Master Erasmus Mundus in
Color in Informatics and Media Technology (CIMET)

LI oY ’
4 2 ’ FEL ARTES
| | . /07 S =
\ UNIVERSITY OF X % /4 Q/ Universidad § Mojnenael}
K / FASTERN FINLAND &= de Granada SAINT-ETIENNE

Crovy”

A survey of techniques for depth extraction in films
Master Thesis Report

Presented by
Victor Medina

and defended at
Gjevik University College

Academic Supervisor(s): Prof. Simon McCallum

Jury Committee: Prof. Alain Tremeau
Prof. Pertti Silfsten

Avdeling for

informatikk og medieteknikk
Hggskolen i Gjgvik

Postboks 191

2802 Gjgvik

Department of Computer Science
and Media Technology

Gjgvik University College

Box 191

N-2802 Gjgvik

Norway

A survey of techniques for depth extraction in films

Victor Medina

2012/07/15

A survey of techniques for depth extraction in films

Abstract

The proliferation of 3D-enabled displays in the last decade is increasing the demand for 3D
content. There are several approaches to produce 3D content: Live camera capture, Computer-
generated content and 2D-to-3D conversion. Creating 3D content directly from cameras requires
the use of expensive equipment and facilities, so many content providers prefer to create their
material in 2D, and then convert them into 3D. Similarly, these conversion techniques can also
be used to convert already existing 2D material (movies, cartoons, etc.) into 3D, so they can take
advantage of the new display technologies. The conversion of films from 2D to 3D requires three
stages: Assigning depth to each picture element (pixel), generating a stereo pair of images, and
filling in missing information. One of the most time consuming parts of this process is assigning
a depth value for each pixel of each image, as this process is usually done manually.

Two of the open research questions related to converting 2D content are the integration of
multiple depth cues and the automation of the conversion process. In this project we present an
automatic process that can successfully estimate the depth range of a film scene, as well as the
number of depth planes and their relative positions in relation to that range.

In addition, we propose a new method to evaluate the quality of the results by comparing
them with depth map data generated with the Microsoft Kinect’s depth sensor.

Keywords: 3D conversion, 3D films, Depth estimation, Point cloud, Kinect

A survey of techniques for depth extraction in films

Preface

First of all, I would like to thank the Erasmus Mundus Program, as well as the four partner
universities of the CIMET Consortium: Jean-Monnet University (France), University of Granada
(Spain), Gjgvik University College (Norway) and University of Eastern Finland (Finland), and
their corresponding coordinators: Alain Tremeau, Javier Hernandez-Andrés, Jon Yngve Hard-
eberg and Jussi Parkkinen, for their constant efforts in organizing and improving the CIMET
Master program. I also want to thank the administrative coordinators Helene Goodsir and Hilde
Bakke, for helping us with many issues during this time, administrative and otherwise, and all
the professors and lecturers that have taught us throughout this program.

I would like to thank my supervisor, Professor Simon McCallum (PhD) at Gjgvik University
College, for creating this project and supporting me all along. He was able to come up with
new suggestions when some of the original ideas did not work out, and provide a lot of helpful
feedback during the course of this project. Thanks to all this help I improved a lot my knowledge
of research and writing techniques, but also my knowledge of the English language. I would also
like to thank Professor Jayson Mackie (Gjgvik University College) for dedicating a lot of his time
helping me during the initial software development stages.

I also would like to thank all the people who have studied with me during these two years.
Together we have gone through good and bad moments and, even though I have coincide with
some of them only for a short time, I feel like we have all been together all along, and hopefully
will stay in touch for much longer. A very special mention goes to all the friends I have made in
these two years, some of whom have become very close ones; I have had great times with them
and this has helped me cope with the stress of the the studies.

And last but not least, I would like to thank my family for always supporting me in my decision
of studying and working abroad, despite the big effort that I know it means for them.

ii

A survey of techniques for depth extraction in films

Contents

ADSLIact]. e e e e e e i
Prefacel ii
[Contentsl e iii
List of Figures| e e e e e e e e e e e e e e e e e v
Listof Tables|. e e e vi
(1 _Introduction| e e e e e 1
2 Background| 4
2.1 Terminology|. e e e e 4
2.1.1 PointCloud| e 4

2.1.2 Depthmap| e 4

[2.1.3 Depthplanes| 4

[2.1.4 DepthRange| e 5

[2.2 3D display and capture technology| 5
[2.2.1 3D technology OVerview] v v v v it e 6

[2.2.2 Full 3D vs. stereoscopic 3D| oo e e e e e 7

2.3 3Dreconstructionl.l 8
[2.3.1 Simultaneous Localization and Mapping| 8

[2.3.2 Structure from motion| 9

[2.3.3 Camera pose estimation| v v v v v v v e e e e e e e e e e e 9

[2.3.4 Keyframeselection| e 10

2.4 Depthin Films| e 10
2.4.1 Film structure|. 11

[2.4.2 The planardepthmodell 12

[2.4.3 The role of depth in story-telling| 12

[3 Implementation Environment] 16
[4 Project description| e e e e 19
4.1 Scopeoftheresearch|. e 19
4.2 Camera Calibration| e 20
|4.3 Point Cloud generation|. i 23
|4.3.1 Initial point cloud generation| 23

|4.3.2 Scarce point cloud expansion| 0oL 25

|4.3.3 Refining pointclouddata] 26

|4.3.4 Improving results with object segmentation| 26

|4.4 Depth level calculation| o o 27
|4.4.1 Statistical principles| o oo 28

|4.5 Fitting datatodepthplanes|, 30

iii

A survey of techniques for depth extraction in films

[4.5.1 Point projection|. i Lt e e e e e e e e 30

[4.5.2 Geometric fitting] e e e 31

[5 Experimentalresults| 34
5.1 Assumptions|. e e e e e e e e e e e 34
G2 Groundtruthdatal 35
5.3 Microsoft KINectl v v v v e e e e e e e e e 35
5.4 Results|. L 38
[5.5 Visual EXperiment] v v v it e e e e e e e e e e e 44

6 DiscussSion| e e e e e e e e e 48
|7 _Future directions| e e e 50
Bibliography| e 51
[A _Sourcecodel e e 57

iv

A survey of techniques for depth extraction in films

List of Figures
| The Dimensionalization process.| 2
|2 Vergence-Accomodation conflict in 3D visualization.| 7
|3 Still of the Ballroom sequence from Beauty and the Beast(2010).|. 12
|4 Depth of field usage example.| 13
|5 3D conversion process of The Lion King 3D (2011).| 15
|6 Dependency diagram of the Bundle classes.| 17
|7 Proposed depth estimation workflow, o0, 20
|8 Camera imaging model for two cameras.| 22
9 Epipolar geometry| e e 22
|10 Point cloud generation steps.] 24
[11 Depth planes using a KDE (bandwith=16).. 29
[12 Depth planes using k-means (5 clusters, T=4).| 30
|13 Depth plane distance thresholds for RANSAC mapping.| 31
[14 RANSAC geometrical fitting example.|. 32
|15 Kinect depth calculationmodel.| L. 36
|16 Kinect linearity test setup.| e e e e e e 37
|17 Kinect depth response (linearity test).| 38
|18 Kinect depthmap (linearity test).] 39
|19 Objects used in the Kinect experiment.| 40
|20 Kinect ground truth data (Kinect experiment).|. 40
|21 Features extracted in the Kinect experiment.| 41
22 Kinect eXperiment SEtUP.| « ¢ v v v v vt e e e e e e e e e e e e e e e e 42
|23 Quantitative experiment results (Proposed method data).| 42
24 Quantitative experiment results (Kinectdata).| 43
25 Visual experiment inputimage.| e e e 45
26 Manual depth map creation process (visual experiment).| 45
|27 Kinect depthmap creation process (visual experiment).| 46

A survey of techniques for depth extraction in films

List of Tables
[I Descripcion of the Bundle classes.|. 17
|2 Current hardware specifications of the Microsoft’s Kinect.. 36
|3 Kinect depth-distance equivalences.|. 37

vi

A survey of techniques for depth extraction in films

1 Introduction

Display and graphic processing technologies have undergone many changes in recent years. Av-
erage graphic processors are now capable of performing operations that some years back could
only be done by super computers. These advances have made possible a variety of new graphical
applications, one of the most important being 3D visualization.

3D visualization has been utilized for a long time in many areas such as simulation or
medicine; however, its high cost did not allow it to extend to more general applications. Presently,
much higher quality graphics can be generated at a low cost, which is the reason behind the
increasing popularity of 3D content. Indeed, the use of 3D visualization today is no longer re-
stricted to applications for scientific visualization and research, and it is now accesible to the
average user, especially for entertainment purposes. The game, film and, in general, the enter-
tainment industries, are arguably the main areas where the use of three dimensional content is
proliferating, favored by three major events that took place in the year 2009. The release in Jan-
uary of the “Nvidia 3D Vision Gaming Kit”[1]] and the release shortly thereafter, by the Samsung
corporation, of the first 3D monitor compatible with Nvidia 3D Vision[2], followed by the re-
lease in December of the movie Avatar, directed by James Cameron, had a key role in promoting
the current capabilities of 3D technology to the average public, which generated an increasing
demand for such technology[3]]. The film industry soon reacted to this new market demand[4]
by increasing the production of 3D content which, in turn, given the novelty of this technology,
required a lot of investments in research and development.

Until recently, display technologies worked mainly with 2D images, leaving it up to the
viewer’s brain to infer the third dimension. We have grown accostumed to watching this type
of image, and during that time our brain has adapted in a way that it is capable of deducing the
third dimension from other cues, so that it looks natural to us even though some information is
missing. There is an open debate about whether the use of the third dimension in films really
improves the viewing experience, or it is just a gimmick for movie theaters to increase ticket sales
and stay competitive with the other multiple entertainment options available[5]]. According to
Matthew Jeppsen from FreshDV.com[6] the answer to this question is “a question of content”.
3D should not be used in just any film and, in any case, those films which do use it should ensure
that it is done in a proper manner, so that the viewing experience is indeed improved and not
damaged.

There are several approaches to producing 3D content: Live camera capture, Computer-
generated (CG) content and 2D-to-3D conversion — a process also referred to as Dimensional-
ization[7]]. For the first approach, which consists of creating 3D content directly from cameras,
production companies must make an important investment, given that special cameras and sets
are required to film in three dimensions, so only big-budget productions can afford to be filmed
in 3D. As a cheaper alternative, many content providers use 2D to 3D conversion techniques to
create 3D versions of their 2D material, which can also be used to convert already existing 2D

A survey of techniques for depth extraction in films

material (movies, cartoons, etc.) into 3D, so they can take advantage of the new displays.

The process that is currently used requires a great deal of post-production, such as man-
ually selecting the objects’ outlines (known as rotoscoping) and hand inpainting El occluded
areas[[9] (see Figure [1)); and yet, the quality of the results is far below that of natively produced
3D content. Two of the open research questions related to dimensionalizing 2D content are the
integration of multiple depth cues and the automation of the conversion process. In this project,
we propose to develop and analyse different techniques that can contribute to the automatization
of the 2D-to-3D conversion process, thus minimizing the amount of human interaction.

(a) Object definition. (b) Add depth. (c) Add shape. (d) Inpaint hidden areas.

Figure 1: The Dimensionalization process[7]]

There are many different methods to extract depth information from a video. A first approach
consists of using information from visual cues such as the horizon line, vanishing points, aerial
perspective or texture gradients, on individual video frames alone, to infer the depth of a scene.
However, when videos are considered as a whole set of images which are related with each
other, rather than as independent frames, it is possible to use the temporal dimension to provide
additional cues such as image displacement (also known as parallax) or object occlusion. These
temporal cues can be used to mimic the stereoscopic properties of the human visual system
(HVS), thus achieving much more accurate results. In the specific case of films, the analysis of
certain cinematographic techniques such as motion blur, depth of field or element arrangement,
can help to further estimate the depth.

Some of the existing solutions to the problem of extracting depth from films are limited to only
one of the afore mentioned categories, whereas other use a hybrid approach where several types
of cues are integrated to obtain the final depth. For example, Battiato et al.[[10] use information
only from the vanishing lines to generate the corresponding depth maps for static images; Alvarez
et al.[T1]] exploit more geometrical cues apart from the vanishing lines; other solutions provided
as well, among others, by Battiato et al.[12], apply a previous segmentation based on the color
properties of the image before calculating the vanishing lines; Dalmia and Trivedi[13]] take into
account the temporal dimension found in videos, extracting depth information from the epipolar
geometry of the points. More advanced solutions integrate several of the previous approaches
into one, obtaining more reliable results; this is the case, for example, of the solution presented
by Benini et al. [[I4], which integrates information from color histogram variance, geometrical
cues, motion vector estimation and face tracking.

In this work we propose a method to automaticaly estimate the three dimensional structure

Unpainting: the technique of modifying an image in an undetectable form[8]]

A survey of techniques for depth extraction in films

of a scene from a monocular video, based on the concept of structure-from-motion (SfM), as
explained later in Section The proposed process can successfully estimate the depth range
of a scene, as well as the number of depth planes and their relative positions in relation to that
range. First, a sparse set of 3D points (point cloud) is generated from SfM information. Then, we
obtain a denser point cloud, and apply statistical clustering methods to estimate the location of
the main depth planes. Finally, RANSAC is used to perform an additional mapping process that
assigns each point to its corresponding plane. E]

Since there is no ground truth depth information associated with traditional films, which we
could use to analyze the quality of our results, we propose a new quality evaluation method,
using Microsoft’s kinect to generate test cases with two purposes: to check the validity of the
dense point clouds, and to measure the deviation error in the estimated depth planes. Our results
show that we can estimate depth planes with a small deviation error of up to a 0.67%.

Chapter [2| presents a discussion on the current and future 3D technology, some of its ad-
vantages and disadvantages, as well as some techniques that are typically used in 2D films to
achieve the sensation of depth. It also introduces the reader to the problem of 3D reconstruction
and the most common approaches to this problem, and describes some of the most important
aspects of 3D reconstruction to take into account when converting films to 3D. Chapter (3| de-
scribes how the project has been implemented as well as the main libraries used to manage the
data. This is followed by a detailed description of each of the stages of the proposed method
(Chapter [4), and an analysis of the results (Chapter [5). The final chapters will be dedicated to
giving a global overview, as well as proposing some future directions in this field (Chapters [6]
and[7] respectively).

2If needed, see Sectionfor a definition of some important terms in this context that may not be clear to the reader.

A survey of techniques for depth extraction in films

2 Background

2.1 Terminology

It is possible that some readers are not familiar with some of the terms used throughout this
report. Therefore, to avoid confussion and make sure that everyone understands all the con-
cepts, we describe in this section some of the most common terms used in this project. If the
reader is already familiar with these terms, they can skip this section and continue reading from
Section 2.2

2.1.1 Point Cloud

A point cloud is a set of vertices, where each vertex represents the position in 3D space (co-
ordinates X, y and z) of a point in the scene. Additionally, a vertex can also store information
about other properties such as color, brightness or normal direction. Point clouds are typically
created by some type of 3D imaging system (e.g., 3D scanners), or exported from a CAD or 3D
application, as an efficient way to store 3D models. We will say that a point cloud is sparse or
dense, depending on the number of vertices it contains. In this project, we talk about sparse point
clouds when referring to those point clouds containing only vertices for the main features in an
image, whereas dense point clouds are those that contain a vertex per each pixel in the image —
and, therefore, a much higher number of vertices.

2.1.2 Depth map

Given the three-dimensional structure of point clouds, it is difficult to display them in 2D space.
Therefore, a common alternative method to represent the depth of the elements in an image in
2D space is through the use of depth maps. These are grayscale images where the depth of each
pixel is stored as a gray value, with darker values typically representing closer values, although
it can also be used the other way around depending on the model used. This model — a standard
in computer graphics — is used to represent 3D graphic features in 2D space and, although it is
most typically used for depth maps, it is also used in other types of maps such as bump maps,
displacement maps and disparity maps. Depth maps are a simple and convenient method to store
and analyze the 3D structure of a scene; since the gray values represent the depth of each pixel,
the dynamic range of these maps is, in turn, a measure of the depth range of a frame, which
allows to study the depth of a scene using simpler image processing techniques. Moreover, there
is a direct relationship between depth maps and point clouds (see Section[2.1.1)) so that, in most
cases, one can be obtained from the other using a straighforward conversion.

2.1.3 Depth planes

Given a 3D scene, the objects in the scene can be found at different depths; however, given the
structure of a film scene described in Section[2.4.1] there will always be some specific positions in
the depth axis that contain a much higher concentration of objects than others. In this sense, we
call depth planes to the different depth values at which most of the relevant objects in the scene

A survey of techniques for depth extraction in films

are located. Given a scene, the number of depth planes is not unique, so it has to be prefixed in
advance, and the depth of the scene analyzed according to the pre-established number of planes.

Far and Near depth planes

Regarding the depth of a scene, the far plane is the depth plane that is located the farthest from
the camera plane. Similarly, the near plane is the closest one to the camera. These planes are
important because the determine the total depth range of a scene.

2.1.4 Depth Range

The depth range of a scene is determined by the distance between the far and near planes, and it
is used as a normalization reference to compute the relative distances between each depth plane
in the scene.

2.2 3D display and capture technology

When an object is viewed from two different perspectives, its position appears to be different for
the viewer. This is known as the parallax effect. In many animals, including humans, the eyes are
located in different positions on the head, so that different views with overlapping visual fields
are perceived by both eyes simultaneously. The parallax between these two views is used by the
brain to estimate distances and perceive depth, a process known as stereopsis, which is the main
concept behind the working mechanism of current 3D displays[15]]. Along with the parallax, the
Human Visual System (HVS) uses many other cues to estimate the depth of objects in a 3D scene,
which can be divided into two categories: physiological and psychological.[[16]

The four main physiological mechanisms used by the HVS to provide the neccesary cues to
perceive depth are the binocular parallax (also known as binocular disparity), monocular mo-
tion parallax — even when we close one of our eyes, we can still perceive depth from similar
consecutive views of the scene by moving our head, which is known as look around[[17] — acco-
modation and convergence. When objects are located within a certain distance from an observer,
these physiological cues are used to estimate their depth; however, when the observer is located
sufficiently far from the perceived objects, the visual system is not capable of calculating exact
distances using the aforementioned physiological cues, so psychological depth cues must be used
instead. Some examples of psychological cues are the texture and color gradient, shadows, rel-
ative size or aerial perspective. Furthermore, a series of studies presented by Sykora et al.[18]
show that humans can accurately tell whether parts of an object are in front of another, and
viceversa, but fail to specify absolute depths. This is the reason why some methods for creating
the illusion of depth in 2D — such as the one used in traditional animation consisting of stacking
layers on top of each other, or the matte painting technique that is widely used in films — work
in most of the cases (in other cases, the camera motion or the excesive bad quality of artifi-
cially created elements can reveal this “fake” depth). Nonetheless, if all three physiological cues
mentioned above are not present, it is not possible to perceive true depth and, therefore, true
3D.

A survey of techniques for depth extraction in films

2.2.1 3D technology overview

If we look at the existing technologies for generating three dimensional imagery, we can distin-
guish three main categories: stereoscopy, holography and volumetry.

Stereoscopy is currently the most popular technique used for visualizing films in 3D. It exploits
the afore-mentioned process of stereopsis by projecting slightly offset frames for each eye con-
secutively, and incorportaing some mechanism to allow each eye to view only the frame destined
to it. Although there are many different variations on how this mechanism is implemented[16],
the most popular one for viewing films is the one known as stereo-pair display. Stereo-pair dis-
plays require the use of some viewing device, typically a pair or googles or glasses, which can
be active or passive, depending on whether the image synchronization mechanism is included
in the viewing device itself or the display, respectively. In turn, depending on the method use to
discriminate the images for each eye, we can find several types of stereoscopic devices. The most
commonly used for films are those that use polarization — the images for each eye are sent with a
different polarization, typically circular or linear — or color filters —usually red/cyan pairs,- also
known as anaglyphs.

Health Risks of Stereoscopy

There are several issues inherent to stereoscopy that prevent an even faster popularization of
this technology. Since the images are projected onto a screen, there is always a disparity between
the depth interpretation generated in our brain of the visual content, and the real depth of the
projected image - which is flat[[19]. Indeed, when we look at the sterescopic images presented
by the 3D display, the eyes converge to a point at the apparent distance of the 3-D image -this
is known as eye vergence,- which is the correct angle for the real objects, but they accomodate
to focus the display plane on the retina. This results in a visual conflict between the depth
information from convergence and accomodation that sometimes causes eyestrain, which can be
more or less severe depending on the sensitivity of the viewer, and the strength and duration of
the discrepancy (see Figure [2). Additionally, watching stereoscopic 3D is reported to cause other
symptons such as headaches or nausea, effects which are also attributed to the mentioned visual
conflict[20] 21] [22].

This conflict cannot be resolved by technical means, so the only solution is to either limit
scene depth to very short sequences, or to artificially reduce the depth of the scene so that it falls
within the so-called comfort depth range, at approximately 20/30% of the distance between
the viewer and the display, where the human eye can tollerate some mismatch. In general, it is
recommended to watch 3D displays from a distance at least three times the display’s height[20].

Most modern productions try to minimize these risks by following several rules of thumb to
obtain compelling results. The most important rule is to avoid extreme depth ranges, so that the
depth budget mimics the depth of the original scene but it is scaled down to reduce discomfort
as well as the adverse effects of extreme compositions; the second most important rule consists
of maintaining depth continuity, so that consecutive frames do not contain transitions from very
shallow shots to very deep shots, or viceversa[23].

A survey of techniques for depth extraction in films

Figure 2: The closer the object, the more the eyes must converge, and the larger the visual
disparity between the 3-D object and the screen. Eyestrain increases with the degree of visual
disparity and the exposure time, so headaches are most likely to occur after watching intense
3-D for long period on a close-up screen.[[20]

Alternatives to Stereoscopy

Holography and Volumetry are the most advanced alternatives to stereoscopy for 3D visualiza-
tion, although they are still far from reaching the commercial status of stereoscopy. However,
given all the issues mentioned above regarding stereoscopy, the amount of research on these al-
ternative display technologies is increasing and, specially holography, presents itself as a serious
alternative to substitute stereoscopy in the future[24, 25 26].

