
BACHELOROPPGAVE:

AR Stadium Games - ARENA: Creating a frame-
work for rapid prototyping of crowd controlled
AR games

FORFATTERE:
Arild Jacobsen
Simen Kjærås

DATO:
Vår 2010

AR Stadium Games - ARENA: Creating a framework for rapid prototyping of crowd controlled AR games

Sammendrag av Bacheloroppgaven

Tittel: AR Stadium Spill - ARENA Nr: 8
Dato: Vår 2010

Deltakere: Arild Jacobsen
Simen Kjærås

Veiledere: Simon McCallum
Sule Yildirim

Oppdragsgiver: Simon McCallum

Kontaktperson: Arild Jacobsen, jacobsen.arild@gmail.com, 95888163

Stikkord AR, Utvidet Virkelighet, video, publikum

Antall sider: 31 Antall vedlegg: 6 Tilgjengelighet: Åpen
Kort beskrivelse av bacheloroppgaven:
Augmented Reality (AR) handler sentralt om grensesnitt; interaksjon mellom menneske og maskin
ved nye metoder. Ideelt vil slike nye interaksjoner være en forbedring; grensesnitt som integreres med
virkeligheten i stedet for å tvinge brukere til å stenge den ute:

“These applications have shown that AR interfaces can enable a person to interact with the real
world in ways never before possible.”

[1, Section 1] De gamle grensesnittene er imidlertid godt forskanset bak tiår med bevist funksjona-
litet og vanebygging. Det kan derfor være problematisk å fange interessen med noe som anses som
lettsindig og unødvendig arbeid. Innen spill er imidlertid forventningene at opplevelsen skal være lett-
sindig, og man forventer å engasjere seg for å lære spillets regler og hvordan det best kan spilles, uten
først å måtte bevise noen praktisk hensikt for øvelsen. Dette prosjektet har blitt utført på vegne av
Simon McCallum, førsteamanuensis ved Høgskolen i Gjøvik, som tidligere har tatt del i utviklingen av
et program for publikumskontrollerte AR-spill. Det prosjektet genererte positiv respons som oppmun-
tret bidragsyterene til videre arbeid. Koden for programmet viste seg imidlertid å være uhåndterlig
og vanskelig å utvide videre. Dermed har hensikten for dette prosjektet i hovedsak vært å generere et
håndterlig, utvidbart rammeverk som kan brukes til å gjenskape de spillene som ble demonstrert i det
forrige prosjektet, men som også kan brukes til å lage andre, mer eller mindre lignende program og
legge til rette for fremtidige utvidelser. Som et sekundært mål, mente vi å evaluere hurtig prototype-
produksjon av spill som en metode for å utføre eksperiment, ved å implementere et spill ved bruk
av det genererte rammeverket, og måle reaksjoner fra test-publikum. Tertiært ønsket vi å utvide den
grunnleggende funksjonen i rammeverket, dersom tidsrammen tillot det, hvilket ville legge til rette
for produksjonen av mer sofistikerte spill.

iii

AR Stadium Games - ARENA: Creating a framework for rapid prototyping of crowd controlled AR games

Summary of Graduate Project

Title: AR Stadium Games - ARENA: Creating a framework for rapid pro-
totyping of crowd controlled AR games

Nr: 8

Date: Vår 2010

Participants: Arild Jacobsen
Simen Kjærås

Supervisor: Simon McCallum
Sule Yildirim

Employer: Simon McCallum

Contact person: Arild Jacobsen, jacobsen.arild@gmail.com, 95888163

Keywords AR, Augmented Reality, video, crowd

Pages: 31 Appendixes: 6 Availability: Open
Short description of the main project:
Augmented Reality (AR) is in essence about interfaces; allowing humans to interact with computers
throught new means. Ideally, these new interfaces improve upon what has gone before, integrating
with reality, rather than supplanting it.

These applications have shown that AR interfaces can enable a person to interact with the real world
in ways never before possible.

[1, Section 1] However, the old interfaces are firmly entrenched, and have worked for decades; it
can be problematic to get people interested in something that seems like frivolous, unnecessary work.
Games however, are expected to be frivolous and require the player to engage and exert themselves to
learn the rules of the game and how best to play it, without having to first prove a practical purpose.
This project has been completed on behalf of Simon McCallum, Senior lecturer at Gjøvik University
College, who has previously taken part in developing a program for crowd controlled AR gaming. This
generated positive responses, which left the contributors encouraged to perform further experiments.
However, the codebase for the program proved unwieldy and difficult to extend. The purpose of this
project was primarily to create a maintainable, extensible framework which could be used to recreate
the games our sponsor had worked on previously, but which could also be used to create other, more
or less similar programs and accomodate future extensions of the framework. Our secondary intent
was to evaluate rapid game prototyping as a viable method for experiments, by implementing a game
using the framework created and gauging the reactions of one or more test crowds. Tertiary was our
intent towards using the extensibility to expand upon the base functionality if time allowed, allowing
for more sophisticated games to be created.

v

AR Stadium Games - ARENA: Creating a framework for
rapid prototyping of crowd controlled AR games

Arild Jacobsen
Simen Kjærås

2010/04/20

AR Stadium Games - ARENA: Creating a framework for rapid prototyping of crowd controlled AR games

1 Preface

We would like to extend our thanks to our sponsor and supervisor Simon McCallum, as well as
the various people we have pestered into guinea-pig duty during the development.

1

AR Stadium Games - ARENA: Creating a framework for rapid prototyping of crowd controlled AR games

Contents

1 Preface . 1
Contents . 3
2 Introduction . 5

2.1 Project organization . 6
2.2 Report outline . 7

3 Design . 9
3.1 Specification . 9
3.2 Preliminary design . 9
3.3 Game design . 10
3.4 Implementation . 13
3.5 Testing . 17

4 Analysis . 19
4.1 Discussion . 19

4.1.1 Results . 19
4.1.2 Choices . 22

4.2 Shortcomings . 24
4.3 Further development . 24
4.4 Group evaluation . 26

4.4.1 Organization . 26
4.4.2 Distribution of work . 26
4.4.3 Subjective experience of the Bachelor thesis 26

5 Conclusion . 27
5.1 Final summary . 27

Bibliography . 29
A Definitions . 31
B Schedule, Gantt-diagrams, milestones . 33
C Log . 37

C.1 Pre-sprint Scrum . 37
C.1.1 21.01. 37

C.2 First Sprint . 37
C.2.1 22.01. 37
C.2.2 25.01. 38
C.2.3 26.01. 38
C.2.4 27.01. 39
C.2.5 28.01 . 40
C.2.6 04.02 . 40

3

AR Stadium Games - ARENA: Creating a framework for rapid prototyping of crowd controlled AR games

C.3 Second Sprint . 40
C.3.1 05.02 . 41
C.3.2 08.02 . 41
C.3.3 0 . 41
C.3.4 10.02 . 41
C.3.5 11.02 . 42
C.3.6 12.02 . 42
C.3.7 16.02 . 43
C.3.8 17.02 . 43
C.3.9 18.02 . 43

