Boost.Unicode

a Unicode string library for C++

Foreword

Boost.Unicode is a graduation project for the bachelor studies in
computer science at Gjovik University College.

The project has resulted in a Unicode string library for C++ that
abstracts away the complexity of working with Unicode text.

The idea behind the project originated from the Boost community’s
developer mailing lists, and is developed with inclusion into the Boost
library collection in mind.

The developers would like to thank the entire Boost community for
giving us a chance to have a go at this project, and for all their help

throughout the development process. Special thanks go out to Miro
Jurisic”and Rogier van Dalen who have been especially involved in
the discussions around the design.

Gjovik May 19, 2005

Erik Wien Lars Olav Gigstad

Boost.Unicode - 2

Table of contents

Foreword 2
Table of contents 3

1 Introduction 6
1.1 The project 6
1.1.1 Text representation on computers 6
1.1.2 The Unicode Standard 7
1.1.3 Motivation 8
1.1.4 Boost 8
1.2 The Developers 9
1.2.1 Background 9
1.2.2 What must be learned 9
1.3 Other participants 9
1.4 Development model 10
1.5 This report 11
1.5.1 Target audience 11
1.5.2 Organization 11
1.5.3 Layout 12

2 Analysis and theory 13

2.1 Introduction 13

2.2 Unicode in detail 13
2.2.1 Every character is a number 13
2.2.2 Unicode encoding forms 14
2.2.3 “Character” versus “code point” 15
2.2.4 Textelements 15
2.2.,5 Normalization 16
2.2.6 Summarized 17

2.3 The Standard Template Library 17
2.3.1 Containers 17
2.3.2 Algorithms 18
2.3.3 Iterators 18

Boost.Unicode - 3

2.3.4 Concepts 18
2.3.5 Summarized 19

3 Specification 20
3.1 Introduction 20
3.2 Requirements 20
3.2.1 Requirement overview 20
3.2.2 Limits 21
3.2.3 Target users 22
3.3 Use-cases 22
3.3.1 Actors 23
3.3.2 Use-case descriptions 23
3.4 Documentation 25

4 Design 26

4.1 Introduction 26
4.1.1 Design format 26

4.2 Encoding traits 27
4.2.1 Encoding tags 27
4.2.2 Class encoding_traits 27
4.2.3 Associated tests 28

4.3 Code point string 28

4.4 Dynamic code point string 29

4.5 Normalization algorithms 30
4.5.1 Normalization tags 30
4.5.2 The normalize algorithm 30
4.5.3 Associated tests 30

4.6 Simple casing algorithms 30

4.7 Boundary traits 31
4.7.1 Boundary tags 31
4.7.2 Class boundary_traits 31
4.7.3 Associated tests 31

4.8 Text element 32
4.8.1 Class text_element 32

4.9 Text element string 32

4.10 Dynamic text element string 33

5 Implementation 35

5.1 Introduction 35

5.2 Programming environment 35
5.2.1 IDE and compiler 35
5.2.2 Coding standard 35

5.3 General 36
5.3.1 Source code dependencies 36
5.3.2 Exception safety 36
5.3.3 Thread safety 36

Boost.Unicode -

5.4 Encoding traits 36

5.4.1 The classes 36

5.4.2 Reversed endian encodings 38
5.5 Dynamic code point string 38
5.6 Unicode character database 39

6 Testing 42
6.1 Introduction 42
6.2 Tests 43
6.2.1 Normalization 43
6.2.2 Boundary traits 43

7 The development process 45
7.1 Evolutionary development 45
7.1.1 Iteration 1 45
7.1.2 Iteration 2 46
7.1.3 Iteration 3 47
7.1.4 Iteration 4 47
7.2 Objective critique 48
7.3 Where do we go from here 48
7.4 Subjective evaluation 49
7.4.1 Working on a project 49
7.4.2 Organization 50
7.4.3 Workload balance 50

8 Conclusion 51
9 Bibliography 52

10 Appendices 53

Boost.Unicode -

5

1 Introduction

1.1 The project

1.1.1 Text representation on computers

If you want to use a computer to represent some kind of text, you have
to teach the computer how it should do just that. Basically you need to
"translate" the textual information into a form the computer can easily
understand and process. This is done by giving each of the characters
in the alphabet a number, and storing sequences of these numbers in
the computer's memory. To be able to make this work, you do of
course have to agree on one specific number for every character, and
make that numbering-scheme universal. That way, every computer
that understands this numbering-scheme, can interpret and display
text from any other computer.

Traditionally this has been done through the ASCII encoding. ASCII
(more specifically extended ASCII) uses 8 bits to represent one
character, and some basic binary math tells us that ASCII thus is
capable of representing 256 unique characters. This is more than
enough for representing the Latin alphabet used in most parts of the
western world, as well as numbers and some other handy characters.
The problem is, there's more to the world that the western part of it.
(Though many people seem to be intentionally ignorant of that fact.)
In Asian countries for example, there are many different scripts,
several of which have thousands of unique characters. Obviously this
makes it impossible for ASCII to handle all the different characters
that exist around the world, and therefore Asian computer users
(amongst others) have been forced to make their own encoding-
schemes to be able to represent their native languages on a computer.
(Shift-JIS in one example of such an encoding) This is of course a
logical solution and works quite well, but it raises one problem. It is

Boost.Unicode - 6

no longer possible to simply transfer the encoded text from one
computer to the other. You need to know what encoding is used to be
able to make sense of the data. This would be simple enough if there
was only a few different encodings out there, but unfortunately there
aren't. There are several hundred of them, and keeping track of which
one is used in a given piece of encoded text can be a real nightmare.
Enter Unicode.

1.1.2 The Unicode Standard

The Unicode Consortium has taken upon itself the monstrous task of
once and for all defining one unique number for representing each
and every character known to man. No more encoding nightmare.
One encoding fits all. The Consortium’s work has resulted in a
standard (The Unicode Standard) that currently (version 4.1.0) sports
a healthy 90,000+ characters, from all kinds of different scripts like
Latin, Hebrew, Arabic, Katakana, Hangul and even the old Viking’s
Runic script. And the standard keeps on growing.

Great! So we have a universal way of representing text on computers
that can be used throughout the world. That solves all problems
associated with character encoding, doesn't it? Well.. not really. The
thing is, all the different encodings that were created prior to Unicode
are still in heavy use. This is basically due to one simple fact. Many of
the programming tools used by programmers were created before the
Unicode standard was, meaning they don't have built-in support for
Unicode. This means the programmers have to manually implement
support for Unicode in their applications. Writing a Unicode aware
application is therefore a lot more complex than it has to be, very
often so complex the programmers don't bother spending the time
required to do it. (Yes, we're lazy!) One of the most popular
programming languages in the world, C++, is unfortunately one of the
aforementioned programming tools, a fact that has hindered the
adaptation of Unicode quite a bit. Now, this is where we get to the
point of all this talk about text and encodings. By developing an
extension to the C++ language that abstracts away the complexity of
handling Unicode strings, we can make it much easier for
programmers to make their applications Unicode aware, and thus
enabling them to release their application all over the world, without
even having to recompile them. Wow, developing something like that
sounds like a good idea for a final project doesn't it?

Boost.Unicode - 7

1.1.3 Motivation

“But”, I hear you say, “There are already a few Unicode libraries
available for C++. Why do I need another one?”. Well, it's a good thing
you asked. The thing is that the existing libraries all seem have some
sort of problem attached to them.