We mentioned earlier that, to generate true three dimensional images, a given technology
must be able to provide the four physiological cues needed by the human visual system to per-
ceive depth. Due to the explained conflict between vergence and accomodation, stereoscopic
displays fail to provide a coherent depth information, and therefore they do not show true 3D,
but a virtual approximation of the natural viewing conditions[27]]. Holograpic and volumetric
displays, on the other hand, are capable of producing true three dimensional images, without
the health risks explained above.

There are many solutions that convert films from 2D to stereoscopic 3D. Some of them use
anaglyphs and some others use standard full-color stereo pair technology, typically by duplicating
the frames and creating an artificial offset generating depth at the location estimated by some
algorithm. However, if we want to obtain the true depth of the films we must reconstruct its
entire 3D structure, and more exhaustive processing is required. In this project we are trying
to contribute to this type of reconstruction, and we will describe the process in the following
chapters.

2.2.2 Full 3D vs. stereoscopic 3D

One of the first things to consider before designing a new system to dimensionalize films (or any
other type of video) is the target visualization model, since this model will determine the prop-

A survey of techniques for depth extraction in films

erties that the final film must have. As explained earlier, the most common visualization models
for 3D films are currently based on the stereoscopic model, so many of the current approaches
to extract depth from films use stereoscopic 3D as the target system. Of course, when stereo
cameras are used to capture the video, the solution to this problem is relatively straighforwad,
since the depth can be easily extracted from the stereo pairs; on the other hand, if monocular
videos are used instead, models aiming to convert a film to 3D typically analyze the depth of the
film using different criteria, and then use this information to generate “fake” stereo images from
the monocular input.

These stereo films, as explained in Section are not in “true” 3D but, rather, 2D video
with additional depth information added to it — also known as 2.5D or pseudo-3D. We say that
it is not “true” because the depth information attached to it does not correspond perfectly with
the depth existing when the video was filmed; instead, the depth was estimated from the video
content, so a certain error is most likely to exist. The problem that we find when converting films
to 2.5D is that, although they are good enough for stereoscopic technologies, they would not
work well with other technologies that use true 3D such as holographic or volumetric displays,
because the result would look rather flat, given that those types of displays do not project the
images onto a screen, but on the real three-dimensional space[16]. Therefore, as 3D visualization
technologies evolve, it becomes more neccessary to find more robust methods to estimate and
represent the 3D structure of a film.

2.3 3D reconstruction

The problem of recovering the 3D structure of a given environment has been around for a long
time, being a task that is commonly required as part of the pipeline in remote sensing appli-
cations. Recently, however, due to the proliferation of digital cameras, common reconstruction
techniques have also started to be used for video reconstruction purposes. The following sections
give an overview of the 3D video reconstruction problem applied to films and the most common
tasks and methods used in this area.

2.3.1 Simultaneous Localization and Mapping

Simultaneous localization and mapping (SLAM) is defined as the process by which a mobile
robot can build a map of an environment and, at the same time, use this map to deduce its
own location, without the need for any a priori knowledge of the environment[28]. In robotics,
SLAM is a common technique used to locate a robot within an unknown environment. As the
name implies, the process consists of two main tasks: localization and mapping. Mapping is the
process of representing the environment from the information gathered from the sensor data,
whereas localization is the process of finding the position of the robot within that environment.
These two tasks are intrinsically dependent on one another since, to be able to estimate the pose
of a robot within an environment, a representation (or map) of that environment must be created
first but, the map can only be created by moving the robot through the environment — for which
the robot must have a map. This way, a map is build incrementally as the robot advances through
the environment.

SLAM is an old problem, considered to have originated back in the year 1986[28], that is

A survey of techniques for depth extraction in films

often presented in probabilistic form. Although many different solutions have been provided to
this problem over the years, the most common ones are considered to be EKF-SLAM and Fast-
SLAM. EKF-SLAM represents the problem as a state-space model with additive Gaussian noise,
whereas Fast-SLAM uses a different representation where the vehicle motion is considered as a
set of samples from a non-gaussian distribution. Hugh Durrant-Whyte and Tim Bailey describe
these two approaches in more detail[28], as well as some more advanced methods to solve the
SLAM problem[29].

As mentioned earlier, SLAM was initially originated as a problem in the field of robotics.
Nonetheless, the solutions to this problem did not consider the use of cameras until very recently,
due to their high cost and the amount of time required to convert data coming from them into
reliable maps; instead, other sensors such as laser range-finders and sonar were used[[30]. Today;,
however, the improvements in camera technology and the low prices have made them a more
attractive choice as SLAM sensor.

2.3.2 Structure from motion

The methods for depth extraction from video content can be divided into two categories, depend-
ing on the followed approach: monocular reconstruction and stereo reconstruction. Monocular
reconstruction techniques, as mentioned earlier, use information from several static visual cues.
In contrast, stereo reconstruction techniques typically use a pair of images (or videos) to infer
depth using cues such as binocular parallax or object overlapping. Stereoscopic techniques tend
to perform better than monocular ones; however, in cases where a stereoscopic source is not
available, a hybrid approach can be used, consisting in using frames from the same video, suffi-
ciently spaced out in time, as a substitute for stereoscopic frames. This last approach is known
as Structure from Motion (SfM) — also referred to as Monocular SLAM, or MonoSLAM — and it
is the most commonly used in computer vision, and also the approach that we will follow in this
project.

The camera pose, movement and calibration parameters are essential factors in determining
the method that must be used to reconstruct the 3D structure of the scene. The simplest case
is that where the camera motion, pose and calibration parameters are known; in this category
we can find, for instance, 3D scanners with a constrained motion. If the calibration parameters
are unknown the setup is similar to, for example, that of the Proforma system[31]], where a
webcam (uncalibrated) is used to scan an object that rotates always over the same known axis.
The most problematic case is that of a freely-moving uncalibrated camera, where neither the
camera movement nor the calibration parameters are known. When converting already existing
2D films into 3D, we do not have access to the calibration parameters of the camera used when
the film was made, so we can consider this problem as a problem of uncalibrated structure from
motion(USfM).

2.3.3 Camera pose estimation

In situations where the calibration parameters of the camera are unknown, it is neccesary to
automatically track the camera motion and to estimate the camera viewing parameters. Several
algorithms exist to estimate such parameters and, depending on the application, we may choose
or another.

A survey of techniques for depth extraction in films

Parallel Tracking and Mapping (PTAM) is a common algorithm used for camera pose estima-
tion in Augmented Reality (AR) applications where a map of the environment is not available,
using an USfM approach. To speed up the calculations, PTAM takes advantage of new multi-core
processors to solve the SLAM problem, by splitting the localization and mapping tasks in par-
allel threads[32]. Separating the processes in threads removes the dependency between them,
which also removes some important limitations of the original problem. Since the threads are
now independent, the tracking process has more resources for itself, so it can do more extensive
computation, thus yielding better results. Similarly, the mapping process is no longer dependent
on tracking so it does not need to work with every consecutive frame, which allows it to reduce
the number of processed frames, avoiding unnecesary redundancies such as unchanged frames,
and dedicating the computation to only a reduced set of relevant keyframes. These optimizations
allow to increase the quality of the results while maintaining a real-time performance. Addition-
ally, the incremental mapping required by the original SLAM can be replaced by a batch method,
such as bundle adjustment[33]], which requires more computation but provides more accurate
results[32].

A more recent optimization of PTAM is the algorithmm DTAM (Dense Tracking and Mapping).
Instead of using features like PTAM, DTAM operates on every pixel of the images to generate
dense maps; this, of course, requires a much higher amount of computation time and resources,
but using parallelization and optimization techniques it keeps the execution time within real-time
boundaries.

2.3.4 Keyframe selection

Trying to estimate the camera pose for each frame of a video requires an extremely high amount
of time that is almost impossible to do in real-time. However, to display smooth motion, videos
typically contain between 23 to 50 frames per second, most of which are very similar to each
other — especially in sections with little or no motion. Therefore we can increase the performance
of the reconstruction process greatly by selecting only those frames where relevant changes oc-
curr (known as keyframes). Indeed, keyframe selection is a very critical part of the reconstruction
process which affects, not only its running time, but also the quality of the final results. Accord-
ing to Sourimant[34], there are several methods for keyframe extraction; in general, keyframes
are chosen to maximize the distance between the positions of the features in two consecutive
keyframes, while maintaining the number of matches above a certain threshold. This method
ensures that the camera motion and the number of matches between consecutive keyframes is
enough to allow for a robust reconstruction.

2.4 Depth in Films

Before we continue describing in more detail the process that we have followed in this project
to infer depth from a film, we must first describe how traditional films create and use depth, to
understand its purpose and the role that it plays as an additional resource to tell a story. The
following sections explain how the concept of depth was originally introduced in films, some
different depth models that exist, and ways in which depth can be typically used to convey a
specific message or feeling in a film.

10

A survey of techniques for depth extraction in films

2.4.1 Film structure

The history of films dates as far back as the 1890’s, when the first films were created. At that
time, films meant a step forward from theater plays, overcoming some of the limitations imposed,
among other factors, by the restricting dimensions of the stage[35]]; getting rid of the stage meant
gaining freedom of movement, as well as much wider viewing angles and deeper depths (36, 37]].
Nonetheless, scenes continued on being structured much in the same way that they used to
in theater plays, given the dependency of cinematography on camera lenses. The focal length
and focal point of the camera lens determine which parts of the image will be on focus and
which parts will be out of focus; therefore, the arrangement of the elements in a film shot (also
known as staging) generally follows a known layout, consisting of parallel planes defined by
their distance to the camera. Although the number and space coverage of these planes may
vary depending on the specific properties of the lenses, there are typically three main planes: a
foreground, which is the closest plane to the camera, a middle ground, and a background that
is usually much farther from the viewer[38]]. How the elements and the actions are distributed
along those planes will depend on the specific type of shot and the depth of composition used
in it (see Section [2.4.3) [39]. As long as the planes in such layout are roughly parallel to each
other and, in turn, parallel to the camera plane, estimating the 3D structure of the scenes is a
relatively easy task. However, this is not always the case, and that is partly the reason why the
dimensionalization process is still done manually.

The distribution of depth planes mentioned above was the foundation of traditional animation
or animated cartoons (or just cartoons for short), where several transparent layers (overlays and
underlays) are stacked on top of each other to create depth[40]; varying the content of each
individual layer generates the impression of movement with respect to one another. One can
easily see the parallelism between this setup and the ones used in theater, where there is normally
a foreground consisting of the actors on the stage (upstage), a middle ground formed by the
props placed on stage(middlestage), and one or several painted backgrounds (downstage) [38].
Although it has changed considerably over time, especially in big productions, the underlying
model used by films today still follows the same setup.

A typical exception to the described standard depth layout can be found in the recent 3D
release of Disney’s classic animated film Beauty and The Beast(2010). This scene, shown in Fig-
ure (3] has a very compelling composition, but the camera motion and the perspective used differs
greatly from most scenes we are accustomed to, which is precisely one of the reasons why it was
so acclaimed. When the engineering team at WaltDisney created the initial version of this shot in
3D, they quickly found after a few minutes of trial and error, that it was not neccesary to compli-
cate the shot by adding unusual depth planes. Instead, they replaced the two characters, as well
as the chandelier, by CG models, so that they could be effectively treated separately from the rest
of the elements in the scene, which were merely given standard depth and volume for the final
composition, using less complex techniques. This solution was found to provide “an appealing
stereoscopic rendition of the shot without conflicting depth cues and with minimal effort”[23]].

However, as mentioned, this process becomes more complicated than that in live-action films,
given that many other resources such as depth of field, motion blur, etc (see Section [2.4.3]), may
affect the perception of depth and, therefore, complicate the process of depth estimation.

11

A survey of techniques for depth extraction in films

Figure 3: The acclaimed Ballroom sequence from Beauty and the Beast(2010) was one of the few
scenes that was converted to 3D using a hybrid approach with CG models

2.4.2 The planar depth model

In films the z-axis, that is the line that runs from foreground to background, is what carries
the illusion of depth. Following the direction of the z-axis the depth of a scene is divided into
three main planes: the foreground, middleground and background[38]], which we will hereafter
refer to as the planar depth model. Filmmakers use these planes to exploit the frame depth by
positioning different story elements in different planes[38]. More recent films are starting to
use more complicated depth arrangements using a higher number of planes that the traditional
three[[41},[42]], partly because filmmakers have to keep in mind a later conversion to 3D, but they
still use the planar model. For this reason, in this project we have chosen to assume the planar
depth model to estimate the depth of the scene, given its simplicity. We explained in previous
sections that it is recommendable to avoid extreme depth ranges as well as unneccesary depth
artifacts; in this sense, using the planar model ensures that we can control the amount of depth
by restricting it to a maximum number of planes. Of course this assumption, just like any other,
reduces the quality of the results since we are simplifying the depth of the objects to only one
dimension. However, the assumption is more than sufficient for the purpose of this research,
since we are only interested in finding the main depth levels in the scene, rather than the exact
3D shape of each and every element.

2.4.3 The role of depth in story-telling

Story telling in films is for the most part done by means of a script. The script establishes the
main plot of the story as well as the events that take place in it. This is indeed true for most
films but, given that cinema is supposed to improve the mechanisms for story telling available

12

A survey of techniques for depth extraction in films

in theater, filmmakers normally do not limit themselves to merely tell stories through words,
but also use the additional resources offered by the medium. There are certainly many different
resources that a filmmaker can use to convey a story other than just a script, and the one we are
most concern about in this project is the use of depth as a creative tool.

The use of depth for creative purposes is a common tool that has been used by filmmakers for
a long time as a way to refine the initial composition of a shot. The most common way to do this
is through the use of depth of field to draw the viewer’s attention to certain areas in the image
(see Figure , in such way that important areas remain in focus while less relevant ones are left
more or less out of focus[[43]]. Indeed, the depth of field is an important factor in defining the
relation and distances between the foreground, mid ground and background of a shot. A deep
focus keeps all the different planes of the image in focus, giving the same relevance to all of
them, and it is thought to provide a more realistic representation of space; on the other hand, a
shallow focus keeps only one depth plane in focus, and it is used to direct the viewer’s attention
towards specific elements of a scene and to create proximity between the characters[I39].

Nonetheless, although the use of depth of field is the most common form of depth modifica-
tion employed by filmmakers, there are many other resources, such as the use of motion blurE[,
special lenses or zooming techniques, that can affect how we perceive the arrangement of the
elements in a film scene.

Figure 4: Use of depth of field to define the importance of each character in the film The So-
cial Network(2010) (left) and to create an intimate scene in the film Dear Frankie(2004) (right).
(Pike[43])

Although all of the above is true for films that were originally filmed in 2D, the visual narrative
is very different when it comes to films made in 3D. In 2D films, the viewer is always aware that
there is a screen hanging from a wall in front of them; in 3D, however, the screen acts more
as if there were a hole in the wall or, as it is commonly referred to, “a window to the world”,
with elements of the world on either side of it[44]. Regarding this interpretation, there are
different criteria amongst directors as to where the objects should be placed: some consider the
screen strictly as a window and place all objects within it, so that they are all visible to the viewer,
whereas others prefer to extend the “world” beyond the screen; but typically both interpretations
are mixed within the same films depending on the scene[7].

IMotion Blur: artifact created by blurring several consecutive frames in a film. It can appear naturally while filming, due
to rapid movement or long exposure, or it can also be added post-production, typically to increase the sensation of motion

13

A survey of techniques for depth extraction in films

As the reader will probably understand, using techniques like depth of field to draw the atten-
tion is something that makes no sense in 3D. Indeed, the sensation of depth in 3D is transmitted
by actually placing elements in different depths and letting the visual system to interpret that
information in an appropiate way so, in order to give more importance to certain elements in the
picture, the filmmakers must now modify their actual location in the 3D space, so that important
elements are closer to the viewer.

Not keeping these strong differences between 2D and 3D storytelling techniques may cause
conflicts after dimensionalization. For example, when a scene with strong use of depth of field is
converted to 3D it may be the case that some elements are more out-of-focus than they should
given the resulting depth in the 3D space, which would most likely look ackward to the viewer;
the same thing would happen for scenes with strong motion blur. Similarly, given that 3D films
try to convey the feeling that the screen does not exist, to make the viewers feel as if they were
inside it, it is not desirable to place closeby objects near the edges of the screen because then
it would give away the screen. However, cutting elements on the edges of the screen presents
more serious issues than just revealing the screen. An actor that is partially cut by the screen
looks normal in 2D, because the viewer understands that the rest of the actor is hidden “behind”
the frame. But if you present the audience with the exact same shot in 3D, with the character
located in front of the screen, on the audience side, they would see only half a character floating
in the air. This is an example of what is called a “window violation”; it is intimately related with
the vergence-accomodation problem described in Section and, as such, it can cause eye-
strain, headaches and, if there is a lot of motion, even induce vomiting[[44]]. Brian Gardner[44],
stereoscopic consultant for the film Coraline(2009), describes the causes of this effect in in the
following way:

Part of your perceptual system says, “I can only see half of the person, because the other
half of him is behind the window, so he’s behind the window.” Then your stereo system
says, “The window frame is behind him, but half of him is way in FRONT of the window!
That’s not possible!” (Brian Gardner, on the effect of window violations[44]])

The chances of running into these problems are higher when the conversion is done over a
live-action film. Traditionally or CG animated films can typically achieve better results in the con-
version process given that all the original material can be easily manipulated, and new footage
can be tailored or even re-generated for specific situations when needed, thus reducing the risk
of running into conflicts. However, we can find issues like the ones mentioned above, for ex-
ample, in dimensionalized films like The Lion king 3D(2011). In this case they “pushed vertical
objects that violated the stereo window into the negative parallax and as a result created eye
strain”, as commented by Russell McGee[45]], a student of 3D filmmaking at Indiana University,
who also mentions that they “employed a technique of projection of the 2D image onto geometry
or 3D modeling which created unusual and warped effects on the 2D perspective of the original
artwork, which in my opinion was a major gaff and was very distracting as a viewer”. This seems
to be the general feeling of many other viewers’s after watching some of the films that have been
re-released in 3D recently.

3D films, in general, are not becoming as popular as the industry thought initially — Engber[47]

14

A survey of techniques for depth extraction in films

© Distiey

© Disney:

al|b
c

Figure 5: Images from the 3D conversion process of the film The Lion King 3D (2011). a) Original
keyframe, b) depth detail markings and c) final depth map. (Graham[46])

shows a very exhaustive analysis of the reasons behind this fact — and this is partly due to the
poor results obtained by the current process of dimensionalization which, as we have explained
in previous sections, can cause a discomforting feeling in the viewers while watching the film,
as well as several other uncomfortable side effects (see Section [2.2.1), which is keeping many
viewers away from 3D films. Therefore, it becomes neccesary to find more robust alternatives
to the current dimensionalization process to avoid such problems and improve the film viewing
experience.

15

A survey of techniques for depth extraction in films

3 Implementation Environment

In this project, rather than a fully integrated piece of software, we propose a solution consisting
of a workflow, that is, a combination of several pieces of code obtained from different sources.
Given the wide variety of environments and languages used to develop research tools, this ap-
proach just came out naturally as different libraries and algorithms became neccesary during the
implementation stage.

Once Bundler was chosen as the tool to generate the initial point cloud, it became neccesary
to find the right programming library to be able to work comfortably with some of the standard
point cloud formats generated by it. To begin with, we needed to choose a programming language
whicch had libraries for the required tasks, while at the same time being efficient and fast. For this
reason, we chose to combine C++ and Matlab, which are two of the most common languages
used in the computer vision and graphics research community. This way, the efficiency and high
number of libraries available for C++ is complemented with the simplicity to work with matrix
structures — which is how images and point clouds are typically stored — and the even higher
number of specialized libraries available for Matlab. As a result, most of the code is done with
C++, except for the depth clustering algorithm (see Section and Appendix [A), which is
done in Matlab and included into our code as a Dynamic-Linked Library (DLL).

The library that we have used to work with the point clouds is the recently released C+ + Point
Cloud Library (PCL)[48], which offers a toolbox to simplify the processing of point clouds in
several formats, among them PLY, which is one of the output formats generated by Bundler. The
most important functions used in the depth estimation process (see Listing A.2 in Appendix [A)
belong to the PCL library. Some of these functions are read/write methods for PIY files, filtering
algorithms such as the Voxel grid filter (see Section [4.3.3) or the RANSAC-based projection filter
used to fit the 3D points to our planar model (Section [4.5.2).

Apart from the point cloud PLY files, Bundler also produces what is known as the “bundle file”
(with extension .out), which contains the final state of the scene after registering all the images
used as input. The bundle file contains information about each camera (rotation, translation,
focal length and radial distortion) and each point in the scene (position, color and feature index
and position in each frame). This file contains very important information for the reconstruction
process, so it is important to find a way to store it somehow in the program, so that we can
easily access it from the methods that require it. For this purpose, we created a set of classes that
allow the developer to store and access information about the scene extracted from the bundle
files, as well as performing several operations such as perspective transformations or distance
calculations. Figure [6] shows all the bundle classes and the dependencies between them, and
their description is shown in Table

The BundleReader class is used to parse the content of the Bundle file and store the informa-
tion in an instance of the BundlerScene class, which creates a list with the corresponding number
of cameras and points. The BundlerScene class has methods to switch from one view to another,

16

A survey of techniques for depth extraction in films

BundlerReader BundlerScene
Bundle File BundlerCamera BundlerPoint

Bundlerview

Figure 6: Dependency diagram of the Bundle classes

Class Name Description
BundleReader | Reads the content from a Bundle file, and stores the
information in the corresponding BundleScene in-
stance.
BundleScene | Stores and manages the list of cameras and points in
the scene. From this class we can access each of the
individual cameras and points.
BundleCamera | Stores and manages the information about a specific
camera, such as rotation, translation, focal length
and radial distortion.
BundlePoint | Stores and manages the information about a specific
point, such as position and color. It also keeps a list of
views, which is a list of all the cameras under which
the point is visible, and the conditions under which
it is visible.
BundleView Stores the camera corresponding to the view, and
the index and pixel coordinates of the feature corre-
sponding to the visible point this view is associated
to.

