Gjsvik University College

HiGIA
the open research archive for Gjovik University College

Authors: Espen Lund, Lars Bugge, Igor Gavrilenko, Are Strandlie

Title: Transport of covariance matrices in the inhomogeneous magnetic field of
the ATLAS experiment by the application of a semi-analytical method

Journal: Journal of Instrumentation, 2009, vol. 4, April

ISSN: 1748-0221

DOI: http://dx.doi.org/10.1088/1748-0221/4/04/P04016

Please notice:

This article is designet as "Open Access”.

Published with permission from:
International School of Advanced Studies (SISSA) and 10P Publishing


http://ask.bibsys.no/ask/action/result?fid=issn&term=1748-0221�
http://dx.doi.org/10.1088/1748-0221/4/04/P04016�

’ inst PUBLISHED BY IOP PUBLISHING FORSISSA

RECEIVED: February 4, 2009
AccePTED April 2, 2009
PuBLISHED: April 24, 2009

Transport of covariance matrices in the
inhomogeneous magnetic field of the ATLAS
experiment by the application of a semi-analytical
method

E. Lund, »! L. Bugge, ® |. Gavrilenko ”¢ and A. Strandlie ¢
2University of Oslo,
PO Box 1072 Blindern, 0316 Oslo, Norway

YEuropean Organization for Nuclear Research,
CERN CH-1211, Gexve 23, Switzerland

°P. N. Lebedev Institute of Physics,
Leninskiy prospekt 53, Moscow, Russia

IGjgvik University College,
PO Box 191 Teknologivn. 22, 2802 Gjgvik, Norway

E-mail: esben. | und@ ys. ui 0. no

ABSTRACT. In this paper we study the transport of track parameter ri@mvee matrices — the
so-called error propagation — in the inhomogeneous magfietd of the ATLAS experiment.
The Jacobian elements are transported in parallel withrtok parameters, avoiding the inherent
need of any purely numerical scheme of propagating a setxdliaay tracks. We evaluate the
quality of the transported Jacobians by a very thoroughelpurumerical approach of obtaining
the same derivatives, providing a quantitative understandf the effects of including gradients
of energy loss and the magnetic field on the accuracy of tlee propagation. Irrespective of the
accuracy of the underlying track parameter propagatianmbthod of parallel integration of the
derivatives is demonstrated to be significantly faster thaan the simplest numerical scheme. The
error propagation presented in this paper is part ofstheultaneous track and error propagation
(STEP) algorithm of the common ATLAS tracking software.
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1 Introduction

Experimental particle physics is opening a new window fatipi@ discoveries and precision mea-
surements of existing theories by the startup of the LarggrétaCollider being commissioned at
the European Organization for Nuclear Research — CERN —tddgast outside Geneva, Switzer-
land. The LHC accelerator will collide protons at a centemafss energy of 14 TeV at four beam
crossings, one of which houses the ATLAS detectdr [This is the largest of the LHC experi-
ments, employing a great variety of detector technologieisiéntify and measure the properties
of a wide range of particles. The complex magnetic field amgdamount of material within the
ATLAS detector, along with the high collision rate of the aelezator, make track reconstruction
very challenging. Track parameter and the associated propagation is at the heart of almost
any reconstruction algorithm, hence good accuracy anddpgbhd — along with the consideration
of material effects, such as energy loss and multiple stragte— are essential to the ATLAS track-
ing algorithms, such as tremultaneous track and error propagati¢8 TEP) algorithm presented
here. This algorithm transports the track parameters aswtiged covariance matrices through the
dense volumes of the simplified ATLAS material descriptiorire-so-called tracking geometrg][

— which approximates the material distribution of the ATLA&orimeter and muon spectrometer
by a set of blended dense volumes to speed up the trackinggot€his paper describes the error
propagation of the STEP algorithm, while the transport efttiack parameters is found in reg] |



Error propagation is usually handled in a purely analyta@ahumerical way. The first case is
possible when the track model is explicitly given, thus\allty a direct derivation from the track
model of the Jacobian needed to transport the covariancexmainfortunately, explicit track
models are limited to straight lines or helices, only uséf@ vanishing or homogeneous magnetic
field. Within the inhomogeneous ATLAS magnetic field, a nuicarapproach is necessary. The
simplest numerical way of finding the derivatives of the sf@ort Jacobian involves the propagation
of one auxiliary track for every track parameter, which disuamounts to five additional tracks.