The biggest problem, one that applies to most libraries, is that they're
commercial. They cost you money, to put it bluntly. In addition to
being lazy, programmers are also cheap, so that won't fly for the vast
majority of us. There are a few libraries out there that are free of
charge, but unfortunately most of them are plagued by a just as
serious problem. They just don't follow many of the conventions with
respect to design and coding style established in the C++ standard
library, and instead rely on their own way of getting things done. The
most notable way this becomes apparent is that very few libraries
provide STL conforming iterators and containers, making it
impossible to use C++' standard algorithms together with them.

Another big problem with the other libraries, probably the biggest
one, is that they're not standard. This means that if you decide to use
one of them, your application suddenly becomes much less portable.
The library has to be available for any platform (or even compiler) you
might want to port to and that is not always the case.

What this all boils down to is that there is a real need for a new, and
standardized Unicode library. One that would work on any compiler
on any platform, as well as playing nice with the existing components
in the C++ standard. To do this however, we need some kind of
standardizing organization. We need Boost.

1.1.4 Boost

Boost is a community working on developing different libraries to
complement C++' existing standard library. It was started by
members of "The C++ Standards Committee Library Working Group"
as a means for establishing "existing practice" and developing/testing
libraries that can later be included in the official C++ standard.
Acceptance of a library into Boost can therefore be viewed as the next
best thing to acceptance into the C++ standard itself.

Today Boost consists of in the region of 70 different libraries, assisting
programmers with everything from multi threaded programming, to
graphs and template meta-programming. Basically libraries helping
programmers with every problem under the sun, except adding
Unicode support to their applications. That is exactly what
Boost.Unicode is meant to remedy.

Boost.Unicode - 8

1.2 The Developers

1.2.1 Background

The developers behind this project are Erik Wien and Lars Olav
Gigstad. Both are at their final year of Gjgvik Univerity College's
(GUC) computer science bachelor studies, and have chosen to
specialize their degrees in programming.

Both developers have a fair amount of experience in C++ (including
STL design and implementation techniques), and have previously
worked together on a couple of projects in the course Compilers at
GUC.

1.2.2 What must be learned

Erik does already have a little bit experience with Unicode, but both of
the developers need to read up on a lot of Unicode documentation to
get a better understanding of the internals of it.

The developers also need to read up on the STL documentation to
ensure the workings of the STL are fully understood.

Furthermore the developers need to investigate how to build up a
code-tree that can easily be merged with, and built alongside the
existing Boost libraries. This means they have to learn how to
configure and use the Boost.Build system, among other things.

1.3 Other participants

Some other people are also involved, in one way or another, in this
project.

Firstly the Boost community will help in the specification and design
faces on the project, as well as helping with design evaluation along
the way. They are ultimately the users of the library, so their input is
vital to ensure the library turns out well.

Second, Frode Haug of GUC will work as the project’s supervisor. This
means that he will look over the development process throughout the
project period, and give guidance if the developers get stuck on
something.

Boost.Unicode - 9

1.4 Development model

For this project we have chosen to go with an evolutionary
development model. There are several reasons for this choice. Firstly,
it allows us to rapidly develop a preliminary prototype of the library
and get it out to the community for comments and getting tips on
possible improvements. Evolutionary development also makes it
easier to actually do something about the comments the community
may have, as the model encourages changes to the requirements and
design as the project goes forward. (Something that is very likely to
happen in this case!)

Study the
—* unicode
specification
Start: Dlscuzsnddesign Document and develop
Deliver pre- implementations | | B i
engineering report e
N Study other
implemitations
v
Develop final i : : Get feedback
implementation of the | |+ Deslg;ai:;dcgﬁl:mr}anon - - from boost
library LY community

Termination:
Hand in final report =)

Figure 1 - Workflow diagram for the development process

The thing really that tipped the scale for us was the ability to develop
using prototyping. This is a very good way of developing a library like
this, as it allows us to actually try different design ideas to find the
best one, instead of relying on completely designing the library
beforehand and getting locked into that design. We know by
experience that the design ideas you have at the beginning of such a
project rarely are the best ones. We assume this to be true this time
around as well.

In short

The development period will be split into 4 separate iterations. (With
fixed start and end dates) Each of these iterations will have its own
planning, specification and design period where we determine what
should be done this iteration. Towards the end of each iteration, when
all development is completed, we will have an evaluation where we
discuss the results of the iteration and determine what (if anything)
needs revision. All documentation (including specification and design

Boost.Unicode - 10

documents) will evolve along with the code itself, and it will therefore
always represent the current state of the code.

1.5 This report

1.5.1 Target audience

Because of the rather technical nature of the implementation details
of this library, and the fact that the end users are programmers
themselves, this report has been written under the assumption that
the reader have at least some knowledge of computer programming in
general, and C++ and the STL in particular. A basic understanding of
language constructs like templates, will be assumed, as having to go
into detail on all such topics would leave the report looking like a C++
tutorial. Other readers can still follow large portions of the report, but
they might have a hard time understanding some of the
implementation details described.

1.5.2 Organization

This report is organized into 8 separate sections.

The first section, the one you are reading right now, concentrates on
introducing the project and developers, as well as providing some
other “introductory information”.

The second section is dedicated to a discussion around the topics this
project relates to. This includes an in depth study of Unicode, as well
as some information about the Standard Template Library. The
section is rather important to read and understand to be able to make
sense of the rest of the report.

The third section is the specification of Boost.Unicode. The section is
more or less a snapshot of the document that has evolved through the
entire development process, as more and more components were
added to the library.

Fourth is the Design section. It contains the design document as it
looked at the end of the project period. In it you will find information
about the different components that make up this library.

The fifth section is the Implementation section. It provides some
information about a couple of the implementation details of this

Boost.Unicode - 11

library. The aim of this section is to give a little insight into the depths
of the source code, and how it all works.

Sixth is the testing section. It provides a some information about how
the testing process was carried out.

Seventh is the section about the development process as a whole. It
provides information about how we have worked, as well as our
feelings about the project.

The eight and final section is the conclusion. This basically
summarizes the entire project and our results in a couple of sentences.

For a detailed summary of the contents of the report, please take a
look at the Table of Contents.

1.5.3 Layout

The layout of this report is based on the guidelines presented in the
paper «Report templates. A guide to the writing and design of reports
and R&D papers for students and staff at Gjavik University College» -
2004 Nordstrom et.al. These guidelines are followed for anything
from fonts and line-spacing, to placement of illustrations and other
layout specific issues.

Boost.Unicode - 12

2 Analysis and theory

2.1 Introduction

Through the course of this project, we have spent a lot of time reading
the Unicode and C++ standards to figure out how to best design an
implement a Unicode library for C++. The knowledge we acquired
during this research, has strongly influenced the final design and
implementation of Boost.Unicode. In this section we will try to give a
little overview of what we have learned through this process and we
hope this will help you as the reader understand what on earth we are
talking about in the Specification, Design and Implementation
sections of this report.

2.2 Unicode in detall

2.2.1 Every character is a number

As mentioned in the

introduction Unicode is a Some Unicode code points:

universal character U+00C5: LATIN CAPITAL
encoding scheme that can A LETTER A WITH RING
represent just about every ABOVE

character known to man.

This is accomplished by ‘Uj] U+B564: HANGUL SYLLABLE
assigning one unique SSANGTIKEUT AE KHIEUKH
number, known as a code ::'

Boost.Unicode - 13

point, to each character!. All of these code points are defined in the
standard with a unique name, as well a lot of other data related to the
code point in question. (More on this later in the report) It is
important to note however, that the Unicode standard does not define
how these characters look on your computer screen or on paper. This
is outside the scope of Unicode and not defined in the standard.