Table 1: Set of classes created to manage the information about a scene stored in the Bundle file.

17

A survey of techniques for depth extraction in films

where each view corresponds to a different frame. The BundlerCamera class stores information
about individual cameras, and also provides methods to project 3D point coordinates onto pixel
coordinates under that camera. Similarly, the BundlerPoint class also stores information about
inidividual points, providing additional methods to check is a point is visible under a certain view
or to find the number of cameras that can see the point, as well as methods to compute distances
between points in both the 2D and 3D space; each instance of this class keeps a list of all the
views under which the point is visible, to be able to access information about each view from
them. By point view, we refer to the properties of a point when seen by a specific camera; these
properties are stored in instances of the BundlerView class, which contain information about
what camera number is associated with the point view, as well as information about the feature
associated to the point under that camera, such as the index in the feature array, and the pixel
coordinates in the corresponding frame.

As we mentioned earlier, the depth plane clsutering algorithm was implemented in Matlab
because it resulted more simple than doing it in OpenCV. Therefore, the neccesary static and dy-
namic libraries were compiled from a matlab script using the MATLAB Compiler Runtime (MCR).
Appendix [A] shows the two variants that were implemented for the depth plane estimation pro-
cess, using clustering and a kernel density estimator.

Additionally to the libraries and custom classes mentioned above, the OpenCV C+ + library
was also used in many early tests that were abandoned. Especifically, several methods for the
generation of depth maps and disparity maps were implemented (see Section |4.3.1)), as well
as some color correction and image segmentation algorithms such as gamma correction, con-
trast enhancing and edge detection. Similarly, our own feature detection and camera calibration
methods were implemented but later abandoned after it was decided to replace them by Bundler.
The tests made with the Kinect were all made using a modification of the Kinect-depth sample
included with the OpenCV distribution. Many of these methods have been kept in the code for
future reference and possible additions.

18

A survey of techniques for depth extraction in films

4 Project description

During this chapter we will be examining in detail the stages that this project went through, the
decisions that had to be made when choosing one or another method, the alternatives available
in each case, and the advantages and disadvantages of each one.

The initial stages of the project were dedicated to background research. This is a very new
area where a lot of new methods are being researched and developed, so before implementing
a solution it is neccesary to study what the available methods are, the conditions under which
they can be successfully applied, and whether or not they are a valid solution to the problem at
hands. This background research helps in delimiting the scope of the project and finding the right
question that will be answered throughout the thesis, thus avoiding unnecessary work that would
fall out of the established scope. The following sections present a description of the problem that
we are trying to solve in this project, the areas that the research is most focused on, and the main
steps that form the proposed solution. This is followed by a more detailed description of each of
the stages of the project and the theoretical concepts used at each point.

4.1 Scope of the research

There is indeed an extensive amount of research being done in the field 3D reconstruction, and
since the problem of estimating the 3D structure of a film scene is important task within that
research area, there are plenty of solutions available to solve this problem. However, given the
complexity of this problem, solutions are typically provided for specific cases very well-defined
conditions. In the case of films there are several different approaches but, as we mentioned
several times earlier, most of these approcahes require some amount of human interaction, which
reduces the performance and convenience of the methods in some situations. In this project we
propose a new approach to automate the depth estimation process while obtaining results that
closely resemble the real values. In the following pragraphs, we will explain the reasons why we
decided to follow this approach.

Since we are working with films, by definition, the calibration parameters of the camera are
unknown, because we do not have access to the parameters used back when the film was made.
Similarly, the input video will always be of a monocular nature. Therefore, we can reformulate
our particular problem as the estimation of depth planes from a monocular video. Initially, this
thesis was supposed to analyze and compare the different methods available, using DTAM as the
main algorithm for the comparison. As we explained in Section DTAM calculates depth for
every pixel in the scene, so a full dense reconstruction of the entire scene can be obtained easily in
a few steps. However, these are all very recent algorithms which are not publicly available yet, so
we could not manage to find the source code to implement any of the proposed methods and had
to implement our own solution to the problem using pieces from different projects, plus our own
code. Thus, the goal of the research became to analyze the advantages and disadvantages of using
one or another approach in each of the stages of the depth estimation process, and to propose a

19

A survey of techniques for depth extraction in films

combination of those methods that allows to estimate the depth of a scene automatically, yielding
values as close as possible to those present in the original scene.

As mentioned earlier, we chose to follow an approach based on Monocular SLAM, extracting
the scene depth by matching a set of features between pairs of consecutive keyframes. Kien[49]
describes in detail all the neccesary steps of the 3D reconstruction process. Donate and Liu[50]
propose a solution using this approach that closely resembles the problem we are trying to solve.
Rather than finding a global solution for the entire film, they choose to use different methods for
the detection of specific elements, such as people — who are reconstructed by mapping movement
of elements in the scene to a pre-existing CG model. Indeed, finding an universal method that
can applied to every type of scene is a very difficult task, so most reconstruction methods must
make certain assumptions about the conditions under which the solution works, or combine
several methods into one solution. Given the time constraints, in this project we have chosen
to make assumptions about the type of scene that we can reconstruct, choosing to focus on
scenes containing horizontal camera panning, avoiding more complicated camera motions such
as rotations or zoom (see Sectionfor more details). In the following sections, we will describe
each of the steps followed to obtain depth from a given scene, which are also summarized in

Figure

1

Scarce Keyframe Mapping Dense
Point Cloud + Point Cloud
Generation Point Cloud Expansion Optimization

Keyframe

Depth plane

Selection Estimation

Figure 7: Diagram summarizing the steps we have followed in this project to estimate the depth
structure from a film scene.

4.2 Camera Calibration

Reconstructing the 3D structure of a film scene is typically a problematic task. We do not have
access to the calibration parameters of the cameras and, additionally, the cameras can move
freely in space, which results in a problem with uncalibrated and unconstrained cameras. Before
we proceed any further, we must explain what a calibration matrix is, and why we need it.

The pixels that we see in a 2D image are the result of a projection transform that maps points
in 3D space to pixels in a 2D image. When we project a 3D scene onto the sensor of a camera,
many geometrical properties such as shape, distance, and length, are not preserved after the
projection. The coordinates of a point in the projective 3D space (denoted by (X,Y,Z)), which
is always defined picking out one point as the origin of the coordinate system, are typically ex-
pressed in homogeneous coordinates relative to the origin. We can easily convert the coordinates
of a point in one 3D projective space to a different projective space with a different origin, by
applying the following linear transformation of homogeneous coordinates[51]:

20

A survey of techniques for depth extraction in films

where X are the coordinates of the point in world coordinates, X’ are the coordinates of the
same point in the camera space, and H is the camera matrix. We may think of the conversion be-
tween spaces as having the first space translated and rotated to a different position, the resulting
operation is known as a Euclidean transform; the matrix H in equation above contains the
coefficient of such translation and rotation. Each frame in the sequence is considered as a dif-
ferent projective space with origin at the point where the camera is located; therefore, it is easy
to see that, knowing the camera matrices for each view (frame), we can convert the coordinates
of a given point from one frame to another. Once we have the point coordinates in the camera
space, we can project the point onto image coordinates, by dividing the first two coordinates,
X and Y, by the Z coordinate. However, this equation only gives us a projective reconstruction
of the scene, meaning that the positions of the points cannot be determined uniquely due to a
certain ambiguity that only allows for a reconstruction at best up to a similarity transformation
of the world[51]. If we want to obtain a correct reconstruction of the scene, minimizing the
projection ambiguity, we must determine some information about the calibration parameters of
the cameras. The calibration parameters account for the effects introduced by the camera itself,
such as focal length and radial distortion of the lens. Provided we have such information, we can
obtain the final pixel coordinates of the 3D points as follows[52]:

P=Rx X+t (4.2)
p=—-P/Pz 4.3)
p =fxr(p) xp 4.4)

where equation [4.2| converts the coordinates of point X from world to camera coordinates,
equation [4.3] applies a perspective transformation by removing the third coordinate, and equa-
tion [4.4] converts the mapped coordinates to pixel coordinates. The function r(p) in equation [4.4]
calculates a scaling factor to undo the radial distortion, based on the radial distortion values, k1
and k2, obtained from the camera, as

r(p) = 1.0+ (k1 x [p]?) + (k2 x |p[|*). (4.5)

where ||p|| represents the norm of 2D point p.

The camera matrices are calculated from a set of matching points in several images. The
method used to obtain the camera matrices from the point correspondences will depend highly
upon the number of views. In the most simple case, which is the calibration from two views, a
3x3 matrix of rank-2, known as the fundamental matrix, represents the contraints between both
views neccesary to determine the camera matrices for each view(see Figure [8); in the case of
three views, the coordinates of the corresponding points are related by 3x3x3 matrix, known as
the trifocal sensor.

For each image point X with a correspodning pair x-x’, we can visualize the epipolar geometry
as shown in Figure [9] The line connecting the camera centers, C and C’, is called the baseline.
Image points x and x’ are the results of mapping point X onto the image planes of cameras C
and C’ respectively. The plane formed by the baseline CC’ and the mapping lines XC and XC’ is
called the epipolar plane. The points where the image planes cross the baseline are the epipoles,

21

A survey of techniques for depth extraction in films

X=X, ¥.Z)=(x ¥, ZYH
L]

o P s

Figure 8: Camera imaging model for two cameras. Object point X is mapped onto both image
planes, resulting in image point x(x,y) and x’(x’,y’) respectively. Points x and x’ are called point
correspondences. (Aghajan and Cavallaro[53]])

and correspond to the image of one view as “seen” by the other camera. Lines | and I’ are the
epipolar lines, and they represent the intersection of the image planes with the epipolar plane. Ie
we knew the location of point x, but not x’, we could use this epipolar geometry to find x’, since
we know tha it must lie somethere on the line I'.[[51]]

X

baseline

Figure 9: Epipolar geometry.

Several methods were developed to perform the camera calibration process. Initially, the idea
was to obtain a dense reconstruction with matches for all the points of the scene, although this
method proved impossible given the amount of points in a film picture, as well as the fact that a
lot of the points were not visible from all the views — especially when a high number of frames
were used in the reconstruction. The first problem, regarding the high amount of points, was

22

A survey of techniques for depth extraction in films

resolved by using only a set of features that were present in all the views; the problem regarding
the fact the most points were not visible in all the views was resolved by matching features
between pairs of frames, and then using a bundle adjustment approach[33]] to add new points to
the reconstruction as they were found. However, the performance of the implemented solution
was not good enough due to other issues whose resolution was out of the scope and the time
constraints of this project. Therefore, a simpler approach was chosen, and it was decided to
use an existing piece of software which implements the camera calibration process in a similar
way. This software is Bundler, which is based on the work of (and often used by) several known
authors in this field suchs as Pollefeys[54] 55| [56] and Koch[57, 58, [59].

Bundler — which was initially developed by Noah Snavely as part of the Photo Tourism
project[60] and then distributed as a stand-alone program - first uses the Scale-Invariant Fea-
ture Transform (SIFT)[61] to detect and match the features across several images (in our case,
keyframes), and then estimates the fundamental matrix for each pair of images using RANSAC[62].
Each keyframe is considered as a different view, so that there is exactly one camera per frame.
Two main types of files are generated when the execution is finished: calibration files (with exten-
sion “.out”) and point cloud files —several point cloud formats are available, although in this case
we have chosen to use PLY files, given that it is a common format with the C++ programming
library used, PCL. The .out calibration files contain information about each camera —rotation and
translation, focal length and radial distortion,— and information about the points visible in each
one —position, color and feature location. The program processes the frames sequentially; each
time new points (features) are found in a frame, a new point cloud is generated with all the
points that are visible within the current camera’s field of view, so the number of resulting point
clouds varies for each video sequence. More information on how it works can be found in the
User’s manual[52].

4.3 Point Cloud generation

In this section we will detail the method implemented to construct a dense point cloud from
several input frames (see Figure[L0). We use as input a series of keyframes from the film sequence
that we are trying to reconstruct, and use Bundler to estimate the camera parameters and create
an initial scarce point cloud from a set of matching features. A representative keyframe from the
input sequence is then chosen to expand the point cloud dataset, which will be refined later on
to remove duplicates. We will also comment several methods that could be used to improve the
results of the depth estimation algorithm.

4.3.1 Initial point cloud generation
As we mentioned in earlier sections, the original idea was to use a dense reconstruction of the
scenes, using each pixel in the frames to calculate the correspondences between the views. The
DTAM algorithm was considered to obtain the ground truth data to compare other algorithms
against. However, this algorithm has not yet been released and, given the time constraints, a
custom implementation was out of the scope of this thesis.

Once the initial idea was discarded, an alternative solution was to compute depth maps —
grayscale version of an image, where each gray level represents a depth value, with white values

23

A survey of techniques for depth extraction in films

Figure 10: Steps required to generate the final point cloud from a sequence of the film Touch of
Evil(1958). a) sample keyframe used to expand the point cloud data set, b,c) side view of the
original point cloud as generated by Bundler (left) and the expanded dataset (right), d,e) top
view of the original point cloud as generated by Bundler (left) and the expanded dataset (right).
The camera is facing towards the negative z-axis, which points left in the side and top views.

24

A survey of techniques for depth extraction in films

representing the points closest to the camera and black values representing the points furthest
away from it, although sometimes it may be the other way around - from the selected keyframes,
and manually extract the depth information for each pixel to create the corresponding point
cloud. Several methods for computing stereo correspondence depth maps were developed, in-
cluding a method based on the semi-global block matching algorithm[63]], and another one
based on the Graph-Cut algorithm[|64], both implementations included in the OpenCV toolbox.
However, a solution based on depth maps is inherently full of problems when working with
footage from real cameras[|65]]. Due to the type of camera motion that is usually present in films,
it is often the case when it is not possible to obtain the epipoles from two selected keyframes.
This generates errors during the feature matching process which, in turn, results in a wrong or
incomplete stereo-matching process. Therefore, the resulting depth maps do not provide a reli-
able depth information that can be used later to infer the position of each of the elements in the
scene.

For all of the reasons above, it was decided to represent the depth of the scene directly as
a point cloud. Since we cannot obtain a dense reconstruction of the scene, generating a dense
point cloud is of course out of the question for the very same reasons. Therefore, the point cloud
has to be generated from the same features used in Section to obtain the camera matrices.
There is no need to implement this solution, given that the Bundler software also generates a
scarce point cloud once the cameras have been calibrated.

4.3.2 Scarce point cloud expansion

Given the difficulty to find matching features amongst keyframes in a film sequence, Bundler
tends to return very scarce point clouds, which is not sufficient to do any calculations and obtain
valid results. However, since we have already calculated the camera matrices and calibration
parameters for each view, we can easily use equations to in inverse order, to obtain the
corresponding 3D coordinates for each pixel in a picture. This way, we will extend the scarce
point cloud calculated by Boundler into a dense point cloud.

The expansion uses a given keyframe as input, as well as the reconstructed scarce point cloud
pcl. For each pixel px; in the keyframe we calculate the euclidean distance to every point in pcl
— previously converted to pixel coordinates using equations to — and assign the depth of
the closest point to px;. This way, we end up with a dense point cloud where each point has the
same depth as its closest feature. The algorithm could be summarized as follows:

25

A survey of techniques for depth extraction in films

Algorithm 1 Scarce point cloud expansion from keyframes.
INPUT: keyframe, pcl;
OUTPUT: pcl2;

for each pixel px in keyframe
for each feature f in pcl
Compute 2D coordinates f2d from (fy,fy,f.);
Find euclidean distance d(f2d,px);
If d is minimum
fmin = f;
end
P = (pxx, PXy, TMin,);
Add p to pcl2;
end
return pcl2;

4.3.3 Refining point cloud data

We now have a dense point cloud but, before we can proceed to do any computations, we must
refine the dataset to avoid duplicated or redundant points that might bias the depth extraction
process. For this purpose, we applied a voxelized grid approach, that consists in creating a 3D
voxel grid with a very small leaf size over the point cloud data. A voxelgrid can be thought of as a
set of tiny 3D boxes in space, which approximates all the points with coordinates inside it to their
centroid. Typically a voxelgrid is used to downsample a point cloud dataset, to reduce its size and
complexity; in this case, by using a voxelgrid with a very small size, we can remove all duplicates,
while minimizing the amount of useful points that get removed. In fact, our experiments showed
that al duplicates were removed from the input cloud, and only a small amount of points, smaller
than a 0.01% of the amount of input points, were removed.

4.3.4 Improving results with object segmentation

If we observe Figure we can see that the shapes in the resulting point cloud (shown in
Subfigures c and e) is composed by separate chunks of the image, rather than separate objects.
We explained in Section that the expansion is done by assigning to each point the depth
of its closest feature, which means that all the points located in the neighborhood around each
feature will be in the same depth layer. For this project, we are only interested in finding the main
depth levels in the scene, so this approach is sufficient for our purposes. However, this method is
certainly not ideal if we were to perform a total reconstruction of the depth of each element in
the scene.

To improve the quality of the results, we could implement a simple approach consisting of
a combination of edge detection with image segmentation. First, an edge detection such as
Sobel[l66] is applied to the keyframe image to obtain the main elements in the scene; then,
a simple image segmentation algorithm can loop through the pixels in the edge image and ob-
tain the depth for each object. Every time the algorithm finds a new object in the scene — which
occurs when an edge is crossed — it checks if this object has been previously visited; if it has not

26

A survey of techniques for depth extraction in films

been visited before, the algorithm finds the feature from the scarce point cloud that is closest
to the object; otherwise, it assigns the same depth as the last time it was visited. Of course, the
algorithm does not need to do any search for features as long as it stays in the same object;
therefore, time-consuming computation is only required in the areas around the edges, which
reduces considerably the computation time while improving the reconstruction results. More ad-
vanced segmentation algorithms could be used in cases where a more exhaustive reconstruction
is needed. Additionally, motion flow information could also be used when there is more than one
keyframe, to avoid re-evaluating static objects and further improve the performance[67].

We can easily see that the improvements in the performance of the algorithm described above
are directly proportional to the size of the objects. As the average object size increases, the
number of objects in the scene decreases and, therefore, so does the amount of computation.
For example, imagine that we have a frame containing only three objects and a background: in
this case, the algorithm will have to find the closest feature for each of the three objects and the
background only once, the first time each object is visited; each successive time, the algorithm
will recognize the object as already visited and will assign the same depth as the previous time,
which would be much more efficient that having to compute the distances for each and every
point in the scarce point cloud for every pixel in the keyframe (as in Algorithm 1 above).

4.4 Depth level calculation

Once we have obtained a dense point cloud from the keyframes selected from the scene that we
wish to reconstruct, we need to analyze the depth of the point cloud dataset to find the depth
values which are most densely populated. We must reiterate here the need to avoid unneccesary
depth levels, which could add discomfort in the viewer. We can therefore control the depth
fluctuations in the scene by restricting the amount of depth to only the main depth levels. For
this purpose, we apply several statistical methods to compute the main depth planes in the point
cloud which, in turn, will correspond with the depth planes of the reconstructed scene.

Oehler et al.[68]] propose a 3D plane segmentation method based on clustering surfaces ac-
cording to the orientation of their normals; in the same line, Borrmann et al.[[69] analyze vari-
ations of the Hough transform to detect planes in the 3D space. In contrast, Wahl et al.[70]
and Yang and Foerstner[[71] present alternative methods based on RANSAC (Random Sample
Consensus) (see Section[4.5.1)): the former uses RANSAC to reduce the computational cost asso-
ciated with the Hough transform, as part of a high-performance point cloud rendering system;
the latter proposes to combine RANSAC with MDL to detect planes in situations where the plane
orientation is not clearly defined. Yet one more method is presented by Bauer et al.[[72], consist-
ing of the combination of RANSAC and vanishing line detection to detect the shape of the most
significant elements on the facade plane of buildings. Additionally, Yang and Foerstner[71]] also
present a very good summarized review of the main approaches to plane detection depending
on its application.

RANSAC is one of the most common methods for plane detection in computer vision, given
that it can be applied to detect planes in both 2D and 3D, even in the presence of many out-
liers. However, although solutions based on both RANSAC and the Hough transform were im-
plemented in this project, they both find planes in multiple orientations, which is not what we

27

A survey of techniques for depth extraction in films

require for our project. We mentioned in Section[2.4.1] that, in order to simplify our solution, we
chose to make the assumption that all of the planes in our scene will be parallel to the camera —
which, as we explained, adjusts quite well to the reality. Therefore, we do not follow any of the
common approaches for plane detection but, instead, present our own method, that proved to
perform better for our specific setup.

A point cloud from a given film scene can be thought of as having many different depth
levels, which can vary from as little as just one level, to as many as the number of distinct depth
values in the point cloud. Therefore, to define the depth of a scene we must first decide several
parameters such as the number of depth levels or the distance threshold from a point to a plane
location for that point to be considered as part of that depth plane. We consider an acceptable
number of depth planes to be within an interval from three to five, so that enough depth can be
perceived, without incurring in some of the issues mentioned in Section In the following
sections, we will describe some of the methods that we have used to find the most adequate
location for each of the depth planes, while bounding the number of planes within the specified
limits.

4.4.1 Statistical principles

Given the chosen model, where all planes are supposed to be parallel to the camera plane,
finding the position of the depth planes in a given scene consists simply on finding those values
along the z-axis of the point cloud with the highest concentration of points. There are several
statistical techniques that we can apply to achieve the desired result; we implemented some
of the solutions, but only two of them seemed to achieve good results, using a Kernel Density
Estimator (KDE) and Clustering.

