squared and divided by
the expected value, this generates all positive values representing the distance from the expected
value. The greater the distances from the expected values the higher the indication that the
groups have different opinions. Table 3 shows the differences and the sum of all the differences
which is the total χ square value.

The obtained χ2 value does not mean anything on its own. There are critical values that are
related with levels of risk. This means that when the χ2 value is higher than a certain critical
value, the level of risk is the probability that the opinions of the group are the same. The confi-
dence that the opinions of the groups differ is then 1- the level of risk. The critical values differ
for different degrees of freedom. For the χ2 test the degrees of freedom are calculated by taking
the number of rows - 1 multiplied with the number of columns -1. In the above example there
are 2 rows and 5 columns (because 2 groups are compared for 5 categories), leading to 4 degrees

Difference 1 2 3 4 5 total
H 0.53 0.53 4.05 0.19 3.04 8.34
S 0.51 0.51 3.90 0.18 2.92 8.02

total 16.36

Table 3: Differences between observed and expected values. The total sum of differences defines
the χ2 value.

46

Eye Contact in Leisure Video Conferencing

confidence
Degrees of freedom 90% 95% 97.5% 99% 99.9%

1 2.706 3.841 5.024 6.635 10.828
2 4.605 5.991 7.378 9.210 13.816
4 7.779 9.488 11.143 13.277 18.467

Table 4: Confidence levels corresponding to critical values for 1, 2 and 4 degrees of freedom.

of freedom. The gathered data of the experiments conducted in this work are evaluated by com-
paring 2 groups for 3 categories (experiment 1) and 5 categories (experiment 2). Table 4 shows
the levels of risk related to the critical values of 2 and 4 degrees of freedom, which was taken
from the engineering statistics handbook provided by NIST (National Institute of Standards and
Technology) [81].

The discussed example, based on the second experiment gathered data for the hardware and
software solution, generated a χ2 value of 16.36. According to Table 4 for 4 degrees of freedom
this means that there is a 99% confidence that the data is significantly different. Thus we can be
99% confident that the opinion of a participant about engagement in conversation depends on
whether the participant tested the hardware solution or the software solution.

47

Eye Contact in Leisure Video Conferencing

4 Results

There were two experiments conducted to test the proposed hardware and software solutions.
The first round of experiments aimed at discovering non trivial weak points that needed improve-
ment, which were revealed during the testing. The experiment was designed to make a technical
comparison between the hardware and software solution. Moreover both solutions were tested
when eye contact was enabled and disabled.

The second round of experiments was designed to compare the hardware solution to the
software solution, with respect to the sense of presence experienced by the participants. The
participants were gathered on a voluntary basis for both experiments, however they were given
a chocolate treat as an incentive for participation. The webcams used in both experiments for
both solutions were Microsoft LifeCam HD cameras. In Section 4.1 the setup and results of the
first experiment are discussed. In Section 4.2 the setup and results of the second experiment are
discussed. In Section 4.3 an overall conclusion of the experiments is drawn.

4.1 Experiment 1

This experiment involved 11 participants testing the hardware and 11 participants testing the
software solution. From the participants 45% were male and 55% were female. All participants
were in their twenties. The video conferencing experience of the participants was partitioned
into 64% of frequent users (i.e. using a video chat tool at least once a week) and 36% of regular
users (i.e. using a video chat tool at least once a month). From the volunteers testing the software
64% had uncorrected eye sight, 27% percent wore glasses and 9% wore contact lenses. From
volunteers testing the hardware 64% had uncorrected eye sight, 28% wore glasses and 28%
wore contact lenses.

4.1.1 Experimental setup

The users were asked to look at a webcam captured image of themselves where eye gaze cor-
rection had been applied. They were given a topic and asked to talk to their own image about
the topic. Then the eye correction was disabled and they were asked to talk to their own image
about another given topic. The participants were told they could speak in their native language,
as the specific content of the conversation was not relevant. The topic pairs proposed were:

1. a) What would you say to your future self, if you were talking to yourself in 5 years time?
b) What would you say to your past self, if you were talking to yourself in your final year
of school?

2. a) You have won the lottery, tell yourself what you will do with the money..
b) You have only 24 hours to live, tell yourself how to spend your time..

In the software solution the eyes were captured by blinking after which the eyes were tracked.
A template was captured by pressing the ‘t’ key while looking into the camera. Enabled eye

48

Eye Contact in Leisure Video Conferencing

contact was established by turning on the gaze correction functionality. Disabled eye contact was
established by turning off the gaze correction functionality. Turning the gaze correction on and
off was controlled by keys. Rather than capturing and displaying the possibly processed images
directly, a networking application developed by Jayson Mackie research assistant for the Game
Technology Group at Gjøvik University College was used which sent the images to the local host.
The images recveived at the localhost are grabbed and displayed. The networking application
was used for two reasons. Firstly it approximates the video conferencing structure better, because
in video chat sessions the images are sent over a network. Secondly, the slight delay caused
by passing the images by the localhost rather than immediately displaying them, increased the
tracking performance of the system. While the delay improves tracking performance, it is so little
that the program still runs in real time.

Enabled eye contact in the hardware solution was established by using the webcam behind
the glass within the wooden box. For a description of the hardware solution see Section 3.2.
When the user is looking at the screen the captured image shows the user looking straight into
the recipient’s eyes. The recipient in the experiment being the participants themselves. Disabled
eye contact was established by using a webcam placed on top of the box, which resembles a
regular setup where the webcam is integrated or placed on top of the screen. When the user is
looking at the screen the captured image shows the user looking down. Skype was used as a tool
to display the image, which allowed for full screen display and smooth switching of the cameras
without the need to end the chat session.

After the participants talked to their own image with eye contact enabled and disabled, they
were asked to fill out a paper based survey which can be found in Appendix A. The survey asked
about general user information such as gender and eye sight information. The survey contained
two technical questions about the solutions and four presence questions where the latter were
to be answered twice, namely with respect to the eye contact enabled and eye contact disabled.
The survey was concluded with the question whether the participant felt the eye contact enabled
was an improvement and an opportunity for comments was given.

The following questions were used to address technical aspects:

1. How would you rate the ease of use of the teleprompter/program?

2. How would you rate the image quality?

The following questions were used to address the sense of presence:

3. When you were talking to yourself, how close was it to talking in a mirror?

4. How engaged were you in the conversation with yourself?

5. Did you feel like you had eye contact with yourself?

6. How natural did the conversation seem, with respect to a real life conversation?

The answers were rated by participants between 1 indicating “not at all” and 7 indicating
“very much”.

49

Eye Contact in Leisure Video Conferencing

χ h0 confidence

Technical
Ease of use 1.053 0
Image quality 1.333 0

Software Solution

Like mirror 1,167 0
Engagement 6,667 1 95%
Eye contact 7,200 1 95%
Naturalness 1,577 0

Hardware Solution

Like mirror 9,740 1 99%
Engagement 1,952 0
Eye contact 14,864 1 99.9%
Naturalness 3,543 0

Table 5: Statistical Results Experiment 1. A rejection of the null hypothesis is shown by a 1. Then
the corresponding confidence is given. A failure of the rejection of the null hypothesis is shown
by a 0.

4.1.2 Results

Participants rated the answers to the questions on a scale from 1 to 7, based on their perceptions.
The scale cannot be assumed to be a linear scale, as the difference between 4 and 5 (being neutral
to a question and agreeing to a question) might deviate from the difference between 6 and 7
(indicating particular strengths of agreement). Each answer is then seen as a discrete answer.
Therefore a χ2 (chi squared) test is performed on the data, which is explained in Section 3.3.3.
When 7 categories are used (each possible answer) in a comparison between two entities (such
as comparing hardware to software) there are 6 degrees of freedom. There were 11 participants
in the experiment which generated 11 answers per question, then 6 degrees of freedom is a lot.
There is no need to find for each of the possible answers in specific whether it is correlated with
hardware versus software. Thus the answers were grouped together in order to find appropriate
results to draw relevant conclusions. Answers 1,2 and 3 were grouped together as negative
(disagreement), 4 was kept in one group as neutral and 5,6 and 7 were grouped together as
positive (agreement). The results of the technical comparison between the hardware and the
software solutions are shown as bar graphs in Figure 17. The results of the hardware solution
comparing enabled eye contact to disabled eye contact are shown as bar graphs in Figure 19.
The results of the software solution comparing enabled eye contact to disabled eye contact are
shown as bar graphs in Figure 18. The results of the χ2 tests are shown in Table 5. For the
technical questions the χ2 test was performed between the answers of the software and the
hardware testing. For the presence questions the χ2 test was performed within the answers of
the software and of the hardware testing, between the enabled and disabled eye contact. The
original gathered data is given in Appendix D. The first round of experiments also aimed at
discovering weak points that needed improvement. The second experiment was designed based
upon the outcome of the results of the first experiment and included improvements. A discussion
of the weak points and incorporated improvements concludes this section.

50

Eye Contact in Leisure Video Conferencing

Technical Results

The technical results comparing the hardware and software solutions are shown in Figure 17. It
was expected that the ease of use of the software would be rated lower due to the required user
interaction of blinking and pressing keys. Whereas the teleprompter did not require any user
interaction because the participants were not asked to handle the mirrored mouse but it was
done for them. It was also expected that the image quality of the teleprompter would be rated
lower due to the somewhat blurriness of the image caused by the double reflection of the glass.
However the bar graphs show positive results for both solutions without an apparent difference
neither in ease of use nor image quality. Referring to Table 5, it cannot be concluded that there
is a statistical significant difference in the measured technical aspects when using the hardware
and the software solutions. This means that if results of the experiments lead to favouring one
solution over another it cannot be concluded that the difference is due to a technical difference.

Figure 17: Technical results, testing the ease of use and image quality of the proposed hardware
and software solutions.

Software Results

The results regarding the sense of presence when using the software program, comparing en-
abled and disabled eye correction, are shown in Figure 18. The most evident results concern
engagement in conversation and eye contact perception. Engagement in conversation shows a
peak at the positive end of the scale in the situation where eye contact was enabled by gaze
correction. In the conventional setup where eye contact was not enabled, the engagement in the
conversation was more neutral. Thus it can be concluded that applying gaze correction induces a
greater engagement in the conversation (confidence level 95%), which indicates a greater sense
of presence.

51

Eye Contact in Leisure Video Conferencing

Eye contact perception shows a peak at the positive end of the rating scale in the enabled eye
correction situation, whereas disabled eye correction shows a peak at the negative end of the rat-
ing scale (confidence of 95%). An additional question in the survey was asked, which examined
whether the eye contact was an improvement or not. The question was answered with yes by 7
out of 11 participants and with no by the other 4. Different opinions could be due to different
behaviours of the participants. There were participants that passively observed the effect of the
gaze correction while talking to their own image. Other participants were actively testing the eye
correction software by rotating and moving their head in and out. Comments of the participants
included the word “funny” twice. Once the word “freaky” was used and ‘sometimes not natural’
was mentioned. Out of the 7 people answering that the correction was an improvement, the an-
swer was followed 3 times by a ‘but’, commenting that it could or should be improved. Positive
comments were also given such as “feels more natural” and “you can talk as you like, no need
to force yourself to look at the camera”. One frequent video conferencing user (using video chat
more than twice a week but not daily) commented that he likes to perform other tasks while
video chatting. The participant said that the software is then useful because “you appear less
distracted”.

The graphs corresponding to the alikeness to a mirror and the naturalness of the conversation
show similar distributions of ratings suggesting no statistical difference between the enabled
and disabled state. Indeed no valid conclusions could be drawn about the influence of enabling
and disabling gaze correction on the alikeness to talking to a mirror and the naturalness of the
conversation.

Figure 18: Software results, measuring the sense of presence using the software program. Com-
paring enabled and disabled eye correction.

Hardware Results

The results regarding the sense of presence when using the teleprompter, comparing the enabled
and disabled eye contact are shown in Figure 19. The bar graphs corresponding to the questions
concerning alikeness to a mirror, perception of eye contact and the naturalness of the conversa-

52

Eye Contact in Leisure Video Conferencing

tion indicate a greater sense of presence when eye contact was enabled. Table 5 shows that in
the cases of alikeness to a mirror and the perception of eye contact, the indication is strongly
supported (with a confidence of greater than 99%). However no conclusion could be drawn in
the case of the naturalness of the conversation.

The ratings regarding the engagement in the conversation are equally positive and negative
for the enabled eye contact situation. For the disabled eye contact situation the engagement is
rated more negative. The overall lack of engagement in either situation can be explained by the
awkwardness of talking to oneself. Referring to Table 5, no conclusions could be drawn about
whether enabling or disabling eye contact has a positive or negative effect on the engagement in
the conversation.

The results show that the perceived eye contact was greater with enabled eye contact. The
question asking whether the eye contact was an improvement or not, was answered with yes by
10 out of 11 participants 1 participant answered with no. The participant answering that the eye
contact was not an improvement was a frequent user (using video chat more than twice a week
but not daily) of video conferencing systems. The participant had trained himself to look in the
camera when speaking, such that the remote partner would perceive his eye contact. The camera
being positioned behind the screen meant that the participant looked at the image of the remote
partner (or in the case of the experiment the image of the participant himself) which differed
from what the participant had grown accustomed to. The participant commented: “No, because I
felt a little bit uncomfortable when you’re looking straight in your eyes. But maybe you just have
to get used to it and then it’s definitely an improvement.”

Figure 19: Hardware results, measuring the sense of presence using the teleprompter. Comparing
enabled and disabled eye contact.

Improvements for Experiment 2

User experience comments included several times that it was awkward to talk to themselves,
despite being able to speak in their native language. Both the software and hardware solution
testing required users to talk to themselves. Therefore the induced awkwardness was consis-

53

Eye Contact in Leisure Video Conferencing

tent throughout this experiment. However the follow up experiment was designed such that the
participants had a video chat conversation with another user rather than with themselves.

In testing the hardware solution Skype failed once. However this was a problem with the
device used and after a restart it functioned well again. There were no other technical difficulties
with the hardware solution and the experience showed that Skype was a good tool to use for the
testing. The next experiment used Skype again to test the hardware.

In testing the software solution the main technical difficulty that was brought to light was that
the eye capturing depended on blink detection. Blink detection is performed by motion analysis,
using a difference of frames. For a detailed explanation see Section 3.1.2. When other parts in
the image are moving as well, such as the lips or the camera itself because the table on which the
device with the camera is positioned is moving, the blink detection fails. The frame difference
shows not only the two connected components which are the eyes but also other motion and
thus it fails to detect the eyes. In order to better this weak point an adjustment was made to the
software. In the next round of experiments the eyes could be detected either by blinking or by
clicking on the eyes.

The eye tracker in the software approach is the weakest point and needs improvement. How-
ever due to eye tracking being an entire subject in itself, the choice was made to settle for a
working but not perfect eye tracker. The follow up experiment was designed such that it mea-
sured the sense of presence of participants who perceived eye contact with an opposite party.
Applying the gaze correction one directional on the remote user’s image was sufficient to mea-
sure participants’ sense of presence. This gave the advantage that participants were not able to
influence the gaze correction software performance. Thus an actively testing of the software that
would lead to ‘funny looks’ was avoided.

The questionnaire of the first experiment was given out on paper, with 7 scale answers to the
questions. The next experiment used the online survey tool LimeSurvey, which had a number of
advantages over paper. The participants could be sent a link such that they were able to fill out
the questionnaire at home in their own time and it could be submitted straight after they were
done. Moreover LimeSurvey generated data files and statistical information automatically, as
opposed to doing this manually when the paper questionnaires were used. The 7 scale answers
were adjusted to 5 scale answers. The reason was that 5 scale answers better correspond to
lexical representations for each answer category. For example a scale from 1 to 5 means “strongly
disagree”, “disagree”, “neutral”, “agree” and “strongly agree” or “very bad”, “bad”, “neutral”,
“good” and “very good”.

4.2 Experiment 2

This experiment involved 26 participants that tested the software solution, of which 15 males
and 11 females. The ages ranged from 19 to 61, however most participants were under 30 and
the median was 23. About half had an uncorrected eye sight, about 20% used contact lenses and
about 35% wore glasses. The video conferencing experience of the participants was partitioned
into 42% of frequent users (i.e. using a video chat tool at least once a week), 23% of regular users
(i.e. using a video chat tool at least once a month) and 31% of occasional video conferencing
users (i.e. a few times a year) and 4% had never used a video chat tool.

54

Eye Contact in Leisure Video Conferencing

There were 25 participants that tested the hardware solution, of which 16 males and 9 fe-
males. The ages ranged from 19 to 44, however most participants were under 30 and the median
was 25. More than half had an uncorrected eye sight, but there were 2 participants using contact
lenses and 8 wearing glasses. The video conferencing experience of the participants was parti-
tioned into 68% of frequent users (i.e. using a video chat tool at least once a week), 16% of
regular users (i.e. using a video chat tool at least once a month) and 16% of occasional video
conferencing users (i.e. a few times a year).

4.2.1 Experimental setup

The setup for testing both the software and hardware solution was similar. The participants
were asked to conduct a video chat with a member of the research team, namely the author.
The experimenter used either the software or the hardware solution, such that the participants
perceived eye contact. Although true eye contact can only be established when it is mutual, the
eye correction was not applied to the image of the participants. The reason for this was that
the participants would have to be trained in using the solutions. For the software solution this
meant learning how the program captures the eyes, captures a template and how it sends the
processed images. For the teleprompter this meant learning to operate mouse movements when
the screen is mirrored. The first round of experiments indicated that the ease of use of both
solutions is quite acceptable, however the participants were not required to handle the mouse in
the mirrored display and were assisted in the steps to correct the eye gaze using the software.
The focus was on ease of use after the initial setup, not on the ease of use of the setup itself. In
order to avoid training the participants to use the solutions (which is time demanding and would
thus expand the duration of a session, requiring volunteers to spare more of their time) and to
avoid building a second teleprompter box, the gaze correction was only applied to one end of
the video conferencing users. The participants perceived eye contact and the experimenter did
not. However results are based on the participants’ experiences rather than the experimenter’s
experience of the video chat session. The participants’ experiences are independent of whether
the experimenter perceives their eye contact, because this is not visible for the participants.
Therefore correcting gaze merely one directional does not pose any issues in measuring user
experience of the solutions.

The software was tested by using the networking application developed by Jayson Mackie
research assistant for the Game Technology Group at Gjøvik University College. The application
sends and receives images to and from a computer with a given IP address. On the experimenter’s
end the gaze correction processing was included before sending the webcam captured images.
On the participant’s end the gaze correction processing was not included. The experiments were
carried out within one room, with a barrier separating the participant and the experimenter. This
setup eliminated the need to include sound transmission in the current form of the software.

The hardware was tested by establishing a Skype video call with the participant. The experi-
menter called from the teleprompter box whereas the participants called from either their own
device or a computer that was made available for the user testing. Using Skype enabled people
to join the experiment from their own device, from any location in the world (provided that they
had internet access and a webcam).

55

Eye Contact in Leisure Video Conferencing

After the video chat conversation the participants filled out an online survey, developed and
distributed by the online tool LimeSurvey. The questions included general questions such as age
and video conferencing experience and nine questions measuring their sense of presence dur-
ing the video chat. The presence questions were partly extracted and adjusted from commonly
used questionnaires such as the Presence Questionnaire [78] and the Slater-Usoh-Steed Question-
naire [79]. These can be found in Appendices B & C respectively. The presence questions were
divided into three main categories, namely immersion, naturalness and eye contact. Each category
contained three questions of which two were positive (i.e. the higher the rank the greater the
sense of presence) and one was negative (i.e. the higher the rank the lower the sense of pres-
ence). This was done to balance out the influence of the answers of participants that do not really
read the questions but answer randomly, for example with the intend to please the experimenter,
if there were to be any.

The following questions were used to address immersion:

• How engaged were you in the conversation?

• Did you get distracted from the conversation?

• How much were you involved by the visual aspects (the video part) of the video conferenc-
ing session?

The following questions were used to address naturalness:

• How natural did the conversation seem?

• To what extend did you feel as if the video conferencing session was as a real world con-
versation?

• Were you conscious about the media used during the video conferencing session?

The following questions were used to address eye contact:

• Did you feel like you had eye contact with the other video chat participant??

• How natural did the eye contact with the other participant seem?

• To what extend did you feel as if the eye contact with the other participant distracted you
from the conversation?

The answers were rated by participants between 1 indicating “not at all” and 5 indicating
“very much”.

4.2.2 Results

The software and hardware approach were compared with respect to the sense of presence
experienced by the participants. The results per category into which the questions measuring
presence were divided are shown in Figures 20, 21 & 22 which show immersion, naturalness
and eye contact respectively. For each question a χ2 (chi squared) test was performed between
the set of answers related to the software solution and the set of answers related to the hardware
solution. The χ2 test is discussed in Section 3.3.3 and the results of the χ2 tests are shown in
Table 6.