There is, however, a third alternative to the error progagatthe semi-analyticaBugge-
Myrheim method4]. This method propagates the transport Jacobian in phraiile the track
parameters at little extra cost. Although this method hasmb@own for many years, its accuracy
and speed are not well documented in the scientific litegaturthis paper we study the quality and
speed of the Bugge-Myrheim method as a function of the acgwhthe underlying track parame-
ter propagation. Furthermore, we look at the impact of thgmeéic field and energy loss gradients
on the accuracy and speed of the error propagation. We adgotbiat the Bugge-Myrheim method
is significantly faster than any purely numerical approach.

In section2 we describe the error propagation in general before gotiogdietail on the Bugge-
Myrheim method in sectioB. Furthermore, we look at the numerical error propagation sedu
for validating the semi-analytical error propagation — ecton 4. In section5 we compare
the elements of the transport Jacobian obtained by the aeaftytical and the numerical error
propagation. Moreover, in secti@we perform a statistical test of the semi-analytically sfaorted
covariance matrix. Finally, we present a short conclusioseiction?.

Natural units i = ¢ = 1) are used throughout this paper, and vectors and matrieaseaer-
ally given in bold italic and bold capital letters, respeely.

2 Error propagation

The track parameters are often reconstructed from embilita with associated uncertainties
introduced by noise from the material interactions durlmgparameter transport, and uncertainties
related to the misalignment and limited resolution of theedir. Here we focus on transporting
the intrinsic measurement errors arising from the limitetedtor resolution, figur#, leaving the
discussion of the noise contributions from the materiariattions to ref.§]. It should, however,
be noted that the noise contributions are added to the mezasut errors during the propagation
and hence are transported in the exact same way.

The measurement errors are given by the symmBtxkcs covariance matrix with entry;;

Yij = (& — (€& — (&) (2.1)

where¢ is a vector of thdocal track parameters
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Figure 1. Transporting the track parameters and the associatedtaimtgs (covariance matrix) — indicated
by the ellipses and cones — from one surface to another. Toertainty of the momentum magnitude is
omitted in this illustration.

and(¢;) are the expectation values of these parameters. The lackl parameter<] are defined
by the local track position at a surfadg,(), the direction of the track momentum in the global
ATLAS coordinate systemg(, ) and the signed inverse of the momentu=f ¢/p). The global
Cartesian, right-handed ATLAS coordinate system is apprately given by the LHC tunnel cen-
tre (z), the earth’s surface;j and the LHC beam pipe:). The spherical polar coordinatesandd
are defined as follows within this coordinate system; thena#al anglep is given by the opening
between the projection of the momentum into #hg plane, and the-axis, while the polar anglé

is given by the opening between the momentum andtheis. Together they define the direction
of the momentum in the ATLAS coordinate system unambigyowsving the following relations
between the momentum componentis, p,, p.) and the anglesy, 0);

Pz = pCos Psin b
py = psin¢sind
p. = pcost (2.3)

Theglobal track parameterased within STEP — to accommodate the propagation of bending
tracks — are given in the above-mentioned global ATLAS coatd system by

(z,y,2,T%,TY,T°,A)

whereT = p/p is the normalized tangent vector to the track, and( z) is the track position.

