
BACHELOROPPGAVE:

Inexpensive Data Hiding on USB Memory Sticks

FORFATTERE:
Knut Borg
Øystein Nilsen
Rune Søbye

DATO:
Vår 2011

Inexpensive Data Hiding on USB Memory Sticks

Summary of Graduate Project

Title: Inexpensive Data Hiding on USB Memory Sticks Nr:
Date: Vår 2011

Participants: Knut Borg
Øystein Nilsen
Rune Søbye

Supervisor: André Årnes

Employer: eQ-3 Entwicklung

Contact person: Hanno Langweg, hanno.langweg@hig.no

Keywords

Pages: 103 Appendixes: 1 Availability: Open
Short description of the main project:
Memory sticks have increased their storage capacity while the price have decreased. Memory sticks
are small, can carry lots of information and are easy to carry around. Unfortunately, it is also
easy to lose a memory stick wherever the owner for instance is at a Internet cafe or at his/her
workplace. Possible adversaries are thieves or nosy colleagues that want to copy read, edit or delete
the information stored on the memory stick. One solution users can use in order to prevent people
to inspect their memory stick is to use encryption, which is a a method many firms offers today. The
downsides with using encryption for protection files is that it is time consuming and the cryptographic
tools might be too complicated to use for regular PC users.

The German company eQ-3 Entwicklung GmbH has assigned us to develop a software, in or-
der to find out whether it is feasible to hide files with using a more time efficient method to protect
files than encryption. The software is not supposed to be able to hide files from people who can invest
in time and forensic tools, but it should be able to prevent regular thieves and nosy colleagues from
tempering with the information stored on a memory stick.

The group has analysed the speed of hiding and finding files compared to encryption, and also
what can be found with forensic tools and other methods when files are hidden.

The main conclusion of the work done is that the software we have created shows that it is
possible and feasible to hide files on a memory stick without the use of encryption.

iii

Inexpensive Data Hiding on USB Memory Sticks

Sammendrag av Bacheloroppgaven

Tittel: Inexpensive Data Hiding on USB Memory Sticks Nr:
Dato: Vår 2011

Deltakere: Knut Borg
Øystein Nilsen
Rune Søbye

Veiledere: André Årnes

Oppdragsgiver: eQ-3 Entwicklung

Kontaktperson: Hanno Langweg, hanno.langweg@hig.no

Stikkord

Antall sider: 103 Antall vedlegg: 1 Tilgjengelighet: Åpen
Kort beskrivelse av bacheloroppgaven:
Minnepenner har med tiden fått større lagringskapasiet og blitt billigere. Minnepenner er små og
lette, kan lagre mye informasjon og er enkle å frakte med seg rundt for eieren. Dette gjør også at
minnepenner fort kan mistes, for eksempel når eieren er på en internettkafé eller på jobb. Mulige
motstandere er tyver eller nysgjerrige kollegaer, som ønsker å kopiere, slette, lese eller endre på
informasjonen som er lagret på minnepennen. En løsning som kan brukes for å beskytte data
lagret på en minnepenn er kryptering av data, som er en løsning mange firmaer leverer i dag.
Hovedproblemene med kryptering er at det er tidkrevende og at verktøyene som brukes for å utføre
krypteringen kan være vanskelige å forstå for vanlige PC-brukere.

Det tyske firmaet eQ-3 Entwicklung GmbH har gitt oss i oppgave å lage et program for å un-
dersøke om det er hensiktsmessig å gjemme filer med bruk av mindre tidkrevende metoder enn
kryptering. Det er ikke meningen at programmet skal kunne beskytte mot kunnskapsrike motstandere,
men det er forventet at det skal gi tilstrekkelig beskyttelse mot vanlige tyver og nysgjerrige kollegaer.

Gruppa har analysert programmet med tanke på hvor raskt det er og hva som kan oppdages
med forskjellige dataetterforskningsverktøy og andre metoder når filer er gjemt.

Hovedkonklusjonen på oppgaven er at programmet vi har laget viser at det er mulig og hensiktsmessig
å gjemme filer på minnepenner uten bruk av kryptering.

iv

Inexpensive Data Hiding on USB Memory Sticks

Preface

We chose this project because we thought it sounded interesting to hide information on memory
sticks without using encryption as well as gaining experience in creating a software from scratch.
We also thought it would be interesting to learn how hardware is managed at a low level by Win-
dows, as well as getting more into details about the FAT32 file system.

The bachelor thesis has been challenging, but instructive. We have learned a lot about the FAT32
file system and how to make a bigger software and GUI. There are several people we would like
to thank:

• Hanno Langweg for constructive criticisms and supervising during the entire project period.

• Our supervisor André Årnes for giving us ideas on how we should approach different prob-
lems.

• Our employer (represented by Dirk Stüben) for answering question during the development
period, for providing us with memory sticks free of charge and testing the final version of the
software.

• Simon McCallum for advice about C# and DLLs.

• Cathrine Fjeldstad for proofreading the bachelor thesis report.

v

Inexpensive Data Hiding on USB Memory Sticks

Contents

Preface . v
Contents . vii
List of Figures . ix
List of Tables . xi
Abbreviations and definitions . xiii
1 Introduction . 1

1.1 About the layout and structure of the report . 1
1.2 Target audience . 2
1.3 Objectives . 2
1.4 Our knowledge background . 2
1.5 Choice of programming language . 3
1.6 Framework . 3
1.7 Effect goals . 3
1.8 Result goals . 3
1.9 Scope . 4
1.10 Description of group members, advisor and employer 4

2 Background . 5
2.1 About the FAT32 file system . 5
2.2 The development process . 5
2.3 Description of the software . 6
2.4 Description of users . 7
2.5 Description of attackers . 8
2.6 Limitations . 8
2.7 GUI . 8

3 Description of the FAT32 file system . 11
3.1 Reserved region . 11
3.2 Sectors . 11
3.3 Clusters . 11
3.4 The FAT . 12
3.5 Data region . 13
3.6 Representation of file names . 13

4 Development and testing . 19
4.1 The foundation of the software . 23
4.2 Development of the RemoveTrace() function . 24
4.3 Development of the RecoverTrace() function . 28
4.4 Development of the GUI . 29

vii

Inexpensive Data Hiding on USB Memory Sticks

5 Development results . 31
5.1 How HideAll() works . 31
5.2 How RemoveTrace() works . 31
5.3 How RecoverTrace() works . 33
5.4 Root cluster and file handling . 35
5.5 Elimination of duplicate file names . 39
5.6 GUI . 44

6 Software Analysis . 45
6.1 Level of protection . 45

6.1.1 First sight discovery . 45
6.1.2 Analysis using advanced tools . 46

6.2 Performance analysis and comparison . 48
6.3 Conclusions of the analysis . 51
6.4 Known bugs . 51

7 Future work . 53
7.1 Possible improvements . 53

8 Discussions and evaluation . 55
8.1 Evaluation of the work done by the group . 55
8.2 Criticism of the bachelor thesis . 55

9 Conclusions . 57
Bibliography . 59
A Analysis results . 61
B GUI suggestions . 63
C Script . 67
D Timesheets . 69
E Project agreement . 75
F Status reports . 77
G Project plan . 79
H External test results . 95

viii

Inexpensive Data Hiding on USB Memory Sticks

List of Figures

1 Our four suggestions for GUI. 9
2 How a file chain works. 13
3 Short file names . 14
4 Compressed version of two long file names . 15
5 Values indicating long file names . 15
6 Representation of long file names . 16
7 First entries in long file names . 16
8 Representation of a directory . 17
9 Deleted file . 17
10 How the root directory increases in size when hiding files 20
11 Hiding files with safe mode . 21
12 Hiding files with light mode . 22
13 How the memory stick looks after the hiding process has finished. 25
14 Predefined sectors . 26
15 The letter ’F’ occurred after the hiding process had finished. 29
16 The difference between safe and light mode with the amount of bad clusters. . . 33
17 “Merging” the FATs in safe mode. 35
18 How the linking between two clusters works. 37
19 How the linking process works. 38
20 Buffer with hidden files. 40
21 Short or long file name check . 41
22 Namecheck . 41
23 Two methods of renaming files with long file names. 42
24 ChangeName() function . 43
25 Normal version . 44
26 Advanced version . 44
27 Space allocation viewed in WE . 45
28 The space a FAT copy allocates . 46
29 file contents in clear text . 47
30 Bad clusters viewed from Autopsy . 47
31 Average times of the safe hide function on a 32 GB memory stick 49
32 Average times of the light hide function on a 32 GB memory stick 49
33 Average times of the find function on a 32 GB memory stick 50

ix

Inexpensive Data Hiding on USB Memory Sticks

List of Tables

1 Data found in the BPB . 23
2 Time used . 28
3 Space allocated . 32

xi

Inexpensive Data Hiding on USB Memory Sticks

Abbreviations and definitions

Abbreviations

• AES - Advanced Encryption Standard

• API - Application Programming Interface

• BIOS - Basic Input/Output System

• BPB - BIOS Parameter Block

• CPU - Central Processing Unit

• DD - Data Description

• DLL - Dynamic-Link Library

• FAT - File Allocation Table

• GB - Gigabyte = 230 bytes

• GUC - Gjøvik University College

• GUI - Graphical User Interface

• KB - Kilobyte = 210 bytes

• MS - Microsoft

• MSVS - MS Visual Studio

• NTFS - New Technology File System

• OS - Operating System

• RAM - Random Access Memory

• TB - Terabyte = 240 bytes

• TSK - The Sleuth Kit

• USB - Universal Serial Bus

• WE - Windows Explorer

Definitions

• Bad cluster - Cluster which can not be allocated.

• Binary data - Data which is represented by 0 or 1.

• Binary file - A file consisting of binary data.

• Cluster - A group of sectors.

xiii

Inexpensive Data Hiding on USB Memory Sticks

• Cryptography - The knowledge of hiding information.

• dd - Unix program that copies data

• Decryption - Making encrypted information readable.

• Encryption - Protecting information by making it unreadable.

• File system - A system for storing information.

• File system forensic tools - Tools for analysing contents on storage devices.

• Hex editor - Program to view binary files.

• Image - A file containing the bytes of a hard drive.

• ls-command - Lists files in Unix file systems.

• Memory stick - A portable device for storing data.

• Open source - The source code is available for anyone.

• Root cluster - Defined as the cluster where file names are stored.

• Root cluster chain - A linked list of root clusters.

• Sector - A variable sized collection of bytes on a storage device.

• Steganography - Hiding data from plain sight by obscuring it.

xiv

Inexpensive Data Hiding on USB Memory Sticks

1 Introduction

USB (Universal Serial Bus) memory sticks are common devices to store information on. They
are small, lightweight and easy to carry around, which makes them susceptible to loss of data.
We often hear stories about sensitive information found on lost memory sticks where no form of
protection like encryption are implemented [1, 2]. Memory sticks are also easy to search through
without the knowledge of the owner, for instance when the memory stick is lent out to a friend
or a colleague.

There has always been a need to hide information from others, and there are several ways of
doing it. There is steganography, where information is hidden, and cryptography, where the in-
formation is encrypted so it is unrecognizable and practically impossible to recover without a
decryption algorithm and a decryption key. Our method is based on hiding information from
plain sight, so it is similar to steganography. There is however a high possibility that the hidden
files can be found if the attacker has forensic tools and experience.

There are methods to encrypt data and then hide it (the encryption program TrueCrypt [3] has
a function that can encrypt files within other encrypted files, so that a user can claim plausible
deniability [4]. If an encrypted message is found, it is still unreadable for anyone who does not
know the key to decode it. One of the problems concerning encryption is the time consumed
when large amounts of data are being encrypted. There is also the problem that it is practically
impossible to recover the data if the user has forgotten the key needed to perform the decryption.

Further details about speed of encryption compared to our software can be found in chapter 6.2

1.1 About the layout and structure of the report

Since the assignment is more like a software development assignment in practice than a pure
information security assignment would be, the report will have different sections describing the
development process in addition to the analysis part. Source code samples will be marked and
formatted with a different font and have syntax highlighting.

The report is divided into the following chapters:

• Chapter 1 describes the software, the users of the software and possible adversaries, as well
as the goals of the project.

• Chapter 2 describes our background materials for the work done, in addition to software
used. Finally, we list which means of quality control we used during the software development
period.

• Chapter 3 describes the FAT32 file system and the logics behind it.

1

Inexpensive Data Hiding on USB Memory Sticks

• Chapter 4 describes the development process.

• Chapter 5 gives development results, including a description on how we managed to manip-
ulate the FAT32 in order to be able to hide and recover files.

• Chapter 6 gives an analysis of the software, where it is compared with cryptographic means
of protecting files. Also, known program bugs are described in this chapter.

• Chapter 7 gives suggestions for future work.

• Chapter 8 contains discussions and evaluations, including criticism of the bachelor thesis and
evaluation of the work done by the group.

• Chapter 9 contains the conclusions of the work done.

1.2 Target audience

The software is developed for a German company named eQ-3 Entwicklung GmbH and is inten-
ded to be easy to use for people with average computer skills. This report is about the theory
behind the software and how we worked to solve the problems we encountered during the de-
velopment process.

1.3 Objectives

This bachelor thesis is about hiding files on USB memory sticks with the FAT32 file system without
the use of encryption. The reason for avoiding encryption is because it is a resource heavy oper-
ation, and for instance encrypting an entire 32 GB memory stick might take a while depending
on how powerful the computer is, as seen in chapter 6.2. It may also not be trivial to use en-
cryption for people with lacking experience regarding cryptographic tools. Therefore, it could
be beneficial to users if they had access to software which hides files without using complic-
ated cryptographic tools. The use of this software should be less time consuming and more user
friendly than encryption. However, without the use of encryption, the software will not prevent
attackers with file forensic tools and knowledge at their disposal to find the hidden files on the
memory stick. The software is only supposed to hide files from people who might do a quick
inspection of the memory stick, like using Windows Explorer (WE) to view files.

1.4 Our knowledge background

The group members are studying for a Bachelor’s degree in Information Security at Gjøvik Uni-
versity College (GUC). This project is however mainly a software development project, and none
of the group members have had any experience with writing bigger software other than a course
in software engineering. To be able to create a program that hides and recovers files, be user
friendly and have a graphical user interface (GUI), we had to learn a lot of new things that had
not been covered by our curriculum. The FAT file system had to be learned in detail. Although all
of us attended an operating system course, it did not go as much into detail about file systems as
we needed for this bachelor thesis. Therefore, we had to study the FAT32 specification [5] thor-
oughly before we were able to manipulate the file system. We also needed to familiarize with the
file forensic tool kit The Sleuth Kit (TSK) [6] for analysis purposes. In addition to that, we had to

2

Inexpensive Data Hiding on USB Memory Sticks

learn the Windows API (Application Programming Interface), which were needed for controlling
the writing to, and reading from, the memory sticks. We had to figure out which functions we
needed. Furthermore, we had to understand what the functions and the parameters to those
functions did and how to use them. We read a lot of documentation on MS websites [7] to get
an understanding of the standard system functions.

1.5 Choice of programming language

We had a choice of writing the software in either C, C++, Java or C# (all these languages could
use Visual Studio 2008, which was a requirement). Our decision was to program in C, since it
is low-level compared to other programming languages and is the most common language for
controlling hardware, which was an important part of the coding in this project. By low-level,
we mean access to functions that control the hardware, like device drivers.

None of us were familiar enough with C# for it to be a viable option for low-level programming.
C# was however used to create the GUI, since it was the simplest option. More details about the
choice of C# can be read in chapter 5.6.

1.6 Framework

Memory sticks and forensic tools were needed for testing and analysis. The report is written in
LaTeX and the source code in Microsoft (MS) Visual Studio 2008. We used our own computers
for development and computers at GUC for testing of the software. The costs were minimal, all
we needed was five memory sticks for testing and development purposes.

1.7 Effect goals

Effect goals are the goals we believe might be the result of the finished product:

• A well made product will lead to good publicity for the employer, because the product reflects
how the company handles quality assurance. Also, a good product itself reflects the quality
of the employer’s products as a whole.

• The customers’ data will be better protected against people who do not invest a lot of time
and effort investegating the memory stick for hidden data.

1.8 Result goals

Result goals represents what should be accomplished at the end of the project:

• Make an intuitive GUI, which means the user should not have to read the manual before he
can hide or recover files. The GUI is the interface used for communicating with the software.

• Make a product that is of such quality that the employer chooses to share it with their cus-
tomers.

• Be able to hide and recover files in a safe and efficient manner without the risk of loosing
data.

3

Inexpensive Data Hiding on USB Memory Sticks

1.9 Scope

The main tasks of this bachelor thesis are to:

• Develop a software which is able to hide and recover files.

• Create a simple GUI, in order to make the software user friendly.

• Analyse the quality of protection provided by the software.

1.10 Description of group members, advisor and employer

All group members are students taking bachelor in Information Security at GUC. The main re-
sponsibilities for the members during the project period was:

Knut Borg - Group leader, coding. Øystein Nilsen - GUI, analysis, latex. Rune Søbye - Group
leader vicar, coding, secretary.

Our employer was the German company eQ-3 Entwicklung GmbH.

The employers liaison supervisor at GUC: Hanno Langweg. Associate Professor, Dr. rer. nat. Had
weekly meetings with us during the project period, where feedbacks of current state of software
and suggestions for further work were given.

Contact person at employer: Dirk Stüben. Answered questions related to the software and it’s
source code.