56

Eye Contact in Leisure Video Conferencing

χ h0 confidence

Immersion
Engagement 16,349 1 99%
Distraction 10,281 1 95%
Involvement 1,431 0

Naturalness
Naturalness 12,038 1 97.5%
Like real 5,460 0
Conscious media 5,075 0

Eye Contact
Perception 7,700 0
Naturalness 9,313 1 90%
Distraction 10,593 1 95%

Table 6: Statistical Results Experiment 2. A rejection of the null hypothesis is shown by a 1. Then
the corresponding confidence is given. A failure of the rejection of the null hypothesis is shown
by a 0.

Results Immersion

The bar graphs that demonstrate the distributions of given ratings by participants in percentages
for the questions addressing immersion are shown in Figure 20. The higher the rankings on
the questions regarding engagement in the conversation and video involvement the greater the
presence. Conversely, the lower the ranking on the question regarding the distraction from the
conversation greater the presence. The bar graphs show that participants testing the hardware
solution were more engaged in (confidence 99%) and less distracted (confidence 95%) from the
conversation than participants testing the software solution. The bar graph corresponding to the
involvement by visual aspects shows a similar distribution for both solutions and no conclusion
could be drawn.

Figure 20: Presence results, comparing the sense of immersion when using the hardware and
software solutions.

57

Eye Contact in Leisure Video Conferencing

Results Naturalness

The bar graphs that demonstrate the distributions of given ratings by participants in percentages
for the questions addressing naturalness are shown in Figure 21. The higher the rankings on the
questions regarding the naturalness of the conversation and the alikeness to a real world con-
versation the greater the presence. Conversely, the lower the ranking on the question regarding
the consciousness of the media used the greater the presence. The bar graphs show a greater
naturalness of conversation when using the hardware (confidence level 97.5%). The bar graphs
concerning consciousness of media and alikeness to a real world conversation show similar distri-
butions for both solutions. The software solution results seem slightly more negative with respect
to alikeness to a real world conversation and slightly more consenting to being conscious about
the media used than the hardware solution results, but no conclusion could be drawn.

Figure 21: Presence results, comparing the sense of naturalness when using the hardware and
software solutions.

Results Eye Contact

The bar graphs that demonstrate the distributions of given ratings by participants in percentages
for the questions addressing eye contact are shown in Figure 22. The higher the rankings on
the questions regarding eye contact perception and naturalness the greater the presence. Con-
versely, the lower the ranking on the question regarding the distraction by the eye contact the
greater the presence. The graph shows that eye contact perception in general was good for both
solutions. The peak in the graph indicates a greater eye contact perception when using the hard-
ware solution. However Table 6 does not support this indication. This is because the χ2 test was
performed taking all 5 bins into account whereas both solutions scored high with respect to eye
contact perception. Therefore another χ2 test was performed on this specific question, distin-
guishing a good perception (i.e. rated by number 4) from a very good perception (i.e. rated by
number 5). Results show that the hardware solution induced a greater eye contact perception
than the software solution (χ value 4,375 and the hypothesis rejected with a confidence level of

58

Eye Contact in Leisure Video Conferencing

95%). Furthermore a greater naturalness of the eye contact corresponds to the hardware testing,
but only with a confidence level of 90%. Finally the induced eye contact is less distracting in the
hardware case (confidence 95%).

Figure 22: Presence results, comparing the sense of eye contact when using the hardware and
software solutions.

4.3 Experiments Conclusion

The first experiment tested the technical aspects ‘ease of use’ and ‘image quality’ of the solutions.
It was expected that the ease of use would produce a more negative user experience for the
software solution, due to the program not being fully automatic. It was also expected that the
image quality would be rated lower for the hardware solution due to the somewhat blurriness of
the image. However no conclusions could be drawn about the technical differences. The results
being mainly on the positive side of the scale, indicates that the user interaction in the program
and the image blurriness of the teleprompter are acceptable. The ease of use of the systems do
not pose an issue in the second experiment because the participants are not using the systems
but are merely perceiving their effects.

The first experiment also measured the sense of presence when eye contact was enabled
and disabled, both for the software and hardware solution. From the questions that were based
on commonly used presence questionnaires, namely inquiring about engagement in the con-
versation and naturalness of the conversation, no conclusions could be drawn considering the
hardware solution. For the software solution, the question inquiring about the engagement in the
conversation demonstrated a greater engagement in the gaze corrected state. The lack of more
valid results with respect to presence questions could be due to the awkwardness of talking to
oneself, which was mentioned four times in the comments of the participants. It could also be that
frequent users of video conferencing systems have grown accustomed to the offset of the remote
user’s gaze. Looking down could be automatically interpreted as eye contact when engaged in a
video conferencing session. Then enabling eye contact does not influence the sense of presence.

59

Eye Contact in Leisure Video Conferencing

The experiment would have to be conducted with participants talking to another person rather
than to themselves, in order to draw valid conclusions about the difference in sense of presence
in the conventional setup compared to an eye contact enabled situation. The experiment specific
question inquiring about eye contact perception showed that both solutions succeeded in induc-
ing a perception of eye contact. This does not necessarily imply that the perceived eye contact
is an improvement. Therefore the questionnaire included the question whether the participants
found the eye contact an improvement. For the software solution 63.6% and for the hardware
solution 90.9% of the participants answered with yes.

The second experiment was designed to compare the performance of the solutions, measuring
the sense of presence. Three categories were used to address presence while engaging in a video
conferencing session. Each category contained three questions of which two were positive and
one was negative, which is explained in Section 4.2.1. The results of the questions addressing
immersion generated two valid results, favouring the hardware solution over the software so-
lution. The results of the questions addressing naturalness generated one valid result favouring
the hardware solution over the software solution. Finally the results of the questions addressing
eye contact generated three valid results, all favouring the hardware solution over the software
solution. Hence, in each category there was at least one question showing a preference of the
teleprompter over the software solution. The reverse did not occur once. Neither was there an in-
dication of the software solution being favoured over the teleprompter visible in the bar graphs.
Thus from the proposed solutions as they were when tested, the hardware approach performs
better than the software approach. A greater sense of presence is induced when using the hard-
ware solution to enable eye contact than when using the software solution to enable eye contact
while video conferencing.

60

Eye Contact in Leisure Video Conferencing

5 Conclusion

In leisure video conferencing the camera is conventionally positioned with an offset to the user’s
gaze. This offset impedes eye contact perception in distance video communication. In video
conferencing a user’s sense of presence is the extent to which the user feels as if they are truly
together with the remote user, as opposed to being aware of the physical separation. Eye contact
plays a substantial role in communication. Thus allowing for eye contact in video conferencing is
believed to induce a greater sense of presence. Existing systems that incorporate eye contact aim
at professional use. These systems require a large expenditure and are therefore not suitable for
the consumer market. Low cost solutions were developed, meeting adequate standards for leisure
video conferencing. A software solution based on image processing techniques was proposed
along with a hardware solution based on teleprompter technology.

The first research question to be answered was:

1. Does enabling eye contact in video conferencing improve user experience with respect to
the sense of presence?

The results showed that both the proposed solutions succeeded in the goal to enable eye
contact perception. The survey questions regarding the sense of presence showed that for the
software solution employing gaze correction increased engagement in the conversation, but for
the hardware solution no conclusions could be drawn. There was a lack of further results corre-
lating enabled eye contact with an increasing sense of presence. A possible explanation is that
video conferencing users have grown accustomed to the gaze offset of the remote user. In this
case, adjusting the offset to better resemble reality would not improve the sense of presence.
Another possibility is that the awkwardness of talking to oneself influenced the user experience.

The second research question to be answered was:

2. Does the software or the hardware solution induce the greatest sense of presence, desig-
nating this to be the preferred solution?

The results showed that the teleprompter induced a greater sense of presence than the soft-
ware application, revealing the hardware solution as the preferred solution.

Based on the results and the positive feedback from the participants it can be stated that both
the teleprompter and the gaze correction software show great potential. There is no need for
employing sophisticated professional systems to enable eye contact in leisure video conferenc-
ing. However for the proposed solutions to be suitable as commercial products the suggested
improvements and adjustment discussed as future work in Section 6 should be applied.

61

Eye Contact in Leisure Video Conferencing

6 Future Work

This work proposed a software and a hardware solution for enabling eye contact in leisure video
conferencing. Notwithstanding their great potential, both systems would benefit from improve-
ments, adjustments and extensions. Suggestions are discussed regarding the hardware solution
followed by suggestions regarding the software solution.

Future Work Hardware Solution

The teleprompter emerged as the preferred solution to enable eye contact, nevertheless the so-
lution can be improved. A weak point is the blurriness of the captured image, due to the double
reflection in the glass. Replacing the glass as the beam-splitter by a thinner reflective material
(such as the patented Musion Eyeliner foil [21]) will improve image quality. Alternatively an
opaque silvered mirror could be used, where a small space is left out or made transparent for
camera capture.

The greatest disadvantage of the prototype in the current state is the difficulty of device usage
while placed in the teleprompter. One of the sides of the box is composed by the keyboard of the
netbook. Future adaptations of the prototype should be custom made for tablets, as proposed in
Section 3.2, which would eliminate the issue of not being able to reach the keyboard because
tablets have onscreen keyboards. Additionally a driver should be provided that auto corrects for
the mirrored display in order to avoid counter intuitive responses to mouse movements.

Another drawback of the teleprompter box in its present form is that it is rather cumbersome.
This could be overcome by using different material such as plastic instead of wood and adjusting
the design to a model that folds for portability. In its folded state it could serve as a hard case
cover for the tablet, in its unfolded state it would serve as a teleprompter.

Future Work Software Solution

The software program emerges as the less preferred solution to enable eye contact but nev-
ertheless showed potential. The main weak point in the software is the eye tracker. The eyes
are tracked by template matching, the pixel coordinates with the best match are used as the
centre coordinates of the eyes. The method is able to track and localize the eyes but returns ap-
proximated coordinates. This imprecision causes the overlay of the template eyes to be slightly
off at times, which creates a ‘funny’ or ‘freaky’ looking image. Therefore the highest priority in
improving the gaze correction software should be improving the eye tracker. In Section 2.5 sev-
eral eye tracking techniques are discussed. The solution ought to be applicable in leisure video
conferencing which excludes eye tracking techniques that are obtrusive or use specialised exter-
nal hardware. Including multiple cameras would provide more information on the scene, which
would prompt a more educated approximation of the eye centre coordinates. External cameras
are becoming cheaper and it is feasible to presume that in the future many devices will have
multiple integrated cameras (for example the LG Optimus 3D smartphone, Microsoft Kinect and
Fujitsu LifeBook AH572 laptop). However a single camera based solution would maintain the

62

Eye Contact in Leisure Video Conferencing

widest usability.
Future work should also include gaze localization. The eye correction should only be applied

when the user looks at the image of the other user. An attempt was made to include this function-
ality in the current software program. The approach taken was to capture templates of the eyes
of the user looking at different locations on the screen, including the centre where the image
of the remote user is displayed. The eye correction should only be applied when the template
match between the tracked eyes in the current frame and the template of the eyes of the user
looking at the centre is greater than the template matches with the other captured template
eyes. The attempt failed because the differences in the template matches were not sufficiently
large. This was due to the eye template images differing from each other not just because of the
user looking at different display locations, as desired, but because of the imprecision of the eye
tracker. An improvement of the eye tracker could be associated with an improved performance
of this attempted approach. Perhaps only an eye image template of the user looking at the centre
is sufficient. If the template match with the current frame eye image is above a threshold then
the eye correction functionality is allowed, otherwise it is denied.

Finally a feature that is not currently included is scaling. The captured template eyes used
for the overlay are of a set size. The template eyes should be scaled up or down when the user
moves in and out respectively, in order to maintain the correct ratio of the size of the eyes with
respect to the face. The scaling feature can be based on the distance between the eyes. When
the eyes are first captured the distance extracted is used as the ground truth. While the eyes are
being tracked in the subsequent video frames, their distances are also extracted. The ratio of the
ground truth distance and the current distance can be used as the scaling factor with which to
multiply the template eyes before overlaying on the current image frame.

63

Eye Contact in Leisure Video Conferencing

Bibliography

[1] van Eijk, R., Kuijsters, A., Dijkstra, K., & IJsselsteijn, W. JUN 2010. Human sensitivity to
eye contact in 2d and 3d videoconferencing. In Quality of Multimedia Experience (QoMEX),
2010 Second International Workshop on, 76 –81.

[2] Grayson, D. & Monk, A. 2003. Are you looking at me? Eye contact and desktop video
conferencing. ACM Transactions on Computer-Human Interaction (TOCHI), 10(3), 221–243.

[3] Jerald, J. & Daily, M. 2002. Eye gaze correction for videoconferencing. In ETRA, 77–81.

[4] Criminisi, A., Shotton, J., Blake, A., Rother, C., & Torr, P. H. S. Efficient dense-stereo and
novel-view synthesis for gaze manipulation in one-to-one teleconferencing. Technical re-
port, 2003.

[5] Kleinke, C. L. 1986. Gaze and eye contact: A research review. Psychological Bulletin, 100(1),
78–100.

[6] Gemmell, J. & Zhu, D. 2002. Implementing gaze-corrected videoconferencing. In In
Proceedings of CIIT 2002.

[7] Dumont, M., Rogmans, S., Maesen, S., & Bekaert, P. 2009. Optimized two-party video chat
with restored eye contact using graphics hardware. e-Business and Telecommunications,
358–372.

[8] Yang, R. & Zhang, Z. JUL 2004. Eye gaze correction with stereovision for video-
teleconferencing. IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(7),
956–960.

[9] 2011. Fraunhofer Heinrich-Hertz Institute: Virtual Eye Contact Engine.
http://www.hhi.fraunhofer.de/en/departments/image-processing/applications/virtual-
eye-contact-engine/. (accessed nov 2011).

[10] TelePresence Tech.
http://telepresencetech.com/. (accessed feb 2012).

[11] iris2iris. Online eye contact with IRIS: that feels like a face to face conversation.
http://www.iris2iris.com/en-UK/content/75/home-uitgebreid.htm. (accessed nov 2011).

[12] Civit, J. & Montserrat, T. JUL 2009. Eye Gaze Correction to Guarantee Eye Contact in
Videoconferencing. IEEE Latin America Transactions, 7(3), 405–409. 13th Conference on
Software Engineering and Databases, Gijon, Spain, OCT 07-10, 2008.

64

Eye Contact in Leisure Video Conferencing

[13] SeeEye2Eye. Teleprompter for web cameras.
http://www.bodelin.com/se2e/. (accessed nov 2011).

[14] Knudsen, C. J. S. Presence Production. PhD thesis, 2004.

[15] Steuer, J. 1992. Defining virtual reality: Dimensions determining telepresence. Journal of
Communication, 42, 73–93.

[16] Enlund, N. 2000. The production of presence - distance techniques in education, publishing
and art. In ACS’2000 Proceedings.

[17] Knudsen, C. J. 2002. Video mediated communication (vmc) - producing a sense of presence
between individuals in a shared virtual reality.

[18] Andresen, S. & Knudsen, C. 2003. Boomdance forestillingen (boomdance performance).
http://miki.nada.kth.se/̃thesaint/boom.html. (accessed jan 2012).

[19] Musion Systems Limited: Musion Eyeliner 3D Holographic Projection.
http://musion.co.uk/. (accessed apr 2012).

[20] Steinmeyer, J. 1999. The Science Behind the Ghost. Burbank.

[21] Dimensional Studios: Musion Eyeliner Holographic Projection System.
http://www.eyeliner3d.com/. (accessed apr 2012).

[22] Kramer, W. 2000. What makes a game good?
http://www.thegamesjournal.com/articles/WhatMakesaGame.shtml. (accessed jan 2012).

[23] Microsoft Kinect.
http://www.xbox.com/kinect/. (accessed jul 2012).

[24] Groenda, H., Nowak, F., & Hanebeck, U. D. 2005. Telepresence techniques for controlling
avatar motion in first person games. In Intelligent Technologies for Interactive Entertainment,
First International Conference, INTETAIN 2005, Madonna di Campiglio, 44–53.

[25] Channel 5: The Gadget Show: E3 2011: Battlefield 3.
http://www.youtube.com/watch?annotation_id=annotation_435312&
v=eg8Bh5iI2WY&src_vid=nQR49JGySTM&feature=iv. (accessed feb 2012).

[26] Montserrat, T., Zuo, F., Waizenegger, W., Yellin, E., Divorra, O., & Schreer, O. 2010. Public
Deliverable D.0.3 - State of the Art Update. 3DPresence- STREP FP7-ICT-2007-1 ref nr
215269, http://www.3dpresence.org. (accessed jan 2012).

[27] Friedman, D. BEAMING (Being in Augmented Multi-modal Naturally-networked Gather-
ings). http://beaming-eu.org/home. (accessed nov 2011).

[28] Pease, B. & Pease, A. December 2005. The Definitive Book of Body Language. Orion Pub-
lishing Group.

65

Eye Contact in Leisure Video Conferencing

[29] Mehrabian, A. 1971. Silent Messages: Implicit Communication of Emotions and Attitudes.
Wadsworth, Belmont, California.

[30] Eibl-Eibesfeldt, I. 1973. Social Communication and Movement; The Expressive Behaviour of
the Deaf-and-Blind-Born. European Monographs in Social Psychology, 4. New York: Aca-
demic Press.

[31] Hirsch, A. 2003. Physical and verbal signs of lying. Directions in Psychiatry, 23, 15–19.

[32] Ekman, P. & Friesen, W. V. 1975. Unmasking the face: A guide to recognizing emotions from
facial clues. Prentice-Hall.

[33] Baron-Cohen, S., Jolliffe, T., Mortimore, C., & Robertson, M. 1997. Another advanced
test of theory of mind: Evidence from very high-functioning adults with autism or asperger
syndrome. Journal of Child Psychology and Psychiatry, 38, 813–822.

[34] Roorda, A. 2002. Human visual system - image formation. Encyclopedia of Imaging Science
and Technology.

[35] Shiwa, S. & Ishibashi, M. 1991. A large-screen visual telecommunication device enabling
eye contact. SID Dig., 22, 327–328.

[36] Izadi, S., Hodges, S., Taylor, S., Rosenfeld, D., Villar, N., Butler, A., & Westhues, J. 2008.
Going beyond the display: a surface technology with an electronically switchable diffuser.
In Proceedings of the 21st annual ACM symposium on User interface software and technology,
UIST ’08, 269–278, New York, NY, USA. ACM.

[37] Tan, K.-H., Robinson, I. N., Culbertson, B., & Apostolopoulos, J. JUN 2011. ConnectBoard:
Enabling Genuine Eye Contact and Accurate Gaze in Remote Collaboration. IEEE Transac-
tion on Multimedia, 13(3), 466–473.

[38] Regenbrecht, H. & Hoermann, S. November 2008. Eye-to-eye contact in videoconfer-
encingmediated course advising situations technology and evaluation. Talk at Spotlight
Colloquium, University of Otago New Zealand.

[39] 3DFocus. November 2011. Direct eye contact video conferencing to be commercialised.
http://www.3dfocus.co.uk/3d-news-2/3d-technology/direct-eye-contact-video-
conferencing-to-be-commercialised/6260. (accessed feb 2012).

[40] Pratt, W. 2007. Digital image processing: PIKS Scientific inside. Wiley-Interscience.

[41] Aghajan, H. & Cavallaro, A. 2009. Multi-Camera Networks: Principles and Applications.
Academic Press.

[42] Hartley, R. I. & Zisserman, A. 2004. Multiple View Geometry in Computer Vision. Cambridge
University Press, ISBN: 0521540518, second edition.

[43] Zhang, Z. April 1998. Determining the epipolar geometry and its uncertainty: A review.
International Journal of computer Vision, 27, 161–195.

66

Eye Contact in Leisure Video Conferencing

[44] Harris, C. & Stephens, M. 1988. A combined corner and edge detector. Alvey Vision
Conference, 147–152.

[45] Torr, P. june 2002. Technical Report MSR-TR-56 - A structure and motion toolkit in matlab:
Interactive adventures in S and M.
http://research.microsoft.com/apps/pubs/default.aspx?id=69936. (accessed Nov 2011).

[46] Valenti, R., Sebe, N., & Gevers, T. 2012. Combining head pose and eye location information
for gaze estimation. IEEE Transactions on Image Processing, 21(2), 802–815.

[47] Duchowski, A. T. 2007. Eye Tracking Methodology: Theory and Practice. Springer-Verlag
New York, Inc., Secaucus, NJ, USA.

[48] Van der Geest, J. & Frens, M. 2002. Recording eye movements with video-oculography and
scleral search coils: a direct comparison of two methods. Journal of neuroscience methods,
114(2), 185–195.

[49] Savas, Z. June 2008. Trackeye: Real-time tracking of human eyes using a webcam.
http://www.codeproject.com/Articles/26897/TrackEye-Real-Time-Tracking-Of-Human-
Eyes-Using-a. (accessed feb 2012).

[50] Li, D., Winfield, D., & Parkhurst, D. J. 2005. Starburst: A hybrid algorithm for video-
based eye tracking combining feature-based and model-based approaches. In Proceedings
of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition
(CVPR’05) - Workshops - Volume 03, 79, Washington, DC, USA. IEEE Computer Society.

[51] Daugman, J. G. November 1993. High confidence visual recognition of persons by a test
of statistical independence. IEEE Trans. Pattern Anal. Mach. Intell., 15, 1148–1161.