If the track model is explicitly given, the common approachtransporting the covariance
matrix is to expand the analytical parameter propagatioctfans to first order in a Taylor series,
and use these derivatives to propagate the covariancexrimasin approximate way. This is called
linear error propagation The availability of the derivatives of the propagatedkrparameters with
respect to those at the starting point of the propagation e-sthcalledlacobianJ — is therefore
essential to the linear error propagation. In our case,abehlan becomesiax 5 matrix

8!3”5" o 8lgnal
al})nltlal initial
I=| (2.4)
8>\final 8>\final
al})nltlal T goinitial



and transporting the symmetric covariance matrix by lirexaor propagation simply becomes a
similarity transformation

Sfinal = J - Sinitial - I (2.5)

However, because of the inhomogeneous magnetic field of /A,lakd the resulting lack of
explicit analytical functions for the propagation of thedk parameters, the Jacobian cannot be cal-
culated directly. The linear error propagatiéhy) is still valid, but the Jacobian must be obtained
in another way. This is done in three steps; first, we find tleian required for transforming
the covariance matrix from the initial local track paramet® the initial global track parameters
used within the STEP algorithm. Furthermore, this Jacosanansported along with the track
parameters to the destination surface. Finally, it is rpliétd by the Jacobian which transforms
the covariance matrix to the local track parameters at tiséirggion surface. The resulting Ja-
cobian @.4) transports the covariance matrix from one set of localkifzarameters at the initial
surface to another set of local track parameters at thenddistn surface4.5). The initial and
destination surfaces can be picked independently from &ttyedive surfaces defined within the
ATLAS event data model, and positioned arbitrarily. In théggper we focus only on the second of
the three steps; the transport of the Jacobian along the trac

3 Semi-analytical error propagation by using the Bugge-Myheim method

As mentioned above, the common way of obtaining the devieat{Jacobian) needed for the lin-
ear error propagation is to expand the parameter propagatiwtions to first order in a Taylor
series. The lack of analytical parameter propagation fanstin this case unfortunately makes this
approach impossible. Another common technique is the noadegrror propagation described
in section4. This method is slow, but robust and accurate, making itulidef testing the error
propagation. A third way of obtaining the Jacobian is toatditiate the recursion formulae of
the numerical integration method directly. This is the asseof the Bugge-Myrheim method. For
reasons of efficiency and consistency, the natural choitepick the same integration method as
used in the STEP parameter propagation, which is the agdptimge-Kutta-Nystrom method. The
Bugge-Myrheim method, however, follows the same prinaipégardless of the chosen integration
method, only the recursion formulae change.

The basic idea of the adaptive Runge-Kutta-Nystrom meihealdivide the integration inter-
val into steps and solve each step independently in aniitenatocedure. Every step becomes an
initial value problem and can be solved as best suited fapadicular part of the integration inter-
val. This is especially useful when varying the step lergtb make the procedure adaptive. The
solution of every step is estimated by evaluating the egnaif motion«” at four different points
— often referred to astages— along the step. Every stage, except the first, is based qehious
stages of the step. In the end, all stages are weighted andetito find the solution to the step.

In the parameter propagation, we find the propagated glohek parameters — wherk is



the integrated change iy or the total energy loss — of the equation of motion

x T*
Y ,  du TY

v z |’ v ds T (3-1)
A A

by integrating their respective differential equationsusyng some recursion formuldé andG.
Given the Runge-Kutta-Nystrom method, one step (numbleyed becomes

2

h
Upi1 = F(sp,un,ul) = Fy(u,,u,) = u, + hul, + E(u'{ +ul + uf)

h
Uy = G(sn, U, u)) = Gp(un, uy,) = u;, + g(u'{ + 2uly + 2ul + uly) (3.2)
To obtain the derivatives (Jacobian) of the propagatedaglivack parameters with respect to

the initial local track parameters denoting initial)

- l(z) -
I
g=|o (33)
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the recursion formulaed(2) have to be differentiated with respectdq giving

8un+1 oF, an gF;’L oun

Jni1= | 4o = ee | = o se. | | ow | = D, -J, (3.4)
n n n
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where the derivative8u,, /0¢¢ anddu!, /0¢° of the8 x 5 Jacobian] are given by the x 5 matrices

Oxn . Oxn oTe oT®
ol N o T N
Oup, o . ou;, o i (3.5)
OAn . OA, OAn .. OAy
g 228 ol DA

D,, is an8 x 8 matrix containing the recursion formuld¢, andG,, differentiated with respect to
the global track parameters

OF, OF,
D, = MEn Gn) _ | O O (3.6)
n — a / - .
(un,ul) G, 0G,
oun, Oul,
giving the4 x 4 matrices
g e o
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oGI*  aGT" ocp” . 9GE”