Supervisor: André Årnes. Adjunct associate professor, PhD. Gave ideas on how to approach dif-
ferent problems in our bachelor thesis, along with advices regarding the bachelor report.

4

Inexpensive Data Hiding on USB Memory Sticks

2 Background

We received a proof-of-concept code, shown in appendix H which read every sector from a
memory stick. After sectors had been read, the program created a binary file which we could
use to inspect the content on the memory stick with a hex editor. The proof-of-concept code was
intended to give us an idea about how the interaction with a memory stick works, along with
how we could inspect the memory stick, so we did not have to start from scratch.

We were also recommended to read the paper “Methods of Information Hiding and Detection in
File Systems” by J. Davis, J. MacLean and D. Dampier [8]. The paper describes several concepts
of hiding information on both NTFS and FAT systems. The methods described varies from using
“hide file” in WE (Windows Explorer) to creating a separate partition which then could appear
as hidden. The paper also mentioned hiding files by using bad clusters and we used it as an
inspiration for our development process. The main difference between the paper’s suggestion
and our prototype is that we hide everything on the memory stick instead of individual files.

2.1 About the FAT32 file system

FAT stands for File Allocation Table, and 32 means that each entry in the FAT consists of 32
bits [5]. Other FAT file systems are FAT12 and FAT16, but these are not relevant for this assign-
ment. FAT32 only supports files up to 4 GB [5], and a FAT32 volume can not be any larger than
2 TB due to the 32-bit addressing of clusters [5]. More details about clusters and other aspects
regarding the FAT32 file system will be discussed in chapter 3.

2.2 The development process

In this chapter we will describe various aspects regarding the development process. We will de-
scribe the development used, which software we needed and which internal and external quality
control measures we used during the development period.

Choice of development model

We wanted to use a system development model where we could change the system require-
ments during the development process, and change the source code if unexpected problems
occurred. The evolutionary model fitted our project well because it provided the flexibility to
switch between specification, development and validation. Also, it made it possible for the em-
ployer to give us weekly feedback on our work during the development period. We presented
several prototypes to the employers liaison supervisor at GUC (Gjøvik University College) and
each of the prototypes were an improvement of the previous ones.

5

Inexpensive Data Hiding on USB Memory Sticks

We decided what the prototypes should contain at the beginning of the working process, in col-
laboration with the employer’s liaison supervisor at GUC. By using the evolutionary model, we
improved the software through several iterations, until we ended up with a final version.

Software used
We used the C programming language to develop the software. MS Visual Studio 2008 was
used as programming environment, since the employer’s quality assurance system needed to be
compatible with MS VS 2008. The program XVI32 (version 2.4) [9] was used as hex editor for
studying image files of the memory sticks. The Sleuth Kit was used for analysis of how much
can be detected after files have been hidden. For keeping track of bugs and issues regarding the
software development, we used Mantis [10]. Subversion was used as repository and revision
control. [http://subversion.apache.org/]

Quality control

Below, we will list different internal and external quality controls measures used during the de-
velopment period.

External quality controls includes:

• Employer performed a thorough check of the software and gave us reviews. [appendix?]

• Regular meetings with employer, with given feedback of current version of software.

Internal quality controls includes:

• Mantis was used to keep track of bugs and prioritize them.

• We created a script which executed the software 400 times, used to analyse performance.

• Tested software on different MS OSes, both 32 and 64 bits.

• Bug testing continuously, as we developed the source code.

• Documenting and commenting of code.

• Wrote manual to software.

• Work logs.

• Version control and storage of files on Subversion.

• Group rules.

2.3 Description of the software

Our assignment was to create a software that is able to hide data on a USB memory stick. This
will protect the files from being read or copied by people with no experience with forensic tools
and knowledge about file systems. The software is also supposed to allow adding files on a

6

Inexpensive Data Hiding on USB Memory Sticks

memory stick with no danger of overwriting the hidden files, making the operation as risk free,
for the user, as possible.

One main requirement from the employer’s side was that the software had to be very user
friendly. It should have a simple GUI that anyone with minimal computer experience should
be able to use. The software is meant to be distributed on the employer’s website, and it might
be released as open source. The installation program was provided by the employer. We had to
develop the software within the standards given by the employer.

The main requirements for the software as we understood it when we wrote the project plan,
was:

• The software must be able to be used without any further preparations by the user than
installing it and being in possession of a memory stick.

• It must be user friendly. It should be easy and intuitive for all kinds of users to hide files and
later recover them.

• It must be reliable. It should work every time, as well as be able to handle unexpected situ-
ations.

• It has to be able to hide files and recover files hidden by the software on the FAT32 file system.

• The memory stick must be accessible and able to be used after files have been hidden.

• It is important that the user does not need to wait for a long time in order to hide or recover
files, so the process of doing so must be inexpensive. Inexpensive means there will be no
use of cryptographic algorithms either by software or hardware implementations, making the
process of hiding or recovering files able to finish in a short amount of time which equals no
longer than 5 to 6 seconds.

• It should be impossible to detect the hidden files when using computers running either Win-
dows, Mac OS X or various Linux distributions.

• When an illegitimate user tries to access the memory stick, he should not be able to discover
hidden contents or suspect that files are hidden. This is only the case if the user is not in
possession of any advanced forensic tools or skills regarding the FAT32 file system.

2.4 Description of users

The software can be used by any PC user with a need of protecting his data, without using time-
consuming and non-trivial encryption methods. A typical user of the software is a regular person
who wants to hide files from colleagues or other people, but do not want to use a lot of time,
money or effort hiding it.

7

Inexpensive Data Hiding on USB Memory Sticks

2.5 Description of attackers

A typical adversary might be a colleague, a friend or other people without forensic experience
or forensic tools at their disposal. A typical attack may be if a person is using the memory stick
with, or without, the owner’s consent, searching for files and directories via Windows Explorer
or the equivalent Finder for Mac OS X or the ls-command in Linux.

2.6 Limitations

These are the limitations we set for the software we developed:

• The software is developed to be compatible with the FAT32 file system.

• The software is developed to run only on the following operating systems:

• MS Windows XP

• MS Vista

• MS Windows 7

• Due to time limitations, the option of hiding or recovering a given selection of files can not
be supported.

2.7 GUI

For user-friendliness, the software needed to have a GUI. We started off with creating four basic
looking GUIs, which can be studied in appendix B. Figure 1, shows the four GUI suggestions we
made.

8

Inexpensive Data Hiding on USB Memory Sticks

Figure 1: Our four suggestions for GUI.

GUI number one and two looked quite similar to each other, while GUI number three and four
had clear differences between the rest of the GUIs. GUI number four was the most complicated
option because of the window with log messages, while GUI number three, with only a couple
of buttons, was the GUI we considered to be easiest to implement.

In order to get a different point of view on the GUI suggestions we created, we decided to
ask people outside of the group for opinions on which GUI that would suit best. The appendix
presents the overall results for each GUI. [Henvisning til meningsresultater om gui Knut] The
research in the appendix referenced above, should under no circumstances be considered as a
valid survey since we only asked ten friends who works with IT on a daily basis. However, it gave
us helpful suggestions when we were about to create the GUI.

To summarize the results; the general first impressions was that most people wanted GUI number
four with information of what is going on. After a short discussion, people ended up with want-
ing a merged solution of GUI number two and GUI number four. Only a few people we asked
would rather use the GUI number three, but only if it displayed a progress bar if the hiding and

9

Inexpensive Data Hiding on USB Memory Sticks

recovering process lasted too long. Our conclusion was to start with implementing a GUI similar
to model number two and then add the information log box from GUI number four if the time
allowed it. More about the final GUI, including how it looks, can be found in chapter 5.6.

10

Inexpensive Data Hiding on USB Memory Sticks

3 Description of the FAT32 file system

This chapter includes definitions of the fundamental components of the FAT32 file system. We
will explain how files are stored and represented on FAT32. Various figures will be given during
the chapter.

The FAT (File Allocation Table) file system was specified by Microsoft and has three variations,
FAT12, FAT16 and FAT32 [11]. FAT32 is the most common, and the two other are rarely used
today. The FAT file system is simple in its implementation compared to most other file sys-
tems [11]. It is divided into three main regions, the reserved region, the FAT region and the
data region. In the reserved region, basic information about the file system on the memory stick
can be found. The FAT works like a linked list, where the entries point to the next cluster un-
til end of file. More details and a figure illustrating the linking mechanism will be provided in
chapter 3.2.3.

Finally, there is the data region, which is the largest region. In that region, all the file names and
their contents are stored.

3.1 Reserved region

The reserved region is the first region on the FAT32 file system. It, amongst others, contains the
BPB (Basic input/output system Parameter Block) [5]. The BPB is stored in the very first sector
of the reserved region, and contains several important values, used by the file system [5]. Some
of these values needed to be extracted for use in our code. The values used by our software will
be shown in table 1 in chapter 4.1.

3.2 Sectors

A sector is a logical region on the FAT32 file system. The legal size of the sectors in FAT32 are
512, 1024, 2048 and 4096 bytes [5]. The MS FAT specification, however, states that “if maximum
compatibility with old implementations is desired, only the value 512 should be used” [5]. The
sector count starts with sector number zero and counting upwards.

3.3 Clusters

A cluster is a collection of sectors in the data region, working as an region where a given amount
of data are stored. The number of sectors per cluster may vary depending on disk size, or whether
the user has reformatted the disk. However, the number of sectors in a cluster must be a power of
2 and greater than zero, where the legal values are 1, 2, 4, 8, 16, 32, 64 and 128 [5]. The num-
ber of sectors on a memory stick is stored in the BPB, in an entry named ’BPB_SecPerClus’ [5].
As with the sectors, the cluster count starts with cluster number zero. This means that cluster
number two is the third cluster in the FAT region, but we refer to it as cluster number two.

11

Inexpensive Data Hiding on USB Memory Sticks

In this report, we regularly uses the term bad cluster. A bad cluster is a way to prevent the
computer to store data in that spesific cluster, in order to prevent disk errors [4]. Bad clusters
are marked with the value [F7] [FF] [FF] [0F].

3.4 The FAT

The FAT is a table consisting of several entries. Each entry consists of 32 bits, hence the name
FAT32, and represents one cluster in the data region [5]. The main tasks of the FAT are to keep
track of which clusters are available for storage, and to represent in which clusters different files
are stored [5].

The first two clusters, which is the first eight bytes (starting from 0) in the FAT, are not used for
storage of data [5]. Because of that, the first cluster with file-specific contents is cluster number
two, which is equivalent to bytes 8, 9, 10 and 11 in the FAT. This cluster also the cluster also
serves as the default root cluster in the FAT file system. The default value is stored in the BPB.
This means that the storage of file names starts in cluster number two and that the corresponding
FAT entry (bytes 8, 9, 10 and 11 in the FAT) is given the value [FF] [FF] [FF] [0F], which indic-
ates the end of the cluster [5]. When cluster number two is filled up with file names, additional
files will be stored in another free cluster. The FAT32 file system will then change the entry value
in the FAT representing cluster number two, from [FF] [FF] [FF] [0F] to the number of the next
cluster used for storage of file names. In addition, the entry of the new cluster where the chain
ends will be changed to [FF] [FF] [FF] [0F].

Regarding files and folders, each of them has a field in its directory entry, indicating the cluster
where they are stored. In the corresponding FAT entry for a specific cluster, several different
values might be stored. The value [FF] [FF] [FF] [0F] means that the cluster is the final cluster
containing the file. If the contents of a file or folder cannot be stored in one single cluster, the
corresponding FAT entry will contain the value of the next cluster where the file is stored. This
way, every file or folder will have a chain of clusters from the cluster where it begins, continuing
to the last cluster where the chain ends with the value [FF] [FF] [FF] [0F].

12

Inexpensive Data Hiding on USB Memory Sticks

Figure 2: How a file chain works.

As displayed in the Figure 3, cluster number two points to cluster number three. Since both
cluster four and five is marked as bad, cluster three points to cluster number six, which contains
the value [FF] [FF] [FF] [0F] and hence is the final cluster in the chain.

3.5 Data region

The data region is divided into separate clusters with either a default size or a size chosen by
the user. Each cluster has its own address in the FAT. The region stores directory structures, file
names and file contents.

3.6 Representation of file names

The FAT32 file system handles long and short file names in different ways. In this section, we
will give a description of how short and long file names are represented by the FAT32 file system.
How FAT32 handles file names was an important part of this project, since details about the file
name representation needed to be understood when implementing the NameCheck() function
described in chapter 5.5.

Short file names cannot have more than 11 characters, where up to the 8 first bytes (0-7) contain
the file name itself and the three last bytes (8-10) contain the file extension. All files with a short
file name have one, and only one, corresponding directory entry [5]. The directory entry for a
short file name consists of 32 bytes, where the main contents are the file name, file attributes,
various time stamps and meta data about the file [5].

In figure 4, we can see how four sample files with short file names are represented by the FAT32
file system.

13

Inexpensive Data Hiding on USB Memory Sticks

Figure 3: Short file names

In the upper part of the figure, we can see how the files are represented in hexadecimal values,
and in the lower part the contents are shown in clear text. In both parts of the figure, one row
represents a directory entry for one short file name. In the lower part we can see that all the four
file names are stored in the first part of the entries. The yellow marked parts of the upper and
lower parts contains the start cluster for the various files. The start clusters are represented by
the four bytes 20, 21, 26 and 27. In this example, we can see that the four files are stored in
cluster 3, 4, 5 and 6, respectively.

By looking at the figure, we also discover that the ’.’ (dot) in the file names are not stored. This
is because short file names are always represented in the same manner, and thus the file system
knows that the contents of bytes 8, 9 and 10 represent the file extension. Finally, we can see that
the two directory entries following the “delta.txt” file contains all 0’s and hence are available for
storage of other files.

Long file names are files where all letters of the file name cannot be stored in one short direct-
ory. This means that all files with 12 characters or more, need to be represented in a different
way than short file names [5]. Each file with long file name has one short directory entry in
addition to a multiple of long directory-specific entries. The reason for this is that the long file
name needs to be backward compatible. According to the MS FAT specification [5], “only short
directory entries are visible to previous versions of MS-DOS/Windows”. Furthermore, the spe-
cification also states that “without a short entry to accompany it, a long directory entry would be
completely invisible on previous versions of MS-DOS/Windows” [5].

The short directory entry for long file names has exactly the same entry structure as short file
names. The difference between short directory entries for short and long file names, is the way
the file names are represented. In the short directory entry for long file names, the name is a
compressed version (first six letters) of the file name, followed by ’∼’, a number and the file
extension [5]. In figure 5, the yellow marked cells show the compressed representations of two
files with long file names.

14

Inexpensive Data Hiding on USB Memory Sticks

Figure 4: Compressed version of two long file names

The long directory entries for long file names each contain various information. Some blocks in
the entry contain parts of the file name, one block contains which number it is in the sequence
of long directory entries which represent the file, a third is a check sum, and finally there is a
value indicating that the directory entry is representing a long file name. This value is stored in
byte number 11 of the entry, and is 0x0F if it is a long file name [5]. In figure 6, we can see those
values marked in yellow for two sample files.

Figure 5: Values indicating long file names

The general structure of directory entries for a long file name is: First a number of long entries
and finally one short directory entry. The first long directory entry contains the last part of the
file name, followed by an long directory entry with the second last part of the file name, and so
on. Each long directory entry contains up to 13 characters of the file name, separated in three
different parts of the directory entry. The bytes used to store the file name are 1, 3, 5, 7, 9, 14,
16, 18, 20, 22, 24, 28 and 30, respectively [5]. In figure 7 below, we see how the file names for
two sample files with long file names are stored. Here, we can also see that dot is stored for long
file names. This is because the representation for the long file names is not always the same,
making the file system unable to know where the dot needs to be placed.

15

Inexpensive Data Hiding on USB Memory Sticks

Figure 6: Representation of long file names

The amount of long entries varies, depending on the length of the file name. In general, a file
with a file name consisting of X letters (including the dot and extension) has X/13 (rounded up
to the closest integer) long directory entries. Otherwise, we can find the number of long directory
entries with the following formula: (the first value in the first long directory entry - 64). In the
sample files shown in the figure 7, we see that the first directory entry for both the file names
starts with a value of 0x42. This is equivalent to 66 in decimal, and thus we can find the number
of long directory entries with (66-64 = 2).

Figure 7: First entries in long file names

Regarding folders, the directory entry has the identical basic structure as that of files [5]. The
representation of folders is also near the same. The two main differences are that folders do not
have an extension and hence do need the dot, and that the directory entry needs to indicate that
it is representing a folder. This is done by adding the value 0x10 in the byte 11 of the directory
entry for short folder names [5]. For folders with long names, this value is added in byte 11 of
its short directory entry. Figure 9 shows a representation of a folder, where the values indicating
that a folder is stored, are marked in yellow.

16

Inexpensive Data Hiding on USB Memory Sticks

Figure 8: Representation of a directory

One essential question for both long and short file names is the following: What happens with
deleted files after deletion? The answer is that the deleted file still exists on the memory stick.
Then, two other questions arise. If deleted files still exists on the system, why are they not visible
and what happens with the available space on the memory stick when files are deleted? The
answer to those questions is that when a file is deleted, it will be marked with one special char-
acter in the first byte of its directory entry. This character is E5 in hexadecimal, which is 229 in
decimal, and when the file system finds this value, it knows that the file has been deleted and
that the cluster(s) used to store the deleted file may be used for storage of other file(s). This way,
deleted files will not cause problems when it comes to available space, and it will also lead to
deleted files and their contents not showing up when the memory stick is accessed.