2.2.2 Unicode encoding forms

As you have probably figured out “all characters known to man” add
up to an awful lot of characters. Around one million code points
(10FFFFh) are reserved in the current Unicode standard, even though
only about 90.000 are in use at the moment. Still, compliant
implementations must be able to represent every last one of these
10FFFFh code points. This means that if we are to represent a
Unicode code point on a modern computer (Some x86 platform for
instance), we will have to use a 32bit datatype(four bytes) to be able to
represent a code point. (Strictly speaking, 24bit is sufficient, but
because of alignment issues on 32bit processors, performance would
be extremely poor if 24bit variables were used.) This is of course in
stark contrast to ASCII that only requires one single byte (8bit) pr.
“code point”. Those extra 3 bytes quickly begin to add up when
representing long

sequences of characters. Unicode encoding forms:
(Like this report for seoome e
. . — + :
instance) To combat this :£

. . = IDEOGRAPH
size problem, the Unicode]
standard defines what is
known as the Unicode Encoding Bit-pattern
encoding forms.

UTF-8 E8 AA OF

These encoding forms
(UTF-8 UTF-16 and
UTF32) each define a way UTF-32 00008A9E

of representing Unicode

code points as a sequence

of one or more 8, 16 or 32

bit code units respectively (Note the difference from code point here).
These encoding forms are defined such that a single code point at
most take up 32bits of memory, but most code points can be
represented with far less. In UTF-8 for instance, the entire ASCII set

UTF-16 8A9E

thttp://www.unicode.org/charts/ has a complete list of the code points defined in
the current Unicode standard.

Boost.Unicode - 14

of code points are represented using only one byte, resulting in huge
memory (or disk space) savings for western users.

For more information about the Unicode encodings, and how exactly
they work, you can have a look at the Unicode standard, section 2.5.

2.2.3 “Character” versus “code point”

Okay then. Unicode still doesn’t sound too bad does it? Create a
sequence of code points in an appropriate encoding form, and you can
use it just like you would any other string in C++, right? Well, no.
There’s more to it than that. What people normally think of as a
“character” is not the same thing as a Unicode code point, and
therefore assuming that it is can lead to some interesting problems.

You see, code points can be much more than just some character. An
interesting example of this, is something known as combining
characters. These “characters” are code points just like any other, but
they have a special meaning. When they are encountered inside a
string they should be combined with the code point directly preceding
it and together these code points have a unique meaning. One
example of such a code point is U+0301: COMBINING ACUTE ACCENT.
When combined with the character code point for ‘e’ for instance, this
code point will result in the visual representation ‘é¢’. Now, anyone
who knows French knows that an ‘e’ is not the same thing as an ‘¢’, but
if you treated such a sequence purely as a series of code points and
searched for the code point ‘e’ in that string, you would find a match,
even though there isn’t actually an ‘e’ in there.

Obviously this is no way to go. We need to have a way of separating
the instances of ‘e’ and ‘é’ as two different characters to be able to have
a reliable way of searching through Unicode text. Luckily, the creators
of Unicode have thought of this already, and that leads us to the
concept of text elements.

2.2.4 Text elements

A text element is a level of abstraction above “code points”. A text
element can consist of many code points, and together these code
points have a certain unique meaning,.

Grapheme clusters

One example of something that classifies as text-elements are
grapheme clusters, the concept in the Unicode standard that is most
similar to what people think of as a character. Put bluntly, a grapheme

Boost.Unicode - 15

cluster is a combination of some code point and any combining
character that might follow it. This effectively solves the problem of
the ‘e’ and ‘¢’ we talked about earlier. They are now completely

separate text elements, and you simply cannot confuse the two.

The Unicode standard defines what constitutes a grapheme cluster
through a code point property known as “boundary property value”.
This property defines what kind of code point the code point in
question is. (A combining character will for instance have a boundary
property value of Extend) The standard then defines a set of rules2
that dictate which property values you are suppose to break between
when reading grapheme clusters, and you can by employing these
rules figure out which code points belong together in a cluster. (When
moving through a code point sequence, you check the current and the
next code point’s boundary property, check them against the rules,
and if you are not supposed to break between them, the following code
point is part of the same grapheme cluster as the current one.)

Words

Words are another type of text-elements defined in the standard. (Yes,
words like in the normal sense of the term) These work in the exact
same way as grapheme clusters (boundary properties and break
rules), but instead of splitting the text into grapheme clusters they
split it into words. This can be very useful when users are searching
for some given word inside a string, and don’t want to find partial
matches. (A search for “code” won’t return a match if you search in
the string “Unicode”)

There is also a third type of text-elements, namely sentences, but we
won’t waste your time describing them here. (It’s all in the standard if
you're interested.)

2.2.5 Normalization

Okay, but that’s it right? Surely there won’t be any problems if we
represent our text as sequences of grapheme clusters? Well. Wrong
again. There is one last problem that can still occur, and it has to do
with (among other things) grapheme clusters with multiple combining
characters. For instance, if you have the code point sequence [1ATIN
SMALL LETTER C, COMBINING ACUTE ACCENT, COMBINING CEDILLE]
that would result in one grapheme cluster. The problem is, that cluster
would not be binary equal to [LATIN SMALL LETTER C, COMBINING

2 http://www.unicode.org/reports/tr29/tr29-9.html has a complete definition of
these rules.

Boost.Unicode - 16

CEDILLE, COMBINING ACUTE ACCENT], but it would have the exact
same meaning. To put it short, the ordering of the combining
characters can still screw things up for us.

Once again the Unicode Consortium is one step ahead of us, and to
solve this problem they have introduced the four Unicode
normalization forms3. We won'’t go into detail about how these work
here, but to put it short, they make sure that equivalent text will have
the same binary representation if they are normalized to the same
normalization for, effectively eliminating the problem we outlined
above.

2.2.6 Summarized

Just to summarize the last couple of pages, we can say that for a
Unicode library to be of any use for most programmers, it has to be
able to read any Unicode encoding form, represent text-elements like
grapheme clusters and be able to normalize the text to any of the
normalization forms. Anything less than that will lead to strange
behavior that will not make sense to programmers unfamiliar with
Unicode.

2.3 The Standard Template Library

The Standard Template Library, a.k.a. the STL, is a part of the C++
standard library. The STL provides a collection of different classes
that enable programmers to store and manipulate sequences of
objects (elements). In this section we will roughly describe how the
STL of built up, and finally how that relates to Boost.Unicode.

2.3.1 Containers

Containers are the core components of the STL. A container is a class
that can store a set of objects of any given type. Some of the containers
available in the STL are std: :vector<T>and std::1ist<T>.
Containers are very similar to normal arrays in many ways, but they
are much more powerful. We will explain how in a little bit.

3 A complete definition of these can be found at:
http://www.unicode.org/reports/tri5/tri15-25.html

Boost.Unicode - 17

2.3.2 Algorithms

Algorithms are another very important part of the STL. Algorithms
basically model “things you can do to a Container”. They are
operations that you can carry out on any of the Containers in the STL.
One example of an algorithm in the STL is std: : copy that copies all
the elements in one Container over to some other Container.

2.3.3 lterators

Iterators are the final important concept in the STL. Each Container,
has an iterator type associated with it, and by using some Collection’s
iterator you can move back and fourth over the data inside the
container. If you think of a Container as an array, Iterators would be
the same thing as a pointer into that array. Put bluntly, Iterators are
the “glue” that connects a Container and Algorithms together. The
Algorithms in the STL simply use iterators to do they’re thing on a
container.

