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ABSTRACT: In this paper we study several fixed step and adaptive Runge-Kutta methods suitable
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without introducing extra stages to the original Runge-Kutta-Nyström method. Furthermore, these
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1 Introduction

Experimental particle physics is on the verge of a new era, heralded by the Large Hadron Collider
being commissioned at the European Organization for Nuclear Research, CERN, located just out-
side Geneva, Switzerland. The LHC accelerator will collideprotons at a center of mass energy of
14 TeV, opening up a new window for particle discoveries and precision measurements of existing
theories. Particle detectors are located at four beam crossings along the LHC, one of which houses
the ATLAS detector [1]. This is the largest of the LHC experiments, employing a great variety
of detector and magnetic field technologies to identify a wide range of particles. The complex
magnetic field and high collision rate, however, make the reconstruction of particle tracks very
challenging. Things are further complicated by the relatively big amount of material within AT-
LAS, generating considerable disturbances to the particletracks through material interactions such
as energy loss and multiple scattering.

Particle trajectories are often parametrized with respectto surfaces crossed by the track. At AT-
LAS, there are five standard track parameters [2]; two related to the track position, another two giv-
ing the track direction, while the last is related to the particle charge and momentum. Track param-
eter propagation — which is the process of transporting track parameters and their associated co-
variance matrices through the magnetic field and material ofthe detector — is an important part of
any track reconstruction algorithm, hence high accuracy and speed are essential to the propagation.

Historically, track parameter propagation has often been handled by the fixed step Runge-
Kutta-Nyström method [3], which is designed to solve second-order differential equations, such
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as the equation of motion of a particle in a magnetic field. Thebasic idea of this method is to
divide the integration interval into steps and solve these independently in an iterative procedure.
The solution to each step is estimated by evaluating the equation of motion at different points —
often referred to asstages— along the step. Fixed step methods are, however, not optimal in
case of a very inhomogeneous magnetic field, such as in the ATLAS detector. To accomodate the
most challenging parts of the ATLAS magnetic field, the fixed step size has to be small, thereby
wasting time in the smooth parts of the field. Adaptive methods, such as the Runge-Kutta-Fehlberg
method [4], solve this problem. These adaptive methods, however, require at least one extra stage in
every step compared to the fixed step methods, but the amount of steps taken during the propagation
is often reduced significantly.

In this paper, we study several adaptive Runge-Kutta methods along with the classical fixed
step Runge-Kutta (RK) and Runge-Kutta-Nyström (RKN) methods. We also introduce a new adap-
tive Runge-Kutta-Nyström method, which combines the simplicity of the fixed step method with
the efficiency of the adaptive methods without introducing extra stages. This is the method em-
ployed by the STEP algorithm, which is used for both stand-alone and combined muon reconstruc-
tion — along with fast track simulation in the muon spectrometer — within the ATLAS tracking
framework [5].

In section2, we present the equation of motion along with some fixed step and adaptive Runge-
Kutta methods for solving the track parameter propagation,followed by the new adaptive Runge-
Kutta-Nyström method. In section3, we give a short presentation of the STEP algorithm before
validating and comparing the Runge-Kutta methods in section 4. Finally we present a brief con-
clusion in section5.

Natural units (~ = c = 1) are used throughout this paper.

2 Integrating the equation of motion

There are many representations of the equation of motion of acharged particle moving through a
magnetic field [6], primarily separated by the free spatial parameter, whichis mostly dictated by
the geometry of the experiment. For a fixed target experiment, involving tracks going mainly along
the beam axis, using a fixed Cartesian coordinate system andz as the free parameter is often sat-
isfactory. In a beam collision, particles move outwards from the interaction point in all directions,
facilitating r as the free parameter, either in a fixed spherical or cylindrical coordinate system.
However, the introduction of a magnetic field makes the integration along a fixed axis difficult and
error prone. Using the arc lengths and integrating along the path itself solves this problem.

Technically, the main difference between usingz, r ands as the free parameter is the need
to constantly check the distance to the destination surfacewhen applyings as the free parameter.
This is because thes propagation sets up a curvilinear coordinate system which follows the track at
all times, whereas thez andr propagations use a static coordinate system defined by the detector
geometry. The increased complexity and computing cost of using a curvilinear system is, however,
outweighed by its robustness and ability to handle sharply bending tracks.