Kerner Density Estimator

A KDE is a variation of the histogram that tries to find the curve that best adjusts to a given data
density distribution by means of data smoothing, and it is defined as follows:

~ 1 — 1 & —xi 1
fh(x):E;Kh(x—xi) —M;K("), Kl = K() (4.6)

where K is a nonnegative function, integrating to 1, called the kernel function, and h is
the bandwith, a positive parameter that controls the smoothness of the curve. Ky, is called the
rescaled kernel function and, provided that K(x) is a standard normal density, Ky, (x — x;) repre-
sents the normal denstity with mean x; and standard deviation h[73]]. There are several types
of kernel functions, depending on the type of density distribution, such as uniform, triangular,
gaussian, normal, etc; the normal kernel is the most commonly used due to its mathematical
properties, and it is the one we have used for our tests. The bandwidth is equivalent to the bin
width in a histogram and, as such, it is directly related to the number of modes in the resulting
curve and, in our case, the maximum number of depth planes. Generally, the bandwith is selected
keeping in mind the shape of the resulting curve, finding a compromise between a ragged and
an oversmoothed curve; however, we are more interested in controlling the resulting number
of maxima in the curve, so that it is always within a given interval —in our case, we choose this
value to be between 3 and 5, which are the minimum and maximum number of depth planes that

28

A survey of techniques for depth extraction in films

we want to obtain. We implemented our depth estimation algorithm using the KDE described by
Botev et al.[[74], performed several tests to find the right bandwidth, and then used the same
bandwidth in all our tests. The graphs in Figure [11|show the result of using a KDE of bandwidth
16 — which corresponds exactly with the square root of the maximum number of desired depth
planes minus 1 — for the point clouds in Figure

161 0025

1+ : 0015+

\/

06

Density
Density
=]

2

04r 0005 -

02t p ;
_/ o+ /H\'—-——'— + A W+ +

or - + H HH A

02 -0.005

T 15 2 25 3 35 4 K] 50 [50 100 150
Depth (Z-coordinate) Depth (Z-coordinate)

Figure 11: Depth planes found using a KDE with a bandwidth of 16, for the point clouds in
Figure [10]b,d (left) and [10]c,e (right), respectively. The depth values in the right graph have
been scaled by 100 for visualization purposes.

We can see that the number of detected depth planes is different when using the scarce point
cloud than when using the dense point cloud. In the scarce point cloud, the points are much
more scattered, so the peaks in the density curve are not as clearly marked as in the dense curve.
The latter case is a more realistic situation, since we want to extract the depth planes when all
the points are present in the cloud, and not just a scarce set of features. However, the results
would be more accurate if we used some additional method for depth reconstruction, like the
one explained in Section [4.3.4

Depth clustering

Data clustering is an unsupervised data analysis technique that tries to find groups (or clusters) in
a data distribution, based on some similarity criterion among the objects or variables, so that the
intra-group similarity is higher than the inter-group similarity. Typically, each object in a given
partition belongs to one and only one cluster, whereas each cluster must contain at least one
object[75]]. The clustering process separates regions in the pattern space in which the patterns
are dense (modes), from regions of low pattern density. Each cluster is assigned a center and
each pattern is then assigned to the cluster with the closest center[[76].

To find the areas of the z-axis containing the highest concentration of points, we apply a data
cluster analysis over a data distribution containing the depths of all the points in the point cloud.
We use an approach based on the k-means cluster analysis, which partitions the initial set into k
clusters and minimizes the sum of squared distances (classification “error”) of the samples about
the cluster means[[77]]. We could say that k has a similar role in cluster analysis as the bandwith
in density estimation; using k-means with 5 clusters provides a straightforward solution to our
limitation in the number of depth planes that result from the classification. Besides the number of

29

A survey of techniques for depth extraction in films

clusters, k, we use an additional parameter, threshold T, which determines the minimum distance
allowed between two clusters as a percentage of the total depth range. Initially, random seeds
are chosen uniformly from the distribution, and repeated during 5 iterations; if two clusters are
closer than the specified threshold, the second cluster is removed, and a new iteration is done to
redistribute the orphan values amongst the remaining clusters. The Matlab code used to achieve
this task can be found in Appendix [A]

af w0l
ab
1581
2+ /
i3 + ; HHH R+ il TR 1S ! \-

++

MNurnber of points
=
MNurnber of points

o

L . L . L L . . 1
15 2 25 3 i -50 o &0 100
Depth {Z-coordinate) Depth (Z-coordinate)

Figure 12: Depth planes found using k-means cluster analysis with 5 clusters and a threshold of
4, for the point clouds in Figure[10]b,d (left) and [10}c,e (right), respectively. The depth values in
the right graph have been scaled by 100 for visualization purposes.

The curves displayed in Figure [12| represent a histogram of the density in each cluster — as
opposed to the graphs in Figure which show the actual density distribution from the entire
population — and that is the reason why they are much smoother than those in Figure even
though a similar number of planes were detected.

The reason why we chose cluster analysis over density estimation is because the former gives
us more flexibility in deciding the location of the the final planes. The location of the planes
found by the kde depend mostly on the density distribution, so no realocation can be made based
on additional factors; with cluster analysis, however, we were able to introduce the threshold
parameter, to obtain a more realistic distribution of depth planes.

4.5 Fitting data to depth planes

The final step in the process of depth estimation — after we have calculated the amount of depth
planes, as well as their most optimal location - is to project the points in the point cloud onto
some type of predefined parametric model (a plane in our case), so that we can assign their
corresponding depth to each point in the scene. In the following sections we will describe the
RANSAC algorithm which is the most commonly used for this type of solutions. We will also
describe the parametric model and, especially, the plane model, which is the one that best adapts
to our scene setup

4.5.1 Point projection

We commented in Section that two common solutions to the detection of 3D planes in point
cloud data were the Hough transform and the RANSAC algorithm. We chose not to use any of

30

A survey of techniques for depth extraction in films

these two solutions because they find planes in all possible orientations; however, at this stage,
we know the parametric equation of the surface we want to project our data to, so we can specify
the coefficients of the geometric model, instead of running RANSAC blindly.

Random Sample Consensus(RANSAC)[62} 78] is an algorithm that can sucesfully detect dif-
ferent basic shapes (such as planes, spheres, cylinders, or cones) in point clouds, in both 2D and
3D, and presents a strong tolerance to outliers. RANSAC manages to search the best plane among
a 3D point cloud in less iterations than other algorithms, even for a large number of points. The
algorithm initially takes three random point from the point cloud and calculates the parame-
ters of the plane that connects them; then, it finds which of the remaining points in the point
cloud belong to this plane, according to a certain distance tolerance threshold. This procedure is
repeated N times, saving the best of the N results[[71].

Since we know the parameters of the planes in advance, there is no need to choose the three
initial random points; instead, we start with the parametric equation of the plane, so we just
need to find all the points in the point cloud that belong to that plane, according to a previously
specified distance threshold. We calculate the distance threshold dynamically so that, for each
plane, only the points closer than half the distance to each neigboring plane (on both sides) are
considered inliers; the rest of the points will be rejected as outliers and will be projected to a
different plane (see Figure[13).

3 [] 5
. "
.
s .
- L L]
nE . - .
»
. .
. . L .
- - o N
e |- . .
[
.
.
. ol
| N .
. .
& *
L o o
] » -
¢ = -
. . . ’
*]
i D'F &]
& *
L |
»
-
= . .
* L -
o] &
L3 [ﬂ’n
o .

Figure 13: Selected distance threshold for a sample distribution of depth planes. The dashed line
represents the area containing the points projected to each plane.

4.5.2 Geometric fitting

Fitting data to a curve/surface (also called geometric fitting) is a very common task in areas such
as computer vision or computer graphics to extract shape patterns from a set of points in 2D and
3D space[[79]. Given a set of points, we can use a parametric model to find the shape that best

31

A survey of techniques for depth extraction in films

adjust to our distribution, thus separating useful points from outliers. The parametric model is
typically described by a set of coefficients which, in the case of geometric fitting, corresponds to
the equation that defines the specific shape.

al|lb
c|d

Figure 14: Example of geometrical fitting of a point cloud to a sphere (a,b) and a line (c,d). The
left and right columns show the point cloud before and after the projection respectively.

Figure[14]shows the result of projecting a point cloud onto a line and sphere. Given the depth
model that we have been describing, we need to project the points to a 3D plane, which is given
by its parametric equation ax + by + cz + d = 0. Therefore, we need planes that are parallel to
the camera plane which, in other words, means that the planes will all be lying on the X-Y plane,
at different depths. The equation of the X-Y plane is z = 0, obtained by setting coefficients a, b
and d to zero and c to one. Similarly, the planes parallel to X-Y at depth 1, 2, etc, will be given
by the equations z = 1, 2 = 2, etc, so that we can obtain the equation for any depth plane by
setting coefficients a and b to zero, and c to one, giving coefficient d the additive inverse of the
corresponding depth value.

Data classification and parameter estimation are two factors that strongly depend on each
other[|80]; however, since we calculate the location of the depth planes in advance, we already
have all the parameters neccesary to fully define each of the plane equations. We use RANSAC

32

A survey of techniques for depth extraction in films

to classify the point cloud points according to several parametric models — one per each depth
plane found in the previous step — so that those points located at around each of the depth
planes, within a certain distance threshold, are assigned the same depth as the plane. The rest of
the points that do not fit into one plane model are considered outliers for that model, and will
be projected onto another plane.

33

A survey of techniques for depth extraction in films

5 Experimental results

In the previous sections we have explained some of the techniques that can be used to detect
depth planes in a film scene, as well as the methods we have implemented to accomplish such
task. To asses the quality of the results obtained with such methods, we have performed a series
of experiments that evaluate specific aspects of these results. Since we are using the Microsoft
Kinect to generate depth reference data to evaluate our results, the first experiment we per-
formed was to obtain the equivalence between the depth units returned by the Kinect and the
real depth values present in the scene, as well as to check the linearity of such equivalences as
objects move away from the sensor. Once this was done, we performed two additional exper-
iments to evaluate the quality of the results, both quantitatively (comparing the depth results
against the Kinect) and qualitatively (assessing the visual response of human observers).

5.1 Assumptions

Throughout the previous sections, we have mentioned several of the assumptions that we have
made in this project. Some of them have been imposed by the specific solution that we have im-
plemented in each case, whereas some others have just been chosen for simplification purposes.
In this section we will describe these assumptions formally, so we can clearly delimit the scope
of the research.

The first simplification we do is to see the depth in a film scene as consisting of planes that
are parallel to each other and, in turn, parallel to the field of view of the camera. We explained
this model in much more detail in Section[2.4.1]but, to summarize, this assumption simplifies the
depth extraction model, because we know in advance the parameters of the fitting model that we
have to use to estimate the depth planes, avoiding the additional computation associated with
having to find each possible orientation.

The other important simplification that we have made in this project is to reduce the number
of possible camera trajectories, and focus exclusively in the reconstruction of scenes where only a
camera panning[[|is present. As described in Section this simplification reduces the chances
of errors during the camera calibration process due to feature mismatch and, at the same time,
simplifies the keyframe selection process.

We decided to make these two main assumptions due to time contraints because, although an
implementation of the proposed solution would also be possible without them, it would require
additional steps and much longer computation times. Therefore, we made these simplifications
to reduce the complexity of the problem at hands.

1Although, in cinema, the term camera panning sometimes implies some amount of rotation in the camera, in this
case we only use it when referring to a lateral displacement, with no rotation.

34

A survey of techniques for depth extraction in films

5.2 Ground truth data

As with any other scientific experiment, we must have some ground truth data to compare our
results with, to be able to evaluate the quality of our solution. Finding ground truth data about
films is a very difficult task, because it means that we have information about the position of the
elements in the scene at the time when the film was made, which is obviously something that
we cannot have access to. Although it is possible to find rough information about the location of
the elements in a given shot, exact measurements are not neccesary in most films and, therefore,
not available. Thus, in order to compare our results, we must find some alternative way to find
that ground truth information.

We explained in Section that, due to the camera calibration process, the 3D reconstruc-
tion always has a certain projection ambiguity, so it is not possible to find the exact distances
between the elements in the scene; however, this is not required in film reconstruction, because
the relative distances can always be scaled up or down. We chose to obtain ground truth data by
setting up our own scene, noting down the real distances between the objects, and comparing
these values with our results. Although the properties of the testing scene — namely, an “artifi-
cial” F:] static scene with hand-positioned objects — do not stricly correspond with those found in
an actual film, we can use these results to measure the precision of our solution, in terms of how
similar the relative distances between the reconstructed depth planes are to the actual distances.

5.3 Microsoft Kinect

The performance evaluation that we have done so far only considers relative distances between
the depth planes, due to the projective ambiguity. Then, to measure the magnitude of this am-
biguity, and also as an additional test, we used the Microsoft Kinect to obtain additional ground
truth data with real distance values. The Kinect was first released by Microsoft in 2010 as a mo-
tion sensing input device for their Xbox 360 video game console. A Windows version as well as a
software development kit (SDK) was released soon thereafter — apart from the Kinect SDK from
Microsoft (whose official version was released in February 2012), some other implementations
exist, such as the OpenNI SDK, or the open source libfreenect library — which, along with its
low cost, has contributed to making it a popular device in the computer vision community, as
a cheap substitute for the more expensive traditional 3D cameras, such as time-of-flight (ToF)
cameras.[81]]

The Kinect sensor consists of three main components: a color VGA camera (the RGB camera)
a depth sensor (an infrared projector and a CMOS camera with an IR-pass filter which simultane-
ously captures the projected image), and a multiarray microphone (an array of four microphones
that allows to isolate the voices of the players from the ambient noise)[82]. Table [2| shows the
current hardware specifications of the Kinect.

The depth values returned by the depth sensor represent distances from the camera-laser
plane, rather than from the sensor itself (see Figure , so the (x,y;z)-coordinates of 3D objects
can be obtained directly from the values returned by the depth sensor[81]]l. However, the values

2We will sometimes talk about an artificial scene when referring to a scene that was created for the sole purpose of
generating ground truth data, as opposed to the standard film scene that is the type of data that our solution is oriented
to.

35

A survey of techniques for depth extraction in films

Property Value
Angular Field-of-View 57° horz., 43° vert.
Framerate approx. 30 Hz
Nominal spatial range 640 x 480 (VGA)
Nominal spatial resolution (at 2m distance) 3 mm
Nominal depth range 0.8m-3.5m
Nominal depth resolution (at 2m distance) 1 cm
Device connection type USB (+ external power)

Table 2: Current hardware specifications of the Microsoft’s Kinect.

I
I
|
|
Q| \
@ \
£i b
al '% \
| ‘e N
< 28
Q| &N
@, T\
o N\
o 2
a! [CIRN
=y N
| N
| \
\
' \
| \
| %
— W CR—
‘ Kinect ‘

Figure 15: The depth calculated by the Kinect depth sensor is measured as the distance from the
object to the camera-laser plane rather than the actual distance from the object to the sensor.[|81]]

36

A survey of techniques for depth extraction in films

returned by the depth sensor are expressed in depth units rather than metric units and, therefore,
we must find the equivalence between depth units and real distances in metric units to be able to
compare the results with our solution. The hardware specifications in Table[2]are only theoretical
values, so we performed our own experiment to obtain the real values instead of the theoretical
ones.

.

Figure 16: Setup of the experiment conducted to obtain the equivalencies between depth units
and actual distance for the Kinect.

To obtain the equivalencies between depth units measured by the sensor and actual distance,
we performed a simple experiment. Over a long table, we placed several distance marks, from
30 to 325 centimeters, every 25 centimeters, on a line perpendicular to the field of view of the
Kinect (see Figure [18)); then a cardboard box was placed on the table at each of the marks, in
front of the Kinect’s field of view, and the corresponding color and depth images were captured
with the Kinect. Then a region inside the cardboard box was chosen, and the depth of the pixels
inside it was averaged and compared to the actual distance. The results are shown in Table
and Figure If we observe those results, we can see that the real distance, in centimeters,
corresponds roughly to twice the amount of depth units — some small differences are acceptable
due to small deviations introduced by averaging and noise. The point cloud, on the other hand,
does store absolute distances (in meters), so that the depth of each point in the point cloud
is in fact the real distance to that point from the camera. Then, we can obtain the real distance
between two objects by using the Kinect and, therefore, we can rely on it as a reference device for
obtaining ground truth data. Similar experiments have been conducted by Andersen et al.[81]]
and Crock[83].

Actual Distance(cms.) | Kinect Depth | ...Actual Distance(cms.) | ...Kinect Depth
30 0 200 100.4562
50 13.6591 225 113.1760
75 38.0000 250 126.3545
100 50.0232 275 138.9910
125 62.3390 300 151.6228
150 75.0047 325 164.5770
175 87.8286 358 181.4329

Table 3: Equivalencies between depth units returned by the Kinect and actual distance. The graph
corresponding to these values is shown in Figure[17}

37

A survey of techniques for depth extraction in films

Kinect Depth vs. Actual Depth

255 T T T T T T T T T T T
240 : -
S Mominal depth range |
210 B
195 B
180 — il
165 -
150 -
135 =
120]
105 -]
a0 —]
nr]
60]
45 —]

30 - n
15 - n
] 1 1 I I 1 1 1 I I 1 1 1

30 50 J3 100 125 150 175 200 225 250 275 300 325 358

Kinect Depth

Distance (cms.)

Figure 17: Equivalencies between depth units returned by the Kinect and actual distance.

Looking at the graph in Figure[17|we see that there is a nearly perfect linear correspondence
between depth units and actual distance for any distance within the Nominal depth range, which
means that the values obtained with the Kinect are reliable, without any loss of precision, for any
object within this range. The graph also shows that, for values below the nominal range (80cm),
the correspondence is not linear, which is due to the fact that the sensor does not detect all
the points on the box properly. If we look at the images in Figure [18| we can see that, indeed,
the maps obtained for distances closer than 75 cms. have some “holes” in them (the depth map
corresponding to a distance of 30 cms. was not included because it is a completely black image),
meaning that the sensor cannot measure the distance correctly; similarly, object that are located
on the far background are shown as black because they fall out of the depth range.

5.4 Results

We have already described several ways to obtain the ground truth data that will allow us to
evaluate the performance of our solution. In this section we will show a fully working example
and will discuss the goodness of the results, comparing them with the depth data generated by
the Kinect as explained in Section 5.3}

In the same setup used for the Kinect’s depth experiment described above, we positioned
several objects at five different depths, which were measured manually, including foreground,
middleground and background (see Figure [19). Then, the Kinect was positioned in front of the
scene (looking towards the window), and used to obtain a depth image and a point cloud of the
scene, which would be used as ground truth (Figure [20). Next, a short video sequence of the

38

A survey of techniques for depth extraction in films

—.|0Q | A
e

~l5lo|o

Figure 18: Depthmaps obtained with the Kinect for an object located at 50(a), 75(b), 100(c),

125(d), 150(e), 175(f), 200(g), 225(h), 250(i), 275(), 300(k) and 325(1) centimeters, respec-
tively.

39

A survey of techniques for depth extraction in films

scene was recorded by panning a camera sideways along the Kinect’s sensor plane, and several
keyframes were extracted from this video sequence and used as input for our program.

Figure 19: Position of the objects for a simple study case experiment. The left image shows all
three objects, located in the fore and middleground; the right image shows a close-up of the two
objects in the midleground, so that the distance between them can be appreciated more clearly.
Objects outside the room, visible through the window, are considered to be in the bakground.

j . | ...-f
v - v |

Figure 20: Kinect capture of the scene to use as ground truth: a)rgb image (left) and b)depthmap
(right).

Due to time constraints, we have not implemented any method to select the keyframes auto-
matically from a video sequence. However, since most of our tests have been done for short video
sequences, we can afford to extract the keyframes manually. For this example, we used a total of
11 keyframes from the camera panning sequence. These keyframes are used as input to Bundler,
which will then find the main features using SIFT, match them across the frames, estimate the
matrices and calibration parameters for each camera, and generate a series of scarce point cloud
files. Figure|21|shows three sample frames, along with the features found by Bundler in each one
of them. Depending on the keyframe that we want to reconstruct in 3D, we have to choose the
corresponding point cloud to use — since a new point cloud file is created every time new features
are found, it is possible that there is not a point cloud for each keyframe, in which case we will

40

A survey of techniques for depth extraction in films

choose the latest update generated before reaching the keyframe - along with the keframe, to
estimate the dense point cloud with one point for each pixel in the frame.

Figure 21: Features extracted from keyframes 3 (a), 5 (b) and 6 (c).

The next step, after generating the dense point cloud, is to apply the statistical methods
described in Section to estimate the location of the main depth planes present in the scene.
Figure [22| shows the real distance between each one of the objects used in the experiment.

Figures [23|and 24| show the clusters as well the estimated location of the depth planes in the
point clouds obtained with the Kinect and our solution, respectively —these depth values are the
same as those shown in the depth map in figure[20]b. As we can see in the figures, in the Kinect
the camera is looking down the positive z-axis — so the depth of the points is always positive
— as opposed to our solution, where the camera is looking down the negative z-axis — and,
therefore, the depths are negative. This means that, to keep the consistency when comparing the
results obtained for both datasets, we must keep this fact into account when matching the planes
between both datasets.

To compare the quality of our solution, we have to calculate how similar the distances be-
tween each plane are. As we explained earlier, we are interested in obtaining relative distances,
rather than absolute locations, so to do the comparison, we calculate the normalized distance
—in a [0-1] interval- between each one of the planes in relation to the total depth range of the

41

A survey of techniques for depth extraction in films

KINECT

150cm 200cm 250cm 300cm 358cm
Near|Plane Middlé Plane

Far Pllane
N —1s

IR RES,

&

Figure 22: Distribution and real distances of the objects used for the experiment. A rough manual
estimation of the location of the depth planes, based on the location of the objects, is shown in
red.