Iterators are not limited to Containers however. The C++ iostream
library also provides a set of iterators that enable you to iterate trough
a file or memory buffer. This enables you to do things like plugging
some source file directly into a STL algorithm and having the results
pop out at the other end of the algorithm. It’s all quite ingenious
really, and a true testament to the powers of generic programming, a
programming paradigm the STL in many ways spawned.

2.3.4 Concepts

But, what if you want to create a type of Container of Iterator on your
own? How do you make it work together with the rest of the STL?
Well, it’s all defined in the so-called Concepts in the STL
specification4. These Concepts define every aspect of a Container or
Iterator’s external interface. Everything from associated typedefs and
function signatures, to performance guarantees are defined in these
specs. As long as your classes follow these concepts, they can, through
the wonders of templates and generic programming, be plugged into
any part of the STL that uses models of these Concepts. Nice.

4 The spec can be found at: http://www.sgi.com/tech/stl/

Boost.Unicode - 18

2.3.5 Summarized

What does all this have to do with Boost.Unicode? Well, a string of
text is nothing more than a collection of objects (text-elements or code
points) right? Then perhaps it would be a good idea to model any
string classes after some of the STL Concepts? That would enable us
to plug parts of our library directly into the myriad of existing STL
algorithms, without us having to do anything to make it work. It’s free
functionality, and that is always a good thing.

Boost.Unicode - 19

3 Specification

3.1 Introduction

This document is dedicated to specifying the requirements of
Boost.Unicode. The current state of the document is a snapshot of the
specification as it was at the end of the project period. It, as the code
itself, has morphed throughout the process and has therefore changed
multiple times.

The specification is developed in collaboration with the Boost
community by discussing and throwing ideas back as forth on Boost’s
mailing lists.

3.2 Requirements

3.2.1 Requirement overview

The goal of this project is to develop a Unicode string library for C++.
The library should:

- Abstract away the complexity of working with Unicode strings,
thus making it easy for programmers to use.

- Support manipulation of Unicode strings in all encodings.
(UTF-8, UTF-16 and UTF-32)

- Support normalization of strings to all normalization forms.
(D, C, KD and KC5)

5 As defined in The Unicode Standard Annex #15 - Unicode Normalization Forms

Boost.Unicode - 20

- Support manipulation of Unicode text-elements.

- Any container classes developed must be STL compatible to
enable usage together with the existing components of the
STL.

- At the end of the project period be in such a state that it can be
directly submitted to the Boost community for review, and
hopefully inclusion into the Boost library.

- Conform to all requirements of libraries set by the Boost
community®.

- Conform to the most recent Unicode standard at the time of
development. (as of 15t of April 2005 The Unicode Standard
4.1.07)

- Conform to the C++ standard to the extent allowed by the
targeted compilers.

- Not have any dependencies to external libraries or use any
platform specific APIs like WIN32. The exceptions to this rule
are the Boost libraries and the C++ standard library, but also
dependencies to these libraries should be kept to a minimum.

3.2.2 Limits

Boost.Unicode should at its core provide a stable platform for Unicode
manipulation that can later be used to implement further features.
The library should not provide a complete implementation of the
entire Unicode standard. (Something that could easily require double
digit man-years worth of work to complete.)

Furthermore, the main focus here is to develop a design that works
well and can easily be optimized. Focus is not on developing a
blazingly fast implementation, as that is something that can (and will)
be improved at a later point in time.

Consequently the library should not:

- Directly support reading Unicode text through the C++
iostream library. File io and other types of text parsing like the
iostream library provides will be added at a later time because
of the complexity associated with this (time needed to
implement it).

6 http://www.boost.org/more/lib_guide.htm#Requirements
7 http://www.unicode.org/versions/Unicode4.1.0/

Boost.Unicode - 21

- Support any kind of locale specific behavior. (Like for instance
locale dependant collation.)

- Beimplemented with performance in mind, except for the
cases where performance guarantees must be conformed to.

- Provide support for collation as defined by the Unicode
Collation Algorithm.8 Basic (binary) sorting of text should still
be available though.

- Support any other kind of functionality not mentioned
specifically in this specification.

3.2.3 Target users

Boost.Unicode is intended for C++ programmers wanting to represent
and manipulate any kind of text inside their programs. Library users
should not have to be proficient in "advanced" C++ topics like
templates beyond what is already required to be able to use the STL
(not much at all). For programmers used to the standard basic_string
template (a.k.a. std::string and std::wstring), transition to the
developed library should be close to effortless.

3.3 Use-cases

To get a more detailed view of the actual functionality that needs to be
implemented, it is important to think about the library from the user’s
point of view. To do this, Use-case diagrams are useful as they model
user’s wishes without focusing on implementation details.

In the following section you can find a set of use-cases developed
through discussion with the Boost community. These describe all the
functionality that should eventually be implemented in the library.

8 Description available at: http://www.unicode.org/reports/trio/

Boost.Unicode - 22

Boost.Unicode

Convert text
between Unicode
encoding forms

Manipulate
Unicode code
point sequences

2]
-——.__________
i Vo

Hormalize text to
amy Unicode
ommali zation for

Comv ert text
between different

Manipulate casings

Unicode text
element
sequences

Figure 2 - Use-cases for the Programmer actor

3.3.1 Actors

The Use-cases associated with the Boost.Unicode library only have
one actor; The Programmer. The Programmer represents any C++
programmer that is likely to use the library to represent text.

3.3.2 Use-case descriptions

Convert text between Unicode encoding forms
Actor Programmer

Description The library should provide means for the
programmer to convert a sequence of code units in
any encoding form to the sequence of code points this
sequence represents. It should also provide
functionality for conversion the other way; from a
code point sequence to an encoded code unit
sequence.

Manipulate Unicode point sequences

Boost.Unicode - 23

Actor

Description

Programmer

The library should provide means for representing
and manipulating any sequence of Unicode code
points in a STL compliant container. This container
should enable the user to choose the encoding form
used internally to represent the code point sequence.
The programmer should be able to change the
sequence as needed and also perform searches inside
the sequence.

Normalize text to any Unicode normalization form

Actor

Description

Programmer

The library should provide means for normalizing
any sequence of Unicode code points to any of the 4
normalization forms defined in the Unicode
standard. (NFC, NFD, NFKD and NFKC)

Convert between different casings

Actor

Description

Programmer

The library should provide means for converting any
code point sequence to the simple case mappings of
the same sequence.

Manipulate Unicode text-element sequences

Actor

Description

Programmer

The library should provide means for representing
sequences of Unicode text-elements in a STL
compliant container. This container should enable
the user to choose the encoding and normalization
form used internally to represent the text-element
sequence. The programmer should be able to change
the sequence as needed and also perform searches
inside the it.

Boost.Unicode - 24

3.4 Documentation

Along with the library source code documentation describing the
external interface of the library’s components should be provided.
This documentation should be developed using the boostbookd XML
format, the default documentation format used in Boost. By using the
Boost.Build® system, these XML files can be converted into a lot of
different formats including HTML, PDF and *nix man pages. This
format independency makes the format ideal for documenting source
code libraries.

9 For a complete reference of the boostbook documentation format, visit
http://www.boost.org/doc/html/boostbook.html

10 http://www.boost.org/tools/build/v1/build_system.htm

Boost.Unicode - 25

4 Design

4.1 Introduction

This section contains the complete design documents for
Boost.Unicode. The document represents a snapshot of the state the
design was in at the end of the development process.

4.1.1 Design format

Normally when designing an application, one would use UML to
model the dataflow and classes that makes up the application and
then implement the application from this.

For this project however, we have decided not to use UML as there are
a few serious issues with regards to using UML to model C++ source
code. Unfortunately UML lacks the ability to correctly model C++
concepts like typedefs and global functions. These are both extremely
important concepts in the context of this library, and UML’s inability
to model these correctly forced us to do something else.

