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Abstract: Vein patterns are a unique attribute of each individual and can therefore be
used as a biometric characteristic. Exploiting the specific near infrared light absorption
properties of blood, the vein capture procedure is convenient and allows contact-less
sensors. We propose a new chain code based feature encoding method, using spacial
and orientation properties of vein patterns. The proposed comparison method has been
evaluated in a series of different experiments in single and multi-reference scenarios
on different vein image databases. The experiments show a competitive or higher bio-
metric performance compared to a selection of minutiae-based comparison methods
and other point-to-point comparison algorithms.

1 Introduction

Intended to be a robust approach for liveness detection in fingerprint and hand geome-
try systems, vein recognition evolved to an independent biometric modality over the last
decade. Classically the capturing process can be categorized as a near or a far infrared
approach. Vein recognition systems based on the near infrared approach are exploiting
differences in the light absorption properties of the de-oxygenated blood flowing in subcu-
taneous blood vessels and the surrounding tissue. Veins become visible, as seen in figure
1, as dark tubular structures. They absorb higher quantities of the near infrared light, that
is commonly emitted by LEDs of the sensor, than the tissue. Alternatively in the far in-
frared approach the heat radiation of the body can be measured: the temperature gradient
between the blood vessels carrying the warm blood and the tissue can be measured in this
spectrum.

Vein scanners work contact-less, hence they are considered to be more hygienic than sys-



(a) (b)

Figure 1: Finger / wrist vein samples images from: (a) GUC45; (b) UC3M database.

tems requiring direct physical contact.

Vein patterns evolve during the embryonic vasculogenesis, hence their final structure is
mostly influenced by random factors [EYM+05]. Even though scientific research about
the uniqueness of vein patterns is sparse, many sources state that vein patterns are unique
among individuals. Because the network of blood vessels is located underneath the skin,
a person’s individual vein pattern is hard to forge. Furthermore, it is expected, that the
position of veins is constant over a whole lifetime [DRC06]. Offering the same user con-
venience as fingerprints while being highly secure against forging, vein recognition has
been applied in various fields of authentication and access control during the last years
such as ATMs or airports.

Still vein recognition faces challenges: limitations in capturing in vivo images from the
inside of the body, as well as ambient sunlight, temperature and varying skin properties
like the pigmentation, or the thickness influence the image quality. As a result of all these
factors the raw images can have a low contrast, contain strong noise and a non-uniform
brightness. Sophisticated algorithms for the preprocessing like contrast enhancement and
segmentation as well as the final feature extraction and comparison are necessary to handle
the variations and the noise. In this paper we contribute a new chain code based feature
extraction method and investigate its performance in combination with fusion techniques
of image skeletons. The fusion aims at enhancing the biometric performance and the
robustness against noise induced by errors during the preprocessing phase. Our approach
is compared with minutiae-based feature extraction and a state-of-the-art holistic direct
comparison approach.

After giving an overview over previously done work in section 2, we introduce two tech-
niques for skeleton fusion at feature level. We introduce our chain code based feature
extraction method in section 4 and present our experimental setup as well as the results in
sections 5 and 6. Finally conclusions and future work can be found in section 7.

2 Related Work

Since the first suggestion of using the blood vessel network as a biometric characteris-
tic was made, a large number of different techniques for extracting and comparing vein
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patterns have been proposed. In [KK09] and [WZYZ06] Principal Component Analysis
(PCA) is used for classification of vein patterns. Another statistical approach is presented
by Xueyan et al. [XS08], who use moment invariants as descriptors for the layout of blood
vessels in vein images.

Hartung et al. [HOXB11] apply spectral minutiae to vein pattern recognition. In the
approach, which has originally been developed for feature representation in fingerprint
images [XV08], the coordinates of minutiae points are transformed into the frequency
domain and mapped in a polar-logarithmic grid. This representation is translations and
scale invariant; rotations become translations. For comparison the spectra are shifted and
compared at a correlation basis (SMLFR). Instead of comparing the minutiae locations
Wang et al. computes the distances between all minutiae for feature extraction [WZYZ06].