In figure 10, we can see the representation of a deleted file, “deleted.txt”. The yellow marked
cells show that the first cell in the directory entry has been replaced by the value 0x E5.

Figure 9: Deleted file

17

Inexpensive Data Hiding on USB Memory Sticks

4 Development and testing

In order to complete our assignment, we had to implement the following functionality:

• Write sectors to the memory stick.

• Hide files on the memory stick.

• Recover the same files from the memory stick.

• Securing the hidden files by preventing new files to overwrite the hidden ones.

• Be compatible with a GUI developed by us.

Prior to the official start of the bachelor thesis, the employer handed us a proof of concept code,
which can be seen in appendix H, on how to read one sector from an USB (Universal Serial Bus)
memory stick while also creating a binary file with the contents of the memory stick. We were
recommended to familiarize us with the code and how to use a software called XVI32 [?] to
inspect the data in the binary file.

Analysing some binary files against the information in the FAT (File Allocation Table) system spe-
cification [5] was necessary to get started with development of the software. This information
taught us for instance in which cluster the root cluster starts, the cluster size, the sector size and
how many sectors the FAT region contains [5].

Since the proof of concept source code did not contain any write functions, we needed to de-
velop or own in order to continue with the software. We created a function called DriveWrite-
Sector() (DWS()), which partially worked, but had a limitation on which regions data could be
written to. DWS() could not write bytes into the FAT or data region and we struggled trying
to figure out how to solve the problem. The solution to the problem was that DWS() needed
an additional I/O (Input/Output) control function to enable writing to any given byte on the
memory stick. The I/O control function in question needed to be called with the two parameters
FSCTL_DISMOUNT_VOLUME [12] and FSCTL_LOCK_VOLUME [13] to lock the memory stick,
which means that no other process could use it while the software was running.

The development of functionality to hide files started when we were able to write data to any
region we wanted. One easy solution to hide files, was by creating a new root directory in a free
cluster. The free cluster did not contain any file entries and therefore Windows Explorer (WE)
displayed the memory stick as empty. By editing the root cluster value in the BPB and adding the
value [FF] [FF] [FF] [0F] to the new root cluster address in the FAT region, we had successfully
manipulated the FAT system in order to hide files. One side effect was that the memory stick
showed the space allocated by the file, even though the file name was hidden from WE. This

19

Inexpensive Data Hiding on USB Memory Sticks

problem will be discussed later in this chapter.

In order to recover the hidden file(s), we considered copying the directory entries in the new
root directory back to the original root directory, and then set the root directory entry in the
boot sector to its original value. However, after consulting with the employer’s liaison supervisor,
we agreed upon that copying directory entries would be too time consuming and that we rather
could link the root directories into one big cluster chain. This method is more space consuming,
since it will allocate an extra cluster for each initiated hiding process. However, with normal use-
frequency of the software, we did not considered the additional space used to make a significant
impact.

Figure 10: How the root directory increases in size when hiding files

Figure 11 shows how the space allocation for the root directory increases by each hiding process.
Each row in the figure displays the same FAT region. Each row shows the FAT after a hiding
process has finished. When the recovering process runs, the original and the new root directory
get linked together and appear as one root cluster. When the hiding process runs one more time,
a new free cluster get allocated as the new root directory and so it goes on.

Hiding and recovering of files did not require a complex algorithm, as opposed to a function
which prevents the occurrence of duplicated file names when recovering files, and a function
which reduces the space shown as allocated in WE.

20

Inexpensive Data Hiding on USB Memory Sticks

A further non-trivial problem that needed to be addressed, was to eliminate the risk of over-
writing files. The problem was that if new files were added to the memory stick after a hiding
process, the new files might overwrite the hidden files.

To eliminate the problem with overwriting files, we decided to implement a safe mode in the
software. If the software is executed in safe mode, the cluster containing the contents of stored
files will be marked as bad. Marking clusters as bad means that no other files can be stored in
the same cluster, and hence it prevents the risk of overwriting files.

Figure 11: Hiding files with safe mode

As shown in figure 11, the hidden data is safe from being overwritten due to the clusters are
marked as bad.In the box on the left side, the cluster numbers from three to 21 are the files the
software is going to hidden. The box in the middle shows that the content of these clusters are
safe because the new files are being stored from cluster 29 and upwards. The box on the right
side shows that no conflicts between the original and new files takes place.

In addition to the safe mode, we also decided to develop a light mode. This mode will decrease
the space shown as allocated, but does not eliminate the problem with overwriting of files. The
space allocation will only decrease if the files already stored on the memory stick are larger than
the FAT copy which is also stored on the memory stick.

The risk of overwriting hidden files when using light mode is shown in figure 12. The box in the
middle shows that new files are stored in the same clusters which contained the hidden files,
while the box on the right shows which clusters are overwritten. Because of this, the owner of
the memory stick will now only be able to access the files added after the hiding process.

21

Inexpensive Data Hiding on USB Memory Sticks

Figure 12: Hiding files with light mode

Both figure 11 and figure 12 shows that the three bad clusters 62, 74 and 85 which are not
manipulated as bad by our software, regardless of the users choice, will not be changed.
While developing the software, we differentiated the versions from each other by numbering
them ’x.x.x’. The first ’x’ displays the release candidate number. This number will only change
when major changes have been made to source code, for instance when a major overhaul have
been done to the software and the GUI. The second ’x’ displays any huge difference between two
source codes, for instance by developing a new method of hiding files. If only small bug fixes
were added to the source code, the third x would increase the count by one, e.g. ’0.2.1’ to ’0.2.2’.

During the development period, we operated with three different main versions. The differences
between them are show below:

• 0.1.x

• Reads/writes sector by sector.

• Reads/writes several times during the hiding process to the memory stick.

• Did not contain the entire recovery process.

• 0.2.x

• Still Reads/writes sector by sector.

• Reads/writes to the FAT only once during a process which limits the need for I/O-calls.

• Contained the entire recovery process.

• 0.3.x

22

Inexpensive Data Hiding on USB Memory Sticks

• Reads/writes a cluster or the whole FAT region at once, thus limiting the need for I/O-
calls.

The most important difference between the version ’0.1.x’ and version ’0.2.x’ was that the soft-
ware did not read the FAT region into a buffer and passed the same buffer to functions who relied
on that information. Instead of having to read the FAT region from the memory stick every time
the software needed information, or to write the changes back to the memory stick at the end of
every function which utilized the FAT, we decided to store the FAT region into memory. By doing
so, we limited the need for reading and writing from/to the physical drive to one time. Basically,
we allocated a buffer large enough to contain the two FATs, then the FATs are read into the buf-
fer. Finally, the buffer is passed as parameter to functions like RemoveTrace(), RecoverTrace(),
HideAll() etc.

4.1 The foundation of the software

The first thing the software does is to gather important data about the memory stick the user
wants to operate on.

Table 1 shows the data we extracted from the BPB [5].

Table 1: Data found in the BPB
Name in MS FAT spesification Name in code Description Stored in blocks
BPB_BytsPerSec BytesPerSec Total bytes in each sector 11 and 12
BPB_SecPerClus SecPerClus Total sectors in a cluster 13
BPB_RsvdSecCnt ResSec The size of reserved area in sectors 14 and 15
BPB_FATSz32 SecPerFat Total sectors in a FAT 36, 37, 38 and 39
BPB_RootClus RootClus Contains the beginning of the root directory 44, 45, 46 and 47

Other variables we used, but had to compute by the information already extracted, was:

• StartDataregion: The beginning of the data region. We computed this variable by “ResSec +
(SecPerFat * 2)”

• SecForBothFat: Used to create different kinds of buffers containing two FATs or for scanning
through FATs. The variable is computed by “SecPerFat * 2”

• TotBytesInFat: Same as above. Computed by “SecForBothFat*BytesPerSec”.

After the software has extracted important information from the BPB, the user will be presented
with a choice to either hide or recover files. This was solved by creating a ’case’ operation. We
could have easily avoided the ’case’ and created a simple ’if’ solution instead, but it is easier to add
new functionality or options later, when using the ’case’ option. This is because we considered
lots of ’if’ argument to be confusing compared to using cases. When we developed the software,
it was a possibility that it may become an open-source project, which was another reason for
writing a legible source code.

23

Inexpensive Data Hiding on USB Memory Sticks

4.2 Development of the RemoveTrace() function

Hiding files and folders was easy and did not take a lot of effort to develop. However, we en-
countered a problem when we discovered that the memory stick was displaying the space alloc-
ated for hidden files. If anything will raise suspicion, it will be when an attacker is able to see
that parts of the memory stick are allocated, even though no files or folders are visible.

We had to hide the tracks of allocated space and decided to create a copy of the FAT region to
store it on the memory stick. The reason for this is because we noticed the computer did not use
a value in the reserved region to compute how much space was available. However, we noticed
that the amount of allocated space changed when we manipulated the FAT region. We figured
out that if we set every cluster except the root directory, the first two clusters in the FAT and the
bad clusters to zero, then we could see a significant decrease in allocated space. The difference
in space allocation depended on how much space was originally allocated. We agreed to develop
a solution which creates a copy of both FATs and stores it in the data region on the memory stick.
After the copy process is done, the software will mark clusters that contains the files the user has
hidden. Those clusters will be marked as either bad or free, depending on the user’s choice.

Figure 13 describes how the memory stick looks after the hiding process has finished with safe
mode.

24

Inexpensive Data Hiding on USB Memory Sticks

Figure 13: How the memory stick looks after the hiding process has finished.

The long box in the middle displays how the memory stick looks like after the hiding process is
complete. The FAT on the upper left side is the original FAT and is marked with ’1’. The cluster
number two until 21 is shown as the green box in the memory stick’s data region, which contains
the files and directories before the hiding process begins. The dark blue box to the right of the
green box contains the copy of the original FATs which are stored in the data region, after a
hiding process. That FAT is a copy of the original FAT and will no longer be in use. The FAT on
the upper right side is displaying the currently working FAT and is marked ’2’. The orange box
describes where the currently working FAT is stored on the memory stick, i.e. in the FAT region.
The light blue box on the memory stick displays files and folders added after the hiding process
was completed.

The RemoveTrace() function consists of two main parts. The reason for separating the two main
parts of RemoveTrace() was to make a less complicated code by doing different operations sep-

25

Inexpensive Data Hiding on USB Memory Sticks

arate from each other. It was also easier to discover coding errors by checking which operation
that failed. The first part creates a large data buffer will contain the FAT copy and predefined
sectors [source code 1], while the second part finds free clusters and writes one cluster chunk of
data to the data region of the memory stick.

Figure 14 illustrates how RemoveTrace() prepares a cluster with data from the FAT copy so that
when the FAT copy is written to disk, the RemoveTrace() will take one cluster size of data from
the ’buffer’ and then write it to a given free cluster on the memory stick in the data region. For
instance, will sector 0 to 6 be written to one cluster in the memory stick, while sector 7 to 13
will be written to the next free cluster, and so on. The number inside the blocks in ’Buffer’ refers
to the sector number in ’FATBuffer’. The predefined sector is explained in details below.

Figure 14: Predefined sectors

A side effect of hiding the FATs with bad cluster is that there could be legitimate bad clusters
around on the memory stick before the hiding process started. In order to differentiate between
legitimate and manipulated bad cluster, we created a predefined sector which would be used by
the software to recognise manipulated clusters.

We developed the algorithm for predefined sector by first creating the predefined sector, then
reading X amount sectors from the FAT region depending on the cluster size. The one of the
reason for why we created a predefined sector, besides recognising manipulated clusters, was
that we needed to save different kinds of data for the recovering process. One of these was
the original root cluster. The source code below shows that the predefined sector had four ’g’
in order to recognise a manipulated cluster. The original root cluster value is also stored for
recovery purposes.

26

Inexpensive Data Hiding on USB Memory Sticks

for (i =0; i< SecForBothFat ; i++) // Creat ion of the FAT copy
{

i f (i % Ext raSec to r == 0)
{

b u f f e r [0+temp]= ’ g ’ ; b u f f e r [1+temp]= ’ g ’ ; // Predef ined s e c t o r
b u f f e r [2+temp]= ’ g ’ ; b u f f e r [3+temp]= ’ g ’ ;
b u f f e r [4+temp]= byte1 ; b u f f e r [5+temp]= byte2 ; // Or i g ina l root c l u s t e r
b u f f e r [6+temp]= byte3 ; b u f f e r [7+temp]=byte4 ;
for (j =8; j< BytesPerSec ; j++)

b u f f e r [j+temp]= ’D ’ ;
temp+=BytesPerSec ; t e s t++;
for (j =0; j < BytesPerSec ; j++) // Copies the FAT by

b u f f e r [j+temp]= FATBuffer [j+temp2] ; // c l u s t e r −1 s e c t o r .
}
else
{

for (j =0; j < BytesPerSec ; j++) // Copies the FAT
b u f f e r [j+temp]= FATBuffer [j+temp2] ;

}
temp+=BytesPerSec , temp2+=BytesPerSec ; // Gets ready fo r a new s e c t o r

}

After the ’buffer’ is filled with FAT and predefined sectors, the RemoveTrace() needs to know
where it can store a part of the FAT copy. First the it checks for free clusters in the FAT and then
write one cluster of data of the FAT copy, sector by sector, to the data region of the memory stick.
After the whole FAT region has been copied to the memory stick, the function WipeFatregion()
sets every cluster pointer in the working FATs to zero, with the exception of bad clusters, root
directory and the first 8 bytes in the FAT.

WipeFatregion() was a huge timesink. In version ’0.1.x’ it began with reading the FAT region into
memory, cleaning it and then write it back, sector by sector.

As mentioned above, both reading and writing one sector at the time caused a lot of unnecessary
I/O-calls which consumes a huge amount of time. In version ’0.2.1’ however, the FAT region was
saved in a buffer when the software began its loading process and then it got passed to the func-
tions who needed to operate with data from the FAT region. This decreased the time spent on
I/O-calls significantly since the software then operated with data stored in the memory, instead
of dealing with a physical memory stick. It also enabled the software to only read and write to
the FAT region once while the hiding process was in progress.

Version ’0.3.1’ is improved even further by eliminating the need to read or write only one sector
at the time. We allocated two buffers which were used to contain the data that was going to be
read from, or written to, the memory stick. One of the buffers has a size of the FAT region and the
other one has a size of a cluster. When the software is ready to write the FAT copy to the memory
stick, it copies a cluster worth of data into the cluster-sized buffer. Then the RemoveTrace() writes
the data to the memory stick in one single operation, unlike version ’0.2.x’, where the software

27

Inexpensive Data Hiding on USB Memory Sticks

had to call the write functions as many times as it was sectors in a cluster. By writing bigger
pieces of information at once, the need for I/O-calls will be reduced by a significant amount.
For instance, on a 4 GB memory stick with 1024 bytes cluster size, the time difference between
version ’0.2.x’ and version ’0.3.x’ for hiding files is 706 seconds. That is a significant decrease in
time used. However, as seen in table 2, the time difference decreases as the cluster size increases.

Hiding 4 GB Recovering 4 GB
Cluster Size 0.2.x 0.3.x 0.2.x 0.3.x
512 kb N/A N/A N/A N/A
1024 kb 897 191 258 52
2048 kb 355 43 114 13
4096 kb 170 11 58 5
8192 kb 84 4 29 2
16384 kb 41 2 14 1
32768 kb 21 1 8 0
65536 kb N/A N/A N/A N/A

Table 2: Time used

Problems during the development of RemoveTrace() Calculating the exact size of the buffer
which should contain the entire FAT region and predefined sectors was hard and led to many
buffer overflow errors. Trying to figure out the exact size for any cluster sizes was had hard and
took almost the same time as developing the algorithm for RemoveTrace() itself.

4.3 Development of the RecoverTrace() function

Before we started to develop the RecoverTrace() function, we realised that we could read the
entire FAT into memory which we could access from any function and thus decrease the amount
of time spent on either hiding or recovering files. When we developed the new and improved
RemoveTrace() we decided to upgrade the version number to ’0.2.1’.

RecoverTrace() was an easier function to develop than RemoveTrace() due to the that Recov-
erTrace() only had to search for bad clusters and read the content. The RemoveTrace(), on the
other hand, needed to do a lot of calculations in order to make sure everything worked correct.
The function scans through the currently working FAT and checks whether the bad clusters con-
tain parts of the original FAT. If a manipulated bad cluster is found, the function reads the rest
of cluster into a temporary buffer until both FATs have been recovered from the memory stick.
When both FATs have been recovered, the RecoverTrace() will overwrite the currently working
FAT with the one it recovered.

Problems during the development of RecoverTrace() One problem we encountered during
the development of RecoverTrace() was that it did not read the entire hidden FAT. Usually the
problem occurred with FAT number two because the variables we used to determine where, and
how much data, the function needed to read from the memory stick were wrong. The variables

28

Inexpensive Data Hiding on USB Memory Sticks

were not calculated correctly and hence displayed wrong values after passing a certain value.