We have therefore chosen to simply create a set of tables that define
the external interface of the different classes (typedefs and all). This
does not look as good as a proper UML diagram, but it conveys more
or less the same information and therefore does to job good enough.

The format is based around the following template:

General

Template parameters Describe the template parameters of the
class.

Model of Defines what generic concept the class is a
model of. (This indicates that the class

Boost.Unicode - 26

implements all functions required by this

concept)
Associated types Defines the public typedefs of the class
Functions
Function name Describes the functionality provided by this
function.

4.2 Encoding traits

This component is meant to enable users to convert a sequence of
code units (In either UTF-8, UTF-16 or UTF-32) to and from code
points, as well as getting encoding specific traits like the type of a code
unit, or whether or not the encoding is fixed width.

4.2.1 Encoding tags

Encoding tags are a set of classes that have no purpose but to
represent the Unicode encoding forms generically (as template
parameters). These should be named on the form ut fxvy_tag, where X
is 8, 16 or 32, and Y represents the endian (big- or little-) of the
encoding form (be or le if applicable). There should also be typedefs
on the form ut £x_tag and ut fxre_tag that represent respectively the
most efficient and reverse endian on the given platform.

4.2.2 Class encoding_traits

General

Template parameters Encoding: typename

Associated types size_ type: std::size_t

code_unit_type: encoding dependant
Functions
next_code_point Increments the code unit iterator passed to it

until it points to the previous code point in

11 A code point is never more than 1 code unit wide in a fixed width encoding. Only
true for UTF-32 in the context of Unicode.

Boost.Unicode - 27

previous_ code_ point

to_code_units

to_code_point

Class description

the sequence.

Decrements the code unit iterator passed to it
until it points to the previous code point in
the sequence.

Converts its code point parameter to a
sequence of code units and outputs it to the
output iterator passed to it.

Converts the sequence of code units pointed
to by the iterator passed to it to a code point.

The generic encoding_traits class should be specialized for all
Unicode encoding forms, implementing all types and functions as
required for the given encoding form. This enables the programmer to
get encoding specific functionality (types, conversion functions, etc.)
simply by changing the template parameter of encoding_traits.

4.2.3 Associated tests

Two test filed should be developed for this component. One that
checks that all the Unicode encoding forms are correctly
implemented, and one compile test that makes sure all associated

types are present.

4.3 Code point string

General

Template parameters

Model of
Additional types

Encoding: typename - Determines the
encoding form used internally in the string.

Allocator: typename — Determines the
allocator used internally by the string.

Boost.ReversibleCollection?2

encoding_type: Encoding
allocator_type: Allocator

12 http://www.boost.org/libs/utility/Collection.html

Boost.Unicode - 28

Additional functions

insert Inserts a code point or code point sequence at
the position determined by its iterator
parameter.

get_allocator Returns the allocator object used internally in
the string.

replace Replaces a sequence of code points within the

string with another sequence.

to_string Returns a std::string with the UTF-8
equivalent of the code point string.

to_wstring Returns a std::wstring with the UTF-16
equivalent of the code point string.

append/operator += Appends a code point or code point sequence
to the string.

search/find Searches for a
code_point_sequence/code_point within the
string.

search_end/find_end Searches for a
code_point_sequence/code_point within the
string. (Starts search at the back)

Class description

This component is a STL compliant reversible container that can
represent a string of Unicode code points in any encoding form.

4.4 Dynamic code point string

This component is a specialization of the code_point_string class for
the encoding tag dynamic_tag. This specialization should have the
exact same functionality as the code_point_string except it should be
able to represent any encoding form internally, without having that
affect the type of the class (Like it will in the normal
code_point_string class).

The only change to the external interface is the addition of a
set_encoding function templated on encoding that will change the
encoding form used by the class internally to the form specified by the
template parameter.

Boost.Unicode - 29

4.5 Normalization algorithms

The normalization algorithms component should be able to normalize
a sequence of code points to any of the Unicode normalization forms.

4.5.1 Normalization tags

The normalization tags are a concept exactly like the encoding tags
but representing normalization forms instead. They should be named
on the form nfx_tag, where X represents one of the four
normalization forms. (C, D, KC or KD).

4.5.2 The normalize algorithm

The normalize algorithm should be a generic function able to
normalize a sequence of Unicode code points to any of the
normalization forms defined in the standard. Which normalization
form is used, is determined by the template parameter.

4.5.3 Associated tests

A file that tests the algorithms against the Unicode standard’s
NormalizationTest.txt's file. This file tests every possible facet of the
normalization algorithms, and a successful test is a requirement for
Unicode conformance.

4.6 Simple casing algorithms

This component should enable the programmer to convert a range of
code points to any of the three simple casings (upper, lower or title).

13 Available at http://www.unicode.org/Public/UNIDATA/NormalizationTest.txt

Boost.Unicode - 30

4.7 Boundary traits

This component should enable the user to get the boundaries of text-
elements from within any code point sequence.

4.7.1 Boundary tags

Boundary tags are a set of classes that have no purpose but to
represent the Unicode text-elements generically (as template
parameters). The boundary tags available are
grapheme_cluster_boundary_tag and word_boundary_tag.

4.7.2 Class boundary _traits

General

Template parameters BoundaryTag: typename

Functions

next_break Increments its code point iterator paramterer
until it points to the beginning of the next
text-element.

previous_break Decrements its code point iterator

paramterer until it points to the beginning of
the previous text-element.

Class description

The generic boundary_traits class should be specialized for all
boundary types, implementing all types and functions as required for
the given boundary type. This enables the programmer to get
encoding specific functionality (types, conversion functions, etc.)
simply by changing the template parameter of encoding_traits.

4.7.3 Associated tests

The boundary_ traits class should be tested by running it through the
files GraphemeBreakTest . txt and WordBreakTest .txt* defined in the

14 Both files are available at
http://www.unicode.org/Public/UNIDATA/auxiliary/

Boost.Unicode - 31

Unicode standard. These tests check that all break rules are correctly
implemented and a successful test is required for Unicode
conformance.

4.8 Text element

This component should enable the programmer to represent any type
of text-element, be it grapheme clusters or words.

4.8.1 Class text_element

General

Template parameters Encoding: typename
Normalization: typename
Boundary: typename
Allocator: typename

Associated types encoding_type: Encoding
normalization_type: Normalization
boundary_type: Boundary
allocator_type: Allocator.

Functions

to_string Returns the UTF-8 equivalent of the text-
element.

to_wstring Returns the UTF-16 equivalent of the text-
element.

get_allocator Returns the allocator object used internally in

the text-element.

4.9 Text element string

This component represents a sequence of text-elements.

General

Template parameters Encoding: typename
Normalization: typename

Boost.Unicode - 32

Boundary: typename
Allocator: typename

Model of Boost.ReversibleCollections

Additional types encoding_type: Encoding
normalization_ type: Normalization
boundary_type: Boundary
allocator_type: Allocator.

Additional functions

insert Inserts a text-element or text-element
sequence at the position determined by its
iterator parameter.

get_allocator Returns the allocator object used internally in
the string.

replace Replaces a sequence of text-elements within
the string with another sequence.

to_string Returns a std::string with the UTF-8
equivalent of the text-element string.

to_wstring Returns a std::wstring with the UTF-16
equivalent of the text-element string.

append/operator += Appends a text-element or text-element
sequence to the string.

search/find Searches for a text-element-sequence/text-

element within the string.

search_end/find_end Searches for a text-element-sequence/ text-
element within the string. (Starts search at
the back)

4.10Dynamic text element string

This component is to text_element_ string what the dynamic code
point string component is to code point string.