G D, B 9G oT3 DAn
n . . n . .
ou, | G Gl g, | :
" G 8G n aG G
Dan O oTs D

(3.8)

By writing the recursion formulae of the derivatives as adoict of D,, andJ,, (3.4), we can
differentiate the recursion formuld€, andG,, with respect to the global track parametarsand
u!, instead of the initial local track parametefs This simplifies the differentiation a lot, giving

OF, R? (Ouf  Oul = Ouf
=14+ =

Ou,, 6 \du, Ou, Ou,

OF, _ b h_2 ouf  ouly  Ouf

oul, 6 \Oul, oO0u), o0ul

0Gn _ h oul| N 28u'2’ 28ug’ oul)
ou,, 6 \ Ju, ou,, ou, Ou,
0G, h (Ou] _Oul ouj  Oul
ow, 1T % (au; 0w, T2ow T 0w

(3.9)

To calculate these derivatives explicitly, we need to déffgiate the individual stages of the Runge-
Kutta-Nystrom method with respect to the global track paeters,

8'(1/”
A==
k‘ au/ Y

n

Cy

1
_ ouj,
ou,,

(3.10)

wherek denotes the individual stages, anfiis given — in a general form — by the equations of

motion of the global track parameted [

" = NTYB, —T?B,)
"= \NT*B, —T*B.)
2 = NT*By, —TYBy,)
A — _)‘39E
==

(3.11)

The last equation handles the energy loss, \litheing the energy angthe energy loss per unit
distance. The energy loss and its gradient varies littlaiwiéach recursion step, hence the values
calculated in the first stage are recycled by the followiragges. This lowers the computing cost

considerably.

Writing the4 x 4 A, andC;, matrices in a general form, we get

ox" L oz 0 )\Bz —)\By

are oA -AB. 0 B,
A=| ot = aB, —AB, 0

aA// . aA//

T X 0 0 0 <%

TYB, — T*B,

1°B, —T1"B,

T*B, — TYB,
2 9

(8- f)+ 55

(3.12)
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and
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With the help of these matrices, we find the element®gf which is multiplied byJ,, to pro-
duce the transported Jacobidp.; (3.4). This procedure is repeated for every recursion step,
transformingJd along the way.

When applied to real problems, the gradient®\aindC are usually quite costly to calculate,
hence it is common practice to set all of the/0\, 0B;/0x; and dg/0x; gradients,i and j
indicating thex, y and z components, to zero. This is, however, only correct for tretemal
gradientsdg/0x; of the blended dense volumes of the simplified ATLAS mateféscription.

4 Numerical error propagation

To test the semi-analytical error propagation, we needtenmaltive way of calculating the deriva-

tives of the Jacobiar2(4). The most straightforward way is by using the definitionhaf humerical

derivative

f(&i+hi) = f(&)
hi

f(&) = (4.1)
where f(&;) propagates the local track parameters — denoted-byfrom the initial surface to
the target surface, whilk; is kept sufficiently small, ideally zero. By using the abo\efiition
of the derivative, we vary the initial local track parametéy a small amount;, one at a time.
This is the key to knowing exactly how these variations ti@eso the final local track parameters.
Registering the changes to the final parameters gives ustter®atives of the Jacobian.
Though very easy and straightforward, this method is qo#edurate. One way of increasing
the accuracy is by using the symmetric derivative

(& +hi) = f(& — hi)
2h;

g(hi) = (4.2)
which typically has a fractional error two orders of magdé#better than the original definition of
the derivative T].

To further increase the accuracy, we use a numerical metakkeicRidders’ algorithm7].
The essence of Ridders’ algorithm is to parameterize thevmtnic derivative as a function éf;
alone by calculating it for descending valueswpffigure2. This parameterization @f( ;) is used
to estimate the derivative in the limit; — 0. Since it has to be done for every derivative, this
method is very time consuming and only useful for testing.