C.4 Third sprint . 43
C.4.1 19.02 . 44
C.4.2 22.02 . 44
C.4.3 23.02 . 44
C.4.4 24.02 . 45
C.4.5 25.02 . 45
C.4.6 26.02 . 45
C.4.7 01.03 . 46
C.4.8 02.03 . 46
C.4.9 03.03 . 46
C.4.10 04.03 . 46
C.4.11 05.03 . 46

C.5 Fourth sprint . 46
C.5.1 08.03 . 47
C.5.2 09.03 . 47
C.5.3 10.03 . 47
C.5.4 11.03 . 48
C.5.5 12.03 . 48
C.5.6 15.03 . 48
C.5.7 16.03 . 48
C.5.8 17.03 . 49
C.5.9 18.03 . 49

C.6 Fifth sprint . 49
C.6.1 19.03 . 50
C.6.2 22.03 . 50
C.6.3 23.03 . 50
C.6.4 24.03 . 50
C.6.5 25.03 . 51
C.6.6 26.03 . 51
C.6.7 29.03 . 51
C.6.8 30.03 . 51
C.6.9 31.03 . 52

4

AR Stadium Games - ARENA: Creating a framework for rapid prototyping of crowd controlled AR games

C.6.10 01.04 . 52
C.6.11 06.04 . 52
C.6.12 07.04 . 52
C.6.13 08.04 . 53
C.6.14 09.04 . 53

C.7 Sixth sprint . 53
C.7.1 12.04 . 53
C.7.2 13.04 . 54
C.7.3 14.04 . 54
C.7.4 15.04 . 54
C.7.5 16.04 . 54
C.7.6 19.04 . 54

C.8 Seventh sprint . 55
C.8.1 20.04 . 55
C.8.2 21.04 . 55
C.8.3 22.04 . 56
C.8.4 23.04 . 56
C.8.5 26.04 . 57
C.8.6 27.04 . 57
C.8.7 28.04 . 57
C.8.8 29.04 . 58
C.8.9 30.04 . 58
C.8.10 03.05 . 58
C.8.11 04.05 . 58

C.9 Eight sprint . 58
D Code Samples . 59
E Coding standards . 65

E.1 General . 65
E.2 Classes and structs . 66
E.3 File names . 68

F Contents of the DVD . 69

5

AR Stadium Games - ARENA: Creating a framework for rapid prototyping of crowd controlled AR games

2 Introduction

Although Augmented Reality as a concept has been around for decades, and the ideas from which
it arose can be traced back however far you would care to argue for, the use of AR as a serious
tool is still in its infancy. Although it is difficult to find a definitive history of AR technology, it
is even more difficult to deny that the use of and interest in AR has grown considerably the last
decade, and in the past few years has been noticed by a much wider audience.

The concept of audience-interactive entertainment can also be traced into the mists of history.
Even the meaning relevant to this project, using digital equipment to facilitate entertainment that
an audience can directly control or at least affect, goes back surprisingly far: Maynes-Aminzade,
Pausch and Seitz mentions that there had been little development in the field since Cinematrix
launched in 1991 [2, Section 1], then go on to attempt to improve on the idea. About a decade
later, Sieber, McCallum and Wyvill set out to prove the concept again [3]. Given that at least two
papers before us as well as Cinematrix, a decade earlier again, have proven that it is entirely
possible to provide this manner of crowd-controlled entertainment, our purpose is not to prove
this again, but rather to provide the means for others to continue that work.

There are several reasons that led us to decide on this subject as the focus for our project.
For one, the topic of AR is of great interest to us, not only because we believe it may well grow
to be an important element in future IT-applications, but because the field is full of interesting
challenges. In addition to the various aspects of image analysis inherent in video-based AR, the
most common form of AR, there is the challenge of designing applications quite unlike what is
considered normal.

Quite apart from the challenges, we were also genuinely interested in the BallBouncer pro-
ject, having experienced some of the games personally, and as such had an interest in seeing it
developed further. Not only the BallBouncer itself, but the general concept of crowd-controlled
games is one which we both wish to see further work on and would be interested in being perso-
nally involved in. Both AR and Crowd Games contend with established paradigms, and as such,
a program which facilitates experimentation with one or both concepts seems a worthy project.

Starner et al. claims that games are an excellent way of prototyping and testing new inter-
action technologies[4, Section 1], because games are about play, and play is all about experi-
menting and learning. The Nintendo Wii is an excellent example of how willing people are to
experiment if it is in the name of entertainment. As both Sony and Microsoft develop their own
alternate interaction technologies, it does not seem presumptuous to claim that the atmosphere
is ready for new modes of play. If people are willing to accept new technology in a game and
experiment, we are provided with excellent data about how it is perceived and used.

Our project had the benefit of being rather clearly defined from the start, at least as far as
the desired results. Our sponsor had a working program [3], and he wanted the functionality
duplicated, but the code that achieved said functionality improved upon. Our task then was to
replicate the results of a known program while keeping scrupulously to good coding standards

7

AR Stadium Games - ARENA: Creating a framework for rapid prototyping of crowd controlled AR games

for maintainability and extensibility.
However, there were three target audiences to consider in our task. First there is the sponsor,

for whom we were to produce a good codebase to build future extensions to the project upon.
Second there is the audiences who will use the games or other applications produced from this
framework; unless they are satisfied, the purpose falls flat. Thirdly, as this is an academic project,
we should produce some theoretical insight into the subject matter. Thus, while the program
resulting from this work is an important part of the project, we also had to continually evaluate
the quality of the code we produced from the standpoint of a future developer, and lastly consider
the purpose and role such a program might serve. In short, we had to balance what we did with
the how and the why of it.

Much of this project was a new experience for both of us. Neither had used Linux extensively
before, and both had only a passing knowledge of Eclipse. We had expected that debugging in
Eclipse would be easier than it turned out.

We used a sizeable collection of libraries, most of which were unfamiliar to us, and as such
required time spent to familiarize ourselves with them. We had both enountered ODE earlier,
and thus had a pretty good idea what use it could be put to. OSG was something completely new
for us both, and more than once we found that the functionality we wanted, and had started
writing, was already present there. The video libraries we used, ARToolKit and FFmpeg, were
complex and underdocumented, while POSIX threads were not hard to understand, but their use
felt archaic. Boost, however was a breath of fresh air. Well-documented, easy to understand, and
producing easily readable and maintainable code.

2.1 Project organization

During this project, we employed an Agile software development methodology, called Scrum.
The choice of methodology was based largely on the small size of our team, but also on the ex-
pectation that given the size and complexity of the project, we will meet with several unforeseen
issues. Unfortunately, due to the fact that we only had two programmers, and could not spare
one to act in a purely administratory role, we had to forgo having a Scrum Master, which would
have been the norm when using Scrum. We also deviated from the two-week Sprint cycles at
times, at times due to planned exceptions, such as immediately following a milestone, at other
times due to unforeseen issues such as illness.

Apart from the two team members, there were two members of faculty who were involved in
our project. Sule Yildirim initially served as supervisor, and we intended her to partially fill the
vacant role of SCRUM master. Simon McCallum served as sponsor, and after a period of some
confusion, came to fill the role of project supervisor as well.