By usings as the free parameter, the equation of motion, given by the Lorentz force, becomes

d2
r

ds2
=

q

p

(

dr

ds
× B(r)

)

= λ(T × B(r)) (2.1)
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Figure 1. The classical fourth-order Runge-Kutta method. The derivative is evaluated four times in each
step; once at the initial point, twice at trial midpoints andonce at a trial endpoint. From these derivatives the
final function value (shown as a filled dot) is calculated. (From ref. [7]).

whereT = dr/ds is the normalized tangent vector to the track,B(r) is the magnetic field and
λ ≡ q/p. To see thatT is the normalized tangent vector it is useful to look at the definition
of the speeddr/dt = v, and the arc lengthds = vdt. The derivativedr/ds then becomes
dr/vdt = v/v = T .

The electric field component of the Lorentz force is left out of the equation of motion because
the electric field inside most of the detector is small compared to the magnetic field.

Given the inhomogeneous nature of the magnetic field, findingan analytical solution to the
second-order differential equation of motion (2.1) becomes impossible. It has to be solved numer-
ically. Many methods are available, but one group of methodsproves especially useful in tracking.
These are the recursive Runge-Kutta methods [7], most of which are developed for solving first-
order differential equations, since higher order equations can always be reduced to sets of first-order
equations by introducing auxiliary variables.

The basic idea of the recursive Runge-Kutta method is to divide the integration interval into
steps and solve these independently in an iterative procedure. Every step becomes an initial value
problem and can be solved as best suited for that particular part of the integration interval. This
is especially useful when varying the step length to make theprocedure adaptive. The solution to
each step is estimated by evaluating the equation of motion at different pointsk — often referred to
asstages— along the step. Every stage, except the first, is based on theprevious stages of the step.
In the end, all stages are weighted and summed to find the solution to the step. Figure1 illustrates
the four stages and the solution of the original Runge-Kuttamethod.

Generally speaking, every evaluation of the equation cancels an error term, producing a so-
lution correct to the order of the number of evaluations. Hence, the four stages of the original
Runge-Kutta method produce a result correct to the fourth order. Using higher-order solutions
gives better accuracy per step and allows longer steps. However, if the integration environment
is not known to the same order as the Runge-Kutta method, the extra evaluations may be better
spent on more steps. Six evaluations of the equation of motion in a given interval can produce one
sixth-order step, two third-order steps or three second-order steps. Which gives the best overall
accuracy is hard to tell without testing. Later in this paper, it is shown that the ATLAS magnetic
field does not warrant the use of Runge-Kutta methods beyond fourth order.
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Figure 2. Integrating the equation of motion using the fourth-orderRunge-Kutta-Nyström method. The
equation of motion is evaluated four times in each step; onceat the initial point, twice at a trial midpoint and
once at a trial endpoint. From these stagesk, the positionrn+1 and the normalized tangent vector to the
trackTn+1 are calculated.

2.1 The Runge-Kutta-Nystr̈om method

These are the four stages and the solutions to the fourth-order Runge-Kutta-Nyström method;

k1 = f(xn, yn, y′n)

k2 = f

(

xn +
h

2
, yn +

h

2
y′n +

h2

8
k1, y

′
n +

h

2
k1

)

k3 = f

(

xn +
h

2
, yn +

h

2
y′n +

h2

8
k1, y

′
n +

h

2
k2

)

k4 = f

(

xn + h, yn + hy′n +
h2

2
k3, y

′
n + hk3

)

y′n+1 = y′n +
h

6
(k1 + 2k2 + 2k3 + k4)

yn+1 = yn + hy′n +
h2

6
(k1 + k2 + k3) (2.2)

whereh is the step length,x is the integration variable,n is the step number andf is the second-
order differential equation

d2y(x)

dx2
= f(x, y, y′) (2.3)

which is integrated twice; first to produce they′n+1 solution, second to produceyn+1. This method
was specifically designed for solving second-order differential equations such as the equation of
motion. Integrating the equation of motion (2.1), figure2, the first integration gives the normalized
tangent vectorTn+1, while the second integration gives the position of the particle rn+1.