One way to make sure that the entire FAT was recovered from the data region on the memory
stick was to mark the last byte in the working FAT with a letter, for instance the letter ’F’. We
marked the last byte in the with an ’F’ before the hiding process started, and checked that the
WipeFatRegion() removed the ’F’ before we started the recovering process. Now the FAT copy
stored in the data region would contain a ’F’ in the last byte of the FAT, but the current working
FAT would not have it. After the recovering process had copied the original FAT back to the FAT
region, we checked whether the last byte in the FAT region contained an ’F’. If it did and the
following sector still contained the original root cluster, then we knew that the RecoverTrace()
managed to read back the exact amount of data and stopped reading when it reached the end of
the FAT.

Figure 15: The letter ’F’ occurred after the hiding process had finished.

The figure 15 shows that the letter ’F’ occurred after the recovery process had finished, which
concludes that both FATs have been placed in their original position. The box on the top displays
the end of the working FAT after the RemoveTrace() has finished, while the box below shows
how the end of the same FAT looks like after RecoverTrace has been finished.

Manually setting the last byte in the FAT as ’F’ did not cause any conflicts because there was no
cluster which linked to the last cluster on the memory stick. This is because we can store any in-
formation we want in the FAT as long as it does not interfere with the cluster chains already there.

Another problem we encountered during the development process of RecoverTrace(), was the
use of pointers. To copy the FAT into a temporary buffer we wrote TempBuffer = FATBuffer.
What happened, was that TempBuffer pointed to FatBuffer’s address instead of being an indi-
vidual copy. The big disadvantage with this was that changes done to TempBuffer also effected
FATBuffer. In order to create a real copy instead of having two variables pointing to the same
address, we used a for-loop to make an exact byte for byte copy.

4.4 Development of the GUI

The employer wanted a user friendly software. We decided to create a graphical user interface
(GUI) since it would be much more user friendly than a console interface. The GUI was written
in C#, a managed programming language made by Microsoft. The reason for choosing C# when
creating the GUI was that it would be simpler than using just the Windows API in C or MFC in

29

Inexpensive Data Hiding on USB Memory Sticks

C++. Drawing the GUI in C# is trivial compared to developing it in C or C++, where it would
require a lot of time spent just creating buttons and text.

Programming the GUI in another programming language meant that we had to make our C code
into a DLL that could be called from the C# GUI code. This was not an easy process. We had to
find out how C# calls DLLs, and changing our C code so we could use it as a DLL. By using C#
we could also more easily extract information about all plugged-in memory sticks, only allowing
to hide files on those with a FAT32 file system.

We had some problems in the beginning with getting the DLL to work properly, but all things
considered, it was probably a better choice than having to create the GUI from scratch with pure
C. In MS VS C# we could change the appearance of the GUI easily without having to write any
code.

30

Inexpensive Data Hiding on USB Memory Sticks

5 Development results

In the following sections, we will describe the main functionality of the most important functions
used by the software. The functions will be presented in the order which they are employed, be-
ginning with the hiding process and ending with the recovering of hidden files. All functions will
be presented with some examples and figures, in order to be easier understood by the reader. The
main functions presented are HideAll(), RemoveTrace() and RecoverTrace(), as well as different
functions for recovering files and handling problems with duplicate file names.

5.1 How HideAll() works

This function serves as the main function for hiding of data. The method for hiding files is based
on creating a new root directory, making the file system driver think that the old one does not
exist, and hence showing no files.

The function first calls FindNextFreeCluster() (FNFC()) to obtain a free cluster where the new
root directory can be stored. FNFC() scans through every cluster entry in the FAT (File Allocation
Table) and checks whether any of them have a value of zero. If that is true, the function returns
the cluster number of the first free cluster found. If it is not the case, it will return 0.

Then, the function ClearCluster() will erase any garbage the found cluster might contain, by
setting every byte inside the cluster to zero. The reason why we want to remove possible garbage
data is that it might become visible when the memory stick is inspected through WE (Windows
Explorer). Any visible garbage will lead to the attacker becoming suspicious and might want to
put in some extra effort in order to extract information from the memory stick.

5.2 How RemoveTrace() works

The first thing RemoveTrace() does is to create a large buffer called ’buffer’. This buffer is go-
ing to contain the FATs and predefined sectors, as seen in figure 14, that will be stored in the
data region on the memory stick. Next, the RemoveTrace() creates a predefined sector which the
software will use to recognise manipulated clusters. Then, the function will copy the amount of
sectors in a cluster, minus the predefined sector, into ’buffer’. The RemoveTrace() will continue
to copy the FATs into the buffer until there are no more sectors left to copy.

When ’buffer’ has all the data needed, RemoveTrace() calls FNFC() to find a free cluster, copies
a cluster of data from ’buffer’ to the character array ’ClusBuff’, which is used when reading or
writing to the memory stick is necessary. The RemoveTrace() loops until every cluster in ’buffer’
has been written to the data region.

31

Inexpensive Data Hiding on USB Memory Sticks

Table 3: Space allocated
2 GB 4 GB 8 GB 16 GB 32 GB

Cluster Size (bytes) Space allocated (MB)
1 024 29,56 59,29 N/A N/A N/A
2 048 9,89 19,85 39,71 N/A N/A
4 096 4,25 8,53 17,05 34,05 N/A
8 192 1,99 3,99 7,97 15,91 32,22
16 384 0,98 1,95 3,87 7,72 15,60
32 768 N/A 1,00 1,93 3,84 7,72
65 536 N/A N/A 1,06 2,06 3,88

After the entire FAT region has been copied to the data region, RemoveTrace() calls the WipeFatre-
gion() function which edits the working FAT based on the user’s choice. The user has the option
to select a light mode through the command line by having the letter ’e’ as a parameter when
he starts the program. The GUI will then in “advanced” mode. The difference between the safe
mode and the light mode is how much space is displayed as allocated and whether adding new
files after a hiding process possibly will overwrite the old files or not.

The light mode option in the WipeFatregion() checks whether any cluster address, except the first
eight bytes in the working FAT is different from [F7][FF][FF][0F] and hence not marked as bad.
If the cluster address is not marked as bad, then the WipeFatregion() marks the cluster as free.
The result is a significant decrease in displayed allocation space, depending on how much data
the memory stick originally contained. The table below shows the space allocated after files have
been hidden, for various cluster and memory stick sizes. The numbers in bold indicates when an
attacker can see that the space is allocated from WE, by just looking at the icon representing the
memory stick.

The only difference between light and safe mode is that the safe mode mark the clusters, which
the light mode marks as free, as bad. Figure 16 displays the difference between safe and light
mode regarding the amount of bad clusters. The box in the middle shows that the safe method
marks the used clusters, ranging from 2 to 21, as bad, while the box on the right shows that the
light mode marks them as free.

32

Inexpensive Data Hiding on USB Memory Sticks

Figure 16: The difference between safe and light mode with the amount of bad clusters.

5.3 How RecoverTrace() works

The first thing RecoverTrace() does is to create a temporary buffer, called ’Buffer’, which is used
to store the entire FAT extracted from the ’FATBuffer’. We created ’TempBuf’ to store the FAT
which was read from the data region on the memory stick. Instead of checking ’FATBuffer’ for
bad clusters, we checked ’Buffer’ and stored the FAT in ’TempBuf’ instead of ’FATBuffer’. The
reason for this was that we did not want to change the values in ’FATBuffer’ untill we had to. If
we operated on the ’FATBuffer’ directly, we would end up checking the wrong FAT as the FAT from
the data region would overwriting the FAT we used to check for bad clusters in the ’FATBuffer’.

We did actually encounter such an error by writing ’Buffer = FATBuffer’, where ’Buffer’ is the
buffer we used for reference and ’FATBuffer’ is the FATcopy of the currently working FAT. The
issue is explained in detail in section 4.4.

The RecoverTrace()runs through the ’Buffer’ and checks for any manipulated clusters. For each
manipulated cluster it finds, it sets two bytes in the array ’CorruptCheck’ to one, one byte for each
FAT. If the cluster was not manipulated, it will be set as zero. The reason why RecoverTrace()
needs ’CorruptCheck’ when it merges the original FAT with the new one, is because it needs to
know which clusters that have been marked as bad. The merging process will be explained later
in this chapter.

When RecoverTrace() encounters a bad cluster, it checks whether the first sector is predefined by
the RemoveTrace() function. If the cluster is used to hide the original FAT, then the values, for the
given cluster, in CorruptCheck is set to 1. The source code below shows how the RecoverTrace
scans through the FAT, finds a bad manipulated cluster and then marks the ’CorruptCheck’.

33

Inexpensive Data Hiding on USB Memory Sticks

void RecoverTrace (Drive∗ dr i , Sec to rBu f f e r ∗ buf , unsigned char∗ FATBuffer) {
(omitted code)
for (i =0; i< (SecPerFat∗BytesPerSec)−4; i+=4) // Scans throug FAT
{

CorruptCheck [i]= ’ 0 ’ ;
CorruptCheck [i +(TotBytes InFat /2)]= ’ 0 ’ ; // Resets the array
i f (Bu f fe r [i]== 247 && Buf fe r [i+1]== 255 // Checks f o r bad c l u s t e r

&& Buf fe r [i+2]== 255 && Buf fe r [i+3]== 15)
{

ClusNo= i /4;
SecToRead = ClusToSec (ClusNo) ; // C a l c u l a t e s which s e c t o r to read
ReadSector (dr i , ClusBuff , SecToRead) ;
i f (ClusBuff−>data [0] == ’ g ’ && ClusBuff−>data [1] == ’ g ’

&& ClusBuff−>data [2] == ’ g ’) // Checks i f the c l u s t e r i s manipulated
{

CorruptCheck [i]= ’ 1 ’ ; // I f so , mark i t in the array
CorruptCheck [i +(TotBytes InFat /2)]= ’ 1 ’ ;

(omitted code)

}
}

When RecoverTrace() has found a manipulated bad cluster, it reads the whole cluster and cop-
ies everything but the first sector into a temporary buffer. When the cluster has been read, the
function ClearCluster() removes the data from the manipulated cluster. This is to ensure that
RecoverTrace() not will read any old hidden cluster data by accident if the cluster turns out to
be a legitimate bad cluster in the future.

Before the software updates the FAT, it makes sure that the new root directory, with its files, will
still be intact and ready to use. This part applies if the user has chosen the safe method, but will
also work if the user have chosen the light method. However, it is not recommended to add new
files if the user have chosen the light mode.

The next operation RecoverTrace() does, is to merge the original FAT with the currently working
FAT. The two FATs needs to be merged when the user have chosen to hide files with the safe
method. This is because the user will want to access the files added to the memory stick after
the hiding process is finished. The user will not get access to the files if there is not any merging
process taking care of both old and new files.

Figure 17 shows what happens when merging the FATs after using the safe method, and what
will happen if the merging process does not take place. If the merging process did not happen,
like in the upper right box, then the user will not be able to access the files he/she added after
the hiding process had finished.

34

Inexpensive Data Hiding on USB Memory Sticks

Figure 17: “Merging” the FATs in safe mode.

The last operation of RecoverTrace() writes the original FAT, with a few modifications from the
merging process, back to the FAT region.

5.4 Root cluster and file handling

After the FAT region has been restored by RecoverTrace(), the next task is to recover the hidden
files. This process is done with the use of three different functions, named FindAll(), MergeClus()
and LinkCluster().

In order to recover hidden files, the root cluster chains for hidden files and for files added after
the time of hiding, needs to be linked. This is done with the functions MergeClus() and Link-
Cluster(). What MergeClus() does, is to traverse the original root cluster chain, searching for the
last cluster in the chain. The function scans through the original root cluster chain in the FAT,
until the value [FF] [FF] [FF] [0F] is found. (As mentioned earlier in chapter 3.2.4, the value
[FF] [FF] [FF] [0F] indicates the end of cluster chain.) Since each cluster is represented by 4
bytes in the FAT, we calculate the value for four bytes at a time, and then continue the operation

35

Inexpensive Data Hiding on USB Memory Sticks

in the value we found in the four bytes. For example, if cluster 2 points to cluster 4, which points
to cluster 6, which points to cluster 10, which contains the value [FF] [FF] [FF] [0F], the traverse
will be 2-4-6-10.

After the last cluster in the original root cluster chain has been found, MergeClus() calculates in
which sector, in the data region, the cluster containing [FF] [FF] [FF] [0F] starts. This is done
by using the formula shown below:

SecToLink = StartDataregion + ((temp - 2) * SecPerClus);

Here, temp is the number of the last cluster in the original root cluster chain. StartDataregion in-
dicates the start of the data region, and when adding it with (temp-2), the two reserved clusters
in the FAT are skipped. Finally, by multiplying it with SecPerClus, we convert from cluster num-
ber to sector number.

By knowing the sector number for the cluster where the original root cluster chain ends, it is
possible to link the original chain with the cluster chain, which is representing files added after a
hiding process. In order to link those two chains, two things need to be done. First, all directory
entries in the last cluster (marked [FF] [FF] [FF] [0F]) of the original root cluster chain not
containing files, need to start with the value 0xE5. This is because the OS will stop showing files
when it finds a 0 in the beginning of a directory entry. The LinkCluster() function fixes this issue
by scanning through all sectors in the cluster, replacing any 0’s it finds with the value 0xE5. By
doing this, the OS will continue to search through the old root cluster and then continue to the
new root cluster.

36

Inexpensive Data Hiding on USB Memory Sticks

Figure 18: How the linking between two clusters works.

Figure 18 shows how the linking between two clusters work within two given clusters. The
original root directory is displayed in the table on the left side with several files, while the new
root directory is on the right side and contains one file. In the table on the left, we can see several
boxes marked in yellow with an ’å’ inside. This simulates a deleted file and the computer will
keep looking until the end of the cluster. When the computer have reached the end of the cluster,
it jumps to the next cluster which is the new root directory. The computer finds the USB.bin file
and checks the next first block which is marked in yellow. That block is zero meaning that there

37

Inexpensive Data Hiding on USB Memory Sticks

are no more files stored on the memory stick.

The second thing that needs to be done in order to link the clusters, is to edit one value in the
FAT. This way, the end of the old root cluster chain will point to the first cluster in the new
root cluster chain. This is done by adding the value for the new chain, in the entries in the FAT,
which represents the last cluster of the old chain. For instance, as seen in figure 19, when the old
root cluster chain ends in cluster 12 and the new starts in cluster 16, the four bytes in the FAT
representing cluster 12 will be set to 16.

Figure 19: How the linking process works.

When MergeClus() and LinkCluster() have completed their tasks with linking of clusters, the
function FindAll() will finish the recovery process. This is done with restoring the root cluster to
its original value, which by default is the value 2. Now, all clusters containing files are linked as a
single root cluster chain, starting from cluster 2. As a result of this, all files on the memory stick
are now visible.

In addition to link clusters and editing root cluster values, the file recovery process also involves

38

Inexpensive Data Hiding on USB Memory Sticks

a function to handle problems with duplicate file names. This function is called NameCheck(),
and will be described in detail in the following section.

5.5 Elimination of duplicate file names

One major issue while recovering files, was the handling of duplicate file names. With visible
files it is not possible to create two or more files with identical names, but this is not the case
for hidden files. The issue with duplicate file names is due to occur when the user creates a file
with an identical name as a currently hidden file. When recovering the hidden file, a possible
outcome will be two identical file names showing up, but unfortunately with the contents of one
of the files stored on both of them.

The main principle of the name check is to compare the hidden files name with the unhidden
ones. Whenever two identical file names are found, there is a need to change one of them. Our
implementation will always change the name of the most recently added file (the unhidden),
and the name changing is done by adding a number to that file name.

Our first implementation scanned through the root directories, searching for both hidden and
unhidden files on the memory stick. However, we considered that to be rather inefficient and
concluded that another method was required. After a suggestion from our employer, we found
a more efficient way. In the new method, all the directory entries for the hidden files are copied
into a local buffer before any name comparisons are done. By doing so, there is only need to
read the root directory with the hidden files once, instead of reading it from the memory stick
for every unhidden files.

The implementation of preventing files with identical file names involves five different functions:
CopyFiles(), NameCheck(), NameCheckShort() (hereby NCS()), NameCheckLong() (hereby NCL())
and ChangeName(). Below, we will explain the main idea and functionality of each of these func-
tions.

The CopyFiles() function is the first function involved in the process of handling duplicate file
names. Here, the function scans through the root directories containing the hidden files and
copies the directory entries for each of them, to a local buffer. In the figure 20, we see an example
of how the buffer may look after a copying process is finished. In this example, we can see that
two files with short file name and one with a long file name have been hidden.

39

Inexpensive Data Hiding on USB Memory Sticks

Figure 20: Buffer with hidden files.

The main difficulty with implementing the CopyFiles() function was to keep track of values re-
garding the root directory and the buffer. The problem was that CopyFiles() was called several
times, and for each it needed to operate with different values representing how much was copied
from the root directory and where to copy it in the buffer, respectively. The problem was solved
by passing those values as arguments to the function, with the help of the int array cop[]. The
first value in cop[] represents how far the copy process had reached in the root directory, and was
updated in MergeClus(), before sending it to CopyFiles(). The second value in cop[] represents
where to copy a directory entry in the buffer, and this value was updated in CopyFiles itself.