We made use of a Subversion revision control system, both to coordinate our coding efforts
and to provide a backup of the current and previous versions of the program. We adhered strictly
to the principle of only comitting working builds to the repository, so as not to impede the
progress of the other team member, and so that we would have a working version available for
demonstration at all times. We also commented all code according to predetermined standards,
while keeping the code as self-explanatory as possible.

We held our Scrum-meetings every day at 10:00, to review the progress during the previous

8

AR Stadium Games - ARENA: Creating a framework for rapid prototyping of crowd controlled AR games

session and to plan what needed to be addressed during the coming session. The Sprint meetings
were held. At these meetings we reviewed whether we’d accomplished what was planned for the
preceding two-week Sprint cycle, discussed how we could adjust our work process to better
accomplish our goals in the next cycle and planned the work to be done during the following
Sprint cycle. We also created a Gantt-diagram for each Sprint, illustrating our intended course for
the following cycle. No milestones were planned within these cycles. Instead, milestones were
set in the overall plan, and provided goals to work towards.

We maintained a log for the Scrum and Sprint meetings, which was accessible to the project
coordinator and sponsor as well as each team member. The log has been included in appendix
C. We intended for the project supervisor to attend the Sprint meetings which would then serve
simultaneously as status meetings; however, due to some confusion as to her role, Sule Yildirim
was phased out during the project, and eventually Simon McCallum was phased in, to serve as
supervisor as well as sponsor. Because of this, a large part of our development lacked both a
supervisor and a Scrum Master, given that we had intended for the supervisor to fill that role.
Nonetheless, we kept to the principle of making the larger decisions during these Sprint meetings,
allowing for detail decisions to be made during the daily work.

2.2 Report outline

This report consists of four main parts following this introduction. First, we have a section for
Design, where we elaborate on the the constraints shaping our design, the choices made during
the preliminary phase and the reasoning behind them, which guided our continually developing
design throughout the project. Second comes Implementation, which details the process of crea-
ting the program; how we went about it, tools used, problems encountered and changes made
during this phase, as well as the reasons and reasoning respectively responsible. Following that
is the chapter Analysis, where we discuss what we did and what we did not, what we could
have done and what we should have done, as well as what could still be done. The main topic
is the results and our deliberations about those. We will also delve into such failures as arose
during the process, as well as considering possible further developments and projects based on
our work. And of course, here as well, we will delve into causes. Closing the chapter will be our
evaluation of ourselves, our organisational efforts and our experience of the enterprise. Finally
we have Conclusion, which (quite concisely) covers the conclusions we draw from our work.

There is a plethora of technical terms and acronyms used in this report, all of which are listed
and explained in appendix A.

9

AR Stadium Games - ARENA: Creating a framework for rapid prototyping of crowd controlled AR games

3 Design

The design of a computer program can be, as those who have any experience with the process
will know, a highly complex process. There is software compatibility, hardware compatibility,
resource requirements as well as myriad usability requirements. However, the design of AR ap-
plications, as well as Crowd Games, has not been as extensively analyzed and the design of these
applications is thus guided largely by technical considerations. Furthermore, we primarily pro-
duced a framework, which would be used only by programmers to create applications. Those
applications might need a degree of user-friendliness, but our main consideration was produ-
cing code which would ease the work of such programmers, while still keeping to our technical
constraints.

3.1 Specification

Our specification was somewhat out of the ordinary in that we had a working program, whose
functionality we sought to ape, without there necessarily being any similarity in the code produ-
cing the results. There were however some additional specifications to consider, and these were
arrived at through meetings with our sponsor. As mentioned in Section 2.1, we were working
under an AGILE methodology, and as a result no final design document was produced; AGILE
methods rely on continual communication more than rigid design documents. As such, the main
specifications were set and guided our rough design, and the details were continually evaluated
during the work-process. We had contact with our sponsor throughout the project period, and
the design was reevaluated multiple times by discussing current functionality and what changes
or additions should be done, on occasion resulting in significant alterations.

3.2 Preliminary design

Even though our design was intended to be fluid to allow for changes during the project, there
were certain technical limitations we had to take into account, as well as some restrictions set by
our sponsor at the inception of the project. Notably the concept of a flexible framework: the main
purpose of the project was after all not to replicate previous efforts, but to create an improved
replacement. A few guiding principles were established in the preliminary design phases, which
would guide all decisions made at later stages:

• Easy to extend

• The base framework should provide the basis for further work. This guided the decision
to keep the code highly modular.

• Easy to maintain

• The intent for the project is to produce code that will be used by other programmers
to create applications. As such, it must be easy to read and understand what the code

11

AR Stadium Games - ARENA: Creating a framework for rapid prototyping of crowd controlled AR games

does and why it does it. This is often referred to as maintainability in programming; the
ease with which a programmer who was not involved in the creation of the code can
understand and update (or indeed change) it. This guided our creation of strict coding
and commenting standards (see appendix E).

• Use FOSS

• By restricting our use of libraries to Free/Open-Source Software, any subsequent project
based on extending the framework will be unhindered by legal issues. This guided, quite
logically, our choice of libraries in creating the framework.

• Natural interaction

• One of the main tenets for good AR applications is that the interaction between real ob-
jects (e.g. the players) and virtual objects should seem natural and obvious to the user [2,
Section 5.1]. This was central when during the phases where we wrote the code for ac-
quiring input from a video stream and modelling the behaviour of the virtual objects.

Some additional technical restrictions were also imposed, which constrained, rather than gui-
ded our design choices. First is the environment in which the application would run. Ideally, the
application should run comfortably on an unexceptional laptop computer, using a Linux OS. The
setup should not require more in the way of additional equipment than a fairly average camera,
as could be connected via USB or FireWire. This was expanded upon during later meetings to
require that the program would instead make use of any generic videostream, regardless of its
source, amonsgt other things opening up for the possibility to have video streamed from a remote
location over a network.

The resolution of the video stream was also a relevant concern, as the resolution is directly re-
lated to the amount of processing power necessary to perform the necessary operations. However,
nor could the program perform its job well given too coarse a resolution, since the information
required to make an application usable could then turn out to be too fine-grained to detect. The
required resolution varies depending on the application and the physical proportions where the
application is to be used. The further away from the camera an audience is, the higher the lower
limit of resolution needed to detect their movement, whereas the available computing power,
which varies depending on the machine used to run the application, sets the upper limit on the
resolution that can be computed at an acceptable rate.

After considering this for some time, the conclusion was that the only sensible approach would
be to define test parameters which we would hold to during the production; guided in part by
the experience from our sponsor from BallBouncer [3], and in part by the available hardware,
the requirements were that the laptops we used for working on the project should be able to run
the program at a rate of 30 frames per second at the least, using a video stream resolution of
800 by 600 pixels.

3.3 Game design

During the course of the project we also had occasion to design a game to be implemented using
our framework. Though the time-constraints foreshortened this design phase considerably, we

12

AR Stadium Games - ARENA: Creating a framework for rapid prototyping of crowd controlled AR games

have arrived at some guiding principles in general for creating such games, which we attempted
to employ in our demonstration game. Though it is certainly possible to create a game using
this framework which follows an entirely different approach to its design, we based our design
approach on the experience gathered from the previous iteration [3], and other examples we
could find that seemed relevant [2], [5].