[52] Yuille, A., Hallinan, P., & Cohen, D. 1992. Feature extraction from faces using deformable
templates. International Journal of computer Vision, 8(2), 99–111.

[53] Zhu, Z. & Ji, Q. April 2005. Robust real-time eye detection and tracking under variable
lighting conditions and various face orientations. Computer Vision and Image Understand-
ing, 98, 124–154.

[54] Lowe, D. G. November 2004. Distinctive image features from scale-invariant keypoints.
International Journal of Computer Vision, 60, 91–110.

[55] Mita, T., Kaneko, T., & Hori, O. 2005. Joint haar-like features for face detection. In
Computer Vision, 2005. ICCV 2005. Tenth IEEE International Conference on, volume 2, 1619–
1626. Ieee.

[56] Zhou, J., Jiang, L., Ji, Z., & Shen, L. 2009. Haar-like features based eye detection algo-
rithm and its implementation on TI TMS320DM6446 platform. In Imaging Systems and
Techniques, 2009. IST’09. IEEE International Workshop on, 89–93. IEEE.

67

Eye Contact in Leisure Video Conferencing

[57] Tan, K.-H., Kriegman, D., & Ahuja, N. 2002. Appearance-based eye gaze estimation. In
Applications of Computer Vision, 2002. (WACV 2002). Proceedings. Sixth IEEE Workshop on,
191 – 195.

[58] Pentland, A., Moghaddam, B., & Starner, T. 1994. View-based and modular eigenspaces for
face recognition. In IEEE Internation Conference on Computer Vision & Pattern Recognition.

[59] Guo, H. sept. 2011. A simple algorithm for fitting a gaussian function [dsp tips and tricks].
Signal Processing Magazine, IEEE, 28(5), 134 –137.

[60] Ruddin, N. 2009. Real time eye tracking and blink detection with OpenCV (software).
http://nashruddin.com/Real_Time_Eye_Tracking_and_Blink_Detection. (accessed feb
2012).

[61] The Gathering 2012 - Simon McCallum - Parallell Programming.
http://vimeo.com/39913086. (accessed jun 2012).

[62] Knott, G. D. October 1974. A proposal for certain process management and intercommu-
nication primitives. SIGOPS Oper. Syst. Rev., 8(4), 7–44.

[63] Hennessy, J. L. & Patterson, D. A. 2006. Computer Architecture: A Quantitative Approach.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 4th edition.

[64] Butenhof, D. R. 1997. Programming with POSIX threads. Addison-Wesley Longman Pub-
lishing Co., Inc., Boston, MA, USA.

[65] Barney, B. 2012. Lawrence Livermore National Laboratory Tutorial: POSIX Threads
Programming. https://computing.llnl.gov/tutorials/pthreads/#References. (accessed apr
2012).

[66] Cormen, T. H., Stein, C., Rivest, R. L., & Leiserson, C. E. 2001. Introduction to Algorithms.
McGraw-Hill Higher Education, 2nd edition.

[67] Smith, S. W. 1997. The scientist and engineer’s guide to digital signal processing. California
Technical Publishing, San Diego, CA, USA.

[68] Yadav, R. 2007. Client / server programming with tcp/ip sockets (ebook).
http://devmentor.org. (accessed may 2012).

[69] Gont, F. July 2008. Security assessment of the internet protocol. Centre for the Protection
of National Infrastructure.
http://www.gont.com.ar/drafts/ip-security/index.html. (accessed may 2012).

[70] Comer, D. 2006. Internetworking with TCP/IP: principles, protocols, and architecture.
Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 5th edition.

[71] Gonzalez, R. C. & Woods, R. E. 2002. Digital Image Processing. Pretince-Hall, Inc., Upper
Saddle River, New Jersey, USA, 2nd edition.

68

Eye Contact in Leisure Video Conferencing

[72] Zielinski, P. 2009. Opengazer: open-source gaze tracker for ordinary webcams (software),
samsung and the gatsby charitable foundation.
http://www.inference.phy.cam.ac.uk/opengazer/. (accessed feb 2012).

[73] Li, D., Parkhurst, D., Babcock, J., & Winfield, D. 2006. openEyes: cvEyeTracker - Version
1.2.5 (software).
http://thirtysixthspan.com/openEyes/. (accessed mar 2012).

[74] Nagy, B., Romanca, M., Peter, R., & Matiukas, V. 2009. 17th summer school on image
processing (SSIP-2009), Debrecen, Hungary.
http://www.inf.unideb.hu/ ssip/teams/team4/index.html. (accessed feb 2012).

[75] Koh, D., Munikrishne Gowda, S., & Komogortsev, O. 2009. Input evaluation of an eye-
gaze-guided interface: kalman filter vs. velocity threshold eye movement identification. In
Proceedings of the 1st ACM SIGCHI symposium on Engineering interactive computing systems,
197–202. ACM.
http://www.cs.txstate.edu/∼ok11/igaze_emd_online.html (accessed feb 2012).

[76] Oliveira, V. & Conci, A. 2009. Skin detection using hsv color space. In H. Pedrini, & J.
Marques de Carvalho, Workshops of Sibgrapi, 1–2.

[77] van Baren, J. & IJsselsteijn, W. March 2004. Deliverable 5 Version 1.0 (final) - Measuring
Presence: a Guide to Current Measurement Approaches.
http://www8.informatik.umu.se/ jwworth/PresenceMeasurement.pdf. (accessed feb
2012).

[78] Witmer, B. G. & Singer, M. J. June 1998. Measuring presence in virtual environments: A
presence questionnaire. Presence: Teleoper. Virtual Environ., 7(3), 225–240.

[79] Slater, M., Usoh, M., & Steed, A. 1994. Depth of presence in virtual environments. Presence-
Teleoperators and Virtual Environments, 3(2), 130–144.

[80] Ray, A. August 2006. Understanding chi square.
http://www.practicalsurveys.com/reporting/chisquare.php. (accessed jun 2012).

[81] NIST. April 2012. Critical values of the chi-square distribution.
http://www.itl.nist.gov/div898/handbook/eda/section3/eda3674.htm. (accessed jun
2012).

69

Eye Contact in Leisure Video Conferencing

A User Experience Questionnaires

A.1 Questionnaire Experiment 1

The questionnaires used after the first experiment to measure the user experience of the partici-
pants testing the software (i.e. the program) and the hardware (i.e. the teleprompter) solution.

70

Number:

Method: PROGRAM

Questions: 1a & 1b / 2a & 2b

--

Sex: M / F

Age: __

Eye sight: Uncorrected / Contact lens / Glasses

 If there are any, please specify other eye sight information:

Video conferencing experience (Skype/MSN with video):

o Daily

o More than twice a week, but not daily

o Weekly

o More than twice a month, but not weekly

o Monthly

o A few times a year

o Never

TECHNICAL

1. How would you rate the ease of use of the program (i.e. capturing the eyes and the

template)?

 (1 is very difficult, 4 is neutral, 7 is very easy)

1 2 3 4 5 6 7

Additional comments to this question? :

2. How would you rate the image quality?

(1 is very poor, 4 is neutral, 7 is very good)

1 2 3 4 5 6 7

Additional comments to this question? :

PRESENCE

3. When you were talking to yourself, how close was it to talking in a mirror?

(1 is not at all, 4 is neutral, 7 is exactly like a mirror)

- Situation a: (having the eyes corrected, first question)

1 2 3 4 5 6 7

- Situation b: (Not having the eyes corrected, second question)

1 2 3 4 5 6 7

Additional comments to this question? :

4. How engaged were you in the conversation with yourself?

(1 is not at all, 4 is neutral, 7 completely engaged)

- Situation a: (having the eyes corrected, first question)

1 2 3 4 5 6 7

- Situation b: (Not having the eyes corrected, second question)

1 2 3 4 5 6 7

Additional comments to this question? :

5. Did you feel like you had eye contact with yourself?

(1 is no eye contact at all, 4 is neutral, 7 is eye contact the entire time)

- Situation a: (having the eyes corrected, first question)

1 2 3 4 5 6 7

- Situation b: (Not having the eyes corrected, second question)

1 2 3 4 5 6 7

Additional comments to this question? :

6. How natural did the conversation seem, with respect to a real life conversation?

(1 is not natural, 4 is neutral, 7 is very natural)

- Situation a: (having the eyes corrected, first question)

1 2 3 4 5 6 7

- Situation b: (Not having the eyes corrected, second question)

1 2 3 4 5 6 7

Additional comments to this question? :

GENERAL:

7. Do you think the eye correction is an improvement?

8. Any other comments about your experience using the program?

Number:

Method: TELEPROMPTER

Questions: 1a & 1b / 2a & 2b

--

Sex: M / F

Age: __

Eye sight: Uncorrected / Contact lens / Glasses

 If there are any, please specify other eye sight information:

Video conferencing experience (Skype/MSN with video):

o Daily

o More than twice a week, but not daily

o Weekly

o More than twice a month, but not weekly

o Monthly

o A few times a year

o Never

TECHNICAL

1. How would you rate the ease of use of the teleprompter (i.e. talking in the box, not including

setting up the video chat)?

 (1 is very difficult, 4 is neutral, 7 is very easy)

1 2 3 4 5 6 7

Additional comments to this question? :

2. How would you rate the image quality?

(1 is very poor, 4 is neutral, 7 is very good)

1 2 3 4 5 6 7

Additional comments to this question? :

PRESENCE

3. When you were talking to yourself, how close was it to talking in a mirror?

(1 is not at all, 4 is neutral, 7 is exactly like a mirror)

- Situation a: (camera behind screen, first question)

1 2 3 4 5 6 7

- Situation b: (camera on top, second question)

1 2 3 4 5 6 7

Additional comments to this question? :

4. How engaged were you in the conversation with yourself?

(1 is not at all, 4 is neutral, 7 completely engaged)

- Situation a: (camera behind screen, first question)

1 2 3 4 5 6 7

- Situation b: (camera on top, second question)

1 2 3 4 5 6 7

Additional comments to this question? :

5. Did you feel like you had eye contact with yourself?

(1 is no eye contact at all, 4 is neutral, 7 is eye contact the entire time)

- Situation a: (camera behind screen, first question)

1 2 3 4 5 6 7

- Situation b: (camera on top, second question)

1 2 3 4 5 6 7

Additional comments to this question? :

6. How natural did the conversation seem, with respect to a real life conversation?

(1 is not natural, 4 is neutral, 7 is very natural)

- Situation a: (camera behind screen, first question)

1 2 3 4 5 6 7

- Situation b: (camera on top, second question)

1 2 3 4 5 6 7

Additional comments to this question? :

GENERAL:

7. Do you think having the camera behind the screen is an improvement with respect to having

the camera on top of the screen?

8. Any other comments about your experience using the program?

Eye Contact in Leisure Video Conferencing

A.2 Questionnaire Experiment 2

The questionnaire used after the second experiment to measure the user experience of the par-
ticipants testing the software and the hardware solution. The questionnaires were identical but
they had a different title to distinguish which completed survey belonged to which solution.

77

13-07-12 LimeSurvey - Eye Contact Presence Questionnaire (Software)

1/6file:///C:/Users/Annick/Documents/CIMET/MT/REPORT/LimeSurveySoftware.htm

Eye Contact Presence Questionnaire (Software)

 This questionnaire is designed to test the user experience of the software solution proposed in the Master Thesis "Eye
Contact in Video Conferencing"
 Welcome to Eye Contact Presence Questionnaire. The following questions will ask about your video conferencing
experience, in order to assess the performance of the proposed solutions.

There are 13 questions in this survey

General Information

1 [1] What is your gender? *

Please choose only one of the following:

 Female

 Male

2 [2] What is your age? *

Please write your answer here:

3 [3] How is your eye sight? *

Please choose only one of the following:

 Uncorrected

 Contact lenses

 Glasses

 I.e. do you wear glasses, contact lenses or neither?

13-07-12 LimeSurvey - Eye Contact Presence Questionnaire (Software)

2/6file:///C:/Users/Annick/Documents/CIMET/MT/REPORT/LimeSurveySoftware.htm

4 [4] What is your video conferencing experience? *

Please choose only one of the following:

 Daily

 More than twice a week, but not daily

 Weekly

 More than twice a month, but not weekly

 Monthly

 A few times a year

 Never

 I.e. how often do you use video chat tools (such as Skype or MSN messenger) with video?

13-07-12 LimeSurvey - Eye Contact Presence Questionnaire (Software)

3/6file:///C:/Users/Annick/Documents/CIMET/MT/REPORT/LimeSurveySoftware.htm

Immersion

5 [11]How engaged were you in the conversation? *

Please choose only one of the following:

 1

 2

 3

 4

 5

1 is not at all, 3 is neutral and 5 is very

6 [12] Did you get distracted from the conversation? *

Please choose only one of the following:

 1

 2

 3

 4

 5

1 is not at all, 3 is neutral and 5 is very

7 [13] How much were you involved by the visual aspects (the video part) of
the video conferencing session? *

Please choose only one of the following:

 1

 2

 3

 4

 5

 1 is not at all, 3 is neutral and 5 is very

13-07-12 LimeSurvey - Eye Contact Presence Questionnaire (Software)

4/6file:///C:/Users/Annick/Documents/CIMET/MT/REPORT/LimeSurveySoftware.htm

Naturalness

8 [21] How natural did the conversation seem? *

Please choose only one of the following:

 1

 2

 3

 4

 5

1 is not at all, 3 is neutral and 5 is very

9 [22] To what extend did you feel as if the video conferencing session was as
a real world conversation? *

Please choose only one of the following:

 1

 2

 3

 4

 5

1 is not at all, 3 is neutral and 5 is very

10 [23] Were you conscious about the media used during the video
conferencing session? *

Please choose only one of the following:

 1

 2

 3

 4

 5

 1 is not at all, 3 is neutral and 5 is very

13-07-12 LimeSurvey - Eye Contact Presence Questionnaire (Software)

5/6file:///C:/Users/Annick/Documents/CIMET/MT/REPORT/LimeSurveySoftware.htm

Eye Contact

11 [41]Did you feel like you had eye contact with the other video chat
participant? *

Please choose only one of the following:

 1

 2

 3

 4

 5

1 is not at all, 3 is neutral and 5 is very

12 [42]How natural did the eye contact with the other participant seem? *

Please choose only one of the following:

 1

 2

 3

 4

 5

 1 is not at all, 3 is neutral and 5 is very

13 [43]To what extend did you feel as if the eye contact with the other
participant distracted you from the conversation? *

Please choose only one of the following:

 1

 2

 3

 4

 5

 1 is not at all, 3 is neutral and 5 is very

13-07-12 LimeSurvey - Eye Contact Presence Questionnaire (Software)

6/6file:///C:/Users/Annick/Documents/CIMET/MT/REPORT/LimeSurveySoftware.htm

Submit your survey.
Thank you for completing this survey.

Eye Contact in Leisure Video Conferencing

B Presence Questionnaire (PQ)

Presence Questionnaire proposed by Witmer & Singer [78].

1. How much were you able to control events?
2. How responsive was the environment to actions that you initiated (or performed)?
3. How natural did your interactions with the environment seem?
4. How completely were all of your senses engaged?
5. How much did the visual aspects of the environment involve you?
6. How much did the auditory aspects of the environment involve you?
7. How natural was the mechanism which controlled movement through the environment?
8. How aware were you of events occurring in the real world around you?
9. How aware were you of your display and control devices?
10. How compelling was your sense of objects moving through space?
11. How inconsistent or disconnected was the information coming from your various senses? 12.
How much did your experiences in the virtual environment seem consistent with your real-world
experiences?
13. Were you able to anticipate what would happen next in response to the actions that you
performed?
14. How completely were you able to actively survey or search the environment using vision?
15. How well could you identify sounds?
16. How well could you localize sounds?
17. How well could you actively survey or search the virtual environment using touch?
18. How compelling was your sense of moving around inside the virtual environment?
19. How closely were you able to examine objects?
20. How well could you examine objects from multiple viewpoints?
21. How well could you move or manipulate objects in the virtual environment?
22. To what degree did you feel confused or disoriented at the beginning of breaks or at the end
of the experimental session?
23. How involved were you in the virtual environment experience?
24. How distracting was the control mechanism?
25. How much delay did you experience between your actions and expected outcomes?
26. How quickly did you adjust to the virtual environment experience?
27. How proficient in moving and interacting with the virtual environment did you feel at the
end of the experience?
28. How much did the visual display quality interfere or distract you from performing assigned
tasks or required activities?
29. How much did the control devices interfere with the performance of assigned tasks or with
other activities?

84

Eye Contact in Leisure Video Conferencing

30. How well could you concentrate on the assigned tasks or required activities rather than on
the mechanisms used to perform those tasks or activities?
31. Did you learn new techniques that enabled you to improve your performance?
32. Were you involved in the experimental task to the extent that you lost track of time?

85

Eye Contact in Leisure Video Conferencing

C Slater-Usoh-Steed Questionnaire (SUS)

Presence Questionnaire proposed by Slater, Usoh S̃teed Questionnaire (SUS) [79] taken from the
presence measurement approaches overview by Van Baren and Ijsselsteijn [77].

1. Please rate your sense of being in the virtual environment, on a scale of 1 to 7, where 7
represents your normal experience of being in a place.
2. To what extent were there times during the experience when the virtual environment was the
reality for you?
3. When you think back to the experience, do you think of the virtual environment more as im-
ages that you saw or more as somewhere that you visited?
4. During the time of the experience, which was the strongest on the whole, your sense of being
in the virtual environment or of being elsewhere?
5. Consider your memory of being in the virtual environment. How similar in terms of the struc-
ture of the memory is this to the structure of the memory of other places you have been today?
By ’structure of the memory’ consider things like the extent to which you have a visual memory
of the virtual environment, whether that memory is in colour, the extent to which the memory
seems vivid or realistic, its size, location in your imagination, the extent to which it is panoramic
in your imagination, and other such structural elements.
6. During the time of your experience, did you often think to yourself that you were actually in
the virtual environment?

86

Eye Contact in Leisure Video Conferencing

D Experimental Data

In Table 7 the original data gathered from the first experiment testing the software solution is
displayed. Table 8 shows the original data gathered from the first experiment testing the hard-
ware solution. In order to visualise and evaluate the results the data was later grouped together
in 3 bins, namely negative, neutral and positive answers.

1 2 3 4 5 6 7
Ease of use 0 1 0 1 2 7 0

Image quality 0 2 1 1 5 1 1

Like mirror
Gaze correction 0 2 1 4 3 1 0
No gaze correction 1 2 2 2 1 2 1

Engagement
Gaze correction 1 0 0 1 7 2 0
No gaze correction 2 0 1 5 1 2 0

Eye contact
Gaze correction 0 2 0 1 3 3 2
No gaze correction 3 3 2 1 2 0 0

Naturalness
Gaze correction 1 2 3 0 3 2 0
No gaze correction 2 0 5 1 1 2 0

Table 7: Original data experiment 1 software testing. Frequencies of answers on a scale from 1
to 7.

1 2 3 4 5 6 7
Ease of use 0 0 1 0 4 2 4

Image quality 0 1 2 3 4 1 0

Like mirror
Gaze correction 0 0 2 0 2 5 2
No gaze correction 2 1 2 4 1 1 0

Engagement
Gaze correction 0 0 5 1 2 3 0
No gaze correction 0 1 6 2 0 1 1

Eye contact
Gaze correction 0 1 0 0 3 4 3
No gaze correction 3 1 3 3 0 0 1

Naturalness
Gaze correction 0 3 0 1 1 5 1
No gaze correction 3 0 1 4 1 2 0

Table 8: Original data experiment 1 hardware testing. Frequencies of answers on a scale from 1
to 7.