Next, the NameCheck() function is called. This function scans through the new root cluster chain
and searches for unhidden files. For each cluster it traverses in the new root directory chain, the
function scans through the directory entries stored in the current cluster. For each directory entry,
the function decides whether the directory entry represents a short or a long file name. This is
done by checking whether the value in byte number 11 of the various directory entries contains
the value 0x0F (15 in decimal) or not. If it is so, the file name is long and NCL() needs to be
involved. In the opposite case, the directory entry represents a short file name, and hence, the
NCS() function needs to be called. In figure 21, the files added after hiding is shown. Here, it
can be seen that three files with short file names and one with a long file name (identificators
marked in yellow) have been added after time of hiding. As a result of this, NCS() needs to be
called three times and NCL() once.

40

Inexpensive Data Hiding on USB Memory Sticks

Figure 21: Short or long file name check

The check in NCS() and NCL() is done by comparing byte by byte in the directory entry for the
unhidden file, with the directory entry for hidden files. If the function manages to scan through
all hidden files’ directory entries without any matches, the unhidden file name currently checked
is unique and do not need to have its name changed. In the opposite case, two file names are
identical and ChangeName() needs to be involved. In figure 22, we can see that the two file
names “longfilename.txt” and “alfa.txt” are duplicates and need to be changed.

Figure 22: Namecheck

41

Inexpensive Data Hiding on USB Memory Sticks

In ChangeName(), duplicated files are given a new name. The naming convention used is that
the function appends a number to the file name, and then performs a new check to discover
whether the new file name is unique. For short file names, the number is added at the end of the
file, with one exception; If the number forces a new directory entry to be created for the renamed
file and hence must be converted to a long file name, the number is stored in the last character
of the file name.

Regarding long file names, the number replaces the character preceding the dot. Another, but
more complicated, solution would be to keep the original file name and adding a number after
the last letter. As shown in the middle table of figure 23, this would cause replacing the dot
with the number, and then move the dot and the file extension characters one place; to their
neighbour name block to the right. As mentioned, we considered that to be a complicated case,
especially if not all characters would have fit in the existing long file name directory entry, and
hence, forcing a new directory entry for the long file name to be created.

Figure 23: Two methods of renaming files with long file names.

In our sample case, the two files named “alfa.txt” and “longfilename.txt” need to be changed. As
shown in figure 24, they are renamed to “alfa2.txt” and “longfilenam2.txt” after ChangeName()
is done.

42

Inexpensive Data Hiding on USB Memory Sticks

Figure 24: ChangeName() function

However, it must also be checked whether files named “alfa2.txt” or “longfilenam2.txt” exists
among the hidden files. If that is the case, the files will be renamed once more, this time with
replacing 2 with the number 3, which will rename the unhidden files to “alfa3.txt” and “long-
filenam3.txt”. After this, a further check to see whether any of these file names exists, needs to
be performed. In this case, “alfa2.txt” and “longfilenam2.txt” are unique, so no more than one
name change needs to be done.

The implementation of the five functions to handle duplicate file names was challenging. Espe-
cially the combination of the NameCheck() and ChangeName() functions required a lot of bug
testing and changes. Some problems we encountered was getting the name changing correct and
to change file names only when needed. Common errors were that file names were renamed even
though no identical file names existed, or that no changing were done even when required. Also,
we struggled to implement new checks after a file had been renamed once. In general, handling
duplicate long file names was more difficult to implement than short file names, because long

43

Inexpensive Data Hiding on USB Memory Sticks

file names have more directory entries to take into consideration. There was also a problem with
placing the number in the correct position when handling long file and directory names.

5.6 GUI

With the GUI, the user gets a window on the screen which shows a hide/find button for the safe
method. The button will not work until the user has selected what drive to hide or find files on.
The software will find all the drives that are removable and has a FAT32 file system and select
one automatically. When the user presses the Hide/find button, the software will execute the
safe hide. If the user has already hidden files with the software, the find function will execute.
If the program is executed from the command line with the parameter “e”, the GUI will offer a
choice to hide or find files with the light button. The figures below show how the two different
versions look like

Figure 25: Normal version

Figure 26: Advanced version

The .exe file needs access to the DLL to work properly. The GUI calls the run() function from the
DLL, and executes it with the parameters provided.

44

Inexpensive Data Hiding on USB Memory Sticks

6 Software Analysis

In this chapter, we will present an analysis of our software. We will first show an analysis of
the level of protection the software provides, then a performance analysis which compares the
efficiency of the software with a cryptographic mean of protecting files. Finally, we will discuss
bugs that appeared through testing the software.

6.1 Level of protection

In this section, we will show an analysis of the level of protection provided by our software. This
means that we will take a look at how hard or easy it is to find out that files are hidden by our
software. The analysis has been done using two different scenarios. In the first, we analysed what
might be discovered on first sight when just studying the memory stick. In the second part we
will see what might be concluded when using the tool dd (data description) and the file forensic
tool kit The Sleuth Kit (TSK) [6].

6.1.1 First sight discovery

When an attacker opens the memory stick in Windows Explorer (WE), the first thing he will see
is the space allocated on the memory stick.

Figure 27: Space allocation viewed in WE

As explained in figure 27, some cluster sizes will show that space have been allocated while other
sizes will not. In figure 27, the memory stick on the left side uses 4096 bytes cluster size, while
the same sized memory on the right side used stick 1024 bytes as cluster size.

When the attacker checks the content of the memory stick, he will not find any files or the files he
is looking for in particular. Some attackers might leave the memory stick after not discovering any
files, while others may be tempted to check the memory stick’s properties. A supposed “empty”
memory stick will show the space allocated. In figure 27 the memory stick is using 1024 bytes as
its cluster size.

45

Inexpensive Data Hiding on USB Memory Sticks

Figure 28: The space a FAT copy allocates

If WE does not show any space allocated, like in figure (WE_space_allocation), the chances
of an attacker would pursue a more advance analysis is low. It depends on the intentions of
the attacker. For instance, a nosy colleague and a spy will probably have different intentions.
While the nosy colleague might be more interested in the memory stick owner’s private life and
probably just quit his attempt to find files when nothing is visible on the memory stick, the spy
will try to do anything in order to get his hands on secret information.

6.1.2 Analysis using advanced tools

For a deeper analysis, we installed Autopsy 2.24 [6] with TSK 3.2.1 and on a virtual Ubuntu
Linux machine in VMware Player [14] for testing what a forensic tool might discover. TSK is an
open source and free forensic tool which is basically a collection of different forensic software.
Autopsy is an open source web based (running as localhost) GUI (Graphical User Interface) for
TSK.

TSK/Autopsy requires an image file of the memory stick for processing. This we extracted with
the Linux/Unix program dd. It can copy a drive, byte by byte, to a file, which is then examined
using Autopsy. In an image, a text file will be written out in readable format, and therefore not
safe from reading, even when hidden. This way, we can conclude that hidden files are not safe
from reading, and that the best way to protect a text file from reading is cryptography. However,
a regular PC user would probably not be able to produce an image of the memory stick and find
the information.

46

Inexpensive Data Hiding on USB Memory Sticks

Figure 29 shows that by saving a text (.txt) file on the memory stick and then creating an image
of the memory stick, the attacker will be able to see the content regardless of whether the files
have been hidden or not. The image is a binary file we created by our software after a file
was hidden. Another method to create an image of the memory stick is to use the dd (data
description) program in Linux, as explained above.

Figure 29: file contents in clear text

The Sleuth Kit is not able to find files hidden with our method. It will however find, as shown in
figure 30, that a lot of sectors are marked as bad, which might raise suspicion.

Figure 30: Bad clusters viewed from Autopsy

Even though TSK does not find the files, the files are still present in their original form in the
data region and can be found during a “manual” search through an image. Especially contents
of text files will be easy to find and read with merging different text found in clear text in the
image. It is also easy to discover “magic numbers”, which are hex strings identifying different file
formats [15]. For example, the hex string “FF D8 FF E0” identifies .jpg files [15]. To create an
image in dd, the following has to be typed in the terminal:

47

Inexpensive Data Hiding on USB Memory Sticks

sudo dd if=/dev/sdb of=image.bin.

The result of the analysis was as anticipated. Because we do not move or encrypt any data, it
will not be difficult to get hold of the hidden data for anyone with advanced forensic tools. If the
sort files function in Autopsy is used, no files will be found.

6.2 Performance analysis and comparison

Below, we will present an analysis on how fast our software performs hiding and recovering
of files. We will present separate results for the software, and compare the performance with a
cryptographic protection method.

For the measurement of the speed of our software, we considered three different parameters to
be relevant. All the three parameters are chosen because the performance of the software varies
depending on these parameters. The first parameter used, is the size of the memory stick. The
second is the cluster size used on the memory stick, while the third parameter is which method
the software used for hiding files.

We have done one hundred measurements for each combination of parameters. For simplicity
and to avoid human errors, we decided to create a script which automatically executed the soft-
ware the desired number of times and with the various combination of parameters. All results for
hiding and finding was continuously written to two separate text files. The results were imported
into spreadsheets for analysis. We calculated average and median values for each cluster for each
memory stick. The median analysis was made to discover if any data was skewing the average
value. Most of the time the average and median was relatively close, indicating that there was
little skewing.

The performance tests were performed on four different memory sticks of different sizes: 4,8,16,
and 32 GB (GigaByte). The tests were run on computers at GUC with the same hardware:

• Intel(R) Core(TM)2 Duo CPU (Central Processing Unit) E6750, 2.66 GHz (GigaHertz)

• 4 GB RAM (Random Access Memory)

• USB (Universal Serial Bus) 2.0

• 32-bit Windows 7 Professional OS

The hide operation was, as expected, slow on small cluster sizes and fast on large ones. The find
operation, however, seemed to go slower and slower on large cluster sizes, after first having a
drop in time used. The three figures shown below, illustrates the average test results for hide
with safe and light mode and find for a 32 GB memory stick.

48

Inexpensive Data Hiding on USB Memory Sticks

Figure 31: Average times of the safe hide function on a 32 GB memory stick

Figure 32: Average times of the light hide function on a 32 GB memory stick

49

Inexpensive Data Hiding on USB Memory Sticks

Figure 33: Average times of the find function on a 32 GB memory stick

More results can be seen in the appendix A.

We also wanted to test how fast an encryption program was compared to our software. One
suitable program for testing encryption is the popular TrueCrypt [3]. It is free and open source
software, but it can be difficult to use, since it has a lot of options [?] and requires management
of cryptographic keys. The main problem with cryptographic keys is that it might be unfortunate
if the user encrypts his hard drive and later forgets the password needed to decrypt it.

When the cryptographic tool was tested, we first checked how long it took to encrypt an entire
memory stick with a computer with a 2.66 GHz processor and 3.25 GB RAM, with regular AES
encryption through TrueCrypt. The result we found, was that it took 1 hour and 40 minutes
to encrypt a 32 GB memory stick with in-place encryption, which means that the files on the
memory stick are encrypted. The default option in TrueCrypt is to create an encrypted volume
and format the disk with random data, so it can be used as an encrypted volume [4]. This method
is faster, and it took only 20 minutes to create a 32 GB volume with a cluster size of 16384 bytes.
The average speed of the encryption was 24.9 MB/s. With our method, as shown in figure 31
and 32, hiding files on 32 GB memory stick takes between 1 and 12 seconds, depending on the
cluster size used.

Even if encryption was infinitely fast, the transmission speed of USB 2.0 is 60MB/s [16], which
means that it would take about 9 minutes to encrypt a 32 GB harddrive.(32 768 MB / 60 MB
= 546 seconds = 9 minutes). The encryption that was tried out on the same type of computer
which we tested our software, and the encryption took about 25 MB/s in one of the fast options.
This means that the encryption speed is lower than the transmission speed.

Encrypting entire volumes is just one of the options that TrueCrypt offers. A more practical way
to do encryption, is to make a virtual hard drive. This is because virtual drives are handled like

50

Inexpensive Data Hiding on USB Memory Sticks

ordinary files and can be mounted on any computer with TrueCrypt installed on it [4]. This
file can be of any size the user wants. Making a virtual hard drive 10 MB in size, takes only a
couple of seconds. Making a volume the same size as a memory stick will take about as long as
encrypting the memory stick normally.

6.3 Conclusions of the analysis

The first part of analysis showed that files hidden files are easy to find with forensic tools. Fur-
thermore, since the software does not use any encryption when hiding files, it is also easy to read
the contents of files found. However, to find files and later read the contents of them is relatively
complicated for common PC users. If the mean of using the software is to protect files against
nosy colleagues or regular person finding a lost memory stick, our software might be sufficient.

The major advantage with using our software, as shown in chapter 6.2, is that it is faster than
using encryption.

6.4 Known bugs

Below, we will describe possible known bugs found in our software. See chapter 7 for a brief
discussion about the chances of having another bachelor thesis and possible improvements we
recommend.

• When a certain amount of data is hidden by using the safe method, the RemoveTrace()
funtion writes the FAT copy into the reserved region. This should not be possible and we
think the bug is happening when the RemoveTrace() function is computing the next free
cluster. For some reason, the FreeCluster variable might become a negative number, which
may cause the function to write in the reserved and FAT region. If the free cluster variable is
2, then the data would be written at the beginning of the data region. Any number smaller
than 2 would cause the function to write to a sector belonging to either the FAT region or the
reserved region. Smaller files hidden with the safe hide function will be hidden and found
correctly. However, several big files (greater than 200 MB) will cause problems, resulting in
that the user will see a lot of garbage when viewing the contents on the memory stick. Even
if the hiding function appears to have worked correctly, by showing no files, the find function
will most likely result in an error about protected memory violation. The light mode works
correctly on all file sizes.

• A bug that triggers for an unknown reason, is causing the files to stay hidden, even though
the allocated space can be seen through WE. Something has to trigger the bug and we will
recommend taking a closer look on which number the SetValue() function receives, because
the number it receives is the value of the root directory.

• The software will not be able to run if the memory stick has a cluster size of 512 bytes.
The problem may be solved if point number five in section 7.2 - ’Possible improvements’ is
implemented as the new method of hiding and recovering files.

51

Inexpensive Data Hiding on USB Memory Sticks

• The predefined sector used to decide whether a cluster is legitimately bad or not, is recognised
by four consecutive ’g’s. The bad thing is that if a user creates a .txt document with the first
four letters as ’g’ and then hides the file with the safe mode, then the software will crash. The
chances of this happening is very small and can be even more reduced by checking up to 504
more bytes for ’g’ or any other letter/symbol.

• The best thing to do is to use a symbol with a value greater than nine (ASCII) which is
infrequently used in a .txt file like any letter in the alphabet. Expanding the number of bytes
used to check for a manipulated cluster is also recommended.

52

Inexpensive Data Hiding on USB Memory Sticks

7 Future work

If a new bachelor thesis could be created, then it may be about creating a more efficient and
secure version of the software. More functionality, like hiding individual files and the possibility
to be able to see hidden files through the GUI (Graphical User Interface) before the user recover
hidden files, may also be considered in a possible future work. Also, implementing the software
for use on Linux and Mac OS X, may be a possible future implementation.

To conclude, an analysis of how the current source code works and make suggestions for a new
and improved version both in terms of security, methodology and efficiency, may be a starting
point for creating a future bachelor thesis regarding hiding files on the FAT32 file system.

7.1 Possible improvements

• Rollback feature: As of today, the software tries to hide or find the FAT (File Allocation Table)
region as if the FAT works normally. There is no rollback feature which will recover the
damages if the hiding or recovering processes gets interrupted. A way to solve this is to create
a function which scans through the FAT and then recover the parts of the FAT the software
managed to copy.

• Currently there are two separate versions of the software, one for 32 bits and one for 64
bits OS. The reason for this is that the Bdll.dll file have to be compiled in either a 32bits or
64bits, caused by an error message if the software is executed with the wrong .dll file. Instead
of having one 32 bit and one 64 bit version, we should be able to call the specific .dll file,
depending on whether the user runs a 32 bits or 64 bits OS.

• Compatibility to run the software on Linux operating systems and on Mac OS X.

• Improve recovering speed by having one or more clusters dedicated to save which bad clusters
the software has manipulated. As of today, choosing the safe mode to hide several giga-
bytes will result in a much higher recovering time than light mode. This is because the soft-
ware checks every bad cluster by reading one cluster from the memory stick. With several
GBs stored, every cluster address used to store those will be marked as bad. Both the Re-
moveTrace() and RecoverTrace() would have to be rewritten because if the dedicated cluster
is going to be implemented, there would be no reason to have one predefined sector in the
beginning of each cluster as it is today.

• Decrease the time used by the hiding process by letting the computer check how many con-
secutive free clusters the memory stick have. Then, instead of writing one cluster at the time,
write and then write data for ’x’ amount of clusters in a single operation.

• Improve security by randomly selecting free clusters instead of selecting the next free cluster.
This is done to prevent having one big group of bad clusters on the memory stick. Spreading

53

Inexpensive Data Hiding on USB Memory Sticks

the bad clusters all over the memory stick makes it less suspicious to analyses.

• Improve security by forcing the user to enter a pin code in order to prevent other users using
the same software to recover hidden data. The pin code may be hidden in a predefined sector
the same way as we store the original root cluster value.

• Make the hiding with safe and light mode less suspicious by creating a dummy file with the
size of the space the bad clusters allocated. The user may rename this dummy file to anything
he wants, because it will be removed when the user recovers the hidden files.

• Improve GUI by adding a status bar/text box which shows the user what the software is doing
at any given time.

• The result of any hiding process, regardless of choosing the safe or light method, will show
lots of bad clusters in one certain region on the disk. One feasible improvement may be to
make the software randomly write the bad clusters on the memory stick.