Despite the game’s primary role as a test of the framework, we wanted it to live up to certain
standards. The quality of the framework is necessarily reflected in the quality of games it can
produce, and unless the games produced could competently demonstrate special features of AR
games, we would not prove that we had achieved the initial purpose of the project. The game we
set out to create was intended to exemplify some of the possible strengths of an AR application.
Three main criteria were defined for the game:

1. Casual Play should be voluntary; since the game is intended to be played by a random crowd
of people, if some members of an audience do not want to play, they should not feel uncom-
fortable about it, nor should they be an obstruction to other players enjoying the game.

2. Simple Keeping the game simple was considered of paramount importance, for two reasons.
One is that AR augments reality, which is already full of information we relate to, therefore
it is sensible to keep any augmentation either simple, integrated or both. The second reason
is that the intended use of the game was to have test audiences with little or no previous
experience, at a moment’s notice, which requires that both interactions and goals can be
grasped quickly and easily.

• As mentioned in 3.2 above, good AR interaction is natural and intuitive. This would serve
our purposes twofold by assisting test audiences in learning to play the game and in
demonstrating the qualities outlined in BallBouncer [3, Section 2].

• The purpose of keeping the game simple to grasp was not just to minimize frustration
for those who would play regardless; we also achieved a very low threshold for joining
in. Even those who might not otherwise be interested in playing might be enticed; thus
providing more feedback, as well as feedback from a wider range of the audience (i.e.
those less interested in new technology).

3. Engaging While the other two criteria deal with avoiding obstructions of the game experience,
there must of course also be an engaging game experience for anyone to take an interest. We
needed to define some simple game mechanic that would entertain a crowd at least for a
middling period of time.

Taking our cue from the original BallBouncer, we found that Sieber, McCallum and Wyvill
make several observations regarding the efficacy of various gametypes [3, Section 4], noting
that the competetive bomb game seemed to produce the greatest activity in the audience. This
meshed well with the results of Maynes-Aminzade, Pausch and Seitz [2, Section 5.3]:

With the beach ball, the lottery effect ("I might be next!") and the cheering or booing of one
another fully engages all of the members of the audience

. Based on this, we decided to build a competetive game, and given that our main purpose was
to prove we could emulate the games from BallBouncer, our game design was based on the bomb

13

AR Stadium Games - ARENA: Creating a framework for rapid prototyping of crowd controlled AR games

game mentioned there [3, Section 2].
Jegers [5, Section 4.4] states

“Pervasive games should enable the players to easily pick up game play in a constantly ongoing
game and quickly get a picture of the current status in the game world”

. He reasons that this is necessary due to the time/place independent game play that is a hallmark
of pervasive gaming making it prohibitively difficult to allow players to pause or save a game.
Though the concept of Pervasive games is a different topic than AR games, they do share a
common field in the design of unusual game mechanics due to their unusual nature. While our
game was not to be place independent (each game session takes place in a static location), it was
intended to be partially time independent. For it to be possible for players to walk into a game
in progress, they necessarily need to be able to pick up on the current state quickly. Additionally,
our intent to create a game which required no experience (2), required that the interactions and
goals are equally simple to grasp quickly.

Thus, the ideal of casual play (1) is largely supported by the simplicity of design, in making
it simple enough for players who walk into an already active game session to understand and
join in. However, to allow for those members of an audience who do not wish to play, we rely
largely on the elegant solution of teams. Not only is it an entirely sensible and obvious way to
set up a game in these circumstances, it also means that the players are teams, not individuals.
Each player is not important in him- or herself, importance is achieved as a part of a group, and
as such the absence or lack of involvement of some audience members does not detract greatly
from the overall team experience.

14

AR Stadium Games - ARENA: Creating a framework for rapid prototyping of crowd controlled AR games

3.4 Implementation

Our work was carried out on everyday laptops, running Ubuntu 9.04. The platform was chosen
mostly because our client suggested it, but it was also interesting to us as we had not been
using Linux much in the past. Linux offered a comprehensive collection of open-source tools for
software development, a fact that was not overlooked. There were some hiccups, the most major
of which was a broken kernel update on one computer, forcing a reinstall of the entire system.

In the bewildering ecosystem of programming tools for Linux, we chose to use Eclipse as our
IDE. Eclipse is a powerful tool with most features we know from other IDEs, like Visual Studio. It
is a cross-platform system, written in Java. We found it mostly pleasant to work with, with some
unpolished areas, the most glaring of which was debugger integration. Or perhaps more correct,
the lack of such. We were not able to get GDB, the GNU Debugger, to work with Eclipse, and this
led to some cursing and unrest. After searching for solutions for a while, we decided we could
live with the problem, and moved on. While breakpoints are handy, with some ingenuity one
can do impressive things using only printf for debugging. We also tried using DDD, the Data
Display Debugger. Perhaps with more experience in its use, it would have proven helpful for our
task.

With GNU/Linux comes the impressive suite known as GCC - The GNU Gompiler Collection. It
is a collection of Free/Open-Source compilers for many languages, the most interesting of which,
for us, was G++, the GNU C++ compiler. It has proven to be a high-quality compiler and one
of the pieces of our project that caused us no problems.

Our first task was to gather the required libraries and in some cases compile them to static
library files. This wasted quite some time, as not all libraries wanted to compile. We found that
several were easily accessible from Synaptic, the package manager in Ubuntu.

We set out with the goal of rewriting the original codebase piece by piece. As it turned out,
the time required to understand the old code, in addition to the work of actually doing the
aforementioned, would have taken significantly more time than implementing everything from
scratch, as well as giving a less satisfying end product, so the latter approach was favored instead.
We had greatly underestimated the helpfulness of the chosen libraries, and thus reached our first
milestone way ahead of time. The other effect of using unfamiliar libraries was that most our
carefully laid plans were thrown wayside, as they were incompatible with the way these libraries
worked, and the approach of starting from scratch rather than refactoring old and unknown
code.

For the graphics and window setup, we used OpenSceneGraph (OSG), an open-source scen-
graph available for free. For the physics simulation, Open Dynamics Engine (ODE), an open-
source physics engine, was used. We created a simple class to unify OSG and ODE (Open Dyna-
mics Engine). At this point, we encountered the problem that ODE by default is compiled with
double-precision calculations, while OSG uses single-precision. We tried recompiling ODE to fit
our needs, but this turned out to be more trouble than it was worth. We instead added some
utility functions that take care of the conversions necessary for interoperability between the two
libraries.D

The project called for a graphical user interface. The nature of the application means its use
would be output only - displaying scores, messages and possible game-enhancing overlays. Work

15

AR Stadium Games - ARENA: Creating a framework for rapid prototyping of crowd controlled AR games

was undertaken to provide classes that could display the necessary information, and it was soon
after found that this functionality was already present in OSG’s impressive hierarchy of classes.
However, certain functionality was desired to be easier to access, and classes facilitating that
were created.

It was early decided that the physical layout of the world in which our game was to take
place, would be defined by settings stored in an XML file. Libxml was used for this purposeD,
with utility functions added for ease of access to the kind of information we would use.D libxml
turned out to be very sensitive to misformed XPath queries, leading to a number of inexplicable
bugs. These were luckily squashed with time.