An appealing aspect of the Runge-Kutta-Nyström method is that stage two and three share the
same point in space;(xn + h

2 , yn + h
2y′n + h2

8 k1), and hence magnetic field. To reduce calls to the
magnetic field service further, it is possible to use the magnetic field found in the last stage of the
current step as the starting field of the next step, because the position of the last stage(xn +h, yn +

hy′n + h2

2 k3) is very close to the final solution of the step(xn +h, yn +hy′n + h2

6 (k1 +k2 +k3)), i.e.
the starting point of the next step. By using these optimizations, the Runge-Kutta-Nyström method
only needs to evaluate the magnetic field twice per step.
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Figure 3. Illustration of the varying step size of the adaptive Runge-Kutta methods. The step size algorithm
adjusts to the roughness of the function by using small stepsin the rocky sections and longer steps in the
smooth parts.

It is, however, a problem of the Runge-Kutta-Nyström method that it only gives an idea of the
quality of the integration, i.e. correct to the fourth order. The actual integration error of the step is
unknown. Furthermore, the accuracy of the integration can only be adjusted by setting the fixed
step lengthh, which has to accommodate the most inhomogeneous parts of the magnetic field. In
ATLAS, this step length is a lot smaller than that needed for the more well-behaved parts of the
field, making a fixed step length inefficient.

2.2 Adaptive Runge-Kutta methods

To avoid the problems of the fixed step length methods, and to adjust the accuracy in a predictable
way, an adaptive Runge-Kutta method is needed. The most straightforward technique is step dou-
bling. Every step is taken twice, first as a full step, and thenas two half-steps producing a solution
of higher order. The difference between these solutions gives an estimate of thelocal error ǫ of
each step of the lower-order full step solution. The local error is checked against a user specified
criterion, theerror toleranceτ , and if the error is bigger than the error tolerance the step fails. It
is then shortened and redone. If the local error is smaller than the error tolerance, the step is suc-
cessful and the step size of the following step is increased to minimize the number of steps needed
for the integration. A good step size selection algorithm provideserror tolerance proportionality,
which means that the logarithm of the global error of the whole integration is proportional to the
logarithm of the user specified error tolerance. This is achieved by keeping the local error close to
the error tolerance during the integration by adjusting thestep size, figure3. Managing this with a
minimum number of failed steps is the main challenge of the step size selection algorithm.

2.3 Embedded Runge-Kutta pairs

An alternative way of estimating the local error of a step is based on the embedded Runge-Kutta
formulae — the so-called embedded pairs — invented by Fehlberg [4]. The most well-known
Runge-Kutta-Fehlberg method is a fifth-order method with six stages, where another combination
of these six stages gives a fourth-order method. As in step doubling, the difference between these
two solutions is used to estimate the local error of the lower-order solution of the step. Since the em-
bedded formulae provide error estimation at almost no extracost, many additional embedded pairs
of varying orders have been created since Fehlberg’s original work, most of which contain only
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one extra stage compared to the classical Runge-Kutta methods of the same order. The Bogacki-
Shampine 3(2)FSAL (BS32) embedded pair [8] provides an illustrative example;

k1 = hf(xn, yn)

k2 = hf

(

xn +
h

2
, yn +

k1

2

)

k3 = hf

(

xn +
3

4
h, yn +

3

4
k2

)

k4 = hf

(

xn + h, yn +
2

9
k1 +

1

3
k2 +

4

9
k3

)

3rd-order solution:yn+1 = yn +
2

9
k1 +

1

3
k2 +

4

9
k3

2nd-order solution:̂yn+1 = yn +
7

24
k1 +

1

4
k2 +

1

3
k3 +

1

8
k4 (2.4)

This is a “first-same-as-last” (FSAL) pair, meaning that thelast stagek4 is evaluated at the final
higher-order solution of the stepyn+1. Since the next step starts out where the current ends, we
get k1(n + 1) = k4(n), hence the name “first-same-as-last”. This property reduces the number
of evaluations of the differential equation, thereby increasing the efficiency. The 3(2) in the nam-
ing of the pair indicates the orders of the pair, the lower-order solutionŷn+1 being used for error
estimation only.

Since the error estimate applies to the lower-order solution, the higher-order solution is often
more accurate than the error estimate suggests. It has therefore become a standard procedure
to use the higher-order solution along with the error estimate of the lower-order solution unless
very precise error estimates are needed. This is the so-called local extrapolation, which is applied
throughout this paper.