In [WLC07] the bifurcation points of vein patterns are interpreted as endpoints of line seg-
ments. The line segments are then compared separately to each other and the similarity of
two vein patterns is expressed by the line segment Hausdorff distance. in a later approach
Wang et al. propose to apply the modified Hausdorff distance (MHD) to vein minutiae in
[WLC08], where a perfect discrimination of the far infrared data could be achieved.

In the approach proposed by Chen et al. two comparison algorithms are proposed [CLW09].
The goal is to make direct comparison algorithms more robust against rotation. Therefore
first an algorithm called Similarity-based mix-matching is proposed (SMM), which com-
pares segmented images and image skeletons with each other. Because the segmented ver-
sion of an image is more tolerant to outliers, the approach tolerates small rotations. They
also propose a modified version of ICP where the registration error is used as a similarity
measure.

In 2003 Miura et al. have proposed a method called repeated line tracking, which tracks
the course of veins by tracking dark structures in the images from randomly chosen starting
points [MNM04]. Yang et al. present a modified version of repeated line tracking which
uses the information gathered during line following for deriving a probability map for
vein location [YXL09]. Miura et al. [MNM07] outline another algorithm for vein pattern
extraction, which exploits local differences in brightness. The algorithm is based on the
assumptions, that veins are thick, dark tubular structures and detect local minimums of
grey values.

3 Skeleton Fusing

In our approach skeletal images are the basis for feature extraction. Because of noise
and poor contrast, these skeletons will differ, even though they are generated from the
same biometric source. In order to improve their reliability and hence the reliability of the
extracted features, we propose two different approaches for fusing multiple skeletons into
a single one.
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Figure 2: Fusion based on unification (GUC45 samples) using n = 3 input skeletons: (a) super-
imposed structure Suni1 ; (b) disk-shape structuring element dilated structure Suni2 ; (c) final unified
skeleton Suni.

(a) (b) (c)

Figure 3: Fusion based on intersection (GUC45 samples) with n = 5 input skeletons and threshold
t = 3: (a) dilated density structure S int2 ; (b) S int3 (threshold t applied to segment S int2 ); (c) final
intersection skeleton S int.

3.1 Unified Skeleton

The first approach takes n input skeletons from the same biometric source and computes a
unified skeleton based on the input. In a first step, all input skeletons Si(x, y) are aligned
with each other using the Iterative Closest Points algorithm (ICP) [RL01] and then super-
imposed to a common structure Suni (Fig. 2(a)):

Suni1(x, y) = ∪n
i=1Si(x, y) (1)

The registered input skeletons are fused by dilating the superimposed binary image Suni1

with a disk-shaped structuring element (Fig. 2(b)) to get Suni2 . Afterwards the fast march-
ing skeletonization algorithm [TvW02] is applied to the dilated image in order to create
the unified skeleton Suni (Fig. 2(c)).

3.2 Intersected Skeleton

The second proposed algorithm creates an intersected skeleton, which possesses only those
features which occur in at least t of the n input skeletons. An example for skeleton inter-
section with n = 5 input skeletons is illustrated in Figure 3. The intersected skeleton
in Figure 3 consists of the lines which occur in at least three of the five input skeletons
(t = 3).

Similarly to the unification approach, the input skeletons Si need to be aligned to each
other. Afterwards each of the n input skeletons is dilated with a disk-shaped structuring
element, creating binary structures Sint1 . These dilated skeletons are then added up to form
a common unified density structure called Sint2 .
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Sint2(x, y) =
n∑

i=1

Sint1
i (x, y) (2)

Sint2 contains values between 0 and n at each location (x, y). The interpretation: Sint2(x, y)
represents the number of skeletons that are classified as veins in location (x, y) for the in-
put skeletons – all input skeletons have a pixel that is classified as vein in case of Sint2 = n
and none if it is equal to 0.