The original plan called for using ARToolKit for video feeds. This seemed like a promising
idea until we discovered that ARToolKit stubbornly refused to work. No example, nor other piece
of code with ARToolKit, was able to display anything on the screen. After numerous recompiles
and fiddling with settings, we abandonded this path, and chose instead to try and use FFmpeg.
FFmpeg was slightly more cooperative, and after only a few days, we could play video files.
Webcam support however, gleamed in the far distance, and would take a long time coming. As
it turned out, supporting both webcams and video files seamlessly was impossible. Instead, the
choice has been moved to the settings file, where it must be explicitly defined. Luckily, most
applications would only ever use webcams, so configuration would mostly not be necessary.
Following this, problems surfaced around the system for creating difference images from the
last two frames. The problems were tracked down to some piece of shared memory, which was
turned less shared to ameliorate the problem. At this point, finally, things worked as they should.
All in all, almost a month was spent tracking down problems with the video feed, making it the
single largest time sink in the project.

The application might take input from several sources, none of which necessarily is in sync
with the others. This called for a multi-threaded approach. In hindsight, a message-passing archi-
tecture might have been more fitting than the shared-memory model we chose. We chose to use
POSIX threads for this purpose, then at a later point replaced them with boost::thread, which is a
cross-platform concurrency library. The reason for this change was a surge of problems believed
to be related to threading. In the end we also found that boost::thread made for cleaner, more
understandable code, and thus chose to keep the new system.

As the design panned out, it proved necessary to organize the threading better, and a thread
manager was created. It takes care to kill all threads when they are no longer needed, and
makes sure threads are around as long as other threads need them to be. It also proved useful
for debugging, as output could then refer to threads by their function, not just their OS-given id.

The application’s ability to use several input sources was designed for three reasons:
First, this could give the application a further multiplayer dimension, allowing one to stream

video from a different location and thus play against people not present.
Second, one might choose to use a low-resolution camera for the movement source, to ease

processing, and a higher-resolution camera for displayed data. This would lower the processing
power needed, while increasing visual quality. The loss in movement precision is negligible.

Third, using several input sources for movement would make more complex movement de-
tection possible, like detecting the depth at which movement occurs. This would then use the

16

AR Stadium Games - ARENA: Creating a framework for rapid prototyping of crowd controlled AR games

projected position of game objects to identify points of interest, and then triangulate to find if
movement detected at the appropriate location in one source is the same movement as detected
by another source.

Before we had camera input working properly, we were able to read video files from the
harddrive and display those. This allowed us to create the class responsible for processing the
received frames. The original plan was to perform the processing on the GPU in a separate
OpenGL thread. This approach failed, and a software solution was chosen in its stead. Sadly,
using a single thread for such a parallel task is very inefficient compared to using the GPU,
and it is an unpleasant bottleneck, as the GPU solution should be able to perform this task for
virtually any resolution images, and our solution stutters at a resolution of 640x480 pixels when
we attempted to go beyond the basic processing functionality, such as processing the created
difference images to provide an data for a more sophisticated movement detection. In writing
this functionality, it was also obvious that the compiler be unfit for optimizing such a piece of
code, and lower-level abstractions had to be used.D

The application is higly reliant on its ability to detect and react to movement. This first piece
is performed by going through the received image pixel by pixel and comparing it to the previous
received frame. The pixel values of one is subtracted from the other, and the absolute value is
stored in a new image. This gives us an image of what changed between the two frames, and
most of this difference would be caused by movement. Changing light conditions could also
severely affect this, but the code does not take this into account.

Once the difference has been calculated, each object in the world is tested - first for adjacency
to the ’floor’ of the simulation, which represents the seating of the audience. Next, if the first
test passed, for movement in its covered screen section. The former is a simple distance test,
the latter divides the bounding square of the covered area into four smaller squares, and sums
the differences in each of these to see which has more differences, thus more movement. The
average location of this movement is then chosen as the originating point for a force affecting
the object.

Various approaches for getting the screen coordinates of physical objects were tested, and we
settled on using matrix math in much the same way OpenGL and other rendering systems do.
This uses OSG’s view and camera manipulator classes to calculate the screen coordinates.

Figure 1: The projection of objects onto the screen.

Other approaches for the calculation of
force were considered, amongst those the cal-
culation of center of movement for the boun-
ding square, equally bounding circle, and
other subdivisions of the bounding square,
like 3x3 instead of 2x2. In the case of dif-
ferent subdivisions, and even the subdivision
chosen, movement could have been calcula-
ted from more than one subsection. Our ap-
proach was chosen for its simplicity.

Several of the objects in the project made
sense to only have one of. In these cases, we

17

AR Stadium Games - ARENA: Creating a framework for rapid prototyping of crowd controlled AR games

used the singleton pattern. The classes for which this made the most sense were clStadium (the
physical representation of the locale) and clWorld (the simulation world, i.e. its physical rules,
container of the objects in it, and functions that relate to certain other monolithical parts of the
program).D

Another design pattern implemented is the monostate pattern. This is used for clThreadMa-
nifold. The monostate pattern is a close cousin to the singleton, except it uses no constructor.
Because of this, the monostate pattern is to be used only when the object’s creation should not
change any state.D

In the cases where it was possible and logical, our classes inherit from OSG’s own, related
classes. Our clObject is an osg::Transform, to represent the fact that it moves with ODE’s physical
representation of the same object.D

18

AR Stadium Games - ARENA: Creating a framework for rapid prototyping of crowd controlled AR games

3.5 Testing

Our application did not carry large amounts of unit tests, nor a battery of other tests. Instead, we
relied on hands-on testing and painstakingly thought-through code. Due to the agile methodo-
logy chosen, we went to lengths to ensure the current version of the application in the repository
would be as working as we could make it. That included compiling with no problems, and no
regressions. Only once was this requirement broken, and it was fixed five minutes later.

Due to the restriction of always having a running version, we were able to catch many bugs
long before they became a serious problem. Due to the graphical nature of the application,
most errors could be spotted by simple visual inspection of the monitor while the application
was running. Most errors found and fixed in this way were sign errors and its ilk, while more
insidious errors could be identified after fastidious inspection and numerous smaller tests under
controlled circumstances to provoke behavior thought to have been spotted at an earlier point.

An example of the latter kind was a bug in which the movement detection moved objects in
the opposite depthward direction, giving the objects a behavior seemingly innocuous, but still
wrong. The specific error was that the force exerted on the object was directed from the center
of the active area toward its edge, rather than the other way around, and was fixed by inverting
the vector’s x and y components in the local coordinate system.

Due to the lack of proper debugger integration in our chosen IDE, printf was used for de-
buggingD, alongside stack traces for SIGSEGV - segmentation faults. The latter are not really
supported on Linux platforms, as the program is in an undetermined state if such a signal has
been sent. Disallowed activities after a segfault include printf, new, malloc, delete, free, and
any code that is not re-entrant. This left us with write, which is good enough for our purposes.

In addition to simple visual inspection tests, we routinely tested the interaction on people
around us, to make sure the program worked the way it should. This helped us locate several
errors and quickly deduce their solutions. A few larger-scale tests were performed with more
than a handful of people invited. All in all, this approach worked well for the rooting out of
errors in movement detection and related areas, and provided good feedback regarding user
experience and possible alterations to improve it.