The only change to the external interface of text_element_stringis
the addition of a set_encoding function templated on encoding that

15 http://www.boost.org/libs/utility/Collection.html

Boost.Unicode - 33

will change the encoding form used by the class internally to the form
specified by the template parameter.

Boost.Unicode - 34

5 Implementation

5.1 Introduction

In this section we have listed some general information about the
actual implementation of the Boost.Unicode library, as well as pulling
forward some implementation details we are particularly happy with.

5.2 Programming environment

5.2.1 IDE and compiler

As our main development IDE we have chosen to go with Microsoft
Visual Studio 2003. This tool suite provides excellent editing facilities,
a great debugger, and most importantly a fairly standard compliant
C++ compiler. We also considered using the open-source Dev-Cpp
IDE (which comes bundled with the GCC/MinGW compiler), but in
the end VC++ turned out to be the better choice. Tests should still be
run on GCC/MinGW to ensure portability though; we just won’t de
doing any development on this platform.

5.2.2 Coding standard

All code and documentation will be developed in English and must
follow the coding guidelines defined by the Boost community°.

16 http://www.boost.org/more/lib_guide.htm#Guidelines

Boost.Unicode - 35

5.3 General

5.3.1 Source code dependencies

The source code should not have any kind of dependencies to external
libraries and APT’s like for instance WIN32. This requirement is to
ensure that the developed code is portable across as many compilers
and platforms as possible.

The exceptions to this rule are the C++ standard library and the Boost
libraries version 1.32. These libraries are available for all platforms,
and therefore their usage doesn’t limit the portability of
Boost.Unicode.

5.3.2 Exception safety

The developed library should provide exception safety in all functions.
Exception safety means that if any operation performed inside the
library results in an exception being thrown, the program should
remain in the same state it was before the error occurred. L.e. a
throwing function should not modify any of its parameters or
associated class’ member variables in case of an exception.

5.3.3 Thread safety

The developed library should provide the same kind of thread safety
that the STL provides. That is, two or more threads reading from the
same container simultaneously is thread safe, but simultaneous
reads/writes to the same container will result in undefined behavior.
It’s up to the user to secure such accesses using some sort of thread
synchronization primitives.

5.4 Encoding traits

5.4.1 The classes

After having designed the encoding_traits class, implementing the
specializations was trivial. Below is an outline of the implementation

Boost.Unicode - 36

of the UTF-32 encoding_traits class. The other specializations follow

the same pattern.

template<>
class encoding_traits<utf32_tag>
{
public:
// Public typedefs:
typedef boost::uint32_t code_unit_type;
typedef std::size_t size_type;

// Constants:

Il
=
~

static const size_type min_code_point_width

I
i
~

static const size_type max_code_point_width

// Functions:
template<typename ri_iter>
static inline void next_code_point (ri_iter& start)

{

}

template<typename rb_iter>

static inline void previous_code_point (
rb_iteré& start)
{

}

template<typename input_iter>
static inline code_point_type
to_code_point (input_iter start)

{

}

template<typename wi_iter>
static void to_code_units (const code_point_typeé&
code_point, wi_iter out)

{

Boost.Unicode -

37

5.4.2 Reversed endian encodings

The reversed endian encodings were implemented simply by creating
an Iterator (boost/unicode/detail /util. hpp#reverse_endian_ iterator)
that can wrap any iterator type, and when dereferenced return the
value pointed to by that iterator, but in the reversed endian. This
enabled us to create a basic specialization like the one above, but
inside each function wrap the iterator parameters in the
reverse_endian_iterator class and forward the call to the correct
endian specialization. By doing this we saved ourselves the trouble of
having to implement all traits functions for both endians.

5.5 Dynamic code point string

The dynamic code point string is built up around a abstract class
called code_point_string_wrapper_base. This class has a lot of
virtual functions that enable manipulation of a code point sequence.
Then we inherited a class, code_point_string_wrapper, templated
on encoding form from this abstract class, and implemented all of the
virtual functions from the base. This enabled us to create an instance
of code_point_string_wrapper for any encoding tag for which there
is an implementation of encoding_ traits. The class hierarchy looks
something like this:

class code_point_string wrapper_base
{
public:
virtual some_function () const = 0;

by

template<typename Encoding >

class code_point_string wrapper

public code_point_string_wrapper_base
{
public:

virtual some_function () const

{

// Do encoding specific stuff here.

}

Boost.Unicode - 38

Now we could implement the code_point_string<dynamic_tag>
specialization to work through a code_point_string_wrapper_base
pointer, and create a templated set_encoding function that would set
the pointer to point to an code_point_string_wrapper instance for
the encoding indicated by set_encoding’s template parameter,
effectively changing the internal encoding used by the string.

code_point_string<dynamic_tag> some_string;

// Sets the internal encoding to UTF-8:

some_string.set_encoding<utf8_tag>();

5.6 Unicode character database

The Unicode Character Database is an enormous collection of data
related to the different code points in the Unicode standard. This data
is used to find things like upper and lower case mappings of code
points, getting their decomposition mappings and other data that is
important for things like normalization.

In Boost.Unicode this database is implemented as one gigantic static
array. This has been done to have the data compile and become a part
of the executable, instead of having to rely on reading them from an
external file, something that can be highly unreliable, not to mention
slow.

cd unicode

unicode_char_db

unicode_char_db()

get_instance() : unicode_char_db&

has_primary_composition(code_point_type, code_point_type) : bool
get_primary_composition_of(code_point_type, code_point_type) : code_point_type
get_name_of(code_point_type) : std::string

get_combining_class of(code_point_type) : combining_class_type
get_decomposition_type_of(code_point_type) : detail::db::decomposition_type_enum
get_decomposition_mapping_of(code_point_type, wi_iter) : void
get_grapheme_boundary_property(code_point_type) : detail::db::grapheme_enum
get_word_boundary_property(code_point_type) : detail::db::word_break enum
has_simple_uppercase(code_point_type) : bool
has_simple_lowercase(code_point_type) : bool

has _simple_titlecase(code_point_type) : bool
get_simple_uppercase_of(code_point_type) : code_point_type
get_simple_lowercase_of(code_point_type) : code_point_type
get_simple_titlecase_of(code_point_type) : code_point_type

R I I T Ik T T T T ST

Figure 3 - The Unicode Character Database interface

Boost.Unicode - 39

To actually accomplish this we decided to make an external program
that would parse through the UCD files and generate a compilable
source code containing the data. The file generated would then be
copied into the library and the rest of the code would then have access
to the UCD data. To make the access to UCD data easy, a Singleton
class was made function as the interface to the database. (Figure 3 -
The Unicode Character Database interface)

To be able to save the data in a combilable file. We needed to design a
data structure. We couldn’t just have one large array of structs with
the properties as there are 0x10FFFF code points in the standard, this
would lead to a lot of redundant data stored in the database as a lot of
code points have the same data.