Compared to the semi-analytical error propagation evesithplest numerical error propaga-
tion is slow, needing at least five additional parameter agagions for every track, increasing the
computing time accordingly.
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Figure 2. Schematic plot of the Ridders algorithm. The graph showgptrameterization of the symmetric
derivativeg(h;). This algorithm reduces the problem with the increasingding errors — indicated by the
error bars — of the symmetric derivative when— 0.

5 Validating the Jacobian in an inhomogeneous magnetic fielahcluding energy loss

To get a complete understanding of the semi-analyticalr gnrapagation, we need to study the
Jacobian terms in a realistic, inhomogeneous magnetic iigldenergy loss. The test setup in-
volves propagating muons — through solid Silicon in theistial ATLAS magnetic field — in
random directions, covering all azimuthal and polar angtasomenta ranging from 500 MeV to
500 GeV, starting off from an initial surface located at thieraction point of the ATLAS detector.
The patrticles are propagated towards a target surface mangaced and rotated in a cube with
sides of 20 m centered in the detector. Generally, muonsriexge a 5GeV energy loss in the
ATLAS detector — regardless of their initial momentum — whis doubled by the solid material
of the test volume. The most energetic muons of the track aamp displaced by a few cm from
a straight line by the ATLAS magnetic field on their 15-20 rp ttirough the detector, while the
intermediate muons at around 100 GeV are displaced 10—-20ditha lowest energy muons might
be shifted several meters.

During this test, the derivatives required by the error pgation are calculated twice; first
semi-analytically by the Bugge-Myrheim method, and themarically by the Ridders algorithm.
The numerical derivatives define the baseline for the seralyéical terms. To assure the quality of
the numerical derivatives, the STEP propagator at an esterance ofl0~? is used for calculating
the symmetric derivatives of the Ridders algorithm. Thertwlerance is a user specified number
steering the accuracy of the propagation, a low error tot@agiving a high accuracy, and vice
versa. Thebsolute, relative residual

|semi-analytical derivative- numerical derivative

i ivati 5.1
Inumerical derivative (5.1)

is then used to compare the 25 derivatives of the semi-acallygnd numerical Jacobians.
Figure 3 shows three histograms of the logarithm of the absolutativel residuals of the
Jacobian eIemerﬂl{/@)\i, f andi indicating the final and initial values. These histogranss ar
typical of all thedl! /0¢' anddl! /o¢! Jacobian elements.
Figure4 shows the effect on the residuals of two Jacobian terms byiooluding one type
of gradient into the calculation of the semi-analyticaligkives. These terms are only sensitive
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Figure 3. Logarithms of the absolute, relative residuals of&hﬁ/a/\i Jacobian term in an inhomogeneous
magnetic field with energy loss. The semi-analytical deires are calculated at three error tolerances with
both gradients included, whereas the numerical derivative all calculated at an error tolerancd ©f®.
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Figure 4. Logarithms of the absolute, relative residuals of two b#&oterms in an inhomogeneous mag-
netic field with energy loss. The semi-analytical derivesiare calculated with, and without including the
magnetic field gradien®B; /0x; (left) and the energy loss gradienf/ o\ (right). Both the semi-analytical
and numerical derivatives are calculated at an error toteraf10—5.

to either the magnetic field gradients or the energy lossigmad Due to the underlying single
precision of the analysis program used to produce the pR@QT [8]), no relative difference
better than approximately0~" is seen. Entries with better relative precision becometicaity
zero and are not shown.

Figure5 shows the mean values of residuals of a selection of Jactdiars with and with-
out both gradients included. All of the semi-analyticalida&ives are sensitive to the gradients,
especially the angular derivatives.

The improvements in the residuals when turning on the magfield gradients are presented
on the left-hand side of figuré, while the additional improvements by including the eneiags
gradient are shown to the right. The effect of the energy tpaslient is only seen in the last
column of the Jacobiarg¢/ /0N, illustrated by the constarﬁlg /0¢" residual in the right-hand
plot of figure6, whereas the effects of the magnetic field gradients showl gver the Jacobian,
except in the last row\/ /0¢?, as illustrated by the constaid/ /O residual in the left-hand plot
of the same figure.
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no gradients (left) and both gradients (right), whereasniinmerical derivatives are all found at an error
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Figure 6. Improvements in the mean values of the logarithms of thelabes relative residuals by including
the magnetic field gradients (left), and the additional ioyements by including the energy loss gradient
(right) in an inhomogeneous magnetic field with energy Id$se semi-analytical derivatives are calculated
at different error tolerances, whereas the numerical dtvies are all found at an error tolerancel 6f 8.