2.4 Adjusting the step size according to the error tolerance

As mentioned earlier, a step size selection algorithm usingthe local error estimate of each step

ǫ = yn+1 − ŷn+1 (2.5)

is needed to make the Runge-Kutta methods adaptive. The mostcommon step size algorithm is

hn+1 = hn

(

τ

|ǫ|

)
1

q+1

(2.6)

where the new step lengthhn+1 is given by the local error of the current stepǫ, the current step
lengthhn, the user specified error toleranceτ , and the orderq of the lower-order solution̂yn+1.
The derivation of this algorithm is left to refs. [7, 9]. The core of the algorithm is the fractionτ/|ǫ|

which becomes less than one if the local error is bigger than the error tolerance, reducing the step
length, and vice versa.

After “trimming” by a limitation criterion

1

4
hn ≤ hn+1 ≤ 4hn (2.7)
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the new step sizehn+1 is used for the next step, or for retrying the current step if it fails. The
limitation criterion is introduced to prevent extreme changes to the step size during the integra-
tion. Without the limitation criterion, a tiny bump or smooth region in the integration interval may
change the step length by a factor of hundred or more. This maycompromise the stability of the
solution and the error tolerance proportionality.

After finding the new step length (2.6) and trimming it (2.7), the quality of the current step is
evaluated by an acceptance criterion

|ǫ| < 4τ (2.8)

to decide whether the step is accepted. The safety factor of 4is introduced to allow for the local
error to oscillate around the optimal value of|ǫ| = τ .

Given the above step size algorithm (2.6) and acceptance criterion (2.8), the estimated global
error of the integration becomes

gǫ = cτa (2.9)

For a given Runge-Kutta method and differential equation,c anda are constants. The logarithm of
the global errorgǫ — and hence integration accuracy — is therefore proportional to the logarithm
of the user specified error tolerance. The error tolerance proportionality of the global error is very
useful in the reconstruction software, allowing the same propagator to be used for a slow, accurate
reconstruction, or a fast, less precise high-level triggerby only adjusting the error tolerance.

2.5 An adaptive Runge-Kutta-Nystr̈om method

The fourth-order Runge-Kutta-Nyström method (2.2) is in many ways the simplest and most at-
tractive of the Runge-Kutta methods discussed above. Estimating the local error of each Runge-
Kutta-Nyström step — thereby enabling adaptivity throughstep size adjustment — is basically
all that separates this fixed step method from the adaptive methods. In this section, we present
a novel approach to estimating this local error, thus enabling the creation of an adaptive Runge-
Kutta-Nyström method through the application of the formulae described in section2.4.

To estimate the local error of a Runge-Kutta-Nyström step it is useful to look at the Taylor
expansion aroundxn that forms the basis of the Runge-Kutta methods;

g(xn + h) = g(xn) + hg′(xn) +
1

2
h2g′′(xn) +

1

6
h3g(3)(xn) +

1

24
h4g(4)(xn) + · · · (2.10)

The main part of the local error is the truncation error from higher-order terms that are excluded,
i.e. all terms above fourth order for the Runge-Kutta-Nyström method. This leaves out the possi-
bility to calculate the local error directly, but it makes sense to assume that the last known term
indicates how quickly the Taylor expansion converges. A small term indicates a quick convergence
and small truncation (local) error, whereas a big term indicates the opposite. This assumption is
confirmed by the widely used local error estimate (2.5) of the embedded pairs. For a 4(3) pair, the
local error becomes

ǫ = yn+1 − ŷn+1 = g(xn + h)fourth order− g(xn + h)third order =

g(xn + h)fourth-order term= 1
24h4g(4)(xn)

(2.11)
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which is the last known term. Calculating this term directlyfrom the four stages of the Runge-
Kutta-Nyström method is not possible. However, since any error estimate along the step will
suffice, we can calculate it in the middle of the step (xn + 1

2h), instead of at the beginning (xn).
This allows us to find the local errorǫ by using the symmetric derivative

g′(xn) ≈
g(xn + h) − g(xn − h)

2h
(2.12)

and the four stages given by the second-order derivativeskl (= g′′l ) already calculated by the
Runge-Kutta-Nyström method.