Nurnber of points

0.5672 0.4328

Middle Plane Near Plane

-5.8367x10°

Far Plane
L -5.8413x10¢

-5.8332x10¢

+ o A R o

| 1 | 1 | 1 1 1 | | 1 1 | | | | | |
-6.8443 58436 -5.8420 -5.8422 -5.8415 -5.8403 -5.5401 -5.8334 -5.8387 -5.630 -5.8373 -5.8366 50355 -5.8352 5.6345 -5.8335 -5.8331 -5.8324 -5.8317 5831 55303 5.8296
Depth (Z-coordinate) « 10°

Figure 23: Depth clustering of the point cloud obtained, with our solution, for the camera pan-
ning sequence. The image shows the estimated position of the depth planes, as well as the nor-
malized distances between them. The camera is positioned to the right-hand side of the graph.
The units are artificial depth units.

42

A survey of techniques for depth extraction in films

w10

04395 0.5605

Near Plane Middle Plane
5 1.694 2,638

Far Rlane
3.842

MNurnber of points

1/\
a B B

| | | | | | | | | | | | | | | 1 | | | | | | |
12 135 18 1.68 18 T8 27 228 24 255 27 285 3 315" 33 345 36 378 39 405 42 435 4458
Depth (Z-coordinate)

Figure 24: Depth clustering of the point cloud obtained, with the Kinect, for the camera panning
sequence. The image shows the estimated position of the depth planes, as well as the normalized
distances between them. The camera is positioned to the left-hand side of the graph. The units
represent real distances in meters.

scene — that is, the absolute distance between the camera’s far and near planes. The normalized
distance is computed as follows:

(plane;) — (plane; 1)

5.1
(far plane) — (near plane) (5.1)

distance; =

In this case, the Kinect has only generated three depth levels since, due to its nominal depth
range, points located very close to the camera or in the far background are not detected correctly.
Therefore, to be able to compare this data with our results, we have also limited the number of
planes in the point cloud obtained with our solution to three. Both figure |23| and [24| show these
three clusters and the location of the three corresponding depth planes, as well as the relative
normalized distances between planes. In both cases, the near plane corresponds to the first object
of the three (the one closest to the camera), the middle plane includes the two remaining objects,
and the far plane corresponds to the points in the wall, window, and some objects outside the
window. In this example, our solution has estimated the depth planes at similar relative distances
to those obtained by the kinect, with a deviation error of only a 0.67% of the depth range, which
can be considered a small error. We mentioned that the point cloud stores real absolute depths so,
if the estimation of the depth planes were correct, the location of the planes in figure [24|should
correspond roughly with the the location of the planes in figure namely, 1.5 meters, 2.75
meters, and somewhere close to 3.6 meters — since, as we mentioned, some elements within the
far plane are not detected correctly and, therefore, the depth of these points is not very accurate.

43

A survey of techniques for depth extraction in films

Since our method estimates the locations of the three depth planes at 1.69, 2.63 and 3.84 meters,
we can conclude that our solution is capable of providing a satisfactory estimation of the depth
of this scene. Of course, these results cannot be extrapolated to any scene, given the specific
characteristics of each video, but they show that this method can provide a reliable estimation of
the depth planes within a certain margin of error.

5.5 Visual Experiment

Until now, we have shown the results achieved by our solution in quantitative terms, using as
reference the measurements obtained by the Kinect. However, good numerical results do not
neccesarily correlate with good visual quality. Therefore, to be able to judge the quality of the
results from a qualitative perspective, it becomes neccesary to analyze whether or not these
results are in fact visually appealing to human observers. For this purpose, we performed a
simple experiment to assess the response of the observers to the depth levels obtained by our
solution, in comparison with the depth levels obtained by the Kinect.

We used an input sequence obtained by panning the Kinect horizontally accross a room, with a
total of 113 frames, to estimate the location of the depth planes in the scene. As opposed to what
we did in the quantitative experiment describe in section[5.4] in this case we estimated a different
number of depth planes for each method, so that we could also compare the visual quality of
using different numbers of depth planes. Then, one frame was chosen from an intermediate
point in the sequence (see Figure 25)), and converted to 3D to perform the experiment.

Our method estimated a total of four planes, with the two middle planes located at a normal-
ized relative distance of 0.35 and 0.97 units from the near camera plane, respectively (the near
and far planes are supposed at distances 0 and 1, respectively). Since our current solution is not
yet capable of segmenting the images to assign each object their corresponding depth, we made
the depth allocation manually, segmenting the image into its main objects, and assigning each
segment their depth according to the values obtained with our solution. We then saved the result
as a grayscale image to be used as depth map. This process is illustrated in Figure

The Kinect, as mentioned earlier, computes only a maximum of three depth planes; these
planes were found at a distance of 2.02, 4.69 and 8.89 meters from the camera plane. The depth
maps returned from the Kinect are incomplete (a lot of pixels are not properly computed), so
we inpainted the remaining “holes” manually according to the values calculated by the Kinect in
each image segment, creating a smoothed depth map, rather than separate depth planes as we
did with the depth map calculated with our method (see Figure [27). Comparing a plane-based
depth map against a smoothed one allows us to judge how much using non-smoothed transitions
between the depth planes affects the perception of the final image.

Once the two depth maps were created, we made a stereoscopic 3D version of the input
image from each map, using a horizontal displacement filter (keeping the same settings for both
methods). These two 3D images were then shown to a set of ten observers, who were asked to
compare them in terms of visual comfort, natural depth and overall visual quality.

After analyzing the results of the experiment, we can conclude that the observers tended to
feel more comfortable looking at the kinect image. Many of them affirmed that the abrupt depth
changes between depth levels in the image obtained with our method makes it look unrealistic.

44

A survey of techniques for depth extraction in films

Figure 25: Input image used in the visual experiment.

Figure 26: Stages of the manual depth map creation process from the values computed with the
proposed method for depth estimation. From left to right: a) original image, b) segmented image
and c) final depth map. Each gray level in the depth map corresponds to a different depth plane.

45

A survey of techniques for depth extraction in films

alb
c|d

Figure 27: Stages of the depth map creation process from the values computed by the kinect.
a) original image, b) segmented image, c) kinect depth map and d) modified final depth map
according to the depth levels found by the Kinect. Each gray level in the depth map corresponds
to a different depth plane.

46

A survey of techniques for depth extraction in films

On the other hand, all the observers also agreed that the image obtained using the kinect depth
map looks rather flat, whereas the image obtained with our method shows a more realistic distri-
bution of depth levels. As we will comment later on this report (see Chapter[7), this issue could
be solve, for example, by increasing the number of estimated depth planes. Nonetheless, the
fact that the observers found the depth levels estimated by our method more visually appealing,
demonstrates that our solutions does indeed a good job in estimating such planes.

In terms of global visual quality, the image converted with the Kinect depth map was given
an average score of 6.6, with a standard deviation of 1.7764, whereas the one converted with
our method was given an average score of 5.6, with a standard deviation of 1.0750. Although
our method received a lower average score, we consider that the difference is within an accept-
able interval, considering that the goal of our method is not to obtain better results than those
obtained manually, but to provide a fast automatic method which can obtain results that are
visually close to the ones obtained manually.

47

A survey of techniques for depth extraction in films

6 Discussion

Finding the 3D structure of the elements in a video has always been an important but challenging
task in computer vision. Computer vision has been used for a long time in many scientific areas
such as robotics, medicine or biology; however, the technological advances and cost reductions
undergone in recent years, especially in the area of digital cameras, graphic processors and
displays, has opened new application areas for this technology, making it available to the general
public as well, mainly for entertainment applications such as video games, or 3D films. As it is
usually the case with fast growing markets such as this, companies are trying to get ahead of
their competition by investing a lot of of effort and resources to develop new methods which,
in turn, is impulsing the amount of research activity in those new areas. Many new 3D films
are being made every year but, due to the high cost of making a film in 3D, many production
companies choose to create their films in the traditional way and then convert them into 2D, or
simply to convert already existing 2D films.

There are many pieces of software capable of converting a film to 3D, using different tech-
niques. For example, Ward et al.[[9]] present a method that finds which objects are on top of which
in the image, calculating the neccesary amount of disparity, and creating the two stereo frames
required for stereoscopic displays to show the correct depth. It is common for production houses
to develop their own 3D conversion software solutions, and customize the methods for their spe-
cific purposes; nonetheless, all the existing solutions share a common drawback, that is, they all
require an important amount of manual interaction, which largely increases the conversion time.

Additionally, the goal of most of the solutions mentioned above is to produce results that are
visually appealing, without taking into consideration the real depth of the scene - that is, the real
location of the scene objects when the film was made. We showed in Section[2.2]that true-depth
displays are improving considerably over the last years and, at some point in the future, they
could be replacing the current stereoscopic technology. Therefore, it becomes neccesary to find
solutions that, do not only add depth, but are capable of fully interpreting a scene and finding the
right structure that was present at the time of filming. Otherwise, although the results produced
with the current methods may be visually appealing when viewed on the current stereoscopic
displays, they might not look right on future true-depth displays.

During the course of this report we have described some of the most common mechanisms
that are currently used for the 3D reconstruction of video, and defined some important concepts
in the areas of filmmaking and video reconstruction, in order to explain the choices that we have
made for our solution. Additionally, we have proposed a method to combine several individual
techniques, to create a workflow for depth estimation that can be included as part of the 3D
reconstruction process. The final workflow has been the result of an exhaustive trial-and-error
research, where several different methods have been implemented and tested, and many others
had to be abandoned halfway through or discarded after a full implementation, due to several
reasons such as bad performance or incompatibilities with some of the other methods being used.

48

A survey of techniques for depth extraction in films

Some state-of-the-art methods were originally considered as part of our solution, but the lack of
an existing implementation and the lack of time for us to implement our own, prevented us from
using them. In research projects such as this, it is common to modify the initial approach, as
newer and better methods are found during the research process. In this sense, the problem of
3D estimation was approached in several different ways along the project, as they were found
unfeasible. Some of the implemented methods may not be the best choice individually but, when
combined, they have been found to yield the best results of all the tests we have performed.

It must be noted that the goal of this research is not to find an universal method the can
convert a 2D film to 3D. Instead, we focus on finding an automatic method that can successfully
estimate the depth of a scene, in a way such that it resembles the original depth of the scene,
and the objects in it maintain the same relative positions and distances as in the original scene
when the film was made. The converted films are typically shown in displays of varying sizes,
so computing the real depth values is not important; instead, we estimate the relative distances
between each depth plane, so that the structure is conserved regardless of the size of the scene.

An important issue for this project was finding a way to assess the quality of the results, given
the lack of ground truth data to match the numerical results against. To overcome this problem,
we have presented an innovative approach in this field, which consists of using the Microsoft’s
Kinect depth sensor to evaluate the performance of our method. Two different experiments were
conducted to assess the results, both quantitatively and qualitatively, in comparison with those
obtained by the Kinect. Both experiments yielded acceptable results that were within a reason-
able interval, as discussed in Section (5.4

In the next section we will comment some possible ways in which the proposed solution could
be improved, and we will also discuss some future directions in the area of 3D film conversion.

49

A survey of techniques for depth extraction in films

7 Future directions

The depth estimation method that we propose in this research project has been shown to produce
satisfactory results in reconstructing the depth from a film scene. This solution could be included
as part of a film 3D conversion pipeline, aiding the reconstruction process in estimating the depth
of each of the objects. Nonetheless, there are still many modifications that could be added to this
solution to improve the quality of the results.

The proposed method is already capable of estimating succesfully the location of each of the
depth planes in selected scenes. However, the use of Bundler to generate the initial point cloud
required by our method transforms the process into a black box that reduces our flexibility to
control the features that get selected from the input frames and, in turn, reduces the control
that we have over the density of the computed point cloud. Adding our own methods for camera
calibration, feature matching, point registration and point cloud computation would provide
much more control over the results. Other possible improvements would be the addition of
some type of object segmentation algorithm to the point cloud expansion process, to improve
the quality of the pixel-to-feature mappings (see Section 4.3.4), or the addition of a keyframe
selection algorithm to reduce the amount of work required to generate the initial point cloud,
improving the overall performance of the method (see Section [2.3.4).

In Section we described the most important characteristics that a scene must have for
our method to obtain good results. This is usually an important task, because the selected scene
will determine the quality of the results. Therefore, we have studied the possibility of adding
an additional module that can estimate the quality of the input scene. Similarly, we could also
develop a piece of software to automatically select, from a video library, those scenes for which
our solution will perform well.

Although the solution proposed in this work is still far from being perfect, we believe that the
techniques presented in this report, as well as the proposed workflow, can be of great interest as a
starting point for future researchers who are interested in performing similar tasks. Moreover, we
are planning on making this project publicly available through open source license on GitHub|T]
so that everyone who is interested can continue our work by adding new improvements, hoping
that this decision might help, eventually, to render our method into a practical solution for depth
estimation.

1GitHub - https://github.com/

50

A survey of techniques for depth extraction in films

[1]

[2]

(3]
[4]
(5]
(6]

[7]

(8]

[9]

[10]

[11]

[12]

[13]

Bibliography

Nvidia Corporation. January 2009. Nvidia announces 3d vision-the world’s first high-
definition 3d stereo solution for the home. Press Release.

Samsung Electronics America, Inc. January 2009. Samsung unveils 22-inch, 120hz 3d-
monitor compatible with nvidia’s® geforce® 3d vision. Press Release.

Hartley, A. July 2011. In depth: The future of 3d tv content. 3DRadar.
Han, F. January 2012. Ces supersession - spotlight on 3d content. NetShelter.com.
October 2008. 3d movies: Adding depth or falling flat? Knowledge@Wharton.

Jeppsen, M. March 2009. Does 3d enhance or hinder the moviegoing experience?
FreshDV.com.

Van Pernis, A. P. & DeJohn, M. S. March 2008. Dimensionalization: converting 2d films to
3d. In Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, volume
6803 of Presented at the Society of Photo-Optical Instrumentation Engineers (SPIE) Confer-
ence.

Bertalmio, M., Sapiro, G., Caselles, V., & Ballester, C. 2000. Image inpainting. In Proceedings
of the 27th annual conference on Computer graphics and interactive techniques, SIGGRAPH
’00, 417-424, New York, NY, USA. ACM Press/Addison-Wesley Publishing Co.

Ward, B., Kang, S. B., & Bennett, E. jan.-feb. 2011. Depth director: A system for adding
depth to movies. Computer Graphics and Applications, IEEE, 31(1), 36 -48.

Battiato, S., Capra, A., Curti, S., & La Cascia, M. 2004. 3d stereoscopic image pairs by
depth-map generation. In 3D Data Processing, Visualization and Transmission, 2004. 3DPVT
2004. Proceedings. 2nd International Symposium on, 124-131.

Alvarez, J. M., Gevers, T., & Lopez, A. 2010. 3d scene priors for road detection. In IEEE
Conference on Computer Vision and Pattern Recognition, 57-64.

Battiato, S., Curti, S., Cascia, M. L., Tortora, M., & Scordato, E. Depth-map generation by
image classification.

Dalmia, A. K. & Trivedi, M. 1996. Depth extraction using a single moving camera: an
integration of depth from motion and depth from stereo. Machine Vision and Applications,
9, 43-55. 10.1007/BF01214359.

51

A survey of techniques for depth extraction in films

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

Benini, S., Canini, L., & Leonardi, R. 19-23 July 2010. Estimating cinematographic scene
depth in movie shots. In In Proceedings of the IEEE International Conference on Multimedia
& Expo (ICME), Singapore.

Steinman, S., Steinman, B., & Garzia, R. 2000. Foundations of binocular vision: a clinical
perspective. McGraw-Hill.

Mcallister, D. F. 2006. Display technology: Stereo & 3d display technologies. In: Hornak,
J. 2005. Wiley Encyclopaedia on Imaging Science and Technology. Wiley Interscience: Bognor
Regis, West, 1327-1344.

Teittinen, M. 1993. Depth cues in the human visual system. see http://www. hitl. washing-
ton. edu/scivw/EVE/III. A, 1.

Sykora, D., Sedlacek, D., Jinchao, S., Dingliana, J., & Collins, S. 2010. Adding depth
to cartoons using sparse depth (in) equalities. In Computer Graphics Forum, volume 29,
615-623. Wiley Online Library.

Hoffman, D. M., Girshick, A. R., Akeley, K., & Banks, M. S. 2008. Vergence-accommodation
conflicts hinder visual performance and cause visual fatigue. Journal of vision, 8(3).

Hecht, J. Feb 2011. 3-d tv and movies: Exploring the hangover effect. Opt. Photon. News,
22(2), 20-27.

Child, B. August 2011. 3d no better than 2d and gives filmgoers headaches, claims study.
The Guardian.

Long, D. April 2010. Science’s health concerns over 3d films. PC & Tech Authority.

Turner, T. H. 2010. Case study: Beauty and the beast 3d: benefits of 3d viewing for 2d
to 3d conversion. In Proceedings SPIE 7524, 75240B, Walt Disney Animation Studios, 500
South Buena Vista Street, Burbank, CA, USA 91521.

Jr., V. B., Smithwick, Q., Barabas, J., & Smalley, D. 2005. Is 3-d tv preparing the way for
holographic tv?

Razutis, A. 2007. More 3d and ’4d’ (Ccan you feel it?’).

V. M. Bove, J. 2011. Live holographic tv: From misconceptions to engineering. In Proc.
2011 SMPTE International Conference on Stereoscopic 3D for Media and Entertainment.

Haussler, R., Schwerdtner, A., & Leister, N. 2008. Large holographic displays as an alterna-
tive to stereoscopic displays. Proceedings of SPIE, 6803(1), 68030M-68030M-9.

Durrant-Whyte, H. & Bailey, T. 2006. Simultaneous localisation and mapping (slam): Part
i the essential algorithms. IEEE Robotics and Automation Magazine, 2, 2006.

Bailey, T. & Durrant-whyte, H. 2006. Simultaneous localisation and mapping (slam): Part
ii state of the art. Computational Complexity, 13(3), 1-10.

52

A survey of techniques for depth extraction in films

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]
[43]
[44]

[45]

[46]

[47]

Davison, A. J., Reid, I. D., Molton, N. D., & Stasse, O. June 2007. Monoslam: Real-time
single camera slam. IEEE Trans. Pattern Anal. Mach. Intell., 29(6), 1052-1067.

Pan, Q., Reitmayr, G., & Drummond, T. September 2009. ProFORMA: Probabilistic Feature-
based On-line Rapid Model Acquisition. In Proc. 20th British Machine Vision Conference
(BMVC), London.

Klein, G. & Murray, D. November 2007. Parallel tracking and mapping for small AR
workspaces. In Proc. Sixth IEEE and ACM International Symposium on Mixed and Augmented
Reality (ISMAR07), Nara, Japan.

Triggs, B., McLauchlan, P. F., Hartley, R. I., & Fitzgibbon, A. W. 2000. Bundle adjustment
- a modern synthesis. In Proceedings of the International Workshop on Vision Algorithms:
Theory and Practice, ICCV '99, 298-372, London, UK, UK. Springer-Verlag.

Sourimant, G. Depth maps estimation and use for 3dtv. Technical Report RT-0379, INRIA,
February 2010.

Sontag, S. 1966. Film and theatre. The Tulane Drama Review, 11(1), 24-37.

Kurowska, M. Peter Shaffer’s play Amadeus and its film adaptation by Milos Forman. Diplo-
marbeit, Johannes Gutenberg-Universitat Mainz, 1998. p.17.

Brandt, C. June 2011. Theater, movies - what’s the difference? /One/, June.

Van Sijll, J. 2005. Cinematic storytelling: The 100 most powerful film conventions every
filmmaker must know. Michael Wiese.

Prunes, M., Raine, M., & Litch, M. August 2002. Film analysis guide. Online Manual.

Fowler, M. S. November 2003. Animation layout: Overlay (ol) and overlay/underlay
(ol/ul). Online Magazine.

Kaufman, D. March 2012. Stereo d converts abraham lincoln: Vampire hunter to 3d. Online
Magazine.

Maupin, T. 2011. Artistic uses of 3d in film. Stereolith.com.
Pike, C. November 2010. Using depth of field for storytelling. DSLR Video Shooter.

Gardner, B. February 2009. Perception and the art of 3d storytelling. Creative COW
magazine: Stereoscopic 3D.

McGee, R. January 2012. The dimensionalization of "the lion king" vs "beauty and the
beast". 3D IU Students.

Graham, B. August 2011. The lion king 3d conversion images show off depth of field;
stereographer robert neuman talks about the process. Collider.com.

Engber, D. September 2011. Who killed 3-d?: A box-office whodunit. Slate.

53

A survey of techniques for depth extraction in films

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

Rusu, R. B. & Cousins, S. 2011 2011. 3d is here: Point cloud library (pcl). In International
Conference on Robotics and Automation, Shanghai, China.

Kien, D. T. A review of 3d reconstruction from video sequences - mediamill3d technical re-
ports series. Technical Report 1.107, Intelligent Sensory Information Systems, Department
of Computer Science, University of Amsterdam, The Netherlands, 2005.

Donate, A. & Liu, X. june 2010. 3d structure estimation from monocular video clips. In
Computer Vision and Pattern Recognition Workshops (CVPRW), 2010 IEEE Computer Society
Conference on, 17 -24.

Hartley, R. I. & Zisserman, A. 2004. Multiple View Geometry in Computer Vision. Cambridge
University Press, ISBN: 0521540518, second edition.

Snavely, N. 2008. Bundler user’s manual.

Aghajan, H. & Cavallaro, A. 2009. Multi-Camera Networks: Principles and Applications.
Academic Press.

Pollefeys, M., Koch, R., Vergauwen, M., & Gool, L. V. 1998. Metric 3d surface reconstruc-
tion from uncalibrated image sequences. In 3D STRUCTURE FROM MULTIPLE IMAGES OF
LARGE SCALE ENVIRONMENTS. LNCS SERIES, 138-153. Springer-Verlag.