We then decided to use a lookup table which contains a code point,
range, and a reference to the struct with the data for current code
point. The range is used when there are several code points following
each other that have the same property. The range property tells how
many code points after current code point there are in this range.
Searching through the index table is done with a binary search
algorithm which is tailored to take ranges into account. This is
expected to save a lot of space while the speed loss is close to none.
The binary search algorithm would only use 11 steps before finding the
right code point, worst case, with around 20000 entries in the
database.

struct db_entry
{
char *name;
unsigned char canonical_combining_class;
decomposition_type_enum decomposition_type;
const code_point_type *decomposition_mapping;
code_point_type simple_uppercase_mapping;
code_point_type simple_lowercase_mapping;
code_point_type simple_titlecase_mapping;

}i

The above struct shows the properties returned from a lookup on a
code point. All fields should ideally have been defined as a const, but
doing so increased the compile time, for some reason of another, way
beyond acceptable. The reason the decomposition_mapping hasto
be a pointer is because this value can range from o to N code points,
where N is unknown. That makes it impossible to use a static array as
the size has to be know at compile time.

const db_index index_table[] =

{

// code point, range, reference
0x0000, 0, &unicode_database[0],

Boost.Unicode - 40

0x0001, 0, &unicode_database[l],
0x0002, 0, &unicode_database[2],

}

const db_entry unicode_database[] =

{

"<control>", 0, decomp_none, &decomp_map_zero[0], 0x0,
0x0, O0Ox0,

"<control>", 0, decomp_none, &decomp_map_zero[0], 0xO0,
0x0, O0Ox0,

"<control>", 0, decomp_none, &decomp_map_zero[0], 0x0,
0x0, 0xO0,

}
Above is an example of actual database entries, with with the forth

column pointing to a new array with the decomposition mapping of
the code point.

{0};

{1,0x0020};

{2,0x0020,
0x0308};

const code_point_type decomp_map_zerol]
const code_point_type decomp_map_00AO0[]
const code_point_type decomp_map_00A8[]

decomp_map_zero is a special case since most code points don't
have a decomposition mapping, and listing one for each code point is
a waste of space when you can just point them all to the same. The
first value in decomposition map is always how many code points the
code point is decomposed into. Rest of the values are the actual
decomposition. Code point U+00A8 would be decomposed to 0x0020
and 0x0308 as given above.

Boost.Unicode - 41

6 Testing

6.1 Introduction

To test the different components of the Boost.Unicode library, we
have employed a testing methodology used heavily in the Boost
libraries called unit-testing. Unit-testing is done by creating separate
cpp test files that test every function of a given class or other
construct(using special macros defined in boost). These files are then
compiled, linked against the Boost.Test"” library and then finally run.
This will result in the generation of a test report that lists any errors
that may have occurred.

For the official Boost libraries, these tests are used to test the entire
Boost library on a lot of different compilers, a process called
regression tests. Every night the entire test code tree is run on a
multitude of different compilers and platforms. The results of these
tests are then posted online so library authors can see how their
library did. This testing method makes it much easier to run tests as
the developers don’t have to have every platform and compiler
themselves.

By following this testing methodology, Boost.Unicode is ready for easy
integration with the existing Boost library if that should ever happen.

17 Available at http://www.boost.org/libs/test/doc/index.html

Boost.Unicode - 42

6.2 Tests

In the section below we describe a couple of the more comprehensive
test files we have developed, along with a couple of bugs we found
because of them.

6.2.1 Normalization

For testing normalization the Unicode Consortium has made file
holding test information on every code point and expected valuesi.
This makes verifying the normalization algorithm easy to ensure it’s
working correctly. It contains information on expected results after
given input to a normalization algorithm. This file is quite large (2mb)
and tests every single code point against its expected normalized value
in all the 4 different normalization forms. For this file we wrote a
separate test program that parses through the file and uses the data it
collects to normalize and test that it gets the correct result back form
the normalization algorithms. Since normalization is heavily
dependent of the Unicode database, this will get tested as well.

Results

When the first version of the normalization test program was done, we
had amazingly few errors when we ran it. Only 1 normalization test
failed. This led us to two bugs, one in our binary search algorithm and
another in the Unicode Character Database implementation. When
those were fixed the entire normalization test worked flawlessly, over
500000 test total.

6.2.2 Boundary traits

The boundary_ traits classes also needed testing. As with other parts
of Unicode that need an algorithm to function, they have provided a
set of test files. Since both files for testing grapheme and word break
where built up the same way, making a tester for word break was
quick once grapheme was working. This lead to having a working test
program for word break before the algorithm was started on. This
eased the development of the word break algorithm, but lead to more
trail and error development then actually thinking thoroughly through
the code written.

Boost.Unicode - 43

Giving a full test of every possible boundary test is impossible due to
the unlimited number of possible strings. So the test these files
contain is just trying to cover all basic concepts. Since word break uses
grapheme clusters, meaning that each boundary gets tested between
800-1000 times, which should cover most of the ground.

Results

The boundary traits tests worked flawlessly as soon as the classes were
finished, ensuring us that our implementation worked correctly.

Boost.Unicode - 44

7/ The development process

7.1 Evolutionary development

To give you a little feel for how the journey up to the current library
implementation has been, this section has been dedicated to give a
brief summary of how the work progressed, and what changes have
been made to the library on the way. The reason for doing this is that
the library, because of the evolutionary development model, has
changed a lot since the first prototype, and thus the specification and
design documents don’t accurately reflect the process as a whole. This
section complements and expands on much of the information you
will find in the worklog, gannt diagrams, Iteration plans and
evaluation documents. (See appendices)

Introduction

The development kicked off after the Pre-engineering project report
was delivered at the 26t of January 2005. The first 4 days were spent
reading through a lot of Unicode and STL documentation, until the 1st
iteration started at the 315t of January.

7.1.1 lteration 1

The first iteration was started with a short planning period to get a
grasp of what we wanted to do (Resulting in Iteration plan 1), some
more research on Unicode followed along with some discussion with
the Boost community, before we started specifying and designing the
first prototype. The encoding_traits class (more or less the same
thing it is now, but without the UTF-8 specialization) and two classes
called encoded_string and character_set_traits were the results of
this process.

Boost.Unicode - 45

The encoded_string class later went on to be what is now known as
the code_point_sting<dynamic_tag> specialization and it provided
more or less the same functionality.

The character_set_traits class was a concept introduced to have
the library support other character sets than Unicode. (Shift-JIS for
instance) The idea was to separate all character set specific traits into
this class (like code_point_type), and have all string classes use that
class to define its external interface. This idea was eventually scrapped
as it really made little sense to begin with. Different character sets are
not really parallel concepts like different encoding forms are, and
creating an interface for character_set_traits that would work for
all encodings, would be next to impossible.

At the end of the iteration a short period of writing and running test
files was carried out before releasing the first prototype.

7.1.2 lteration 2

Iteration 2 was started at the 215t of February, and in the initial
planning it was decided that we should concentrate on adding the
normalization/casing algorithms, and as a consequence of that, the
Unicode Character Database.

The normalization functions developed here were more or less the
same as the ones in the current implementation, with one exception.
They were not generic. (They didn’t take the normalization form in as
a template parameter, but were rather named according to
normalization form)

The code generators created for building the database source code, are
also more or less the same as they were then, but more functionality
has been added to them along the way as more and more fields were
added to the database.

Towards the end of the iteration (which was planned to be 2 weeks
long), we found out that we wouldn’t be able to finish what we were
supposed to, and furthermore we got the feeling that 2 weeks was a
little bit too short for one iteration. This resulted in the decision to
extend all iterations to 3 weeks just like the first one, and thus
cropping the number of iterations to 4. We also found out that we
forgot to take easter into consideration in our original plan, so a one
week vacation was added to the second week of iteration 3.

As in the first iteration, test files for the developed components were
written and run before finishing off with another evaluation.

Boost.Unicode - 46

7.1.3 lteration 3

Iteration 3 was broken up a bit because of the Easter vacation in the
middle of it, so the amount of work getting done was not as great as it
should have been.