First, we find the third-order symmetric derivative of the first half of the step by using a step
size of 1

4h, figure4,

g(3)(xn +
1

4
h) =

g′′(xn + 1
4h + 1

4h) − g′′(xn + 1
4h − 1

4h)
1
2h

=

g′′2 (xn + 1
2h) − g′′1 (xn)
1
2h

=
k2 − k1

1
2h

(2.13)

Moreover, we calculate the third-order symmetric derivative of the last half of the step. Again,
using a step size of14h,

g(3)(xn +
3

4
h) =

g′′(xn + 3
4h + 1

4h) − g′′(xn + 3
4h − 1

4h)
1
2h

=

g′′4 (xn + h) − g′′3 (xn + 1
2h)

1
2h

=
k4 − k3

1
2h

(2.14)

These two derivatives are then used to calculate the fourth-order symmetric derivative at the middle
of the step

g(4)(xn +
1

2
h) =

g(3)(xn + 1
2h + 1

4h) − g(3)(xn + 1
2h − 1

4h)
1
2h

=

g(3)(xn + 3
4h) − g(3)(xn + 1

4h)
1
2h

=

k4−k3
1

2
h

− k2−k1
1

2
h

1
2h

=
k1 − k2 − k3 + k4

1
4h2

(2.15)

corresponding to the error estimate

ǫ =
1

24
h4g(4)(xn +

1

2
h) =

1

24
h4 k1 − k2 − k3 + k4

1
4h2

=
h2

6
(k1 − k2 − k3 + k4) (2.16)

Since we are always looking at the local error estimate relative to some arbitrarily chosen error
tolerance (2.6), (2.8), we can absorb the1/6 into the error tolerance, leaving only

ǫ = h2(k1 − k2 − k3 + k4) (2.17)

Whereas the embedded Runge-Kutta pairs introduce extra stages to estimate the local error, this
approach only recycles the four Runge-Kutta-Nyström stages already known.
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x
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1
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Figure 4. Using the four stageskl (= g′′
l
) of the fourth-order Runge-Kutta-Nyström method to estimate

the local errorǫ of a step. The four stages are used to produce the third-ordersymmetric derivatives at the
intermediate points (xn + 1

4
h) and (xn + 3

4
h), which go into the calculation of the fourth-order symmetric

derivative in (xn + 1

2
h), corresponding to the local errorǫ.

Equipped with the local error estimate (2.17), we can apply the step size algorithm (2.6) with
q = 3 — assuming an error estimate correct to one order less than the Runge-Kutta-Nyström
method — followed by the limitation criterion (2.7) and the acceptance criterion (2.8) to create an
adaptive Runge-Kutta-Nyström method. Thus, adaptivity is achieved by following the approach of
the embedded Runge-Kutta pairs, only the local error estimate is new. In the following sections, we
show that this adaptive Runge-Kutta-Nyström method is very computing cost efficient, and hence
has become the standard STEP method.

3 The STEP algorithm

The STEP algorithm transports the track parameters from onesurface of the tracking geometry to
another. To find the crossing point with the target surface, the algorithm starts off with finding the
distance from the starting point to the surface in the direction of the momentum. If it is less than 10
cm the propagation is done in a single step, else the propagation starts off with a 10 cm step. The
STEP algorithm then does the initial step applying the chosen Runge-Kutta method. From the step
size and local error estimate of the first step, a new step sizeis calculated by the step size algorithm.
This new step size is then “trimmed” according to the limitation criterion before a decision to go
on, or retry the current step is made by the acceptance criterion.

The whole procedure, starting with finding the distance to the target surface is then repeated.
This time, and for all the following steps, the distance is only used as a maximum limit to the new
step size to avoid stepping through the target surface. Whenthe distance to the target surface is
down to 10µm, or less, the Runge-Kutta propagation is stopped, leavingthe remaining propagation
to a simple Taylor expansion

rn+1 = rRK + hr
′
RK + 1

2h2
r
′′
RK = rRK + h(dr

ds
)RK + 1

2h2(d2
r

ds2 )RK

Tn+1 = TRK + hT
′
RK = (dr

ds
)RK + h(d2

r

ds2 )RK

(3.1)
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Figure 5. The definition of the propagation error in the test setup. Dividing the error by the total path length
— back and forth — produces the relative propagation error.

whereh is the remaining distance to the target surface and the derivatives are given by the equation
of motion (2.1). The parameters indexed by RK are those found by the last step of the Runge-Kutta
propagation.