• After each hiding process, the time spent by the recovery process will increase slightly. Since
we believe it is the process of preventing duplicated file names that is the time sink, it should
be possible to improve the process by moving new file names to the original root cluster and
thereby decrease the size of the root directory chain.

54

Inexpensive Data Hiding on USB Memory Sticks

8 Discussions and evaluation

In this chapter, we will evaluate our performance during the work with the bachelor thesis and
the thesis itself.

8.1 Evaluation of the work done by the group

The group members have cooperated well during the work with this bachelor thesis, and the
workload has been evenly scheduled between the members. The cooperation and communica-
tion between the group and our employer and supervisors also worked well.

This was the first time any of the group members participated on a project of this size. Develop-
ing a bigger software was also new to us, which lead to many challenges. Certain bugs and flaws
in the software and GUI were especially hard to solve, which caused extended working hours on
several occasions.

No major disagreements occurred during the thesis period, and all minor disagreements were
solved in a satisfying way. The group leader however used his right to veto on different occa-
sions, for instance when he declined turn-ins of the report due to the group having a too heavy
workload at that time.

All group members have worked more hours than recommended, which is more than 30 hours a
week per person. The work load was evenly spread during the thesis period, but naturally it got
more hectic in the end.

8.2 Criticism of the bachelor thesis

We now realise that we should have been more active in the start-up period of the work with the
bachelor thesis, in order to quickly understand how to perform the basic operations needed for
the assignment. For instance, we spent too to much time trying to find out how to read and write
information from/to a memory stick. This lead to a delay of a couple of weeks, which resulted in
that we were not able to optimize the software as much as we wanted.

Also, we now feel we should have been more conscious on how to handle merging of code written
by different group members. We should have considered that two separated codes which worked
like intended when running separately, possibly could cause problems after they were merged.

55

Inexpensive Data Hiding on USB Memory Sticks

9 Conclusions

It is possible to hide and recover files by editing the FAT (File Allocation Table) region without
using encryption, but it will lack the security encryption provides.

The software provides two methods of hiding files. One is secure and the other one is less secure.
Using the less secure version made it possible for recovery tools to restore the files, but looks less
suspicious at first glance. The safe method prevents easy access to the file contents by marking
the clusters as bad. The safe mode’s weak spot is against people who can invest in knowledge
about the file system, time and forensic tools.

The software operates extremely fast for larger amount of data than what a cryptographic tool
could accomplish.

57

Inexpensive Data Hiding on USB Memory Sticks

Bibliography

[1] BBC News. Health records found in Asda car park. BBC; 2010 [cited May 2011]. Avail-
able from: http://news.bbc.co.uk/2/hi/uk_news/scotland/tayside_and_central/

8661839.stm.

[2] Winnett R, Swaine J. Data on 130,000 criminals lost. Telegraph; 2008 [cited
May 2011]. Available from: http://www.telegraph.co.uk/news/politics/2601056/

Data-on-130000-criminals-lost.html.

[3] TrueCrypt. TrueCrypt - Free open-source disk encryption software for Windows 7/Vista/XP,
Mac OS X, and Linux; 2011. http://www.truecrypt.org.

[4] TrueCrypt. TrueCrypt User’s Guide. TrueCrypt Foundation; 2010. Can also be found at:
http://www.truecrypt.org/docs/.

[5] Microsoft. FAT: General Overview of On-Disk Format. File System Specification. Microsoft
Corporation; 2000. http://msdn.microsoft.com/nb-no/windows/hardware/gg463084.

[6] Carrier B. The Sleuth Kit; 2011. http://www.sleuthkit.org/sleuthkit/.

[7] Microsoft. Startside for MSDN; 2011. http://msdn.microsoft.com/.

[8] Jeremy Davis DD Joe MacLean. Methods of Information Hiding and Detection in File Sys-
tems. In: 2010 Fifth International Workshop on Systematic Approaches to Digital Forensic
Engineering; 2010. p. 66–69.

[9] Maas C. Freeware Hex Editor XVI32; 2011. http://www.chmaas.handshake.de/delphi/

freeware/xvi32/xvi32.htm.

[10] Mantis. Mantis Bug Tracker; 2011. http://www.mantisbt.org/.

[11] Carrier B. File System Forensic Analysis. Upper Saddle River,N,J: Addison-Wesley; 2005.

[12] Microsoft. FSCTL_LOCK_VOLUME Control Code; 2011. http://msdn.microsoft.com/

en-us/library/aa364575%28v=vs.85%29.aspx.

[13] Microsoft. FSCTL_DISMOUNT_VOLUME Control Code; 2011. http://msdn.microsoft.

com/en-us/library/aa364562%28v=vs.85%29.aspx.

[14] VMWare. VMWare Player; 2011. http://www.vmware.com/products/player/.

[15] Ogley R. Magic numbers for files; 2011. http://www.astro.keele.ac.uk/oldusers/rno/
Computing/File_magic.html.

[16] Compaq ILMNP Hewlett-Packard. Universal Serial Bus Specification; 2000. http://www.

usb.org/developers/docs/.

59

http://news.bbc.co.uk/2/hi/uk_news/scotland/tayside_and_central/8661839.stm
http://news.bbc.co.uk/2/hi/uk_news/scotland/tayside_and_central/8661839.stm
http://www.telegraph.co.uk/news/politics/2601056/Data-on-130000-criminals-lost.html
http://www.telegraph.co.uk/news/politics/2601056/Data-on-130000-criminals-lost.html
http://www.truecrypt.org
http://www.truecrypt.org/docs/
http://msdn.microsoft.com/nb-no/windows/hardware/gg463084
http://www.sleuthkit.org/sleuthkit/
http://msdn.microsoft.com/
http://www.chmaas.handshake.de/delphi/freeware/xvi32/xvi32.htm
http://www.chmaas.handshake.de/delphi/freeware/xvi32/xvi32.htm
http://www.mantisbt.org/
http://msdn.microsoft.com/en-us/library/aa364575%28v=vs.85%29.aspx
http://msdn.microsoft.com/en-us/library/aa364575%28v=vs.85%29.aspx
http://msdn.microsoft.com/en-us/library/aa364562%28v=vs.85%29.aspx
http://msdn.microsoft.com/en-us/library/aa364562%28v=vs.85%29.aspx
http://www.vmware.com/products/player/
http://www.astro.keele.ac.uk/oldusers/rno/Computing/File_magic.html
http://www.astro.keele.ac.uk/oldusers/rno/Computing/File_magic.html
http://www.usb.org/developers/docs/
http://www.usb.org/developers/docs/

Inexpensive Data Hiding on USB Memory Sticks

A Analysis results

You can find all our results from the analysis here: http://hovedprosjekter.hig.no/v2011/
imt/in/usbdatahiding/Graphs_hide_and_find.zip

61

http://hovedprosjekter.hig.no/v2011/imt/in/usbdatahiding/Graphs_hide_and_find.zip
http://hovedprosjekter.hig.no/v2011/imt/in/usbdatahiding/Graphs_hide_and_find.zip

Inexpensive Data Hiding on USB Memory Sticks

B GUI suggestions

63

Inexpensive Data Hiding on USB Memory Sticks

Graphical User Interface Results

• GUI (1):
• Positive

• Self explanatory.
• Easy to use.

• Negative
• Too many elements.
• The two information boxes could have been merged into one box instead.

• GUI (2)
• Positive

• Nice presentation of information.
• The information is sufficient enough.
• Easy to get a quick overview.
• Good composition with information first and then the choices below.
• A suitable GUI for people with little experience with computers.

• Negative
• A lot of information. It is boring to watch if you have seen it an x amount of

times.
• Should have had some visible progress bar of some sort to indicate the

progress of the hiding or recovering process.
• GUI (3)

• Positive
• Technically the user will not need more than two buttons which makes this

GUI nice and clean.
• Negative

• Way too little information.
• The user has no clue of what is going on.

• GUI (4)
• Positive

• Great for the more 'advanced' user by showing a more detailed overview of
what the software do at any given time.

• Suggestion to merge GUI (2) and GUI (4).
• Negative

• No information about what the hide and recover button do compared to GUI
(2).

64

Inexpensive Data Hiding on USB Memory Sticks

Graphical User Interface
 suggestions

1)

2)

65

Inexpensive Data Hiding on USB Memory Sticks

3)

4)

66

Inexpensive Data Hiding on USB Memory Sticks

C Script

#run . ps1
for ($ i =0; $ i − l t 400; $ i++){

echo $i
i f ($ i −gt 200){

. / analyse . exe " \\ . \ F : " " l " " 8 GB"
}
else {
. / analyse . exe " \\ . \ F : " " s " " 8 GB"

}
}

67

Inexpensive Data Hiding on USB Memory Sticks

D Timesheets

Rune Søbye Øystein Nilsen Knut Borg

Dato Dag
Total
hours

Sum
week Comments

Total
hours

Sum
week Comments

Total
hours

Sum
week Comments

09/01Sunday 4
Analysing of proof of concept
and assignments 4

Analysing of proof of
concept and assignements 4

Analysing of proof of
concept and assignements

10/01Monday 7
Analysing of proof of concept
and assignments 1

Analysing of proof of
concept and assignements 7

Analysing of proof of
concept and assignements

11/01Tuesday 1

Meeting. Getting a overview of
the assignments before next
meeting. 7 Meeting 7

Meeting, discussion about
sub-repository, writing to a
memory stick succeed

12/01Wednesday 7
Project plan, Presentation by T.
Røise. 7

Usecase,presentation by T.
Røise. Learning Latex. 7

Usecase,presentation by T.
Røise. Learning Latex, time
plan

13/01Thursday 7.5
Requirement spec. Reading
different contracts. 7.5 Fixing Latex 6 Requirement spec

14/01Friday 6.5 Requirement spec. LateX. 6.5 Requirement spec Latex 2 Requirement spec, Latex
15/01Saturday 0 0 0

16/01Sunday 3.5 32.5 Requirement spec. LaTeX. 3.5 32.5

meeting with the
company's liaison
supervisor, 3.5 32.5

Usecase,presentation by T.
Røise. Learning Latex.

17/01Monday 7.5

Group contract, reading the FAT
system specification. Meeting
with Hanno. 0.5

Meeting with the
company's liaison
supervisor, 7.5

Meeting with the company's
liaison supervisor,

18/01Tuesday 0 7.5
Studing the FAT32 file
system, home page 7.5

Created 2 graphical
prototypes, Fixed network
drives, homepage and
reading the FAT32
specification

19/01Wednesday 7.5
Group contract, Repository.
Project plan (limitations). 7.5

Repository, web site,
project plan. 7.5

Project plan, group contract,
repository software,
requirement spec

20/01Thursday 7.5 Project plan 7.5 Web site, project plan 5 Project plan
21/01Friday 7.5 Project plan 7.5 Project plan 3.5 Project plan
22/01Saturday 0 0 0
23/01Sunday 5.5 35.5 5.5 36 Project plan 6.25 37.25Project plan

24/01Monday 8.5 Gantt-scheme, project plan. 2 Project plan 8.5
Project plan, home page,
logo.

25/01Tuesday 8.5 Project plan 9.5 Project plan 9.5 Project plan
26/01Wednesday 8 Project plan 8 Project plan, Latex 7.5 Project plan
27/01Thursday 7 Project plan 7 Project plan 5 Project plan

28/01Friday 7.5
Project plan. Presentation by K.
Franke 7.5

Project plan. Presentation
by K. Franke 3.5

Project plan. Presentation
by K. Franke

29/01Saturday 0 0 0
30/01Sunday 0 39.5 0 34 0 34

69

Inexpensive Data Hiding on USB Memory Sticks

Rune Søbye Øystein Nilsen Knut Borg

31/01Monday 7.5 Reading documetation, meeting 0.5 Meeting 7.5
FAT32 specification,
meeting.

01/02Tuesday 0 8 Developing of source code 8

Developing of source code,
testing of parameteres,
reading the FAT file system
specification

02/02Wednesday 7.5 Reading documetation 8 Developing of source code 7.5

Developing of source code,
testing of parameteres,
reading the FAT file system
specification

03/02Thursday 8 Developing of source code 8 Developing of source code 3.5
Nothing special in
particular, small fixes.

04/02Friday 6 Developing of source code 6 Developing of source code 3.5 Developing of source code
05/02Saturday 0 0 0
06/02Sunday 0 29 0 30.5 0 30

07/02Monday 11
Back-on-track-meeting,
developing of source code 5

Back-on-track-meeting,
developing of source code 11

Back-on-track-meeting,
developing of source code

08/02Tuesday 8

Developing of source code,
meeting with supervisor liasor
and employer. 9

Developing of source code,
meeting with supervisor
liasor and employer. 9

Developing of source code,
meeting with supervisor
liasor and employer.

09/02Wednesday 10 Developing of source code 10 Developing of source code 10 Developing of source code

10/02Thursday 8 Developing of source code 8 Developing of source code 6
Developing of source code
and home page

11/02Friday 7.5 Developing of source code 7.5 Developing of source code 5.5 Developing of source code
12/02Saturday 0 0 0

13/02Sunday 4 48.5
Beginning to write the report,
developing source code 4 43.5 Report 4 45.5 Developing of source code

14/02Monday 7.5 Developing of source code 0 7.5 Developing of source code
15/02Tuesday 0 7.5 Developing of source code 7.5 Developing of source code
16/02Wednesday 7.5 Developing of source code 7.5 Developing of source code 7.5 Developing of source code
17/02Thursday 7.5 Developing of source code 7.5 Developing of source code 5.5 Developing of source code
18/02Friday 7.5 Developing of source code 7.5 Developing of source code 4.5 Developing of source code
19/02Saturday 0 0 0
20/02Sunday 0 30 0 30 0 32.5
21/02Monday 7.5 Developing of source code 0 7.5 Developing of source code
22/02Tuesday 0 7.5 Status report (1) 7.5 Koding
23/02Wednesday 7.5 Developing of source code 7.5 Writing the report 7.5 Koding
24/02Thursday 9 Developing of source code 9 Writing the report 7 Koding

25/02Friday 7.5
Developing of source code and
meeting with supervisor 7.5

Report and meeting with
supervisor 5.5

Developing of source code
and meeting with supervisor

26/02Saturday 0 0 0

70

Inexpensive Data Hiding on USB Memory Sticks

Rune Søbye Øystein Nilsen Knut Borg

27/02Sunday 6 37.5 Developing of source code 6 37.5
Writing the report, Latex
mal 6 41 Developing of source code

28/02Monday 8

Developing of source code,
meeting with the company's
liaison supervisor, Mantis 1

Developing of source code,
meeting with the
company's liaison
supervisor, 8

Developing of source code,
meeting with the company's
liaison supervisor, Finishing
of RemoveTrace()

01/03Tuesday 0 4 sick 8

Optimalisation/cleaing of
the source code,
documentation, check list.

02/03Wednesday 7.5 Developing of source code 4 sick 8 Fixing RecoverTrace()
03/03Thursday 7.5 Developing of source code 0 sick 1 Helping Rune

04/03Friday 7.5 Developing of source code 7.5 Developing of the GUI 7.5
Developing of the source
code

05/03Saturday 0 0 0

06/03Sunday 5.5 36

Developing of source code,
merging of root clusters and
name check. 5.5 22 Developing of the GUI 5.5 38 Fixing RecoverTrace()

07/03Monday 9

Developing of source code,
meeting with the company's
liaison supervisor, 1

Meeting with the
company's liaison
supervisor, 9

Developing of source code,
meeting with the company's
liaison supervisor,

08/03Tuesday 0 7.5 Developing of the GUI 9
Developing of source code,
file name check

09/03Wednesday 8 Developing of source code 7.5 Developing of the GUI 8
Developing of source code,
file name check

10/03Thursday 7.5 Developing of source code 7.5 Developing of the GUI 10
Developing of source code,
removing traces

11/03Friday 7.5 Developing of source code 7.5 Developing of the GUI 7.5
Developing of source code,
removing traces

12/03Saturday 4 Developing of source code 4 Developing of the GUI 4
Developing of source code,
removing traces

13/03Sunday 5 41 Developing of source code 5 40 Developing of the GUI 5 52.5
Developing of source code,
removing traces

14/03Monday 9.5 Developing of source code 1

Meeting with the
company's liaison
supervisor, 9.5

Developing of source code,
removing traces

15/03Tuesday 0 8 Developing of the GUI 0
16/03Wednesday 7.5 Developing of source code 7.5 Developing of the GUI 0

17/03Thursday 9
Developing of source code and
bug testing 4 Writing the report 0

18/03Friday 6.5 Developing of source code 6.5 Writing the report 4 Helping Rune

19/03Saturday 3.5 Developing of source code 3.5 Writing the report 3.5
Developing of source code,
removing traces

Rune Søbye Øystein Nilsen Knut Borg

20/03Sunday 5 41 Developing of source code 5 35.5 Writing the report 5 22
Developing of source code,
removing traces

21/03Monday 7.5 Developing of source code 0 4
Sick, some development of
source code

22/03Tuesday 0 7.5 Developing of the GUI 7.5 Writing the report

23/03Wednesday 0 Sick 7.5 Developing of the GUI 2
sick, some writing of the
report

24/03Thursday 6 Report-writing/editing. 6 Developing of the GUI 0 sick
25/03Friday 7.5 Report and bug fixing 7.5 Developing of the GUI 3.5 Writing the report
26/03Saturday 0 0 0
27/03Sunday 5 26 Report 5 33.5 Developing of the GUI 4 21 Writing the report