The iteration started (as usual) with a planning period, and it was
decided that the iteration should focus on completing the
encoding_traits (adding UTF—S), create a code_point_string class
locked to an encoding form (as opposed to the dynamic
encoded_string class that was there at the time), add thread safety to
code_point_string’s reference manager and upgrade the Unicode
version from 4.0.1 to 4.1. The change to the new Unicode version went
without incident. The only changes necessary were the generation of
new database sources based off of the new version, a tiny change in
one of the normalization algorithms to reflect a change of wording
inside the standard, and finally adding a few tests to the already
existing ones to test the changes made. All in all, we went a couple of
days beyond the deadline for the prototype on this iteration, and that
skewed Iteration 4 a little with respect to the timetable, something we
were to pay for at the end of that Iteration.

Everything that was created in iteration 3 is still in the code tree
mostly unchanged.

7.1.4 lteration 4

The final iteration started, a little late of the development focused on
the development of text_elements.

In the initial specification and design activities, the plans for the
boundary_traits, text_element and text_element_string classes
were finalized. The classes where then implemented and tests were
written and run.

The implementation of these classes unfortunately took a bit longer
than first anticipated, and therefore we were forced to drop
implementing the dynamic_ tag specialization of
text_element_string. Furthermore the Boost documentation and
test files for the text_element class was dropped as we didn’t have
time to write them up. (You can still take a look at the design section
to get an idea of the interface.) Dropping these things was absolutely
necessary for us to get the time to finish off the more important things
like the project report and setting up the Boost.Build system for our
library. All in all we probably underestimated the work required to
complete the report in time, and that made this a very hectic iteration
indeed.

Boost.Unicode - 47

The components implemented in this iteration, remain unchanged in
the final code tree.

7.2 Objective critique

The project has resulted in a library that more or less does what we
initially set out to accomplish. Programmers can, using the developed
library, manipulate Unicode text inside their applications (both as
sequences of code points and sequences of text-elements). The library
is STL compliant, and

There are however a few things that are not all they could (and
should) be.

The most obvious thing is the fact that the specialization of
text_element_string providing support for dynamic encoding setting
is missing. This component was mentioned in the specification and
design documents, but we never got the time to actually implement it.
This is of course regrettable, but the encoding tag dynamic_tag can
still be used with the class (you just won’t be able to actually change
the encoding), so the loss is not really that big.

Another thing that is less than optimal, is the Boost documentation
provided on the CD-ROM bundled with the report. This is currently a
bit on the slim side, and could really use some design explanations
and usage examples. The reason for this shortcoming is, as with the
above one, lack of time in the final sprint towards project completion.

The final, and perhaps most serious shortcoming of the library is that
it currently only works on Visual C++ 2003 (and therefore only the
Windows platform), and not on GCC/MinGW 3.4 like we were aiming
for. This basically boils down to a couple of bugs that suddenly
appeared when building on MinGW late in the project period. Due to
the time crunch, we were not able to track down and fix these bugs
before delivery so the library will unfortunately not work on these
compilers in the state provided on the CD-ROM.

7.3 Where do we go from here

Even though the developed library has more or less all the
functionality we set out to implement, it is still a far cry from a
complete Unicode implementation. As mentioned earlier in this

Boost.Unicode - 48

report, developing a complete Unicode library is an extremely time
consuming task, and cannot be done within the confined time frame
of a final project. Boost.Unicode does however provide a good
platform for building such a library, and we are both keen on
continuing development also after our time here at GUC.

The first and most important feature that should be added to the
library is support for reading Unicode through C++’ iostream library.
This was something that was initially considered for this project, but
the workload that would be involved in doing this turned of to be in
the region of a final project on itself, so it was quickly apparent that
we wouldn’t get the time to do it.

Another thing that really should be implemented is support for true
locale dependant collation of strings. This would enable users to sort
strings in the order that is correct for their language (In Norwegian ‘A
would be sorted after “Z’, on English it would group together with ‘A”).
Again, the workload associated with something like this, is enormous,
and we would never have had the time to implement it during this
project.

>

There is also a lot of other Unicode related functionality that should
be available in a complete Unicode implementation. Things like
regular expressions and directionality (Support for scripts written
from right to left, like Arabic) are obvious things, and these should
also be added over time.

7.4 Subjective evaluation

In this section we will give a purely subjective evaluation of the fruits
of our labor, as well as an evaluation of our own efforts throughout the
development process.

7.4.1 Working on a project

The months we have spent working on this project have been truly
interesting. None of us have ever worked on a project of this
magnitude and complexity, and it has been a very rewarding
experience. At the beginning of the process we had a little trouble
getting used to the fact that we had to plan all aspects of the
development along the way. Being hobby developers, we are used to
working after the “code and fix” methodology, so the fact that we
actually had to plan a little ahead this time was somewhat unfamiliar
in the beginning. We quickly got into it though, and we feel we had

Boost.Unicode - 49

pretty good control over the project throughout the process. We did
get a little short on time towards the end (as mentioned earlier), and
because of that,a few parts of the library are a little rough, but that is
to be expected when dealing with inexperienced developers like
ourselves.

7.4.2 Organization

The work on this project has been carried out in a relatively orderly
fashion. After a brief period of homelessness where we didn’t have a
proper room to work out of, we finally got a couple of seats in room
A218 at GUC. From there on in we were there working more or less
from 9 to 5 every weekday. We feel having a dedicated location like
this to work out of was imperative to the success of our project as it
enabled us to always be within arm’s reach of each other. This made
maintaining information flow a breeze, and we could focus less on
written documents to keep each other updated on the goings on in the
code. Actually having to get out of bed and go to another location to
work also made it easier to actually work when you were supposed to,
as working from home tends to lead to late breakfasts, early lunches
and generally a lot of time wasting. (We’re talking out of experience
here.)

7.4.3 Workload balance

The division of the workload has worked out really well through the
course of the project. Because of the number of different components
in the library, it has been relatively easy to split the components down
the middle, and having each of us working on “our own” separate
components.

Boost.Unicode - 50

8 Conclusion

All in all we are very happy with the results of our project. We are very
pleased with how the library has turned out, and how easy it is to use.
Although we don’t really feel the library is ready for inclusion into
Boost just yet, Boost.Unicode as is stands today is very a good
platform to base further development on, and hopefully one day
leading to a complete Unicode implementation.

As students we have also learned a great deal about how working on a
big programming project over an extended period of time really is.
This experience will surely make the next programming project we get
out hands on easier to get through.

Boost.Unicode - 51

9 Bibliography

Scott Meyers. Effective C++ Second Edition. 2004

Angelika Langer and Klause Kreft. Standard C++ IOStreams and
locals 1999

Erich Gama et.al Design Patterns Elements of Reusable Object-
Oriented Software. 1995

Andrei Alexandrescu Modern C++ Design. 2001
Robert Sedgewick Algorithms C++. 1992
The Unicode Consortium The Unicode Standard 4.1.0. 2005

Mark Davis, Martin Diirst Unicode Standard Annex #15 Unicode
Normalization Forms. 2005

Mark Davis Unicode Standard Annex #29 Text Boundaries. 2005

Boost.Unicode -

52

10 Appendices

Appendix A — Definitions
Appendix B — Pre-engineering project report
Appendix C — Original development plan
Appendix D — Real development overview
Appendix E — Iteration plan 1
Appendix F — Iteration plan 2
Appendix G — Iteration plan 3
Appendix H — Iteration plan 4
Appendix I — Status report 1
Appendix J — Status report 2
Appendix K — Worklog
Appendix L — CD-ROM with contents:
- The Boost libraries version 1.32

Boost.Unicode code-tree

- HTML documentation for Boost.unicode

Installation notes

This report

Boost.Unicode -

53