Pollefeys, M., Gool, L. V., Vergauwen, M., Cornelis, K., Verbiest, F., & Tops, J. 2002. Video-
to-3d. In Proc. Photogrammetric Computer Vision 2002 (ISPRS Commission III Symposium),
International Archive of Photogrammetry and Remote Sensing.

Pollefeys, M. 2004. Visual 3d modeling from images. In VMV, 3.

Koch, R., Pollefeys, M., & Van Gool, L. 1998. Multi viewpoint stereo from uncalibrated
video sequences. Computer Vision-ECCV’98, 55-71.

Koch, R., Pollefeys, M., & Gool, L. V. 1999. Realistic 3-d scene modeling from uncalibrated
image sequences. In ICIP’99, Kobe: Japan, 500-504.

Koch, R., f. Evers-senne, J., m. Frahm, J., & Koeser, K. 2005. 3d reconstruction and render-
ing from image sequences. In In: WIAMIS 05.

Snavely, N., Seitz, S. M., & Szeliski, R. 2006. Photo tourism: Exploring photo collections in
3d. In SIGGRAPH Conference Proceedings, 835-846, New York, NY, USA. ACM Press.

Lowe, D. 1999. Object recognition from local scale-invariant features. 1150-1157.

Fischler, M. A. & Bolles, R. C. 1981. Random sample consensus: a paradigm for model
fitting with applications to image analysis and automated cartography. Communications of
the ACM, 24(6), 381-395.

Hirschmuller, H. February 2008. Stereo processing by semiglobal matching and mutual
information. IEEE Trans. Pattern Anal. Mach. Intell., 30(2), 328-341.

54

A survey of techniques for depth extraction in films

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]
[79]

Boykov, Y., Veksler, O., & Zabih, R. November 2001. Fast approximate energy minimization
via graph cuts. IEEE Trans. Pattern Anal. Mach. Intell., 23(11), 1222-1239.

Scharstein, D. & Szeliski, R. 2001. A taxonomy and evaluation of dense two-frame stereo
correspondence algorithms. International Journal of Computer Vision, 47, 7-42.

Sobel, I. & Feldman, G. 1973. A 3x3 isotropic gradient operator for image processing.
Pattern Classification and Scene Analysis, 271-272.

Ozden, K. E., Schindler, K., & Gool, L. J. V. 2007. Simultaneous segmentation and 3d
reconstruction of monocular image sequences. In ICCV, 1-8.

Oehler, B., Stiickler, J., Welle, J., Schulz, D., & Behnke, S. 2011. Efficient multi-resolution
plane segmentation of 3d point clouds. In ICIRA (2), 145-156.

Borrmann, D., Elseberg, J., Lingemann, K., & Niichter, A. March 2011. The 3d hough
transform for plane detection in point clouds: A review and a new accumulator design. 3D
Res., 2(2), 32:1-32:13.

Wahl, R., Guthe, M., & Klein, R. October 2005. Identifying planes in point-clouds for
efficient hybrid rendering. In The 13th Pacific Conference on Computer Graphics and Appli-
cations.

Yang, M. Y. & Foerstner, W. Plane detection in point cloud data. Technical Report TR-IGG-
P-2010-01, Department of Photogrammetry, University of Bonn, 2010.

Bauer, J., Karner, K., Schindler, K., Klaus, A., & Zach, C. 2003. Segmentation of building
models from dense 3d point-clouds. In In 27th Workshop of the Austrian Association for
Pattern Recognition, 253-259.

Rice, J. 2006. Mathematical statistics and data analysis. Thomson Learning.

Botev, Z., Grotowski, J., & Kroese, D. 2010. Kernel density estimation via diffusion. The
Annals of Statistics, 38(5), 2916-2957.

Frank, I. & Todeschini, R. 1994. The data analysis handbook. Number 14 in Data Handling
in Science and Technology. Elsevier Amsterdam.

Jain, A. & Dubes, R. 1988. Algorithms for clustering data. Prentice-Hall, Inc.

Schwaiger, M. & Opitz, O. 2003. Exploratory data analysis in empirical research: proceedings
of the 25th Annual Conference of the Gesellschaft fiir Klassifikation eV, University of Munich,
March 14-16, 2001, volume 25. Springer Verlag.

Zuliani, M. January 2012. Ransac for dummies.

Ahn, S. 2008. Geometric fitting of parametric curves and surfaces. Journal of Information
Processing Systems, 2.

55

A survey of techniques for depth extraction in films

[80]

[81]

[82]

[83]

Danuser, G. & Stricker, M. March 1998. Parametric model fitting: From inlier characteriza-
tion to outlier detection. IEEE Trans. Pattern Anal. Mach. Intell., 20(3), 263-280.

Andersen, M., Jensen, T., Lisouski, P., Mortensen, A., Hansen, M., Gregersen, T., & Ahrendt,
P. Kinect depth sensor evaluation for computer vision applications. Technical report ECE-
TR-6, Department of Engineering, Aarhus University (Denmark), February 2012.

Crawford, S. July 2010. How microsoft kinect works. HowStuffWorks.com.

Crock, N. March 2011. Kinect depth vs. actual distance. Mathnathan.com.

56

21

23

25

27

39

41

43

47

A survey of techniques for depth extraction in films

A Source code

Listing A.1: Depth clustering algorithm by clustering (Matlab)

function C = clusterValues(data, maxClusters, T)

%% This function groups the values in the ’data’ vector into clusters
% according to the squared Euclidean distance criterium.

% If two clusters are closer than a certain threshold T,

% they are merged into one and a new clustering round is done

% to redistribute the values from the merged clusters.

%

% INPUT:

% data: the data vector.

% maxClusters: maximum number of clusters to find (depending on T,
% the resulting clusters may be less if they are too
% close).

% T: Threshold which determines the minimum distance

% allowed between two clusters. It is specified as a
% percentage of the range (max(data)—min(data)).

%

% OUTPUT:

% C: a vector containing the centroid of each cluster.
%

%

% Example: C = clusterValues (data, 5, 4);

%

%

if nargin < 2
maxClusters = 5;

T = 4;
end
if nargin < 3
T = 4;
end

numClusters = maxClusters;

T=T/ 100;

[IDX,C]=kmeans(data, numClusters, ’distance’, ’sqEuclidean’,...
’emptyaction’, ’singleton’, ’start’, ’uniform’, ’replicates’, 5);
C=sort (C);

range = max(data) — min(data);

% Merge planes that are very close to each other.
j=1
for i=1:numel(C)
if ((i==1 || ((i>1) && (abs(C(i)—C2(j—1))>(Txrange))))
C2(j)=C(i);
j=i+L
end
end

57

o

20

N
N

Ny
=

A survey of techniques for depth extraction in films

% Re—cluster the data according to the new locations.
if (numel(C2)<numel(C))
numClusters = numel(C2);

[IDX,Cl=kmeans(data, numClusters, ’distance’, ’sqEuclidean’,...
’emptyaction’, ’singleton’, ’start’, C2’);
C=sort (C);
end
end
Listing A.2: Depth clustering algorithm by Kernel Density Estimation(Matlab) — Unused
function planes = getPlanelLocations (x, n)
if nargin<2
n=2"12;
end
[h, fhat, xgrid] = kde(x, n);
[pks,locs] = findpeaks(fhat);
planes = xgrid (locs);
end
Listing A.3: Depth planes estimation (C++)
/%%
x @file scan_image.cpp
x @author Victor Medina
* @version 1.0
*
* @section DESCRIPTION
*
x This program reads an input pointcloud from a PLY file, and assigns each
x vertex to a corresponding depth plane based on the value of its z—coordinate.
x Each of the generated point clouds are saved onto a ply file for future use.
x It’s also possible to display the resulting point clouds in a built—in PCL
* viewer.
*/

// C++ libraries
#include <iostream>
#include <vector>
#include <string>
#include <algorithm>

// OpenCV libraries

#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>

// PCL libraries

#include <pcl/point_types.h>

#include <pcl/ModelCoefficients.h>
#include <pcl/common/common_headers.h>
#include <pcl/console/parse.h>

#include <pcl/features/normal 3d.h>
#include <pcl/filters/extract_indices.h>
#include <pcl/filters/passthrough.h>
#include <pcl/filters/project_inliers.h>
#include <pcl/filters/voxel grid.h>

58

A survey of techniques for depth extraction in films

36

#include <pcl/io/pcd_io.h>

#include <pcl/io/ply_io.h>

3s| #include <pcl/sample _consensus/method_types.h>
#include <pcl/sample_consensus/model_types.h>

40| #include <pcl/sample_consensus/ransac.h>

#include <pcl/sample_consensus/sac_model_plane.h>
#include <pcl/segmentation/sac_segmentation.h>
#include <pcl/surface/concave_hull.h>

4| #include <pcl/visualization/cloud viewer.h>
#include <pcl/visualization/pcl_visualizer.h>

S
[

// 3rd Party libraries
4s| #include <boost/thread/thread.hpp>
#include <flann/flann.h>

// Custom libraries
s2| #include "libmtools.h"
#include "BundlerReader.h"

// Constants
#define INF 99999.0
#define MAX NUM PLANES 5

%

// Global Variables

co| std :: vector<pcl:: ModelCoefficients> DEPTH_PLANES;
std :: vector<double> DEPTH_VALUES;

62| int NUM_PLANES;

BundlerScene Scenelnfo;

64

66| /*x \brief Creates a depthmap image from a point cloud.
*

es| * Creates a grayscale depth map image where the maximum gray value
x is the maximum depth in the point cloud, and the minimum is the minimum depth.
70| * Each pixel’s gray value is computed according to the corresponding normalized
x depth within the resulting range.
72 *
x \param[in] p_src a pointer to the point cloud.
74| * \param[out] the depth map is stored in an image file named "depthmap.jpg".
*/
76
void pclToDepthmap (pcl::PointCloud<pcl::PointXYZRGB >::Ptr cloud)
78] {
cv::Mat depthmap = cv::Mat(cloud—height, cloud—>width, CV_8S);
80 int a,b;

82 unsigned char xdata= reinterpret cast<unsigned char *>(depthmap.data);

84 for (int i=0; i<cloud—>points.size(); i++)

{
86 int x = cloud—points[i].x;
int y = cloud—points[i].y;
88 double depth = cloud—>points[i].z;

depthmap (cv::Range(x,x),cv::Range(y,y)) = depth;
90 }

92 cv::imwrite ("depthmap.jpg",depthmap);
¥

94
/*x \brief Maps a 3D point to its corresponding pixel coordinates.

96 *

x Maps a point cloud point in 3D coordinates to its corresponding 2D pixel coordinates

59

98

100

102

104

106

112

114

116

118

120

122

126

134

136

142

144

146

148

150

152

154

156

A survey of techniques for depth extraction in films

*

* K X X X ¥

*

/

using the camera matrices computed during the camera calibration process.
the resulting point

want to keep the depth information,
first

Since we
is a 3D point where the

two coordinates are indicated in pixels coordinates, and the third coordinate is the

original depth of the point.

\param[in] p_src the point in 3D coordinates.

\param[out] point a 3D point where the first two coordinates are indicated in pixels

coordinates ,
point.

cv::Point3d map3Dto2Dcoord (cv::Point3d p_src)

{

}

¢
C
¢

v::Point2d p;
v::Point3d P;
v::Point3d point;

double tmp[3];

double

R[3]1[3];

double t[3];
double f;

double

i

k1, k2, r;
nt activeView;

BundlerCamera cam;

activeView =
cam =

Scenelnfo. getActiveView () ;
Scenelnfo.getCamera(activeView) ;

cam. getRotation (R);
cam. getTranslation (t);

f
k

= cam. getFocalLength () ;
1 = cam. getRadialDistortion (1);

and the third coordinate

is the original depth of the

k2 = cam. getRadialDistortion (2);

//P = (R%X) + t

tmp[0] = (R[O][O]xp_src.x + R[O][1]*p_src.y + R[O][2]«p_src.z) + t[O];
tmp[1] = (R[1][0]*p_src.x + R[1][1]xp_src.y + R[1][2]*p_src.z) + t[1l];
tmp[2] = (R[2][0]xp_src.x + R[2][1]*p_src.y + R[2][2]xp_src.z) + t[2];
//p = —P./P[3]

p = cv::Point2d(—tmp[0]/tmp[2] , —tmp[1l]/tmp[2]);

r = 1.0 + (k1 % pow(cv::norm(p),2)) + (k2 = pow(cv::norm(p),4));
p=1f %71 % p;

// Keep the original depth.

point = cv::Point3d(p.x, p.y, tmp[2]);

T

eturn point;

/+* \brief Finds the closest point in a point cloud to an image pixel.

*

*
*
*
*

Given a 2D point in pixel coordinates,

it finds the closest point in a

given point cloud using the Euclidean distance. The point cloud must contain
at least a subset of the pixels in the image, so that a match can be found.

60

160

162

164

166

168

170

178

184

186

190

192

194

196

198

200

202

204

206

208

210

A survey of techniques for depth extraction in films

\param[in] p_src the 2D point in pixel coordinates for which we want to find

the closest point in the point cloud.
\param[in] cloud a pointer to the point cloud where we want to search.
\param[out] closest_point 3D coordinates of the closest point in the point cloud.

* X X ¥

*/

cv::Point3d findCorrespondingPoint(cv::Point p_src, pcl::PointCloud<pcl::PointXYZRGB >::
Ptr cloud)
{
pcl::PointXYZRGB tmp;
double dist;
double min_dist = 99999999.999999;
cv::Point3d p, closest_point;

for (int i=0; i<cloud—>points.size(); i++)
{
tmp = cloud—points[i];
p = map3Dto2Dcoord (cv:: Point3d (tmp.x,tmp.y,tmp.z));

dist = sqrt(std::pow(p.x — p_src.x, 2) + std::pow(p.y — p_src.y, 2));

if (dist < min_dist)
{
closest_point = p;
min_dist = dist;
}
}

return closest_point;

}

s| /#* \brief Converts a non—rgb point cloud to an rgb one.

*
x Converts a point cloud which does not contain color information about the vertices
x to an rgb point cloud where each point is black. This is used so that all the
processed point
x clouds contain color information, to avoid incompatibilities issues when processing
different
types of point clouds.

\param[in] cloud a pointer to the non—rgb point cloud.
\param[out] new_cloud a pointer to the new rgb point cloud.

* X X X

*/

pcl::PointCloud<pcl ::PointXYZRGB >:: Ptr convertCloudToRGB (pcl::PointCloud<pecl::PointXYZ
>::Ptr cloud)

{
pcl::PointCloud<pcl::PointXYZRGB >::Ptr new_cloud (new pcl::PointCloud<pecl::PointXYZRGB
>);
new_cloud—>width = cloud—>width;

new_cloud—>height = cloud—>height;
new_cloud—>points.resize (new_cloud—width % new_cloud—height);

for (int i=0; i<cloud—>points.size (); i++)

{
new_cloud—>points[i].x = cloud—=>points[i].x;
new_cloud—>points[i].y cloud—points[i].y;
new_cloud—points[i].z = cloud—>points[i].z;

N
|

._,
I

new_cloud—>points[i]. 0;
new_cloud—points[i].g = 0;

61

224

226

230

244

246

256

260

262

266

268

270

A survey of techniques for depth extraction in films

new_cloud—>points[i].b = 0;

}

return new_cloud;

}

/+% \brief Maps the pixels in an image to their corresponding depth value.

*

Converts a scarce point cloud into a dense one from a given image. For each pixel
in the image, it finds the closest point in the scarce point cloud, and assigns
its depth to that pixel. Then creates a new point cloud containing all the pixels
from the image with their corresponding 3D coordinates.

EE R S S

\param[in] src the reference image whose pixels we want to map. It has to belong to
the

*

sequence that generated the point cloud.
x \param[in] cloud a pointer to the scarce point cloud that contains the refence

points

* for the mapping.

x \param[out] new_cloud a pointer to the point cloud where we want to store the
resulting

* dense point cloud.

*/

pcl::PointCloud<pcl::PointXYZRGB >::Ptr maplmage (cv::Mat src , pcl::PointCloud<pecl::
PointXYZRGB >::Ptr cloud)
{
cv::Point2d pixel2d_new, pixel2d_orig;
cv::Point3d corr_point;
pcl::PointXYZRGB pixel3d;
double pixel depth;
pcl::PointCloud<pecl::PointXYZRGB >::Ptr new_cloud (new pcl::PointCloud<pecl::PointXYZRGB
>);

new_cloud—>width Src.rows x src.cols;
new_cloud—>height 1;
new_cloud—points.resize (new_cloud—>width * new_cloud—height);

int i=0;
int w= src.cols;
int h = src.rows;

unsigned char labell, label2=255;

for (int u=—W/2); u<=Ww/2)—1; u++)
{
for (int v=(—(h/2))+1; v<=h/2)—-1; v++)
{
int a,b;
a=u+w/2.0;
b = abs(v — h/2.0);

pixel2d _new = cv::Point(u,v);
const cv::Vec3b& bgr = src.at<cv::Vec3b>(b,a);

if ((u==—W/2) && v==—(h/2)+1) || labell != label2)

{
corr_point = findCorrespondingPoint(pixel2d_new , cloud);
pixel depth = corr_point.zx100.0;

¥

pixel3d = pcl::PointXYZRGB (bgr[2],bgr[1],bgr[0]);

62

A survey of techniques for depth extraction in films

272 pixel3d.x = pixel2d new.x;
pixel3d.y = pixel2d_new.y;
274 pixel3d.z = pixel depth;
276 new_cloud—points[i++] = pixel3d;
b
278 }

280 return new_cloud;
¥
282
/*x \brief Merges all the point clouds in the input vector into one.
284| *
x Receives a vector of point clouds, and merges their content into one.
286 *
x \param[in] cloudList the vector of pointers to the point clouds that we want to
merge.
28| * \param[in] cloud a pointer to the point cloud where we want to store the merged
point cloud.
*/
290
void mergeClouds (std::vector<pcl::PointCloud<pcl::PointXYZRGB >::Ptr> cloudList, pcl::
PointCloud<pcl : : PointXYZRGB> &new_cloud)

202| {
if (cloudList.size ()>0)
294 {
new_cloud = xcloudList[0];
296 for (int i=1; i < cloudList.size(); i++)
new_cloud += xcloudList[i];

298 }

}

300

/+* \brief Removes duplicates to reduce the amount of points in the point cloud.

302 *

x Filters the point cloud with a VoxelGrid of a very small leaf size, so that only

304/ * duplicated values are removed from the cloud. ASince we are working with feature
point

x clouds, we are not interested in reducing the resolution and, in fact, we should try
to

36| * keep as many as possible.

*

s08] * \param[in] cloud a pointer to the point cloud that we want to modify.

*/

310

void removeDuplicates(pcl::PointCloud<pcl::PointXYZRGB >::Ptr cloud)

312] {

sensor_msgs :: PointCloud2:: Ptr cloud2 (new sensor_msgs::PointCloud2 ());

314 sensor_msgs :: PointCloud2:: Ptr cloud filtered (new sensor_msgs::PointCloud2 ());

316 pcl::toROSMsg(xcloud, =xcloud2);

sis| // Create the filtering object
pcl::VoxelGrid<sensor_msgs :: PointCloud2> sor;
320 sor.setInputCloud (cloud2);

sor.setLeafSize (0.00001f, 0.00001f, 0.00001f);
322 sor. filter (xcloud_filtered);

324/ pcl::fromROSMsg(*cloud filtered , xcloud);
¥

326
/#* \brief Stores the z coordinate of each point in the point cloud for easier access.
328 *

63

330

332

336

338

340

342

344

346

348

352

354

356

358

360

362

364

366

368

370

374

376

378

380

382

384

386

388

A survey of techniques for depth extraction in films

* Copies the value of the z—coordinate of each PointXYZ in the point cloud

x to the global vector DEPTH VALUES, so that G++ built—in routines can be used

* to perform operations such as sorting, comparing or adding. This vector is

x sorted in ascending order, so the positions will not match those of the points in

x the original cloud.

*

x \param[in] cloud a pointer to the point cloud whose points’ depth we want to store.
x \param[out] DEPTH VALUES The content of the global variable DEPTH VALUES is modified
*/

void extractDepthValues(pcl::PointCloud<pcl::PointXYZRGB >::Ptr cloud)

pcl::PointCloud<pcl::PointXYZRGB >::iterator it;

for (it = cloud—>points.begin(); it != cloud—>points.end(); it++)
DEPTH_VALUES. push_back (it—>z);

sort (DEPTH_VALUES. begin () , DEPTH_VALUES.end ()) ;

/+* \brief Finds the highest z—coordinate in the point cloud.

*

x Finds the z—coordinate of the furthest point from the camera in the point cloud.

*

* Returns:

x x The z—coordinate of the furthest point in the point cloud.

x \param[in] cloud a pointer to the point cloud whose furthest point we want to find.
*/

double max_depth(pcl::PointCloud<pcl::PointXYZ >::Ptr cloud)

return DEPTH VALUES[DEPTH VALUES. size () —11];

double max_depth(pcl::PointCloud<pcl::PointXYZRGB >::Ptr cloud)

return DEPTH_VALUES[DEPTH_VALUES. size () —11;

/**x \brief Finds the closest z—coordinate in the point cloud.

*

x Finds the z—coordinate of the closest point to the camera in the point cloud.

*

* Returns:

x x The z—coordinate of the closest point in the point cloud.

x \param[in] cloud a pointer to the point cloud whose closest point we want to find.
*/

double min_depth(pcl::PointCloud<pcl::PointXYZ >::Ptr cloud)

return DEPTH _VALUES[O];

double min_depth(pcl::PointCloud<pcl::PointXYZRGB >::Ptr cloud)

return DEPTH VALUES[O];

/*x \brief Adds the z—coordinate of all the points in the point cloud.

*
x Adds the z—coordinate of all the points in the point cloud. This is used only

64

390

392

394

396

398

402

404

406

408

410

412

414

416

420

422

424

426

428

430

432

436

438

440

442

444

A survey of techniques for depth extraction in films

as a middle step required for other operations.

+ The addition of the z—coordinate of all the points in the point cloud.
\param[in] cloud a pointer to the point cloud whose points we want to add up.