87

Eye Contact in Leisure Video Conferencing

E Software Source Code

Listing E.1: Gaze Correction Class
1 /∗∗
2 ∗ Thi s c l a s s per forms gaze c o r r e c t i o n .
3 ∗ Eyes are d e t e c t e d by b l i n k i n g or by c l i c k i n g on the e y e s .
4 ∗ Template cap tur e by l ook ing in the camera and p r e s s i n g ’ t ’ .
5 ∗ To show the gaze c o r r e c t i o n to the r e c e i v e r p r e s s ’ s ’
6 ∗ To send o r i g i n a l image to r e c e i v e r d i s a b l e gaze c o r r e c t i o n by p r e s s i n g ’ d ’
7 ∗ To r e s t a r t t r a c k i n g and t emp la t e cap tur e p r e s s ’ r ’
8 ∗ When e y e s l o s t p r e s s ’ l ’ , t emp la t e i s p r e s e r v e d
9 ∗

10 ∗ Thi s c l a s s in an adjus tment and e x t e n s i o n o f the
11 ∗ Real Time Eye Track ing and B l ink D e t e c t i o n with OpenCV so f twar e
12 ∗ @author Nash <me@nashruddin . com>
13 ∗ @license GPL
14 ∗ @website h t t p : // nashruddin . com
15 ∗
16 ∗ See the t u t o r i a l at
17 ∗ h t tp : // nashruddin . com/ Rea l_T ime_Eye_Track ing_and_B l ink_Dete c t i on
18 ∗
19 ∗ Ruddin ’ s s o f twar e l o c a t e d an eye by b l i n k i n g and t ra ck ed the eye
20 ∗ by t emp la t e matching wi th in a s ea r ch window .
21 ∗
22 ∗ The so f twar e was ex t ended to :
23 ∗ − l o c a t e and t ra ck both e y e s
24 ∗ − have the a l t e r n a t i v e p o s s i b i l i t y to c l i c k on the e y e s
25 ∗ − cap tu r e eye t emp la t e s
26 ∗ − c a l c u l a t e a LookUpTable (LUT) f i l l e d with Gaussian numbers
27 ∗ − Gaussian b lend t emp la t e e y e s with the c u r r e n t frame image e y e s
28 ∗ − o the r improvements to the o r i g i n a l code
29 ∗ − a l t e r e d to a c l a s s to f u n c t i o n with the networking a p p l i c a t i o n
30 ∗/
31

32

33 #include " gucOCV . h "
34 #include " gazeSystem . h "
35 #include <iostream>
36 #include <st r i ng >
37

38

39 void gazeSystem : : co r r e c tEye s (Ipl Image∗ img)
40 {
41 cvNamedWindow(wnd_name , 1) ;
42 cvCopy (img , frame , NULL) ;
43 frame−>o r i g i n = 0;
44

45 i f (s tage == STAGE_INIT)
46 {
47 window = cvRect (0 , 0 , frame−>width , frame−>height) ;
48 cvSetMouseCallback (" video " , &gazeSystem : : on_mouse , th i s) ;
49 }
50

51 cvCvtColor (frame , gray , CV_BGR2GRAY) ;

88

Eye Contact in Leisure Video Conferencing

52 nc = get_connected_components (gray , prev , window , &comp) ;
53

54 i f (s tage == STAGE_INIT && i s _ e y e _ p a i r (comp , nc , gray , &eye , &eye2))
55 {
56 delay_frames (5) ;
57

58 // Get t emp la t e f o r t emp la t e matching f i r s t eye
59 cvSetImageROI (gray , eye) ;
60 cvCopy (gray , tp l , NULL) ;
61 cvResetImageROI (gray) ;
62

63 // Get t emp la t e f o r t emp la t e matching second eye
64 cvSetImageROI (gray , eye2) ;
65 cvCopy (gray , tp l2 , NULL) ;
66 cvResetImageROI (gray) ;
67

68 bl inkCapture=true ;
69 }
70

71 i f (s tage == STAGE_INIT && l e f t E y e C l i c k e d && ! r i gh tEyeC l i cked)
72 {
73

74 eye = cvRect (
75 p . x − (TPL_WIDTH / 2) ,
76 p . y − (TPL_HEIGHT / 2) ,
77 TPL_WIDTH ,
78 TPL_HEIGHT
79) ;
80

81 cvSetImageROI (gray , eye) ;
82 cvCopy (gray , tp l , NULL) ;
83 cvResetImageROI (gray) ;
84

85 }
86

87 i f (s tage == STAGE_INIT && r igh tEyeC l i cked &&!bl inkCapture)
88 {
89

90 eye2 = cvRect (
91 p . x − (TPL_WIDTH / 2) ,
92 p . y − (TPL_HEIGHT / 2) ,
93 TPL_WIDTH ,
94 TPL_HEIGHT
95) ;
96

97 cvSetImageROI (gray , eye2) ;
98 cvCopy (gray , tp l2 , NULL) ;
99 cvResetImageROI (gray) ;

100

101 }
102

103

104 i f (s tage==STAGE_INIT && ((l e f t E y e C l i c k e d && r igh tEyeC l i cked) || (b l inkCapture)))
105 {
106 i f (eye2 . x < (eye . x+eye . width))
107 {
108 CvRect temp = eye ;
109 eye = eye2 ;
110 eye2 = temp ;
111

112 s t a t i c Ipl Image ∗ tempIm= cvCreateImage (cvS ize (tp l−>width , tp l−>height) , 8 , 1) ;
113

89

Eye Contact in Leisure Video Conferencing

114 cvCopy (tp l , tempIm , NULL) ;
115 cvCopy (tpl2 , tp l , NULL) ;
116 cvCopy (tempIm , tpl2 , NULL) ;
117

118 }
119

120 window_dist = (eye2 . x) − (eye . x+WIN_WIDTH) ;
121 s tage = STAGE_TRACKING ;
122

123 }
124

125

126 i f (s tage == STAGE_TRACKING)
127 {
128

129 CvRect tempWin ;
130

131 found = loca te_eye (gray , tp l , &window , &eye , NULL) ;
132 tempWin = cvRect (
133 window . x + window . width + window_dist ,
134 window . y ,
135 WIN_WIDTH,
136 WIN_HEIGHT
137) ;
138 found2 = loca te_eye (gray , tp l2 , &window2 , &eye2 , &tempWin) ;
139

140 i f (eye2 . x < (eye . x+eye . width))
141 {
142 CvRect temp = eye ;
143 eye = eye2 ;
144 eye2 = temp ;
145

146 s t a t i c Ipl Image ∗ tempIm= cvCreateImage (cvS ize (tp l−>width , tp l−>height) , 8 , 1) ;
147 cvCopy (tp l , tempIm , NULL) ;
148 cvCopy (tpl2 , tp l , NULL) ;
149 cvCopy (tempIm , tpl2 , NULL) ;
150 }
151

152

153 i f (i s _ b l i n k (comp , nc , window , eye))
154 b l ink = 2;
155

156

157 image_corr_frame = cvCloneImage (frame) ;
158 imageCorrected = true ;
159

160 //draw the green r e c t a n g l e around the e y e s 1 p i x e l l a r g e r
161 // then when copy ing the e y e s f o r t emp la t e the green i s e x c luded
162 eyeRect = cvRect (eye . x−1, eye . y−1, eye . width+1, eye . he ight+1) ;
163 eye2Rect = cvRect (eye2 . x−1, eye2 . y−1, eye2 . width+1, eye2 . he ight+1) ;
164 DRAW_RECTS(frame , d i f f , window , eyeRect) ;
165 DRAW_RECTS(frame , d i f f , window2 , eye2Rect) ;
166

167 // the c o r r e c t e d image should not g e t the green and red r e c t a n g l e s around i t
168 image_corrected = cvCloneImage (image_corr_frame) ;
169

170 // g e t the p o s i t i o n o f the f i r s t eye
171 eye_frame_pos=eye ;
172

173 // g e t the p o s i t i o n o f the second eye
174 eye2_frame_pos=eye2 ;
175

90

Eye Contact in Leisure Video Conferencing

176 i f ((found==0 && found2==0) || key == ’ r ’)
177 {
178 s tage = STAGE_INIT ;
179

180 i f (wnd_tpl)
181 cvDestroyWindow (wnd_tpl) ;
182

183 window_dist=NULL;
184 se tThresh = true ;
185 //No need to c r e a t e new LUT
186 LUTempty = true ;
187

188 imageCorrected = f a l se ;
189 templateCaptured = f a l se ;
190 sendImage = f a l se ;
191

192 l e f t E y e C l i c k e d=f a l se ;
193 r i gh tEyeC l i cked=f a l se ;
194 c l i ckedEyes =0;
195 bl inkCapture=f a l se ;
196

197 }
198

199 i f (key == ’ t ’)
200 {
201 i f (checkVa l idP t r (image_tpl))
202 cvReleaseImage(& image_tpl) ;
203 i f (checkVa l idP t r (eye_cor rec t ion_ tp l_ image))
204 cvReleaseImage(& eye_cor rec t ion_ tp l_ image) ;
205 i f (checkVa l idP t r (eye2_cor rec t ion_tp l_ image))
206 cvReleaseImage(& eye2_cor rec t ion_tp l_ image) ;
207

208 image_tpl = cvCloneImage (image_corr_frame) ;
209

210 cvNamedWindow(wnd_tpl , 1) ;
211 cvShowImage(wnd_tpl , frame) ;
212

213 // g e t the t emp la t e f o r the f i r s t eye
214 cvSetImageROI (image_tpl , eye) ;
215 eye_cor rec t ion_ tp l_ image=cvCloneImage (image_tpl) ;
216 cvResetImageROI (image_tpl) ;
217

218 eye_tp l_pos=eye ;
219

220 // g e t the t emp la t e f o r the second eye
221 cvSetImageROI (image_tpl , eye2) ;
222 eye2_cor rec t ion_tp l_ image=cvCloneImage (image_tpl) ;
223 cvResetImageROI (image_tpl) ;
224

225 eye2_tp l_pos=eye2 ;
226

227 templateCaptured = true ;
228 }
229

230 }
231

232 i f (key == ’ l ’)
233 s tage = STAGE_INIT ;
234

235 i f (key == ’ s ’)
236 sendImage=true ;
237

91

Eye Contact in Leisure Video Conferencing

238 i f (key == ’ d ’)
239 sendImage=f a l se ;
240

241

242 cvShowImage(wnd_name , frame) ;
243

244 i f (f i r s tRound == f a l se)
245 cvReleaseImage(&prev) ;
246 prev = (IplImage ∗) cvClone (gray) ;
247

248 i f (imageCorrected && templateCaptured && (found==1 && found2==1))
249 {
250 i f (b l i nk==0)
251 {
252 doCorrect ion (image_corrected , eye_frame_pos , eye_tpl_pos ,

eye_cor rec t ion_ tp l_ image) ;
253 doCorrect ion (image_corrected , eye2_frame_pos , eye2_tpl_pos ,

eye2_cor rec t ion_tp l_ image) ;
254 }
255

256 i f (b l i nk > 0)
257 bl ink −−;
258

259 i f (sendImage == true)
260 cvCopyImage (image_corrected , img) ;
261 }
262

263 f i r s tRound = f a l se ;
264 i f (checkVa l idP t r (image_corr_frame))
265 cvReleaseImage(&image_corr_frame) ;
266 i f (checkVa l idP t r (image_corrected))
267 cvReleaseImage(& image_corrected) ;
268

269

270 key = cvWaitKey (15) ;
271

272 }
273

274 void gazeSystem : : on_mouse(in t event , in t x , in t y , in t f l ag , void∗ param)
275 {
276 gazeSystem∗ tempGaze = (gazeSystem ∗)param ;
277

278 switch (event) {
279 case CV_EVENT_LBUTTONDOWN:
280 {
281 tempGaze−>bl inkCapture=f a l se ;
282 tempGaze−>setxy (x , y) ;
283

284 }
285 break ;
286 }
287 }
288

289

290 void gazeSystem : : se txy (in t x , in t y)
291 {
292 p . x = x ;
293 p . y = y ;
294 c l i ckedEyes++;
295

296

297 i f (c l i ckedEyes==1)

92

Eye Contact in Leisure Video Conferencing

298 l e f t E y e C l i c k e d=true ;
299 i f (c l i ckedEyes==2)
300 r i gh tEyeC l i cked=true ;
301 }
302 /∗∗
303 ∗ Thi s i s the wrapper f u n c t i o n f o r cvF indContour s
304 ∗
305 ∗ @param Ip l Image ∗ img the c u r r e n t g r a y s c a l e d frame
306 ∗ @param Ip l Image ∗ prev p r e v i o u s l y saved frame
307 ∗ @param CvRect window sea r ch wi th in t h i s window
308 ∗ @param CvSeq∗∗ comp output parameter , w i l l c on ta in the connec t ed components
309 ∗ @return i n t the number o f connec t ed components
310 ∗/
311 in t gazeSystem : : get_connected_components (Ipl Image∗ img , Ipl Image∗ prev , CvRect window ,

CvSeq∗∗ comp)
312 {
313 Ipl Image∗ _ d i f f ;
314

315 cvZero (d i f f) ;
316

317 /∗ apply s ea r ch window to images ∗/
318 cvSetImageROI (img , window) ;
319 cvSetImageROI (prev , window) ;
320 cvSetImageROI (d i f f , window) ;
321

322 /∗ motion a n a l y s i s ∗/
323 cvSub (img , prev , d i f f , NULL) ;
324 cvThreshold (d i f f , d i f f , 5 , 255 , CV_THRESH_BINARY) ;
325 cvMorphologyEx (d i f f , d i f f , NULL , kernel , CV_MOP_OPEN, 1) ;
326

327 /∗ r e s e t s ea r ch window ∗/
328 cvResetImageROI (img) ;
329 cvResetImageROI (prev) ;
330 cvResetImageROI (d i f f) ;
331

332 _ d i f f = (Ipl Image ∗) cvClone (d i f f) ;
333

334 /∗ g e t connec t ed components ∗/
335 in t nc = cvFindContours (_ d i f f , s torage , comp , s izeof (CvContour) ,
336 CV_RETR_CCOMP, CV_CHAIN_APPROX_SIMPLE , cvPo in t (0 ,0)) ;
337

338 cvClearMemStorage (s to rage) ;
339 cvReleaseImage(& _ d i f f) ;
340

341 return nc ;
342 }
343

344 /∗∗
345 ∗ Exper imen ta l l y−d e r i v e d h e u r i s t i c s to de te rmine whether
346 ∗ the connec t ed components are eye pa i r or not .
347 ∗
348 ∗ @param CvSeq∗ comp the connec t ed components
349 ∗ @param i n t num the number o f connec t ed components
350 ∗ @param CvRect∗ eye output parameter , w i l l c on ta in the l o c a t i o n o f the
351 ∗ f i r s t component
352 ∗ @return i n t ’ 1 ’ i f eye pair , ’ 0 ’ o t h e r w i s e
353 ∗/
354 in t gazeSystem : : i s _ e y e _ p a i r (CvSeq∗ comp , in t num, Ipl Image∗ gray , CvRect∗ eye , CvRect∗

eye2)
355 {
356 i f (comp == 0 || num != 2)
357 return 0;

93

Eye Contact in Leisure Video Conferencing

358

359 CvRect r1 = cvBoundingRect (comp , 1) ;
360 comp = comp−>h_next ;
361

362 i f (comp == 0)
363 return 0;
364

365 CvRect r2 = cvBoundingRect (comp , 1) ;
366

367 // i f the components are lower than at 1/4 o f frame , or h ighe r than 2/3 o f frame then
r e tu rn 0

368 i f (r1 . y < gray−>height ∗0.25 || r2 . y < gray−>height ∗0.25 || r1 . y > gray−>height ∗0.66
|| r2 . y > gray−>height ∗0.66)

369 return 0;
370

371 /∗ the width o f the components are about the same ∗/
372 i f (abs (r1 . width − r2 . width) >= 5)
373 return 0;
374

375 /∗ the h e i gh t f the components are about the same ∗/
376 i f (abs (r1 . he ight − r2 . he ight) >= 5)
377 return 0;
378

379 /∗ v e r t i c a l d i s t a n c e i s smal l ∗/
380 i f (abs (r1 . y − r2 . y) >= 5)
381 return 0;
382

383 /∗ r ea sonab l e h o r i z o n t a l d i s t an c e , based on the components ’ width ∗/
384 in t d i s t _ r a t i o = abs (r1 . x − r2 . x) / r1 . width ;
385 i f (d i s t _ r a t i o < 2 || d i s t _ r a t i o > 5)
386 return 0;
387

388 /∗ g e t the c e n t r o i d o f the 1 s t component ∗/
389 CvPoint po int = cvPo int (
390 r1 . x + (r1 . width / 2) ,
391 r1 . y + (r1 . he ight / 2)
392) ;
393

394 /∗ g e t the c e n t r o i d o f the 2nd component ∗/
395 CvPoint point2 = cvPo int (
396 r2 . x + (r2 . width / 2) ,
397 r2 . y + (r2 . he ight / 2)
398) ;
399

400 /∗ r e tu rn 1 s t eye boundar i e s ∗/
401 ∗eye = cvRect (
402 point . x − (TPL_WIDTH / 2) ,
403 point . y − (TPL_HEIGHT / 2) ,
404 TPL_WIDTH ,
405 TPL_HEIGHT
406) ;
407

408 /∗ r e tu rn 2nd eye boundar i e s ∗/
409 ∗eye2 = cvRect (
410 point2 . x − (TPL_WIDTH / 2) ,
411 point2 . y − (TPL_HEIGHT / 2) ,
412 TPL_WIDTH ,
413 TPL_HEIGHT
414) ;
415

416 return 1;
417 }

94

Eye Contact in Leisure Video Conferencing

418

419 /∗∗
420 ∗ Loca t e the u s e r ’ s eye with t emp la t e matching
421 ∗
422 ∗ @param Ip l Image ∗ img the sou r c e image
423 ∗ @param Ip l Image ∗ t p l the eye t emp la t e
424 ∗ @param CvRect∗ window sea r ch wi th in t h i s window ,
425 ∗ w i l l be updated with the r e c e n t s ea r ch window
426 ∗ @param CvRect∗ eye output parameter , w i l l c on ta in the c u r r e n t
427 ∗ l o c a t i o n o f u s e r ’ s eye
428 ∗ @return i n t ’ 1 ’ i f found , ’ 0 ’ o t h e r w i s e
429 ∗/
430

431 in t gazeSystem : : loca te_eye (Ipl Image∗ img , Ipl Image∗ tp l , CvRect∗ window , CvRect∗ eye ,
CvRect∗ newThingy = NULL)

432 {
433 Ipl Image∗ tm ;
434 CvRect win ;
435 CvPoint minloc , maxloc , po int ;
436 double minval , maxval ;
437 in t w, h ;
438

439 eyesLos t=f a l se ;
440 /∗ g e t the c e n t r o i d o f eye ∗/
441 point = cvPo int (
442 (∗ eye) . x + (∗ eye) . width / 2 ,
443 (∗ eye) . y + (∗ eye) . he ight / 2
444) ;
445

446 /∗ s e tup s ea r ch window
447 r e p l a c e the p r e d e f i n e d WIN_WIDTH and WIN_HEIGHT above
448 f o r your conv en i en t ∗/
449 win = cvRect (
450 point . x − WIN_WIDTH / 2 ,
451 point . y − WIN_HEIGHT / 2 ,
452 WIN_WIDTH,
453 WIN_HEIGHT
454) ;
455 i f (newThingy != NULL)
456 {
457 win . x = newThingy−>x ;
458 win . y = newThingy−>y ;
459 win . he ight = newThingy−>height ;
460 win . width = newThingy−>width ;
461 }
462

463 /∗ make sur e tha t the s ea r ch window i s s t i l l w i th in the frame ∗/
464 i f (win . x < 0)
465 win . x = 0;
466 i f (win . y < 0)
467 win . y = 0;
468 i f (win . x + win . width > img−>width)
469 win . x = img−>width − win . width ;
470 i f (win . y + win . he ight > img−>height)
471 win . y = img−>height − win . he ight ;
472

473 // c r e a t e new image f o r t emp la t e matching r e s u l t where :
474 w = win . width − tp l−>width + 1;
475 h = win . he ight − tp l−>height + 1;
476 tm = cvCreateImage (cvS ize (w, h) , IPL_DEPTH_32F , 1) ;
477

478 /∗ apply the s ea r ch window ∗/

95

Eye Contact in Leisure Video Conferencing

479 cvSetImageROI (img , win) ;
480

481 /∗ t emp la t e matching ∗/
482 cvMatchTemplate (img , tp l , tm , CV_TM_SQDIFF_NORMED) ;
483 cvMinMaxLoc (tm , &minval , &maxval , &minloc , &maxloc , 0) ;
484

485 /∗ r e l e a s e t h i n g s ∗/
486 cvResetImageROI (img) ;
487 cvReleaseImage(&tm) ;
488

489 /∗ only good matches ∗/
490 i f (se tThresh==true)
491 {
492 // min_thre sho ld = (maxval + minval) /1 .5 ;
493 min_threshold = 0.57∗(maxval + minval) ;
494 min_eye_threshold = 2∗maxval ;
495 se tThresh = f a l se ;
496 }
497 i f (maxval < min_threshold)
498 {
499 // e y e s L o s t=t ru e ;
500 return 0;
501 }
502

503 /∗ r e tu rn the s ea r ch window ∗/
504 ∗window = win ;
505

506

507 /∗ r e tu rn eye l o c a t i o n ∗/
508 ∗eye = cvRect (
509 win . x + minloc . x ,
510 win . y + minloc . y ,
511 TPL_WIDTH ,
512 TPL_HEIGHT
513) ;
514

515

516 return 1;
517 }
518

519 /∗∗
520 ∗ Gaze c o r r e c t i o n with Gauss ian b lend
521 ∗
522 ∗ @param Ip l Image ∗ img the sou r c e image
523 ∗ @param CvRect∗ eye_pos the p o s i t i o n o f the eye
524 ∗ @param CvRect∗ e y e _ t p l _ p o s the p o s i t i o n o f the t emp la t e e y e s
525 ∗ @param Ip l Image ∗ e y e _ t p l the eye t emp la t e
526 ∗
527 ∗ @return i n t ’ 1 ’
528 ∗/
529 in t gazeSystem : : doCorrect ion (Ipl Image∗ img , CvRect eye_pos , CvRect eye_tpl_pos ,