Figure7 shows the additional computing time — relative to the STERpa&ter propagation
— spent by the semi-analytical error propagation, magrfetid and energy loss gradients. The
error propagation is only done after the adaptive paranpetgragation has found the optimal step
length, making the nominal computing cost of the error pgapi@an relatively stable over the whole
error tolerance range. Thus, the drop in the additional adimg cost of the error propagation at
low error tolerances is mostly caused by the increased ctingpeost of the parameter propagation.

6 Verifying the propagated covariance matrix in an inhomog@&eous magnetic field
including energy loss

In the previous sections we have looked at the individuablian elements to get a deeper un-
derstanding of the error propagation. Now, we examine tha iavariance matrix produced by

—10 -



Add. comp. cost relative to the param. prop.

—— Semi-analytical error propagation
Magnetic field gradients

--+- Energy loss gradient

Additional computing cost [%)]

RN AR R R RN AR RRRN AR

L TR L Loteoy
-4 -2 0 2
Iogm(Error tolerance)

Figure 7. Additional computing time relative to the STEP parameteppgation.
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Figure 8. Testing the error propagation by smearing the initialknaarameters according to the covariance
matrix. The residual is normalized by the propagated cawag to produce the pulls, and multiplied by
the inverse of the propagated covariance to find the chirsqUde angles and the momentum are smeared
similarly to the positions shown in the figure.

the linear error propagatior2.6). From this transformation, we see that the elements of tia fi
covariance matrix are sums and products of many initial tamae and Jacobian terms. Evaluat-
ing the final covariance elements on an individual basis ipesoprohibitively difficult, yet testing
the Jacobian alone is not sufficient to guarantee the quaflitie error propagation. Only a full
error propagation, using a realistic initial covariancetnmaallows us to test the significance of
the missing, or inaccurate Jacobian elements, and theegitadiTo perform this test, we use the
fact that the initial covariance matrix defines the Gauss@iances and correlations of the initial
track parameters. By varying the initial track parametexoeding to their associated covariance
matrix before propagating them to the target surface, thati@n of the final track parameters
should be reflected in the final covariance matrix. In shoetuae the initial covariance matrix for
smearing the simulated tracks and the final track paramfetessatistically testing the propagated
covariance matrix, figur8.

—-11 -



6.1 Smearing the initial track parameters according to the ovariance matrix

To simulate the variances and correlations of the initiedldrack parameters, we first decompose
the initial covariance matrix into two triangular matrid@susing Cholesky’s method]

Sinitial = L+ LT (6.1)

This method is easy to use and sufficient for decomposing stnenpositive definitive matrices
such as the covariance matrix.

The elements of the initial covariance matrices are pickedradom from Gaussian distribu-
tions with mean values of zero and widths of/@f for the positiong, and/;, 1 mrad for the angles
¢ and#f, and 1% for the inverse momentuka These are realistic values of the resolution of the
ATLAS detector, except from the 1% uncertainty, which is too optimistic. This is kept low due
to the big amount of material — and hence large energy loddbe particles — in the test setup.

After decomposing the initial covariance matrix, we us@isimear 9] the initial local track
parameterg:’ (i denoting initial)

g=p'+Ln (6.2)

whereL is the lower triangular matrix obtained through the Choyed&composition§.1), andn

is a vector of five independent variables picked at randomn faoGaussian distribution of mean
zero and variance one. Equatidhd) assumes that the initial local track parameters are Gaussi
distributed and smears them accordingly by using the iritgariance matrix.