Now a threshold value t with 1 ≤ t ≤ n is applied to Sint2 resulting in Sint3 . In this step
all pixels which at least occur t times in the input skeletons are kept, all other pixels are
set to zero.

Sint3(x, y) =

{
1 if Sint2 ≥ t
0 else (3)

Finally the fast marching skeletonization is applied [TvW02], which results in the inter-
sected skeleton Sint.

4 Chain Code Comparison

Similarities between two image skeletons can be determined by measuring the relative
positions of the skeleton lines as well as their relative orientation. Two lines, which are
parallel should be considered to be more similar than two non-parallel skeleton lines. The
proposed feature extraction uses the position of each pixel on a skeleton line in combina-
tion with its local orientation reflected by the chain code value. Thus the algorithm finds
associated points between the probe and the reference skeleton and measures it parallelism.

4.1 Preliminaries and Assignment

However before chain code values can be assigned to an image skeleton, some preliminar-
ies have to be met. In a first step the probe and the reference skeleton have to be aligned
with each other. As for skeleton fusion, we used ICP for skeleton alignment. Moreover
all points where veins split up (bifurcations) have to be removed from the image skeleton
in order to avoid ambiguities. These points are extracted with a fast convolution method
[OHBL11] resulting in separated line elements.

To make sure all chain codes refer to a common starting point, a reading direction has
to be defined. In our work, the chain code feature extraction module iterates over each
pixel (x, y) of the skeleton starting from the bottom left corner of each line element and
ends at the top right corner. Chain codes extracted from the same shape with different
coordinates will be identical. Each skeleton pixel is assigned a chain code value according
to the relative position of its successor, which is equivalent to the next skeleton pixel hit
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when moving along the reading direction (see Figure 4). All skeletons are defined as
8-connected structures.

4.2 Comparison

After the chain code assignment for the reference and the probe, the similarity between
two aligned chain codes C and C ′ can be calculated. The algorithm tries to find pairs of
associated points in the reference and the probe. All skeleton points of the reference are
used for the comparison in the following way: a search direction is defined for a skeleton
pixel at (x, y) of the reference. It is orthogonal to the direction of the local orientation
which is approximated by the chain code value stored at the examined point.

Starting from the same position (x, y) in the probe, the search for associated pixels stops if
either an associated point could be found in the search direction or if the maximum search
depth dmax is exceeded. When a pair of associated skeleton points has been found, their
similarity is calculated based on their euclidean distance d and the chain code difference
c, where (x, y) and (x′, y′) are the coordinates of the two associated points and C(x, y)
and C ′(x′, y′) are their chain code values.

d =
√

|x− x′|2 + |y − y′|2, and (4)

c = |C(x, y)− C ′(x′, y′)|2 (5)

The local error E at point (x, y) is then calculated as follows:

E(x, y) =
d+ c

Emax
,with (6)

Emax = dmax + cmax (7)

The values for dmax and cmax denote the maximum search depth and the maximum pos-
sible difference between two chain code values. Following Equation 5 and the scheme
sketched in Figure 4, cmax = 82 = 64. The local error is stored at position (x, y) in an
error map E, which has the same size as the input images.

The assignment of associated points is not commutative and therefore the order of the
two input skeletons leads to different results(probe/reference). Starting with the reference
skeleton and searching for an associated pixel in the probe skeleton, a different pixel pair
can be identified as the other way around. This is handled by computing two error maps
E1 and E2. E1 contains all local errors calculated by using C as reference and C ′ as probe
skeleton and E2 contains all local error using C ′ as probe and C as reference, respectively.
The total error map Etotal is the sum of local errors for each point in the skeleton images
and is computed as follows:

Etotal(x, y) = E1(x, y) + E2(x, y) (8)
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Figure 4: Chain code extraction scheme and search procedure for finding associated pixels.

Similarly the error map for the maximum possible error Elimbetween the current image
pair E1 and E2 is the sum of the maximum error values at each pixel in the skeleton
images.