28/03Monday 8

Writing the report, Meeting with
the company's liaison
supervisor, 1

Meeting with the
company's liaison
supervisor, 8 Writing the report

29/03Tuesday 11 Reading and editing the report 11 Writing the report 11
Reading and editing of the
report

30/03Wednesday 0 8 Status report (2), testing 8
Merging of source code,
fixing of source code errors

31/03Thursday 7.5
Bug testing and developing of
source code 7.5 Developing of the GUI 7.5

Working with the source
code

01/04Friday 8

Bug testing, Mantis-issues,
meeting with the company's
liason supervisor 8 Developing of the GUI 8

Working with the source
code

02/04Saturday 0 0 0

03/04Sunday 5.5 40
Developing of source code, bug
testing/fixing 0 35.5 5.5 48

Bug testing/fixing,
deveoping of source code

04/04Monday 8

Developing of source code,
meeting with the company's
liaison supervisor, 2

Meeting with the
company's liaison
supervisor, 8

Developing of source code,
meeting with the company's
liaison supervisor,

05/04Tuesday 0 8.5 Developing of the GUI,dll 8.5 Writing the report

06/04Wednesday 8
Writing the report, testing of
source code 8 Developing of the GUI,dll 10 Developing of source code

07/04Thursday 8.5
Writing the report, helping with
GUI 8.5 Developing of the GUI,dll 8.5 Writing the report

08/04Friday 8.5
Writing the report, helping with
GUI 8.5 Developing of the GUI,dll 8.5 Writing the report

09/04Saturday 4
Writing the report, helping with
GUI 4 Developing of the GUI,dll 3.5 Writing the report

10/04Sunday 4 41
Writing the report, testing of
source code. 4 43.5 Developing of the GUI,dll 4 51 Writing the report

71

Inexpensive Data Hiding on USB Memory Sticks

Rune Søbye Øystein Nilsen Knut Borg

11/04Monday 7.5

Developing of source code,
meeting with the company's
liaison supervisor, 1

Meeting with the
company's liaison
supervisor, 7.5

Developing of source code,
meeting with the company's
liaison supervisor,
improving the basic
functions

12/04Tuesday 8.5 Writing the report 8.5 Writing the report 8.5 Writing the report
13/04Wednesday 10.5 Writing the report 10.5 Writing the report 10.5 Writing the report
14/04Thursday 0 7 GUI 0

15/04Friday 7

Bug testing of the software,
meeting with the company's
liaison supervisor 7 GUI 0

16/04Saturday 0 Easter holiday 4 Writing the report 0
17/04Sunday 0 33.5 Easter holiday 4 42 4 30.5

18/04Monday 0 Easter holiday 7.5 7.5
Improvement of the
software's efficency

19/04Tuesday 7.5
Improvement of the software's
speed 0 Easter holiday 7.5

Improvement of the
software's efficency

20/04Wednesday 7.5
Improvement of the software's
speed, bug test 0 Easter holiday 7.5 Bugfixing and improvments

21/04Thursday 7.5 Bugfixing MergeClus() 0 Easter holiday 7.5 Bugfixing and improvments
22/04Friday 8 Bugtesting, helping Knut 8 8 Bugfixing and improvments
23/04Saturday 4 Analysis 4 Analysis, scripting 0 Easter holiday
24/04Sunday 5 39.5 Analysing-script og analysis 5 24.5 Analysis-script og Analysis 0 38 Easter holiday

25/04Monday 7.5
Prosjekt report, bugtesting,
merging of source code 7.5 Scripting, analysis 9.5 Merging of the source code

26/04Tuesday 9 Writing the report 9 GUI 9
Writing the report, bug fixing
of final software

27/04Wednesday 10 Writing the report 10 Analysis 10
Writing the report, bug fixing
of final software

28/04Thursday 0 9 Analysis, TSK 6
Writing the report, bug fixing
of final software

29/04Friday 0 9 Analysis,TSK 9
Writing the report, bug fixing
of final software

30/04Saturday 6 Writing the report 6 Analysis 6
Writing the report, bug fixing
of final software

01/05Sunday 5.5 38
Rapportskriving, statusrapport,
GUI-manual 0 50.5 Analysis 5.5 55

Writing the report, bug fixing
of final software

02/05Monday 10
Rapportskriving/retting. Begynt å
tenke på bilder 0 10 Writing the report

03/05Tuesday 10 Analysis 10 Writing the report

04/05Wednesday 10
Rapportskriving. Kommentering
av kode. 10 Analysis 10 Writing the report

05/05Thursday 10 Writing the report 10 Analysis 3 Writing the report

72

Inexpensive Data Hiding on USB Memory Sticks

Rune Søbye Øystein Nilsen Knut Borg

06/05Friday 10

Writing the report,meeting with
the company's liaison
supervisor, fixing the analysis
code 10 Analysis 10

Writing the report,meeting
with the company's liaison
supervisor,Writing the
report

07/05Saturday 5 Writing the report 5 Writing the report 5 Writing the report
08/05Sunday 7 52 Writing the report 7 52 7 55 Writing the report
09/05Monday 10 Writing the report 4 Writing the report 10 Writing the report
10/05Tuesday 10 Writing the report 10 Writing the report 0
11/05Wednesday 0 Writing the report 10 Writing the report 10 Writing the report
12/05Thursday 10 Writing the report 10 Writing the report 10 Writing the report
13/05Friday 10 Writing the report 10 Writing the report 10 Writing the report
14/05Saturday 6.5 Writing the report 6.5 Writing the report 6.5 Writing the report
15/05Sunday 6 52.5 Writing the report 6 56.5 Writing the report 6 52.5 Writing the report
16/05Monday 9 Writing the report 9 Writing the report 9 Writing the report
17/05Tuesday 9 Writing the report 9 Writing the report 9 Writing the report
18/05Wednesday 0 10 Writing the report 10 Writing the report
19/05Thursday 10 Writing the report 10 Writing the report 10 Writing the report
20/05Friday 11 Writing the report 11 Writing the report 11 Writing the report
21/05Saturday 8 Writing the report 8 Writing the report 8 Writing the report
22/05Sunday 9.5 56.5 Writing the report 9.5 66.5 Writing the report 9.5 66.5 Writing the report
23/05Monday 14.5 Writing the report 14.5 Writing the report 14.5 Writing the report
24/05Tuesday 14.5 Writing the report 14.5 Writing the report 14.5 Writing the report
25/05Wednesday 15.5 Writing the report 15.5 Writing the report 15.5 Writing the report
26/05Thursday 16 Writing the report 16 Writing the report 16 Writing the report
27/05Friday Writing the report Writing the report Writing the report
Sum
timer 814 810.5 847.25

73

Inexpensive Data Hiding on USB Memory Sticks

E Project agreement

75

Inexpensive Data Hiding on USB Memory Sticks

76

Inexpensive Data Hiding on USB Memory Sticks

F Status reports

Status report 1
Inexpensive Data Hiding on USB Memory Sticks

Knut Borg, Øystein Nilsen, Rune Søbye.

What has been done:

The project plan was finished within the deadline. The webpage was up early. Started with

the coding part of the assignment after delivery of the project plan. After a difficult start we

managed to write a program that is able to hide and recover files, but it is in no way robust, and

has not been tested in all possible scenarios yet. We have however tested to see if you can find a

hidden file on Linux (Ubuntu), and the result is that you can’t.

Deviation:

There is still no solution about the practicalities of the quality assurance part of the project. The

bug tracking system (Mantis) was set up a bit late. The thesis itself also needs more work. The

status report is a bit late, due to not checking the project plan. We have done the coding in C

instead of C++, since the proof of concept code that we’re working from was in C. C is not very

different from C++ however, and we have some experience in C from other courses. Since we

don’t have anything to analyze yet, the analysis part of the project is put on hold.

Conclusion:

Some parts of the assignment need more work, like writing on the thesis. The coding of the

program is not behind schedule. Need to check our project plan more often to avoid breaking

deadlines.

77

Inexpensive Data Hiding on USB Memory Sticks

Status report 2
Inexpensive Data Hiding on USB Memory Sticks
Knut Borg, Øystein Nilsen, Rune Søbye.

What has been done
We have removed traces of hidden files on the memory stick when its contents are
viewed in Windows Explorer and we have also tried to make the program more robust
so it can handle duplicate file names. We have written more on the report.

Deviation:
The GUI is not finished by the deadline we had set. Even though we have been working
to get the hide and find functions to work correctly, there are unfortunately still some
bugs and missing functionality, like handling directories. The analysis of the software is
put on hold until the hide and find functions are working properly.

Conclusion:
We have to work on the GUI, finish the hide and find functions, and start the work on the
analysis part of the project along with writing more on the report.

78

Inexpensive Data Hiding on USB Memory Sticks

G Project plan

Project Plan

Knut Borg, Øystein Nilsen, Rune Søbye

IMT

HIG, Gjøvik

January 28, 2011

79

Inexpensive Data Hiding on USB Memory Sticks

Contents

1 Project plan 3
1.1 About . 3
1.2 Introduction . 3
1.3 Goals and framework . 3
1.4 Scope . 4
1.5 Project organization . 6
1.6 Planning, monitoring and reporting . 7
1.7 Organization of quality assurance . 8
1.8 Plan for implementation . 12
1.9 Milestones . 13
1.10 Hand-ins . 13

A Group contract 15

80

Inexpensive Data Hiding on USB Memory Sticks

1 Project plan

1.1 About

This project plan contains information about how the group will work with the bachelor project
towards the 25th of May. This includes, amongst others, effect and result goals, development
method and a Gantt chart for what we will work with and when we are planning to do it.

1.2 Introduction

The use of USB (Universal Serial Bus) memory sticks has in the recent years become more pop-
ular for regular users. The main reason for this is increased storage capacity, while the price has
decreased. Also, with increased popularity, there are a lot of new products which utilize the func-
tionality of memory sticks, for instance digital photo frames.

One downside with memory sticks is that their contents may be easily captured by others than the
owner of the memory stick. This may for instance be in cases where the memory stick is stolen,
when the owner lends it to another person or if the memory stick is unattended. In this project, we
are going to make a simple protection mechanism which should be as lightweight as possible. The
main idea is to hide the contents on a memory stick, making the owner less vulnerable of getting
his contents copied, read, deleted or edited by another person.

1.3 Goals and framework

1.3.1 Project goals

The goal of this project is to hide data stored on a USB memory stick without the need of modifying
the device’s hardware or firmware and without using time-expensive encryption. The software must
also be user friendly, making it possible to use for all kinds of users.

1.3.2 Effect goals

Effect goals are the goals we believe might be the result of our finished product:

3

81

Inexpensive Data Hiding on USB Memory Sticks

• A well made product will lead to good publicity to the employer, because the product reflects
how the company handles quality assurance. Also, a good product itself reflects the quality
of the company’s products as a whole.

• The customers’ data will be better protected against people who do not invest a huge amount
of time and effort to investigate the memory stick for hidden data.

1.3.3 Result goals

Result goals represents what should be accomplished at the end of the project:

• Make an intuitive user interface that everyone can use.

• Make a product that is of such quality that the company chooses to share it with their cus-
tomers.

• Hide files in a quick and efficient manner.

1.3.4 Framework

The project has to be finished by 25th of May. We need some memory sticks and forensic tools
for testing and analysis. The documents are written in LaTeX and source code in Microsoft (MS)
Visual Studio 2008. We will program in C++ and use our own computers for development and
testing of the software. The costs will be small, and probably not exceed 1000 NOK.

1.4 Scope

1.4.1 Task description

The main objective of the software is to protect contents on a memory stick. The idea is to hide
contents to protect them from being altered, viewed or deleted by others than the actual owner
of the memory stick. In order to do so, we need to figure out a way to hide and recover files on
the memory stick. Everyone should be able to use the software regardless of their knowledge of
computers, and because of that we have to make an user friendly GUI (Graphical User Interface). It
is also important that the software does not consume a large amount of computer resources, while
still succeeding its tasks within a reasonable amount of time.

4

82

Inexpensive Data Hiding on USB Memory Sticks

In addition to creating the software, we are also going to make an analysis of the hidden contents.
This means that we must study the hidden files in detail and then compare them to how they appear
when they are not hidden. By doing so we might be able to conclude in which degree it is obvious
that files are hidden, in which manner the hidden files are being represented and how strong the
protection of the files is. Also, a comparison with a software using cryptographic methods when
hiding files should be done. In this way we might be able to draw a conclusion on how much
faster the process of hiding and recovering files is when no expensive cryptographic methods are
involved.

1.4.2 Requirements

The main requirements for the software are as follows:

• It must be reliable. It should work every time, as well as being able to handle unexpected
situations.

• It has to be able to hide files and recover files hidden by the software on the FAT32 file
system.

• The software must be able to be used without any further preparations than installing it and
being in possession of a memory stick.

• It must be user friendly. It should be easy and intuitive for all kinds of users to hide files and
later recover them.

• When an illegitimate user tries to access the memory stick, he should not be able to discover
hidden contents or suspect that files are being hidden. This is only the case if the user is not
in possession of any advanced forensic tools or skills regarding the FAT32 file system.

• The memory stick must still be possible to use when files are being hidden.

• It is important that the user does not need to wait for a long time in order to hide or recover
files, so the process of doing so must be inexpensive. Being inexpensive means there will be
no use of cryptographic algorithms either by software or hardware implementations, making
the process of hiding or recovering files able to finish in a short amount of time which equals
no longer than 5 to 6 seconds.

• It should be impossible to detect the hidden files when using computers running either Win-
dows, Mac OS X or various Linux distributions.

5

83

Inexpensive Data Hiding on USB Memory Sticks

1.4.3 Limitations

There is not enough time to consider every option and eventuality, so we need to set some limita-
tions:

• The software will only be developed for MS Windows XP, Vista and 7.

• The possibility of hiding only a range of files might be excluded due to complexity. Our
primary goal is to hide or recover all files on a memory stick in a single operation. If we are
able to complete that goal in a reasonable amount of time, we will also try to implement the
option of hiding or recovering a range of files, decided by the user.

• We are limiting the software to only hide and recover files on the FAT32 file system.

1.5 Project organization

1.5.1 Responsibilities and roles

The group consists of Knut Borg, Rune Søbye and Øystein Nilsen, where Knut Borg is the group
leader. The employer is the German company eQ-3 Entwickung GmbH. Our contact persons are
Hanno Langweg from GUC (Gjøvik University College) and Dirk Stüben from the company itself.
The academic advisor is André Årnes from GUC.

1.5.2 Procedures and rules

All members are required to work at least 30 hours per week. Due to the members taking different
classes, there will be an unique schedule for each member. Even though the students’ availability
may vary, they need to show up on time and stay as long as the schedule requires them to do.
All of the group members are prepared to work more than 30 hours a week to finish a goal with
the group’s expectations of quality. A meeting protocol must be written for every meeting with
the employer and the supervisor, so we are able to keep track of feedback and what the group is
planning to do. All of the group members are required to notice the others if they feel that they are
not able to complete a certain goal within a given time frame. By doing so, the group is able to
adjust the workload between the members accordingly, and stand a better chance of completing a
given goal.

Check attachment A for more details.

6

84

Inexpensive Data Hiding on USB Memory Sticks

1.6 Planning, monitoring and reporting

1.6.1 The main classification of the project

The project consists of two main parts. The first one is to develop the software with user friendly
GUI, required to hide or recover files from a memory stick, whereas the second part is to analyze
the file structure on a memory stick where files have been hidden and to compare our method of
hiding and recover files with the use of cryptographic tools.

1.6.2 Choice of system development model

We want to use a system development model where we can change the system requirements during
the development process, and change the source code if unexpected problems occur. The evolution-
ary model fits our project well because it will give us the flexibility to switch between specification,
development and validation. Also, it makes it possible for for the employer to continuously review
our work and then give us feedback. We will deliver several prototypes to the employer and each
of the prototypes is an improvement of the previous.

The very first prototype will contain the functionality required to write data to a memory stick. It
should also be possible to change file names, contents on the memory stick, etc. We decide what the
prototypes should contain at the beginning of the working process, in collaboration with supervisor
and/or Hanno Langweg. By the evolutionary model we will then improve our software through
several iterations until we have a final version.

1.6.3 Plan for status meetings and decision points

Status meetings with the supervisor will be held at GUC or through Elluminate/Skype, once or
twice a month. Minor consultations with the supervisor may take place when required, through a
phone call or email.

Meetings with the employer will take place with their contact person at GUC every Monday. We
will present our recent prototype and the contact person will provide feedback.

Any important decision point will be handled in accordance to the supervisor/employer.

7

85

Inexpensive Data Hiding on USB Memory Sticks

1.7 Organization of quality assurance

1.7.1 Documentation of source code

All non-trivial lines of code must be commented. This must be done continuously as the code
is written. With doing so, we are avoiding problems with remembering what non-commented
code is supposed to mean. Also, a well commented code is important for others reading it. All
documentation of code, and the code itself, has to be written in English. All code, including the
comments, should be written within column 80 and need to be short and concise.

1.7.2 Documentation of the software

The software needs a documentation, serving as a manual for the user. It should contain explanation
of the software in general and the various features in particular. The manual should be be handed
in as an appendix to the project report and as an own help function in the software. In addition to
documentation of the software itself, we also need to document any major software related decision
made throughout the work. This may for instance explain why we decided to use one GUI rather
than another GUI, and why we chose a specific method to solve a particular problem.