6.2 Statistical validation of the semi-analytically propayated covariance matrix

In this test, muon tracks are generated — with their initalgmeters smeared according to the
above procedure — and propagated by using the test setupb@esi sectionb, replacing the
Silicon with Iron. Enough tracks are generated to make thtistital uncertainties insignificant.
The track parameter and error propagation is done by STERRétmagnetic field and energy loss
gradients included, at an error tolerancel6f ® to assure the quality of the tracks. Each track is
propagated twice to produce the undistureend smeared local track parameters at the target
surface. The& — p residuals are then statistically compared to the semiytically propagated
covariance matrixisng by using the normalized residuals, mull values

N J_
g - St (6.3)
\/ E?iglal,k
and thechi-square
Xt = (& — )" Ziarg - (& — 1) (6.4)

with & indicating the simulated tracks aridhe track parameters.

Since¢] is Gaussian distributed around,, the pull values should be Gaussian distributed
around zero. Moreover, if the propagated covariabgg, ;. is correct, the width of the pull values
should be normalized to one. All of the pull values preseimditjure 9 satisfy these requirements,
showing good agreement between the semi-analytical erompagation and the simulation. The
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Figure 9. Pull values of the final parameters of tracks smeared bynitialicovariance matrix, and their
Gaussian fits (solid lines). The covariance matrices arpggated semi-analytically at an error tolerance of
10~8 with the gradients included.

tails of the\ pull are intrinsic to the semi-analytical error propagatand arise from the informa-
tion loss caused by introducing the temporary global traarameters during the error propagation.

Whereas the pull values are calculated for each paramettérea$imulated track, the chi-
square incorporates the whole covariance matrix and atefitack parameters. Assuming that
all five track parameters are Gaussian distributed, andtlleae distributions obey the variances
and correlations given by covariance matrix, the test ghiase distribution should be similar to
the standard chi-square distribution corresponding todegrees of freedom. By integrating the
standard chi-square distribution from the test chi-sqtmnefinity, we get the so-calleg-value or
probability value of this test statistic. If the test chidsge distribution is correct, the p-value plot
is flat. Inverting the covariance matrix by using singulalueadecomposition], we get the flat
p-value plots of figurd 0, showing good agreement between the semi-analytical propagation
and the simulation.
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Figure 10. P-values of the final parameters of tracks smeared by ttial icovariance matrix, and their linear
fits. The covariance matrices are propagated semi-anallytit an error tolerance df) =%, excluding all of
the the gradients (left) and by only including the magneédfgradients (right).

6.3 Estimating the impact of the gradients on the semi-anatical error propagation

The covariance matrices of the pulls of fig@ere all propagated by including thig;/0A and
0B;/0z; gradients discussed in sectininto the error propagation. Including these gradients
improves some elements of the Jacobian significantly. Smagiidvements are also seen when
comparing the p-values found by only including the magniéid gradients (right) to those found
by excluding all of the gradients (left) in figuld®. The flat p-value plot found by only including the
magnetic field gradients leaves little room for further imy@ment. Thus, only the magnetic field
gradients — and not the energy loss gradient — are includedSMEP by default. The gradients’
influence on the pulls is insignificant, consequently theyrat presented here.

Pull and p-values obtained by using an error tolerancé0of for the semi-analytical error
propagation — instead of the)~ used in figure® and 10 — produce similar plots, indicating
little sensitivity to the error tolerance in the semi-anaigl error propagation.

7 Conclusion

In this paper we have performed an extensive study of the &ddgrheim method, gaining a
guantitative understanding of the impact of the magnetid f&&ad energy loss gradients on the
accuracy and speed of the semi-analytical error propagaResults show that only the magnetic
field gradients have a visible effect on the covariance wedriransported by the semi-analytical
error propagation in the ATLAS magnetic field, hence the gndoss gradient is left out of the
error propagation by default.

The computing cost increase — relative to the parameterggeatjpn — by adding the semi-
analytical error propagation is less than 100% at mediumhégtdaccuracies. This is significantly
less than the minimal computing cost increase of 500% sedmeimumerical error propagation
methods. Furthermore, the additional computing cost foluoling the magnetic field and energy
loss gradients is around 30—-40% for each type of gradientalllyj the nominal computing cost
and accuracy of the semi-analytical error propagationliively stable over the whole error tol-
erance range.
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