Sadly, certain errors were not easily testable within the system chosen, multi-threading issues
chief among them. Unit testing could have been used more rigorously, and our system did not
help us pay enough attention to side effects.

On the topic of multi-threading, it should be mentioned that a message-passing architecture
would probably have simplified testing of multi-threading related issues, as it would reduce the
number of side effects immensely. This was not done due to constraints of knowledge and time.
Implementation of such a system may be worth investigating in the future.

As our work was based on that of others[3], our goal was not to test the merit of the aug-
mented reality ball-bouncing game, but instead that the application be in itself a flexible testing
framework for augmented reality crowd games, allowing one to quickly set up and experiment
with new game ideas. A simplified solution for creation of such games would make future re-
searchers in the field more productive and reduce their time lost to menial work. As such, the
most important test of our work was that we should be able to use our framework to produce
a game similar to those demonstrated by BallBouncer [3], which we performed by more or less

19

AR Stadium Games - ARENA: Creating a framework for rapid prototyping of crowd controlled AR games

replicating one of the mentioned games and gauging the response of an actual audience during
our presentation at the Hamar Game Challenge.

20

AR Stadium Games - ARENA: Creating a framework for rapid prototyping of crowd controlled AR games

4 Analysis

4.1 Discussion

4.1.1 Results

In this project, we have created a basic framework that supports the creation of simple AR games.
What we set out to produce was primarily a framework which allowed for the quick implementa-
tion of many different ideas based on the central concept of movement in a video affecting virtual
objects. An important goal for was that it could reproduce the games shown in BallBouncer [3],
but it was just as important that we not be limited to those, or the project would have achieved
nothing but recreating an already existing program. We were also interested to see how users
reacted to using the program. Though BallBouncer has already found audiences to be enthusias-
tic [3, section 5], it was important for us that our program could engender the same kind of
response. In fact, the somewhat crude nature of our game example might be seen as a benefit, in
that we were interested in determining the viability of using our framework to quickly prototype
an idea, be it for a gameplay idea or to test an interaction mechanic, and our test can be taken as
proof, however limited, that a basic prototype is not a hindrance in getting an audience engaged.

When all is said and done, at the end of our project period, we have created a functioning
framework, and while it is not as complete as ideal, it has proven that it is up to the job of
prototyping an AR game in a short time. We presented a game at the Hamar Game Challenge
which was created by the two team members in less than a week, and we claim it proved both
playable and enjoyable. Prior to our presentation, the audience were not aware they would be
playing a game, they were simply informed they would have the option to try the game, and
were given a brief half-minute introduction to the rules before we started the game. Following
our demonstration, we asked several simple yes-no questions about their experience, assessing
the response to each question by asking those who agreed to raise their hands and then having
the camera used during the demonstration provide a screen-capture of the audience after each
question.

As can be seen from these results, the response was generally positive, with most of the
audience enjoying the experience and expressing an interest in availing themselves of such a
system if it were available. Our criteria for the game, simple, casual and engaging were shown
to have been accomplished to a greater or lesser extent. In excess of half of the audience felt the
interaction was intuitive and that the rules were easily understandable from playing the game;
supporting our claim that the game is simple to understand and join in. A considerable majority
answered that the game was entertaining and that they would play again given the opportunity,
solidly supporting our claim that the game is engaging.

We also observed, much as indicated by Maynes-Aminzade, Pausch and Seitz [2, Section 5.3]
that the majority of the crowd was engaged in the activity, even when not directly interacting
with the ball. Seemingly, an implicit cooperation was quickly realized; parts of the crowd on the

21

AR Stadium Games - ARENA: Creating a framework for rapid prototyping of crowd controlled AR games

Question raised hands as a percentage
Was this entertaining? 82

Would you use such a system if it was available in some public location? 73
Were the rules easily understandable from the explanation? 70

Were the rules easily understandable from playing the game? 56
Did your interaction with the game feel intuitive? 58

How many feel it was simple to get the ball to move as you wished? 28
How many feel it was too hard? 25

How many of you spent too much time unable to affect the ball? 34
How many preferred the regular video representation? 86

How many preferred the difference image? 8

Table 1: HGC audience response

same side of the line support each other in a common goal, passing the ball around. There was
the occasional shouted comment, but these seemed to be between audience members already
familiar with each other. However, there was also a lower-order communication: the crowd pro-
ducing a combined murmur of encouragement or excitement when the game went in the favor
of one team or during periods when control of the ball was hotly contested.

The criterion that the came should be casual was not as well tested during the presentation,
given that the audience was told they were about to play a game, and as such, most members
engaged in the activity. However, during a later lull, while we were all waiting for a decision
from the jury, we set up the game to simply run without any announcments. During this period,
members of the audience were walking freely about, some leaving the room to get food or
drink, some remaining seated, some gatherin in small groups. Even in this state, those who
were interested were able to play the game, while others ignored it, some switching between
playing and other activities, some entering the room and joining in spontaneously. While less
documented, we hold that this is a good indication that we achieved an appropriate level of
casual involvement.

Another important claim can be made about the results: from the responses to the question-
naire, as well as observing the crowd while playing, the audience reacted similarily to what was
indicated in BallBouncer [3, Section 4], which is the primary feature in the evaluation of this
project; at least indicating, if not proving, that our framework can be used to achieve the same
sort of results.

Regarding our secondary intent, this test is a good indication that game prototyping can be
useful in acquring experimental data. The audience was not only enthusiastic about engaging in
the activity provided, but seemed positive to the idea of answering a questionnaire concerning
their experience. In this instance the responses to the questions about the video representation
are of special interest in that they felt the visual feedback was important in interacting with the
game. Several people commented that it was too hard to see who was where in the difference
image. This is an excellent example of feedback on an interaction feature, and underlined by the
nearly unanimous agreement.

The more informal tests with smaller groups produced much the same results, though these
tests are qualitatively different not only in the size of the subject groups and the lack of a formal

22

AR Stadium Games - ARENA: Creating a framework for rapid prototyping of crowd controlled AR games

questionnaire, but also in the fact that the smaller test groups had been recruited for the sole
purpose of testing an AR application. Nonetheless, the reactions gleaned from these tests, and
indeed the completely informal tests run on visiting family members bear out the conclusion
that even quite simple prototypes will encourage an audience to provide interaction data given
that it is engaging. Also, and more importantly for our project, that our framework is capable of
producing these kinds of prototypes.

23

AR Stadium Games - ARENA: Creating a framework for rapid prototyping of crowd controlled AR games

4.1.2 Choices

Unlike most other augmented reality projects here referenced, VARG A.R.E.N.A. does not require
any equipment beyond the computer and one or more cameras. This is because the game is
designed to be played by a large group of people, and the distribution of such items to each
player would prove costly, inefficient, and unnecessary. Supposing the items had any kind of
value, there would also be the problem of theft. Instead, our system uses merely the movement
of the crowd to interface with the system. Certainly, such items may be an idea for a future
extension of the system, but at the moment that is not implemented nor planned. It is also worth
noting that some artifacts may prove useful, in that the system detects movement by comparing
two subsequent frames on a pixel-by-pixel basis. Examples would be to use a white jacket if the
seats or surrounding players are dark of color.