Ipl Image∗ eye_ tp l)
530 {
531 getLUT (LUTempty) ;
532

533 cvSetImageROI (img , eye_pos) ;
534

535 // Do Gauss ian b l end ing with LUT
536 in t LUTindex = 0;
537 for (in t y = 0; y < eye_pos . he ight ; y++)
538 {
539 for (in t x = 0; x < eye_pos . width ; x++)

96

Eye Contact in Leisure Video Conferencing

540 {
541

542 in t indexEyeTpl = (eye_tp l_pos . y+y)∗img−>widthStep+((eye_tp l_pos . x+x) ∗3) ;
543 in t index = (eye_pos . y+y)∗img−>widthStep+((eye_pos . x+x) ∗3) ;
544

545 img−>imageData [index]= (unsigned char) img−>imageData [index]∗(1−LUT[LUTindex]) ;
546 img−>imageData [index] += (unsigned char) eye_tp l−>imageData [indexEyeTpl] ∗ LUT[

LUTindex] ;
547

548 img−>imageData [index+1]= (unsigned char) img−>imageData [index +1]∗(1−LUT[LUTindex
]) ;

549 img−>imageData [index+1] += (unsigned char) eye_tp l−>imageData [indexEyeTpl+1] ∗
LUT[LUTindex] ;

550

551 img−>imageData [index+2]= (unsigned char) img−>imageData [index+2]∗(1−LUT[LUTindex])
;

552 img−>imageData [index+2] += (unsigned char) eye_tp l−>imageData [indexEyeTpl+2] ∗
LUT[LUTindex] ;

553

554 LUTindex++;
555 }
556 }
557 cvResetImageROI (img) ;
558

559 return 1;
560 }
561

562

563 // t h i s i s LUT as the f l a t t e d pyramid
564

565 /∗∗
566 ∗ Crea t e a 2D Look Up Table (LUT) f i l l e d with Gaussian v a l u e s
567 ∗
568 ∗ @param boo l LUTempty only f i l l LUT i f i t i s s t i l l empty
569 ∗
570 ∗/
571 in t gazeSystem : : getLUT (bool LUTempty)
572 {
573 i f (LUTempty == f a l se)
574 return 1;
575

576 FILE ∗ fp ;
577 fp = fopen (" LUT_f la t ted . t x t " , "w") ;
578

579

580 double a=1;
581 double b=0;
582 double temp ;
583 double c =2.5;
584 double e=2.718281828;
585 double LUTvalue ;
586 in t LUTindex = 0;
587

588 for (double y = −0.5∗TPL_HEIGHT ; y < 0.5∗TPL_HEIGHT ; y++)
589 {
590 for (double x = −0.5∗TPL_WIDTH; x < 0.5∗TPL_WIDTH; x++)
591 {
592 temp = s q r t ((x∗x) + (y∗y)) ;
593

594 i f (temp > 3)
595 {
596 b=3.2;

97

Eye Contact in Leisure Video Conferencing

597 LUTvalue = a∗pow(e , −(pow(temp−b ,2) / (2∗pow(c ,2)))) ;
598 }
599 else
600 LUTvalue = 1;
601

602 // f i l l LUT matr ix
603 LUT[LUTindex] = LUTvalue ;
604 LUTindex++;
605 f p r i n t f (fp , " %6.3 f " , LUT[LUTindex]) ;
606

607 }
608

609 f p r i n t f (fp , " \n ") ;
610 }
611

612 f c l o s e (fp) ;
613 LUTempty= f a l se ;
614 return 1;
615 }
616

617

618 in t gazeSystem : : i s _ b l i n k (CvSeq∗ comp , in t num, CvRect window , CvRect eye)
619 {
620 i f (comp == 0 || num != 1)
621 return 0;
622

623 CvRect r1 = cvBoundingRect (comp , 1) ;
624

625 /∗ component i s w i th in the s ea r ch window∗/
626 i f (r1 . x < window . x)
627 return 0;
628 i f (r1 . y < window . y)
629 return 0;
630 i f (r1 . x + r1 . width > window . x + window . width)
631 return 0;
632 i f (r1 . y + r1 . he ight > window . y + window . he ight)
633 return 0;
634

635 /∗ g e t the c e n t r o i d o f eye ∗/
636 CvPoint pt = cvPo int (
637 eye . x + eye . width / 2 ,
638 eye . y + eye . he ight / 2
639) ;
640

641 /∗ component i s l o c a t e d at the eye ’ s c e n t r o i d ∗/
642 i f (pt . x <= r1 . x || pt . x >= r1 . x + r1 . width)
643 return 0;
644 i f (pt . y <= r1 . y || pt . y >= r1 . y + r1 . he ight)
645 return 0;
646

647 return 1;
648 }
649

650 /∗∗
651 ∗ Delay f o r the s p e c i f i e d frame count . I have to w r i t e t h i s custom
652 ∗ de lay f u n c t i o n f o r t h e s e r ea son s :
653 ∗ − u s l e e p () i s not a v a i l a b l e in Windows
654 ∗ − u s l e e p () and S l e ep () w i l l f r e e z e the v i d eo f o r the g i v en i n t e r v a l
655 ∗/
656 void gazeSystem : : delay_frames (in t nframes)
657 {
658 in t i ;

98

Eye Contact in Leisure Video Conferencing

659

660 for (i = 0; i < nframes ; i++)
661 {
662 i f (! frame)
663 e x i t _ n i c e l y (" cannot query frame ") ;
664 cvShowImage(wnd_name , frame) ;
665 }
666 }
667

668 /∗∗
669 ∗ I n i t i a l i z e images , memory , and windows
670 ∗ Cons t ru c t o r
671 ∗/
672 gazeSystem : : gazeSystem (in t imgWidth , in t imgHeight)
673 {
674 s tage = STAGE_INIT ;
675 wnd_name = " video " ;
676 wnd_debug = " d i f f " ;
677 wnd_frame = " frame " ;
678 wnd_tpl = " template " ;
679 wnd_corr = " cor rec ted " ;
680 WIN_WIDTH = TPL_WIDTH ∗ 1 .5 ;
681 WIN_HEIGHT = TPL_HEIGHT ∗ 1 .5 ;
682 TM_THRESHOLD = 0.1 ;
683 se tThresh=true ;
684 min_threshold = TM_THRESHOLD;
685 min_eye_threshold = TM_THRESHOLD;
686 templateCaptured = f a l se ;
687 imageCorrected = f a l se ;
688 sendImage = f a l se ;
689 f i r s tRound = true ;
690

691 l e f t E y e C l i c k e d=f a l se ;
692 r i gh tEyeC l i cked=f a l se ;
693 bl inkCapture = f a l se ;
694

695

696 in t delay , i ;
697 b l ink =0;
698 LUTempty = true ;
699 FRAME_WIDTH = imgWidth ;
700 FRAME_HEIGHT = imgHeight ;
701 eyesLos t=f a l se ;
702 found = 0;
703 found2 = 0;
704 comp = 0;
705 key = 0;
706

707 c l i ckedEyes = 0;
708

709 p = cvPoint (0 ,0) ;
710

711 s to rage = cvCreateMemStorage (0) ;
712 i f (! s to rage)
713 e x i t _ n i c e l y (" cannot a l l o c a t e memory s to rage ! ") ;
714

715 frame = cvCreateImage (cvS ize (imgWidth , imgHeight) , IPL_DEPTH_8U , 3) ;
716

717 i f (! frame)
718 e x i t _ n i c e l y (" cannot query frame ! ") ;
719

720 c v I n i t F o n t (&font , CV_FONT_HERSHEY_SIMPLEX , 0 .4 , 0 .4 , 0 , 1 , 8) ;

99

Eye Contact in Leisure Video Conferencing

721

722 kerne l = cvCreateStructur ingElementEx (3 , 3 , 1 , 1 , CV_SHAPE_CROSS , NULL) ;
723 gray = cvCreateImage (cvGetSize (frame) , IPL_DEPTH_8U , 1) ;
724 prev = cvCreateImage (cvGetSize (frame) , IPL_DEPTH_8U , 1) ;
725 d i f f = cvCreateImage (cvGetSize (frame) , IPL_DEPTH_8U , 1) ;
726 t p l = cvCreateImage (cvS ize (TPL_WIDTH , TPL_HEIGHT) , 8 , 1) ;
727 t p l2 = cvCreateImage (cvS ize (TPL_WIDTH , TPL_HEIGHT) , 8 , 1) ;
728

729 i f (! kerne l || ! gray || ! prev || ! d i f f || ! t p l)
730 e x i t _ n i c e l y (" system er ro r . ") ;
731

732 gray−>o r i g i n = frame−>o r i g i n ;
733 prev−>o r i g i n = frame−>o r i g i n ;
734 d i f f −>o r i g i n = frame−>o r i g i n ;
735

736 }
737

738 /∗∗
739 ∗ Thi s f u n c t i o n p r o v i d e s a way to e x i t n i c e l y
740 ∗ from the sys tem
741 ∗
742 ∗ @param char∗ msg e r r o r message to d i s p l a y
743 ∗/
744 void gazeSystem : : e x i t _ n i c e l y (char∗ msg)
745 {
746 cvDestroyAllWindows () ;
747 e x i t (0) ;
748 }

Listing E.2: Gaze Correction Class Header
1 #ifndef _GAZESYSTEM_
2 #define _GAZESYSTEM_
3

4

5 #include <Windows . h>
6 #include <s t d i o . h>
7 #include " cv . h "
8 #include " h ighgui . h "
9 #include " cxcore . h "

10 #include " ios tream "
11 //#i n c l u d e <math . h>
12

13 #define DRAW_RECTS(f , d , rw , ro) \
14 do { \
15 cvRectangle (f , POINTS(rw) , CV_RGB(255 , 0 , 0) , 1 , 8 , 0) ; \
16 cvRectangle (f , POINTS(ro) , CV_RGB(0 , 255 , 0) , 1 , 8 , 0) ; \
17 cvRectangle (d , POINTS(rw) , c v S c a l a r A l l (255) , 1 , 8 , 0) ; \
18 cvRectangle (d , POINTS(ro) , c v S c a l a r A l l (255) , 1 , 8 , 0) ; \
19 } while (0)
20

21 #define POINT_TL(r) cvPo in t (r . x , r . y)
22 #define POINT_BR(r) cvPo int (r . x + r . width , r . y + r . he ight)
23 #define POINTS(r) POINT_TL(r) , POINT_BR(r)
24

25

26 c lass gazeSystem {
27 public :
28

29 // s t a t i c c o n s t i n t FRAME_WIDTH = 240;
30 // s t a t i c c o n s t i n t FRAME_HEIGHT = 180;

100

Eye Contact in Leisure Video Conferencing

31 s t a t i c const in t TPL_WIDTH = 26;
32 s t a t i c const in t TPL_HEIGHT = 18;
33 double WIN_WIDTH;
34 double WIN_HEIGHT;
35 double TM_THRESHOLD;
36 s t a t i c const in t STAGE_INIT = 1;
37 s t a t i c const in t STAGE_TRACKING= 2;
38

39 in t FRAME_WIDTH, FRAME_HEIGHT;
40 Ipl Image∗ frame , ∗ gray , ∗ prev , ∗ d i f f , ∗ tp l , ∗ t p l2 ;
41 CvMemStorage∗ s to rage ;
42 Ip lConvKernel∗ kerne l ;
43 CvFont fon t ;
44 char∗ wnd_name ;
45 char∗ wnd_debug ;
46 char∗ wnd_frame ;
47 char∗ wnd_tpl ;
48 char∗ wnd_corr ;
49

50

51 Ipl Image∗ image_frame , ∗ image_tpl , ∗ image_corrected , ∗ eye_correc t ion_tp l_ image , ∗
eye2_correc t ion_tp l_ image , ∗eye_image , ∗ imgGray , ∗ tp lGray ;

52 Ipl Image∗ image_corr_frame ;
53 char∗ lookWhere ;
54 CvRect window , window2 , eye , eye2 , eye_frame_pos , eye2_frame_pos , eye_tpl_pos ,

eye2_tpl_pos , eyeRect , eye2Rect ;
55 // CvRect∗ eye_frame_pos , ∗ eye2_frame_pos , ∗ e y e_ tp l _po s , ∗ eye2_ tp l_po s , ∗ eyeRec t , ∗

eye2Rec t ;
56 bool LUTempty , setThresh , eyesLos t ;
57 bool templateCaptured ;
58 bool imageCorrected , sendImage , f i r s tRound , l e f tEyeC l i c ked , r igh tEyeCl i cked ,

b l inkCapture ;
59 double LUT[TPL_WIDTH∗TPL_HEIGHT] ;
60 double min_threshold , min_eye_threshold ;
61 // i n t found , found2 ;
62 in t s tage ;
63 in t window_dist ;
64 in t bl ink , found , found2 ;
65 CvSeq∗ comp ;
66 in t nc ;
67 in t t ex t _de l ay ;
68 in t key ;
69

70 in t c l i ckedEyes ;
71 CvPoint p ;
72

73 void co r re c tEye s (Ipl Image∗ img) ;
74 s t a t i c void on_mouse(in t event , in t x , in t y , in t f l ag , void∗ param) ;
75 void se txy (in t x , in t y) ;
76 in t get_connected_components (Ipl Image∗ img , Ipl Image∗ prev , CvRect window , CvSeq∗∗

comp) ;
77 in t i s _ e y e _ p a i r (CvSeq∗ comp , in t num, Ipl Image∗ frame , CvRect∗ eye , CvRect∗ eye2) ;
78 in t l o ca te_eye (Ipl Image∗ img , Ipl Image∗ tp l , CvRect∗ window , CvRect∗ eye , CvRect∗

tempWin) ;
79 // i n t doTplCheck (Ip l Image ∗ img , Ip l Image ∗∗ t p l , char ∗ t e x t) ;
80 in t doCorrect ion (Ipl Image∗ img , CvRect eye_pos , CvRect eye_tpl_pos , Ipl Image∗ eye_ tp l)

;
81 in t getLUT (bool LUTempty) ;
82 in t i s _ b l i n k (CvSeq∗ comp , in t num, CvRect window , CvRect eye) ;
83 void delay_frames (in t nframes) ;
84 // vo id i n i t () ;
85 gazeSystem (in t imgWidth , in t imgHeight) ;

101

Eye Contact in Leisure Video Conferencing

86 void e x i t _ n i c e l y (char∗ msg) ;
87

88 } ;
89

90 #endif

Listing E.3: Software Program Main Architecture.
Coded by Jayson Mackie research assistant for the Game Technology Group at Gjøvik University
College

1

2 #include <omp. h>
3 #include " gucOCV . h "
4 #include " gazeSystem . h "
5

6 //==
7

8 // i n i t i a l i z e the gazeSystem o b j e c t g a z e c o r r e c t
9 gazeSystem∗ gazeco r rec t ;

10

11 //when c o r r e c t G a z e i s c a l l e d , c a l l the method c o r r e c t E y e s
12 void correc tGaze (Ipl Image∗ img)
13 {
14 gazecorrec t−>cor rec tEye s (img) ;
15 }
16

17 //==
18

19

20 void l oopRece i veL i s t ene r (gucQueue∗ q , gucQueue∗ output , in t type = 0)
21 {
22 Ipl Image∗ tempImage = tempImage = q−>popImage () ;
23 i f ((tempImage == NULL) || (tempImage−>imageSize == 0))
24 return ;
25

26 // r e c i e v e d image output output
27 cvShowImage(" gucReceiveData − from the network " , tempImage) ;
28 cvReleaseImage(&tempImage) ;
29 }
30

31 // do not change
32 void l o c a l E c h o L i s t e n e r (gucQueue∗ q , gucQueue∗ outputQueue , in t type = 0)
33 {
34 Ipl Image∗ tempImage = tempImage = q−>popImage () ;
35 i f ((tempImage == NULL) || (tempImage−>imageSize == 0))
36 return ;
37

38 cvShowImage(" gucLocalData − unmodified " , tempImage) ;
39

40 s t a t i c Ipl Image∗ pushImage = cvCreateImage (cvS ize (tempImage−>width , tempImage−>
height) , IPL_DEPTH_8U , 3) ;

41

42 // do image p r o c e s s i n g on tempImage−>imageData
43 // and a f t e rwards , f o r example
44 correc tGaze (tempImage) ;
45

46 cvCopyImage (tempImage , pushImage) ;
47

48 i f (outputQueue != NULL)
49 {
50 outputQueue−>pushPtr (pushImage , true) ;

102

Eye Contact in Leisure Video Conferencing

51 }
52 }
53

54 void cameraCatureAndSend ()
55 {
56 i f (! cvStartWindowThread ())
57 p r i n t f ("Window Thread not a v a i l a b l e \n ") ;
58

59 cvNamedWindow(" gucLocalData − unmodified ") ;
60 i f (showSendingImage)
61 cvNamedWindow(" gucSendData − p r i o r to sending ") ;
62

63 gucQueue∗ localQueue ;
64 localQueue = new gucQueue(FILL_QUEUE_FROM_IPLIMAGE) ;
65 localQueue−>setCaptureProper ty (CV_CAP_PROP_FRAME_WIDTH, imageWidth) ;
66 localQueue−>setCaptureProper ty (CV_CAP_PROP_FRAME_HEIGHT , imageHeight) ;
67 localQueue−>setCaptureProper ty (CV_CAP_PROP_FPS , 30) ;
68

69 gucQueue∗ sendQueue ;
70 sendQueue = new gucQueue(gucQueueTypes : : FILL_QUEUE_FROM_USER_IPLIMAGE_TO_NETWORK ,

serverName , s e r v e r P o r t) ;
71

72 // add the l o c a l image p r o c e s s i n g to camera queue
73 localQueue−>addLi s tener (lo ca lEchoL i s t ene r , sendQueue) ;
74

75 localQueue−>setCameraCapture (true) ;
76

77 cvWaitKey (0) ;
78

79

80 localQueue−>qu i t (" localQueue qu i t by main () ") ;
81 sendQueue−>qu i t (" sendQueue qu i t by main () ") ;
82 }
83 void networkReceiveAndDisplay ()
84 {
85 i f (! cvStartWindowThread ())
86 p r i n t f ("Window Thread not a v a i l a b l e \n ") ;
87

88 cvNamedWindow(" gucReceiveData − from the network ") ;
89

90 gucQueue∗ receiveQueue ;
91 receiveQueue = new gucQueue(gucQueueTypes : : FILL_QUEUE_FROM_NETWORK_WITH_IPLIMAGE ,

serverName , s e r v e r P o r t) ;
92

93 // add the d i s p l a y f u n c t i o n to the r e c e i v e queue
94 receiveQueue−>addLi s tener (loopRece i veL i s t ene r) ;
95

96 cvWaitKey (0) ;
97

98

99 receiveQueue−>qu i t (" receiveQueue qu i t by main () ") ;
100

101 }
102

103 // do not change
104 void sendReceiveLoopWithLocalEcho ()
105 {
106 i f (! cvStartWindowThread ())
107 p r i n t f ("Window Thread not a v a i l a b l e \n ") ;
108

109 cvNamedWindow(" gucLocalData − unmodified ") ;
110 i f (showSendingImage)

103

Eye Contact in Leisure Video Conferencing

111 cvNamedWindow(" gucSendData − p r i o r to sending ") ;
112 cvNamedWindow(" gucReceiveData − from the network ") ;
113

114

115 gucQueue∗ localQueue ;
116 localQueue = new gucQueue(FILL_QUEUE_FROM_IPLIMAGE) ;
117 localQueue−>setCaptureProper ty (CV_CAP_PROP_FRAME_WIDTH, imageWidth) ;
118 localQueue−>setCaptureProper ty (CV_CAP_PROP_FRAME_HEIGHT , imageHeight) ;
119 localQueue−>setCaptureProper ty (CV_CAP_PROP_FPS , 30) ;
120

121 gucQueue∗ sendQueue ;
122 sendQueue = new gucQueue(gucQueueTypes : : FILL_QUEUE_FROM_USER_IPLIMAGE_TO_NETWORK ,

serverName , s e r v e r P o r t) ;
123

124 gucQueue∗ receiveQueue ;
125 receiveQueue = new gucQueue(gucQueueTypes : : FILL_QUEUE_FROM_NETWORK_WITH_IPLIMAGE ,

serverName , s e r v e r P o r t) ;
126

127 // add the d i s p l a y f u n c t i o n to the r e c e i v e queue
128 receiveQueue−>addLi s tener (loopRece i veL i s t ene r) ;
129

130 // add the l o c a l image p r o c e s s i n g to camera queue
131 localQueue−>addLi s tener (l o ca lEchoL i s t ene r , sendQueue) ;
132

133 localQueue−>setCameraCapture (true) ;
134

135 cvWaitKey (0) ;
136

137

138 localQueue−>qu i t (" localQueue qu i t by main () ") ;
139 receiveQueue−>qu i t (" receiveQueue qu i t by main () ") ;
140 sendQueue−>qu i t (" sendQueue qu i t by main () ") ;
141