Since the standard STEP algorithm uses an adaptive — insteadof a fixed step — Runge-Kutta
method, the initial step length is of less importance, and hence cannot be set by the user.

4 Validating the parameter propagation

To test the STEP algorithm and compare Runge-Kutta methods,we propagate the same set of
charged particles through the realistic ATLAS magnetic field by using the different methods. The
particles are sent in random directions, covering all azimuthal and polar angles at momenta ranging
from 500 MeV to 500 GeV, starting off from an initial surface located at the center of the ATLAS
detector, figure5. The target surface is randomly placed and rotated in a cube with sides of 20 m
centered in the detector. Upon reaching the target surface,the particles are propagated straight back
to the initial surface, which they should ideally hit exactly where they originally started out. How-
ever, due to errors introduced by the propagation, the final position is slightly displaced, giving the
global propagation error of the track. Due to the great variation of the distance to the target surface,
the global propagation error is divided by the total path length — back and forth — to produce
a global propagation error per unit distance. To avoid smearing of the global propagation errors
by the orientation of the initial surface, it is always set normal to the initial particle momentum.
For simplicity, the global propagation error per unit distance is hereafter referred to as therelative
propagation error.

This test does not represent typical ATLAS situations in thesense that the actual propagation
distances are not randomly distributed in the detector volume; the majority being short range prop-
agations in the inner detector. Furthermore, the particle momenta are taken at random from a flat
distribution — as opposed to the fixed momenta often used in such tests — to produce a quick and
easy way of covering a wide range of momenta. This approach isacceptable since the propagation
errors depend heavily on external factors specific to the experiment, such as the magnetic field, lim-
iting the relevance of studying propagation errors at specific momenta. In spite of these short cuts
— and because the same random set of particles are used by all methods — this test is sufficient
for comparing and qualifying propagation algorithms.
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Figure 6. Distributions of the logarithms of the relative propagation errors of the fixed step, step doubling
and adaptive (STEP) Runge-Kutta-Nyström methods, and forthe embedded pair TP43, for three fixed step
lengths and error tolerances.

4.1 Relative propagation errors

Figure6 shows distributions of the logarithms of the relative propagation errors at different fixed
step lengths and error tolerances. Distributions are presented for the fixed step, step doubling and
adaptive (STEP) Runge-Kutta-Nyström methods, and for theembedded pair Tsitouras-Papakostas
4(3)FSAL (TP43) [9]. In this pair, the last two stages are both calculated at thefull step length,
making them closely positioned in space, almost sharing magnetic field values. Here, we use
identical field values for both stages to increase the efficiency of the pair. The classical Runge-
Kutta distributions (not shown) are similar to those of the Runge-Kutta-Nyström method, both in
the fixed step and step doubling case.

The distributions of figure6 show several peaks; one at−12 which is made up of very short
tracks, typically 10 cm. Another at−8 which is made up of tracks within the ATLAS solenoid,
and the main peak at−4 which contains the tracks moving into the ATLAS toroidal magnetic field,
which is the most challenging part to maneuver accurately. In most cases, a relative propagation
error below10−6 is sufficient.

Figure7 shows the mean relative propagation errors as a function of the error tolerance for the
above-mentioned adaptive Runge-Kutta methods, along withthree other embedded pairs; Cash-
Karp 5(4) (CK54) [7], Dormand-Prince 5(4)FSAL (DP54) [10] and Tsitouras-Papakostas 7(5)
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Figure 7. Mean values of the logarithms of the relative propagation errors of some fixed step and adaptive
Runge-Kutta methods.

(TP75) [9]. Similarly to the TP43 pair, the last two stages of DP54 are both calculated at the full step
length, sharing the same magnetic field values to increase the efficiency of the pair. Furthermore,
the fixed step methods are presented as functions of the step length. The “ATLAS RungeKutta” is
another ATLAS propagator — originally part of the xKalman package [11] — while GEANT4 [12]
is a simulation package developed for tracking particles through material.