Elim(x, y) = E1max(x, y) + E2max(x, y) (9)

Finally the normalized similarity score of the comparison is defined as:

Score = 1−
∑

x

∑
y Etotal(x, y)∑

x

∑
y Elim(x, y)

(10)

An example of how a point pair can be found by using the local chain code value is shown
in Figure 4(b). The algorithm starts at the boldly bordered point in C and searches in
orthogonal direction for a corresponding point in C ′. After two mated points have been
identified, their local error, which is a value between 0 (no error) and 2 (maximum error)
is calculated. The global distance measure between all points in C and C ′ is, as stated
before, the weighted sum of all local errors.

5 Experimental setup

The influence of using different feature extraction and comparison strategies including the
proposed chain code based algorithm was measured using the Equal Error Rate (EER).
Further, the influence of the proposed skeleton fusion techniques is quantified during the
simulations.

Vein Recognition Using Chain Codes, Spatial Information and Skeleton Fusing 251



5.1 Datasets

In the experiments two different vein databases were used. In both cases the images
were captured with a CCD-camera and illuminated with NIR light at a wavelength of
850nm. The GUC45 dataset contains finger vein images from 45 data subjects collected
at Gjøvik University College in Norway over a long period of time. Each finger, includ-
ing the thumbs, was captured two times during each of the 12 sessions, which results in
10800 unique vein images in total. The image from GUC45 suffer from low contrast and
high noise, which makes it hard for any algorithm to extract stable skeletons and hence
to achieve a low error rate on this data. However this fact makes the images particularly
interesting for research purposes as it allows for exploring the limitations of any algorithm
for feature extraction and comparison.

The second database, called UC3M, consists of wrist vein images, which were collected
as described in [PJUA+10]. The focus of this experiment was to evaluate the effect of
different illumination intensities on the visibility of veins. For each of the 29 users, 6
images were taken for each hand under three different illumination settings. This results
into 348 images in total.

5.2 Preprocessing

The preprocessing stage consists of three steps, namely image enhancement, segmentation
and skeletonization. During image enhancement, noise should be removed and at the
same time image contrast should be enhanced. In order to meet both criteria, different
methods are combined. In a first step, the vein images are enhanced with adaptive non-
local means as proposed by Struc and Pavesic [SP08] followed by non-linear diffusion for
noise suppressing and edge enhancement [wei01].

The image enhancement step is followed by a segmentation step. In order to evaluate, if
there is an image segmentation method, which is particularly suitable for segmenting vein
images, three different segmentation methods have been benchmarked. The first of these
methods is Otsu’s histogram-based segmentation [Ots79]. Additionally the active contours
algorithm proposed by Chan and Vese [CV01] and the multi-scale filter method by Frangi
et al. [FNVV98] have been tested on the vein images.

Preprocessing is concluded by the skeletonization approach proposed by Telea and van
Wijk [TvW02]. The advantage of this method is the built-in skeleton pruning, which
allows cutting off small, noisy branches of the image skeleton.

5.3 Feature Extraction & Setup

All experiments were conducted on the basis of a modular vein verification system imple-
mented in MATLAB. The benchmark system allows for arbitrary combinations of different
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Figure 5: (ROC curves for (a) selection of feature extraction algorithms and (b) Fused Union con-
figuration, different finger samples from GUC45 dataset. Finger indices are assigned according to
the ISO-standard [ISO05] with indices 1 until 5 for the right hand fingers in indices 6 until 10 for
the left hand fingers, where counting always starts from the thumbs.

preprocessing, feature extraction and comparison modules. We evaluated the performance
of spectral minutiae (SMLFR) as proposed in [HOXB11], Similarity-based Mix-Matching
(SMM) [CLW09] and the performance of chain code comparison on single references and
fused skeletons. In all experiments using fusion techniques, the fused skeleton served as
the reference image and a skeleton extracted from one vein image was used as the probe
image.