142 }
143

144 //==
145

146

147 in t main(in t argv , const char∗∗ argc)
148 {
149

150 in t type = 0; // 0 i s send , 1 i s r e c e i v e , o the r i s both
151 showSendingImage = true ; // show the i n t e r m e d i a t e image on the way to the network

queue
152

153 // image s i z e o p t i o n s with l i f e c a m 320x240 , 424x240 , 640x360 , 800x448
154 i f (argv == 4)
155 {
156 type = a t o i (argc [1]) ;
157 imageWidth = a t o i (argc [2]) ;
158 imageHeight = a t o i (argc [3]) ;
159 s t r c p y (serverName , " 127 .0 .0 .1 ") ; // i f no ip a d r e s s g i v en use l o c a l h o s t
160 s e r v e r P o r t = 3333;
161 }
162 else i f (argv == 6)
163 {
164 type = a t o i (argc [1]) ; // send , r e c e i v e or both
165 imageWidth = a t o i (argc [2]) ;
166 imageHeight = a t o i (argc [3]) ;
167 s t r c p y (serverName , argc [4]) ; // to and from ip a d r e s s
168 s e r v e r P o r t = a t o i (argc [5]) ; // with por t number
169 }

104

Eye Contact in Leisure Video Conferencing

170 else
171 {
172 imageWidth = DEFAULT_CAMERA_WIDTH;
173 imageHeight = DEFAULT_CAMERA_HEIGHT;
174 s t r c p y (serverName , " 127 .0 .0 .1 ") ;
175 s e r v e r P o r t = 3333;
176 }
177

178 global ImageSize = imageWidth ∗ imageHeight ∗ DEFAULT_CAMERA_BYTE_DEPTH;
179 p r i n t f (" \nWidth\ t :%d\ nHeight \ t :%d\nDepth\ t :%d\ nSize \ t :%d\n\n " , imageWidth ,

imageHeight , DEFAULT_CAMERA_BYTE_DEPTH , global ImageSize) ;
180

181 // c r e a t e an i n s t a n c e o f the gazeSystem o b j e c t
182 gazeco r rec t = new gazeSystem (imageWidth , imageHeight) ;
183

184 gucWinsock∗ w = gucWinsock : : ge t In s t ance () ;
185

186

187 i f (type == 0)
188 {
189 cameraCatureAndSend () ;
190 }
191 else i f (type == 1)
192 {
193 networkReceiveAndDisplay () ;
194 }
195 else
196 {
197 // t h i s i n voke s the f u l l queue / network s t a r t u p
198 sendReceiveLoopWithLocalEcho () ;
199 }
200

201

202 // sys tem (" pause ") ;
203 w−>cleanupWinsock () ;
204 e x i t (0) ;
205 }

Listing E.4: Main Program Header.
Coded by Jayson Mackie research assistant for the Game Technology Group at Gjøvik University
College

1 #ifndef _GUCOCV_H_
2 #define _GUCOCV_H_
3

4 // s u p r e s s warnings tha t I know are ok
5 #i f d e f _MSC_VER
6 #def ine _CRT_SECURE_NO_WARNINGS
7 #pragma warning (d i s a b l e : 4996) // us ing o ld fopen not f open_s
8 #pragma warning (d i s a b l e : 4482) // c+11 use os enums
9 #endif

10

11 // sys tem i n c l u d e s
12 #include <Windows . h>
13 #include <st r i ng >
14 #include <vector>
15 #include <queue>
16 #include <s t d i o . h>
17 #include <s t d l i b . h>
18 #include <a s s e r t . h>
19

105

Eye Contact in Leisure Video Conferencing

20 // OpenMP
21 #include <omp. h>
22

23 // th r ead ing
24 #include <pthread . h>
25

26 // openCV
27 #include <opencv/ cv . h>
28 #include <opencv/ highgui . h>
29

30 #i f d e f _DEBUG
31

32 #define checkVa l idP t r (a) ((unsigned in t)a==0xcdcdcdcd ? f a l se : true)
33

34 #else
35

36 #define checkVa l idP t r (a) ((unsigned in t)a==0xbaadf00d? f a l se : true)
37

38 #endif
39

40 #define APPLICATION_FRAMERATE 30
41 #define APPLICATION_FRAME_DELAY 1000/APPLICATION_FRAMERATE/4
42

43 typedef enum {
44 FILL_QUEUE_FROM_USER_DATA = 0 ,
45 FILL_QUEUE_FROM_USER_DATA_TO_NETWORK,
46 FILL_QUEUE_FROM_IPLIMAGE ,
47 FILL_QUEUE_FROM_IPLIMAGE_TO_NETWORK ,
48 FILL_QUEUE_FROM_USER_IPLIMAGE_TO_NETWORK ,
49 FILL_QUEUE_FROM_NETWORK_WITH_USER_DATA,
50 FILL_QUEUE_FROM_NETWORK_WITH_IPLIMAGE
51 } gucQueueTypes ;
52

53

54 typedef enum {
55 USER_DATA = 0 ,
56 IPLIMAGE ,
57 NETWORK_USER_DATA,
58 NETWORK_IPLIMAGE
59 } gucQueueData ;
60

61 #define QUEUE_SIZE 64 // b i g enough to not need threads , throw memory at i t
62

63 #define DEFAULT_CAMERA_WIDTH 320
64 #define DEFAULT_CAMERA_HEIGHT 240
65 #define DEFAULT_CAMERA_BIT_DEPTH 24
66 #define DEFAULT_CAMERA_BYTE_DEPTH DEFAULT_CAMERA_BIT_DEPTH>>3
67 #define DEFAULT_CAMERA_IMAGE_SIZE DEFAULT_CAMERA_WIDTH∗DEFAULT_CAMERA_HEIGHT∗

DEFAULT_CAMERA_BYTE_DEPTH
68

69 //#d e f i n e JPEG_QUALITY 40
70 //#d e f i n e JPEG_BUFFER_SIZE 256000
71

72 #define DEFAULT_SERVER_SEND_JPEG true
73

74 extern const in t SERVER_SEND_JPEG ;
75

76 extern in t imageWidth ;
77 extern in t imageHeight ;
78 extern in t global ImageSize ;
79 extern char serverName [128];
80 extern in t s e r v e r P o r t ;

106

Eye Contact in Leisure Video Conferencing

81 extern bool showSendingImage ;
82

83 #define TIMING
84 #define __TIMED_START i f (t iming) {
85 #define __TIMED_END }
86 #define __TIMED_CODE(a) i f (t iming) {a ;}
87

88

89 // forward d e c l a r e t h i s API
90 c lass gucQueueBase ;
91 c lass gucSendData ;
92 c lass gucReceiveData ;
93 c lass gucQueue ;
94

95 #include " gucQueue . h "
96 #include " gucWinsock . h "
97 #include " gucNetworkBase . h "
98 #include " gucSendData . h "
99 #include " gucReceiveData . h "

100

101 #endif

Listing E.5: Instantiates global variables.
Coded by Jayson Mackie research assistant for the Game Technology Group at Gjøvik University
College

1

2 #include " gucOCV . h "
3

4 const in t SERVER_SEND_JPEG = f a l se ;
5

6 in t imageWidth ;
7 in t imageHeight ;
8 in t global ImageSize ;
9 char serverName [128];

10 in t s e r v e r P o r t ;
11 bool showSendingImage ;

Listing E.6: Queue Class.
Coded by Jayson Mackie research assistant for the Game Technology Group at Gjøvik University
College

1

2 #include " gucQueue . h "
3

4 /∗
5 ∗
6 ∗ P r i v a t e c o n s t r u c t o r
7 ∗
8 ∗/
9 gucQueue : : gucQueue ()

10 {
11 capture = NULL;
12 networkSend = NULL;
13 networkReceive = NULL;
14 dataReceived = f a l se ;
15 }
16

17 /∗

107

Eye Contact in Leisure Video Conferencing

18 ∗
19 ∗ P u b l i c c o n s t r u c t o r
20 ∗
21 ∗/
22 gucQueue : : gucQueue(in t qType , const char∗ address , in t port , bool de layedSta r t)
23 {
24 maxQueueSize = 2;
25 cameraCapture = f a l se ;
26 running = ! de layedSta r t ;
27 gucQueue () ;
28 queueType = qType ;
29

30 switch (queueType)
31 {
32 case (gucQueueTypes : : FILL_QUEUE_FROM_USER_DATA) :
33 // noth ing to do here , j u s t wait f o r data
34 break ;
35

36 case (gucQueueTypes : : FILL_QUEUE_FROM_IPLIMAGE) :
37

38 // s e t up the camera
39 capture = cvCaptureFromCAM(0) ;
40 i f (! capture) {
41 f p r i n t f (s tde r r , "ERROR: gucQueue(FILL_QUEUE_FROM_IPLIMAGE) : openCV camera

i s NULL : camera %d\n " , cameraID) ;
42 getchar () ;
43 }
44 break ;
45

46 case (gucQueueTypes : : FILL_QUEUE_FROM_IPLIMAGE_TO_NETWORK) :
47

48 // s e t up the camera and the network send o b j e c t
49 capture = cvCaptureFromCAM(0) ;
50 i f (! capture) {
51 f p r i n t f (s tde r r , "ERROR: gucQueue(FILL_QUEUE_FROM_IPLIMAGE_TO_NETWORK) :

openCV camera i s NULL : camera %d\n " , cameraID) ;
52 getchar () ;
53 }
54

55 i f (s t r l e n (address) == 0) {
56 f p r i n t f (s tde r r , "ERROR: gucQueue(FILL_QUEUE_FROM_IPLIMAGE_TO_NETWORK) :

address i s empty\n ") ;
57 getchar () ;
58 }
59

60 networkSend = new gucSendData (th i s) ;
61 networkSend−>i n i t i a l i s e (address , por t) ; // t h i s s t a r t s a thread
62 addL i s tener (networkSend) ;
63 break ;
64

65 case (gucQueueTypes : : FILL_QUEUE_FROM_USER_IPLIMAGE_TO_NETWORK) :
66

67 // s e tup the network send o b j e c t
68 i f (s t r l e n (address) == 0) {
69 f p r i n t f (s tde r r , "ERROR: gucQueue(FILL_QUEUE_FROM_USER_DATA_TO_NETWORK) :

address i s empty\n ") ;
70 getchar () ;
71 }
72 networkSend = new gucSendData (th i s) ;
73 networkSend−>i n i t i a l i s e (address , por t) ; // t h i s s t a r t s a thread
74 addL i s tener (networkSend) ;
75 break ;

108

Eye Contact in Leisure Video Conferencing

76

77 case (gucQueueTypes : : FILL_QUEUE_FROM_USER_DATA_TO_NETWORK) :
78

79 // s e t up the camera and the network send o b j e c t
80 i f (s t r l e n (address) == 0) {
81 f p r i n t f (s tde r r , "ERROR: gucQueue(FILL_QUEUE_FROM_USER_DATA_TO_NETWORK) :

address i s empty\n ") ;
82 getchar () ;
83 }
84 networkSend = new gucSendData (th i s) ;
85 networkSend−>i n i t i a l i s e (address , por t) ; // t h i s s t a r t s a thread
86 addL i s tener (networkSend) ;
87 break ;
88

89 case (gucQueueTypes : : FILL_QUEUE_FROM_NETWORK_WITH_USER_DATA) :
90 case (gucQueueTypes : : FILL_QUEUE_FROM_NETWORK_WITH_IPLIMAGE) :
91

92 // s e t up the network r e c e i v e o b j e c t
93 i f (s t r l e n (address) == 0) {
94 f p r i n t f (s tde r r , "ERROR: gucQueue(FILL_QUEUE_FROM_NETWORK_WITH_X) : address

i s empty\n ") ;
95 getchar () ;
96 }
97 networkReceive = new gucReceiveData (th i s) ;
98 networkReceive−>i n i t i a l i s e (address , por t) ; // t h i s s t a r t s a thread
99 // a d d L i s t e n e r (??) ; // not r e q u i r e d ! ! ! whomever s e t up the network queue gave

a l i s t e n e r
100 break ;
101 }
102 i n i t i a l i s e () ;
103 }
104

105 /∗
106 ∗
107 ∗ I n i t i a l i s e r to s t a r t the thread , t h i s may be
108 ∗
109 ∗/
110 void gucQueue : : i n i t i a l i s e (const char∗ address , in t port)
111 {
112 access ingData = PTHREAD_MUTEX_INITIALIZER ;
113

114 // run the s t reaming s e r v e r as a s e p a r a t e thread
115 i f (p thread_crea te (&queueThread , NULL , gucQueue : : t h r e a d I n i t i a l i s e , (void ∗) th i s)) {
116 qu i t (" p thread_crea te f a i l e d . " , 1) ;
117 }
118 } ;
119

120 /∗∗
121 ∗ Thi s i s the s t reaming s e r v e r , run as a s e p a r a t e thread
122 ∗ Thi s f u n c t i o n wa i t s f o r a c l i e n t to connec t , and send the g r a y s c a l e d images
123 ∗/
124 void∗ gucQueue : : t h r e a d I n i t i a l i s e (void∗ q)
125 {
126 gucQueue∗ mySelf = re interpret_cast<gucQueue ∗>(q) ;
127 mySelf−>threadLoop () ;
128 return NULL;
129 }
130

131 void gucQueue : : threadLoop ()
132 {
133 bool autoUpdateRequired = true ;
134

109

Eye Contact in Leisure Video Conferencing

135 // the u s e r data t y p e s on ly need to update when a push has oc cured
136 i f ((queueType == gucQueueTypes : : FILL_QUEUE_FROM_USER_DATA) ||
137 (queueType == gucQueueTypes : : FILL_QUEUE_FROM_USER_DATA_TO_NETWORK))
138 autoUpdateRequired = f a l se ;
139

140 while (running)
141 {
142 i f (dataReceived || autoUpdateRequired)
143 {
144 update () ;
145 }
146 Sleep (10) ; // run the update not more than 100 t imes per second
147 }
148 in t bob = 43;
149 }
150

151 void gucQueue : : cleanup ()
152 {
153 c l e a r () ; // t h i s might l eak memory i f c a l l e d mid program , need a deep d e l e t e , ! ! !

TODO
154 i f (checkVa l idP t r (capture)) // ((uns igned i n t) cap tu r e != 0 xcdcdcdcd) && ((uns igned

i n t) cap tur e != 0xbaadf00d)) { // <<<<<<<<<<<<<<<< HATE THIS ! ! ! ! a NULL
CvCapture∗ i s not NULL but 0 xcdcdcdcd

155 {
156 cvReleaseCapture (& capture) ;
157 }
158

159 pthread_mutex_destroy(& access ingData) ;
160 }
161 /∗∗
162 ∗ t h i s f u n c t i o n p r o v i d e s a way to e x i t n i c e l y from the sys tem
163 ∗/
164 void gucQueue : : qu i t (char∗ msg , in t r e t v a l)
165 {
166

167 i f (running)
168 {
169 i f (checkVa l idP t r (networkSend))
170 networkSend−>qu i t (" networkSend qu i t by queue ") ;
171 i f (checkVa l idP t r (networkReceive))
172 networkReceive−>qu i t (" networkReceive qu i t by queue ") ;
173 // don ’ t q u i t i f the thread par t i s in the data
174 pthread_mutex_lock(& access ingData) ;
175

176 i f (pthread_cance l (queueThread)) {
177 pthread_mutex_unlock(& access ingData) ;
178 qu i t (" gucQueue pthread_cance l f a i l e d . " , 1) ;
179 }
180 else
181 {
182 pthread_mutex_unlock(& access ingData) ;
183 running = f a l se ;
184 cleanup () ;
185 }
186

187

188 i f (s t r l e n (msg) > 0)
189 {
190 p r i n t f (" \n ") ;
191 i f (r e t v a l == 0) {
192 p r i n t f ("%s \n " , (msg == NULL ? " " : msg)) ;
193 } else {

110

Eye Contact in Leisure Video Conferencing

194 f p r i n t f (s tde r r , (msg == NULL ? " " : msg)) ;
195 f p r i n t f (s tde r r , " \n ") ;
196 }
197 }
198 }
199 }
200

201 void gucQueue : : update ()
202 {
203 Ipl Image∗ tempIplImage = NULL;
204

205 switch (queueType)
206 {
207 case (gucQueueTypes : : FILL_QUEUE_FROM_IPLIMAGE) :
208 case (gucQueueTypes : : FILL_QUEUE_FROM_IPLIMAGE_TO_NETWORK) :
209 {
210 i f (cameraCapture)
211 {
212 // Get one frame
213 i f (! cvGrabFrame (capture)) { // cap tur e a frame
214 p r i n t f (" Could not grab a frame\n ") ;
215 e x i t (0) ;
216 }
217 tempIplImage=cvRetr ieveFrame (capture) ; // r e t r i e v e the

cap tured frame
218

219 i f (! tempIplImage)
220 {
221 f p r i n t f (s tde r r , "ERROR: gucQueue : : update () − frame i s n u l l . . . :

camera %d\n " , cameraID) ;
222 }
223 else
224 {
225 // pushed the cap tured frame , no copy made
226 pushPtr (tempIplImage , true) ;
227

228 vector<ca l l back_ t >:: i t e r a t o r i t ;
229 for (i t=c a l l b a c k s . begin () ; i t < c a l l b a c k s . end () ; i t++)
230 {
231 i f ((∗ i t) . callbackOwner == NULL)
232 {
233 (∗ i t) . ca l l backFunc t ion (this , (∗ i t) . nextQueue , 0) ;
234 }
235 else
236 {
237 gucSendData∗ sd = (gucSendData∗) (∗ i t) . callbackOwner ;
238 sd−>queueLi s tener (this , (∗ i t) . nextQueue , 0) ;
239 }
240 }
241 }
242 }
243 break ;
244 }
245 case (gucQueueTypes : : FILL_QUEUE_FROM_NETWORK_WITH_IPLIMAGE) :
246 case (gucQueueTypes : : FILL_QUEUE_FROM_NETWORK_WITH_USER_DATA) :
247 // the u s e r i s wa i t ing f o r t h i s so p u l l the c a l l b a c k
248 i f (dataReceived)
249 {
250 dataReceived = f a l se ;
251

252 vector<ca l l back_ t >:: i t e r a t o r i t ;
253 for (i t=c a l l b a c k s . begin () ; i t < c a l l b a c k s . end () ; i t++)

111

Eye Contact in Leisure Video Conferencing

254 {
255 i f ((∗ i t) . callbackOwner == NULL)
256 {
257 (∗ i t) . ca l l backFunc t ion (this , (∗ i t) . nextQueue , 0) ;
258 }
259 else
260 {
261 gucReceiveData∗ rd = (gucReceiveData ∗) (∗ i t) . callbackOwner ;
262 rd−>queueLis tener (this , (∗ i t) . nextQueue , 0) ;
263 }
264 }
265 }
266 break ;
267

268 case (gucQueueTypes : : FILL_QUEUE_FROM_USER_IPLIMAGE_TO_NETWORK) :
269 case (gucQueueTypes : : FILL_QUEUE_FROM_USER_DATA_TO_NETWORK) :
270 case (gucQueueTypes : : FILL_QUEUE_FROM_USER_DATA) :
271 // the somebody (p o s s i b l y the network) i s wa i t ing f o r t h i s so p u l l the

c a l l b a c k
272 i f (dataReceived)
273 {
274 dataReceived = f a l se ;
275

276 i f ((queueType == gucQueueTypes : : FILL_QUEUE_FROM_USER_DATA_TO_NETWORK)
||

277 (queueType == gucQueueTypes : :
FILL_QUEUE_FROM_USER_IPLIMAGE_TO_NETWORK))

278 {
279 vector<ca l l back_ t >:: i t e r a t o r i t ;
280 for (i t=c a l l b a c k s . begin () ; i t < c a l l b a c k s . end () ; i t++)
281 {
282 i f ((∗ i t) . callbackOwner == NULL)
283 {
284 (∗ i t) . ca l l backFunc t ion (this , (∗ i t) . nextQueue , 0) ;
285 }
286 else
287 {
288 gucSendData∗ sd = (gucSendData∗) (∗ i t) . callbackOwner ;
289 sd−>queueLi s tener (this , (∗ i t) . nextQueue , 0) ;
290 }
291 }
292 }
293 }
294 break ;
295 }
296 }
297

298 void gucQueue : : setRunning (bool r)
299 {
300 running = r ;
301 } ;
302

303 void gucQueue : : setCameraCapture (bool c)
304 {
305 cameraCapture = c ;
306 } ;
307

308 in t gucQueue : : se tCaptureProper ty (in t proper ty_ id , double value)
309 {
310 return cvSetCaptureProper ty (capture , proper ty_ id , value) ;
311 }
312

112

Eye Contact in Leisure Video Conferencing

313 in t gucQueue : : addL i s tener (gucNetworkBase∗ sd , gucQueue∗ next)
314 {
315 c a l l b a c k _ t newCallback ;
316

317 newCallback . callbackOwner = sd ;
318 newCallback . ca l l backFunc t ion = NULL;
319 newCallback . nextQueue = next ;
320 c a l l b a c k s . push_back (newCallback) ;
321 return c a l l b a c k s . s i z e () ;
322 }
323

324 in t gucQueue : : addL i s tener (_ca l lbackFunct ion , gucQueue∗ next)
325 {
326 c a l l b a c k _ t newCallback ;
327