1.7.3 Documentation of the working process as whole

As for the software part, every major decision needs to be documented. This may for example be
done by describing the various options we had, and then explain why the chosen were preferred.
Timesheets, status reports and a worklog are written to document the progress.

1.7.4 Configuration management

To keep track over the work we are doing, like the bachelor thesis it self and the coding of the
software, we are going to use Subversion. Subversion is an open source version control system
[source: http://subversion.apache.org/], used to keep track of changes and backup of files.

For bug-tracking we will use Mantis, which is an open source web based bug tracking system
[source: http://www.mantisbt.org/]. It will be used to get an overview over all bugs and to keep
track of changes.

Continuous integration will be used during the development of the source code. This means that
we will use our subversion repository with TortoiseSVN, continuously committing new changes

8

86

Inexpensive Data Hiding on USB Memory Sticks

and integrate them with the existing software.

1.7.5 Risk analysis

In the table below, we have identified some aspects we consider to be a potential problem or threat
to our work. For each of the aspects, a rating between 1 and 10 for probability and consequence
is given, as well as some measures on how to possibly deal with that problem. The risk is the
probability multiplied by the consequence.

Problem Probability Consequence Risk Measure(s)

Not able to solve parts of the
task.

3 8 24 Redefine the scope.
Start with the easiest parts,
in order to at least get them
done.

Missing internal or external
deadlines.

2 8 16 Plan well ahead. Work extra
hours prior to the deadlines.

Major collaboration problems
or disagreements within the
group.

2 6 12 Write group rules. Commu-
nicate in a clear and concise
manner. Discuss the problem
within the group or together
with the supervisor.

Not able to find the neces-
sary documentation for the
project.

3 4 12 Ask supervisor, teachers, etc.
Search actively for documen-
tation early in the process.

One or more members drop-
ping out from the group.

1 9 9 Redefine the scope of the
project.

Loss of written code or other
written materials.

1 7 7 Backup. Subversion. Save
work frequently.

Long period of illness or in-
jury for one or more mem-
bers.

1 6 6 Adjust the workload between
the rest of the members. The
ill member may be able to
work from home.

Lack of communication be-
tween the group and the em-
ployer/supervisor.

2 3 6 Ask for regular meetings.
Communicate in a clear and
concise manner.

9

87

Inexpensive Data Hiding on USB Memory Sticks

1.7.6 Comments about the various aspects

Not able to solve parts of the task
It should not be a problem to solve the minimum requirements, which is to hide and recover all files.
Some additional features, such as hiding a range of files or authentication, might be a problem due
to complexity or lack of time. The consequence of missing the minimum requirements will be a
negative impact on our grade. Missing any additional parts may have a small impact on the final
grade.

Missing internal or external deadlines
Not very probable because we plan well ahead and the members are prepared to work extra hours
prior to deadlines. There are two different types of deadlines, internal and external. Internal dead-
lines are the group’s own deadlines for when objectives should be completed etc. External deadlines
are the GUC’s own deadlines, for instance handing in the bachelor assignment. The consequence
depends on which deadline, and the type of deadline, we missed. The internal ones might be
rescheduled, whereas the external ones has to be complied.

Major collaboration problems or disagreements within the group
Problems and disagreements have always been solved in a friendly manner without the need of
bringing in external guidance. The consequence is not that big, since discussions within the group
or with the supervisor might eliminate or reduce the problem. However, the progress might get on
hold if a major disagreement occur.

Not able to find the necessary documentation for the project
The FAT32 file system and GUI-programming are common, so finding the necessary documenta-
tion should not be a problem. The consequence of not finding any documentation is that the we
might not be able to keep up with the workload originally planned, which might interfere with
deadlines.

One or more members dropping out from the group
We consider this to be rather unlikely because the the group have cooperated in almost all courses
at GUC so far and thereby know each other well. The consequence however, is serious since the
remaining group members probably need to redefine the scope of the project.

Loss of written code or other written materials
Very unlikely, because we are doing backup of our work. The most likely case will be to lose
only a short time of work, for example due to the computer crashing. If we lose all or a majority
of our work late in the working process, the consequence would be catastrophic. However, that
probability is close to zero.

10

88

Inexpensive Data Hiding on USB Memory Sticks

Long period of illness or injury for one or more members
We are considering this one to be rather unlikely. We have worked together as a group in almost
every course at GUC, and so far, illness have not been a problem at all. If a group member gets
ill and have to stay home for a longer period of time, then we will have to discuss the possibility
of that given member to work from home. For worst case scenarios, see “One or more members
dropping out from the group”.

Lack of communication between the group and the employer/supervisor
Lack of communication means that we do not communicate with the employer or supervisor as
often as we should due to availability. The communication with the employer should not be a
problem since one of their contact persons is working at GUC. The supervisor is not present at
GUC, but well planned physical or electronical meetings should solve that problem.

11

89

Inexpensive Data Hiding on USB Memory Sticks

1.8 Plan for implementation

1.8.1 Gantt chart

12

90

Inexpensive Data Hiding on USB Memory Sticks

1.8.2 Comments to the Gantt chart

Coding of hide and recover files
The coding of hide and recover files are divided into one separate period. We are planning to make
7 prototypes during that period. Each of them should include new features and be an improvement
of the previous prototype. The various prototypes will be presented to our employers contact person
at GUC and sent to our supervisor.

Analysis of software compared to cryptographic tools
We will analyze how our method of hiding files compares to encrypting them considering time
used.

Quality assurance
We will send our source code to the employer who will test our software. They will then check if
the software is within the company’s guidelines.

Changeing of code to meet the employer’s standard
After we receive the source code back from the first quality assurance, we will probably have to
change our source code because no one creates an error free software at the first attempt.

Handling unexpected situations
If any unexpected events happens, we will use two weeks as a buffer to handle those.

1.9 Milestones

29.01: Delivery of project plan.

14.04: Quality assurance.

25.05: Delivery of bachelor report.

30.05: Delivery of the A3 poster to Kopisentralen for laminating.

07.06: Presentation.

1.10 Hand-ins

20.02: Status report 1

25.03: Status report 2

13

91

Inexpensive Data Hiding on USB Memory Sticks

28.04: Status report 3

14

92

Inexpensive Data Hiding on USB Memory Sticks

A Group contract

15

93

Inexpensive Data Hiding on USB Memory Sticks

16

94

Inexpensive Data Hiding on USB Memory Sticks

H External test results

95

Inexpensive Data Hiding on USB Memory Sticks

eQ-3 Entwicklung GmbH

Vortest und erste Eindrücke
„USB DH“

Änderungsverzeichnis
Nr. Datum Beschreibung der Änderung Autor
1 27.05.2011 Allgemeiner Softwaretest J. Rem

Test:
Es soll ein Test der Software auf verschiedenen Flash – Speichern mit verschiedenen
Dateiformaten durchgeführt werden. Dadurch soll sichergestellt werden in wie weit die Software
mit den gängigen Dateiformaten im Internet arbeitet.

Testbemerkung:
Der Test wird auf den gängigen Betriebssystemen mit verschiedenem Flash – Speichern, inkl.
verschiedener Dateisysteme, mit den gängigen Dateiformaten im Internet durchgeführt.

JIRA – Vorgang:
USBDH-1

OK Getestete Funktion in Ordnung
Fehler Fehler. Im Jira eingetragen.

Datum: 27.05.2011 Seite: 1/4
Verfasser: J. Rem Produkt: USB – HD
Datei:
C:\Users\Oystein\Documents\Bacheloroppgave\usbdatahiding\Hovedrapport\appendixes\usb
hd_v0.3.3_vortest.doc

96

Inexpensive Data Hiding on USB Memory Sticks

eQ-3 Entwicklung GmbH

Prüfer: Juri Rem Checkliste: USB – DH Version: 0.3.3

Windows 7 Professional SP1 deutsch, 64 Bit:

Modell: CnMemory Micro X Pro CnMemory Airy
Flash – Speicher: USB DISK V2.0 USB DISK V2.0
Dateisystem: FAT32 FAT32
Größe: 987MB 7,51GB

Einleitung:
Das Programm wird gestartet in dem man die Datei B_GUIx64.exe für 64Bit Betriebssystem
(B_GUIx86.exe für 32Bit) startet.

Folgendes wird angezeigt:

Bild1

Das Programm wertet sofort nach dem Start die Wechseldatenträger aus und erkannt automatisch
die Laufwerkbuchstaben. Diese sind anschließend in der Auswahlliste aufgelistet.
Wie in Bild1 zu sehen gibt es zwei Auswahlmodi. In beiden Modi sind die Daten auf dem
Wechseldatenträger nicht mehr zu sehen. Jedoch kann Win7 im Modus (S) den
Wechseldatenträger auswerten und den belegten Speicher anzeigen.
Dies ist im Modus (L) nicht der Fall.
Der Prozess startet und der Wechseldatenträger wird beschrieben. Während des Vorgangs kann
der Wechseldatenträger nicht genutzt werden. Nach erfolgreicher Ausführung erscheint ein neues
Fenster und zeigt folgendes an:

Bild2

Somit ist der Prozess erfolgreich abgeschlossen und die Daten auf dem Wechseldatenträger sind
für den Anwender nicht mehr sichtbar. Die Daten können wiederhergestellt werden indem man die
jeweilige Funktion ein zweites Mal ausführt und somit einen „FIND“ Befehl ausführt. Nach
erfolgreichem Abschluss erscheint ebenfalls Bild2 und die Daten sind wieder sichtbar.

Datum: 27.05.2011 Seite: 2/4
Verfasser: J. Rem Produkt: USB – HD
Datei:
C:\Users\Oystein\Documents\Bacheloroppgave\usbdatahiding\Hovedrapport\appendixes\usb
hd_v0.3.3_vortest.doc

97

Inexpensive Data Hiding on USB Memory Sticks

eQ-3 Entwicklung GmbH

Dateiformate:

Dateiformat Bemerkung Ergebnis
Audio

mp3 Ok
wav Ok
wma Ok
aac Ok
m4a Ok
ogg Ok

Video
mpeg Ok
avi/divx Ok
wmv Ok
vob Ok
flv Ok
mp4 Ok

Bilder
png Dateigröße: 9KB/10,4MB Ok
gif Dateigröße: 11KB Ok
bmp Dateigröße: 111KB/7,7MB Ok
wmf Ok
jpeg Dateigröße: 712KB/14,4MB Ok
pptx Ok
ppt Ok

Text
txt Ok
html Ok
rtf Ok
doc Ok
docx Ok
pdf Ok
xls Ok
xlsx Ok

Sonstige
dll Ok
rar Ok
pst Ok
exe Ok
msi Ok
accdb Ok
inf Ok
tar Ok
com Ok
jar Ok
xml Ok

Datum: 27.05.2011 Seite: 3/4
Verfasser: J. Rem Produkt: USB – HD
Datei:
C:\Users\Oystein\Documents\Bacheloroppgave\usbdatahiding\Hovedrapport\appendixes\usb
hd_v0.3.3_vortest.doc

98

Inexpensive Data Hiding on USB Memory Sticks

eQ-3 Entwicklung GmbH

bat Ok
Allgemeines

„Find Drivers“ findet zwar neu angeschlossene Datenträger, jedoch
entfernt nicht wenn diese vom PC abgesteckt wurden.
Die Software arbeitet nur mit Wechseldatenträgern mit der
Formatierung FAT32.
Wird das Format FAT genutzt, wird der Wechseldatenträger nicht
erkannt.
Wird das Format exFAT genutzt, wird die Meldung ausgegeben dass
der Prozess erfolgreich war, jedoch wird keine Änderung ausübt.
Wird das Format NTFS genutzt, wird der Wechseldatenträger nicht
erkannt.
Software stürzt ab wenn es auf einem Wechseldatenträger genutzt
wird auf dem laut Win7 „0 Bytes“ freier Speicher vorhanden ist.
Dieser Fehler tritt nicht mehr auf wenn der freie Speicherplatz auf
einem 1GB Wechseldatenträger min. 20MB beträgt und einem 8GB
Wechseldatenträger min. 30MB beträgt.
„Recovery“ Programme können die Daten wiederherstellen wenn der
Modus HIDE(L) genutzt wurde. Im Modus HIDE(S) war dies nicht
möglich.

Datum: 27.05.2011 Seite: 4/4
Verfasser: J. Rem Produkt: USB – HD
Datei:
C:\Users\Oystein\Documents\Bacheloroppgave\usbdatahiding\Hovedrapport\appendixes\usb
hd_v0.3.3_vortest.doc

99

Inexpensive Data Hiding on USB Memory Sticks

HIDE(L)
Format: FAT32

1GB 8GB
512 B N/A
1 KB ok N/A
2 KB ok
4 KB ok ok
8 KB ok
16 KB N/A
32 KB N/A
64 KB N/A ok

FIND(L)
1GB 8GB
512 B N/A
1 KB ok N/A
2 KB ok
4 KB ok ok
8 KB ok
16 KB N/A
32 KB N/A
64 KB N/A ok

HIDE(S)
Format: FAT32

1 GB 8GB
512 B N/A
1 KB ok N/A
2 KB ok
4 KB ok
8 KB ok
16 KB N/A
32 KB N/A
64 KB N/A

FIND(S)
1GB 8GB
512 B N/A

1 KB N/A

2 KB

USB Hide and Find

Speichergröße: belegter Speicher freier Speicher
Formatiergröße: Fehler siehe USBDH-2

1.006.481.408 Bytes 21.090.304 Bytes
1.012.523.008 Bytes 19.243.008 Bytes Fehler
1.009.618.944 Bytes 22.147.072 Bytes
1.009.328.128 Bytes 22.437.888 Bytes Fehler

Fehler
Fehler

Speichergröße: belegter Speicher freier Speicher
Formatiergröße: Fehler siehe USBDH-2

16.057.344 Bytes 1.011.514.368 Bytes
5.376.000 Bytes 1.026.390.016 Bytes Fehler
2.310.144 Bytes 1.029.455.872 Bytes
1.089.536 Bytes 1.030.676.480 Bytes Fehler

Fehler
Fehler

CnMemory Micro X Pro CnMemory Airy

Speichergröße: belegter Speicher freier Speicher
Formatiergröße: Fehler siehe USBDH-2

996.346.880 Bytes 31.224.832 Bytes
996.491.264 Bytes 35.274.752 Bytes not tested
996.802.560 Bytes 34.963.456 Bytes not tested

not tested
not tested
not tested
not tested

Speichergröße: belegter Speicher freier Speicher
Formatiergröße: Fehler siehe USBDH-2

Programmab
lauf zu lang,
Abbruch
nach 30 min. 1.012.404.224 Bytes 15.167.488 Bytes

Programmab
lauf zu lang,
Abbruch
nach 30 min. 1.001.867.264 Bytes 29.898.752 Bytes not tested

100

Inexpensive Data Hiding on USB Memory Sticks

4 KB

8 KB
16 KB N/A
32 KB N/A
64 KB N/A

Programmab
lauf zu lang,
Abbruch
nach 30 min. 999.112.704 Bytes 32.653.312 Bytes not tested

Programmab
lauf zu lang,
Abbruch
nach 30 min. 998.522.880 Bytes 33.243.136 Bytes not tested

not tested
not tested
not tested

CnMemory Micro X Pro CnMemory Airy

101

Inexpensive Data Hiding on USB Memory Sticks

belegter Speicher freier Speicher

siehe USBDH-6
8.053.784.576 Bytes 32.800.765 Bytes
siehe USBDH-5
siehe USBDH-5
Daten werden vom Wechseldatenträger gelöscht
8.067.743.744 Bytes 31.391.744 Bytes

belegter Speicher freier Speicher

siehe USBDH-6
18.055.168 Bytes 8.068.530.176 Bytes
siehe USBDH-5
siehe USBDH-5
Daten werden vom Wechseldatenträger gelöscht
1.114.112 Bytes 8.098.021.376 Bytes

CnMemory Airy

belegter Speicher freier Speicher

belegter Speicher freier Speicher

102

Inexpensive Data Hiding on USB Memory Sticks

CnMemory Airy

103

	Preface
	Contents
	List of Figures
	List of Tables
	Abbreviations and definitions
	Introduction
	About the layout and structure of the report
	Target audience
	Objectives
	Our knowledge background
	Choice of programming language
	Framework
	Effect goals
	Result goals
	Scope
	Description of group members, advisor and employer

	Background
	About the FAT32 file system
	The development process
	Description of the software
	Description of users
	Description of attackers
	Limitations
	GUI

	Description of the FAT32 file system
	Reserved region
	Sectors
	Clusters
	The FAT
	Data region
	Representation of file names

	Development and testing
	The foundation of the software
	Development of the RemoveTrace() function
	Development of the RecoverTrace() function
	Development of the GUI

	Development results
	How HideAll() works
	How RemoveTrace() works
	How RecoverTrace() works
	Root cluster and file handling
	Elimination of duplicate file names
	GUI

	Software Analysis
	Level of protection
	First sight discovery
	Analysis using advanced tools

	Performance analysis and comparison
	Conclusions of the analysis
	Known bugs

	Future work
	Possible improvements

	Discussions and evaluation
	Evaluation of the work done by the group
	Criticism of the bachelor thesis

	Conclusions
	Bibliography
	Analysis results
	GUI suggestions
	Script
	Timesheets
	Project agreement
	Status reports
	Project plan
	External test results