Though some other augmented reality projects also are designed for stationary operation, this
is not usually the case. Limiting ourselves to such a setup has great gains in flexibility in other
areas, one of which is that the detection of movement is local only, and no cycles go to waste
determining the orientation of the system. In addition, this allows us to create a more detailed
and correct model of the environment, in that we have a priori knowledge of its design, and it is
unlikely to change suddenly and gratuitously.

Our system assigns no value to individuals - only movement, which may be conducted by
one or more persons. This allows us to give an immediate feeling of team spirit, by dividing the
audience into visually distinct groups. The game is then played with the goal of furthering the
goals of the group as a whole. Arguably, one could set out to sabotage this by working against
the implicitly given rules, but the lack of focus on individuals would render such an effort largely
futile.

While the application is designed chiefly for inclined surfaces with a seated audience, this is
not a necessity for its operation. The system is flexible enough to accommodate surfaces of any
topology with some adjustment. This possibility is not implemented in the current application,
but its addition would be trivial. In addition, movement need not necessarily be restricted in
the way stadium seating would. One could certainly imagine the system utilized with a flat,
planar surface as the play field. It is worth pointing out that a crowd running around while
keeping their eyes on a screen could increase the potential for physical harm as absent-minded
individuals focus solely on the image rather than their own movement relative to the surrounding
mob. Particulary this could prove dangerous in the case of the audience being teenagers or little
children, as they are notorious for their recklessness. Some supervision might be advisable should
this be the case. It is also it is important that it be devoid of clutter, that the audience not lose
their footing upon hitting unexpected protrusions or sudden depressions.

As for locations, our application is designed for indoor usage. By imposing this restriction,
we define away several complex issues in favor of a much more controllable environment [6,
Section 2.2]. Ambient light conditions greatly effect the image processing; in particular, any
sudden change in brightness is interpreted as movement, and thus the passage of a cloud would
to the system be equivalent to the whole audience jumping. Inside a closed hall, this is rarely a
problem. Other issues with outdoor usage is the effects of weather. As video is our only input,
anything disturbing the feed will confuse the system. Rain and other precipitation might be

24

AR Stadium Games - ARENA: Creating a framework for rapid prototyping of crowd controlled AR games

thought of as having the effect of random, potentially massive noise.

25

AR Stadium Games - ARENA: Creating a framework for rapid prototyping of crowd controlled AR games

4.2 Shortcomings

Out of three milestones, we only made one. The first failure was due to a necessary reevaluation
of our project plans: we originally intended to replace sections of the original program piecemeal,
when this didn’t work out, we had to start building the program from scratch, which made
it more or less impossible to have a working copy ready for the first milestone. The second
milestone we should have made, and we were close, but the persistent issues regarding the
video stream delayed progress too much. We consider the issues surrounding the video stream,
and the massive delay resulting from them, to be our greatest failure, and to no little extent, it is
responsible for our failure to extend the basic functionality.

While the extended functionality was not part of the central goal set out initially, our failure
to move beyond the basic framework was a disappointment. As it is, while the code is certainly
more maintainable and readable than the original, the current state of the project can only
produce a somewhat stunted version of the original efforts in BallBouncer. As such, the program
will need some more work before it satsifies the needs of our sponsor. One of the major planned
features that was omitted by necessity was the improved movement detection; as is outlined in
Section 3.4, we had to abandon the attempt to run the processing on GPU, and consequently,
performance sank to unacceptable levels given our criteria of 30 frames per second at 800 by
600, as stated in Section 3.2

Finally, we were less strict about the work routines during the middle period of the project,
resulting in poor progress. This was in part an effect of the mounting frustration with the video
issues, but also a cause for prolonging them. A strong supervisor would have been invaluable
during this period, but unfortunately, at that point, due to reasons mentioned in Section 2.1 we
were in between supervisors.

Several things did not go as planned in our execution of the project, most glaring of which
was the lack of discipline that evolved, perhaps due to the decision to work from home rather
than at school. We had reasons for this decision, as most good workplaces there were already
taken, and the less good ones were, well, less good.

In the beginning, working at home was at least as good as either of the choices available to
us at school, and discipline was good. However, lacking any external pressure to work, discipline
slowly degenerated. Coupled with the video stream’s persistent stubbornness in refusing to work,
this led to somewhat lax working habit, at least in periods.

This problem would have been ameliorated by stricter routines, a procedure that would have
been promoted by having to leave the safety of our home, or by having someone watch over us,
to whom we would feel obliged to listen. It is our belief that our supervisor was supposed to take
on this mantle, but misunderstandings and a general lack of knowledge of what was expected
lead to this not happening. When later we changed supervisor, the notion that the supervisor
did not supervise, was ingrained and not questioned, and perhaps more importantly, work had
become very hectic to meet the upcoming milestone.

4.3 Further development

As regards further developent, there are extensive possibilites, both technical and academic in
aspect. Regarding the technical aspects there are two main areas of improvement available: im-

26

AR Stadium Games - ARENA: Creating a framework for rapid prototyping of crowd controlled AR games

proving the modules already present, or extending functionality by adding new modules. While
we do hold pride in our work, we must admit there are some areas in the code which we would
have liked to put some more work into. Chief among the areas lacking in polish would be those
added just prior to the presentation at HGC, as the rush did somewhat inhibit good coding
practices, leaving particularily the function handling the force calculation bloated with responsi-
bilities that should be handled elsewhere in the code to avoid coupling the modules too tightly.
However, one of the main priorities in creating the framework was that it should be a simple
matter to add later extensions. The modular nature of the code supports this concept well, and
though it would benefit from a period of proper cleanup and polish, extending the basic frame-
work through additional classes is quite possible, and indeed provided for.

One of the most important intended features that we had to omit due to time constraints was
the improved movement detection. The movement detection in BallBouncer [3, section 3.1] is
relatively simplistic; our approach is much the same, and is described in Section 3.4, on imple-
mentation. The current detection has no facility for truly detecting the direction of movement,
instead relying on what amounts to guesswork. While this is acceptable in many cases, the occa-
sional mistake is noticeable, especially with large, quick movements, where the area of motion
passes through the area of the ball between one frame and the next, and the program, knowing
only that there is now motion on the other side of the ball ends up interpreting it as motion in
the opposite direction. Our solution, which never progressed beyond concept, was to analyze the
current as well as the previous difference image created, so that the program could compare two
sequential difference images and identify in which direction motion areas had moved. The speci-
fic technical aspects of this operation were never clearly defined, but any attempt to improve the
basic framework would be well served by working out the process and implementing it, as this
would provide more convincing interactions between real and virtual objects; a central ideal for
this program. In order to not abandon the principle that the program run smoothly on an average
laptop however, our issues in moving the processing from CPU to GPU, outlined in Sections 3.4
and 4.2 would have to be overcome.

Leaving aside the technical aspects though, the main purpose of the framework is to facilitate
simple, rapid prototyping of AR games. As such, it would be a natural base for projects that
sought to investigate alternate interfaces, crowd computer interaction, certain social aspects of
IT or a multitude of other topics. Though some measure of game theory would undoubtedly be
invaluable, an element of anthropology, sociology or other human science could give a much
firmer foundation for analyzing the behaviour of the test audiences and drawing conclusions
about e.g. the effects of AR interfaces.