328 newCallback . callbackOwner = NULL;
329 newCallback . ca l l backFunc t ion = _ca l l backFunc t i onP t r ;
330 newCallback . nextQueue = next ;
331 c a l l b a c k s . push_back (newCallback) ;
332 return c a l l b a c k s . s i z e () ;
333 }
334

335 in t gucQueue : : pushCopy (Ipl Image∗ img , bool updateRequired)
336 {
337 Ipl Image∗ newImage = new Ipl Image (∗ img) ;
338 return pushPtr (newImage , updateRequired) ;
339 }
340

341 in t gucQueue : : pushPtr (Ipl Image∗ img , bool updateRequired)
342 {
343 i f ((queueType == gucQueueTypes : : FILL_QUEUE_FROM_NETWORK_WITH_USER_DATA) ||
344 (queueType == gucQueueTypes : : FILL_QUEUE_FROM_USER_DATA) ||
345 (queueType == gucQueueTypes : : FILL_QUEUE_FROM_USER_DATA_TO_NETWORK))
346 {
347 f p r i n t f (s tde r r , "ERROR: gucQueue : : push () − Attempt to push data to an image

queue\n ") ;
348 }
349 pthread_mutex_lock(& access ingData) ;
350

351 in t r e s u l t = −1;
352

353 i f (! img)
354 {
355 p r i n t f (" gucQueue : : push () with n u l l Ipl Image \n ") ;
356 pthread_mutex_unlock(& access ingData) ;
357 return r e s u l t ;
358 }
359

360 in t s = items . s i z e () ;
361 while (s >= maxQueueSize)
362 {
363 i tems . pop () ;
364 s = items . s i z e () ;
365 }
366

367 i tem_t∗ newItem = new i tem_t ;
368 newItem−>data = NULL;
369 newItem−>image = img ;
370 newItem−>s i z e = img−>imageSize ;
371 newItem−>type = gucQueueData : : IPLIMAGE ;
372

373

113

Eye Contact in Leisure Video Conferencing

374 i tems . push (newItem) ;
375 dataReceived = updateRequired ;
376

377 r e s u l t = items . s i z e () ;
378

379 pthread_mutex_unlock(& access ingData) ;
380

381 return r e s u l t ;
382 }
383

384 in t gucQueue : : pushCopy (void ∗data , in t s i ze , bool updateRequired)
385 {
386 //make a copy o f the data to be s t o r e d so i t i s not l o s t
387 void∗ dataCopy = malloc (s i z e) ;
388 memcpy(dataCopy , data , s i z e) ;
389 return pushPtr (dataCopy , s i ze , updateRequired) ;
390 }
391

392 in t gucQueue : : pushPtr (void ∗data , in t s i ze , bool updateRequired)
393 {
394 i f ((queueType == gucQueueTypes : : FILL_QUEUE_FROM_NETWORK_WITH_IPLIMAGE) ||
395 (queueType == gucQueueTypes : : FILL_QUEUE_FROM_IPLIMAGE) ||
396 (queueType == gucQueueTypes : : FILL_QUEUE_FROM_IPLIMAGE_TO_NETWORK) ||
397 (queueType == gucQueueTypes : : FILL_QUEUE_FROM_USER_IPLIMAGE_TO_NETWORK))
398 {
399 f p r i n t f (s tde r r , "ERROR: gucQueue : : push () − Attempt to push image to an data

queue\n ") ;
400 }
401

402 pthread_mutex_lock(& access ingData) ;
403

404 in t r e s u l t = −1;
405

406 i f (! data)
407 {
408 p r i n t f (" gucQueue : : push () with n u l l data \n ") ;
409 pthread_mutex_unlock(& access ingData) ;
410 return r e s u l t ;
411 }
412

413 i tem_t newItem ;
414 newItem . data = data ;
415 newItem . image = NULL;
416 newItem . s i z e = s i z e ;
417 newItem . type = gucQueueData : : USER_DATA;
418

419 i tems . push(&newItem) ;
420 dataReceived = updateRequired ;
421

422 r e s u l t = items . s i z e () ;
423

424 pthread_mutex_unlock(& access ingData) ;
425

426 return r e s u l t ;
427 }
428

429 in t gucQueue : : s i z e ()
430 {
431 in t s i z e = 0;
432 pthread_mutex_lock(& access ingData) ;
433 s i z e = items . s i z e () ;
434 pthread_mutex_unlock(& access ingData) ;

114

Eye Contact in Leisure Video Conferencing

435 return s i z e ;
436 } ;
437

438 void gucQueue : : c l e a r ()
439 {
440 pthread_mutex_lock(& access ingData) ;
441 queue<item_t∗>() . swap(i tems) ;
442 pthread_mutex_unlock(& access ingData) ;
443 } ;
444

445 void∗ gucQueue : : popData ()
446 {
447 void∗ r e s u l t = NULL;
448

449 pthread_mutex_lock(& access ingData) ;
450 i f (i tems . s i z e () == 0) {
451 pthread_mutex_unlock(& access ingData) ;
452 return NULL;
453 }
454 i tem_t∗ item = popFront () ;
455 i f (item)
456 {
457 r e s u l t = item−>data ;
458 i tems . pop () ;
459 delete item ;
460 }
461 pthread_mutex_unlock(& access ingData) ;
462 return r e s u l t ;
463 }
464

465 Ipl Image∗ gucQueue : : popImage ()
466 {
467 Ipl Image∗ r e s u l t = NULL;
468

469 pthread_mutex_lock(& access ingData) ;
470 i f (i tems . s i z e () == 0) {
471 pthread_mutex_unlock(& access ingData) ;
472 return NULL;
473 }
474 i tem_t∗ item = popFront () ;
475 i f (item)
476 {
477 r e s u l t = item−>image ;
478 i tems . pop () ;
479 delete item ;
480 }
481 pthread_mutex_unlock(& access ingData) ;
482

483 return r e s u l t ;
484 }
485

486 gucQueue : : i tem_t∗ gucQueue : : popFront ()
487 {
488 // ! ! ! ! ! no mutex l o ck ing , r e s p o n s i b i l i t y o f the c a l l i n g f u n c t i o n
489 // ! ! ! ! ! t h i s i s p r i v a t e so cannot be c a l l e d by us e r
490 i tem_t∗ dataCopy = NULL;
491 i f (! (i tems . empty ()))
492 {
493 dataCopy = items . f r o n t () ;
494 }
495 return dataCopy ;
496 } ;

115

Eye Contact in Leisure Video Conferencing

Listing E.7: Queue Class Header.
Coded by Jayson Mackie research assistant for the Game Technology Group at Gjøvik University
College

1 #ifndef _GUC_QUEUE_H_
2 #define _GUC_QUEUE_H_
3

4 #include " gucOCV . h "
5 #include " gucSendData . h "
6 #include " gucReceiveData . h "
7

8 #define _ca l lbackFunc t ion void (∗ _ca l l backFunc t i onP t r) (gucQueue∗ , gucQueue∗ , in t)
9 #define _cal lbackMethod void (gucNetworkBase : :∗ _cal lbackMethodPtr) (gucQueue∗ , gucQueue

∗ , in t)
10

11 typedef void (∗ _queueLis tenerFunct ionType) (gucQueue∗ , gucQueue∗ , in t) ;
12 typedef void (gucNetworkBase : :∗ _queueListenerMethodType) (gucQueue∗ , gucQueue∗ , in t) ;
13

14 using namespace s td ;
15

16 //==
17

18 c lass gucQueue {
19 private :
20 in t queueType ;
21 bool running ;
22 bool cameraCapture ;
23

24 in t maxQueueSize ;
25

26 pthread_mutex_t access ingData ;
27 pthread_t queueThread ;
28

29 typedef s t ruc t {
30 void∗ data ;
31 Ipl Image∗ image ;
32 in t type ;
33 in t s i z e ;
34 } i tem_t ;
35

36 typedef s t ruc t {
37 void ∗ callbackOwner ;
38 _queueLis tenerFunct ionType ca l l backFunc t ion ;
39 gucQueue∗ nextQueue ;
40 } c a l l b a c k _ t ;
41

42 // f o r OpenCV modes
43 CvCapture∗ capture ;
44 in t cameraID ;
45

46 // network o b j e c t s
47 gucSendData∗ networkSend ;
48 gucReceiveData∗ networkReceive ;
49 bool dataReceived ;
50

51 queue<item_t∗> items ;
52

53 vector<ca l l back_ t > c a l l b a c k s ;
54

116

Eye Contact in Leisure Video Conferencing

55 i tem_t∗ popFront () ;
56

57 gucQueue () ;
58 s t a t i c void∗ t h r e a d I n i t i a l i s e (void∗ q) ;
59 void threadLoop () ;
60 void update () ;
61 void cleanup () ;
62

63 public :
64

65 gucQueue(in t qType , const char∗ address = " " , in t cameraID = 0 , bool de layedSta r t =
f a l se) ;

66

67 void i n i t i a l i s e (const char∗ address = " " , in t cameraID = 0) ;
68 void qu i t (char∗ msg , in t r e t v a l =0) ;
69

70 in t addL i s tener (_queueListenerFunct ionType , gucQueue∗ next = NULL) ; // C f u n c t i o n s
71 in t addL i s tener (gucNetworkBase∗ owner , gucQueue∗ next = NULL) ; // C++ methods
72

73 // i f the queue has an openCV camera a t ta ched to i t
74 in t se tCaptureProper ty (in t proper ty_ id , double value) ;
75

76 // ! ! ! ! t h e s e do take a copy o f the data
77 in t pushCopy (Ipl Image∗ img , bool networkPush = f a l se) ;
78 in t pushCopy (void∗ data , in t s i ze , bool networkPush = f a l se) ;
79 // ! ! ! ! t h e s e do not take a copy o f the data
80 in t pushPtr (Ipl Image∗ img , bool networkPush = f a l se) ;
81 in t pushPtr (void∗ data , in t s i ze , bool networkPush = f a l se) ;
82

83 in t s i z e () ;
84 void c l e a r () ;
85 void∗ popData () ;
86 Ipl Image∗ popImage () ;
87

88 void setRunning (bool r) ;
89 void setCameraCapture (bool c) ;
90 } ;
91

92 #endif

Listing E.8: Class to send data to network.
Coded by Jayson Mackie research assistant for the Game Technology Group at Gjøvik University
College

1

2 #include " gucOCV . h "
3 #include " gucQueue . h "
4 #include " gucSendData . h "
5

6

7 gucSendData : : gucSendData (gucQueue∗ q)
8 {
9 dataToSend = f a l se ;

10 running = true ;
11 } ;
12

13 void gucSendData : : i n i t i a l i s e (const char ∗ se rver IP , in t port)
14 {
15

16 s t r c p y (serverAddress , s e r v e r I P) ;
17 s e r v e r P o r t = port ;

117

Eye Contact in Leisure Video Conferencing

18

19 access ingData = PTHREAD_MUTEX_INITIALIZER ;
20

21 // run the s t reaming s e r v e r as a s e p a r a t e thread
22 i f (p thread_crea te (&queueThread , NULL , &gucSendData : : t h r e a d I n i t i a l i s e , (void ∗) th i s))

{
23 qu i t (" p thread_crea te f a i l e d . " , 1) ;
24 }
25 } ;
26

27 /∗∗
28 ∗ Thi s i s the s t reaming s e r v e r , run as a s e p a r a t e thread
29 ∗ Thi s f u n c t i o n wa i t s f o r a c l i e n t to connec t , and send the g r a y s c a l e d images
30 ∗/
31 void∗ gucSendData : : t h r e a d I n i t i a l i s e (void∗ sd)
32 {
33 gucSendData∗ mySelf = re interpret_cast<gucSendData ∗>(sd) ;
34 mySelf−>threadLoop () ;
35 return NULL;
36 }
37

38 void gucSendData : : threadLoop ()
39 {
40 update () ; // needs to be s p l i t up to have an i n i t and send par t ! ! ! TODO the b i t

below
41

42 /∗
43 connec t () ;
44 whi l e (running)
45 {
46 i f (dataToSend)
47 {
48 sendData () ;
49 dataToSend = f a l s e ;
50 }
51 }
52 ∗/
53 }
54

55 void gucSendData : : update ()
56 {
57 s t ruc t sockaddr_in se rve r ;
58

59 long counter = 0;
60 const long mod = 20; // 00000000;
61

62 p r i n t f (" Server threadLoop s t a r t e d \n ") ;
63

64 bool startupComplete = f a l se ;
65 bool s t a r t u p F a i l e d = f a l se ;
66 while (! s tartupComplete) {
67

68 // open s o c k e t
69 i f ((se rve r sock = socket (PF_INET , SOCK_STREAM, 0)) == −1) {
70

71 p r i n t f (" Server threadLoop socke t () f a i l e d \n ") ;
72 s t a r t u p F a i l e d = true ;
73 }
74 else
75 p r i n t f (" Server threadLoop socke t () succes s \n ") ;
76

77 i f (s t a r t u p F a i l e d)

118

Eye Contact in Leisure Video Conferencing

78 {
79 i f (se rve r sock)
80 c l o s e s o c k e t (se rve r sock) ;
81 }
82

83 // s e tup s e r v e r ’ s IP and por t
84 memset(& server , 0 , s izeof (s e r ve r)) ;
85 s e r ve r . s i n_ f ami l y = AF_INET ;
86 s e r ve r . s i n_po r t = htons (s e r v e r P o r t) ;
87 s e r ve r . s in_addr . s_addr = INADDR_ANY;
88

89 // bind the s o c k e t
90 i f (! s t a r t u p F a i l e d)
91 {
92 bool yes=true ;
93 se t sockop t (serversock , SOL_SOCKET , SO_REUSEADDR, (char ∗)&yes , s izeof (in t))

;
94 i f (bind (serversock , (const sockaddr ∗)&server , s izeof (s e r ve r)) == −1) {
95 p r i n t f (" Server threadLoop bind () f a i l e d \n ") ;
96 s t a r t u p F a i l e d = true ;
97 }
98 else
99 p r i n t f (" Server threadLoop bind () succes s %s:%d\n " , serverAddress ,

s e r v e r P o r t) ;
100 }
101

102 i f (s t a r t u p F a i l e d)
103 {
104 i f (se rve r sock)
105 c l o s e s o c k e t (se rve r sock) ;
106 }
107

108 // wait f o r c onne c t i on
109 i f (! s t a r t u p F a i l e d)
110 {
111 i f (l i s t e n (serversock , 10) == −1) {
112 p r i n t f (" Server threadLoop l i s t e n () f a i l e d \n ") ;
113 s t a r t u p F a i l e d = true ;
114 }
115 else
116 p r i n t f (" Server threadLoop l i s t e n () succes s \n ") ;
117 }
118

119 i f (s t a r t u p F a i l e d)
120 {
121 i f (se rve r sock) c l o s e s o c k e t (se rve r sock) ;
122 }
123

124 // a c c e p t a c l i e n t
125 i f (! s t a r t u p F a i l e d)
126 {
127 i f ((c l i e n t s o c k = accept (serversock , NULL , NULL)) == −1) {
128 p r i n t f (" Server threadLoop accept () f a i l e d \n ") ;
129 s t a r t u p F a i l e d = true ;
130 }
131 else
132 p r i n t f (" Server threadLoop accept () succes s \n ") ;
133 }
134

135 i f (s t a r t u p F a i l e d)
136 {
137 p r i n t f (" Server s t a r t u p Fai led , r e t r y i n g in 10s \n ") ;

119

Eye Contact in Leisure Video Conferencing

138 i f (se rve r sock) c l o s e s o c k e t (se rve r sock) ;
139 i f (c l i e n t s o c k) c l o s e s o c k e t (c l i e n t s o c k) ;
140 Sleep (10000) ;
141 s t a r t u p F a i l e d = f a l se ;
142 }
143 else
144 {
145 startupComplete = true ;
146 }
147 }
148

149 p r i n t f (" Streaming se rve r thread i s sending data \n ") ;
150 /∗ s t a r t s end ing images ∗/
151 while (running)
152 {
153 in t bytes = 0;
154 in t j pegS i ze = 1;
155 in t sending = 0;
156 in t imageSize = 0;
157

158 i f (dataToSend)
159 {
160 // send the frame , thread s a f e
161 pthread_mutex_lock(& access ingData) ;
162

163 // j p e g g e t t i n g s e n t to compress i t f i r s t
164 i f (SERVER_SEND_JPEG)
165 {
166 /∗
167 j p e g S i z e = RGB24_to_jpeg (j p e g B u f f e r , JPEG_BUFFER_SIZE , data ,

CAMERA_WIDTH, CAMERA_HEIGHT , JPEG_QUALITY) ;
168 // p r i n t f (" ∗ ") ;
169 // p r i n t f (" Encoded image from %d to %d\n " , CAMERA_IMAGE_SIZE , j p e g S i z e) ;
170 // FILE ∗ j p g ;
171 // j pg = fopen (" t e s t . j p g " , "wb ") ;
172 // f w r i t e (j p e g B u f f e r , 1 , j p e g S i z e , j pg) ;
173 // f c l o s e (j pg) ;
174

175 i f (j p e g S i z e && rarStreaming : : frameTimer . time_m () > rarStreaming : :
m i l l i s e c ond sPe rF rame)

176 {
177 rarStreaming : : frameTimer . s e t S t a r t T i c k () ;
178

179 s end ing = s i z e o f (i n t) ;
180 Senda l l (c l i e n t s o c k , (c o n s t uns igned char ∗)&j p e g S i z e , &send ing) ;
181 s end ing = j p e g S i z e ;
182 b y t e s = Senda l l (c l i e n t s o c k , (c o n s t uns igned char ∗) j p e g B u f f e r , &

send ing) ;
183 }
184 imageSize = j p e g S i z e ;
185 i f (imageSize > 100000) p r i n t f (" oops − b i g f i l e ") ;
186 ∗/
187 }
188 // j u s t yuv422 g e t t i n g s e n t
189 else
190 {
191 in t sen tBy tes = 0;
192 i f ((dataType == 0) && checkVa l idP t r (imagePtr)) // ((uns igned i n t)

imagePtr != 0 xcdcdcdcd))
193 {
194 in t ip l ImageS ize = s izeof (Ipl Image) ;
195 in t p i x e l S i z e = imagePtr−>imageSize ;

120

Eye Contact in Leisure Video Conferencing

196 in t Ip l ImageFlag = −1;
197 in t sending = s izeof (in t) ;
198

199 sen tBy tes = Sendal l (c l i e n t s o c k , (const char ∗)&Ipl ImageFlag , &
sending) ;

200 // i f (s e n t B y t e s == 0)
201 // p r i n t f (" \ nSend f l a g : %d\n " , I p l ImageF lag) ;
202

203 i f (p i x e l S i z e == global ImageSize)
204 {
205 sen tBy tes = Sendal l (c l i e n t s o c k , (const char ∗) imagePtr , &

ip l ImageS ize) ;
206 // p r i n t f (" Send header : %d o f %d − %.1 f%%\n " , s en tBy t e s ,

i p l ImageS i z e , s e n t B y t e s /(double) i p l I m a g e S i z e ∗100) ;
207

208 sen tBy tes = Sendal l (c l i e n t s o c k , (const char ∗) (imagePtr−>
imageData) , &p i x e l S i z e) ;

209 // p r i n t f (" Send image : %d b y t e s \n " , p i x e l S i z e) ;
210 }
211 else
212 {
213 p r i n t f ("No image to send . \ n ") ;
214 }
215

216 }
217 }
218

219 dataToSend = f a l se ;
220

221 pthread_mutex_unlock(& access ingData) ;
222

223 counter++;
224 i f (counter%mod == 0)
225 {
226 p r i n t f (" . ") ;
227 }
228

229 /∗
230 // i f something went wrong , r e s t a r t the conne c t i on
231 i f (s end ing != imageSize)
232 {
233 p r i n t f (" threadLoop at tempt reopen , b y t e s = %d o f %d . \ n " , by t e s , imageSize

) ;
234 // p r i n t f (" threadLoop conne c t i on c l o s e d . \ n ") ;
235 i f (c l i e n t s o c k) c l o s e (c l i e n t s o c k) ;
236

237 i f ((c l i e n t s o c k = a c c e p t (s e r v e r s o c k , NULL , NULL)) == −1) {
238 p r i n t f (" threadLoop a c c e p t () f a i l e d − reopened \n ") ;
239 }
240 e l s e
241 {
242 p r i n t f (" threadLoop a c c e p t () s u c c e s s − reopened \n ") ;
243 }
244 }
245 ∗/
246 }
247 else
248 {
249 Sleep (2) ;
250 }
251 }
252

121

Eye Contact in Leisure Video Conferencing

253 f f l u s h (s tdout) ;
254 p r i n t f (" End of s e r ve r loop ?!\ n ") ;
255 }
256

257 // the data s ender has to l i s t e n to the queue to know when something i s ready to go
258 void gucSendData : : queueL i s tener (gucQueue∗ q , gucQueue∗ output , in t type)
259 {
260 dataToSend = true ;
261 dataType = type ;
262 s t a t i c Ipl Image∗ tempImage = NULL;
263 tempImage = q−>popImage () ;
264 i f ((tempImage == NULL) || (tempImage−>imageSize == 0))
265 return ;
266