*/

*
*
* Returns:
3
*

double sum (pcl::PointCloud<pcl::PointXYZ >::Ptr cloud)
{

double sum = 0.0;

for (int i = 0; i < cloud—>points.size(); i++)
sum += cloud—points[i].z;

return sum;

}

double sum (pcl::PointCloud<pcl::PointXYZRGB >::Ptr cloud)
{

double sum = 0.0;

for (int i = 0; i < cloud—>points.size(); i++)
sum += cloud—>points[i].z;

return sum;

}

/*x \brief Finds the average depth of the points in the point cloud.
*

x Finds the average depth of the points in the point cloud, using the
x z—coordinate as the depth.
*
*+ Returns:
x x The average depth of the points in the point cloud.
x \param[in] cloud a pointer to the point cloud whose depth we want to average.
*/
double average (pcl::PointCloud<pcl::PointXYZ >::Ptr cloud)
{
return sum(cloud)/cloud—>points.size ();
b
double average (pcl::PointCloud<pcl::PointXYZRGB >::Ptr cloud)
{
return sum(cloud)/cloud—>points.size ();
¥

/+% \brief Finds the standard deviation of the depth of the points in the point cloud.

*

x Finds the standard deviation of the depth of the points in the point cloud,

x using the z—coordinate as the depth. It uses the average depth previously calculated
with the

x average function, in order to avoid duplicating calculations since, in many cases,

both values
are needed.

Returns:

% The standard deviation of the depth of the points in the point cloud.

\param[in] cloud a pointer to the point cloud whose standard deviation we want to
calculate.

x \param[in] center the distribution center from which we want to calculate the

standard deviation ,

* X X ¥ ¥

65

A survey of techniques for depth extraction in films

4a8| * typically the average or the median.
*/

450
double deviation (pcl::PointCloud<pcl::PointXYZ >::Ptr cloud, double center)
as2| {

double u;

454 double sum=0.0;

456 for (int i = 0; i < cloud—>points.size(); i++)
sum += pow((cloud—>points[i].z — center),2);
458
u = sqrt(sum/cloud—points.size());
460
return u;
462| }

44| double deviation (pcl::PointCloud<pecl::PointXYZRGB>::Ptr cloud, double center)
{

466 double u;

double sum=0.0;

468
for (int i = 0; i < cloud—>points.size(); i++)
470 sum += pow((cloud—>points[i].z — center),2);

472 u = sqrt(sum/cloud—points.size());

474 return u;
¥

476
/+% \brief Finds the median depth of the points in the point cloud.
478| *

x Finds the median depth of the points in the point cloud, using the
40| * z—coordinate as the depth. This measure is much more robust than the
x average, because it’s not affected so much by outliers.
482 %
* Returns:
484 * * The median depth of the points in the point cloud.
x \param[in] cloud a pointer to the point cloud whose median depth we want to obtain.
486 */

4ss| double median(pcl::PointCloud<pcl::PointXYZ >::Ptr cloud)
{

490 return DEPTH VALUES[(int) (DEPTH_VALUES. size () /2)1;

¥

492
double median(pcl::PointCloud<pcl::PointXYZRGB >::Ptr cloud)
204 | {

return DEPTH VALUES[(int) (DEPTH_VALUES. size () /2)];

496| }

498| /x* \brief Finds the Median Absolute Deviation (MAD) of the depth of the points in the
point cloud.

soo| * Finds the Median Absolute Deviation (MAD) of the depth of the points in the point
cloud,

x using the z—coordinate as the depth. This measure is much more robust than the
standard deviation ,

so2| % and it’s its equivalent measure when using the median instead of the average.

x It uses the median depth previously calculated with the median function, in order to
avoid

so4 * duplicating calculations since, in many cases, both values are needed.

66

A survey of techniques for depth extraction in films

sos| * Returns:

x x The Mean Absolute Deviation of the depth of the points in the point cloud.

sos| * \param[in] cloud a pointer to the point cloud whose standard deviation we want to
calculate.

x \param[in] center the distribution center from which we want to calculate the
standard deviation ,

510 % typically the average or the median.

*/

double medianAbsDev (pcl::PointCloud<pcl::PointXYZ >::Ptr cloud, double center)
514] {

double u;

516 std :: vector<double> absDev;

518 for (int i = 0; i < cloud—>points.size(); i++)
absDev.push_back(cloud—>points[i].z — center);

std :: sort (absDev.begin (), absDev.end());
522 u = absDev[(int) (absDev.size ()/2)];

524 return u;
}

526
double medianAbsDev (pcl::PointCloud<pcl::PointXYZRGB >::Ptr cloud, double center)
528 {

double u;

530 std :: vector<double> absDev;

532 for (int i = 0; i < cloud—>points.size(); i++)
absDev.push_back(cloud—points[i].z — center);
534
std :: sort (absDev.begin (), absDev.end());
536 u = absDev[(int) (absDev.size ()/2)];

538 return u;

¥
540
/+* \brief Reads a point cloud from a PLY file.
542 *
* Reads a point cloud data from the specified PLY file and stores it into a
s44| = new cloud.
*
s46| * Returns:
x * A pointer to the newly created point cloud object.
sas| = \param[in] file name The path of the PLY file.

*/
550
pcl::PointCloud<pecl::PointXYZ >::Ptr readCloudFromPLY (const std::string file name)
ss2| {

pcl::PointCloud<pcl::PointXYZ >::Ptr cloud (new pcl::PointCloud<pcl::PointXYZ>);

// Read in the cloud data

556 if (pcl::io::loadPLYFile<pcl::PointXYZ> (file name, xcloud) == —1) //x load the file
{

558 PCL ERROR ("Couldn’t read file %s\n", file name);

return cloud;

560 }

562
return cloud;

s64| }

67

566

568

570

572

574

576

584

586

588

590

592

594

596

600

602

604

606

608

610

612

614

616

618

620

622

624

A survey of techniques for depth extraction in films

/+* \brief Reads a point cloud from a PCD file.

*

* Reads a point cloud data from the specified PCD file and stores it into a
*+ new cloud.

*

* Returns:

x * A pointer to the newly created point cloud object.

x \param[in] file name The path of the PCD file.

x/

pcl::PointCloud<pecl::PointXYZ >::Ptr readCloudFromPCD (const std::string file name)

{
pcl:: PCDWriter writer;
pcl::PointCloud<pcl::PointXYZ >::Ptr cloud;

// Read in the cloud data
pcl::io::loadPCDFile (file_name ,xcloud);

return cloud;

i

/+* \brief Writes a point cloud onto a PLY file.
*
Writes a point cloud data onto the specified PLY file.

*
*
* \param[in] file_name The path of the PLY file.

x \param[in] cloud a pointer to the point cloud that we want to write.

*/

void writeCloudToPLY (pcl::PointCloud<pecl::PointXYZ >::Ptr cloud, const std::string
file_name)

{
pcl:: PLYWriter writer;

if (cloud—points.size ()>0)
writer . write (file_name, *cloud, false);

}

void writeCloudToPLY (pcl::PointCloud<pcl::PointXYZRGB >::Ptr cloud, const std::string
file_name)
{
pcl:: PLYWriter writer;

if (cloud—points.size ()>0)
writer . write (file_name, *cloud, false);

}

/+% \brief Writes a point cloud onto a PCD file.
*
Writes a point cloud data onto the specified PCD file.

*
*

x \param[in] file name The path of the PCD file.

x \param[in] cloud a pointer to the point cloud that we want to write.

*/

void writeCloudToPCD (pcl::PointCloud<pcl::PointXYZ >::Ptr cloud, const std::string
file_ name)

{
pcl:: PCDWriter writer;

if (cloud—points.size ()>0)
writer . write<pcl::PointXYZ> (file name, xcloud, false);

68

A survey of techniques for depth extraction in films

}

626

void writeCloudToPCD (pcl::PointCloud<pcl::PointXYZRGB >::Ptr cloud, const std::string
file_name)

628] {

pcl:: PCDWriter writer;

630

if (cloud—>points.size ()>0)

632 writer . write<pcl ::PointXYZRGB> (file_ name, *cloud, false);

}

/*x \brief Divide the point cloud in several sub—clouds at different depth levels.
636 *

x Creates several depth planes based on the statistical distribution of the depths
638 * of the points in the point cloud. Then finds the closest points to each plane and
fits

x their depth to the corresponding plane.

640 *
* Returns:

642 * x A vector of pointers to the generated sub—clouds for each depth plane.
x \param[in] cloud a pointer to the point cloud that we want to divide.

644 */

s46| std :: vector<pcl::PointCloud<pecl :: PointXYZRGB >::Ptr> fitCloudToPlanes(pcl::PointCloud<
pcl:: PointXYZRGB >::Ptr cloud)

{

648 std :: vector<pcl :: PointCloud<pecl :: PointXYZRGB >::Ptr> cloudList;

int i;

650 double avg, dev, minZ, maxZ, med;

62| // Compute statistics from the cloud
minZ = min_depth(cloud);
64| maxZ = max_depth(cloud);

656 std :: vector <double> plane positions;
std :: vector <double> plane_limits;

658
mwArray planes;
660
mwArray depth values (1, DEPTH VALUES. size () , mxDOUBLE_CLASS) ;
662 depth_values.SetData (DEPTH_VALUES. data () , DEPTH_VALUES. size ());

664 clusterValues(1, planes, depth _values, mwArray(MAX NUM _PLANES), mwArray(4.0));
66| NUM_PLANES = planes.NumberOfElements () ;
668 cout << planes <<endl;

670 plane_positions. resize (NUM_PLANES) ;

planes.GetData(plane_positions.data (), NUM _PLANES) ;

672

std::sort(plane_positions.begin(), plane_positions.end());

674

plane limits.resize (NUM PLANES+1);

676 plane limits[0] = ((minZ <= plane positions[0])? minZ : plane positions[0]);

plane limits [NUM PLANES] = ((maxZ >= plane_positions [NUM PLANES—1])? maxZ :
plane_positions [NUM_PLANES—1]);

678 for (i=1; i<NUM _PLANES; i++)

{

680 plane_limits[i] = plane_positions[i—1] + ((plane_positions[i] — plane_ positions[i

—-11)/2.0);

69

A survey of techniques for depth extraction in films

682

for (i=0; i<NUM PLANES; i++)

684 {
pcl::PointCloud<pcl::PointXYZRGB >::Ptr cloud_filtered (new pcl::PointCloud<pcl::
PointXYZRGB>);
686 pcl::PointCloud<pcl::PointXYZRGB >::Ptr cloud_projected (new pcl::PointCloud<pcl::
PointXYZRGB>);
688 // Use a passthrough filter to select the points belonging to each depth plane
pcl::PassThrough<pcl::PointXYZRGB> pass;
690 pass.setlnputCloud (cloud);
pass.setFilterFieldName ("z");
692 pass.setFilterLimits (plane_limits[i], plane_ limits[i+1]);
pass. filter (xcloud filtered);
694
// Create the coefficients that define the depth plane (X,Y=0; Z=plane position).
696 pcl:: ModelCoefficients:: Ptr coefficients (new pcl:: ModelCoefficients ());
coefficients —>values.resize (4);
698 coefficients —>values[0] = coefficients—>values[1] = 0;
coefficients —>values[2] = 1.0;
700 coefficients—>values[3] = plane positions[i];
702 // Save the coefficients of the plane for future use.
DEPTH _PLANES. push back(xcoefficients);
704
// Create the projection object
706 pcl:: ProjectInliers <pcl::PointXYZRGB> proj;
proj.setModelType (pcl::SACMODEL PLANE) ;
708 proj.setInputCloud (cloud_filtered);
proj.setModelCoefficients (coefficients);
710 proj. filter (xcloud_projected);
712 cloudList.push_back(cloud projected);
}
714
return cloudList;
716| }
718| /xx \brief Creates an instance of the built—in PCL viewer PCLVisualizer.
*
720 % Creates an instance of the built—in PCL viewer PCLVisualizer and sets some
x of its parameters.
722 *
+ Returns:
724 % x The newly created viewer object.
*
726 */

72| boost ::shared_ptr<pcl::visualization :: PCLVisualizer> createViewer (void)

{

730/ boost::shared_ptr<pcl::visualization :: PCLVisualizer> viewer (new pcl::visualization::
PCLVisualizer ("3D Viewer"));

viewer—>setBackgroundColor (0, 0, 0);

732

viewer—>addCoordinateSystem (0.1);

734 viewer—>initCameraParameters ();

736 return viewer;

i

/+* \brief Displays a point cloud in an existing viewer.
740 %

70

A survey of techniques for depth extraction in films

Displays a point cloud in an existing viewer, which was created previously.

742

\param[in] viewer an existing viewer where we want to display the point clouds.

\param[in] cloudList a vector of pointers to all the point clouds that we want to
display.

* X X ¥

744

*/

746

void displayCloud (boost::shared_ptr<pcl::visualization:: PCLVisualizer> viewer, std::
vector<pcl::PointCloud<pecl:: PointXYZ >::Ptr> cloudList)

748| {

pcl::PointCloud<pcl::PointXYZ >::Ptr cloud (new pcl::PointCloud<pcl::PointXYZ>);

750

for (int i=0; i<NUM PLANES; i++){

752 cloud = cloudList[i];
std ::stringstream ss;
754 pcl::visualization :: PointCloudColorHandlerCustom<pecl :: PointXYZ> single color (cloud,

(rand () %255)+1, (rand ()%255)+1, (rand ()%255)+1);

756 ss.str(std::string ());
ss << "cloud" << i;
758 viewer—>addPointCloud<pcl :: PointXYZ> (cloud, single color, ss.str());

viewer—>setPointCloudRenderingProperties (pcl::visualization::
PCL_VISUALIZER_POINT SIZE, 3, ss.str());

760

i++;

762 T

}

764

/+* \brief Displays all the planes stored in DEPTH PLANES in an existing viewer.

766 *

x Displays all the planes stored in DEPTH PLANES in an existing viewer, which was
created

76s| * previously. Of course, the planes must have been created previously when calling the
function

x fitCloudToPlanes.

770 *

x \param[in] viewer an existing viewer where we want to display the point clouds.

772| */

774| void displayPlanes (boost::shared ptr<pcl::visualization::PCLVisualizer> viewer)

{
776 for (int i=0; i<DEPTH_PLANES.size (); i++)

{
778 std ::stringstream plane_id;
plane_id << "plane'"<<i;
780 viewer—>addPlane (DEPTH PLANES[i],plane id.str());
b

782| }

784| /%% \brief project_inliers entrypoint.

*

This is the main method of this program.
All the primary functions are called within
this method.

786
788
Returns:

* 0 on success
* <>0 on error

*

*

*

*

790 *

*

792| *

*/

794

int main (int argc, charx* argv)
796| {

71

A survey of techniques for depth extraction in films

std :: vector<pcl::PointCloud<pecl::PointXYZRGB >::Ptr> cloudList;

798 pcl::PointCloud<pcl::PointXYZ >::Ptr cloud_orig gray (new pcl::PointCloud<pcl::
PointXYZ>);

pcl::PointCloud<pcl::PointXYZRGB >::Ptr cloud_orig (new pcl::PointCloud<pcl::
PointXYZRGB>);

800 pcl::PointCloud<pcl::PointXYZRGB >::Ptr cloud_mapped (new pcl::PointCloud<pcl::
PointXYZRGB>);

pcl::PointCloud<pcl::PointXYZRGB >::Ptr cloud merged (new pcl::PointCloud<pecl::
PointXYZRGB>);

802 boost::shared ptr<pcl::visualization :: PCLVisualizer> viewer;

pcl:: ModelCoefficients :: Ptr coefficients (new pcl:: ModelCoefficients ());

804 int num_planes;

int key=0;

806 BundlerReader br;

808 cv::Mat image;
cv::Mat src, src_gray, dst;

// Load an image
812 src = cv::imread("./frames/rghb100.jpg");
if (!src.data) { return —-1; }

// Initialize the MATLAB Compiler Runtime global state

816 if (!mcllnitializeApplication (NULL,0))
{
818 std::cerr << "Could not initialize the application properly."
<< std::endl;
820 return —1;
b
822
// Initialize the libmtools library
824 if ('libmtoolsInitialize ())
{
826 std :: cerr << "Could not initialize the library properly."
<< std::endl;
828 return —1;
b

830

832 // Read the file and separate the points into depth planes.
cloud _orig gray = readCloudFromPLY("./frames/points113.ply");
834 cloud _orig = convertCloudToRGB (cloud orig_gray);

br.load ("./frames/bundle.out", Scenelnfo);

836 Scenelnfo.setActiveView (100); //this index is O—based

ofstream myfile;
840 myfile.open ("./frames/feature keys.txt");

842 for (int i=0; i<Scenelnfo.numPoints(); i++){
BundlerPoint p = Scenelnfo.getPoint(i);
844 for (int j=0; j<p.numViews(); j++){
BundlerView v = p.getView(j);
846 if (v.camera == Scenelnfo.getActiveView ()){

cout << v.key << "," << v.x << "," << v.y << endl;
848 myfile << v.key << "," << v.x << "," << v.y << endl;
}

850 }

}

myfile. close ();
ss4| writeCloudToPLY (cloud _orig, "./frames/cloud orig.ply");

72

856

860

862

864

866

868

870

872

27

29

39

A survey of techniques for depth extraction in films

cloud_mapped = maplmage (src, cloud_orig);
writeCloudToPLY (cloud_mapped, "./frames/mapped.ply");

extractDepthValues (cloud_mapped) ;
cloudList = fitCloudToPlanes (cloud _mapped) ;

mergeClouds (cloudList , xcloud merged);
writeCloudToPLY (cloud merged, "./frames/merged.ply");

if (!mclTerminateApplication())
{
std:: cerr << "Could not terminate the matlab application properly." << std::
endl;
return —1;

return (0);

Listing A.4: Test code 1 (C++) — Abandoned

// opencv_test.cpp : Defines the entry point for the console application.
// This program captures video from the computer’s webcam and displays it.
// Press Esc to finish.

//

//c
#include <stdio.h>
#include <string.h>

//ct++

#include <iostream>
#include <string>
#include <utility >

//cv

#include <omp.h>

#include <opencv/cv.h>

#include <opencv2/highgui/highgui.hpp>
#include <opencv2\imgproc\imgproc_c.h>
#include <opencv2\features2d\features2d.hpp>

//pcl
#include <pcl/visualization/cloud viewer.h>

bool DEBUG=false;

using namespace std;
using namespace cv;

template<class T> class Image
{
private:
Iplimagex imgp;
public:
Image (Ipllmage+ img=0) {imgp=img;}
~Image () {imgp=0;}

73

41

59

65

67

69

71

3
G

79

89

95

97

99

101

A survey of techniques for depth extraction in films

void operator=(Ipllmagex img) {imgp=img;}
inline Tx operator[](const int rowlndx) {

return ((T x) (imgp—>imageData + rowlIndxximgp—>widthStep));}

};

typedef struct{
unsigned char b,g,r;

7| } RgbPixel;

typedef struct{
float b,g,r;
} RgbPixelFloat;

typedef Image<RgbPixel> Rgblmage;
typedef Image<RgbPixelFloat> RgbImageFloat;
typedef Image<unsigned char> Bwlmage;
typedef Image<float> BwImageFloat;

float Ek100_1000h[] = {0.95,0.01,0.01,0.01,0.81,0.05,0.01,—-0.01,0.85};

float Ek100 1000h2[] = {0.12,0.04,0.02};

float Ek100_1800h[] = {0.75,0.05,0.00,0.05,0.70,0.08,0.02,0.0,0.73};

float Ek100_1800h2[] = {0.22,0.07,0.03};

float Ek100_2600h[] = {0.54,0.08,0.01,0.06,0.62,0.10,0.03,0.01,0.61};

float Ek100_2600h2[] = {0.33,0.09,0.04};

// float Ek100 1000h[] = {1,1,1,1,1,1,1,1,1};
//float Ek100_1000h2[] = {0,0,0};

void capturel (void);

//void capture _match(void);

Iplimage* colorDegradation (Ipllmagex img);
void colorDegradation2 (Ipllmage* img);

int main(int argc, charx argv[])
{
//capturel () ;
CvMemStoragex storage = cvCreateMemStorage (0);
cvNamedWindow ("Image", 1);
int key = 0;
static CvScalar red_color[] ={0,0,255};

CvCapturex capture = cvCreateCameraCapture (0);
CvMat* prevgray = 0, ximage = 0, xgray =0;

while (key != ’'q’)

int firstFrame = gray == 0;
Ipllmagex frame = cvQueryFrame (capture);

//Ipllmagex frame = cvLoadlmage ("apple.jpg",1);

if (! frame)

break;
if (!gray)
{

image = cvCreateMat (frame—>height, frame—>width, CV_8UC1);

}

//Convert the RGB image obtained from camera into Grayscale

74

103

107

109

115

117

119

121

127

129

137

139

141

143

147

149

155

157

159

161

A survey of techniques for depth extraction in films

cvCvtColor (frame, image, CV_BGR2GRAY);

//Define sequence for storing surf keypoints and descriptors
CvSeq ximageKeypoints = 0, ximageDescriptors = 0;

int i;

//Extract SURF points by initializing parameters

//CvSURFParams params = cvSURFParams (500, 1);

//cvExtractSURF (image, 0, &imageKeypoints, &imageDescriptors, storage, params);
//printf ("Image Descriptors: %d\n", imageDescriptors—>total);

//draw the keypoints on the captured frame
/ *
for(i = 0; i < imageKeypoints—>total; i++)
{
CvSURFPoint* r = (CvSURFPointx*)cvGetSeqElem (imageKeypoints, i);
CvPoint center;
int radius;
center.x = cvRound(r—>pt.x);
center.y = cvRound (r—>pt.y);
radius = cvRound (r—>size*1.2/9.x2);
cvCircle (frame, center, radius, red_color[0], 1, 8, 0);
}
*/

// image = Grayscale image
// frame = Color image

// Apply color dye simulation to "frame", according to the formula in page 16 of
paper.