As ARToolKit has the ability to recognize special shapes and determine their distance and
orientation, a planned feature was to utilize this capability to automatically determine the extent
of the locale in which the system was set up, as well as the orientation of the camera used. With
the abandonment of ARToolKit for video display purposes, and the time spent getting FFmpeg to
do that task, this was pushed down the priority list. If it were to be added, ARToolKit is perfectly
capable of processing still images from other sources, like FFmpeg. We feel it would be a very
interesting extension to be added in the future. However, given the stationary nature of the
application, such an addition may prove to be an unnecessary luxury, as inputting these values

27

AR Stadium Games - ARENA: Creating a framework for rapid prototyping of crowd controlled AR games

would be a one-time job in all but the rarest of cases.

4.4 Group evaluation

4.4.1 Organization

Considering the organization of the project, we are reasonably pleased; though our team was
small and our acquaintance made for an informal atmosphere, we mostly adhered to good prin-
ciples of software development. The main deficiency, as has been intimated earlier, was the lack
of a dedicated organizer; a team leader who could dedicate their time to distributing responsibi-
lities and keeping tabs on progress.

4.4.2 Distribution of work

During the development, we were each responsible for certain classes. Though it must be admit-
ted that we each interfered some in the other’s work, this was largely beneficial, due to good
communication, and we kept to the responsibilities, so that should one of us require a certain
feature in a class the other was responsible for, the common approach was to inform the other
member and await resolution. As Simen is a significantly more experienced programmer; he to
some extent took on the role of lead programmer, having "the majority vote" when we decided
matters of design and implementation. Arild, on occasion provided a result-oriented perspective
when

4.4.3 Subjective experience of the Bachelor thesis

Arild: In hindsight, we might well have been too focused on the development of the program to
the point that we lost sight of the project beyond. During the latter period of the project, when
we turned our focus to research and the writing of this paper, I found that there was a lot of
interesting subjects I would have liked to relate to this project. Primarily the field of human-
machine interaction, which is seeing interesting experimentation these days. In some ways, it
is a point of pride that we completed our task while overcoming difficulties, in another way, I
regret the time we could have spent extending this project further. Overall, though it has been
both enjoyable and I feel I have grown as both a programmer and a software development.

Simen: Working on a team has certainly been a learning experience, and the task was inter-
esting and challenging. There were times when our problems overshadowed the joy of program-
ming, but those moments were rare. As Arild mentions, we are programmers first and foremost,
and the programming was to us perhaps too absorbing. All in all, the project has been enjoyable,
and I would like to continue the task in the future.

28

AR Stadium Games - ARENA: Creating a framework for rapid prototyping of crowd controlled AR games

5 Conclusion

As an experiment in either the use of games as a testbed for experiments, or the use of AR
as an interface, this project would be sadly lacking. However, these are secondary and tertiary
objectives to the main purpose of this project. As regards the main purpose, we have produced
an extensive framework, which has proven itself capable of performing its intended function; the
creation of AR-based games. This proof takes the form of the creation of a demonstration game
which was implemented over a short period of time, and was subsequently tested and found to
be acceptable in engaging an audience.

Furthermore, we have to some extent substantiated the claim that rapid prototyping of games
can be a viable method for acquiring experimental data; our demonstration game was prototyped
over a brief period, and was able to engage an audience to the point where we could acquire
relevant data.

During the project we acquired a great deal of experience, largely as regards programming.
One of the central lessons was that when working on a complex system, it is doubly important
for any code produced to adhere to good coding standards, as others rely on the sections you
are responsible for, and overall team efficiency is limited if they can not easily grasp the modules
they need. Related to this is the desire to alter modules which other members are responsible
for, even with the aim of improving their standard, this can easily have a cascading effect on the
work done by others, delaying the entire project considerably.

In addition, we learned several lessons on the subject of development methodologies and
software development in general, and specifically about Agile methodologies, as exemplified by
Scrum. The fluid nature of the design and implementation suited the project well in general,
but that same nature makes it difficult to correctly estimate the course of development, which
can lead do significant difficulties in meeting fixed milestones. Related to this is the importance
of the critical path; though our project is highly modular, the delay of the central video feed
module left us unable to proceed with testing, which effectively halted further development for
an extended period.

5.1 Final summary

In conclusion then, in all our tests, small or large, players took to the experience intuitively,
experimentally and spontaneously. As well as indicating that our framework fullfills the basic
requirements made of it, these tests substantiated the viability of using games created this way
as a testing ground. And furthermore, apart from any other consideration, the enthusiasm shown
for these kinds of games by any audience is still inspiring, and more than anything is a motivation
for further work in this field.

29

AR Stadium Games - ARENA: Creating a framework for rapid prototyping of crowd controlled AR games

Bibliography

[1] M. Billinghurst, I. Poupyrev, K. H. & May, R. 2000. Mixing realities in shared space: An
augmented reality interface for collaborative computing. In ICME, 1641–1644.

[2] D. Maynes-aminzade, R. P. & Seitz, S. 2002. Techniques for interactive audience participa-
tion. http://www.monzy.org/audience/ICMI-2002-finalpub.pdf.

[3] J. Sieber, S. M. & Wyvill, G. 2009. Ballbouncer: Interactive games for theater audiences.
http://metamanda.com/crowdcomputing/subs/sieber-mccallum-wyvill.pdf. (Visited
May. 2010).

[4] T. Starner, B. Leibe, B. S. & Pair, J. 2000. Mind-warping: Towards creating a compelling
collaborative augmented reality game. In Proceedings Intelligent User Interfaces (IUI) 2000,
256–259. ACM Press.

[5] Jegers, K. 2007. Pervasive gameflow: Understanding player enjoyment in pervasive
gaming. http://www.ipsi.fraunhofer.de/ambiente/pergames2006/final/PG_Jegers_

GameFlow.pdf.

[6] B. Avery, W. Piekarski, J. W. & Thomas, B. H. 2006. Evaluation of user satisfaction and
learnability for outdoor augmented reality gaming. http://www.tinmith.net/papers/

avery-auic-2006.pdf. (Visited May. 2010).

31

http://www.monzy.org/audience/ICMI-2002-finalpub.pdf
http://metamanda.com/crowdcomputing/subs/sieber-mccallum-wyvill.pdf
http://www.ipsi.fraunhofer.de/ambiente/pergames2006/final/PG_Jegers_GameFlow.pdf
http://www.ipsi.fraunhofer.de/ambiente/pergames2006/final/PG_Jegers_GameFlow.pdf
http://www.tinmith.net/papers/avery-auic-2006.pdf
http://www.tinmith.net/papers/avery-auic-2006.pdf

	Preface
	Contents
	Introduction
	Project organization
	Report outline

	Design
	Specification
	Preliminary design
	Game design
	Implementation
	Testing

	Analysis
	Discussion
	Results
	Choices

	Shortcomings
	Further development
	Group evaluation
	Organization
	Distribution of work
	Subjective experience of the Bachelor thesis

	Conclusion
	Final summary

	Bibliography