267 i f (type == 0)
268 {
269 imagePtr = tempImage ;
270 dataPt r = imagePtr−>imageData ;
271 }
272 else
273 {
274 imagePtr = NULL;
275 }
276

277 i f (showSendingImage)
278 cvShowImage(" gucSendData − p r i o r to sending " , tempImage) ;
279 }
280

281 void gucSendData : : cleanup ()
282 {
283 pthread_mutex_destroy(& access ingData) ;
284 }
285

286 /∗∗
287 ∗ t h i s f u n c t i o n p r o v i d e s a way to e x i t n i c e l y from the sys tem
288 ∗/
289 void gucSendData : : qu i t (char∗ msg , in t r e t v a l)
290 {
291

292

293 i f (running)
294 {
295 pthread_mutex_lock(& access ingData) ;
296

297 i f (pthread_cance l (queueThread)) {
298 pthread_mutex_unlock(& access ingData) ;
299 qu i t (" gucSendData pthread_cance l f a i l e d . " , 1) ;
300 }
301 else
302 {
303 pthread_mutex_unlock(& access ingData) ;
304 running = f a l se ;
305 cleanup () ;
306 }
307

308 i f (s t r l e n (msg) > 0)
309 {
310 p r i n t f (" \n ") ;
311 i f (r e t v a l == 0) {
312 p r i n t f ("%s \n " , (msg == NULL ? " " : msg)) ;
313 } else {
314 f p r i n t f (s tde r r , (msg == NULL ? " " : msg)) ;

122

Eye Contact in Leisure Video Conferencing

315 f p r i n t f (s tde r r , " \n ") ;
316 }
317 }
318 }
319 }

Listing E.9: Sending Class Header.
Coded by Jayson Mackie research assistant for the Game Technology Group at Gjøvik University
College

1 #ifndef _GUC_SEND_DATA_H_
2 #define _GUC_SEND_DATA_H_
3

4 #include <winsock . h>
5

6 #include " gucOCV . h "
7 #include " gucNetworkBase . h "
8

9 c lass gucSendData : public gucNetworkBase {
10 private :
11

12 pthread_mutex_t access ingData ;
13 pthread_t queueThread ;
14

15 void∗ dataPt r ;
16 Ipl Image∗ imagePtr ;
17 bool dataToSend ;
18 in t dataType ;
19 bool running ;
20

21 s t a t i c void∗ t h r e a d I n i t i a l i s e (void∗ q) ;
22 void threadLoop () ;
23 void update () ;
24 void cleanup () ;
25

26 public :
27 gucSendData (gucQueue∗ q) ;
28 void i n i t i a l i s e (const char ∗ se rver IP , in t port) ;
29 void queueL i s tener (gucQueue∗ q , gucQueue∗ output , in t type = 0) ;
30 void qu i t (char∗ msg , in t r e t v a l =0) ;
31

32 } ;
33

34

35 #endif

Listing E.10: Class to receive data from network.
Coded by Jayson Mackie research assistant for the Game Technology Group at Gjøvik University
College

1

2 #include " gucOCV . h "
3 #include " gucQueue . h "
4 #include " gucReceiveData . h "
5

6

7

8 gucReceiveData : : gucReceiveData (gucQueue∗ q)
9 {

123

Eye Contact in Leisure Video Conferencing

10 waitingQueue = q ;
11 dataReceived = f a l se ;
12 running = true ;
13 } ;
14

15 void gucReceiveData : : i n i t i a l i s e (const char ∗ se rver IP , in t port)
16 {
17 s t r c p y (serverAddress , s e r v e r I P) ;
18 s e r v e r P o r t = port ;
19

20 access ingData = PTHREAD_MUTEX_INITIALIZER ;
21

22 // run the s t reaming s e r v e r as a s e p a r a t e thread
23 i f (p thread_crea te (&queueThread , NULL , &gucReceiveData : : t h r e a d I n i t i a l i s e , (void ∗)

th i s)) {
24 qu i t (" p thread_crea te f a i l e d . " , 1) ;
25 }
26 } ;
27

28 /∗∗
29 ∗ Thi s i s the s t reaming s e r v e r , run as a s e p a r a t e thread
30 ∗ Thi s f u n c t i o n wa i t s f o r a c l i e n t to connec t , and send the g r a y s c a l e d images
31 ∗/
32 void∗ gucReceiveData : : t h r e a d I n i t i a l i s e (void∗ sd)
33 {
34 gucReceiveData∗ mySelf = re interpret_cast<gucReceiveData ∗>(sd) ;
35 mySelf−>threadLoop () ;
36 return NULL;
37 }
38

39

40 void gucReceiveData : : threadLoop ()
41 {
42 update () ; // needs to be s p l i t up to have an i n i t and send par t ! ! ! TODO the b i t

below
43

44 /∗
45 connec t () ;
46 whi l e (running)
47 {
48 i f (da taRe c e i v ed)
49 {
50 r e c e i v e D a t a () ;
51 dataToSend = f a l s e ;
52 }
53 }
54 ∗/
55 }
56

57

58 void gucReceiveData : : update ()
59 {
60 s t ruc t sockaddr_in se rve r ;
61

62 p r i n t f (" Streaming c l i e n t thread i s running \n ") ;
63 f f l u s h (s tdout) ;
64

65 // open s o c k e t
66 while ((se rve r sock = socket (PF_INET , SOCK_STREAM, 0)) == −1) {
67 // q u i t (" s o c k e t () f a i l e d " , 1) ;
68 p r i n t f (" C l i e n t No Socket yet , wai t ing 2s \n ") ;
69 Sleep (2000) ;

124

Eye Contact in Leisure Video Conferencing

70 }
71 p r i n t f (" C l i e n t socke t () succes s \n ") ;
72

73 /∗ s e tup s e r v e r parameters ∗/
74 memset(& server , 0 , s izeof (s e r ve r)) ;
75 s e r ve r . s i n_ f ami l y = AF_INET ;
76 s e r ve r . s in_addr . s_addr = inet_addr (serverAddress) ;
77 s e r ve r . s i n_po r t = htons (s e r v e r P o r t) ;
78

79 /∗ connec t to s e r v e r ∗/
80 while (connect (serversock , (s t ruc t sockaddr ∗)&server , s izeof (s e r ve r)) < 0) {
81 // q u i t (" conne c t () f a i l e d . " , 1) ;
82 p r i n t f (" C l i e n t Cannot connect %s:%d , wai t ing 2s \n " , serverAddress , s e r v e r P o r t) ;
83 Sleep (2000) ;
84 }
85 p r i n t f (" C l i e n t connect () succes s %s:%d\n " , serverAddress , s e r v e r P o r t) ;
86

87 f d _ s e t socks ;
88 FD_ZERO(& socks) ;
89 FD_SET(serversock ,& socks) ;
90

91 while (running)
92 {
93 in t s izeIncoming = 0;
94 in t bytes , r ece ived ;
95

96 i f (FD_ISSET (serversock ,& socks))
97 {
98 // g e t data type
99 bytes = 0;

100 i f (running && (bytes = recv (serversock , (char ∗)&sizeIncoming , s izeof (in t) , 0)
) == −1) {

101 qu i t (" gucReceiveData recv f a i l e d on type \n ") ;
102 }
103

104 i f (s izeIncoming == −1)
105 {
106

107 Ipl Image∗ networkImage = new Ipl Image () ;
108

109 // g e t the Ip l Image s t r u c t u r e , t h i s has no image data
110 bytes = 0;
111 i f (running && (bytes = recv (serversock , (char ∗) networkImage , s izeof (

Ipl Image) , 0)) == −1) {
112 qu i t (" gucReceiveData recv f a i l e d on image header \n ") ;
113 }
114

115 in t b u f f e r S i z e = networkImage−>imageSize ;
116

117 i f (b u f f e r S i z e == global ImageSize)
118 {
119 // g e t the image data
120 // g e t image
121 Ipl Image∗ tempImage = cvCreateImage (cvS ize (networkImage−>width ,

networkImage−>height) , IPL_DEPTH_8U , 3) ;
122 char∗ sockdata = tempImage−>imageData ;
123 bytes = 0;
124 for (rece ived = 0; rece ived < b u f f e r S i z e ; rece ived += bytes) {
125 i f (running && (bytes = recv (serversock , sockdata + rece ived ,

b u f f e r S i z e − rece ived , 0)) == −1) {
126 qu i t (" gucReceiveData recv f a i l e d " , 1) ;
127 }

125

Eye Contact in Leisure Video Conferencing

128 }
129

130 waitingQueue−>pushPtr (tempImage , true) ;
131 }
132 }
133 }
134 }
135 qu i t (" End of c l i e n t loop ?!\ n ") ;
136 }
137

138

139 // the data s ender has to l i s t e n to the queue to know when something i s ready to go
140 void gucReceiveData : : queueL i s tener (gucQueue∗ q , gucQueue∗ output , in t type)
141 {
142

143 }
144

145

146

147 void gucReceiveData : : cleanup ()
148 {
149 pthread_mutex_destroy(& access ingData) ;
150 }
151 /∗∗
152 ∗ t h i s f u n c t i o n p r o v i d e s a way to e x i t n i c e l y from the sys tem
153 ∗/
154 void gucReceiveData : : qu i t (char∗ msg , in t r e t v a l)
155 {
156 i f (running)
157 {
158 // don ’ t q u i t i f the threaded par t i s p l ay ing with the data
159 pthread_mutex_lock(& access ingData) ;
160

161 i f (pthread_cance l (queueThread)) {
162 pthread_mutex_unlock(& access ingData) ;
163 qu i t (" gucReceiveData pthread_cance l f a i l e d . " , 1) ;
164 }
165 else
166 {
167 pthread_mutex_unlock(& access ingData) ;
168 running = f a l se ;
169 cleanup () ;
170 }
171

172 i f (s t r l e n (msg) > 0)
173 {
174 p r i n t f (" \n ") ;
175 i f (r e t v a l == 0) {
176 p r i n t f ("%s \n " , (msg == NULL ? " " : msg)) ;
177 } else {
178 f p r i n t f (s tde r r , (msg == NULL ? " " : msg)) ;
179 f p r i n t f (s tde r r , " \n ") ;
180 }
181 }
182 }
183 }

Listing E.11: Receiving Class Header.
Coded by Jayson Mackie research assistant for the Game Technology Group at Gjøvik University
College

126

Eye Contact in Leisure Video Conferencing

1 #ifndef _GUC_RECEIVE_DATA_H_
2 #define _GUC_RECEIVE_DATA_H_
3

4 #include <winsock . h>
5

6 #include " gucOCV . h "
7 #include " gucNetworkBase . h "
8

9 c lass gucReceiveData : public gucNetworkBase {
10 private :
11

12 pthread_mutex_t access ingData ;
13 pthread_t queueThread ;
14

15 gucQueue∗ waitingQueue ;
16

17 bool dataReceived ;
18 bool running ;
19

20 s t a t i c void∗ t h r e a d I n i t i a l i s e (void∗ q) ;
21 void threadLoop () ;
22 void update () ;
23 void cleanup () ;
24

25 public :
26 gucReceiveData (gucQueue∗ q) ;
27 void i n i t i a l i s e (const char ∗ se rver IP , in t port) ;
28 void queueL i s tener (gucQueue∗ q , gucQueue∗ output , in t type = 0) ;
29 void qu i t (char∗ msg , in t r e t v a l =0) ;
30 } ;
31

32

33 #endif

Listing E.12: Networkbase Class. Sends tcp packet down socket.
Coded by Jayson Mackie research assistant for the Game Technology Group at Gjøvik University
College

1

2 #include " gucOCV . h "
3

4

5 /∗
6 ====================
7 Senda l l
8 Sends a t c p packe t buf down s o c k e t s o f l e n g t h l en
9 ====================

10 ∗/
11 in t gucNetworkBase : : Sendal l (in t s , const char ∗buf , in t ∗ len)
12 {
13 in t t o t a l = 0; // how many b y t e s we ’ ve s e n t
14 in t b y t e s l e f t = ∗ len ; // how many we have l e f t to send
15 in t n ;
16

17 while (t o t a l < ∗ len) {
18 n = send (s , buf+t o t a l , b y t e s l e f t , 0) ;
19 i f (n == −1) { break ; }
20 t o t a l += n ;
21 b y t e s l e f t −= n ;
22 }

127

Eye Contact in Leisure Video Conferencing

23

24 ∗ len = t o t a l ; // r e tu rn number a c t u a l l y s e n t here
25

26 return n == −1 ? −1 : 0; // r e tu rn −1 on f a i l u r e , 0 on s u c c e s s
27 }

Listing E.13: Networkbase Class Header.
Coded by Jayson Mackie research assistant for the Game Technology Group at Gjøvik University
College

1 #ifndef _GUC_NET_BASE_H_
2 #define _GUC_NET_BASE_H_
3

4 #include " gucOCV . h "
5

6 c lass gucNetworkBase
7 {
8 protected :
9 in t serversock , c l i e n t s o c k ;

10 char serverAddress [255];
11 in t s e r v e r P o r t ;
12 public :
13 v i r tua l void queueL i s tener (gucQueue∗ q , gucQueue∗ output , in t type = 0) = 0;
14 in t Sendal l (in t s , const char ∗buf , in t ∗ len) ;
15

16 } ;
17

18 #endif

Listing E.14: Class singleton to start up winsock.
Coded by Jayson Mackie research assistant for the Game Technology Group at Gjøvik University
College

1 #ifndef _GUC_NET_BASE_H_
2 #define _GUC_NET_BASE_H_
3

4 #include " gucOCV . h "
5

6 c lass gucNetworkBase
7 {
8 protected :
9 in t serversock , c l i e n t s o c k ;

10 char serverAddress [255];
11 in t s e r v e r P o r t ;
12 public :
13 v i r tua l void queueL i s tener (gucQueue∗ q , gucQueue∗ output , in t type = 0) = 0;
14 in t Sendal l (in t s , const char ∗buf , in t ∗ len) ;
15

16 } ;
17

18 #endif

128

Eye Contact in Leisure Video Conferencing

F Matlab Source Code

Listing F.1: Matlab code evaluating the χ2 test
1 % Func t ion tha t e v a l u a t e s the c h i 2̂ t e s t
2

3 % For each q u e s t i o n e v a l u a t e the t e s t
4 for r=1:9
5 % in ca s e o f exper iment 1
6 % f o r r=1:10
7

8 % in ca s e o f eye c o n t a c t p e r c e p t i o n q u e s t i o n
9 % f o r r=7:7

10

11

12 % Data1 and Data2 con ta in the s o f twar e and hardware data
13

14 data (1 , :) = Data1 (r , :) ;
15 data (2 , :) = Data2 (r , :) ;
16

17 % Data1 and Data2 con ta in the enab led eye c o n t a c t and d i s a b l e d eye
18 % c o n t a c t data
19 % data (1 , :) = Data1 (r , :) ;
20 % data (2 , :) = Data2 (r , :) ;
21

22 % Data1 and Data2 con ta in the s o f twar e and hardware data
23 % perform t e s t between b in s 4 and 5
24 % data (1 ,1)= Data1 (r , 4) ;
25 % data (1 ,2)= Data1 (r , 5) ;
26

27 % data (2 ,1)= Data2 (r , 4) ;
28 % data (2 ,2)= Data2 (r , 5) ;
29

30 % C a l c u l a t e the t o t a l s per row and per column
31

32 totalRow (1 ,1) = data (1 ,1) + data (1 ,2) + data (1 ,3) + data (1 ,4) + data (1 ,5) ;
33 totalRow (1 ,2) = data (2 ,1) + data (2 ,2) + data (2 ,3) + data (2 ,4) + data (2 ,5) ;
34

35 t o tCo l (1 ,1)= data (1 ,1)+data (2 ,1) ;
36 t o tCo l (1 ,2)= data (1 ,2)+data (2 ,2) ;
37 t o tCo l (1 ,3)= data (1 ,3)+data (2 ,3) ;
38 t o tCo l (1 ,4)= data (1 ,4)+data (2 ,4) ;
39 t o tCo l (1 ,5)= data (1 ,5)+data (2 ,5) ;
40

41 % Exper iment 1
42 % totalRow (1 ,1) = data (1 ,1) + data (1 ,2) + data (1 ,3) ;
43 % totalRow (1 ,2) = data (2 ,1) + data (2 ,2) + data (2 ,3) ;
44

45 % t o t C o l (1 ,1)= data (1 ,1)+data (2 ,1) ;
46 % t o t C o l (1 ,2)= data (1 ,2)+data (2 ,2) ;
47 % t o t C o l (1 ,3)= data (1 ,3)+data (2 ,3) ;
48

49 % Eye c o n t a c t p e r c e p t i o n q u e s t i o n
50 % totalRow (1 ,1) = data (1 ,1) + data (1 ,2) ;
51 % totalRow (1 ,2) = data (2 ,1) + data (2 ,2) ;

129

Eye Contact in Leisure Video Conferencing

52

53 % t o t C o l (1 ,1)= data (1 ,1)+data (2 ,1) ;
54 % t o t C o l (1 ,2)= data (1 ,2)+data (2 ,2) ;
55

56

57 % Get the o v e r a l l t o t a l
58

59 t o t a l = totalRow (1 ,1) + totalRow (1 ,2) ;
60

61 % C a l c u l a t e the e x p e c t e d f r e q u e n c i e s f o r each c e l l in the t a b l e
62

63 for i =1:2
64 for j =1:5
65 % f o r j =1:3
66 % f o r j =1:2
67 dataExp (i , j)=(totalRow (1 , i)∗ t o tCo l (1 , j)) / t o t a l ;
68 end
69 end
70

71 % Find the squared d i f f e r e n c e between the ob s e r v ed and e x p e c t e d v a l u e s
72

73 for i =1:2
74 for j =1:5
75 % f o r j =1:3
76 % f o r j =1:2
77 d a t a D i f f (i , j)=((data (i , j) − dataExp (i , j))^2) / dataExp (i , j) ;
78

79 i f (dataExp (i , j)==0)
80 d a t a D i f f (i , j)=0;
81 end
82 end
83 end
84

85 % Sum a l l the d i f f e r e n c e s to g e t the c h i va lue
86

87 sum=0;
88 for i =1:2
89 for j =1:5
90 % f o r j =1:3
91 % f o r j =1:2
92 sum=sum+d a t a D i f f (i , j) ;
93 end
94 end
95

96 ch i = sum ;
97

98 % C r i t i c a l v a l u e s f o r c h i co r r e spond to a l e v e l o f r i s k
99

100 % C r i t i c a l v a l u e s c o r r e spond ing to a deg r e e o f freedom o f 4
101

102 c r i t v a l = [7.779 9.488 11.143 13.277 18.467];
103

104 % Exper iment 1:
105 % C r i t i c a l v a l u e s c o r r e spond ing to a deg r e e o f freedom o f 2
106 % c r i t v a l = [4.605 5.991 7.378 9.210 13.816];
107

108 % Eye c o n t a c t p e r c e p t i o n q u e s t i o n :
109 % C r i t i c a l v a l u e s c o r r e spond ing to a deg r e e o f freedom o f 1
110 % c r i t v a l = [2.706 3.841 5.024 6.635 10.828];
111

112 r i s k = [0.1 0.05 0.025 0.01 0.001];
113

130

Eye Contact in Leisure Video Conferencing

114 % I f c h i i s g r e a t e r or equa l than c r i t i c a l value , then n u l l h y p o t h e s i s
115 % i s r e j e c t e d and the co r r e spond ing p r o b a b i l i t y i s s t o r e d
116

117 hyp= 0;
118 prob= NaN;
119 for c=1:5
120 i f ch i >= c r i t v a l (1 , c)
121 hyp=1;
122 prob=r i s k (1 , c) ;
123 end
124 end
125

126 % Stor e the c h i va lue s , n u l l hypo the s e s and any p r o b a b i l i t i e s in a
127 % r e s u l t s t a b l e
128

129 r e s u l t s (r , 1) = ch i ;
130 r e s u l t s (r , 2)= hyp ;
131 r e s u l t s (r , 3) = prob ;
132 end

131

	Abstract
	Preface
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Introduction
	Background
	Presence and TelePresence
	Presence in Arts
	Presence in Gaming
	Presence in Video Conferencing

	Body Language and Eye Contact
	Solutions for Eye Contact
	Hardware Solutions for Eye Contact
	Software Solutions for Eye Contact

	Virtual Camera View Generation
	Camera Capture
	Multiple Camera Geometry
	View Generation

	Eye Tracking
	Eye Tracking using Additional Hardware
	Eye Tracking using Computer Vision Techniques

	Gaze Correction

	Methodology
	Software Solution
	Program Architecture
	Gaze Correction Functionality

	Hardware Solution Teleprompter
	User Experience Testing
	Subjective Measurements
	Objective Measurements
	Adopted Measurement Approach

	Results
	Experiment 1
	Experimental setup
	Results

	Experiment 2
	Experimental setup
	Results

	Experiments Conclusion

	Conclusion
	Future Work
	Bibliography
	User Experience Questionnaires
	Questionnaire Experiment 1
	Questionnaire Experiment 2

	Presence Questionnaire (PQ)
	Slater-Usoh-Steed Questionnaire (SUS)
	Experimental Data
	Software Source Code
	Matlab Source Code