6 Results

In our experiments, the segmentation algorithms came to slightly different performance
results, but had a minor effect on the overall system’s performance. The measured per-
formance difference between the different segmentation algorithms is less than 2% points
in terms of the EER. The main difference between the evaluated segmentation approaches
was in terms of computation time, however the approach by Frangi and Niessen performed
slightly better on the UC3M dataset.

In contrast to the preprocessing step, the impact of the feature extraction and comparison
method is significant. We evaluated the performance of spectral minutiae (SMLFR) as
proposed in [HOXB11], Similarity-based Mix-Matching (SMM) [CLW09] and the per-
formance of chain code comparison on single references and fused skeletons. Table 1
summarized the performance measures for each of the datasets. The results for GUC45
were obtained using Otsu’s segmentation algorithm, whereas the EER measures on UC3M
are based on Frangi and Niessen’s filter-based approach.

As stated before, the images in GUC45 have a particularly low contrast and therefore can-
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Comparison Algorithm GUC45 UC3M

Chain Codes 28.72 1.38
Fused Union 24.67 0.63
Fused Intersect t=2, n=3 34.19 0.69
Fused Intersect t=3, n=5 32.85 NA
Fused Intersect t=5, n=7 34.30 NA
SMM 27.84 1.38
SMLFR 40.25 5.90

Table 1: Benchmark results (EER in %) for finger vein (GUC45) and wrist images (U3CM). NA:
not possible due to limited number of samples per source.

not be expected to give good biometric performance. However, GUC45 is a challenge
for all tested algorithms. In addition, it also contains multiple samples per subject. The
results of the different feature extraction and comparison approaches on GUC45 are sum-
marized in Figure 5. The best performance could be achieved with chain code comparison
using unified skeletons as reference samples and skeletons derived from only one image
as probes. This configuration was named Fused Union and with an EER of 24.67% it out-
performed all other configurations including SMM, but also single reference chain code
comparison. This shows that already a simple skeleton fusing approach like the proposed
one, enhances the quality of image skeletons and improves the system performance signif-
icantly.

Further investigations on the performance of Fused Union for each finger on GUC45
showed, that the fingers of the left hand performed better than the right hand fingers (see
Figure 5(b)). In our experiments, the highest error rate was measured with images from
the thumbs (Fingers indices 1 and 6). The EER of configurations using intersected skele-
tons gets higher the more input skeletons are used. A reason for this could be that unstable
skeletons have only few intersecting parts, which results in fused skeletons with low com-
plexity. Less details however mean less distinctive power and results in increasing error
rates.

For the UC3M dataset an excellent biometric performance could be measured without the
skeleton fusion techniques proposed. SMM and the chain code algorithm perform at the
same level (around 1% EER). Skeleton fusion could reduce the EER to 0.63%, whereas
skeleton intersection with n = 3 and t = 2 yielded in a slightly higher EER of 0.69%.

7 Conclusion and Future Work

The proposed chain code algorithm as well as the state of the art SMM algorithm perform
very similar on the chosen datasets, it seems the quality of the images is a limiting factor
here. Only a multi-reference approach could further improve the results.

Even though the proposed comparison on Fused Union skeletons showed promising re-
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sults, the algorithm’s time wise performance is not impressive compared to other feature
extraction and comparison algorithms. Future work focuses on reducing the required com-
puting time by replacing the pixel-based chain code extraction with a convolution-based
approach and by selecting less reference points for skeleton registration and comparison.
Further improvements could also be made by using a different error functions to make it
less sensitive to single outliers and more sensitive to mismatching line segments. More-
over, additional simulations on different vein datasets will also show the feasibility of the
approach for different vein modalities.

In summary the combination of spacial information and chain codes proved to be an in-
teresting new technique, which combines the robustness and simplicity of holistic com-
parison methods with information about the local orientation of vein patterns. On the
selection of vein data, chain code comparison performed competitive to state of the art
holistic methods like SMM and superior to minutiae-based comparison (SMLFR). It can
be easily extended to a multi-reference scenario: on the proposed Fused Union skeletons
the performance is superior to the other algorithms.
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