frame = colorDegradation (frame);

cvShowImage ("Image", frame);

cvWaitKey (30) ;
}

cvDestroyWindow ("Image") ;

return O;

}

void colorDegradation2 (Ipllmagex* img){
CvMat *im = cvCreateMat (img—>height ,img—>width,CV_32FC3);
CvMat *im_cmy = cvCreateMat(img—>height ,img-—>width,CV_32FC3);

Ipllmage ximg cmy = cvClonelmage(img);

cvConvert(img, im);
cvConvert(img cmy, im_cmy);

cvScale (im,im_cmy,—1.0);
cvAddS (im_cmy, cvScalar (255.0,255.0,255.0) ,im_cmy) ;

cvConvert (im,img) ;
cvConvert (im_cmy,img _cmy) ;

cvShowlmage("rgb image", img);
cvShowIlmage ("cmy image", im_cmy);
//Mat im = imread ("peppers. tif");
//Mat im_cmy = 255 — im;

¥

Iplimage* colorDegradation (Ipllmage* img){

75

163

165

167

169

179

185

189

191

195

197

199

201

203

205

209

217

219

A survey of techniques for depth extraction in films

Iplimage *imgT;

Ipllmage ximg cmy;
Ipllmage ximg cmy_deg;
Ipllmage ximg deg;

int height,width,step,channels;
uchar xdata, xdata2;

int i,j;

float cmy [3];

float cmy_test [3];

img _cmy = cvClonelmage(img);
img _cmy deg = cvClonelmage(img cmy);

CvMat M1 cvMat(3, 3, CV_32F, Ek100_2600h);
CvMat M2 = cvMat(3, 1, CV_32F, Ek100_2600h2);

height = img_cmy_deg—>height;

width = img_cmy_deg—>width;

channels = img cmy deg—>nChannels;

step = img_cmy_deg—>widthStep;

data = (uchar *)img cmy deg—>imageData;

#pragma omp parallel for private(j, cmy)
for (i=0; i<height; i++){
for (j=0; j<width; j++){
CvScalar s=cvGet2D(img_cmy_deg,i,j); //Get value of pixel (i,j)
cmy[0]=255—s.val[0];
cmy[1]=255—s.val[1];
cmy[2]=255—s.val[2];

CvMat +CMY2
CvMat *CMY1

&cvMat (3,1,CV_32FCl,cmy) ;
&cvMat (3,1,CV_32FC1,cmy) ;

cvMatMul (&M1, CMY1, CMY2); //Multiply by the bleaching matrix.
cvAdd (CMY2,&M2,CMY2) ; //Add the Base density correction.

data[ixstep+j*channels+0] = (float) (CMY2—>data. fl +0x(CMY2—>step/sizeof (float)))

[0];

data[ixstep+j*channels+1] = (float) (CMY2—>data. fl +0x(CMY2—>step/sizeof (float)))

[1];

data[ixstep+j*channels+2] = (float)(CMY2—>data. fl +0«x(CMY2—>step/sizeof (float)))

[2];
¥
¥

img deg = cvClonelmage(img cmy_deg);
data2 = (uchar x)img deg—>imageData;

#pragma omp parallel for private(j, cmy)
for (i=0; i<height; i++){
for (j=0; j<width; j++){
CvScalar s=cvGet2D (img _cmy _deg,i,j); //Get value of pixel (i,j)
cmy[0]=255—s.val[0];
cmy[1]=255—s.val[1];
cmy[2]=255—s.val[2];

data2[ixstep+j*channels+0] = 255 — data2[ixstep+jxchannels+0];
data2[ixstep+j*xchannels+1] = 255 — data2[i*step+j+channels+1];
data2[ixstep+j*channels+2] 255 — data2[ixstep+jxchannels+2];

76

245

247

249

259

261

263

265

267

269

A survey of techniques for depth extraction in films

}

return img_deg;

i

27| //http://opencv.willowgarage .com/documentation/c/

camera_calibration_and_3d_reconstruction.html#findstereocorrespondencegc
pair<CvMatx,CvMat«> calcDepthmap (Ipllmagex cvIimgLeft, Ipllmagex cvimgRight, int
numberOfDisparities, int maxIters) {

CvSize size = cvGetSize (cvimgLeft);
CvMat* disparity left = cvCreateMat(size.height, size.width, CV_16S);
CvMat* disparity_right = cvCreateMat(size.height, size.width, CV_16S);
CvStereoGCStatex state = cvCreateStereoGCState(numberOfDisparities, maxIters);
cvFindStereoCorrespondenceGC(cvimgLeft, cvimgRight, disparity left,
disparity right, state, 0);
cvReleaseStereoGCState (&state);
CvMat* disparity_left_visual = cvCreateMat(size.height, size.width, CV_16S);
CvMat* disparity_right_visual = cvCreateMat(size.height, size.width, CV_16S);
cvConvertScale (disparity_left, disparity left visual, —16);
cvConvertScale (disparity_right, disparity_right visual, —16);
if (DEBUG) {
cvSave("disparity left.pgm", disparity_left visual);
cvSave("disparity_right.pgm", disparity_right_visual);
}
return pair<CvMatx,CvMat+>(disparity_left_visual , disparity_right_visual);
¥

CvMat* getDisparityMap (Ipllmagex cvimgLeft, Ipllmagex cvimgRight, int
numberOfDisparities=16, int maxlters=2){
//set numberOfDisparities
if (numberOfDisparities <1) numberOfDisparities=1;

//set maxlters
if (maxIters<1) maxlters=1;
//create depthmap
pair<CvMatx,CvMatx> disparity = calcDepthmap(cvimgLeft, cvimgRight,
numberOfDisparities , maxIters);
//return one of the resulting disparity maps.
return disparity. first;
¥

void capturel (void){

int c;

// allocate memory for an image

Ipllmage x*img;

// capture from video device #1

CvCapturex capture = cvCaptureFromCAM(1); // capture from video device #1

// create a window to display the images

cvNamedWindow ("mainWin" , CV_WINDOW_AUTOSIZE) ;

// position the window

cvMoveWindow ("mainWin", 5, 5);

while (1)

{
// retrieve the captured frame
img=cvQueryFrame (capture);

77

A survey of techniques for depth extraction in films

279 // show the image in the window
cvShowImage ("mainWin" , img);
281 // wait 10 ms for a key to be pressed
c=cvWaitKey (10);
283 // escape key terminates program
if (c == 27)
285 break;
¥
27| }
/ *

280| void capture_match (void){

CvMemStoragex storage = cvCreateMemStorage (0);
291 cvNamedWindow ("Image", 1);

int key = 0;

293 static CvScalar red color[] ={0,0,255};

295 CvCapturex capture = cvCreateCameraCapture (0);
CvMatx prevgray = 0, ximage = 0, xgray =0;

297 while (key !'= ’q’)
{

299 int firstFrame = gray == 0;
Iplimages* frame = cvQueryFrame (capture);

301 if (! frame)

break;

303 if (!gray)
{

305 image = cvCreateMat (frame—>height, frame->width, CV_8UC1);
b

307 //Convert the RGB image obtained from camera into Grayscale
cvCvtColor (frame, image, CV_BGR2GRAY) ;

309 //Define sequence for storing surf keypoints and descriptors
CvSeq ximageKeypoints = 0, ximageDescriptors = 0;

311 int i;

313 //Extract SURF points by initializing parameters
CvSURFParams params = cvSURFParams(500, 1);

315 cvExtractSURF (image, 0, &imageKeypoints, &imageDescriptors, storage, params);

printf ("Image Descriptors: %d\n", imageDescriptors—>total);
317
//draw the keypoints on the captured frame

319 for(i = 0; i < imageKeypoints—>total; i++)
{
321 CvSURFPointx r = (CvSURFPointx)cvGetSeqElem (imageKeypoints, i);
CvPoint center;
323 int radius;
center.x = cvRound(r—>pt.x);
325 center.y = cvRound(r—>pt.y);
radius = cvRound (r—>size*1.2/9.x2);
327 cvCircle (frame, center, radius, red_color[0], 1, 8, 0);
+
329 cvShowlmage ("Image", frame);
cvWaitKey (30) ;
331 T
cvDestroyWindow ("Image") ;
333| }*/

Listing A.5: Test code 2 (C++) — Abandoned

-

// opencv_test.cpp : Defines the entry point for the console application.
// This program captures video from the computer’s webcam and displays it.
// Press Esc to finish.

//

w

78

~

25

43

61

63

A survey of techniques for depth extraction in films

//c
#include
#include

//ctH+

#include
#include
#include

s| #include

//cv

#include
#include
#include
#include
#include
#include

//pcl
#include

<stdio .h>
<string .h>

<iostream>
<string>
<utility >
<vector>

<omp. h>

<opencv/cv.h>
<opencv2/opencv . hpp>
<opencv2/highgui/highgui.hpp>
<opencv2\imgproc\imgproc_c.h>

<opencv2\features2d\features2d.hpp>

<pcl/visualization/cloud_viewer.h>

bool DEBUG=false;

using namespace std;
using namespace cv;

template<class T> class Image

{

private:
Ipllmage* imgp;

public

Image (Ipllmage* img=0) {imgp=img;}

~Image () {imgp=0;}

void operator=(Ipllmagex img) {imgp=img;}

inline T+ operator[](const int rowlndx) A
return ((T %) (imgp—>imageData + rowlIndxximgp—>widthStep));}

};

typedef struct{
unsigned char b,g,r;
} RgbPixel;

typedef struct{
float b,g,r;
} RgbPixelFloat;

typedef Image<RgbPixel>
typedef Image<RgbPixelFloat>

typedef Image<unsigned char> Bwlmage;

typedef Image<float>

RgbImage;
RgbImageFloat;

BwImageFloat;

float Ek100_1000h[] = {0.95,0.01,0.01,0.01,0.81,0.05,0.01,—-0.01,0.85};

float Ek100_1000h2[] = {0.12,0.04,0.02};

float Ek100_1800h[] = {0.75,0.05,0.00,0.05,0.70,0.08,0.02,0.0,0.73};

79

69

71

73

75

85

87

91

93

97

99

101

103

107

109

117

119

121

125

A survey of techniques for depth extraction in films

float Ek100_1800h2[] = {0.22,0.07,0.03};

float Ek100_2600h[] = {0.54,0.08,0.01,0.06,0.62,0.10,0.03,0.01,0.61};
float Ek100_2600h2[] = {0.33,0.09,0.04};

Iplimage* colorDegradation (Ipllmagex img);

Mat colorDegradation2 (Mat img);

pair<CvMatx,CvMat«> calcDepthmap (Ipllmagex cvIimgLeft, Ipllmagex cvimgRight, int
numberOfDisparities, int maxIters);

CvMat* getDisparityMap (Ipllmagex cvIimgLeft, Ipllmagex cvimgRight, int
numberOfDisparities, int maxIters);

Mat calcDepthmap BM (Mat imgl, Mat img2, int numberOfDisparities=32, int maxlters=2);

int main(int argc, charx argv[])
{

int key = 0, i;

boolean retVal=true;

Mat frame;

//vector<Mat x>::iterator it;

Mat disparity, disp_deg;

Mat imgl, img2;

int frameOffset;

int numberOfDisparities=16;

VideoCapture cap("touchofevil.avi"); // Create an object from a video file.
//VideoCapture cap ("tron_sample.avi"); // Create an object from a video file.

if ('cap.isOpened()) return —1; // check if we succeeded

Mat frame deg, frame deg2;
Iplimagex* test;

namedWindow ("imgl" ,1);
//namedWindow ("imgl deg",1);
//namedWindow (" depth map",1) ;
//namedWindow ("depth map deg",1);

int nframes = cap.get(CV_CAP PROP FRAME COUNT) ;
Mat *xpreLoadedVideo = new Mat x[nframes]; //create nframes pointers to Mat.

// Preload Videos into a Vector for faster Access.
cout << "Preloading Frames" << endl;

for (i=0; i<nframes; i++){
preLoadedVideo[i] = new Mat;
cap >> frame;
if (!frame.data){
nframes=i—1;
break;
}
x(preLoadedVideo[i]) = frame.clone();
cout << "Loading frame " << i << endl;

}

cout << "Finished Preloading Video" << endl;

frameOffset=10;
//#pragma omp parallel for private(imgl, img2, disparity, disp_deg, frame deg,
frame_deg2)
for (i=0; i<nframes—frameOffset; i++){
imgl = x(preLoadedVideo[i]);
img2 = x(preLoadedVideo[i+frameOffset]);
//disparity = calcDepthmap BM(img2, imgl, numberOfDisparities);

80

A survey of techniques for depth extraction in films

//frame_deg = colorDegradation2 (imgl);

127 //frame_deg2 = colorDegradation2 (img2);
//disp_deg = calcDepthmap BM (frame_deg2, frame_deg, numberOfDisparities);
129 //imshow ("imgl deg", frame _deg);

//imshow ("depth map deg", disp_deg);
131 cout << "Showing frame " << i << endl;
imshow ("imgl", x(preLoadedVideo[i]));
133 //imshow ("depth map", disparity);

if (waitKey (30) >= 0) break;

135 T

137 // the camera will be deinitialized automatically in the VideoCapture destructor
return O;

139 }

141| Mat findFeatures (Mat img){

//Define sequence for storing surf keypoints and descriptors
143 CvSeq ximageKeypoints = 0, ximageDescriptors = 0;

int i;

CvArr ximage=CvArr(&img) ;

//Extract SURF points by initializing parameters

149 CvSURFParams params = cvSURFParams(500, 1);

cvExtractSURF (image, 0, &imageKeypoints, &imageDescriptors, storage, params);
151 printf ("Image Descriptors: %d\n", imageDescriptors—>total);

153 //draw the keypoints on the captured frame

155 for(i = 0; i < imageKeypoints—>total; i++)

{

157 CvSURFPointx r = (CvSURFPointx)cvGetSeqElem (imageKeypoints, i);
CvPoint center;

159 int radius;

center.x = cvRound (r—>pt.x);

161 center.y = cvRound(r—>pt.y);

radius = cvRound(r—>size*1.2/9.x2);

163 cvCircle (frame, center, radius, red color[0], 1, 8, 0);
¥

165| }

167| Mat calcDepthmap_BM (Mat imgl, Mat img2, int numberOfDisparities, int maxIters) {

169 CvStereoBMStatex BMState;
StereoSGBM sgbm;

171 StereoBM bm;

int SADWindowSize = 0;

173

//disparity = cvCreateMat(size.height, size.width, CV_16S);
Mat disp, disp8;

//state = cvCreateStereoBMState(numberOfDisparities, maxIters);
179
Size img size = imgl.size ();

181 numberOfDisparities = numberOfDisparities > 0 ? numberOfDisparities : ((img_size.
width/8) + 15) & —16;

183 Rect roil, roi2;

185 bm.state—>roil = roil;
bm. state—>roi2 = roi2;

81

187

189

191

193

197

199

201

203

205

207

209

219

221

233

247

A survey of techniques for depth extraction in films

i

/ *

bm. state—>preFilterCap = 31;

bm. state —>SADWindowSize = SADWindowSize > 0 ? SADWindowSize : 9;
bm. state—>minDisparity = 0;

bm. state—>numberOfDisparities = numberOfDisparities;

bm. state—>textureThreshold = 10;

bm. state—>uniquenessRatio = 15;

bm. state—>speckleWindowSize = 100;

bm. state—>speckleRange = 32;

bm. state—>displ2MaxDiff = 1;

sgbm. preFilterCap = 63;
sgbm.SADWindowSize = SADWindowSize > 0 ? SADWindowSize : 3;

int cn = imgl.channels();

sgbm.P1 8xcnxsgbm.SADWindowSizexsgbm . SADWindowSize ;
sgbm.P2 = 32xcn*sgbm.SADWindowSizexsgbm.SADWindowSize;
sgbm. minDisparity = 0;

sgbm.numberOfDisparities = numberOfDisparities;
sgbm.uniquenessRatio = 10;

sgbm.speckleWindowSize = bm.state—>speckleWindowSize;
sgbm. speckleRange = bm.state—>speckleRange;
sgbm.displ2MaxDiff = 1;

sgbm. fullDP = false;

int64 _timel = cvGetTickCount();

//cvFindStereoCorrespondenceBM (cvimgLeft, cvimgRight, disparity, BMState);
//cvReleaseStereoBMState (&BMState);
sgbm (imgl, img2, disp);

int64 _time2 = cvGetTickCount();
printf ("Time elapsed: %f\n", float(_time2 — _timel)/cvGetTickFrequency () *le—6);

//disparity visual = cvCreateMat(size.height, size.width, CV_16S);
//cvConvertScale (disparity , disparity_visual, —16);
disp.convertTo (disp8, CV 8U, 255/(numberOfDisparities*16.));

if (DEBUG) {

//cvSave ("disparity .pgm", disparity_visual);
imwrite("disparity .pgm", disp8);

¥

//imwrite (disparity filename , disp8);
return disp8;

void showCloud ()

{

pcl::PointCloud<pcl ::PointXYZRGB> cloud;
//... populate cloud

pcl _visualization :: CloudViewer viewer ("Simple Cloud Viewer");
viewer .showCloud (cloud) ;

while (!viewer.wasStopped())

{

b

82

A survey of techniques for depth extraction in films

20| Mat colorDegradation2 (Mat img){
Mat img cmy, img deg;

251 Mat CMY;

int i,j;

253 float cmy[3];

255 img cmy = cvScalar(255,255,255) — img; // convert to cmy

27| //Mat M1 = Mat(3, 3, CV_32F, Ek100 2600h);
//Mat M2 = Mat(3, 1, CV_32F, Ek100 _2600h2);

CvMat M1 = cvMat(3, 3, CV_32F, Ek100_2600h);
261 CvMat M2 cvMat(3, 1, CV_32F, Ek100_2600h2);

263 img deg = img cmy;

25| #pragma omp parallel for private(j, cmy)
for (i=0; i<img deg.rows; i++){

267 for (j=0; j<img deg.cols; j++){
Vec3b p = img deg.at<Vec3b>(i,j);
269
cmy[0]=p.val[0];
271 cmy[l]=p.val[l];
cmy[2]=p.val[2];

273
CvMat *CMY2 = &cvMat(3,1,CV_32FCl,cmy) ;
275 CvMat *CMY1 = &cvMat(3,1,CV_32FC1,cmy) ;
277 cvMatMul (&M1, CMY1l, CMY2); //Multiply by the bleaching matrix.

cvAdd (CMY2,&M2,CMY2) ; //Add the Base density correction.

img deg.at<Vec3b>(i,j)[0]=(CMY2—>data. fl +0«x(CMY2—>step/sizeof (float)))[0];
281 img_deg.at<Vec3b>(i,j)[1]=(CMY2—data. fl +0«(CMY2—>step/sizeof (float)))[1];
img deg.at<Vec3b>(i,j)[2]=(CMY2—>data. fl +0x(CMY2—>step/sizeof (float))) [2];
283 }

}

img deg = cvScalar(255,255,255) — img_deg; // convert back to rgb

return img deg;
289| }

291
//http://opencv.willowgarage .com/documentation/c/

camera_calibration_and_3d_reconstruction.html#findstereocorrespondencegc
203| pair <CvMat* ,CvMat+> calcDepthmap (Iplimage* cvimgLeft, Ipllmagex cvIimgRight, int
numberOfDisparities, int maxIters) {

295 CvSize size = cvGetSize (cvimgLeft);
CvMat* disparity left = cvCreateMat(size.height, size.width, CV_16S);
297 CvMat+ disparity_right = cvCreateMat(size.height, size.width, CV_16S);
CvStereoGCStatex state = cvCreateStereoGCState(numberOfDisparities, maxIters);
299 cvFindStereoCorrespondenceGC(cvimgLeft, cvimgRight, disparity left,

disparity right, state, 0);
cvReleaseStereoGCState (&state);
301
CvMat* disparity left visual = cvCreateMat(size.height, size.width, CV_16S);
303 CvMat* disparity_right_visual = cvCreateMat(size.height, size.width, CV_16S);
cvConvertScale (disparity_left, disparity_left visual, —16);
305 cvConvertScale (disparity right, disparity_right visual, —16);

307 if (DEBUG) {

83

A survey of techniques for depth extraction in films

cvSave("disparity left.pgm", disparity left visual);
309 cvSave("disparity right.pgm", disparity_right visual);
b

return pair<CvMatx,CvMatx>(disparity_left_visual , disparity_right_visual);

313| }

315| CvMatx getDisparityMap (Ipllmagex cvIimgLeft, Ipllmagex cvimgRight, int
numberOfDisparities=16, int maxlters=2){

//set numberOfDisparities

317 if (numberOfDisparities <1) numberOfDisparities=1;

319 //set maxlters
if (maxIters<1) maxlIters=1;

//create depthmap
323 pair<CvMat*,CvMat+> disparity = calcDepthmap(cvimgLeft, cvimgRight,
numberOfDisparities , maxlters);

35| //return one of the resulting disparity maps.
return disparity. first;

84

	Abstract
	Preface
	Contents
	List of Figures
	List of Tables
	Introduction
	Background
	Terminology
	Point Cloud
	Depth map
	Depth planes
	Depth Range

	3D display and capture technology
	3D technology overview
	Full 3D vs. stereoscopic 3D

	3D reconstruction
	Simultaneous Localization and Mapping
	Structure from motion
	Camera pose estimation
	Keyframe selection

	Depth in Films
	Film structure
	The planar depth model
	The role of depth in story-telling

	Implementation Environment
	Project description
	Scope of the research
	Camera Calibration
	Point Cloud generation
	Initial point cloud generation
	Scarce point cloud expansion
	Refining point cloud data
	Improving results with object segmentation

	Depth level calculation
	Statistical principles

	Fitting data to depth planes
	Point projection
	Geometric fitting

	Experimental results
	Assumptions
	Ground truth data
	Microsoft Kinect
	Results
	Visual Experiment

	Discussion
	Future directions
	Bibliography
	Source code