As mentioned in section2.1, it is possible to use the same magnetic field values for calculating
the last stage of the current step and the first stage of the next step in the Runge-Kutta-Nyström
method because both stages are closely located in space. This optimization is implemented in the
adaptive Runge-Kutta-Nyström method employed by STEP, and it is validated by the “STEP no
optimization” curve of the top left plot of figure7.

In figure 7, we see that all of the methods reach a plateau at high error tolerance, which
is the inherent accuracy of the method. On the plateau, the error control is practically disabled
and the propagation goes “unchecked”, similarly to the classical fixed step methods. Besides, the
computing time also levels out, gaining nothing by going to very high error tolerances.

The linearity of figure7 at error tolerances below10−1 — where the error control is in full
effect — clearly shows the error tolerance proportionalityof the relative propagation error (2.9).
This allows for steering the integration accuracy in a predictable way through adjusting the error
tolerance. The constants of eq. (2.9) can easily be found from figure7, however, since these
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Figure 8. Computing cost efficiencies relative to the efficiency of the adaptive Runge-Kutta-Nyström
method (STEP).

constants rely heavily on the experimental setup, they are of little interest beyond the ATLAS
experiment, and hence are left out of this paper.

Surprisingly, the step doubling methods perform worse thanthe fixed step methods, showing
little correlation between the error tolerance and the relative propagation error. This is because
halving the step length does not necessarily increase the accuracy of the step sufficiently to give a
good local error estimate. Moreover, in many cases the localerror estimate of the step doubling is
too low, giving an overly optimistic view of the quality of the propagation. This prevents the step
size algorithm from working properly, making the steps too long to produce the required accuracy.
These tracks show up as an extra shoulder on the right-hand side of the step doubling distribution
of the lowest error tolerance of figure6. Trials by using step tripling give a slightly better error
estimate, but still worse than that of the other adaptive methods.

4.2 Efficiencies

All of the above-mentioned Runge-Kutta methods can producea sufficient relative propagation
error, even though the error tolerances needed to produce the desired accuracy differs. To compare
methods, we need to study the computing cost of reaching somegiven accuracy; the so-called
efficiency. Figure8 shows efficiencies relative to the most efficient method, thenew adaptive
Runge-Kutta-Nyström method (STEP). From the plot on the left, we see that the optimized STEP
method is slightly more efficient than the non-optimized STEP method. Moreover, we see that the
fixed step methods are outperformed by the adaptive methods,especially at high accuracy (small
propagation errors). To achieve such accuracy, the fixed steps must be limited to a few cm each,
slowing the propagation down significantly. Furthermore, we notice that the step doubling methods
perform surprisingly bad because every step is actually made up of three steps; two steps for the
solution, and one for the error estimation, producing a significant overhead for failed steps.

From the plot on the right of figure8, we see that the embedded pairs — especially TP43 —
fare better than the fixed step and step doubling methods. Theefficiency of the embedded pairs
depends heavily on how well they are matched to the underlying problem; defined by the equation
of motion and the ATLAS magnetic field. The fourth-order STEPand TP43 methods are clearly
best suited in this case. The fifth-order CK54 and DP54 pairs also fare reasonably well, whereas
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the lowest (BS32) and highest (TP75) order pairs fail at highaccuracy. This probably happens be-
cause BS32 struggles to produce the required accuracy, whereas TP75 becomes more meticulous
than necessary.

Even though the new adaptive Runge-Kutta-Nyström method is the most efficient in ATLAS,
the TP43 efficiency becomes comparable when the computing cost of polling the magnetic field is
negligible, such as in the case of a parameterized magnetic field.

5 Conclusion and outlook

In this paper, we have presented a new adaptive Runge-Kutta-Nyström method developed for the
STEP algorithm within the ATLAS tracking framework. The STEP algorithm transports track
parameters and their associated covariance matrices through the ATLAS detector, taking the mag-
netic field and material interactions into account. A relatively extensive computing cost comparison
with existing numerical methods — suited for parameter propagation — shows the new adaptive
Runge-Kutta-Nyström method to be the most efficient, having potential beyond the STEP applica-
tion presented here.

In addition to the track parameter propagation discussed here, the transport of the associated
covariance matrix — the so-called error propagation — is necessary to provide a full description
of the track. The covariance matrix provides information about the uncertainties related to the
reconstruction of the track parameters from the empirical data, and its transport is treated in a
separate paper [13].
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